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Abstract

This thesis discusses research into four different orbital dynamics problems, where the main goal of

each chapter is to characterize the strongest non-Keplerian effect. These problems are introduced

and discussed in Chapter 1, to help provide context for the subsequent chapters. In Chapter 2,

I discuss a new technique for probing the interior density distributions of extra-solar planets by

observing apsidal precession. Using a detailed theoretical and observational model of this precession,

I conclude that NASA’s Kepler mission will be able to detect the presence or absence of a massive

core in very hot Jupiters with eccentricities greater than ∼0.003. The remaining chapters discuss the

orbital dynamics of Kuiper belt objects (KBOs) orbiting the Sun beyond Neptune. The family of

dwarf planet Haumea (2003 EL61) is characterized in Chapter 3, including a list of candidate family

members sorted by dynamical proximity. Using a numerical integration of resonance diffusion, I

also show that the Haumea family is at least 1 Gyr old and is probably primordial. In Chapter 4, I

analyze and fit astrometric data for the two satellites of Haumea (Hi’iaka and Namaka) to determine

their orbital properties and the masses of Haumea and Hi’iaka. The implications of the new orbital

solution are discussed, including the exciting conclusion that Haumea and Namaka are currently

starting a season of mutual events. A more general investigation of the orbital and tidal evolution

of KBO binaries is given in Chapter 5. A new orbital evolution model is described that accounts

for perturbations from the Sun, self-consistent tidal evolution, and non-hydrostatic quadrupoles of

solid KBOs. Using this model, I find that the orbital parameters of KBO binaries may have been

modified significantly over the age of the solar system. Applied to the Orcus-Vanth binary, this

model shows that a short-period circular orbit does not necessarily imply a collisional formation. In

all, the work in this thesis has sought to analyze observational data by using the theoretical tools of

orbital dynamics.
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Chapter 1

Introduction

The year 1609 saw two landmark discoveries in the field of planetary science. The observational

breakthrough was made by Galileo Galilei who that year turned a telescope to the skies for the

first time in human history. His new tool led to the first major discoveries of planetary science:

the phases of Venus, the moons of Jupiter, mountains on the Moon, and the rings of Saturn. The

theoretical breakthrough was made by Johannes Kepler, who published in Astronomia Nova his

new theory of planetary motion. Included in this theory was the empirical observation that the

planets orbit the Sun in fixed elliptical orbits and that their rate of orbital motion swept out equal

areas in equal times. These are now known as Kepler’s first and second laws of planetary motion

(the third law would come in 1619). Four hundred years later, planetary scientists are still making

discoveries based on these two breakthroughs. The results presented in this thesis used telescopes

about ten thousand times stronger than Galileo’s original refractor, along with powerful analytical

tools, originally developed by Isaac Newton, that mathematically codify Kepler’s empirical laws.

These observational and theoretical tools are applied to various problems in orbital dynamics.

The main goal of orbital dynamics or celestial mechanics is to explain the motion of bodies in

space due to their mutual (gravitational) interactions. The simplest non-trivial dynamical system

is the orbital motion of two point-masses in space. This two-body problem has a straightforward

analytical solution: each object orbits the center of mass in a fixed elliptical orbit. In honor of

Johannes Kepler’s empirical discovery of this elliptical motion, such orbits are called Keplerian.

Anything more complex than the two-body problem will execute non-Keplerian motion. When

attempting to solve these complex dynamical problems, the first goal is to identify the most impor-

tant aspect that has not yet been included in the solution. Each of the four subsequent chapters

in my thesis represents a problem that is slightly more complicated than the two-body problem; in

each case, my work was to characterize the dominant non-Keplerian aspect of the problem that had

not yet been considered.
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1.1 Chapter 2: Extra-Solar Planet Interiors

Chapter 2 studies the orbital motion of planets orbiting other stars. Over 300 such extra-solar

planets have been discovered in the last fifteen years; Marcy et al. (2005) estimate that ∼12%

of stars possess gas giant planets within about 20 AU. Originally, most extra-solar planets were

discovered through measuring the stellar radial velocities. When the radial velocity motion matched

the Keplerian motion of a star around the center-of-mass of a star-planet system, the presence of

the planet could be indirectly inferred. The radial velocity technique had its first major successes

beginning in 1995, with the discovery by (Mayor and Queloz, 1995) of a planet orbiting the star 51

Pegasi. Planets like 51 Pegasi b were totally unexpected: it is a Jupiter-like planet in a surprisingly

un-Jupiter-like orbit with an orbital period of only 4 days. Planets like 51 Pegasi b are called “hot

Jupiters” to emphasize that they orbit their parent stars at a radius ∼100 times closer than Jupiter

in our solar system.

Since the orbits of hot Jupiters are so compact, there is a ∼10% chance that these planets will

pass in front of their parent star as seen from Earth (as compared to a ∼0.1% chance for a planet in a

Jupiter-like orbit). As a consequence, the star will diminish in brightness as the dark planet occults

a portion of the bright star. The depth of the photometrically observed transit is proportional to

the ratio of areas of the planet and star. The first observation of such a transiting planet around HD

209458 (Charbonneau et al., 2000) proved that these objects were similar to Jupiter, because the

∼1% depth of the transit corresponds to an object the size of Jupiter (since
(
RJup
RSun

)2

≈ 0.01). Using

the Hubble Space Telescope (HST), precise photometry at the 10−4 level can be achieved allowing for

a detailed description of many properties of the planetary and stellar system (Winn, 2009). Planets

transiting bright stars are the most information-rich planetary objects outside our solar system.

Many transiting planets have radii that are much larger than can be explained by interior models

(e.g., Guillot et al., 2006; Burrows et al., 2007), resulting in anomalously tiny densities (as low as

∼0.3 g cm−3). Other planets have surprisingly high densities, indicative of very large solid cores

(Sato et al., 2005). For both kinds of planets, it may be very difficult or even impossible to determine

the correct modifications needed to align planetary interior models with the wide range of observed

planetary densities.

Our contribution to this problem was to suggest a model-independent measure of interior struc-

ture that would be valuable in order to begin disentangling otherwise unconstrained physics. The

interior density distribution of a planet affects the size of rotational and tidal bulges caused by the

planet’s spin and the nearby star’s gravitational field, respectively. These effects can all be captured

with a single number, k2p, the planetary Love number, which ranges from 0 for a perfectly rigid

planet to 1.5 for a fluid totally homogeneous planet. The Love numbers of Jupiter (k2J ' 0.49) and

Saturn (k2S ' 0.32) differ because Saturn has a relatively larger core of solid elements. The value
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of k2p reflects the amount of central condensation of a body and thus, a measurement of k2p is a

model-independent probe of planetary interiors. (It is equivalent to measuring J2 of an extra-solar

planet.)

It has been known for decades that a non-zero value of k2 creates a non-Keplerian orbital pre-

cession, i.e., a rotation of the normally-fixed orbital ellipse (Russell, 1928; Cowling, 1938; Sterne,

1939a,b). This subtle non-Keplerian effect can be measured with precise light curve measurements

over a long time baseline. In fact, measuring orbital precession in eclipsing binary systems gave the

first model-independent indication that stars were highly centrally condensed (k2∗ ≈ 0.03). How-

ever, until our work in Chapter 2, no one had applied this method to extra-solar planets with the

goal of measuring planetary interiors.

One of the surprising conclusions about orbital precession in extra-solar planetary systems is

that the planet is actually the dominant source of precession, with the much more massive star

contributing a factor of ∼10 less. The huge tidal bulge raised on the planet by the star, sometimes

reaching over 2000 km in size, creates a significant modification to Keplerian motion. The rate of

orbital precession is strongly dependent on the star-planet distance, so we focused on planets that

were extremely close to their parent stars, known as very hot Jupiters, which have semi-major axes

of only ∼0.02 AU and orbital periods of 1-2 days. For such planets, the orbital precession due to the

planetary interior is nearly 100 times more powerful than precession caused by the star or general

relativity.

This prominent effect and its usefulness for obtaining model-independent measurements of plan-

etary interiors had not been recognized in the extra-solar planet community. Therefore, we chose

to extend our study beyond the theoretical orbital dynamics and to demonstrate that actual mea-

surements of orbital precession of transiting planets were possible. The most powerful photometric

tool for measuring k2p in the short-term is NASA’s Kepler mission, which successfully launched

on March 6, 2009 and started taking high quality science data on May 13, 2009. To achieve its

main goal of detecting transiting Earth-radius planets in Earth-like orbits, Kepler will also obtain

exquisite photometry of over 100000 stars, about 30 of which are expected to host hot Jupiters

with periods less than 3 days (Beatty & Gaudi, 2008). Chapter 2 contains a full model of Kepler

photometry on transiting planets in order to demonstrate the ability to detect orbital precession of

very hot Jupiters.

By investigating the full photometric signal of orbital precession, Chapter 2 demonstrates that

Kepler can realistically detect apsidal precession with the accuracy necessary to infer the presence

or absence of a massive core in very hot Jupiters with orbital eccentricities as low as e ' 0.003.

Furthermore, the signal due to k2p creates unique transit light curve variations that are generally

not degenerate with other parameters or phenomena. In this chapter, we discuss the plausibility of

measuring k2p in an effort to directly constrain the interior properties of extra-solar planets. This
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chapter is about to be published in the Astrophysical Journal under the title, “Probing the Interiors

of Very Hot Jupiters Using Transit Light Curves.”

1.2 Chapter 3: The Haumea Family

The remainder of my doctorate research focused on the orbital dynamics of minor planets within

our own solar system orbiting beyond Neptune. These icy bodies are called Kuiper belt objects

(KBOs) in honor of Gerard Kuiper’s prediction of a distant population of small bodies similar

to the asteroid belt (Edgeworth, 1949; Kuiper, 1951). Throughout this thesis, the term KBOs is

synonymous with transneptunian objects and refers to the entire population of solar system small

bodies with semi-major axes greater than Neptune’s (a & 30 AU).

The properties of the ∼1000 known KBOs orbiting beyond Neptune have already changed our

understanding of the formation of the outer solar system. For example, the orbital distribution of

these bodies point to a past dynamical excitation event during a chaotic episode in solar system

history (e.g., Malhotra, 1995; Gomes et al., 2005; Chiang et al., 2007; Levison et al., 2008a) as well

as significant orbital migration of the outer planets (e.g., Fernandez and Ip, 1984; Malhotra, 1993;

Gomes et al., 2005b). Studying the orbital dynamics of KBOs improves our understanding of the

early formation and evolution of the solar system.

For several years, Prof. Michael Brown has led a major observational effort to discover and

characterize new KBOs. One of the major aspects of this research was the spectroscopic survey

of near-infrared spectra of bright KBOs, summarized by Barkume et al. (2008). These authors

found that KBOs fell into three major spectroscopic categories: methane-rich dwarf planets (Eris,

Pluto, and Makemake), KBOs with strong water ice spectra (Haumea and others), and KBOs with

featureless near-IR spectra (the majority of KBOs). The difference between the methane-rich and

featureless categories can be explained by the model of Schaller and Brown (2007), who show that

only the largest KBOs are massive enough to prevent a methane atmosphere from escaping.

An explanation of the objects with strong water ice spectra was not as clear. These objects

spanned a wide range of sizes and had atypical optical colors (blue or gray gradients, instead of the

strong red gradient observed for most KBOs). The key to understanding these objects was in their

orbital parameters: they were all clustered within a small region of semi-major axis, eccentricity,

and inclination. The only viable hypothesis that can explain a clustering in both surface and orbital

properties is that these objects were all once part of the same parent body. In other words, these

icy bodies are a collisional family.

A sufficiently energetic collision can impart enough velocity to gravitationally eject many of the

impact fragments. These fragments go into nearby orbits and together form a collisional family.

Dozens of these families have been identified in the asteroid belt since Hirayama’s original identifi-
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cations of groups of asteroids nearly a century ago (Hirayama, 1918). Recent modeling has shown

that these groups of asteroids with similar orbits and spectra are very well explained by collisional

formation (e.g., Durda et al., 2007).

Families in the Kuiper belt are unique, even compared to asteroid families, because they are

direct fingerprints of ancient collisions. In the asteroid belt, the Yarkovsky effect and other pertur-

bations degrade the coherence of asteroid families after hundreds of millions of years (Farinella &

Vokrouhlicky, 1999; Milani & Farinella, 1994). Kuiper belt families stay mostly coherent over the

age of the solar system and can provide a direct view of processes present at the beginning of the

solar system.

In Brown et al. (2007), we showed that the dynamical clustering of objects with strong water ice

spectra was well explained by a collisional family. The largest remnant of this family is the dwarf

planet Haumea, the largest object with a strong water ice spectrum. Our discovery of the first known

Kuiper belt family around the dwarf planet Haumea (formerly known as 2003 EL61) has already

been called a “milestone” in the study of the Kuiper belt (Morbidelli, 2007), because families are a

unique testbed for theories of the dynamical, collisional, and surface properties of KBOs.

The dwarf planet Haumea is, perhaps, the most interesting object in the Kuiper Belt. Early in

solar system history (Levison et al., 2008), Haumea experienced a massive collision that imparted

its ultra-fast rotation (Rabinowitz et al., 2006), created two moons (Brown et al., 2006; Chapter

4), and shattered its icy mantle, sending fragments into nearby heliocentric orbits (Brown et al.,

2007). As discussed above, these fragments were discovered after the largest spectroscopic survey

of Kuiper belt objects (Barkume et al., 2008) revealed that six KBOs had remarkably deep water

ice absorptions, including Haumea and its brightest satellite (Barkume et al., 2006) and four other

KBOs in nearby heliocentric orbits.

The spectroscopic survey that identified the original Haumea family members was limited to

the ∼40 brightest KBOs. The vast majority of KBOs cannot be studied spectroscopically which

significantly limits the ability to find new family members observationally. We therefore turned to a

dynamical analysis of the Haumea family in an attempt to identify new candidate family members

and to characterize the Haumea family in more detail. The results of this work are presented in

Chapter 3.

The ejection of orbits from a collision can be simulated dynamically by giving objects an isotropic

non-Keplerian velocity “kick” of magnitude ∆v from a single collision location in space. This

instantly changes the orbital elements of the ejected bodies and creates a unique pattern of semi-

major axes, eccentricities, and inclinations. In Chapter 3, we model the orbital element spread

of the original Haumea family members to estimate the original collision location. We then take

all known KBOs and calculate their proximity to the collision through the estimated value of ∆v

needed to reach their current orbits. The objects with the lowest value of ∆v are good candidates
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for membership in the Haumea family. This and other techniques used in Chapter 3 were based on

similar techniques used for asteroid families, adapted for application in the Kuiper belt.

Two KBOs, predicted to be family members by the dynamical analysis of Chapter 3, have

recently been observed spectroscopically by Schaller & Brown (2008). These authors find that the

predicted family members indeed share the same deep water ice spectra characteristic of Haumea

family members. Additional Haumea family members will be identified in the future by observing

more of the candidates identified in Chapter 3 as well as the discovery of additional KBOs near the

center of the family.

Performing this ∆v analysis yielded one very unusual result: Haumea is not at the center of

the collision. This is surprising, since it is by far the largest family member and also has clearly

experienced a giant collision in the past as inferred from its high density, ultra-fast rotation, and two

small moons. As discussed in Brown et al. (2007) and modeled in Chapter 3, the reason Haumea

is not at the center of the collisional family is that it has diffused from its original orbital location

as the result of a weak mean-motion resonance with Neptune. Haumea’s heliocentric orbital period

is exactly 12/7 times larger than Neptune’s orbital period. Orbital diffusion within mean-motion

resonances had been demonstrated before (it is the origin of the Kirkwood gaps in the asteroid belt,

for example). We found empirically that such diffusion nearly conserves the Tisserand parameter

T ≈ cos i
√

1− e2. The current eccentricity (inclination) of Haumea is higher (lower) than the

expected collision center in a way that is consistent with conservation of the Tisserand parameter.

Hence, allowing for the non-Keplerian effect of resonance diffusion, the current location of all the

known family members are consistent with a tight dynamical cluster (∆v . 150 m s−1).

Though chaotic in nature, resonance diffusion has an associated timescale. Using the estimated

initial location of the center of the Haumea family, Chapter 3 also describes how the age of the

Haumea family can be estimated by calculating the time Haumea needs to diffuse to its current

location. Through n-body dynamical simulations of the giant planets and objects in the 12:7 reso-

nance, we showed that the Haumea family must be at least 1 Gyr old, with 90% confidence. That

is, only 10% of simulated particles moved from the center of the collision to the current location of

Haumea within 1 GYr. Our estimate for the age of the Haumea family is 3.5 ± 2 Gyr. The lack

of precision is due to the chaotic nature of resonance diffusion. In Chapter 3, we show that the

precision can be increased with the discovery of more resonant Haumea family members. I estimate

that future surveys of the Kuiper belt, such as Pan-STARRS and LSST (Trujillo, 2008), will provide

enough family members to date the age of the Haumea collision with a precision of 0.5 GYr by

the year 2020. An absolute age determination of the Haumea family will be extremely valuable for

constraining models of outer solar system formation.

The ancient nature of the Haumea family fits in well with the general understanding of the

formation of the Kuiper belt. Most successful models of outer solar system formation predict that
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the primordial Kuiper belt was about 100 times more massive than the Kuiper belt seen today.

In the current Kuiper belt, the probability of the collision needed to form the Haumea family is

very low, less than 1%. There is a significant increase in collision probability obtained by forming

the Haumea family early in the history of the Kuiper belt when the number densities were much

higher. The formation of the Haumea family was studied in detail by Levison et al. (2008), who

conclude that the most probable origin of the Haumea family is an ancient collision between two

scattered-disk objects.

Chapter 3 was published as Ragozzine & Brown (2007) in the Astronomical Journal under the

title, “Candidate Members and an Age Estimate of the Family of Kuiper Belt Object 2003 EL61.”

1.3 Chapter 4: The Satellites of Haumea

The giant impact that formed the collisional family of Haumea (Chapter 3) also presumably formed

the two small satellites discovered by Brown et al. (2005) and Brown et al. (2006). These two

satellites share the spectral features of Haumea and the other Haumea family members (Barkume

et al., 2006; Fraser and Brown, 2009) and it is certainly possible for a single giant impact to produce

both satellites and a collisional family, though the Haumea collision has not yet been modeled in

detail. Hence, it is likely that the two satellites, named Hi’iaka and Namaka, were formed in a giant

collision billions of years ago.

As a result of Kepler’s third law (published in 1619), measurements of the orbital period and

semi-major axis of a binary system can be combined to yield the total mass. By determining the

orbit of the outer brighter satellite Hi’iaka, Brown et al. (2005) found the mass of Haumea to be

about 4.2 ×1020 kg or 1/3 the mass of Pluto. These authors also found that the orbit of Hi’iaka had

a relatively large semi-major axis (a ' 49000 km) and a non-zero eccentricity (e ' 0.05). This orbit

is moderately inconsistent with simple tidal models that would predict a smaller separation and a

nearly circular orbit for a satellite that tidally evolved outwards after its initial formation near the

Roche lobe of Haumea (Brown et al., 2005).

Determining the orbit of the inner fainter satellite, Namaka, was much more difficult. Non-

Keplerian perturbations from Hi’iaka and the J2 of the elongated Haumea (Rabinowitz et al., 2006)

are so strong, that it is impossible to fit a reasonable Keplerian model to the observations spanning

more than about a month. Over the course of three years and several nights of observation, we

eventually asked for and received time on HST to observe the triple system 5 times over the course

of 8 days. This was enough to determine a preliminary Keplerian orbit whose parameters could then

be used in a fully interacting three-point mass model to determine the orbits of both satellites and

the masses of all three bodies. The astrometric data was sufficient to fully characterize the orbits of

Hi’iaka and Namaka as well as the masses of Haumea and Hi’iaka, with values given in Chapter 4.
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However, the mass of Namaka was only marginally detected and Haumea’s J2 was too degenerate

with the mass of Hi’iaka to measure separately.

Even before the full solution was determined, we realized that Namaka’s orbit was nearly edge-on,

which was confirmed by our solution of the orbital motion. In an analogy to transiting extra-solar

planets (Chapter 2), Namaka’s orbit currently takes it in front of and behind Haumea as seen from

Earth. That is, according to the orbit solution, the Haumea system is currently undergoing mutual

events (Fabrycky et al., 2008).

Using the known orbit, the angle between Namaka, Haumea, and the Earth (in the case of

occultations) or the Sun (in the case of shadowing) falls well below the ∼13 milliarcseconds (∼500

km) of the projected shortest axis of Haumea. Observing multiple mutual events can yield accurate

and useful measurements of several system properties as shown by the results of the Pluto-Charon

mutual event season (e.g. Binzel & Hubbard, 1997). The depth of an event where Namaka occults

Haumea leads to the ratio of albedos and, potentially, a surface albedo map of Haumea, which is

known to exhibi,t color variations as a function of rotational phase, indicative of a variegated surface

(Lacerda et al., 2008; Lacerda, 2008). Over the course of a single season, Namaka will traverse several

chords across Haumea allowing for a highly accurate measurement of Haumea’s size, shape, and spin

pole direction (e.g., Descamps et al., 2008). The precise timing of mutual events will also serve as

extremely accurate astrometry, allowing for an orbital solution much more precise than reported in

Chapter 4. Our solution also predicts two satellite-satellite events, one in February 2009 and one in

July 2009 — the last such event until the next mutual event season begins around the year 2100.

Our knowledge of the state of the Haumea system will improve significantly with the observation

and analysis of these events. See http://web.gps.caltech.edu/∼mbrown/2003EL61/mutual for

up-to-date information on the Haumea mutual events. To date (May 29, 2009), there are no secure

detections of any of the Haumea-Namaka mutual events, though some of our observations are highly

suggestive. We also applied for and received HST observations of the February 2009 satellite-satellite

event. The accurate resolved photometry show significant variability that it still being interpreted.

Although the mutual events are very interesting for the future, the actual orbits themselves show

unexpected implications for Haumea’s past. Throughout the solar system, all multiple satellite

systems with well-known tidally-evolved orbits have very low eccentricities and inclinations. With

an eccentricity of 0.25 ± 0.02 and mutual inclination of 13◦ ± 1◦, Namaka’s orbit is most unusual.

The excitation of Namaka’s orbit is almost certainly due to the also unique combination of massive

interacting satellites and extensive tidal evolution (e.g., Canup et al., 1999). As the satellites tidally

evolved outwards, they passed through mean-motion resonances that excited their eccentricity and

inclination. For a detailed qualitative description of this model, see Chapter 4. It is interesting to

note that the satellites are highly tidally-evolved, implying that they, like the Haumea family, were

not formed in recent geologic history.
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Chapter 4 was published as Ragozzine & Brown (2009) in the Astronomical Journal under the

title, “Orbits and Masses of the Satellites of the Dwarf Planet Haumea (2003 EL61)”.

1.4 Chapter 5: The Changing Orbits of Kuiper Belt Binaries

Haumea is not the only Kuiper belt object with satellites. Dozens of KBOs are known to be binary

(Noll et al., 2008b) and it is already clear that these binaries are giving us unique clues into the

evolution of the outer solar system (Noll et al., 2008a). For example, Brown et al. (2006) found

that the binary fraction of large KBOs is significantly higher than the binary fraction of smaller

KBOs and Noll et al. (2008b) recently reported that the binary fraction of non-resonant KBOs

with low heliocentric inclinations (29.3±7.2
6.3%) is strikingly different from the binary fraction of high

inclination KBOs of similar sizes (2.9±6.5
2.4%).

In light of these recent results, it seems clear that a major goal of the KBO community will be

to use the orbital distributions of KBO binaries to constrain theories on the formation of the Kuiper

belt. Achieving this goal will require many observational and theoretical studies of KBO binaries.

One major difficulty in connecting the observations to formation theories is that the current

orbital properties of KBOs may not represent the initial orbital distribution. Without a clear under-

standing of the processes that can modify KBO binary orbits, there is no sure way to extrapolate the

present-day observational trends backwards in time in order to gain insights into binary formation

mechanisms. As a result, we must begin addressing mechanisms that can modify KBO binary orbits

since their initial epoch of formation.

Two mechanisms that may modify the orbits of KBO binaries on geologic timescales are per-

turbations from the Sun and tidal evolution (Greenberg & Barnes, 2008; Perets & Naoz, 2008).

In Chapter 5, we study these non-Keplerian effects using a model developed specifically for KBO

binaries. Since this is one of the first major attempts to calculate the orbital and tidal evolution

of KBO binaries, the techniques of Chapter 5 are not applied to specific binary systems; instead,

general results are sought.

We find that perturbations from the Sun (in the form of Kozai oscillations and Cassini states)

combined with tidal evolution at high eccentricities can significantly modify the semi-major axes,

eccentricities, inclinations, spin rates, and obliquities of KBO binaries. In particular, orbital and

tidal evolution can change binary properties from those indicative of formation by gravitational

capture (Goldreich et al., 2002) to those indicative of formation by giant impact (Canup, 2005).

The Orcus-Vanth binary is used as a test case to show that solar perturbations and tidal evolution

complicate the interpretation of binary orbital properties.

Though potentially adverse to the goal of inferring the original orbital distribution of KBO

binaries, these effects do leave unique observational signatures, which are also discussed in Chapter
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5. Future theoretical and observational studies will clarify the importance of these effects.

Though dynamics is arguably the oldest branch of planetary physics, there is still theoretical and

observational progress being made over 400 years after its birth. This thesis represents my minor

contribution to planetary science in a study of the orbital dynamics of Kuiper belt object satellites,

a Kuiper belt family, and extra-solar planet interiors.
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Chapter 2

Probing the Interiors of Very Hot
Jupiters Using Transit Light
Curves

This chapter will be published in its entirety under the same title by authors D. Ragozzine and

A. S. Wolf in the Astrophysical Journal, 2009. Reproduced by permission of the American Astro-

nomical Society.
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Abstract

Accurately understanding the interior structure of extra-solar planets is critical for inferring their

formation and evolution. The internal density distribution of a planet has a direct effect on the

star-planet orbit through the gravitational quadrupole field created by the rotational and tidal

bulges. These quadrupoles induce apsidal precession that is proportional to the planetary Love

number (k2p, twice the apsidal motion constant), a bulk physical characteristic of the planet that

depends on the internal density distribution, including the presence or absence of a massive solid

core. We find that the quadrupole of the planetary tidal bulge is the dominant source of apsidal

precession for very hot Jupiters (a . 0.025 AU), exceeding the effects of general relativity and

the stellar quadrupole by more than an order of magnitude. For the shortest-period planets, the

planetary interior induces precession of a few degrees per year. By investigating the full photometric

signal of apsidal precession, we find that changes in transit shapes are much more important than

transit timing variations. With its long baseline of ultra-precise photometry, the space-based Kepler

mission can realistically detect apsidal precession with the accuracy necessary to infer the presence

or absence of a massive core in very hot Jupiters with orbital eccentricities as low as e ' 0.003. The

signal due to k2p creates unique transit light curve variations that are generally not degenerate with

other parameters or phenomena. We discuss the plausibility of measuring k2p in an effort to directly

constrain the interior properties of extra-solar planets.
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2.1 Introduction

Whether studying planets within our solar system or planets orbiting other stars, understanding

planetary interiors represents our best strategy for determining their bulk composition, internal

dynamics, and formation histories. For our closest neighbors, we have had the luxury of sending

spacecraft to accurately measure the higher-order gravity fields of these objects, yielding invaluable

constraints on their interior density distributions. Using these observations, we have been able,

for instance, to infer the presence of large cores, providing support for the core-accretion theory

of planet formation (Guillot, 2005). Study of planets outside our solar system, however, has ne-

cessitated the development and usage of more indirect techniques. Nevertheless, as the number

of well-characterized extra-solar planets grows, we gain more clues that help us answer the most

fundamental questions about how planets form and evolve.

Guided by our current understanding of planetary physics, we have begun to study the interiors

of extra-solar planets. This endeavor has been dominated by a model-based approach, in which the

mass and radius of a planet are measured using radial velocity and transit photometry observations,

and the interior properties are inferred by finding the model most consistent with those two ob-

servations. This strategy clearly requires a set of assumptions, not the least of which is that the

physical processes at work in extra-solar planets are just like those that we understand for our own

giant planets. While it does seem that this approach is adequate for explaining most of the known

transiting planets, there does exist a group of planets for which the usual set of assumptions are

not capable of reproducing the observations (e.g., Guillot et al., 2006; Burrows et al., 2007). These

are the planets with so-called positive “radius anomalies”, including the first-discovered transiting

planet HD 209458b (Charbonneau et al., 2000). Though most of these planets can be explained

by adjusting different pieces of the interior physics in the models (including opacities, equations of

state, and heat deposition), it is currently impossible to discern which combination of these possible

explanations is actually responsible for their observed sizes (Guillot et al., 2006).

Additional uncertainties also exist for planets at the other end of the size spectrum. For the

group of under-sized extra-solar planets, such as HD 149026b, the canonical approach is to give the

planet a massive highly condensed core of heavy elements in order to match the observed radius.

This approach also provides a first order estimate of the planet’s bulk composition, in terms of

its fraction of heavy elements. There is also the added complication of how the assumed state of

differentiation affects the inferred composition and predicted structure (Baraffe et al., 2008).

Currently, the most promising approach to modeling the distinctive features of extra-solar planet

interiors is to study the known transiting planets as an ensemble. The group can be used to develop

either a single consistent model that reproduces all the observations (e.g., Guillot et al., 2006) or

to showcase the possible diversity in model parameters (e.g., opacities, as in Burrows et al., 2007).
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Surely, a model-independent measure of interior structure would be valuable in order to begin

disentangling otherwise unconstrained physics.

The idea of obtaining direct structural measurements for distant objects is by no means a new

one. For decades, the interiors of eclipsing binary stars have been measured by observing “apsidal

motion,” i.e., precession of the orbit due to the non-point-mass component of the gravitational

field (Russell, 1928; Cowling, 1938; Sterne, 1939a,b). The signal of the changing orbit is encoded

in the light curves of these systems by altering the timing of the primary and secondary eclipses.

From these eclipse times, it is straightforward to determine the so-called apsidal motion constant

which then constrains the allowed interior density distributions. Interior measurements inferred from

apsidal precession were among the first indications that stars were highly centrally condensed. While

it seems non-intuitive, we show in this paper that we can use a similar technique to measure the

interior properties of very hot Jupiters. Most surprisingly, the interior structure signal for very hot

Jupiters actually dominates over the signal from the star, yielding an unambiguous determination

of planetary interior properties.

Our theoretical analysis is also extended to full simulated photometry in order to explore the

observability of apsidal precession. We show that this precession is observable by measuring the

subtle variations in transit light curves. The photometric analysis is focused on the data expected

from NASA’s Kepler mission, which successfully launched on March 6, 2009 (Borucki et al., 2003;

Koch et al., 2006). Kepler will obtain exquisite photometry on ∼100,000 stars, of which about 30

are expected to host hot Jupiters with periods less than 3 days (Beatty & Gaudi, 2008). Kepler has

the potential to measure the gravitational quadrupoles of very hot Jupiters though the technique

described below. If successful, this will constitute a major step towards an understanding of the

diversity of planetary interiors.

In Section 2, we describe the background theory that connects interior structure and orbital dy-

namics and explore which effects are most important. Section 3 applies this theory to the observable

changes in the transit photometry, including full Kepler simulated light curves. We show in Section

4 that the signal due to the planetary interior has a unique signature. Other methods for inferring

planetary interior properties are discussed in Section 5. The final section discusses the important

conclusions of our work.

2.2 Background Theory

2.2.1 Coordinate System and Notation

The internal structure of very hot Jupiters can be determined by observing changes in the planet’s

orbit. These changes can be described in terms of two general types of precession. Apsidal precession

refers to rotation of the orbital ellipse within the plane of the orbit. It is characterized by circulation
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of the line of apsides, which lies along the major axis of the orbit. Nodal precession, on the other

hand, occurs out of the plane of the orbit and refers to the orbit normal precessing about the total

angular momentum vector of the system. For typical very hot Jupiter systems with no other planets,

apsidal precession has a much stronger observable signal than nodal precession (see Section 2.4.1),

so we focus our discussion on the simpler case of a fixed orbital plane.

As is typical for non-Keplerian orbits, the star-planet orbit is described using osculating orbital

elements that change in time. We identify the plane of the sky as the reference plane and orient the

coordinate axes in the usual way such that the sky lies in the x-z plane with the y-axis pointing at

Earth. The intersection of the orbital plane and the reference plane is called the line of nodes, but

without directly resolving the system, there is no way to determine the orientation of the line of

nodes with respect to astronomical North; thus, the longitude of the ascending node, Ω, cannot be

determined. Given this degeneracy, we simplify the description by orienting the z-axis to lie within

the plane spanned by the orbit normal and the line-of-sight. The angle between the line of sight and

the orbit normal is i, the inclination. The x-axis is in the plane of the sky and is the reference line

from which the argument of periapse (ω) is measured (in the standard counter-clockwise sense). For

this choice of coordinates, the argument of periapse and longitude of periapse ($) are equivalent.

Given this coordinate system, transit centers occur when the planet crosses the y-z plane; this point

lies 90◦ past the reference x-axis, and thus primary transits occur when the true anomaly, f , satisfies

ftr + ωtr ≡ 90◦, where the subscript tr indicates the value at transit center.1

Throughout this paper, we refer to parameters of the star (mass, radius, etc.) with subscripts of

“∗” and parameters of the planet with subscripts of “p”. For evaluation of various equations, we will

take as fiducial values the mass ratio Mp/M∗ = 10−3, the radius ratio Rp/R∗ = 0.1 (though some

low density planets have radius ratios greater than 1/6), and the semi-major axis in stellar radii

a/R∗ = 6, typical for very hot Jupiters, which we define as planets with semi-major axes a . 0.025

AU (see Table 1).2 In this definition, we deviate from Beatty & Gaudi (2008), who define very

hot Jupiters as planets with periods less than 3 days. These authors estimate that Kepler will find

∼30 such planets, of which ∼16 will be brighter than V=14 (T. Beatty, pers. comm.). Since our

definition is more stringent, our technique will be applicable to fewer Kepler planets.

2.2.2 Rotational and Tidal Potentials

It is well known from classical mechanics, that if stars and planets are considered to be purely

spherical masses, then they will obey a simple r−2 force law and hence execute closed elliptical orbits.

Non-spherical mass effects are caused by the application of external potential(s): the centrifugal

potential of spinning bodies causes rotational flattening and the tidal potential of a nearby mass
1In elliptical orbits, if the inclination is not 90◦, the photometric minima do not exactly coincide with the planetary

conjunctions. See Kopal (1959), p. 388 and section 2.3.3 below.
2Throughout this work, we do not distinguish between Mtot and M∗, since Mp �M∗.
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raises tidal bulges. Rotational and tidal bulges create gravitational quadrupole fields (r−3) that lead

to orbital precession.

The complex subject of how planets3 respond to applied potentials is encapsulated in the so-called

theory of figures (Zharkov & Trubitsyn, 1978). As long as the distortions are small, we can simplify

the problem by ignoring the small interaction terms between the tidal and rotational potentials; in

this paper, we thus restrict ourselves to the first order theory, where the two planetary responses

simply add. Even in the linear case, the way the fluid planet responds depends on the full radial

density structure of the planet. The planetary response is conveniently captured in a single variable

k2p, using the definition

V ind
2 (Rp) ≡ k2pV

app
2 (Rp) (2.1)

where k2p is the Love number of the planet, which is just a constant of proportionality between the

applied second degree potential field V app
2 and the resulting field that it induces V ind

2 at the surface

of the planet. Due to the orthogonality of the Legendre polynomials used to express the gravity

field, if the planet is responding to a second degree harmonic field, then only the second degree

harmonic of the planet’s gravity field is altered, to first-order. Thus, k2p is a measure of how the

redistribution of mass caused by the applied potential actually affects the external gravity field of

the planet. In the stellar literature, the symbol k2 is used for the apsidal motion constant, which is

half of the secular/fluid Love number that we use throughout this paper (Sterne, 1939a).

The Love number k2 is an extremely useful parameterization, as it hides the complex interactions

of a planet and an applied potential in just a single number. The process of calculating k2 of a fluid

object (like stars and gas giants), from the interior density distribution is fairly straightforward and

outlined in several places (e.g., Sterne, 1939a; Kopal, 1959). Objects with most of their mass near

their cores, like stars, have very low k2 values (∼0.03 for main sequence solar-like stars, Claret,

1995) since the distorted outer envelope has little mass and therefore little effect on the gravity

field. Planets have much flatter density distributions, and thus distortions of their relatively more

massive outer envelopes greatly affect the gravity field. At the upper extreme lies a uniform density

sphere, which has k2 = 3/2. In this way, k2 can be thought of as a measure of the level of central

condensation of an object, with stronger central condensation corresponding to smaller k2.

By examining the variations in k2 for giant planets within our own Solar System, we can gain

a feel for its expected values and how sensitive it is to internal structure. The n = 1 polytrope is

commonly used to approximate the density structure of (cold) gas giant planets; it has k2 ≈ 0.52

(Kopal, 1959). This can be compared to the value determined from the gravity measurements of

Jupiter, where k2J ' 0.49. Even though Jupiter may have a 10 Earth mass core, it is small in

comparison to Jupiter’s total mass, and thus it has minor effect on the value of k2. Saturn, on the
3For clarity, in these sections we focus on the planetary shape, though the derivations are also valid for stars.
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other hand has a roughly 20 Earth mass core and is less than 1/3 of Jupiter’s mass. As a result,

the presence of Saturn’s core is easily seen in the value of its Love number k2S ≈ 0.32. From this,

we can see that planets with and without significant cores differ in k2p by about ∼ 0.1. This can

also be inferred from Barnes & Fortney (2003) by using the Darwin-Radau relation to convert the

moment of inertia factor to k2. Furthermore, Bodenheimer et al. (2001) list the moment of inertia

factors of various planet models of HD 209458 b and τ Bootis b, which correspond to a range of k2p

values from ∼0.1 to ∼0.6.

Current methods for inferring the internal structures of extra-solar planets combine measure-

ments of the mass and radius with a model to obtain estimates of the planet’s implied composition

and core size. Unfortunately, these models require one to make assumptions about the degree of

differentiation, among other things (Baraffe et al., 2008). A good measurement of k2p, however,

reveals important independent structure information, which can break the degeneracies between

bulk composition and the state of differentiation. Given such a wide range of potential k2p val-

ues, even an imprecise measurement of k2p will be extremely valuable for understanding extra-solar

planets. By measuring the k2p values for extra-solar planets, we can also uncover constraints on

the density structure that are independent of the measurement of the planetary radius. This new

information may allow us to probe the unknown physics responsible for the currently unexplained

radius anomalies.

2.2.2.1 Induced External Gravity Field

The internal structures of planets in our own solar system are most readily characterized by the

zonal harmonics of the planet’s gravity field, i.e., J2, J4, etc. It is these high-order harmonics

that are directly measured by spacecraft flybys. To better understand the connection between

the two, we can relate the k2 formulation to J2 by writing out the expression for the induced

potential at the surface of the planet in Equation 2.1 in terms of the definition of J2, yielding:

k2pV
app
2 (Rp) = −J2

GMp

Rp
P2(cos θ), where P2 is the usual Legendre polynomial and θ is the planetary

co-latitude (Murray & Dermott, 1999). We can use this equation to obtain expressions for the J2

field induced by both rotation and tides (discussed in more detail below). The relation relies on

dimensionless constants which compare the strength of the acceleration due to gravity with that of

the rotational and tidal potentials:

qr =
ν2
pR

3
p

GMp
and qt = −3

(
Rp
r

)3(
M∗
Mp

)
(2.2)
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where νp is the angular spin frequency of the planet. For the case where the spin axis and tidal bulge

axis are perpendicular (i.e., zero obliquity), the relationship between J2 and k2 is, to first order:

J2 =
k2

3

(
qr −

qt
2

)
(2.3)

Note that qt is a function of the instantaneous orbital separation, r, and is thus constantly changing

in an eccentric orbit in response to the changing tidal potential. Hence J2 for eccentric extra-solar

planets is a complex function of time. This is why it is more sensible to analyze the orbital precession

in terms of k2, which is a fixed intrinsic property of the planet, rather than J2.

As very hot Jupiters are expected to be synchronously locked (denoted by s) with small eccen-

tricities, it can easily be shown that qst ≈ −3qr, which simplifies equation 2.3 yielding:

Js2p '
5
6
k2pqr '

5
6
k2p

(
M∗
Mp

)(
Rp
a

)3

(2.4)

Using a moderate value of k2p = 0.3, the J2 of very hot Jupiters reaches as high as 5 ×10−3, about

half of the measured J2 of Jupiter and Saturn.

2.2.3 Apsidal Precession

The quadrupole field created by rotational and tidal potentials discussed above induces precession

of the star-planet orbit. Both Jupiter and Saturn have rather significant quadrupoles, dominated

entirely by their sizeable rotational bulges resulting from rapid rotation periods of less than 10

hours. In contrast, very hot Jupiters are expected to be synchronously rotating, and thus their spin

periods are longer by a factor of a few. Since the rotational bulge size goes as the square of the spin

frequency, very hot Jupiters should have rotational bulges that are at least an order of magnitude

smaller than Jupiter and Saturn, inducing only tiny quadrupole fields. These extra-solar planets are

extremely close to their parent stars, however, with semi-major axes of only ∼ 6 stellar radii. Very

hot Jupiters are thus expected to have large tidal bulges which are shown below to dominate the

quadrupole field and resulting apsidal precession.

2.2.3.1 Precession Induced by Tidal Bulges

The orbital effect of tidal bulges is complicated by their continuously changing size. While tidal

bulges always point directly4 at the tide-raising object, their size is a function of orbital distance.

Since the height of the tidal bulge depends on the actual separation between the objects, the second-

order gravitational potential is time-varying in eccentric orbits. Accounting for this dependence

(which cannot be captured by using a fixed J2) is critical, as illustrated by Sterne (1939a). The

4We can ignore the lag due to dissipation, which has an angle of only Q−1
p . 10−5 for giant planets (Goldreich &

Soter, 1966; Murray & Dermott, 1999).
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dominant tidal perturbation to the external gravity field of the planet, evaluated at the position of

the star, is a second-order potential:

Vtid(r) =
1
2
k2GM∗R

5
pr
−6 (2.5)

The apsidal precession due to the tidal bulge, including the effect of both the star and the planet

is (Sterne, 1939a; Eggleton & Kiseleva-Eggleton, 2001):

ω̇tidal = ω̇tidal,∗ + ω̇tidal,p

=
15
2
k2∗

(
R∗
a

)5
Mp

M∗
f2(e)n

+
15
2
k2p

(
Rp
a

)5
M∗
Mp

f2(e)n (2.6)

where n is the mean motion and f2(e) is an eccentricity function:

f2(e) = (1− e2)−5(1 +
3
2
e2 +

1
8
e4)

≈ 1 +
13
2
e2 +

181
8
e4 + ... (2.7)

Note that the factor of 15 does not appear for stationary rotational bulges, as detailed below, and

comes through Lagrange’s Planetary Equations from the higher dependence on radial separation

(r−6) in the tidal potential. For this reason, tidal bulges are much more important in producing

apsidal precession.

Furthermore, the main factor of importance to extra-solar planets is the mass ratio, which comes

in because the height of the tide is proportional to the mass of the tide-raising body. Consider the

ratio of the planetary and stellar effects:

ω̇tidal,p

ω̇tidal,∗
=
k2p

k2∗

(
Rp
R∗

)5(
M∗
Mp

)2

' 100 (2.8)

For tidal bulges, the apsidal motion due to the planet clearly dominates over the contribution of

the star. Even though the planet’s radius is smaller than the star’s by a factor of ten, the star is so

much more massive than the planet that it raises a huge tidal bulge, which consequently alters the

star-planet orbit. The benefit provided by the inverse square of the small mass ratio is compounded

by the order of magnitude increase in k2 of the planet over the star.
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2.2.3.2 Precession Induced by Rotational Bulges

The quadrupolar gravitational field due to the planetary rotational bulge, evaluated at the star’s

position is:

Vrot(r) =
1
3
k2ν

2
pR

5
pr
−3P2(cosαp) (2.9)

where αp is the planetary obliquity, the angle between the orbit normal and the planetary spin axis.

Sterne (1939a) assumes zero obliquity and calculates the secular effect of this perturbation on the

osculating Keplerian elements. This final result, including the effect of both the star and the planet

is5:

ω̇rot = ω̇rot,∗ + ω̇rot,p

=
k2∗

2

(
R∗
a

)5
ν2
∗a

3

GM∗
g2(e)n

+
k2p

2

(
Rp
a

)5 ν2
pa

3

GMp
g2(e)n (2.10)

where g2(e) is another eccentricity function:

g2(e) = (1− e2)−2 ≈ 1 + 2e2 + 3e4 + ... (2.11)

Evaluating the importance of this effect requires an understanding of the spin states of very

hot Jupiters and their stars. The rotation and spin pole orientation of very hot Jupiters should be

tidally damped on timescales . 1 MYr (e.g., Dobbs-Dixon et al., 2004; Ferraz-Mello et al., 2008). We

therefore assume that all planets have reached the psuedosynchronous rotation rate derived by Hut

(1981). The rotation rate of the star is usually much slower since the tidal stellar spin-up timescale

is much longer than ∼1 GYr (Fabrycky et al., 2007).

If both the star and the planet were spinning synchronously, the stellar and planetary rotational

bulges would have comparable contributions to apsidal precession. However, since the tidal bulge of

the planet is a much more important effect, we find that even fast-spinning stars have a very weak

contribution to apsidal precession.

2.2.3.3 Total Apsidal Precession

The other major contributor to the apsidal precession in extra-solar planetary systems is general

relativity. The anomalous apsidal advance of Mercury’s orbit due to its motion near the massive

Sun was one of the first confirmations of general relativity. This same apsidal advance is prevalent

in very hot Jupiter systems and has been shown to be possibly detectable through long-term transit
5The full equation, including arbitrary obliquities, is given in Kopal (1978), Equation V.3.18 (see also Sterne,

1939a; Eggleton & Kiseleva-Eggleton, 2001). Also recall that, unlike these authors, we use the symbol k2 to represent
the Love number which is twice the apsidal motion constant called k2 in eclipsing binary literature.
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timing (Miralda-Escudé, 2002; Heyl & Gladman, 2007; Pál & Kocsis, 2008; Jordan & Bakos, 2008).

The relativistic advance is given (to lowest order) by:

ω̇GR =
3GM∗n

ac2(1− e2)
(2.12)

One additional effect for non-synchronous planets is due to thermal tides (Arras & Socrates,

2009), which create a bulge on the planet due to temperature-dependent expansion of an unevenly-

radiated upper atmosphere. The thermal tidal bulge is very small in mass and is not expected

to provide a significant contribution to apsidal precession (P. Arras, pers. comm.) and is thus

neglected.

Since we are considering only the lowest-order effects, all the apsidal precession rates (rota-

tional/tidal for the star/planet and general relativity) simply add to give the total apsidal precession

(roughly in order of importance for very hot Jupiters):

ω̇tot = ω̇tid,p + ω̇GR + ω̇rot,p + ω̇rot,∗ + ω̇tid,∗ (2.13)

We are ignoring the small cross-terms (geodetic precession, quadrupole-quadrupole coupling, Lense-

Thirring effect, nutation, etc.) for the purposes of this paper as higher-order corrections.

Calculating each of these contributions to the precession shows that for very hot Jupiters, the

dominant term in the total apsidal precession is due to the planetary tidal bulge. For the known

transiting planets, the fraction of apsidal precession due to the planet is calculated and illustrated

in Figure 1. The precession due to the interiors of very hot Jupiters towers over the other effects.

General relativity, the next largest effect is ∼10 times slower than the precession caused by the

planetary tidal bulge.

The apsidal precession rate of very hot Jupiters due solely to the interior structure of the planet

is:

ω̇p ≈ 3.26× 10−10 rad/sec ×
(
k2p

0.3

)(
M∗
M�

)3/2

×(
Mp

MJ

)−1(
Rp
RJ

)5 ( a

0.025 AU

)−13/2

(2.14)

which explains why low density very close-in Jupiters are the prime targets for measuring apsidal

precession. For these planets, the precession rate can reach a few degrees per year.

The precession due to the planet has generally been neglected in extra-solar planet transit timing

work to date (Miralda-Escudé, 2002; Heyl & Gladman, 2007), which has considered stellar oblateness

or general relativity to be the dominant effects (in the absence of other planets) though Jordan &

Bakos (2008) have also pointed out that ω̇tidal,p can be an important source of apsidal precession. We
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find that the planetary quadrupole is usually 1-2 orders of magnitude more important than effects

previously considered for single very hot Jupiters. Hence, measuring apsidal precession essentially

gives ω̇tid,p which is directly proportional to k2p, implying that transit light curve variations due to

apsidal precession can directly probe the interiors of extra-solar planets.
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Figure 2.1
Fraction of Apsidal Precession Due to the Planetary Quadrupole. The points
show the planetary fraction of the total apsidal precession calculated for the known transiting
extra-solar planets with properties taken from J. Schneider’s Extra-Solar Planet Encyclopedia
(http://www.exoplanet.eu), assuming the planet has a typical Love number of k2p = 0.3 (e.g.
Saturn-like). The apsidal precession induced by the tidal and rotational bulges of the planet over-
come precession due to general relativity and the star, especially for short period planets. The ”error
bars” show the range of planetary contributions for a 5% variation in stellar masses (and hence ω̇GR)
and the comparatively smaller effect of varying the stellar Love number and rotation rate over all
reasonable values. The five cases where the planetary contribution to apsidal precession is most im-
portant (boxed) also have the shortest precession periods: WASP-12b, CoRoT-1b, OGLE-TR-56b,
WASP-4b, and TrES-3b would fully precess in about 18, 71, 116, 120, and 171 years, respectively.
The planet in the lower left is CoRoT-7, a super-Earth planet whose planetary contribution to pre-
cession is small because of its small radius. Transiting planets with periods longer than 6 days all
had planetary contributions less than 0.15. In all cases, the dominant signal in apsidal precession of
very hot Jupiters is k2p, which is determined by their internal density distribution and is a powerful
probe into their interior structure.
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2.2.4 Modification of the Mean Motion

Non-Keplerian potentials also modify the mean-motion, n, and cause a small deviation from Kepler’s

Third Law. Including the effects described above, the non-Keplerian mean motion, n′, is (dropping

second-order corrections):

n′ = n

(
1 + ε− 3GM∗

2ac2

)
(2.15)

where ε is defined as

ε =
k2∗

2
qr,∗

(
R∗
a

)2

+
k2p

2
qr,p

(
Rp
a

)2

+ 3k2∗
Mp

Mtot

(
R∗
a

)5

+ 3k2p
M∗
Mp

(
Rp
a

)5

(2.16)

and n2 ≡ GMtot

a3 . The general relativistic correction to the mean motion is from Soffel (1989).

(Throughout this paper, except where noted, the difference between n′ and n is ignored as a higher-

order correction.)

As with apsidal precession, the planetary quadrupole is more important than the stellar quadrupole

by about 2 orders of magnitude. At the largest, the correction to the mean motion is a few times

10−5. Iorio (2006) used the fact that quadrupole moments cause deviations to Kepler’s Third Law

to attempt to derive the J2 of the star HD 209458 (the quadrupole of the planet was incorrectly

ignored).

However, as Iorio (2006) found, this method is only feasible if you know the masses and semi-

major axes of the orbit a priori or independently from Kepler’s Law. Since the error in stellar

masses (from radial velocities and evolutionary codes) is usually 3-10 % (e.g., Torres et al., 2008),

the propagated error on k2p would be a few times greater than the highest k2p expected, making this

method impractical. It has been proposed that the stellar mass and semi-major axis can be precisely

and independently measured via the light-travel time effect described by Loeb (2005). In practice,

however, the light-travel time effect is highly degenerate with the unknown transit epoch and/or the

orbital eccentricity. We find that a precise independent measurement of M∗ from light-travel time

is impractical even with the excellent photometry of Kepler.6

2.2.5 Expectations for Planetary Eccentricities

Thus far, we have quantified how planetary interiors affect the orbit through precession. The photo-

metric observability of this apsidal precession is highly dependent on the current orbital eccentricity

(e). Small eccentricities are the largest limitation to using transit light curves to probe extra-solar

6We do note that detailed observations of multiple-planet systems can yield mass estimates of each of the bodies
independently. Kepler asteroseismology can also provide independent information about stellar mass and other
properties (Kjeldsen et al., 2008).
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planet interiors. Indeed, if eccentricities are very low, measuring apsidal precession from transit light

curves may not be possible for any of the Kepler planets.

Nearly all hot Jupiters have eccentricities consistent with zero, though the radial velocity tech-

nique has difficulty putting 3-σ upper limits on eccentricities smaller than 0.05 (Laughlin et al.,

2005). So far, the strongest constraints are placed by comparing the deviation of the secondary

transit time from half the orbital period, which are related by (e.g., Charbonneau et al., 2005):

e cosω ' π

2Porb
(tsec − tprim −

Porb

2
) (2.17)

Similarly, by measuring the primary and secondary transit durations (ΘI and ΘII), an addi-

tional constraint can be placed on e sinω. The equation commonly quoted in the extra-solar planet

literature (Kallrath et al., 1999; Charbonneau, 2003; Winn et al., 2006) has a sign error; the correct

equation is derived by Kopal (1959), p. 391 :

e sinω =
ΘII −ΘI

ΘII + ΘI

α2 − cos2 i

α2 − 2 cos2 i
(2.18)

where α ≡ R∗+Rp
a
√

1−e2 . The accuracy of this measurement is typically smaller than for e cosω, but we

include this equation to note that there is information about both the eccentricity and its orientation

in the full transit light curve (see also Bakos et al., 2009).

Combining secondary transit timing information with radial velocity and Rossiter-McLaughlin

measurements to help constrain ω, Winn et al. (2005) found the best-fit eccentricity for HD 209458

was ∼0.015. Though Winn et al. (2005) argue that the actual eccentricity is probably less than

0.01, it is not necessarily 0 (Mardling, 2007). Recently, Joshi et al. (2008) revealed WASP-14b, a

young massive hot Jupiter with an eccentricity of 0.1; WASP-10b and WASP-12b also appear to be

eccentric (Christian et al., 2008; Hebb et al., 2009), though these eccentricities may be spurious or

overestimated.

The most accurate eccentricity constraint is a detection by Knutson et al. (2007a) for the very hot

Jupiter HD189733b. They observed continuously and at high cadence (0.4 seconds) with the Spitzer

space telescope and measured a secondary timing offset corresponding to e cosω = 0.001± 0.0002, a

5-σ result that they could not explain by any other means. (Preliminary analysis of additional data

for this planet by Agol et al. (2009) indicates e cosω = 0.0002 ± 0.0001.) The constraint on e sinω

is much weaker. A non-zero eccentricity of e ' 0.003 for hot Jupiters is therefore consistent with

every measurement available in the literature, though the actual values of eccentricities at the 10−3

level are essentially unconstrained.

In the absence of excitation, the current eccentricities of these planets depend on the initial

eccentricity and the rate of eccentricity decay. Extrapolating from planets in our solar system
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(Goldreich & Soter, 1966) implies short circularization timescales of ' 10 MYr, though recent studies

have shown that using a fixed eccentricity damping timescale is an inappropriate simplification of

the full tidal evolution (e.g., Jackson et al., 2008; Levrard et al., 2009; Rodriguez & Ferraz-Mello,

2009). Even an analysis using the full tidal evolution equations cannot give a compelling case for

the present-day eccentricities of these planets, since there are essentially no direct constraints on the

tidal dissipation parameter for the planet, Qp. Various estimates show that Qp for exoplanets is not

known and may be quite large (e.g., Matsumura et al., 2008), implying that non-zero eccentricities

are not impossible. Even so, we stress that the best candidates for observing apsidal precession

are also those planets that have the fastest eccentricity damping, since the damping timescale and

apsidal precession rates are both proportional to Mp

M∗

(
a
Rp

)5

. Hence, those planets which have the

fastest precession rates will also have the lowest eccentricities. The first step in determining if this

trade-off allows for apsidal precession to be measured by Kepler data is to apply the techniques

described in this paper to the data themselves. Furthermore, with the discovery and long-term

characterization of more planets using ground and space-based observations, the detectability of

apsidal precession will increase dramatically.

We should note that there are several mechanisms that can excite eccentricities and compete with

or overwhelm tidal dissipation. The most prevalent is assumed to be eccentricity pumping by an

additional companion (Peale et al., 1979; Bodenheimer et al., 2001; Adams & Laughlin, 2006). Even

very small (Earth-mass or less) companions in certain orbits can provide significant eccentricity ex-

citation (Mardling, 2007). (In this case, however, our single-planet method for estimating k2p would

need to be modified considerably.) Tidal dissipation in rapidly rotating stars tends to increase the

eccentricity, potentially prolonging circularization in some systems (Ferraz-Mello et al., 2008). Very

distant inclined companions (e.g., a planet orbiting a star in a misaligned binary star system) can

induce Kozai oscillations that impart very large eccentricities on secular timescales (e.g., Fabrycky

& Tremaine, 2007). Arras & Socrates (2009) proposed that thermal tides can significantly affect

the orbital and rotational properties of extra-solar planets, though their conclusions appear to be

overestimated (Goodman, 2009; Gu & Ogilvie, 2009). Finally, recent (not necessarily primordial)

dynamical instabilities in the planetary system can also be responsible for generating eccentricity

which simply hasn’t damped away yet (Ford et al., 2005; Gomes et al., 2005; Chatterjee et al., 2007;

Thommes et al., 2008). We, therefore, continue our analysis under the possibility that some very

hot Jupiters may have non-zero eccentricities.

2.3 Transit Light Curves of Apsidal Precession

Previous studies of transit light curve variability due to non-Keplerian perturbations have focused

almost exclusively on transit timing. In contrast, we model the full photometric light curve in order
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to estimate the detectability of k2p. This will automatically include the effect of changing transit

durations, which are very useful for detecting apsidal precession (Pál & Kocsis, 2008; Jordan &

Bakos, 2008). In addition, using full photometry can provide a more direct and realistic estimate

of the detectability of k2p. Of course, the drawback is additional computational cost, though we

found this to be manageable, requiring less than 20 seconds to generate the ∼ 2 million photometric

measurements expected from Kepler ’s 1-minute cadence over 3.5 years.

2.3.1 Our Transit Light Curve Model

Determining the photometric light curve of a transiting system requires knowing the relative positions

of the star and the planet at all times. These can be calculated by describing the motion of the

planet with time-varying osculating orbital elements. When describing the motion of the planet using

instantaneous orbital elements, it is usually customary to ignore the periodic terms by averaging,

as in Sterne (1939a), and calculate only the secular terms. These small periodic terms describe how

the orbital elements change within a single orbit as a function of the true anomaly, f , due to the

non-Keplerian potential. In precessing systems, the value of the true anomaly at central transit,

ftr ≡ 90◦−ωtr, changes subtly from one transit to the next, inducing slow variations in the osculating

orbital elements at transit. Therefore, we include in our model the dominant periodic changes in

orbital elements as a function of orbital phase, using Mtr ≈ ftr as an appropriate approximation for

low eccentricities. Using a direct integration (described in Section 2.4.1), we verified that ignoring

these periodic variations can cause non-negligible systematic errors in determining transit times. The

periodic changes are derived from the same disturbing potentials used above. We follow the method

of Kozai (1959) for calculating osculating elements from mean elements, and assume zero obliquity.

The correction is similar to the correction to the mean motion, which is also applied in our model.

The correction to the semi-major axis, eccentricity, longitude of periapse, and mean anomaly are

aosc = amean + 2ae
1−e2 ε cosM ≈ 2aeε cosM , eosc = emean + ε(1− cosM), ωosc = ωmean + ε

e sinM , and

Mosc = Mmean− ε
e sinM where ε is defined in Equation 2.16. General relativistic periodic corrections

are also added; these are taken from Soffel (1989), page 92 (with α = 0, β = γ = 1). Using our

direct integrator (described below), we verified that these corrections reproduced the actual orbit to

sufficient accuracy for this analysis as long as e � ε ∼ 10−5. Other corrections are higher order in

small parameters and are ignored.

Our model uses these corrected elements to generate astrocentric Cartesian coordinates for a

specific system inclination and, for completeness, also includes the effect of light-travel time (Loeb,

2005) though we concur with Jordan & Bakos (2008) and Pál & Kocsis (2008) that the light-travel

time change due to ω̇ is unimportant. The positions are then translated to photometric light curves

using the quadratic limb-darkening code7 described in Mandel & Agol (2002). Kepler data will have

7Available at http://www.astro.washington.edu/ agol/transit.tar.gz
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enough signal-to-noise to justify using non-linear limb darkening laws (Knutson et al., 2007b), but

we do not expect that this simplification will significantly alter our conclusions.

In addition, we include the photometry of the secondary eclipse. As suggested by López-Morales

& Seager (2007), very hot Jupiters can reach temperatures exceeding 2000 K, where their blackbody

emission at optical wavelengths is detectable by Kepler. This thermal emission is added to the

reflected light of the planet, which appears to be small based on the low upper limit of the albedo of

HD 209458b and TrES-3 measured by Rowe et al. (2007) and Winn et al. (2008), respectively. We find

that in Kepler ’s observing bandpass of 430-890 nm (Koch et al., 2006), thermal emission of very hot

Jupiters can dominate over the weak reflected light. We estimate the depth of the secondary eclipse

(dsec) in our simulated Kepler data by assuming that 1% of the light is reflected and the other 99%

absorbed and reemitted as processed thermal blackbody emission from the entire planetary surface

(day and night sides). To be conservative and to account for unmodeled non-blackbody effects, we

divide the resulting planet/star flux ratio by 2 (Hood et al., 2008); the resulting depth of around

2× 10−4 is consistent with the lower values of Burrows et al. (2008), the tentative measurement of

the thermal emission from CoRoT-2b (Alonso et al., 2009), and the detection of secondary eclipse

emission from OGLE-TR-56b (Sing & López-Morales, 2009). We note that the best candidates for

detecting k2p are those with small semi-major axes and large radii; these same planets have relatively

large dsec values (Table 1). Secondary eclipses are very useful for determining e and ω. We will also

find that they can be important for observing apsidal precession.

Our model generates accurate photometry for an extra-solar planet undergoing apsidal precession.

Several other small photometric effects have been discussed in the literature, which we do not include.

Most of these effects are periodic (e.g., the reflected light curve) and therefore will not affect the

long-term trend of precession. Care will need to be taken to ensure that slow changes due to

parallax and proper motion, which should be quite small for relatively distant stars observed by

Kepler (Rafikov, 2008; Scharf, 2007) or changes in the stellar photosphere (Loeb, 2008) are not

significant. Non-Gaussian astrophysical noise of the star and other systematic noise should degrade

the accuracy with which k2p can be measured compared to our ideal photometry. The long-term

variability of the star can be interpolated away or modeled (Lanza et al., 2009), though it is not

clear how short-term variability will affect transit light curves at Kepler ’s level of precision. On the

other hand, complimentary observations (e.g., warm Spitzer, HST, radial velocities, JWST, etc.)

should only enhance our understanding of the systems studied.

2.3.2 Accuracy of k2p Measurement

With an accurate photometric model of apsidal precession, one could estimate the measurement

accuracy of k2p from Kepler data by carrying out a full Monte Carlo study of the inversion problem,

going from realistic synthetic photometric data sets to a determination of all system parameters. In
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this work, instead, we carry out a much simpler calculation which cannot provide strict one-sigma

error estimates like the Monte Carlo analysis, but does give an indication of how well k2p can be

resolved given a large dataset.

We obtain this accuracy estimate by comparing a realistic precessing photometric model with

k2p 6= 0 to a base model with k2p = 0. The base model is still undergoing very slow apsidal precession,

induced by general relativity and k2∗. We calculate the effect of a non-zero k2p value by subtracting

the precessing model from the base model. (See Figures 2.2 and 2.4.) Then, by calculating the

root-sum-square of the residual signal and comparing it to the photometric error on a single data

point, we obtain a numerical measure of the relative signal induced by k2p. The “signal-to-noise”

ratio for the data set is therefore given by:

S
N
∼
√∑

i(yi − y0
i )2

σ
(2.19)

where yi and y0
i are the photometry model values for the k2p test model and the base model,

respectively, and σ is the photometric error. We use σ = 1000 parts per million (ppm) flux per

1-minute integration, corresponding to the expected noise of Kepler on a faint V = 14 star (Koch

et al., 2006). Of the 30 planets with periods less than 3 days, 16 are expected to be brighter than

V ' 14 (T. Beatty, pers. comm.) and we can reasonably expect some fraction of these to have

orbits comparable to the planets modeled here.

Since our residual signal changes as a function of time, this is not a true signal-to-noise calculation;

the distribution of values in time matters for a proper interpretation, but any distribution would

yield the same effective S
N , and thus this construction is not capturing all of the details. Even so,

it does provide a useful and reasonable rough estimate for detectability. In order to identify the

resolution on the k2p measurement, we search for the value of k2p which yields a signal-to-noise of
S
N = 1. This is reasonable since it represents the threshold value of k2p, below which planetary

induced precession cannot be distinguished in the data with the given errors. The threshold k2p

value can also be loosely thought of as an estimate of the 1-σ expected errors.

This is a realistic estimate only insofar as the residual signal (yi − y0
i ) is due only to k2p and

cannot be absorbed by any other parameters. Hence we seek to choose other parameters so as to

minimize the residuals without changing k2p. For most system parameters, this is accomplished by

referencing the time to the center of the data set, and thus the difference between the signals grows

similarly forward and backward in time as seen in Figures 2.2 - 2.5. The transit shapes in both

models are equivalent at the center of the dataset as would be expected in an analysis of actual

data.

Additionally, a major effect from changing the precession period is to alter the observed average

period. When analyzing actual data, this would just be absorbed into a small adjustment to the
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Figure 2.2 Photometric Difference Signal from k2p. As described in the text, we use the
difference between two theoretical light curves in the transit photometry to assess the observability
of apsidal precession by Kepler. For WASP-4b at ω = 0◦, e = 0.003, and a central impact parameter,
the difference between a model with k2p = 0 and k2p = 0.146 would yield an effective “signal-to-
noise” of 1 on a moderately bright star (V = 14). Shown is this difference signal; the root sum of
squares of the signal is equal to 1000 ppm, the expected photometric accuracy of Kepler for a 1
minute observation (Koch et al., 2006). The trends seen in the figure are illustrated in Figure 2.3
by considering excepts of single primary transits from the regions labeled 1-5.

(unknown) stellar mass, thereby adjusting the period to absorb much of the k2p signal. It is therefore

important to correct for the average period change to avoid significantly overestimating the signal

due to k2p. Additionally, there is a similar, though less severe, effect for the epoch of the first transit,

which is also adjusted to best absorb signal. This is achieved by using an analytic expression for

the transit times (see Equation 2.22 below) which match the transit times of the photometric model

to very high accuracy. By fitting a line to these times, we can determine the average period and

epoch that absorb the degenerate portions of the k2p signal, leaving behind the residual due only to

k2p. We have not explicitly accounted for degeneracies between the signal from k2p and the other

parameters, like the radius, limb darkening, and system inclination, but since k2p induces a time

varying signal while these other parameters are generally constant, there is little expected signal

absorption from these parameters.

The only major drawback of this approach is that it does not allow the eccentricity state of

the system to change. With real data, the eccentricity and precession phase are not known in

advance, and thus must be found by inversion. As detailed in Section 2.2.5, eccentricity and orbital

orientation are primarily constrained by comparing primary and secondary transit pairs, and thus

proper inversion is greatly aided by accurate observations in wavelengths more favorable to secondary

transit observations, obtained by Spitzer, HST, or from the ground (e.g., Knutson et al., 2007a;
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Figure 2.3 Excerpts of Photometric Difference Signal. Examining excerpts of the residual
signal shown fully in Figure 2.2, the effects of transit timing and “transit shaping” can both be
seen. The five excerpts are offset for clarity. Transit timing has an asymmetric signal (dotted lines),
obtained when subtracting two transit curves slightly offset in time. Transit shaping, which is mostly
due to changing transit duration, creates a symmetric signal (dashed lines). The total difference
signal (solid lines) is dominated by the effect of transit shaping, which has ∼30 times more signal
than transit timing alone. (See explanation in text.) Both effects are maximized at the beginning
(1) and end (5), as expected for a signal that increases with longer baseline. The maximal signal
occurs during ingress and egress, when the light curve changes the fastest. The transit shapes are
equivalent at the center (3) by construction. The transit timing anomaly of precession is quadratic,
which, when fitted with a best-fit straight line corresponding to a non-precessing signal, yields two
intersections when transit timing is minimized (2,4). The transit timing offset at the beginning and
end is only 0.085 seconds, while the center is offset by -0.042 seconds.
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Figure 2.4 Photometric Difference Signal from k2p. Similar to Figure 2.2, but for ω = 90◦.
This figure is dominated by the photometric difference between secondary transits slightly offset in
time. At ω = 90◦ the changes in the primary transits due to precession are small, except far away
from the central time. At this orientation, the primary-secondary timing offset (Equation 2.17) is
maximized. This “secondary transit timing” signal is weaker than the signal from primary transit
as the secondary transit depth is much shallower. Therefore, an unreasonably high k2p of 0.925 is
required to detect the apsidal precession. Excerpts of single secondary transits taken from regions
labeled 1-5 are shown in Figure 2.5.

Swain et al., 2008; Gillon et al., 2008). We also find that binned and folded Kepler data has

comparable sensitivity to a single Spitzer observation for characterizing the secondary eclipses of

very hot Jupiters. In any case, our assessment of the threshold k2p assumes that the eccentricity of

the system is very well known, which will likely require additional supporting observations.

2.3.3 Comparison to Expected Signal

The residual light curves calculated for each planet, Figures 2.2 - 2.5, match the theoretical expecta-

tions of the apsidal precession signal (Miralda-Escudé, 2002; Heyl & Gladman, 2007; Pál & Kocsis,

2008; Jordan & Bakos, 2008). To interpret the results of our analysis, it will be useful to briefly

review the major components of the apsidal precession signal: changes in the times of primary tran-

sits, changes in the shape of primary transits, and changes in the primary-secondary offset times

(Miralda-Escudé, 2002; Heyl & Gladman, 2007; Pál & Kocsis, 2008; Jordan & Bakos, 2008).

The primary transit times, TN , due to apsidal precession are well described by a sinusoid for

very low eccentricities (e� 0.1):

TN = T0 +NPobs +
ePobs

π
(cosωtr,N − cosωtr,0)] (2.20)
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Figure 2.5 Excerpts of Photometric Difference Signal. Similar to Figure 2.3, but for ω = 90◦.
Single secondary transit differences are excised from the full difference signal shown in Figure 2.4.
The shape of the curves is due to the subtraction of two secondary transits slightly offset in time.
Since the secondary transits are complete occultations, they are flat-bottomed and lack the additional
structure due to limb-darkening seen in Figure 2.3. By construction, the offset grows in time away
from the center (3) of the signal and attains a maximum at the beginning (1) and end (5). Curves
2 and 4 are shown for comparison to Figure 2.3.
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where T0 is the epoch of the first transit, ωtr,N ≡ ω̇(TN − T0) + ωtr,0 is the argument of periapse for

the N th transit, and Pobs is the observed period between successive transits, which deviates from the

actual orbital period since the orbit has precessed a small amount between transits (Batten, 1973).

For small eccentricities, the amplitude of the transit timing variations due to k2p is:

ePobs

π
' 119 sec×

( e

0.003

)( a

0.025 AU

)3/2
(
M∗
M�

)−1/2

(2.21)

Given that individual transit times can be measured with accuracies of only a few seconds, even tiny

eccentricities e . 10−5 can induce detectable transit timing variations on precessional timescales

(∼ ω̇−1).

For our analysis, we extended Equation 2.20 to fifth order in eccentricity allowing accurate de-

termination of transit times for eccentricities up to of order 0.1. We also require a correction for

the effect of a non-central impact parameter (i < 90◦, e > 0). For an inclined eccentric orbit,

the apparent path of the planet across the stellar disk is curved. At orientations where the line

of sight is not along the major axis of the ellipse, the curved path is also asymmetric. There-

fore, the times of photometric minima, TN , do not correspond exactly to the times of conjunction

(when the planet crosses the y − z plane and ftr ≡ 90◦ − ωtr). We follow the correction from

Equation VI.9-21 of Kopal (1959), who find that at photometric minimum, ftr = 90◦ − ω′tr, where

ω′tr ≡ ωtr + e cosωtr cot2(i)(1− e sinωtr csc2(i)); in this corrective term, it is only required to keep

terms up to second order in eccentricity. Assuming that i and ω̇ are constant, it can be shown that

TN = T0 +NPobs

+
Pobs

π

[
e(cosω′tr,N − cosω′tr,0)

+
3
8
e2(sin 2ω′tr,N − sin 2ω′tr,0)

+
1
6
e3(cos 3ω′tr,N − cos 3ω′tr,0)

+ e4
( 1

16
(sin 2ω′tr,N − sin 2ω′tr,0)

− 5
64

(sin 4ω′tr,N − sin 4ω′tr,0)
)

+ e5
( 1

16
(cos 3ω′tr,N − cos 3ω′tr,0)

− 3
80

(cos 5ω′tr,N − cos 5ω′tr,0)
)]

(2.22)

This transcendental equation is solved iteratively for (TN − T0) to obtain the transit times and has

been tested thoroughly against the empirical determination of transit times calculated by our light
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curve model described above.

The expected apsidal precession periods (including small contributions from GR and the star)

for WASP-12b, CoRoT-1b, OGLE-TR-56b, WASP-4b, and TrES-3b are around 18, 71, 116, 120,

and 171 years, respectively. In other words, they have precession rates induced by the planetary

tidal bulge of a few degrees per year, compared to a few degrees per century as the fastest general

relativistic precession (Jordan & Bakos, 2008). We caution that if Rpa for WASP-12b is overestimated

due to imprecise data (e.g., Winn et al., 2007), then the precession period would increase accordingly.

Even with such fast precession rates, the duration of observations will generally be much shorter

than the precession period. In addition, as discussed above, the linear timing anomalies will be

absorbed into the effective period as a small change in the unknown stellar mass (Heyl & Gladman,

2007; Pál & Kocsis, 2008; Jordan & Bakos, 2008). Therefore, detection of apsidal precession from

primary transit times alone will require a significant detection of the curvature over a small portion

of a long-period sinusoid. Since the curvature in Equation 2.20 is maximal at ω ≈ 0, 180◦, these

orientations have the best primary transit timing signal. Even at these orientations, detecting

k2p from primary transit times alone is difficult, since it can be shown that the signal strength is

proportional to eω̇2, due to the need to detect curvature (Heyl & Gladman, 2007).

When the observational baseline is much shorter than the decades-long precession period, utilizing

the changing shape of the transits can significantly improve detectability of apsidal precession (Pál

& Kocsis, 2008; Jordan & Bakos, 2008). Transit shapes are primarily determined by the orbital

speed at transit ḟtr and impact parameter b, both of which depend on the precession phase ωtr. For

small eccentricities, the orbital angular speed at transit is given simply by ḟtr ' n(1 + 2e cosωtr).

Changes in the impact parameter are somewhat more subtle, since b is given by rtr cos i/R∗, where

rtr ' a(1− e2)/(1 + e sinωtr) is the star-planet separation. Hence, the apparent impact parameter

of the planet can change for non-central transits, even when the orbital plane remains fixed. The

evolving transit shape of precessing orbits is determined by variations in both orbital speed and

impact parameter. Simplifying the effect of transit shape by considering only the variations in

transit duration as a function of ωtr, Pál & Kocsis (2008) and Jordan & Bakos (2008) find that

these two effects are of comparable magnitude. These authors also show analytically that the two

effects exactly cancel when b = 1/
√

2. At this impact parameter, the transit duration stays constant

throughout apsidal precession. The full photometric transit shape, however, still changes detectably

in a precessing orbit, though the magnitude of signal is reduced (Figure 2.7).

The expected effect of changing transit shapes is fully consistent with the photometric difference

signals calculated by our model (Figures 2.2 and 2.3). Indeed, our model shows that transit shaping

dominates the signal by a factor of &30 (Figure 2.3). We can also see that changes in the transit

shape are maximized at orientations near ω ≈ 0, 180◦ (as expected from Equation 2.18).

For small eccentricities, the transit shaping signal strength is given by S
N ∝ eω̇ ∝ ek2p. Therefore,
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when transit shaping dominates the observable signal, we should find that searching for the threshold

k2p value that yields S
N = 1 results in a power law relationship between threshold k2p and e, such

that k2p ∝ e−1. By solving for threshold k2p for eccentricities from 0.001 to 0.1, we find, as expected,

that threshold k2p very closely follows a power law in eccentricity with a slope of -1 for all planets.

This power law relationship can be written as ek2p = C, where C is a constant calculated from our

model that depends on the planetary, orbital, and stellar parameters of the system.

At ω ≈ 90, 270◦, transit timing and transit shaping effects are much weaker and are rather

ineffective at constraining apsidal precession. At these orientations (when the Earth’s line of sight is

nearly aligned with the major axis of the orbit), another photometric signal emerges: variations in

the difference between the times of primary and secondary transits. The changing orientation of the

orbital ellipse causes a variation in the offset between primary and secondary transit times following

Equation 2.17 above (Heyl & Gladman, 2007; Jordan & Bakos, 2008). These authors show that the

strength of this signal is also proportional to eω̇ and we find that the variation in threshold k2p then

also follows k2p ∝ e−1.

The photometric difference signal at ω = 90◦ is shown in Figures 2.4 and 2.5. Using the method

described in Section 2.3.2 to remove degeneracies almost eliminates the primary transit signal en-

tirely, as expected, and the secondary transit offset becomes the more powerful signal. For WASP-

12b, with an expected Kepler secondary transit depth of ∼1830 ppm, the threshold k2p is actually

lower at ω = 90◦ (Figure 2.6). For the other planets, the secondaries are not as important.

Our estimates of threshold k2p at ω = 90◦ are based on the unknown secondary transit depth

(dsec) in the Kepler bandpass (though our estimates of dsec are consistent with all the measurements

in the literature to date). Furthermore, we find that S
N ∝ dsec, so that deeper secondary transits

improve the accuracy with which k2p can be measured. It is important to note that combining

Kepler primary transit times with precise secondary transit times measured in the near-infrared

(e.g., by warm Spitzer, HST, or JWST) is a very powerful way to constrain apsidal precession (Heyl

& Gladman, 2007) for any orientation. Even a few high-precision secondary eclipse observations are

enough to lower the value of threshold k2p from our predictions, especially when ω ≈ 90, 270◦.

By construction, threshold k2p values vary linearly with the assumed photometric error σ =

0.001 × 100.2(V−14). In addition, re-performing our analysis using a 6-year long Kepler mission

improved threshold k2p values by a common factor of ∼2.2.

2.3.4 Results for Specific Planets

Using the method described above, we have determined the threshold k2p for the most favorable

known transiting planets as analogs for the very hot Jupiters to be discovered by Kepler. The

threshold k2p for each planet was computed at a range of eccentricities from 0.001 to 0.1 and for

ω = 0◦ and ω = 90◦. Using the relationship discussed above (k2p ∝ e−1) we interpolated (and
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Figure 2.6 Eccentricities Needed to Detect Interior Properties from Apsidal Precession.
The best-known planets for detecting k2p precession are analogs to the hot Jupiters WASP-12b,
WASP-4b, CoRoT-1b, OGLE-TR-56b, TrES-3b, HAT-P-7b, TrES-2b, and WASP-14b. Assuming
that analogs to these planets exist in the Kepler field around a V=14 magnitude star, the above
graph shows the eccentricities required to detect k2p. Black symbols correspond to calculations
with ω = 0◦ and gray symbols correspond to ω = 90◦; in both cases, b = 0. Apsidal precession is
much easier to detect for larger eccentricities so increasing e decreases the detectable k2p. Using
our transit light curve model, we found that threshold k2p values followed a power law k2p ∝ e−1

(for low eccentricities), which is consistent with the analytical estimates that S
N ∝ eω̇ ∝ ek2p (see

Section 2.3.2). Interpolating (and sometimes extrapolating) on this power law relationship, the
graph identified the eccentricities required of these analog planets to detect precession due to a
“typical” planetary interior of k2p = 0.3 (triangles). For example, when e = 0.00026 and ω = 0◦,
the apsidal precession due to an analog of WASP-12b should be just detectable by Kepler. A higher
eccentricity (shown in Table 1) would be needed to measure k2p with sufficient accuracy (0.1) to
distinguish between a massive core and a core-less model (circles). Systematic errors are expected to
become important once the measurement error on k2p reaches as low as 0.01 (squares). If any of the
very hot Jupiters discovered by Kepler have comparable eccentricities, the long-term high-precision
photometry would allow for a powerful probe into their interior structure. HAT-P-7b and TrES-2b
are known to lie in the Kepler observing field, but the values above are not corrected for improved
photometric accuracy obtainable on these bright stars. Note that the eccentricities shown above and
in Table 1 are computed for S

N = 1; 3-σ measurements require eccentricities 3 times as high.
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Figure 2.7 Effect of Impact Parameter on Precession Signal. The detectability of apsidal
precession depends on the impact parameter (b) of the orbital track across the star. For ω = 0◦

(solid), the signal of primary transits are most important, with transit shaping playing the largest
role. (See Figure 2.3.) However, the strength of transit shaping is a function of impact parameter
with the minimum effect analytically estimated by Jordan & Bakos (2008) and Pál & Kocsis (2008)
to be b = 1/

√
2 (vertical solid line). Using a full photometric model, we see the expected decrease

in the shaping signal (i.e., requiring a larger k2p to reach S
N = 1). Note that the signal is nearly

maximal, with small threshold k2p values, for a large range of impact parameters. When ω = 90◦

(dotted), the effect of primary transits are minimal and the offset in secondary transits become the
determining factor. (See Figure 2.4.) At high impact parameters secondary eclipses are grazing,
reducing the observable signal. We also show the threshold k2p for an orientation of ω = 45◦, which
lies, as expected, between the two extremes. The values of threshold k2p shown are for an V=14
CoRoT-1b analog in the Kepler field with an eccentricity of 0.003.
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Table 2.1. Extra-Solar System Parameters and Results

Planet Analog M∗ R∗ Mp Rp a dsecb ω̇tot e (Threshold k2p=0.1)c Threshold Thresh. Ref

M� R� MJ RJ
a AU ppm ◦/yr ω = 0◦ ω = 90◦ Ṗdms/yr Q∗d

WASP-12b 1.35 1.57 1.41 1.79 0.0229 1830 19.9 0.0008 0.0004 0.95 92700 1
CoRoT-1b 0.95 1.11 1.03 1.55 0.0245 314 4.96 0.0028 0.0085 0.93 12500 2,3
WASP-4b 0.92 0.91 1.24 1.36 0.0234 109 2.91 0.0047 0.0394 0.68 9900 4
TrES-3b 0.93 0.83 1.91 1.34 0.0228 106 2.04 0.0062 0.0614 0.53 13700 5
OGLE-TR-56b 1.17 1.32 1.29 1.30 0.0236 451 3.00 0.0077 0.0096 1.36 24700 6
HAT-P-7 b 1.47 1.84 1.77 1.36 0.0377 176 0.25 0.2085 0.3146 6.73 2800 7
TrES-2 b 0.98 1.00 1.19 1.22 0.0367 18 0.13 0.2102 · · · e 2.94 350 8
WASP-14b 1.21 1.31 7.34 1.28 0.0360 144 0.09 0.8352e · · · e 3.92 5400 9
XO-3 b 1.21 1.37 11.8 1.22 0.0454 46 0.04 · · · e · · · e 8.00 1700 10
HAT-P-11b 0.81 0.75 0.081 0.42 0.0530 0.2 0.01 · · · e · · · e 29.2 0.1 11
CoRoT-7b 0.91 1.02 0.028 0.16 0.0170 8 0.29 · · · e · · · e 16.8 80 12

References. — (1) Hebb et al. (2009) (2) Bean (2009) (3) Barge et al. (2008) (4) Winn et al. (2009a) (5) Sozzetti et al. (2009)
(6) Pont et al. (2007b) (7) Pál et al. (2009) (8) Holman et al. (2007) (9) Joshi et al. (2009) (10) Johns-Krull et al. (2008) (11)

Bakos et al. (2009) (12) www.exoplanet.euf

Note. — These system parameters were used to estimate the detectability of apsidal precession for these very hot Jupiter systems. The
derivation of the values in the remaining columns is described in the text and in the footnotes below. For all systems, k2∗ = 0.03 and
quadratic limb darkening parameters u1 = 0.35 and u2 = 0.4 (appropriate for Kepler’s bandpass) were used (Mandel & Agol, 2002). For
reference, the measured eccentricity of WASP-12b, WASP-14b, HAT-P-11b, and XO-3b are 0.049 ± 0.015, 0.091 ± 0.003, 0.198 ± 0.046,
and 0.2884 ± 0.0035 respectively. Other planets have unmeasured eccentricities or eccentricity upper limits of .0.05. A discussion of
these results is provided in Section 2.3.4.

aWe use RJ ≡ 71492 km, the equatorial radius at 1 bar.

bThe estimated depth of the secondary transit in Kepler’s bandpass (see Section 2.3.1).

cThe eccentricity required (at two different values of ω) so that a k2p difference of 0.1 has an effective signal-to-noise of 1 in all of
Kepler data for a V=14 star, corresponding to a photometric accuracy of 1000 ppm/min. If analogs to these planets were found by Kepler
with the given eccentricities, the internal density distribution would be measured well enough to detect the presence of a large core (see
Section 2.3.2). These values correspond to the circles in Figure 2.6. These results are for central transits (for b > 0, see Figure 2.7).

dThe value of the change in period, Ṗ , that can be detected with a signal-to-noise of 1 in all of Kepler data for a V=14 star (see Section
2.4.2). The value of threshold Q∗ is an estimate of the maximum value of the stellar tidal dissipation parameter, Q∗, assuming that
the period decay is due entirely to tidal evolution of the planet. Lower values of Q∗ are detectable by Kepler. Stars are thought to have
time-averaged Q∗ values around 10000, though this value is highly uncertain and could be much higher for individual stars.

eEven with the precision of Kepler, apsidal precession for these planets is undetectable. The extrapolation used to compute eccentric-
ities at specific values of threshold k2p assumes the inverse relationship discussed in the text k2p ∝ e−1, which is only true for low
eccentricities.

fThis ultra-short period low-mass planet was recently announced by the CoRoT team, but has not been published in a peer-reviewed
journal. We take the parameters from J. Schneider’s Extra-solar Planets Encyclopedia and use the mass-radius relation for terrestrial
super-Earths of Sotin et al. (2007) to estimate the mass as ∼9 Earth masses (rather than using the quoted upper limit of 17 Earth masses).
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sometimes extrapolated) our calculations to determine the eccentricity required to reach threshold

k2p values of 0.3, 0.1, and 0.01. These results are summarized in Figure 2.6 and Table 1.

WASP-12b is the best candidate for observing apsidal precession. With an eccentricity of e '

0.00026 and k2p=0.3, the apsidal precession would have an effective signal-to-noise of ∼1 for all

of Kepler data. If e is ∼0.001, then k2p can be well characterized and not just detected. As the

difference in k2 between Jupiter and Saturn of ∼ 0.15 is primarily due to the presence of a massive

core, a resolution in k2p of 0.1 is enough to detect whether or not the planet has a core, at the

∼1-sigma level.

Although WASP-12b does not lie in the Kepler field, it clearly stands out as an excellent candidate

for observing apsidal precession. Though the putative eccentricity of 0.049 (Hebb et al., 2009) is

probably an overestimate (Laughlin et al., 2005), if it were real, it would cause sinusoidal transit

timing deviations with an amplitude of ∼25 minutes (using Equation 2.20) and a period of ∼18

years. Such a large deviation would be readily observed from the ground in either transit times or

transit shapes. If apsidal precession is not observed, tight upper limits on the eccentricity can be

established.

Analogs to the very hot Jupiters WASP-4b, TrES-3b, CoRoT-1b, and OGLE-TR-56b are good

candidates for observing apsidal precession if the eccentricities are above ∼0.003. (Note that CoRoT-

1b has only ∼30 days of observations from the CoRoT satellite (Barge et al., 2008), which is

insufficient to observe any of the effects discussed in this paper.) These planets have precession

periods of around 100 years so that the argument of periapse of these planets changes by ∼10◦

during the course of Kepler observations. Though none of these planets lie in the Kepler field, they

are all good candidates for observing apsidal precession though precision photometry.

WASP-14b is more massive and has a larger semi-major axis (0.035 instead of 0.025) which is

enough to significantly reduce the detectability of apsidal precession which only proceeds at 0.1◦

per year. Unlike the previously mentioned planets, WASP-14b has a known non-zero eccentricity of

0.091 ± 0.003 (Joshi et al., 2009). Thus, the amplitude of transit timing variations is known to be

very large (∼97 minutes), but with a ∼3400 year precession period.

CoRoT-7b is a very hot super-Earth and has the shortest known orbital period (excepting the

ultra-short period planets of Sahu et al. 2006). We included this planet in our analysis to get a feel

for the plausibility of detecting the interior structure of terrestrial extra-solar planets. The small

radius reduces the planetary contribution to apsidal precession (Figure 1) and significantly reduces

the photometric signal. We note here that in bodies where material strength (rigidity) is more

important than self-gravity, k2p is no longer directly related to internal density distribution. The

correction factor is typically small for bodies larger than the Earth (Murray & Dermott, 1999).

XO-3b is a super-massive eccentric planet that is not in the Kepler field. Even so, it is interesting

to note that, using the known eccentricity e = 0.2884± 0.0035 (Winn et al., 2009b) and accounting
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for the brightness of the host star (V=9.8), the Kepler threshold k2p is reduced to only 0.54. As

pointed out by Jordan & Bakos (2008) and Pál & Kocsis (2008), XO-3b is a good candidate for

observing apsidal precession within the next decade or so. Furthermore, as discussed below, the

non-zero obliquity of the stellar spin axis (Winn et al., 2009b) may also result in an observable

signal due to nodal precession.

HAT-P-7b and HAT-P-11b are orbiting bright stars in the Kepler field. The latter is an eccen-

tric hot Neptune with a relatively large semi-major axis resulting in no eminently detectable apsidal

precession. HAT-P-7b, on the other hand, is a good candidate for detecting apsidal precession. It is

probably one of the brightest hot Jupiters in the Kepler field, orbiting a V=10.5 star. The system

brightness improves the expected photometric accuracy from 1000 ppm/min to 200 ppm/min, imply-

ing that an eccentricity of only 0.014 is needed to detect apsidal precession (threshold k2p=0.3). Pál

et al. (2009) report a best-fit eccentricity of 0.003 ± 0.012, indicating that the necessary eccentricity

cannot be ruled out. Furthermore, this planet has transiting data extending back to 2004 and was

observed by NASA’s EPOXI Mission in 2008 (Christiansen et al., 2009; D. Deming, pers. comm.).

This additional baseline, though sparsely sampled, may provide the additional leverage needed to

detect apsidal precession if the eccentricity is non-zero. Note, however, that detecting changes in

transit shapes is more difficult when the observations are made with a variety of telescopes because

transit shapes depend on the observing filter used, due to wavelength-dependent limb darkening.

TrES-2b is similar to HAT-P-7b in that it also lies in the Kepler field, has observations dating

to 2005, and was observed by NASA’s EPOXI Mission. TrES-2b is somewhat fainter than HAT-

P-7b (V=11.4), and, correcting for the system brightness, an eccentricity of 0.021 would result in

detectable apsidal precession (threshold k2p=0.3). Observations of the secondary eclipse show no

detectable deviations of the orbit from circularity (O’Donovan et al., 2009). Even so, the light curve

of this planet is quite sensitive to perturbations as it has a quite high impact parameter b = 0.854.

Accounting for this impact parameter does not significantly change the required eccentricity.

We conclude that Kepler may detect the cores of very hot Jupiters and probe their interior

structure though their evolving transit light curve if eccentricities are above ∼0.003. As future

observations provide longer baselines for these observations, the sensitivity to interior structure

measurements will increase dramatically, significantly lowering the eccentricity needed to observe

apsidal precession.

In cases where apsidal precession is not observed, the data can set strong upper limits on planetary

eccentricities. An upper limit on the eccentricity can be inferred by assuming that the planet has the

minimal physically-plausible value of k2p ≈ 0.1. Null detections of apsidal motion should therefore

provide upper limits on eccentricity comparable to the values shown in Table 1 (also shown by circles

in Figure 2.6). Such strong eccentricity constraints are valuable for improving our understanding of

these close-in planets.



51

2.4 Potential Confusion of the Apsidal Precession Signal

In the above, we have assumed that measuring ω̇ is tantamount to measuring k2p. This is justified

by noting that the conversion ω̇ to k2p involves only factors that are very well characterized. In

Section 2 and Figure 1, we showed that k2p is usually the dominant source of apsidal precession.

The effects of k2∗ and general relativity are well-understood and can typically be subtracted away

without introducing serious uncertainty, even when they dominate the apsidal precession rate. From

Equation 2.6, converting the remaining ω̇p to k2p requires only knowing Mp

M∗
, e, Rp

a , and n. The

latter two are very accurately measured with even a few transit light curves (e.g., Torres et al.,

2008; Southworth, 2008). The eccentricity only enters the equation through the f2(e) and g2(e)

eccentricity functions (Equations 2.7 and 2.11), and Kepler observations of secondary eclipse are

sufficiently accurate to remove any systematic error due to these terms unless the eccentricity is

large (e & 0.3). Determining the mass ratio requires well-sampled radial velocity observations. The

systems detected by Kepler are bright enough to get good mass measurements, especially since very

hot Jupiters have large radial velocity amplitudes (K ∼ 200 m/s).8 The anticipated error in the

mass ratio is a few percent (Torres et al., 2008). In all, we estimate that, converting from ω̇ to k2p

leads to a typical systematic error on k2p of around ∼.01. This is a relatively small systematic effect

in comparison to the potential range (∼0.5) of k2p values. For reference, the eccentricity required

to reach a threshold k2p of 0.01 is shown in Figure 2.6 by squares.

Another way to introduce systematic errors on the measurement of k2p is to misinterpret similar

transit light curve variations. To ensure that the method outlined in this paper truly probes the

interiors of extra-solar planets, we consider in this section whether the transit light curve resulting

from apsidal precession can be confused with any other common circumstances. Although a very

specific combination of parameters is required for any particular phenomenon to successfully mimic

a signal due to k2p, the below effects should be reconsidered when actual data is available.

2.4.1 Testing the Effect of Obliquity

If either the star or planet has a non-zero obliquity, the orbital plane will no longer be fixed as

a result of nodal precession. The obliquities of very hot Jupiters rapidly (. 1 MYr) decay to a

Cassini state, and recent work has shown that these planets are likely in Cassini state 1 (Winn &

Holman, 2005; Levrard et al., 2007; Fabrycky et al., 2007). Using a model based on the equations

of Eggleton & Kiseleva-Eggleton (2001), we found that Cassini obliquities of very hot Jupiters are

indeed negligible (αp < 0.01◦). Though tidal damping of the stellar obliquity occurs on far longer

timescales, several measurements of the projected stellar obliquity through the Rossiter-McLaughlin
8Other than determining the mass ratio and constraining the eccentricity, radial velocity information is thought to

have a negligible contribution in constraining apsidal precession unless a serious observational campaign can measure
the radial velocity period (independently of transits) to sub-second accuracies. (Heyl & Gladman, 2007; Jordan &
Bakos, 2008).
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effect indicates that planet-hosting stars generally have low obliquities . 10◦ like the Sun (Fabrycky

& Winn, 2009). Hence, the general expectation is that both the star and planet will have rather

low, but potentially non-zero obliquities.

Understanding the specific orbital evolution resulting from non-zero obliquities is more compli-

cated than the simple prescription for apsidal precession. To correctly account for non-Keplerian

effects, we wrote a direct integrator, following Mardling & Lin (2002), that calculates the Cartesian

trajectory (and the direction of the spin axes) of a star-planet system including general relativity

and the effects of quadrupolar distortion. This integrator reproduces the orbit-averaged analytic

equations of Mardling & Lin (2002), which are the same as those in Eggleton & Kiseleva-Eggleton

(2001), Sterne (1939a), and elsewhere.9 We did not include the effects of tidal forces or additional

planets which are not relevant to our problem.

Using this direct integrator, we investigated the effect of non-zero obliquities on the transit times,

durations, and impact parameters. Integration of several cases with varying stellar and planetary

obliquities showed that the largest effect on the photometry was due to changes in the impact

parameter, as expected for an orbit with changing orientation (Miralda-Escudé, 2002). However,

even for large stellar obliquities (∼ 45◦) the transit light curve variations due to obliquity are

generally small relative to the effects of purely apsidal precession, even with low eccentricities. One

reason for this is that the tidal bulge, which does not contribute to nodal precession, is & 15 times

more important than the rotational bulge. As with apsidal precession, the planetary contribution to

orbital variations is much stronger than the stellar contribution (for equal obliquities). Unless the

planetary obliquity is unexpectedly large (& 0.5◦), the obliquity-induced nodal precession should

have only a minor effect on the transit light curve.

2.4.2 Transit Timing due to Orbital Decay

Orbital decay generates a small secular trend in transit times. Sasselov (2003) proposed the de-

tectability of the expected ∼1 ms/yr period change due to semi-major axis decay of OGLE-TR-56b.

The transit timing anomaly due solely to orbital decay (or growth) is the result of constantly accu-

mulating changes in the period:

TN ' T0 +NPobs +
1
2
N2δP (2.23)

where δP ≡ ṖP is the change in the period during one orbit and N is the number of transits

after the initial transit. Equation 2.23 can be derived by noting that the transit times are basically

the integral of the instantaneous period. As before, the transit timing anomaly is composed of the
9This involved minor modifications to the ”direct integrator” equations 3 and 5 in Mardling & Lin (2002). In

Equation 3, the coefficient 12 should be a 6 (R. Mardling, pers. comm.) and Equation 5 was replaced with the nearly
equivalent equation from Soffel (1989).
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quadratic deviation of TN from a straight line. The change in period can be due to magnetic stellar

breaking (e.g., Lee et al., 2009; Barker & Ogilvie, 2009a), the Yarkovsky effect applied to planets

(Fabrycky, 2008a), and/or other effects.

For planets orbiting an asynchronously rotating star, a major source of orbital decay is tidal

evolution, which results in a slow change in semi-major axis, according to the formula (Murray &

Dermott, 1999):

ȧ = sign(ν∗ − n)
3k2∗

Q∗

Mp

M∗

(
R∗
a

)5

na (2.24)

where sign(x) returns the sign of x or 0 if x = 0 and where Q∗ is the tidal quality parameter of the

star, typically around 104 (Dobbs-Dixon et al., 2004). Though δP due to tidal dissipation is only of

order 3 micro-seconds, N grows by ∼ 300 each year, reaching ∼1000 during the duration of Kepler

for very hot Jupiters. This implies a transit timing signal of about a few seconds.

Calculating the total “signal-to-noise” of tidal evolution, as was done for k2p, we find that

reasonable values of Q∗ can be measured even for faint stars (V = 14; 1000 ppm/min noise). For

a circular orbit with the parameters of OGLE-TR-56b, the effective S
N reaches 1 when Ṗ is 1.36

ms/yr (see Table 1), corresponding to Q∗ ≈ 25000. This implies the detectability of most of the

empirically-motivated estimates of Sasselov (2003) for the tidal decay of OGLE-TR-56b, which are

estimated to be within an order of magnitude of 1 ms/yr. On the other hand, Barker & Ogilvie

(2009b) estimate that the tidal damping in F-stars like OGLE-TR-56 and WASP-12 may be very

low, which may explain the survival of these short period planets.

The estimates of the threshold values of Ṗ , shown in Table 1, include removing degeneracies in

other parameters, except apsidal precession of eccentric orbits, and assume that everything but Ṗ is

known. Note that the transit light curve signal due to orbital decay is due entirely to transit timing;

the change in a is far too small to observe in transit shaping. As the signal due to apsidal precession

includes significant changes to the shapes of the transits, the signal due to k2p is qualitatively

different than that of Q∗. The shifting of secondary transits from precession also help in this regard,

as outlined above. However, the primary transit timing signals can be similar: quadratic transit

timing anomalies with amplitudes of ∼1 second.

Kepler analogs of very hot Jupiters WASP-12b, OGLE-TR-56b, CoRoT-1b, WASP-4b, and

TrES-3b could have detectable transit timing anomalies due to tidal decay, implying a direct mea-

surement of the current value of Q∗ for specific stars (Table 1). This is an exciting possibility,

providing the first direct measurements (or constraints) of the currently unknown details of tidal

dissipation in a variety of individual stars.10 We also note that interesting orbital decay of eclipsing

binary systems seen by Kepler could also be detectable.

10The vanishingly small effect of eccentricity decay is ∼ 1
Qp

smaller than apsidal precession, so that direct mea-

surements of Qp from eccentricity decay are not feasible.
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2.4.3 Confusion Due to Other Planets

Could the signal due to k2p be confused with additional planets? In considering this issue, it should

be noted that all known hot Jupiters (with a . 0.05 AU and Mp & 0.5MJup) have no currently

known additional companions. The apparent single nature of these systems could very well be due

to observational biases (Fabrycky, 2008b). However, even for stars that have been observed for many

years with radial velocity (e.g., 51 Peg, HD 209458), there appears to be a strong tendency towards

hot Jupiters as the only close-in massive planets.

Previous studies of transit timing variations focus on the effects of additional planetary perturbers

(e.g., Holman & Murray, 2005; Agol et al., 2005; Ford & Holman, 2007; Nesvorný & Morbidelli, 2008).

These authors find that nearby massive planets or even low-mass planets in mean-motion resonances

would cause strong transit timing variations that are easily distinguishable from the comparatively

long-period timing anomalies due to k2p. Relatively distant companions or non-resonant low-mass

planets, however, can induce a linear apsidal precession signal just like k2p (Miralda-Escudé, 2002;

Heyl & Gladman, 2007; Jordan & Bakos, 2008). The precession rate induced by a perturbing body is

a function of its mass and semi-major axis. The interior structure of very hot Jupiters causes apsidal

precession as fast as a few degrees per year. To match this precession rate would require, for example,

another Jupiter-mass planet at . 0.1AU or a solar-mass star at ∼1 AU. Even perturbers an order of

magnitude smaller than these would be readily detectable using radial velocity observations and/or

high-frequency transit time variations. When restricted to planets that are undetectable by other

means, adding the precession due to the unknown perturbing planet would lead to an insignificant

overestimate of k2p for very hot Jupiters.11 When observing transiting planets with larger semi-

major axes (a & 0.05 AU), the strength of planetary induced apsidal precession is reduced to a level

comparable to apsidal precession from a low-mass perturbing planet (Jordan & Bakos, 2008) and

confusion may be possible in these cases.

Since the transit timing signal for apsidal precession is similar to a sinusoid, another potential

source of confusion would be light-travel time offsets due to a distant orbiting companion (e.g., Deeg

et al., 2008). The transit timing signal due to stellar motion about the barycenter can be distin-

guished from k2p precession12 by considering the changes in transit shapes and primary-secondary

transit time offsets, which are not affected by distant companions.

We conclude that transit timing effects from other planets can be readily distinguished from the

effects of apsidal precession. To address the issue of the transit shaping signal due to additional

planets, we wrote a simple three-body integrator (similar to the integrator mentioned above) to

investigate the kinds of transit light curve signals created by additional planets. For the vast majority
11Conversely, as a consequence of the fast precession of very hot Jupiters due to their (unknown) interiors, it will be

very difficult to detect the presence of additional perturbing planets in these systems from apsidal precession alone.
12Transit time anomalies due to Q∗ (Section 2.4.2), however, can be confused with barycenter light-travel time

shifts due to a distant planet that may be undetectable in radial velocities.
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of additional planet parameters, the transit timing deviations always carry far more signal than the

minor deviations due to changes in the angular velocity13 (ḟtr) or impact parameter (b), which

together determine the transit shape as described in Section 2.3.3 above. Generally, it is much

easier to delay a transit by 5 seconds than it is to shift the apparent transit plane by an appreciable

amount.

However, when the perturbing planet is on a plane highly-inclined to the transiting planet,

changes in the transit shape can become detectable, even while the transit timing variations are

negligible. For example, a perturbing planet of mass 10−5M∗ at 0.1 AU with a mutual inclination of

45◦ caused very hot Jupiter transit durations to change by ∼1 second/year. This kind of signal is the

result of nodal precession induced by the perturbing planet, as originally pointed out by Miralda-

Escudé (2002). In our investigation, we found that the three-body nodal precession alters the

impact parameter (b) but does not significantly affect the orbital angular velocity (ḟtr). Conversely,

the transit shaping signal due to k2p is generally produced by changes in both b and ḟtr, but at

near-central transits, the effect of changing orbital velocity is dominant (see Section 2.3.3). In

high-precision transit light curves, both the angular velocity and the impact parameter can be

independently measured and hence the signals of apsidal and nodal precession are usually distinct

for all but the most grazing transits.

Given the uniqueness of the apsidal precession signal induced by the planet’s interior, it appears

that if additional planets are not detectable in radial velocities, transit timing variations, or nodal

precession, then they will not contribute to a misinterpretation of an inferred value of k2p for very hot

Jupiters. Nevertheless, future measurements of k2p should check that these issues are unimportant

within the context of the specific system being studied.

Finally, we estimate that moons or rings with enough mass to bias an inferred k2p would cause

other readily detectable photometric anomalies (e.g., planet-moon barycentric motion Sartoretti &

Schneider, 1999). In addition, extra-solar moons with any significant mass are tidally unstable,

especially around very hot Jupiters (Barnes & O’Brien, 2002).

2.5 Other Methods for Determining k2p

2.5.1 Secular Evolution of a Two Planet System

Measuring k2 for an extra-solar planet was suggested by Wu & Goldreich (2002) for the inner

planet of HD 83443. Unfortunately, later analyses have indicated that the supposed second planet

in this system was actually an artefact of the sparse radial velocity data (Mayor et al., 2004).

Nevertheless, this technique could be applied to other eccentric planetary systems with similar
13The angular velocity is directly related to the star-planet separation through conservation of angular momentum:

rḟ2.
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conditions (Mardling, 2007). Wu & Goldreich (2002) showed that in a regime of significant tidal

circularization and excitation from an additional planet, the ratio of eccentricities depends on the

precession rate which is dominated by k2p as shown above (see also Adams & Laughlin 2006, who

do not include precession due to the planetary quadrupole). In theory, the current orbital state of

such multi-planet systems gives an indirect measurement of the apsidal precession rate.

2.5.2 Direct Detection of Planetary Asphericity

Another method for determining interior properties of transiting planets would be to directly measure

the asphericity due to the rotational or tidal bulge in primary transit photometry. The height of the

rotational and tidal bulges are qrh2Rp and qth2Rp, respectively, where qr and qt are the dimensionless

small parameters defined in Equation 2.2 and h2 is another Love number which, for fluid bodies,

is simply k2 + 1 (Sterne, 1939a). These bulges cause the disk of the planet to be slightly elliptical,

subtly modifying the photometric signal, as discussed for rotational bulges by Seager & Hui (2002)

and Barnes & Fortney (2003). However, as discussed by Barnes & Fortney (2003), in real systems

with actual observations, the size of the rotational bulge is very difficult to determine as it is highly

correlated with stellar and orbital parameters that are not known a priori, e.g., limb darkening

coefficients.

The tidal bulge, whose height is also set by k2p, does not suffer from some of the difficulties

involved with measuring the rotational bulge. It has a known orientation (pointing towards the star)

so there is no degeneracy from an unknown obliquity (Barnes & Fortney, 2003). (Note, however,

that for hot Jupiters, the obliquities must be tidally evolved to nearly zero, so this isn’t really a

problem with the rotational bulge.) In addition, the signal due to oblateness is only significant near

ingress/egress, but the tidal bulge is continuously changing orientation throughout the entire transit.

Though the tidal bulge is typically three times larger than the rotational bulge (Equation 2), the

projection of the tidal bulge that is seen during a transit is small, proportional to sin θ where θ is

the angle between the planet position and the Earth’s line of sight. For very hot Jupiters that have

semi-major axes of only .6 stellar radii, sin θ during transit ingress/egress reaches & 1
6 so that the

projected tidal bulge is about half as large as the rotational bulge. The extra dimming due to the

tidal bulges (and rotational bulges) is as high as 2 × 10−4 for some planets that are expected to

have tides over 2000 km high (e.g., WASP-12b, WASP-4b, Corot-1b, OGLE-TR-56b); this compares

very favorably with the photometric accuracy of binned Kepler data at about 10 ppm per minute.

However, we expect that, as with the rotational bulge alone, the combined signal from the rotational

and tidal bulge will be highly degenerate with the unknown limb-darkening coefficients, as the size

of the projection of the tidal bulge also varies as the distance to the center of the star.

We note that using multi-color photometry should significantly improve the prospects of detecting

non-spherical planetary transits since it breaks most of these degeneracies. For example, Knutson
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et al. (2007b) use HST to observe transits of HD 209458b in 10 wavelength bands and measure the

planetary radius with a relative accuracy (between bands) of 0.003RJ , of the same level as the change

in shape due to oblateness and the tidal bulge. Pont et al. (2007a) made a similar measurement for

HD 189733b and reached even higher relative accuracy. Combining such measurements with other

data (e.g., primary transits in the infrared, where limb-darkening is much smaller) and a stellar

photosphere model (to correctly correlate limb darkening parameters as in Agol & Steffen 2007)

could yield detections of planetary asphericity, especially in very hot Jupiters which have the largest

bulges.

One possible source of confusion in interpreting planetary asphericity is the thermally-induced

pressure effects of an unevenly radiated surface. In non-synchronous planets, the thermal tidal bulge

(Arras & Socrates, 2009) can shift the level of the photosphere by approximately an atmospheric scale

height, about 10−2 or 10−3 planetary radii (P. Arras, pers. comm.). The orientation of the thermal

bulge is significantly different from the tidal or rotational bulges and should be distinguishable.

Furthermore, very hot Jupiters should orbit synchronously, reducing the importance of this effect.

Nevertheless, the effect of atmospheric phenomena on measurements of planetary asphericity should

be considered.

Though difficult to disentangle from other small photometric effects, high-precision multi-color

photometry may be another viable method for measuring k2p. This technique is complimentary to

detecting k2p from apsidal precession since it does not require that the planet is eccentric, nor does

it require a long time baseline. On some planets, the two methods could be used together as mutual

confirmation of the planetary interior structure.

2.6 Conclusions

The planetary mass and radius are the only bulk physical characteristics measured for extra-solar

planets to date. In this paper, we find that the planetary Love number (k2p, equivalent to J2)

can also have an observationally detectable signal (quadrupole-induced apsidal precession) which

can provide a new and unique probe into the interiors of very hot Jupiters. In particular, k2p is

influenced by the size of a solid core and other internal properties. Core sizes can be used to infer the

formation and evolution of individual extra-solar planets (e.g., Dodson-Robinson & Bodenheimer,

2009; Helled & Schubert, 2009).

The presence of a nearby massive star creates a large tidal potential on these planets, raising

significant tidal bulges which then induce non-Keplerian effects on the star-planet orbit itself. The

resulting apsidal precession accounts for ∼95% of the total apsidal precession in the best cases

(Figure 2.1). Hence, we find that the internal density distribution, characterized by k2p, has a

large and clear signal, not to be confused with any other parameters or phenomena. We urge those
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modeling the interior structures of extra-solar planets to tabulate the values of k2p for their various

models.

Encouraged by this result, we calculated full photometric light-curves like those expected from

the Kepler mission to determine the realistic observability of the interior signal. We estimate that

Kepler should be able to distinguish between interiors with and without massive cores (∆k2p ' 0.1)

for very hot Jupiters with eccentricities around e ∼ 0.003 (Figure 2.6). Eccentricities this high

may occur for some of the very hot Jupiters expected to be found by Kepler, though these planets

usually have highly damped eccentricities. Much stronger constraints on apsidal precession can be

obtained by combining Kepler photometry with precise secondary transits observed in the infrared.

In cases where apsidal precession is not observed, the data can set strong upper limits on planetary

eccentricities.

In analyzing Kepler ’s photometric signal of apsidal precession, we find that transit timing vari-

ations are an almost negligible source of signal, though transit timing has been the focus of many

observational and theoretical papers to date. The effect of “transit shaping” has ∼30 times the

photometric signal of transit timing for apsidal precession (see Figure 2.3, Pál & Kocsis, 2008; Jor-

dan & Bakos, 2008)). At orientations where transit timing and shaping are weakest, the changing

offset between primary and secondary transit times can be used to measure k2p (Figure 2.4). It may

also be possible to measure k2p from high-precision multi-color photometry by directly detecting the

planetary asphericity in transit. Such a measurement does not require a long baseline or an eccentric

orbit.

Very hot Jupiters are also excellent candidates for detecting tidal semi-major axis decay, where

we find that relatively small period changes of Ṗ ' 1 ms/yr should be detectable. This could

constitute the first measurements (or constraints) on tidal Q∗ for a variety of individual stars. We

note that Kepler measurements of transit timing and shaping for eclipsing binaries should also

provide powerful constraints on stellar interiors through apsidal motion and binary orbital decay

(due to tides, if the components are asynchronous).

Accurately measuring the interior structure of distant extra-solar planets seems too good to be

true. Nevertheless, the exquisite precision, constant monitoring, and 3.5-year baseline of the Kepler

mission combined with the high sensitivity of transit light curves to small changes in the star-planet

orbit make this measurement plausible.

Our focus on Kepler data should not be interpreted to mean that other observations will be

incapable of measuring k2p. In fact, the opposite is true since the size of the apsidal precession

signal increases dramatically with a longer baseline. Combining Kepler measurements with future

ground and space based observations can create a powerful tool for measuring k2p. In the far future,

many planets will have measured apsidal precession rates (like eclipsing binary systems have now)

and inferred k2p values. Incorporating these measurements into interior models holds promise for
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greater understanding of all extra-solar planets.
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Chapter 3

Candidates and Age of the Family
of Kuiper Belt Object 2003 EL61

This chapter has been published in its entirety under the same title by authors D. Ragozzine and

M. E. Brown in the Astronomical Journal, 2007, Volume 134, pp. 2160-2167. Reproduced by

permission of the American Astronomical Society. Since publication, 2003 EL61 has been renamed

Haumea.
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Abstract

The collisional family of Kuiper belt object (KBO) 2003 EL61 opens the possibility for many inter-

esting new studies of processes important in the formation and evolution of the outer solar system.

As the first family in the Kuiper belt, it can be studied using techniques developed for studying

asteroid families, although some modifications are necessary. Applying these modified techniques

allows for a dynamical study of the 2003 EL61 family. The velocity required to change orbits is used

to quantitatively identify objects near the collision. A method for identifying family members that

have potentially diffused in resonances (like 2003 EL61) is also developed. Known family members

are among the very closest KBOs to the collision and two new likely family members are identi-

fied: 2003 UZ117 and 1999 OY3. We also give tables of candidate family members which require

future observations to confirm membership. We estimate that a minimum of ∼1 GYr is needed for

resonance diffusion to produce the current position of 2003 EL61, implying that the family is likely

primordial. Future refinement of the age estimate is possible once (many) more resonant objects are

identified. The ancient nature of the collision contrasts with the seemingly fresh surfaces of known

family members, suggesting that our understanding of outer solar system surfaces is incomplete.
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3.1 Introduction

The collisional history of Kuiper belt objects (KBO) strongly constrains the formation and evolution

of the Kuiper belt. The recent discovery by Brown et al. (2007b, hereafter B07), of a KBO family

created by a collision promises new and valuable information about the early outer solar system. As

the first bona fide collisional family in the Kuiper belt, it merits further study and comparison to

the Hirayama collisional families in the asteroid belt. The goal of this work is to identify potential

fragments for future observations and study by properly adapting techniques used in dynamical

studies of asteroid families. The distribution of family members is then be used to estimate the age

of the family.

Members of the 2003 EL61 family are identified by infrared spectra with strong water ice absorp-

tions (B07), as seen in large KBO (136108) 2003 EL61 and its brightest moon (Barkume et al., 2006;

Trujillo et al., 2007). Based on light curve observations, 2003 EL61 appears to be rapidly rotating

with an inferred density of at least 2.6 g cm−3 (Rabinowitz et al., 2006), suggesting that a giant im-

pact stripped roughly 20% of the icy mantle from the proto-2003 EL61, based on an assumed initial

density of about 2 g cm−3 as measured for other large KBOs (e.g., Pluto, Triton). The identification

of the 2003 EL61 collisional family by B07 is presumably the discovery of icy mantle fragments

ejected from this giant impact. The probability of such a giant impact in the current Kuiper belt is

extremely low, implying that the collision probably occurred in the early history of the outer solar

system before any significant depletion in mass, as we discuss below (Morbidelli et al., 2007).

3.2 Dynamics

3.2.1 Differences between KBO and Asteroid Families

The spread in orbital elements created by a collision in the Kuiper belt is different than the previously

studied asteroid belt. In both cases, a collision powerful enough to create a family launches fragments

at velocities high enough to be gravitationally ejected. The ejection velocity, ∆v, is the velocity at

infinity of unbound fragments and typically scales with the escape velocity from the surface of

the target. Since known KBOs (especially 2003 EL61) are much larger than typical asteroids, the

expected ∆v of a family-forming collision is much larger in the Kuiper belt. In addition, the typical

orbital velocities (vorb) in the Kuiper belt are ∼5 km s−1, compared to ∼20 km s−1 typical of the

asteroid belt. The ratio of ∆v/vorb roughly determines the size of the spread in orbital elements

that will be achieved by collisional dispersion. Hence, asteroid families will (initially) be far more

tightly clustered in proper orbital element space than Kuiper belt families. Figure 1 shows the cloud

of orbital elements created from a velocity dispersion of only 150 m s−1 from a potential origin of

the 2003 EL61-forming collision (described in more detail below).
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Asteroid families are often identified by looking only at clusters in proper orbital elements. This

fails to identify true families in the Kuiper belt since the large anticipated spread in orbital elements

is typically larger than the natural separation between objects (Chiang et al., 2003). The 2003 EL61

family was only identified because family members shared a unique spectral signature, in addition

to being dynamically clustered. (B07)

Due to interactions with resonances, the dynamical clustering of collisional families grows weaker

with time. In the asteroid belt, proper element dispersion is aided by drifting semi-major axes due

to the Yarkovsky effect acting on small bodies (Farinella & Vokrouhlicky, 1999). In the Kuiper

belt, objects are generally very stable over the age of the solar system except near mean-motion

resonances with Neptune and/or when perihelia drop below about 35 AU (Kuchner et al., 2002).

3.2.2 Determining ∆v

To identify dynamically-nearby KBOs for further investigation, we use ∆v (the required ejection

velocity) as a quantitative measurement of dynamical proximity. After a collision, each (unbound)

fragment assumes a different heliocentric orbit, all of which intersect at the location of the collision

(xc, yc, zc). At this location, each family member has a different velocity, vc. By definition, ∆v is

the length of (vc − vc,cm), where vc,cm is the velocity at the collision location of the center of mass

orbit; all values of ∆v are measured with respect to the center of mass orbit. After the collision the

center of mass orbit is nearly the orbit of the largest fragment; we approximate the center of mass

orbit with the post-impact orbit of 2003 EL61. Finding ∆v would be trivial if we knew the full

set of orbital elements (a, e, i,Ω, ω,M) for each object and 2003 EL61 at the time of the collision.

Unfortunately, after a relatively short time, the coherence of the original orbital angles is lost and

at the present epoch only the proper semi-major axes, proper eccentricities, and proper inclinations

are known.

Even so, it is possible to use the distribution of proper elements of family members to estimate

the orbital angles of the center of mass orbit (see below). Once these orbital elements are fully

proscribed, there is enough information to calculate ∆v using the additional constraint that all

orbits pass through the collision location. For asteroid families, Gauss’ equations are then used to

compute the components of ∆v (e.g., Morbidelli et al., 1995)). These equations are only accurate

if ∆v � v for each component of v, whereas for the 2003 EL61 family, which has a large velocity

dispersion (& 200 m s−1) and a relatively small orbital velocity (∼ 4500 m s−1), Gauss’ equations

can lead to inaccuracies which can be avoided through a more direct calculation.

Instead, we convert the center of mass orbital elements to Cartesian coordinates, giving the

collision location (xc, yc, zc) and velocity vc,cm. We then use a direct mathematical conversion

of the KBO proper elements (aP , eP , iP ) and the collision location (xc, yc, zc) to find the orbital

velocity vc. However, these six variables do not uniquely determine the velocity; there are four
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possible solutions to this inversion. (This degeneracy results from two different occurrences where

either the positive or negative square root can be used.) That is, a single location (xc, yc, zc) can be

identified by identical orbital elements aP , eP , and iP and four sets of velocities, as there is no way

to distinguish between reflections along the line of apsides or the line of nodes. There is no a priori

way to resolve this degeneracy since the information about the original orbital angles (Ω, ω,M) is

lost. Since the goal of this study is to identify all KBOs that could potentially be members of the

2003 EL61 family, we take the smallest value of ∆v. In this way, all KBOs with proper orbital

elements that could be dynamically near the collision are identified.

To determine ∆v of candidate family members requires the orbital elements of the center of

mass orbit. This orbit is usually taken from the proper orbital elements of the largest fragment with

orbital angles chosen to match the distribution of family members in aP -eP -iP space (see Figures 1

and 2). The longitude of the ascending node (Ωcm) has no effect on this distribution and is ignored.

We use the orientation of the collisional cloud in aP vs. eP to find the mean anomaly (Mcm);

the argument of perihelion (ωcm) has no effect here. However, ωcm does change the extent of the

inclinations attainable with a particular value of ∆v. In particular, for collisions that occur on the

ecliptic (ωcm +Mcm ' 0◦ or 180◦), require the lowest ∆v to change the inclination. At the highest

and lowest points of the orbit it is very difficult for a collision to change the inclination (apparent

from the form of Gauss’ equation for inclination changes, see Morbidelli et al. (1995)). There is

not enough information in the distribution of proper elements of the family members to uniquely

determine the component of ∆v out of the plane of the orbit. In order to proceed, we choose to work

with the minimum possible ∆v, which we will call ∆vmin. (The analysis in B07 did not appreciate

this aspect of collisional orbit changes and assumed that ∆vmin was the actual escape velocity of

the fragments, which may not be true.) The component of ∆v out of the plane of the orbit is

larger by a factor of ∼ 2 on average (i.e., with a randomly chosen ωcm) and at extreme points in

the orbit the acutal ejection velocity could theoretically be ∼ 5 or more times greater than ∆vmin.

However, collisions are most probable near the ecliptic (where the number density is highest), so the

correction is probably much smaller. Furthermore, if an isotropic ejection of fragments is assumed,

then this ambiguity is removed and the aP -eP -iP distribution is sufficient to determine the typical

ejection velocity (Nesvorný et al., 2006). The only way the actual ejection velocities of all the family

members could have been significantly greater than ∼ 150 m s−1 is if they all left in a collimated jet

in a particular direction from a non-ecliptic collision. Finally, we note that a similar correction factor

will apply to most KBOs, roughly preserving the overall ranking of KBOs by dynamical proximity

to the collision.
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3.3 Potential Family Members

3.3.1 Collision Center

For the 2003 EL61 family, we determined the center of mass orbit based on the orbit of 2003 EL61,

the largest fragment. However, 2003 EL61 has diffused from its original location due to interaction

in the 12:7 mean-motion resonance with Neptune (B07) and its proper elements have changed. Over

long timescales, overlapping sub-resonances can cause diffusion of proper eccentricity and inclination

(Nesvorný & Roig, 2001; Murray & Holman, 1997). For KBOs starting with orbital elements near

the center of the 2003 EL61 family, we have found empirically that the chaotic diffusion nearly

conserves the proper Tisserand parameter with respect to Neptune, the 50 MYr average of the

osculating Tisserand parameter:

T =
aN
a

+ 2 cos(i− iN )
√

(a/aN )(1− e2) (3.1)

where aN and iN are the osculating semi-major axis and inclination of Neptune. In particular, we

can estimate possible past locations of 2003 EL61 by changing the eccentricity and inclination to

preserve the proper Tisserand parameter of 2003 EL61 (ap=43.10 AU and Tp=2.83).

The pre-diffusion orbit of 2003 EL61 is estimated by minimizing the sum of ∆vmin for previously

identified family members (1995 SM55, 1996 TO66, 2002 TX300, 2003 OP32, and 2005 RR43) while

fixing aP = aP,EL61 and TP = TP,EL61 and allowing the other orbital elements to vary. This results

in a nominal collision location at (a, e, i,ω,M)cm = (43.10 AU, 0.118, 28.2◦, 270.8◦, 75.7◦) which

is used to generate Figure 1 and the values of ∆vmin for family members listed in Table 3.1. (As

expected, the minimal velocities are attained for values of ωcm that place the collision near the

ecliptic.) The results that follow are not strongly dependent on this particular choice of the center

of mass orbit. Exploring other center of mass orbits (such as the average of proper elements of non-

resonant family members) indicates that the exact values of the ejection velocity vary somewhat,

especially for objects near (∆v . 100 m s−1) the collision, but the known family members are

always tightly clustered dynamically. Figure 1 shows the extent of proper element space covered

by a collision with ∆vmin=150 m s−1; this collisional cloud contains all the known family members

(allowing for resonance diffusion).

3.3.2 Non-resonant KBOs

Keeping in mind the large spread in osculating elements of KBOs that could belong to the 2003 EL61

family, 131 high-inclination KBOs observed over at least two oppositions were chosen for further

study. These objects were integrated using the n-body code SyMBA (Levison & Duncan, 1994) using

the integrator swift_rmvs3 based on the mapping by Wisdom & Holman (1991). The integration
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proceeded backwards in time with 40-day timesteps from epoch JD 2451545.0 and included the 4

outer planets and the KBOs as test particles with initial conditions given by JPL HORIZONS1.

Proper elements were taken as the 50 MYr average of the corresponding osculating elements.

Using the center of mass orbit found above reveals that 2003 UZ117 and 2005 CB79 have small

values of ∆vmin, less than some known fragments. (No other KBOs have significantly smaller

∆vmin than known family members.) KBO 2003 UZ117 has unpublished colors obtained by Tegler

et al.2 that show it has a clearly neutral color gradient. As shown in B07, all family members have

blue/neutral visible color gradients (see Table 3.1 and references therein). Although future infrared

observations are necessary, since this object has a strongly consistent color and is dynamically within

the core of other known fragments, we will consider it a member of the 2003 EL61 family. No color

or spectral information is available for 2005 CB79, but it has a very low ∆vmin and is an excellent

candidate family member.

We now seek a meaningful self-consistent value of ∆vmin for other KBOs which may or may not

be other family members. Allowing the center of mass orbital angles to vary can significantly change

the shape of the collisional cloud and the values of ∆v as illustrated in Figure 3.2. We could use the

center of mass orbit found above (thin lines in Figure 3.2), but the small number of family members

and their tight clustering does not provide a unique constraint for the orbital angles. On the other

hand, the orbital angles that minimize ∆v for each individual KBO may result in a collisional cloud

that is inconsistent with the distribution of known family members (dotted line in Figure 3.2). As a

compromise, we define ∆vmin for candidate KBOs as the minimum ∆v found by varying the orbital

angles under the constraint that all known family members must lie within the resulting collisional

cloud (thick solid curve in Figure 3.2). In other words, the angles are allowed to vary so long as the

candidate KBO has larger ∆vmin than all the known family members. This compromise allows for

flexibility in estimating the center of mass orbital angles that are compatible with the known family

members.

The results of this analysis are given in Table 3.1. For those KBOs known to be family members,

accounting for errors in the orbital elements (as listed on the AstDys website3) caused variations in

∆vmin of less than 5-10%.

1http://ssd.jpl.nasa.gov/horizons.cgi
2http://www.physics.nau.edu/̃ tegler/research/survey.htm
3http://hamilton.dm.unipi.it/cgi-bin/astdys/astibo
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Table 3.1. KBOs Near the 2003 EL61 Family

Name ∆vmin aP (AU) eP iP (◦) TP Ha Visible Gradientb Comments on Infrared Spectra References

1996 TO66 24.2 43.32 0.12 28.02 2.83 4.50 2.38 ± 2.04 Strong Water Ice 3,5
2003 UZ117 66.8 44.26 0.13 27.88 2.84 5.20 0.00 ± 1.96 (Strong Water Ice)? 6
2005 CB79 96.7 43.27 0.13 27.17 2.84 5.0 NA
2002 TX300 107.5 43.29 0.13 26.98 2.84 3.09 0.00 ± 0.67 Strong Water Ice 3
2005 RR43 111.2 43.27 0.13 27.07 2.84 4.00 NA Strong Water Ice 3
2003 OP32 123.3 43.24 0.10 27.05 2.85 4.10 −1.09 ± 2.20 Strong Water Ice 3
2005 FY9 141.2 45.56 0.16 27.63 2.84 -0.23 NA Methane Ice 1
2002 GH32 141.9 42.04 0.09 27.59 2.83 5.50 35.25 ± 10.21 4
1998 HL151 142.5 40.80 0.09 27.82 2.82 8.10 9.83 ± 21.2 4
2003 SQ317 148.0 42.67 0.09 28.16 2.83 6.30 NA
1995 SM55 149.7 41.84 0.10 26.85 2.84 4.80 1.79 ± 2.60 Strong Water Ice 3,5
1999 OK4 161.5 43.30 0.15 28.58 2.81 7.60 NA
2004 PT107 198.3 40.60 0.06 27.32 2.83 5.60 NA
2005 UQ513 199.2 43.46 0.16 27.12 2.84 3.7 NA Weak Water Ice 2
2003 HA57 214.3 39.44 0.15 28.40 2.78 8.10 NA
2004 SB60 221.0 42.08 0.10 25.59 2.86 4.40 NA
2003 TH58 229.6 39.44 0.06 29.50 2.78 7.60 NA
1998 WT31 233.3 46.04 0.19 27.91 2.83 7.05 5.57 ± 5.61 4
2002 AW197 265.0 47.28 0.12 26.00 2.90 3.27 22.45 ± 1.62 No Water Ice 3
1996 RQ20 269.9 43.89 0.10 31.74 2.76 6.95 19.81 ± 6.31 IR Colors Inconsistent 4,5
1999 OY3 292.8 43.92 0.17 25.80 2.86 6.76 −2.62 ± 3.39 Vis and IR Colors of Strong Water Ice 4,5
1999 OH4 305.1 40.52 0.04 26.71 2.84 8.30 NA IR Colors Inconsistent 5
1997 RX9 306.1 41.62 0.05 29.31 2.80 8.30 NA
2001 QC298 310.2 46.32 0.13 31.59 2.78 6.09 NA IR Colors Inconsistent 5
2003 EL61c 323.5 43.10 0.19 26.85 2.83 0.27 −0.18 ± 0.67 Strong Water Ice 3
2000 CG105 330.6 46.38 0.04 29.43 2.84 6.50 2.58 ± 17.72 IR Colors Inconsistent 4,5
2003 HX56 363.2 47.32 0.21 30.00 2.79 7.10 NA
1999 CD158 364.0 43.71 0.15 23.83 2.90 5.05 16.36 ± 3.41 IR Colors Inconsistent 4,5

References. — (1) Brown et al. (2007a) (2) Barkume et al. in press (3) Brown et al. (2007) (4) MBOSS Database
http://www.sc.eso.org/ õhainaut/MBOSS/ and references therein (5) Noll et al. (2005) (6) Tegler et al. website http://www.physics.nau.edu/

t̃egler/research/survey.htm

Note. — As explained in the text, ∆vmin is the minimum ejection velocity required to reach the orbit of the listed KBO from

the modeled 2003 EL61 family-forming collision in m s−1. The actual ejection velocities could be different, but the relative order
should be roughly correct. Known family members have visible color gradients near zero and strong water ice spectra. Other objects
listed could be family members or interlopers.

aAbsolute Magnitude

bAs defined in References 1 and 4. Objects without published colors list ”NA”.
cThis refers to the current proper elements, without allowing diffusion.
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The blue/neutral visible color gradients of 1998 HL151 and 1998 WT31 are similar to known

family members (see Tables 3.1 and 3.2 and references therein). Blue colors are suggestive, but do

not necessarily imply the strong water ice spectrum that characterizes this family (B07). With-

out observational evidence of a water-ice spectrum, we cannot confirm whether these objects are

2003 EL61 family members or merely interlopers, which appears to be the case for 2002 GH32 and

others which have red visible color gradients. Table(s) 3.1 (and 3.2) then serves as a guide for future

observations.

3.3.3 Resonant KBOs

As a consequence of the wide dispersion of fragments from a collision in the Kuiper belt, many

objects can be injected into various mean-motion resonances with Neptune. While KBOs in low-

order resonances (e.g., 3:2) can be stable for the age of the solar system, objects in high-order

resonances (found throughout the region of the 2003 EL61 family) will experience chaotic diffusion,

as discussed above. Over timescales of tens of millions to billions of years, the proper eccentricity

and inclination of resonant KBOs are not conserved. These objects can not be directly connected

to the family based on current proper elements because their proper elements have changed since

the formation of the family. How then can we identify such fragments? In the case of 2003 EL61,

it is the consistent strong water ice spectrum, as well as several indications of a past giant impact,

that connect it to the non-resonant objects. Similarly, in the asteroid belt, the Eos family intersects

the 4:9 Jovian resonance and objects in the resonance have diffused in eccentricity and inclination

(Morbidelli et al., 1995). Spectroscopic studies of a few asteroids in the resonance showed them to be

uniquely identifiable and consistent with the rest of the Eos family, confirming that these fugitives

are collisionally linked (Zappalà et al., 2000).

For resonant KBOs that have not yet diffused to scattered or low-perihelion orbits, the Tisserand

parameter with respect to Neptune, T , can be used as a reasonable dynamical criterion for family

membership. Through forward modeling, we have verified that the velocity dispersion (∆v . 300

m s−1) due to the collision and the forced variation of osculating elements in time together cause

maximal variations in T of about ∼ 0.1 from ∼ 2.85. Only about 16% of multi-opposition KBOs

have a Tisserand parameter between 2.74 and 2.96, and these were included in our integrations of

KBOs.

To identify candidate fragments that could have diffused in resonances, we allowed the proper

eccentricity and inclination of each KBO to vary, conserving the proper Tisserand parameter, while

the semi-major axis of the KBO was fixed to aP . The minimal velocity distance, found using

the method described above, is called δvmin to distinguish it from the velocity computed with the

current proper elements and is listed in Table 3.2. Of course, this value of δvmin will always be less

than the corresponding ∆vmin computed with unadjustable proper elements and will increase the
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number of interlopers. Even so, it can give an indication of objects that had low ejection velocities

and subsequently diffused in a resonance. Table 3.2 lists the resonances present in our integration

of these objects. Even for multi-opposition KBOs, current membership in any of the many weak

resonances in this region can be easily obscured within the errors in the determination of orbital

elements. To be conservative, we calculate δvmin for all KBOs in our integration. A lack of resonance

identification in Table 3.2 is not meant to imply that these objects have not actually been affected

by proper element diffusion.
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Table 3.2. Diffused KBOs Near the 2003 EL61 Family

Name δvmin aP (AU) emin imin(◦) TP Ha Visible Gradientb Comments on Infrared Spectra Resonance References

1996 TO66 15.0 43.32 0.11 28.09 2.83 4.50 2.38 ± 2.04 Strong Water Ice 19:11 3,5
2003 SQ317 31.4 42.67 0.11 27.92 2.83 6.30 NA
2005 UQ513 39.0 43.27 0.12 27.77 2.84 5.0 NA Weak Water Ice 2
2005 RR43 58.0 43.27 0.11 27.38 2.84 4.00 NA Strong Water Ice 3
2003 UZ117 60.8 44.26 0.12 28.01 2.84 5.20 0.00 ± 1.96 (Strong Water Ice)? 6
2005 CB79 66.5 43.27 0.11 27.40 2.84 5.0 NA
2002 TX300 68.4 43.29 0.11 27.23 2.84 3.09 0.00 ± 0.67 Strong Water Ice 3
1999 OK4 72.5 43.30 0.12 29.16 2.81 7.60 NA
2002 GH32 79.3 42.04 0.10 27.50 2.83 5.50 35.25 ± 10.21 4
1997 RX9 86.8 41.62 0.13 28.46 2.80 8.30 NA
2003 OP32 91.4 43.24 0.11 26.90 2.85 4.10 −1.09 ± 2.20 Strong Water Ice 3
1999 OY3 96.6 43.92 0.10 27.00 2.86 6.76 −2.62 ± 3.39 IR Colors of Strong Water Ice c 4,5
2005 FY9 118.0 45.56 0.15 27.87 2.84 -0.23 NA Methane Ice 1
1995 SM55 123.3 41.84 0.09 26.98 2.84 4.80 1.79 ± 2.60 Strong Water Ice 3,5
1998 HL151 136.4 40.80 0.11 27.55 2.82 8.10 9.83 ± 21.2 4
1998 WT31 139.8 46.04 0.16 28.57 2.83 7.05 5.57 ± 5.61 4
2000 CG105 149.0 46.38 0.16 28.04 2.84 6.50 2.58 ± 17.72 IR Colors Inconsistent 4,5
2004 PT107 161.9 40.60 0.09 27.08 2.83 5.60 NA
1999 RY215 183.0 45.28 0.11 26.37 2.88 6.13 4.54 ± 6.65 IR Colors Inconsistent 4,5
2001 FU172 200.0 39.44 0.08 28.62 2.80 8.30 NA 3:2
1999 OH4 200.5 40.52 0.08 26.45 2.84 8.30 NA IR Colors Inconsistent 5
2003 HA57 212.3 39.44 0.12 28.80 2.78 8.10 NA 3:2
2003 TH58 214.7 39.44 0.13 28.82 2.78 7.60 NA 3:2
2004 SB60 218.5 42.08 0.10 25.63 2.86 4.40 NA
2003 QX91 222.0 43.71 0.12 31.03 2.77 8.30 NA 7:4
2000 JG81 235.1 47.77 0.12 27.42 2.88 9.10 NA 2:1
1999 KR16 242.9 49.00 0.22 28.34 2.84 5.70 44.74 ± 3.21 IR Colors Inconsistent 4
2005 GE187 243.5 39.44 0.07 26.50 2.84 7.10 NA 3:2
1996 TR66 248.3 47.78 0.11 26.94 2.89 7.50 NA IR Colors Inconsistent 5

References. — (1) Brown et al. (2007a) (2) Barkume et al. in press (3) Brown et al. (2007) (4) MBOSS Database http://www.sc.eso.org/

õhainaut/MBOSS/ and references therein (5) Noll et al. (2005) (6) Tegler et al. website http://www.physics.nau.edu/ t̃egler/research/survey.htm

Note. — As explained in the text, δvmin is the minimum ejection velocity required to reach an orbit with the same proper semi-major axis

(aP ) and proper Tisserand parameter (TP ) of the listed KBOs in m s−1. Integrations indicate TP is nearly conserved during eccentricity
and inclination diffusion in mean-motion resonances. By construction, 2003 EL61 is the center of the collision (allowing diffusion). For those
objects which are resonant in our integration (identified by libration of the resonance angle in the past 4 MYr), the resonance type is listed.
Many more objects may be in resonance within the errors of orbit determination (e.g., 1999 OY3), which were not accounted for here.

aAbsolute Magnitude

bAs defined in References 1 and 4. Objects without published colors list ”NA”.
c1999 OY3 is probably affected by the 7:4 resonance.
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As with non-resonant objects, good spectroscopic evidence is required to consider these objects

part of the 2003 EL61 family. KBO 1999 OY3 has reported near-infrared colors consistent with

other family members, which have unique colors due to the presence of strong water ice absorptions

(Noll et al., 2005). Integrations of clones of this KBO that include errors in orbital elements show

that there is a high probability that it is in the 7:4 mean motion resonance. It also has a very low

resonant δvmin and, like 2003 EL61 and 1996 TO66, appears to be a family member in a resonance.

2005 UQ513 has a very low δvmin, but does not have the characteristic spectral features of the family

members.

3.4 Age of the Family

Determining the age of the 2003 EL61 family will allow new insights into the history of the Kuiper

belt. It is possible to constrain the age because the shape of a collisional cloud will evolve in time

by resonance diffusion (Milani & Farinella, 1994). In each resonance, the changing eccentricity

distribution of KBOs can be computed by numerical integrations. (Throughout this section, all

orbital elements refer to proper orbital elements.) As resonance diffusion is chaotic, ages cannot

be calculated by back-integration of known particles. Instead, an ensemble of particles (with an

assumed initial distribution of eccentricities) is integrated forward for the age of the solar system.

Comparing the eccentricities of remaining particles to the eccentricities of known family members

results in an age estimate.

3.4.1 Diffusion Time of 2003 EL61

One estimate of the age of the family is the time needed for 2003 EL61 to diffuse from its original

eccentricity to the current value. Matching the distribution of known family members above has

yielded an estimate of the initial eccentricity and inclination of 2003 EL61 before diffusion, assuming

that its displacement from the center of the family is small (which is expected from conservation of

momentum). From an ensemble of randomly placed test particles, 78 particles in the 12:7 resonance

with low values of ∆v from the collision center (near eP,orig = .118) were chosen for long-term

integration. Again using SyMBA with a 40-day timestep, these particles were integrated for the

age of the solar system. The initial configurations of the planets were also randomly chosen (by

randomly choosing the starting epoch in the past 100 MYr). As expected from the chaotic nature

of resonance diffusion, the results do not significantly depend on the orientation of the planets or

even the initial location of 2003 EL61. Initial eccentricities ranged from 0.09 to 0.14, but other than

a slight preference for higher eccentricity particles to escape sooner, the calculated diffusion times

were similar.

The current proper perihelion of 2003 EL61 is 35 AU, the approximate limit for stability against
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close encounters with Neptune. In our simulations, particles are usually removed shortly after

attaining the current eccentricity of EL61 eP,now = 0.186, though they occasionally diffuse back

down to lower eccentricities. In Figure 3.3, we have plotted the fraction of particles with proper

eccentricities below eP,now as a function of time. Nearly 90% of the particles have not diffused

the full distance a billion years into the integrations. After 3.5 billion years of evolution, roughly

half of the particles have reached the current eccentricity of 2003 EL61. We conclude that with

90% confidence, the 2003 EL61 family is older than 1 GYr, with an age estimate of 3.5 ± 2 GYr

(1-sigma). Importantly, the age is completely consistent with formation at the beginning of the solar

system: the family is ancient and likely primordial.

3.4.2 Diffusion Time of Other Resonant Family Members

As the progenitor of the collision, the resonance diffusion of 2003 EL61 is a special case because it

is a unique object. For other family members, a similar analysis would require assumptions about

the number of similar objects captured in each resonance. To avoid unnecessary assumptions, we

propose a simple method for estimating the age of the family by using the eccentricity distribution

of family members currently in the resonance instead of focusing on any single particle. The initial

eccentricity distribution in a resonance can be inferred from the eccentricity distribution of nearby

non-resonant particles whose (proper) eccentricities are essentially constant for the age of the solar

system. Integrating an ensemble of particles with the same starting eccentricities will produce an

evolving eccentricity distribution. As an example, consider the eccentricity evolution for the 12:7

resonants shown in Figure 3.4; only the eccentricities of objects still in the resonance are shown.

After debiasing the eccentricity distribution of known family members for detection biases, the

current eccentricity distribution can be statistically compared with the integrations. As it uses only

the distribution of remaining eccentricities, this method does not require any assumptions about the

efficiency of initial emplacement in or removal from the resonance in question.

The characteristic diffusion timescale of these resonances strongly depends on the order or

strength of the resonance. While 2003 EL61 is in the fifth-order 12:7 resonance, 1996 TO66 ap-

pears to be in the weaker eighth-order 19:11 resonance. Over the age of the solar system, the proper

eccentricities of 19:11 resonants (near the current location of TO66) only change by 0.01-0.02; this

is less than the accuracy with which one could infer the unknown initial location of these objects.

The eccentricity distribution of objects in such weak resonances are essentially constant in time and

therefore cannot provide a meaningful age constraint.

In contrast, 1999 OY3 is in the strong third-order 7:4 resonance. In addition to increased dif-

fusion times, 7:4 resonants often participate in the Kozai resonance which allows for exchange of

angular momentum between eccentricity and inclination (Lykawka & Mukai, 2005). Particles near

the assumed starting position of OY3 unpredictably enter and leave the Kozai resonance, potentially
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causing huge swings in eccentricity (as these are all high inclination particles) on very short (MYr)

timescales. Practically any current eccentricity could have possibly been generated by the Kozai

resonance in less than 10 MYr. Therefore, this resonance also appears to be a fruitless source of

useful age constraints from eccentricity diffusion. It is important to note here that the assumption

of constant TP is often violated by these particles; the Kozai resonance carries them to low perihelia

where they interact with Neptune (which is itself interacting with the other giant planets) often

causing a change in TP . Therefore, KBOs with low perihelia in the past or present are suscepti-

ble to inaccurate estimations of the initial ejection velocity (δvmin). Although these particles can

be significantly perturbed, in an integration of 20 particles in the 7:4 resonance starting near the

estimated initial conditions of OY3, half are still in the resonance after 4.5 GYr.

3.4.3 Future Age Estimates

In the future, more family members will be identified in resonances that will, like the 12:7 resonance,

have diffusion timescales that are neither too slow nor too fast. The addition of several new family

members will allow for further refinement of these age estimates.

It is possible to evaluate the number of resonant particles needed to make a significant improve-

ment upon our age estimate of 3.5 ± 2 GYr. From the distributions of remaining 12:7 resonants

shown in Figure 3.4, we randomly drew 5, 10, 50, and 100 eccentricities with replacement at half-

billion year intervals from particles that were still in the resonance. Every pair of distributions

was inter-compared using the Kuiper variant of the K-S test which returns a significance near 1

if the distributions are distinguishable statistically. This process (of random selection and cross-

comparison) was repeated 100 times and the results averaged. Figure 3.5 shows some of the results

of this analysis. For example, if the actual age of the family is 3.5 GYr (Figure 3.5, upper right) then

with ∼50 particles (triangles), an age of 2.5 GYr or younger can be ruled out since these eccentricity

distributions are different with greater than 90% significance. With ∼100 resonant particles, the

accuracy in the age determination can generally be brought down to 0.5 GYr.

Unfortunately, the chaotic nature of eccentricity diffusion makes it difficult to determine a precise

age without a large number of objects. However, it should be noted that each resonance gives an

essentially independent measure of the age so that a total of 50-100 known family members in the

appropriate (e.g., not too fast or too slow) resonances should be sufficient to get a relatively precise

age estimate. In the near future, as the high-inclination region of the Kuiper belt is probed much

more deeply, many new family members should be readily discovered.
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3.5 Discussion

Identifying more 2003 EL61 family members is very useful for learning more about this family and

its relationship to the formation and evolution of the outer solar system. Based on dynamical

and observational evidence, we add 2003 UZ117 and 1999 OY3 to the list of 2003 EL61 family

members, although the former should be observed in the infrared for confirmation of a strong water

ice signature.

Due to the highly dispersive nature of large Kuiper belt collisions, some simplifications were made

to identify potential family members. The computed values of ∆vmin (Table 3.1) and especially

δvmin (Table 3.2) could be significantly different from the true ejection velocities. Even so, we

find it highly significant that all of the known fragments of the 2003 EL61 family can be explained

by a velocity dispersion of 150 m s−1 from a single collision location, and allowing the objects in

resonances to diffuse in eccentricity. In addition, all known KBOs near the proposed collision have

strong water ice signatures, including the strongest such absorption features known in the Kuiper

belt (except possibly 2003 UZ117, whose spectrum is unknown) (B07). Combining dynamical and

spectroscopic evidence, the 2003 EL61 family currently includes, in order of decreasing absolute

magnitude: (136108) 2003 EL61, (55636) 2002 TX300, (145453) 2005 RR43, (120178) 2003 OP32,

(19308) 1996 TO66, (24835) 1995 SM55, 2003 UZ117, and (86047) 1999 OY3.

Many potential family members have no known photometric or spectroscopic observations. Ob-

servations of near-infrared colors on these objects will help to distinguish family members from

interlopers. Discovery of additional family members will do much to improve our understanding

of this family and the outer solar system. In particular, fragments in resonances have the unique

ability to constrain the age of the collisional family as eccentricity diffusion, though chaotic, is time

dependent. Based on the time needed for 2003 EL61 to diffuse to its current location, the family-

forming collision occurred at least a billion years ago. Indeed, the probability of such a collision is

only reasonable in the primordial Kuiper belt when the number densities of large KBOs was much

higher. However, the collision should have occurred after any significant dynamical stirring as the

orbital distribution of the family remains tight and seemingly unperturbed.

There appears to be no dynamical evidence that is not consistent with the formation of the

2003 EL61 family by an ancient collision. It is therefore interesting that all family members appear

to be bright and pristine with strong crystalline water ice spectra. (B07) These surfaces seem to

be exceptions to the premise that all static surfaces in the outer solar system darken and redden

in time (e.g., Luu & Jewitt, 1996). This is not due to their location in the outer solar system, as

there are KBOs dynamically nearby with red spectrally-featureless surfaces (see Tables 3.1 and 3.2).

Perhaps the collision was energetic enough to sublimate and lose volatiles before they were able to

transform into the higher-order hydrocarbons that are thought to be the darkening reddening agent
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dominant in the outer solar system. However, this does not really distinguish these family members

from all KBOs, at least some of which should have experienced similarly energetic impacts. Instead,

the distinguishing characteristic may be that the relatively large proto-2003 EL61 was able to fully

differentiate and the resulting fragments were compositionally much purer than other objects, even

fragments from non-differentiated progenitors. In any case, the unique spectra of family members

promise to improve our understanding of outer solar system surface processes (Barkume et al. 2007,

in press).

Understanding the surfaces of KBOs is one of many insights provided by the likely primordial

nature of the 2003 EL61 family. Another is the apparent need for higher number densities in

the past if the family-forming collision is to be rendered probable. Continuing identification and

characterization of family members can uniquely improve our understanding of this collision and its

connection to the formation and evolution of the outer solar system.
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Figure 3.1 Current proper orbtial elements of members of the 2003 EL61 family (circles) and potential
family members (diamonds). The cloud of small points illustrate the dispersion in semi-major axis,
eccentricity, and inclination of objects ejected from the nominal collision location (located at the
center of the square) with an isotropic ∆v of 150 m s−1, enough to explain all the currently known
members of the 2003 EL61 family. (Note that the orbital angles are chosen to minimize ∆v; the
actual ejection velocities may be larger.) The square identifies the calculated location of the collision
center which is assumed to be the initial location of 2003 EL61 before resonance diffusion (marked
by vertical lines). The two rightmost circles are the current proper elements of 1999 OY3 and 2003
UZ117, new family members identified in this work. KBO 1999 OY3 (which has visible and infrared
colors consistent with family members) is also allowed to diffuse to the location marked by the
triangle (see Table 3.2). The proper elements of other KBOs with ∆v < 250 m s−1(listed in Table
3.1) are shown as diamonds.
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Figure 3.2 Illustration of determining ∆v for candidate family members. The known (non-diffusing)
family members (circles) fall into a relatively small region of proper orbital element space. (In this
illustration, inclinations are held constant and collisions are located near the ecliptic.) These can be
explained by ejection from the center of mass orbit (square) with ∆v of 150 m s−1or less, marked
by the smallest thin solid curve. A hypothetical KBO (diamond) can be explained with larger ∆v
from the same center of mass orbit, shown by the larger thin curve. Alternatively, by changing the
orbital angles, particularly the mean anomaly, the shape of the collisional cloud can also change
requiring a much smaller ∆v (dotted curve). However, the resulting angle may be inconsistent with
the distribution of known family members, as in the case above. As a compromise between these
two methods, we find the ∆vmin for KBOs by allowing the center of mass orbital angles to vary
with the constraint that all known family members must lie within the collisional cloud (thick solid
curve).
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Figure 3.3 Fraction of particles that have eccentricities less than the current eccentricity of 2003 EL61
(eP < 0.186). Calculated from an integration of 78 12:7 resonants with initial eccentricities near
0.118 (the expected initial eccentricity of 2003 EL61). The current location of 2003 EL61 is attained
by 10% of resonant KBOs in less than ∼1 GYr. After nearly 4 GYr of evolution, half the particles
have passed the current location of 2003 EL61. We conclude that the 2003 EL61 family is ancient
and probably primordial.
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Figure 3.4 Distribution of eccentricities of 12:7 resonants at half-billion year intervals. Only particles
remaining in the resonance are shown. The bin size is 0.01 in eccentricity. A clear diffusion-like
spreading is evident in the widening of the initial peak. The eccentricities of KBOs in this resonance
will have a distribution that can be compared to these distributions in order to estimate an age.
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Figure 3.5 Correlations of eccentricity distributions with each other. As explained in the text, a
random sample of particles is chosen from two ages and compared using the Kuiper variant of the
K-S test. The probability that the two distributions are different is represented by the significance.
The cross-comparisons with all ages are shown for the initial distribution (upper left) and the
distributions at 3.5 GYr (upper right), 4.0 GYr (lower left), and 4.5 GYr (lower right). As expected
the significance of being drawn from different populations is least when the distribution at each
age is compared with itself. The different symbols represent the number of particles drawn from
each distribution as shown in the legend. About 50-100 resonant objects are needed to strongly
distinguish ages that differ by only half a billion years.
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Chapter 4

Orbits and Masses of the Satellites
of Dwarf Planet Haumea
(2003 EL61)

This chapter has been published in its entirety under the same title by authors D. Ragozzine and

M. E. Brown in the Astronomical Journal, 2009, Volume 137, pp. 4766-4776. Reproduced by per-

mission of the American Astronomical Society.
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Abstract

Using precise relative astrometry from the Hubble Space Telescope and the W. M. Keck Telescope,

we have determined the orbits and masses of the two dynamically interacting satellites of the dwarf

planet (136108) Haumea, formerly 2003 EL61. The orbital parameters of Hi’iaka, the outer, brighter

satellite, match well the previously derived orbit. On timescales longer than a few weeks, no Ke-

plerian orbit is sufficient to describe the motion of the inner, fainter satellite Namaka. Using a

fully-interacting three point-mass model, we have recovered the orbital parameters of both orbits

and the mass of Haumea and Hi’iaka; Namaka’s mass is marginally detected. The data are not suf-

ficient to uniquely determine the gravitational quadrupole of the non-spherical primary (described

by J2). The nearly co-planar nature of the satellites, as well as an inferred density similar to water

ice, strengthen the hypothesis that Haumea experienced a giant collision billions of years ago. The

excited eccentricities and mutual inclination point to an intriguing tidal history of significant semi-

major axis evolution through satellite mean-motion resonances. The orbital solution indicates that

Namaka and Haumea are currently undergoing mutual events and that the mutual event season will

last for the next several years.
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4.1 Introduction

The dwarf planet (136108) Haumea, formerly 2003 EL61, and about 3/4 of other large Kuiper belt

objects (KBOs) have at least one small close-in satellite (Weaver et al., 2006; Brown et al., 2006;

Brown & Suer, 2007). All of these larger KBOs are part of the excited Kuiper belt, where the

detectable binary fraction among smaller KBOs is much lower, only a few percent (Stephens & Noll,

2006). In contrast, the cold classical population (inclinations . 5◦) has no large KBOs (Levison &

Stern, 2001; Brown, 2008), but prevalent widely separated binaries with nearly equal masses (Noll

et al., 2008b). The differences between the types and frequency of Kuiper belt binaries may point

to different binary formation mechanisms. Small satellites of large KBOs appear to be formed by

collision, as proposed for the Pluto system (Canup, 2005; Stern et al., 2006), Eris and Dysnomia

(Brown & Schaller, 2007, but see Greenberg & Barnes, 2008), and Haumea (Barkume et al., 2006;

Brown et al., 2007; Fraser & Brown, 2009), but smaller KBO binaries have more angular momentum

than can be generated in typical impacts and are apparently formed by some other mechanism (e.g.,

Weidenschilling, 2002; Goldreich et al., 2002; Funato et al., 2004; Astakhov et al., 2005; Nesvorny,

2008). Both mechanisms of binary formation require higher number densities than present in the

current Kuiper belt, as modeled explicitly for the Haumea collision by Levison et al. (2008).

The collisional origin of Haumea’s two satellites — the outer, brighter satellite Hi’iaka (S1) and

the inner, fainter satellite Namaka (S2) — is inferred from several related observations. Haumea

has a moderate-amplitude light-curve and the shortest rotation period (3.9155 hours) among known

objects of its size (Rabinowitz et al., 2006). The rapid rotation requires a large spin angular mo-

mentum, as imparted by a large oblique impact. Using the mass of Haumea derived by the orbit of

Hi’iaka (Brown et al., 2005, hereafter B05), assuming Haumea’s rotation axis is nearly perpendicular

to the line-of-sight (like the satellites’ orbits), and assuming the shape is that of a Jacobi ellipsoid (a

homogeneous fluid), the photometric light curve can be used to determine the size, shape, albedo,

and density of Haumea (Rabinowitz et al., 2006; Lacerda & Jewitt, 2007, but see Holsapple, 2007).

It is estimated that Haumea is a tri-axial ellipsoid with approximate semi-axes of 500x750x1000 km

with a high albedo (0.73) and density (2.6 g/cm3), as determined by Rabinowitz et al. (2006). This

size and albedo are consistent with Spitzer radiometry (Stansberry et al., 2008). The inferred density

is near that of rock and higher than all known KBOs implying an atypically small ice fraction.

Haumea is also the progenitor of the only known collisional family in the Kuiper belt (Brown

et al., 2007). It seems that the collision that imparted the spin angular momentum also fragmented

and removed the icy mantle of the proto-Haumea (thus increasing its density) and ejected these

fragments into their own heliocentric orbits. The Haumea family members are uniquely identified by

deep water ice spectra and optically neutral color (Brown et al., 2007), flat phase curves (Rabinowitz

et al., 2008), and tight dynamical clustering (Ragozzine & Brown, 2007). The dynamical clustering
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is so significant that Ragozzine & Brown (2007) were able to correctly predict that 2003 UZ117

and 2005 CB79 would have deep water ice spectra characteristic of the Haumea family, as verified

by Schaller & Brown (2008). The distribution of orbital elements matches the unique signature of

a collisional family, when resonance diffusion (e.g., Nesvorný & Roig, 2001) is taken into account.

Using this resonance diffusion as a chronometer, Ragozzine & Brown (2007) find that the Haumea

family-forming collision occurred at least 1 GYr ago and is probably primordial. This is consistent

with the results of Levison et al. (2008), who conclude that the Haumea collision is only probable

between two scattered-disk objects in the early outer solar system when the number densities were

much higher.

In this work, we have derived the orbits and masses of Haumea, Hi’iaka, and Namaka. In Section

2, we describe the observations used to determine precise relative astrometry. The orbit-fitting

techniques and results are given in Section 3. Section 4 discusses the implications of the derived

orbits on the past and present state of the system. We conclude the discussion of this interesting

system in Section 5.

4.2 Observations and Data Reduction

Our data analysis uses observations from various cameras on the Hubble Space Telescope (HST) and

the NIRC2 camera with Laser Guide Star Adaptive Objects at the W. M. Keck Observatory. These

observations are processed in different ways; here we describe the general technique and below we

discuss the individual observations. Even on our relatively faint targets (V ≈ 21, 22), these powerful

telescopes can achieve relative astrometry with a precision of a few milliarcseconds. The Julian Date

of observation, the relative astrometric distance on-the-sky, and the estimated astrometric errors are

reported in Table 4.1.
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Table 4.1. Observed Astrometric Positions for the Haumea System

Julian Date Date Telescope Camera ∆xH ∆yH σ∆xH
σ∆yH

∆xN ∆yN σ∆xN
σ∆yN

arcsec arcsec arcsec arcsec

2453397.162 2005 Jan 26 Keck NIRC2 0.03506 -0.63055 0.01394 0.01394 · · · · · · · · · · · ·
2453431.009 2005 Mar 1 Keck NIRC2 0.29390 -1.00626 0.02291 0.02291 0.00992 0.52801 0.02986 0.02986
2453433.984 2005 Mar 4 Keck NIRC2 0.33974 -1.26530 0.01992 0.01992 · · · · · · · · · · · ·
2453518.816 2005 May 28 Keck NIRC2 -0.06226 0.60575 0.00996 0.00996 · · · · · · · · · · · ·
2453551.810 2005 Jun 30 Keck NIRC2 -0.19727 0.52106 0.00498 0.00996 -0.03988 -0.65739 0.03978 0.03978
2453746.525 2006 Jan 11 HST ACS/HRC -0.20637 0.30013 0.00256 0.00256 0.04134 -0.18746 0.00267 0.00267
2453746.554 2006 Jan 11 HST ACS/HRC -0.20832 0.30582 0.00257 0.00257 0.03867 -0.19174 0.00267 0.00267
2454138.287 2007 Feb 6 HST WFPC2 -0.21088 0.22019 0.00252 0.00197 -0.02627 -0.57004 0.00702 0.00351
2454138.304 2007 Feb 6 HST WFPC2 -0.21132 0.22145 0.00095 0.00204 -0.03107 -0.56624 0.00210 0.00782
2454138.351 2007 Feb 6 HST WFPC2 -0.21515 0.23185 0.00301 0.00206 -0.03009 -0.55811 0.00527 0.00564
2454138.368 2007 Feb 6 HST WFPC2 -0.21402 0.23314 0.00192 0.00230 -0.03133 -0.56000 0.00482 0.00663
2454138.418 2007 Feb 6 HST WFPC2 -0.21705 0.24202 0.00103 0.00282 -0.03134 -0.54559 0.00385 0.00376
2454138.435 2007 Feb 6 HST WFPC2 -0.21449 0.24450 0.00323 0.00254 -0.02791 -0.54794 0.00571 0.00524
2454138.484 2007 Feb 6 HST WFPC2 -0.21818 0.25301 0.00153 0.00224 -0.02972 -0.53385 0.00797 0.01330
2454138.501 2007 Feb 7 HST WFPC2 -0.21807 0.25639 0.00310 0.00291 -0.03226 -0.53727 0.00531 0.00400
2454138.551 2007 Feb 7 HST WFPC2 -0.22173 0.26308 0.00146 0.00230 -0.03429 -0.53079 0.00497 0.00582
2454138.567 2007 Feb 7 HST WFPC2 -0.21978 0.26791 0.00202 0.00226 -0.03576 -0.52712 0.00270 0.00479
2454469.653 2008 Jan 4 HST WFPC2 0.23786 -1.27383 0.00404 0.00824 -0.02399 -0.28555 0.00670 0.00831
2454552.897 2008 Mar 27 Keck NIRC2 0.19974 -0.10941 0.00930 0.00956 · · · · · · · · · · · ·
2454556.929 2008 Mar 31 Keck NIRC2 0.32988 -0.77111 0.00455 0.00557 0.00439 -0.76848 0.01239 0.01280
2454556.948 2008 Mar 31 Keck NIRC2 0.33367 -0.77427 0.00890 0.00753 0.01363 -0.76500 0.01976 0.01252
2454556.964 2008 Mar 31 Keck NIRC2 0.33267 -0.77874 0.00676 0.00485 0.00576 -0.77375 0.01212 0.01283
2454557.004 2008 Mar 31 Keck NIRC2 0.33543 -0.78372 0.00404 0.00592 0.00854 -0.77313 0.01199 0.00897
2454557.020 2008 Mar 31 Keck NIRC2 0.33491 -0.78368 0.00374 0.00473 0.00075 -0.76974 0.00907 0.01015
2454557.039 2008 Mar 31 Keck NIRC2 0.33712 -0.78464 0.00740 0.00936 0.00988 -0.77084 0.01793 0.01543
2454557.058 2008 Mar 31 Keck NIRC2 0.33549 -0.78692 0.00868 0.00852 0.01533 -0.76117 0.00765 0.01571
2454557.074 2008 Mar 31 Keck NIRC2 0.33128 -0.78867 0.01431 0.01411 0.00645 -0.76297 0.01639 0.01390
2454557.091 2008 Mar 31 Keck NIRC2 0.33687 -0.79462 0.00803 0.00717 0.00708 -0.76986 0.01532 0.00787
2454593.726 2008 May 7 HST NICMOS -0.18297 1.08994 0.00354 0.00425 0.00243 -0.75878 0.00576 0.00761
2454600.192 2008 May 13 HST WFPC2 0.10847 0.17074 0.00508 0.00427 -0.02325 0.19934 0.00480 0.01161
2454601.990 2008 May 15 HST WFPC2 0.18374 -0.13041 0.00729 0.00504 -0.02293 0.50217 0.00618 0.00614
2454603.788 2008 May 17 HST WFPC2 0.24918 -0.43962 0.00207 0.00574 -0.01174 0.59613 0.00366 0.00485
2454605.788 2008 May 19 HST WFPC2 0.29818 -0.75412 0.00467 0.00966 0.00006 0.29915 0.00425 0.00613

Note. — Summary of observations of the astrometric positions of Hi’iaka (H) and Namaka (N) relative to Haumea. The difference in brightness
(∼6) and orbital planes allow for a unique identification of each satellite without possibility of confusion. The method for obtaining the astrometric
positions and errors is described in Section 4.2 and Brown et al. (2005). On a few dates, the fainter Namaka was not detected because the observations
were not of sufficiently deep or Namaka was located within the PSF of Haumea. This data is shown graphically in Figure 4.2 and the residuals to the
fit shown in Figure 4.3. For reasons described in the text, only the HST data is used to calculate the orbital parameters, which are shown in Table
4.2.
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Observations from Keck are reduced as in B05. Known bad pixels were interpolated over and each

image divided by a median flat-field. The images were then pair-wise subtracted (from images taken

with the same filter). The astrometric centroid of each of the visible objects is determined by fitting

two-dimensional Gaussians. Converting image distance to on-the-sky astrometric distance is achieved

using the recently derived pixel scale of Ghez et al. (2008), who calibrate the absolute astrometry of

the NIRC2 camera and find a plate scale of 0.009963”/pixel (compared to the previously assumed

value of 0.009942”/pixel) and an additional rotation of 0.13◦ compared with the rotation information

provided in image headers. Ghez et al. (2008) and He lminiak & Konacki (2008) find that the plate-

scale and rotation are stable over the timescale of our observations. Error bars are determined from

the scatter of the measured distances from each individual image; typical integration times were

about 1 minute. When the inner satellite is not detected in individual images, but can be seen in

the stacked image, then the position is taken from the stacked image, after individually rotating,

and the error bars are simply scaled to the error bars of the outer satellite by multiplying by the

square root of the ratio of signal/noise (∼5). The minute warping of the NIRC2 fields1 is much

smaller than the quoted error bars.

HST benefits from a known and stable PSF and well-calibrated relative astrometry. This allows

for precise measurements, even when the satellites are quite close to Haumea. For each of the HST

observations, model PSFs were generated using Tiny Tim2. The model PSFs assumed solar colors,

as appropriate for Haumea and its satellites, and were otherwise processed according to the details

given in The Tiny Tim User’s Guide. All three PSFs were then fitted simultaneously to minimize χ2,

with errors taken from photon and sky noise added in quadrature. Bad pixels and cosmic rays were

identified by hand and masked out of the χ2 determination. The distortion correction of Anderson

& King (2003) for WFPC2 is smaller than our error bars for our narrow angle astrometry and was

not included. Relative on-the-sky positions were calculated using the xyad routine of the IDL Astro

Library, which utilizes astrometry information from the image headers.

The acquisition and analysis of the satellite images taken in 2005 at Keck are described in B05.

However, there is a sign error in the R. A. Offsets listed in Table 1 of 2005; the values listed are

actually the on-the-sky deviations (as visible from their Figure 1). Despite this typographical error,

the fit of B05 was carried out correctly. The observed locations and estimated errors of the inner

satellite are given in Brown et al. (2006). The astrometric positions reported in Table 4.1 are slightly

different based on a reanalysis of some of the data as well as a new plate scale and rotation, discussed

above. Based on our orbital solution and a reinvestigation of the images, we have determined that

the May 28, 2005 observation of Namaka reported in Brown et al. (2006) was spurious; residual

long-lived speckles from the adaptive optics correction are often difficult to distinguish from faint
1See the NIRC2 Astrometry page at http://www2.keck.hawaii.edu/inst/nirc2/forReDoc/

post observing/dewarp/.
2Available at http://www.stsci.edu/software/tinytim/tinytim.html.
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close-in satellites.

In 2006, HST observed Haumea with the High Resolution Camera of the Advanced Camera for

Surveys (Program 10545). Two five minute integrations were taken at the beginning and end of a

single orbit. The raw images were used for fitting, requiring distorted PSFs and distortion-corrected

astrometry. The astrometric accuracy of ACS is estimated to be ∼0.1 pixels to which we add the

photon noise error in the positions of the three objects. The high precision of ACS allows for motion

to be detected between these two exposures, so these errors are not based on the scatter of multiple

measurements as with all the other measurements.

At the beginning of February 2007, Hubble observed Haumea for 5 orbits, obtaining highly

accurate positions for both satellites (Program 10860). The motion of the satellites from orbit to

orbit is easily detected, and motion during a single orbit can even be significant, so we subdivided

these images into 10 separate “observations”. The timing of the observations were chosen to have a

star in the field of view, from which the Tiny Tim PSF parameters are modeled in manner described

in Brown & Trujillo (2004). The observations do not track Haumea, but are fixed on the star to

get the best PSF which is then appropriately smeared for the motion of the objects. Even though

these observations were taken with the Wide Field Planetary Camera — the ACS High-Resolution

Camera failed only a week earlier — the PSF fitting works excellently and provides precise positions.

Astrometric errors for these observations were determined from the observed scatter in positions after

subtracting the best fit quadratic trend to the data, so that observed orbital motion is not included

in the error estimate. We note here that combined deep stacks of these images revealed no additional

outer satellites brighter than ∼0.25% fractional brightness at distances out to about a tenth of the

Hill sphere (i.e., about 0.1% of the volume where additional satellites would be stable).

In 2008, we observed Haumea with Keck NIRC2 on the nights of March 28 and March 31. The

observations on March 31 in H band lasted for about 5 hours under good conditions, with clear

detections of both satellites in each image. These were processed as described above. Observations

where Haumea had a large FWHM were removed; about 75% of the data was kept. As with the

February 2007 HST data, we divided the observations into 10 separate epochs and determined errors

from scatter after subtracting a quadratic trend. The motion of the outer satellite is easily detected,

but the inner satellite does not move (relative to Haumea) within the errors because it is at southern

elongation. The March 28 data was not nearly as good as the March 31 data due to poor weather

conditions and only the outer satellite is clearly detected.

In early May 2008, HST observed Haumea using the NICMOS camera (Program 11169). These

observations were processed as described above, though a few images with obvious astrometric errors

(due to the cosmic rays which riddle these images) were discarded. These are the same observations

discussed by Fraser & Brown (2009).

In mid-May 2008, we observed Haumea at five epochs using the Wide Field Planetary Camera
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(WFPC2), over the course of 8 days (Program 11518). Each of these visits consisted of four ∼10

minute exposures. These data, along with an observation in January 2008, were processed as de-

scribed above. Although we expect that some of these cases may have marginally detected motion of

the satellites between the four exposures, ignoring the motion only has the effect of slightly inflating

the error bars for these observations. Namaka was too close to Haumea (. 0.1”) to observe in the

May 12, 2008 image, which is not used.

The derived on-the-sky relative astrometry for each satellite, along with the average Julian Date

of the observation and other information are summarized in Table 4.1. These are the astrometric

data used for orbit fitting in this paper. In earlier attempts to determine the orbit of Namaka, we

also obtained other observations. On the nights of April 20 and 21, 2006, we observed Haumea with

the OSIRIS camera and LGSAO at Keck. Although OSIRIS is an integral-field spectrometer, our

observations were taken in photometric mode. In co-added images, both satellites were detected on

both nights. We also received queue-scheduled observations of Haumea with the NIRI camera on

Gemini and the LGSAO system Altair. In 2007, our Gemini program resulted in four good nights

of data on April 9 and 13, May 4, and June 5. In 2008, good observations were taken on April 20,

May 27, and May 28. In each of the Gemini images, the brighter satellite is readily found, but the

fainter satellite is often undetectable.

The accuracy of the plate scale and rotation required for including OSIRIS and Gemini observa-

tions is unknown, so these data are not used for orbit determination. We have, however, projected

the orbits derived below to the positions of all known observations. The scatter in the Monte

Carlo orbital suites (described below) at the times of these observations is small compared to the

astrometric error bars of each observation, implying that these observations are not important for

improving the fit. Predicted locations do not differ significantly from the observed locations, for any

observation of which we are aware, including those reported in Barkume et al. (2006) and Lacerda

(2008).

Using these observations, we can also do basic relative photometry of the satellites. The bright-

ness of the satellites was computed from the height of the best-fit PSFs found to match the May

15, 2008 HST WFPC2 observation. Based on the well-known period and phase of the light curve

of Haumea (Lacerda et al., 2008; D. Fabrycky, pers. comm.), Haumea was at its faintest during

these observations and doesn’t change significantly in brightness. Hi’iaka was found to be ∼10 times

fainter than Haumea and Namaka ∼3.7 times fainter than Hi’iaka.

4.3 Orbit Fitting and Results

The orbit of Hi’iaka and mass of Haumea were originally determined by B05. From three detections

of Namaka, Brown et al. (2006) estimated three possible orbital periods around 18, 19, and 35 days.
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The ambiguity resulted from an under-constrained problem: at least 4-5 astrometric observations

are required to fully constrain a Keplerian orbit. Even after additional astrometry was obtained,

however, no Keplerian orbit resulted in a reasonable fit, where, as usual, goodness-of-fit is measured

by the χ2 statistic, and a reduced χ2 of order unity is required to accept the orbit model. By

forward integration of potential Namaka orbits, we confirmed that non-Keplerian perturbations

due to Hi’iaka (assuming any reasonable mass) causes observationally significant deviations in the

position of Namaka on timescales much longer than a month. Therefore, we expanded our orbital

model to include fully self-consistent three-body perturbations.

4.3.1 Three Point-Mass Model

Determining the orbits and masses of the full system requires a 15-dimensional, highly non-linear,

global χ2 minimization. We found this to be impractical without a good initial guess for the orbit of

Namaka to reduce the otherwise enormous parameter space, motivating the acquisition of multiple

observations within a short enough timescale that Namaka’s orbit is essentially Keplerian. Fitting

the May 2008 HST data with a Keplerian model produced the initial guess necessary for the global

minimization of the fully-interacting three point-mass model. The three point-mass model uses 15

parameters: the masses of the Haumea, Hi’iaka, and Namaka, and, for both orbits, the osculating

semi-major axis, eccentricity, inclination, longitude of the ascending node, argument of periapse,

and mean anomaly at epoch HJD 2454615.0 (= May 28.5, 2008). All angles are defined in the J2000

ecliptic coordinate system. Using these orbital elements, we constructed the Cartesian locations and

velocities at this epoch as an initial condition for the three-body integration. Using a sufficiently

small timestep (∼300 seconds for the final iteration), a FORTRAN 90 program integrates the system

to calculate the positions relative to the primary and the positions at the exact times of observation

are determined by interpolation. (Observation times were converted to Heliocentric Julian Dates,

the date in the reference frame of the Sun, to account for light-travel time effects due to the motion

of the Earth and Haumea, although ignoring this conversion does not have a significant effect on

the solution.) Using the JPL HORIZONS ephemeris for the geocentric position of Haumea, we

vectorially add the primary-centered positions of the satellites and calculate the relative astrometric

on-the-sky positions of both satellites. This model orbit is then compared to the data by computing

χ2 in the normal fashion. We note here that this model does not include gravitational perturbations

from the Sun or center-of-light/center-of-mass corrections, which are discussed below.

Like many multi-dimensional non-linear minimization problems, searching for the best-fitting

parameters required a global minimization algorithm to escape the ubiquitous local minima. Our

algorithm for finding the global minimum starts with thousands of local minimizations, executed with

the Levenberg-Marquardt algorithm mpfit3 using numerically-determined derivatives. These local
3An IDL routine available at http://www.physics.wisc.edu/∼craigm/idl/fitting.html.
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minimizations are given initial guesses that cover a very wide range of parameter space. Combining

all the results of these local fits, the resultant parameter vs. χ2 plots showed the expected parabolic

shape (on scales comparable to the error bars) and these were extrapolated to the their minima.

This process was iterated until a global minimum is found; at every step, random deviations of the

parameters were added to the best-fit solutions, to ensure a full exploration of parameter space.

Because many parameters are highly correlated, the ability to find the best solutions was increased

significantly by adding correlated random deviations to the fit parameters as determined from the

covariance matrix of the best known solutions. We also found it necessary to optimize the speed of

the evaluating of χ2 from the 15 system parameters; on a typical fast processor this would take a

few hundredths of a second and a full local minimization would take several seconds.

To determine the error bars on the fit parameters, we use a Monte Carlo technique (B05), as

suggested in Press et al. (1992). Synthetic data sets are constructed by adding independent Gaussian

errors to the observed data. The synthetic data sets are then fit using our global minimization

routine, resulting in 86 Monte Carlo realizations; four of the synthetic data-sets did not reach

global minima and were discarded, having no significant affect on the error estimates. One-sigma

one-dimensional error bars for each parameter are given by the standard deviation of global-best

parameter fits from these synthetic datasets. For each parameter individually, the distributions were

nearly Gaussian and were centered very nearly on the best-fit parameters determined from the actual

data. The error bars were comparable to error bars estimated by calculating where χ2 increased by

1 from the global minimum (see Press et al., 1992).

First, we consider a solution using only the observations from HST. Even though these are

taken with different instruments (ACS, NICMOS, and mostly WFPC2), the extensive calibration

of these cameras allows the direct combination of astrometry into a single dataset. The best-fit

parameters and errors are shown in Table 4.2. The reduced chi-square for this model is χ2
red = 0.64

(χ2 = 36.4 with 57 degrees of freedom). The data are very well-fit by the three point mass model,

as shown in Figures 4.2 and 4.3. A reduced χ2 less than 1 is an indication that error bars are

overestimated, assuming that they are independent; we note that using 10 separate “observations”

for the Feb 2007 data implies that our observations are not completely independent. Even so, χ2
red

values lower than 1 are typical for this kind of astrometric orbit fitting (e.g., Grundy et al., 2008).

Each of the fit parameters is recovered, though the mass of Namaka is only detected with a 1.2-σ

significance. Namaka’s mass is the hardest parameter to determine since it requires detecting minute

non-Keplerian perturbations to orbit of the more massive Hi’iaka. The implications of the orbital

state of the Haumea system are described in the next section. We also list in Table 4.3 the initial

condition of the three-body integration for this solution.

The HST data are sufficient to obtain a solution for Hi’iaka’s orbit that is essentially the same

as the orbit obtained from the initial Keck data in B05. Nevertheless, the amount and baseline of
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Keck NIRC2 data is useful enough to justify adding this dataset to the fit. Simply combining these

datasets and searching for the global minimum results in a significant degradation in the fit, going

from a reduced χ2 of 0.64 to a reduced χ2 of ∼1.10, although we note that this is still an adequate fit.

Adding the Keck data has the effect of generally lowering the error bars and subtly changing some of

the retrieved parameters. Almost all of these changes are within the ∼1-σ error bars of the HST only

solution, except for the mass estimate of Namaka. Adding the Keck data results in a best-fit Namaka

mass a factor of 10 lower than the HST data alone. The largest mass retrieved from the entire Monte

Carlo suite of solutions to the HST+Keck dataset is ∼ 8 × 1017 kg, i.e., a Namaka/Haumea mass

ratio of 2 × 10−4, which is inconsistent with the brightness ratio of ∼0.02, for albedos less than 1

and densities greater than 0.3 g/cc. However, this solution assumes that the Keck NIRC2 absolute

astrometry (based on the solution of Ghez et al. (2008), which is not directly cross-calibrated with

HST) is perfectly consistent with HST astrometry. In reality, a small difference in the relative plate

scale and rotation between these two telescopes could introduce systematic errors. Adding fitted

parameters that adjust the plate scale and rotation angle does not help, since this results in over-

fitting, as verified by trial fitting of synthetic datasets. We adopt the HST-only solution, keeping in

mind that the nominal mass of Namaka may be somewhat overestimated.

Using the Monte Carlo suite of HST-only solutions, we can also calculate derived parameters

and their errors. Using Kepler’s Law (and ignoring the other satellite), the periods of Hi’iaka and

Namaka are 49.462 ± 0.083 days and 18.2783 ± 0.0076 days, respectively, with a ratio of 2.7060

± 0.0037, near the 8:3 resonance. The actual mean motions (and resonance occupation) will be

affected by the presence of the other satellite and the non-spherical nature of the primary (discussed

below).

The mass ratios of the satellite to Haumea are 0.00451 ± 0.00030 and 0.00051 ± 0.00036, re-

spectively and the Namaka/Hi’iaka mass ratio is 0.116 ± 0.086. The mutual inclination of the two

orbits is φ = 13.41◦±0.08◦, where the mutual inclination is the actual angle between the two orbits,

given by cosφ = cos iH cos iN + sin iH sin iN cos(ΩH − ΩN ), where i and Ω are the inclination and

longitude of ascending node. The origin of this significantly non-zero mutual inclination is discussed

in Section 4.4.3.2. The mean longitude λ ≡ Ω + ω + M , is the angle between the reference line

(J2000 ecliptic first point of Ares) and is determined well; the errors in the argument of periapse (ω)

and mean anomaly (M) shown in Tabel 4.2 are highly anti-correlated. Our Monte Carlo results give

λH = 153.80± 0.34 degrees and λN = 202.57± 0.73 degrees. Finally, under the nominal point-mass

model, Namaka’s argument of periapse changes by about -6.5◦ per year during the course of the

observations, implying a precession period of about 55 years; the non-Keplerian nature of Namaka’s

orbit is detected with very high confidence.
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Table 4.2. Fitted Parameters of the Haumea System

Object Parameter Value Error Units

Haumea Mass 4.006 ± 0.040 1021 kg
Hi’iaka Mass 1.79 ± 0.11 1019 kg

Semi-major axis 49880 ± 198 km
Eccentricity 0.0513 ± 0.0078
Inclination 126.356 ± 0.064 degrees
Longitude of ascending node 206.766 ± 0.033 degrees
Argument of periapse 154.1 ± 5.8 degrees
Mean anomaly 152.8 ± 6.1 degrees

Namaka Mass 1.79 ± 1.48 1018 kg
Semi-major axis 25657 ± 91 km
Eccentricity 0.249 ± 0.015
Inclination 113.013 ± 0.075 degrees
Longitude of ascending node 205.016 ± 0.228 degrees
Argument of periapse 178.9 ± 2.3 degrees
Mean anomaly 178.5 ± 1.7 degrees

Note. — Orbital parameters at epoch HJD 2454615.0. The nominal values
are from the best fit to the HST data, while the (often correlated) error bars
are the standard deviation of fitted values returned from a Monte Carlo suite
of 86 datasets. These are the osculating orbital elements at this epoch; due
to the three-body interactions, these values (especially the angles) change
over the timescale of observations. All angles are referenced to the J2000
ecliptic coordinate system. See Table 4.3 for the Cartesian positions of the
two satellites at this epoch.

Table 4.3. State Vector for the Haumea System

Object x (m) y (m) z (m) vx (m/s) vy (m/s) vz (m/s)

Hi’iaka -18879430 -36260639 -32433454 60.57621 1.85403 -34.81242
Namaka -28830795 -13957217 -1073907 16.07022 -26.60831 -72.76764

Note. — Cartesian position and velocity of Haumea’s satellites relative to Haumea
in the J2000 ecliptic coordinate system at epoch HJD 2454615.0 corresponding to the
best-fit orbital parameters shown in Table 4.2.
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4.3.2 Including the J2 of Haumea

The non-spherical nature of Haumea can introduce additional, potentially observable, non-Keplerian

effects. The largest of these effects is due to the lowest-order gravitational moment, the quadrupole

term (the dipole moment is 0 in the center of mass frame), described by J2 (see, e.g., Murray &

Dermott, 2000). Haumea rotates over 100 times during a single orbit of Namaka, which orbits quite

far away at ∼35 primary radii. To lowest order, therefore, it is appropriate to treat Haumea as

having an “effective” time-averaged J2. Using a code provided by E. Fahnestock, we integrated

trajectories similar to Namaka’s orbit around a homogeneous rotating tri-axial ellipsoid and have

confirmed that the effective J2 model deviates from the full model by less than half a milliarcsecond

over three years.

The value of the effective J2 (≡ −C20) for a rotating homogeneous tri-axial ellipsoid was derived

by Scheeres (1994):

J2R
2 =

1
10

(α2 + β2 − 2γ2) ' 1.04× 1011m2 (4.1)

where α, β, and γ are the tri-axial radii and the numerical value corresponds to a (498 x 759 x

980) km ellipsoid as inferred from photometry (Rabinowitz et al., 2006). We note that the physical

quantity actually used to determine the orbital evolution is J2R
2; in a highly triaxial body like

Haumea, it is not clear how to define R, so using J2R
2 reduces confusion. If R is taken to be the

volumetric effective radius, then R ' 652 km and the J2 ' 0.244. Note that the calculation and use

of J2 implicitly requires a definition of the rotation axis, presumed to be aligned with the shortest

axis of the ellipsoid.

Preliminary investigations showed that using this value of J2R
2 implied a non-Keplerian effect

on Namaka’s orbit that was smaller, but similar to, the effect of the outer satellite. The primary

observable effect of both J2 and Hi’iaka is the precession of apses and nodes of Namaka’s eccentric

and inclined orbit (Murray & Dermott, 2000). When adding the three relevant parameters — J2R
2

and the direction of the rotational axis4 — to our fitting procedure, we found a direct anti-correlation

between J2R
2 and the mass of Hi’iaka, indicating that these two parameters are degenerate in the

current set of observations. The value of the reduced χ2 was lowered significantly by the addition

of these parameters, with the F-test returning high statistical significance. However, the best fits

placed the satellites on polar orbits. We have verified that the fitted values of J2R
2 and the spin

pole perpendicular to the orbital poles is due to over-fitting of the data. We generated simulated

observations with the expected value of J2R
2 and with the satellites in nearly equatorial orbits.

Allowing the global fitter to vary all the parameters resulted in an over-fitted solution that placed

the satellites on polar orbits. Hence, allowing J2 and the spin pole to vary in the fit is not justified;

the effect of these parameters on the solution are too small and/or too degenerate to detect reliably.
4When adding J2, our three-body integration was carried out in the frame of the primary spin axis and then

converted back to ecliptic coordinates.
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Furthermore, since the model without these parameters already had a reduced χ2 less than 1, these

additional parameters were not warranted in the first place.

It is interesting, however, to consider how including this effect would change the determination

of the other parameters. We therefore ran an additional set of models with a fixed J2R
2 and fixing

the spin pole (more accurately, the axis by which J2 is defined) as the mass-weighted orbital pole

of Hi’iaka and Namaka; since Hi’iaka is ∼10 times more massive than Namaka, this puts Hi’iaka on

a nearly equatorial orbit (i ' 1◦), as would be expected from collisional formation. Holding J2R
2

fixed at 1.04×1011 m2, we reanalyzed the HST dataset using our global fitting routine. As expected,

none of the parameters change by more than 1-σ, except for the mass of Hi’iaka, which was reduced

by almost 30% to ∼ 1.35 × 1019 kg. (In fits where J2R
2 was allowed to vary, the tradeoff between

J2R
2 and Hi’iaka’s mass was roughly linear, as would be expected if the sum of these effects were

forced to match the observationally determined precession of Namaka.) The data were well fit by

the non-point mass model, with the forced J2R
2 and spin pole solution reaching a global reduced

χ2 of 0.72. Since Haumea’s high-amplitude light-curve indicates a primary with a large quadrupole

component, the nominal mass of Hi’iaka in the point-mass case is almost certainly an overestimate

of its true mass. More data will be required to disentangle the degeneracy between the mass of

Hi’iaka and the J2 of Haumea. Including J2 and/or the Keck data do not improve the estimates of

Namaka’s mass.

4.4 Implications of Orbital Solutions

Taking the orbital solutions derived in the previous section, we can begin to answer questions relevant

to the formation and evolution of this unique satellite system.

4.4.1 Mutual Events and Satellite Sizes

According to the orbit solution, the Haumea system is currently undergoing mutual events, as re-

ported in (Fabrycky et al., 2008). (This is also true using the other orbit solutions, e.g., HST+Keck,

with or without J2.) Using the known orbit, the angle between Namaka, Haumea, and the Earth

(in the case of occultations) or the Sun (in the case of shadowing) falls well below the ∼13 milliarc-

seconds (∼500 km) of the projected shortest axis of Haumea. Observing multiple mutual events

can yield accurate and useful measurements of several system properties as shown by the results

of the Pluto-Charon mutual event season (e.g., Binzel & Hubbard, 1997). The depth of an event

where Namaka occults Haumea leads to the ratio of albedos and, potentially, a surface albedo map

of Haumea, which is known to exhibit color variations as a function of rotational phase, indicative

of a variegated surface (Lacerda et al., 2008; Lacerda, 2008). Over the course of a single season,

Namaka will traverse several chords across Haumea allowing for a highly accurate measurement of



102

Haumea’s size, shape, and spin pole direction (e.g., Descamps et al., 2008). The precise timing

of mutual events will also serve as extremely accurate astrometry, allowing for an orbital solution

much more precise than reported here. We believe that incorporating these events into our as-

trometric model will be sufficient to independently determine the masses of all three bodies and

J2R
2. Our solution also predicts a satellite-satellite mutual event in July 2009 — the last such

event until the next mutual event season begins around the year 2100. Our knowledge of the state

of the Haumea system will improve significantly with the observation and analysis of these events.

See http://web.gps.caltech.edu/∼mbrown/2003EL61/mutual for up-to-date information on the

Haumea mutual events. Note that both the mutual events and the three-body nature of the system

are valuable for independently checking the astrometric analysis, e.g., by refining plate scales and

rotations.

Using the best-fit mass ratio and the photometry derived in Section 4.2, we can estimate the

range of albedos and densities for the two satellites. The results of this calculation are shown in

Figure 4.4. The mass and brightness ratios clearly show that the satellites must either have higher

albedos or lower densities than Haumea; the difference is probably even more significant than shown

in Figure 4.4 since the nominal masses of Hi’iaka and Namaka are probably overestimated (see

Section 4.3). The similar spectral (Barkume et al., 2006) and photometric (Fraser & Brown, 2009)

properties of Haumea, Hi’iaka, and Namaka indicate that their albedos should be similar. Similar

surfaces are also expected from rough calculations of ejecta exchange discussed by Stern (2009),

though Benecchi et al. (2008) provide a contrary viewpoint. If the albedos are comparable, the

satellite densities indicate a mostly water ice composition (ρ ≈ 1.0 g/cc). This lends support to

the hypothesis that the satellites are formed from a collisional debris disk composed primarily of

water ice from the shattered mantle of Haumea. This can be confirmed in the future with a direct

measurement of Namaka’s size from mutual event photometry. Assuming a density of water ice, the

estimated radii of Hi’iaka and Namaka are ∼160 km and ∼80 km, respectively.

4.4.2 Long-term Orbital Integrations

It is surprising to find the orbits in an excited state, both with non-zero eccentricities and with

a rather large mutual inclination. In contrast the regular satellite systems of the gas giants, the

satellites of Mars, the three satellites of Pluto (Tholen et al., 2008), and asteroid triple systems

with well known orbits (Marchis et al., 2005) are all in nearly circular and co-planar orbits. In

systems of more than one satellite, perturbations between the satellites produce forced eccentricities

and inclinations that will remain even with significant damping. If the excited state of the Haumea

system is just a reflection of normal interactions, then there will be small free eccentricities and

inclinations, which can be estimated by integrating the system for much longer than the precession

timescales and computing the time average of these elements. Using this technique, and exploring the
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entire Monte Carlo suite of orbital solutions, we find that the free eccentricity of Hi’iaka is ∼0.07, the

free eccentricity of Namaka is ∼ 0.21, and the time-averaged mutual inclination is ∼12.5◦. Non-zero

free eccentricities and inclinations imply that the excited state of the system is not due to satellite-

satellite perturbations. These integrations were calculated using the n-body code SyMBA (Levison

& Duncan, 1994) using the regularized mixed variable symplectic method based on the mapping

by Wisdom & Holman (1991). Integration of all the Monte Carlo orbits showed for ∼2000-years

showed no signs of instability, though we do note that the system chaotically enters and exits the

8:3 resonance. The orbital solutions including J2R
2 ' 1.04× 1011 m2 were generally more chaotic,

but were otherwise similar to the point-mass integrations.

These integrations did not include the effect of the Sun, which adds an additional minor torque

to the system that is negligible (∆Ω ∼ 10−5 degrees) over the timescale of observations. The

effects of the sun on the satellite orbits on long-time scales were not investigated. While the relative

inclination between the satellite orbits and Haumea’s heliocentric orbit (∼119◦ for Hi’iaka and ∼105◦

for Namaka) places this system in the regime where the Kozai effect can be important (Kozai, 1962;

Perets & Naoz, 2008), the interactions between the satellites are strong enough to suppress weak

Kozai oscillations due to the Sun, which are only active in the absence of other perturbations

(Fabrycky & Tremaine, 2007).

We did not include any correction to our solution for possible differences between the center of

light (more precisely, the center of fitted PSF) and center of mass of Haumea. This may be important

since Lacerda et al. (2008) find that Haumea’s two-peaked light curve can be explained by a dark

red albedo feature, which could potentially introduce an systematic astrometric error. The February

2007 Hubble data and March 2008 Keck data, both of which span a full rotation, do not require a

center-of-light/center-of-mass correction for a good fit, implying that the correction should be smaller

than ∼2 milliarcseconds (i.e., ∼70 km). Examination of the all the astrometric residuals and a low

reduced-χ2 confirm that center-of-light/center-of-mass corrections are not significant at our level of

accuracy. For Pluto and Charon, albedo features can result in spurious orbital astrometry because

Pluto and Charon are spin-locked; this is not the case for Haumea. For Keck observations where

Namaka is not detected (see Table 4.1), it is usually because of low signal-to-noise and Namaka’s

calculated position is not near Haumea. In the cases where Namaka’s light contaminates Haumea,

the induced photocenter error would be less than the observed astrometric error.

4.4.3 Tidal Evolution

All of the available evidence points to a scenario for the formation of Haumea’s satellites similar to

the formation of the Earth’s moon: a large oblique collision created a disk of debris composed mostly

of the water ice mantle of a presumably differentiated proto-Haumea. Two relatively massive moons

coalesced from the predominantly water-ice disk near the Roche lobe. Interestingly, in studying
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the formation of Earth’s Moon, about one third of the simulations of Ida et al. (1997) predict

the formation of two moonlets with the outer moonlet ∼10 times more massive the inner moonlet.

Although the disk accretion model used by Ida et al. (1997) made the untenable assumption that the

remnant disk would immediately coagulate into solid particles, the general idea that large disks with

sufficient angular momentum could result in two separate moons seems reasonable. Such collisional

satellites coagulate near the Roche lobe (e.g., a distances of ∼3-5 primary radii) in nearly circular

orbits and co-planar with the (new) rotational axis of the primary. For Haumea, the formation of the

satellites is presumably concurrent with the formation of the family billions of years ago (Ragozzine

& Brown, 2007) and the satellites have undergone significant tidal evolution to reach their current

orbits (B05).

4.4.3.1 Tidal Evolution of Semi-major Axes

The equation for the typical semi-major axis tidal expansion of a single-satellite due to primary tides

is (Murray & Dermott, 2000):

ȧ =
3k2p

Qp
q

(
Rp
a

)5

na (4.2)

where k2p is the second-degree Love number of the primary, Qp is the primary tidal dissipation

parameter (see, e.g., Goldreich & Soter, 1966), q is the mass ratio, Rp is the primary radius, a is

the satellite semi-major axis, and n ≡
√

GMtot

a3 is the satellite mean motion. As pointed out by B05,

applying this equation to Hi’iaka’s orbit (using the new-found q = 0.0045) indicates that Haumea

must be extremely dissipative: Qp ' 17, averaged over the age of the solar system, more dissipative

than any known object except ocean tides on the present-day Earth. This high dissipation assumes

an unrealistically high k2 ' 1.5, which would be achieved only if Haumea were perfectly fluid. Using

the strength of an rocky body and the Yoder (1995) method of estimating k2, Haumea’s estimated

k2p is ∼ 0.003. Such a value of k2p would imply a absurdly low and physically implausible Qp � 1.

Starting Hi’iaka on more distant orbits, e.g., the current orbit of Namaka, does not help much

in this regard since the tidal expansion at large semi-major axes is the slowest part of the tidal

evolution. There are three considerations, however, that may mitigate the apparent requirement

of an astonishingly dissipative Haumea. First, if tidal forcing creates a tidal bulge that lags by a

constant time (as in Mignard, 1980), then Haumea’s rapid rotation (which hardly changes throughout

tidal evolution) would naturally lead to a significant increase in tidal evolution. In other words, if

Qp is frequency dependent (as it seems to be for solid bodies, see Efroimsky & Lainey, 2007)), then

an effective Q of ∼16 may be equivalent to an object with a one-day rotation period maintaining

an effective Q of 100, the typically assumed value for icy solid bodies. That is, Haumea’s higher-

than-expected dissipation may be related to its fast rotation. Second, the above calculation used

the volumetric radius Rp ' 650 km, in calculating the magnitude of the tidal bulge torque, where
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we note that Equation 4.2 assumes a spherical primary. A complete calculation of the actual torque

caused by tidal bulges on a highly non-spherical body is beyond the scope of this paper, but it

seems reasonable that since tidal bulges are highly distance-dependent, the volumetric radius may

lead to an underestimate in the tidal torque and resulting orbital expansion. Using Rp ' 1000 km,

likely an overestimate, allows k2p/Qp to go down to 7.5 × 10−6, consistent both with k2p ' 0.003

and Qp ' 400. Clearly, a reevaluation of tidal torques and the resulting orbital change for satellites

around non-spherical primaries is warranted before making assumptions about the tidal properties

of Haumea.

The third issue that affects Hi’iaka’s tidal evolution is Namaka. While generally the tidal evo-

lution of the two satellites is independent, if the satellites form a resonance it might be possible to

boost the orbital expansion of Hi’iaka via angular momentum transfer with the more tidally affected

Namaka. (Note that applying the semi-major axis evolution questions to Namaka requires a some-

what less dissipative primary, i.e., Qp values ∼8 times larger than discussed above.) Even outside of

resonance, forced eccentricities can lead to higher dissipation in both satellites, somewhat increasing

the orbital expansion rate. Ignoring satellite interactions and applying Equation 4.2 to each satellite

results in the expected relationship between the mass ratio and the semi-major axis ratio of (Canup

et al., 1999; Murray & Dermott, 2000):

m1

m2
'
(
a1

a2

)13/2

(4.3)

where evaluating the right-hand side using the determined orbits implies that m1
m2
' 75.4 ± 0.4.

This mass ratio is highly inconsistent with a brightness ratio of ∼3.7 for the satellites, implying

that the satellites have not reached the asymptotic tidal end-state. Equation 4.3 is also diagnostic

of whether the tidally-evolving satellites are on converging or diverging orbits: that the left-hand

side of Equation 4.3 is greater than the right-hand side implies that the satellites are on convergent

orbits, i.e., the ratio of semi-major axes is increasing and the ratio of the orbital periods is decreasing

(when not in resonance).

4.4.3.2 Tidal Evolution of Eccentricities and Inclinations

Turning now from the semi-major axis evolution, we consider the unexpectedly large eccentricities

and non-zero inclination of the Namaka and Hi’iaka. None of the aforementioned considerations

can explain the highly excited state of the Haumea satellite system. As pointed out by B05, a

simple tidal evolution model would require that the eccentricities and, to some extent, inclinations

are significantly damped when the satellites are closer to Haumea, as eccentricity damping is more

efficient than semi-major axis growth. One would also expect that the satellites formed from a

collision disk with low relative inclinations. So, while a mutual inclination of 13◦ is unlikely to occur
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by random capture, a successful model for the origin of the satellites must explain why the satellites

are relatively far from co-planar.

The unique current orbital state of the Haumea system is almost certainly due to a unique brand

of tidal evolution. Terrestrial bodies are highly dissipative, but none (except perhaps some asteroid

or KBO triple systems) have large significantly interacting satellites. On the other hand, gas giant

satellite systems have multiple large interacting satellites, but very low dissipation and hence slow

semi-major axis change. The change in semi-major axes is important because it causes a large change

in the period ratio, allowing the system to cross many resonances, which can strongly change the

nature of the system and its evolution. Even though Haumea is in a distinct niche of tidal parameter

space, we can gain insights from studies of other systems, such as the evolution of satellites in the

Uranian system (e.g., Tittemore & Wisdom, 1988, 1989; Dermott et al., 1988; Malhotra & Dermott,

1990) or the interactions of tidally-evolving exoplanets (e.g., Wu & Goldreich, 2002; Ferraz-Mello

et al., 2003). In addition, since the results of some Moon-forming impacts resulted in the creation of

two moons (Ida et al., 1997), Canup et al. (1999) studied the tidal evolution of an Earth-Moon-moon

system, in many ways similar to the Haumea system.

Using the results of these former investigations, we can qualitatively explain the excited state

of the Haumean system. As the satellites were evolving outward at different rates, the ratio of

orbital periods would periodically reach a resonant ratio. For example, as the current system is

in/near the 8:3 resonance, it probably passed through the powerful 3:1 resonance in the relatively

recent past. Since the satellites are on convergent orbits, they would generally get caught into these

past resonances, even if their early eccentricities and inclinations were low. Note that this simple

picture of resonance capture must be investigated numerically (as in, e.g., Tittemore & Wisdom,

1988) and that higher-order resonances may act differently from lower-order resonances (Zhang &

Hamilton, 2008). Further semi-major axis growth while trapped in the resonance rapidly pumps

eccentricities and/or inclinations, depending on the type of resonance (e.g., Ward & Canup, 2006).

This continues until the satellites chaotically escape from the resonance. Escaping could be a result

of either excitation (related to secondary resonances, see Tittemore & Wisdom, 1989; Malhotra &

Dermott, 1990) and/or chaotic instability due to overlapping sub-resonances, split by the large J2 of

Haumea (Dermott et al., 1988). Outside of resonances, tidal dissipation in the satellites can damp

eccentricities while the satellites are close to Haumea, but at their current positions, eccentricity

damping is very ineffective even for highly dissipative satellites. Inclination damping is generally

slower than eccentricity damping and was probably small even when the satellites were much closer

to Haumea. Therefore a “recent” excitation by passage through a resonance (possibly the 3:1) can

qualitatively explain the current orbital configuration, which has not had the time to tidally damp

to a more circular co-planar state. Numerical integrations will be needed to truly probe the history

of this intriguing system and may be able to constrain tidal parameters of Haumea, Hi’iaka, and/or
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Namaka.

Note that early in the history of this system when the satellites were orbiting at much smaller

semi-major axes (a . 10Rp), the tri-axial nature of the primary would have been much more

important and could have significantly affected the satellite orbits (Scheeres, 1994). At some point

during semi-major axis expansion secular resonances (such as the evection resonance) could also

be important for exciting eccentricities and/or inclinations (Touma & Wisdom, 1998). Finally,

tides raised on Haumea work against eccentricity damping; for certain combinations of primary

and satellite values of k2/Q, tides on Haumea can pump eccentricity faster than it is damped by

the satellites (especially if Haumea is particularly dissipative). While eccentricity-pumping tides

on Haumea may help in explaining the high eccentricities, producing the large mutual inclination

(which is hardly affected by any tidal torques) is more likely to occur in a resonance passage, as

with Miranda in the Uranian system (Tittemore & Wisdom, 1989; Dermott et al., 1988).

4.5 Conclusions

Using new observations from the Hubble Space Telescope, we have solved for the orbits and masses

of the two dynamically interacting satellites of the dwarf planet Haumea. A three-body model, using

the parameters with errors given in Table 4.2, provides an excellent match to the precise relative

astrometry given in Table 4.1. The orbital parameters of Hi’iaka, the outer, brighter satellite match

well the orbit previously derived in Brown et al. (2005). The newly derived orbit of Namaka, the

inner, fainter satellite has a surprisingly large eccentricity (0.249 ± 0.015) and mutual inclination to

Hi’iaka of (13.41◦ ± 0.08◦). The eccentricities and inclinations are not due to mutual perturbations,

but can be qualitatively explained by tidal evolution of the satellites through mean-motion reso-

nances. The precession effect of the non-spherical nature of the elongated primary, characterized by

J2, cannot be distinguished from the precession caused by the outer satellite in the current data.

The orbital structure of Haumea’s satellites is unlikely to be produced in a capture-related for-

mation mechanism (e.g., Goldreich et al., 2002). Only the collisional formation hypothesis (allowing

for reasonable, but atypical, tidal evolution) can explain the nearly co-planar satellites (probably

with low densities), the rapid spin and elongated shape of Haumea (Rabinowitz et al., 2006), and

the Haumea collisional family of icy objects with similar surfaces and orbits (Brown et al., 2007).

The future holds great promise for learning more about the Haumea system, as the orbital

solution indicates that Namaka and Haumea are undergoing mutual events for the next several

years. This will provide excellent observational constraints on the size, shape, spin pole, density,

and internal structure of Haumea and direct measurements of satellite radii, densities, and albedos.

There are also interesting avenues for future theoretical investigations, especially into the unique

nature of tidal evolution in the Haumean system. These insights into the formation and evolution
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of the Haumean system can be combined with our understanding of other Kuiper belt binaries to

investigate how these binaries form and to further decipher the history of the outer solar system.
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Figure 4.1 Relative positions of the satellites as viewed from Earth. The outer orbit corresponds to
the brighter Hi’iaka and the inner orbit corresponds to the fainter Namaka. In the center is Haumea,
drawn to scale, assuming an ellipsoid cross-section of 500 x 1000 km (Rabinowitz et al., 2006) with
the long axis oriented North-South. The apparent orbit changes due to parallax and three-body
effects; this is the view near March 2008. See Figure 4.2 for model and data positions throughout
the observation period (2005-2008).
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Figure 4.2 Observed positions and model positions of Hi’iaka and Namaka. From top to bottom,
the curves represent the model on-the-sky position of Hi’iaka in the x-direction (i.e., the negative
offset in Right Ascension), Hi’iaka in the y-direction (i.e., the offset in Declination), Namaka in
the x-direction, and Namaka in the y-direction, all in arcseconds. Points represent astrometric
observations as reported in Table 4.1. Error bars are also shown as gray lines, but are usually much
smaller than the points. The three-point mass model shown here is fit to the HST-data only, with a
reduced χ2

red of 0.64. The residuals for this solution are shown in Figure 4.3. Note that each curve
has its own scale bar and that the curves are offset for clarity. The model is shown for 1260 days,
starting on HJD 2453297.0, ∼100 days before the first observation and ending just after the last
observation. Visible are the orbital variations (∼49.5 days for Hi’iaka and ∼18.6 days for Namaka),
the annual variations due to Earth’s parallax, and an overall trend due to a combination of Haumea’s
orbital motion and the precession of Namaka’s orbit.
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Figure 4.3 Normalized residuals of the three-point mass fit to HST-data only. Plotted is (∆xmod −
∆xobs)/σ∆x versus (∆ymod−∆yobs)/σ∆y for Hi’iaka (diamonds) and Namaka (circles). Points that
lie within the circle indicate where the model and observations vary by less than 1 error bar. See
also Figure 4.2. The residuals are roughly evenly spaced and favor neither Hi’iaka nor Namaka,
implying that there are no major systematic effects plaguing the three-body fit. As reported in the
text this solution has a reduced χ2

red of 0.64.



115

Figure 4.4 Relationship between radius, density, and albedo for Hi’iaka (left) and Namaka (right).
A range of possible albedos and densities can reproduce the determined mass and brightness ratios
of Hi’iaka and Namaka, which are assumed to be spherical. The solid lines show the relationship
for the nominal masses, reported in Table 4.2, with dotted lines showing the 1-σ mass error bars.
Note that the mass of both Hi’iaka and Namaka may be overestimated (due to insufficient data, see
Section 4.3). The albedo and density of the Rabinowitz et al. (2006) edge-on model for Haumea
are shown by dotted lines. Both satellites must have lower densities and/or higher albedos than
Haumea. The similar spectral (Barkume et al., 2006) and photometric (Fraser & Brown, 2009)
properties of Haumea, Hi’iaka, and Namaka indicate that their albedos should be similar. Under
the assumption that the satellites have similar albedos to Haumea, the densities of the satellites
indicate that they are primarily composed of water ice (ρ ≈ 1.0 g/cc). Low satellite densities would
bolster the hypothesis that the satellites formed from the collisional remnants of the water ice mantle
of the differentiated proto-Haumea. Observation of Haumea-Namaka mutual events will allow for
much more precise and model-independent measurements of Namaka’s radius, density, and albedo.
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Chapter 5

On the Tidal Evolution of Kuiper
Belt Binaries
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Abstract

The formation and evolution of binary Kuiper belt objects (KBOs) is closely intertwined with the

history of the outer solar system. The interpretation of the currently observed characteristics of

these binaries must include an understanding of effects that can significantly modify their orbital

properties. Two major sources of potential modification include tidal dissipation and perturbations

from the Sun. As a first step in understanding these effects, we describe the results of a new orbital

evolution model that accounts for tidal dissipation at arbitrary eccentricity, the importance of Kozai

cycles induced by the Sun, and orbital precession due to non-hydrostatic asymmetries of small solid

bodies. In particular, we find that Kozai Cycles with Tidal Friction (KCTF) can significantly shrink

the orbits of KBO binaries and may produce systems that would otherwise appear to be formed by

collisions, with the Orcus-Vanth binary as the primary example. The unique observational signatures

of KCTF are discussed along with other consequences of orbital and tidal evolution of KBO binary

orbits.
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5.1 Introduction

Investigating the origins of binary Kuiper belt objects (KBOs) holds significant promise for improving

our understanding of the formation of the outer solar system. Although only ∼60 KBO binaries are

known, with only ∼20 well-characterized orbits, there are already several observational trends that

may be unique clues into processes active in the early solar system (Noll et al., 2008a,b). Brown et al.

(2006) found that the binary fraction of large KBOs is significantly higher than the binary fraction

of smaller KBOs, a result which continues to be true as more binaries are found (Brown, 2008). Noll

et al. (2008b) recently reported that the binary fraction of non-resonant KBOs with low heliocentric

inclinations (29.3 ±7.2
6.3 %) is strikingly different from the binary fraction of high inclination KBOs

of similar sizes (2.9 ±6.5
2.4 %). Since there is also a strong trend of increasing binary frequency at

small separations (Noll et al., 2008a), these binary fractions are certainly underestimates since the

observations cannot resolve binaries at the smallest separations. The relative brightness of binary

components is heavily skewed towards equal-brightness binaries, a result that appears to be robust

despite some observational bias (Noll et al., 2008a). Finally, Benecchi et al. (2009) have found that

the visible colors of KBO binary components are the same, even though the range of colors is as

large as the range of colors for (apparently) single objects.

To describe the wide range of binaries, two general classes of binary formation mechanisms have

been proposed, which we call the collision and capture mechanisms. Small satellites of large KBOs

appear to be formed by collision, as proposed for the Pluto (Canup, 2005; Stern et al., 2006) and

Haumea (Ragozzine & Brown, 2009) systems. Smaller KBO binaries appear to have more angular

momentum than can be generated in typical impacts and are apparently formed by some other

mechanism which does not involve direct contact (e.g., Weidenschilling, 2002; Goldreich et al., 2002;

Funato et al., 2004; Astakhov et al., 2005; Nesvorny, 2008). All proposed mechanisms of binary

formation require higher number densities than present in the current Kuiper belt and were mostly

active in the dynamically cold primordial planetesimal disk. Later excitation of this primordial

disk sculpted the Kuiper belt seen today (e.g., Morbidelli et al., 2008). The two different models

of binary formation predict different kinds of binaries. Collisionally-formed binaries will have low

angular momenta and an isotropic inclination distribution (since the final inclination is given mostly

by the random impact location). Binaries formed through capture will have higher amounts of

angular momentum and a more bimodal inclination distribution around i ' 0◦, 180◦ (Schlichting &

Sari, 2008b). In some regards, the two different binary formation mechanisms map well to the two

different classes of binaries, with small satellites in tight circular orbits around large KBOs formed

by collision and equal mass binaries with wide orbits formed by capture. Nevertheless, several

important details require further investigation.

In particular, the current orbital properties of KBOs may not represent the initial orbital distri-
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bution. Without a clear understanding of the processes that can modify KBO binary orbits, there is

no sure way to extrapolate the present-day observational trends backwards in time in order to gain

insights into binary formation mechanisms. Potentially important processes that can modify KBO

binary orbits include: 1) close interactions with the giant planets that transported KBOs from the

primordial planetesimal disk to their current position in an excited Kuiper belt; 2) interactions with

passing and colliding KBOs both early in the solar system and in the present-day Kuiper belt (Stern

et al., 2003; Collins & Sari, 2008); 3) orbital perturbations of the binary orbit due to the planets and

the Sun (Perets & Naoz, 2008, hereafter PN09); and 4) tidal interactions that can change binary

orbital elements over long timescales. In this work, we undertake a preliminary investigation of the

last two processes, specifically the orbital and tidal evolution of KBO binaries, including pertur-

bations from the Sun. We note that many of the same techniques and results are relevant to the

orbital evolution of asteroid binaries (PN09).

The tidal evolution of KBO binaries is not like the tidal evolution of planetary satellites and

requires a substantially different approach. The main reasons for these differences in KBO binaries

including the following, some of which were pointed out by Noll et al. (2008a).

• In many KBO binaries, the primary and secondary are of comparable size. Most discussions

and derivations of tidal evolution assume one object is much larger than the other.

• The eccentricities of these systems can be relatively high (e & 0.2), requiring the use of oft-

neglected higher-order terms in the tidal evolution equations (e.g., Wisdom, 2008).

• The ratio of the strength of primary and secondary tides may be unlike other systems, leading

to atypical results. For example, tides in a fast-spinning primary may easily be strong enough

to cause the orbital eccentricity to grow in time, unlike the the typical decrease in eccentricity

that is usually expected.

• The tidal dissipation parameters (k2 and Q, described below) are unconstrained for these icy

bodies even to within an order of magnitude.

For the above reasons, the tidal evolution of KBO binaries has not been modeled in any significant

detail, with the exceptions of early studies of the Pluto-Charon system (e.g., Dobrovolskis et al.,

1997), recent studies of how Pluto’s small additional moons Nix and Hydra can be placed into the

tidal evolution story, and a study of the evolution of Eris-Dysnomia system (Greenberg & Barnes,

2008, hereafter GB08). The purpose of the present paper is to take the next steps in modeling the

tidal evolution of these binaries. Our goal is not necessarily to accurately reproduce the exact tidal

history of any particular pair. Rather, we are aiming to develop a self-consistent general model

which can explore a wide variety of physically-plausible tidal histories. Imperfections in the model

must be understood in this context.
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We will use the Orcus-Vanth binary (Brown et al., 2009) as a case study for investigating the

tidal evolutionary histories of KBO binaries. This interesting binary is the focus of this chapter

because this system falls in an intermediate regime between the two types of KBO binaries: Orcus

is an intermediate size KBO (500 km radius) with an intermediate binary mass ratio (few percent).

While there are indications that this system formed by collision, we show below that it is possible to

reproduce the current orbital characteristics by starting on a wider orbit typical of capture binaries.

Though the majority of this chapter focuses on this system, many of the results are generally

applicable to KBO binaries as well as asteroid binaries (PN09).

Did the Orcus-Vanth system form by collision or capture? To answer this question, we will need

to understand tidal evolution of KBO binaries at arbitrary eccentricities and mass ratios. Using the

orbital and tidal evolution framework of (Eggleton & Kiseleva-Eggleton, 2001), with modifications

relevant to small solid bodies, we can make preliminary investigations into important processes that

may have significantly modified the orbital characteristics of KBO binaries since their formation.

We will first discuss the collisional model, including tidal evolution outwards from near the

Roche lobe. This is followed by general considerations of tidal evolution inwards from a wider

capture-like orbit. We then show how adding perturbations from the Sun can induce Kozai cycles

which, combined with tidal friction, can significantly shrink orbital separations. The orbital and

tidal evolution model is then introdcued, with full model details given in the Appendix. Applying

this model to Orcus and Vanth, we find that the current properties of this system can be reached

from a wide variety of initial orbits. Finally, we discuss the potentially observable signatures of this

evolution and the general implications of our results on the study of KBO binaries.

5.2 Collisional Formation and Tidal Evolution Outwards

5.2.1 Parameters of the Orcus-Vanth System

The total mass of the Orcus-Vanth system was determined from Kepler’s third law by Brown et al.

(2009) to be Mtot ≡ m1 +m2 = 6.36±0.06×1020 kg. Stansberry et al. (2008) use thermal modeling

of Spitzer data to find that the radius of Orcus is about 473±37 km. These authors did not account

for the presence of the unresolved satellite, which has a fractional brightness in the visible of about

8% (Brown, 2008). Using this range of radii yields a density for Orcus of 1.4+0.4
−0.3 g cm−3, where

the error is entirely dominated by the radius error. The albedo of Orcus is about 20%. Assuming

that Vanth and Orcus have the same albedos and densities, a brightness ratio of 8% corresponds

to a mass ratio of 0.083/2 = 0.023. However, the albedo of Vanth could be up to 5 times higher

or lower than the albedo of Orcus and its density may be lower by a factor of ∼2. This leads to a

wide range of theoretically possible mass ratios from 0.001 (high albedo, low density) to 0.25 (low

albedo, same density). Similarly, the radius of the satellite could range from 60 to 300 kilometers.
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While it is unlikely that Vanth occupies either extreme of these ranges, its mass ratio and radius

are quite uncertain. Except where noted, we will use the following parameters for the Orcus-Vanth

system: m1 = 6.21 × 1020 kg, µ ≡ m2/m1 = 0.023, R1 = 473 km, R2 = 134 km, and ρ = 1.4

g cm−3. (Note that we use µ for the mass ratio instead of the reduced mass and we reserve the

symbol q to mean the orbital periapse distance.) The orbital parameters determined by Brown et al.

(2009) are a semi-major axis of a = 8985 km and an eccentricity upper-limit of e < 0.003. The

current heliocentric orbital parameters are typical for an excited Plutino with ahelio = 39.3 AU,

ehelio = 0.222, and ihelio = 20.6◦.

In our consideration of tidal evolution, we will also need to estimate the relevant tidal parameters

for Orcus and Vanth: the Love number, k2 (which describes the response of the material to a second-

order potential) and the tidal dissipation parameter, Q (which describes the fraction of total energy

dissipated during tidal flexure). The value of Q is not well known, but is often assumed to be ∼100

for terrestrial and icy bodies (Goldreich & Soter, 1966). A standard way for estimating k2 is to use

the relation derived from comparing material strength to self-gravity (Goldreich & Soter, 1966):

k2 ≈
3/2

1 + 19µrR
2ρGM

(5.1)

where µr is the rigidity of the body, typically assumed to be 4 ×109 N-m for ice, but which could

easily vary by orders of magnitude. Using the nominal parameters, we find that k2,Orcus ' 0.0048

and k2,Vanth ' 0.0004, e.g., low k2 values typical of small rigid bodies. For small KBO binaries that

are rubble piles, e.g., which have significant void space on the interior, the analysis of Goldreich &

Sari (2009) implies that k2 can be enhanced, particularly when the objects are small (R . 100 km).

Many small KBOs are thought to have significant porosity, as inferred from low densities, and tidal

evolution may be quite enhanced in these bodies. Orcus and Vanth are relatively large KBOs, so

we will neglect these effects.

5.2.2 Tidal Evolution Outwards

Suppose that Orcus-Vanth family formed in a collision. In this sense, the system would resemble the

Pluto-Charon system. Canup (2005), who modeled the Pluto-Charon collision in detail, suggested

that the normalized angular momentum, J ≡ L/L′, is a useful criterion for understanding the forma-

tion of a binary, where L is the current orbital and spin angular momentum and L′ ≡
√
GMtotR12

where R12 is the radius of an equivalent spherical object containing the total system mass, Mtot.

Applying this to the Orcus-Vanth system, assuming that both objects are spinning at the orbital

frequency (P = 9.58 days) and using the nominal mass ratio, we find J = 0.1; the relatively low

value (e.g., J . 0.4) indicates that the angular momentum budget can be readily achieved in a sub-

catastrophic collision. In fact, the mass ratio and normalized angular momentum of Orucs-Vanth
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are very similar to the Earth-Moon system (µEM = 0.012 and JEM = 0.11) for which formation

by giant impact is preferred. However, we must note that the full range of possible mass ratios

allows for a wide variety of J values from J ' 0.01 for a high albedo satellite to J ' 0.7 for a low

albedo satellite. This wide range results from the total orbital angular momentum, which generally

dominates the spin angular momentum:

Lorb =
m1m2

m1 +m2

√
G(m1 +m2)a(1− e2) =

µ

1 + µ2
Mtot

√
GMtota(1− e2) (5.2)

where the second equality shows the dependence to the unknown mass ratio. If Vanth’s albedo is

three times smaller than Orcus, then q ' 0.1 and J ' 0.37, which is very similar to the normalized

angular momentum of Pluto and Charon; JPC = 0.38 using the most recent values for the Pluto-

Charon system (Tholen et al., 2008). Canup (2005) finds a variety of SPH models for the giant

impact formation of Pluto-Charon that are able to reproduce both the relatively large mass ratio

q > 0.1 and a normalized angular momentum of J ∼ 0.4. These models involve equal-mass impactors

with high impact parameters and it seems that binaries with J > 0.4 cannot be effectively created

in non-catastrophic collisions.

In the collision model, Vanth was initially in a nearly circular orbit, coplanar with the equator of

Orcus, with a semimajor axis just beyond the Roche limit (∼3Rp). As in the case of Haumea, the

post-collision Orcus should be rapidly rotating from the collision. Tidal torques would then transfer

angular momentum from Orcus’ spin to the binary orbit. (Vanth’s spin angular momentum is also

contributed to the orbit, but this effect is relatively small.) Vanth’s orbit would continue to expand

until the spin rate of Orcus reached the orbital frequency and Orcus and Vanth attained the double

synchronous state (DSS). Most systems tidally evolve towards DSS, though it may not be a stable

end-state for some systems (e.g., when the spin rate is slower than the initial orbital frequency, in

which case the end state is often an inward spiral). Whether DSS is actually achieved during the

age of the solar system depends on the rate of tidal evolution. Since the rate of semi-major axis

evolution is proportional to the mass ratio, binaries with large satellites (like Pluto-Charon, which

is in DSS) tend to reach DSS more rapidly than binaries with small satellites (like the Earth-Moon

system, which would take ∼50 Gyr to reach DSS).

Using the nominal values for Orcus and Vanth, the standard equation for semi-major axis evolu-

tion (MD99) can be integrated to show that for Orcus and Vanth, DSS is reached in about Q times 3

million years, similar to Pluto-Charon (Dobrovolskis et al. 1997). This speed is only slighly modified

by using different tidal models. Eccentricity damping and obliquity decay are also very rapid, which

can be shown analytically and which we have verified with direct simulations. In other words, if

Vanth were formed in a collision, then for a reasonable set of tidal parameters, we would expect

to see the system today in a circular orbit with the spin angular momenta aligned with the orbital
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angular momentum, and rotation rates equal to the orbital period of 9.58 days. If the Orcus-Vanth

mass ratio is smaller than the nominal value, it can take much longer to reach DSS.

It is important to note that, if one or both of the binary components are spinning supersyn-

chronously, tides can increase the eccentricity of the mutual binary orbit (e.g., Goldreich & Sari,

2009). Even collisional systems that started evolution with small semi-major axes could plausibly

have large non-zero eccentricities due to tides. As tides continue to damp energy, however, the spins

of the components slow and eventually reach a phase where tides reduce the eccentricity and the

orbit will damp back to circularity. Since KBO systems may be in the intermediate regime, the

observation of an eccentric orbit does not rule out formation by collision.

Is there observational evidence that Orcus and Vanth are in the double synchronous state?

Unlike the Pluto-Charon system, the current configuration of Orcus and Vanth are such that the

orbit pole is pointing nearly at Earth. If the rotation pole is aligned with the orbit pole, rotational

photometric variability due to a variegated surface or aspherical shape would be negligibly small

from our viewing angle. This is consistent with light curve measurements of Sheppard (2007) who

find no variability in the light curve. Rabinowitz et al. (2007) report an unusually-shaped large-

amplitude (∆m ' 0.18) light curve for Orcus, though their results may suffer from aliasing due to

observing cadence of a long-duration observational campaign. Future more in-depth observations

will be needed to clarify these results. If correct, the lack of photometric variability from Orcus is

consistent with the expected pole-on orientation. Since the tidal timescale at the current separation

is so short compared to the age of the solar system, it would require an unusual formation or tidal

history to explain an Orcus-Vanth system that is not currently in the double synchronous state.

5.3 Tidal Evolution Inwards

Even if Orcus and Vanth are currently in the double synchronous state, this does not rule out tidal

evolution from larger capture-like orbits. Since tidal evolution can shrink semi-major axes and damp

eccentricities, it is possible that KBO binary orbits were wider and more eccentric in the past (GB08).

Since an initial formation by capture (and subsequent dynamical friction) is inferred for other wide

KBO binaries, it is not precluded in the case of Orcus and Vanth. However, a consideration of how

these initial conditions were obtained is beyond the scope of this paper. In particular, the orbital and

tidal evolution of KBO binaries while they are still in the dense planetesimal disk is not addressed.

Our initial conditions start after the end of dynamical friction when the KBO binary has obtained

its current heliocentric orbit, billions of years ago.

Under the capture formation model (e.g., Goldreich et al., 2002; Astakhov et al., 2005; Lee

et al., 2007; Schlichting & Sari, 2008a), Orcus and Vanth would have originally been on independent

heliocentric orbits in the primordial planetesimal disk. Upon entering one another’s Hill sphere,



124

either dynamical friction due to small bodies or the passage of another large body removes enough

energy to permanently bind the two objects together. Subsequent dynamical friction can continue to

remove energy from the binary, significantly shrinking the semi-major axis from a ∼ RH ' 4000Rp,

the minimum Hill radius of Orcus-Vanth, to a ' 18Rp seen today. As the orbital evolution of

binaries during the dynamical friction phase has not been studied in detail, a wide variety of final

configurations are theoretically plausible. These will correspond to the initial conditions before tidal

evolution. In particular, we will consider initial conditions that resemble known KBO binary orbits:

semi-major axes of several tens of primary radii and a wide range of eccentricities and inclinations

(Noll et al., 2008a; Grundy et al., 2009).

There are a few general conclusions that can be drawn about the past orbital history of KBO

binaries by making the reasonable assumption that tides conserve total angular momentum and that

other processes acting on KBOs are not important for the angular momentum budget. (Including

the effect of the Sun can lead to a non-conservation of angular momentum of the KBO binary and

are discussed below; perturbations from passing KBOs may also be important.) Setting aside spin

angular momentum, the orbital angular momentum of a binary is given by Equation 5.2 above.

If orbital angular momentum is conserved, then a(1 − e2) = a(1 − e)(1 + e) is conserved and the

initial periapse distance qinit = ainit(1 − einit) must be smaller than the current periapse as long

as a has decreased. Including now the effect of spin angular momentum, we note that, although

KBO spin periods are still not well characterized, formation arguments and observational evidence

(Sheppard et al., 2008) support the idea that KBOs are not slow rotators compared to the typical

binary orbit periods. So when a KBO binary forms, there is usually significant angular momentum

in the spins of the components which can be transferred to the orbit over time through tidal torques.

As long as these spins have some component in the prograde direction, the initial orbital angular

momentum is smaller than seen today, which implies that the initial periapse distance must lie even

closer than the case where spins are not considered. In other words, for an initial capture orbit to

evolve into an orbit with smaller semi-major axis, the initial periapse must generally be closer than

the current periapse and sometimes much closer, which we have also observed numerically in our

model (described below). This limits the range of initial orbits that will evolve due to tides into the

currently observed orbit.

5.4 Kozai Cycles with Tidal Friction

Based on the discussion above, if the initial orbit of Orcus and Vanth had a large semi-major axis

typical of capture-like binaries (a/Rp of 50-100), this initial orbit should have had a periapse lower

than the current periapse q = 19Rp. This implies quite large initial eccentricities, e.g., 0.6 . e .

0.9. It is not clear whether the gravitational capture and subsequent dynamical friction or other
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perturbations can readily generate such large eccentricities and low periapses.

Secular perturbations due to the Sun can sometimes create large eccentricities and low periapses

through Kozai oscillations (PN09). Kozai oscillations or Kozai cycles are large variations in eccen-

tricity and inclination which can occur when the relative inclination between the heliocentric orbit

and the binary mutual orbit, referred to as i throughout this paper, exceeds a critical value (typi-

cally 40◦ . i . 140◦) as originally pointed out by Kozai (1962) and Lidov (1962). These oscillations

cause the eccentricity and inclination of the KBO binary to exchange on long timescales (set by the

specific parameters of the system), while keeping
√

1− e2 cos i constant (Kozai, 1962).

It is useful to consider a coordinate system centered on the barycenter of the KBO binary orbit.

In this system, the Sun’s orbit about the binary is just the heliocentric orbit of the binary about

the Sun. Averaging over the orbit of the Sun in the quadrupole approximation (higher order terms

are very small for KBO binaries; Ford et al., 2000), the amplitude of Kozai oscillations depends on

the initial relative inclination and binary KBO eccentricity, while the mass and distance of the third

body perturber are only important in setting the Kozai oscillation timescale (Kiseleva et al., 1998):

τKozai '
2

3π
P 2

helio

P
(1− e2

out)
3/2 (5.3)

Including the effect of Kozai oscillations in the evolution of KBO binaries is important because

many KBO binaries are subject to these oscillations (PN09) and the high eccentricity phases of

these oscillations can significantly lower the periapse distance, leading to strong tidal evolution of

otherwise distant bodies. This effect is known as Kozai Cycles with Tidal Friction (KCTF) and may

be an important way of modifying KBO binaries, as it is for close stellar binaries and some hot

Jupiter exoplanets (Mazeh & Shaham, 1979; Kiseleva et al., 1998; Fabrycky & Tremaine, 2007).

KCTF is an effective way of reducing orbital size and works in the following way. A wide KBO

binary starts out with a periapse too high for significant tidal evolution, but at a significant relative

inclination, i, to the binary’s heliocentric orbit. Kozai oscillations due to the perturbations of the Sun

cause an increase in eccentricity which can in many cases lead to quite small periapse distances during

the maximum eccentricity phase. During the high eccentricity phases, tidal damping at periapse

is significantly enhanced, which shrinks the orbit, but may not initially affect Kozai oscillations.

This process continues until the periapse is low enough that apsidal precession due to other sources

of apsidal precession are strong enough to suppress Kozai cycles (see below) and the orbit freezes

near its high eccentricity state. Continued damping circularizes the orbit near the periapse position,

leading to a circular orbit at a much smaller semi-major axis than the original orbit. KCTF can

significantly lower the orbital periapse as it avoids the angular momentum argument described

above: Kozai oscillations only conserve the z component of the binary’s orbital angular momentum

and smaller final orbits can be made by simply changing the initial inclination.
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There are three requirements that KCTF must meet in order to significantly shrink a binary

orbit. First, the initial relative inclination and eccentricity must fall in the regime where Kozai

oscillations are significant: typically 40◦ . i . 140◦, though this range can be broadened somewhat

in the presence of non-zero initial eccentricity. This is true of many KBO (and asteroid) binaries

(PN09), including Orcus and Vanth, which currently have a relative inclination of i ' 66◦. Second,

the minimal periapse achieved by the Kozai cycle must be in a range where tidal forces (which

depend on the radii, Love numbers, and tidal Q values) between the two objects are significant.

Otherwise, the eccentricity and inclination simply oscillate without any long-term trend. There are

probably many KBO binaries that fall in this regime and we note that even with tides are not

important, KBO binary orbits can be significantly modified due to the Kozai effect.

Finally, additional minor perturbations to the orbital orientation must be small because Kozai

cycles are caused by very slight perturbations that add coherently on secular timescales. In partic-

ular, the change in eccentricity due to the Kozai effect, ė ∝ sin 2ω, can be averaged to zero if ω is

precessing too quickly. Even in the presence of minor additional apsidal precession, the weak third-

body perturbations are inefficient and Kozai cycles are suppressed. It can be shown analytically

and numerically that if the periapse precession period due to other perturbations is shorter than the

Kozai cycle timescale (Equation 5.3) by more than a factor of ∼2, the Kozai effect is significantly

suppressed (Fabrycky & Tremaine, 2007). That is, in the presence of additional apsidal precession,

the amplitude of eccentricity and inclination oscillations is quickly minimized, preventing KCTF.

(Such suppression also significantly shortens the period, by as much as an order of magnitude, of

any residual Kozai oscillations.)

Additional satellites are very effective at suppressing Kozai cycles (e.g., Innanen et al., 1997,

but see Takeda et al., 2008), so KCTF cannot directly form the Haumea or Pluto multiple systems,

though these are both in the Kozai inclination regime. For solid body binaries without additional

satellites, the dominant source of apsidal precession is usually due to a permanent quadrupole

moment (characterized by J2) of the primary and/or secondary. We define this J2 as the quadrupole

due only to permanent asymmetry supported by the non-zero material strength of KBOs, i.e., it is

the non-hydrostatic component of the gravitational quadrupole. The fluid quadrupole of tidal and

rotational bulges is taken care of through additional terms, though we find that these quadrupoles are

only important if the permanent asymmetry is extremely small (see Appendix). This work extends

the preliminary analysis of PN09, who considered purely fluid bodies, by including precession due

to J2 and the resultant suppression of Kozai cycles.

Whatever the source of additional precession, the effect is to reduce the e and i amplitude of Kozai

oscillations, potentially disabling KCTF. When ω̇othersτKozai � 1, Kozai cycles are effectively turned

off. When ω̇othersτKozai � 1, then Kozai cycles are unimpeded and the amplitude is determined by

only the initial eccentricity and inclination. Again, note that the mass and distance of the Sun do
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not effect the amplitude of Kozai cycles, but only the period of oscillation (approximately the same

as τKozai). When ω̇KozaiτKozai ∼ 1, then the amplitude of Kozai cycles is attenuated. In this case, a

full dynamical model (used below) is generally needed to determine whether KCTF can significantly

shrink and circularize binary orbits.

Besides the importance of Kozai oscillations and KCTF, the perturbations of the Sun play

another important role that affects the spin and orbital evolution of KBO binaries. Since the Sun

induces additional apsidal and nodal precession of the KBO binary, including the Sun changes the

equilibrium spin states of the system, generally known as Cassini states. For more information on

Cassini states, see, e.g., Peale (1974) or Fabrycky et al. (2007). There are multiple equilibrium

positions for each spin axis called Cassini states 1-4 which depend strongly on all sources of orbital

precession. Tidal evolution will quickly bring the spin axes to one of these states (though state 3

is unstable to further tidal evolution). Unless the obliquity is 0◦, bodies in Cassini states still raise

tidal bulges and the resulting orbital evolution modifies the location of the Cassini states themselves

(Fabrycky et al., 2007). The obliquities of the bodies at any particular time, then, depend on the

initial conditions and the amount of tidal evolution. In the absence of the Sun (but keeping precession

due to J2 and rotational and tidal bulges) and in the presence of significant tidal dissipation, the

equilibrium obliquity between the spin axis and the binary mutual orbit axis will eventually end

up in Cassini state 1 with a nearly zero obliquity (Fabrycky et al., 2007). In our integrations, we

have found that including a highly-inclined Sun tends to drive the system into high-obliquity Cassini

states, sometimes with very large obliquities (even greater than 90◦). Though these high-obliquity

Cassini states are unstable on very long timescales, the rate of tidal evolution is strongly affected

after capture into a Cassini state, and including the spin evolution of the bodies is important for

capturing the correct evolution. Note that solar modifications of Cassini States can be important

at any relative inclination, independently of Kozai oscillations. Though beyond the capability of

current observations, precise measurements of the spin poles of KBO binary components could reveal

non-zero Cassini obliquities, which would constitute an indirect measurement of the value of J2.

5.5 Orbital Evolution Models

We have shown above that an orbital and tidal evolution model appropriate for KBO binaries require

both validity at arbitrary eccentricity and the ability to include the effects of the Sun.

Let us now discuss specific tidal evolution models. The only attempt of which we are aware to

investigate the tidal evolution of KBO binaries in high eccentricity orbits is that of GB08. These

authors point out the important possibility of tidal evolution from a capture orbit for Dysnomia,

the small moon of dwarf planet Eris (Brown & Schaller, 2007). Though our work supports their

general conclusion, that tidal evolution inwards could create the tight circular orbit of Dysnomia,
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there are some serious flaws in the tidal model they employ (GB08 Equation 1). The tidal evolution

equations used are taken from Jackson et al. (2008) (not including minor corrections mentioned

by Jackson et al., 2009), who combined tidal evolution equations from Kaula (1968) and Goldreich

& Soter (1966). One unincluded aspect of the original equations is the well-known change in sign

of the tidal evolution depending on the whether the binary orbital period is sypersynchronous or

subsynchronous with respect to the spin rate. The evolution of spin rates (and conservation of total

angular momentum) is not considered at all. Finally and most importantly, the equations used

neglect eccentricity terms of order e4 and higher, as well as non-zero inclinations. At moderate

eccentricities (e & 0.2), these ”higher-order” terms actually dominate the evolution because the

coefficients of these terms are much larger than 1. For example, Wisdom (2008) finds that the energy

dissipation rate (related to the eccentricity damping rate) is enhanced over the rate predicted by

GB08 by a factor of 104 at e ' 0.8, the initial eccentricity estimated by GB08 for Eris and Dysnomia.

The reason for this enhancement is to account for the fact that the strength of tidal interactions is a

strong function of separation, e.g., r−6. When computing the total torque averaged over one orbital

revolution, < r−6 >, it is clear that interactions at periapse q = a(1 − e) completely dominate the

evolution, even when accounting for the fact that the satellite spends the least time near periapse. To

adequately account for this physical phenomenon requires keeping higher order eccentricity terms;

otherwise, substituting a ≈ r massively underestimates the strength of tides in highly elliptical orbits

(e.g., Kaula, 1964; Mignard, 1980; Eggleton & Kiseleva-Eggleton, 2001; Wisdom, 2008).

GB08 justify the choice of low-eccentricity equations by correctly noting that tidal dissipation at

large eccentricities is not well understood (some issues involved in high-e dissipation are discussed

in Appendix A below). However, their model does not avoid this problem: it is simply a model in

which all the eccentricity coefficients of order higher than 2 have coefficients equal to exactly zero,

which does not capture the importance of tidal dissipation at periapse discussed above. Although

these authors are correct in pointing out that tidal evolution from large semi-major axes can result

in circular orbits, they actually underestimate significantly the tidal damping time.

We choose a different tidal evolution model to describe the orbital history. The equations of

Eggleton & Kiseleva-Eggleton (2001, hereafter EKE) are used as the framework to model the full

orbital and spin evolution of the binary system. The evolution equations are more fully described

in Appendix A, with only the most relevant points explained here. The EKE model uses the

equilibrium tide model to calculate the rate of tidal evolution and is valid at any mass ratio and

eccentricity (though at the very highest eccentricities, when pericenter orbital frequency rivals solid

body oscillation frequencies, a dynamical tide model may be more appropriate than the equilibrium

tide model). Since the spin evolution is also tracked, the effects of non-zero obliquity, spin orientation,

and spin rate are all accounted for, accurately including the appropriate direction of tidal evolution

for subsynchronous, synchronous, and supersynchronous orbits.
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These equations describe the secular evolution obtained after averaging over the orbital period,

e.g., it does not contain any dependence on the orbital phase. Throughout the integration, the EKE

equations describe the evolution of the apsidal and nodal precession of the orbit, the evolution of the

semi-major axis and eccentricity, and the orientation of the spins of both bodies in inertial space. As

presented, the EKE equations include the effects of the rotational and tidal bulges of both bodies,

general relativity, perturbations from a distant third body (averaged over the orbit of that body

to the quadrupole order), and tidal damping. Though the EKE equations were derived for stellar

systems (hence the inclusion of general relativity), it can easily be extended to other binary systems

as it makes no assumptions about the masses (or relative masses) of the three bodies. Integration

of the EKE equations self-consistently accounts for Kozai oscillations, Cassini states, and tidal

evolution, though there are some issues with the tidal evolution model used (see Appendix).

We have modified the EKE equations to be more appropriate for Kuiper belt binaries; see the

Appendix for the full description of the model. We have added the effect of a gravitational quadrupole

due to permanent asymmetry in a solid body, characterized in terms of an effective J2. For the vast

majority of KBOs, this additional J2 term will dominate the rate of apsidal and nodal precession.

Hence, the inclusion of J2 is very effective at suppressing Kozai oscillations.

We have also restructured the tidal dissipation terms in terms of tidal dissipation parameter Q, as

appropriate for solid bodies (Fabrycky et al., 2007). The EKE model also calculates perturbations to

the binary orbit due to a distant third body and we have added the effect of the Sun on these binary

orbits. The influence of the Sun can make major modifications to the orbital and tidal evolution of

KBO binaries, as described above.

5.6 Application of KCTF Model to Orcus-Vanth

One of the most important, but unknown, properties of Orcus and Vanth is J2. Since the current

orbit is very nearly circular (e < 0.003 Brown et al., 2009), it is reasonable to assume that Kozai

cycles are suppressed in the current system. We find that increasing apsidal precession by adding

a permanent asymmetry of Orcus of J2 ' 4 × 10−6 is sufficient to suppress Kozai cycles in the

currently observed system. This J2 corresponds to moving only a few meters of material from the

pole to the equator of a perfectly spherical object; the actual value of J2 is probably much higher.

One source of permanent asymmetry may be a frozen-in rotational bulge from early formation that

has not relaxed. We can estimate J2 from such a bulge using J2 = k2qr/3 where qr = ν2R3/GM ,

ν is the spin frequency, and k2 here is the Love number of the body before the bulge freezes. The

initial rotation rate was probably somewhat near breakup (2.9 hour spin period) where qr ≈ 1,

easily yielding J2 as high as ∼0.001 or higher. Unfortunately, there is no clear way to estimate the

J2 of KBOs, whose shapes are very poorly known. Again, we point out that our use of J2 is to
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represent the non-hydrostatic quadrupole moment due solely to the permanent asymmetry; this is

not necessarily the J2 that would be measured astrometrically by observing apsidal precession in the

system unless the permanent asymmetry is the dominant source of quadrupolar precession (which

is likely; see Appendix A).

Using our model, we have performed several integrations with a wide variety of initial conditions

and subsequent evolutions. This exploration was performed with two goals: 1) to gain a general

understanding of the variety of orbital evolution regimes possible and 2) to approximately reproduce

the Orcus-Vanth system (circular orbit with a ≈ 9000 km and i ≈ 66◦) from a much wider initial

orbit through KCTF.

To describe the evolution of various systems, it will be useful to define a few quantities: qKozai,

aJ2 , qmin and qtides. For a particular KBO binary the true values of these quantities depends on a

variety of unknown factors and can only be estimated.

If the initial eccentricity is zero, then the minimum periapse achievable is qKozai = a(1 −√
1− 5

3 cos2 iinit), where iinit is the initial inclination; for iinit near 90◦, the minimum unsuppressed

periapse can be made arbitrarily small.

Significant suppression of Kozai oscillations occurs when ω̇J2τKozai ' 2, evaluated at e = 0,

which we have verified numerically and matches the result of Fabrycky & Tremaine (2007). Using

Equations 5.7 and 5.3 we can estimate the semi-major axis at which point Kozai suppression would

begin, aJ2 , assuming that J2 is the dominant sourceof precession:

aJ2 ≈ (J2R
2R3

H(1− e2
helio)3/2)1/5 (5.4)

where RH ≡
(
m1+m2
3MSun

)1/3

ahelio is the Hill radius of the binary. For example, in the Orcus-Vanth

system with J2 ' 0.001, this yields aJ2 ≈ 43Rp. When a ' aJ2 , Kozai cycles are suppressed, and the

actual minimum periapse achieved may by higher than qKozai. Call the actual minimum periapse

achieved in suppressed Kozai cycles qmin, which depends mostly on the initial semi-major axis,

inclination, and J2. Finally, let qrmtides be the periapse distance where tidal effects can significantly

affect the KBO binary. This will depend mostly on the unknown tidal parameters k2 and Q.

The values of qmin and qtides, along with the initial spin angular momenta of the binary com-

ponents, are generally the most important parameters in determining the final outcome of orbital

evolution. For example, the initial eccentricity, argument of periapse, or longitude of ascending node

of the KBO binary do not significantly modify the final orbit achieved. The relative values of qmin

and qtides can be used to qualitatively describe the early evolution until Kozai cycles are suppressed

and further evolution is determined mostly by conservation of angular momentum.

If qtides is much closer than qmin, then tides are not strong enough to affect the binary orbit and

Kozai cycles proceed unimpeded. This can occur when Q is high (weak tidal dissipation) or J2 is
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high (efficient Kozai suppression).

If, on the other hand, qtides is much higher than qmin, then during the course of the first Kozai

cycle, the periapse reaches the regime where tides are important. These tides can shrink the periapse

and quickly bring the semi-major axis below aJ2 , turning off Kozai cycles. When tides are not as

strong, they can slowly shrink the orbit over several Kozai cycles, eventually reaching a regime

where the semi-major axis has been lowered enough to suppress Kozai cycling (a . aJ2). Once the

Kozai effect is inactive, tidal evolution occurs according to conservation of angular momentum. As

discussed above, damping the eccentricity then leads to an overall increase in periapse. Furthermore,

during Kozai cycles, the spin rates and directions of the two bodies are not strongly affected. So

the initial spin angular momentum, now efficiently coupled to the orbit through tides, also acts to

increase the semi-major axis and periapse, as long as the spins are somewhat prograde.

It is interesting to note that the final semi-major axis achieved with KCTF is about the same

as the final semi-major axis achieved with tidal evolution outwards from the Roche lobe: in both

cases, the final position is located at a distance where tidal effects are important ∼ qtides. For the

same reason, when tidal evolution at the current position of Vanth is relatively strong, both tidal

evolution outwards and tidal evolution inwards have sufficient time in the age of the solar system to

produce the binary properties seen today.

When KCTF was active in our integrations, we found a wide variety of possible final semi-major

axes, 3Rp . a . 30Rp, with a preference for lower values. One example of a system that, through

Kozai Cycles with Tidal Friction, shrinks significantly in semi-major axis is shown in Figure 5.1.

Unlike in the case of collisions, tidal evolution inwards from a capture orbit does not produce a

binary with a specific value of J . That the observed value of J matches well to the value expected

from collision models would be essentially a coincidence if the system tidally evolved inward from a

capture-like orbit.

The final inclination of the binary is essentially frozen in when the periapse is low enough that

Kozai cycles become completely suppressed. This often happens when the eccentricity is maximized,

which most often occurs when the inclination is near the critical angle, i.e., i ≈ 40◦ or 140◦ (Fabrycky

& Tremaine, 2007). This is the case in the integration shown in Figure 5.1. Higher inclinations can

occur when the oscillation amplitudes are suppressed, the initial eccentricities are high, or if tides

are particularly strong (when qtides � qmin) so that Kozai cycles can be broken before the maximal

eccentricity is reached. Note that, when including the aspects of spin evolution, it is possible to have

final inclinations outside the Kozai range and it is also possible for prograde orbits to “roll over”

and become retrograde orbits. This ability of Kozai cycles to significantly change the inclination

distribution of KBO binaries will unfortunately make it difficult to identify the primordial inclination

distribution predicted by Schlichting & Sari (2008b).

Our simluations are able to produce Orcus-Vanth binaries in circular orbits with a range of semi-
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Figure 5.1 Evolution of the Peripase of a KBO Binary undergoing KCTF. We used our
model for the orbital and tidal evolution of KBO binaries to explore a variety of initial conditions,
in order to attempt to reproduce the Orcus-Vanth binary. The time evolution of the periapse
(q = a(1− e), q/Rp is shown) for one of our integrations is shown above. Note the difference in the
time axis between the left and right side of the graph. In this integration, the physical properties
of the binary components matched that of Orcus and Vanth, including a J2 of 0.0004 and 0.005
respectively. The initial semi-major axis, eccentricity, and inclination were 950 Rp, 0.6, and 82.7◦

respectively, so that the initial orbital periapse would have been 380 Rp or nearly 200000 km. At
this separation, tidal evolution is completely negligible. However, because the initial inclination
is in the Kozai regime, Kozai cycles significantly modify the eccentricity, allowing the system to
reach very low periapse values. These Kozai oscillations are initially very rapid and slow as the
orbital period shrinks due to tidal evolution, which is effective when the periapse reaches ∼20 Rp.
Aided by a reduction in periapse due to the Kozai cycles, the orbit shrinks significanly, reaching
a ' 100Rp within 1.7 MYr. At this point, additional precession from J2 is able to suppress Kozai
cycles and the orbit stabilizes, as always, with a high eccentricity and low periapse. In this case,
the final inclination is about 34◦; it is typical that Kozai cycles will cease at the highest value
of eccentricity, corresponding to the lowest value of inclination (which is usually near the critical
inclinaiton of ∼40◦). Further evolution is dominated by tidal dissipation, which raises the periapse
due to conservation of angular momentum (Equation 5.2) until the orbit becomes nearly circular
after about 50 MYr. The spins of both components are in Cassini states and the Cassini obliquity
damps to nearly zero on the same timescale. The final system looks similar to the Orcus-Vanth
binary today, except for the lower mutual inclination (34◦ instead of 66◦). Further exploration of
parameter space indicates that reasonable variations in initial conditions could easily increase the
final inclination of the simulated Orcus-Vanth to match the observed inclination.
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major axes and inclinations that span the observed values. Since the orbital evolution is somewhat

chaotic and the parameter space of initial conditions is very large, we have not identified a specific

model that reproduces the currently observed system. However, the results we do find give no

indication that it would be difficult or impossible to produce this system from capture-like initial

conditions during the age of the solar system.

During the tidal dissipation phase of evolution, we have found that the spin state of the primary

and/or secondary will typically go to an equilibrium Cassini State. Most tidally-affected bodies in

the solar system are in the low-obliquity Cassini state 1, with the notable exception of the Earth’s

Moon which is in Cassini state 2. Cassini state 2 is usually available either when the obliquity

starts relatively high and/or perturbations from the Sun are relatively strong at large semi-major

axes. Many of our integrations put the bodies, especially the primary, in Cassini state 2. This

is especially true when J2 is relatively high. As the eccentricity damps to nearly zero and the

semi-major axis shrinks at the expense of spin angular momentum, the primary (or secondary) can

sometimes maintain the large Cassini state 2 obliquity for long times. In some cases, there is a

phase of KCTF evolution where the orbit is nearly circular, but the angle between the spin of Orcus

and the binary orbital angular momentum is still substantial. This is an important observational

consequence of KCTF, as Cassini state 2 is not likely to be reached by systems that form in a

collision and tidally evolve outward. The converse is not true; that is, if a KBO binary is found to

have low obliquity (as may be the case for Orcus) it does not imply that KCTF was not active, e.g.,

tides may have been sufficiently strong to force the transition into Cassini state 1 (Fabrycky et al.,

2007).

5.7 Discussion: General effects of KCTF on KBO binaries

Besides the Orcus-Vanth system, we have also applied our model to the Eris-Dysnomia system,

which also has a relative inclination in the Kozai regime: i ' 78◦ or i ' 102◦ in the two possible

orbit solutions (Brown & Schaller, 2007). We did not explore this system in detail, but reach the

same conclusion as GB08: theoretically, Eris and Dysnomia could have started on a much wider,

more eccentric orbit and through Kozai cycles and tidal friction, ended in the orbital orientation

seen today. The large heliocentric inclination of Eris (ihelio = 44.2◦) was presumably created in

an early scattering event and illustrates the possibility that changes in the heliocentric orbit of the

KBO binary could potentially affect whether the relative inclination (which depends on both the

heliocentric inclination and the binary orbit pole direction) is susceptible to Kozai oscillations.

With the current information, it appears that the Orcus-Vanth and Eris-Dysnomia binaries

could have formed through either collision or capture. In the future, with more binaries and better

observations, the observational signatures of KCTF will be more testable. These signatures include
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the following (see also PN09).

• Binaries whose orbits are indicative of KCTF evolution.

• Close binaries on nearly circular orbits with substantial obliquities.

• An underabundance of KBO binaries with relatively large periods and nearly perpendicular

inclinations along with an overabundance of short-period binaries with inclinations near the

critical Kozai inclination (e.g., Figure 8 of Fabrycky & Tremaine 2007).

We caution that there are significant observational biases present in the current distribution of KBO

binaries in that all relative inclinations are not sampled evenly. For example, systems that have low

relative inclinations always present nearly edge-on orbits with respect to Earth-based observations,

while systems with high relative inclinations are usually face-on as seen from Earth. Since KBO

binaries are discovered when the components are significantly separated (& 0.2 arcseconds) during

a single Hubble observation, there is a greater likelihood for edge-on secondaries to be unresolv-

able when observed at a single random epoch, especially for binary separations near the limiting

resolution.

On the other hand, for some specific KBO systems, it will be possible to rule out KCTF as an

important source of orbit modification. This is most easily done with the observation of an additional

satellite, both because these satellites suppress Kozai oscillations and also because they limit the

orbital evolution possible under the reasonable assumption that satellite orbits never crossed in

the past. This rules out the evolution of satellites of Pluto and Haumea by KCTF alone (but see

the “orbital collision” model below). The presence of an extant collisional family like the Haumea

family (Brown et al., 2007) would be another clear sign that the binary was formed by a collision that

occurred after the Kuiper belt attained its current structure. Finally, with long-term astrometric

observations of some binary systems, a direct detection or upper limit of J2 can provide insight into

the likelihood of past evolution due to KCTF.

Tidal dissipation (inwards or outwards) of the orbital and rotational energy of KBO binaries only

produce minor temperature enhancements; for the Orcus-Vanth binary, the average temperature

increase due to orbital energy is less than 1 Kelvin while the average temperature increase due to

spin energy could have been as high as 10 Kelvin. Smaller KBOs will dissipate even less energy.

Since this energy is deposited over very long timescales, tidal dissipation generally has little effect

of the thermal properties of KBOs and binaries that evolved inwards or outwards will not have

identifiable surface features due to tidal heating. On the other hand, giant impacts can strongly

affect the interior and surface states of these systems, though the unique observable consequences

of such collisions is unclear.

We hypothesize that a hybrid scheme of KCTF-induced collisions may be possible and important

for forming KBO binaries. In this case, KCTF increases the eccentricity and drops the periapse to
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very low values, as long as Kozai cycles are not suppressed (e.g., a & aJ2). Even for very low J2

values, this generally occurs at periapses above the Roche limit, unless a is very large (hundreds of

primary radii). In these very high eccentricity phases, it may be possible for the orbit to evolve to

an unstably low periapse. This may be assisted by small non-tidal perturbations, e.g., passing or

impacting KBOs, which could lower the periapse beyond that achieved by Kozai cycles alone. Once

the periapse descends into the Roche lobe, an equilibrium tidal model fails, but it seems unlikely that

continued interactions between objects on highly elongated orbits with very low periapses will be

able to avoid eventual collision. Unlike a collision between two unbound objects, the relative velocity

of the bodies in such an “orbital collision” is lower than the escape velocity from the primary by

a factor of about
√

1+e
2 . Such a grazing weak collision can still result in a disk from which new

satellites would coalesce; these satellites may then evolve outwards due to tides.

It is interesting to note that such a formation mechanism is apparently consistent with the

successful simulations of Canup (2005), which explored the giant impact that produced the Pluto-

Charon system using a Smoothed Particle Hydrodynamics method. Canup (2005) found an entire

suite of simulations between equal size objects on trajectories with vimp = vesc and nearly grazing

impact parameters (0.83 < b < 0.96) that successfully produced disks or intact moons with the

angular momentum and mass ratio that would evolve into the current Pluto-Charon system. These

are similar to the impact parameters that would result from a decaying highly eccentric orbit. It

is interesting to note that the prevalence of KBO capture binaries of nearly equal masses, coupled

with the likelihood of Kozai cycles at high relative inclinations may imply that such orbital collisions

are not uncommon. Furthermore, this method naturally produces impact velocities near the mutual

escape velocity, regardless of the surrounding dynamical environment. (The orbital collision model

is not favored for binaries where the inferred impact velocity is significantly larger than the escape

velocity.)

The opposite effect is also possible: KCTF can unbind KBO binaries if the system properties

are right. When the initial inclination of a binary is near 90◦, the maximal eccentricity reached

due to Kozai oscillations can be very high. Goldreich (1963) pointed out that tidal effects on very

high eccentricity orbits are likely to increase both the semi-major axis and the eccentricity. In our

integrations, we found that KCTF can occasionally lead to orbits that quickly increase in semi-

major axis and eccentricity, gaining angular momentum from the spins of the component until the

binary disassociates. This is the tidally-evolved extension of the “Kozai-Hill” instability mechanism

of PN09, who note that high eccentricity phases of Kozai oscillations can lead to orbital apoapse

distances exceeding the Hill radius.
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5.8 Conclusions

There is strong circumstantial evidence that Orcus’s satellite Vanth formed in giant collision. Here

we have proposed an alternative explanation for the current orbital state: starting on a wider

capture-like orbit, Kozai perturbations due to the Sun cause the eccentricity (and inclination) to

oscillate with large amplitudes, occasionally bringing the periapse low enough to be affected by tidal

evolution. This process continues until tidal dissipation brings the periapse low enough to suppress

Kozai oscillations, after which the orbit circularizes and the spin angular momenta of Orcus and

Vanth are converted to orbital angular momentum. Similar processes may be important for a wide

variety of KBO binaries. Kozai Cycles with Tidal Friction (KCTF) may significantly modify KBO

binary orbits from their initial distribution.

Though it is difficult to prove or exclude the possibility of KCTF for single systems, the ensemble

of KBO binaries may contain the signatures of KCTF evolution, e.g., a lack of wide binaries at

relative inclinations near i = 90◦. More observational and theoretical study of both individual KBO

binaries and the entire population will be able to elucidate the importance of KCTF for creating

the currently observed distribution. Many of the conclusions we have drawn for KBO binaries are

also applicable to asteroid binaries (PN09).

Tidal and orbital evolution can clearly make significant modifications to the primordial binary

orbit distribution. Understanding the effect of Kozai oscillations and tidal dissipation on the cur-

rently observed properties of KBO binaries will help debias the interpretation of the origins of KBO

binaries. In particular, the observation of a short-period circular orbit for Orcus and Vanth can not

be immediately attributed to a purely collisional origin.
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5.9 Appendix: The Orbital Evolution Model

5.9.1 Introduction to EKE Framework

We use the orbital and tidal evolution framework of (Eggleton & Kiseleva-Eggleton, 2001, hereafter

EKE), which was originally developed for stellar systems, but with the minor adaptations described

below, can be applied to solid body binaries. For more information on this framework, see Eggleton

et al. (1998); Mardling & Lin (2002); Fabrycky & Tremaine (2007); Fabrycky et al. (2007). The

original unmodified integration code was kindly provided by D. Fabrycky.

The EKE equations describe the evolution of 4 vectors: ~e, ~h, ~Ω1, and ~Ω2, which represent
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the Laplace-Runge-Lenz eccentricity vector, the orbital angular momentum vector, and the spin

vectors of both bodies, respectively. The magnitude of ~e is the eccentricity, e, and the direction

points in the direction of periapse. The evolution of semi-major axis is evaluated indirectly through

h =
√
G(M1 +M2)a(1− e2). These coordinate system used to describe these vectors is the orbital

orientation of the outer binary, called (~E,~Q, ~H) in EKE, where ~Q is a vector perpendicular to the

eccentricity vector for the outer binary, which is needed to form a perpendicular right-handed triad

of unit vectors. In the original EKE formalism, (~E,~Q, ~H) is not necessarily an inertial reference

frame, but since we assume that the heliocentric orbit is fixed (and is not significantly changed

by interactions in the KBO binary), this is an appropriate approximation (Fabrycky & Tremaine,

2007).1 Note that the quantities we are interested in are independent of the reference frame. The

EKE equations describe the force and torque couples needed to evolve the 12 components of ~e, ~h,

~Ω1, and ~Ω2. As our implementation of the integration uses a variable timestep and automatically

stops when the system reaches the double synchronous state (DSS), the time needed to integrate for

the age of the solar system varies from a few seconds to days, depending on the initial conditions

and parameters of the integration.

There are two modifications made to the EKE equations that are needed to adapt the system for

solid bodies. The first is an addition of apsidal and nodal precession terms due to the quadrupole

moment of any permanent asymmetry, J2. For small solid bodies, material strength can support

permanent mass anomalies and significantly non-spherical shapes. The second is writing the tidal

dissipation in terms of Q.

5.9.2 Adding Permanent Asymmetries

Expanding a J2 potential (Murray & Dermott, 2000) and using the notation of EKE, we find

XJ2,1 =
3
2
J2,1

(
R1

a

)2
n

(1− e2)2

Ω1hΩ1e

Ω2
1

(5.5)

YJ2,1 =
3
2
J2,1

(
R1

a

)2
n

(1− e2)2

Ω1hΩ1q

Ω2
1

(5.6)

ZJ2,1 =
3
4
J2,1

(
R1

a

)2
n

(1− e2)2

2Ω2
1h − Ω2

1e − Ω2
1q

Ω2
1

(5.7)

where Ω2 = |~Ω|2 and Ω1i is the projection of the spin vector onto axis i, as in EKE; the spin-related

terms are used to correctly account for the case of non-zero obliquity. These terms are added to the

X1, Y1, and Z1 terms of EKE and this procedure is repeated for body 2, which may itself have a J2

large enough to dominate the precession of the system. In the appropriate limits, these equations
1We note here that some heliocentric orbits are not fixed in time due to the effects of other planets. In our model,

the effects of other planets and passing KBOs are all ignored.
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reproduce the expected J2 evolution. In the set up of the EKE equations, these terms are used to

calculate both the torque on the orbit due to the quadrupole and the corresponding back-torque

of the orbit onto the quadrupole. Note that this J2 is due solely to the permanent asymmetry

supported by the material strength of these small solid bodies and that the effective J2 of the tidal

and rotational bulges is already accounted for through other terms.

Our proscription for including J2 assumes that any permanent mass anomalies can be well-

approximated by a degree-2 gravity field with an axis aligned with the rotational axis of the body2.

This is true for rapidly spinning solid bodies, in which case J2 is an effective time-averaged J2, which

for a tri-axial body has a value of J2R
2 = 0.1(α2 + β2 − 2γ2), where α, β, and γ are the semi-radii

of the ellipsoid (Scheeres, 1994; Ragozzine & Brown, 2009). When the spin frequency and orbital

angular frequency at periapse become comparable, or near higher-order spin-orbit resonances, this

approximation begins to break down. Near synchroneity other unmodeled sources of tidal dissipation

can become important, though their effect is to change slightly the time needed to achieve DSS

(Dobrovolskis et al., 1997).

In the case of high-order spin-orbit resonances, tidal evolution can quickly break these resonances

and ignoring them in our evolution should have no significant effect, especially if the final outcome

is a circular orbit. We note that many KBO binaries have eccentric orbits: if tides are effective at

slowing the spins of these bodies, they may be in high-order spin-orbit resonances. Recall that the

purpose of including J2 in the evolution is to provide a realistic source of natural apsidal precession

that can suppress Kozai oscillations; after Kozai effects turn off early in the integration, J2 has no

significant impact on the remaining evolution, as it merely precesses the orientation of the orbit and

spin poles. This has no long-term effect on tidal evolution rates outside of resonance.

We can compare the importance of a permanent asymmetry (J2) and the next largest source of

apsidal precession in highly eccentric orbits, which is usually precession due to instantaneous tidal

bulges. If the rotation rate is significantly higher than the orbital period, the rotational bulges can

be more important, depending on the eccentricity. The Z terms of the EKE framework describe

apsidal precession, so we can compare ZJ2,1 to the precession rate due to the instantaneous tidal

bulge of body 1 (EKE):

ω̇t =
15
2
k2

(
R1

a

)5

n
m2

m1

(1 + 3
2e

2 + 1
8e

4)
(1− e2)5

(5.8)

Considering only body 1 and assuming zero obliquity, it can be shown that these two will be com-

parable when

J2 ' 5k2

(
R1

q

)3
m2

m1
(5.9)

where q is the periapse and where we have dropped the term (1+ 3
2 e

2+ 1
8 e

4

(1+e)3 , which is nearly equal

to 1 for all eccentricities. Because of the stronger dependence of apsidal precession (of both tidal
2Even small KBOs (r & 1 km) are expected to rapidly reach principal axis rotation
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and rotational bulges) on the distance R1
a , they are only dominant when the periapse is very low.

Note that J2 and k2 can easily be of similar magnitude, even when the body is large enough to

become spherical through hydrostatic equilibrium. In this case J2 precession will dominate unless

the periapse is within the Roche lobe at ∼2.5 primary radii. For stable orbits, J2 precession will be

the dominant source of apsidal precession unless the solid body has very little permanent asymmetry

and k2 is rather large, though recall that significant enhancements to k2 are possible for small rubble

piles (Goldreich & Sari, 2009). Since Kozai oscillations significantly change the orbital orientation,

this dominance is robust even when the angle between the spin and binary orbital axis is non-zero

(and J2 precession is reduced). By conducting a large range of short-term integrations of the EKE

model, we have confirmed that systems where J2 = 0 can reach minimal periapses of qmin within the

Roche lobe. Including even a tiny permanent asymmetry (J2 ' 10−7), suppresses Kozai oscillations

and raises the maximal periapse to outside the Roche lobe. Small bodies (R . 200 km), including

most KBOs and all but the largest asteroids have sufficient material strength to defy hydrostatic

equilibrium, resulting in very large J2 values of order ∼0.1. We also confirm directly that adding

J2 never lowers the minimum periapse and always acts to suppress the eccentricity and inclination

amplitude of Kozai oscillations, while often increasing the oscillation frequency to ∼10 times faster

than the timescale given in Equation 5.3.

5.9.3 Tidal Q

The other modification appropriate for solid bodies is a change in the way solid body tides are

treated. The original EKE formalism uses frictional timescales that can be expressed as a function

of the viscous timescale of fluid stars. We modify the tidal friction timescale calculations in a way

similar to Fabrycky et al. 2007:
1
tF1

=
3n
2
k2,1

Q1

(
R1

a

)5
M2

M1
(5.10)

and similar equations for body 2 (which has the mass factor M1
M2

). Tidal torques are proportional to

t−1
F .

The EKE model of tides assumes that the time lag of all tidal components are equal and constant

in time. As discussed in Efroimsky & Lainey (2007), this corresponds to a frequency dependent Q

with Q ∝ χα, where χ is the tidal frequency (e.g., 2|
√

Ω2
1−n| for the diurnal tide) and where α = −1

corresponds to the frequency dependence assumed by EKE. This same frequency dependence is also

used in the model of Mignard (1980) and others. A wide variety of geophysical data for the Earth

give α ' 0.3±0.1 (Efroimsky & Lainey, 2007) and it is thought that a similar value would be relevant

for icy bodies (Michael Efroimsky, personal communication, 2009). Hence, the negative frequency-

dependence of Q assumed in the EKE model is unlike the geophysically-motivated positive frequency-

dependence of Efroimsky & Lainey (2007) and also unlike the constant Q model of Goldreich & Soter
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(1966) on which GB08 is modeled. Different frequency dependences of the component tides is the

explanation for differing coefficients in the tidal evolution equations. Note that significant changes

in the rotational and orbital frequencies under KCTF can be quite large, so that the value of α

is important for determining the exact evolution. We experimented with incorporating a variable

frequency dependence (Q ∝ χα) and found that the main change was usually in the timescale of

orbital evolution; as noted in the text, once the system breaks out of the Kozai resonance, the

final parameters of the double synchronous state are determined solely by conservation of angular

momentum.

Despite possible issues with Q, the EKE model accounts for the fact that, at high eccentricity,

significant tidal damping at periapse enhances the tidal evolution rate over the above (which depends

on a). Since the tidal torque is proportional to r−6, the majority of tidal interactions occur near

periapse (even when accounting for the fast that the orbit spends the least time near periapse).

Using the EKE expansions derived for arbitrary eccentricity and obliquity significantly improves the

accuracy of evolution over GB08 who use the low-eccentricity approximations of these equations in

a regime where they are not valid.

5.9.4 Potential Improvements to the Model

To more accurately track tidal histories, the Kaula (1964) method of expanding the tidal poten-

tial into individual Fourier components would be superior. Then, each tide can be assigned the

appropriate frequency dependence and the sign of the torque of each individual tidal component

can be correctly accounted for. The Kaula (1964) expansion of tidal friction, with corrections and

improvements from Efroimsky & Williams (2008), could be readily incorporated in the EKE frame-

work, which would avoids some of the problems relating to tracking the correct inclination reference

frame. To do this properly would involve one less averaging than taken in Kaula (1964), to account

for the effect of the Kozai resonance on the argument of periapse, as pointed out in Efroimsky &

Williams (2008).

Even this improved model would suffer from the difficulties encountered in all averaged models:

they can not correctly handle resonances involving unresolved frequencies. For example, since our

model averages over the orbital motion of the Sun, our model ignores the potentially important

contribution of the evection resonance, when the orbital precession frequency is resonant with the

heliocentric orbital period (Touma & Wisdom, 1998). Passage through this resonance can excite the

system and this excitation is not included in our integrations. We do check the apsidal and nodal

precession periods throughout our integration and find that these timescales are generally much

longer than the heliocentric orbital period when the satellite is tidally evolving inwards. It can be
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shown that for a nearly-circular orbit, the evection resonance occurs at a semi-major axis of

ain '
(

27
4

(J2R
2)2R3

H

)1/7

(5.11)

which is about 10 primary radii for the Orcus system, assuming J2 ' 0.005. Unless J2 is much

higher, the 1:1 evection resonance is probably not important for tidal evolution inward from a larger

orbit.

By far the largest drawback to our tidal model, which would only be partly remedied by using

a full Fourier expansion of the tidal potential, is that the physics of tidal dissipation is not fully

understood. Although most popular, tidal models that use Q implicitly assume that the bodies

respond linearly to perturbations; once tidal stresses significantly exceed the yield stress of the body

or if tidal components at different frequencies interact non-linearly, a hydrodynamical model should

be used to calculate tidal perturbations. It may be true that the end result of such a model may

be approximated by an “effective” Q value with a certain frequency dependence. Very close passes,

significant lateral heterogeneity in the binary components, feedback between energy dissipation and

tidal parameters, or other non-linear effects are also likely important in reconstructing precise tidal

histories. Even in the Earth-Moon system, there is insufficient observational and theoretical data

to fully reconstruct the orbital history of the binary system. Despite these drawbacks, we believe

that the inclusion of a better tidal model would not change the general result that KCTF can be

important for the orbital evolution of KBO binaries. Furthermore, investigations of the orbits of

KBO binaries will only provide more constraints and insights into the relevant tidal physics; future

analyses may be able to identify and accurately model the most important aspects of the tidal

evolution of these systems.
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