Chemical-Scale Investigations of Cys-Loop Neurotransmitter Gated Ion Channels

Thesis by

Ariele Patrice Hanek

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Division of Chemistry and Chemical Engineering

California Institute of Technology Pasadena, CA

2009

(Defended May 26, 2009)

© 2009

Ariele Patrice Hanek

All Rights Reserved

Acknowledgements

The most exciting phrase to hear in science, the one that heralds the most discoveries, is not "Eureka," but "That's funny..." -Isaac Asimov

The past six years were not what I expected them to be when I came to Caltech six years ago. It is no secret that I struggled at the beginning and that I've had my ups and downs along the way. My eventual success would not be possible without the support and aid of many people along the way.

First and foremost, I would like to thank my advisor, Dennis Dougherty. I came to Caltech unsure of what type of research I wanted to do. The elegance of Dennis's experiments appealed to me from the start and I have never regretted joining the lab. Dennis has an uncanny ability to give his students leeway while keeping us focused on the end goal. His patience, encouragement, and scientific insight have been invaluable to me. I couldn't have asked for a better advisor.

The research described in the following pages would have been more limited in scope if not for Henry Lester and the members of his lab. Through countless "unnatural club" meetings, Henry provided a fresh perspective for puzzling results and was a never-ending source of new experiments.

My work on the anionic Cys-loop receptors would not have been possible without my very capable collaborators. I want to thank Stephen Pless and Claire Padgett for proposing to study these receptors and travelling to Caltech to do so. Both were enormously patient with my lack of knowledge of their systems. I wish them both the best of luck with their post-doc research. Sarah Lummis has been a constant source of aid to me during the second half of my graduate career. Her guidance on my GABA_AR projects was invaluable and I cannot thank her enough for providing me with $GABA_AR$ DNA that actually worked and offering to corroborate my results on her own time.

I would like to thank the other members of my thesis committee, Peter Dervan, Bill Goddard, and David Tirrell, for the feedback and words of encouragement during my graduate career.

My day-to-day life in graduate school would have dull indeed, if not for the amazing group of friends and lab mates I've been fortunate to have along the way. I was privileged to meet and benefit from meeting Darren Beene, James Petersson, Tingwei Mu, Steven Spronk, Lori Lee, and Amanda Cashin, all of whom helped me get started in the lab and have now moved on to pursue their various career paths during my first few years.

Joanne Xiu, Amy Eastwood, Mike Torrice, Erik Rodriguez, Kiowa Bower, and Kristin Gleitsman have been my compatriots through the years. Joanne is an amazing scientist and mentor, guiding me through my first projects in the lab. She was a wonderful person to work with and I'm sure she'll do wonderful things in the future. Although I was often struggling to breathe, the conversations I had with Amy during our runs were always helpful and insightful and I only hope that she enjoyed them as much as I did. Erik could always be counted on to give you the worst-case scenario for new experiments – often saving me from pursuing avenues to nowhere. Mike was a wonderful Opus co-captain and his willingness to deal with the bureaucratic mess that is molecular devices was a huge help. I wish him the best of luck with science writing. I have always enjoyed my conversations with Kiowa, both scientific and otherwise, and will always remember him trying to show me slides while we were driving to San Francisco. Kristin has been invaluable comfort to me especially during the last year. She has exhibited remarkable patience in listening to my complaints and been endlessly kind in helping me with my research. I wouldn't have been able to finish my final project without her help.

Although I have not known Angela Blum or Jai Shanata for as long as some of the other lab members, I owe them special thanks for helping me edit my thesis and proposals. Their feedback and quick turn-around time has been invaluable. I also need to acknowledge Nyssa Puskar, who also helped with my thesis and proposals, but more importantly has been an amazing friend to me. She has dragged me to the pool on countless occasions probably saving me from running myself into the ground. I hope she doesn't regret taking over my responsibilities as Opus captain. I wish the newer members of the Dougherty Lab, Sean Kedrowski, Kay Limapichat, Shawna Frazier, Darren Nakamura, Noah Duffy, Maggie Thompson, Kristina McCleary, Ximena Da Silva Tavares Bongoll, and Ethan van Arnam, the best of luck. You'll know it's time to graduate when you stop aiming for "great" and set your sights on "good enough."

While I am fortunate to call my lab mates friends, I was also extremely lucky to meet a great group of fellow graduate students shortly after coming to Caltech. I can't imagine what my experience here would have been like without the support and friendship of Heidi Privett, Michelle Robbins, Heather Wiencko, Katie Brenner, Mike Adams, Greg ver Steeg, Jeff Krimmel, Paul Cook, and Roger Donaldson. Bert Lai gets a special mention for being my running partner and willingly getting up with me at 6 am to go for a 12-mile run even when I barely spoke two words the entire time. I don't know who I will train with now.

I have always been able to count on the support of my oldest friend, Shaelah Reidy. As a fellow graduate student she has understood the trials and tribulations of my graduate career better than most. My friends from home and from Bowdoin have been a wonderful luxury throughout my time on the west coast and I want to especially mention Karen Finnegan, Cory Lown, and Caitlin Jamali, who have always found time for me in their busy schedules.

Last, but certainly not least, I want to thank my entire family for their love and support even when I haven't deserved it. I hope I have made you proud. My parents have logged countless frequent flyer miles flying between the two coasts coming to see me when I couldn't get away from the lab, and always brought a touch of home with them. Although she is my younger sister, Bailey has provided me with sage advice on more than one occasion during graduate school. I am lucky to have her as a sister and am so proud of her. I only hope I can return the favor to her and the rest of my family.

Abstract

Cys-loop ligand gated ion channels mediate rapid synaptic transmission in the mammalian central and peripheral nervous system. Proper functioning of this superfamily of receptors is critical to brain function and as such the proteins are implicated in a number of neuropathies and are a target for many pharmaceuticals. A central concern is how these receptors recognize and bind their neurotransmitter agonists as well as how these binding events lead to a conformational change spanning a distance of at least 50 Å. Using the nonsense suppression methodology, we are able to incorporate unnatural amino acids into these proteins and identify the precise molecular interactions involved in neurotransmitter binding and the conformational changes that take place during channel activation.

In chapters two through four we investigate the role of the nicotinic acetylcholine receptor (nAChR) α_1 loop 2 residues in channel activation. Using conventional mutagenesis, we have identified several residues that are part of a global electrostatic network. This is the first study to present an element of activation that is universal to the entire Cys-loop superfamily. Using unnatural amino acids, we identify the pro-S methyl group of α Val46 as a critical element in the activation pathway of the muscle type nicotinic acetylcholine receptor, thereby validating a proposed the pin-into-socket mechanism for this residue.

We switch our focus from the excitatory nAChR to the inhibitory glycine (Gly) and γ -aminobutyric acid type A (GABA_A) receptors in chapter 5. By incorporating successively fluorinated phenylalanine analogs into the binding site of both the GlyR and GABA_AR we were able to identify a cation- π interaction at α_1 Phe159 of the GlyR and β_2 Tyr97 of the GABA_AR, providing further evidence that the cation- π interaction is conserved across the superfamily.

Finally we investigate the mechanisms of GABA activation and flurazepam (FLZM) potentiation in the GABA_AR. Incorporation of a photo-activated backbone cleaving unnatural amino acid reveals that an unstructured linker connecting loops A and E of the GABA_AR α_1 subunit is critical to GABA but not pentobarbital activation. We further investigate this region of the receptor and its role in GABA activation and flurazepam potentiation using conventional mutagenesis and incorporation of α -hydroxy acids. The data indicate that GABA activation and FLZM potentiation are differentially affected by side chain mutations in this region, but not by backbone mutations. Loss-of-function due to incorporation of α -hydroxy acids strongly suggests the unstructured linker becomes more structured during channel activation.

Table of Contents

	nowledgements tract	iii vii
List	List of Figures	
List	of Tables	xviii
Cha	apter 1: Introduction	1
1.1	A Chemical Understanding of the Brain	1
1.2	Cys-Loop Ligand Gated Ion Channels	3
1.3	Unnatural Amino Acid Methodology	5
	1.3.1 Advantages of Unnatural Amino Acids	5
	1.3.2 Nonsense Suppression Methodology	7
1.4	Dissertation Work	12
1.5	References	13
	pter 2: A Unified View of the Role of Electrostatic Interactions in dulating the Gating of Cys-Loop Receptors	14
2.1	Introduction	14
2.2	Results	17
	2.2.1 Statistical Analysis of the Gating Interface	17
	2.2.2 Mutations in Loop 2 of the nAChR α_1 Subunit	22
	2.2.3 Studies of a Partial Agonist	25
2.3	Discussion	27
2.4	Materials and Methods	32
2.5	References	34

Chapter 3: Investigations of pH Dependence of Loop 2 of the nAChR α_1 Subunit		
3.1	Introduction	35
3.2	Results	37
3.3	Discussion	39
3.4	Materials and Methods	43
3.5	References	44
Cha	pter 4: Stereochemical Requirements of nAChR αVal46 Side in Determined by Unnatural Amino Acid Incorporation: Support the Pin-Into-Socket interaction	45
4.1	Introduction	45
4.2	Results	47
	4.2.1 Unnatural Amino Acid Incorporation	47
	4.2.2 Coupling of α Val46 to β L251	50
4.3	Discussion	53
	4.3.1 The Pro-S Methyl of αVal46 Is Involved in Channel Gating	53
	4.3.2 Consideration of Previous Studies	54
	4.3.3 Conclusions	56
4.4	Materials and Methods	56
	4.4.1 Preparation of mRNA and Unnatural Amino Acyl-tRNA	56
	4.4.2 Electrophysiology and Data Analysis	57
	4.4.3 Unnatural Amino Acid Preparation	59
4.5	Proton NMR Spectra	62
4.6	References	64

Chapter 5: Cation- π Interactions in the GABA _A and Glycine Receptors Mediate Neurotransmitter Binding		65
5.1	Introduction	65
	5.1.1 Cys-Loop Neurotransmitter Gated Ion Channels	65
	5.1.2 The Binding Sites	67
	5.1.3 Probing Cys-Loop Receptors for a Cation- π Interaction	68
5.2	Results	69
	5.2.1 γ-Aminobutyric Acid Receptor	69
	5.2.2 Glycine Receptor	72
5.3	Discussion	75
	5.3.1 A Cation- π Interaction at Loop A of GABA _A R	75
	5.3.2 A Cation- π Interaction at Loop B of GlyR	80
	5.3.3 Cys-Loop Receptor Cation- π Interactions	81
5.4	Conclusion	83
5.5	Materials and Methods	83
5.6	References	86

	pter 6: Backbone Cleavage of an Unstructured Region of the BA _A R Extracellular Domain Prevents GABA but not	
Pen	tobarbital Activation	87
6.1	Introduction	87
	6.1.1 <i>y-Aminobutyric Acid Type A Receptors</i>	87
	6.1.2 Proteolytic Cleavage by Photolysis	90
6.2	Results	91
	6.2.1 Heterologous Expression of GABA _A R	91

	6.2.2 Site-Selection for Npg Incorporation	92
	6.2.3 Incorporation of Npg at M113 of the $\alpha\beta$ GABA _A R	97
	6.2.4 Poteolytic Cleavage of the $\alpha\beta$ GABA _A R in linker region	98
	6.2.5 Pentobarbital Activation of the $\alpha\beta$ GABA _A R	100
6.3	Discussion	103
6.4	Materials and Methods	105
	6.4.1 Electrophysiology	105
	6.4.2 Nitrophenyl Glycine Synthesis	108
	6.4.3 Protection and Activation of Methionine	111
6.5	NMR Spectra	116
6.6	References	121
and	pter 7: Side Chain and Backbone Mutations between Loops A E of the GABA _A R α_1 Subunit Alter Benzodiazepine Potentiation	
and	GABA Activation	123
7.1	Introduction	123
7.2	Results	126
	7.2.1 Conventional Mutagenesis – Side Chain Mutations	
		126
	7.2.2 Incorporation of α -hydroxy Acids	126 131
7.3	7.2.2 Incorporation of α-hydroxy Acids Discussion	
7.3		131
7.3	Discussion	131 133
7.3	Discussion 7.3.1 Side Chain Mutations: Affects on GABA EC ₅₀	131 133 133

7.5 Materials and Methods	141
7.6 References	144
Appendix 1: Guidelines for Future GABA _A R Researchers	145
A1.1 $\alpha_1\beta_2$ vs. $\alpha_1\beta_2\gamma_2$ GABA _A R	145
A1.2 $\alpha\beta\gamma$ GABA _A R: mRNA Ratio	147
A1.2.1 Linearization Sites	147
A1.2.2 $\beta\gamma GABA_AR$	148
A1.2.3 $\alpha\beta\gamma$ mRNA Ratio	150
A1.3 Unnatural Amino Acid Incorporation	152
A1.4 Recommendations	
A1.5 Opus Protocols	
A1.5.1 GABA EC ₅₀ Protocol	155
A1.5.2 BZD Potentiation Protocol	155
A1.5.3 BZD EC _{50,P} Protocol	156
A1.5.6 Pentobarbital EC ₅₀ Protocol	157
A1.6 Wild Type traces	
A1.7 References	160

List of Figures

Figure 1.1	Synaptic transmission	2
Figure 1.2	General topology of Cys-loop receptors	3
Figure 1.3	Side chains of the natural amino acids	6
Figure 1.4	A subset of unnatural amino acid side chains and α hydroxyl acids incorporated via the nonsense suppression methodology	7
Figure 1.5	Overview of unnatural amino acid incorporation using nonsense suppression	8
Figure 1.6	Standard preparation of unnatural amino acid coupled to deoxy-Cytosine, Adenine	9
Figure 1.7	Implementation of nonsense suppression methodology using <i>Xenopus laevis</i> oocytes	10
Figure 1.8	Typical electrophysiology assay	11
Figure 2.1	Views of the gating interface	18
Figure 2.2	Shifts in EC_{50} of E45 mutations are not correlated with changes in side chain hydrophobicity or size	24
Figure 2.3	Relative efficacy of succinylcholine for representative mutations	27
Figure 3.1	Cys-loop ligand gated ion channel structure	36
Figure 3.2	Protonation states of a histidine residue	38
Figure 3.3	Dose response relationship for wild type, D44H, E45H, and V46H at varying pH	39
Figure 3.4	Shift in EC ₅₀ due to pH	40
Figure 3.5	Comparison of shifts in EC_{50} from pH compared to the same shift found in wild type	42
Figure 4.1	Topology of a single α subunit with α Val46 highlighted	46

Figure 4.2	Dose response curves for mutations at α Val46	48
Figure 4.3	Representative traces for wild type recovery and the Omt and <i>a</i> Omt mutations	49
Figure 4.4	Dose response relationship for three α Val46 mutants with and without the β L251S mutation	51
Figure 4.5	Double mutant cycle analysis	52
Figure 4.6	Incorporation of polar groups in the α Val46 side chain inhibits channel function to a greater extent the pro-S position	53
Figure 4.7	Proton NMR of NVOC-aThr	62
Figure 4.8	Proton NMR of NVOC-aThreonine-cyanomethyl ester	63
Figure 5.1	The ligand binding site of the nAChR	66
Figure 5.2	The aromatic box of the $GABA_AR$ and $GlyR$	68
Figure 5.3	Electrostatic potential surfaces of phenylalanine analog side chains	69
Figure 5.4	The dose response relationship and fluorination plot for β_2 Tyr97 of the GABA _A R	70
Figure 5.5	The dose response relationship and fluorination plot for α_1 Phe159 of the GlyR	73
Figure 5.6	Fluorination plot of seven Cys-loop receptors	82
Figure 6.1	General topology of GABA _A R	88
Figure 6.2	An unstructured linker connects the GABA binding site and BZD binding site	90
Figure 6.3	Dose response relationships for control experiments using the nonsense suppression methodology at four sites	96
Figure 6.4	Incorporation of Met and Npg at α M113 gives similar macroscopic currents and dose response relationships to the wild type receptor	97

Figure 6.6 Figure 6.7	Pentobarbital dose response relationships for wild type and α M113Npg β GABA _A Rs Macroscopic whole-cell currents induced by saturating doses of GABA or pentobarbital	101
Figure 6.7	· · ·	
-	doses of GADA of pentobaronal	102
Figure 6.8	Proton NMR spectra of methyl-α-bromo- <i>o</i> -nitrophenyl acetate	114
Figure 6.9	Proton NMR spectra of methyl-α-phthalimido-o- nitrophenyl acetate	115
Figure 6.10	Proton NMR spectra of o-nitrophenyl glycine chloride salt	116
Figure 6.11	Proton NMR spectra of 4-PO-nitrophenylglycine	117
Figure 6.12	Proton NMR spectra of cyano methyl ester of 4-PO- nitrophenylglycine	118
Figure 6.13	Proton NMR spectra of NVOC-methionine	119
Figure 6.14	Proton NMR spectra of NVOC-methionine cyano methyl ester	120
Figure 7.1	An unstructured linker connects loops A and E of the GABA _A R α_1 subunit	124
Figure 7.2	Chemical structures for wild type amino acids, conventional mutants, and α -hydroxy acids	126
Figure 7.3	Conventional mutations in linker region alter FLZM potentiation	128
Figure 7.4	FLZM and GABA dose response relationships for wild type and selected conventional mutants	130
Figure 7.5	Hydroxy acids destabilize β -sheet structure	138
Figure A1.1	The GABA dose response relationship for wild type $\alpha\beta$ GABA _A R does not vary when the mRNA ratios are varied	146
Figure A1.2	Dose response relationship for $\beta\gamma$ GABA _A R	149
0	The GABA dose response relationship for wild type $\alpha\beta$	

Figure A1.3	GABA dose response relationships for various mRNA ratios of the $\alpha\beta\gamma$ GABA _A R	151
Figure A1.4	GABA traces of the wild type GABA _A R	158
Figure A1.5	Sample traces from a FLZM potentiation experiment	159
Figure A1.6	Sample traces from a FLZM EC ₅₀ experiment	159
Figure A1.7	Sample pentobarbital traces for wild type $\alpha\beta$ GABA _A R	160

List of Tables

Table 2.1	Selected sequences in the gating interface	19
Table 2.2	Charged characteristics of the gating interface	20
Table 2.3	Mutations in loop 2 nAChR α_1 subunit	23
Table 2.4	Mutations in loop 7, loop 9, pre-M1, M2-M3 linker, and post M4 nAChR α_1 subunit	29
Table 3.1	EC ₅₀ of loop 2 histidine mutations	37
Table 4.1	Measured EC ₅₀ values for α Val46 mutants	48
Table 4.2	Measured EC_{50} for select $\alpha Val46/\beta L251S$ double mutations	50
Table 5.1	Conservation of the aromatic box across the Cys-loop family	67
Table 5.2	EC_{50} values for incorporation of fluorinated Phe residues at $\beta_2 Tyr97$	70
Table 5.3	EC_{50} values for Phe analogues at $\beta_2 Tyr157,\beta_2 Tyr205,and\alpha_1 Phe65$	71
Table 5.4	EC_{50} values for incorporation of fluorinated Phe residues at Phe159	73
Table 5.5	EC_{50} values for incorporation of fluorinated Phe residues at Phe207 and simultaneous incorporation at Phe159 and Phe207	74
Table 5.6	EC_{50} values for incorporation of fluorinated Phe residues at Phe63	74
Table 5.7	Sequence alignment of loop A in the principle subunit of Cys-loop receptor binding sites	77
Table 6.1	Results of wild type recovery experiments at four sites in the $\alpha\beta$ GABA _A R	94
Table 6.2	Wild type recovery experiments at four sites in the $\alpha\beta\gamma$ $GABA_AR$	95

Table 6.3	Results of read-through and re-aminoacylation experiments for nonsense suppression at four sites in the $\alpha\beta\gamma$ GABA _A R	95
Table 6.4	EC_{50} values for wild type recovery and Npg at α M113	98
Table 6.5	Increased exposure to UV light decreases the whole cell current of oocytes expressing $\alpha M113Npg\beta$ but not wild type GABA _A Rs	99
Table 6.6	Cumulative results of 8 hours UV exposure	100
Table 6.7	Macroscopic currents induced by exposure to pentobarbital remain constant despite 8 hours of UV irradiation	102
Table 7.1	Sequence Alignment of GABAAR subunits	125
Table 7.2	Conventional mutagenesis in the linker region has little impact on EC_{50}	127
Table 7.3	The EC_{50} of potentiation and Hill coefficients for the FLZM dose response relationships	130
Table 7.4	Incorporation of α -hydroxy acids at α M111 increases GABA EC ₅₀ and decreases FLZM potentiation	131
Table 7.5	Incorporation of α -hydroxy acids at α M113 increases GABA EC ₅₀ and decreases FLZM potentiation	132
Table A1.1	EC_{50} values for $\alpha\beta$ -only receptors	146
Table A1.2	EC_{50} values for oocytes injected with $\beta\gamma$ mRNA	149
Table A1.3	Results of various $\alpha\beta\gamma$ mRNA ratios on GABA EC ₅₀ and FLZM potentiation	150
Table A1.4	Fluidics profiles for the OpusXpress	154
Table A1.5	GABA EC ₅₀ Protocol	155
Table A1.6	BZD Potentiation Protocol	156
Table A1.7	BZD EC _{50,P} Protocol	156