Analysis and Modeling of Spike Train Correlations in the Lateral

Geniculate Nucleus

Thesis by
Carlos D. Brody

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1698
{Submitted October 7 1997)



i

© 1998
Carlos D. Brody
All Rights Reserved



il

Acknowledgements

First of all, I thank John Hopfield, my advisor. His often astonishing capacity to quickly find and
go to the root of a problem, without letting any distracting branchlets get in the way, has been a
constant inspiration. It will remain an inspiration and a lesson in effective thinking long after I
have left his group. I also thank all the members of the group, from each of whom I have learnt
much. Sanjoy Mahajan (our knight of the order of magnitude), Sam Roweis and FErik Winfree
carefully read and commented on various parts of this manuscript; Dawei Dong, Maneesh Sa-
hani, and K.P. Unnikrishnan helped with enlightening comments and questions; Laura Rodriguez
provided good friendship (and often a feeling of being protected) in addition to her official and
helpful role as John’s secretary. Though we all work on different questions, the always stimulat-
ing level of enthusiastic, diverse communication, and the camaraderie, have made the Hopfield
group feel much like a wonderful family. More recently, Amy Forth has provided efficient secre-
tarial support. Many past members of the group also contributed to my intellectual formation as
a graduate student: most recently, Tom Annau, Ron Benson, Andreas Herz, and Marcus Mitchell.
Other members of the CNS community at Caltech, among them Buster Boahen, Mike Lewicki,
Bill Press, and Bruno Olshausen, have also been friends as well as colleagues.

I thank Adam Sillito and members of his group, for their hospitality and for generously sharing
their data with me even through sometimes thorny arguments as to its interpretation; this thesis
would not have been written without them. I also thank José-Manuel Alonso and R. Clay Reid,
who shared retinal ganglion cell data with me for use in the modeling part of the thesis.

The support of my friends has been invaluable; el de mi mama ha sido feliz y desde siempre.

Finally, I thank JK, for her companionship, and during the last few weeks of thesis writing,

her patience and understanding.



v

Abstract

In this thesis I consider the cross-correlation analysis of spike train data, in two parts. In the first
part, I consider the question of the proper interpretation of peaks in covariograms: It is known that
peaks in the covariogram of the spike trains of two cells are due to covariations, not time-locked
to the stimulus, in the responses of the two cells. Such peaks, even when they have widths on
the order of 10s of milliseconds, are often interpreted as evidence of spike timing coordination
between the two cells. However, there are other ways to covary which can generate very similar
peaks. I describe two of them here: (1) covariations, over different trials, in the overall latency
of the response; and (2) covariations, over different trials, in the overall excitability (i.e. average
firing rate) of the response. I show how each of these leads to a peak in the covariogram, and how
to distinguish such peaks from each other and from peaks due to spike timing coordination. In par-
ticular, I describe how to separate the excitability and spike timing components of a covariogram
when both types of correlations are present.

The second part of the thesis studies the spike train data obtained in multiple-cell recordings
in LGN of cat by Adam Sillito and colleagues (Sillito, Jones, Gerstein and West, 1994, Nature
369(6480):479-482). Analysis of this data, including the use of some of the novel insights and
methods described in the first part of the thesis, shows that (1) the observed correlations between
pairs of cells can be well described in terms of covariations in the latencies and excitabilities of the
two cells; (2) the correlations have a time scale of 10s of seconds (20100 s); (3) the correlations
are not specific to the orientation of the drifting sine wave gratings used to drive the geniculate
cells under study. A computational model, based on Huguenard and McCormick’s (1992) model
of thalamic cells, shows that covariations in the resting membrane potential of the two covarying
cells can lead to covariogram peaks similar to those found in the experimental data. Together
with Sillito et al.’s observation that correlations between pairs of cells only occurred when both
members of the pair had the same receptive field types (On/Off/X/Y), and the observation that in
some of the records, cells not only fail to positively covary but even anti-covary, this suggests that
Silltio et al.’s data holds evidence for an intriguing and hitherto undocumented phenomenon: the

possibly diffuse, but cell class-specific, control of resting membrane potential in LGN neurons.
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List of Figures

2.1

Three types of correlations. Despite the very different spiking patterns, all three
shuffle-corrected correlograms (henceforth called covariograms— see section 2.2)
look similar. Each row illustrates a type of spiking pattern: On the left is a raster
plot of two simulated cells. On the right is the covariogram of spike trains made
with the same type of spiking pattern illustrated to its left. (Parameters used to
generate the spike trains on the left were set to extreme values, to emphasize clar-
ity in illustrating each pattern; parameters used to generate spike trains for the
covariograms on the right were set to “physiologically plausible” values.) A: On
each trial, most spikes in cell 1 have a corresponding, closely timed, spike in cell
2. Both cells have the same response latency and overall firing rate in all trials.
B: Spikes in cell 1 do not have a corresponding spike in cell 2: on each trial, the
two spike trains were generated independently of each other. But the latency of
the response varies together over trials. C: Again, on each trial the spikes for the
two cells were generated independently of each other. But the average firing rate
of the response varies together over trials. Zero counts on the covariogram y axes
is the expected value if the two cells are independent; the dashed lines are two
standard deviations away from this expected value. The inset at the top right of
each covariogram shows the PSTHs of the two cells involved, plotted on axes that

are 250 mswideand 60 Hz tall. . . . . . . . . . . .. ... ... ... .....
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Excitability correlations, by construction. The two cells were simulated by Pois-
son processes with time-varying event densities, to represent time-varying firing
rates; event trains for the two cells in each trial were drawn independently from
each other. Each cell had two components in its firing rate: a constant background
rate of 35 Hz, plus an alpha function shaped (roughly bell-shaped) firing rate func-
tion of width ~ 60 ms. On each trial the height of the alpha function was the same
for both cells, but it varied from trial to trial. (Averaged over trials, the peak of
the alpha function was at 100 ms and was 70 Hz high.) Since the component of
the two firing rates that had covarying gains was approximately 60 ms wide, the
peak in the covariogram shown in the top right is on the order of 2 x 60 = 120
ms wide. 200 rasters were generated for this covariogram. The thick grey line is
the analytical expected value from equation (2.19), computed with full knowledge
of the parameters and procedures used to run the stochastic process that generated
the spike trains. The two thin dashed lines are significance limits. On the top left
are ten of the actual rasters used to compute the covariogram, and below them the
PSTH of the two cells (smoothed by a Gaussian with 6 ms standard deviation). On
the bottom is the normalised JPSTH, flanked by PSTHs of each of the two cells.
See Appendix 2.7.1 for details of how the rasters were constructed and how the
analytical curve going through the covariogram was calculated. . . . . ... ..
Latency correlations. The top left panel shows a schematic of how latency corre-
lations lead to a peaked covariogram (see text for explanation). The three other
panels show an example of latency correlations, using rasters made by simulat-
ing two independent Poisson cells, each raster pair of which was then shifted in
time by a random amount drawn anew for each trial from a Gaussian distribution
with mean 0 ms and standard deviation 15 ms. See Appendix 2.7.2 for details.
200 rasters were generated; 10 of the rasters are shown in the top right. Below
them are the PSTHs of all 200 rasters for both cells. Overlayed on the covari-
ogram at the bottom left is the analytical expected value of the covariogram from
equation (2.20), computed with full knowledge of the parameters and procedures
used to run the stochastic process that generated these spike trains. The two thin
dashed lines are significance limits. Notice the weak but clearly present troughs

in the JPSTH at the bottom right. . . . . .. .. ... ... ... ... ......

11



ix

2.4 Spike timing correlations, by construction: most individual spikes of one cell have

a specific, corresponding, closely timed spike in the other cell. On each trial, the
corresponding spikes in the two cells were generated by randomly jittering the
times of a single spike train twice; the result of the first random jittering was as-
signed to cell I, and the result of the second random jittering was assigned cell
2. Jittering was done by adding a random amount, drawn i.i.d. from a Gaussian
distribution with mean zero and standard deviation 12 ms, to the time of each
spike. The unjittered spike train from which the jittered versions were made was
produced anew for each trial. In addition, random background spikes were also
added to the trains of the two cells. See Appendix 2.7.3 for details. Ten of the
rasters made in this way are shown on the top left. The covariogram of two hun-
dred such rasters is shown on the top right. The thick grey line in the covariogram
is the analytical expected value from equation (2.21), calculated with full knowl-
edge of the parameters and procedures used to generate the spike btrains. The

normalised JPSTH is shown atthe bottom. . . . . . . . . . . .. . ... .. ...
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Estimating excitability correlations from the spike train data. Top row: On the top
left is the same covariogram as shown in figure 2.2, an example of pure excitability
correlations; overlaid on it as a thick dashed line is the excitability covariogram
estimate V, obtained using equation (2.15). Unlike the solid grey line in figure 2.2,
the thick dashed line here was calculated without any knowledge of how the spike
trains were generated. The top right shows the same covariogram after subtrac-
tion of the estimated excitability covariogram. All remaining deviations from zero
are within the significance limits. Bottom row: Mixed-type correlations. On the
bottom left is the covariogram of rasters constructed with both spike timing and
excitability correlations. The shape does not obviously indicate two types of cor-
relations; however, we can use more than just the shape to separate the two. The
thick dashed line is the excitability covariogram estimate calculated using equa-
tion (2.15). On the bottom right this estimate has been subtracted, leaving behind
a clear peak, indicative of a correlation other than an excitability correlation. We
know here that this is a spike timing correlation, and can predict the expected co-
variogram shape based on knowledge of the spike timing correlation parameters
used to construct the rasters. The predicted shape is shown as a thick grey line. It
matches the residual covariogram well. Subtracting the excitability covariogram
estimate has accurately revealed the spike timing component of the covariogram,

Latency search results. The top left shows the same rasters as in Figure 2.3, after
shifting by the times found by the latency search described in the text. For ex-
ample, the fifth raster has been shifted 30 ms to the left. The top right shows the
cross-covariogram after the latency search. All deviations from zero are within
the significance limits. The bottom left shows the JPSTH after the latency search.
There is no structure significantly different from zero left (compare to Figure 2.3).
The bottom right shows the original cross-covariogram from Figure 2.3 (thin solid
line, binned) together with the covariogram predicted by the hypothesis found by

the latency search method described in the text (thick dashed line). . . ... . .

19
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3.1

32

33

xi
Covariogram of rasters built with spike timing correlations and result of the latency
search procedure. There is no set of latency shifts that can fully account for the
peak in the original covariogram. Note that the procedure is biased: because it
searches for a minimum, it is guaranteed to reduce the peak by some amount. One
might interpret the result shown here as indicating that the peak in the original
covariogram is due to a mix of spike timing and latency correlations, but all that
has been shown is that the covariogram alone does not distinguish between the
hypothesis that the peak is due to spike timing correlations and the hypothesis that
the peak is due to a mix of spike timing and latency correlations. Parsimony might

suggest spike timing correlationsonly. . . . ... .. ... ... ...

Typical LGN responses. The left panel shows a schematic plot of two receptive
fields, one an On cell and the other an Off cell. z and y axes represent visual
space; the z axis indicates the strength of the cell’s response to a spot of light
flashed on. Negative values on the z axis indicate inhibition. The right panel
shows the responses of a real LGN neuron to stimulation by a drifting sine wave
grating. Each vertical bar indicates a spike. 10 individual trials are shown, and
below them the PSTH of 100 trials. The PSTH has been smoothed by a Gaussian
with a standard deviationof 6ms. . . . . . ... ... ... L.
Differences between X and Y cells. The left panel shows two PSTHs, one for an
X cell, the other for a Y cell, both stimulated by a 1 Hz stationary counterphasing
grating. The X cell has most of its power at 1 Hz, but the Y cell shows significant
power at the first harmonic, 2 Hz. The right panel shows data from the same two
cells. The mean firing rate in response to a stationary counterphasing grating is
plotted as a function of the spatial phase of the grating. The X cell’s response is
strongly affected by the phase of the grating, and goes through a “null point” where
the cell responds with an almost-zero firing rate; the Y cell responds robustly at
all phases. . . . . . . L
Activation and inactivation curves and time constants for a model of I, the low-

threshold Ca™ channel current. The model is that of McCormick and Huguenard

(1992). . . oo,
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3.6
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Xii

Tonic and burst firing. The same cells can produce tonic spikes and a few hundred
ms later produce spikes in Ca™™ bursts. The bursts have been surrounded by grey
boxes. As in other figures in this section, the experimental data was provided by
Sillito et al. and is taken from anesthetized cats. . . . . ... ... ... ....
Diagram of the receptive fields (RFs) of 3 LGN neurons being recorded from.
The same 3 receptive fields are shown in the two panels, but overlaid on two
different full-field drifting sine wave gratings (used as stimuli). The direction of
motion of the gratings is indicated by the arrows. Notice that as the direction of
the grating changes, the relative phase of the stimulus on the different receptive
fields also changes. In the left panel, the stimulus for the two rightmost RFs is
out of phase, whereas in the right panel the same two RFs observe the stimulus
in phase. The gratings used typically had a spatial frequency of 0.66 cycles per
degree. Receptive fields are roughly 1° in diameter or less and are between 1° and
4° apart. (Sine wave gratings always move (perceptually) exactly orthogonally to
their orientation; I will use “orientation” and “direction of motion” of the grating
almost synonymously.) . . . . . ... ...
Responses to 8 successive trials in an experiment using a 2 Hz, 0.66 cycles/degree
grating, drifting at various orientations. The orientation used in each trial is indi-
cated at the right. Modulation of the responses at the temporal frequency of the
grating, as described in Figure 3.1, are seen for all stimulus orientations. But as
expected from Figure 3.5, different orientations result in response modulation at
different phases. The grating orientation always remained constant throughout the
length of each trial. The data was collected by Sillito et al. in anesthetized cats.

Two slowly covarying signals s; and s3. On the right is the cross-correlation c(t)
of the two signals s; and so. Compare the width of the peak to the time scale of

the variations onthe left. . . . . .. . . .. ... ...
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3.9

3.10
3.11

Xiii
The left panel shows a short segment of the signals shown in Figure 3.7. The
two signals will be broken into even shorter trials r, each 1.5 seconds in duration.
(Trials may be separated from each other by a few seconds.) The right panel
shows the cross-covariogram of the sets of trial segments of the data, {s]} and
{s5}. Dashed lines are significance limits, computed as in section 2.2: they are
the 20 limits of the expected variations if the two observed signals s] and s/
were independent. The covariogram has a positive peak because the two signals
are positively correlated. Each trial is 1.5 seconds long, so the covariogram is
constrained to fall to zero at £ = +£1.5, despite the fact that the timescale of the
correlations of s; and sy is much longer. The shape of the peak is very close to
triangular because the trials are short enough that s; and sy are almost constant
within each trial; the covariogram thus has the shape of the cross-correlation of
two boxcar functions, which is an isosceles triangle. . . . . . ... ... .. ..
Peak height of the covariogram of {s]} and {s5"*} as a function of the shift 5.
The dashed line is the 20 limit of being significantly different from zero. The
number of shifts at which the peak height falls to within the significance limits
(here approximately 4), multiplied by the time between successive trials (here 21
seconds), gives an estimate of the half-width of the cross-correlation peak of the
underlying variables (approx. 84 seconds). This estimate should be compared
with the width of the cross-correlogram peak in Figure 3.7. . . . ... ... ...
Periodic modulation function p(t), frequency 3 Hz. . . . . ... ... ... ...
Covariogram (thick dark line) of the same trials used in Figure 3.8 but with the
trials modulated by a 3 Hz periodic function. The resulting covariogram is mod-
ulated at the same frequency. The significance limits (shown as dashed lines) are
also modulated. This is because the significance limits are computed based on the
average signals (mf), and (m})., which have also been modulated by the periodic

modulating function (see equation (2.3)). . . . . . . . ... ... ...
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3.12

3.13

3.14

xiv
Covariograms of 3 different pairs of cells from 2 different animals. Time is in millisec-
onds. Dashed lines are significance limits, computed as in equation (2.3). The striking
presence of “side” peaks off ¢ = 0 indicate that the correlations have a strong component
with a time scale longer than the stimulus period (which in all cases was either 333 or 500
ms). Section 3.4.2 will show that the correlations actually have a time scale on the order
of tens to hundreds of seconds (not milliseconds). The original report on this data (Sillito
et al., 1994) was limited only to the ¢ = 4175 ms window of these covariograms, and
thus did not observe the side peaks. The presence of side peaks suggests an interpretation
of the covariograms significantly different to that in the original report. Normalization of
covariograms: In this chapter, covariograms, which have natural y-axis units of spikes>
per bin, were normalized by dividing by the bin width and by \/W , where nj and
n} are the total number of spikes fired by cell 1 and cell 2 in trial r, respectively, and the
average is taken over trials. This normalization gives final y-axis units of spikes per sec-
ond and allows comparing covariograms taken from experiments with different numbers
of total spikes fired per trial. Note that the normalization only changes the y-axis labelling,
it does not change the shape of the covariogram or the heights of the peaks relative to the
significance limits. . . . . . . . .. Lo Lo o
Covariograms of 3 different pairs of cells from one of the same two animals as
Figure 3.12 and from a third, different animal. Time is in milliseconds. The bot-
tom covariogram is from the same animal as the middle covariogram, and serves
here as an example of two cells that were not significantly correlated. Dashed lines
are significance limits, computed as in equation (2.3). . . . ... ... ... ..
Even when the stimulus is periodic, a central peak does not imply the presence of
side peaks: this Figure, which should be compared with Figures 3.12 and 3.13, is
an example of a central peak without side peaks. Though the central peak is clearly
significant, no significant side features are seen. (Dashed lines are significance
limits). The spike trains used here are synthetic, created with the techniques of
section 2.7.3. Inset are the PSTHs of the two simulated cells, showing the periodic

nature of their mean responses; axes in the inset are 400 ms wide and 90 Hz tall.

49

50

51
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3.16

3.17

3.18

4%
Typical covariograms, seen only in the window t = £175 ms, as in the original
report (Sillito et al., 1994). Most side peaks lie outside this window, and were
simply not observed. This Figure should be compared to Figures 3.12 and 3.13,
where the full covariograms are shown. (Note that some peaks wholly off ¢ =
0 can nevertheless still be seen within the limited window. Vertical grey lines
indicate the ¢ = 0 axis.) The two rightmost covariograms are from the same
experiment, and thus are of trials interleaved with each other; one used a grating
at 20.9°, the other a grating at 90°. The time difference between the centers of
these two peaks is exactly predicted by the difference in the relative phase of the
PSTHsofthetwocells. . . . . . . . .. .. .. ... .. .
An example of an unshifted cross-covariogram and the results of shifting by 1 and
2 trials, respectively. Peak heights get smaller (note the different scalings on the
y-axes), but remain significant for times on the order of tens of seconds. (Data
record lgcor8/aaa---13/133.75%cells2and3.) .. .. ... ... ...
Fall-off in peak height as a function of shift for the cross-covariogram and autoco-
variograms of the same data record as in Figure 3.16. Note that the y-axis is on a
logarithmic scale. Peak heights have been normalised by the maximum value of
the standard deviation (o) of the null hypothesis. (All covariograms in this thesis
display 20 as dashed lines to represent significance limits— see, for example, the

dashed lines in Figure 3.16. Thus, a value of 2 on the graph above indicates the

52
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point where the maximum peak height is equal to the maximum significance limit.) 54

Histograms, across all experiments where significant correlations were found, of
the result of shifting the trials and fitting the fall-offs in normalised peak heights.
The left panel is a histogram of the estimated times to fall below significance lim-
its. The mean time to fall below the significance limits is 41 seconds; its standard
deviation is 16 seconds; its smallest value is 17 seconds. The right panel is a
histogram of the estimated exponential decay time constants. The mean of the de-
cay time constants is 64 seconds; their standard deviation is 46 seconds; and their

smallest value is 19 seconds. . . . . . . . . . . . .
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Covariograms at various orientations. Each column shows the covariogram of two
records from the same experiment. (As explained in the text, trials for the records
for the two covariograms in each column were pseudo-randomly interleaved with
each other.) The left column shows covariograms from two different orientations;
the right column shows covariograms from two opposite directions (the difference
in orientation is 180°). The peaks in the two covariograms of each column are
similar to each other, despite the differences in orientation and direction. . . . . .
Two covariograms from the same experiment but of records at slightly different
orientations. Left: stimulus at 20.25°. Middle: stimulus at 21.25°. The peak at
21.25° is much greater than any hints of a peak at 20.25°, suggesting that these
two records lead to a statistically significant result. However, this difference must
be compared to the expected measurement error. The significance limits, shown as
dashed lines, give a rough estimate of the magnitude of the expected error. In the
figure the significance limits are shown around y = 0; other mean values would
displace the significance limits vertically. Right: closeup of the middle panel.
Interestingly, the closeup shows that the peak is not centered at exactly ¢ = 0 but
is in fact &~ 18 ms away from that. The two neurons being recorded from cannot
then be strictly thought of as synchronized. The 18 ms time difference roughly
corresponds to the phase difference in the PSTHs of the two cells. Experiment
lgcor9/ccec---08. . . . . . e
The two stimuli which produced putatively significantly different covariograms.
To this author’s eyes, these stimuli are identical. . . . . . ... ... ... ...
Distribution of the maximum peak height out of six covariograms, as obtained
by the shuffling procedure described in the text, under the null hypothesis that all
orientations produce peaks of the same height. The dashed line indicates the peak

height of the record #lgcor9/ccc—08 at 21.75°. . . . . . .. .. ... ... ...
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324

3.25

xvii
For each experiment, P is the probability of finding a maximum peak height big-
ger than the largest one found in the experiment. P is evaluated under the null
hypothesis that all orientations generate similar covariogram peak heights. The
graph above shows a histogram of the P’s found in the experiments that had sig-
nificant correlations between pairs of cells. No experiment had a P value of less
than 0.05, and only two experiments had P values of less than 0.1. If the null hy-
pothesis were always correct, all bins in the histogram above would be expected
to have roughly the same height. . . . . . ... . ... ... ... ... ...
Covariograms of responses to one orientation vs. responses at another. The top
left and the middle right covariograms use data from a single cell; all others use
data from two cells. The bottom covariograms were made using large bins for
greater clarity. . . . . ... L
Rasters for the top panel of Figures 3.13 and 3.26, record #lgcor8/aaa—13 at
133.75°. It is easily seen that the cells go through long periods of high excitability
(many spikes), alternating with long periods of low excitability (few spikes—e.g.,
compare the large numbers of spikes fired in response to trials near start time =
200 seconds, compared to the very few spikes fired in response to trials near start
time = 315 seconds.). Since the excitabilities of both cells covary, this results
in excitability correlation peaks in their covariogram. The latency of the response
covaries also. One cell is shown in black, the other in grey; trial start time is shown

onthe y-axis. . . . . . . . . L
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3.30
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Covariograms of experimental data and predictions based on the latency and ex-
citability analysis. The covariograms are shown as the thin dark lines (binned); the
predictions are the thick grey lines. Dashed lines indicate significance limits. The
top covariogram uses data from cells in the fonic mode (neither cell fired bursts
during the experiment). The middle covariogram uses data from cells in a mixed
mode (the cells sometimes fired in bursts, sometimes tonically); the bottom covar-
iogram uses data from cells in the burst mode (both cells fired almost always in
bursts). The fits to the data, shown as the grey lines, are made using models where
the only covariations between the two cells are in the latencies and excitabilities
of the responses, not in individual spike times. The peak shapes predicted by such
models are closely related to the PSTHs of the two cells’ responses (in contrast to
‘the peak shapes allowed by spike timing interactions, which can be much more
arbitrary). As can be seen, the fits are very good. . . . . .. .. ...
JPSTH of the experimental spike train data used in the top covariogram of Fig-
ure 3.26. (Datarecord 1gcor8/aaa---13 133.75° cells 2 and 3). .
JPSTH of synthetic, Poisson-process-generated spike trains based on the PSTHs,
excitabilities, and latencies found by the latency and excitability analysis. The
analysis methods are described in chapter 2; the spike train generating methods
are described in section 2.7. . . . . ... ..o oo
Total number of spikes fired in each trial as a function of trial start time. The curve
for each cell is composed of 500 data points (500 trials). . . . . ... ... ...
Latency estimate (as found by the latency search method), shown as a function of

trial start tme. . . . . . . e e e e e e e e e e e e e e
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3.32

3.33

3.34

Xix
Result of slicing the record #lgcor8/aaa—13/133.75° into different sections, each
with roughly constant mean firing rates. Each slice had at least three trials within
it, and was normalised by the geometric mean of the number of spikes produced
by each cell in that slice (Palm et al. (1988)). The covariograms of different slices
were then averaged together. The variances of the null hypotheses corresponding
to each covariogram were averaged and divided by the square root of the number
of slices used to produce a final null hypothesis variance. The average covari-
ogram is shown as a solid line; dashed lines are significance limits, defined as the
20 limits obtained from the square root of the final null hypothesis variance. Inter-
estingly, though not statistically significant, a peak near ¢ = 0 can still be clearly
SEEIL . . . i e e e e
The left panel shows the estimated latency vs. the total number of spikes fired in
each trial for the tonic-mode covariogram of Figure 3.26. The shortest latencies
are associated with the greatest excitability. Correlation coefficient is -0.60. The
right panel shows the burst index of cell 2 vs. the burst index of cell 1, for the data
from the mixed-mode covariogram of Figure 3.26. The burst index is calculated
for each raster for each cell as B; =(# of spikes in Ca™™ bursts)/(total number of
spikes). Ca™ bursts were identified from the extracellular data using the criteria
of Guido et al. (1992); Lu et al. (1992). The correlation coefficient of the burst
index inthe twocellsis0.86. . . . .. ... ... ... ... ..... . ....
Rasters for the burst-mode covariogram of Figure 3.26. One cell is shown in
black, the other in grey. Though most rasters fire similar numbers of spikes, slow

changes in the latency of response can be clearly seen. This is most easily seen in

68

70

Figure 3.34, a closeup of the rasters shown here. Data record lgcor9/ccc—11 at 90°. 70

Closeup of rasters of Figure 3.33: time axis runs only from 400 to 1000 ms. Slow
covariations in the latency of response can clearly be traced (e.g. responses to
trials near start time 100 seconds had shorter latencies than responses to trials near
start time 300 seconds. This is true for both cells, one of which is shown in black

and the other in grey.). Trial start time is shown on the y-axis. ... ... .. ..
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42

4.3

4.4

XX

50 different RGC responses to a modulation (i.c. one bar) of a drifting sine-wave
grating. Data provided by José-Manuel Alonso and R. Clay Reid. The spike times
will be used as input to the LGN model. The grey line on the bottom axes is the
PSTH of 256 trials, smoothed by a Gaussian with standard deviation 6 ms.

Responses of the model change from tonic to burst as a function of Epes. The
same RGC spike train input, shown as thick black vertical lines at the bottom
of the two panels, was used in both simulation runs. The thin solid line is the
membrane potential during the simulations (voltage scale at left). The thick grey
line is the Ca™™ current I (current scale at right) When the resting potential was
-55 mV, there was no significant Ca™* current. This Figure follows Figure 11 of
Mukherjee and Kaplan (1995). . . . . . ... .. ... ...
Responses of a model LGN cell as a function of resting membrane potential. Two
different RGC spike train inputs, illustrated at the bottom of panels A and C as
thick black vertical lines, were used; in each panel these inputs were kept con-
stant. Panel B shows the transmission ratio (# of input spikes/# of output spikes),
averaged over many different RGC input trains. Panel A illustrates how the rest-
ing potential, in the tonic regime (= -70 to -52 mV), controls the number of spikes
fired in response to the input; while in the burst regime (= -87 to -75 mV), the
effect of Ereq is mostly on the latency of the burst response. Panel B is an il-
lustration of how two spikes, if spaced closely enough, can drive the cell to fire
immediately after them at almost all values of Fregt.  « .« « v v o v v v oo o ..
Responses of the model cell at four different values of Eleq. Each panel shows 25
runs using a different RGC input spike train on each run, and is thus an example of
the variability in the LGN responses induced by the variability in RGC inputs. The
thick grey line underlying the rasters is the PSTH of the RGC input; its maximum
value is 140 Hz. The PSTH of LGN spikes (not shown) in panel A is close to
a scaled version of the RGC’s PSTH. This is in contrast to panels B, C, and D,

where input and output PSTHs have very different shapes. . . . . ... ... ..
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4.5

4.6
4.7

4.8
4.9

4.10

XX1
Tonic regime. Covariogram and JPSTH of experimental data (fop) and model
data (bottom). Binwidth for covariograms is 6 ms; for JPSTHs it is 12 ms. The
axes for the PSTH next to each JPSTHs measure 90 Hz x 666 ms. The greyscale
of the JPSTHs indicates correlation coefficient. Time in the JPSTH runs from left
to right and from bottom to top (see chapter 2). Only a portion of the covariogram
and JPSTHs, enough to see the central peak and the existence of the side peaks,
are shown. While the two covariograms have similar features, the JPSTHs are
clearly different. . . . . . . . . . ...
Rasters of the data used in Figure 4.5. . . . . . . .. . ... ... ... ...
Burst regime. Covariogram and JPSTH of model data (top), and covariogram
and JPSTH of experimental data (bottom). Binwidth for covariograms is 6 ms;
for JPSTHs it is 12 ms. The axes for the PSTH next to each JPSTHs measure
130 Hz x 500 ms. The greyscale of the JPSTHs indicates correlation coefficient
(see chapter 2). The model captures most of the features of the experimental
covariogram and JPSTH. . . . . . . . .. . ... oo
Rasters of the data used in Figure 4.7. . . . . . . . .. ... ... ...
Mixed burst/tonic regime. Covariogram and JPSTH of model data (top), and co-
variogram and JPSTH of experimental data (bottom). Binwidth for covariograms
is 6 ms; for JPSTHs it is 18 ms. The axes for the PSTH next to each JPSTHs
measure 110 Hz x 666 ms. The greyscale of the JPSTHs indicates correlation
coefficient (see chapter 2). The covariograms have a similar asymmetry (dips to
the left of the peaks, a slower fall-off to the right of the peaks than to the left of
the peaks) but the experimental one has clearly much stronger peaks and greater
excitability covariations (this latter fact can be inferred from the DC values of
the covariograms). The JPSTHs match well: the have the same type of negative
horizontal bands (caused by the burstiness of one of the neurons— when neuron 2
(y axis) responds with a burst, neuron 1 (x axis) responds with fewer spikes than

usual). L. e e e
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Experimental rasters (fop) and model-produced rasters (bottom) in the mixed burst/tonic

regime. The experimental data has fewer spikes per burst than the model.
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Chapter 1 Introduction

Due to the difficulty of recording simultaneously from more than one neuron, most neurophysi-
ological studies are single-cell studies. However, the brain has a massively parallel architecture:
all neurons in the brain are simultaneously active to some degree. Single cell studies tell us little
about possible interactions between neurons. The situation is similar to observing a multivari-
ate stochastic process and trying to characterize it through observing only its univariate marginal
distribution functions. There may be many higher order interactions, critical to the function of
the system, which are eluding us. For this reason, there has been consistent interest in multiple-
cell recordings. Technical advances have allowed multiple-cell recordings to become increasingly
frequent.

One of the principal methods used to analyse multiple-cell spike train data is the use of auto-
and cross-covariograms (Perkel et al., 1967; Palm et al., 1988; Aertsen et al., 1989). These char-
acterize the second-order statistics of the responses of two neurons. Two neurons which are inde-
pendent of each other produce a covariogram whose expected value is zero; if there are significant
peaks in the covariogram, then the two neurons recorded from were not independent and therefore
there was some interaction between them.

The first part of this thesis is concerned with the question of the proper interpretation of covari-
ogram peaks. Chapter 2 describes how different types of correlations may all lead to similar peaks
in a covariogram. This makes the interpretation of a covariogram ambiguous. Understanding how
each of the types of correlations can lead to a peak allows devising methods to disambiguate the
peaks from each other; methods to do this are described in chapter 2. Chapter 2 will be submitted
for publication in Neural Computation, verbatim.

The second part of the thesis, chapters 3 and 4, is a study of multiple-cell spike trains recorded
in the LGN of cats by Adam Sillito, Helen Jones, George Gerstein, and David West. In their origi-
nal report on this data (Sillito et al., 1994), the authors focused on the presence of significant peaks
in the covariograms of pairs of cells. The new analysis done here also focuses on interactions be-
tween pairs of cells, as revealed by the use of spike train covariograms, but uses some of the novel
insights gained in chapter 2. The new analysis produces a large set of observations which strongly

suggest that the data should be interpreted in a way significantly different to that published in the
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original report: together with the modeling study described in chapter 4, the analysis suggests that
the peaks in the covariograms are caused by slow (timescale tens of seconds) covariations in the
resting membrane potentials of the two neurons being recorded from.

It is known that various regions in the brain stem (in particular, the parabrachial region) and
geniculate-projecting areas of cortex (areas 17, 18, and 19 in the cat; mostly area 17 in the mon-
key) may influence the resting membrane potential of cells in the LGN through activation of
metabotropic receptors. The timescale of their effects is in the tens of seconds, similar to the
timescale of interactions found in the analysis done here. Limited evidence available so far has
suggested that the control of resting potential is global over the entire LGN (Mukherjee et al.,
1995). However, Sillito et al. reported that only pairs of neurons with similar receptive field
properties (On/Off/X/Y) were correlated. In all records where three cells were successfully simul-
taneously recorded from, one of the three cell pairs always covaried much more strongly than the
other two cell pairs. Furthermore, while doing the analysis reported on in chapter 3, I observed
that for some records, some cell pairs even anti-covaried. Thus, the analysis and modeling done
in this thesis indicate that Sillito et al.’s data holds evidence for an intriguing and hitherto undoc-
umented phenomenon: the possibly diffuse, but cell class-specific, control of resting membrane

potential in different groups of LGN neurons.



Chapter 2 Latency, Excitability, and Spike Timing Correlations

Abstract

It is known that peaks in the shuffle-corrected cross-correlogram of the spike trains
of two cells are due to covariations, not time-locked to the stimulus, in the responses
of the two cells. Such peaks are often interpreted as evidence of spike timing coor-
dination between the two cells. However, there are other ways to covary which can
generate very similar peaks, particularly when the peaks have widths on the order of
tens of milliseconds. I describe two of these here: (1) covariations, over different
trials, in the overall latency of the response; and (2) covariations, over different tri-
als, in the overall excitability (i.e. average firing rate) of the response. I show how
each of these leads to a peak in the covariogram, and how to distinguish such peaks
from each other and from peaks due to spike timing coordination. In particular, 1
show how to separate the excitability and spike timing components of a covariogram
when both types of correlations are present. In general, it must be noted that shuffle-
corrected correlograms — equivalent to covariograms — measure covariations of any
kind between the firing patterns of two cells. Latency, excitability, and spike timing

are simply three examples of particular relevance to neurophysiology.



2.1 Introduction

Imagine that we have obtained spike trains from two neurons, recorded simultaneously during
many identically prepared trials of an experiment. To assess whether there are interactions be-
tween the two neurons, we build the cross-correlogram of the two spike trains, averaged over tri-
als. We must take into account the fact that the correlogram of two cells with similar peri-stimulus
time histograms (PSTHs) will be peaked even if the two cells are independent and there are no in-
teractions between them. This case is analogous to that of two scalar variables, s; and s», that are
independent but have similar means: their correlation r = (s152) will be positive even though they
are independent. But their covariance v = ((s1 — $1)(s2 — §2)) (where 5; = (s;) and () represents
averaging over samples) is different from zero only if s; and sy are not independent, regardless of
what their mean values are. The scalar case suggests what to do in the spike train case in order
to obtain a straightforward indicator of departure from independence: use a measure analogous to
covariance and compute cross-covariograms instead of cross-correlograms. (Cross-covariograms,
also known in the neurophysiology literature as shuffle-corrected cross-correlograms (Perkel et al.,
1967; Palm et al., 1988; Aertsen et al., 1989), are described in section 2.2 below. I will sometimes
shorten the term “cross-covariogram™ to simply “covariogram™.) Cross-covariograms are differ-
ent from zero only if the two spike trains are not independent, regardless of whether their PSTHs
are similar or not.! How should one interpret the presence of a peak in the covariogram? Fig-
ure 2.1 shows how three very different types of spiking patterns can all lead to similar peaks in
the covariogram. Distinguishing which of these types of spiking patterns (spike timing, latency,
or excitability) caused the peak is important, since that distinction will strongly affect any inter-
pretation of the covariogram. In this paper I will explain how latency and excitability correlations
give rise to a peak (spike timing correlations have been treated before, e.g. Perkel et al. 1967), and
how to disambiguate the three types of patterns.

In each trial of Figure 2.1A most spikes from cell 1 have a corresponding, similarly timed
spike in cell 2. Let us call this type of correlation, where there is coordination between individual
spike times in each trial, a spike timing correlation. In each trial of Figure 2.1B the two cells
spike independently of each other, so spikes in cell 1 do not have any particular corresponding
spikes in cell 2. But on each trial the spike trains of both cells have been shifted together in time

by some amount that is different from trial to trial. Let us call this type of correlation, where

It is sometimes said that the covariogram is a correlogram that has been corrected for “stimulus-locked
correlations”.
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Figure 2.1: Three types of correlations. Despite the very different spiking patterns, all three
shuffle-corrected correlograms (henceforth called covariograms— see section 2.2) look similar.
Each row illustrates a type of spiking pattern: On the left is a raster plot of two simulated cells. On
the right is the covariogram of spike trains made with the same type of spiking pattern illustrated
to its left. (Parameters used to generate the spike trains on the left were set to extreme values,
to emphasize clarity in illustrating each pattern; parameters used to generate spike trains for the
covariograms on the right were set to “physiologically plausible” values.) A: On each trial, most
spikes in cell 1 have a corresponding, closely timed, spike in cell 2. Both cells have the same
response latency and overall firing rate in all trials. B: Spikes in cell 1 do not have a corresponding
spike in cell 2: on each trial, the two spike trains were generated independently of each other. But
the latency of the response varies together over trials. C: Again, on each trial the spikes for the
two cells were generated independently of each other. But the average firing rate of the response
varies together over trials. Zero counts on the covariogram y axes is the expected value if the two
cells are independent; the dashed lines are two standard deviations away from this expected value.
The inset at the top right of each covariogram shows the PSTHs of the two cells involved, plotted
on axes that are 250 ms wide and 60 Hz tall.
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the coordination is in the time shifts of the responses of the two cells, a latency correlation.* In
Figure 2.1C, the total number of spikes fired in each trial by cell 1 covaries with the total number
of spikes fired in each trial by cell 2 (i.e. the two cells have similar gains in each trial, where
“gain” measures how many spikes each neuron produces in response to the stimulus driving it).
But within each trial the spike trains of the two cells were generated independently of each other.
Let us call this last type of correlation, where the coordination is between the gains of both cells,
an excitability correlation. In all, Figure 2.1 shows that the covariogram and the PSTHs alone do
not provide enough information to conclude which type, or mix of types, of spiking patterns gave
rise to the peak in the covariogram.

The three different spiking patterns illustrated in Figure 2.1 can give rise to strikingly sim-
ilar covariograms because the PSTHs and joint peristimulus time histogram (JPSTH; the cross-
correlogram is a summary of the JPSTH) estimate only the first and second-order moments of
the distribution of the responses of the cells. These moments only constrain what the distribution
can be, but do not specify it uniquely. Some possibilities may be eliminated as incompatible with
known physiology; others, particularly those illustrated in this paper, are relevant to neurophysio-
logical studies and need to be considered further. In the paper, T will make no assumptions about
the mechanisms that might have generated covariations in latency or excitability, so that the con-
cepts to be explained will apply equally well to any two simultaneously recorded point processes:
different types of spiking patterns will be illustrated using rasters made by simulating Poisson
processes with time-varying event densities (Papoulis 1984). But the language used to illustrate
the ideas will be that of neurophysiology (“cells”, “spikes”, etc.), and the neurophysiological rel-
evance of the concepts and possible physiological mechanisms involved in generating the patterns
will also be discussed.

Section 2.2 introduces the notation and correlogram methods used in the paper. Section 2.3
describes how each of the spiking patterns illustrated in Figure 2.1 leads to a peak in the co-
variogram. Section 2.4 presents methods to disambiguate the three patterns. Finally, section 2.5
discusses the results and their relevance to neurophysiology. A preliminary version of these results

has appeared in abstract form (Brody, 1997).

*The word “latency” here indicates the time shift of the whole response, not just of the first spike.
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2.2 Notation and correlogram methods

The spike trains of two cells will be represented by two time-dependent functions, S;(¢) and
Sy(t). They will be assumed binned 3 (thus ¢ will index a discrete time) and collected over many

experimental trials, indexed by a superscript r. The cross-correlogram of each trial is defined as

c'(t) = ZS{(T—l—t)Sg(T) = 5T®55. (2.1)

In a manner exactly analogous to estimating the covariance of two scalar stochastic variables
sy and so by ( (81 — §1) - (s2 — §2) ), where §; = (s;) and () stands for an average over trials r,

the estimator of the cross-covariogram of ST and 53 is

V o= ((S]-58)®(S5—5%))
= (ST®55) —(S]®8y) —(S]®55)+ 5] ® 5]
= (ST ®83) —(57) ® (53). (2.2)

When trials are time-locked to a stimulus, (S7) is called the peri-stimulus time histogram
(PSTH) of cell 1, and (.5%) is the PSTH of cell 2. The two terms in equation (2.2) are the raw cross-
correlogram R = (ST ® S%) and the shuffle corrector K = (S7) ® (S%). The cross-covariogram
V = R — K is also known as the shuffle-corrected correlogram (Perkel et al., 1967; Palm et al.,
1988; Aertsen et al., 1989); however, I will call it here the cross-covariogram, or sometimes simply
the covariogram, for short.*

Regardless of whether the two PSTHs are similar or not, if the two spike trains ST and 53 are

3We will be interested in the time density of spiking events; if individual spiking events are represented by Dirac
delta functions, binning serves the role of smoothing the train of delta functions which represents each spike train. 1
have chosen binning (equivalent to smoothing with a boxcar function and sampling at a rate inversely proportional
to the width of the boxcar) over smoothing with a Gaussian function because the calculation of significance limits
(equation (2.3) below) is computationally simpler in the binning case. To obtain some of their results, Palm et al. (1988)
assumed that the bin width was small enough that no single trial had more than one spike in any bin; this assumption
will not be used here because there are cases where it would require bins too small to be effective in smoothing. For
example, bursty neurons can fire at up to 800 Hz (Gray and Mccormick, 1996), which would require bin widths of less
than 1.25 ms. In contrast, typical bin widths used here are in the range of 4 to 8 ms. For this reason, significance will
not be quantified using the “surprise” measure of Palm et al. (1988), but will instead be quantified using equation (2.3).

“The shift predictor (Perkel et al., 1967) is very similar to the shuffle corrector, except that K is replaced by
P = (ST ®52H (r) ), where II(r) is some permutation of the stimulus presentations r (and the corresponding substitution
is made in equation (2.2)). If different trials are independent of one another, then the expected value of the shift predictor
P is equal to the expected value of the shuffle corrector K. Thus they are both estimators of the same function. In
practice it is preferable to use K instead of P since the former is a less noisy estimator: K can be written as the average
of P, taken over the set of all possible permutations IT (Palm et al., 1988).
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independent then the expected value of V, where the expectation is taken over repetitions of an

entire multi-trial experiment, is zero:

E{V}=FE{R-K} = E{(S]®53)} - E{(S])®(53)}
= B{ST}® E{S}} — BE{S} ® E{S}} = 0.

Significant departures of V' from zero indicate that the two cells are not independent. This
conclusion does not require any assumptions about the distributions from which ST and S% are
drawn. Estimating the significance of departures of V from 0 does require some assumptions.
For the null hypothesis I will assume that S is independent of S, that different trials of S| are
independent of each other, and that different bins within each trial of Sy are independent of each

other (and I will make similar assumptions for the trials and bins of S). Then the variance in the

null hypothesis V' is

o*(t) = (0% ® 03 + i ® 03 + 02 @ p3)/Nisials, (2.3)

where 1 (#) and 0% (t) are the mean and variance of S7(t) over trials r, respectively, similarly
for ps and o—%, and Nipgals 1s the number of trials in the experiment. In practice, one uses the
sample means and variances to calculate o (). The 20 limits, calculated in this way, are displayed
as dashed lines in the covariograms throughout this paper.

The Joint Peristimulus Time Histogram, or JPSTH (Aertsen et al., 1989), is a matrix, built
out of the cross products of ST and §3. The raw JPSTH, analogous to the raw cross-correlogram
R, is Jr(11,m2) = (S7(71)S7(12)). The “PST predictor”, analogous to the shuffle corrector, is

Jr = (S7(11)) (S5 (72)). The difference of these two is the corrected JPSTH,

Jv(71,79) = Jr — Ik = (§1(11)95(72)) — (S1(m1)) (S3(72))- 24

If 51 and S, are independent, the expected value of Jy is zero. The covariogram V can be
obtained from Jy by summing along diagonals of the matrix such that 7; — 75 is kept constant.
Following Aertsen et al. (1989), a normalised version of .Jy is obtained by computing, bin by bin,
the correlation coefficients of ST(7;) and S5 (7). In this paper figures involving a JPSTH display

the matrix of correlation coefficients



Jnorm (71, T2) = Jv (11, 72) / (01(11)02(m2)), 2.5

where o#(71) is the variance, over different trials, in S7(71), and o3(72) is the variance in
53(72). The correlation coefficients Jyorm (71, 72) are bounded within [—1,1]. If the coefficient
Jnorm(71,72) = 1, then S;(71) and So(79) are perfectly correlated: S (11) = @ Ss(72) for some

positive constant c.

2.3 Different types of correlations

This section examines each of the three types of spiking patterns introduced in section 2.1. Sec-

tion 2.4 will describe methods to disambiguate the three patterns.

2.3.1 Excitability correlations

How do excitability correlations lead to a peak in the covariogram? Let n] and nj be the total
number of spikes fired in trial 7 by cell 1 and cell 2, respectively. Then (as shown below) the DC
value of the covariogram, 37, V(t), is equal to (nfn}) — (n])(n}), which is the covariance of nf
and nj. If both cells have similar gains which vary over trials, then n} and n} will have a positive
covariance, so the DC value of the covariogram will be positive. This necessarily implies that
the covariogram cannot be zero for all ¢. Since we are using trials that each last a finite amount
of time, the covariogram falls to zero at large |¢|. Therefore, if the covariogram’s DC value is
positive, there must be a positive peak somewhere in the covariogram. This is true independently
of whether or not there was coordination between individual spike times in the two cells. If
there was no coordination between individual spikes times, we will call the peak an excitability
correlation peak.

Let us now prove the main statement in the argument above: }°, V() = (nfn}) — (n])(n3).

The area under a spike train correlogram is independent of the bin width used to compute it.

Letting

ni ZS{(t) and ny ZSg(t) (2.6)
t t

be the number of spikes fired in trial 7 by cell 1 and cell 2, respectively, the area under the rth
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trial’s raw cross-correlogram, C”, is
o0 o0
D0 = 3 Y Sir+0)S5r) =S STw)Sh(r) =S Si(w) S Si(r)
t U T U T

t=—00 T=—00

= ninj. 2.7

Similarly, the area under the shuffle corrector K is always (n7)(nj}), independently of bin

width. If we sum across time in the covariogram, then

!
g
Q
T
N
~

2V = YR -K@®) =Y (CT() - > K(t)
t t

t t t t
= (nin) — (ni)(n) (2.8)

which is the covariance of ny and no, as claimed above.

If we assume that all trials are of the same length of time, then equation (2.8) is directly
proportional to the covariation in the mean firing rates of the two cells. What kind of shape does
a peak due to positive excitability correlations have? The width of the peak in the covariogram is
directly proportional to the temporal width of the parts of the cells’ responses that had comodulated
gains. Figure 2.2 shows an example. Here the part with comodulated gains was a roughly bell-
shaped firing rate function which peaked at 100 ms and was approximately 60 ms wide. Hence the
width of the covariogram peak is on the order of 2 x 60 = 120 ms. The DC value of the corrected,
but unnormalized, JPSTH is also equal to the covariation in the total number of spikes fired per
trial (equation (2.8)). Since normalization changes the magnitude, but not the sign, of each of the
elements of the JPSTH matrix the excitability peak can also be seen in the normalized JPSTH.

Covariations in the number of spikes fired may, of course, have been accompanied by fine
control in the timing of the spikes. The DC value of the covariogram does not in itself tell us
whether this was the case.”> To address that question we have to use other methods, explored

further in section 2.4.1.

SFor example, the reader may notice that the covariograms in figures 2.1A and 2.4, which were labelled as “spike
timing covariograms,” have clearly positive DC values. This follows from the way rasters for these covariograms
were generated (see appendix 2.7.3). An example of a spike timing correlation withour an accompanying excitability
correlation can be found in the left panel of figure 2.7 (see appendix 2.7.3).
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Figure 2.2: Excitability correlations, by construction. The two cells were simulated by Poisson
processes with time-varying event densities, to represent time-varying firing rates; event trains
for the two cells in each trial were drawn independently from each other. Each cell had two
components in its firing rate: a constant background rate of 35 Hz, plus an alpha function shaped
(roughly bell-shaped) firing rate function of width ~ 60 ms. On each trial the height of the alpha
function was the same for both cells, but it varied from trial to trial. (Averaged over trials, the
peak of the alpha function was at 100 ms and was 70 Hz high.) Since the component of the two
firing rates that had covarying gains was approximately 60 ms wide, the peak in the covariogram
shown in the top right is on the order of 2 x 60 = 120 ms wide. 200 rasters were generated for this
covariogram. The thick grey line is the analytical expected value from equation (2.19), computed
with full knowledge of the parameters and procedures used to run the stochastic process that
generated the spike trains. The two thin dashed lines are significance limits. On the top left are ten
of the actual rasters used to compute the covariogram, and below them the PSTH of the two cells
(smoothed by a Gaussian with 6 ms standard deviation). On the bottom is the normalised JPSTH,
flanked by PSTHs of each of the two cells. See Appendix 2.7.1 for details of how the rasters were
constructed and how the analytical curve going through the covariogram was calculated.
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2.3.2 Latency correlations

How do latency correlations lead to a peak in the covariogram? Suppose we are recording from
two neurons whose responses are independent. In that case the expected cross-covariogram (see
equation (2.3)) is zero,
E{V} = E{R} - E{K} =0,
—— —— ——
covariogram raw X-corr  corrector

so for a single repetition of the multi-trial experiment, we expect that within sampling noise
K =~ R. Now imagine that we are recording from two cells whose responses are independent —
except for the latencies of the responses, to be understood as follows: take the responses obtained
from two completely independent cells, and in each trial shift the responses of both cells by some
amount of time ¢”. Let ¢" be different for each trial. The resulting spike trains will be responses
that we will describe as being independent except for the latencies (i.e. the time shifts) of the
responses. How will the time shifts affect V'? Let us examine its two components, R and K. The
raw cross-correlogram R will not be affected: cross-correlograms depend only on relative times
between the two cells, and the relative times between the spikes of the two cells on each trial have
not changed, since on each trial the responses of both cells were shifted together. The shuffle
corrector K, on the other hand, will be affected: K = (S;) ® (S2), and the two PSTHs (S;) and
(S2) will each be smoothed by the time jittering caused by the shifts ¢". The shuffle corrector K
will be a smoothed version of the shuffle corrector that would have been obtained if there had been
no time shifts. The shuffle corrector obtained without time shifts is X ~ R; the smoothed version
of this that is obtained with time shifts is a smoothed version of R. Thus, if there are latency time
shifts, sharp peaks or troughs in R will be smoothed away in the shuffle corrector K, and will
remain outstanding in the cross-covariogram V' = R — K. The top left panel of Figure 2.3 is a
schematic illustration of this, showing a raw cross-correlogram R, a smoothed version of the raw
cross-correlogram, which represents K, and the difference of the two. This last is the expected
covariogram V. (Since the preceding description excluded excitability correlations, the DC value
of V' is zero. The peak is surrounded by two compensating troughs.) A more mathematically
detailed description of latency correlations can be found in Appendix 2.8.

The three other panels of Figure 2.3 show the covariogram, JPSTH, and 10 rasters of spike
trains constructed with latency correlations, made by simulating two independent Poisson cells

and then shifting both spike trains in each trial by a random amount of time " drawn from a
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Figure 2.3: Latency correlations. The top left panel shows a schematic of how latency correlations
lead to a peaked covariogram (see text for explanation). The three other panels show an example
of latency correlations, using rasters made by simulating two independent Poisson cells, each
raster pair of which was then shifted in time by a random amount drawn anew for each trial from
a Gaussian distribution with mean 0 ms and standard deviation 15 ms. See Appendix 2.7.2 for
details. 200 rasters were generated; 10 of the rasters are shown in the top right. Below them are
the PSTHSs of all 200 rasters for both cells. Overlayed on the covariogram at the bottom left is the
analytical expected value of the covariogram from equation (2.20), computed with full knowledge
of the parameters and procedures used to run the stochastic process that generated these spike
trains. The two thin dashed lines are significance limits. Notice the weak but clearly present
troughs in the JPSTH at the bottom right.
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Guassian with zero mean and standard deviation 15 ms. The covariogram at the bottom left has

the peak and compensating troughs illustrated in the schematic at the top left.

2.3.3 Spike timing correlations

For comparison with latency and excitability correlations, Figure 2.4 shows some example rasters,
the covariogram, and the normalised JPSTH of spike trains constructed with spike timing correla-
tions.

These were defined in the introduction as correlations where, in each trial, there is some coor-
dination between individual spike times of two cells. A specific example of a mechanism leading
to such correlations is that of a fast excitatory synaptic connection from one cell to the other,
where there is a (probabilistic) causal relationship between individual presynaptic spikes and one
or a few closely timed postsynaptic spikes (or zero spikes if the postsynaptic cell failed to fire).
Given arbitrary network topologies, further complications in the connectivity of the cells and the
resulting shape of the covariogram are easily imagined. Thus spike timing correlations are very
flexible. Almost any shape in a covariogram can be explained in terms of spike timing correla-
tions.® In contrast, the covariogram shapes that latency or excitability correlations can give rise to
are closely tied to their underlying PSTHs and are far less arbitrary. Spike timing correlations are
also very complex, in the sense that during each trial the two cells share information about a large
number of parameters (many individual spike times). This is obvious in the case of a direct con-
nection from one cell to another, but it is also true if the information sharing mechanism is indirect
(e.g. there is a common input to both cells). The number of parameters about which information
is being shared on each trial is the most important distinction between spike timing correlations

and latency or excitability correlations.

2.4 Disambiguating correlations

In order to correctly interpret a covariogram, it is important to distinguish the covariogram shapes
due to each type of spiking pattern from each other. This section describes quantitative methods

to do so.

81n particular, spike timing correlations do not necessarily imply a thin covariogram peak. The width of the peak (or
trough) in the covariogram will depend on the particular mechanism involved in generating it. Fast ionotropic synaptic
mechanisms would, by themselves, lead to thin peaks. But other, slower-acting mechanisms (e.g. NMDA or GABA g
synapses (Brody, 1996), metabotropic receptors, or interactions with slow conductances intrinsic to the cells in question
(Kirkland and Gerstein, 1996) would lead to broad peaks.
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Figure 2.4: Spike timing correlations, by construction: most individual spikes of one cell have
a specific, corresponding, closely timed spike in the other cell. On each trial, the corresponding
spikes in the two cells were generated by randomly jittering the times of a single spike train twice;
the result of the first random jittering was assigned to cell 1, and the result of the second random
jittering was assigned cell 2. Jittering was done by adding a random amount, drawn i.i.d. from
a Gaussian distribution with mean zero and standard deviation 12 ms, to the time of each spike.
The unjittered spike train from which the jittered versions were made was produced anew for each
trial. In addition, random background spikes were also added to the trains of the two cells. See
Appendix 2.7.3 for details. Ten of the rasters made in this way are shown on the top left. The
covariogram of two hundred such rasters is shown on the top right. The thick grey line in the
covariogram is the analytical expected value from equation (2.21), calculated with full knowledge
of the parameters and procedures used to generate the spike btrains. The normalised JPSTH is

shown at the bottom.
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2.4.1 Identifying the presence of excitability correlations

Consider two cells producing spikes trains ST and S3. Let n’] and n} be the total number of spikes

fired in each trial r by cell 1 and cell 2, respectively. Suppose the covariation
v = (niny) — (n})(n) 2.9

is positive. This alone implies there is a peak in the covariogram of S; and S5 (see section 2.3.1).
But what parts of a possibly multi-peaked covariogram shape will be due to covariations in param-
eters such as overall gains’ (that is, excitability correlations), and what parts will be due to other
types of interactions (e. g. spike timing or latency correlations)? Based on the experimentally
observed variations in the gains of the cells’ responses, an estimate of the covariogram that would
due to excitability correlations alone can be obtained; subtracting this estimate from the original
covariogram will then leave an estimate of the contributions due to other types of correlations.

In making the excitability estimate, it is important to distinguish between changes in the gain
of the cells’ stimulus-induced responses and changes in the cells’ background firing rates. Consid-
ering one cell initially, let us first divide its PSTH into two terms:® a time-independent background

firing rate b, and a time-dependent stimulus-induced firing rate p(¢):

PSTH(t) = (S"(£)) = b+ p(t). (2.10)

Set b = (ny)/Np, where nj is the number of experimentally observed spikes that occurred
before the stimulus start time (written as #g) in trial r, and Np is the number of bins in the PSTH
before ¢g. The magnitude and time dependence of p(t) are then set by p(t) = PSTH(t) — b. Now
let us add a description of the experimentally observed trial-by-trial variations in the gains of b and
p(t). To do this, let us model the experimentally observed responses with a (possibly stochastic)

model cell which has responses M"(¢) during trial 7 such that

E{M"(t)} = "0+ p"p(2), (2.11)

where 5" and p" are scalar constants that depend on the trial number r. The constants {67} will

be used to track the trial-dependent changes in background firing rate seen in the experiment, while

"The “gain” measures how many spikes each neuron produces in response to the stimulus driving it.
¥Note that since the PSTH is a peri-stimulus time histogram, there is a period of data collection that takes place
before the start of the stimulus on each trial.
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the constants {p”} will be used to track the trial-dependent changes in the gain of the stimulus-
induced response. There are as many equations of the form of (2.11) as there were trials in the
experiment. Notice that all that has been determined in the model is the expected value of M (¢).
In what follows, no assumptions beyond this are necessary. In particular, it is not necessary for the
model cell to be Poisson. Now, to be consistent with the number of pre-stimulus and total spikes

observed in each trial of the experiment, estimate 5" and p” for the model by setting them so that

npg =07 b= E{M"(t)}. (2.12)
t<tg t<1g
" =067 b+p" Y p(t) =3 E{M"(t)}. (2.13)
t t t

The first equation implies that (") = 1; the second implies that (p") = 1. Thus, when

averaged over trials, equation (2.11) is equal to the original PSTH:

(BAM"(8)}), = (B7) b+ (p") p(t) = b+ p(2). (2.14)

The description of the cell defined by b, p(t), {3"}, and {p"}, is a form of “enhanced” PSTH
that describes background and stimulus-dependent responses separately, and also describes the
experimentally observed trial-dependent variations in the magnitudes of these two components.
Interpreted as models, two such descriptions (one for each cell) can be used to predict the covari-
ogram due to excitability correlations: Let the random variables in each model be independent of
those in the other model. Then the two model cells can only interact if there are covariations in
their 8" and p" parameters. These in turn are determined by the experimental data, as described
above. Adding the subscripts 1 and 2 to differentiate between the two cells, dropping the super-
scripts r for legibility and following equations (2.11) (2.10) and (2.2), the covariogram predicted

by the models, which we will call V, for “excitability covariogram,” is

Ve = ((B1B2) —1)b1 @by + ((Bipa2) — 1) b1 @ py +

((p162) —1)p1 ® b2 + ({p1p2) — 1) p1 ® p2. (2.15)

The two models satisfy
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Y BE{M{()}= nj and Y B{M;1)} = nj, (2.16)
! ~—~— ! D
model experiment model experiment

so the expected DC value of V, will exactly match the DC value of the covariogram of the
experimental data.

Two examples of making such estimates, and the result of subtracting them from the original
covariograms, are shown in Figure 2.5. The top row of the Figure shows this for spike trains made
with excitability correlations only. After subtracting the excitability covariogram, all remaining
deviations are within the significance limits. The bottom row shows the estimate, and the covar-
iogram after its subfraction, for spike trains constructed with both excitability and spike timing
correlations. Since the rasters were artificial, all parameters used in their construction are known.
Each of the two components of the covariogram can therefore be predicted (based on knowledge
of the methods used to construct the rasters) and compared to the data-based estimates. Only
the spike timing component prediction and estimate are directly compared in the Figure (bottom
right). The grey line is the covariogram predicted based on the spike timing parameters alone.
It matches the residual covariogram well: subtracting the excitability correlations estimate has
accurately revealed the spike timing component of the covariogram.

In experimental data, excitability correlations may be mixed with spike timing ones, and con-
found the measurement of the latter (Das and Gilbert, 1995). The procedure described in this

section can be used to unconfound the measurement.

2.4.2 ldentifying the presence of latency correlations

How can we identify whether a peak in a covariogram was caused by latency correlations? Let
the two sets of spike trains involved be {S](¢)} and {S5(¢)}. Assume there is a significant peak
in their covariogram. If the peak is due only to joint time-shifts in the spike trains (latency corre-
lations), then by definition (see section 2.3.2 and appendix 2.8) the spike trains can be described

as

ST(t) =UT(t+Af)  and  S(t) = UL(t + At") 2.17)
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Figure 2.5: Estimating excitability correlations from the spike train data. Top row: On the top
left is the same covariogram as shown in figure 2.2, an example of pure excitability correlations;
overlaid on it as a thick dashed line is the excitability covariogram estimate V, obtained using
equation (2.15). Unlike the solid grey line in figure 2.2, the thick dashed line here was calculated
without any knowledge of how the spike trains were generated. The top right shows the same
covariogram after subtraction of the estimated excitability covariogram. All remaining deviations
from zero are within the significance limits. Bottom row: Mixed-type correlations. On the bottom
left is the covariogram of rasters constructed with both spike timing and excitability correlations.
The shape does not obviously indicate two types of correlations; however, we can use more than
just the shape to separate the two. The thick dashed line is the excitability covariogram estimate
calculated using equation (2.15). On the bottom right this estimate has been subtracted, leaving
behind a clear peak, indicative of a correlation other than an excitability correlation. We know
here that this is a spike timing correlation, and can predict the expected covariogram shape based
on knowledge of the spike timing correlation parameters used to construct the rasters. The pre-
dicted shape is shown as a thick grey line. It matches the residual covariogram well. Subtracting
the excitability covariogram estimate has accurately revealed the spike timing component of the

covariogram.
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where {U7(t)} and {UJ(t)} are spike trains drawn from two independent distributions and
{At"} is some set of time shifts. In particular, the covariogram of Uy and Us must be, within
sampling noise, zero for all .
The preceding observation suggests using the following method: search for time shifts {At"}

such that deviations from zero (i.e. peaks or troughs) in the covariogram of

Ul(t) = S;(t— A7) and  UL(t) = Si(t — AY) 2.18)

are minimized. Let the set of time shifts which minimizes the peaks and troughs be indicated
by {A#"}. If after the minimization the deviations are still statistically significant, the original
peak in the covariogram of {S7(¢)} and {S5(¢)} cannot be explained in terms of joint latency
shifts alone; but if the deviations are all statistically insignificant, the result suggests that it can.’
Furthermore, the result indicates that the PSTHs of the two independent, unshifted spike trains
are (U7 (t)) = (ST(t — A")) and (U5 (¢)) = (S5(t — Af")), and the time shifts which led to the
latency peak are {A#"}. Knowledge of the PSTHs and time shifts is enough to predict the covari-
ogram (see appendix 2.8). This prediction can then be compared to the original covariogram, 1011

The results of such a search run on the rasters of Figure 2.3 are shown in Figure 2.6. The
search for time shifts was done by minimizing the scalar function F' = [ V?(¢)d¢t, which is a
minimum when V () = 0 for all ¢. Here V'(¢) is the covariogram of U; and Us. This was not the
only possible choice of F'(-). Figure 2.6 shows the rasters U; (¢) and Us(t) and their covariogram,
demonstrating that it is, within sampling noise, zero for all ¢. Similarly, Figure 2.6 shows that the
normalised JPSTH of U, () and Uy (¢) has no significant structure different from zero. This JPSTH
should be compared to Figure 2.3. The Figure also shows the covariogram prediction based on

(U (), (UJ(¢)), and {Af"}, overlaid on the original covariogram. !2

°If there are excitability as well as latency correlations in the data, the search must evaluate and minimize deviations
in the covariogram that remains after subtraction of the excitability estimate (section 2.4.1), calculated anew for each
set of times { At }.

"%In the minimization and in the prediction A¢" is the same for both cells in each trial 7. Constraining At™ to be
the same for both cells is equivalent to the assumption that the peak seen in the original covariogram is most easily
reproduced by latency correlations when the time shifts are the same for both cells. The rationale behind this is that
latency correlation peaks are biggest when the time shifts for the two cells are most correlated, i.e. when the time shifis
for both cells are the same.

"If reliable estimates for the latency shifts A¢™ for each cell are available, these should be used in place of of AE":
the search generalizes the method to the case where such estimates are not available or are unreliable.

2Details of the search method, while important in practice, are not explored in this paper. The method may or may
not use measures of latency specific to the problem in question (e.g. one might to choose to start the search by aligning
all the bursts in the record, or, as suggested by Peter Kénig (personal communication) aligning the rasters so the width
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Figure 2.6: Latency search results. The top left shows the same rasters as in Figure 2.3, after
shifting by the times found by the latency search described in the text. For example, the fifth
raster has been shifted 30 ms to the left. The top right shows the cross-covariogram after the
latency search. All deviations from zero are within the significance limits. The bottom left shows
the JPSTH after the latency search. There is no structure significantly different from zero left
(compare to Figure 2.3). The bottom right shows the original cross-covariogram from Figure 2.3
(thin solid line, binned) together with the covariogram predicted by the hypothesis found by the
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Showing that a covariogram is well explained by latency correlations is not equivalent to
showing that it was caused by them. It merely establishes that the latency correlations hypothesis

is not one that may be ignored.

Not every covariogram can be explained in terms of latency correlations. Figure 2.7 shows an
example using spike trains constructed using spike timing correlations. There is no set of latency

shifts that fully accounts for the peak.

original correlogram after latency search

Average counts
Average counts

5
-200-100 0 100 200 -200-100 0 100 200
time (ms) time (ms)

Figure 2.7: Covariogram of rasters built with spike timing correlations and result of the latency
search procedure. There is no set of latency shifts that can fully account for the peak in the
original covariogram. Note that the procedure is biased: because it searches for a minimum, it
is guaranteed to reduce the peak by some amount. One might interpret the result shown here as
indicating that the peak in the original covariogram is due to a mix of spike timing and latency
correlations, but all that has been shown is that the covariogram alone does not distinguish between
the hypothesis that the peak is due to spike timing correlations and the hypothesis that the peak
is due to a mix of spike timing and latency correlations. Parsimony might suggest spike timing
correlations only.

2.5 Discussion

When the firing patterns of two neurons covary, their shuffle-corrected correlogram (covariogram)
will reflect this by not being zero for all . Peaks or troughs in the covariogram can be interpreted in
terms of individual spike-to-spike interactions between the two cells (spike timing correlations).
Such interactions are complex in the sense that during every trial, information about many pa-
rameters (the firing times of many individual spikes) is shared between the two cells. However,

there are other more global parameters, which describe the overall envelope of the response of

of the individual PSTHs is minimized); here, F' was minimized through a simple iterated line search along coordinate
directions.
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each cell, about which information may be shared. Covariations between those parameters will
also be reflected in peaks or troughs in the covariogram. I have presented two examples in this
paper: covariations in an overall response timing parameter (latency correlations) and covaria-
tions in an overall gain parameter (excitability correlations).'> These were chosen both because
of their simplicity and because of their neurophysiological relevance. The covariograms gener-
ated by covariations in latency or excitability can be strikingly similar to covariograms generated
by spike-to-spike interactions. This implies that one must be cautious when interpreting covari-
ograms, since the three types of correlations can have similar covariograms yet may be caused by
very different mechanisms. The three different types of correlations also have very different effects
on postsynaptic cells receiving input from cells correlated in one of the three ways (C.D. Brody,
manuscript in preparation). Procedures to distinguish between the three types of correlations were
presented in the paper.

In the limit of one spike per trial, latency and spike timing correlations are identical. These two
types of correlations, in particular, are thus better understood as two ends of a common spectrum.
They both depend on sharing information about timing parameters: but while latency correlations
share information about only one timing parameter per trial, spike timing correlations can share
information about many more. Covariograms of two synchronously oscillating neurons (Singer
and Gray, 1995a), where there is also a single timing parameter (oscillation phase) about which
information is being shared on each trial, can also be seen as a form of latency correlations.

What kind of covariogram shapes may we expect from latency and excitability correlations?
Since they both operate on the overall envelopes of the response (the PSTHs), the shapes of their
covariograms are closely tied to these. The temporal structure in the covariograms will have the
same time scale as the temporal structure in the PSTHs: thin, sharp peaks will be seen in latency or
excitability correlograms only if the underlying PSTHs also have thin, sharp peaks. Covariogram
peaks with a width on the order of ten milliseconds or less (often considered as being caused by
lonotropic synaptic connections, e.g. Alonso et al. 1996) that are based on recordings with PSTH
widths on the order of many hundreds of milliseconds or more are unlikely to have been caused by
latency or excitability correlations. Broader peaks, on the other hand, may well have been caused

by such interactions. It is important to note here that latency time shifts blur out the sharpness

13 A passing reference to excitability correlations, as a possible confounder of spike timing correlation measurements,
was made in Aertsen et al. (1989), This passing reference is cited further below. Perkel et al. (1967) also mention
excitability correlations, but only in the context of unstimulated, spontaneously firing neurons: they concluded that
in that regime excitability correlations are unimportant. To my knowledge, latency correlations have not appeared
anywhere in the literature.
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of the relevant peaks in the PSTHs. This is especially true for bursty neurons, which may have
very sharp onset responses which are nevertheless not precisely time-locked to the stimulus. In
such cases, thin sharp peaks may well be caused by latency covariations even though the two
measured PSTHs need not be sharply peaked. This is because it is the “underlying” PSTHs, not
yet smoothed by the latency variations (e.g. U; and U, of appendix 2.8), which must be sharply
peaked in order to see a correspondingly sharp peak in the correlogram.

What physiological mechanisms could cause latency or excitability correlations? Conceivable
mechanisms range from ones unrelated to the stimulus (e.g. slow drifts in the general physiolog-
ical state of the experimental animal, or, for visual neurons, uncontrolled drifts in eye position
(Rodieck et al., 1967; O’Keefe and Berkley, 1991)) to those directly related to processing of the
stimulus (e.g. adaptive processes specific to the neurons being studied, an example of which would
be adaptation at the synapses driving the neurons being recorded from, or correlated changes in
the response mode of the neurons). In either case, detecting the presence of the correlations is a
necessary first step in identifying the mechanisms causing them.

Section 2.3.1 pointed out that if all trials are of the same length of time, the DC value of a
shuffle-corrected correlogram is proportional to the covariation, over different trials, of the mean
Jfiring rate of the two cells. Large, positive, DC values indicate strong covariations; negative DC
values indicate anti-covariations. The same is true of shift-corrected correlograms. A brief glance
at a shuffle- or shifi-corrected correlogram allows one to tell whether the mean firing rates covar-
ied significantly. Many shuffie- or shift-corrected correlograms found in the neurophysiological
literature show such large positive DC values, indicating that covariations in the mean firing rates
were indeed present (e.g. Kruger and Aiple 1988; Alloway et al. 1993; Hata et al. 1993; Ghose
et al. 1994; Sillito et al. 1994; Nowak et al. 1995; Munk et al. 1995). The DC value of the cor-
rected JPSTH is also proportional to the covariation over different trials of the mean firing rates
of the two cells, which led Aertsen et al. (1989) to observe that “For a linear trend in both neuron
firing rates [...] the PST-predictor can either be an underestimate or an overestimate, depending
on whether the trends in the two neurons go in the same or in obverse directions” (page 914).
The PST predictor in the JPSTH is analogous to the shuffle corrector K used in covariograms. If
such joint trends in the firing rates exist, subtracting the PST predictor from the raw JPSTH (equa-
tion (2.5)) can leave behind a peak (or a trough). However, it would be inappropriate to consider
that a failure of the PST predictor: the peak or trough is quite correctly signaling the fact that the

firing of the two neurons is not independent. In that sense the PST prediction/ shuffle correction
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has performed exactly as desired. What would be incorrect would be to interpret the peak as a
spike timing correlation, since it is a peak due to an excitability correlation.

Latency and excitability are not the only global parameters that could covary in the two cells.
They are two of the simplest and most general. The most obvious remaining simple case, not
treated in this paper, is that of covarying changes in the time /ength of the response of the two
cells. A quantitative method for detecting whether the presence of covarying changes in the time
length of the response can account for observed peaks in a correlogram remains to be fully de-
veloped. Together with the cases treated in this paper, the kinds of simple “warps” of the PSTH
response envelopes that would then be covered are translations, both in time (z-axis; latency
correlations) and in firing rate (y-axis; excitability correlations in background firing rates); and
dilations/compressions, again both in time (time length correlations) and in firing rate (excitability
correlations in stimulus-induced responses). The various warps may occur together in different
combinations, and even in different correlated combinations. An example is the following hypo-
thetical scenario: suppose the membrane resting potential of two cells covaries over different trials.
If the two cells are well described by leaky integrate-and-fire models, trials during high resting po-
tentials will result both in short latencies (the driving force can quickly drive the neurons to spike,
since the resting potential is closer spiking threshold than usual) and in high excitabilities (the
driving force will lead to more spikes than usual), whereas trials during low resting potentials will
result in long latencies paired with low excitabilities. In this scenario, peaks in the correlogram of
the two cells would be well accounted for by trial-dependent, paired variations in both latency and
excitability. This would be found by the methods described in sections 2.4.1 and 2.4.2. The two
types of variations being paired (that is, that the latency would covary with the excitability) would
then suggest the existence of a single parameter (resting membrane potential) underlying both
the latency and the excitability correlations— a possibility that could be further explored through
biophysically realistic models that explicitly include a description of resting membrane potential.
What this hypothetical scenario illustrates is that the basic warps described in the paper are not to
be taken as an end product. Rather, they are to be taken as flexible descriptions of covariations
of the global response properties of two (or more) neurons. If a particular experimental correlo-
gram is well described in these terms, then that description should be examined further, to be used
as an aid to understanding the interactions between the neurons in terms of biophysically and/or
computationally relevant parameters and processes.

While translations and dilations can describe many simple changes in the global response
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properties of the neurons, there are changes in global response properties that will not be well
described in those terms. For example, one might be studying two neurons whose responses
change together from trials where the cells have an initial burst onset in response to the stimulus,
to trials where neither cell bursts. Yet each neuron might, for both cases, fire similar total numbers
of spikes, at similar latencies, and in similar overall lengths of time. Thus the variations would
not be well described by translations and dilations of the PSTHs. But since the firing patterns of
the two cells would be covarying, this case, too, would produce a peak in the shuffle-corrected
correlogram of the two cells. One must carefully examine the rasters of the responses to look for
such possibilities. Even though, as a second-order statistic, a correlogram is always constructed
by considering two spikes at a time, peaks or troughs in it are not necessarily caused by individual
spike-to-spike interactions.
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2.6 Appendix

2.7 Generating spike trains

All the methods used in this paper to generate artificial spike trains relied on generating trains
of spikes from Poisson units with time-varying firing rates. Given a Poisson unit with a firing
rate A(t), the probability that it will produce a spike in the infinitesimal time interval [t,t+ 6t] is
defined as A(¢)d¢. Such units were approximated by finely discretizing time (At = 0.1 ms) and
then placing a spike at each time-step with probability A(¢) - At. For the rates used here, A(t) - At

was always less than 0.02 (maximum firing rate 200 Hz).
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2.7.1 Poisson model of excitability correlations

To generate a set of rasters with excitability correlations, the firing rates of two simulated Poisson
units were set on each trial to be y"A(t) + b, where " was a scalar constant that varied with trial
number r. On each trial the trains for the two units, though based on the same time-varying firing
rate, were generated independently. Under those conditions, the expected PSTH of each cell is

E{S(t)} = (7") A(t) + b and the expected covariogram is
E{V}=((¥) - (% - A®X (2.19)

For Figure 2.2, two hundred trials were generated, " was drawn anew on each trial from a Gaus-
sian distribution with mean 1 and standard deviation 1 (y" was set to zero on each trial if it was

negative), b was 35 Hz, and A(¢) was an alpha function that began at 70 ms and peaked at 100

ms with a value of 70 Hz: A(¢) = (70 Hz)%Q exp(logo“t) if £ > 70, zero otherwise, with ¢ in

milliseconds.

2.7.2 Poisson model of latency correlations

Rasters with latency correlations were generated by setting the firing rates of two independent
cells to be A(t) on every trial, and then shifting both spike trains in each trial by an amount of
time ¢" that was drawn anew for each trial from a distribution II(¢). In addition, an independent
unshifted spike train generated with constant firing rate b was added to each cell in each trial, to
represent random background firing. Under those conditions, the expected PSTH for each cell is

E{S} = A ®II + b, and the expected covariogram is
E{V}=(A®X) & (6(0) — I « IT) (2.20)

where * indicates convolution and () is the Dirac delta function or the Kronecker delta dy;, ac-
cording to whether the calculation is being done in continuous or discrete time.

For Figure 2.3, 200 rasters were generated, I was a Gaussian with mean zero, standard devi-
ation 15 ms, b was 10 Hz, and A(¢) was (100 Hz) exp(%%gﬁ) for ¢t > 100, zero otherwise, with

t in milliseconds.
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2.7.3 Poisson model of spike timing correlations

Each trial of rasters with spike timing correlations was generated by first generating a spike train
from a unit with firing rate set to be A(¢). This spike train then had its spike times jittered twice,
once to produce the spikes for cell 1 and once again to produce the spikes for cell 2. In addition,
each cell had an independent spike train generated with constant firing rate b added to its spike
train, to represent random background firing. Jittering was done by adding a random time, drawn
i.i.d. for each spike from a distribution j(¢), to the time of each spike in the train. The expected
PSTH for each cell is then E{S} = j ® A+ b. Let the expected number of spikes in each trial that
have a corresponding spike in the other cell’s spike train be labelled Ny = >, A(¢). The expected

covariogram is

E{V} = N,j®}j] 2.21)

For Figure 2.4, j was a Gaussian with mean zero and standard deviation 12 ms, b was 10 Hz, and
A(t) was a Gaussian-shaped function with mean 100 ms, standard deviation 30 ms, and a peak

value of 70 Hz.

Spike timing without excitability correlations

The above procedure for spike timing correlations includes some excitability correlations: the
total number of spikes in each trial covaries in the two cells, since for any given trial both trains
contain jittered versions of the same train drawn from A(f). A different method that does not
create excitability correlations was used for some of the simulations. When drawing the unjittered
spike train based on the time-varying rate A(t), the spike train was constrained to have exactly N
spikes on every trial. This reduces the expected covariation in the number of spikes for the two

cells to zero. The expected covariogram is now
. 1
E{V}=Nj®j] - F)\ ® A (2.22)
Note that since >, A(t) = Nyand 3>, j(t) =1, >, E{V} = 0.

2.8 Latency Correlations

This appendix presents mathematical details regarding latency correlations.
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Let the responses of the two neurons for each trial r be described by

Sit) = Ul(t+1)

Sp(t) = Us(t+1),

where U (¢) and Us(t) are independent point processes, the times ¢] and #} are drawn from a
probability distribution P(t1,t3), and all three of Uy, Us and P are stationary over different trials.
The overall process is stationary with respect to trial number. The expected value over many trials
of U1(t) and Us(¢t) will be written as Uy (¢) and Uy (t) and can be thought of as PSTHs.

We wish to determine the expected covariogram E{V'} of S5 and Ss. Since the latency time
shifts need not be integer multiples of any particular bin size used, the description below will be

in terms of continuous time. The cross-correlogram for trial r in a given experiment is

Cr(t) = /dT UT(t+ 7+ UL (7 + 85)

(2.23)
Therefore, since the process is stationary over trials,
E{R} = E{{C"(t))} = E{C"()}
- /df Aty Aty B{UT(t + 7 + ) U3 (r + )} P(#, 1)
= /detl dtg (jl(?f—f—T+t1)UQ(T+t2)P(t1,t2) (2.24)
A change of variables leads to writing the expected raw cross-correlogram as
E{R} = / dty dty Pty ts) CU(t+ 1 — 1), (2.25)

where

cl) = /dTU_l(t+T)UQ(T) =0, 00U,

= expected cross-correlogram of U; and Us. (2.26)
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The two expected PSTHs are

B{S\(t)} = / drUi(t+ )P (r) =01 © P, 2.27)
and
B{Si(t)} = / d7 Us(t + 7)Py(r) = Us ® P, (2.28)

where Pj() and P»() are the marginal distributions of ¢; and ¢, respectively. The expected

shuffle corrector E{K'} can be shown to be
1
E{K} = E{5:}®B{S} + GIE{R} - E{S} ® E{Sy}], (2.29)

where N is the number of trials in each repetition of the experiment. The expected cross-

covariogram is then

Bvy = YL B(R) - B{S) ® B(S,)]
_ % (B{R} - () ® P\) ® (Us ® Py)] (2.30)

where the £{ R} is described by equation (2.25). For large N the constant prefactor (N —1)/N
is negligibly close to one.

There are three simple limiting cases:

Case (1): P(t1,te) = II(t1)0(te — t1), where 6() is the Dirac ¢ function. That is, the times #;
and £, are always the same. This is the case described ins ection 2.3.2 and used in the simulation

of Figure 2.3. From equation (2.25),
E{R} = / dr(7)CU (1) = GV (1). 2.31)
Assuming N > 1, equation (2.29) gives
E{K} = E{$1}@E{S} =01 00U, (I+1) = CY @ (Il xII), (2.32)

where II * II indicates the convolution of I with itself. Sharp peaks or troughs in the raw cross-
correlogram are smoothed away in the shuffie corrector to remain outstanding in the expected

covariogram E{V'}, as was described in section 2.3.2.
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Case (2): P(t1,t2) = Pi(t1)Pa(te), that is, the two times are independent. Equation (2.24)
leads to E{R} = E{S1}® E{Ss}, which implies that E{V'} = 0. This is exactly what we would
expect, since if ¢; and ¢, are independent, then the two cells are in fact completely independent.
Case (3): P(t1,t2) = II(£1)d(t2 + 1), that is, £ = —t} so the latencies of the two cells are
perfectly anti-correlated. This is the inverse of case (1), and a similar analysis to that of case (1)
shows that the dominating feature in the covariogram is a trough indicative of the anticorrelation

between the two cells.
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Chapter 3 Spike train correlations in the LGN of the cat: Analysis

3.1 Summary of the chapter

Sillito, Jones, Gerstein, and West recently obtained spike train data from pairs (sometimes triads)
of simultaneously recorded neurons in the dorsal lateral geniculate nucleus (LGN) of anesthetized
cats. This chapter describes an analysis of that data set, with an emphasis on the interactions
between pairs of neurons. The analysis done here extends that published in a previous report
(Sillito, Jones, Gerstein, and West, 1994); the new analysis suggests an interpretation of the data
significantly different to that published in that report. The differences are summarized in this
chapter introduction (3.1) and in the Discussion chapter (5).

Section 3.2 will begin the chapter by describing some basic properties of single-cell responses
in the LGN, and the experimental protocol used by Sillito et al. Subsection 3.2.1 is primarily
intended for the reader unfamiliar with cat LGN and may be skipped by readers with more ex-
pertise. Subsection 3.2.2 then describes the experimental methods and protocols used by Sillito
et. al. In very brief: Three separate electrodes, fixed in position with respect to each other, were
used to record extracellularly from pairs (sometimes triads) of neurons in the LGN of anesthetized
cats. The electrode tips formed a roughly equilateral triangle. The distance between the electrodes
was chosen so that the receptive fields of the cells recorded from each electrode did not overlap
with the receptive fields of cells recorded from other electrodes; receptive fields centers lay be-
tween 1° and 4° degrees apart from each other. Spike times of single neurons were isolated from
each electrode’s analogue signal using window discriminators. Once receptive field locations and
types (On/Oft/X/Y) were determined, the cells were driven by visual stimulation. This was most
often a series of drifting sine wave gratings of various orientations, with trials at different orienta-
tions pseudo-randomly interleaved with each other. Interactions between pairs of cells were then
assessed using covariograms and JPSTHs (quantified as in section 2.2).

The main result obtained by Sillito et al. was the discovery of significant positive peaks in
the covariograms of spike trains of cells recorded from different electrodes, that is, of cells with

separate, non-overlapping receptive fields.! A significant peak in a covariogram indicates that at

'Shift predictors and shuffle corrector methods (Perkel et al., 1967; Palm et al., 1988; Aertsen et al., 1989) were
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least one parameter controlling the firing of cell 1 (call this parameter 7;) covaried with at least
one parameter controlling the firing of cell 2 (call that parameter 72). The time scale over which
the parameters covaried will be reflected in the width of the peak in the covariogram. But if the
spike train data is broken into different trials (as it is here), and the time scale over which m;
and 7o correlate is longer than the length of each trial, the width of the peak in the covariogram
can no longer directly reflect the correlation’s time scale: the complete covariogram itself has a
total width of twice the trial length, so any peak in it is per force constrained to be at most as
wide as that. Under these circumstances, then, the width of the peak in the covariogram may not
accurately reflect the time scale of the correlation. Furthermore, if the neurons are driven periodi-
cally, the covariogram peak will also be modulated by that periodicity: during times when one of
the two neurons is not producing spikes, the covariogram is constrained to be zero, regardless of
whether the internal parameters 7m; and 7y are correlated at those times. This again will lead to
a covariogram peak with a width that does not directly reflect the time scale of the correlations.
Section 3.3 describes how these considerations are taken into account in the analysis below.

Section 3.4 applies the ideas of section 3.3 to the experimental records in which covariogram
peaks were found. The analysis is limited to those experiments in which drifting sine wave gratings
were used as a stimulus, and is dedicated to determining the time scale and stimulus-orientation
dependence of the correlations. The results show that (1) the time scale of the main component of
the correlations is on the order of fens of seconds to minutes; (2) the correlations depend weakly,
if at all, on the orientation of the stimulus; and (3) responses to stimuli of different orientations
are correlated with each other. These are major differences with the previous report (Sillito et al.,
1994), where the correlations were interpreted to have a time scale on the order of tens of millisec-
onds and to be highly dependent on stimulus orientation. See section 3.4.1 for an explanation of
why the two sets of results are so different.

Section 3.5 uses the techniques of chapter 2 to show that most of the correlations in the data
are well described in terms of combinations of latency and excitability correlations. (Latency
and excitability correlations are fully described in chapter 2.) Explaining the covariogram peaks
without recourse to a spike timing interpretation is again a major difference with the previous
report (Sillito et al., 1994). In particular, the latency/excitability interpretation does not open the
possibility of these LGN neurons participating in “binding” (Singer and Gray, 1995b), as the spike

timing interpretation did.

always used. See chapter 2 for a discussion and explanation of these methods.
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Since the latency and excitability of a neuron are both affected by its resting membrane po-
tential, this suggests that the parameters covarying in the two neurons are their respective resting
potentials. This possibility is introduced in section 3.6 and is explored through modeling in the

next chapter.

3.2 Single-cell responses and description of the experiment

3.2.1 Single-cell responses in the LGN

The lateral geniculate nucleus (LGN) is the principal gateway of information from the retina to
cortex, and as such has been extensively studied (reviewed in Sherman and Koch 1986; Sillito
1992; McCormick 1992; Sherman and Guillery 1996). In order to set the context for the multiple-
cell recording experiments to be described and analysed below, I will first describe some key
features of single-cell responses in the LGN, focusing in particular on cells in the A laminae of the
LGN. All experimental data used for examples here was collected by Adam Sillito, Helen Jones,

and colleagues. I thank them for generously making it available to me.

Receptive field properties

Cells in the LGN receive strong, topographically organized, input from the retina, and much of
their characteristic physiology is derived from that input. Like cells in the retina, cells in the LGN
have small, circularly symmetric receptive fields with a center-surround organization, and can be
classed into “On” or “Off” type cells. The left panel of Figure 3.1 shows schematic receptive
field profiles of these two types of cells. “On” cells produce spikes in response to a spot of light
flashed on in the center of their receptive field, but are inhibited by similar spots flashed on in
their surround. In contrast, Off cells produce spikes when a spot of light in their center is turned
off, and are excited by spots of light turned on in their surround. The two types of cells are thus
complementary to each other. If the cell is an X type cell (see below for distinction between X
and Y cells), the response of the cell to spatiotemporally complex stimuli can be predicted by the

convolution of its receptive field profile with the stimulus, followed by half-wave rectification of
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the result? (see Dan et al. 1996 for a striking example of the accuracy of this method). because
convolution is a linear operation, X cells are thought of as quasi-linear. Rectification occurs for
both X and Y cells because the firing rate of a cell cannot go below zero: if inhibited strongly,
cells simply fall silent. The rectification is illustrated in the right panel of Figure 3.1, which shows
the response of an LGN cell when stimulated by a drifting sine wave grating.> Assuming the cell
is an On cell, when the bright bars of the grating pass over the center of the receptive field, the cell
spikes; when the dark bars pass over the center of the receptive field, the cell is inhibited and falls
silent. Thus, while the temporal profile of the input is that of a mean-zero sine wave, the temporal
profile of the (average) response is closer to a half-wave rectified sine wave* (PSTH at bottom of
the right panel of Figure 3.1). Much of the experimental data to be analysed below was collected
using drifting sine wave gratings as stimuli, producing responses similar to those exemplified in
Figure 3.1.

In addition to the On/Off distinction, cells in the LGN may be further divided into at least
three classes, on the basis of both anatomical and physiological criteria (reviewed in Sherman
1985). The physiological properties of each class are again derived from the properties of the
retinal cells providing input to the LGN, which are divided into the same classes. In the cat,
there exist X, Y, and W-type cells, of which X and Y are the predominant population in the A
laminae of the [LGN. X cells have relatively small cell bodies and slow axon conduction velocities;
they also have small receptive fields, and when studied with sine wave grating stimuli, respond
optimally to high spatial and low temporal frequencies. Y cells have large cell bodies and fast
axon conduction velocities; they have large receptive fields, and respond optimally to low spatial

and high temporal frequencies.” A key distinction between X and Y cells is that the latter are not

“More precisely, if the receptive field has spatiotemporal profile F(z,y,t) and the stimulus has luminance
S(z,y,t), the firing rate is proportional to f(t) - H(f(¢)), where

f(t): Z F(xay7_T)S(x7y:t_T)_9:

T>0,z,y

H(z) is zero for z < 0 and 1 otherwise, and 6 is a constant. In Figure 3.1, only the spatial component of F is shown,
for clarity.

3Along the axis orthogonal to its orientation, a moving, or “drifting”, sine wave grating has a luminance profile
I(z,t) o« sin{wzx + wet + @).

*If a cell has a high background firing rate, it can represent much of the negative-going part of the sine wave through
a decrease in its firing. Under the experimental conditions used by Sillito et. al., most LGN cells recorded from had
low background firing rates and did not have that dynamic range available to them.

>This is reminiscent of the division into magnocellular and parvocellular streams in the monkey. The third type
of cell, W, may perhaps be analogous to koniocellular cells in the monkey (Casagrande, 1994). W cells are mostly
found in the C layers of the cat LGN and will not be considered here. Unlike monkey magnocellular and parvocellular
streams, X and Y cells in the cat LGN are not physically segregated into different layers.
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Figure 3.1: Typical LGN responses. The left panel shows a schematic plot of two receptive fields,
one an On cell and the other an Off cell. = and y axes represent visual space; the z axis indicates
the strength of the cell’s response to a spot of light flashed on. Negative values on the z axis
indicate inhibition. The right panel shows the responses of a real LGN neuron to stimulation by a
drifting sine wave grating. Each vertical bar indicates a spike. 10 individual trials are shown, and
below them the PSTH of 100 trials. The PSTH has been smoothed by a Gaussian with a standard
deviation of 6 ms.
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quasi-linear (Enroth-Cugell and Robson, 1966; Hochstein and Shapley, 1976). If stimulated with
a stationary counterphasing grating,® an X cell’s temporal response profile, being quasi-linear,
will have most of its power at the temporal frequency of the stimulus (see upper left PSTH in
Figure 3.2, obtained with a 1 Hz stimulus); in contrast, a Y cell’s response will have significant
power at the harmonics, in particular at twice the frequency of the stimulus (see lower left PSTH

in Figure 3.2, obtained again with a 1 Hz stimulus). This is incompatible with the quasi-linear

model.
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Figure 3.2: Differences between X and Y cells. The left panel shows two PSTHs, one for an X
cell, the other for a Y cell, both stimulated by a 1 Hz stationary counterphasing grating. The X
cell has most of its power at 1 Hz, but the Y cell shows significant power at the first harmonic, 2
Hz. The right panel shows data from the same two cells. The mean firing rate in response to a
stationary counterphasing grating is plotted as a function of the spatial phase of the grating. The
X cell’s response is strongly affected by the phase of the grating, and goes through a “null point”
where the cell responds with an almost-zero firing rate; the Y cell responds robustly at all phases.

In addition, the quasi-linear model predicts that if stimulated with a stationary counterphasing
grating, the mean firing rate of the cell’s responses will depend on the spatial phase of the grating.
In particular, there will exist a spatial phase at which the driving force to the neuron will not be

temporally modulated.” The phase at which the stimulus does not produce a temporal modulation

% Along the axis orthogonal to its orientation, a stationary counterphasing sine wave grating has a luminance profile
I(z,t) x sin(we + ¢z) - sin(wit + é4).

"If the receptive field of the X cell is spatiotemporally separable, then this is an inevitable consequence of the linear
component of the model. Let F'(z, y) be the spatial receptive field profile of the cell; let S(x, y; ¢) sin(wt) be the visual
stimulus, a stationary counterphasing grating at spatial phase ¢; and let F'- S(¢) = Zzy F(z,y)S(z,y; ¢). Since S is
a sine wave grating, S(z, y; ¢o + 180) = —S(=z, y; ¢o) for all z, y and ¢o. Therefore F - S{po + 180) = —F - S(¢o)-
Since all functions here are continuous, there must be a value of ¢, intermediate to ¢o and ¢o + 180, for which
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of the firing rate also leads to little or no elevation of firing rate above the spontaneous background
rate of the cell. The right panel of Figure 3.2 shows a plot of mean firing rate of an X cell vs.
spatial phase of a stationary counterphasing grating used to stimulate it. The phase at which the
positive and negative components balance (the “null point”) is close to 45 degrees. In contrast,
a Y cell responds regardless of the spatial phase of the grating; an example of this is also shown
in Figure 3.2. These two tests (power at twice the stimulus frequency, lack of a “null point”) are
often used to distinguish X and Y cells from each other. In the data analyzed below, both X and Y
and both On and Off type cells were recorded from. As noted by Sillito et al. (1994), no cases of

significant covariations between cells of different types (either X vs. Y or On vs. Off) were found.

Cellular properties

An important property of LGN cells that must be noted here (and that is shared with all other
cells in the thalamus) is their capacity to produce bursts of Na™ spikes, underlying which is a
low-threshold Ca™™ spike (Jahnsen and Llinas, 1984a,b). The low-threshold Ca™™ channel re-
sponsible for these spikes can be well-modeled using Hodgkin-Huxley-like kinetics where the
permeability of the channel is proportional to m2h (McCormick and Huguenard, 1992; Huguenard
and McCormick, 1992), m and h being the activation and inactivation gates of the channel, re-
spectively.® Activation curves and time constants for these two gates, as described by McCormick
and Huguenard (1992), are shown in Figure 3.3.

At normal resting potentials (-65 mV), the Ca™ ' channel is inactivated (see curve for h) but
can deinactivate if the membrane is hyperpolarized. (Due to the long time constant 73, a long hy-
perpolarization is required for the h gate to reach an appreciable value.) If the membrane potential
has been hyperpolarized for long enough to deinactivate the channel, subsequent depolarization
can activate the m gate (see curve for my,). Since the time constant for the m gate is faster than
that of the h gate, after depolarizing the channel will be open during the time it takes A to reach
hso, which can be tens to hundreds of milliseconds. During that time an influx of Ca™™ occurs
which further depolarizes the membrane in a (slow) all-or-none, voltage-spike-like manner. Even-

tually the depolarization leads to inactivation as h reaches a near-zero value (hs is essentially

F-S(¢) =0.

8m and h dynamics are given by

1 = (Moo (v) = 1) /Tm (v)
h = (koo (v) = h)/a(v)

where v is membrane potential, and the functions mee, hoo, Tm, 7h are as shown in Figure 3.3.



39

activation and inactivation curves for Lr time constants for IT
1
0.8
EHO.G F
=004t
0.2
O i n
-100 -80 -60 -40

Figure 3.3: Activation and inactivation curves and time constants for a model of I, the low-
threshold Ca™™ channel current. The model is that of McCormick and Huguenard (1992).

zero for all voltages above -70 mV), and the Ca*™ spike terminates. During the active part of the
Ca™ spike, a burst of fast Na™ spikes riding on top of it may occur. Bursts, their modeling, and
the mechanism of their generation will be treated further in the next chapter

The key features about this phenomenon to bear in mind for the present chapter are that (1)
when activated, the Ca™™ channel produces bursts of very high-frequency Na™ -spike firing in
the range of 150 to 300 Hz and that these bursts last on the order of tens of milliseconds; and
(2) control of activity or inactivity of the Ca™™" channel rests with the cell’s membrane resting
potential (Jahnsen and Llinas, 1984a,b; Turner et al., 1994; Guido et al., 1992; Lu et al., 1992).
Figure 3.4 shows an example of LGN spikes where some of these occur in brief bursts (highlighted
by gray boxes). All rasters are from the same cell, illustrating that a single cell may exhibit both
types of firing modes (known as tonic or burst firing). Bursts were identified as Cat* channel-
induced bursts using the extracellular criteria of Guido et al. (1992); Lu et al. (1992) (these criteria
are: interspike interval before first spike in burst > 100 ms, first interspike interval in burst < 4
ms, subsequent interspike intervals < § ms).

A change in resting membrane potential can lead to a change in the type of response, from
tonic to bursty, or vice-versa. If two cells being recorded from change modes together, this is
a type of covariation in their response, and will hence produce a peak in their covariogram (see
chapter 2). One of the hypotheses that put forth in this thesis is that some of the covariogram peaks

to be discussed below are due to precisely such paired changes in the two cell’s firing modes.
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Figure 3.4: Tonic and burst firing. The same cells can produce tonic spikes and a few hundred
ms later produce spikes in Ca™™ bursts. The bursts have been surrounded by grey boxes. As in
other figures in this section, the experimental data was provided by Sillito et al. and is taken from

anesthetized cats.

3.2.2 Experimental methods

The experimental protocol of Sillito and colleagues will now be briefly described; it has been
described in detail elsewhere (Sillito et al., 1993, 1994). Sillito et al. performed experiments on
female cats anesthetized with halothane and paralysed with gallamine triethiodide. Visual stimuli
were produced with a Picasso Image Generator (John Daugman) and displayed on a Tektronix 604
oscilloscope-like cathode ray tube. Extracellular recordings of single unit activity in the A laminae
of the LGN were made with arrays of three electrodes, the tips of which were sufficiently separated
from each other so the receptive fields of the LGN cells recorded from would be separated by

between 1° and 4° (Sillito et al., 1994).

3.2.3 Visual stimulation

Receptive fields were initially hand-mapped and then more precisely located by reference to the
timing of PSTHs generated by drifting precisely controlled bars, moving at various orientations,
across the receptive field. Once the receptive field location and type (On/Off/X/Y) of all cells

being recorded from had been determined, the cells were driven by computer-controlled visual
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stimuli. Two main types of visual stimuli will be discussed in this thesis: (1) full-field, drifting
sine wave gratings; and (2) pairs of flashing or moving dots centered on the receptive fields of
two of the cells. The analysis will focus on records obtained with the first type, full-field drifting
gratings. Their arrangement and placing with respect to the receptive fields (RFs) of the cells

being recorded from is illustrated in Figure 3.5.

degrees
degrees

-4 -2 0 2 4
degrees degrees

Figure 3.5: Diagram of the receptive fields (RFs) of 3 LGN neurons being recorded from. The
same 3 receptive fields are shown in the two panels, but overlaid on two different full-field drifting
sine wave gratings (used as stimuli). The direction of motion of the gratings is indicated by the
arrows. Notice that as the direction of the grating changes, the relative phase of the stimulus on
the different receptive fields also changes. In the left panel, the stimulus for the two rightmost
RFs is out of phase, whereas in the right panel the same two RFs observe the stimulus in phase.
The gratings used typically had a spatial frequency of 0.66 cycles per degree. Receptive fields are
roughly 1° in diameter or less and are between 1° and 4° apart. (Sine wave gratings always move
(perceptually) exactly orthogonally to their orientation; I will use “orientation” and “direction of

motion” of the grating almost synonymously.)

Spatial frequencies of the gratings were in the range 0.66 to 1 cycle per degree; temporal fre-
quencies were 2 or 3 Hertz. In a typical experiment, a set of 5 or 6 different orientations would be
chosen, and a pseudorandomly interleaved sequence of presentations of these orientations would
then be used to drive the cells. Each presentation of an oriented grating (henceforth called a trial)
typically lasted 1.7 to 2.5 seconds, time enough for 5 modulations of the grating to drift over
the receptive field of any one of the cells. An example of rasters obtained from one of the cells

under these conditions is shown in Figure 3.6. The set of responses to many trials at one par-
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ticular orientation, taken over a single experiment, will be henceforth called a record. The trials
which composed the typically 5 or 6 records of an experiment — one record per orientation — were
pseudorandomly interleaved with each other. A single set of records, the trials of which were
interleaved with each other in the manner described, will be called an experiment. Experiments
typically lasted on the order of 1 to 2 hours. Each pair of cells had data recorded from them over
several experiments; different experiments used different sets of orientations and/or spatial or tem-
poral frequencies. For some pairs of cells, additional experimental runs, using flashing or drifting

spots or bars as visual stimuli, were also made.
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| { | i 250 deg.
310 deg.
136 deg.
130 deg.
322 deg.
316 deg.
15 iy N e 319 deg.
0 500 1000 1500 2000 2500 3000
time (ms)

Trial number

Figure 3.6: Responses to 8 successive trials in an experiment using a 2 Hz, 0.66 cycles/degree
grating, drifting at various orientations. The orientation used in each trial is indicated at the right.
Modulation of the responses at the temporal frequency of the grating, as described in Figure 3.1,
are seen for all stimulus orientations. But as expected from Figure 3.5, different orientations result
in response modulation at different phases. The grating orientation always remained constant
throughout the length of each trial. The data was collected by Sillito et al. in anesthetized cats.

3.3 Correlated internal parameters

The cross-covariogram analyses done here and done by Sillito et al. (1994) are of periodically
driven neurons whose spike trains have been broken into separate trials. As we shall see below,
the correlations found in the data may have a component with a time scale /onger than the time
scale of the periodic driving and of the separation into trials. This section considers how these two
characteristics (periodic driving and separation into trials) can affect the width of the peaks in a
covariogram. We will explore the issue using two synthetic signals as an example.

Take two slowly varying, correlated signals s (¢) and so(t). For convenience and without loss
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of generality, assume they both have mean zero. At any point in time s; () is approximately equal
to so(t), which is reflected by a peak at zero in the cross-correlation of the two signals, which we
will call ¢(¢) and define as ¢(t) = 1 ® s9 (see Figure 3.7). The width of the peak is determined

in part by how slowly s; and sy vary.

100 ¢
0.2 80
01 g 60
] EA K 40

~ ol »

® 20
-0.1 = 0

-0.2 =20

" " n —_ O i n 1
200 400 600 800 1000 1200 -400 -200 0 200 400
seconds seconds

Figure 3.7: Two slowly covarying signals s; and sp. On the right is the cross-correlation ¢(t) of
the two signals s; and so. Compare the width of the peak to the time scale of the variations on the
left.

3.3.1 Splitting the data into trials

Let the two signals s; and s, be broken up into sections of equal length, and let us label these
sections as different “trials™. If the trials are shorter than the time scale of the correlations, and a
covariogram of the different trials is built,’ the width of the covariogram peak can no longer reflect
the time scale of the correlations: the entire covariogram itself is only twice as wide as the trial
length (see Figure 3.8). Though the peak in the covariogram is constrained to be no wider than the
length of each trial, information about the longer time scale of the underlying correlations may still
be obtained from calculating covariograms of {s]} and sets of “shifted” trials of signal number
two: {35“}. For example, if successive trials are separated by 21 seconds then the height of the
peak in the covariogram of {s}} and {s5"'} will be proportional to the height of the correlogram
c(t) evaluated at t = 21 s. More generally (as long as trials are much shorter than the time scale
of the correlations) the peak height of the covariogram of {7} and {s57*} will be proportional to

the height of ¢(iT"), where T is the time in between successive trials. This allows using the trial

’The covariogram of two sets of signals {s7} and {s3} is (57 ® s3) — (s]) ® (s}). Each s”(t) is defined as zero
outside the time of trial 7.
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Figure 3.8: The left panel shows a short segment of the signals shown in Figure 3.7. The two
signals will be broken into even shorter trials r, each 1.5 seconds in duration. (Trials may be
separated from each other by a few seconds.) The right panel shows the cross-covariogram of the
sets of trial segments of the data, {s]} and {s5}. Dashed lines are significance limits, computed
as in section 2.2: they are the 20 limits of the expected variations if the two observed signals
sT and si were independent. The covariogram has a positive peak because the two signals are
positively correlated. Each trial is 1.5 seconds long, so the covariogram is constrained to fall to
zero at t = £1.5, despite the fact that the timescale of the correlations of s; and s5 is much longer.
The shape of the peak is very close to triangular because the trials are short enough that s; and so
are almost constant within each trial; the covariogram thus has the shape of the cross-correlation
of two boxcar functions, which is an isosceles triangle.
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segment data to estimate the width of the peak in the original correlogram c(¢) (see Figure 3.9).

[= |

peak covariogram height

{
[6;]

no. of shifts

Figure 3.9: Peak height of the covariogram of {s]} and {s}™'} as a function of the shift i. The
dashed line is the 20 limit of being significantly different from zero. The number of shifts at
which the peak height falls to within the significance limits (here approximately 4), multiplied by
the time between successive trials (here 21 seconds), gives an estimate of the half-width of the
cross-correlation peak of the underlying variables (approx. 84 seconds). This estimate should be
compared with the width of the cross-correlogram peak in Figure 3.7.

3.3.2 Periodic modulation

The neuronal data that will be analyzed below was obtained from sensory neurons driven by a
periodic stimulus. As described in Figure 3.1 and in section 3.2.1, the temporal profile of LGN
cells in response to a drifting sine wave grating is that of a half-wave rectified signal. This is
important, because the neurons were recorded extracellularly, and it is only when the neurons fire
that information is obtained about their internal parameters. During periods of silence, the only
information available is that they have not been driven to produce spikes.

Write the set of spike trains of cell 1 and cell 2 as {S7(¢)} and {S5(¢)}, respectively, and the
periodic stimulus for cell 1 as p(wt + ¢1) and for cell 2 as p(wt + ¢2) (both cells are driven by the
same stimulus, but because of differences in their receptive field locations they may observe it at
different phases— see Figure 3.5). The stimulus is periodic such that p(z + 27) = p(z). For times
to = (2n+1)m/w+ ¢1 — o, where n is an integer, p(wt + ¢1) and p(w(t+1,) + ¢2) have exactly
opposite phases; due to the rectification of responses, this means that one of S7(¢) and S7 (¢ + ¢,)
must be zero, over all trials r and times ¢. Therefore the correlogram C"(¢) = .. 87 (t-+7)S5(7)
evaluated at ¢, will also be zero: C"(t,) = 0. This holds for all trials r, so the covariogram
V(t,) = 0also. Thus V(t,) = V((2n + 1)7/w + ¢1 — ¢2) = 0 for all integers n: that is,

the covariogram is modulated with the periodicity of the stimulus. As an illustration of this, let
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mi(t) = s7(t) - p(t) and mh(t) = s5(t) - p(¢) represent multiplicatively modulated trials. The two
sets of signals s7(¢) and s5(¢) are the same as were used in Figure 3.8. The modulating function
p(t) is shown in Figure 3.10 and represents the periodic driving stimulus. The covariogram of the
modulated trials {m]} and {m}} is shown in Figure 3.11. The covariogram can be seen to be

modulated at the stimulus driving frequency.
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Figure 3.10: Periodic modulation function p(¢), frequency 3 Hz.
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Figure 3.11: Covariogram (thick dark line) of the same trials used in Figure 3.8 but with the
trials modulated by a 3 Hz periodic function. The resulting covariogram is modulated at the same
frequency. The significance limits (shown as dashed lines) are also modulated. This is because the
significance limits are computed based on the average signals (m7), and (m3),., which have also
been modulated by the periodic modulating function (see equation (2.3)).

In the neuronal data from the experiments the modulation is not a simple multiplicative one,
and the spikes used to construct the covariograms are not simple linear functions of the underlying
correlated parameters. The precise shape of modulations in the covariogram will not always be
exactly like those seen in Figure 3.11. Nevertheless, the general features of the covariogram on

Figure 3.11 are characteristic of the data, and the same method of shifting trials to determine
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the long time scale of the correlations that was described in section 3.3.1 will be used with the

experimental data.

3.4 Experimental results

Twelve groups of recordings were made available for the analysis done here; this set of data was
chosen by the experimenters (Sillito et al.) and thought to be a representative sample of their full
data set.

Each of the 12 groups corresponds to a particular electrode triad position, at each of which
data was taken during several different experiments. Of the 12 triad position recordings available
for analysis, 5 had experiments in which there were significant covariations between two electrode
sites. None of the experiments, out of all 12 triad positions, showed covariations between three
sites simultaneously.!” While the sample analysed here is only a partial one (5 out of a total
of 19 pairs of significantly covarying cells recorded in the presence of cortical feedback (Sillito
et al., 1994)), it is worth emphasizing that the sample was chosen by the experimenters, before the
analysis done here, as one representative of the whole data set.

As described previously (section 3.2.3), by experiment I mean a single continuous data collec-
tion run, which typically lasted on the order of 1 to 2 hours. For the drifting gratings experiments,
each experiment was composed of many different trials, each of which lasted on the order of 1 to 2
seconds. During each trial a drifting full-field grating at one of several possible orientations (typi-
cally 5 or 6 orientations) was presented to the animal. A similar amount of time elapsed between
trials; during inter-trial times the visual stimulation screen was blank. The set of all responses to
a single, particular orientation during an experiment will be referred to as a record. Thus the trials
that compose the different records in an experiment were interleaved with each other, and all trials
in a particular record used exactly the same visual stimulus.

Different experiments differed in the choice of orientations to be used, spatial or temporal

frequency of the gratings, or in other parameters.!!

Simultaneous recording from three different sites is very difficult: often only two of the three sites had stable
recordings in which single cells could be reliably identified.

"YMany of the experiments analysed here used gratings that differed in orientations only by very small amounts (1
degree or less). It was thought that these small differences could be significant. However, the analysis of section 3.4.3
shows that all orientations produced covariograms with similar peaks. This conclusion is true both for experiments
which used orientations within a small range and for experiments which used widely differing orientations.
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3.4.1 Typical covariograms

Examples of typical covariograms obtained from from drifting sine wave grating records are
shown in Figures 3.12 and 3.13. Note that each covariogram is constructed from a particular
record. Since the stimulus is identical for all trials within a record, the covariations between the
two spike trains obtained from two electrodes, evidenced by the covariogram peaks, cannot be
attributed to variations in the stimulus.

A striking feature of these covariograms is that there is not only a central peak, near relative
time ¢ = 0, but there are also side peaks, spaced with the periodicity of the stimulus. In all cases
where a significant covariogram peak was found near ¢ = 0 axis, significant side peaks, spaced
with the stimulus periodicity, were also found. These peaks cannot be explained by the mere
fact that the stimulus is periodic. The example of Figure 3.14 shows a covariogram (made from
synthetic spike trains) where the stimulus was periodic but only a central peak exists. The side
peaks necessarily indicate that there is a component of the correlations with a time scale longer
than the periodicity of the stimulus.

The observation of these side peaks is a major difference with the analysis reported in Sillito
et al. (1994). When that analysis was done, it was thought that covariogram peaks necessarily
represented spike timing correlations, and that these would not lead to peaks far from ¢ = 0 (but
see Abeles (1991)). Following this logic, the covariogram and JPSTH analysis was confined to
a time window of ¢ ~ £175 ms. Most side peaks fall outside this window, and were therefore
simply not observed. Figure 3.15 shows some typical covariograms as seen in a window confined
to this small time interval.

However, the side peaks are very important. Their presence is intriguing, and clearly requires
an explanation. It is also clear that unless these neurons are thought of as participating in synfire
chains (Abeles, 1991), it is difficult to interpret the peaks far from ¢ = 0 as spike timing correla-
tion peaks. Most importantly, whatever process explains the side peaks is also a good candidate
process for explaining the central peak. Such a parsimonious explanation, involving a single
mechanism that accounts for both central and side peaks, will be put forward in this thesis.

As will be explained in this and the next chapter, the hypothesis that the resting membrane
potentials of the two neurons being recorded from are covarying, and that they do so slowly (with
a timescale of tens of seconds to minutes), can account for much of the data. A comparison of

Figures 3.12 and 3.13 with Figure 3.11 already suggests that the timescale of the correlations
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Figure 3.12: Covariograms of 3 different pairs of cells from 2 different animals. Time is in milliseconds.
Dashed lines are significance limits, computed as in equation (2.3). The striking presence of “side” peaks
off t = 0 indicate that the correlations have a strong component with a time scale longer than the stimulus
period (which in all cases was either 333 or 500 ms). Section 3.4.2 will show that the correlations actually
have a time scale on the order of tens to hundreds of seconds (not milliseconds). The original report on this
data (Sillito et al., 1994) was limited only to the ¢ = +175 ms window of these covariograms, and thus
did not observe the side peaks. The presence of side peaks suggests an interpretation of the covariograms
significantly different to that in the original report. Normalization of covariograms: In this chapter,
covariograms, which have natural y-axis units of spikes® per bin, were normalized by dividing by the bin
width and by /(n[)(n}), where n] and n} are the total number of spikes fired by cell 1 and cell 2 in trial
r, respectively, and the average is taken over trials. This normalization gives final y-axis units of spikes per
second and allows comparing covariograms taken from experiments with different numbers of total spikes
fired per trial. Note that the normalization onlv changes the v-axis labelling, it does not change the shane
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Figure 3.13: Covariograms of 3 different pairs of cells from one of the same two animals as Fig-
ure 3.12 and from a third, different animal. Time is in milliseconds. The bottom covariogram
is from the same animal as the middle covariogram, and serves here as an example of two cells
that were not significantly correlated. Dashed lines are significance limits, computed as in equa-

tion (2.3).
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Figure 3.14: Even when the stimulus is periodic, a central peak does not imply the presence of
side peaks: this Figure, which should be compared with Figures 3.12 and 3.13, is an example of a
central peak without side peaks. Though the central peak is clearly significant, no significant side
features are seen. (Dashed lines are significance limits). The spike trains used here are synthetic,
created with the techniques of section 2.7.3. Inset are the PSTHs of the two simulated cells,
showing the periodic nature of their mean responses; axes in the inset are 400 ms wide and 90 Hz

tall.

is longer than the length of a single trial. The following two subsections will characterise the
covariograms in terms of their timescale and orientation-dependence. Section 3.5 will show that
the covariograms can be well reproduced in terms of latency and excitability correlations. And
chapter 4 will show that they can be well modeled in terms of (slow) covariations in the resting

membrane potentials of the two neurons.

3.4.2 Whatis the time scale of the correlations?

The “shifting” method described in section 3.3.1 will be used to determine whether the correlations
have a long time scale. Figure 3.16 shows how shifting the responses of one of the cells by one
or more trials affects one of the covariograms. That is, the Figure shows covariograms made
using the spike train sets {S7(¢)} and {S57*(¢)}, where r is the trial number within a particular
record of trials at a single orientation, and ¢ is one of 0, 1, or 2. Though successive trials at
one particular orientation were not always separated by a fixed amount of time (since different
orientation trials were pseudorandomly interleaved with each other), the trials are nevertheless
in an orderly sequence, and the average time difference between trials r and r + i, where i is
the number of trial shifts, is indicated above each covariogram. It is clear that the cells remain

correlated on a time scale much longer than the length of individual trials (which is 1.6 seconds).
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Figure 3.15: Typical covariograms, seen only in the window ¢ = £175 ms, as in the original report
(Sillito et al., 1994). Most side peaks lie outside this window, and were simply not observed. This
Figure should be compared to Figures 3.12 and 3.13, where the full covariograms are shown.
(Note that some peaks wholly off £ = 0 can nevertheless still be seen within the limited window.
Vertical grey lines indicate the t = 0 axis.) The two rightmost covariograms are from the same
experiment, and thus are of trials interleaved with each other; one used a grating at 20.9°, the other
a grating at 90°. The time difference between the centers of these two peaks is exactly predicted
by the difference in the relative phase of the PSTHs of the two cells.

It is important to note that trials were separated by periods of “silence” (blank stimulus) lasting
approximately two seconds: whatever mechanism maintained the cells correlated over several
trials cannot depend on brisk levels of activity in the visual pathway, since during the blank stimuli
periods most of the the visual pathway is inactive.

Figure 3.17 shows, using the same data as in Figure 3.16, how the peak height of the cross-
covariogram changes as a function of the number of shifts, 4. (In the Figure the z-axis is labelled
with the corresponding average time difference between trials, in seconds.) Plotted on the same
Figure are the fall-offs in peak height as a function of shift for the auto-covariograms of the two
cells involved. The fall-offs for the auto-covariograms follow the same time course as the fall-off
of the cross-covariogram. On log-linear axes the peak height fall-offs are well fit by a straight
line: the thick grey line is the least squares fit to all three data lines (autocovariogram of cell 2,
autocovariogram of cell 3, cross-covariogram of cells 2 and 3). Based on this fit, the estimated
time for the peak height to fall to within the significance limits is 42 seconds; the exponential
decay time constant of the fit is 21 seconds.

Figure 3.18 summarizes the result of such fits, applied to all the data records where there were

significant correlations. The left panel shows a histogram of the estimated times to fall below
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Figure 3.16: An example of an unshifted cross-covariogram and the results of shifting by
1 and 2 trials, respectively. Peak heights get smaller (note the different scalings on the

y-axes), but remain significant for times on the order of tens of seconds.
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Figure 3.17: Fall-off in peak height as a function of shift for the cross-covariogram and autocovar-
iograms of the same data record as in Figure 3.16. Note that the y-axis is on a logarithmic scale.
Peak heights have been normalised by the maximum value of the standard deviation (o) of the null
hypothesis. (All covariograms in this thesis display 20 as dashed lines to represent significance
limits— see, for example, the dashed lines in Figure 3.16. Thus, a value of 2 on the graph above
indicates the point where the maximum peak height is equal to the maximum significance limit.)

significance limits; the right panel shows a histogram of the exponential fit time constants. (The
time to fall below significance limits depends not only on the exponential time constant but also
on how strong the correlations at shift ¢ = 0 are, so the two times are not proportional to each
other.) The mean time to fall to significance limits is 41 seconds; the mean decay time constant is
64 seconds.

In conclusion, a strong component of the correlations has a time scale on the order of tens of

seconds.

3.4.3 Does the strength of the correlations depend on the orientation of the stimu-

lus?

As described in section 3.2.3, each experiment consisted of a set of trials using pseudo-randomly
interleaved gratings of different orientations. Figure 3.19 shows covariograms from two different
experiments. Each column corresponds to an experiment; the two rows are covariograms of two
different orientation records from the experiment. As can be seen, both records from each experi-

ment produce similar peaks. (The peaks in the two records are slightly shifted in time with respect
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Figure 3.18: Histograms, across all experiments where significant correlations were found, of the
result of shifting the trials and fitting the fall-offs in normalised peak heights. The left panel is a
histogram of the estimated times to fall below significance limits. The mean time to fall below
the significance limits is 41 seconds; its standard deviation is 16 seconds; its smallest value is 17
seconds. The right panel is a histogram of the estimated exponential decay time constants. The
mean of the decay time constants is 64 seconds; their standard deviation is 46 seconds; and their

smallest value is 19 seconds.

to each other. The shift follows the shift in the relative phases of the two cells” PSTHs.) The two
orientations in the right column are 180 degrees apart. That is, they represent the same orientation
but opposite directions of drift. Both directions of drift produce similar peaks.

These covariograms suggest that the height and strength of the peaks are independent of the
orientation of the stimulus. The stimulus orientation’s main effect is to determine the position of
the peaks. An experiment suggesting the opposite conclusion is shown in Figure 3.20. Again,
these are covariograms of data collected during the same experiment. The covariogram for data
taken at 21.25° grating orientation has a much stronger peak than the one taken at 20.25°; but
the magnitude of this difference must be quantified. We must ask whether the difference between
the two covariograms is large or small compared to the expected measurement error. The fact
that the orientation difference between the two records with in Figure 3.20 is only 1 degree, a
difference well within the tuning width of cortical V1 cells and within human, monkey, and cat
psychophysical limits (Lee et al., 1997; Sprague et al., 1993; Vogels and Orban, 1990), prompts
careful examination of this experiment.

The null hypothesis that we will consider here is that all orientations produce the same peak
covariogram heights, and that differences between them in peak heights are simply due to mea-

surement noise. We must estimate the distribution of peak heights that such a null hypothesis
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Figure 3.19: Covariograms at various orientations. Each column shows the covariogram of two
records from the same experiment. (As explained in the text, trials for the records for the two
covariograms in each column were pseudo-randomly interleaved with each other.) The left column
shows covariograms from two different orientations; the right column shows covariograms from
two opposite directions (the difference in orientation is 180°). The peaks in the two covariograms
of each column are similar to each other, despite the differences in orientation and direction.

would produce, and evaluate how probable or improbable it is to find, in an experiment, a peak
height the size of that shown in the middle and right panels of Figure 3.20. Estimating the distribu-
tion of peak heights will be done using a variation of the bootstrap technique (Press et al., 1992).
To do this, all trials from all orientation records in an experiment are shuffled,'? and then divided
into as many sets as there were orientations in the original experiment. In the experiment shown
in Figure 3.20, the covariogram of trials at 21.75° was chosen as the one with the biggest peak
after covariogram analysis of all orientations in the experiment. Following precisely the same
strategy, after the shuffling we examine the covariograms of all the sets and choose the one with
the largest peak: this peak height then represents a sample data point, that of a maximum peak

height as obtained under the null hypothesis. (Notice that the trials for each of the shuffled sets

"ZNote that unlike the “shifts” described in section 3.4.2, the spike trains of the two cells recorded in any trial are
always kept together: it is entire trials, involving the responses of both neurons, that are used as the units to be shuffled

here.



57

Stimulus at 20.25 degrees Stimulus at 21.25 degrees Closeup at 21.25 degrees
20 20 20
15 15 15
© 3 3
2 2 10 & 10} _
8 8 8 .1 -
= x 5 < 5 -
3 &, & ol N _pn
L] L_r U=
-5 -5 -
-10 -10 -0t > — =7
-400-200 0 200 400 -400-200 0 200 400 -40 20 0 20 40
time (ms) time (ms) time (ms)

Figure 3.20: Two covariograms from the same experiment but of records at slightly different
orientations. Left: stimulus at 20.25°. Middle: stimulus at 21.25°. The peak at 21.25° is much
greater than any hints of a peak at 20.25°, suggesting that these two records lead to a statistically
significant result. However, this difference must be compared to the expected measurement error.
The significance limits, shown as dashed lines, give a rough estimate of the magnitude of the
expected error. In the figure the significance limits are shown around y = 0; other mean values
would displace the significance limits vertically. Right: closeup of the middle panel. Interestingly,
the closeup shows that the peak is not centered at exactly ¢ = 0 but is in fact ~ 18 ms away from
that. The two neurons being recorded from cannot then be strictly thought of as synchronized.
The 18 ms time difference roughly corresponds to the phase difference in the PSTHs of the two

cells. Experiment 1gcor9/ccc---08.

Figure 3.21: The two stimuli which produced putatively significantly different covariograms. To
this author’s eyes, these stimuli are identical.
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w ere not taken from any particular orientation.) Many such shuffles and covariogram peak height
evaluations then generate a histogram estimating the distribution of maximum peak heights under

the null hypothesis.!3
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Figure 3.22: Distribution of the maximum peak height out of six covariograms, as obtained by the
shuffling procedure described in the text, under the null hypothesis that all orientations produce
peaks of the same height. The dashed line indicates the peak height of the record #lgcor9/ccc—08
at 21.75°,

Figure 3.22 shows the distribution of maximum peak heights obtained after 1000 random
shufflings. The dashed line indicates the maximum peak height of the original record at 21.75°.
In more than 8.5 per cent of the random shufflings, one of the six covariograms had a peak of that
height or greater. The probability of finding a peak of that height or greater simply by chance is
high.

For each experiment, let P be the probability (under the null hypothesis of all orientations
producing peaks of the same height) of finding a maximum peak height greater than the largest
peak in the original experiment. For the experiment shown in Figures 3.20 and 3.22, P = (.087.
The next Figure, 3.23, shows the values of P obtained over all experiments where significant
covariations between pairs of cells existed. If the null hypothesis is always correct, the distribution
of P should be a uniform one— while if the null hypothesis is always incorrect, the distribution
should be markedly skewed, with many small values, since a small value would indicate that

one orientation in the experiment had a peak height unexpectedly greater than any of the others.

13One must ensure that no latency correlations (due to including, within a single set, responses from many different
orientation trials) have been introduced into the shuffled data. This was done by first shifting all responses in time so
that the PSTHs of both cells, at all orientations, lined up. Note that these time shifts of the data do not change the peak
heights of the original covariograms at all: the covariograms are merely displaced on the #-axis. After this time shift,
trials from different orientations can be grouped into a single set without introducing any latency correlations, and the
shuffling procedure proceeded as described above.
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But the smallest value found was 0.059, (not small enough to be declared significant), and the

distribution of P is fairly close to uniform.

o
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Figure 3.23: For each experiment, P is the probability of finding a maximum peak height bigger
than the largest one found in the experiment. P is evaluated under the null hypothesis that all
orientations generate similar covariogram peak heights. The graph above shows a histogram of
the P’s found in the experiments that had significant correlations between pairs of cells. No
experiment had a P value of less than 0.05, and only two experiments had P values of less than
0.1. If the null hypothesis were always correct, all bins in the histogram above would be expected
to have roughly the same height.

In conclusion, the orientation of the drifting grating used as a stimulus in these experiments

does not significantly affect the height of the peaks in the covariogram.

3.4.4 Are responses to one orientation correlated with those at another?

Correlation strength is not influenced by the orientation of the stimulus (section 3.4.3), and the
time scale of the correlations is on the order of tens of seconds (section 3.4.2). During these ex-
periments, several different orientation trials were typically presented as stimuli, ‘interleaved with
each other, within any given 10 seconds. This leads to asking whether responses to the different
orientations were correlated with each other. Figure 3.24 shows some example covariograms that
demonstrate that responses at one orientation indeed often covaried with responses at a different

orientation.
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Figure 3.24: Covariograms of responses to one orientation vs. responses at another. The top left
and the middle right covariograms use data from a single cell; all others use data from two cells.
The bottom covariograms were made using large bins for greater clarity.
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3.5 Latency and Excitability analysis

The analysis described in the previous sections dealt with the time scale and stimulus selectivity
of the observed correlations. This section asks what kinds of correlations are present in the data,
in terms of the types of correlations described in chapter 2. This will be answered by using the
methods of section 2.4 (computing excitability estimates and performing latency searches).

Motivation for doing this type of analysis came from studying the raster plots of the responses.
Figure 3.25 shows the raster plot for the experimental record whose covariogram is shown in the
top panel of Figure 3.13. Data from the same experiment was used for Figure 2a in Sillito et al.
(1994). In Figure 3.25, it can be seen that the cells go through relatively long periods of high
firing rates (e.g. a period of about 50 sec. near start time 200 secs), alternating with periods of
low firing rates (e.g. trials near start time 315 secs). Both cells go together through the same
periods. The latency of the responses is also seen to covary over trials. As explained in chapter 2,
such covariations, called latency and excitability correlations, lead to peaks in the covariogram of
the two cells. Quantifying the size and shape of the peaks they contribute is the purpose of the
excitability estimates and the latency searches. '

Under the experimental conditions used in these experiments, background firing rates were
very low. Thus, for the excitability esimate the background firing rate gain parameter 37 (see
section 2.4.1) was always set to zero and only one gain parameter, p” , was estimated for each cell
per raster r. This parameter was set to be directly proportional to the total number of spikes fired
by the cell in that raster. In addition, one latency shift parameter for both cells, A¢", was estimated
based on the latency search method (section 2.4.2). These sets of parameters, {po]}, {05}, and
{At"}, were then used to predict the covariogram of two model cells that have PSTHs matching
those of the real cells and which covary only in their latencies and excitabilities (but not in their
individual spike times).

Figure 3.26 shows the result of such predictions, together with the original covariograms, for

data from three different experiments. The predictions are remarkably similar to the experimental

*In their paper introducing the JPSTH technique, Aertsen et al. (1989) stated, referring to slow changes in mean
firing rate such as those seen in Figure 3.25, that “careful screening of the spike train data for such nonstationarities
is mandatory” They continued to say that “if necessary (and possible), one may use the procedure of “slicing” the
spike trains into different sections, each one periodically stationary, and compare the results across sections.”” “Slicing™
the data into subsets of trials with roughly similar mean firing rates has the objective of eliminating the excitability
correlation contribution to a covariogram, and will be done, for completeness, below. However, the methods described
in chapter 2 are proposed as more quantitative and complete procedures to address the same issue. In the original report
by Sillito et al. (1994), the issue was not addressed.
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Figure 3.25: Rasters for the top panel of Figures 3.13 and 3.26, record #lgcor8/aaa—13 at
133.75°. Tt is easily seen that the cells go through long periods of high excitability (many spikes),
alternating with long periods of low excitability (few spikes— e.g., compare the large numbers of
spikes fired in response to trials near start time ~ 200 seconds, compared to the very few spikes
fired in response to trials near start time & 315 seconds.). Since the excitabilities of both cells co-
vary, this results in excitability correlation peaks in their covariogram. The latency of the response
covaries also. One cell is shown in black, the other in grey; trial start time is shown on the y-axis.
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covariograms, which shows that in order to account for the covariogram peaks, only 2 global
parameters (o and At") need to covary between the two cells, and strongly suggests (though does
not prove) that the correlations seen in the original data are not spike timing correlations, since the
covariograms can be very well reproduced without spike timing correlations.

The predictions are based partly on direct estimates from the data (the excitability gain param-
eters) and partly on fits to the original covariograms (the latency search). Why are the predictions
so good? It is possible that even fewer than two parameters per raster are covarying in the cells: the
quality of the predictions suggests that two parameters per raster may have been enough to overfit
the data. Another reason why the fits are so good is that the original covariogram peak shapes are
very well matched to the shapes of the PSTHs of the two cells. As explained in chapter 2, the
shape of peaks caused by latency and excitability correlations is largely determined by the shape
of the PSTHs (in contrast to the shape of peaks due to spike timing correlations, which can be
much more arbitrary). The shapes being so well matched again suggests that the correlations are
overwhelmingly of the latency and excitability type.

So far, only covariograms have been shown, but the results also hold for JPSTHs. The same
latencies, excitabilities, and PSTHs that were used to make the prediction shown in in the top panel
of Figure 3.26, were used, in conjunction with the methods described in section 2.7, to generate a
synthetic pair of sets of spike trains (one set for each of the two cells involved in the covariogram).
The JPSTH of the synthetic sets, and the JPSTH of the experimental spike trains, are compared in
Figures 3.27 and 3.28. Their similarity indicates that the main features of the experimental JPSTH

have been captured by the latency and excitability description.

The excitability estimate and latency search are intended to be used for separating out the
various components of covariograms. With respect to the experimental data, the result of those
anlyses so far have argued the the latency and excitability correlation contributions are the major
components of the covariograms. If this is true, direct measurements of excitability and estimated
latencies should show characteristics similar to those of the peaks in the experimental covari-
ograms. In particular, their time scale should be similar. Figure 3.29 shows the excitabilities of
two neurons over the course of an experiment.!> These are the same neurons whose covariogram
was shown in the top panel of Figure 3.26. The time scale of the variations in excitability is similar

to that of the correlations: it is on the order of tens of seconds (section 3.4.2). A similar plot show-

31n this case, since the background firing rate was almost zero, “excitability” is synonymous with “mean firing rate”.
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Figure 3.26: Covariograms of experimental data and predictions based on the latency and ex-
citability analysis. The covariograms are shown as the thin dark lines (binned); the predictions are
the thick grey lines. Dashed lines indicate significance limits. The top covariogram uses data from
cells in the tonic mode (neither cell fired bursts during the experiment). The middle covariogram
uses data from cells in a mixed mode (the cells sometimes fired in bursts, sometimes tonically);
the bottom covariogram uses data from cells in the burst mode (both cells fired almost always
in bursts). The fits to the data, shown as the grey lines, are made using models where the only
covariations between the two cells are in the latencies and excitabilities of the responses, not in
individual spike times. The peak shapes predicted by such models are closely related to the PSTHs
of the two cells’ responses (in contrast to ‘the peak shapes allowed by spike timing interactions,
which can be much more arbitrary). As can be seen, the fits are very good.
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Figure 3.27: JPSTH of the experimental spike train data used in the top covariogram of Fig-
ure 3.26. (Data record 1gcor8/aaa---13 133.75° cells 2 and 3).
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Figure 3.28: JPSTH of synthetic, Poisson-process-generated spike trains based on the PSTHs,
excitabilities, and latencies found by the latency and excitability analysis. The analysis methods
are described in chapter 2; the spike train generating methods are described in section 2.7.
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ing estimated latencies, as found by the latency search method, is shown in Figure 3.30. Again,

they vary on the scale of tens to hundreds of seconds.

Igcor8/aaa———13 all orientations cells 2 and 3
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Figure 3.29: Total number of spikes fired in each trial as a function of trial start time. The curve
for each cell is composed of 500 data points (500 trials).

Chapter 2 explained that covariations in mean firing rates (i.e., excitability correlations), such
as those shown in Figure 3.29, are linked to positive DC values of the covariogram. A glance
at the covariogram in the top panel of Figure 3.26 confirms that this holds true for this record
(#lgcor8/aaa—13/133.75°): most of the covariogram is clearly above zero. Thus, record #lgcor8/aaa—
13/133.75° is an example of how looking at the DC value of the correlogram can immediately
allow one to tell whether there were covariations in the mean firing rates of the two cells. The
central peak of the covariogram of this record, showing this tell-tale positive DC value, can also
be found as Figure 2a in Sillito et al. (1994).

Aertsen et al. (1989) propose that “one may use the procedure of “slicing” the spike trains
into different sections”, each one with roughly similar mean firing rates, and “compare the results
across sections” as a method for avoiding excitability correlation peaks. The methods of chapter 2
(in particular the direct estimation of the excitability correlation contribution to a correlogram)
have been proposed here as more quantitative and complete ways to address this type of issue.
Nevertheless, the result of the slicing procedure recommended by Aertsen et al. is shown below
in Figure 3.31 for completeness. The result of applying the slicing technique shows that, after

slicing, the remaining contributions to the covariogram are not statistically significant. Interest-
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Figure 3.30: Latency estimate (as found by the latency search method), shown as a function of
trial start time.

ingly, though not significant, a small peak near ¢ = 0 remains. No side peaks are evident. It is
possible that the remaining peak indicates the a weak but existing short time scale correlation, in
addition to the longer time scale correlations the analysis has so far focussed on. If such a short
time scale correlation component exists, however, its signal is too small to be statistically signifi-
cant compared to the much stronger long time scale component. It is likely that in order to detect
it, experiments where long time scale covariations were explicitly checked for and avoided, during

the experiment itself, would need to be carried out.'®

16This could be done by monitoring for stable mean firing rates and latencies, for example.
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Figure 3.31: Result of slicing the record #lgcor8/aaa—13/133.75° into different sections, each
with roughly constant mean firing rates. Each slice had at least three trials within it, and was
normalised by the geometric mean of the number of spikes produced by each cell in that slice
(Palm et al. (1988)). The covariograms of different slices were then averaged together. The
variances of the null hypotheses corresponding to each covariogram were averaged and divided
by the square root of the number of slices used to produce a final null hypothesis variance. The
average covariogram is shown as a solid line; dashed lines are significance limits, defined as the
20 limits obtained from the square root of the final null hypothesis variance. Interestingly, though
not statistically significant, a peak near ¢ = 0 can still be clearly seen.

3.6 The covarying resting membrane potentials hypothesis

The analysis presented in this chapter has argued that the observed peaks in the covariograms
are due to slow, orientation-independent covariations in the latency and excitability of the cells’
responses. A simple mechanism for generating such covariations in a simple integrate-and-fire
neuron would be covariations in the resting membrane potential of the two cells involved: at low
resting potentials, one would expect long latencies and low excitabilities, while at high resting
potentials one would expect short latencies and high excitabilities.!”. Such linked variations can
be seen in the responses illustrated in Figure 3.25: in trials where the cells fire more spikes than
in other trials, they also tend to fire sooner than in other trials, and this is true for both cells.
However, LGN cells cannot always be approximated as simple integrate-and-fire neurons: when
their resting potential is lowered enough, low-threshold Cat™ channels deinactivate, and the cells
respond with bursts of spikes (Jahnsen and Llinas (1984a,b); see section 3.2.1). Thus, while for

high ranges of resting potential variation, the cells would fire almost always in tonic mode (this

17 am indebted to John Hopfield for pointing out that variations in an integrate-and-fire cell’s resting potential (or,
equivalently, firing threshold) would lead to linked excitability and latency variations in the cell’s spiking response, as
described.
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would also be true for cells with very few Ca*™ channels), for other ranges of resting potential
variations the cells might fire sometimes in tonic mode, and sometimes in burst mode; and for still
other ranges (near the low end of the spectrum), the cells might fire always in burst mode.

All three of these possibilities are found in the experimental data. The covariogram in the
top panel of Figure 3.26 is an example of a covariogram of cells in the fonic regime: neither cell
fired any Ca®* bursts during this experiment. This is not shown in that Figure, but can be seen
in its raster plots, shown in Figure 3.25. For these cells, the left panel of Figure 3.32 shows how
increases in the total number of spikes fired are associated with decreases in latency, as one would
expect if their resting membrane potentials were covarying, and they were well approximated by
itnegrate-and-fire neurons. Being in the tonic mode, such an approximation may be adequate. The
covariogram in the middle panel of Figure 3.26 is an example of a covariogram of cells in the
mixed bursty/tonic regime: both cells fired bursts in about half the trials of the experiment (not
shown). If the resting potentials of the two cells were covarying, one would expect both cells to
fire tonically in the same trials, and to go into burst mode in the same trials. The right panel of
Figure 3.32 shows how the tendency to fire in bursts indeed covaried in the two cells. Finally,
the covariogram in the bottom panel of Figure 3.26 is an example of a covariogram of cells in the
burst mode: both cells fired a burst in almost every modulation of almost every trial. Figures 3.33
and 3.34 show the rasters of these two cells. There are very clear slow covarying changes in the

latency of burst firing, even though most bursts appear to be fairly similar.

The next chapter explores, through comptational modeling, the hypothesis that peaks in the
covariograms are due to covariations in the cells’ resting membrane potentials. All three firing

regimes described here (tonic only, mixed, and burt only) will be discussed.
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Figure 3.32: The left panel shows the estimated latency vs. the total number of spikes fired in each
trial for the fonic-mode covariogram of Figure 3.26. The shortest latencies are associated with the
greatest excitability. Correlation coefficient is -0.60. The right panel shows the burst index of cell
2 vs. the burst index of cell 1, for the data from the mixed-mode covariogram of Figure 3.26. The
burst index is calculated for each raster for each cell as B; =(# of spikes in Ca™™" bursts)/(total
number of spikes). Ca™™ bursts were identified from the extracellular data using the criteria of
Guido et al. (1992); Lu et al. (1992). The correlation coefficient of the burst index in the two cells

number of spikes fired

burst index of cell 1

shown here. Data record lgcor9/ccc—11 at 90°.
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Figure 3.33: Rasters for the burst-mode covariogram of Figure 3.26. One cell is shown in black,
the other in grey. Though most rasters fire similar numbers of spikes, slow changes in the latency
of response can be clearly seen. This is most easily seen in Figure 3.34, a closeup of the rasters
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Figure 3.34: Closeup of rasters of Figure 3.33: time axis runs only from 400 to 1000 ms. Slow
covariations in the latency of response can clearly be traced (e.g. responses to trials near start time
100 seconds had shorter latencies than responses to trials near start time 300 seconds. This is true
for both cells, one of which is shown in black and the other in grey.). Trial start time is shown on
the y-axis.
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Chapter 4 Spike train correlations in the LGN of the cat: Modeling

4.1 Summary of the chapter

The analysis and observations described in the previous chapter led to the following hypothesis:
the observed peaks in covariograms of LGN neuron pairs are caused by covariations in the resting
membrane potentials (Frest) of the two neurons. The modeling study to be described in this
chapter explores this hypothesis.

Section 4.2 introduces the chapter by describing three different firing regimes seen in the data:
tonic firing, mixed tonic and burst firing, and burst firing. The section explains how covarying
resting membrane potentials could lead to covariogram peaks in each of these three regimes. Sec-
tion 4.3 describes the model used to explore the hypothesis proposed here. The model is a slightly
simplified version of Huguenard and McCormick’s (1992) model of thalamic relay cells. Model
responses to retinal ganglion cell (RGC) spiking input (spike times for which were drawn from
data kindly provided by José-Manuel Alonso and R. Clay Reid) are illustrated for a variety of
resting membrane potentials. The model clearly a dependence on Freg of the latency and ex-
citability, as well as the already well-known resting membrane potential dependence of burst vs.
tonic firing response modes (Huguenard and McCormick, 1992). If the resting potentials of the
two cells covary, their response properties will also covary, leading to a peak in their spike train
covariograms. Section 4.4 describes the covariogram results in the three firing regimes. Covaria-
tions in Eest, With the two cells remaining in the tonic regime, lead to broad covariogram peaks
with positive DC values; covariations in Fest, with the two cells remaining in the burst regime,
lead to narrow peaks surrounded by slight inhibitory dips; and asymmetric covariations (where
one cell stays in the tonic regime while the other varies from the tonic to the burst regime) lead
to broad but asymmetric covariogram peaks. These types of peaks are all observed in the data. If
the timescale of variations in the resting potentials is in the tens of seconds (as might be expected
from known mechanisms which affect resting potential (McCormick and Vonkrosigk, 1992; God-
win et al., 1996; Murphy et al., 1994; Uhlrich et al., 1995; Sherman and Guillery, 1996)), then
the side peaks seen in Figures such as 3.12 are also predicted by the “covarying resting membrane

potentials” hypothesis.
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4.2 Covariogram peaks from covarying resting potentials?

Three types of covarying firing patterns were seen in the experimental data. To each of these there
corresponds a hypothesis as to how the covariogram peaks could be caused by covariations in the
resting membrane potentials of the two neurons involved.

Case 1: Tonic regime. In this regime, the cells showed large covariations in the number of
spikes produced in response to the visual stimulus, sometimes firing only 1 or 2 spikes per trial,
sometimes as many as 50 (Figure 3.29). However, the cells never fired any bursts. Thus the T-
type Ca*t channel appears to have been largely inactive. In the model, similar behaviour can be
obtained by covarying Fies for the two cells, but keeping the cells always in the tonic regime. As
Fest becomes more hyperpolarized, it will become more distant from the Na™t action potential
firing threshold. Because of this, the LGN model cell will produce, in response to a given input,
fewer spikes, and at a longer latency, than it would have at more depolarized values of Ees;. (see
Figure 4.3). Thus, even while kept in the tonic regime, the response properties of LGN cells can
covary due to covarying values of Eyg. This covariation is reflected in a positive peak in their
spike train covariogram.

Case 2: Mixed burst/tonic regime. If the two cells covary from being in tonic response
mode to being in burst response mode, then clearly their response properties will covary and a
positive peak in their covariogram is to be expected. The change between burst and tonic response
is a well-documented consequence of changes in Eyes. Hence this is another type of positive
covariogram peak that can be caused by covariations in Eres. Here, an asymmetric version of
such a covariation will be considered: while the resting potential of the two cells will covary, the
magnitude of the variation will be greater for one cell than the other. Thus one cell will vary
within the tonic regime (in some trials firing many action potentials, in some very few) while the
other will vary from firing tonically to firing in bursts. Since in this model the two cells are not
interchangeable, the result will be an asymmetric covariogram peak.

Case 3: Burst regime. Since burst responses are composed of Na™ spikes which ride on top
of a Ca™™ action potential, they are fairly sterotyped: insofar as the Ca*™ action potential is an
all-or-none event (a rough approximation only) all bursts will be fairly similar, in the same way
that all Na™ action potentials are fairly similar. But, as will be shown in the model below, the
time at which the bursts happen, relative to the input, may be influenced by E s Thus, in the

burst regime, variations in Ereq lead to variations in latency, but with little variation in excitability.
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Latency correlations generate peaks surrounded by inhibitory dips (see chapter 2). The width of
the peaks will be largely determined by the width of the response bursts: thus, we expect narrow,
20-30 ms wide peaks (corresponding to the length of a typical burst), surrounded by inhibitory

dips.

The geniculate relay cell model to be used must be capable of operating in both burst and tonic
regimes. Following the strategy of Mukherjee and Kaplan (1995), a simplified version of Mc-
Cormick and Huguenard’s (1992) model was chosen as a relatively simple (having only a single
compartment) model which nevertheless accurately reproduces in vitro both burst and tonic be-
haviour. In the model, two cells were separately simulated. On each trial, the resting membrane
potential was set to be the same for both cells by controlling their leak K+ conductances; this
common resting potential varied slowly over different trials. (In a few runs, specifically those
for the mixed burst/tonic regime, the two cells had covarying but not identical resting potentials.)
Apart from the interaction through their resting potentials, the two simulations were independent
and used independent inputs.

The leak K* conductance was chosen as the control of Fi. because there are known mech-
anisms, due both to signals from cortex (acting through metabotropic glutamate receptors) (Mc-
Cormick and Vonkrosigk, 1992; Godwin et al., 1996), and to signals from the parabrachial region
of the brain stem (acting through metabotropic acetylcholine receptors) (Murphy et al., 1994;
Ubhlrich et al., 1995; Sherman and Guillery, 1996), that can affect Eest through the leak KT con-

ductance.

4.3 Single-cell model

4.3.1 Description of the model

As stated above, the strategy of Mukherjee and Kaplan (1995) was followed and a simplified
version of McCormick and Huguenard’s very successful single-compartment model of geniculate
cells (Huguenard and McCormick, 1992; McCormick and Huguenard, 1992) was used. The sim-
plified version was chosen both for simplicity itself and for speed of simulation. Some runs were
made with the full 10-channel model; the results in terms of the cross-correlogram shapes were
essentially identical to those using the simplified model. The simplified model has a transient

Na™ and a delayed rectifier K* channel for action potential generation. Parameters for these were
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taken mostly from Belluzzi and Sacchi (1988, 1991). Details of the action potentials are not crucial
for the results described here: they could have been replaced by a simple threshold-fire-and-reset
mechanism. In contrast, the low-threshold Ca*" channel and its ensuing Ca™ ™ spikes are very im-
portant for the results, since they determine the shape of burst responses and the resting-potential
dependence of response mode. The kinetics and voltage-dependence of this Ca’™ ™ channel were
taken from McCormick and Huguenard (1992). The channel was implemented as a permeability
rather than a conductance, a Q1o of 3.55 was used for activation, and a Q1o of 2.8 was used for
inactivation. Simulation “temperature” was 36° Celsius. The maximum permeability of the low-
threshold Ca™ channel was slightly reduced from the full model to account for the elimination of
several of the conductances of the full model, again following Mukherjee and Kaplan (1995). A
leak Na't and a leak K™ conductance were used in the model to set the membrane resting poten-
tial. On each trial, the two cells’ membrane voltages were recorded, and upwards crossings above
a -25 mV threshold were taken as spike initiation times. The resulting spike trains from many such
trials were then used to compute covariograms.

The equations describing the model were numerically integrated using semi-implicit Back-
wards Euler integration with an adaptive timestep (Press et al., 1992). A single-compartment
simulator program to do this was written in MATLAB 5. This platform was chosen over NEURON
and GENESIS because of ease of integration of model results with MATLAB’s data analysis ca-
pabilities, and because the model was simple enough that it was easily written despite not using a

platform optimized for neural simulations.

4.3.2 Inputs to the model

The retinal ganglion cell (RGC) spike times used as input to the model cells were drawn from
spike train recording data of an RGC in anesthetized paralysed cats, recorded during visual stim-
ulation using drifting sine-wave gratings. This recording was made by José-Manuel Alonso and
R. Clay Reid, who I thank for the kind sharing of their data. Like LGN cells, the response of
RGCs to stimulation by drifting sine-wave gratings is similar to a halfwave-rectified sine wave
(see Figure 3.1). The response can thus be divided into individual modulations, each correspond-
ing to one period of the stimulus. Figure 4.1 shows rasters for 50 such modulations, together
with their PSTH. The maximum firing rate of the RGC under these conditions was 144 Hz. The
only ionotropic synaptic inputs to the two LGN cells in the model were those from RGCs. Each

LGN cell in the model cell received input from a single RGC. Retinal ganglion cell spike times in
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response to approximately 3000 modulations of a drifting sine-wave grating were available to be
used as inputs for the model. Different LGN cells and different trials or modulations in the model
used as input different trials from the RGC spiking data. In the model, each incoming RGC spike
generated a conductance change with an alpha-function shaped waveform:

Gampa = GJampa [(t —t0)/7] e (t=to=7)/7 for ¢ > tg, zero otherwise “4.1)

Iampa = YGampa (Eampa - Vm) (4-2)

Here ¢ is the arrival time of the spike, 7 was set to 0.5 ms (for a conductance waveform with a
timescale similar to that in Paulsen and Heggelund 1996), gamp, Was the maximum conductance
per spike, set to 27 nS (similar to Mukherjee and Kaplan 1995), and E,mpa was set to +40 mV. The
effect of multiple incoming spikes on the conductance was additive. Since the time constant of the
RGC AMPA inputs, 0.5 ms, is much shorter than the passive membrane time constant (which is
on the order of 10 ms), these synaptic inputs essentially serve as charge dumpers, quickly raising
the membrane voltage, which then slowly discharges through the membrane leak conductances.
The decay time constant of these synaptic EPSPs is thus almost identical to the membrane time

constant.

4.3.3 Responses of the model

A crucial feature of the model is its capacity to operate in either the burst or the tonic regime.
Figure 4.2 follows Figure 11 of Mukherjee and Kaplan (1995) in illustrating how the responses of
the model can change between these two regimes depending on the resting membrane potential.
The same retinal spike train was used as input in both of the cases shown in the Figure, but for the
top trace the resting membrane potential was set to -55 mV, and for the bottom trace it was set to
-84 mV.

The responses in Figure 4.2 illustrate the responses with Eig; near the extremes of its possible
values (Ex, the potassium reversal potential, was set to -95 mV, and the firing threshold for this
model neuron is around -46 mV; these two are the limits of possible values of Eeg;). How do the
responses vary in between the two extremes? Panels A and C of Figure 4.3 show the spike train
responses of the model to a particular, fixed, RGC input train, over a number of resting membrane
potentials. For the purposes of the discussion below, the crucial points to notice in this Figure,

seen particularly clearly in panel A, are that (a) there is a tonic regime (= -52 to -70 mV), within
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Figure 4.1: 50 different RGC responses to a modulation (i.e. one bar) of a drifting sine-wave
grating. Data provided by José¢-Manuel Alonso and R. Clay Reid. The spike times will be used as
input to the LGN model. The grey line on the bottom axes is the PSTH of 256 trials, smoothed by
a Gaussian with standard deviation 6 ms.
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Figure 4.2: Responses of the model change from tonic to burst as a function of Fyeg. The same
RGC spike train input, shown as thick black vertical lines at the bottom of the two panels, was
used in both simulation runs. The thin solid line is the membrane potential during the simulations
(voltage scale at left). The thick grey line is the Ca™™ current I7 (current scale at right) When the
resting potential was -55 mV, there was no significant Ca™" current. This Figure follows Figure
11 of Mukherjee and Kaplan (1995).
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which resting potential controls both response latency and “excitability” (i.e. number of spikes
fired in response to a given input); (b) there is a burst regime (= -78 to -87 mV), within which the
resting potential controls mostly the latency of the stereotyped burst response; and (c) the resting
potential controls the transitions between these regimes.

While Figure 4.3 showed the responses of a model LGN cell as a function of Fye, for a fixed
RGC input train, each of the panels of Figure 4.4 shows the responses as a function of different
RGC input trains, for a fixed Eresi. This illustrates the variability in LGN spike output due to the

variability in RGC spike input.

4.4 Modeling results

Two LGN model cells will now be used to explore the effect of slow covariations in resting mem-
brane potentials on their spike train covariogram. The two cells’ responses, over many trials of
visual stimulation with drifting sine-wave gratings, were simulated. The resting membrane poten-
tials of the two cells were kept fixed during each trial, but covaried slowly over different trials. In
the model, as in the experiments, each trial lasted long enough for five bars of the drifting grating

to bass over the receptive fields of the cells.

4.4.1 Tonic regime

In the tonic regime the dominant contribution to the covariogram peaks is the excitability corre-
lation between the two cells, as indicated by the large positive DC values of the covariograms.
Figure 4.5 compares experimental and model covariograms and JPSTHs. While the covariograms
are fairly similar, the JPSTHs are quite different.

Figure 4.6 shows the model-produced and experimental rasters used to compute the covari-
ograms and JPSTHs shown in Figure 4.5. An important difference between the two raster sets
is that in the experimental data, the spike trains of each modulation all have their last spike at
roughly the same time, regardless of the number of spikes fired; it is largely the leading edge of
the response which changes timing depending on the total number of spikes fired. In contrast, in
the model, it is the leading edge of the response that is relatively constant in its timing. This is due
to the shape of the PSTH of the RGC input, which has a sharp leading edge, and is also due to the
fact that the RGC used here often fired two closely spaced initial spikes; as illustrated in panel C

of Figure 4.3, this often causes an LGN spike immediately after the RGC doublet. It is possible
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Figure 4.3: Responses of a model LGN cell as a function of resting membrane potential. Two
different RGC spike train inputs, illustrated at the bottom of panels A and C as thick black vertical
l