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Abstract 

 

Cys-loop ligand gated ion channels mediate rapid synaptic transmission in the 

mammalian central and peripheral nervous system.  Proper functioning of this 

superfamily of receptors is critical to brain function and as such the proteins are 

implicated in a number of neuropathies and are a target for many pharmaceuticals.  A 

central concern is how these receptors recognize and bind their neurotransmitter agonists 

as well as how these binding events lead to a conformational change spanning a distance 

of at least 50 Å.  Using the nonsense suppression methodology, we are able to 

incorporate unnatural amino acids into these proteins and identify the precise molecular 

interactions involved in neurotransmitter binding and the conformational changes that 

take place during channel activation. 

In chapters two through four we investigate the role of the nicotinic acetylcholine 

receptor (nAChR) 1 loop 2 residues in channel activation.  Using conventional 

mutagenesis, we have identified several residues that are part of a global electrostatic 

network.  This is the first study to present an element of activation that is universal to the 

entire Cys-loop superfamily.  Using unnatural amino acids, we identify the pro-S methyl 

group of Val46 as a critical element in the activation pathway of the muscle type 

nicotinic acetylcholine receptor, thereby validating a proposed the pin-into-socket 

mechanism for this residue.  

We switch our focus from the excitatory nAChR to the inhibitory glycine (Gly) 

and -aminobutyric acid type A (GABAA) receptors in chapter 5.  By incorporating 

successively fluorinated phenylalanine analogs into the binding site of both the GlyR and 

GABAAR we were able to identify a cation- interaction at 1Phe159 of the GlyR and 
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2Tyr97 of the GABAAR, providing further evidence that the cation- interaction is 

conserved across the superfamily. 

Finally we investigate the mechanisms of GABA activation and flurazepam 

(FLZM) potentiation in the GABAAR.  Incorporation of a photo-activated backbone 

cleaving unnatural amino acid reveals that an unstructured linker connecting loops A and 

E of the GABAAR 1 subunit is critical to GABA but not pentobarbital activation.  We 

further investigate this region of the receptor and its role in GABA activation and 

flurazepam potentiation using conventional mutagenesis and incorporation of -hydroxy 

acids.  The data indicate that GABA activation and FLZM potentiation are differentially 

affected by side chain mutations in this region, but not by backbone mutations.  Loss-of-

function due to incorporation of -hydroxy acids strongly suggests the unstructured 

linker becomes more structured during channel activation.  
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