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Abstract

Nonlocality refers to correlations between spatially separated parties that are stronger than those

explained by the existence of local hidden variables. Quantum mechanics is known to allow some

nonlocal correlations between particles in a phenomena known as entanglement. We explore several

aspects of nonlocality in general and how they relate to quantum mechanics.

First, we construct a hierarchy of theories with nonlocal correlations stronger than those allowed

in quantum mechanics and derive several results about these theories. We show that these theories

include codes that can store an amount of information exponential in the number of physical bits

used. We use this result to demonstrate an unphysical consequence of theories with stronger-than-

quantum correlations: learning even an approximate description of states in such theories would be

practically impossible.

Next, we consider the difficult problem of determining whether specific correlations are nonlocal.

We present a novel learning algorithm and show that it provides an outer bound on the set of local

states, and can therefore be used to identify some nonlocal states.

Finally, we put nonlocal correlations to work by showing that the entanglement present in the

vacuum of a quantum field can be used to detect spacetime curvature. We quantify how the entan-

gling power of the quantum field varies as a function of spacetime curvature.
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Chapter 1

Introduction

Physis kryptesthai philei.

“Nature loves to hide.”

Heraclitus

1.1 Motivation

Even after a hundred years of progress, new issues regarding the foundations of quantum physics

continue to arise. Many of these issues could not be appreciated without the framework provided

by recent advances in information science. Before the advent of computers, the question of the

information processing power of a physical theory held limited ramifications.

Why do we find quantum mechanics and not another theory? This may seem like a metaphys-

ical question, but many independent inquiries suggest that even slight modifications to quantum

mechanics lead to physically unacceptable consequences. What qualifies as unacceptable is a free

lunch, whether it is in the form of computing[3], energy[4], or communication[5]. This suggests that

the most important content of a physical theory has not to do with Hilbert spaces, but information

properties that are neither trivial nor too powerful.

One of the most shocking examples of physics that is nontrivial while remaining just shy of a free

lunch has come from the study of nonlocal correlations. We will focus on nonlocality as we attempt

to address some foundational questions.

For instance, we know quantum mechanics is nonlocal, but we also know it is not as nonlocal

as it could be [6]. Is there a deep reason this should be the case? This question is closely related

to an approach which attempts to reformulate quantum mechanics in terms of a small number of

information-based axioms, rather than abstract mathematical ones [7]. A collection of physically

motivated, informational axioms might also suggest solutions to the vexing problem of combin-

ing gravity and quantum mechanics. Indeed, predictions on the fate of information in quantum

mechanics versus general relativity are the source of much of the controversy on how to proceed[8].
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In the work that follows we consider these themes in various guises. What nonlocal correla-

tions are possible, and what are their information processing properties? How can we determine if

correlations are nonlocal? How is nonlocality affected by the curvature of spacetime?

1.2 Operational backdrop

In the early days of quantum mechanics, counterfactual questions were a rich source of philosophic

strife surrounding quantum mechanics: “What would the result have been if we had made a different

measurement?” Our physical intuition tells us there must be an answer. A thing must be one way

or another, whether we look at it or not. But in this case, nature hides nothing, unless it is that

there is nothing to hide. If we give up our idea of truly objective measurements that have no effect

on the measured system, then how can we construct meaningful experiments?

Now we define a general experimental setup which will stay with us throughout this thesis.

Definition 1.2.1. The following general experimental setup we call a measurement scenario, the

result of which is to generate a probability distribution over the outcomes and measurement choices.

We have n parties, each of whom has a choice of m measurements choices, which may result in one

of k outcomes. For the i-th party we refer to their measurement choice as Xi ∈ Zm and the result

of their measurement as Ai ∈ Zk. We assume that each measurement choice is made independently

and that the measuring events for each party are spacelike separated. After repeating this experiment

many times, the experimenters generate a probability distribution p(A1, . . . , An|X1, . . . , Xn) fully

describing the results of this experimental setup.

This is a quite general experimental setup, but there are some ingredients to it that would have

been unthinkable a hundred years ago.

• Measurement choice: The idea that some measurements are simply incompatible is a funda-

mentally quantum mechanical idea. Because making a measurement necessarily disturbs the

results of subsequent measurements, we must choose which properties we would like to measure

accurately in any particular experiment.

• Choice independence: Normally, it would not make a difference how our measurements are

chosen, but if something or someone is behind the scenes manipulating which measurements

our “independent” experimenters are making, this would allow the simulation of nonclassical

correlations with only classical resources. Although this remains a possible explanation for

nonlocal correlations, the next ingredient makes this highly unlikely.

• Spacelike separation: This is not a strictly necessary ingredient, but it does guarantee, at least

insofar as we trust the laws of special relativity, no information about one measurement choice
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can propagate to one of the other experimenters to cause some effect. As an added bonus,

we need not concern ourselves about the timing of the different measurements; according to

special relativity the order in which the measurements are made is totally relative.

• Probabilistic description: In Laplace’s day, it seemed that randomness in our measurements

could be banished by examining a system in finer detail, until all parts were understood and

everything behaved deterministically. Quantum mechanics tells us that some randomness is

intrinsic. In these cases, a probabilistic description is our only hope.

1.3 Definition of concepts

In the context of the measurement scenario just described, we now define precisely what is meant

by the concepts used heavily throughout this work: local, nonlocal, and no-signalling.

Definition 1.3.1. A probability distribution for measurement scenario 1.2.1 is local if it can be

described by a local hidden variable model. That is, their exists a (possibly infinite) hidden variable

R ∈ ZN and probability distributions p(Ai|Xi, R), p(R), so that

p(A1, . . . , An|X1, . . . , Xn) =
∑
R

p(R)
n∏
i=1

p(Ai|Xi, R).

In theory, the hidden variable could be continuous, though this makes no difference if we only

consider experimental setups with finite n,m, k. For a continuous formulation, see [9]. The content

of this definition is just that any measurement outcome should depend only on the measurement

choice and some (classical) information shared by all the parties.

Definition 1.3.2. A probability distribution for measurement scenario 1.2.1 is nonlocal if it can

not be described by a local hidden variable model, as defined by 1.3.1.

Surprisingly, we shall see that there are situations in which a measurement result does depend

on the measurement choice and outcome of another party, but not in a way that can be used to send

a signal.

Definition 1.3.3. A probability distribution for measurement scenario 1.2.1 is no-signaling if it sat-

isfies the following equality constraints. For any partitioning of the parties {1, . . . , n} into {i1, . . . , is}

and {j1, . . . , jt} with s+ t = n,

∑
Ai1 ,...,Ais

p(A1, . . . , An|Xi1 , . . . , Xis , Xj1 , . . . , Xjt)

=
∑

Ai1 ,...,Ais

p(A1, . . . , An|X ′i1 , . . . , X
′
is , Xj1 , . . . , Xjt)

∀Aj1 , . . . , Ajt , Xi1 , . . . , Xis , X
′
i1 , . . . , X

′
is , Xj1 , . . . , Xjt
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Intuitively, this just says that the probability of finding any measurement result for one party is

independent of the measurement choices of another party as long as we average over their possible

results. Special relativity has been so extensively confirmed, that it would be surprising indeed if

any physical theory failed to satisfy this requirement.

1.4 Bell inequalities

How can we identify nonlocal correlations in a probability distribution? For now we will simply

point out the existence of linear inequalities called Bell inequalities which must be satisfied for any

local probability distribution [10]. We will discuss the conditions distinguishing local and nonlo-

cal distributions in more detail in Chapter 3, along with a more geometric interpretation of Bell

inequalities, see 3.1.

In this work, we will generally speak of Bell inequalities as any inequality which, when violated,

implies nonlocal correlations. This is in contrast to what we will refer to as tight Bell inequalities,

some collection of inequalities which are satisfied if and only if a probability distribution is local.

1.4.1 CHSH inequality

The simplest situation one can imagine in which nonlocality arises is with only two parties, each

making one of two measurements, with two possible outcomes. In this case, up to the symmetry of

relabeling the parties, the outcomes, or the measurements, there is only one (tight) Bell inequality,

referred to as the CHSH inequality[11]. If the outcomes A,B and measurement settings X,Y all

take values in {0, 1}, the inequality can be expressed very simply using δa,b, equal to one if a = b or

zero otherwise.

ηL =
1
4

∑
A,B,X,Y ∈{0,1}

p(AB|XY ) δA⊕B,X·Y ≤
3
4

(1.1)

For a no-signalling distribution, the maximum achievable ηNS = 1 [12], while for quantum

mechanics, the maximum is ηQ = 1
2 +
√

2
2 [13]. This is the origin of the claim that quantum mechanics

is nonlocal, but not as nonlocal as it could be without violating special relativity.

1.5 Nonlocality versus entanglement

Although entangled states in quantum mechanics are generally considered to be nonlocal objects,

in the sense that two spatially disjoint subsystems must be regarded as parts of one larger system,

this is subtly different than nonlocality as we have defined it.

Consider the density matrix ρAB for a quantum system that exists in a tensor product Hilbert

space HA ⊗ HB . This state could represent, for instance, two spacelike separated particles. The
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quantum systems A and B are considered to be separable if the density matrix describing ρAB can

be written,

ρAB =
∑
i

λiρ
(i)
A ⊗ ρ

(i)
B ,

that is, as a mixture of tensor products states. If two systems are not separable they are considered

entangled [14].

Although it is easy to see that any measurements on a separable state must lead to a local

probability distribution, it is less clear that an entangled one is necessarily nonlocal. That is, are

there always a set of measurement choices on an entangled quantum state that produce a probability

distribution violating some Bell inequality [15]? Surprisingly, for a class of states called Werner

states, the answer is no[16]. On the other hand, even in cases where a Bell inequality is not violated

by some entangled state, it may be the case that several copies of such an entangled state can be

used to produce a violation. Such states are said to exhibit hidden nonlocality[17]. In this thesis

we will generally be more concerned with nonlocality than entanglement, though in Chapter 4 we

will make use of results for amplifying small amounts of entanglement to produce Bell inequality

violations.

1.6 Overview of the thesis

The groundwork for the subsequent three chapters is mostly independent, though all relate to the

theme of nonlocality in some way. Here we discuss the main results of each chapter with a particular

emphasis on the individual contributions of the author and their connection to the motivation of

this thesis.

1.6.1 Information processing in nonlocal theories

The first chapter considers nonlocal correlations in a general way without reference to any particular

physical theory. This allows us to consider the information processing capabilities that nonlocality

allows.

There are two main ideas in this chapter. The first concerns the structure of nonlocal theories

and is mostly discussed in Sections 2.2, 2.3, and 2.5. Here we argue that the typical paradigm

for generalized no-signaling theories (we refer to these as GNST) has been artificially restricted to

include only choices among local measurements[18, 7, 6]. We propose a generalization, which we refer

to as p-nonlocal theories, that allows simultaneous measurement for any commuting observables. We

show that this structure implies additional restrictions on the space of allowed states in any such

theory. The differences in information processing power of these two types of theories is discussed

in the second half.
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The second main idea concerns the information properties of nonlocal theories and is presented in

Sections 2.4, 2.5, 2.6, and 2.7. Despite quantum physics’ computing strengths, and the seemingly vast

size of Hilbert space, quantum states are only marginally better at a task known as random access

coding[19]. That is, if you want to store many bits so that a small number can be recovered with

high probability, quantum physics performs only marginally better than classical physics. Aaronson

turned this “lemon” result into “lemonade” by pointing out that this also insures that quantum

states are “learnable”[20]. Suppose you had an unknown quantum state of a mere 100 qubits. This

state is described by 2100 complex amplitudes which would require O(2100) separate experiments to

determine. We can never hope to do so many experiments to confirm the identity of our state, even

in the lifetime of the universe. What Aaronson’s learnability result implies is that after performing

a number of experiments linear in the number of qubits, we can create an approximate description

of the quantum state that will accurately describe the results of most future measurements with

high probability.

We consider the extension of this result to any theory that includes more general nonlocal cor-

relations. First we demonstrate that these theories must include powerful random access codes,

capable of storing an exponential amount of information of which any single bit can be recovered

with high probability. This power comes with a cost. We show the converse of Aaronson’s result;

powerful random access codes imply poor learnability. Therefore, for theories with more general

nonlocal correlations we have the unphysical consequence that we are required to do a number of

experiments exponentially large in the size of the system to predict future measurements.

1.6.2 Tests of nonlocality

This chapter begins by introducing the practical difficulties of discovering tests of nonlocality and

suggests several remedies to overcome them. In particular, the number of inequalities that must

be checked to determine whether correlations are nonlocal are at least exponential in the problem

parameters. Therefore we propose to replace an exponential number of linear inequalities with

a polynomial number of nonlinear inequalities. We consider several alternatives based on convex

optimization techniques for accomplishing this and compare them.

We then consider some connections with statistical learning theory. We point out a parallel

between Bell inequalities and Bayesian networks with hidden nodes, which suggests an alternate use

for “tests of nonlocality” as “tests of graph structure.” We also consider the applicability of our

techniques based on convex geometry to the problem of learning classifiers from clusters of sample

data points.

Finally we consider some novel alternative methods for finding Bell inequalities based on algebraic

geometry, though we ultimately find these methods too inefficient to be useful.
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1.6.3 Nonlocality in curved space

In the final chapter, we consider nonlocality to be a physical resource, present even in the vacuum

of a quantum field theory. We consider the entangling power of a field to be its ability to entangle

two previously unentangled spacelike separated quantum detectors. We explore how the curvature

of spacetime affects the entangling power of the field in the particular case where the curvature

corresponds to an inflating universe. We show that although, locally, a flat, heated universe and an

inflating one look identical, entanglement can be used to distinguish the two situations.

This demonstrates another connection between spacetime curvature and quantum information

beyond the usual example of black holes. Hopefully, a better understanding of how spacetime

curvature relates to information properties will someday lead to a better synthesis between gravity

and quantum mechanics.
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Chapter 2

Information processing in nonlocal
theories

The man bent over his guitar,
A shearsman of sorts. The day was green.

They said, “You have a blue guitar,
You do not play things as they are.”

The man replied, “Things as they are
Are changed upon the blue guitar.”

And they said then, “But play, you must,
A tune beyond us, yet ourselves,

A tune upon the blue guitar

Of things exactly as they are.”

Wallace Stevens

Exploring the implications of fundamentally incompatible measurements has altered our paradigms

about physical theories. Nonlocal correlations and uncertainty relations both express relationships

among the expected outcomes of incompatible measurements. What relationships are possible and

what are their physical consequences? Quantum mechanics imposes very stringent restrictions [21],

and we would very much like to understand their extent and implications. To this end, it is instruc-

tive to remove some of these restrictions and investigate how our ability to perform information

processing tasks changes as a result.

A popular approach has been to consider only local measurements and the consequences of re-

laxing the possible violation of the CHSH inequality while obeying the no-signaling principle. By

instead focusing on relaxing the restrictions on uncertainty relations, which hold for any incompat-

ible measurements, we eliminate this unnecessary fixation on local measurements. We show that

Tsirelson’s bound is actually a direct consequence of the uncertainty relations of [22], and relaxing

these relations still leads to a theory which maximally violates the CHSH inequality while respecting

the no-signaling principle. We explore the consequences of allowing more general types of measure-

ments and point out information processing differences between the two approaches. We use these

results to show that states “more nonlocal” than quantum mechanics would be “hard to learn”.
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2.1 Background

The existence of nonlocal correlations in quantum mechanics that are stronger than those allowed by

local realism [23], but yet strictly weaker than those consistent with the no-signaling principle [12]

poses an enigma to the understanding of the foundations of quantum physics. What are the prop-

erties of quantum mechanics that disallow these stronger correlations [7]? And, what possibilities

would be opened by the existence of these correlations? Much of the work exploring these questions

has focused on the “box paradigm” that was initially inspired by the CHSH inequality [11]. This

particular Bell inequality [23] can be cast into a form of a simple game between two players, Alice

and Bob. When the game starts, Alice and Bob are presented with randomly and independently

chosen questions s ∈ {0, 1} and t ∈ {0, 1}, respectively. They win if and only if they manage to

return answers a ∈ {0, 1} and b ∈ {0, 1} such that s · t = a⊕ b. Alice and Bob may thereby agree on

any strategy before the game starts, but may not communicate afterwards. Classically, that is in any

model based on local realism, this strategy consists of shared randomness. It has been shown [11]

that for any such strategy we have

γ :=
1
4

∑
s,t∈{0,1}

Pr[s · t = as ⊕ bt] ≤
3
4
,

where Pr[s · t = as ⊕ bt] is the probability that Alice and Bob return winning answers as and bt

when presented with questions s and t. Quantumly, Alice and Bob may choose any shared quantum

state together with local measurements as part of their strategy. This allows them to violate the

inequality above, but curiously only up to a value

γ ≤ 1
2

+
1

2
√

2
,

known as Tsirelson’s bound [13, 24]. We will see later that there exists a state |Ψ〉AB shared by

Alice and Bob that achieves this bound when Alice and Bob perform measurements given by the

observables A0 = B0 = X and A1 = B1 = Z where we use As and Bt to denote the measurement

corresponding to questions s and t respectively. The non-signaling principle that disallows faster

than light communication between Alice and Bob alone does not impose such a restrictive bound.

Hence, Popescu and Rohrlich [12, 25, 26] raised the question why nature is not more ”nonlocal”?

That is, why does quantum mechanics not allow for a stronger violation of the CHSH inequality up to

the maximal value of 1? To gain more insight into this question, they constructed a toy-theory based

on so-called PR-boxes [6]. Each such box takes inputs s, t ∈ {0, 1} from Alice and Bob respectively

and simply outputs randomly chosen measurement outcomes as,bt such that s·t = as⊕bt. Each such

box can be used exactly once, and no notion of post-measurement states exists. Note that Alice and

Bob still cannot use this box to transmit any information. However, since we have for all s and t that
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Pr[s · t = as ⊕ bt] = 1, Tsirelson’s bound is clearly is violated. It is interesting to consider how our

ability to perform information processing tasks changes, if PR-boxes indeed existed. For example,

it has been shown that Alice and Bob can use such PR-boxes to compute any Boolean function

f : {0, 1}2n → {0, 1} of their individual inputs x ∈ {0, 1}n and y ∈ {0, 1}n by communicating only

a single bit [5], which is even true when the boxes have slight imperfections [27].

Much interest has since been devoted to the study of such PR-boxes and their generalizations

known as nonlocal boxes [28, 29, 30, 31, 32, 33, 34]. In particular, they have been incorporated

in a very nice way into generalized non-signaling theories (GNST) due to Barrett [18] (the relation

of such theories to generalizations of quantum theory is due to Hardy [7]) as a means of explor-

ing foundational questions in quantum information. Intuitively, such theories allow for “boxes”

involving many more inputs for one or more players/systems, and also allow for some transforma-

tions between such boxes. Both theories seek out physically motivated properties that single out

quantum mechanics from other theories such as the classical world. These theories have also found

interesting applications in deriving new bounds for quantum mechanics itself, e.g., monogamy of

entanglement [35].

In such a theory, n-partite states are characterized by the probabilities of obtaining certain

outcomes when performing a fixed set of local fiducial measurements on each system. For example,

to describe a nonlocal box, consider a bipartite system, where Alice holds the first and Bob the

second system. We will label both Alice and Bob’s measurements using X and Z in analogy to

the quantum setting. For convenience we will also label the outcomes using a, b ∈ {0, 1}, where the

actual outcomes of X and Z in the quantum setting could be recovered as (−1)a, and use p(A|M) to

denote the probability of obtaining outcomes A for measurements M . A nonlocal box is now given

by the probabilities p(0, 0|X,X) = p(0, 0|X,Z) = p(0, 0|Z,X) = 1/2, p(1, 1|X,X) = p(1, 1|X,Z) =

p(1, 1|Z,X) = 1/2, p(0, 1|Z,Z) = p(1, 0|Z,Z) = 1/2 and p(A|M) = 0 otherwise. We will describe

such theories in more detail in Section 2.4. We will also refer to GNST using the commonly used

term “box-world”.

2.1.1 Relaxed uncertainty relations

Even when allowing more than two measurements and outcomes, such boxes remain very artificial

constructs and it is not quite clear how they relate to quantum theory. In this note, we hope

to provide a more intuitive understanding by showing that superstrong correlations can indeed be

obtained by relaxing an uncertainty relation known to hold in quantum theory. Consider any anti-

commuting observables Γ1, . . . ,Γ2n satisfying

{Γj ,Γk} = 0
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whenever j 6= k and

Γ2
j = I,

for any j ∈ [2n], and let Γ0 = iΓ1 . . .Γ2n (see Section 2.2 on how to construct such operators). It

was shown in [22] that any quantum state obeys

2n∑
j=0

Tr (Γjρ)2 ≤ 1, (2.1)

which also lead to several entropic uncertainty relations for such observables. To see why Eq. (2.1)

itself can be understood as an uncertainty relation note that Tr(Γjρ) is the expectation value of

measuring the observable Γj on ρ. The probability of obtaining a measurement outcome b ∈ {±1}

can furthermore be written as p(b|Γj) = 1/2 + bTr(Γjρ)/2. Hence, Tr(Γjρ) can also be understood

as the bias towards a particular measurement outcome. Eq. (2.1) now tells us that this bias cannot

be arbitrarily large for all measurements Γj . Note that we could rewrite the condition of Eq. (2.1)

as ||v||22 ≤ 1 where v = (Tr(Γ1ρ), . . . ,Tr(Γ2nρ)). Whereas the uncertainty relations of [22] may

appear unrelated to the problem of determining the strength of nonlocal correlations, we will see

later that Tsirelson’s bound for the CHSH inequality is in fact a consequence of Eq. (2.1), when

we use the fact that local anti-commutation and maximal violations of the CHSH inequality are

closely related [13, 36, 37]. Thus, as one might intuitively guess, bounds for the strength of nonlocal

correlations are indeed closely related to uncertainty relations, and such connections have been

observed in a different form by [31, 18].

What happens if we merely ask for ||v||pp ≤ 1, where || · ||p is the p-norm of the vector v?

Since Eq. (2.1) must hold for any quantum state, that is for any positive semi-definite matrix ρ

with Tr(ρ) = 1, it is clear that this allows operators ρ which are no longer positive semi-definite.

In the spirit of Barrett’s GNST, we will however restrict ourselves to allowing a particular set of

fiducial measurements only, for which the probabilities will remain positive and thus well-defined.

In Section 2.3, we will describe a hierarchy of such “theories” in detail, and investigate their power

with respect to nonlocal correlations and information processing problems. In particular, we will see

that

• For the CHSH inequality, we can obtain at most

γ =
1
2

+
1

2(2)1/p
for ||v||pp ≤ 1.

where in the limit of p → ∞ the right-hand side becomes 1, and we have a state that acts

analogous to a nonlocal box.

• Furthermore, any unique XOR-game can be played with perfect success for p→∞.
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Figure 2.1: p-norm unit circles in dimension 2 for p = 1, 2, 3, 10, 10000

It is instructive to consider what our relaxed uncertainty relation means in the case of a single

qubit. Note that for quantum mechanics we have p = 2 in which case Eq. (2.1) corresponds to the

statement that v must lie inside the Bloch sphere. Allowing different values of p now constraints

us to the corresponding p-spheres as depicted in Figure 2.1. It is interesting to consider that even

though for p > 2 we obtain nonlocal correlations that are stronger than what quantum theory

allows, we now have a weaker uncertainty relation than in quantum theory. It has previously been

noted by Barrett [18] that GNST has no uncertainty relations for particular measurements. Our

work makes this relation very intuitive. In particular, for the case of p → ∞ corresponding to a

nonlocal box we essentially place no restrictions on the bias Tr(Γjρ) at all. Since Eq. (2.1) leads to the

entropic uncertainty relations on which the security of the protocols in the bounded-quantum-storage

model [38, 39, 40] is based, it may be worth considering how certain cryptographic tasks change

in the setting of nonlocal boxes. Indeed, it has recently been shown [41] that privacy amplification

fails in a world based on nonlocal boxes. Whereas it is known that cryptographic tasks such as

bit commitment and oblivious transfer are compatible with the no-signaling principle [29], little is

known about them in general theories [42].

It should be noted that except for a single qubit, Eq. (2.1) is of course only a necessary and not

a sufficient condition for ρ ≥ 0. In higher dimensions, such relations are much more involved, but

have been obtained for certain operators [43, 44, 45] and also some operators relating more closely

to unbiased measurements [46]. Relaxing this particular uncertainty relation is thus only one way to
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go. Yet, due to the rich structure of the Clifford algebra of operators Γ1, . . . ,Γ2n and their central

importance for entropic uncertainty relations and so-called XOR nonlocal games (also known as

two-party correlation inequalities) with 2 measurement outcomes, this small relaxation allows us to

gain some insights into their role in quantum information processing tasks.

2.1.2 Information processing in generalized nonlocal theories

Inspired by these relaxations in terms of an operator ρ, we then construct a hierarchy of p-GNST

theories exhibiting similar constraints. For such theories, we identify a single gbit with a single qubit

obeying the relaxed uncertainty relations above. That is, we will think of a single gbit as allowing

three fiducial measurements labeled X, Z and Y in analogy to the quantum case. Whereas this

choice is of course again quite arbitrary, and heavily inspired by the quantum setting, it will allow

us to gain a slightly better understanding of the relation of “box-world” and quantum theory later

on. We show that the states we allow above, as well as states in p-GNST’s have several properties

that set them apart from quantum theory. In particular, we will see that

• In p-GNST, there exist superstrong random access encodings. For example, there exists an

encoding of N = 3n bits into (2n + 1)3/pn gbits such that we can retrieve any bit with

probability 1−ε for ε = 2 exp(−(2n+1)1/p/2). Quantumly on the other hand it is known that

we require at least (1 − h(1 − ε))N qubits to encode N classical bits with the same recovery

probability, where h denotes the binary Shannon entropy.

• As a consequence, in p-GNST there exists single server PIR scheme with O(polylog(N)) bits of

communication for an N bit database with large N , whereas quantumly Ω(N) bits are needed.

• On the other hand, we show that in GNST it becomes much harder to learn a state in the

sense of [20]. In fact, unlike in the quantum setting, we can essentially not ignore even a small

part of the information we are given about a state.

It may not be surprising that such effects exist for Hermitian operators ρ, when all we essentially

demand is that the condition ||v||pp ≤ 1 is obeyed for any set of anti-commuting measurements.

However, it will be interesting to consider why for example the superstrong random access code

encodings we find above are disallowed in quantum theory, but allowed in GNST.

2.1.3 Commuting measurements

Although the results of local measurements suffice to describe quantum states [7], our results sug-

gest that building a toy-theory around local measurements acting on fixed systems alone (such as

GNST) may miss part of the flavor when considering some applications. Quantum mechanics has a

rich structure of commuting and anti-commuting measurements built in which make no particular
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reference to locality. Uncertainty relations impose restrictions for non-commuting measurements,

such as for example the anti-commuting measurements Γ1, . . . ,Γ2n. However, we will see in Sec-

tion 2.2.4 that also certain sets of commuting measurements cannot have arbitrary expectation values

when measured on a particular state ρ. As a simple example, consider a 2 qubit system shared be-

tween Alice and Bob, and consider the measurement X⊗ I, I⊗X and X⊗X. Suppose that we have

Tr((X ⊗ I)ρ) = Tr((I ⊗X)ρ) = 1. This tells us that when Alice and Bob measure X locally, they

obtain an outcome of ”1” each with probability 1. However, the measurement of X ⊗X can very

intuitively be viewed as Alice and Bob performing a local measurement of X and taking the product

of their outcomes. Hence, we do not expect a simultaneous assignment of Tr((X ⊗X)ρ) = −1 to be

consistent with the previous two expectation values. We will formalize this intuition in Section 2.2.4,

where we will derive a series of conditions such expectation values must obey which in spirit is similar

to [21].

GNST does satisfy these conditions for measurements that commute because they act on dif-

ferent subsystems. It does not exhibit any inconsistencies otherwise, as no commutation relations

are defined for measurements on the same system. The issue of such inconsistencies is further cir-

cumvented by the simple fact that a nonlocal box can only be used once, and there is no notion

of subsequent measurements on the same system. This of course is perfectly adequate for studying

the strength of nonlocal correlation between two space-like separated systems for example, and led

to such perplexing results as [5]. We will however see that it is essentially this lack of additional

constraints that allows us to form superstrong random access codes for example, and may indicate

that using “box-world” to investigate the role of the strength of nonlocal correlations within quan-

tum theory itself is possibly doomed to fail. It also indicates why defining a consistent notion of

’post-measurement’ states for nonlocal boxes is quite difficult, since many constraints that would

allow such a task to succeed are simply not present in box-world.

To see how box-world differs from quantum theory consider the measurements M1 = X ⊗ Z,

M2 = Z⊗X and M3 = −XZ⊗XZ. These are related in exactly the same way as the measurements

we considered above, except that in GNST there is no notion that M1 and M2 commute. Yet, we

intuitively expect similar conditions to hold as for the measurements above when trying to form

an analogy to the quantum setting. Indeed, one can easily construct a unitary transformation that

maps the measurements M1,M2, and M3 into a form analogous to the above, where two of the

measurements act on different systems. 1 In GNST, however, the separation into different systems

is always a given, which may lead to difficulties when examining some problems which are not

really concerned with correlations among two distant systems alone, but to information processing

in general.

1Consider U = (I⊗H)CNOT(I⊗H)



15

2.1.4 Outline

Whereas we only examine a very small piece of the puzzle, our work hopes to shed some light on

the relation between uncertainty relations, nonlocal correlations and the role of above mentioned

consistency constraints in information processing. In Section 2.2 we first explain the basic concepts

we need to refer to. commuting measurements in more detail. In Section 2.3 we then define a range

of simple “theories” obtained by relaxing the uncertainty relation for anti-commuting observables.

To highlight the analogy with nonlocal boxes, we then define a range of similar GNST-like theories in

Section 2.4. In Sections 2.5, 2.6, and 2.7 we then investigate the power of such theories with respect

to nonlocal correlations, random access codes, and information processing problems respectively. In

Section 2.2.4 we then investigate why such effects are possible within GNST, but not in quantum

theory. Table 2.7.4 summarizes similarities and differences among theories.

2.2 Preliminaries

2.2.1 Basic concepts

In the following, we write [n] := {1, . . . , n} and use X, Z and Y to denote the well-known Pauli

matrices [14]. We also speak of a string of Paulis to refer to a matrix of the form

Sab := Xa1Zb1 ⊗ . . .⊗XanZbn , (2.2)

with a = (a1, . . . , an), b = (b1, . . . , bn) and aj , bj ∈ {0, 1}. We sometimes write the Pauli operator

acting on subsystem j, with identity on the other subsystems as

Xj = I⊗j−1 ⊗X ⊗ I⊗n−j−1

.

The Pauli basis expansion of a density matrix ρ is given by ρ = (I +
∑
a,b sabSab)/d, where we

call sab the coefficient of Sab. Consider the form f(a, b, a′, b′) = (a, b′) + (a′, b), where we write

(a, b) =
∑
j ajbj mod 2. It it straightforward to convince yourself that for any pair Sab and Sa′b′

either [Sab, Sa′b′ ] = 0 if f(a, b, a′, b′) = 0 or {Sab, Sa′b′} = 0 if f(a, b, a′, b′) = 1. Whereas Eq. (2.1)

holds for any choice of anti-commuting measurements, it is worth noting that in dimension d = 2n

we can find at most 2n+ 1 anti-commuting operators given by

Γ2j−1 = Y ⊗(j−1) ⊗X ⊗ I⊗(n−j)

Γ2j = Y ⊗(j−1) ⊗ Z ⊗ I⊗(n−j),
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for j = 1, . . . , n and Γ0 = iΓ1 . . .Γ2n. Note that for n = 1 we have Γ1 = X, Γ2 = Z, Γ0 = Y and

Eq. (2.1) is equivalent to the Bloch sphere condition. We will also need the notion of a p-norm of a

vector v = (v1, . . . , vn) ∈ Rn which is defined as

||v||p :=

 n∑
j=1

|vj |p
1/p

.

Note that for p = 2 this is just the Euclidean norm. Of particular interest to us will also be the

∞-norm defined as ||v||∞ := limp→∞ ||v||p which can also be written as

||v||∞ = max(|v1|, . . . , |vn|).

2.2.2 Probability distributions

Unlike previous descriptions of general probabilistic theories, our notation must be versatile enough

to accommodate arbitrary choices of simultaneous commuting measurements, even if they do not

act on separate subsystems. In quantum mechanics we may choose to measure X ⊗X along with

either X ⊗ I, I⊗X, or Z⊗Z,XZ⊗XZ. We will see that including this flexibility in a more general

theory leads to new constraints.

First, we want to consider some finite set of measurements O = {M1, . . . ,MN} where without

loss of generality we assume that each measurement has the same finite set of outcomes A and

the O is ordered lexiocraphically. Although we initially impose no structure on O, in analogy to

quantum mechanics we consider certain collections of measurements C ⊆ O to have some property

which directly corresponds to simultaneous measurability. In particular, we will consider the set of

possible experiments

E := {C ⊆ O ∧ ∀Mi,Mj ∈ C sim(Mi,Mj) = 0},

where “sim” is a predicate indicating simultaneous measurability that remains to be specified. Of

particular concern to us will be the probability distributions p over the outcomes A ∈ A×|C| of some

set of simultaneously performed measurements C ∈ E . We use p(A|C) to denote the probability of

obtaining outcomes A = (A1, A2, . . . , A|C|) ∈ A×|C| for measurements C ⊆ O where we wlog take

C to be ordered lexicographically. For simplicity, we will also write p(A1, . . . , An|M1, . . . ,Mn) :=

p((A1, . . . , An)|{M1, . . . ,Mn}).

What conditions do the functions p : A×|C| × C → [0, 1] have to fulfill be a valid probability

distribution for any experiment C ∈ E? We require that the following conditions need to be satisfied

for any probability distribution
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(1) Normalization: ∀C ∈ E ,
∑
A∈A×|C| p(A|C) = 1.

(2) Positivity: ∀C ∈ E ,∀A ∈ A×|C|, p(A|C) ≥ 0.

The next condition may appear unfamiliar at first glance. Intuitively it says that the distributions

of outcomes we obtain for commuting measurements are independent of what other commuting

measurements we perform.

(3) Independence:

∀C,C ′ ∈ E with C ⊆ C ′, p((A1, . . . , A|C|)|C) =
∑

A|C|+1,...,A|C′|∈A×|C
′|

p((A1, . . . , A|C′|)|C ′),

where, without loss of generality, we take the first |C| outcomes to be associated with the measure-

ments in C.

Throughout this text, we explore the result of choosing two different ways of choosing simulta-

neous measurements. First, we consider simultaneous measurements on distinct systems as reflected

in the construction of nonlocal boxes. Second, we consider a more general notion of such mea-

surements based on commutation relations as in quantum mechanics. Note that in the quantum

case such sets of mutually commuting measurements induce a partitioning of the Hilbert space into

different systems in the finite-dimensional setting [47, 21].

Consider the set of measurements OP to be strings of Paulis on n-partite systems as defined in

Section 2.2.1. The two different notions of simultaneous measurements can now be expressed in two

different choices of sim(Mi,Mj), leading to two different sets of realizable experiments. To capture

the first notion, we let

EL := {C ⊆ OP ∧ ∀Mi,Mj ∈ C local(Mi,Mj) = 0},

where local(Mi,Mj) = 0 if and only if Mi and Mj act on different subsystems. For example, we

have local(X ⊗ I, I⊗ Z) = 0. Second, we let

EC := {C ⊆ OP ∧ ∀Mi,Mj ∈ C [Mi,Mj ] = 0},

where all commuting measurements are simultaneously observable, as in quantum mechanics. Clearly,

EL ⊆ EC , since two measurements acting on two different subsystems commute.

When we restrict ourselves to EL we can express the independence condition from above in the

more familiar form of no-signaling:
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(3’) No-signaling:

∀C,C ′ ∈ EL with C ⊆ C ′, p((A1, . . . , A|C|)|C) =
∑

A|C|+1,...,A|C′|∈A×|C
′|

p((A1, . . . , A|C′|)|C ′).

Intuitively, the no-signaling condition just dictates that the marginal distribution of a partic-

ular subset of systems is independent of the measurement choices on a disjoint subset of sys-

tems. Therefore, we can simplify our description of marginals of no-signaling distributions to just

p(A ∈ A×|C||C ′) = p(A|C), where the measurement choices on other parties are arbitrary. We will

later see that imposing only the special case of the no-signaling condition, versus the full indepen-

dence condition of (3), makes a crucial difference in the power of the resulting theory with respect

to encoding information.

Example 2.2.1. Consider the set of local experiments for two parties with A = {−1, 1},O =

{X1, Z1, X2, Z2}. Let the probability distribution p(A|C) be described by the following table.

A

(1, 1) 1
2

1
2

1
2 0

(1,−1) 0 0 0 1
2

(−1, 1) 0 0 0 1
2

(−1,−1) 1
2

1
2

1
2 0

{X1, X2} {X1, Z2} {Z1, X2} {Z1, Z2} C

Clearly, we have positivity, and the sum over each measurement setting (column) is 1. Fi-

nally, note that the marginal probability distribution for either party is constant, ∀C ∈ EL,∀A1 ∈

A,
∑
A2∈A p((A1, A2)|C) = 1

2 , therefore this distribution is no-signaling.

2.2.3 Moments

Any finite, discrete probability distribution has a dual representation in terms of a finite number of

moments [48]. We define the product of the outcomes A = (A1, . . . , A|C|) ∈ A×|C| of a collection of

measurements C ∈ E as A∗ =
∏|C|
i=1Ai. The moment for this measurement is defined as

m(C) :=
∑

A∈A×|C|
p(A|C)A∗. (2.3)

Note that for the identity measurement this means m(I) = 1 because of normalization. Also, if you

consider the moment for some subset of C, by the independence principle this definition gives a

unique value which does not depend on the choice of other measurements made simultaneously.
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Since we will only be concerned with measurements with two outcomes A = {±1}, we now

restrict ourselves to this case for simplicity. For the measurement of a single observable C = {M1}

with outcome A1 ∈ A, we can easily recover the probabilities from the moments as

p((A1)|{M1}) =
1
2

(1 +A1 m({M1})) . (2.4)

In subsequent notation, we will drop the brackets within parentheses when it increases readability.

Note that we can recover the probability for a specific set of outcomes Â ∈ A×|C| and measure-

ments C ∈ E from these moments. Without loss of generality, let C = {M1, . . . ,Mn}.

1
2n

∑
C′⊆C

m(C ′)
∏

i,Mi∈C′
Âi

=
1
2n

∑
C′⊆C

 ∑
A∈A×|C′|

p(A|C ′)
∏

i,Mi∈C′
Ai

 ∏
i,Mi∈C′

Âi

=
1
2n

∑
A∈A×|C|

p(A|C)
∑
C′⊆C

∏
i,Mi∈C′

AiÂi

The second line simply uses the definition of m(C ′) and the third line uses the independence principle

to write p(A|C ′) in terms of p(A|C), allowing us to move the sum over C ′ inside. Now note that the

sum over C ′ can be broken into n sums over whether or not Mi ∈ C ′. For each Mi, if it is in C ′ we

get a factor of AiÂi, otherwise a factor of 1.

=
1
2n

∑
A∈A×|C|

p(A|C)
n∏
i=1

(1 +AiÂi)

Because the outcomes can only be ±1, the sum can give us only 0 or 2.

=
1
2n

∑
A∈A×|C|

p(A|C)
n∏
i=1

2δAi,Âi

=
1
2n

∑
A∈A×|C|

p(A|C) 2nδA,Â

= p(Â|C)

2.2.4 Consistency constraints

We are now ready to investigate the constraints that arise due to simultaneous measurement of

commuting observables and that will play a crucial role in understanding the differences between

quantum theory and p-GNST. Imagine two commuting measurements [Mi,Mj ] = 0, and their prod-

uct Mk = MiMj . In quantum mechanics the outcome of the measurement Mk is the same as the
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product of the outcomes of Mi and Mj , which can be verified by expanding Mk in terms of Mi and

Mj and using the fact that they have a joint eigenbasis. What happens if we take this to be true in

any theory? If we are only allowed to make local measurements, then this is a moot point. We can

only get X ⊗X by measuring X ⊗ I and I⊗X and multiplying the results.

But if we are allowed to make any combination of commuting measurements, this will impose some

interesting conditions. For example, in the quantum case we may have M1 = X ⊗X, M2 = Z ⊗ Z

and M3 = XZ ⊗ XZ. To see that this has consequences in terms of the moments, consider the

simple example where m(M1) = 1 and m(M2) = 1, which means that we will deterministically

observe outcomes A(M1) = A(M2) = 1. Hence, m(M3) = −1 should intuitively not be compatible

with these two moments for M1 and M2.

How can we formalize these conditions? For example, Eq. (2.3) gives us that

m(M1M2) = m(M1,M2),

if we insist that outcomes of products of measurements equal the product of outcomes of individual

measurements. For a given set of commuting measurements C = {M1, . . . ,Mm} with M2
j = I, let

s(M) be the 2m element vector whose k-th entry is given by

s := [s(C)]k := Mk1
1 Mk2

2 . . .Mkm
m , (2.5)

with k ∈ {0, 1}m in lexicographic order. We now define the moment matrix Ks by letting the entry

in the i-row and j-th column be given by

[Ks]ij := m(sisj)/2m.

Claim 2.2.2 (Adapted from Wainwright and Jordan [48]). Let C = {M1, . . . ,Mm} be a set of

commuting measurements. Then Ks ≥ 0 if and only if p is a probability distribution (satisfying

constraints (1) and (2)).

Proof. In addition to Ks, we define two more 2m × 2m matrices, whose components are labeled by

vectors i, j ∈ {0, 1}m in lexicographic order as

[P ]ij = δijp(A = ((−1)i1 , . . . , (−1)im)|C).

[B]ij =
1

2m/2
(−1)i·j ,

It is easily verified that B is a unitary matrix. Note that B is an example of a Hadamard matrix.
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Now we will show that Ks = BPB>.

[
BPB>

]
ij

=
1

2m
∑

k,l∈{0,1}m
(−1)i·k δkl p(((−1)k1 , . . . , (−1)km)|C)(−1)l·j

=
1

2m
∑

k∈{0,1}m
(−1)k·(i⊕j)p(((−1)k1 , . . . , (−1)km)|C)

=
1

2m
∑

k∈{0,1}m

m∏
t=1

((−1)kt)(it⊕jt)p(((−1)k1 , . . . , (−1)km)|C)

=
1

2m
∑

A∈A×|C|

m∏
t=1

Aitt A
jt
t p(A|C)

=
1

2m
m(sisj) = [Ks]ij .

Clearly, if the probabilities p(A|C) are non-negative (2), then P ≥ 0 if and only if K ≥ 0 since B is

unitary. Similarly, the fact that m(I) = 1, B is unitary and the trace is cyclic ensures that p satisfies

condition (1).

Example 2.2.3. As an example, consider the case of two commuting measurement M1 and M2

with M3 = M1M2. We have s = (I,M1,M2,M3) and

Ks =


m(I) m(M1) m(M2) m(M1M2)

m(M1) m(I) m(M3) m(M2)

m(M2) m(M3) m(I) m(M1)

m(M3) m(M3) m(M1) m(I)

 ≡


1 a b c

a 1 c b

b c 1 a

c b a 1


Demanding that the eigenvalues of this matrix, λ = ((1 + a− b− c), (−1 + a+ b− c), (−1 + a− b+

c), (1 + a + b + c)), be non-negative is enough to ensure that Ks � 0. Using the Sylvester criteria,

we get the alternate constraints that each moment |a, b, c| ≤ 1 and 1− a2 − b2 − c2 + 2abc ≥ 0, and

λ1λ2λ3λ4 ≥ 0.

Our examples are reminiscent of the examples considered in the setting of contextuality [49].

Note that our constraints are related, but nevertheless of a different flavor since we only consider

such constraints for measurements which all commute. It may be interesting to consider such a

moment matrix in order to determine how “non-contextual” quantum theory is. In Sections 2.4.1

and 2.3 we will develop classes of states which are restricted by imposing specific relationships

among various moments. In particular, it will be of crucial importance whether we merely impose

such constraints for measurements acting on different systems, or include such constraints for all

commuting measurements.
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2.3 p-nonlocal theories and their properties

We now define a series of so-called p-nonlocal “theories”, each one more constrained than the previ-

ous. Our definition is thereby motivated by the uncertainty relations of [22] stated above. We later

relate our definitions to Barrett’s GNST [18] and what are commonly known as nonlocal boxes.

Our aim by constructing this series of simple theories is thereby merely to gain a more intuitive

understanding of superstrong nonlocal correlations due to nonlocal boxes.

2.3.1 A theory without consistency constraints

We start with the simplest of all p-theories, which forms the basis of all subsequent definitions. In

essence, we will simply allow states violating the uncertainty relation in 2.1 without worrying about

anything else. In the spirit of Barrett [18] we start by defining the states which are allowed in our

theory, and then allow all linear transformations preserving the set of allowed states. For simplicity,

we will only consider the case of d = 2n.

Definition 2.3.1. A d-dimensional p-bin state is a d× d complex Hermitian matrix

ρ =
1
d

I +
∑
a,b

sabSab


satisfying

1. for all a, b, −1 ≤ sab ≤ 1.

2. for any set of mutually anti-commuting strings of Paulis A1, . . . , Am ∈ Cd×d

∑
j

|Tr(Ajρ)|p ≤ 1.

It remains to be specified what operations and measurements we are allowed to perform on p-bin

states. We define

Definition 2.3.2. A d-dimensional p-bin theory consists of

1. states ρ ∈ Sdp where Sdp is the set of d-dimensional p-bin states,

2. linear operations T : Sdp → Sdp ,

3. measurements described by observables Sab = S0
ab − S1

ab where S0
ab and S1

ab are projectors onto

the positive and negative eigenspace of Sab respectively. As in the quantum case we let

p0 = Tr(ρS0
ab) and p1 = Tr(ρS1

ab).
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Starting from a state, we may apply any set of operations T followed by a single measurement.

Note that by virtue of Eq. (2.1) any quantum state is a p-bin state. Note that the converse

however does not hold, since the conditions given above do not imply that a p-bin state ρ is positive

semi-definite. It seems very restrictive to limit ourselves to a single measurement at the end. The

reason for this is that for some p, there exist p-bin states to start with, valid operations and mea-

surements, followed by another operation that give us a states that are no longer a p-bin states [50].

We return to this question, when we consider the set of allowed operations below.

Note that the above definition is well-defined. First, we want that for any measurement Sab,

{p0, p1} forms a valid probability distribution. A small calculation gives us that any p-nonlocal

state ρ we have

pv = Tr(ρSvab) =
1
2

(1 + (−1)vsab) ,

and thus 0 ≤ pb ≤ 1 and p0 + p1 = 1. Second, we want the non-signaling conditions to hold. When

measuring Sab ⊗ Sa′b′ on a bipartite state

ρAB =
1
d

I +
∑

`,m,`′,m′

S`,m ⊗ S`′,m′


we have that the probability to obtain outcome u for the measurement on the first system is given

by

Pr[u|ab, a′b′] =
∑
v∈0,1

Tr (ρAB(Suab ⊗ Sva′b′)) =
1
2

(I + (−1)usa,b,0,0),

and hence Pr[u|ab, a′b′] = Pr[u|ab, a′′b′′] for all a′, b′, a′′, b′′ as desired. A similar argument can be

made to show that the more general independence condition is satisfied.

2.3.1.1 Basic Properties

We now state some basic properties of this theory, which will also hold for a more restricted p-

nonlocal theory as outlined below.

Claim 2.3.3. If ρ is a p-bin state, then ρ is also a q-bin state for p, q ∈ Z with q ≥ p.

Proof. This follows immediately from the fact that for any r ∈ [0, 1] we have rq ≤ rp.

Below, we will apply circuits consisting of the Clifford gates {CNOT,X,Z, Y,H} and I. It is

easy to see that such unitary operations are allowed transformations taking p-bin states to p-bin

states.

Claim 2.3.4. Let ρ ∈ Sdp . Then for any circuit U consisting solely of the gates {CNOT,X,Z, Y,H, I}

we have UρU† ∈ Sdp .
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Proof. Note that U is composed of single unitaries Uj = Ij−1 ⊗ V ⊗ In−j with V ∈ {X,Z, Y,H}

and unitaries U ′j = Ij−1 ⊗ CNOT ⊗ In−j−1. First, it is straightforward to verify that for any

a, b ∈ {0, 1}n, there exist a′, b′ ∈ {0, 1}n such that UjSabU
†
j = Sa′b′ , and similarly for U ′j . Second,

applying a unitary to any set of anti-commuting operators again gives us anti-commuting operators.

Hence, since we have
∑
j |Tr(Ajρ)|p ≤ 1 for any set of anti-commuting strings of Paulis, the resulting

state will also have this property.

It will also be useful to know that

Claim 2.3.5. Let ρ1, . . . , ρn ∈ S2
p . Then

⊗n
i=1 ρi ∈ S2n

p .

Proof. We proceed by induction. By assumption, ρ1 ∈ S2
p . We will show that for any states

ρ ∈ S2n

p , σ ∈ S2
p , the state ρ⊗ σ ∈ S2n+1

p .

We need to prove that for any set of mutually anti-commuting Pauli’sAj ∈ C2n+1×2n+1 ∑
j |Tr(Ajρ⊗

σ)|p ≤ 1. Each Aj can always be written in terms of a Pauli, Bj acting on ρ, plus a Pauli {I, X, Y, Z}

on σ. We separate the Aj into groups according to which Pauli is appended to Bj . Then we can

rewrite this as

∑
jI

|Tr((BjI ⊗ I)(ρ⊗ σ))|p +
∑
jX

|Tr((BjX ⊗X)(ρ⊗ σ))|p

+
∑
jY

|Tr((BjY ⊗ Y )(ρ⊗ σ))|p +
∑
jZ

|Tr((BjZ ⊗ Z)(ρ⊗ σ))|p

=
∑
jI

|Tr(BjIρ)|p +
∑
jX

|Tr(BjXρ)|p|Tr(Xσ)|p

+
∑
jY

|Tr(BjY ρ)|p|Tr(Y σ)|p +
∑
jZ

|Tr(BjZρ)|p|Tr(Zσ)|p ≤ 1.

Since all the Aj mutually anti-commute, then for different j, j′, {Bj ⊗ X,Bj′ ⊗ X} = 0 implies

{Bj , Bj′} = 0, while {Bj ⊗ X,Bj′ ⊗ Y } = 0 implies [Bj , Bj′ ] = 0. Then because ρ ∈ S2n

p and

{BjX , Bj′X} = 0, and, for similar reasons {BjX , BjI} = {Bj′I , BjI} = 0, we know

∑
jI

|Tr(BjIρ)|p +
∑
jX

|Tr(BjX )|p ≤ 1.

Now we will shorten our notation by writing

aX = |Tr(Xσ)|p bX =
∑
jX
|Tr(BjXρ)|p

aY = |Tr(Y σ)|p bY =
∑
jY
|Tr(BjY ρ)|p

aZ = |Tr(Zσ)|p bZ =
∑
jZ
|Tr(BjZρ)|p

bI =
∑
jI
|Tr(BjIρ)|p.
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This allows us to write inequalities implied by the uncertainty relation like:

aX + aY + aZ ≤ 1

bX + bI ≤ 1

bY + bI ≤ 1

bZ + bI ≤ 1.

We can also see that aX , aY , aZ , bX , bY , bZ , bI ≥ 0. The task at hand is to show that these inequalities

imply the one required of a state in S2n+1

p , which we can now rewrite as

aXbX + aY bY + aZbZ + bI ≤ 1.

We do this by writing down a sum of products of non-negative quantities like 1− aX − aY − aZ and

noting that the result is non-negative.

aX(1− bX − bI) + aY (1− bY − bI) + aZ(1− bZ − bI) + (1− bI)(1− aX − aY − aZ) ≥ 0.

That equation can be rewritten as 1− (aXbX + aY bY + aZbZ + bI) ≥ 0, which is what we set out to

show. Therefore, ρ⊗ σ is a valid state, and, by induction, so is
⊗n

i=1 ρi ∈ S2n

p for any n.

2.3.2 An analogue to box-world

Note that in the above definition we have not placed any constraints at all on the expectation values

of commuting measurements. This was not necessary, as we had allowed a single measurement only,

where by the above definition I ⊗X formed such a single measurement. Now consider a two-qubit

system, i.e., d = 4. Suppose that we have for a particular ρ that

Tr ((X ⊗ I)ρ) = Tr ((I⊗X)ρ) = Tr ((X ⊗X)ρ) = −1.

Note that ρ can be a perfectly valid state with respect to the definition given above, but yet we would

not consider this to be consistent behavior, if we were allowed to perform subsequent measurements.

We now introduce additional constraints that eliminate this inconsistency. It should be clear from

Section 2.2.3 that that to achieve full consistency we would have to introduce certain constraints

for commuting observables in general. Yet, we will first restrict ourselves to observables on different

systems in analogy to “box-world”. We will show in Section 2.4.1 that Barrett’s GNST and nonlocal

boxes essentially correspond to this definition. We will also see in Sections 2.6 and 2.7.1 that these

additional constraints play a crucial role in the power of our model with respect to information
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processing tasks.

Definition 2.3.6. A p-box state is a p-bin state ρ, where in addition we require that for any set

C ∈ EL of measurements acting on different systems and s(C) as defined in Eq. (2.5) we have that

the corresponding moment matrix Ks defined in Section 2.2.4 satisfies

Ks ≥ 0.

Note that Claims 2.3.3 and 2.3.5 hold analogously for p-box states. It is important to note

though that Claim 2.3.4 does not hold in this case, since for example the CNOT operation can lead

to states violating the definition.

2.3.3 A theory with consistency constraints

Finally, we will impose all constraints required from our consistency considerations of Section 2.2.3.

Definition 2.3.7. A p-nonlocal state is a p-box state ρ, where in addition we require that for any set

of commuting measurements C ∈ EC and s(C) as defined in Eq. (2.5) we have that the corresponding

moment matrix Ks as defined in Section 2.2.4 satisfies

Ks ≥ 0.

Again Claims 2.3.3 and 2.3.5 hold analogous to the above. When we include all consistency

considerations, it is also easy to see that Claim 2.3.4 holds for p-nonlocal states, since for any

allowed unitary U we already have by the above that ρ satisfies the constraints given by the set

C ′ = {U†M1U, . . . , U
†MmU} and hence UρU† remains a valid p-nonlocal state.

2.4 Generalized nonlocal theories

To create a closer analogy between our “theories” derived from relaxed uncertainty relations and

nonlocal boxes, we now consider a related class of theories called generalized no-signaling theories

(GNST) [18], for which we will consider similar relaxations. As already sketched in the introduction,

states in a GNST are defined operationally. Consider a laboratory setup where we have a device

which prepares a specific state. We then use a measuring device which has a choice of settings

allowing us to measure different properties of the system. The measuring device gives us a reading

specifying the outcome of the measurement. A particular state in GNST is described completely

by means of the probabilities of obtaining each outcome when performing a fixed set of fiducial

measurements. For example, for a set of fiducial measurements O = {X,Z, Y } with outcomes

A = {±1}, the probabilities p(A|C) for all A ∈ A and C ∈ O form a description of the state.



27

Hence, we will simply use p to refer to a state given by said conditional probabilities. The idea

behind considering fiducial measurements stems from the idea that there exists a set of measurement

choices that suffice to fully describe the system. In classical mechanics, for instance, we can always in

principle make a single measurement which outputs all the information necessary to describe a state.

For a qubit, on the other hand, we would need results from at least three different incompatible

measurement settings, e.g., spin in three orthogonal directions. We refer to [18] for a definition of

GNST and its allowed operations. For us it will only be important to note that similar to the setting

of nonlocal boxes, we can make only one measurement on each system, and there is no real notion

of post-measurement states defined.

In the following, we will be interested in the special case of multi-partite systems where on each

system we can perform one of three fiducial measurements with outcomes ±1. Using our notation

from Section 2.2.2 we write the set of realizable experiments for GNST as

EG = {∀k ∈ {1, 2, 3}n : {W1,k1 , . . . ,Wn,kn}},

with Wi,ki denoting a choice of the kith measurement on the ith system. Later we will connect these

measurement choices with Pauli measurements via the relation Wi,1 = Xi,Wi,2 = Zi,Wi,3 = XiZi.

A key point of this definition will be that the partitioning of measurements into n systems will

be fixed. We also demand that probability distributions should satisfy an independence principle.

As we pointed out, when restricted to partitions over disjoint parties, this just reduces to the no-

signaling principle. That is, the choice of measurement on one subset of particles can not be used

to send a signal to a disjoint subset.

In analogy to the quantum setting [18], we let one gbit refer to a single system on which we

can perform our set of fiducial measurements given above. Our definition of a gbit thereby slightly

differs from the definition given in [18], which only allows two fiducial measurements X and Z on

a single gbit. Yet, in order to compare the hierarchy of GNST-like theories we will construct below

to the p-box states from above we adopt this slightly more general definition in analogy to a single

qubit in the quantum case. Note that for the set of measurements C ∈ EG specified above, an n-gbit

state, specified by p : A×n × C → [0, 1], is in GNST if p satisfies constraints (1), (2), and (3’) in

Section 2.2.2.

Example 2.4.1. Consider the following state of one particle in GNST (or one gbit):

p(A = +1|M = X) = sx = 1− p(A = −1|M = X)

p(A = +1|M = Z) = sy = 1− p(A = −1|M = Z)

p(A = +1|M = XZ) = sz = 1− p(A = −1|M = XZ).

This state is normalized, and positivity requires sx, sy, sz ∈ [0, 1]. The state would be equivalent to
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the state of an arbitrary qubit if and only if s2
x + s2

y + s2
z ≤ 1, that is, if we are constrained to the

Bloch sphere.

For multi-partite states the difference between constraints on qubits and gbits becomes more

complicated. We now turn to describing a hierarchy of constraints on GNST theories which will be

analogous to uncertainty conditions in p-nonlocal theories and quantum mechanics.

2.4.1 p-GNST

Even though states in GNST are defined without any particular structure to their measurements

embedded, we will now impose a physically motivated structure. In particular, we will simply imagine

in analogy to the quantum setting that measurements X, Z and Y obey the same anti-commutation

relations as the Pauli matrices {X,Z} = {Z, Y } = {X,Y } = 0. In our definition below, we will

for simplicity write {·, ·} to indicate that we imagine such an anti-commutation constraint to hold

exactly when the string of Paulis
∏
iWi,ki associated with each C would anti-commute.

First of all, this will allow us to artificially impose an uncertainty relation just like Eq. (2.1).

Definition 2.4.2. A state is in p-GNST if it is in GNST and for any set of measurements S =

{C ∈ EG} satisfying that for all C,C ′ ∈ S, {C,C ′} = 0 we have

∑
C∈S
|m(C)|p ≤ 1. (2.6)

Note that for p→∞ this condition no longer restricts the states, because we get maxC∈S |m(C)| ≤

1, which is true for the original GNST, and nonlocal boxes. If we would actually add such com-

mutation and anti-commutation constraints we could now again distinguish between adding the

consistency constraints of Section 2.2.3 only for measurements acting on different systems, or for all

commuting measurements in analogy to the p-box and p-nonlocal theories. In analogy to GNST,

where commutation relations were only defined for measurements acting on different systems how-

ever, we will stick to this setting, even when considering p <∞. A p-GNST state is thus essentially

analogous to a p-box state, except we are allowed to make simultaneous measurements of locally

disjoint systems.

2.5 Superstrong nonlocality

Before we show that relaxing the uncertainty equation of Eq. (2.1) leads to superstrong nonlocal

correlations, let’s take a look at what effect this uncertainty relation actually has on quantum

strategies for the CHSH inequality. For this purpose, we will rewrite Tsirelson’s bound for the
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CHSH inequality in its more common form as

|〈A0 ⊗B0〉+ 〈A0 ⊗B1〉+ 〈A1 ⊗B0〉 − 〈A1 ⊗B1〉| ≤ 2
√

2,

where we use A0, A1 and B0, B1 to denote Alice’s and Bob’s observables respectively where A2
0 =

A2
1 = B2

0 = B2
1 = I. We will use the fact that in order to achieve the maximum possible quantum

violation we must have {A0, A1} = 0 and {B0, B1} = 0 [13, 36, 37]. ForM1 = A0⊗B0, M2 = A0⊗B1,

M3 = A1 ⊗ B0 and M4 = A1 ⊗ B1 this means that we have {M1,M2} = {M1,M3} = {M2,M4} =

{M3,M4} = 0. Using the uncertainty relation of Eq. (2.1) proving Tsirelson’s bound is equivalent

to solving the following optimization problem

maximize 〈M1〉+ 〈M2〉+ 〈M3〉 − 〈M4〉

subject to 〈M1〉2 + 〈M2〉2 ≤ 1

〈M1〉2 + 〈M3〉2 ≤ 1

〈M2〉2 + 〈M4〉2 ≤ 1

〈M3〉2 + 〈M4〉2 ≤ 1.

By using Lagrange multipliers, it is easy to see that for the optimum solution we have 〈M1〉2 = 〈M4〉2

and 〈M2〉2 = 〈M3〉2. By considering all different possibilities, we obtain that with x = 〈M1〉 =

−〈M4〉 and y = 〈M2〉 = 〈M3〉 our optimization problem becomes

maximize 2(x+ y)

subject to x2 + y2 ≤ 1.

Again using Lagrange multipliers, we now have that the maximum is attained at x = y = 1/
√

2

giving us Tsirelson’s bound.

Tsirelson’s bound can hence be understood as a consequence of the uncertainty relation of [22].

Thus, we intuitively expect that relaxing this relation affects the strength of nonlocal correlations.

In a similar way, one can view monogamy of nonlocal correlations as a consequence of Eq. (2.1) [51].

2.5.1 CHSH inequality

2.5.1.1 In p-theories

To see what is possible in p-theories, we first construct the equivalent of a maximally entangled

state. Let

ρp =
1
2

[
I +

(
1
2

) 1
p

(X + Y )

]
.

Note that for p→∞ this gives us

ρ∞ =
1
2

[I +X + Y ] .
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We now proceed analogously to the quantum case to construct

η1 = CNOT(ρp ⊗ |0〉〈0|)CNOT†,

which by Claim 2.3.4 is a valid p-bin and p-nonlocal state. It can also be verified that η1 forms a

valid p-box state.

Claim 2.5.1. Let A1 = X, A2 = Y , B1 = X and B2 = Y be Alice and Bob’s observables respectively.

Then

〈CHSHp〉 = Tr(η1(A1 ⊗B1 +A1 ⊗B2 +A2 ⊗B1 −A2 ⊗B2)) = 4
1

21/p
,

for all p-theories.

Proof. This follows immediately by noting that

η1 =
1
4

(
I +

1
21/p

(X ⊗X +X ⊗ Y + Y ⊗X − Y ⊗ Y ) + Z ⊗ Z
)
.

We can also phrase this statement in terms of probabilities as stated in the introduction, by

noting that the maximum probability that Alice and Bob win the CHSH game is given by

1
2

+
〈CHSHp〉

8
=

1
2

+
1

2 · 21/p
.

It is important to note that this violation can be obtained even when imposing the additional

consistency constraints from Section 2.2.3.

2.5.1.2 In p-GNST

We already saw in the introduction that GNST admits states analogous to a nonlocal box, al-

lowing for a maximal violation of the CHSH inequality. We now show that similar states exist

for p-GNST theories analogous to p-box states. We first phrase the CHSH inequality in terms

of probabilities. In particular, consider the GNST state specified by p((A1, A2)|{M1,M2}) =
1
4 (1 + (−1)δM1,Z1δM2,Z2A1A2λ) for some λ to be chosen below. If each party measures X or Z

on their state and outputs the result ±1, the probability that Alice and Bob win the CHSH game is

given by

1
4

(p(1, 1|X1, X2) + p(−1,−1|X1, X2) + p(1, 1|X1, Z2) + p(−1,−1|X1, Z2)

+p(1, 1|Z1, X2) + p(−1,−1|Z1, X2) + p(1,−1|Z1, Z2) + p(−1, 1|Z1, Z2)) =
1 + λ

2
.
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In terms of the moments, m(X1, X2) = m(X1, Z2) = m(Z1, X2) = −m(Z1, Z2) = λ, and this

becomes

1
4

(2 +
1
2

(m(X1, X2) +m(X1, Z2) +m(Z1, X2)−m(Z1, Z2))) =
1 + λ

2
.

Now we can consider the maximum value of λ that is a valid state in p-GNST. The requirements

listed in example 2.2.3 only restrict |λ| ≤ 1. Eq. (2.6) requires |m(X1, X2)|p + |m(X1, Z2)|p =

|m(Z1, X2)|p + |m(Z1, Z2)|p = 2|λ|p ≤ 1 → λ = ( 1
2 )

1
p . Therefore in a p-GNST it is possible to win

the CHSH game with probability 1/2 + 1/(2 · 21/p).

2.5.2 XOR games

We now investigate the case of general 2-player XOR-games for p → ∞. In such a game we have

an arbitrary (but finite) set of questions S and T from which Alice’s and Bob’s questions s ∈ S

and t ∈ T are chosen according to a fixed probability distribution π : S × T → [0, 1]. Yet, the set

of possible answers remain A = B = {0, 1} for Alice and Bob respectively. The game furthermore

specifies a predicate V : A×B × S × T → {0, 1} that determines the winning answers for Alice and

Bob. In an XOR game, this predicate depends only on the XOR c = a⊕ b of Alice’s answer a and

Bob’s answer b. We thus write V (c|s, t) = 1 if and only if answers a ⊕ b satisfying a ⊕ b = c are

winning answers for questions s and t. We will also restrict ourselves to unique games, which have

the property that for any s, t, b, there exists exactly one winning answer a for Alice (and similarly

for Bob).

First of all, note that in the quantum case we may write the probability that Alice and Bob

return answers a and b with a⊕ b = c as

p(c|s, t) =
1
2

(1 + (−1)c 〈Ψ|As ⊗Bt |Ψ〉),

where we again use As and Bt to denote Alice’s and Bob’s observable corresponding to questions

s and t respectively and |Ψ〉 denotes the maximally entangled state. Note that we again have

(As)2 = (Bt)2 = I from the fact that both measurements have only two outcomes. The probability

that Alice and Bob win the game can then be written as

∑
s,t

π(s, t)
∑
c

V (c|s, t)p(c|s, t).

Let vst = 〈Ψ|As ⊗Bt |Ψ〉. First of all note that for p→∞

1
d

(
I +

∑
st

vstΓs ⊗ Γt

)
(2.7)
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with d = 2max |S|,|T | and Γs,Γt anti-commuting observables as defined in Section 2.2 is a valid state

for any |vst| ≤ 1. Hence, we can immediately see that

Corollary 2.5.2. In any ∞-theory, there exists a strategy for Alice and Bob to win a unique XOR

game with certainty.

Proof. Consider the state given in Eq. (2.7) with vst = ±1 such that p(c|s, t) = 1 whenever V (c|s, t) =

1. Let Alice and Bob’s measurements be given by Γs and Γt for questions s and t respectively, which

are valid measurements for all p-theories with Γs,Γt constructed as in Section 2.2.

We leave it as an open question to examine the case of p <∞ for XOR games, since our aim was

merely to show that superstrong correlations can exist, if we allow for relaxed uncertainty relations.

We can see that letting vst = ±1/(max |S|, |T |)1/p makes Eq. (2.7) a valid state for any choice of

p, but this may not generally be the optimal choice. The case of GNST is similar, and it has been

shown that any nonlocal correlations can (approximately) be simulated by such boxes [28]. Optimal

bounds for p-GNST with p <∞ can be obtained using techniques analogous to [21].

2.6 Superstrong random access encodings

The existence of superstrong nonlocal correlations is by no means the only difference we can observe

when moving from quantum theory to p-GNST or p-nonlocal theories. In particular, we now show

that we can obtain so-called random access encodings which, depending on the theory, can be

exponentially better than those realized by quantum mechanics. We then investigate how uncertainty

relations and the restrictions imposed by simultaneous measurements affect this encoding. The

existence of such random access encodings will play a crucial role when considering the power of

p-GNST theories for communication complexity in Section 2.7.1. In Section 2.7.2 we also use this

random access code to prove a lower bound on the sample complexity of learning states in GNST.

2.6.1 In p-GNST

Intuitively, a random access code [52, 19] allows us to encode N bits into a physical system of size n

such that we can decode any one bit of the original string with probability at least q. More formally,

Definition 2.6.1. A [N,n, q]-random access code (RAC) is an encoding of a string x ∈ {0, 1}N

into an n-gbit state px, such that there exist measurements C ∈ EG with outcomes A ∈ A×n, and a

decoding algorithm D : A×n → {0, 1} satisfying

Pr(D(A) = xk) =
∑

A∈A×n
δD(A),xkpx(A|C) ≥ q,

where px(A|C) is the probability of obtaining outcome A when performing the measurement C.
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It has been shown [52, 19] that in the quantum case, we must have n ≥ (1 − h(q))N , where

h denotes the binary entropy function. There also exist classical encodings for which n = (1 −

h(q))N + O(logN) [52]. Hence, quantum states offer at most a modest advantage over classical

mechanics and, for q = 1, no advantage at all. We now proceed to the surprising result that general

no-signaling states lead to extremely powerful random access codes.

Claim 2.6.2. In GNST, there exists a [3n, n, 1]-random access code.

Proof. An n gbit state in GNST is completely characterized by the probabilities of outcomes for

a fixed set of measurements. Recall that a single gbit is a two-level system on which we allow

three possible measurements with two possible outcomes each. Also recall that each C ∈ EG can be

represented as EG = {∀k ∈ {1, 2, 3}n : {W1,k1 , . . . ,Wn,kn}}, with Wi,1 = Xi,Wi,2 = Zi,Wi,3 = XiZi.

Note that each measurement C is associated with one of N = 3n vectors k = (k1, . . . , kn). Let

f : C → {1, . . . , N} be a one-to-one function. For each of the N = 3n bits we wish to encode, we

must specify one measurement C that we can use to extract the jth-bit. Let that measurement be

denoted by f−1(j).

We are now ready to define our encoding of the string x ∈ {0, 1, 2}N into an n-gbit GNST state

px via the probabilities

px(A|C) :=
1
2n

(1 +A∗(−1)xf(C)),

where we use the previously defined notation A∗ =
∏|C|
i=1Ai. It is straightforward to verify that the

state is normalized, positive, and satisfies the no-signaling condition.

We now show that any bit of the original string can be decoded perfectly. If we choose to retrieve

bit j, we measure C = f−1(j). That means that we get result A with probability 1
2n (1+A∗(−1)xj ) =

1
2n 2δA∗,(−1)xj . And we get the result A∗ = (−1)xj with probability:

∑
A∗=(−1)xj

px(A|C) =
∑

A∗=(−1)xj

1
2n

2δA∗,(−1)xj = 1.

where the last equality follows from the fact that we sum over exactly half the 2n possible outcomes

A1, . . . , An. Hence the decoder D(A) = 1
2 (1−A∗) will return xj with perfect probability.

What happens if we impose the uncertainty relation in p-GNST? For convenience sake, note that

we could rewrite the encoding above in terms of moments, where we let an encoding of a string x

be determined by the moment representation of px as

mx(C = f−1(k)) := (−1)xk

with all other moments set to 0.
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To construct an encoding for p-GNST, we consider

mx(C = f−1(k)) := (−1)xkλ.

What’s the largest λ that satisfies the uncertainty relation? As we noted earlier the maximum

number of anti-commuting Pauli operators is 2n+ 1, so the most restrictive condition we could get

from the uncertainty relation is (2n+ 1)|λ|p ≤ 1. We thus obtain

Claim 2.6.3. In p-GNST, there exists a [3n, n, 1
2 + 1

2

(
1

2n+1

)1/p

]-random access code.

Proof. Let λ = (2n + 1)1/p, and note that this satisfies the uncertainty relation. Our encoding is

now

px(A|C) =
1
2n

(1 + (−1)xf(C) λ A∗).

And our probability of getting the correct sign from our measurement goes down to

Pr(D(A) = xk) =
1 + |λ|

2
=

1
2

+
1
2

(
1

2n+ 1

)1/p

.

If p <∞ we get an encoding that gets asymptotically worse for large n. This should be compared

to the bound on the number of qubits for a quantum random access encoding of N = 3n bits into k

qubits with recovery probability q = 1/2 + 1/2(1/(2n+ 1))1/p. From the bound of [52, 19], we have

that the encoding uses exponentially fewer physical bits than what can be obtained in the quantum

setting and hence even p-GNST has a powerful coding advantage over quantum mechanics. Note that

we are always free to split the N bits into smaller pieces first, and encode each piece independently

to keep the recovery probability q constant. This is analogous to the quantum setting where we can

encode each 3 bits into one qubit to obtain a random access code with n = N/3. Alternatively, we

can form a simple repetition code, where we have k copies of the random access codes constructed

above. We then have

Claim 2.6.4. In p-GNST, there exists a [3n, (2n + 1)3/pn, 1 − ε]-random access code with ε =

2 exp(−(2n+ 1)1/p/2).

Proof. We take k copies of the RAC defined in Claim 2.6.3, and decode by taking the majority of

the individual encodings. Let Yj = 1 if the decoding was successful for the j-th copy, and Yj = 0

otherwise. From the Hoeffding inequality we immediately obtain that for Y =
∑k
j=1 Yj and q as

defined above

Pr [|Y − qk| ≥ t k] ≤ 2e−2t2k.
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If we set t = q − 1/2 = 1/2(1/(2n+ 1))1/p, that gives us Pr [Y ≤ k/2] ≤ 2e−
1
2 ( 1

2n+1 )2/p
k. Now if we

set k = (2n + 1)3/p, we have used a total of (2n + 1)3/pn gbits and will succeed with probability

1− 2e−(2n+1)1/p/2 as promised.

Whereas (2n+ 1)3/pn is still quite large, note that it is nevertheless only polynomial in n. The

length of the RAC is hence still poly-logarithmic in our original input size, where we achieve (near)

perfect recovery for large n. Finally, we will need to use one more related result.

Claim 2.6.5. In p-GNST, for γ ∈ (0, 1/2) and n̂ ≥ 22/p ln(4/(1/2−γ)2), there exists a [3n(n̂,p,γ), n̂, 1
2+

γ]-random access code with n(n̂, p, γ) = b
(

n̂ 2−2/p

ln(4/(1/2−γ)2)

) 1
2/p+1 c.

Proof. Again we take k copies of the RAC defined in Claim 2.6.3, and decode by taking the majority

of the individual encodings. The probability to decode correctly in that case was 1−2e−
1
2 ( 1

2n+1 )2/pk.

Now we want to adjust k and n to get a code with a fixed success rate and that uses no more

than n̂ gbits. We need that (i) kn ≤ n̂, that is, our encoding uses at most n̂ physical bits and (ii)

1− 2e−
1
2 ( 1

2n+1 )2/pk ≥ 1/2 + γ, which forces our probability of success to be at least 1/2 + γ. We can

satisfy (ii) if we set k = ln(4/(1/2−γ)2)(2n+1)2/p, then (i) tells us that kn = ln(4/(1/2−γ)2)(2n+

1)2/pn, from which we have ln(4/(1/2− γ)2)22/pn2/p+1 ≤ kn ≤ n̂ and thus

n ≤
(

n̂ 2−2/p

ln(4/(1/2− γ)2)

) 1
2/p+1

.

Since the smallest system we can encode into is n = 1, this tells us that n̂ must be at least

22/p ln(4/(1/2− γ)2).

Note that although this may not be the best encoding, it suffices to give us the asymptotic

behavior for n̂.

2.6.2 In p-nonlocal theories

It is instructive to consider such superstrong encodings in the language of p-nonlocal theories to see

how such superstrong encodings would look like in terms of Pauli matrices. This will also allow us

to compare the consequences of restrictions due to the consistencies of moments from Section 2.2.3

to random access encodings. For the least restrictive p-theory, the p-bin theory, we can construct

the following very simple encoding.

Claim 2.6.6. In p-bin theories, there exists a [22n − 1, n, 1
2 + 1

2

(
1

2n+1

)1/p

]-random access code.

Proof. Consider the encoding of a string x ∈ {0, 1}N with N = 22n − 1 into an n p-bit state given

by

ρx :=
1
d

I +
1

(2n+ 1)1/p

22n−1∑
k=1

(−1)xkSk

 ,
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where Sk = Sab is a string of Pauli matrices, where we simply relabeled the indices ab. To decode the

kth-bit, we measure Sk. A straightforward calculation shows that the probability to obtain outcome

xk is given by

Pr[xk] =
1
2

Tr [(I + Sk) ρx] =
1
2

+
1

2(2n+ 1)1/p
,

as promised. Clearly, the uncertainty relation is satisfied.

Similarly, we obtain the following encoding for p-box theories, which is in one-to-one correspon-

dence with the encodings in p-GNST above.

Claim 2.6.7. In p-box theories, there exists a [3n, n, 1
2 + 1

2

(
1

2n+1

)1/p

]-random access code.

Proof. Our encoding is analogous to the one above, but we restrict ourselves to including only such

strings of Pauli matrices formed by taking tensor products of {X,Y, Z}, excluding the identity.

Clearly, we can again obtain an encoding that is poly-logarithmic in the length of the original

input analogous to Claim 2.6.4 that has perfect recovery for large n.

2.6.3 The effect of consistency

When viewing such encodings in terms of density matrices, it becomes clear why such encodings do

not exist in a quantum setting: all such encodings are in gross violation of the consistency conditions

of Section 2.2.3. Even when we restrict ourselves to p = 2, we can obtain such encodings whereas in

the quantum case we cannot. It is interesting to note that for p = 2, the violation we can obtain for,

e.g., the CHSH game is exactly the same as in the quantum setting. Thus it is perfectly possible

to have such superstrong encodings, while simultaneously being restricted to Tsirelson’s bound in

the CHSH game for a 2 qubit state. This clearly shows how limited our p-bin, p-nonlocal, but also

p-GNST theories really are. Since GNST is equivalent to a theory based on nonlocal boxes, this also

shows that considering such boxes is somewhat limiting, and possibly ignores some aspect present

in quantum theory that are of importance for information processing.

2.7 Implications for information processing

We now turn to a number of interesting implications of p-GNST and p-theories to information

processing. In particular, we will see that both allow us to save significantly on the amount of data

we need to transmit to solve certain communication problems. In fact, we will see that there exists a

task for which there exists an exponential gap between the amount of communication required when

compared with quantum theory. Other information tasks on the other hand become more difficult.

We will see that when trying to learn states approximately we need to perform exponentially more

measurements in the case of GNST.
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2.7.1 Communication complexity

Imagine two (or more) parties, Alice and Bob, who each have an input x ∈ {0, 1}n and y ∈ {0, 1}n

respectively, unknown to the other party. Their goal is to compute a fixed function f : {0, 1}2n →

{0, 1}m by communicating over a channel. The central question of communication complexity is how

many bits they need to transmit in order to compute f . Typically, we thereby only require one party

(Bob) to learn the result f(x, y). To help them reduce the amount of communication, Alice and

Bob may possess additional resources such as shared randomness, entanglement, nonlocal boxes, or

communicate over a quantum channel, and may impose different measures of success. For example,

they could be interested in computing f only with a certain probability instead of computing it

exactly. It is well-known that if Alice and Bob can share nonlocal boxes, they can compute any

Boolean function f : {0, 1}2n → {0, 1} perfectly by communicating only a single bit [5], which is even

true when the nonlocal boxes have slight imperfections [27]. Here, we consider the case where Alice

and Bob have no a priori resources, however, we they are able to exchange p-GNST or p-nonlocal

states over a suitable channel.

2.7.1.1 One-way communication

We first of all make a very modest statement and show that in any one-way communication protocol,

where Alice sends a single message to Bob, we are able to save a constant number of bits, when

computing a Boolean function f . These savings are an immediate consequence of the existence of

superstrong random access codes that we discussed in Section 2.6. To communicate with Bob, Alice

constructs the string

m = f(x, 0), . . . , f(x, 2n − 1)

and encodes m ∈ {0, 1}2n into a random access code ρm. To retrieve the correct answer, Bob

simply retrieves bit xy = f(x, y) from ρm. Evidently, this type of saving is particularly interesting

in the case where Alice and Bob would need to communicate n bits to compute f , which is the

case classically and quantumly if f = IP is the inner product [53]. By Claims 2.6.2, 2.6.3, 2.6.7,

and 2.6.6 we immediately obtain that

Claim 2.7.1. Let p→∞. Then in to compute the inner product Alice needs to transmit at most k

bits to Bob, where

k =

 (1/ log 3)n for p-GNST and p-nonlocal theories

n/2 for p-bin theory
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2.7.1.2 Private information retrieval

More striking though are the possibilities of p-GNST or p-theories for the task of private information

retrieval: Here, one (or more) database servers each hold a copy of the database string x ∈ {0, 1}n.

A database user should be able to retrieve any bit xi of his choosing, while the servers should not

learn the desired index i. A protocol that satisfies these parameters is the trivial one, where the

server simply sends the entire string x to the user. The question is thus, whether it is possible to

perform this task by communicating less than n bits. If only a single server is used, it is known

that the trivial protocol is optimal and we need to communicate Θ(n) bits, even if we are allowed

quantum communication [54]. It is clear that the superstrong encodings from above, allow us to

beat this bound trivially, by asking the server to encode x into a superstrong random access code.

Hence we have as an immediate consequence of Claims 2.6.2, 2.6.4, 2.6.6, and 2.6.7 we have

Claim 2.7.2. In any p-GNST, p-bin, and p-box theory, there exists a single server private informa-

tion retrieval scheme requiring O(polylog(n)) bits of communication for large n.

2.7.2 Learnability

We consider a scenario in which there is an unknown state for which we are trying to learn an

approximate description. In particular, imagine some arbitrary probability distribution over possible

two-outcome measurements. We are given the expectation value for each measurement in a finite

set picked according to this distribution. We then construct an approximate description of the state

which agrees with all the expectation values we have observed so far. This description is considered

to be good if it predicts the correct results for most future measurements drawn from the same

distribution. The central question is how many measurement results we need to be able construct a

good description.

The existence of strong random access codes has implications for state learning. Aaronson [20]

used an upper bound on the number of bits that can be encoded into an n qubit RAC to upper

bound the number of measurements needed to learn an approximate description of an n qubit state.

He took solace in the fact that, despite the exponential number of parameters describing a quantum

state, a linear (in the number of qubits) number of measurements suffice to learn an approximate

description of the state. If an exponential number of measurements were really required, we could

never hope to do enough measurements to verify the identity of quantum states of a few hundred

particles.

We show the converse for states in p-GNST. We use our constructions of random access codes to

lower bound the number of measurements needed to learn an approximate description of the state.

We find that an exponential number of measurements is required to find such a description and

therefore one could never hope to do enough measurements to learn a description of a state with
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a modest number of particles, even approximately. This holds even for theories where p = 2 and

the violation of the CHSH inequality is the same as for quantum mechanics. This demonstrates

an unusually powerful theory which starkly contrasts with quantum mechanics and the p-nonlocal

theory.

We begin with a section defining the relevant tools: a definition of the learning scenario, and

a measure of state complexity known as the “fat shattering dimension.” We then restate a known

lower bound on the number of samples needed for learning in terms of the fat shattering dimension.

In the next section, we derive lower bounds on learnability for p-GNST theories. First, we use our

random access codes to lower bound the fat shattering dimension for p-GNST states. Then we can

use this result to lower bound the number of samples needed to learn p-GNST states.

2.7.3 Tools

We begin by introducing some terminology from statistical learning theory. Let the set S denote

the sample space, which will correspond to the space of possible measurements in our case. A

probabilistic concept over S is just a function F : S → [0, 1], and is equivalent to a state which maps

measurement choices to expectation values. A set of such concepts is referred to as the concept class

C over S and corresponds to the set of all states. We consider the learning situation in which you

are given the value of the target concept (state) over some samples drawn independently according

to an arbitrary distribution. The goal is to output a hypothesis concept that will give values close to

the target concept for most samples drawn from the same distribution. A sample size that is large

enough to allow this to be accomplished with high probability is said to be sufficient. To restate

the connection, in GNSTs we will say that a state corresponds to a concept, and a measurement

on the state to a sample. We will make these notions precise before we demonstrate the connection

between RACs and fat-shattering dimension in 2.7.5.

We adopt our definition of probabilistic concept learning from Anthony and Bartlett[55].

Definition 2.7.3 (Anthony and Bartlett [55]). Let S be a sample space, let C be a probabilistic

concept class over S, and let D be a probability measure over S. Fix an element ρ ∈ C, as well as

error parameters ε, η, γ > 0 with γ > η. Let k0(η, γ, ε, δ) be some function of the error parameters.

Suppose we draw a training set of k samples T = (s1, . . . , sk) independently according to D, and

then choose any hypothesis σT ∈ C such that |σT (si)− ρ (si)| ≤ η for all si ∈ S. Then if for

k ≥ k0(η, γ, ε, δ)

Pr
s∈S

[|σT (s)− ρ (s)| > γ] ≤ ε

with probability at least 1− δ over T , we say that k0 is a sufficient sample size to learn C.

This says that if the size of the training set, k, is bigger than k0, then with probability 1 − δ,

the training set T , that we pick according to D will be a good training set. That is, a hypothesis
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concept σ which matches the target state on the training set will only be different from the target

state on some other sample with small probability, ε.

To define a lower bound on k0, we will need a measure of complexity called the fat-shattering

dimension.

Definition 2.7.4 (Aaronson [20]). Let S be a sample space, let C be a probabilistic-concept class

over S, and let γ > 0 be a real number. We say a set {s1, . . . , sk} ⊆ S is γ-fat-shattered by C

if there exist real numbers α1, . . . , αk such that for all B ⊆ {1, . . . , k}, there exists a probabilistic

concept ρ ∈ C such that for all i ∈ {1, . . . , k},

(i) if i /∈ B then ρ (si) ≤ αi − γ, and

(ii) if i ∈ B then ρ (si) ≥ αi + γ.

Then the γ-fat-shattering dimension of C, or fatC (γ), is the maximum k such that some {s1, . . . , sk} ⊆

S is γ-fat-shattered by C. (If there is no finite such maximum, then fatC (γ) =∞.)

The fat-shattering dimension lower bounds the number of samples needed to learn a probabilistic

concept.

Lemma 2.7.5 (Anthony and Bartlett [55]). Suppose C is a probabilistic concept class over S and

set 0 < γ < η < 1, ε, δ ∈ (0, 1). Then if fatC(γ) ≥ d ≥ 1 and γ2 ≥ 4d2−
√
d/6, any sample size m0

sufficient to learn C satisfies

m0(η, γ, ε, δ) ≥ max
(

1
32ε

(
d

2 ln2(4d/γ2)
− 1
)
,

1
ε

ln
1
δ

)

This concludes the results we will need from statistical learning theory.

2.7.4 Lower bounds on sample complexity

Our next step is to show that the existence of random access codes lower bounds the fat-shattering

dimension. First we have to carefully define what “concept” we will be learning and what constitutes

our sample space. For the purposes of learning in GNSTs, the sample space is just the set of possible

measurements, where we allow general measurements by first making some fiducial measurement on

the state, and then post-processing the result using some decoding function. So we can define

SGNST := {(C,D)|C ∈ EG, D : A×n → {0, 1}}. For some sample (C,D) ∈ SGNST , a concept is

specified by the state ρx in a GNST via the the probability ρx(C,D) :=
∑
A∈A×n D(A)px(A|C),

where px is an n-partite state in some GNST. Then the concept class CGNST is the set of concepts

specified by all the states in GNST.

Note that a “sample” is stronger than a typical notion of measurement. Usually we say that the

measurement gives a result with some probability, but given some sample, the concept ρ actually
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returns the probability of that outcome occurring. This stronger notion of sampling is all we consider

here since we are only lower bounding the number of samples needed.

Claim 2.7.6. Let the concept class CGNST over SGNST consist of all ρx(C,D) =
∑
A∈AD(A)px(A|C),

where px describes any n-partite states in a GNST, over the sample space {(C,D)|C ∈ EG, D :

An → {0, 1}}. For integers n,N(p, n) and γ ∈ (0, 1), if there exists an [N(p, n), n, 1
2 + γ]-RAC then

fatCGNST (γ) ≥ N .

Proof. By the RAC definition, there exist a set of measurements {(C,D), . . . , (C(N), D(N))} and

states specified by (the concepts) ρx for x ∈ {0, 1}N so that

(i) if xi = 0 then ρx(C(i), D(i)) ≤ 1
2 − γ

(ii) if xi = 1 then ρx(C(i), D(i)) ≥ 1
2 + γ.

Therefore, this set of samples is γ fat-shattered by CGNST . Since fatCGNST is the size of the largest

sample set shattered, fatCGNST ≥ N(p, n).

Combining Claim 2.6.5 with 2.7.6 and 2.7.5, we get the following result.

Corollary 2.7.7. For n̂-partite concepts in Cp−GNST and error parameters ε, η, γ, δ > 0 with γ > η,

if n̂ ≥ 22/p ln(4/(1− γ)2) and

k < max

(
1

32ε

(
3n(n̂,p,γ)

2 ln2(4 · 3n(n̂,p,γ)/γ2)
− 1
)
,

1
ε

ln
1
δ

)

for n(n̂, p, γ) = b
(

n̂ 2−2/p

ln(4/(1−γ)2)

) 1
2/p+1 c, then k is not a sufficient sample size to learn states in

Cp−GNST .

That is, we need O(3n̂
1

2/p+1
/n̂

2
2/p+1 ) samples to learn an n̂-partite state in p-GNST to great

accuracy. For p = 2 we have an uncertainty relation analogous to quantum mechanics that rules

out super-quantum violations of the CHSH bound. Nevertheless it still takes O(3
√
n̂/n̂) samples to

learn these states, as compared to O(n) in the quantum case.

2.8 Conclusion and open questions

We have shown that relaxing uncertainty relations can lead to superstrong nonlocal correlations. This

is quite intuitive when considering Tsirelson’s bound as a consequence of such an uncertainty relation

in the quantum setting. We then constructed a range of theories inspired by such relaxations, and

investigated their power with respect to a number of information processing problems. In particular,

we obtained superstrong random access encodings and savings for communication complexity. At

the same time, however, it turned out to become harder to learn a state in such a theory. We then
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p-bin p-GNST/p-box p-nonlocal Quantum Classical
Non-signaling yes yes yes yes yes

Satisfies p-uncertainty yes yes yes p=2 n/a
Simultaneous no local commuting commuting allmeasurements

CHSH violation 1
2 + 1

21/p+1
1
2 + 1

21/p+1
1
2 + 1

21/p+1
1
2 + 1

21/2+1
3
4

RAC bits to O(polylog(N)) O(polylog(N)) ? Ω(N) Ω(N)
encode N bits

PIR from N bits O(polylog(N)) O(polylog(N)) ? Ω(N) Ω(N)
“Learning” states hard hard ? easy easy

Table 2.1: Summary of properties and results for various theories.

discussed what makes such superstrong encodings possible in our p-theories, but also in GNST. We

identified a number of simple constraints that prevent us from constructing a similar encoding in the

quantum setting. Our work may indicate that using “box-world” to understand any other problems

within quantum information beyond nonlocal correlations may be difficult, as “box-world” differs

from the quantum setting with respect to such constraints, at least when drawing a one-to-one

analogy from a gbit to a qubit as in GNST [18]. It is important to note that these constraints did

not prevent us from observing superstrong nonlocal correlations, but merely forbid our encodings in

Section 2.6. If one would like to use “box-world” to understand other aspects one could either impose

such consistency constraints, or look for a different approach to defining such theories. GNST was

defined by first specifying states and then allowing all operations that take valid states to valid states.

If one would have specified the theory in terms of allowed transformations, instead of states, such

encodings could also have been ruled out. For example, in the quantum setting one can transform

operators X⊗X, Z⊗Z, and XZ⊗XZ into a bipartite form via a unitary operation. When looking

at a density matrix expressed in terms of strings of Pauli matrices, its coefficients (which directly

determine the moments for measurements of strings of Paulis) must obey similar constraints to the

coefficients belonging to bipartite operators of the form I⊗X,X ⊗ I, X ⊗X for example.

Finally, it is clear that both the uncertainty relation and the consistency constraints are obeyed

in the quantum setting, since we demand that for any ρ we have Tr(ρ) = 1 and ρ ≥ 0 to be a

valid quantum state. Not surprisingly, both forms of constraints are thus necessary (but in higher

dimensions not always sufficient) conditions for ρ ≥ 0. Such characterizations are not easy for

d > 2 [43, 44, 45, 46], and it remains an interesting open problem to find an intuitive interpretation

for such conditions in higher dimensions, and their consequence for information processing tasks.
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2.A Appendix: Monogamy from uncertainty relations

In this appendix we provide a sketch of a proof that monogamy constraints can be derived directly

from generalized uncertainty relations.

Consider a setting in which we have three parties, A,B, and C. They have access to part of some

shared state ρ, and each party has a choice of two measurements, e.g. A1, A2, with outcome {±1}.

For two parties we can define the CHSH operator βAB = A1⊗B1⊗ I +A2⊗B1⊗ I +A1⊗B2⊗ I−

A2⊗B2⊗I and its expectation value 〈βAB〉 = Tr(ρβAB). Monogamy relations quantify the trade-off

between the maximum CHSH value attained by A and B, versus the the maximum value that can

be simultaneously attained by B and C. The best known result quantifying this trade-off is[36]

〈βAB〉2 + 〈βBC〉2 ≤ 8 (2.8)

We start by assuming that there exists locally anticommuting observables that achieve the max-

imal value of the monogamy relation. Although this is true in all known cases, we are not aware of

a proof of this fact. Given this assumption, we show that for locally anti-commuting observables,

the generalized uncertainty relations directly imply Eq. (2.8).

Now, we assume that each party’s local measurements anti-commute, i.e. {A1, A2} = 0. The

only constraint we will impose is the generalized uncertainty relation. That is, for measurements

Mi, so that {Mi,Mj} = δij , ∑
i

〈Mi〉2 ≤ 1

For instance, 〈I⊗B1 ⊗ C1〉2 + 〈I⊗B1 ⊗ C2〉2 + 〈A1 ⊗B2 ⊗ I〉2 + 〈A2 ⊗B2 ⊗ I〉2 ≤ 1.

Now we construct the vector of variables

x = (x1, . . . , x12)

:= (〈I⊗B1 ⊗ C1〉, 〈I⊗B1 ⊗ C2〉, 〈I⊗B2 ⊗ C1〉, 〈I⊗B2 ⊗ C2〉, 〈A1 ⊗ I⊗ C1〉, 〈A1 ⊗ I⊗ C2〉,

〈A1 ⊗B1 ⊗ I〉, 〈A1 ⊗B2 ⊗ I〉, 〈A2 ⊗ I⊗ C1〉, 〈A2 ⊗ I⊗ C2〉, 〈A2 ⊗B1 ⊗ I〉, 〈A2 ⊗B2 ⊗ I〉)

We rewrite the monogamy relation in terms of these variables.

q(x) = 8− (〈βAB〉2 + 〈βBC〉2) = 8− (x7 + x8 + x11 − x12)2 − (x1 + x2 + x3 − x4)2 ≥ 0

Under the constraints implied by the uncertainty relation, which we label as gi(x) ≥ 0, we want to

show q(x) is always non-negative.

We begin by noting that the following two inequalities are a result of the generalized uncertainty
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relation.

g1(x) = 1− x2
1 − x2

2 − x2
8 − x2

12 ≥ 0

g2(x) = 1− x2
3 − x2

4 − x2
7 − x2

11 ≥ 0

We will also need the following six polynomials which can be obtained by using semi-definite pro-

gramming in combination with the real Positivstellensatz.[56]

f1(x) =
√

2(x11 + x12)

f2(x) =
√

2(x2 − x1)

f3(x) =
√

8/3x3 −
√

2/3(x1 + x2)

f4(x) =
√

1/3(x1 + x2 + x3) +
√

3x4

f5(x) =
√

8/3x7 −
√

2/3(x11 − x12)

f6(x) = −
√

1/3(x11 − x12)−
√

1/3x7 +
√

3x8

Now one can verify that 8 − 〈βBC〉2 + 〈βAB〉2 = q(x) can be written as the sum of positive terms

g1(x), g2(x) and squares of polynomials like fi(x).

q(x) = 4(g1(x) + g2(x)) +
6∑
i=1

fi(x)2 ≥ 0

Therefore, 〈βBC〉2 + 〈βAB〉2 ≤ 8. To show that this bound is tight, one needs only produce a point

that achieves equality. For this case,

x1 = x2 = x3 = −x4 =
1√
2

xi>4 = 0.
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Chapter 3

Tests of nonlocality

...In that Empire, the craft of Cartography attained such Perfection that the Map of a Single

province covered the space of an entire City, and the Map of the Empire itself an entire Province.

In the course of Time, these Extensive maps were found somehow wanting, and so the College

of Cartographers evolved a Map of the Empire that was of the same Scale as the Empire and

that coincided with it point for point. Less attentive to the Study of Cartography, succeeding

Generations came to judge a map of such Magnitude cumbersome, and, not without Irreverence,

they abandoned it to the Rigours of sun and Rain. In the western Deserts, tattered Fragments

of the Map are still to be found, Sheltering an occasional Beast or beggar; in the whole Nation,

no other relic is left of the Discipline of Geography.

Jorge Luis Borges

In this section we argue that an exact description of the boundary between local and nonlocal

correlations would be cumbersome. Instead we propose an approximate but exponentially smaller

description of this boundary. We will first cast the problem of testing for nonlocal correlations in

terms of the problem of finding the convex hull of a set of vertices. We demonstrate that methods

involving linear matrix inequalities produce nonlinear bounds that efficiently approximate the convex

hull, yielding sufficient tests for violations of locality. After comparing the efficacy of these methods

for detecting nonlocal correlations, we discuss their application to Bayesian graphs and general

machine learning problems.

3.1 The Bell polytope

We begin by recalling the experimental setup described in Chapter 1. There we had p parties where

each i-th party had a choice of Xi = 1, . . . , s measurement settings with the possibility of finding

one of Ai = 1, . . . , r outcomes or results. The results of repeating these experiments many times

can be described by the d = (rs)p probabilities p(A1 . . . Ap|X1 . . . Xp). We will depict the vector of

these probabilities with the vector x ∈ Rd. To say that our experimental setup is “local” or more

precisely, described by a local hidden variable theory, is to say that each outcome depends only on
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the choice of measurement and some discrete, possibly infinite, hidden variable R1.

p(A1 . . . Ap|X1 . . . Xp) =
∑
R

p(A1|X1, R) . . . p(Ap|Xp, R)p(R) (3.1)

First we want to show that if we call the vector of probabilities x, then x can be written as

a convex mixture of a finite number of vectors that represent local, deterministic behaviors. If

A ∈ {1, . . . , r}, then we can write some probability distribution p(A) as a mixture of deterministic

behaviors: p(A) =
∑r
j=1 λjδA,j , λj ≥ 0,

∑
j λj = 1. Here δ is a discrete delta function and δA,j can

be considered a deterministic behavior for A because if pdet(A) = δA,j , then A = j with probability

1.

For a conditional probability distribution p(Ai|Xi), a deterministic behavior means, for each

Xi, Ai takes some some value with probability 1: pdet(Ai|Xi) = δAi,fmi (Xi). Clearly, there are rs

functions fm : {1, . . . , s} → {1, . . . , r} enumerated(for the i-th party) by mi = 1, . . . , rs and therefore

rs deterministic behaviors. If we dictate that the p(Ai|Xi, R) on the right hand side of Eq. (3.1)

must be local deterministic behaviors.

pdet(A1 . . . Ap|X1 . . . Xp) =
p∏
i=1

δAi,fmi (Xi) (3.2)

This gives us rsp different local deterministic behaviors (one for each (m1, . . . ,mp)) for the full

probability distribution. Now we call each local deterministic behavior v(m) ∈ Rd,m = 1, . . . , rsp

and then add in some shared randomness by making a mixture of these deterministic behaviors

depending on some variable i which occurs with probability λi.

x =
nv∑
i=1

λiv
(i), λi ≥ 0,

∑
i

λi = 1 (3.3)

Clearly, the x that can be written this way forms a convex polytope in d dimensions of the nv = rsp

vertices. Also, we have seen that it is clearly a probability distribution of the form in Eq. (3.1).

A more complicated argument that we have not shown is that every probability distribution of the

form in Eq. (3.1) can be written in this way [57]. This argument basically proceeds by showing that

the local randomness in p(Ai|Xi, R) can be converted to shared randomness which only the i-th

party acts on.

Definition 3.1.1. For an experimental setup with p parties, making choices of s measurement

settings with r possible results, we will refer to the convex polytope formed as the convex hull of

nv = rsp vertices in d = (rs)p dimensions and described in Eq. (3.3) as an (r, s, p) Bell polytope.

Finding the convex hull of a set of vertices is not always a difficult problem. For instance, Avis
1In general this could be continuous. The same conclusion holds [49], but we choose this formulation to highlight

other connections later on.
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and Fukuda [58] demonstrate an algorithm for finding the nf facets of a polytope described by nv

vertices in a d dimensional space in time O(nvnfd) and space O(nvd). The catch is that this method

is only guaranteed to be efficient for simple polytopes: that is, polytopes for which each vertex lies

at the intersection of exactly d facets, and no more. For non-simple polytopes the number of facets

may be exponential in the number of vertices [59]. Unfortunately, the Bell polytope is not simple

and determining membership in a class of polytopes that includes some Bell polytopes has been

shown to be NP-complete [60].

To demonstrate the tedium of attempting to enumerate all the facets of the Bell polytope one

has only to review the few works that attempt to do so. In the case of the (2, 2, 2) polytope there

is, after symmetry reduction, only one nontrivial facet referred to as the CHSH inequality [11]. For

even slightly larger polytopes, however, the number of facets becomes unwieldy. Pitowsky and Svozil

[61] used brute force computational techniques to find all the facets of the (2, 3, 2) polytope and the

(2, 2, 3) polytope with total numbers of facets 684 and 53856, respectively. Werner and Wolf [59]

analytically derive an expression to find all the facets of the (2, 2, p) polytope and find that there

are 22p of them. This is why we choose to look for a smaller number of nonlinear inequalities that

provide simple sufficient tests for a point to lie outside the Bell polytope. Next, we discuss some

properties of linear matrix inequalities and why they provide a natural candidate for such a test.

3.1.1 Symmetries in the Bell polytope

Treating the Bell polytope as generic clearly forfeits the advantage we gain from knowing its many

symmetries. For instance, we know that any valid probability distribution should still be so, even

after relabeling of measurements, outcomes, or parties. Another source of symmetries is even easier

to implement for the purpose of dimension reduction: normalization and no-signaling. Both nor-

malization and no-signaling give us linear equations that we know every x must satisfy. By noting

that for each of sp settings the probability for the results add to unity, we can reduce the dimension

by sp. For no-signaling it is a bit more difficult, because many of the no-signaling equalities (see

1.3) are linearly dependent. For the (2, 2, 2) Bell polytope, for instance, we reduce the dimension

from d = 16→ 12(normalization)→ 8 (no-signaling). In the analysis to follow, we have always first

reduced the dimensionality of the polytope in this way.

3.2 Linear matrix inequalities

A linear matrix inequality (LMI) has the form [62]

F0 +
∑
i

Fixi � 0 (3.4)
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where the Fi are symmetric m × m matrices and the operator A � B is used to indicate that

A−B is positive semidefinite or, equivalently, has only nonnegative eigenvalues. LMIs have several

properties we will require. First, the set of x satisfying Eq. (3.4) is a convex set. This set can

alternately be represented as a semi-algebraic set {x : g1(x) ≥ 0 . . . gn(x) ≥ 0} for some polynomials

with max degree(gi(x)) ≤ m. This can be seen, for instance, by taking the determinant of all the

principal minors to be non-negative, a necessary and sufficient condition for positive semidefiniteness.

Given some Fi, optimizing a linear function b · x over an LMI is referred to as a semidefinite

program and can be solved efficiently using interior point methods [63]. Alternatively, we can specify

some points that lie inside our convex set; then optimizing over the parameters in Fi is a semidefinite

program, as we now show. The convex hull of some vertices v(1) . . . v(nv) ∈ Rd is the minimal convex

set containing these vertices. Therefore, any convex set containing the vertices is guaranteed to be

an outer bound for the polytope. We can cast the condition that our LMI in Eq. (3.4) defines a set

including the vertices as another LMI.

diagk(F0 +
∑
i

Fiv
(k)
i ) � 0 (3.5)

Here diagk indicates that we construct the block diagonal matrix where each block corresponds to

the condition that vertex k is inside our convex set.

Clearly, once we have found a set of Fi satisfying the constraint 3.5, violating that constraint

tells us we are outside of the outer bound of the Bell polytope, and therefore the Bell polytope itself.

Therefore, this solution provides a simple sufficient test for nonlocality. The difficulty is in searching

for Fi that provide a “good” test, or rather, an outer bound that is as close to the Bell polytope as

possible.

3.3 Methods for approximating convex hulls

Now that we have cast the problem of finding tests for nonlocality in terms of finding the convex

hull of a set of vertices, we proceed to describe several methods for finding outer bounds on this

polytope.

3.3.1 Minimum volume ellipsoid

We begin by considering the most common approach to approximating the convex hull of a set of

points with the minimum volume ellipsoid (MVE) containing the points. Searching for such an

ellipsoid can even be cast as a convex optimization problem and therefore solved efficiently using

interior point methods [64]. See [65], for example, for a discussion of the complexity of finding the

minimum volume ellipsoid.
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In the following definition A is a positive semidefinite, symmetric, d× d matrix that, therefore,

defines a convex set via {x : (x − c)†A(x − c) ≤ 1}, where c represents the center of the ellipsoid.

Maximizing the log of the determinant is equivalent to minimizing the volume [64], and the last line

dictates that all the sample data which belong to this class should be inside the ellipsoid.

max
A∈Sd×d,c∈Rd

log detA

A � 0 (3.6)

(v(k) − c)†A(v(k) − c) ≤ 1, k = 1 . . . nv

Applying this technique to the Bell polytope with (r = 2, s = 2, p = 2) gives an outer bound that

is far outside even the no-signalling polytope. Comparison of various methods for approximating

the (2, 2, 2) Bell polytope are summarized in Figure 3.1. We might hope to extend this volume min-

imization technique to more complicated volumes. Unfortunately, there is no easy way to determine

the volume of convex sets with higher dimensional boundaries.

3.3.2 Schur improvement over MVE

In this section we present a general method for improving on the minimum volume ellipsoid. First

we need to review the properties of the Schur complement, which we will use to rewrite the MVE

in LMI form. Then we will use the Schur complement again to find an improved description of the

polytope.

For a block diagonal matrix,  C D

D† E

 � 0

is equivalent via the Schur complement[66] to the statement,

C � 0, C −D†E−1D � 0. (3.7)

To see that the equation for an ellipse x†Ax ≤ 1 can be written in this form, note that we require

A � 0 which implies the existence of a Cholesky factorization A = B†B, where B is a d× d matrix

and Bx is a d× 1 vector. Therefore we can rewrite the ellipse equation as (Bx)†(Bx) ≤ 1.

 1 (Bx)†

Bx I

 � 0 (3.8)

Note that we can also use the Schur complement to write this as

I � (Bx)(Bx)†. (3.9)
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Clearly, if we wanted to define a smaller set we could consider I � I +
∑
Mixi � (Bx)(Bx)†, noting

that I +
∑
Mixi � (Bx)(Bx)† can still be cast as an LMI. Of course, we still want the vertices to

be inside our convex set, which leads to a condition linear in variables Mi,

I +
∑

Miv
(k)
i � (Bv(k))(Bv(k))†.

Now, the question remaining is to how enforce the condition that I +
∑
Mixi is smaller than I.

Various possibilities can be cast as semidefinite programs. For instance, minimizing the maximum

eigenvalue of a matrix can be cast this way.

min
y,t

t

tI � G0 +Giyi

H0 +Hiyi � 0

(3.10)

This minimizes the maximum eigenvalue of the matrix G0 +Giyi over y, given some LMI constraint.

An even simpler condition is to minimize the trace of a matrix, which is the same as minimizing the

sum of the eigenvalues.

Given bi = columni(B), vectors formed from the i-th columns of B defined in Section 3.3.1, we

define the semidefinite program,

min
M∈Sd

∑
k,i

trMiv
(k)
i

Fi =

 0 (bi)†

bi Mi


diagk(I +

∑
i

Fiv
(k)
i ) � 0

(3.11)

From the Schur complement we can see that a solution to this problem corresponds to the set of

x defined by the LMI

I +
∑
i

 0 b†i

bi Mi

xi � 0. (3.12)

This defines a convex set which, from the third line of Eq. (3.11) is guaranteed to contain the vertices.

Furthermore, our minimization had the effect of making this set smaller than the MVE, which we

recover by simply setting M = 0. The result of using this technique on the (2, 2, 2) polytope is

presented in Table 3.1. We used a popular front-end for SDP solvers called YALMIP[67]. The

solutions shown here used the specific solver SeDuMi [68].
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No-signalling

Bell polytope

QM

Figure 3.1: A schematic representation of the geometry of the (2,2,2) Bell polytope [69]. The solid
line represents a facet corresponding to the CHSH inequality. The dotted line represents the larger
polytope consisting of all nonlocal correlations consistent with the no-signalling principle. The region
accessible by quantum mechanics is represented by a curved line between the two. The blue star
represents the closest achievable outer bound obtained as detailed in Table 3.1.

Max η
Local (Bell polytope) 0.5

Achievable by quantum states ∼ 0.70
Nonlocal (no-signalling polytope) 1

Minimum volume ellipsoid 1.42
Schur improvement to MVE 0.64
Maximum curvature (SOS) 1.01

Table 3.1: The dashed line in Fig 3.1 parametrizes the states between the center of the Bell polytope
(η = 0) and the maximally nonlocal state (η = 1). The table summarizes the maximum value of η
for which a state is inside the corresponding set.
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3.3.3 Maximum curvature

In this section we would like to highlight a recent promising approach to the problem of approxi-

mating convex functions. In [70], the authors consider a convex set constructed as the sub-level set

of a convex function g(x) ≤ 1. They impose convexity by searching over the set of g(x) that are

constructed as linear combinations of monomials plus a condition that ensures the Hessian of g(x)

is positive semidefinite. They use a stricter condition than positivity by imposing the Hessian be a

sum of squares because this can be cast as an LMI [56]. Note in our approach we impose convexity

directly by only considering LMI sets.

After constructing a function so that convexity can be cast as an LMI, they give a heuristic

condition for minimizing the volume of sets defined by high degree polynomials. In particular, they

suggest maximizing the curvature subject to the conditions of convexity, and inclusion of points in

the convex hull. This can be cast as a determinant maximization problem just as in 3.3.1.

This approach seems promising and could be easily adapted to polytope fitting. Instead of

maximizing the curvature in all directions, we maximize the curvature only at the vertices. We

have implemented this approach for the (2, 2, 2) Bell polytope with limited success. In particular,

we used monomials of a maximum degree of 4 in the problem variables. Then we attempted to

maximize the curvature at each vertex. This led to an outer bound close to the no-signaling polytope.

Unfortunately, using higher degree monomials quickly increases the computational complexity, unless

one can restrict to a specific family of monomials that is known to better represent the set.

The idea of maximizing curvature could be adapted to the LMI approach. On the boundary of

our LMI, g(x) = det(F0 +
∑
i Fixi) = 0. The Hessian matrix H of g(x) would have components

Hi,j = ∂xj∂xig(x). Even under the simplifying conditions that F0 = I and Fi are traceless, Hi,j ∼

trFiFj , which is not linear. Therefore, it is not clear that curvature maximizing approach can be

adapted to search for small LMI representations of convex polytopes.

3.4 Complexity of tests

We will put all complexities in terms of the original problem variables (r, s, p), remembering that

d = (rs)p and nv = rsp. First of all, we consider the complexity of finding an outer approximation

of the (r, s, p) Bell polytope in Section 3.3.2. In general, the complexity of semidefinite programs

is polynomial in the size of the problem, though current bounds are not very tight and depend on

the problem structure. The leading complexity in our case comes from solving the determinant

maximization problem for finding the MVE. This problem has been studied in depth [65] and has

been found to have complexity O(n3.5
v lnnv).

Given a description of the Bell polytope and of our relaxation of it, we compare the complexity

of determining whether a given probability distribution is outside. For the Bell polytope, we simply
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check the linear inequalities for the facets. Unfortunately there could be O(22p) of them [59]. To

check our LMI from Section 3.3.2, we have to check whether a (d + 1) × (d + 1) matrix is positive

semidefinite. Using a Cholesky decomposition,e.g., would require O(d3 = ((rs)p)3) operations. This

is exponentially easier to check, and doubly so in terms of s. On the other hand, the construction

was still exponential in s; the LMI construction and testing are only jointly polynomial in r.

3.5 Application to statistical learning

We now consider applying the methods of the previous section to computational problems unrelated

to quantum mechanics. First we discuss the direct connection between hidden variable theories and

Bayesian graphs. Second, we consider the use of improved approximations for the convex hull of

points for classifying clusters of data.

3.5.1 Hidden nodes in Bayesian graphs

Bayesian statistics are an important tool for dealing with uncertainty in data and missing information[71].

Unfortunately, it can be difficult to determine the correct relationship between data sources, par-

ticularly if some unknown factors, or hidden variables, are affecting the data. We would like a test

that tells us when correlations in some probability distribution over observed data can be explained

solely in terms of some unknown hidden variable.

In this section, we will illustrate the connection to Bayesian graphs by exploring a particular

probability model depicted by the graph in Figure 3.2. We will identify the set of probability

distributions over observed data that are consistent with this model. Then we will devise a test

to distinguish whether a given distribution is in this set. From a physics perspective, if we view A

and B as causally disconnected detectors, and X and Y as measurement choices for those detectors,

than correlations stronger than those predicted by a hidden variable model indicate the violation of

locality. On the other hand, we can consider these variables in an abstract way that could apply to

any data set using the language of Bayesian graphs.

We will speak of probability distributions over observed variables that, for simplicity, take on

some finite set of values. For instance p(A = i|X = j) denotes the probability that the variable A

takes on the specific value i, given that we know that X has taken value j. The Bayesian graph in

Figure 3.2 has the following meaning in terms of probability distributions [71].

p(ABXY ) =
∑
R

p(A|XR)p(B|Y R)p(R)p(X)p(Y )

If we consider the conditional probabilities of p(AB|XY ), then we have an identical probability

structure to the one considered in Eq. (3.1). Let us assume that A,B,X, Y take values in {0, 1},
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A B

X YR

Figure 3.2: Bayesian graph with one hidden node R

while our unknown hidden variable R is unrestricted in the values it can take.Therefore, if we consider

this space of probabilities geometrically, we have a structure identical to the Bell polytope.

In the analysis of Bayesian graphs, one usually considers “independence relations”. These are

relationships among the variables that can be read directly from the graph structure using a set of

intuitive rules. Mathematically an independence relation has the following meaning:

U ⊥ V |W ⇐⇒ p(UVW )p(W ) = p(UW )p(VW ) ∀U, V,W (3.13)

One usually says “U is independent of V given W” which has the rough meaning that if you know

the value of W , then information about V tells you nothing about U . Typically, one may use inde-

pendence relations in the data to infer the structure of a Bayesian graph representing the relations

between variables. Unfortunately, if there is a hidden variable, then one cannot use independence

relations involving that variable to deduce structure. Three independence relations that can be read

off the graph in Figure 3.2 are the following [71].

AX ⊥ Y

BY ⊥ A

X ⊥ Y

(3.14)

Other relations (that do not involve R) can be derived from these. We can take the first of these

and rewrite it using Eq. (3.13)

p(AXY ) = p(AX)p(Y ) ∀A,X, Y. (3.15)
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Unfortunately, this approach has the same limitations as we have previously discussed for the

Bell polytope. Recall that no-signalling relations for two parties have the form

∑
B

p(AB|XY ) =
∑
B

p(AB|XY ′) ∀B,X, Y, Y ′.

Now we rewrite the sums as marginal probabilities and multiply both sides with p(X) (also noting

that X ⊥ Y in this case).

p(AX|Y ) = p(AX|Y ′) = P (AX). (3.16)

Rearranging Eq. (3.15) gives the same result. We see that these independence relations give identical

constraints to the no-signalling polytope. Thus, using independence relations to identify whether a

given probability distribution is inconsistent with the graph in Figure 3.2 does no better than using

the no-signalling polytope to identify whether a probability distribution is inconsistent with the Bell

polytope, as depicted in Figure 3.1.

To conclude, we have shown that, at least for some Bayesian graphs, identifying whether prob-

ability distributions are consistent with some model can be at least as difficult as identifying facets

of the Bell polytope. Since the given example is identical to the Bell polytope, the approximations

given in Section 3.3 could work equally well for this problem. It remains an open question whether

other Bayesian graphs share this difficulty and, if so, whether convex approximations can be used

as efficient tests for deciding between them.

3.5.2 Convex bounds for classifying data

We propose a new method for representing and classifying data and demonstrate its efficacy for

learning from certain hypothesis classes.Specifically, we show that a piecewise quadratic boundary

containing these classes can be found efficiently using semidefinite programming. This method

sidesteps many problems of similar approaches such as the need for high dimensional feature spaces,

tuning of parameters, convergence problems, and local minima. By using a number of low degree

curves, we improve on piecewise linear techniques while avoiding the danger faced by, e.g., kernel

methods of overfitting in some highly nonlinear feature space. A description based on this Quadratic

Boundary Method (QBM) also generates a piecewise quadratic decision boundary between classes.

A particular hypothesis class for which we demonstrate usefulness of this method consist of data

points generated as arbitrary mixtures of some particular finite set of data points. These classes are

geometrically described by convex polytopes. Unfortunately, polytopes in higher dimensions may

have a huge number of facets, so checking a point against the linear inequalities implied by each facet

is NP-complete in the number of vertices [60]. On the other hand, known techniques which solve the
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problem more efficiently ignore the fine structure of the polytope. We show that QBM replaces the

exponential number of linear surfaces with a small number of quadratic ones, while preserving more

of the structure than Gaussian based cluster techniques, and avoiding problems typical of neural

networks.

The rich variety of neural network and kernel machine methods contain many candidates to

solve almost any learning problem. On the other hand, this wealth of techniques can become a

burden if one is unsure which methods are appropriate. One can view neural networks as iteratively

searching through a high dimensional space for a non-unique local minima that depends partly on

the problem and partly on the number of nodes and variety of threshold function used. So although

neural networks can learn linear, quadratic, or hyperquadratic boundaries between classes [72], it

is not always clear what the meaning of these boundaries is. Support vector machines, on the other

hand, have an obvious meaning in terms of finding an optimal unique linear separator. Unfortunately,

doing so often requires a transformation to some ad hoc feature space.

By basing our technique on the construction of semidefinite programs, we avoid many of these

pitfalls. Semidefinite programs are a class of well-studied convex optimization problems for which

unique optimal solutions can be found efficiently and which have a clear geometric meaning [64].

Although we are limited by convexity requirements, for some classes of problems this is a natural

constraint. We demonstrate the applicability of our method to one such class of convex problems

and discuss possible extensions to non-convex regimes. Another interesting difference from other

classifiers is that we learn a one dimensional convex function for each class separately, which we

interpret as a measure of the distance of any point from that class. Our decision boundary is only

constructed at the end based on which class is closest in terms of our distance function to a given

point. This implies that, unlike SVM, or neural networks, we can add new classes independently,

and re-form our decision boundaries without doing any new calculation involving points from our

previously described classes.

We consider a set of labeled training data of the form (qi, xi) where qi = {1, 2, . . .} labels which

class the sample xi ∈ Rd is a member of. The set of all training samples in the class g is called Tg
and is a subset of the set of all possible samples with label g called Sg.

One motivation for our proposal is to provide a better understanding of data that arise from

a mixture of canonical processes. To be precise, imagine some set of samples S1 = {x : x =∑m
j=1 λjvj , λj ≥ 0,

∑
j λj = 1, vj ∈ Rd}. The vj represent specific data outcomes that are mixed

according to a hidden variable λ.

We will demonstrate such a model, and the deficiency of current methods for handling it, with

a physically motivated example. Because it is difficult to visualize high dimensional data, we will

purposely choose a less realistic, low dimensional one for illustration purposes. We would like to

reiterate that although in low dimensions, with few vertices, it may seem trivial to determine all the
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Figure 3.3: The vertices of the triangle (dotted lines) represent outcomes which are mixed according
to some hidden variable model. Points represent sample data generated by an example hidden
variable model. The shaded region represents a contour of a Gaussian describing the data. According
to the Gaussian model, points land with equal probability in all sections of the blue shaded region
with a total probability of ∼ 10%.

facets of some polytope, in high dimensions this approach can become exponentially harder in the

number of vertices [59].

Given some labeled training data we would like to learn a description that can classify future

data. In our simplified example, we suppose that our data consist of points x ∈ R2, and that for

a specific class that we are learning the boundaries of, x =
∑
i λivi. That is, x is a mixture of

particular vertices. The points in Figure 3.3 represent sample training data generated according to

some hidden variable model.

We would like a classification that includes some of the structure of the polytope. A typical

way to represent this cluster of points would be to assume a Gaussian distribution. The contours

in Figure 3.3 come from assuming a Gaussian distribution with a mean and covariance that match

the training data. For the shaded region in Figure 3.3, slices of equal area are (approximately)

equiprobable. Clearly, large portions of data outside the polytope are considered just as probable as

regions inside. One solution that seems easy is to try to learn linear descriptions that approach each
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of the facets of the polytope. Indeed, in two dimensions, an algorithm which learns the boundary

of a polygon from some points runs in time O(m logm), if we are given m sample points. In higher

dimensions, however, not only does the algorithm run polynomially more slowly in m, but the

number of facets may be exponential in the number of vertices [59]. That means that even if we

could learn all the facets (linear inequalities) which describe the class, it would be inefficient to use

them to check whether a point is inside the class.

The next section proposes a middle ground, where we approximate the polytope with a small

number of nonlinear, specifically quadratic, inequalities. This preserves some of the structure of our

class while reducing the computational load necessary to determine membership.

3.5.2.1 Method

As in Section 3.3.1 we use the minimum volume ellipsoid as our starting point, and then consider

improvements to it. Note that our earlier requirement that all training points are inside the ellipsoid

can be vastly simplified when considering clusters of data. Just as SVMs rely only on a small number

of support vectors near the the linear surface being learned, so the ellipsoid method will rely only

on a small number of points near the vertices and these points can be found efficiently [65] as we

discuss in the section on complexity.

First, we repeat this method to learn a description of each class. Then for each class, we can

view the convex function f(x) = (x− c)†A(x− c) as a distance, and the points inside the class are

just those within a distance of 1. This gives us a measure for how far arbitrary points are from each

class. This is depicted graphically in Figure 3.4.

After we have defined an ellipsoid and associated convex function for each class, we would like

a method to decide to which class an unlabeled data point is most likely to belong. A natural way

to decide is to use our distance measure to put the point in the class that it is the smallest distance

away from. This leads to piecewise quadratic decision boundaries as depicted in Figure 3.5.

We already have some desirable properties: a quadratic class membership test, a built-in notion

of distance from some class, and a natural way to form decision surfaces between classes. We still

have not achieved our goal of capturing any of the structure of a polytope, though. One path for

improvement would be to use higher degree polynomials. In that case, we can no longer cast the

problem as a semidefinite program, so it may be hard to solve efficiently.

The new idea that we introduce here is to instead use the intersection of a small number of

quadratic inequalities (which can be found efficiently) to describe our set more precisely. The

intersection of convex sets is a convex set, and, by our prior reasoning, if this set includes the

vertices, it must also include the polytope in this case. We will consider the intersection of k sets

{x : ∀i ∈ {1, . . . , k}, (x− ci)†Ai(x− ci) ≤ 1} For each i, ci, and Ai are solutions to the semidefinite
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Figure 3.4: A contour plot of (x−c)†A(x−c) ≤ {1, 2, 3}. The inner contour represents the minimum
volume ellipsoid containing the points.

Figure 3.5: Black ellipsoids depict learned boundaries for three different classes of training data.
Blue lines depict decision surface for determining how to classify an unlabeled sample. Note that
boundaries are piecewise quadratic and that non-separable classes still generate a decision boundary.
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program:

max
ci,Ai∈Sd×d

Conditioni(Ai, ci)

Ai � 0 (3.17)

(x− c)†A(x− c) ≤ 1, ∀x ∈ T

All that remains is to set some limit on the number of intersecting sets we would like to consider,

along with conditions for each set. One choice is to individually maximize the diagonal elements of A,

leading to a number of optimizations linear in the dimension. Geometrically, this can be interpreted

as finding the narrowest ellipsoid around a specific axis. Although this simple method achieves an

improvement over the single minimum volume ellipsoid, the existence of an optimal choice in tradeoff

between adding more conditions and a better description of the polytope is a question for further

research.

An example is provided in Figure 3.6, where we chose k = 2 and maximized two different

elements of the matrix A. Note that the area between parallel lines is a special case of an ellipsoid.

Clearly, the intersection of these ellipsoids provide a better description of the polytope than the

minimum volume ellipsoid. For an intersection of ellipsoid we can define our distance function as

f(x) = maxi((x− ci)†Ai(x− ci)), then all the points inside the class are still within a distance of 1.

Alternately one could consider directly applying the method of 3.3.2 as depicted in Figure 3.1.

Although this gives a good improvement to MVE by solving only one semidefinite program, by

incorporating higher dimensional polynomials, we lose some notion of a distance, and therefore our

ability to construct decision surfaces between classes.

3.5.2.2 Complexity

If we use k intersecting ellipsoids, then the complexity of our algorithm should be at most k times

the complexity of solving the well-studied minimum volume ellipsoid problem in Eq. (3.6). In fact,

we may do better by making our k optimizations over some function that is easier to compute than

the log of the determinant. Nevertheless, current algorithms depend on the number of sample points

m with O(m3.5 logm). Results were calculated in [65] for m as high as 30, 000 and dimensions as

high as d = 500, in times under 30 seconds on a regular PC. Clearly, large problems can be feasibly

handled with this technique.

3.5.2.3 Non-convex sets

For linear classifiers like SVM, it is easy to construct examples for which the method fails. For

instance, if class a consists of a ring of points surrounding another class b which is in the middle of

the ring, then there is no linear classifier which will distinguish the two classes. Similarly, because
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Figure 3.6: The intersection of the ellipsoids represented by black lines forms a convex set which
more closely represents the polytope than the minimum volume ellipsoid (blue line)
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QBM approximates any set as convex, then a non-convex class like a will clearly be mischaracterized.

The solution is the same in both cases, we consider a feature space in which our classifier is adequate.

What is not known is what feature space will be adequate, and constructing feature spaces in very

high dimensions may make a problem intractable. We have already seen in Figure 3.5, a situation

in which QBM produces a decision boundary that can not be formed by a linear classifier. QBM

is appropriate for data which are convex, and clearly this is a more general class than data which

are linearly separable. It remains unknown whether, in cases where both methods fail, there exist

simpler feature spaces in which QBM succeeds while SVM fails.

3.5.3 Discussion

We have shown the applicability of approximate hidden variable tests to the problem of learning the

structure of Bayesian graphs. We have also introduced a new learning technique which specifically

addresses the problem of learning in hidden variable models and demonstrated the technique on

example data.

Many open questions remain. Are there other Bayesian graphs with hidden variables which

suffer from a gap between probability distributions described by the graph versus those that satisfy

the independence relations? If so, can they be addressed by convex methods? Are there other

choices of conditions in Equation 3.17 that provide a better description of the model? Are there

other models (besides hidden variable models) for which the QBM provides a better description

than other techniques? Although semidefinite programs used in formulating QBM are known to be

easily solved in most practical applications, few theoretical bounds are known. Therefore, numerical

tests seem to be the best way to estimate performance in real world applications. Can QBM be

combined with other techniques to provide nonlinear bounds more general or more efficiently than

current techniques?

3.6 Other techniques

We now turn to a few alternate techniques for constructing hidden variable tests. Despite the fact

that these techniques are computationally infeasible, we present them here in the hope that they

can still be edifying.

3.6.1 Using algebraic geometry to construct tests of nonlocality

A semi-algebraic set can be defined as a collection of polynomial equalities and inequalities defined

over Rn. We consider A,B,X, Y taking values in {0, 1}. For any conditional probability distribution
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we have:

∀X,Y,
∑
AB

P (AB|XY ) = 1 Normalization (3.18)

∀A,B,X, Y, P (AB|XY ) ≥ 0 Positivity. (3.19)

If we take our variables to be the components of our probability vector, this can be considered a

semi-algebraic set. We can specify particular theories by imposing further conditions for example,

those described previously: locality in definition 1.3.1 and no-signaling in definition 1.3.3. Adding

these conditions still leaves us with a semi-algebraic set.

Consider the truth statement for whether a hidden variable theory can produce a certain observed

probability distribution P (AB|XY ).

∃P (R), P (A|X,R), P (B|Y,R) such that

P (AB|XY ) =
∑
R

P (R)P (A|X,R)P (B|Y,R)
(3.20)

We do not know and cannot measure the value of the hidden variables. However, this statement can

be converted via cylindrical algebraic decomposition into a system of equalities and inequalities on

the observed variables only [73]. This would yield an automatic way of generating Bell inequalities.

Unfortunately, this technique is doubly exponential, too slow for even the simplest cases.

Implicitization is a technique that uses Gröbner bases to find the smallest algebraic variety (set

of equality statements) that contains a semi-algebraic set [74]. Before we can apply this method to

Eq. (3.20), we have to confront the fact that our hidden variable R could, in principle, be infinite.

To make the problem easier we will suppose that R is in fact finite and observe the results.

We apply this method to a local theory with a hidden variable of one bit. That is, we consider

states that can be written in terms of a hidden variable as in Eq. (3.20) except that we restrict

R = {0, 1}. This yields three conditions on the observed distribution: normalization, the no-

signalling condition, and this:

“Bell equality” for a 1-bit HV theory

P(01|11)P(10|11)P(11|00)+ P(01|11)P(10|01)P(11|10)+

P(00|11)P(11|01)P(11|10)+ = P(00|11)P(11|00)P(11|11)+

P(01|10)P(10|01)P(11|11) P(01|10)P(10|11)P(11|01).

Interestingly, for a hidden variable of more than one bit, this condition ceases to be true. Although

we get interesting relations for finite hidden variable theories, implicitization cannot be used to

obtain generic Bell inequalities.

Implicitization has two limitations: it can only find equality constraints, and, although it can

solve small examples, it scales poorly. Therefore, we need a technique that allows us to relax our
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original problem enough to find useful bounds. One such method is to search for bounded degree

certificates using the positivstellensatz.

3.6.2 Bounded degree certificates

The real positivstellensatz [56], for simplicity stated here with only one equality and one inequality,

states that the set

{x ∈ Rn|f(x) = 0, g(x) ≥ 0} is empty

if and only if there exists polynomial t(x) and sum-of-squares (and therefore positive) polynomials

s0(x) and s1(x) so that

t(x)f(x) + s0(x) + s1(x)g(x) = −1.

Finding polynomials that achieve this condition provides a certificate that the original set is empty.

If we search through the space of coefficients for polynomials of a bounded degree, the constraints

are linear and can be cast in the form of a semi-definite program.

We can also use Smüdgen’s theorem to find upper or lower bounds for some polynomial, given

those constraints [75]. To lower bound the polynomial h(x) subject to constraints above is basically

equivalent to searching for a certificate of infeasibility for the the function h(x) − λ. As we search

for polynomials of higher degrees, we get bounds closer to the actual global maximum.

3.6.3 CHSH example

As a simple example and proof of principle, we’ll consider optimizing the value of the CHSH game

(also called the XOR game) over the constraints in Eq. (3.20). We want to optimize the probability,

ω, to “win” the game, which happens when A⊕ B = X ∧ Y (with A,B,X, Y ∈ {0, 1}).We already

know what the answer should be: ωlocal ≤ 0.75, ωquantum ≤ 0.85355, ωnonlocal ≤ 1.

For a local model with 1 bit of shared randomness, the positivstellensatz returns the following

bounds on the value of the CHSH game.

System Max degree Bound on CHSH

1 bit HV 4 0.8536

1 bit HV 6 0.75 (tight)

Nonlocal 0 1 (tight)

So we see that a search over low degree polynomials, done using an SDP, returns the correct

bound. Interestingly, the degree 4 relaxation returns the quantum bound and it takes a degree of 6

to find the true bound. Note that the nonlocal constraints actually comprise a linear program and

don’t require the positivstellensatz construction[36].
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Algebraic geometry and the positivstellensatz in particular provide powerful tools to answer a

very general class of questions about GPTs. The general form of questions we can answer in this

framework is: “Do there exists parameters in theory X, that allow state or transformation Y?” and,

“What is the optimal value of a polynomial function of the observed variables for some theory X?”

Unfortunately, answers to these questions cannot usually be efficiently found using this technique.
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Chapter 4

Nonlocality in Curved Space

I saw a man pursuing the horizon;
Round and round they sped.
I was disturbed at this;
I accosted the man.
“It is futile” I said,
“You can never – ”

“You lie,” he cried,

And ran on.

Stephen Crane

In this chapter we explore the relationship between nonlocal correlations and spacetime curvature.

In particular, we demonstrate a scenario in which presence or absence of nonlocal correlations can

be used to determine the structure of spacetime.

Quantum fields in the Minkowski vacuum are entangled with respect to local field modes. This

entanglement can be swapped to spatially separated quantum systems using standard local couplings.

A single, inertial field detector in the exponentially expanding (de Sitter) vacuum responds as if it

were bathed in thermal radiation in a Minkowski universe. We show that using two inertial detectors,

interactions with the field in the thermal case will entangle certain detector pairs that would not

become entangled in the corresponding de Sitter case. The two universes can thus be distinguished

by their entangling power.

4.1 Background

Information in curved spacetime has played a prominent role in the attempt to understand the

interface between quantum physics and gravity [76, 77, 78, 79]. While abstract properties of curved-

space quantum fields (including their entanglement) can be studied directly [80, 81, 82, 83, 84], an

operational approach involving observers with detectors historically has been a critical component

of theoretical progress in this area [78, 85]. With the birth of quantum information theory [86],

quantum systems could now be analyzed in terms of their use for information-theoretic tasks like

quantum computation [86], quantum teleportation [87], and quantum cryptography [88]. Entangle-
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ment is a phenomenon that is uniquely quantum mechanical in nature [89] and can be considered

both an information-theoretic and a physical resource [90]. It is known that the Minkowski vacuum

possesses long-range entanglement [83] that can be swapped to local inertial systems using standard

quantum coupling mechanisms [91]. Variations on this theme can be considered, including accel-

erating detectors [92], thermal states [93], and curved spacetime. Our focus will be on curvature.

For this, we choose an exponentially expanding (de Sitter) universe [82, 94] for its simplicity and

because of its importance to cosmology [95].

4.1.1 Nonlocality in flat space

The prototype for our results is a perturbative calculation of entanglement in flat space by Reznik[91].

Reznik considers two causally separated detectors that interact with the Minkowski vacuum. Schemat-

ically, we can view Reznik’s result as relating the entanglement between Alice and Bob’s detectors

to the ratio of processes depicted by the following Feynman diagrams.

Entanglement ∼

∣∣∣∣∣�g��A B�

∣∣∣∣∣∣∣∣∣∣�g�A

∣∣∣∣∣
∣∣∣∣∣g�B�

∣∣∣∣∣
(4.1)

Essentially, we’re comparing the rate for the process in the numerator, which is entangling, to

the process in the denominator which is described by the typical thermal spectrum any spacetime

localized detector sees. When this term is larger than 1, Reznik showed that the detectors can be

used to demonstrate violation of a Bell inequality. Although both terms fall off as one probes higher

energy field modes, the thermal part in the denominator falls off faster, as depicted in Figure 4.1,

allowing a small amount of entanglement to be distilled.

Another exploration of entanglement in flat space-time that has been more widely studied is the

case of accelerating observers. In this case, we consider Alice and Bob’s detectors to be accelerating

away from each other at some rate proportional to κ. If they remain on these trajectories, they

will be causally disconnected in the sense that signals sent from one never reach the other and vice

versa [85]. Because they remain causally disconnected, any entanglement present in their detectors

must come from the vacuum itself. This scenario was considered again perturbatively by Reznik, but

was also solved exactly analytically [92], with similar results verifying the effectiveness of Reznik’s

calculation. The results for an analysis of Eq. (4.1) with detectors with an energy gap Ω coupled to
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the vacuum for a time T take the following form.

∣∣∣∣∣�g��A B�

∣∣∣∣∣∣∣∣∣∣�g�A

∣∣∣∣∣
∣∣∣∣∣g�B�

∣∣∣∣∣
∼

ΩTe−Ω/2κ 1
eΩ/κ−1

ΩTe−Ω/κ 1
eΩ/κ−1

∼ eΩ/2κ

This shows that no matter how weak the acceleration, Alice and Bob can distill some entanglement

if their detectors probe high enough energy wavelengths. We now proceed to consider the effect of

spacetime curvature on entanglement.

4.2 Setup

We wish to demonstrate a connection between a physical property of spacetime (curvature) and

an information-theoretic resource (entanglement). While it is possible to directly study the entan-

glement present in a quantum field in de Sitter spacetime, this sometimes leads to difficulties [81]

that are not present in a more operational approach. Still, it is known that entanglement between

field modes can directly encode a spacetime’s curvature parameters [84]. Motivated by a desire to

be as operational as possible, we examine how curvature affects a field’s usefulness as an entan-

gling resource—i.e., its ability to entangle distant quantum systems (“detectors”) using purely local

interactions. We begin by reviewing the response of a single, inertial detector interacting with a

massless, conformally coupled scalar field. The result in the vacuum de Sitter case is identical to

that in the case of a thermal ensemble of field particles in flat spacetime [85, 78]. Next, we ask the

question, can entanglement be used to distinguish de Sitter vacuum expansion from Minkowski-space

heating? We show that with two detectors on comoving trajectories, there exists a parameter regime

in which the local systems that couple to the field will become entangled despite the presence of

extra thermal noise in each individual detector. Interestingly, this region of parameter-space in the

expanding case is a proper subset of the same region in the locally equivalent thermal case. Thus,

while both universes affect a local inertial detector in exactly the same way, entanglement between

two detectors can be used to distinguish them.

4.2.1 Interaction Hamiltonian

We start with the following experimental setup, which is nearly identical to that used by Reznik et

al. [91], using units where ~ = c = kB = 1. We pose our problem completely in operational terms,

but our goal is to show proof of principle—not necessarily practicality of the method. We suppose

that the inhabitants of a particular planet launch a satellite into space to measure the temperature

of the universe they inhabit. On board this satellite is a qubit (a two-level quantum system), initially
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in the ground state |0〉, that gets coupled locally and for a limited time to a scalar field using a simple

De Witt monopole coupling [96]. The time-dependent interaction Hamiltonian for this detector is,

in the interaction picture,

HI(τ) = η(τ)φ
(
x(τ)

)(
e+iΩτσ+ + e−iΩτσ−

)
, (4.2)

where τ is the proper time of the satellite, η(τ) is a weak time-dependent coupling parameter

(which we’ll call the detector’s “window function”), x(τ) is the worldline of the satellite, φ(x) is

the field operator at the spacetime location x, and the rest represents the interaction-picture Pauli

operator σx(τ) for the local qubit with (tunable) energy gap Ω. Roughly speaking, the detector

works by inducing oscillations between the two levels at a strength governed by the local value of

the field.

From now on, we refer to this qubit as a “detector”, although the process of “detection” includes

only the field interaction (before projective measurement). We wish to examine when two such

detectors become entangled through their local interactions with the field, so we delay classical

readout to allow for general quantum postprocessing, which may be necessary to show violation of

a Bell inequality [97].

The window function η(τ) is used to turn the detector on and off, but the transitions must be

sufficiently smooth so as not to excite the field too much in the process [98]. Beyond this requirement,

on physical grounds, our results should not depend on the details of the window function as long as

it is approximately time bounded, so we will always choose η(τ) to be proportional to a Gaussian,

η(τ) = η0e
−(τ−τ0)2/2σ2

, where η0 = η(τ0) � 1 is a small unitless constant that enforces the weak-

coupling limit and allows us to use perturbation theory. This window function approximates the

detector being “on” when |τ − τ0| . σ and “off” the rest of the time and also has a nice analytic

form.

4.2.2 First order perturbation

Without loss of generality, we can set τ0 = 0. To lowest nontrivial order in η0, the qubit after the

interaction (but before readout) will be found in the state ρ = A |1〉〈1|+ (1−A) |0〉〈0|, where

A =
∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′ η(τ)η(τ ′)e−iΩ(τ−τ ′)D+
(
x(τ);x(τ ′)

)
, (4.3)

where D+(x;x′) = 〈φ(x)φ(x′)〉 is the Wightman function for the field, with expectation taken with

respect to the state of the field (assumed to be a zero-mean Gaussian state, but not necessarily

the vacuum). Repeated measurement in the {|0〉 , |1〉} basis for a variety of values of Ω allows for



70

determination of the state of the detector as a function of Ω 1. As is clear from Eq. (4.3), the state is

completely determined by the detector response function D+
(
x(τ);x(τ ′)

)
, which is the Wightman

function taken at two different proper times along the worldline of the detector [85].

4.2.3 Spacetime structure

We consider two possible universes. The first is Minkowski, ds2 = dt2 −
∑3
i=1 dx

2
i , with the field

in a thermal state with temperature T with respect to the inertial trajectory {xi} = (constant).

The second is a de Sitter universe, ds2 = dt2 − e2κt
∑3
i=1 dx

2
i , where κ is the expansion rate, in the

conformal vacuum. The conformal vacuum is the natural choice in this case because it is the unique,

coordinate-independent vacuum state dictated by the symmetries of the spacetime. Furthermore, it

can be justified on physical grounds because the conformal vacuum coincides with the massless limit

of the adiabatic vacuum for de Sitter space [85]. Thus, we can think of this analysis as applying to

the following two ways of adiabatically modifying the Minkowski vacuum: (1) very slowly heating

the universe to a temperature T , and (2) very slowly ramping up the de Sitter expansion rate (from

zero) to a final value of κ.

The variables {xi} are comoving coordinates, and t is cosmic time. (Since the Minkowski metric

is the special case κ = 0, this terminology carries over to it, as well.) In both universes, worldlines of

constant {xi} are inertial trajectories (geodesics), and intervals of proper time equal those of cosmic

time (∆τ = ∆t). In both cases, the scalar field φ(x) is massless and conformally coupled [85],

satisfying [�x + 1
6R(x)]φ(x) = 0, where the Ricci scalar R(x) = 12κ2 is a constant proportional to

the expansion rate κ.

Gibbons and Hawking [78] showed that the detector response function for any inertial observer in

the de Sitter case is exactly the same as that of a detector at rest in a thermal bath of field particles

with temperature T = κ/2π in flat spacetime. Thus, a single detector alone cannot distinguish

between the two cases if it forever remains on a given inertial trajectory. In both cases considered

above, the detector is at rest in the comoving frame and thus,

D+
T

(
x(τ);x(τ ′)

)
= −T

2

4
csch2[πT (t− t′ − iε)] , (4.4)

where the subscript T indicates that this is a detector response function for a thermal state at

temperature T . When the satellite begins sending back measurement data, the reconstructed A(Ω)

is found to be consistent with the detector being at rest in a thermal bath of field particles at a small

but nonzero temperature T . If the inhabitants wish to know whether this perceived thermality is a

result of heating or expansion, though, they must be more creative.

Obviously, they could use astrophysical clues (like we have done on Earth) and/or Doppler-

1More general measurements will be required to demonstrate entanglement between two such detectors, though.
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shift measurements 2 to determine whether their universe is expanding or not, but we are going to

restrict them to using only satellite-mounted detectors of the sort described above on fixed inertial

trajectories. If the detectors are to be useful, then, they will need more than one.

We propose the following alternative that makes use of entanglement to distinguish the two

universes. We imagine two satellites, each having many qubits that interact locally with the scalar

field. (Having many detectors allows access to many copies of the same state.) We assume that

the satellites have no initial entanglement with each other and that the qubits each begin in the

ground state. After interacting with the field, measurement is delayed to allow for general quantum

operations (local to each satellite) on the multitude of qubits on board. In the end, however, the only

data that can be transmitted back to the home planet are measurement results, plus information

about the postprocessing and the particular measurements performed.

In an attempt to be as simple as possible, we analyze the case of two inertial detectors, a and b,

on the comoving trajectories x1 = ±L/2 (with x2 = x3 = 0). Due to the homogeneity and isotropy

of space in both scenarios, this case is remarkably general—but not entirely so since one could

imagine the detectors in motion with respect to each other (beyond the relative motion generated

by any expansion). For simplicity, we’ll also require that the two detectors have synchronized

local clocks with τa,b = t, equal resonant frequencies Ωa,b = Ω, and identical window functions

ηa,b(τ) = η0e
−τ2/2σ2

. Finally, we desire that L � σ so that the detector-field interactions can be

considered noncausal events 3. As we shall see, these restrictions will still allow the inhabitants,

located at xi = 0, to distinguish expansion from heating.

By spatial symmetry, each detector alone must respond using the detector response function from

Eq. (4.4) and thus provides no useful information. The only hope, then, is in the correlations between

the detectors. We will focus on those correlations that signal the presence of entanglement of the

detectors after interaction with the field. For a pair of qubits, the negativity [99] of a state is nonzero

if and only if the systems are entangled [100]. Since we have access to (by assumption) multiple

copies of an entangled state of pairs of qubits, a local measurement protocol (on the many copies of

the state) always exists to verify entanglement by showing a violation of a Bell inequality [97, 101].

This can be verified by a third party using classical data received from both satellites.

We will focus on finding the regimes in which entanglement is nonzero, rather than on the

magnitude of the entanglement for two reasons. First, the amount of extractable entanglement is

small enough to be impractical as a resource and will depend on the details of the detector coupling.

Second, we are primarily interested in understanding a qualitative difference between the quantum

behavior of curved and flat spacetime; examining entanglement ensures that this is a genuinely

2The thermal Minkowski case exhibits Doppler shifting for detectors at different velocities [85]; the vacuum de Sitter
case does not [78].

3Although the Gaussian window functions technically have tails that extend forever, none of the results change if
we assume a smooth cutoff of the Gaussian (to zero) around, say, 10σ as long as both L and T−1 are still much larger
than this.
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quantum mechanical effect [89].

4.3 Calculation of entanglement

An analogous calculation to Reznik’s [91] shows that the negativity of the joint state of the qubits is

N = max
(
|X|−A, 0

)
, where A is the individual detector response from Eq. (4.3), while X is defined

as

X = −
∫ ∞
−∞

dt

∫ t

−∞
dt′ η(t)η(t′)eiΩ(t+t′)

×
[
D+
(
xa(t);xb(t′)

)
+D+

(
xb(t);xa(t′)

)]
= −2

∫
t′<t

dt dt′ η(t)η(t′)eiΩ(t+t′)D+
(
xa(t);xb(t′)

)
. (4.5)

The limits of integration enforce time ordering [102], so we can use the Wightman function as

shown. This is useful because symmetry of the two detectors means that D+
(
xa(t);xb(t′)

)
=

D+
(
xb(t);xa(t′)

)
, a fact used to obtain the second line. This integral measures the amplitude that

the detectors will exchange a virtual particle, while A measures the probability that each detector

becomes excited either by absorbing or emitting a particle.

4.3.1 Zero curvature

We begin by considering when the qubits become entangled when T = 0. (We also define κ ≡ 2πT

from now on so we can talk about expansion rates in terms of the associated Gibbons-Hawking

temperature.) This case corresponds to the one considered by Reznik [91] using different window

functions. In the T = 0 case, the Wightman function used in X is

D+
0

(
xa(t);xb(t′)

)
=

−1
4π2
[
(t− t′ − iε)2 − L2

] , (4.6)

and the detector response function (used in A) is obtained by letting L → 0 and is also obtainable

as the limit of Eq. (4.4) as T → 0. Both X and A can be evaluated analytically:

X0 = −
e−

L2

4σ2−σ
2Ω2

σ erfi
(
L
2σ

)
4L
√
π

, (4.7)

A0 =
e−σ

2Ω2 −
√
πσΩ erfc(σΩ)
4π

, (4.8)

where σ is the width of the window function (the time for which the detector is turned on), and

the subscripts indicate that these are the Minkowski vacuum results, with erfi(z) = −i erf(iz) and

erfc(z) = 1− erf(z), where erf(z) is the error function. In the Minkowski vacuum case, the detectors
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become entangled if and only if |X0| > A0. A sketch of the behavior of these terms for a fixed L

is shown in Figure 4.1. In the Minkowski vacuum case, the detectors become entangled iff |X0| >

A0 [100]. This region in the L-Ω plane is above the slanted black line in Figure 4.2.

W

Entangled Region
ÈX0È

A0

Figure 4.1: Entanglement from the Minkowski vacuum. The time-energy uncertainty relation
∆t∆E & 1

2 implies that a field detector (with resonant frequency Ω) operating for a finite time
has a nonzero probability A0 of becoming excited even when the field is in the vacuum state. When
the magnitude of the correlation amplitude |X0| for two detectors exceeds this value, the detectors
become entangled [91, 100].

4.3.2 Nonzero curvature

Let’s see what happens with a nonzero temperature. Since we are interested in the possibility that

the perceived thermality is due to de Sitter expansion, we have a restriction on the temperature,

which sets the scale for the cosmic horizon LH = κ−1 = (2πT )−1. If observers are to exist at all,

this horizon must be much larger than their typical scale of experience, which can’t be much smaller

than σ if the detector is to be useful to them. (Consider how useful a “detector” that operates on

the scale of the Hubble time would be for humans.) Thus, for de Sitter expansion even to be a

possibility, we require that T � σ−1.

In both cases, the detector response function is given by Eq. (4.4), while the Wightman function

to be used in X in the thermal case is [103]

D+
th

(
xa(t);xb(t′)

)
=

T

8πL
×

{
coth

[
πT (L − y)

]
+ coth

[
πT (L + y)

]}
(4.9)

and in the de Sitter case is [85]

D+
dS

(
xa(t);xb(t′)

)
=

(
−1
4π2

)[
sinh2(πTy)

π2T 2
− e2πTxL2

]−1

, (4.10)



74

where x = t+ t′, and y = t− t′ − iε in both. One can verify that in both cases, taking L→ 0 gives

Eq. (4.4), and taking T → 0 gives Eq. (4.6).

In both the thermal and de Sitter cases, the integral in Eq. (4.5) can be well approximated by an

asymptotic series in T (as T → 0), generated from the Taylor expansion of D+
th and D+

dS, respectively,

about x = y = 0. Although the radius of convergence of the Taylor series is finite, for any reasonable

detector setup, we are requiring that L� σ. Since the nearest pole is either O(L) or O(T−1) away,

the Gaussian window function, whose width is much smaller than either L or T−1, will regularize,

within the integral, any reasonably truncated Taylor approximation to the Wightman function. This

results in a valid asymptotic series for X in either case, as T → 0. The integral in Eq. (4.3) can

be done similarly by writing D+
T = D+

0 + ∆D+
T (noting that the pole at y = 0 has been eliminated

in ∆D+
T ) and calculating the temperature-dependent correction to Eq. (4.8). Numerical checks of

particular cases verify that these approximations are valid. The results are presented in Figure 4.2.

4.4 Discussion of results

Several points are in order here. First, detectors see anything at all in the Minkowski vacuum case

because the time-energy uncertainty relation, ∆t∆E & 1
2 , implies that a detector operating for a

finite time has a nonzero probability A0 of becoming excited, even when the field is in the vacuum

state. Entanglement exists when virtual particle exchange dominates over local noise. When the

magnitude of the exchange amplitude |X0| exceeds A0, the detectors become entangled [91, 100].

Because of how both functions scale with Ω and L, in the vacuum case one can always reduce the

local noise below |X0| by sufficiently increasing Ω. In the thermal and de Sitter cases, the local noise

profile A fails to decrease fast enough for large Ω, resulting in a maximum entangling frequency for

a given L, as well as a maximum separation beyond which entanglement is impossible, regardless

of Ω.

What does this mean for our curious planetary inhabitants? Let’s assume they have two satellites,

with detectors of the sort we’ve been using, located on comoving trajectories as described above, with

κ−1 < L < 2κ−1 so that in the de Sitter case they would be outside of each other’s cosmic horizon

but within that of the home planet (so they can still send messages to it, as described in Figure 4.3).

The satellites are programmed to interact the field locally with qubits having a resonant frequency

that will lead to entanglement in the thermal case and to a separable state in the de Sitter case

(e.g., the red star in Figure 4.2). After the interactions, they each run a local measurement protocol

that implements one side of a test of Bell inequality violation, after which they send data back to

the home planet for analysis. If thermality is a result of expansion, there will be no entanglement,

but if it is a result of heating in flat spacetime, then the entanglement can be verified upon receipt

of the transmissions from both satellites. Because this effect only manifests when the detectors pass
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Figure 4.2: Entanglement profile for detector pairs in several universes—σ is detection time, Ω is
detector resonance frequency, L is detector separation. The slanted black line is the entanglement
cutoff in the Minkowski vacuum case (entangled above, separable below). The solid red curve is
the thermal Minkowski cutoff, and the dashed blue curve is the de Sitter vacuum cutoff, both with
perceived local temperatures satisfying 2πT = 10−3σ−1. The de Sitter horizon distance (103σ) is
given by the dotted green line. The red star indicates one particular detector setup that could be
used to distinguish expansion from heating.
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beyond each others’ cosmic horizons (in the de Sitter case), a third party is required to make the

determination.

tM

xM

a b

Figure 4.3: Spacetime diagram in Minkowski coordinates in the rest frame of the home planet (circle).
Null rays travel at 45 degrees and light dotted lines represent geodesics in de Sitter space. Messages
sent from detectors a or b (?) never reach the other detector because of the Hubble expansion of
the universe. However, the home planet can receive and analyze the messages, differentiating the
entanglement scenarios depicted in Figure 4.2 .

We have demonstrated that while expansion and heating give rise to the same (thermal) signature

in a single inertial particle detector, for certain choices of detector parameters, a heated field in flat

spacetime is able to entangle detector pairs that the conformal vacuum in the associated de Sitter

universe cannot. Thus, the universes can be distinguished by their entangling power. Two detectors

are required and must be beyond each others’ cosmic horizons (in the de Sitter case) to see the effect.

Although, if present, the entanglement is exceedingly small, in principle its presence can always be

determined by classical communication of local measurement data to a third party, as long as the

verifier is able to receive messages from both detectors. These results are contrary to the intuition

that “curvature generates entanglement” between field modes [84], since from it one would expect

a larger entangled region in the de Sitter case. The ability of the field to swap its entanglement

to local detectors is an operational question, though, and for this setup, the vacuum in a curved

spacetime has less entangling power than a corresponding heated field in flat spacetime, even though

both produce the same local detector response.
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