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Abstract

This thesis is concerned with the development of Variational Arbitrary Lagrangian-Eulerian
method (VALE) method. VALE is essentially finite element method generalized to account
for horizontal variations, in particular, variations in nodal coordinates. The distinguishing
characteristic of the method is that the variational principle simultaneously supplies the
solution, the optimal mesh and, in case problems of shape optimization, optimal shape.
This is accomplished by rendering the functional associated with the variational principle
stationary with respect to nodal field values as well as with respect to the nodal positions of
triangulation of the domain of analysis. Stationarity with respect to the nodal positions has
the effect of the equilibriating the energetic or configurational forces acting in the nodes.
Further, configurational force equilibrium provides precise criterion for mesh optimality.
The solution so obtained corresponds to minimum of energy functional (minimum princi-
ple) in static case and to the stationarity of action sum (discrete Hamilton’s stationarity
principle) in dynamic case, with respect to both nodal variables and nodal positions. Fur-
ther, the resulting mesh adaption scheme is devoid of error estimates and mesh-to-mesh
transfer interpolation errors. We illustrate the versatility and convergence characteristics
of the method by way of selected numerical tests and applications, including the problem
of semi-infinite crack, the shape optimization of elastic inclusions and free vibration of 1-d

rod.
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Chapter 1

Introduction

Numerical solution for the discretized continuum is dependent on mesh. For the case of
inhmogeneous system the numerical solution is also dependent material configuration. Con-
sidreration of configurational forces provides elegant framework for the investigation of such
a dependency and enables solution of optimal mesh and material configuration where ap-

plicable.

1. Mesh Adaption: The response of continuum often exhibits multiple length scales.
This may be due to a variety of causes, including i) strong discontinuities in the solu-
tion made possible by the hyperbolicity of the problem, e.g., localization shocks, slip
lines; ii) steep gradients due to mathematical singularities as in the case of solution
near the crack-tip in fracture mechanics; iii) the simultaneous operation of interact-
ing mechanisms possessing vastly disparate length scales, as in the case when the
small or microscopic-length scale determines the behavior of the system at the large
or macroscopic-length scales. Further applications involving fully unconstrained flows
of material are amenable to a fully Lagrangian finite element solution, provided that
the inevitable deformation-induced distortion is eliminated by recourse to continuous
mesh adaption. To account for these effects, a number of strategies for remeshing
have been developed, most of which include error estimation and mesh-to-mesh trans-
fer [20, 21, 22, 26]. In the work of Radovitzky and Ortiz [20] local posteriori error
estimates are computed, which inturn provide mesh-size distribution. Based on this
mesh-size distribution, whole computational domain is remeshed and fields are trans-
ferred from the previous mesh to the new mesh. Molinari and Ortiz [21] used the

local error estimates so obtained to decide which elements need refinement or coars-
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ening based on assumed thresholds on the error indicators. Then mesh refinement
and coarsening are accomplished semilocally based on Longest edge propagation path
(LEPP) [47], with localized mesh-to-mesh transfer. Due to the localized nature of
mesh-to-mesh transfer, interpolation errors are limited to the elements which have
been effected by the mesh refinement/coarsening. In the work of Shephard [26] mesh
adaption is accomplished with strain energy density variation as error indicator and
mesh adaption is accomplished either by remeshing or relocating nodes interactively.
All the above methods need mesh-to-mesh transfer, which involves interpolation error
during the transfer of fields from old mesh to new mesh. Further, fields on the new
mesh are not guaranteed to satisfy the nodal force equilibrium. The error associated
with mesh-to-mesh transfer, coupled with nodal force non-equilibrium, may cause nu-
merical instability of the simulation. In fact this is the motivation for the development
of this method. In our previous research for the development of velocity-variational
Lagrangian formulation for fluids [34], accumulation of mesh-to-mesh transfer errors
caused instability of the simulation. This necessitated development of a mesh adaption

scheme which does not involve mesh-to-mesh transfer.

One of the popular methods based on nodal relocation is gradient-weighted moving
finite element (GWMFE) developed by Miller et al. [30, 31]. This is an improved
version of moving finite element method (MFE) [32]. In GWMFE, evolution of nodal
coordinates is assumed to satify PDE for normal motion. Even though this scheme

does not involve error estimation and mesh-to-mesh transfer, it is not variational.

. Shape/Structural optimization: In case of inhomogeneous system continuum re-
sponse is sensitive to material configuration. One such important application is the
shape optimization for obtaining equilibrium shape, i.e., inclusion shape correspond-
ing to minimum energy functional of the inhomogeneous material system. Most of
the methods [23, 24] developed for accomplishing shape optimization are not general
enough to account for all possible loading conditions and are developed for linearized
kinematics. The method developed by Jog et al. [18] has no limitation with regard
to loading conditions but still has limitation of linearized kinematics. However, fi-
nite deformation effects could be important, as in the case of interaction of material

interface with free surface.
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To address these issues we propose Variational Arbitrary Lagrangian-Eulerian (VALE)
method. VALE method is essentially finite element method generalized to account for
horizontal variations (variations in undeformed or nodal coordinates). The distinguishing
characteristic of the method is that the variational principle simultaneously supplies the
solution, the optimal mesh and, in problens of shape optimization, the optimal shape of the
system. This is accomplished by rendering vatiational functional stationary with respect to
nodal field values as well as with respect to the nodal coordinates of the triangulation of the
domain of analysis. These stationarity conditions correspond to nodal force balance and
nodal configurational/material [14, 1, 2] force balance, respectively (in this thesis, we use
configurational force and material force interchangeably and both mean the same). Simi-
larly in dynamics, stationarity of action sum with respect to time component of horizontal
variations provides time adaption and this condition correspond to energy conservation [13]
for conservative systems. However, the resulting equation, which can be solved for the
corresponding time step, is very non-linear and numerically expensive. Further, the result-
ing variational integrator, even without solving for time step, has good long-term energy
behavior. So, in this thesis we will not consider time component of horizontal variations.

The ability of VALE method to account for horizontal variations enables the solution
for the nodal coordinates. The resulting mesh adaption scheme is devoid of error estimates
and mesh-to-mesh transfer, and hence the concomitant interpolation errors. Further, the
configurational nodal force equilibrium provides the precise criterion for mesh optimality.
The mesh so obtained is the optimal mesh in the sense that the solution for deformed
coordinates so obtained is the most accurate solution for a given number of nodes. Also,
the deformed coordinate solution after mesh adaption is guaranteed to satisfy nodal force
equilibrium and hence preserves mechanical structure.

In the second chapter of this thesis, we demonstrate the VALE method as a mesh
adaption scheme. For homogeneous material in the continuous case, energy functional
possesses translational symmetry in reference configuration. However, in the discrete case,
translational symmetry of energy functional with respect to nodal coordinates is broken as a
consequence of introduction of discretization. The resulting stationarity condition provides
a system of equations which enable solution of nodal coordinates. We demonstrate the
ability of the resulting mesh adaption scheme to resolve steep gradients in the presence

of singularity by applying it to fracture mechanics problems and neohookean elastic solid
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subjected to moving point load. Also, since the analytic/exact solution for the linear-
elastic case is known, we study the convergence behavior with mesh adaption and compare
it without mesh adaption. Here, it is observed, that mesh adaption not only reduces error
but also provides faster convergence. Since J-integral can be interpreted to be the material
force corresponding to the crack-tip node in the tangential direction of the crack face, J-
integral evaluation can be accomplished in a natural manner without any contour or domain
integral evaluation. J-integral so evaluated is very accurate.

In the third chapter of the thesis, we demonstrate VALE’s application to shape opti-
mization, specifically equilibrium shape of a misfitting particle in a matrix. In this case in
addition to discretization, inhomogeneity also contributes to the breaking of translational
symmetry of energy functional with respect to nodal coordinates. In particular the corre-
sponding continuous case also, energy functional does not possess translational symmetry
with respect to undeformed coordinates. The shape optimization capability of the algorithm
has been demonstrated with the study of the symmetry-breaking transition phenomena as-
sociated with dilatational misfit.

In the fourth chapter, we demonstrate this method’s application as a variational inte-
grator with horizontal variations. To obtain the update for nodal coordinates we render
space-time discretized action sum stationary with respect to nodal coordinates, in addi-
tion to deformed coordinates. The additional system of equations provides the update for
nodal coordinates. The resulting algorithm is symplectic-momentum preserving [28] and
has good long-term energy behavior. Since nodal coordinates themselves are the solution,
this method can be applied to simulations involving moving gradients. In particular we
demonstrate its application to shock capturing, wherein the ability of nodes to focus on
moving shock has been demonstrated. Further, good long-term energy behavior has been
observed.

One of the advantages of the variational integrators with horizontal variations in the
context of contact-impact simulation is the bigger stable time-step for the efficient numerical
simulation. It will also help if the element used for the finite element computation has well-
defined lumped masses and contact tractions. To accomplish this, in the fifth chapter,
we develop and analyze a composite ‘CT3D’ tetrahedral element. This element consists
of an ensemble of twelve 4-node linear tetrahedral elements, coupled to a linear assumed

deformation defined over the entire domain of the composite element. The element is
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designed to have well-defined lumped masses and contact tractions in dynamic contact
problems while at the same time minimizing the number of volume constraints per element.
The relation between displacements and deformations is enforced weakly by recourse to the
Hu-Washizu principle. The element arrays are formulated in accordance to the ‘assumed-
strain’ prescription. The formulation of the element accounts for fully nonlinear kinematics.
Integrals over the domain of the element are computed by a five-point quadrature rule. The
element passes the patch test in arbitrarily distorted configurations. Our numerical tests
demonstrate that CT element has been found to possess convergence rate comparable to
those of linear simplicial elements, and that these convergence rates are maintained as the
near-incompressible limit is approached. We have also verified that the element satisfies
the Babuska-Brezzi condition for a regular mesh configuration. These tests suggest that
the CT3D element can indeed be used reliably in calculations involving near-incompressible

behavior such arises, e.g., in the presence of unconfined plastic flow.



Chapter 2

Mesh adaption

2.1 Introduction

Mesh adaption becomes necessary for efficient numerical solution, especially in the presence
of steep gradients as in the case of singularities in the case fracture problems, shock cap-
ture in wave propagation, etc.. Further applications involving fully unconstrained flows of
material are amenable to a fully Lagrangian finite element solution provided that the in-
evitable deformation-induced distortion is eliminated by recourse to continuous mesh adap-
tion. However the present schemes [20, 21] are not robust enough due to mesh-to-mesh
transfer with concomitant interpolation errors and nodal force non-equilibrium. Further,
these methods do not possess precise mesh optimality criterion and may not provide the
optimal mesh. To remedy this we propose and develop a novel method, Variational Arbi-
trary Lagrangian-Eulerian (VALE) which is devoid of these deficiencies. The resulting mesh
adaption scheme is variationally consistent and is devoid of error estimation and mesh-to-
mesh transfer, hence interpolation errors. Further, mesh so obtained is the optimal mesh
in the sense that it provides the most accurate solution for a given number of nodes.

In this chapter, we demonstrate one of its most important applications as a tool for mesh
adaption with elastic material as prototype material. To this end we begin by developing

variational formulation for an elastic solid.

2.2 Variational formulation

We consider a solid occupying a region By € R? in its reference undeformed configuration.

The solid subsequently deforms under the action of externally applied forces and prescribed
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displacements. The deformation mapping ¢ : By — R® maps material points X in the
reference configuration into their corresponding positions x in the deformed configuration
B = ¢(By). The deformation gradient field follows as F = V¢, where V is the material

gradient. In components:
Opi

F“:aXJ’

in By (2.1)

Here and subsequently, we use upper (respectively, lower) case indices to denote components
of vector fields defined over the undeformed (respectively, deformed) configuration. The
deformation mapping is prescribed to take a prescribed value @ over the displacement part

0By of the undeformed boundary. This furnishes the boundary condition:
@i = @i, on 0By (2.2)
Additionally, the solid is in equilibrium, which requires
Pij g+ poB; =0, in By (2.3)

and

_PL'JNJ = 'Ti, on 8302 (24)

Here P denotes the first Piola-Kirchhoff stress tensor, py is the mass density per unit
undeformed volume, B is the body force density per unit mass, IN is the unit normal
to the undeformed boundary, and T is the applied traction over the traction boundary
0By = 0By — 0By1. For simplicity, we shall assume that the material is elastic, with
strain-energy density W (F'). Under these assumptions, the constitutive relations take the

form:

oW
- 0Fy

Py (F) = Fi;(F) (2.5)

With a view to formulating finite-element approximations, we begin by re-stating the

preceding equations in variational form.

= [ WV~ [ mBpdve- [ T pas, (2.6)
By Bo 9Bo2

The functional is discretized by the introduction of a finite-element interpolation of the



form:

on(X) =) mNo(X) = ) 2N (X) (27)

where X € Q¢ Q° domain of the element e, N total number of nodes and n number of node
per element. We further restrict attention to isoparametric element and consider element

shape functions are of the form:

N = Non™ (2.8)
where
n A~ A
n°(X) =) XNy(X) (2.9)
a=1

is the isoparametric mapping for element e, defined over the standard domain Q) of the
element. Even though we used isoparametric element, which is usually the choice of ele-
ments, this formulation is independent of the choice of element and is equally valid for other
types of elements such as composite element, details of which are given in Chapter 5. The

discretized energy function:

Ih = W(V()(Ph)dV() - / poB - @hd% — T : (phdS() (2.10)
Bo Bo 9Bo2

In finite element method we seek the minimum solution of I; over a mesh [3]. Let this
minimum be F; for a uniform mesh My, Fig. 2.1. Consider mesh My which is obtained by
relocating the nodes of mesh M; to the region of steep gradients (in this case close to crack
tip) from regions of low gradients, while keeping everything else (number of nodes, number
of elements and connectivity) same, which gives lower minimum F5. Since analytic solution
bounds numerical solutions from below, lower is the minimum energy I of the numerical
solution, closer is the numerical solution to the analytic solution and hence less error. This
suggests, to get the most accurate solution for a given number of nodes we need to seek
minimum solution of I in the combined space of deformed x) = {x;,a = 1,..., N} and
undeformed X, = {X,,a = 1,...,N} coordinates. Henceforth, the aim is to minimize
Ij, with respect to {xp, X} to get the most accurate solution possible. The stationarity

condition corresponding to the minimum is

<DIh,5.’Bh> -dxp, + <DIh, (SXh) 60X, =0 (2.11)



Figure 2.1: Dependence of minima on nodal coordinates

and since dxp, and 0.Xj, are independent everywhere except on Dirichlet boundary,

1
r = (DIp, dzp) = g—h =0 : Nodal force equilibrium (2.12)
Th
I
R = (DI, X;) = ;Th =0 : Configurational nodal force equilibrium (2.13)
h

which enforce equilibria of nodal forces and nodal configurational (material) forces [2, 1],
respectively.

Here nodal configurational force equilibrium (2.13) is as fundamental as nodal force
equilibrium (2.12) and also furnishes the precise criterion for the mesh optimality. Fur-
ther, the system of nodal configurational force equilibrium equations, in which number of
equations is same as the number of undeformed coordinates degrees of freedom, together
with nodal force equilibrium system of equations, provide a coupled system of equations for
the simultaneous solution of the deformed () and undeformed (X},) coordinates. It may
be noted that in case of dynamics, similar stationarity conditions of discrete action sum
corresponding to Hamilton’s stationarity principle provide variational update for deformed
and undeformed (nodal) coordinates at each time step and is discussed in Chapter 4.

On the Dirichlet boundary dxj; and 6 X, are not independent, and the relation is given
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0x;
0X

0Tiq =

%0 Xra (2.14)

where Z(X) is the prescribed deformation on Dirichlet boundary and the corresponding

nodal configurational equilibrium equations for Dirichlet boundary nodes are

oIy, " dxy OI),
0Xkp OXk Oxpp

=0 (2.15)

As can be expected nodes on Dirichlet boundary do not satisfy nodal force equilibrium,

‘reaction force’. Since 1y, = Bzh

th + Bxk
0Xkpy O0Xk

= =0 (2.16)

In order to further explicate the stationarity conditions we begin by expressing the dis-

cretized energy in the form:

E
=Y W (Vopn)dVo — | poB - ppdVy —
2% 2

e=1 898 NOBo2

Corresponding system of nodal force equilibrium equations (2.12)

E
ol _

=gt = :{ | Padosavo— [ poBidoava— [ TkodSO} =0
Lkb e—1 QS QS 693ﬂ6302

Next we compute the variations of each of the terms in Eq. 2.17 with respect to X . To

this end, write
E
I, = Z/ w (Z TialV, aA ) det(Vn®)dS (2.18)
e=1 2

Taking variations with respect to § X, gives

E
51,1:2/{2{ P;j
e=1

n N X . .
+W (Z 6X{fKNb,B) g}(—i} det(Vne)dQ (219)
b=1

. 0X 0X
Z-Tza aA A (ZdeKNbB> 8—);];]
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or

E n
5= /Qe {(W5KJ — FigPiy) (Z 5X§KNb,J) } avy (2:20)
e=1 0

b=1
where in M = WI — FT P we recognize Eshelby’s energy-momentum tensor[9]. Next we

have .
Ih = Z/ poBi (Z 37z'a1\7a> det(Vn®)dS (2.21)
=174 a=1

Taking variations we obtain

E n n O
i =Y / poB; (Z mea) (Z 5X§KN,,,B> g;(B det(Vn®)d (2.22)
=179 a—1 b=1 K
or

E n
S =" /Q poBip; (Z 5X§KN,,,K) dVy (2.23)
e=1 b=1

Finally we turn to the traction term. To this end, let P be any tensor-valued function such
that P;yN; = T; on 0By, and P;yN; = 0 on 0By;. In practice, the function P need only

be one element deep. Then we have

I :/ PiyNpidSo :/ (Pirpi)ss dVo :/ (Piypi,s + Piyge)dVy (2.24)
9By Bo Bo

Each of the two terms in the last expression can now be given a treatment identical to the

terms [ ,% and I,% discussed earlier. Collecting all terms, we obtain

oI, =

E n
Z {IW — Pe.rok,. — (poBi + Pep,n)er)dsx — (Pis — Pis)Figc } (Z 5X§KN1;,J> dVo
e=174% b=1
(2.25)

Here it may be noted that prescribed traction contributes only to those elements which are

adjacent to traction boundary. The nodal configurational force equilibrium (2.13), therefore,

oIy,

R = =
Kb = 5 Xrh

E
Z/ {Mks+ [—Piror,r — (poBr + Per,r)ek)0sk + PisFik } Ny yjdVo =0 (2.26)
e=1 QS
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For the linear elastic case similar derivation for nodal forces and configurational nodal forces

can be given given by

E
ol _
ey = o = Z / ok Nb,jdVo —/ poBrNpdVo —/ T NpdSo ¢ =0
Qury, 2= | Jog g 005N9Bo>
oI <
B = 8X—;h(,, =2 / {muj + [=Gkiury — (poBk + Fki)weldjn + Gijuin} NojdVo = (2.27)
e=1 Q5

where m = WI — (Vu)To is the Eshelby’s energy momentum tensor for linear elastic
case. As can be expected, configurational equilibrium involves Eshelby’s energy momentum
tensor, as configurational forces are related to material configuration. In the following we

discuss more about Eshelby’s energy momentum tensor and it’s relation to forces on defects.

2.2.1 Eshelby’s energy-momentum tensor

Material/configurational force can be interpreted as the force that causes motion of a ‘de-
fect’ or ‘singularity’. Here, defect or singularity should be interpreted in its broadest sense,
for that may even include inhomogeneity. Presence of defect breaks translational symme-
try of energy functional with respect to undeformed coordinates, and the corresponding
stationarity conditions correspond to material force balance.

Material force(R) on a defect can be expressed as
R= / M - NdS (2.28)
S

where S is the closed surface containing the defect and M(=W1I — FT P) is the Eshelby’s
energy-momentum tensor. However, if S does not contain a defect, the integral, Eq. 2.28,
vanishes. So, for a system without defect linear momentum balance, P;; s+ poB; = 0, imply
invariance of energy functional with respect to traslation in the reference configuration.
However, in the discrete case, introduction of discretization breaks translational symmetry
of energy functional in the reference configuration and hence nodes can be considered as
the distribution of defects in this sense. Also in discrete case, nodal force equilibrium (2.12)
does not imply nodal configurational equilibrium (2.13). This in turn provides additional
set of equations (2.13) for the solution of undeformed coordinates(Xp).

In the presence of crack-tip, which qualifies as defect, Eq. 2.28 gives the force acting on
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the crack-tip provided S encloses the crack-tip. Consider contour I' in Figure. 2.2 which
contains the tip of the crack, even though the crack may pass out of contour I', and part of
the crack which lies inside I" is straight and is parallel to X;. Then the X; material force

component with linearized kinematics can be given ‘as
R = / [Wény — w1 (o - n)]dT (2.29)
r

where ny is the X7 component of outward normal to contour I', with no forces acting on
the crack-tip. In the absence of body forces, R¢ is path independent [5], and is known as
Rice’s J-integral. Further, Eshelby [10, 11] and Rice [6] have shown that J-integral can
be interpreted as the energy-release rate, i.e., reduction of potential energy per unit crack

extension
oI

J:—%

(2.30)

where a is the crack length.

Figure 2.2: Contour for J-integral

2.2.2 Solution scheme

To obtain solution for deformed and undeformed coordinates we modified the conjugate-

gradient (Polak-Rebiere version)[12] method for minimization of energy function. This
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solution scheme has two levels, in which outer level is the undeformed coordinate iterative
update or nodal coordinate update. Nodal coordinate iterative loop contains solution for
equilibrium solution for deformed coordinate for a fixed mesh as shown in the Figure. 2.3.
This guarantees that configurational forces for undeformed coordinate update correspond

to equilibrium solution, which in turn guarantees positive Jacobian of the elements.

Undeformed (nodal) Egbm solution
coordinate update with fixed nodal coor

Configurationd|
N9 Eqbm?

Figure 2.3: Schematic of solution scheme

Further, we used occasional re-triangulation for faster convergence. This re-triangulation
is achieved by keeping nodal locations fixed but seeking new connectivity by recourse to
Delaunay triangulation. This would improve mesh quality because Delaunay triangulation
guarantees maximum-minimum interior angle of elements of all the possible meshes for a
given point set. Good quality of the triangulation so obtained provides faster convergence
i.e., needs few iterations to converge. It is important to note that for the problems involving
internal (state) variables, recourse to re-triangulation necessitates mesh-to-mesh transfer,

and is undesirable.

2.3 Numerical tests

In this section, we report the results of number of numerical tests which establish the

effectiveness of this method of mesh adaption.
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2.3.1 Elastic rod under uniform body force

In this section we present results for 1-D linear-elastic rod which is under uniform body

force b as shown in Fig. 2.4 with one end fixed and the other end free. The displacement

’ b
7

Figure 2.4: Geometry of 1-D rod under uniform body force

solution for this problem can be given as:

w(X) = %(X - XT) (2.31)

where F is the elastic modulus of the material. Here for simplicity we chose £ = 1 and
b = 1. Corresponding to this displacement, strain and stress are linear in X. This suggests
that uniform mesh is the optimal mesh corresponding to this solution. To verify the ability
of VALE to recover the optimal mesh we begin by meshing the domain with the initial
mesh shown in Fig. 2.5(a). In this mesh, but for the node at the free end, all other nodes
are clustered at the fixed end (node at the free end is necessary to define the geometry).
Following mesh adaption we obtain uniform mesh (Fig. 2.5(b)) as expected. In this figure,

analytic solution is superposed on the numerical for the purpose of comparison.

2.3.2 Mode-I crack problem

Here we conducted convergence studies for linear-elastic isotropic (2.32), plain strain, mode-
I crack problem. We consider both 2-D and 3-D cases with prescribed K field on the
boundary as shown in Fig. 2.6. Constitutive law for the linear-elastic material is given by
Hooke’s law

oij = /\Jijuk,k + u(ui,j + ujyi) (2.32)
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Figure 2.5: Evolution of mesh: a) Initial mesh; b) Optimum uniform mesh

where A and y are the elastic constants. For the particular choice of material chosen here,

elastic constants are given by

Ao = 12548 M Pa

{0 = 83.65 M Pa

This problem is chosen because analytic solution [25] is known for this problem, which in
turn enables convergence analysis with and without mesh adaption. Further, corresponding
analytical solution has singularity at the crack tip, which demonstrates the robustness of the

present adaption scheme in resolving steep gradients. Following are the analytic expressions

- KI T .9 9
up = 2/1,/21_[ [2 4v + 2sin (2)]
_ K] T 2 0
ug = 2/1,/21_[ [4 4v — 2 cos (2)] (2.33)

’U,3:O

for displacements
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Mode-I displacement solution
applied to outer surfaces

Figure 2.6: Geometry of the mode-I fracture problem considered in the convergence study

and for stresses

K; 0 [ . 0 30 ]
= cos(=) |1 —sin(=) cos(—
riu = s ees(q) |1 —sin(@)eon(S)
Kr 0 . 0 30
o} = o cos(i) [1 +Sln(§) cos(;)]
K; 0. . 0 30
012 = o cos(i) s1n(§) cos(?) (2.34)
_ 2UKg (Q)
g3 = 2rr €08 2
ol3 = 0
023 = 0

where K7 is the stress intensity factor, r and 6 are the polar coordinates in X;- X5 plane.

In this section, analysis has been performed with mode-I stress intensity factor of

K; =1.0MPavm

The following norms and semi-norms are used to quantify solution errors and gauge the
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performance of this mesh adaption scheme:

1/2
lulle = { / |u\2dﬂ} (2.35)
1/2
e = { [ oo (2.36)
Q

(2.37)

where u and o are the displacement vector and stress tensor, respectively. Evidently, ||u||o

is the Ly norm of u, whereas |u|g is the energy semi-norm.

2.3.2.1 Two-dimensional linear elastic crack

In this section, we present results of 2-D computations for a mode-I plane strain prob-
lem. Owing to the symmetry, only upper half of the geometry is modeled with appropriate
symmetry boundary conditions. Typical initial mesh used for the numerical computation
is given in Fig. 2.7(a). This mesh consists of linear triangle elements with uniform mesh
size. For modeling mode-I crack, we prescribe the displacement field corresponding to the
mode-I crack (2.33) on the faces, facing away from the crack-tip, Fig. 2.6. Further, to model
symmetry, nodes on the face ahead of the crack-tip are prescribed with zero Xo component
of the displacement, i.e., uo = 0. Since nodal coordinates are also sought as the solution,
we need to prescribe appropriate boundary conditions for undeformed coordinate to main-
tain the geometry in reference configuration. In the present case appropriate boundary
conditions for undeformed coordinates are such that the nodes on the faces with normals
along X, direction are allowed to move only in X5 direction, i.e, prescribed X; component
of undeformed coordinate, and vice versa. With these boundary conditions we performed
numerical computations for several meshes with different initial mesh sizes. Fig. 2.7 shows
one such result, wherein beginning with a uniform mesh we obtain optimal mesh focused at
the crack-tip, as a consequence of nodal flow towards the crack-tip. This is to be expected
as singularity (O(\Lﬁ)) (2.34) is located at the crack-tip and where gradients are steep. In
this particular case area of the element ahead of crack-tip after mesh adaption is ﬁth that
of the same element before mesh adaption. It is worth emphasizing that this mesh adaption
has been accomplished without error estimation and mesh-to-mesh transfer.

The solution so obtained satisfies nodal configurational equilibrium (2.13) in addition
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to nodal force equilibrium (2.12). For the nodes on the faces with prescribed K the

corresponding configurational equilibrium equations are provided by Eq. 2.15.

S

(b)

Figure 2.7: Two-dimensional analysis of a semi-infinite crack in a linear elastic solid subject
to mode-I loading. The initial computational mesh consists of 166 three-node triangular
elements. Evolution of mesh: a)Initial uniform mesh; b)Optimal mesh focused at the crack
tip

Fig. 2.8 shows dependence of normalized displacement error norm and energy error semi-
norm on mesh size (h) (here mesh size is element size of the initial uniform mesh). The
error norms are normalized by the corresponding norm of the exact field (2.33, 2.34). The
convergence rates deduced from these plots are collected in Table 2.1. The convergence rate
is the slope of the error vs. mesh size curve in the logarithmic axes.

Following are some of the observations based on these numerical results:

e Here, it can be observed that the solution corresponding to the optimal mesh is more
accurate. This is to be expected as the numerical solution, ‘stiff solution’, is bounded

below by the exact solution.
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Figure 2.8: Two-dimensional analysis of a semi-inifinite crack in a linear elastic solid sub-
jected to mode-I loading , convergence plots: a) Lo-norm of displacement error; b) Energy
norm of displacement error.

o Mesh adaption not only reduces error, but also improves rate at which solution con-
verges to exact solution, Table 2.1. Inspite of presence of strong singularities we
recover optimal convergence rate while the uniform refinement gives sub-optimal con-

vergence.

e Since we seek solution for the nodal coordinates, the size of the solution array is twice
as much when compared to the solution without mesh adaption. However, as can be
seen from the Fig. 2.8, gain in accuracy is more than offsets increase in solution array
size. In particular consider case with mesh size h = 0.15 for which both error norms
after mesh adaption are less than that of the errors for uniform mesh, i.e., without
mesh adaption, for the mesh with size h = 0.05 even though in latter case solution

array size is 4.5 (0.5 x 32) times than that in the former case.

2.3.2.2 J-integral

In fracture mechanics J-integral [5] is one of the most important parameters and is a measure

of strength of singular fields at crack-tip. One of the important properties of J-integral is
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[ un —ullo | [ur—ulp
without mesh adaption 0.8794 0.5172
with mesh adaption 1.1369 0.6662

Table 2.1: Convergence rates for two-dimensional analysis of a semi-infinite crack in a linear
elastic solid subjected to mode-I loading.

that it is a measure of strength of crack-tip field singularity (HRR fields) and is path
independent in the absence of crack face traction. It is defined as the energy release rate
per unit crack extension and is the configurational (material) force component along crack
face tangential direction, in this case X;-direction, of the crack-tip node (X0) [4] and is
given by

oIy,

=~ 50 (2.38)

In the present method, J-integral evaluation is point-wise at crack-tip node which is in

6000 — |
L —— Computed 1
5000 |- = —&= = Analytical ]
B = — A i
4000 |— _]
[ i i
o = |
9 3000} —
£ i ]
) - i
2000 |— —
1000 |- —
| ‘ | | ‘ | | ‘ | | ‘ | | ‘ | ]
0.05 0.1 0.15 0.2 0.25

Figure 2.9: J-integral variation with mesh size

contrast to traditional methods, where it is evaluated by recourse to either contour integral

[5] or domain integral evaluation [7, 8]. Further, this method of J-integral evaluation is very
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accurate as can be seen in Fig. 2.9, in which but for the coarsest mesh all other meshes give
J-integral within 2.5% of the analytical J(= %) This is very impressive considering
that J-integral has been evaluated corresponding to the node which is located right at
singularity. This accuracy can be attributed to the ability of this method of mesh adaption
to resolve steep gradients. In addition, this method does not need interpolation unlike in
the case of contour integral method, where we need to interpolate stresses and strains onto
contour for the evaluation of contour integral. For the case when body forces are present,
traditional way of J-integral evaluation requires domain integral evaluation right up to crack
tip, which in addition to being computationally expensive is also inaccurate. However the
present method provides good computational accuracy even in the presence of body forces

and also computational cost is independent of presence of body forces.

2.3.2.3 Three-dimensional linear elastic crack

The performance of the method in three dimensions is illustrated next. To this end we
present the results of 3-D computations for a mode-I plane strain problem. Owing to the
symmetry, as in the 2-D case, only upper half of the geometry is modeled with appropriate
symmetry boundary conditions. Further lateral faces, faces perpendicular to X3 axis, are
prescribed with boundary condition us = 0, so as to model plain strain condition. Here, as
before, we prescribe displacement boundary conditions corresponding to K;-field (2.33) on
the faces, facing away from the crack front, Fig. 2.6. To maintain geometry we prescribe
appropriate boundary conditions for X; component on the faces with normal along X;
axis, Xo component on the faces with normal along X5 and X3 component on the faces with
normal along X3. With these boundary conditions analysis has been performed for different
mesh sizes with initial uniform mesh. This mesh consists of linear tetrahedral elements.
Fig. 2.10 shows one such mesh before and after mesh adaption. As can be expected mesh
adaption provides fine mesh along crack-front. This is to be expected as singularity is located
along the crack-front and where gradients are steep. The resulting optimal mesh satisfies
nodal configurational force equilibrium (2.12). Fig. 2.11 shows dependence of normalized
displacement error norm and energy error semi-norm on mesh size (h). As in 2-D case mesh
adaption in addition to reducing error, Fig. 2.11, also improves convergence rates, Table 2.2.

Here again similar observations, as in the case of 2-D, can be made.
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Figure 2.10: Three dimensional analysis of a semi-infinite crack in a linear elastic solid
subjected to mode-I loading. The initial computational mesh consists of 493 four-node
tetrahedral elements: a) Initial uniform mesh ; b) Optimal mesh focused at the crack tip.

2.3.3 Neo-hookean solid under moving point load

In previous examples, linearized kinematics has been assumed. In this section performance
of this method for the case of finite kinematics has been demonstrated. To this end, method
has been applied for the case of Neo-hookean solid subjected to moving point load under
plain strain condition. For this purpose we chose rectangle block with 10 m width and
5 m height, which is supported at the bottom and anchored at one end, and is shown in

Fig. 2.12. Corresponding strain energy density function W, for Neo-hookean solid extended
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Figure 2.11: Three-dimensional analysis of a semi-infinite crack in a linear elastic solid sub-
jected to mide-I loading: a) Lo-norm of displacement error; b) Energy norm of displacement
error.

| un —ullo | lun—ulg
without mesh adaption 0.728 0.58485
with mesh adaption 1.12653 0.80787

Table 2.2: Three-dimensional analysis of a semi-infinite crack in a linear elastic solid sub-
jected to mode-I loading, convergence rates

to the compressible range, is given as follows
1
W(F) = EAO(log J)? — polog J + %tr(FTF) (2.39)

where \g and po are material constants and J = det(F'). The corresponding stress-strain
relationship is

P =XlogJF T 4 po(F—FT) (2.40)

The material chosen here is steel for which material constants are given by

/\0 = 115.4 GPa

o = 76.9 GPa

5
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Figure 2.12: Schematic of neohookean solid subject to moving load

Fig. 2.13 shows initial mesh chosen for the numerical computations. This mesh consists of
linear triangle elements with uniform mesh size. For the computations we prescribe zero
vertical deformation for the bottom face and zero horizontal deformation for node at the left
corner. As before, appropriate boundary conditions for undeformed coordinates have been
prescribed for the boundary nodes so as to maintain the geometry during mesh adaption.
Computations have been performed for the moving point load. Fig. 2.14 shows vertical
displacement contours for four such positions of point load. As can be observed after mesh
adaption, nodes are focused at the point of application of load due to the presence of steep
gradients since in linear elastic solution for the similar case of point load on elastic half

space, stress and strain solution has O(2) singularity [48].

2.4 Summary and conclusions

We have developed a novel method ‘VALE’, in which in addition to nodal variables mesh
itself is sought as solution by solving for nodal (undeformed) coordinates. Further we have
analyzed one of its most important applications as a mesh adaption scheme. The resulting

mesh adaption scheme has the following advantages :

1. It is variationally consistent and based on sound principles. In addition, it provides

precise criterion for optimal mesh (nodal configurational equilibrium). The optimal
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Figure 2.13: Initial uniform mesh of the computational domain of neohookean solid subject
to moving point load

mesh so obtained provides the most accurate solution for a given number of nodes.
2. Does not involve error estimation.

3. Does not involve mesh-to-mesh transfer and hence is devoid of associated interpolation

€ITors.

4. In this scheme, only nodal coordinates change and everything else remains same. This
in turn obviates mesh remapping onto processors in parallel mesh adaption and hence

ideally suited for parallel computation.

Since mesh itself is the solution, it is ideal for the solution of reference configuration as
in the case of shape optimization. Also, the number of nodes and elements remains the same
as in the initial mesh, which provides complete control over the size of the problem and
yet provides the most accurate solution possible. However one can refine mesh, by simply
adding nodes to the mesh, for example, at the centroid of any of the existing elements and

the resulting refinement scheme is completely local.
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Figure 2.14: vertical displacement contours for the point load locations.




28

Chapter 3

Shape optimization

3.1 Introduction

In engineering applications shape optimization plays a very important role. These ap-
plications involve determination of structure-property relationships and optimal design of
structures. To accomplish this, several numerical schemes have been developed most of
which include seeking solution for material distribution [35, 36, 50], which in turn cannot
provide sharp interfaces, when it does, it causes checker board formation. However, the
method developed by Jog et al. [18], which is similar to the method described in this
chapter, seeks solution by solving for interface nodal coordinates and hence retains sharp
material interface but has restriction of linearized kinematics.

In this chapter, we present a method which has no restrictions on either the constitutive
behavior of the material or the kinematics. This can be accomplished in a natural manner
when accounting for horizontal variations, for it allows the solution of shape by seeking
solution for undeformed (nodal) coordinates of the boundary and/or interfaces. In this
chapter we consider one such important application, wherein the equilibrium shapes of
coherent, misfitting inclusions are obtained.

The concept of ‘equilibrium shape’ provides a simple criterion for understanding particle
shapes and their evolution during precipitation. In such an approach, the particle is as-
sumed to take a shape which minimizes an appropriate energy of the system under volume
constraint. In this chapter we study equilibrium shape of an isolated, coherent precipitate

with dilatational misfit.
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3.2 Variational formulation

Consider two precipitate geometries of the same mass (same volume in reference configura-
tion), but with different inclusion shapes, as shown in the Fig. 3.1. (It should be mentioned
that these are two different material configurations and are not obtained as a consequence of
superimposing displacement on the reference configuration.) Equilibrium solutions obtained
for these two material configurations are different. So, for such inhomogeneous system en-
ergy function also depends on material configuration is addition to boundary conditions and
geometry. In statics, minimum energy principle suggests that natural configuration for such
inhomogeneous system is the one corresponding to the configuration, which has minimum
energy amongst all the possible material configurations satisfying volume constraint and
with the same boundary conditions. In this section, we develop variational formulation for
finding the natural material confgiuration corresponding to the optimal shape of the inclu-

sion. In particular we consider the following model problem. For a given misfit strain and

Figure 3.1: Different shapes of inclusion

interface energy, find the equilibrium shape, which has minimum total energy in the matrix,
inclusion and interface, subject to the constraint that the volume of the inclusion remains
constant. The reason for specific choice of problem is the interesting bifurcation phenomena
associated with dilatational misfit case and availability of the analytical solution.

Let By = Bp1 U Bpa denote the total domain which is composed of matrix By; and

inclusion Byy with the interface 0Byy. Appropriate energy for the minimum principle for



30

this system is

I= [ W(Vop)dve+ /

1
vdSp + -a(Ay — / dvy)? (3.1)
By 0Bo2 2

Bo2

where W is the strain energy density, <y is the interface energy density for interface, dBgo
interface area, Ag initial second phase particle volume. Here, penalty method has been
chosen for imposing volumetric constraint, and « is the associated penalty parameter. The
functional is discretized by the introduction of a finite-element interpolation of the form as

before:

Pr(X) =D @aNo(X) =) a;Ng(X), X € Q° (32)

where E = E,, + E,, E,;, and E, are the number of matrix and inclusion elements, respec-
tively, NV total number of nodes in the mesh and n number of nodes per element. Elements
adjacent to interface are such that one of their edges, faces in the 3-D case, are aligned
with the interface i.e., material interface does not cut across any of the element. So, each
element is uniquely identified with one of the material and this identification remains the
same during the computations. Essentially, interface is defined with a set of edges or faces
connected by the nodes. So, finding optimal shape corresponds to finding optimal nodal
locations, for the nodes on the interface, corresponding to minimum energy and with fixed
edge or face connectivity.

As before we further restrict attention to isoparametric element and consider element

shape functions are of the form:

N = ]\75 on ! (3.3)
where
A n ~ A
n°(X) =) XN, (X) (3.4)
a=1

is the isoparametric mapping for element e, defined over the standard domain Q of the

element. Then the discretized energy function:

1
= [ WSVt [ adsy+ o~ [ vy (35)
By 9 Boa By
may now be regarded as a function of the nodal coordinates ¢, = {z4,a = 1,..., N} and

Xp ={X,,a =1,...,N} in the deformed and undeformed configurations, respectively.



31
To obtain equilibrium shape, we minimize I, with respect to {z;, X}. Strictly speaking,
optimal shape is provided by the minimum with respect to nodes on the interfaces. However,
minimization with respect to other nodes provides mesh adaption and enables efficient shape

optimization. The corresponding stationarity condition corresponding to the minima;:
<DIh,(5.’L'h> -0z, + <DIh, (SXh) 0 X,=0 (3.6)

and since dxp, and § X}, are independent, except on Dirichlet boundary, we have the following

conditions

<DIh,5:Bh) = 0 (37)

(DI,,6X,) = 0 (3.8)

which enforce equilibrium of nodal forces and configurational nodal forces, respectively.
In order to further explicate the stationarity conditions we begin by expressing the

discretized energy in the form:

1
Ih = Z W V()(ph)dVo /33 ’)’dSo + Ea(A() - o dV0)2
02 0

=L+ +1} (3.9)
More explicitly nodal force equilibrium equations are

Ay AL &

P Ny, 7dV, 3.10
afl:bk ambk bJ 4V, JEV0 ( )

Tok =

Next we compute the variations of each of the terms (I}L,i = [1, 3]) with respect to X,

To this end, write

E
. 0X N R
Iy = Z/QW (me ady A) det(Vn®)dS2 (3.11)
e=1

Taking variations with respect to § X, gives

E
51,1:2/@{ Py
e=1

. 0X 0X
Z$za aA A (ZéXbKNbB> a—;]
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w (Z 5X§KN,,,B) ngi } det(Vn®)dS (3.12)
b=1

or

E n
e=1 0

b=1

where in WI — FT P we recognize Eshelby’s energy-momentum tensor. Next we have

S
I = Z/an 7260 X7sg, [d€1dE (3.14)
e=1

for 3-D case where 7 is the position vector of points on the surface, which can be obtained by
isoparametric interpolation of nodes on the surface, &1 and £ are parameters of parametric
representation of the surface and S; is the number of surface elements associated with the
interface.

Taking variations we obtain

\The XTagy )1 X’l",& _ e
SI; —Z/Q 706, XTog, | lerrn((roes )M Nogy — (Pogy )M Nbjg,) |0 X d&rdes  (3.15)

similarly for 2-D case we have
S
I} = Z/ |7¢ |dé (3.16)
e=1 on

here we have one parameter ¢. Taking variations we obtain

oI = Z / K Ny e0X (e de (3.17)

|""§ |

and taking variations of the last term we obtain

E, E, n
i =—atao =3 [ )Y [ (O XiNos)dVe (3.18)
e=1"75% e=17% p=1

collecting all terms we obtain

8T, = Ryrd Xpi (3.19)

where Ryx are nodal configurational forces corresponding to the configurational equilibrium
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equations

Ry =0 (3.20)

The nodal configurational force equilibrium not only provides optimal mesh but also pro-
vides equilibrium shape of the inclusion. This can be explained by the fact in the non-
homogeneous case, even in the continuous case, energy functional does not possess trans-
lational symmetry in reference configuration even in the continuous case. In contrast, in
homogeneous case introduction of discretization breaks translational symmetry in the ref-
erence configuration even though in the continuous case energy functional possesses trans-
lational symmetry in reference configuration. To explain this consider inhomogeneous case

with W(F(X), X), continuous in X, for which the energy can be expressed as

I= W(F(X),X)dV, (3.21)
By

Euler-Lagrange equations corresponding to variations in deformed coordinates are
Vo-P=0 (3.22)

which are force equilibrium equations. Similarly Euler-Lagrange equations corresponding
to variations in undeformed coordinates are [14]:

which are configurational force equilibrium equations. Eq. 3.22 does not imply transla-
tion invariance of energy functional with respect to translation in reference configuration.
However, when W (F') does not explicitly depend on X (g_I;(V = 0), i.e., homogeneous case,
Eqg. 3.22 imply translation invariance of energy functional with respect to traslations in

reference configuration.

3.3 Numerical test

In this section we present results for a system in which an isolated inclusion is coherently

embedded in a matrix of infinite extent and in the presence of surface energy. Further both
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inclusion and matrix are of linear elastic material with different elastic constants ( 3.24).

0d=Cz:(e—¢€) : inclusion

oc=Cq:(e6—¢€;,) @ matrix (3.24)

where C; and Cgz are the elasticity tensors for matrix and inclusion, respectively, and €
and €}, are transformational strains for the inclusion and matrix, respectively. Further
we consider problem with dilatational misfit, i.e., € is dilatational and ef, = 0. Here we

consider both isotropic and orthotropic cases.

3.3.1 Isotropic-dilatation misfit case

In this section we consider a linear-elastic isotropic system with different dilatational trans-
formational strains for matrix and inclusion. In particular, Johnson and Cahn [15] have
studied the case with zero transformational strain for the matrix, analytically. In this case
elastic strain energy, corresponding to first term in Eq. 3.1, scales with inclusion volume
and favors elliptic geometry of the inclusion [19]. However surface energy scales with inter-
face area and favors circular geometry of the inclusion. So, actual shape of the inclusion is
dependent on the size of the inclusion. Specifically, for small inclusion sizes, the surface to
volume ratio is such that the particle shapes will be dominated by the interfacial energy,
which in turn favors circular shape, while in the large-inclusion-size limit, the elastic terms
will dominate, which in turn favors elliptic shape. This suggests a critical length scale r*
(since there is one order difference in dependencies, i.e., volume/surface area ratio) associ-
ated with this shape transition and the associated phenomena is called ‘symmetry-breaking
shape transition’ by Johnson and Cahn [15] and is illustrated in Fig. 3.2. In this figure,
for inclusion size above r* both branches are energetically equally favorable. The analytic

expression for the associated critical length scale is given by Eq. 3.25.

x _ 3(1 +6 - 2Vincl)2(1 + "‘75)7
B 4Uincl5(1 - 5)(1 + n)e*Q

(3.25)

where kK = 3 — 4,0 = pine/tmat and p and v are shear modulus and Poisson’s ratio,
respectively, in the designated phase. Here we consider a 2-D plane strain system, with

Young’s moduli of E;,, = 100GPa, Eng = 150G Pa, with Poisson’s ratio of 1/3 for both
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Figure 3.2: Schematic of shape transition

phases, dilatational transformational strain of 0.01 for inclusion, and the interface energy
v = 50mJ /m2. For this particular system, critical size can be computed, Eq.3.25, to be
r* = 35.62nm. Since this system has four fold symmetry, we model only a quadrant,
with a typical initial mesh shown in Figure. 3.3. As the equilibrium shape is dependent
only on the volume and is independent of initial inclusion shape. To demonstrate this,
we chose triangular (in one quadrant) inclusion shape as the intitial shape which is ‘far’
from the expected optimal inclusion shape. Further to model infinite extent of matrix
large enough computational domain is chosen so that there is no significant interaction of
interface fields with the boundary. The mesh chosen for these computations consists of linear
triangular elements. Also, the initial mesh is such that elements adjacent to the interface
have one of the edges aligned along the interface. To model symmetry, bottom face has been
prescribed with zero vertical displacement, uo = 0, and left face has been prescribed with
zero horizontal displacement, 41 = 0. To maintain geometry of the computational domain
during optimization, boundary conditions have been prescribed for undeformed coordinates

(nodal coordinates) of the boundary nodes. In particular, nodes on faces with normals
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along X; direction are allowed to move only in X5 direction, i.e, prescribed X; component
of undeformed coordinate, and vice versa.
Shape optimization has been accomplished with modified conjugate gradient solver de-
scribed in the previous chapter. In this scheme, undeformed coordinate update is performed
with configurational forces corresponding to equilibrium solution. Doing so would guarantee

positive jacobian of the element.

Figure 3.3: Typical initial mesh used for the calculations

Fig. 3.4 contains the result of the shape optimization and verifies the ability of the
method to model symmetry bifurcation phenomena associated with the system. For a
system with inclusion size 7 = 31.91nm(< 7*), we obtain circular shape for the equilibrium
shape, Fig. 3.4(b). In contrast, for the inclusion of size r = 39.89nm(> r*), equilibrium
shape is elliptic, Fig. 3.4(d). This is in agreement with analytical predictions, Fig. 3.2.
Further, in both cases we superimposed expected shapes on the optimal shapes for the

purpose of comparison.
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(a) (b)

~

(c) (d)

Figure 3.4: Shape transition of an isotropic system with dilatational misfit with transfor-
mational strain of precipitate :e, = ¢, = 0.01: a) Initial shape of particle with size 31.91
nm; b) Optimal shape of particle with size 31.91 nm; c) Initial shape of particle with size
39.89 nm; d) Optimal shape of particle with size 39.89 nm;.
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(a) (b)

Figure 3.5: optimal shape of orthotropic system with dilatational misfit with transforma-
tional strain of precipitate :e; = €, = 0.01 : a) initial shape of particle with size 40.0nm; b)
optimal shape of particle with size 40.0nm with superposed expected shape;

3.3.2 Orthotropic-dilatation misfit case

In this section we study the similar system as in the previous numerical example, except that
in the present case material is linear elastic orthotropic material instead of linear isotrpic
material, as was the case previously.

For the orthotropic case that we consider, we assume Ci; = Cos = 200 GPa, Cio =
100 GPa and C4y = 150 GPa for both precipitate and matrix phases. Fig. 3.5 shows
optimal shape of particle size of 40 nm, with dilatation misfit strain ¢* = 0.01 which is
of rectanglar shape. For this case analytical solutions for critical sizes are not available.
However, qualitatively it compares well with the optimal shape obtained by Jog et al. [18]
Thomson et al. [16] and by Schmidt and Gross [17] using different methods.

3.4 Summary and conclusions

In this chapter we demonstrated application of VALE method for shape optimization. As
can be readily seen the variational formulation developed here is general enough to in-

clude finite deformation (in fact the derivation was for finite deformation) even though we
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demonstrated it with linear elastic applications due to the lack of bench mark problems and
analytic solutions. This method can also be used for structural optimization, wherein the
boundary nodal motion corresponds to relevant objective function. Further, this method
can be extended, based on gradient flow theory [33], to model diffusion induced shape

transition, coarsening as in the case of Ostwald ripening.
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Chapter 4

Variational integrators with
horizontal variations

4.1 Introduction

In this chapter we develop a general framework for the variational integrators which ac-
count for horizontal variations, in particular nodal coordinate components. The resulting
variational integrators are known to be symplectic and momentum conserving [28] and have
remarkably good energy behavior. The main idea here is to develop algorithm for the update
of undeformed (nodal) coordinates and deformed coordinates.

The discrete variational mechanics used in this chapter is based on space-time discretiza-
tion of stationary action sum of Lagrangian mechanics. We render the discrete action sum
so obtained stationary with respect to deformed and undeformed coordinates. The result-
ing equations correspond to linear momentum and material momentum (pseudo-momentum
[14]) balance, respectively. The solution of discrete Euler-Lagrange equations corresponding
to stationarity at every discrete time provides update for deformed and undeformed coor-
dinates at discrete time intervals corresponding to temporal discretization. This update for
undeformed coordinates provides mesh adaption scheme which is devoid of error estimates
and mesh-to-mesh transfer. Further, the undeformed coordinate solution is guaranteed to
satisfy linear momentum balance. Also in dynamic fracture, configurational (material) force
component along tangential direction of the crack face of the crack nodes provide point-wise

dynamic J-integral.
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4.2 Variational formulation

We consider a solid occupying a region By € R? in its reference undeformed configuration.
The solid subsequently deforms under the action of externally applied forces and prescribed
displacements. The deformation mapping ¢ : By — R® maps material points X in the
reference configuration into their corresponding positions & in the deformed configuration

B = ¢p(By), Fig. 4.1. The motion of the body is described by the deformation mapping

q)t
N

By

Figure 4.1: Deformation map

z=p(X,t),X € By (4.1)

which gives corresponding deformed configuration B; = ¢4(Bg). Thus,  is the location
of material particle X at time t. The material velocity and acceleration field follow from
Eq.4.1, ¢(X,t) and ¢(X,t), X € By, respectively. The deformation gradient field follows
as F = V¢, where V is the material gradient. The deformation mapping is prescribed
to take a prescribed value @ over the displacement part 3By; of the undeformed boundary.

This furnishes the Dirichlet boundary condition:

@i = @i, on dBy (4.2)
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and

P,yNj =1T;, on 0By (4.3)

Here P denotes the first Piola-Kirchhoff stress tensor, IN is the unit normal to the un-
deformed boundary, and T is the applied traction over the traction boundary 0By =
0By — 0By;. For simplicity, we shall assume that the material is elastic, with strain-energy

density W (F'). Under these assumptions, the constitutive relations take the form:

ow

Py=-——
iJ anJ

(F) =Py, (F) (4.4)
The potential energy for the solid as a function of a deformation mapping (X, t) satisfying

essential boundary conditions ( 4.2) is given by

et = [ W)t~ [ mB-gao— [ T-pdsy (4.5)
By By 0Bo2

where B is the body force density per unit mass. The kinetic energy as a function of

(material) velocity field ¢(X, %) is given by

Kol = [ Blokavy (4.6

where pg is the mass density. The functional form of Lagrangian is then

Lig, .1 = K[¢] ~ Ilp, 1] (4.7)

Consider now a motion of the body during the time interval [¢o,%]. The action functional
is given by

ty ty
ﬂﬂ=l Lip.p dt= | K@)~ Ilp, tldt (4.8)

0 to
As can be seen here the action function contains a space-time integral.
Hamilton’s principle seeks the motions ¢(X,t) for which the action functional S is
stationary with fixed initial and final deformed configurations By, and By, satisfying the

boundary conditions ( 4.2, 4.3). Let D;L be the partial derivative of L with its i’ argument,



43

then taking first variation with respect to ¢ will give Euler-Lagrange equations

. d .
DlL((Pa (Pat) - %DQL((Pa (Pat) =0 (49)

for all ¢ € [to, ], which gives the local linear momentum balance
pop —Vo- P =pyB (4.10)

for X € By and for all ¢ € [tg, 7] and the traction boundary conditions on the Neumann
boundary
P.-N=T (4.11)

on 0By and for all ¢ € [to,ty].

4.3 Discrete variational formulation

As mentioned earlier action functional (S) contains integral over both space (over Bjy)
and time (in the interval [to,tf]). Introducing space-time discretization for finite element

interpolation of the form:

N mxE n
(X)) =) @aNo(X,t) = ) Y atNi(X,1) (4.12)
a=1 e=1 a=1

where E is the number of elements in each time slab and m is the number of time slabs.
Schematic of such a mesh for 1-D case is shown in the Fig. 4.2. In this schematic we have
2-D mesh wherein time is the other coordinate. In general, for n-(spatial) dimensional
problem the resulting mesh is of n+1 dimension. Then the resulting discrete action sum

(Sg) can be written as

1 .
Sa=)_ ). / 5P ( fL‘jaNa,t> -Ww (Z :z:jaNa,J> + poB;zjaN, | d (4.13)
= a a=1
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Figure 4.2: Schematic of space-time mesh where horizontal axis represents spatial reference
domain

where Qé is the space-time domain of element e in time slab [t;, t;+1]. Invoking Hamilton’s

stationarity principle with vertical and horizontal variations

m
> DSy, 6a;)bai + (DS, 6X:)6X; = 0 (4.14)
i=2
where z; and X; are discrete deformed and undeformed (nodal) coordinates at time ¢;. In
the above we did not consider the time component of the horizontal variations. Further

since variations in x; and X; are independent, the above equation can be written as a

system of equations at each time step,

r = (DSy, 0x;) = 54 =
\DSa; 0:) = e, i=2...m (4.15)

R=(DSy,0X;) = §3¢ =0

which enforce equilibrium of nodal forces and configurational (material) nodal forces, re-

spectively. Further, for first order time interpolation, above system of equations at time
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t; contains contribution from x; 1,X; 1,2;,X;,2;+1 and X,;11. So, provided z; 1,X; 1,x;
and X; are known, these equations provide update for x;; and X ;1.

Here, as can be seen from Eq. 4.15, configurational nodal force equilibrium is as fun-
damental as nodal force equilibrium. Further, configurational force equilibrium furnishes
precise criterion for mesh optimality. System of configurational nodal force equilibrium
together with system of nodal force equilibrium provide a coupled system of equations for

the simultaneous solution of deformed (z;11) and undeformed (X; 1) coordinates.

4.3.1 Element shape functions

Computation of element matrices requires shape functions of space-time element. To this
end, shape functions are constructed as a product of spatial and temporal shape functions.

Let &1, &, &3 be standard spatial coordinates and &4 standard temporal coordinate with

Figure 4.3: Schematic of a spacetime-element for 2-D spatial calculations

values between 0.0 and 1.0. Then the shape functions are given to be

N (&1,62,83,€4) = N*(&1,&2,E3)N (&) (4.16)

where N¥(£1,&2,€3) and N¥(&,) are shape functions in space and time, respectively. This
procedure allows independent interpolation in space and time. As mentioned earlier, it is

preferable to have linear interpolation in time for the straight forward variational update.
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Here we demonstrate the construction of shape function for a linear 3-D tetrahedral element

and are given by

Ni(€1,82,83,84) = (1 -6 — & —&3)(1 — &)

( )
No(61,62,83,84) = &(1—&)
N3(§1,62,83,84) = &l —&)
Nu(§1,62,83,84) = &(1-&)
N5(€1,62,83,64) = (1 -8 =& —&3)8
No(§1,62,83,84) = &i&a
N7(61,62,83,84) = &

( )

Ng(£1,62,83,84) = &3 (4.17)

where N1,Ny,N3 and Ny are shape functions corresponding to nodes at time ¢; and N5, Ng, N7
and Ng are shape functions corresponding to nodes at time t;41. Following, standard finite
element procedure for finding shape function derivatives in space and time we begin writing
shape function derivatives with respect to standard coordinates

ON, 0X; 0N,
8504 6604 aXi

(4.18)

in which ?91)2 isa (d+1) x (d+ 1) matrix, where d is the spatial dimension of the problem.

By inverting the above relationship, we obtain shape function derivatives in space and time

N -1
ONa _ <8X1> 0N, (4.19)

0X; 0a 3

where X411 is time. Numerical quadrature for element matrices is constructed in similar
manner as shape functions, by taking product of quadrature points in space &1,£2,£3 and in

time &4.
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4.3.1.1 Derivation of nodal and configurational nodal forces

In order to further explicate the stationarity conditions we begin by deriving nodal forces

and configurational forces for an element ¢, e, Fig. 4.2, from Sé’e

9S4
0T ek

,rz',e
ck

= /Q (Poxc,tNlc,t — PCJN]C’J + pOBcNk)in (4.20)
as°
0Xck

he
RCk -

1
= / §PO$i,t$i,tNk,C — poZitFic Nit
Q

2
€

~(Wécs — PiyFic — poBjzjaNa)Ni 7dS2 (4.21)

and the corresponding Hessian is

i€
or

Oza

ari;j

on,
Oy

ORy,
Xpi

/ (p00caNt Nyt — Ceyar Nip Ni 7)d
Q

/, pPoLetNg i Ni.p — poFep Nyt Nt — pote,tNg,pNijg — PegNi, s Niy
L
+P.yN.pNi.j + Cegun Frnp Ny ndS2.

/Qi P0Td N1t Nk.c — poFac NNk — poTd i Ni,oNi
—PysN; jNi.c + PisNy,sN.¢ + Cian Fio Ny n N 7L

/Qi —poZit Fip Ny N ¢ — %PO-Ti,t-Ti,tNk,DNl,C’ + poFip Fic Nyt Nt
+f;0$i,tFiDNl,cNk,t + poZitFicNg,p Nyt +

(Wécs — PisFic)Nk,pNi s + (Wépm — Pive Fip) Ny Nio
—CigmNFmpFic N NN, g — PiyFipNy,c N, g

1 )
+(§Po$i,t$z’,tNk,C — p0Zi,t Fic Nt ) Ni,p + Py Fyc Ni, g Ny pdS, (4.22)
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The corresponding equations for linear-elastic case are

9S4

r = —=

ck 3'Ufck:
= /Q (potic,t Nkt — 0¢j Nk, ; + poBeNi)dL (4.23)

pie _ 051

ck aXck

1
= / §P0Uz‘,tui,tNk,c — poti i Ny ¢
2

~W Ng.¢ + 0ijui N j + poBjwjaNaNi,cdS2: (4.24)

and the corresponding Hessian is

or’e 1 )
3 k= /,(ﬂo5chl,tNk,t — = % (CejanNin + CejmalNim) Ni ;) dS2;
Ul Qi 2
87"2’,5 1
Xy potc,tNg,tNi,a — potie,dNit Nkt — potic,tNg,aNit + §Cijn(“m,le,n + Un,aNim) Nk, j
1973
+chNk,le,j — chNk,le,ddeg
2,€
ORg, _ potq N ¢ Ny — NNy — N, .N,
] A4Vt VE,c — POUA,cLV,tiVE,t — POUAEIV,ciVE,t
Oug Qi
1 .
—04jIN1,j Ni,c + 04 Ni j Ny o + §'Ufi,cNk,j(Cijanl,m + CijmalNim)dsd,
ORY, 1
Xy - —poti, i ¢ Nyt Nk c — Epoui,tui,tNk,le,c + poti,qti Ny Nkt +
a0

+powi,tti, g Ny, Nk ¢ + pothitthi,c N, a Nyt

1
+0iju; aN1 i Ng,c + W Ng ¢Ni ¢ — §Cz'jmn(um,le,n + Un, ¢ Ny m ) uic Ny j
—05u; ¢Ny Ny j — 03503 N ¢ Ny j +

1 }
(Epoui,tui,tNk,c — poti i Nt — W Ny + 0i5ui Nk j) Nj dS2, (4.25)

which correspond to nodal force and configurational nodal force contributions from element
i,e. It may be noted that element 4, e contributes to nodal force equilibrium and configu-
rational nodal force equilibrium equations at discrete times ¢; and ¢;41. Assembling these
elemental contributions results in the update equations for x;; and X;i; at time ¢;,1,

which correspond to stationarity of discrete action sum Sy at time ;.
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4.3.2 Solution method

From the above discussion, updates for ;11 and X ;11 require the solution of r; = 0 and
R; = 0, which correspond to nodal and configurational nodal force equilibrium at time
t;. One obvious choice of solution is by Newton-Raphson method. However here Newton-
Raphson method should be applied in two levels, one correspond to the undeformed co-
ordinate update, which in turn contains Newton-Raphson solver for equilibrium solution.
During the deformed coordinate solution, undeformed coordinates remain fixed, i.e., we
obtain equilibrium solution over a fixed mesh. This approach guarantees that during unde-
formed coordinate update elements maintain positive jacobian, since nodal configurational
forces used for this update correspond to nodal force equilibrium and hence are physical.
This has similarities to that of the modified conjugate gradient solver in that it also has
two levels and during coordinate update computations are done with deformed coordinates

corresponding to the equilibrium solution.

4.4 Numerical tests

In this section we report results of numerical test which establish the accuracy and long-
term energy behavior of the variational integrator. Here we conducted tests for 1-D linear
elastic rod with elastic modulus E = 2.0 GPa and py = 1000Kg/m?. In this numerical
test we used 1-D linear elastic rod which is under uniform tension in the beginning, i.e.,
uniform strain initial condition, corresponding to initial free end displacement uy while the
other end is fixed, as shown in Fig. 4.4. Corresponding initial conditions for deformed and
undeformed coordinates are shown in Fig. 4.5. The mesh consists of 2-noded linear 1-D

elements.

Figure 4.4: 1-D linear elastic string

As can be readily seen, this is a conservative system as there is neither forcing nor

dissipation. So, we expect the total energy to be conserved. In addition, due to hyper-
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Figure 4.5: Initial conditions for 1d-string problem

bolic nature of the governing equation (4.10) we would expect discontinuities in gradients,
which in turn demonstrates the methods ability to resolve moving gradients. This can be
seen from the Fig. 4.6, in which nodal locations and the corresponding nodal displacements
at various discrete times are shown. As can be readily observed, nodes try to converge
onto location of discontinuity, which will enable it to resolve the regions of discontinuity.
Further, we also plot in Fig. 4.7 variation of total energy with time. Since the system is
conservative we expect the system to conserve total energy. As can be seen from Fig. 4.7 in
which total energy has good longtime energy behavior. The small drift can be attributed
to the fact during the simulation we did not resort to time-adaption, i.e., time-steps used
in the simulation do not correspond to the stationarity condition corresponding to time
component of horizontal variations. Also loss of total energy can be attributed to the intro-
duction of the numerical viscosity by recourse to Discrete Lagrange-d’Alembert principle
[13]. This has been necessiated because in two parts on either side of the discontinuity strain
is constant. However for the constant strain any nodal distribution satisfies configurational
equilibrium, i.e., nodal distribution is non-unique for constant strain. Introduction of the

artificial viscosity regularizes and hence provides solution for nodal coordinates.
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Figure 4.6: Nodal distributions at various times
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Figure 4.7: Total energy vs. time

4.5 Summary and conclusions

We have developed a novel variational integrator in which in addition to nodal variables,
mesh itself is the solution. In addition, the resulting algorithm is symplectic-momentum
preserving with good long-term energy behavior. The resulting mesh-adaption algorithm

has the following advantages.

1. Tt is variationally consistent and based on sound principles. In addition, it provides
precise criterion for optimal mesh, i.e., nodal configurational equilibrium (4.15). The
optimal mesh so obtained provides the most accurate solution for a given number of

nodes.
2. Does not involve error estimation.

3. Does not involve mesh-to-mesh transfer and hence devoid of associated interpolation

errors. Further, it guarantees nodal force equilibrium.

4. In this scheme only nodal coordinates change and everything else corresponding to
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mesh description remains same. This in turn obviates mesh remapping onto processors

in parallel mesh adaption and hence is ideally suited for parallel computation.

5. In general each time slab need not be of fixed time step, i.e., t; — #; 1 # t;11 — t;.
Further, each node can evolve at it’s own pace and hence this integrator is similar to
AVTI with the difference instead of elements in this case nodes can march at their own

pace.

In this framework since both deformed and undeformed coordinates are solutions we can in-
terpret, Eulerian (fixed deformed coordinates) and Lagrangian (fixed reference coordinates)
can be considered as special cases of this formulation. This interpretation is particularly
useful when considering variationally consistent Euler-Lagrange coupling, in which case it
involves choosing appropriate boundary conditions on deformed and undeformed coordi-

nates.
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Chapter 5

Tetrahedral composite finite
elements

5.1 Introduction

Camacho and Ortiz [41, 40] briefly described triangular and tetrahedral elements con-
structed by assembling linear subtriangles and tetrahedra and coupling them to a continuous
linear strain field over the assemblage. They called these elements composite triangular and
tetrahedral, or CT, elements. The advantages of these elements arise primarily in explicit
time integration and contact-impact problems, where the lumped mass of their midside
nodes is well-matched to their corner node masses. This feature effectively overcomes the
difficulties inherent to quadratic simplicial elements, for which the row-sum method of lump-
ing results in zero or negative corner masses. In fact the significant improvement in the
simulation of ballistic impact problems has been reported by Knap [49] when performed
with the present element over that that with ten-noded isoparametric element. Further-
more, the volumetric locking which characterizes linear simplicial elements is eliminated.
Thus the composite elements appear to combine the best attributes of linear simplicial
elements, including the ease of mesh generation, without their drawbacks.

Guo et al. [43] have presented a detailed analysis of several composite triangular el-
ements and have established their basic behavior. This study has shown that the CT
elements have a rate of convergence in energy norm comparable to the six-node element
for compressible materials though the rate of convergence in the displacements is of the
same order as the linear-displacement three-node triangle. The elements pass the patch

test in arbitrarily distorted configurations. For incompressible problems, the performance



55

of the linear strain element is not as satisfactory. Guo et al. [43] proposed an alternative
composite triangle in which the volumetric strain is assumed constant over the assemblage
and showed that this element satisfies the Babuska-Brezzi criterion.

In this chapter we propose and analyze a composite tetrahedral element. The proposed
ten-node CT element is a composite of twelve 4-node tetrahedral elements with linear dis-
placement field in each one of them. The relation between displacements and deformations
is enforced weakly by recourse to the Hu-Washizu principle (e. g., [46, 40, 41, 43]). The
formulation of the element allows for fully nonlinear kinematics. We verify that the element
passes the patch test in arbitrarily distorted configurations. In addition, for compressible
materials the CT element is found to possess a convergence rate in the energy and pres-
sure norms comparable to linear elements. Finally, we verify that the element passes the

Babuska-Brezzi criterion and performs well in the near-incompressible limit.

5.2 Model problem

We consider a solid occupying a region By € R? in its reference undeformed configuration.
The solid subsequently deforms under the action of externally applied forces and prescribed
displacements. The deformation mapping ¢ : By — R?® maps material points X in the
reference configuration into their corresponding positions x in the deformed configuration
B = ¢(By). The deformation gradient field follows as F = V¢, where V is the material

gradient. In components:
- dp;

in BO (51)

Here and subsequently, we use upper (respectively, lower) case indices to denote components
of vector fields defined over the undeformed (respectively, deformed) configuration. The
deformation mapping is prescribed to take a prescribed value @ over the displacement part

0By of the undeformed boundary. This furnishes the boundary condition:

$i = @i, on 0Bg (5.2)

Additionally, the solid is in equilibrium, which requires:

Pij;+poB; =0, in By (5.3)
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and

PJNJ = Z, on 8B02 (54)

Here P denotes the first Piola-Kirchhoff stress tensor, py is the mass density per unit
undeformed volume, B is the body force density per unit mass, IN is the unit normal
to the undeformed boundary, and T is the applied traction over the traction boundary
0Bys = 0By — 0By1. For simplicity, we shall assume that the material is elastic, with
strain-energy density W (F'). Under these assumptions, the constitutive relations take the
form:

Py =

55 (F) = Pu(F) (5.5

With a view to formulating finite-element approximations, we begin by re-stating the
preceding equations in variational form. The conventional displacement finite-element
method may be regarded as the result of effecting a constrained minimization of the poten-

tial energy:

(W (Vow) — poBiwi]dVy — / T;idSo (5.6)

Bo 9Bo2

among all finite-element deformation mappings. More general finite-element methods may

be derived from the Hu-Washizu principle. The Hu-Washizu potential of the solid is

Ilp,F,P] = /B (W(F)+ P;j(¢i.; — Fiy) — poBipildVy
0

/ PyNj(p; — @;)dSo — / T;:idSo (5.7)
8301 8B02

The stationarity of I demands:

[, (Pisdpi,g — poBidp;)dVy — faB PiyN;09idSo — [4p., TidpidSy =0 (5.8)
[5,W.F,, (F) — Pijl0F;;dVo =0 (5.9)

S5, (Pi,s — Fig)0P;1dVo — faBm OPiyNy(pi — ¢i)dSo =0 (5.10)

which is a weak re-statement of the field equations and boundary conditions of the problem.
The appeal of the Hu-Washizu principle in the present context is that it allows for the
independent interpolation of displacements, deformations and stresses. The use of the Hu-

Washizu principle to formulate mixed elements was pioneered by Simé [45].
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5.3 Element description

The proposed element consists of twelve four-node sub-elements, each of which is equipped
with linear displacement interpolation. This piecewise linear displacement interpolation
scheme is coupled to linear assumed deformation and stress fields defined over the entire
domain of the element. One motivation for this choice of interpolation is to obtain an
element in which lumped nodal masses are unambiguously and appropriately defined and
are well-matched to contact tractions in impact problems. This is accomplished by inter-
polating displacements in a piecewise linear fashion. The choice of deformation and stress
interpolation is designed so as to introduce four volume constraints per element in the

near-incompressible limit.

Figure 5.1: The geometry and nodal numbering convention of the CT3D composite element.

The geometry and nodal numbering convention of the element are depicted in Fig. 5.1.
It should be carefully noted that the element edges need not be straight, i. e., the center
node of the edges need not be at the midpoint of the segment defined by the corresponding

vertices. We additionally introduce an auxiliary node at position:

10
1
X =g ;Xa (5.11)
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‘ Tetrahedron H node 1 ‘ node 2 ‘ node 3 ‘ node 4 ‘

1 1 5 7 8
2 2 6 5 9
3 3 7 6 10
4 4 9 8 10
5 ) 9 6 11
6 6 9 10 11
7 10 9 8 11
8 9 5 11
9 5 6 7 11
10 6 10 7 11
11 10 8 7 11
12 8 5 7 11

Table 5.1: Connectivity array for the 12 sub-elements of the CT3D composite element.

where X ,,a = 1,...10 are the undeformed nodal coordinates. Likewise, the position of the

auxiliary node in the deformed configuration is constrained to be:

1 10
T = ¢ ;;pa (5.12)

in accordance with the assumed linear interpolation. The introduction of an auxiliary
eleventh node such as described ensures that, in its regular tetrahedral configuration, the
element possesses all the expected symmetries. In particular, all the mid-edge nodes are
given the same weight. The twelve sub-elements are defined by the connectivity array in
Table 5.1.

The interpolation scheme just described defines a set of piecewise linear shape functions
{Ng, a =1,...,10} defined over the undeformed domain of the element. In particular, the

interpolated deformation mapping is

10
P(X) = Y 2uNu(X) (5.13)
a=1
where {z,, a =1,...,10} are deformed nodal coordinates.

Independently of the displacement interpolation just described, we adopt an ‘assumed’
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linear representation of the deformation and stress fields of the form:

4
F(X) = ) Fo(X) (5.14)
a=1
4
P(X) = ) P.(X) (5.15)
a=1
where {\;, a = 1,...,4} are the barycentric coordinates associated with the four vertices

of the parent element and {F,, a = 1,...,4} and {P,, a = 1,...,4} are matrices of co-
efficients. Evidently, the assumed deformations are not the gradients of the interpolated
deformation mapping (5.13) in general. Likewise, the assumed stress field does not follow
from an application of the constitutive relations to the gradients of the interpolated map-
ping. Instead, we enforce these relations weakly in the sense of egs. (5.8), (5.9) and (5.10).

In particular, from eq. (5.10) we obtain the system of equations:

4

>

10
AaAp dVo} Figpp = {Z AalNp, s dVO} Tib (5.16)
b=1 ~/ b=1"0

where )y is the undeformed domain of the element and we have assumed that the dis-
placement boundary conditions are identically satisfied by the displacement interpolation.

Solving (5.16) for the coefficients F, and inserting the result into (5.14) yields the relation

10
Fiy(X) = 3 mialas (X) (517)
a=1
where
) 4 4
Las(X) = 32 3030 M5! [ dubasavy (5.18)
b=1 c=1 o
and we write
My, = / Mo dVe (5.19)
Qo

Eq.( 5.17) gives the assumed deformation field in terms of the deformed nodal coordinates

and replaces the conventional relation

10 10
Fiy(X) = 2iaNos(X) = tiaLas(X) (5.20)
a=1 a=1
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‘ A1 H A2 ‘ A3 ‘ A4 ‘ Quadrature weight ‘
1/4 | 1/411/4 | 1/4 | (Vs +Ve+Vig+Vio)/2+ Vs + Vs + Vo +Viy
1/2 | 1/6 | 1/6 | 1/6 Vi + Vig/2
1/6 |[1/2 [ 1/6 | 1/6 Vo + Vs/2
1/6 || 1/6 | 1/2 | 1/6 Vs + Vig/2
1/6 |[1/6 | 1/6 | 1/2 Vi+ Vi /2

Table 5.2: Five-point quadrature rule.

of the displacement finite-element method. We also note that the matrix inversion in (5.18)
needs to be carried out only once in the course of a calculation.

Taking variations in (5.17) gives the relation
10
§F;7(X) = 6miaLas(X) (5.21)
a=1
which upon substitution into (5.8) yields the internal and external force arrays:

no= / PiyLay dVy (5.22)
Qo

= / poBiNg dVy + / T; N, dSy (5.23)
Qo 9002

In arriving at these expressions we have restricted d¢ to satisfy homogeneous essential
boundary conditions, i. e., we have required that dp; = 0 on 0By;. We also note that in
(5.23) 02 denotes 09 N OByg, i. e., it is the part of the boundary of the element, possibly
empty, which lies on the traction boundary.

Finally, we turn to the weak form (5.9) of the constitutive relations. Inserting (5.14)

and (5.15) into (5.9) and solving the resulting system of linear equations gives:

4
Py =Y M) /B Poy(F) MadVh (5.24)
a=1 0

and the stress field follows in the form:

4 4

By =303 n(X) My /B Pis(F) AadVp (5.25)

a=1 b=1

This field may now be used in (5.22) to compute the internal force array.
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In calculations, we evaluate the integrals in (5.19) and (5.22) by the five-point Gaussian
quadrature rule (as when compared to four-points quadrature scheme required for the usual
isoparametric element) defined in Table 5.2. In this table V; denotes the volume of sub-
element 7. In principle, the integral in the stress-reduction formula (5.25) could be computed
by the same means. However, this would render the computation of the stresses somewhat
costly. Instead, we choose to satisfy the constitutive relations strongly by simply evaluating

(5.5) pointwise using the assumed deformation field (5.17). The resulting internal forces are
= / P,y (F) Loy dVy (5.26)
Qo

This expression may be obtained directly by rendering stationary the ‘assumed’ potential

energy:

o = [W(F) - pOBz'SOi] dV() - / Tigoi dSO (527)
Bo 9Bo2

Note that, in this expression, the strain energy is evaluated from the assumed deformation
field directly. This implementation is in the spirit of Hughes’s B method for anisotropic
linear elasticity [44], in which the discrete strain operator, or B matrix, is replaced by an
assumed matrix B in the strain energy density. The resulting finite-element method may
be obtained from the standard displacement finite-element method by formally replacing
the material shape-function gradients N, ; by the the array Ly defined in (5.18). This
substitution may conveniently be made at the shape-function routine level, and the remain-
ing structure of the element routine is identical to that of the displacement finite-element
method.

We also note that a lumped-mass matrix for the composite element may simply be
computed by assembling the standard lumped-mass matrices of the twelve four-node sub-
elements. The resulting nodal mass distribution is depicted in Fig. 5.2. As is evident from
this figure, all nodal masses are strictly positive. This is in contrast to the lumped-masses
for the quadratic ten-node element obtained by the row-sum method, which are negative at

the corner nodes.
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Figure 5.2: Lumped-mass distribution for the CT3D composite element.

5.4 Numerical tests

In this section we report the results of a number of standard tests which establish the
accuracy, stability and convergence characteristics of the CT3D composite element. As a
first elementary test, we have verified that the element passes the patch test in arbitrary
distorted configurations, and that the tangent stiffness matrices are not rank-deficient and,
therefore, are devoid of spurious zero-energy modes. It should be noted that, for the patch
test to be satisfied for arbitrary element geometries, care must be exercised to employ the
same quadrature scheme in the calculations of the assumed shape-function gradients and
the element force and stiffness arrays. We have also assessed the convergence characteristics
of the element in selected linear benchmark cases, and demonstrated the stability of the
element in the near-incompressible limit with the aid of the inf-sup test of Babuska and

Brezzi [37, 39]. These tests are subsequently discussed in turn.

5.4.1 Convergence tests

We have performed two standard benchmark tests: the bending of a linear-elastic cantilever

strip under the action of a tip load; and the stretching of a linear-elastic infinite plate with
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a circular hole. In order to test the three-dimensional composite element, we solve these
problems in three dimensions. The following norms and seminorms are used to quantify

solution errors and gauge the performance of the element:

1/2
lulle = { / |u\2d9} (5.28)
Q
1/2
|U|E = {/ Uijui,de} (529)
Q

Ipllo = {/Qp%lﬂ}l/? (5.30)

where u, o and p are the displacement, stress and pressure fields, respectively. Evidently,
||lu|lo and ||p||o are the Lo norms of uw and p, respectively, whereas |u|g is the energy semi-
norm of u. In calculations, all norms are computed by the five-point numerical quadrature

rule described in the foregoing.

5.4.1.1 Cantilever Strip Problem

Next we consider the problem of a linear-elastic infinite cantilever strip under the action of
a tip load P per unit length, Fig. 5.3. The strip has a uniform thickness ¢ and length L. A
system of orthonormal cartesian axes is chosen such that x; runs the width of the strip and
x3 points in its normal direction along thichness. Provided that the tip load is distributed
appropriately over the end section of the strip, the solution to this problem is elementary

(e. g., [48]), and is given by

ur = _ézc?’ {(6L — 3z1)z1 + (2 + D) 75 — (t/2)%]} (5.31)
v =0 (5.32)
us = £[?)vac%(L —z1) + (4 +50)(¢/2)%x, + (3L — z1)z?] (5.33)

6D
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and
12Pzx
on =~ 2(L — ) (5.34)
12v Pz
o =~ 3(L — ) (5.35)
6P
013 = —15—&9)[2(7:/2)2 — 3] (5.36)
o33 = o012 =02 =0 (5.37)
Here
Et3
D = — .
12(1 — 1?) (5:38)
v = v/(l-v) (5.39)

FE and v are the Young’s modulus and Poisson’s ratio of the material, respectively, and D
is the bending stiffness of the plate.

Owing to the anti-symmetry of the problem about the neutral fiber of the plate, only
the upper half of the plate is discretized. The analysis is carried out in three dimensions
by discretizing a finite width W of the strip and subjecting the lateral surfaces zo = 0
and zo = W to the boundary condition uo = 0. The section z1 = 0 of the strip is built
in. Nodal forces computed from (5.36) are computed over the end section ;1 = L. The
numerical values of the parameters used in calculations are: L = 24, W = 2, t = 4,
P =200, E =3 x 107, and v = 0.25,0.4999. The latter value of the Poisson’s ratio renders
the material nearly incompressible. The domain of analysis is partitioned into cubic blocks,
and these blocks subsequently are discretized into tetrahedral elements as shown in Fig. 5.3.

Fig. 5.4 shows the dependence of various normalized error norms on mesh size(h). The
error norms are normalized by the corresponding norm of the exact field. The convergence
rates deduced from these plots are collected in Table 5.3. The convergence rate is the slope
of the error vs. mesh-size curve in logarithmic axes. The theoretical rates of convergence of
the errors || up —u ||o, |up — u|g and || pp — p ||o for simplicial tetrahedra are k + 1, k and
k, respectively, where k is the order of interpolation. As may be seen from Table 5.3, the
computed rates in the Lo norm of the displacement field is slightly below the theoretical
value of linear interpolation, k¥ = 1. By contrast, the convergence rates in pressure and

in the energy norm are slightly better than those for linear interpolation. It is evident
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Figure 5.3: Sample mesh for the cantilever strip test problem showing the mesh design used
in calculations.

v | lun—ulo | [un—ulg | [[pn—plo
0.2500 | 1.8375 1.0669 1.0706
0.4999 | 1.8203 1.0500 1.1289

Table 5.3: Convergence rates for the cantilever strip test problem.

from the convergence plots that the accuracy of the element degrades somewhat in the
near-incompressible limit. However, it is interesting to note that the convergence rates are

maintained in that limit.

5.4.1.2 Infinite Plate with a circular hole problem

We consider an infinite plate containing a circular hole of radius a deforming in plane strain
under the action of a remotely applied uniaxial tension o, Fig. 5.5. We refer the plate
of analysis to a system of polar coordinates (r,0) and we denote by z the perpendicular

coordinate. The analytical solution to this problem is (e. g., [48])

p(1+v)[1-7  a? a* 4a?
= — i el a——— 20 5.40
Uy 5 [1+ﬁr+ " +(r r3+(1—|—ﬁ)r Cos (5.40)
p(1+v) at 1-72a?\ .
= ——™" — — 26 5.41
"o 28 (T+r3+1+7 r ) (5.41)
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Figure 5.4: Convergence plots for the cantilever strip test problem: a) Lo-norm of displace-
ment error; b) Energy norm of displacement error; ¢) Ly-norm of pressure error.
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Figure 5.5: Infinite plate with a circular hole

and

2 4 2
P a 3a 4a
2 4
p a 3a
2a?
Oy = UP (1 — 7 cos 20) (5.44)
3a*  2a .

Owing to the symmetries of the problem, the domain of analysis may be restricted to
one quadrant of the (r,0) plane. We carry out the calculations in three dimensions by
discretizing a slab of material of thickness W. We additionally restrict the analysis to a
finite square region in the (r, §) plane of size 10a. The exact analytical displacements (5.40-
5.41) are prescribed on the remote edges of the domain of analysis. The numerical values
of the parameters used in calculations are: ¢ = 0.1, W = 0.1, 0 = 200, E = 3 x 107, and
v = 0.25,0.4999. As in the cantilever strip problem, this latter value of the Poisson’s ratio
tests the performance of the element in the near-incompressible range. A typical mesh used
in calculations is shown in Fig. 5.6.

Fig. 5.7 shows the dependence of various normalized error norms on mesh size(h). The

error norms are normalized by the corresponding norm of the exact field. The convergence
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Figure 5.6: Sample mesh used in the plate with circular hole test problem

v | un —ulo \uh — U|E | on — 2 llo
0.2500 2.0511 1.0255 1.1145
0.4999 2.0148 1.0316 0.8848

Table 5.4: Convergence rates for the plate with a circular hole test problem.

rates deduced from these plots are collected in Table 5.4. As may be seen from this table,
all convergence rates are slightly better than those corresponding to linear simplicial ele-
ments, except for the pressure error in the near-incompressible case, which lags somewhat
behind the theoretical convergence rate. In general, the computed errors are larger in the
near-incompressible case, which suggests a certain loss of accuracy of the element in that
limit. However, despite this absolute accuracy loss, the rates of convergence appear to be

maintained as the incompressible limit is approached.

5.4.2 Inf-Sup Test

Our final test is aimed at establishing whether the Babuska-Brezzi [37, 39] stability condition

is satisfied by the composite CT3D element in the incompressible limit. The satisfaction
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Figure 5.7: Convergence plots for the plate with a circular hole test problem: a) Lo-norm
of displacement error; b) Energy norm of displacement error; ¢) Lo-norm of pressure error.
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of the Babuska-Brezzi condition guarantees the convergence of finite-element schemes in
the near-incompressible regime and, thus, establishes the absence of volumetric locking.
Unfortunately, a rigorous verification of the Babuska-Brezzi condition for specific classes of
elements and arbitrary meshes is difficult. Here, instead, we follow a procedure proposed
by Chapelle and Bathe [42] (see also [38]) which is based on evaluating specific meshes and,
therefore, furnishes a test—if not a definitive proof—of stability.

In Chapelle and Bathe inf-sup test, an upper bound S}, to the stability parameter is ob-
tained as the square root of the minimum non-zero eigenvalue of the generalized symmetric
eigenvalue problem:

G’hvh = )\hShvh, (5.47)

where S}, is the positive-definite symmetric matrix which delivers the Lo norm || up ||o,
and G, is the the positive semi-definite symmetric matrix which delivers the seminorm
fQ PV updS). The procedure consists of computing the stability parameter [ and verifying
that it remains bounded below as the element size h — 0.

We specifically consider a linear-elastic cubic block of Poisson’s ratio v = 0.4999. In
order to mesh the domain of analysis, we partition it into cubes and we subsequently
discretize each cube into 12 composite elements. A sequence of meshes is generated by
regular refinement and the stability parameter g} is computed for each element size h. The
result of the calculations is shown in Fig. 5.8. This figure suggests that 3}, indeed remains
bounded below as h — 0 for the specific sequence of meshes under consideration. This
asymptotic behavior of 8 suggests that the composite CT3D element is indeed free of

volumetric locking.

5.5 Summary and conclusions

We have developed and analyzed a composite ‘CT3D’ tetrahedral element consisting of
twelve 4-node linear tetrahedral elements and a linear assumed deformation defined over
the entire domain of the composite element. The element is designed to have well-defined
lumped masses and contact tractions in dynamic contact problems, which is accomplished
by endowing the element with piecewise-linear displacement interpolation, while at the same
time minimizing the number of volume constraints per element, which is accomplished by

equipping the element with linear assumed deformations. The relation between displace-
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Figure 5.8: Asymptotic plot of the inf-sup value for the composite element.

ments and deformations is enforced weakly by recourse to the Hu-Washizu principle. The
element arrays are formulated in accordance to the ‘assumed- strain’ prescription. However,
our formulation of the element accounts for fully nonlinear kinematics. Integrals over the
domain of the element are computed by a five-point quadrature rule.

We have verified that the element passes the patch test in arbitrarily distorted configu-
rations. In addition, for compressible and near-incompressible materials the CT element has
been found to possess convergence rate comparable to those of linear simplicial elements.
We have also verified that the element satisfies the BabuSka-Brezzi condition in the sense
of Chapelle and Bathe [42, 38]. These tests suggest that the CT3D element can indeed be
used reliably in calculations involving near-incompressible behavior such arises, e. g., in the

presence of unconfined plastic flow.
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Chapter 6

Conclusions and future work

In this thesis we proposed a novel method (VALE), which is finite element method gener-
alized to account for horizontal variations. Consideration of horizontal variations enabled
solution of undeformed (nodal) coordinates in addition to deformed coordinates. The solu-
tion so obtained satisfies configurational nodal force equilibrium in addition to nodal force
equilibrium. The resulting mesh adaption scheme provides the optimal mesh and provides
mesh optimality criterion. Further, this method can be used for the solution of reference
configuration in inhomogeneous case. Also, the resulting variational integrator has good
long-term energy behavior and provides for the update algorithm for the undeformed coor-

dinates.

6.1 Future Work

Here are the some of the interesting topics of research which are related to the work in this

thesis.

VALE: It will be very interesting to investigate the uniqueness of the minima, i.e., convex-
ity, in the combined space of deformed and undeformed coordinates. This has consequences
for uniqueness of optimal mesh and solution procedure for static case. This will also help
the development of effective preconditioners for the efficient numerical solution. Further,
development of explicit time integrator within VALE framework could go a long way for the
simulation of contact-impact phenomena as it would significantly improve stable time-step
(corresponding to CFL condition) and hence efficient numerical simulation. Also combining

explicit VALE integrator with AVI [28] will provide very efficient variational integrators for



73

explicit computations.

Shape Optimization: As mentioned earlier, VALE can be used for the case when fi-
nite deformation effects are important which is not amenable to analytical treatment as in
the case of interface-free surface interaction. Also, VALE in conjunction with gradient flow
theory [33] can be used for the study of diffusion induced morphological transformations.
This has important applications in the life estimation of turbine blades made of precipita-

tion hardened super alloys, the study of Ostwald ripening, etc.

Structural Optimization: In structural optimization methods based on material distri-
bution are very popular [35, 36] for the design of optimal topology. However these methods
have the disadvantage of checker-board formation and scale insensitivity. However when
VALE is used for design of optimal topologies these spurious effects should not be present
as these are energetically unfavorable. In this regard it would be interesting to study the

application of VALE method for the design of optimal topologies.

Ballistic Penetration of Solids: In the numerical modeling of ballistic penetration of
solids, elements in the vicinity of contact regions undergo large deformation. This in turn
reduces stable time step for the explicit time integration, which is undesirable for the ef-
ficient numerical modeling. However, mesh adaption with VALE not only resolves steep

gradients close to contact zone, but also increases stable time step.

Bio-fluid Mechanics : In the cardiovascular system, blood vessels are flexible, because
of which fluid-structure interaction becomes very important. This can be accounted for in
an exact manner my modeling both blood and blood vessels within the Lagrangian frame
work [34]. Further, at the entry and exit of the vessels boundary conditions are Eulerian.
This Euler-Lagrange coupling can be modeled in a variationally consistent manner in VALE
framework. In addition, elements at the interface of blood and blood vessels have tendency
to get distorted in the absence of mesh adaption due to boundary layer formation. However

mesh adaption ensures good quality mesh.

Fracture Mechanics: As demonstrated earlier, J-integral can be evaluated accurately
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and efficiently in this framework. Further, in the dynamic fracture simulation, when done
in conjunction with cohesive elements, optimal mesh obtained should be oriented in such
a manner as to provide cohesive surface along crack growth direction and hence improves

accuracy of the numerical solution.
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