List of Figures and Tables

	Page	
Chapter 1		
Figure 1.1	X-ray crystal structure of double-stranded DNA and examination of	
	individual DNA base pairs	3
Figure 1.2	X-ray crystal and NMR structures of five protein–DNA complexes	4
Figure 1.3	The interferon beta enhanceosome.	5
Figure 1.4	Known X-ray Crystal Structures Demonstrating Higher-order DNA Pack-	
	ing	7
Figure 1.5	Natural products that recognize DNA	8
Figure 1.6	X-ray crystal structures showing the molecular recognition of DNA by	
	netropsin and distamycin.	9
Figure 1.7	Recognition of all four base pairs of DNA by designed ligands based on	
	the natural product distamycin	1
Figure 1.8	Molecular recognition of narrow, groove DNA tracts by linear beta-alanin	e
	linked polyamides	2
Figure 1.9	DNA minor groove hydrogen bond recognition elements	3
Table 1.1	Imidazole-capped eight-ring polyamides recognize a diverse library of	
	DNA sequences 1	6
Figure 1.10	Examples of polyamides used for modulation of gene expression in living	
	cell culture1	8

Chapter 2A	
Figure 2.1	Polyamide structures, binding models and nuclear localization in cell cul-
	ture
Figure 2.2	DNA binding properties of the polyamides
Table 2.1	Polyamides designed to target GAA·TTC repeats in the frataxin gene29
Figure 2.3	DNase I footprint analysis for polyamide 1 binding to a radiolabeled
	(GAA·TTC) ₃₃ PCR product derived from plasmid pMP142 DNA,
	5'- labeled on the purine strand; quantitative DNase I footprint analysis for
	polyamides 1 and 3 binding to a radiolabeled DNA containing a mismatch
	DNA sequence
Figure 2.4	Quantitative DNase I footprint analysis for polyamide 1-B
Figure 2.5	Polyamide 1 increases the levels of frataxin mRNA and protein in an
	FRDA lymphoid cell line. 32
Table 2.2	Collected data showing the average ΔCt for normal cells (GM15851) and
	FRDA cells (GM15850) before and after treatment with 1 at 2 μ M33
Table 2.3	Potential match and degenerate binding sites for polyamide 1 in significant
	genes listed for class comparisons where $P \le 0.005$
Figure 2.6	Microarray analysis of polyamide effects on global gene expression 37
Figure 2.7	Effect of polyamide binding to plasmid DNA on sticky DNA stability 39
Chapter 2B	
Figure 2.8	Frataxin gene structure and model of polyamide-DNA binding48
Figure 2.9	A list of polyamide structures utilized in footprinting studies on [AAG] ₃
	repeats51
Figure 2.10	Plasmid insert sequences utilized for footprinting [AAG] ₃ -targeting poly-
	amides
Figure 2.11	Quantitative DNase I footprint titrations for an [AAG],-targeting poly-

\mathbf{v}
/ \

	amide and a 4-(2-aminoethyl) morpholine tail variant	. 53
Table 2.4	Binding affinities (K_a, M^{-1}) of polyamide 1 to sites I and II	54
Figure 2.12	Methidium-propyl EDTA (MPE) footprinting of polyamide 1 and affinit	ty
	cleavage of polyamide 1E on pJWP10	. 54
Table 2.5	Polyamide length titration series.	.55
Figure 2.13	Quantitative DNase I footprint titrations showing effects of polyamide	
	length on binding preferences and affinities	. 56
Figure 2.14	Quantitative DNase I footprint titrations examining binding affinities an	ıd
	preferences of double amino acid mismatch versus single amino acid m	is-
	match polyamides on pJWP2	.58
Table 2.6	Polyamide alternative mismatch control series	. 59
Figure 2.15	Quantitative DNase I footprint titrations showing the effects of BODIP	Y
	FL conjugation on binding preferences and affinities	.60
Table 2.7	Polyamide dye conjugate series.	. 60
Table 2.8	MALDI-TOF Mass Spectral Data for Polyamides	. 63

Chapter 3		
Figure 3.1	Methods for analyzing DNA binding specificity	72
Figure 3.2	Polyamides for CSI Studies	74
Figure 3.3	Histogram of microarray intensities	76
Figure 3.4	Histogram of microarray fractional standard deviations	77
Figure 3.5	Insert sequences utilized in plasmids	78
Figure 3.6	DNase I footprinting gels and corresponding isotherms of polyamides 1	
	and 2 on pKAM3 and pKAM4	79
Table 3.1	Quantitative DNase I Footprinting Derived K_a values (M ⁻¹) for Polyamid	es
	1 and 2	79
Figure 3.7	DNase I footprinting gels and corresponding isotherms of polyamides 3	
	and 4 on pJWP17	80
Table 3.2	Quantitative DNase I Footprinting Derived K_a values (M ⁻¹) for Polyamid	es
	3 and 4	80
Figure 3.8	CSI array intensities correlate well with DNase I footprinting-determined	1
	K _a values	82
Figure 3.9	Correlation of footprinting data for polyamide 2 and CSI data and foot-	
	printing data for polyamide 4 and CSI data	83
Figure 3.10	Cy3-labeled polyamides and unlabeled polyamides correlate well	84
Figure 3.11	Sequence Logo for polyamide 2.	85
Figure 3.12	Sequence Logo for polyamide 4.	85
Figure 3.13	$K_{\rm a}$ -weighting components of individual sequence logos does not alter the	;
	sequence logo	85
Table 3.3	Microarray-Derived Binding Affinities and Specificities of All Single Ba	se
	Pair Mismatch Sites for Polyamide 2	86
Table 3.4	Microarray-Derived Binding Affinities and Specificities of All Single Ba	se
	Pair Mismatch Sites for Polyamide 4.	87