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Abstract

Since Jack Kilby recorded his “Monolithic Idea” for integrated circuits in 1958, microelec-

tronics companies have invested billions of dollars in developing the silicon material system

to increase performance and reduce cost. For decades, the industry has made Moore’s Law,

concerning cost and transistor density, a self-fulfilling prophecy by integrating technical

and material requirements vertically down their supply chains and horizontally across com-

petitors in the market. At recent technology nodes, the unacceptable scaling behavior of

copper interconnects has become a major design constraint by increasing latency and power

consumption—more than 50% of the power consumed by high speed processors is dissipated

by intrachip communications. Optical networks at the chip scale are a potential low-power

high-bandwidth replacement for conventional global interconnects, but the lack of efficient

on-chip optical sources has remained an outstanding problem despite significant advances

in silicon optoelectronics. Many material systems are being researched, but there is no ideal

candidate even though the established infrastructure strongly favors a CMOS-compatible

solution.

This thesis focuses on assessing the optical properties of materials using microdisk cav-

ities with the intention to advance processing techniques and materials relevant to silicon

photonics. Low-loss microdisk resonators are chosen because of their simplicity and long

optical path lengths. A localized photonic probe is developed and characterized that em-

ploys a tapered optical-fiber waveguide, and it is utilized in practical demonstrations to test

tightly arranged devices and to help prototype new fabrication methods. A case study in

AlxGa1−xAs illustrates how the optical scattering and absorption losses can be obtained

from the cavity-waveguide transmission. Finally, single-crystal Er2O3 epitaxially grown

on silicon is analyzed in detail as a potential CMOS-compatable gain medium due to its

high Er3+ density and the control offered by the precise epitaxy. The growth and fabrica-

tion methods are discussed. Spectral measurements at cryogenic and room temperatures



vi

show negligible background losses and resonant Er3+ absorption strong enough to produce

cavity-polaritons that persist to above 361 K. Cooperative relaxation and upconversion limit

the optical performance in the telecommunications bands by transferring the excitations to

quenching sites or by further exciting the ions up to visible transitions. Future prospects and

alternative applications for Er2O3 and other epitaxial rare-earth oxides are also considered.
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Preface

When I first joined Oskar Painter’s group in early 2005, his first students were beginning to

accelerate into their thesis projects and reap the benefits from their hard work setting up

the labs. Matt Borselli and Tom Johnson’s attempts at Raman lasing in silicon were being

thwarted by dynamic free-carrier effects, and they were addressing surface-state absorption

and passivation issues during their drive toward microlasers with a silicon core and erbium-

doped cladding. Except for a few late processing runs, Paul Barclay had largely disappeared

from Steele (along with his 852-nm laser) to work in the Mabuchi lab, and Kartik Srinivasan

was studying microdisk lasers containing quantum dots while biding his time to build up

the cQED experiment.

During that summer, I joined Kartik on the quantum dot project, and I began to learn

how to pull fiber-tapers and how to test microresonators with them. Luckily, Colin Chrystal

was Matt’s SURF student that summer, and the taper-pulling program he developed has

been invaluable to me ever since. With my vision, I rely entirely upon the interference in the

fiber transmission because I have trouble seeing the taper. If it were not for one afternoon

when I ripped the acrylic box off the puller and installed a camera, I still might not believe

Oskar and Paul about the fiber “bowing.” Throughout that first year, I pulled a lot of

tapers, and I tried to adapt Paul’s epoxy microjoint technique to make pigtailed taper-

coupled resonators for the cryostat. However despite exotic cryo- and space-ready epoxies,

we were never able keep the taper attached below ∼200 K. The various manufacturers were

fairly defensive of their products and utterly flabbergasted when we told them we were using

less than one picoliter per joint. After we realized we would have to buy low-temperature

piezoelectric stages, I moved to developing the dimple tapers, which have become quite

successful and reduce the processing time for our typical devices by ∼40%.

In the spring of 2006, Kartik and I began a project in collaboration with Kevin Hennessy

at UCSB to understand optical losses in III-V microcavities. Both of our groups were
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working towards the strong coupling regime in cQED using quantum dots. The original

objective was to compare Kartik’s RIE (Ar:Cl2) with Kevin’s wet chemical etches (HBr)

of AlxGa1−xAs and to understand why both methods seemed to underperform at shorter

wavelengths. Unfortunately, the only method to assess the procedures (and not just lone

exceptional devices) was to study many modes on many resonators at many wavelengths and

identify statistical trends in the resulting heap of data. Since Kartik and Oskar were pretty

sure this was a material issue, we reduced the scope to study only the HBr process (Kevin

also gained a processing assistant so he would not actually have to make these devices).

I got a lot of practice taper testing and quickly learned about microdisks, especially once

we realized the edge roughness was different on our two material samples. Through the

early summer, I worked to pile up data between classes and being hammered by the APh 24

lab, located in the lifeless cave that would shortly become the Kavli Nanoscience Institute.

During that time I also decided to switch off the quantum dot project. Kartik was running

past microlasers and master equations while I was still dealing with resonator coupling

and holography labs. Ironically, Matt was simultaneously developing some more advanced

single-shot techniques to separate scattering and absorption that would have saved me a

lot of time and effort—I found out about these while reading his thesis a few months after

I had finished taking my data.

So I packed my bags and landed in silicon photonics. After doing some basic silicon

testing for the dimple paper, our intention was that I would continue work with the Er3+-

doped silica from InPlane Photonics that Matt had left after his graduation. However,

that fall we were presented with the opportunity to switch our DARPA program to work

with Translucent in developing Er2O3. Oskar and I made the switch realizing the big-

risk/big-reward potential. At the very least, it would temporarily free me from low-loss

surface-senstive processing and give us exclusive access to new material (unlike the crowded

field of erbium-doped glasses). I had already broken my rule #1 for choosing thesis topics

(no cryogenics) so breaking rule #2 (no exotic materials) did not seem that bad—especially

since the growers (Vijit Sabnis and Homan Yuen) were ready and willing to ship me more

material than I could ever deal with. I am still waiting to break rule #3 (no ultrahigh

vacuum) and give MBE a shot.

In retrospect, we should have given more credence to some of our initial minor concerns,

but we jumped in. Tom gave me a great head start on the processing by throwing the Er2O3
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films at a battery of chemicals, of which most did nothing. I proceeded optimistically as

Homan and Vijit addressed material problems at about the same pace I was figuring out

the processing and testing aspects. The first disks I made with H2SO4 produced weak, but

measurable, PL and exhibited the transmission features that would later be identified as

cavity-polaritons at room temperature. By March of 2007, we were beginning to become

concerned with the upconversion and our inability to see any absorption saturation. In

June, I figured out the Ar+ milling, made a bunch of samples, and then did not go back

into the clean room for over a year (except to train people and pester Raviv Perahia). Once

free from the clean room, I began gaining dominion over equipment in the test lab, which

has provided me far too much contact with the New Focus laser repair department.

That fall, after a year on the project, we were beginning to get frustrated, but I keep

myself busy with absorption spectra, radiative efficiency, upconversion, and polaritons at

high and low temperatures. Vijit and Homan had moved on to work on starting a new

company, but Translucent was bringing on new people. At this point, I also began some

adventures into cQED by helping Kartik with some of his quantum dot measurement and

testing my own disks in the cryostat. I worked throughout 2008 investigating the lifetime

and polariton behaviors. Some of the data could have been obtained more quickly with

unprocessed films and free-space optics. However, my unorthodox measurements fit within

our microcavity infrastructure, and we were always optimistic that we would uncover some

physics that would allow us to quickly proceed. Although with the rare-earth studies from

the 1970s and a few rate equation parameters in hand, a coherent picture was emerging

that Er2O3 is not a suitable laser material, and the weak coherent coupling to each ion

made the ubiquitous Rabi splitting depressingly classical. I began a few last-ditch efforts to

achieve lasing that pushed our equipment to the limits and the material beyond its damage

threshold because we had invested a lot of time and energy. A Λ-system laser between

carefully chosen Stark levels at 8 K is a viable option, but the benefits probably do not

outweigh the effort. I decided to leave many questions unanswered concerning upconversion

lasing at green wavelengths in the current material after burning standing-wave gratings into

three disks and outright vaporizing a fourth. There is a subtle lesson here about knowing

when to terminate an experiment.

While Er2O3 did not live up to its promise, these rare-earth oxide films still have consid-

erable potential especially for controlling the emission spectrum and converting absorbed
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photons to other wavelengths using Y2O3 or Gd2O3 alloys. I was exposed to a wide range of

photonics and atomic physics trawling for immediate applications and results to utilize the

current material, which really is an initial step in a much more ambitious material science

and engineering program. Even though much of this thesis is focused on absorption rather

than emission, I take solace in the difficult road to Maiman’s first ruby laser and that a com-

mercially acceptable solution still does not exist to generate gain for optical interconnects

on CMOS microelectronics.

After presenting the formalism for coupling to WGM cavities used throughout these

measurements, this thesis is divided according to material systems. Silicon microresonators

are presented in chapter 2 with details of the dimpled taper probes, which initially saw

their greatest use in prototyping Si devices and fabrication methods. A sample analysis of

loss in AlxGa1−x is presented in chapter 3, and chapter 4 concentrates on Er2O3. Ancillary

experimental and theoretical details are reserved for the appendices.

C. P. Michael

Pasadena, CA

May 2009
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Chapter 1

Microdisk Optical Cavities

The resonant circulation of electromagnetic waves enables a variety of macroscopic systems

from lasers to interferometric gravitational wave detectors, but recent pressure from the

telecommunications and microelectronics industries, along with more fundamental research

programs, has driven the development of wavelength-scale optical cavities, waveguides, and

other components. Microphotonic cavities can be designed to give a large electric field

strength per photon, a sparse spectrum of optical modes, and great sensitivity to the struc-

ture’s surfaces [1, 2]. By combining these attributes with a high circulating intensity (i.e.,

low field decay rate for the optical mode), microcavity physics is central to many sub-

jects including low-threshold and “thresholdless” lasers [3], control of spontaneous emission

through the Purcell Effect [4,5], nonperturbative light-matter interactions [2,6], low-power

nonlinear optics [7, 8], chemical and biological “lab-on-a-chip” devices [9], and cavity op-

tomechanics [10].

Several microresonator geometries exist beyond the canonical Fabry-Pérot cavity that

can be optimized for different applications. Planar cavities with distributed Bragg reflectors

(DBRs) require little etching and are commonly used with epitaxially grown material, as in

exciton-polariton measurements with III-V and II-VI quantum wells [11,12]. Similar studies

with organic emitters, such as cyanine dyes in a J-aggregate structure [13], are possible by

spin coating the organic material onto a wafer with a single DBR and then depositing a

metal film to form the top mirror. Vertically etching a planar cavity to form a micropillar

offers greater lateral mode confinement and more directional coupling through the top

mirror into a single output mode, which has been used to efficiently collect single photon

pulses [14]. Photonic crystals [15,16] utilize Bragg reflection in multiple dimensions to open

electromagnetic band gaps and to achieve a high electric field strength (per photon) [17]



2

without a dielectric discontinuity at the center of the cavity [18], and whispering-gallery

microresonators (e.g., spheres [19], disks [20], and toroids [21]) provide a rich spectrum of

modes with low intrinsic loss.

While significant work is focused on cavity design, material properties are of equal

concern in many applications. These properties include both bulk quantities (absorption

coefficient, radiative and nonradiative relaxation rates, etc.) and surface quantities (absorp-

tion by surface states, surface recombination velocity, etc.). Microcavities are a convenient

tool for assessing material quality because they offer a long effective interaction length and

measurable losses associated with input/output coupling. Device attributes associated with

material processing (surface roughness, passivation layers, etc.) can also be investigated once

bulk effects are adequately understood.

To maximize their utility for material studies, microcavities should be trivial to design

with low intrinsic loss, easy to fabricate in a variety of materials, and straightforward

to identify fabricated imperfections without optical measurements. Compared to other

geometries, microdisk resonators offer an attractive combination of simplicity and material

flexibility. Disks with diameters (thicknesses) ≫λo/nd (>λo/2nd) support a large number

of modes with very low radiation loss and require only a single material layer,1 where λo is

the free-space wavelength and nd is the refractive index of the disk material. The quality of

the fabrication process for these devices can be easily evaluated by the surface roughness,

unlike photonic crystals that require fault-tolerant designs [22] or precise simulation of the

as-fabricated structures [23]. Microdisks are also robust against subtle leaky geometric

variations as in micropillars [24, 25] and microrings [26].2 Microspheres and toroids offer

many of the same advantages along with the lowest optical loss for any microcavity structure,

which makes these devices extremely sensitive to refractive index changes in their modes’

evanescent tail [28–30], but the glass reflow procedure limits their material range to doped

silica (e.g., through sol-gel deposition [31, 32] or ion implantation [33, 34]) or postreflow

surface coatings [35, 36]. While replica molding techniques extend the toroid’s versatility

to cured polymers [37], processing methods for crystalline toroids (e.g., silicon [38]) are not

as mature as for microdisks. In this chapter, the quasi-normal whispering gallery modes

1Excluding a sacrificial substrate that must be undercut to form the disk’s pedestal.
2The whispering gallery modes of a microdisk with low refractive index can couple to modes with the

same momentum in a high-index pedestal, which then radiate down into the substrate. However, this loss
channel can be easily ameliorated by further undercutting as in Ref. [27].
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(WGMs) of a microdisk resonator are discussed, and the coupled-mode theory and cavity

parameters used throughout this work are presented.

1.1 Quasi-normal Modes

The normal modes of a system are solutions to the appropriate time-independent wave

equation with the condition that the wave amplitude vanishes at the system boundary

(either at infinity or the boundary of a more suitable domain), as for the optical field

in an ideal Fabry-Pérot cavity or the elastic vibrations of a perfectly isolated rigid body.

Under this constraint, the field magnitude is conserved, and the eigenvalues are real. The

quasi-normal modes (QNM) of an open system are solutions to the same wave equation

with an outgoing traveling-wave boundary condition that causes the field to decay [39].

In this classical analysis, the nature of the coupling to the bath of radiation modes is

concealed unlike the quantum treatment of dissipation where the bath’s degrees of freedom

are included and later removed using specific assumptions [40].

The microdisk structure consists of a planar slab with radius R and height h as in

Fig. 1.1(a)—we assume the pedestal and substrate are undercut far enough to have little

overlap with the cavity field. While analytic solutions for this geometry do not exist, the

cavity modes can be found with reasonable accuracy using a 2D effective-index model.

In Refs. [41, 42], the QNMs are further simplified by using exponential decay to describe

fields outside the cavity. These real normal-mode eigenvalues do not describe radiation

loss, but this analysis can be extended to include radiating fields and complex eigenvalues.3

Further insight into the modes’ behavior can also be gained from a conformal coordinate

transformation and the WKB approximation [44, 45], but semianalytic solutions without

this transform have been most useful for quickly evaluating dispersion characteristics and

providing accurate starting values for targeted numerical eigenvalue solvers.

Starting with the electromagnetic wave equation for a linear piecewise-homogeneous

medium in the absence of free charges and currents,

∇2 ~F − n2(~r)

c2
∂2 ~F

∂t2
= 0, (1.1)

where ~F ∈ {~E, ~H}, the standard linear constitutive relations are ~D = ǫ(~r) ~E and ~B =

3This QNM analysis was explored prior to its publication by Heebner et al. [43].
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Figure 1.1: (a) Perspective sketch of a microdisk and the e±imϕ field dependence for a
second-order mode (m = 35, p = 2). (b) SEM image of a microdisk array fabricated from
silicon-on-insulator (SOI)—i.e., Si disks with SiOx pedestals on a Si substrate.

µ(~r) ~H ≈ µo
~H, c = 1/

√
ǫoµo is the speed of light in vacuum, and n(~r) =

√

ǫ(~r)/ǫo is the

refractive index. By considering only oscillatory solutions ~F (~r, t) = ~F (~r)e−iωt, the time-

independent wave equation in cylindrical coordinates becomes

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
+

∂2

∂z2
+ k2

on
2(~r)

)

~F (~r) = 0, (1.2)

where physical fields are given by ℜ(~F ), and ko = ω/c is the desired eigenvalue representing

the mode’s wavevector in free space. To account for material dispersion, n(ω) is calculated

by fitting the Sellmeier formula to published data for Si and SiOx [46] and by using a

simplified interband-transition model for AlxGa1−xAs [47]. Since data is unavailable, we

model Er2O3 as nondispersive (n = 2.0); Sellmeier coefficients are available for Y2O3 but

would not account for the optical transitions in the Er3+ ions [48].

The high refractive index contrast along ẑ for thin microdisks restricts the out-of-plane

momentum for WGMs and allows the system to be simplified using a self-consistent effective-

index model. This method also builds an intuitive picture of WGM behavior based on how

the mode’s total momentum is roughly partitioned along r̂, ϕ̂, and ẑ. By assuming the

mode’s momentum along ẑ is the same as in the analogous slab waveguide, the 3D disk with

refractive index nd (cladding index no) can be treated as a 2D circle with a refractive index

neff , where neff is the effective index for the fundamental mode of a symmetric slab waveguide

with the same h and nd following the calculation in Ref. [49]. Under this assumption

which is usually valid except for h ≫ λo/2nd, the Maxwell’s Equations relating the field

components partially decouple giving two orthogonally polarized cavity modes. The TE
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modes have non-zero {Er, Eϕ,Hz} fields, and the TM modes consist of {Hr,Hϕ, Ez}, where

the r̂-component identifies the TE-TM character similar to slab waveguides. These QNMs

can be obtained by solving Eq. (1.2) for Fz, where Fz = Hz and Ez for the TE and TM

modes, respectively. Using separation of variables, Eq. (1.2) can be rewritten for solutions

of the form Fz = R(r)A(ϕ)Z(z):

∂2
Z

∂z2
+ k2

o [n
2(z) − n2

eff ]Z = 0, (1.3a)

∂2
A

∂ϕ2
+m2

A = 0, (1.3b)

(

r2
∂2

∂r2
+ r

∂

∂r
+ r2k2

on
2
eff(r) −m2

)

R = 0, (1.3c)

where neff(r) = neff at r < R and neff(r) = no at r > R. Equation 1.3a effectively accounts

for the out-of-plane propagation (Z ≈ e±iβ⊥z) with

β2
⊥ + k2

on
2
eff = k2

on
2(z), (1.4)

where β⊥ is the propagation constant normal to the disk plane and koneff is proportional

to the in-plane momentum. The solutions A = e±imϕ to Eq. (1.3b) describe clockwise and

counterclockwise traveling waves [Fig. 1.1(a)] with angular momentum proportional to the

mode index m, which is an integer since the field must be single valued for ∆ϕ = 2π. These

traveling-wave modes are degenerate due to rotational symmetry [ϕ → −ϕ in Eq. (1.2)].

The radial solution to Eq. (1.3c) is

R =







Jm(koneffr) for r ≤ R,

H
(1)
m (konor) for r ≥ R,

(1.5)

where Jm(x) and H
(1)
m (x) are the Bessel and Hankel functions of the first kind.4 Matching

the fields tangential to the disk boundary at r = R gives a transcendental equation for the

complex QNM eigenvalues (ko)

m

koneffR

(

1 − ξ
no

neff

)

=
Jm+1(koneffR)

Jm(koneffR)
− ξ

(

no

neff

)

H
(1)
m+1(konoR)

H
(1)
m (konoR)

, (1.6)

4Bessel and Hankel functions of the second kind [Ym(x) and H
(2)
m (x)] are divergent as x → 0 and x → ∞,

respectively.
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where ξ = n2
eff/n

2
o for TE modes and ξ = 1 for TM modes.

Equation 1.6 can be solved numerically in the complex plane using a 2D minimization

routine starting near the real axis [ℜ(ko) ≫ ℑ(ko)]. There will be multiple solutions to

Eq. (1.6) for a given angular momentum (m) corresponding to modes of different radial

order p [number of antinodes for Hz or Ez along r̂ as in Fig. 1.1(a)]. The index p also

qualitatively describes the momentum along the radial direction. Hence, the fundamental

(p = 1) radial mode for a given m will have the lowest |ko| because higher p modes will have

a larger total momentum if the angular component is fixed. In general for two modes with

the same |ko| if p1 < p2, then m1 > m2. Microdisks also support modes with higher vertical

order (more than one Fz antinode along ẑ) which can be found with Eq. (1.6) by using neff

for the appropriate order slab mode; however, the devices in this work only support the

fundamental slab modes. For completeness, the condition to cut off the second-order mode

is
2h

λo

√

n2
d − n2

o < 1, (1.7)

which corresponds to h = 233 nm in Si (nd = 3.476) at λo = 1550 nm; the fundamental TE

and TM modes are never cut off in a symmetric slab waveguide. Throughout this thesis,

microdisk modes are commonly organized in families according to polarization and radial

order (e.g., TEp=2); within these families, consecutive modes (∆m = ±1) have a relatively

small free spectral range, comparable radiation loss, and similar phase velocity at the disk

edge—which is pertinent to WGM-waveguide coupling.

While the effective-index solution provides an efficient method for finding the QNM

eigenvalues with modest computational resources, numerical models using the finite ele-

ment method (FEM) are more flexible for variable structures and calculations involving

the full 3D geometry. Finite-element simulation of axially symmetric resonators can be

accomplished using Comsol’s Multiphysics/Femlab platform by incorporating the eimϕ de-

pendence into a fully vectorial Cartesian waveguide solver.5 In these models, the 3D cavity

and cladding are represented by a cross section in the r̂-ẑ plane, and a targeted eigenvalue

solver finds numerically exact field profiles for the QNMs at a given m value, as in Fig. 1.2.

Full 3D simulations provide no additional information for these studies and are too mem-

5This code was originally developed by S. Spillane [50, 51]. M. Borselli and T. J. Johnson reconfirmed
its findings and significantly extended its scope. A more detailed and independent description of this
implementation can be found in Ref. [52]; axially symmetric electromagnetic structures are included as a
standard application mode in Comsol Multiphysics v3.5.
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(a) TE mode:  p = 3, m = 65, λ = 1555.1 nm, Qrad > 1016

(b) TM mode:  p = 2, m = 35, λ = 1543.5 nm, Qrad = 6900
(–)               0               (+)
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φ

r z i(φ) Normˆ ˆ ˆEz viewed along ẑ

Figure 1.2: Sample FEM simulations of field components for (a) TE and (b) TM modes
in a Si microdisk with R = 7.5µm and h = 210 nm showing the region 5 ≤ r ≤ 8µm.
Simulations in the r̂-ϕ̂ plane utilize the same neff approximation as Eq. (1.3a), but they are
less accurate than the solutions to the r̂-ẑ FEM models or Eq. (1.6). The notation “i(ϕ̂)”
indicates the Fϕ components are π/2 out of phase.

ory intensive for typical desktop computers.6 When setting the geometry, the disk and

cladding must be bound by perfectly matched layers (PMLs) that allow energy to escape

the simulated domains in order to properly account for radiation losses [53]. These PMLs

have complex anisotropic permittivity and permeability that quickly attenuate fields along

a single direction without producing spurious reflections. By including PMLs thick enough

to fully absorb the radiated waves, both highly confined and highly lossy modes can be

found with ℑ(ko) varying by more than 1014× as in Fig. 1.2. The quantity ℜ(ko)/2ℑ(ko) is

approximately 2π times the number of optical cycles that occurs while the field decays—this

value is later identified as the radiation limited quality factor Qrad.

These quasi-3D FEM models can be used to address two important aspects of real

6Dual-core 2–3 GHz processor, 64-bit operating system, 4GB RAM.
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microdisks that are not captured by the effective-index approximation: 1) the disk edge

is not perfectly vertical and 2) surface effects. First, the primary objective during disk

fabrication is minimizing surface roughness to reduce scattering losses, and the optimized

anisotropic etches do not generally produce vertical sidewalls. Slanted edges couple the

TE and TM polarizations by breaking the disk’s vertical symmetry, which can occasionally

produce hybrid modes if a TE and a TM mode are nearly degenerate and have the same m.

The TE/TM labels are no longer rigorously accurate with slanted walls because significant

longitudinal components may exist, but modes are conventionally identified as “TE” if

|Er| > |Ez| at the disk’s midplane. For most general considerations, the bevelled edge only

marginally increases the radiation losses [54, 55]. Second, Fig. 1.2 illustrates TM modes

are significantly more sensitive to the top and bottom surfaces while the TE modes have

greater overlap with the sidewall. This difference has practical consequences that will be

discussed later, such as absorption by surface states [56].

Comparing approximate effective-index solutions with FEM results in Fig. 1.3 for two

disk microdisk devices indicates the effectiveness of Eq. (1.6) to quickly explore wide areas

in parameter space. The approximate solutions take .0.5 s to compute without previous

information about the QNMs. Alternatively, FEM simulations take ∼1–2 min with a rea-

sonable mesh resolution [<0.05λ/n(~r)] and a good initial guess for the desired eigenvalue

(∆λo . 5 nm); however, they can be accelerated (∼10 s) during parametric studies if better

guesses can be supplied (∆λo . 0.2 nm). In Fig. 1.3, the effective-index solutions overesti-

mate λo found using the FEM by 3.6 nm and underestimate ℑ(ko) by 1.9× on average.

1.2 Coupled-Mode Theory

Coupled mode analysis is a general framework to describe the evolution of optical fields due

to perturbations that do not significantly alter the system’s eigenmodes [57]. As is common

in perturbation theories, a total field in a system (driven with a laser at ω = ωℓ) is expanded

as

~E(~r, t) = e−iωℓt
∑

j

aj(t) ~E
o
j (~r), (1.8)

in terms of slowly varying amplitudes aj(t) and the system’s unperturbed QNM field profiles

~Eo
j (~r). For small dielectric perturbations [ǫ(~r) → ǫ(~r) + δǫ(~r)] as treated in Refs. [42, 58],
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Figure 1.3: Comparison of the eigenvalues (ko) found using effective-index and finite-element
models for (a) TE modes in a Er2O3 disk and (b) TM modes in a Si disk plotted against
free-space wavelength [λo = 2π/ℜ(ko)]. The solutions for the two models giving the same
QNM are connected by grey lines.



10

the equations of motion for {aj(t)} to first order are

daj

dt
= −i∆ωjaj + i

∑

k

κjkak, (1.9)

where |aj |2 is normalized to the energy in the jth optical mode, ∆ωj = ωj − ωℓ, and

κjk =
ωℓ

2

(
∫

δǫ( ~Eo
j )∗ · ~Eo

kd~r
∫

ǫ| ~Eo
j |2d~r

)

. (1.10)

These equations are completely general, but they can easily be applied to microdisk cavities

by using the QNMs in §1.1 as the basis for the fields in and around the resonator. Additional

terms for coupling to other degrees of freedom can simply be added to Eq. (1.9) because

the modal coupling is entirely described by the κjk coefficients:

daj

dt
= −i∆ωjaj −

γj,i

2
aj + i

∑

k

κjkak, (1.11)

where γj,i = γrad + γss + γa + · · · is the intrinsic loss rate of the jth mode due to radia-

tion (γrad), surface scattering (γss), absorption (γa), etc.7 The nature and magnitude of

these terms can be found by considering the appropriate physics; the radiation loss is most

easily obtained from the complex eigenvalue: γrad = 2cℑ(ko). This approach has been the

basis for analyzing many static and dynamic effects in microdisks, including those due to

temperature, free carriers, four-wave mixing, laser oscillation, and coherent light-matter

interactions [59–63]. For practical testing of low-loss microdisk devices at low power (i.e.,

without nonlinear effects), mode coupling from two sources must be addressed: 1) coupling

of disk modes through coherent backscattering and 2) coupling between the resonator and

an external waveguide.

1.2.1 Coherent Backscattering

As discussed previously, the QNMs of an ideal microdisk consist of pairs of degenerate

traveling-wave WGMs that propagate clockwise and counterclockwise around the disk pe-

riphery. In real structures, etch-induced sidewall roughness lifts this degeneracy by break-

7Conventionally, coefficients for field amplitude decay or coupling are denoted with “κ” while magnitude

coefficients are denoted with “γ.” This thesis will primarily use “γ” because of its association with energy
and power, but “κ” will be used when it is more common in the relevant literature. Both coefficients are
angular rates (rad/s) like ωj .



11

ing the rotational symmetry and couples the counterpropagating WGMs through coherent

Rayleigh backscattering. Cursory inspection of Eq. (1.10) gives κm,−m = κ∗−m,m ≡ |κcb|eiϕo

because the two modes only differ in their angular dependence (e±imϕ); for convenience the

perturbation δǫ(~r) is real and chosen such that κm,m = 0. In addition, the integral in the

numerator of Eq. (1.10) makes |κcb| proportional to the ±2m spatial Fourier component

of the roughness:
∫

δǫ(ϕ)( ~Eo
−m)∗ · ~Eo

mdϕ =
∫

δǫ(ϕ)ei(2mϕ)dϕ. Modes of different angular

order (m1,m2) will also be coupled through these imperfections, but the amplitude of the

±(m1 −m2) component must be large to overcome poor vertical and radial field overlap.

Without intentionally etching a grating into the resonator [64, 65], efficient backscattering

only occurs between the paired ±mWGMs, and their amplitudes are governed by Eq. (1.11):

dacw

dt
= −

(

i∆ω +
γi

2

)

acw + i|κcb|e−iϕoaccw, (1.12a)

daccw

dt
= −

(

i∆ω +
γi

2

)

accw + i|κcb|eiϕoacw, (1.12b)

where the coherent backscattering (κcb) terms do not introduce loss. Surface roughness, as

with any dielectric inhomogeneities, will also scatter light out of the cavity (i.e., couple to

radiation modes), but this loss is accounted for by the γss component of γi. The scattering-

loss rate can be estimated for real devices with a induced-current method [41, 42] rather

than explicitly coupling to the radiation modes through Eq. (1.10).

Since κcb and γss have different dependence on the roughness amplitude (which is dis-

cussed further in §3.2), resonators can enter a regime with |κcb| & γss where it is convenient

to express the cavity modes in a sine/cosine basis:

ac =
1√
2

(

acw + e−iϕoaccw

)

and as =
1√
2

(

acw − e−iϕoaccw

)

, (1.13)

corresponding to standing waves with amplitudes
√

2 cos(mϕ−ϕo/2) and
√

2 sin(mϕ−ϕo/2),

respectively [58, 66–69]. The phase of the backscattering parameter (ϕo) determines the

standing waves’ azimuthal orientation relative to the roughness with the higher-frequency

as mode (lower-frequency ac mode) residing more in the low (high) index regions. In this

basis, the evolution of the mode amplitudes decouple and produce a doublet resonance at
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ω = ωo ± |κcb|:

dac

dt
= −

(

i∆ω − i|κcb| +
γc,i

2

)

ac, (1.14a)

das

dt
= −

(

i∆ω + i|κcb| +
γs,i

2

)

as. (1.14b)

While mathematically the standing waves have the same loss rate (γi) as the traveling waves,

the physical {ac, as} modes may decay differently {γc,i, γs,i} because they are π/2 out of

phase and will not have the same overlap with scattering and absorbing sites.

1.2.2 Microdisk-Waveguide Coupling

The optical modes of microphotonic devices are commonly excited by either generating

light within the structure or introducing light from an external source through a waveguide

coupler. While the first method is attractive in many cases because its collection optics

usually consist of a single objective lens with high numerical aperture, its spectral resolution

is typically limited to >1 GHz by a spectrometer grating, and it cannot be applied to passive

structures. The second method may require additional coupling elements, but it can probe

active and passive devices with a resolution typically limited to <1MHz by a tunable laser

source. Coupling to an external waveguide is also generally more efficient [70].

Following the formalism of Haus [57], evanescent coupling between the cavity and a

single traveling-wave mode in the waveguide, as in Fig. 1.4(a), can be described by

dacw

dt
= −

(

i∆ω +
γi + γe

2

)

acw + i|κcb|e−iϕoaccw + κes, (1.15a)

daccw

dt
= −

(

i∆ω +
γi + γe

2

)

accw + i|κcb|eiϕoacw, (1.15b)

where s is the amplitude of the “source” waveguide mode (with |s|2 normalized to power),

κe is the waveguide-cavity coupling coefficient, and γe is the extrinsic loss rate associated

with cavity energy leaking out through the waveguide. Using Eq. (1.13), the standing wave

amplitudes obey

dac

dt
= −

(

i∆ω − i|κcb| +
γc,i + γe

2

)

ac +
κe√
2
s, (1.16a)

das

dt
= −

(

i∆ω + i|κcb| +
γs,i + γe

2

)

as +
κe√
2
s. (1.16b)
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Figure 1.4: Illustration of microdisk-waveguide coupling.

Given the linearity of the coupled mode theory presented in §1.2, κe can be calculated

using Eq. (1.10) and integrating the eigenmodes of the waveguide and cavity over a finite

3D coupling region.8 Evaluating κe is difficult because of the oscillatory integrand for the

superimposed waves propagating along ϕ̂ and ŷ; however, insight into efficient waveguide-

disk can be gained by examining the numerator of Eq. (1.10):
∫

δǫ( ~Eo
d)∗ · ~Eo

wgd~r. First,

κe depends on the geometric overlap of the evanescent fields of the cavity and waveguide

modes. Hence, thinner cavities couple strongly as the WGMs are not buried deeply in the

slab; the waveguide must also be small enough to give large evanescent tails to the input

mode. For thin cavities and waveguides with small cross-sectional area, the second and more

stringent requirement for efficient coupling is phase matching between the two modes due to

the angular dependence of the integrand: (e−imϕ)∗e−iβwgy ≈ eimϕe−iβwg(R+δx)ϕ where βwg

is the propagation constant of the waveguide mode and δx is the gap between the waveguide

and disk edge. Qualitatively, the coupling to different WGMs can be quickly assessed by

comparing the effective index for propagation tangent to the disk edge for the cavity mode

(ncav
eff ≈ m/Rko) and waveguide (nwg

eff = βwg/ko).

Assuming the coupling is lossless and obeys time-reversal symmetry, a scattering matrix

analysis requires κe = i
√
γe, and the fields transmitted (t) and reflected (r) by the coupling

8The different normalization for acw and s (to energy and power, respectively) must also be addressed.
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region are

t = s + i
√
γeacw = s + i

√

γe

2
(ac + as) , (1.17a)

r = i
√
γeaccw = i

√

γe

2
eiϕo (ac − as) , (1.17b)

where {t, r} are again normalized by power. The arbitrary phase of κe is chosen so t = s

when the modes are uncoupled. This theory provides an effective method for extracting

{γi, γe} for individual WGMs by fitting the normalized cavity-waveguide transmission T =

|t/s|2 with Eq. (1.17a) and the steady-state solutions for the mode amplitudes [Eq. (1.15) or

(1.16)]; the reflected power is given by R = |r/s|2. For a waveguide coupling to a traveling

wave mode, the transmission spectrum consists of a Lorentzian singlet,

T (∆ω) =
∣

∣

∣
1 + i

√
γe

(acw

s

)∣

∣

∣

2
=

∣

∣

∣

∣

∣

1
2(γi − γe) + i∆ω
1
2(γi + γe) + i∆ω

∣

∣

∣

∣

∣

2

, (1.18)

centered at ωℓ = ωj with a loaded full width δω ≡ γℓ = (γi + γe). Critical coupling (T = 0)

occurs on resonance when the input rate (γe) equals the intrinsic loss rate (γi); under (over)

coupling describes γi > γe (γi < γe). Futhermore, T (∆ω = 0) depends only on the ratio

γe/γi, so significant power can be transferred to a low-loss cavity even with a small extrinsic

coupling rate. Figure 1.5 shows T (∆ω) for a waveguide coupled to a disk with resolved

standing-wave modes and demonstrates how power is conserved.
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When |κcb| ≪ 1
2 (γi + γe), the coherent backscattering term can be ignored in the evolu-

tion of acw [Eq. (1.15a)] to first order. In this limit, the κcb dynamics become inconsequential

relative to the overall cavity decay. However, even weak backscattering will excite the accw

mode and produce a reflected field; the steady-state reflection spectrum from a mode with

weak Rayleigh scattering is

R(∆ω) =
γ2
e |κcb|2

{

∆ω2 +
[

1
2 (γi + γe)

]2
}2 . (1.19)

As expected the reflected power is very small, but it will be non-zero for all real WGM

resonators.

These coupled mode amplitudes accurately describe real resonators for a wide range of

γi and γe values as long as the system consists of a single waveguide mode and the paired

WGMs. The interference between two nearly degenerate cavity modes is frequently encoun-

tered when searching for high-neff TEp=1 modes with a fiber-taper. To help overcome the

phase mismatch, the taper is placed on the disk edge to increase the modal overlap. In this

position, T (∆ω) will display weak coupling to high-m low-γi modes, but it will also deeply

couple to broad high-p modes that are nearly phase matched to the waveguide resulting in a

Fano-like response [71]. These resonances require the source terms in Eqs. (1.15) and (1.16)

to account for the phase shift (Fig. 1.5) induced by other cavity modes [72, 73]. Since the

source field (s) is typically only an excitation of the waveguide’s fundamental eigenmode,

multiple waveguide modes effectively introduce a parasitic loss component (γp) in γi to

account for decay into the extra waveguide channels:

γ′i = γi + γp = γi +
∑

k 6=1

γk,e, (1.20)

where γk,e is the extrinsic loss rate into the kth waveguide mode. The summation does not

include the pump mode (k = 1) because γ1,e is already explicitly included in Eq 1.15, and the

coupling coefficient for the source field remains κe = i
√
γe,1. Parasitic losses can significantly

broaden the transmission response of a WGM resonance for waveguides supporting higher

order transverse modes. To avoid parasitic loading, the waveguide should be small enough

to cut off all but the fundamental mode. The single-mode criteria for a tapered optical fiber
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waveguide is
rwg

λo
<

2.405

2π
√

n2
wg − n2

o

, (1.21)

where rwg is the taper radius and nwg (no) is the refractive index of the waveguide (cladding),

which gives rwg < 0.56µm for λo = 1550 nm [49]; no similar geometric constraint exists for

partially etched ridge waveguides.9 The amount of parasitic coupling is described by the

junction’s ideality I = γe/(γe + γp) which is the ratio of the desired coupling over the

coupling to all modes of the waveguide; I ≥ 0.9997 has been observed for a fiber-taper

coupled to a microsphere cavity [75]. Parasitic loading is usually of little concern for high-

neff WGMs since the higher-order waveguide modes have lower neff than the fundamental

and worse phase mismatch with the WGMs.

Even for single-mode waveguides, a parasitic channel exists when coupling to a standing-

wave mode. Comparing Eqs. (1.15) and (1.16) after rotating to the {ac, as} basis, the

coefficient on the source field s is reduced (i
√
γe → i

√

γe/2 = i
√

γ′e) as the waveguide feeds

ac and as equally, but the extrinsic loss term apparently remains the same. Because the

standing waves couple evenly to the waveguide’s forward- (+ŷ) and backward-propagating

(–ŷ) modes, the desired loading by the forward mode produces an extrinsic decay γ′e = γe,

and coupling to the backward mode produces parasitic decay at rate γp = γe/2. In this

case, I = 0.5, and γ′i + γ′e = γi + γe. By feeding the reflection channel, pure standing-

wave resonators (such as a Fabry-Pérot cavity) can never over couple to a waveguide and

only asymptotically approach critical coupling as γ′e → ∞. For real WGM cavities, the

finite backscattering rate complicates the loaded transmission response (Fig. 1.6) since the

modes can contain both traveling- and standing-wave character. With |κcb| ≪ γi/2, T (∆ω)

for the traveling-wave mode follows Eq. (1.18), critically couples at ∆ω = 0 with γe =

γi, and overcouples at γe > γi when the waveguide mode becomes the cavity’s dominate

loss channel. When backscattering is significant, increased waveguide loading morphs the

doublet lineshape to a singlet as in Fig. 1.6(b). During this evolution, the waveguide

transmission resonant with the standing-wave modes (∆ω = ±|κcb|) never reaches zero, and

the resonance behaves like an overcoupled traveling-wave WGM when γe ≫ {γc,i, γs,i, |κcb|}.
The transition between these two regimes occurs when the backscattering and extrinsic loss

9The single-mode condition generally attributed to R. A. Soref [74] for ridge waveguides in SOI only
applies for large cross-sectional areas and is not a cutoff condition. Higher-order transverse modes are
supported, but they leak out after propagating a short distance.
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Figure 1.6: Comparison of cavity loading for (a) a singlet resonance with {γi, |κcb|}/2π =
{1.25, 0}GHz and (b) a doublet resonance with {γc,i, γs,i, |κcb|}/2π = {1.25, 2.5, 2.5} GHz.
The extrinsic coupling increases between each curve by ∆γe/2π = 0.2 GHz.

are nearly equal: γe/2 ≈ |κcb|. At γe/2 = |κcb|, the resonance reaches critical coupling at a

detuning between ±|κcb| determined by γc,i and γs,i.
10

1.3 Cavity Parameters

The coupled mode theory presented in the previous section can adequately describe the

dynamics of the cavity fields under a wide range of conditions (especially once additional

nonlinear terms and coupling to other degrees of freedom are included), but there are

a number of more succinct physical parameters commonly used to characterize optical

microcavities. Perhaps the most common is the cavity quality factor (Q), which is generally

defined for any resonator (optical, electrical, mechanical, etc.) as

Q ≡ ωoUc

Pd
, (1.22)

where ωo is the oscillation frequency, Uc is the stored energy (i.e., the optical cavity energy),

and Pd is the power dissipated by the resonator. The number of photons in the cavity is

then simply nph = Uc/ℏωo. In a waveguide-cavity system, the dissipated power is the same

as power “dropped” into the cavity from the waveguide: Pd = [1 − T (∆ω)]Pin, where Pin

10Recall γe describes the cavity’s energy decay while κcb describes coupling for a field. Because of this
convention, γe/2 = |κcb| corresponds to the field amplitude coupling into the waveguide and counter-
propagating WGM at the same rate.



18

is the input power in the waveguide. By simply depending on T (∆ω), the dissipated power

includes parasitic loss into the reflected channel but omits power coupled from the cavity

back into the transmitted channel—this portion is just “delayed.” Because Pd = −dUc/dt,

Eq. (1.22) can be recast as a differential equation solved by Uc(t) = Uc(0)e
−ωot/Q, and the

cavity energy response in the time- and frequency-domain identify Q in terms of the cavity

photon lifetime (τph) and loaded cavity decay rate (γℓ),

Q = ωoτph =
ω

γℓ
, (1.23)

where τph is a “linear” time if ωo is an “angular” frequency. As before, γℓ includes all

loss mechanisms (γi + γe + γp) and is the full width at half maximum of Uc(ω). The

cavity’s intrinsic Qi is determined by the cavity’s inherent loss mechanisms independent

of the waveguide (Qi = ω/γi), whereas Eq. (1.23) is conventionally labelled the loaded

Qℓ. Because Q is a dimensionless quantity, it is often partitioned among the various loss

mechanisms rather than separating γℓ. For examples, Qss = ωo/γss would be the cavity Q

if surface scattering were entirely responsible for the decay of Uc(t). Since the loss rates are

additive, the components of Qi add reciprocally:

1

Qi
=

1

Qrad
+

1

Qss
+

1

Qa
+ . . . , (1.24)

where the summation does not include Qe or Qp, which are associated with extrinsic cou-

pling to the desired and parasitic waveguide modes, respectively.

While {Q, τph, γℓ} quantify how long the photons remain in the cavity, the phase and

group velocities are necessary to establish how they circulate around the resonator. Un-

fortunately, the linear propagation constant (β) is not rigorously defined because it varies

with radius—converting the angular propagation to Cartesian coordinates gives: e±imϕ ≈
e±imx/r. Since the phase velocity (vp) tangent to the disk edge can vary with radius (r), it

can be found according to its usual definition

vp ≡ ω

β
=
ωor

m
. (1.25)

More care must be taken with the linear group velocity (vg), which is the velocity of the

spatially extended optical wave packet. The group velocity is approximately constant across
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the WGM for all but the smallest microdisks and is given by

vg ≡ ∂ω

∂β
≈ ωm+1 − ωm

m+1
Ravg

− m
Ravg

,= δωfsrRavg (1.26)

where δωfsr is the free spectral range (FSR) between two adjacent modes in the same

family and Ravg is the average radius of the mode’s energy density; the group index is then

ng ≡ c/vg = c/(δωfsrRavg). For the p = 1 WGMs studied in this work, Ravg is nearly

equal to the disk’s radius. The group velocity is particularly important when dealing with

loss (α) or gain coefficients expressed as an inverse length. The processes producing the

loss/gain occur in the time domain and are analyzed using transition rates (e.g., Fermi’s

Golden Rule). These rates are then converted to an inverse length using the group velocity

(e.g., by considering how long it takes for a pulse to traverse an absorbing region of fixed

length) rather than the phase velocity. While free-space optical studies in bulk materials

may be weakly dispersive, the guided waves in microphotonics can experience significant and

dynamic modal dispersion (e.g., Ref. [76]). For this reason, the various optical processes

will be mainly described using rates (γx as in §1.2), and they will only be converted to

inverse lengths for comparison to published sources: αx = γx/vg.

The group velocity can be used to find several other quantities. The effective interaction

length (Leff) is the mean distance a photon will travel in the cavity before it escapes and

is given by: Leff = vgτph. For a low-loss micron-scale resonator, Leff can easily be >1 cm—

demonstrating why microcavies are sensitive to small perturbations. The round-trip time

for a photon to circle the cavity is τrt = 2πRavg/vg ≈ 2π/δωfsr, and the number of round

trips a photon makes is τph/τrt ≈ δωfsr/(2πγℓ) = F/2π where F ≡ δωfsr/γℓ ≈ Q/m is the

cavity’s finesse. These relations then relate the dropped power to the power circulating in

the WGM (Pcir = FPd/2π), which can exceed 10 W when the cavity is pumped continuous

wave (CW) or pulsed (pulse width & 3τph) with 1 mW from an external waveguide.

Depending on the application, the strength (per photon) and distribution of the cavity

fields are often significant. In cavity quantum electrodynamics (cQED), the electric field

strength per photon is

| ~E| =

√

ℏω

2n2ǫoVeff
, (1.27)
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where Veff is the effective mode volume given by

Veff =

∫

n2(~r)| ~E(~r)|2dV
max

[

n2(~r)| ~E(~r)|2
] . (1.28)

This mode volume can be found using the FEM and roughly corresponds to the volume

occupied optical fields. While Veff generally scales with the cavity size, this behavior can be

misleading for slotted structures [18]. Other definitions of Veff exist for nonlinear processes

that employ higher moments of the field (e.g., Refs. [62, 77]), but Eq. (1.28) will be used

throughout this thesis unless otherwise noted. In many hybrid photonic structures, the

fraction of the optical mode’s energy in a given volume (δV ) or on a surface (δA) is more

important than Veff . For example, a hybrid microcavity laser consisting of an active layer

stacked on a passive waveguide layer can exhibit significantly lower gain if the optical mode

largely contained in the passive material. The volumetric overlap factor can be calculated

with the FEM using

Γ =

∫

δV n
2(~r)| ~E(~r)|2dV

∫

n2(~r)| ~E(~r)|2dV
, (1.29)

and a similar areal overlap is defined as

Γ′ =

∫

δA n
2(~r)| ~E(~r)|2dA

∫

n2(~r)| ~E(~r)|2dV
, (1.30)

where both denominators are integrated over all space. The Γ′ factors are commonly used

when analyzing issues of surface sensitivity (sensing, absorption by surface states, etc.), and

they can be converted to a volumetric energy fraction by assuming the surface has some

effective interaction depth (d′): Γ = Γ′d′.
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Chapter 2

“Dimpled” Fiber-Taper Probe

In microelectronics manufacturing, nondestructive parametric testing using metal probe

tips greatly increases fabrication yield through statistical process control [78]. For test-

ing of glass and semiconductor photonic lightwave circuits (PLCs), many methods exist

for the coupling of light into and out of on-chip waveguides [79]. However, no simple,

local probe exists for wafer-scale, nondestructive, optical characterization of on-chip com-

ponents. Traditional optical coupling methods include end-fire or butt coupling [80–82] and

prism-based coupling [83, 84]. End-fire coupling from free-space or optical fibers can be

made highly efficient, even to high-index contrast semiconductor waveguides, through the

use of tapered waveguide sections [80–82] or other non-adiabatic mode converters [85, 86],

but they are limited to coupling at the periphery of the chip where a cleaved facet can be

formed. Evanescent-coupling methods involving conventional prism couplers, angled-fiber

tip couplers [87], eroded-fiber couplers [88], and optical fiber-tapers [89–91] can provide

effective coupling to and from on-chip waveguides, but these probes are less suited to wafer-

scale coupling to micron-scale photonic elements due to their macroscopic extent in one

or both in-plane dimensions. Evanescent coupling techniques also rely on phase matching

to obtain highly efficient coupling [70, 75, 77, 92], which can be difficult (although not im-

possible [77, 93]) to satisfy for semiconductor-based microphotonic chips. Other methods

of coupling light onto photonic chips for characterization purposes involve dedicated on-

chip testing structures such as in-plane grating couplers [94]. These couplers typically also

involve specialized processing to achieve high coupling efficiency: blazed gratings [95], a

combination of lateral and vertical Bragg reflectors [96], or additional overlayers [97].

We present a variant of the silica optical fiber-taper evanescent-coupler that is designed

for rapid, wafer-scale diagnostic testing of on-chip photonic components such as waveguides
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and resonant filters. Previous work involving straight fiber-tapers required devices to be

elevated by several microns above the chip surface to prevent parasitic coupling to the

surrounding substrate. Curved fiber-taper probes [92, 98–101] have been demonstrated

to reduce parasitic loss into the substrate. However, they tend to be less mechanically

stable than their tensioned straight-taper counterparts and suffer from noise induced by

fluctuations in the taper’s position. In this work we have developed a microscopic “dimpled”

fiber-taper probe which allows for low-noise local probing of individual devices on a wafer.

By increasing the tension in the taper, fluctuations in the taper-chip gap can be greatly

reduced to the levels present in straight fiber-taper measurements. To demonstrate the

utility of the dimpled taper optical probe, we describe the characterization of two types of

devices on a SOI wafer platform: a dense two-dimensional array of high-Q silicon microdisk

resonators and, second, a planar microring resonator.

2.1 Taper Pulling and Molding

The dimpled fiber-taper probe is made from a standard straight fiber-taper that is pressed

against a mold and heated (Fig. 2.1). We form “straight” fiber-tapers by simultaneously

heating and pulling standard telecommunication fiber (specifically Corning SMF-28e and

NuFern 1060-XP) using two linear motorized stages and a hydrogen torch. The fiber is

positioned at the edge of the flame so only a small portion of the fiber is heated; larger

hot zones produce long pliable tapers that are more difficult to mount. The diameter of

the taper is constantly monitored during the pull by either watching the fiber’s mechanical

deflection in the flame or by measuring the fiber’s transmission at the desired wavelength.

In the final single-mode taper coupler, the fundamental core-guided HE11 fiber mode is adi-

abatically converted by slowly thinning the fiber to the HE11 taper mode with evanescent

tails that extend significantly into the surrounding medium. However at larger diameters

while it is being drawn, the optical field in the tapering region is a superposition of the

LPmn modes [102]. As the diameter is reduced, the higher-order components are reflected

producing an oscillating signal with a frequency that increases as the pull progresses. When

the fiber approaches the diameter that cuts off all higher order modes, the transmission os-

cillations abruptly cease [Fig. 2.1(b)]. A running standard deviation of this signal (sampling

at 100 kHz and analyzing a circular buffer at 5Hz) exhibits a sharp drop that can be used
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to trigger the end of the pull.1 To produce tapers with the desired length (∼1 cm for the

region with d . 10µm) and minimum diameter (∼1µm), typical pulls continue ∼10 s after

the oscillations stop and take 120–150 s with the stages each moving at ∼1.5 cm/min, but

there is significant variability depending on how the fiber is prepared. For instance, the

single-mode jump in the running standard deviation will contain one or more discrete steps

if the fiber is subjected to undue stress while the polymer coating is being removed.

After mounting the taper in a U-bracket [104], the narrowest part of the taper is pressed

against a silica mold with the desired radius of curvature [Fig. 2.1(c)]; a bare optical fiber

with a diameter of approximately 125 µm is used as the mold in these experiments. The

taper and mold are heated with a hydrogen torch and allowed to cool. To detach the taper

from the mold, we simply pull the taper away slowly while moving it back and forth (i.e.,

we are inducing fatigue failure at the taper-mold joint). A thin layer of soot on the mold

improves the detachment yield—an appropriate layer is usually deposited when the torch

is sparked.2 After releasing the fiber from the mold, the taper retains an impression of

the mold, Fig 2.2(b), which forms a global minimum with respect to the rest of the taper.

The dimpling process introduces negligible additional loss, and the total loss of the dimpled

taper can be less than 0.5 dB relative to the unpulled optical fiber. However, tapers typically

exhibit a total loss 1–2 dB. Using a specially designed U-mount with a set screw to control

the tensioning, varying the taper’s tension changes the radius of curvature of the dimple.

Under high tension, the dimple becomes very shallow but never completely straightens.

After dimpling, the probe is mounted onto a three-axis 50-nm encoded stage and is fusion

spliced into a versatile fiber-optic setup. During testing, devices are placed in the near field

of the probe, as in Fig. 2.2(a,c); adjustments to a pair of goniometers ensure the straight

run of the taper is parallel to the sample surface.

Measurement of the non-resonant insertion loss as the waveguide is moved relative to

nearby semiconductor microstructures gives the effective interaction length and profile of

the local probe. First, we record the loss as a 1.6-µm wide GaAs cantilever is scanned along

the taper’s length (x̂-direction) while holding the taper at a fixed height. At tensions used in

standard testing, Fig. 2.3(a) shows only ∼20µm (full width at half maximum) of the taper

1This method was implemented by C. Chrystal. A similar procedure has been published by F. Orucevic
et al. using a running Fourier transform [103].

2N.B. Do not spark H2 torches near the fiber either before or after tapering as it will significantly reduce
the transmission of the final coupler.
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Figure 2.2: (a) Illustration of a “dimpled” taper coupled to an undercut microdisk. (b)
Optical image of the taper probe. The taper diameter at the center of the dimple is ∼1.2µm.
(c) At the center of a 5×5 array, the dimpled taper probe is critically coupled to the
microdisk at the center of the array but not coupled to any of the neighboring disks.

at the bottom of the dimple is close enough to interact with the sample. Second, the loss

is measured as a function of the probe’s height (ẑ-direction) above a 11.6-µm wide GaAs

mesa. By assuming an exponential vertical dependence for the insertion loss L ∝ e−zt(x)/zo

where zt(x) is the probe’s “near-field” profile and zo is the decay length from Fig. 2.3(b),

we convert the axial dependence of the loss [Fig. 2.3(a)] into zt(x) [Fig. 2.3(c)]—i.e., the

height of the taper relative to the lowest point of the dimple. Since only the lowest part

of the dimple interacts with the sample, this method can only determine the taper’s profile

within ∼1.25µm of the surface. Fitting the profiles determines the effective probe radius to

be 159, 228, and 498 µm at low, medium, and high tension, respectively. These radii differ

from the mold radius (∼62µm) due to tensioning of the taper and how the fiber detaches

from the mold after heating.

2.2 Microphotonic Testing with a Dimple-Taper Waveguide

To study microresonators with a dimpled probe and the general arrangement in Fig. 2.4, pre-

cision stages are used to move the waveguide into the device’s near field giving controllable

and reproducible coupling. Isolating the measurements from stray air currents is imperative,

and all testing is conducted in a continuously N2-purged enclosure. The N2 environment

also extends the probe’s lifetime since fiber-tapers are hygroscopic and can suffer significant
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losses by absorption at the first overtone of the OH− vibrational modes [105, 106].3 The

HE11 mode of the taper is excited using fiber-coupled swept tunable-laser sources (span-

ning 963–993 nm and 1420–1625 nm, linewidth of <300 kHz over the 25-ms timescale used

to scan across a high-Q resonance) and a paddle-wheel polarization controller to selectively

couple to the cavity’s TE-like and TM-like WGMs. To accurately measure the intrinsic

quality factor, the cavities are weakly loaded by the dimpled probe to ensure the extrinsic

loading is negligible (γe ≈ 0) and avoid any parasitic coupling. Two complementary VOAs

are used to maintain a constant optical power at the photodetector (to give a constant

electronic noise level) while power at the device can be varied up to 60 dB [107]. To elimi-

nate any nonlinear effects or absorption saturation while acquiring the transmission spectra,

the lasers are usually attenuated to give ∼200 nW at the taper, of which ∼10% is coupled

into the microdisk cavity. Without any optical amplification, the signal is detected using a

high-speed InGaAs photodiode, electrically amplified using a low-noise analog preamplifier,

and then is aquired by a analog-to-digital converter. For narrow spectral features (e.g.,

Q > 106 corresponds to δλ . 1.5 pm), the linewidth measurement can be calibrated with a

fiber-optic Mach-Zehnder interferometer to an accuracy of ±0.02% (see also §A.1).

2.2.1 Noise Measurements

Because evanescent coupling to fiber-tapers is exponentially dependent on position, fiber-

taper measurements are very susceptible to any noise sources that produce physical dis-

placements of the taper. For straight tapers, increasing tension to reduce these fluctuations

is common, and the U-mount [104] naturally provides the appropriate tautness. Under

standard testing conditions at low dimple-taper tension [Fig. 2.5(a)], coupling to the mode

of a microdisk resonator [see Fig. 2.2(a) and §2.2.2] varies significantly between consecu-

tive scans. Increasing the tension makes the coupling depth much more reproducible, as in

Fig. 2.5(b). At tensions that give acceptable noise levels, the depth of the dimple is still

adequate for testing densely spaced planar devices.

To quantitatively study the noise, we measure non-resonant insertion loss as a function

of time. The dimple is placed above the etched GaAs mesa so that approximately 60%

of the incident power is coupled into the substrate [z ≈ 170 nm as in Fig. 2.3(b)]. The

3After months of use in a N2 box, enough water and dust will accumulate to significantly reduce the
taper’s transmission. Often this loss can be partially ameliorated by dipping the taper in trichloroethylene
(TCE).
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mesa structure assures a constant 11.6-µm interaction length for different taper tensions.

We minimize the electrical noise contribution by maximizing the incident optical power in

order to decrease the needed electrical gain and filtering. We also eliminate extraneous

noise sources (unused computers, monitors, overhead lights, etc.) and turn off the N2

flow into the testing enclosure. To obtain a background spectrum that is independent of

any taper displacement, the dimple is raised so no power is coupled into the substrate,

and then the power is attenuated to give the same output voltage from the detector. The

resulting noise power spectra in Fig. 2.5(c) reveal increased tension reduces broadband noise

between approximately 10 and 1000 Hz, reflecting the relevant timescales for scanning across

a high-Q resonance. The series of high-frequency peaks at ∼15.8 kHz occur at the pulse-

position-modulation clock frequency of the stage motor controller. The dominant spike at

low frequencies is bimodal with peaks at ∼120 Hz and ∼130 Hz with a total bandwidth

of ∼20 Hz. The motor controller also contributes to noise in this band, but it is not the

dominant noise source. We hypothesize that electrical noise actuates the motors and drives

low-Q vibrational modes of the fiber-taper. By measuring insertion loss as a function of

the dimple-substrate gap [Fig. 2.3(b)] and comparing it to noisy time-domain transmission

traces under low tension, we estimate the upper bound on fluctuations in the taper height

to be 7.9 ± 1.4 nm, which is consistent with our earlier measurements with straight tapers.

Unlike axially symmetric straight fiber-tapers, dimpled tapers are affected by external

torques that drive torsional modes of the dimple about the straight portion of the taper.

Measurements of dimpled tapers resonantly coupled to high-Q microcavities (Q ≈ 106)
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indicate optical forces can statically deflect the dimple up to 200 nm for 600 µW of power

coupled into the cavity mode. Even with lower-Q optical resonances (Q ≈ 102), optical

forces from similar amounts of dropped power can drive mechanical oscillations with am-

plitudes of ∼500 nm. These results are discussed in detail elsewhere [108].

2.2.2 Dense Si Microdisk Array

To demonstrate the dimpled taper’s ability to test closely spaced devices, we study a 5×5

array of silicon microdisks [Fig. 2.2(c)] with disk diameters of 10µm and periodicity of

20µm—corresponding to an areal density of 2.5×105 cm−2. Undercut microdisks were cho-

sen over planar resonators to ease phase matching between the cavity and taper modes.

The microdisks were fabricated from silicon-on-insulator with a 217-nm device layer [〈100〉
orientation, p-type, 14–20 Ω·cm] and a 2-µm SiO2 buried oxide layer (BOX). The resonators

were defined using electron-beam lithography, resist reflow, and C4F8:SF6 reactive ion etch-

ing (RIE); then the disks were partially undercut by etching the buried oxide using dilute

HF. The silicon surfaces are temporarily hydrogen passivated using repeated Piranha/HF

treatments. Long-term passivation is achieved using a 3-nm dry thermal oxide cap grown

in O2 at 1000◦C followed by a 3-hour anneal in N2 at 1000◦C and then a 1.5-hour slow cool

down in N2 from 1000◦C to 400◦C. For details on the lithography, chemical passivation, and

oxide passivation, see Refs. [42], [56], and [109], respectively.

Near 1532 nm, we track three TE-like modes of different radial orders [p = 1–3 in

Fig. 2.6(a)] across all 25 disks in the array. One disk supported no high-Q whispering-gallery

modes in the range spanning 1495–1565 nm, and we were unable to couple to the TE p = 1

mode in two other disks—most likely because their Q was too low to overcome the phase

mismatch with the taper mode. In Fig. 2.6(b), varying the disk-taper coupling through

their separation practically demonstrates the level of displacement noise present in these

measurements; each circle represents the transmission minimum for an individual scan at the

given probe position. Table 2.1 summarizes the average measured wavelength (λo), quality

factor, and doublet splitting (∆λ) for each mode; the distributions of wavelength and quality

factor4 appear in Fig. 2.6(a). The highest Q for a single standing wave mode is 3.3×106 with

Q/Veff = 2.3×105 for a calculated mode volume Veff = 14.09 (λ/n)3. With minimal free-

4For doublet modes, the quality factor used in Fig. 2.6(c) is the average Q between the two standing-wave
modes.
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Figure 2.6: (a) Sample transmission spectrum for a single microdisk. (b) Coupling depen-
dence on the disk-taper gap for a TE p = 3 mode of the device in Fig 2.2(c). (c) Distri-
bution of wavelengths and quality factors for the TE p = 1–3 modes near 1532 nm. The
solid diamond indicates the mode tested in (b). Spatial distribution for the (d) wavelength,
(e) quality factor, and (f) doublet splitting of the TE p = 1 modes.

Table 2.1: Average cavity mode parameters for microdisk array

Mode Observed λo (nm) Q ∆λ (pm)

TE p = 1 22/25 1531.008 ± 1.487 (1.73±0.93)×106 11.31 ± 10.12
TE p = 2 24/25 1531.393 ± 1.508 (3.95±1.32)×105 10.93 ± 5.60
TE p = 3 24/25 1532.429 ± 1.489 (2.19±0.70)×105 10.70 ± 5.77

carrier absorption in the bulk,5 the modal loss likely has significant contributions from both

surface absorption and surface scattering since the ratio of the doublet splitting (related

to the surface scattering rate) over the resonance linewidth varies from 3.1 to 28.1 for

modes with Q > 106. The spatial arrangement of the mode parameters across the array

[Fig. 2.6(d–f)] shows a systematic change in λo and more random variations in Q and ∆λ.

The λo distribution implies the sample was slightly tilted with respect to the beam writer’s

focal plane. Similar geographic patterns exist for the parameters of the p = 2 and p = 3

modes.

5For silicon wafers with 14–20 Ω·cm resistivity, bulk free-carrier absorption [110] limits microcavities to
Q < 9×107–1.4×108 at λo = 1532 nm.
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view showing smooth ring sidewalls and a slight BOX undercut due to the final chemical
treatments. (c) Transmission spectrum of a high-Q mode at λo = 1428.7 nm in a ring with
an 80-µm diameter and a 2-µm width.

2.2.3 Planar Si-SiO2 Microring via RIE Processing

Testing planar devices is accomplished in the same fashion. Non-undercut microring res-

onators, shown in Fig. 2.7(a), were fabricated from SOI with a 195-nm silicon device layer

and a 3-µm BOX. The same lithography, resist reflow, and RIE procedure used for the

microdisks [42] was used to define the microrings although without the final HF undercut.

Repeated Piranha oxidations and HF dips are again used to chemically passivate the sur-

faces prior to thermal oxidation [56]; these treatments also slightly undercut the resonators

[Fig. 2.7(b)]. Finally, a 30-nm dry thermal oxide was grown as a capping layer, and the

microring sample was annealed according to the same N2 schedule as the microdisks [109].

Microrings are slightly more difficult to test with fiber-tapers than undercut microdisks.

A large phase mismatch exists between the taper and microcavity because of the extra

dielectric beneath the Si-core guided modes. With the taper in contact with the ring, the

coupling depth is more than sufficient to assess the devices’ optical loss characteristics.

However, the coupling is not adequate to efficiently excite and collect emission from active

devices [70]. For applications requiring high pump/collection efficiency, photonic crystal

waveguides can be used to overcome the poor phase matching between the modes in the

taper and the modes in the on-chip device [77].

Figure 2.7(c) shows a transmission spectrum of a ring with an 80-µm diameter and 2-

µm width after the final chemical treatments and thermal oxidation. The measured quality
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factor of 4.8×106 (loss coefficient α < 0.15 dB/cm) represents the highest quality factor

for any planar microresonator to date. Reproducing Qs found previously only in relatively

thick and undercut silicon disks [42] is promising for the future development of PLCs with

high-Q silicon microresonators integrated with bus waveguides.

2.2.4 Planar Si-SiO2 Microring via LOCOS Processing

Wet chemical oxidation of ridge waveguides has been used to smooth silicon surfaces and

reduce Rayleigh scattering [111]. However, similar treatments of high-Q microdisks did not

reduce the scattering rate but rather increased the measurable loss by introducing unpas-

sivated mid-gap surface states [56]. As evident by the contradictory results for chemical

oxides, significant care must be taken in low-loss fabrication procedures. Dry reactive-

ion chemistries are generally preferred over wet chemical etchants because they are more

anisotropic, but RIE recipes must be carefully optimized for roughness and can damage

the surface (chemically and physically). Two alternatives have been to use shallow rib

waveguides, in which the modes are weakly guided and have minimal overlap with the sur-

faces [112], or to use a diffusion-limited chemical reaction to produce the cladding layer [113].

In the latter case, dry thermal oxidation of Si device layer in SOI produces a low-loss SiO2

cladding with a well-passivated interface [109] and high refractive index contrast to the

underlying Si core. This section describes initial results for the fabrication and dispersion

engineering of submicron waveguides formed by the local oxidation of silicon (LOCOS).

With the ultimate objective of achieving CW parametric oscillation in a Si microcavity,

the final devices must be high Q, have a small group velocity dispersion (GVD) with a

zero-dispersion wavelength (ZDWL) near the desired wavelength, and exhibit a low free-

carrier lifetime (τfc). Degenerate four-wave mixing can be used to generate broadband gain

in silicon microphotonics because of its large χ3 nonlinearity [114], but the modal dispersion

must be controlled to ensure phase matching. In WGM resonators, the phase matching is

trivially satisfied between consecutive modes in a single family, but the GVD must be near

zero to converse energy (i.e., the signal and idler modes must be equally spaced about the

pump mode) [115]. An additional constraint when operating with a photon energy above

half the material’s bandgap is that τfc must be short to minimize absorption by e−/h+ pairs

generated by two-photon excitation.

The primary design goals for these initial devices are 1) nwg
eff ≈ 2.0 so losses can rapidly
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Figure 2.8: Sample cross section (a) before and (b) after the Si is oxidized. (c) FEM mode
profile for | ~E|2 of a waveguide with nwg
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tion/etch depth of 160 nm, and a FWHM of 230 nm. (d) Cross-sectional SEM image of
stripped waveguide. (e) Image of a waveguide after a secondary oxidation showing reduced
sidewall roughness.

be assessed with the dimple taper, 2) an exposed top Si surface to control τfc with passive

chemical treatments [116], 3) to only partially consume the unmasked Si layer to allow

cavity tuning via electrical injection of free carriers, and 4) to explore the dependence of

the GVD on the waveguide dimensions [117]:

GVD ≡ ∂

∂ω

(

1

vg

)

=
∂2k

∂ω2
.

Before the oxidation in the LOCOS procedure, a SiNx layer is deposited on the Si surface,

lithographically patterned, and then etched [Fig. 2.8(a)]. During the subsequent oxidation,

the SiNx acts as a local diffusion barrier and masks the desired area while lateral diffusion
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rounds the Si profile at the edges [Fig. 2.8(b)]. Since the resulting “bird beak” contour may

not be accurately captured by effective-index methods, the waveguide modes and disper-

sion are evaluated using the FEM. The effective-index requirement limits the geometries to

submicron dimensions that cut off all but the TEp=1 mode [Fig. 2.8(c)]—TM modes will

be avoided initially because of lateral leakage into the partially thinned slab [26]. Prelimi-

nary simulations show the dispersion can be flattened by modifying the waveguide profile

[Fig. 2.8(d)], but the GVD for modes with these dimensions may never reach zero in the

telecommunications windows. Smaller Si structures having greater overlap with the BOX

or a SiO2 cap will have a lower GVD because silica is anomalous in this range. To proceed,

we target a waveguide width of 230 nm, Si thickness of 210 nm, and a ridge height of 160 nm

with nwg
eff = 2.02 at λo = 1550 nm. While ring resonators with these dimensions have sig-

nificant +GVD at 1550 nm, they are an acceptable starting point for process development.

Future devices may utilize the TMp=1 modes to simultaneously achieve the neff and GVD

objectives while demanding greater pattern control (i.e., waveguide width).

The process begins by using Piranha etch (3:1 concentrated H2SO4 to 30% H2O2) to

remove any residual organics on a SOI wafer (217 nm Si, 2µm BOX). After a quick HF

rinse to strip the native oxide, a 10-nm dry thermal oxide is grown at 1000◦C to serve as an

etch-stop layer and protect the Si surface. A 75-nm low-stress SiNx mask is then deposited

by plasma-enhanced chemical vapor deposition (PECVD). This layer must be thick enough

to provide an adequate diffusion barrier, but it must be compliant (thin) enough to not

delaminate as the SiO2 expands [Fig. 2.8(b)]. The nitride is then patterned with electron-

beam lithography, resist reflow, and RIE (C4F8:SF6). Since the selectivity between SiNx

and SiO2 is poor, the etch must be carefully timed to stop at the etch-stop layer. Following

another Piranha clean to take off any remaining resist and etch by-products, the sample is

oxidized in dry O2 (electronic grade II) at 1100◦C to define the waveguides. The SiO2 and

SiNx are then removed with HF leaving the Si surface bare for future surface treatments.

Initial results show reasonable smoothness for the waveguide sidewalls in Fig. 2.8(e), but

there is significant room for improvement throughout the fabrication flow. Since the exact

process conditions vary between SiNx etches (rate ≈ 1.5 nm/s), it is difficult to consistently

halt the RIE before penetrating the SiO2 layer. Rather than adjusting the etch recipe,

which should be optimized for roughness, the initial SiO2 thickness should be increased

even though this increases the duration of the LOCOS step. Second, the written waveguide
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dimensions must be calibrated against the resulting widths to account for the resist reflow

and SiNx sidewall angle, which is not perfectly vertical. Even after correcting for lateral

diffusion that will undercut the SiNx by the same depth the sample is oxidized (e.g., oxidizing

down 160 nm to define a 230-nm waveguide requires a mask width of ∼550 nm), the final

waveguides were too large (∼500 nm) for testing with a dimple taper. Third, the long

LOCOS oxidation anneals the PECVD SiNx and increases its resistance to HF. Instead

of being etched during the final HF strip, the SiNx lifts off in one large sheet as the thin

SiO2 etch-stop is slowly undercut. Much of surface roughness on top of the waveguides is

likely due to the SiNx gradually pealing off the Si. In addition, the longer etch allows HF

to penetrate defects in the silicon/oxide layers and partially undercut the BOX layer; it is

uncertain whether these defects are process induced or are intrinsic to the Si layer in the

original SOI wafer. A thicker SiO2 etch barrier will also ameliorate these issues by expediting

the liftoff. To test ring resonators from this initial run, we partially oxidize the samples to

reduce neff—the waveguide now consist of a smaller Si core with a SiO2 cladding. These

Si-SiO2 rings have Q ≈ 1–2×105 (3.6–7.2 dB/cm) and no measurable doublet splitting.

Further oxidation completely consumes the Si core, but physical inspection in Fig. 2.8(f)

shows the surface roughness is reduced similar to the chemical oxidation in Ref. [111]. These

preliminary results along with recent reports [118,119] show the potential for achieving low-

loss dispersion-engineered Si-SiO2 microrings using LOCOS processing.

2.3 Conclusions

Using a dimpled fiber-taper waveguide, we have demonstrated a localized optical probe

capable of testing dense arrays of planar devices. Proper tensioning makes the dimpled taper

more robust against fluctuations in position and decreases broadband noise. For research

and development, the dimple geometry facilitates rapid prototyping and cuts processing

time by ∼40% for cavities that are to be probed using fiber-taper waveguides. Even without

dedicated test structures to ease phase-matching constraints, the local dimpled-taper probe

enables nondestructive wafer-scale optical characterization for manufacturer-level statistical

process control. Higher yields through low-cost testing will become increasingly important

in a growing market where the burgeoning demand for bandwidth is making integrated

micro-electronic-photonic solutions more attractive [120].
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Chapter 3

Linear Absorption in AlGaAs and

GaAs Microcavities

In recent semiconductor cavity QED experiments involving self-assembled III-V quantum

dots (QDs), Rabi splitting of the spontaneous emission line from individual QD excitonic

states has been measured for the first time [121–123]. Potential application of these devices

to quantum networks [124] and cryptography [125] over long-haul silica fibers has sparked

interest in developing QD-cavity systems with efficient light extraction operating in the

telecommunication bands at 1300 and 1550 nm [126]. The initial demonstrations of vacuum-

Rabi splitting in this system, a result of coupling a single QD to localized optical modes of

a surrounding microresonator, have been greatly aided by prior improvements to the design

and fabrication of semiconductor microcavities [23, 127, 128]. At the shorter wavelengths

involved in these Rabi splitting experiments (740–1200 nm), the optical quality factors (Q)

of the host AlGaAs microcavities were limited to Q ≈ 2×104—corresponding to a loss rate

comparable with the coherent QD-cavity coupling rate. Further reduction of optical loss

would increase the relative coherence of the QD-cavity system and would allow greater

coupling efficiency to the cavity mode.

In previous measurements of wavelength-scale AlGaAs microdisk resonators, we have

demonstrated Q-factors up to 3.6×105 in the 1400 nm band [129] and attributed the im-

proved performance to an optimized resist-reflow and dry-etching technique, which produces

very smooth sidewalls [42]. Subsequently, we have also measured Al0.3Ga0.7As microdisks

with similar quality factors between 1200 and 1500 nm; however, these disks exhibit a signif-

icant unexpected decrease in Q at shorter wavelengths (λo ≈ 852 nm) [130]. In related work

on silicon microdisks, methods have been developed to specifically measure and character-
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ize losses due to material absorption and surface scattering [42,56,69]. In this chapter1 we

study the properties of GaAs and Al0.18Ga0.82As microdisks across three wavelength bands

centered at 980, 1460, and 1600 nm. After estimating and removing the surface-scattering

contribution to the cavities losses, we find the remaining absorption, composed of losses

in the bulk and on the surfaces, depends significantly on both wavelength and material

composition.

3.1 AlxGa1−xAs Samples and Processing

The samples were fabricated from high-quality heterostructures grown by molecular beam

epitaxy (MBE) on a GaAs substrate. Two different samples were grown: a “GaAs”

sample containing a 247-nm GaAs disk layer, and an “AlGaAs” sample with a 237-nm

Al0.18Ga0.82As disk layer. In both samples the disk layer was grown nominally undoped

(background doping levels np . 1015 cm−3) and was deposited on a 1.6-µm Al0.7Ga0.3As

sacrificial layer. Microdisks with a radius of ∼3.4µm were defined by electron-beam lithog-

raphy and etched in a 55 percent (by volume) HBr solution containing 3.6 g of K2Cr2O7

per litre [131]. The disks were partially undercut by etching the sacrificial layer in 8 percent

HF acid for 45 s, prior to e-beam resist removal.

The measured Qis for all observed modes are summarized in Fig. 3.2(a); each family

of modes is identified by comparing the coupling behavior and free spectral range to FEM

models [56]. Modes with Qis dominated by radiation loss, i.e., the measured Qi is near

Qrad calculated using FEM simulations, are omitted. For all the microdisk modes in these

measurements, the calculated Qrad is &106 and typically is >108. In the 1600-nm band, the

high-Q TE modes are p = 1–4 in GaAs and p = 1–3 in AlGaAs; all TM modes are radiation

limited in this band. Near 1460 nm, the TEp=1−4 and TMp=1 modes in both materials are

detectable and not radiation limited. In the 980-nm range, identifying modes becomes more

difficult: at this wavelength families through TEp=8 and TMp=7 are not radiation limited,

and significant spectral overlap between the modes causes Fano-like resonance features [71].

In addition, we are unable to couple to the lowest order modes of both polarizations (p ≈
1–3) because they are poorly phase matched to the fiber-taper.

1Reprinted with permission from Appl. Phys. Lett. 90, 051108 (2007). Copyright 2007, American Insti-
tute of Physics. The III-V material was grown by H. Kim and processed by K. H. Lee with K. Hennessy at
UCSB.
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Figure 3.1: (a) SEM image of a typical GaAs microdisk. (b) Sample scan of a TEp=4 doublet
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modes. The data were compiled from two disks of each material.



39

3.2 Estimation of Scattering and Absorption Rates

Despite efforts to produce perfectly smooth side walls, Figs. 1(c,d) indicate that significant

surface roughness is still present and produces significant mode splitting (∆λ), shown in

Fig. 3.1(b). Following the theory developed in Refs. [42] and [41], ∆λ and Qss are both

dependent on the characteristic volume of the scatterer (Vs):

∆λ =
π3/4

√
2
λoVs(n

2
d − n2

o)
∑

η̂

us(η̂), (3.1)

Qss =
λ3

o

π7/2no(n
2
d − n2

o)
2V 2

s

∑

η̂ us(η̂)G(η̂)
, (3.2)

where nd and no are the indices of refraction of the disk and surrounding medium, respec-

tively, us(η̂) is the spatially-averaged η̂-polarized normalized electric field energy at the sth

surface (i.e., the disk edge):

us(η̂) =
ǫo

∣

∣

∣

~E(~r) · η̂
∣

∣

∣

2

s,avg

1
2

∫

n2(~r)ǫo

∣

∣

∣

~E(~r)
∣

∣

∣

2
dV

, (3.3)

and G(η̂) = {2/3, 2, 4/3} is a geometrical factor weighting the radiation contribution from

the η̂ = {r̂, φ̂, ẑ} polarizations. The mode field profiles are calculated by the FEM. For

FEM models in the 980-nm span, we treat all measured TE (TM) modes as TEp=7 (TMp=6)

because the appropriate field parameters do not vary significantly between radial orders.

We employ two separate measurements to find rough bounds on Qss.
2 First, we use the

average doublet splitting for each family to find the average 〈Vs〉p sampled by each mode

and then calculate the Qss associated with each family.

Splitting Method: ∆λ ⇒ 〈Vs〉p ⇒ Qss

Second, we statistically analyze the roughness of the disk edges in high resolution SEM

images, as in Fig. 3.3 [69]. Fitting the autocorrelation of the roughness to a Gaussian, the

roughness amplitude (σr) and correlation length (Lc) give the “statistical” scatterer volume

(V s = σrt
√
RLc where t and R are the disk’s thickness and radius) for each disk, which is

2Since this work was completed, a more direct method of measuring γa has been developed utilizing a
cavity’s thermo-optic bistability [107].
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Figure 3.3: (a) Sample surface roughness measurement on a AlGaAs microdisk showing the
disk edge extracted from a high-resolution SEM image and a fit to a circle. (b) Autocor-
relation of the disk roughness (i.e., difference from perfectly circular edge); the Gaussian
fit gives σr = 2.4 nm and Lr = 27.8 nm. Since the resist was not reflowed prior to etching,
the (anti)correlation at larger displacements may be due to raster effects during the beam
write.

used to estimate Qss.

Statistical Method: σr, Lr ⇒ V s ⇒ Qss

The average {σr, Lc} for the GaAs and AlGaAs disks are {0.6, 38.7} nm and {1.8, 29.4} nm,

respectively. Because each mode will not sample all of the disk’s physical irregularities,

the roughness estimated by the statistical analysis is slightly greater than the roughness

calculated from the doublet splittings. Hence, the doublet splitting places an upper bound

and more accurate value for Qss [Fig. 3.2(c)]. The statistical analysis gives a lower bound,

although neither bound is strict in the theoretical sense.

Through Eq. (1.24), Qss and Qrad are removed from the measured Qi to obtain limits

on Qa [Fig. 3.2(d)]. To relate cavity losses to material properties, the material absorption

rate (γa,p) for the pth mode is given by γa,p = 2πc/λoQa. We weight each measured doublet

equally and average over all families in a band to determine an average γa. Table 3.1

compiles the average absorption rates for both GaAs and Al0.18Ga0.82As across the three

wavelength ranges. The average rates are 540 percent larger at 980 nm than at 1600 nm and

80 percent greater in AlGaAs than in GaAs.

The measured absorption may be due to a number of sources. Although nonlinear-

absorption-induced optical bistability was measured for internal cavity energies as low as
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Table 3.1: Summary of GaAs and AlxGa1−xAs material absorption rates.

Method: Splitting Statistical

Sample (γa/2π) ± 1σ (GHz)

GaAs
(λ ≈ 980 nm)

{ all modes
TE
TM

3.47 ± 0.59
2.94 ± 1.24
4.08 ± 0.91

3.29 ± 0.75
2.61 ± 1.28
4.06 ± 0.89

AlGaAs
(λ ≈ 980 nm)

{ all modes
TE
TM

5.84 ± 0.13
5.77 ± 1.61
6.03 ± 1.56

4.00 ± 0.91
3.44 ± 2.31
5.39 ± 1.73

GaAs
(λ ≈ 1460 nm)

{ all modes
TEp=1

TMp=1

0.942 ± 0.696
0.514 ± 0.085
0.495 ± 0.089

0.888 ± 0.692
0.444 ± 0.108
0.467 ± 0.095

AlGaAs
(λ ≈ 1460 nm)

{ all modes
TEp=1

TMp=1

1.73 ± 0.50
1.32 ± 0.22
2.30 ± 0.49

1.43 ± 0.76
0.882 ± 0.380
2.39 ± 0.40

GaAs (λ ≈ 1600 nm) – TE 0.507 ± 0.186 0.460 ± 0.185
AlGaAs (λ ≈ 1600 nm) – TE 0.968 ± 0.179 0.629 ± 0.173

106 aJ, the losses reported in Table 3.1 were all taken at input powers well below the non-

linear absorption threshold. Free carrier absorption can also be neglected given the nom-

inally undoped material and relatively short wavelengths studied here [132]. The Urbach

tail makes a small contribution in the 980-nm band (≤15 percent) and is negligible other-

wise [132]. This leaves deep electron (hole) traps as the major source contributing to bulk

material absorption in the observed resonances. Similar wavelength dependent absorption

has been observed in photocurrent measurements of MBE-grown AlGaAs waveguides [133]

and attributed to sub-bandgap trap levels associated with vacancy complexes and oxygen

incorporation during growth [134]. Given the high surface-volume ratio of the microdisks,

another possible source of loss is surface-state absorption. The sensitivity to absorption

from surface states can be quantified by the pth mode’s energy overlap with the disk’s

surface, Γ′
p; TM modes are more surface-sensitive than TE modes [56] whereas both po-

larizations are almost equally sensitive to the bulk. The calculated surface overlap ratio is

Γ′
TM/Γ

′
TE ≈ 2.65 for p = 1 modes in the 1460-nm band, where all surfaces of the disk (top,

bottom, and etched edge) are treated equally. For these modes the measured absorption

ratio is γa,TM/γa,TE = 1.74 ± 0.47 (0.96 ± 0.23) in the AlGaAs (GaAs) microdisks, which

indicates the presence of significant surface-state absorption in the AlGaAs resonators and
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dominant bulk absorption in the GaAs disks. In the 980-nm band, the data is consistent

with bulk absorption [γa,TM/γa,TE = 1.05±0.40 (1.39±0.66) for the AlGaAs (GaAs) devices]

although the results are less conclusive due to the larger scatter in the data.

In summary, after accounting for radiation and surface scattering losses, we measure

greater sub-bandgap absorption in Al0.18Ga0.82As microdisks than in similar GaAs res-

onators, and the absorption in both materials decreases toward longer wavelengths. This

finding is at least partially reflected in recent cQED experiments with a single QD near or

in the strong-coupling regime [121–123, 135–142] that show the longest cavity photon life-

times (τph ≈ 70 ps) are achieved in devices at longer wavelengths (λo = 1294.5 nm) [138].3

From the polarization dependence of the measured optical loss, we infer that both surface

states and bulk states contribute to the residual absorption in these structures. Our results

imply that reductions in the optical loss of AlGaAs-based microphotonics, especially at the

shorter wavelengths of <1µm and in high Al content alloys, will require further study and

reduction of deep level traps, and that surface passivation techniques [143, 144] will also

likely be important.

3Longer cavity lifetimes (τph ≈ 80 ps at λo = 940.5 nm) have been demonstrated in large AlAs/GaAs
micropillars (d ≈ 5µm) with thick DBR mirrors (>32 layer pairs on each side of the defect) and low
eccentricity, but Rabi splitting has only been observed in smaller pillars with higher loss (d = 3 µm with
τph = 20ps) [139].
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Chapter 4

Optical Processes in

Epitaxial c-Er2O3 on Silicon

Significant progress in the last decade has been made developing passive and active silicon

optical components; however, efficient generation of light within a Si platform remains a

technical and commercial challenge [79]. Efforts to incorporate Er3+ into the Si material

system, with erbium’s emission in the 1550-nm telecommunications band, have met with

limited success. Amorphous Er3+-doped glass waveguides on Si provide insufficient gain

(<4 dB/cm [145, 146]) for dense photonic integration, while doped silicon allotropes are

limited by other effects such as Auger recombination [147] and free-carrier absorption [148].

Here we describe the characterization of stoichiometric single-crystal Er2O3 grown on Si

by atomic layer epitaxy (ALE).1 We measure a peak resonant absorption of 364 dB/cm

at 1535 nm, negligible background absorption (<3 dB/cm), and strong cavity-polariton ef-

fects. The observed radiative efficiency from 1520 to 1650 nm is 0.09% with cooperative

upconversion producing strong green and red emission for Er3+ excitation levels as low as

2%.

Spurred by the growing power consumption of high-speed electrical interconnects for

multicore processors [149,150], optical networks have become an attractive option to achieve

Tb/s on-chip bandwidth [120,151,152]. Following the initial demonstration of silicon waveg-

uide devices [153], there has been significant development in adding optical functionality

to silicon microelectronics and, similarly, applying the efficiency and infrastructure of mod-

ern complementary metal-oxide-semiconductor (CMOS) processing to optical telecommu-

nication components. While silicon exhibits low loss across the 1300-nm and 1550-nm

1This work was done in collaboration with Translucent, Inc., where these epitaxial rare-earth oxide films
were developed and characterized (XRD, RHEED, TEM, etc.).
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telecommunication windows, unstrained silicon lacks any significant Pockels coefficient and

produces little emission from its 1.1 eV indirect bandgap [79]. Free-carrier dispersion and

four-wave mixing provide some inherent active functionality, such as modulation with rates

exceeding 1 GHz [154] and wavelength conversion [114], but considerable research, especially

concerning light emission and detection, has focused on integrating silicon with other optical

materials such as SiGe [155, 156] and the III-Vs [157, 158]. In this chapter we describe the

growth, processing, and optical properties of c-Er2O3 films on Si. Similar to stoichiomet-

ric polycrystalline Er3+ materials [159–164], Er2O3 allows for a 100-fold increase in Er3+

concentration over conventional Er-doped glasses [165], making it an attractive material for

on-chip emission and amplification in the 1550-nm wavelength band. Developed simulta-

neously for optoelectronic [166] and high-κ dielectric [167] applications, epitaxially grown

Er2O3 films can be incorporated into precisely controlled heterostructures and superlattices,

which may also allow for efficient electrical injection. Oxides incorporating multiple cation

species provide additional flexibility in designing the emission spectrum and dynamics as

a number of rare-earth ions may be interchangeable in the R2O3 lattice [168]. Beyond ap-

plication to chip-based optical networks, the strong cooperative upconversion within these

films may also be used for visible light generation in solid-state lighting and displays and

infrared-to-visible energy conversion in photovolatics.

4.1 Rare-Earth Ions in the R2O3 Bixbyite Lattice

The electronic configuration for elements in the lanthanide series is [Kr]4d104fx5s25p66s2

with additional electrons filling the 4f shell. Since the valence shell is constant, these atoms

are chemically similar and approximately the same size. Crystalline R2X3 compounds con-

taining trivalent rare-earth ions (e− configuration: [Kr]4d104fx−15s25p6) typically assume

two crystal structures: the hexagonal La2O3 structure and the cubic (Fe,Mn)2O3 bixbyite

structure. The hexagonal arrangement is more common among rare-earth oxysulfides and

oxyselenides while the bixbyite crystal is prevalent in sesquioxides when 0.60 . r(R)/r(O) .

0.87, where r is the ionic radius. Bixbyite’s large 16-molecule unit cell in Fig. 4.1(a) contains

32 metal ions with 24 distributed on low-symmerty sites (C2) and 8 on sites with inversion

symmetry (C3i). The bixbyite cell also contains 48 oxygen atoms arranged in an incomplete

cubic close packing [169].
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Figure 4.1: (a) The bixbyite unit cell for R2O3 with the ionic radii approximately correct
for Er2O3. A few extra C2 ions are included to help illustrate the crystal’s symmetry even
though they are not in the unit cell. Detailed views of the oxygen coordination at the (b) C2

and (c) C3i sites demonstrate inversion symmetry is only present at eight lattice positions.
In each diagram, the cube faces identify the {100} planes. (d) Crystal field levels studied on
C2 sites in R2O3 and lanthanide-doped Y2O3 crystals [170–174]. The emission wavelength
is given for transitions back to the ground state, although no all transitions may fluoresce.
The La3+ and Lu3+ ions are omitted because intra-4f optical transitions are not possible
when the 4f shell is empty and full, respectively. More complete spectra for ions in LaCl3
are available in Ref. [175].
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Since the 4f orbitals have less radial extent than the 5s and 5p, the 4f wavefunctions

are only weakly perturbed by surrounding ligands which gives rise to atomlike spectra for

intra-4f transitions in solid or liquid hosts. The collective state for the 4f electrons is

described using the (2S+1)LJ Russell-Saunders (RS) terms, where S, L, and J are the sum

of the spin (S = |∑ims,i|), orbital (L = |∑imℓ,i|), and total angular momentum quantum

numbers (J = |∑i(mℓ,i+ms,i)|), respectively, for all electrons in the shell. Mutual Coulomb

interaction between these electrons and spin-orbit coupling lift the degeneracy of these

states, but the other filled shells do not contribute to first order because they are spherically

symmetric. In Russell-Saunders coupling, the spin-orbit interaction is small compared to

the Coulomb repulsion, and the system can be treated perturbatively. However, rare-earth

ions are in the intermediate coupling regime where the Coulomb and spin-orbit terms are

approximately equal. The resulting eigenstates are not pure RS wavefunctions but rather

superpositions that are typically calculated by parametrizing the Hamiltonian in terms of

tensor operators along with a few adjustable coefficients, diagonalizing, and then fitting to

experimental spectra for free ions. Conventionally, the superpositions are still labeled as

RS terms according to the state they reduce to with zero spin-orbit coupling—these states

are generally the largest component of the superposition.

In crystals, the inhomogeneous electric field from neighboring ions (i.e., the crystal

field) splits the (2S+1)LJ terms of the free ion by breaking their degeneracy in MJ , but

the field does not appreciably shift the levels from the free-ion case. The spread of these

Stark-shifted levels depends on the ions present and their coordination but is generally less

than the spacing between RS terms (several hundred cm−1 compared to several thousand

cm−1). For Er3+ and other ions with an odd number of electrons, each RS term splits

into (J + 1
2) sublevels that are doubly degenerate (i.e., the Kramer’s degeneracy); the

sublevels of the first three Er3+ terms {4I15/2,
4I13/2,

4I11/2} are indexed with {Z1−8, Y1−7,

X1−6}, respectively. First principles calculation of the crystal-field splitting magnitude

are ordinarily not possible; a point-charge model for the crystal along with the free-ion

wavefunctions underestimates the splitting by 10× because the orbitals’ spatial extent and

overlap must be considered. Again the free-ion Hamiltonian and crystal-field interaction

are parametrized with tensor operators and fit to experimental data for transitions up to

∼30,000 cm−1; increasingly complex and subtle refinement reduces the error in the fits.

Since transitions within a shell conserve orbital momentum, electric-dopole emission or
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absorption can only occur when the 4fx states mix with 4fx−1nℓ states with opposite parity

through odd components of lattice vibrations or of the crystal field. The odd-parity crystal

fields are most significant to radiative transitions. Coupling to the phonon bath produces

a small temperature-dependent line shift but is more important for line broadening and

nonradiative processes. In the bixbyite crystal, ions at the C2 sites experience a crystal field

without inversion symmetry [Fig. 4.1(b)] and have a small induced electric dipole moment

giving a radiative lifetime on the order of milliseconds. Without these odd interaction

terms, only magnetic dipole and electric quadrupole transitions are possible in ions at the

high symmetry C3i sites [Fig. 4.1(c)]. The optical spectra and crystal field splitting in

Fig. 4.1(d) have been throughly analyzed for all rare-earth ions on C2 sites in Y2O3 and

many pure sesquioxides [173,174], while their intensities were investigated within the Judd-

Ofelt formalism [176]. Some data has also been published for select transitions and ions

on the C3i sites [177,178]. Thorough reviews of the optical processes in crystals containing

rare-earth ions are available in Refs. [175,179].

4.1.1 Growth

As shown in Fig. 4.2, single-crystal stoichiometric Er2O3 can be grown via ALE on Si(111)

or Si(100) on-axis wafers without a buffer layer. Like most lanthanide sesquioxides [180],

the film’s bixbyite crystal structure is oriented along Er2O3(111) [Er2O3(110)] on Si(111)2

[Si(100)] and reasonably lattice matched to the Si substrate; see Table 4.1 [168]. To minimize

both erbium silicide formation and native SiOx growth, the O2:Er ratio during deposition

is 1:5. High growth temperatures between 650 and 900◦C result in more homogeneous

films [measured by transmission electron microscopy (TEM) and X-ray diffraction (XRD)],

smoother surfaces [∼1 nm roughness by atomic force microscopy (AFM), TEM, and reflec-

tion high-energy electron diffraction (RHEED)], and stronger C-band3 photoluminescence

with a narrower linewidth at 1536 nm [Fig. 4.5(a)]. Films on Si(111) are consistently higher

quality and have been grown up to 200 nm thick. We observe no evidence of erbium clus-

tering using TEM or visible upconversion [35,181].

2The Er2O3(111) orientation is rotated 180◦ about the Si(111) surface normal.
3The short wavelengths (S), conventional (C), and long wavelengths (L) telecommunications windows

(bands) are relative to the region of lowest optical loss in silica fiber (λ ≈ 1550 nm) and occur at 1460–
1530 nm, 1530–1565 nm, and 1565–1625 nm, respectively. These designations are not strictly applied in
this report as that the absorption extends into the E-band (extended, 1360–1460 nm) and the emission in
Fig. 4.9(b) continues through the U-band (ultralong wavelengths, 1625–1675 nm).
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Figure 4.2: Er2O3 grown via ALE on Si(111). (a) TEM image of an Er2O3 layer on Si(111).
(b) High-resolution TEM image of Er2O3-Si interface showing a sharp boundary between
the two materials. (c) XRD spectrum for Er2O3 on Si(111) and a reference Si(111) sample;
the (⋆) peaks designate strained layers as described in the text.
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Table 4.1: Lattice constant (ao) and mismatch for R2O3 bixbyite crystals on (111)Si

Crystal ao (Å) Mismatch⋆

Y2O3 10.604 –0.0238

La2O3 11.36 0.0458

Ce2O3
† 11.16 0.0274

Pr2O3 11.152 0.0267

Nd2O3 11.077 0.0198

Pm2O3
‡ 10.99 0.0118

Sm2O3 10.932 0.0064

Eu2O3 10.866 0.0004

Gd2O3 10.813 –0.0045

Tb2O3 10.730 –0.0122

Dy2O3 10.667 –0.0180

Ho2O3 10.607 –0.0235

Er2O3 10.547 –0.0290

Tm2O3 10.488 –0.0344

Yb2O3 10.439 –0.0389

Lu2O3 10.391 –0.0434

Si 5.431 —

⋆ The lattice mismatch is relative to twice the Si unit cell: (aROx/2aSi − 1).
† Ce2O3 is readily oxidized to form CeO2 under ambient conditions.
‡ Promethium is radioactive and has no isotopes with half-lives longer than 17.7 years.

In post-growth XRD analysis, the dominant peaks in Fig. 4.2(c) are due to the sub-

strate’s Si{111} and film’s Er2O3{111} planes. We employ two configurations for XRD

analysis using a standard Cu Kα source: (1) a low angular resolution configuration that

is sensitive to more material phases and (2) a high angular resolution configuration. The

low-resolution setup utilizes a mirror to provide a wider angular divergence and higher in-

tensity (shorter integration times) for the X-rays. With the 〈110〉 wafer flat of the Si(111)

substrate 30◦ misaligned from the X-ray beam, this measurement is sensitive to more sec-

ondary material phases as in Fig. 4.2(b). Lesser peaks are associated with additional lines

from the X-ray source (Kβ , W) and with diffraction from minority Er2O3 phases; there is

no XRD evidence of erbium silicates or silicides at the Er2O3-Si interface [167, 182, 183].

The {211}, {442}, and {822} families of peaks correspond to slightly strained volumes with
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surfaces nearly parallel to the dominant (111) surface. Given the Er2O3 films’ homogeneous

TEM cross sections and the relative intensities of the secondary XRD peaks, the minority

phases compose a small fraction of the material. The high resolution setup aligns the wafer

flat parallel to the X-ray beam and uses a monochromator to narrow the beam’s angular

divergence. High-resolution XRD spectra only include the Si{111} and Er2O3{111} peaks.

In addition to growth of Er2O3 on Si substrates, we have also demonstrated growth on

the top Si device layer of (100)-oriented silicon-on-insulator substrates. Curiously, regions

exposed to prolonged XRD analysis exhibit lower photoluminescence yield.

4.1.2 Processing

Chip-based photonics require a number of micron- and sub-micron-scale elements, such as

waveguides and resonators. To minimize scattering in these devices, processing techniques

must be developed that produce little surface roughness. At room temperature, we have

found Er2O3 is nearly impervious to HF (49% by wt.), KOH (30% by wt.), Piranha (3:1

concentrated H2SO4 to 30% H2O2), HCl (37% by wt.), and reactive ion etching (RIE)

using C4F8:SF6. At 70◦C, concentrated HCl, H2SO4, and KOH etch Er2O3, but they leave

ragged edges and appear to be slightly anisotropic. Reactive ion dry etching (RIE) with a

Cl2-catalyzed plasma will etch the material but not remove it from the surface—droplets of

involatile etch by-products form on the wafer. Because these deposits do not sublimate at

process temperatures (≤205◦C) but are water soluble, we believe these droplets are erbium

chlorides, which are known to have a low vapor pressure [184]. Rather than chemically

etching the Er2O3 device layer, we use ion milling with high Ar+ flux and high DC bias.

To fabricate Er2O3 microdisk resonators, a 400-nm low-stress SiNx hard mask is grown

on the Er2O3-Si wafer by PECVD. Since the PECVD layer is conformal, any surface imper-

fections in the Er2O3 film will be reproduced in the SiNx; early oxide growth was polycrys-

talline and had significant roughness [Fig. 4.3(a)]. The microdisk patterns are defined using

electron-beam lithography and resist reflow with ZEP520A resist [42] and then are trans-

ferred to the SiNx using a C4F8:SF6 RIE. We then mill the Er2O3 with an Ar+ plasma. The

Ar+ mill exhibits approximately 1:1 selectivity with the SiNx hard mask, and the resulting

side walls [Fig. 4.3(b)] feature mild striations due to magnification of residual roughness in

the Er2O3 film. While these striations should be minimized, they are less detrimental than

in Si or AlxGa1−xAs because the refractive index contrast is lower (nd ≈ 2). Finally, an
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Figure 4.3: Processing Er2O3 microdisk cavities. (a) A reflowed resist mask on an early
sample develops small pseudopodia as the ZEP clings to features in the SiNx that are
transferred up from an irregular Er2O3 layer. (b) Er2O3 microdisk edge prior to the SF6

undercut. (c) Hybrid Er2O3-Si microdisk (78 nm Er2O3, 188 nm Si, 1µm SiOx) after the
final HF undercut of the buried oxide. (d) SEM image of the final microdisk cavities showing
the effects of the relaxed strain and the SF6 undercut. These devices are isolated for use
with a straight taper.
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isotropic SF6 dry etch simultaneously partially undercuts the silicon substrate and removes

the remaining SiNx mask. Once the film is released from the substrate in Fig. 4.3(d), the

cavities “flower” as the compressively strained film partially relaxes. Since residual organ-

ics cannot be removed from this material using Piranha, initial tests indicate a zero-bias

O2 plasma will clean the surface and not damage the epitaxy. Given its low reactivity,

the Er2O3 layer provides a convenient mask for subsequent processing of hybrid structures.

Processing hybrid Er2O3-Si resonators from Er2O3-SOI wafers, as in Fig. 4.3(c), employs

the same SiNx hard mask and Ar+ mill. With the Er2O3 layer acting as a mask, we etch

the silicon device layer with an anisotropic C4F8:SF6 RIE and undercut the buried oxide

with concentrated HF. Many samples are prepared to optimize the process parameters at

each step in order to minimize the microdisk side wall roughness. The measurements de-

scribed here concern ∼150 nm thick Er2O3 on Si(111) and Er2O3 microdisks with a radius

of ∼20µm.

4.2 Optical Properties

Once the SiNx is removed and the disks are undercut, the emission and absorption properties

of Er2O3 are again investigated using dimpled fiber-taper waveguides to characterize the

disks’ WGMs and excite the Er3+ optical transitions. The fiber-taper also offers high

photoluminescence collection efficiency from both the WGMs (∼10%) [70] and unpatterned

film (∼0.1%) [185]. Once fiber coupled, the pump and emission can be easily demultiplexed

for sensitive pump-probe and pulsed measurements. The cavity dimensions (R ≈ 20µm

and h = 150 nm) are chosen to give minimal bending loss across the S/C/L-bands and

well separated TE first- and second-order radial modes, as in Fig. 4.4. Conveniently, these

cavity modes and the taper waveguide are almost phase matched (ncav
eff ≈ 1.17 and nwg

eff ≈
1.26), which gives near critical coupling for a wide range (1450–1560 nm) when the taper

is placed in contact with the disk edge. For a fixed taper position, WGMs across the

S/C/L bands exhibit different coupling depths because of the Er3+ absorption spectrum.

On the edges of the absorption band (near 1420 and 1620 nm), γi ≪ γe, and the resonances

are significantly over coupled. In the center of the band, γi ≈ γe, and the modes are near

critical coupling. The shallower transmission features near 1535 and 1549 nm are attributed

to cavity-polariton and single-pass absorption effects.
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Figure 4.4: Microdisk transmission spectrum for quasi-TE modes of a cavity with R ≈
20µm; the fundamental radial-order WGMs are highlighted (gray).

4.2.1 Absorption and Emission Spectra for the 4
I 13/2→4

I 15/2 Transition

To observe the crystal-field Stark splitting for the 4I13/2→4I15/2 transition in this crystalline

host, we measure both the room temperature photoluminescence (PL) and absorption spec-

tra. We obtain the emission spectrum by placing the fiber-taper in contact with an under-

cut part of the film and pumping at λ = 981.4 nm (exciting the X1 sublevel in the 4I11/2

term). The fiber-collected luminescence [Fig. 4.5(a)] displays little inhomogeneous broad-

ening of the Er3+ transitions compared to amorphous hosts, and is qualitatively similar to

the spectrum reported for polycrystalline Er2O3 deposited by pulsed-laser ablation [163].

In comparison to large crystals of Er2O3 and dilute Er3+-doped Y2O3 produced by flame

fusion [172,178], the low temperature PL spectrum of these Er2O3 films exhibit more inho-

mogeneous broadening, also shown in Fig. 4.5(a). The 8 K PL also indicates some of these

lines may be homogeneously broadened at room temperature—e.g., the linewidth for the

1549 nm peak is 56.6 GHz at 8 K and 134.7 GHz at 300 K.

The absorption spectrum [Fig. 4.5(b)] can be determined by fitting the low-power in-

trinsic loss rate of many TEp=1 WGMs. While this WGM-linewidth method gives a digital

rather than continuous spectrum, it involves measuring spectral widths rather than intensity

changes, and coupling losses are insignificant and easily calculated from cavity-waveguide

loading. Since there are several loss mechanisms that contribute to γi, radiation and sur-

face scattering losses must be accounted for when using cavity modes to determine the

absorption spectrum (similar to §3.2). By choosing appropriate cavity dimensions, the cal-

culated γrad is negligible for the fundamental modes: γrad < 82 MHz = 0.026 cm−1. Since

Rayleigh scattering increases toward longer wavelengths [41, 69], scattering losses can be
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Figure 4.5: Emission and absorption spectra. (a) Thin-film PL spectrum at 300 and 8K
while pumping at 981 nm. The dominant peaks at 8K are presented off the scale to make
smaller features more visible. Emission is observed for ions on both C2 and C3i sites;
the peaks at 1535.8 and 1548.6 nm correspond to the transition between the lowest Stark
levels (Y1↔Z1) of the 4I13/2 and 4I15/2 manifolds on the C2 and C3i sites, respectively [172,
177, 178]. (b) Composite absorption spectrum at room temperature. Different color ×’s
correspond to the intrinsic linewidths for modes of different microdisks; the ⋆’s correspond
to absorption peaks inferred from non-Lorentzian cavity resonances. The gray region is the
resulting spectrum for the McCumber reciprocity relation.

bounded as less than the minimum intrinsic loss rate near 1625 nm: γss . min(γi) = 2.5 GHz

= 0.79 cm−1 [Fig. 4.6(a)]. This 2.5 GHz has a small absorption component as 4I13/2→4I15/2

emission into WGMs is observed out to ∼1660 nm. Because absorption at these wavelengths

(λo & 1600 nm) excites electrons from the upper sublevels of the 4I15/2 manifold, the ab-

sorption decreases significantly at T ≈ 8 K when only the lowest sublevel (Z1) is populated.

Figure 4.6 shows a WGM in a similar device at cryogenic temperatures with γi = 1.02 GHz,

which is a more reasonable estimate for γss given the etch quality in Fig. 4.3(b). Since the

sample used to reconstruct the absorption spectrum was not tested at low temperature, we

will use the 2.5 GHz in Fig. 4.6 as an upper bound on γss which implies scattering accounts

for less than 1% of the peaks, and γi ≈ γa except in the spectral tails. The second-order

microdisk resonances exhibit slightly greater γi’s due to mode coupling between the Er2O3

WGMs and the lossy WGMs of the Si pedestal; γrad is also significant for the TEp=2 modes

in the L-band. Because we are unable to bound the additional loss rate associated with the

pedestal, the second-order modes are not used to establish the 4I15/2→4I13/2 absorption

spectrum.
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Figure 4.6: Sample fits to cavity transmission resonances. (a) Singlet fit for a sample at
T = 300 K according to Eq. (1.18). (b) Doublet fit for a sample at T = 9 K. (c) Sample
non-Lorentzian fit (solid line) of an asymmetric cavity resonance. The inferred absorption
peak and a Lorentzian fit (dashed line) to the same data are also included. (d) Triplet fit
(solid line) for modes straddling the absorption peak at 1537 nm. The underlying Lorentzian
resonances are displayed as dashed lines.

Due to the small inhomogeneous broadening of the Er3+ transitions, it is possible for an

underlying absorption peak to change appreciably across a cavity linewidth. In this case,

the resulting non-Lorentzian cavity resonance can be fit [Fig. 4.6(c)] using Eq. (1.18) and

including a Lorentzian absorption profile,

γi ≈ γa(ω) =
γo(δωa/2)

2

(ω − ωa)2 + (δωa/2)2
, (4.1)

where ωa, δωa, and γo are the center, full width at half maximum, and amplitude of the

absorption peak. For the observed resonances, it has been unnecessary to include the ab-

sorption peak’s effect on the real part of the refractive index through the Kramers-Kronig

relation—this shifts the resonance center and would be significant for precise dispersion stud-

ies. The inferred absorption peaks from fitting these asymmetric resonances around 1457.3,

1462.8, 1478.8, 1545.6, and 1556.9 nm agree well with the data from nearby Lorentzian

resonances. Cavity modes near the Y1↔Z1 transitions at 1537 and 1549 nm hybridize with

the electonic states and become cavity-polaritons (discussed further in §4.2.5). To accu-

rately determine the loss rates near these wavelengths, it is often necessary to fit a triplet of
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modes (two polariton modes and a neighboring broad WGM). This fit can be accomplished

by modifying Eq. (1.17a) to include two additional modes:

t(ωℓ) = s + i
√
γe,1acw,1(ωℓ, ω1) + i

√
γe,2acw,2(ωℓ, ω2) + i

√
γe,3acw,3(ωℓ, ω3). (4.2)

This approximation holds for weakly coupled WGMs as long as the phase shift of t is small.

When the modes are more deeply coupled, Eq. (4.2) does not accurately account for the

interference between the modes, and the resulting fits describe a system that does not

conserve energy. After extracting the three absorption rates from data like Fig. 4.6(d), the

rate for the p = 1 mode is identified and used in Fig. 4.5(b). When the TEp=1 mode is

resonant with the absorption peak, the cavity and electronic linewidths average, and the

linewidth for either polariton branch can be used.

The absorption spectrum can also be obtained using the McCumber reciprocity relation

between the absorption (σa) and emission (σe) cross sections [165]. Since the crystal field

splitting of a RS term is approximately equal to or greater than the thermal energy, the

occupation probabilities for the sublevels are not equal, and the relationship between the

total absorption and emission rates between two levels (arising from the Einstein A and

B coefficients) no longer holds. Within a single manifold, the electrons will thermalize

on a time scale of ∼100 ps via interactions with the phonon bath. On the millisecond

timescale for radiative transitions, the thermal distribution within the sublevels biases the

emission (absorption) toward red (blue) wavelengths. This situation is identical to phonon-

terminated lasers [186], and the cross sections are related by

σa(ω) =

(

Z2

Z1

)

σe(ω) exp

(

ℏω − E21

kBT

)

, (4.3)

where E21 is the energy difference between the two manifolds, Z2 and Z1 are the partition

functions for sublevels within the upper and lower manifolds, kB is the Boltzmann constant,

and T is the temperature. Unlike in glass, spectroscopy of the Stark levels is available for

ions in many crystals [e.g., Fig. 4.1(d)], and Eq. (4.3) can be evaluated exactly. Using

the energies for the sublevels of 4I13/2 and 4I15/2 on C2 from Ref. [172], the results from

Eq. (4.3) in Fig. 4.5(b) are in reasonable agreement with the linewidth data. The McCumber

spectrum is scaled to the maximum absorption peak at 1535 nm because the magnitude
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of the PL data is not calibrated. The shortcoming of this approach is that it assumes

the dipoles are identical and independent. These assumptions are valid in many systems

such as lightly doped glasses, but neither are strictly true in Er2O3. Differences between

the McCumber theory and the data occur primarily at the edges of the spectrum and

may reflect different dynamics for ions on the C2 and C3i sites. As will be discussed in

the following sections, emission from the magnetic dipole transitions on the C3i sites is

disproportionately large for the observed absorption, and the excitation migration rate

(§4.2.3) may be asymmetric for transfers between the C2 and C3i sublattices.

The resulting spectrum [Fig. 4.5(b)] again reflects the weak inhomogeneous broadening

of the Er3+ transitions and qualitatively agrees with the peaks’ positions and widths in the

PL spectrum. Accounting for material and modal dispersion with scattering losses bound

at <1% of the peak values, the absorption maxima of 267.0 GHz at 1535 nm and 175.4 GHz

at 1479 nm correspond to 83.9 cm−1 (δωfsr/2π ≈ 1.59 THz) and 56.2 cm−1 (δωfsr/2π ≈
1.56 THz), respectively. The narrow peaks and low losses in the tails further indicate there

is little background absorption, and all 83.9 cm−1 (364 dB/cm) can be attributed to resonant

4I15/2→4I13/2 excitation, which sets a high maximum value for potential gain.

4.2.2 Upconversion

While the 1450–1650 nm band is most useful for hybrid Er3+-silicon optical networks, up-

conversion into visible transitions is also present and has been partly investigated for poly-

crystalline Er2O3 on Si [159,162]. We determine the upconversion spectrum by transferring

a small piece (∼2µm2 × 150 nm) of Er2O3 onto the fiber-taper and pumping with <3 mW

at 1536.7 nm. The taper-collected PL is then measured in a Czerny-Turner spectrometer

with a silicon CCD camera. The visible PL contains emission from many levels with sig-

nificant emission near 550 and 670 nm and exhibits little inhomogeneous broadening, as in

Fig. 4.5(a). The relative intensities in Fig.4.7(a,b) may not reflect the actual strength of

each transition because we are unable to correct for the unknown taper collection efficiency

across the visible range; we have corrected for the grating and CCD efficiencies. Spectro-

scopic data over a large range must also be corrected for second-order diffraction from the

spectrometer—i.e., the grating equation for a given diffraction angle (θd) is simultaneously

satisfied for wavelengths (λj) in two different orders (mj): a(sin θd− sin θi) = m1λ1 = m2λ2

where a is the grating pitch and θi is the incident angle. Usually gratings are blazed to
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operate at a given order and wavelength while all other orders have significantly lower ef-

ficiencies.4 In this measurement, the second-order grating response is only observed near

800 nm where the sharp 4G11/2 line at 391 nm appears as a small peak at the edge of the

4I9/2 emission—the second-order 4G11/2 intensity is approximately 10% of the 4I9/2 peak

at 805 nm. To remove the second-order response associated with the 4G11/2 and 2H9/2

levels, we scale the spectrum at 385–425 nm to the second-order 4G11/2 peak at ∼782 nm

and subtract. This method is acceptable for broad surveys such as this, but more accurate

studies should filter out the shorter wavelengths to avoid producing negative counts near

815–840 nm.

The pump-power dependence [Fig. 4.7(c)] of the three primary upconversion bands

provides insight into the specific upconversion mechanism [Fig. 4.7(d)]; we use a microdisk

cavity for these curves because they offer a greater signal at low pump power. The nearly

quadratic dependence of the 800 nm emission suggests pairwise upconversion out of the

4I13/2 multiplet followed by excited-state absorption or a second upconversion event (4I9/2+

4I13/2→2H11/2) to produce the nearly cubic dependence around 550 and 670 nm. Subsequent

absorption or energy transfer then connects 2H11/2-
4S3/2 to even higher levels with energies

in the near UV. Emission of multiple phonons or a single mid-IR photon connects this ladder

of states to levels that are not directly excited [dashed relaxations in Fig. 4.7(d)]. Other

paths may also contribute to the upconversion process, but this pathway is consistent with

the pump dependence and involves the least energy mismatch between excitations—the

phonon bath must provide or absorb any excess so that energy is conserved.

Since there are currently no efficient solid-state emitters at green wavelengths (most

green lasers are frequency-doubled emission from Nd3+:YAG lasers), there is considerable

interest in developing efficient rare-earth upconversion sources and lasers for displays, light-

ing, and compact projectors [187–190]. Initial investigations of upconversion in these Er2O3

cavities at high power are inconclusive. We use a pulsed C-band excitation because the

poor thermal conductivity for microdisk WGMs gives a damage threshold of Pd ≈ 30 mW.

Because of the high Er3+ density, long pulses with large peak powers are necessary to pro-

vide enough energy to reach transparency for visible transitions; these 20-µm disks contain

∼1011 ions and require >18 nJ for transparency at 550 nm (or equivalently a 20-ns square

4The grating used in these measurements is blazed for operation near 500 nm in the first order with
a = 0.83 µm (1200 lines/mm); the antireflection coating on the CCD is optimized for 550 nm.
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Figure 4.7: Upconversion behavior. (a,b) Fiber-taper collected Er2O3 upconversion spec-
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known Er3+ transitions back to 4I15/2 [172]. NB: The scale is varied across the spectrum
to make weaker transitions more visible. (c) Pump-power dependence for the integrated
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The data sets are offset vertically for clarity. (d) Proposed upconversion path. (e) Setup
for measuring visible upconversion using a fiber-taper as the collection optic. (f) Setup
for high-power pulsed C-band excitation. Two polarization controllers are needed to in-
dependently match the polarizations of the electro-optic modulator (EOM) and the cavity
resonance. To optimize the modulator bias voltage and input polarization, we constantly
monitor our extinction ratio (>35 dB) and pulse shape (square pulse, 100 ps rise time, 120 ps
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(DCA)—cf. §A.2. The DCA is also used to record the transmitted waveform to check
for any dynamic cavity detuning during the pulse width, similar to Ref. [63]. The second
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pulse with a peak power of 900 mW). To generate these long high-energy pulses in the C-

band, we modulate the input to an erbium-doped fiber amplifier (EDFA). Pulses with a

high-extinction ratio and low duty cycle can fully extract the energy stored in the amplifier

and produce peak powers well above the saturation output, which is usually specified for CW

operation. With 10 mW from the tunable diode laser, the arrangment in Fig. 4.7(f) can pro-

duce pulses with energy up to 300 nJ [input pulses: (–33 dB extinction, 20 ns wide, 100 kHz

repetition), output peak power: 15.8 W, EDFA saturation for CW operation: 315 mW).5

The upconversion bands around 550 and 670 nm do not saturate smoothly at high power

and exhibit a weak kink (at 46 nJ/pulse) just prior to rolling off. Unfortunately, the poor

thermal stability of the thin disks is inadequate to consistently reproduce these results and

untangle the various experimental complexities (drifting waveguide coupling, thermo-optic

shift of the pump mode, further upconversion into the blue and near UV, nonradiative

decay, spontaneous and stimulated emission, etc.).

4.2.3 Effective 4
I 13/2 Lifetime

Depopulation of 4I13/2 by cooperative upconversion adds an additional complication to mea-

suring the 4I13/2 → 4I15/2 lifetime. To mitigate the upconversion effects, fluorescence decay

measurements are performed by uniformly exciting a fundamental WGM at 1473.4 nm with

10-ns square pulses and a peak absorbed power of 21.7 µW. These lifetime measurements are

typically performed by pumping an unpatterned film with a chopped laser at 980 nm (or at

shorter wavelengths), but it is difficult to determine the density and distribution of excited

ions, which is important in high Er3+-density samples. Because of the weak PL signal, we

apply a pulse-delay technique and a single photon counter to sample the C/L-band fluores-

cence decay curve [Fig. 4.8]. To reduce dark counts, InGaAs/InP avalanche photodiodes

(APDs) are only gated above their breakdown voltage for a short time (∼50 ns), which is

not suitable for decay curves with 10−6–10−2 s lifetimes. To circumvent the APD’s narrow

gate width, we use the 50-ns window to discretely sample the decay curve.6 Centering the

5NB: These high-power pulses eventually damaged the 980-nm pump diodes in the EDFA. During its
repair, the 980/1550 demultiplexing filters were doubled to further protect the diodes during these experi-
ments. An optical isolator should also be placed at the EDFA output to prevent reflections from returning
to the amplifier.

6Because of poor impedance matching to the photodiode in the id Quantique id201 APD, there is signif-
icant oscillation in the gate voltage (and thus in the photon detection probability and dark counts) during
the first ∼20 ns of each detection window. To avoid these effects as in Ref. [191], the delay is set so the
pulse arrives in the second half of a 100-ns window; the first 50 ns are then discarded. The lowest noise was
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arrival of a pump pulse in the detection window simultaneously acquires the PL’s rise and

initial decay due to the Nth pulse along with the decay associated with the (N−1)th pulse.

The appearance of the Nth pulse serves as a marker for sampling the (N − 1)th decay

curve at a fixed delay—i.e., the pulse period separates the (N − 1)th peak from its tail just

before the Nth pulse. Several histograms (128 ps/bin resolution) with varying delays are

used to construct the fluorescence decay in Fig. 4.8. Background histograms are taken at

each point without the pulses to remove dark counts and PL counts from when the pump

is nominally “off”—with –35 dB extinction, the CW excitation is 6.9 nW. As the pulse pe-

riod approaches the PL lifetime, the data deviates from a single exponential curve because

decay from multiple pulses contributes to the PL tail prior to the Nth pulse’s arrival. Data

at longer periods is limited by a constant noise floor linked to the small portion of pump

laser spontaneous emission that is not blocked by the filters. For τeff ≈ 10µs, probabilistic

simulation suggests that a fitting region between 10 and 20µs gives the greatest confidence

unbiased estimate of the decay lifetime. Fitting the points in this range gives an effective

lifetime of 5.7±0.9 µs for a peak excitation of 21.7 µW and ±2σ uncertainty. With the ef-

fective lifetime much lower than the measured 8±0.5 ms (7.8±2.2 ms calculated) radiative

lifetime in lightly Er3+-doped bulk Y2O3 [192], nonradiative relaxation is a major concern.

The nonradiative decay of rare-earth ions was extensively investigated during the early

development of inorganic gain crystals for solid-state lasers, and accurate phenomenologi-

cal models have been established to describe the two principal mechanisms: multiphonon

relaxation and cooperative relaxation (also known as concentration quenching) [193]. First

considering multiphonon emission, the high yield of the 4I13/2→4I15/2 transition in low Er3+-

density samples is because the 0.8 eV (6500 cm−1) energy gap is too large for fast depopula-

tion. Using parameters from Er3+ relaxation in Y2O3 at low temperature [192,194] and the

close similarity of the Er2O3 and Y2O3 vibrational spectra [195], we estimate an effective

lifetime of 4.2 s for relaxation at 300 K via emission of 12 phonons (∼550 cm−1). Coopera-

tive relaxation encompasses several decay and sensitizing mechanisms where the excitation

is nonradiatively transfered between ions through multipole or exchange interactions—we

will limit the discussion to processes involving a single ion species. Self-quenching, where a

donor ion decays to an intermediate level by exciting a low-level transition in a neighbor,

is significant for higher levels in Er3+ (e.g., 4S3/2) [196], but it is inactive for the first ex-

achieved using a 10% detection probability (lower dark counts) and a 5µs dead time (less afterpulsing).
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cited level (4I13/2). The most probable relaxation path in Er2O3 is the loss of energy to

quenching (acceptor) sites either by direct transfer or from resonant excitation migration

through multiple ions [197]. Acceptors are usually nonluminescent impurities (1–10 ppm of

Fe, W, and Re and >10 ppm of Ta are present in the erbium ALE source, impurity levels

in the final Er2O3 films are unknown) and/or perturbed electronic states near surfaces,

grain boundaries, or dislocations. At timescales shorter than the radiative lifetime in high

purity crystals at 300 K, diffusion via electric dipole-dipole interactions becomes extremely

rapid and >105 transfers are possible before reaching an acceptor [198, 199]; with a mean

Er3+–Er3+ separation of ∼3.3 Å, excitations in a 150-nm Er2O3 film are never more than

∼230 steps from a surface. Although transfer through (Y1−xTbx)3Al5O12 (0.1 ≤ x ≤ 1.0,

minimum mean Tb3+–Tb3+ spacing of ∼4.2 Å at x = 1.0) was consistent with dipole-dipole

coupling [200], high donor concentrations, as in Er2O3, may further increase the migration

rate through short-range exchange and/or electric quadrupole-quadrupole interactions [201].

However even for dipole-dipole interactions, excitation migration at 300 K to a small con-

centration of acceptors will effectively quench the 4I13/2 emission in these Er2O3 films. Since

it seems unlikely that these interactions can be screened (perhaps by introducing various

dopants), increasing the mean Er–Er separation appears to be the only way to slow this

transfer rate and the nonradiative relaxation. Assuming the decay is diffusion limited due

to a low density of acceptors and conservatively assuming dipole-dipole interactions, the

nonradiative decay rate is proportional to the Er3+ concentration [199, 202]. Ion-ion cou-

pling resulting in cooperative upconversion is governed by the same multipole interactions

and is also enhanced by the excitation diffusion.

4.2.4 Power-Dependent Radiative Efficiency

Because the fiber-taper offers adjustable waveguide coupling and a low-loss method for PL

excitation and collection [70], the efficiency for emission into the cavity modes can be empir-

ically determined. Utilizing wide band-pass filters, the S-band transmission and C/L-band

emission can be observed simultaneously [Fig. 4.9(a)]—all cavity-based PL measurements

are pumped on resonance with a WGM. The long-pass and short-pass filters separate their

pass bands (P ↔ CM ports) and reflection bands (R ↔ CM ports) with high directiv-

ity (>55 dB) and low insertion loss (<1 dB). By collecting and filtering PL in the cavity’s

“reflection” channel, we achieve >100 dB isolation at the pump wavelength. Some residual
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spontaneous emission from the laser diode does bleed through the filters and produces a

∼10 pW signal at 1519 nm with our pump near maximum power. Since the radiative effi-

ciency measurements only concern WGMs at λ > 1520 nm, this peak is ignored; in other

cases it can be reduced below 1 pW by inserting an additional short-pass filter (pass 1450–

1495 nm) after the laser. We employ an optical spectrum analyzer to measure the PL at

peak powers &10 pW and a spectrometer with a liquid-N2 cooled InGaAs detector array at

lower powers (down to peak powers of ∼0.1 fW).

The cavity-coupled radiative efficiency (ηobs) is given by the ratio of the total power

emitted into the cavity modes divided by the absorbed pump power. This measurement

requires careful characterization of the pump mode along with all modes in the desired

emission band. For these c-Er2O3 microdisks, surface scattering and radiation losses are

negligible compared to the Er3+ absorption, and the absorbed power (Pa) is nearly equal

to the dropped power (Pd),

Pa =
γa

γi
Pd ≈ Pd = (1 − Tcav)

Pin√
Tt
, (4.4)

where Tcav is the cavity-waveguide transmission at the pump wavelength, Tt is the end-

to-end fiber-taper transmission, and Pin is the pump power measured at the fiber-taper

input. Equation 4.4 assumes the taper’s loss is symmetric about the taper-device coupling

region. While transmission loss in fiber-tapers is usually dominated by bending loss in the

taper mount which is symmetric about the coupling region, small bits of dust on the taper

will scatter light from the fundamental mode and produce asymmetric loss. In this case,
√
Tt is replaced by the one-sided waveguide transmission (T1), which can be found from

Tt and the ratio of another quantity that depends on Pd (e.g., thermo-optic wavelength

shift or peak PL yield) when using either end of the waveguide as the input. For these

measurements, Tt = 0.68 with symmetric loss. Using the collected emission [P (λ)] spectrum

as in Fig. 4.9(b), the total power emitted into the cavity modes (Pcav) is given by

Pcav =
2

δλrbw

√
Tt

[

∑

n

(

γi,n + γe,n

γe,n

)
∫

Pn(λ)

Tf(λ)
dλ

]

, (4.5)

where the summation is over the cavity modes at λ > 1520 nm and δλrbw is the spectral

resolution bandwidth of the grating and detector. The factor of 2 compensates for equal
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luminescence from a TEp=1 mode [35].
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emission into the degenerate clockwise and counterclockwise traveling-wave modes of the

disk and hence into the forward- and backward-propagating modes of the waveguide. While

the C/L-band transmission [Tf(λ)] is fairly flat for the filters used to (de)multiplex the PL

and the pump beam, the transmission does slowly decrease at longer wavelengths. In the

emission band, Tt = 0.66 with symmetric loss. To establish and correct for the fraction of

the PL in the WGMs that is collected by the taper, we find the total cavity loss rate for

each cavity mode in the emission band by measuring the γi,n under weak loading and γe,n

at the fixed taper position used during PL collection. Then the fraction of Pcav coupled into

the forward propagating mode is the ratio of the loss rate into the waveguide (γe,n) over the

loss rate into all channels (γi,n + γe,n), which gives a correction factor of (γi,n + γe,n)/γe,n.

There is no evidence for significant parasitic loading (γp ≈ 0) during this measurement.

For example, the WGMs near the emission peaks at 1535 and 1549 nm are nearly critically

coupled in Fig. 4.4 (γi,n ≈ γe,n), and the waveguide collection factor for these modes is

(γi,n + γe,n)/γe,n ≈ 2. Since the ratio of the intensity of individual WGMs over the total

emitted power is constant at Pd . 4mW, the total integrated PL is proportional to the

intensity of the strongest emission line. Using this proportionality, the radiative efficiency

measurement can be extended to excitation levels low enough that the largest PL peak is

just above the noise floor.

We analyze the power dependence of ηobs for several pump modes across the S-band on

two different samples. In Fig. 4.9, ηobs decreases as upconversion becomes the dominant

path for depopulating 4I13/2. Fitting the data to

ηobs(Pa) =
ηo

1 + (Pa/Pup)x
(4.6)

gives x = 0.61±0.07 and Pup = 204±47 µW, at which point the efficiency has dropped by

half and there are equal rates for nonradiative relaxation and cooperative upconversion.

Expressed in terms of an effective lifetime (τeff) and the state’s lifetime at zero pump power

(τo)

τeff(Pa) = τo
(

1 + (Pa/Pup)x
)

, (4.7)

residual upconversion can be removed from the previous lifetime estimate of 5.7±0.9 µs at

21.7 µW to give a zero-power effective 4I13/2 lifetime of τo = 7.2±1.2 µs. Since the radiative

lifetime (τrad) in these Er2O3 films should be very similar to the 8 ms lifetime in Y2O3 [192],
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τo can be related to the overall emission efficiency across the S/C/L-bands (ηscl) and the

observed spontaneous emission coupling factor (βobs) for the chosen cavity resonances:

τo/τrad = ηscl = ηo/βobs. (4.8)

With τrad = 8 ms and ηo = 3.4×10−5, we find the 4I13/2→4I15/2 transition is almost com-

pletely nonradiative (τo ≈ τnr) with ηscl = 9.0×10−4 and βobs = 0.038, which is consistent

with estimates of βobs based on the cavity mode spectrum and negligible Purcell enhance-

ment of τrad (see §B). Finally, at 204µW, upconversion reduces the lifetime to τeff = 1
2τo

and gives ∼3×1020 ions/cm3 in 4I13/2. Based on the more rigorous analysis of Nikonorov et

al. [203], we can equate the nonradiative decay (1/τo) and upconversion rates [1/(CupN13/2)]

at this power to estimate the cooperative upconversion coefficient (Cup):

Cup =
2hcV

λpτ2
oPup

= (5.1 ± 2.1) × 10−16 cm3/s, (4.9)

for a 4I13/2 rate equation of the form ∂tN13/2 = . . .−CupN
2
13/2 and where V = 20.1 µm3 is

the volume of Er2O3 excited by the cavity mode, λp ≈ 1480 nm is the pump wavelength, and

Pup = 204±47 µW is the power when the nonradiative and upconversion rates are equal.

This upconversion coefficient is extremely large and similar to that found in cosputtered

Er2O3/Al2O3 [204].7

4.2.5 Cavity Polaritons

Following the observation of normal mode splitting in a semiconductor microcavity [11],

vacuum-Rabi splitting has been observed over a growing range of materials and tempera-

tures, and the exploitation of cQED and strong coherent light-matter coupling has become

a promising route to create more efficient light emitters. Normal mode splitting at room

temperature has been verified in planar cavities containing various active layers, including

InGaAs quantum wells (QWs) [205], II-VI QWs [12], group III-nitrides [206], and with in-

tersubband transitions in a quantum cascade structure [207]. In exciton-polariton systems,

there has been considerable effort to understand the low-temperature thermodynamics of

7The definition of Cup is somewhat arbitrary depending on the conventions used in the rate equations.
Kik and Polman use ∂tN13/2 = . . . − 2C′

upN2
13/2 and find C′

up = 1
2
Cup = 3.5×10−16 cm3/s, which is within

the uncertainty in Eq. (4.9).
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the boson quasiparticles and to utilize stimulated scattering toward the lower polariton

branch [208, 209]. Optoelectronic functionalities based on efficient polariton emission from

single excitons, such as parametric gain [210] and electroluminescence (EL) [211,212], have

now also progressed above T & 200 K.

Rabi splitting and the associated cavity-polariton modes can be described as a conse-

quence of linear dispersion [213] or as non-perturbative coupling between the dipole(s) and

an optical cavity, while perturbative coupling to a single ion produces Purcell-enhanced

emission (without Rabi oscillation) [214]. Beyond quantum wells and single dipoles with

large oscillator strengths, the collective oscillation of atomic and molecular ensembles is

another viable method to obtaining light from polariton states. Due to their large dipole

moment, planar microcavities incorporating organic semiconductor emitters exhibit massive

room-temperature Rabi splitting [215] and EL [216]. While in a complementary approach

with high density (ρ = 2.7×1022 cm−3), the narrow inhomogeneous distribution of optical

transitions in stoichiometric erbium crystals can also intrinsically produce large dispersive

resonances in the refractive index and splitting of the cavity modes. Cavity polaritons have

been observed around a single Er3+ transition in polycrystalline Er2O3 produced by sput-

tering or oxidation of an erbium film [217], but the effect was quenched at T & 40 K [218].

In this section, we analyze the properties of low temperature (T ≈ 8K) and high temper-

ature (T > 361 K) cavity-polaritons formed between the microdisk WGMs and the Er3+

4I13/2↔4I15/2 transitions in epitaxial Er2O3-on-Si.8

Analyzing the polariton response involves continuously tuning a cavity mode across

the Er3+ transitions. As a mode is shifted through an optical transition, the resonances

anticross (i.e., the vacuum-Rabi splitting) and produce symmetric hybrid modes (i.e., the

cavity-polaritons), which appear in both the cavity transmission and PL. In terms of cQED,

the fundamental quantity for cavity-polaritons is the Rabi frequency that describes the

coherent coupling between the two-level system(s) and a near-resonant optical mode. For

a uniform distribution of emitters, the many-dipole Rabi frequency (ḡN ) is given by

|ḡN |2 = N |ḡ1|2 ≈ |~µ|2ωcρΓ

2ℏn2ǫ0
, (4.10)

where ḡ1 is the mean coupling rate experienced by a single dipole, N is the number of

8Reprinted with permission from Appl. Phys. Lett. 94, 131103 (2009). Copyright 2009, American Insti-
tute of Physics.
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dipoles in the cavity, ~µ is the electric dipole moment of the optical transition, ωc (λc)

is frequency (wavelength) of the cavity resonance, n is the refractive index of the dipole

medium, ρ ≈ N/(VeffΓ) is the dipole density in Er2O3, Veff ≈ 70(λc/n)3 is the optical mode

volume from Eq. (1.28), and Γ is the optical mode’s electric-field energy overlap with the

dipole ensemble from Eq. (1.29) [6, 219]—see also §A.4. In Er2O3 resonators, a large Er3+

density overcomes the small 4I13/2→4I15/2 dipole moment to produce resolved polariton

modes.

4.2.5.1 Low-Temperature Polaritons

Measurements at cryogenic temperatures are conducted in a continuous flow 4He cryostat

with the fiber-taper waveguide and sample mounted on piezoelectric stages with a base

temperature of 8 K. At cryogenic temperatures, the homogeneous linewidths of the Er3+

transitions narrow significantly, and 99.8% of the ions reside in the Z1 sublevel of 4I15/2

(compared to 24.3% at 300 K). As in Fig. 4.5(a), the observed linewidths are due to inho-

mogeneous broadening from ions in strained volumes or near dislocations. To study the

polariton modes, the repeatable deposition and sublimation of thick N2 films (n ≈ 2) can

tune the Er2O3 cavity modes more than 25 nm. Compared to GaAs disks which only tune

up to 4 nm [220], the Er2O3 resonators are thinner with lower refractive index. The addi-

tional scattering loss due to the roughness of the N2 ice also remains negligible compared

to the resonant Er3+ absorption. Away from the Er3+ transitions, the dominant sources

of loss are surface scattering at the milled sidewalls and parasitic coupling from the fiber-

taper.9 Testing the cavity transmission over a range from 1423 to 1625 nm, we measure

nine anticrossings between 1455.5 and 1548.6 nm (Fig. 4.10). Considering Rabi splitting

within the context of linear absorption [213], we expect that polaritons will form at 8K

around transitions originating from the lowest sublevel (Z1) of 4I15/2, and we observe split-

ting about excitations from Z1 to all seven Stark sublevels (Y1−7) of 4I13/2 on the C2 lattice

sites—the inhomogeneous distributions for the Y3 and Y4 sublevels overlap around 1516 nm.

Rabi splitting also occurs about three transitions (Z ′
1→Y ′

1−3) on the C3i sites. Table 4.2

summarizes the average measured Rabi splittings (δωvrs) and the transition linewidth (∆ω)

9These measurements were conducted during a period when many tapers were breaking in the cryostat.
This problem was likely due to large thermal gradients when the fiber was placed in contact with the
sample. One solution was to use larger, more robust tapers, but the final resolution was to wait longer for
the temperatures to equilibrate.
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Figure 4.10: Cavity transmission spectra in the (a) S-band and (b) C-band at 8.6 K tuned
using N2 deposition. The shallow background ripple is residual-etalon noise from the tunable
lasers or ringing from the notch filters used to filter out that noise. (c) Taper-collected PL
spectrum as the cavity is tuned. Equal spaced contours (∆ = 0.002) are used to display
low-intensity features. The Er3+ ions are excited by resonantly pumping a WGM near
1480 nm. (d) Identified transitions in the bulk PL spectrum at 8.6 K.
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Table 4.2: Summary of observed cavity-polaritons at T = 8.6 K

Wavelength Transition δωvrs/2π ∆ω/2π γinh/2π α ng

(nm) (site) (GHz) (GHz) (GHz) (cm−1)

1455.5 Z1→Y7 (C2) 320 235 230 387 –182
1461.1 Z1→Y6 (C2) 372 254 248 488 –230
1495.0 Z1→Y5 (C2) 365 296 290 410 –193
1516.4 Z1→Y3,Y4 (C2) 377 387 382 338 –159
1528.0 Z1→Y2 (C2) 247 164 158 340 –160
1530.4 Z ′

1→Y ′
3 (C3i) 146 74 68 259 –119

1535.6 Z1→Y1 (C2) 399 136 130 1075 –510
1545.2 Z ′

1→Y ′
2 (C3i) 68 39 32 104 –47

1548.6 Z ′
1→Y ′

1 (C3i) 69 65 59 65 –29

of the corresponding Er3+ transitions, which are easily identified by comparison with crys-

tal field studies [172, 178].10 At higher temperatures, the transmission spectrum exhibits

polaritons around additional dispersive transitions along with a concomitant decrease in

splitting around the polaritons in Fig. 4.10 as the ions are thermally excited from Z1 to

higher Stark levels of 4I15/2.

Unlike the canonical Rabi-split spectrum of two coupled oscillators, the eigenstates for

a cavity mode coupled to an inhomogeneously broadened ensemble of dipoles consist of two

polariton modes and (N − 1) states with little photonic character and energies determined

by the original inhomogeneous distribution [221, 222]. These additional states appear in

Fig. 4.10(a,b) as an additional transmission dip as the optical field in the waveguide evanes-

cently senses the large absorption peaks in the Er2O3. The single-pass absorption features

occur at the center of the polariton resonances and do not tune with the cavity. They

persist when far detuned from any mode, and the response is independent of the mean

intracavity photon number during degenerate pump-probe measurements (from ∼0.00021

to at least ∼210 photons). When the taper is touching an undercut but unpatterned Er2O3

film, the slab transmission spectrum contains all the absorption resonances with the same

wavelengths and linewidths as in Table 4.2.

While resonantly a pumping a WGM tuned near 1480 nm, the 1525–1555 nm PL spec-

trum [Fig. 4.10(c)] displays the same anticrossings. However, there are no significant peaks

between the cavity-polariton resonances. Weak peaks are occasionally visible between sharp

10The difference between the observed and reported wavelengths is due to drift in our laser’s wavelength
calibration.



72

>10× stronger cavity-polariton lines, but these peaks are due to spontaneous emission from

a small number of excited ions that is collected by the nearby taper. The tuned PL spectra

also reveal transitions that do not terminate in the lowest sublevels. At 1553.9 nm, the

Y1→Z3 (C2 site) emission is barely detectable above the noise floor unless resonant with

a WGM. The data in Fig. 4.10 reflect the trend in Fig. 4.5 and 4.10(d) where emission

from ions on C3i sites is disproportionately large relative to the C3i absorption and the

C2 emission. To illustrate this point without rigorous calculations, the polariton splitting

[per ion, using the
√
N dependence in Eq. (4.10)] at the Z1→Y1 line on both sites roughly

follows the absorption cross sections (σa) calculated for erbium-doped Y2O3 [178]

δωC2
vrs√
NC2

= 3.3

(

δωC3i
vrs√
NC3i

)

and σC2
a = 4.8σC3i

a ,

as expected under weak pumping. However, the Y1→Z1 emission (per ion) in Fig. 4.10(d)

at 8 K deviates significantly from the emission cross sections (σe) obtained for both sites:

PC2

NC2

= 0.02

(

PC3i

NC3i

)

and σC2
e = 1.04σC3i

e .

As discussed previously, a possible explanation for the emission behavior is asymmetric exci-

tation transfer between the 4I13/2 levels on the C2 and C3i sites. The interion diffusion rate

slows at low temperature because the thermal occupancy of the Stark levels limits the paths

that can participate (any nonresonant transfers require phonons to conserve energy), but

resonant transfer through the lowest sublevels is always active. One mechanism that may

contribute to this asymmetry is the misalignment of the Y1 and Y ′
1 sublevels. The different

crystal fields at the C2 and C3i sites can split identical sublevels between 3 and 240 cm−1

(mean absolute shift of 65 cm−1 = 8.1 meV) [177],11 and if the Y1 level is higher, excitations

transferred to the C3i sublattice may encounter a sizable energy barrier for returning to

the C2 ions (kBT = 0.74 meV at 8.6 K). The PL peak at 1545.1 nm in Fig. 4.10(d) com-

plicates this argument because it contains contributions from two unresolved transitions:

Y1→Z2 (C2, nominally 1544.7 nm) and Y ′
2→Z ′

1 (C3i, nominally 1545.4 nm). If the Y1/Y
′
1

misalignment is significant, then the emission from the C2 site must dominate at this wave-

length because it has a larger emission cross section in dilute Y2O3. However, the Y1→Z2

11By the nature of the crystal field calculations, the energy levels are found relative to the ground state
and without reference to an absolute scale.
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cross section is not large enough to account for the disparity with the Y1→Z1 (C2) peak at

1535.5 nm, which is markedly weaker and should have similar amplitude. If emission from

the C3i ions is more intense, another mechanism must be present because it is unlikely that

the Y ′
2 level is also shifted significantly below Y1. Temperature-dependent lifetime measure-

ments for the individual transitions would help clarify this matter (as in Ref. [223]); further

information could also be obtained from tertiary alloys such as (Y1−xErx)2O3 similar to the

thorough studies of La1−xErxF3 [202] and (Y1−xTbx)3Al5O12 [200].

The polariton resonances provide useful spectra features for studying the optical tran-

sitions, but the homogeneous (γh) and inhomogeneous linewidths γinh must first be con-

sidered. The homogeneous linewidth (and the dephasing time T2: γh/2π = 1/(πT2)) is

extremely sensitive to the temperature, transition, and host matrix. For example with the

4F9/2→4I15/2 transition in Er3+:YLiF4 at 4.2 K, photon echos by MacFarlane et al. show T2

decreases from >4µs to 0.4 µs when the Er3+ concentration increases from 0.1% to 1% [224].

Without previous studies of dephasing in Er2O3, we conservatively use γh/2π = 10 GHz at

8 K, which is similar to erbium-doped glass [225,226], and we deconvolve {γh, γinh} from ∆ω

in Table 4.2 using the Voigt profile. Inhomogeneous broadening of quantum well excitons

has been shown to damp the coherent oscillations with the cavity field [227, 228] without

significantly reducing the spectral Rabi splitting [221, 222]. In the limit ḡN ≫ γinh > γh,

the linewidth of the polariton modes becomes 1
2 (γℓ + γh), where γℓ is again the loaded

linewidth of the cavity mode. However, this averaging does not occur when ḡN and γinh are

similar because the cavity mode experiences more absorption and broadens as it approaches

resonance with the optical transition [229]. The magnitudes of {γinh, ḡN} in these Er2O3

films is in a regime that gives δωvrs ≈ 2ḡN and only modest narrowing of the polariton

modes around the most dispersive transitions; we observe line narrowing of ∼20% for the

polaritons at 1535 nm.

Using the observed splitting and Eq. (4.10), we find an effective dipole moment |〈~µ〉|
for each cavity polariton and estimate the absorption coefficient (α) and the group index

(ng) under weak excitation. For an ensemble of dipoles interacting with an optical field, the

electromagnetic susceptibility (χ) can be obtained from a density matrix approach by as-

suming the dipoles consist of only two levels (∆E = ℏωo) and including a phenomenological
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dephasing rate:

χ(ω) ≡ χ′ − iχ′′ =
π|~µ|2(ωo − ω)T2

ǫoℏ
∆NL(ω) − i

π|~µ|2
ǫoℏ

∆NL(ω), (4.11)

where ∆N is the population difference between the two states (per volume) and the ho-

mogeneously broadened lineshape L(ω) = L(ω, ωo, γh) is a Lorentzian with width γh and

normalization such that
∫∞

−∞
L(ω)dω = 1 [230]. Assuming that the fields are weak and

ℏωo ≫ kBT , the dipoles remain in their ground states, and the frequency- and power-

dependent ∆N equals the dipole density (ρ). Then the propagation constant (β′) for a

monochromatic plane wave ~Eei(ωt−β′z) becomes

β′ ≡ ω
√

µoǫ′ ≈ β
(

1 +
ǫo
2ǫ
χ(ω)

)

. . . for |χ| ≪ 1, (4.12)

where ǫ′ = ǫ + ǫoχ is the complex permittivity, ǫ is the permittivity that accounts for

nonresonant contributions to the medium’s polarization, and β = ω
√
µoǫ is the propagation

constant in the absence of the two level transition. The change in the refractive index (∆n)

and the intensity absorption coefficient (α) can be found found from the real and imaginary

parts of Eq. (4.12):

∆n

n
=

ℜ(β′) − β

β
=
χ′(ω)

2n2
, (4.13)

α = −2ℑ(β′) =
βχ′′(ω)

n2
, (4.14)

with the refractive index far from the transition is given by n =
√

ǫ/ǫo. Strong transitions

with narrow linewidths will also affect the group index:

ng = n+ ω

(

dn

dω

)

≈ n+
ω

2n

(

dχ′

dω

)

. . . for |χ| ≪ 1. (4.15)

Equation 4.10 can be combined with the formulas above to simply express the peak ab-

sorption coefficient and group index for a homogeneously broadened transition in terms of

polariton parameters:

α(ωo) =
4n|ḡN |2
cγhΓ

and ng(ωo) = n

(

1 − 4|ḡN |2
γ2
hΓ

)

. (4.16)
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Figure 4.11: Calculated (a) refractive index change, (b) group index, and (c) absorption
coefficient for the Z1→Yx transitions producing cavity-polaritons at T = 8.6 K. The homo-
geneous linewidths of all transitions are assumed to be 10 GHz.

A common approach to modeling inhomogeneous broadening is superimpose the dielec-

tric response of many independent transitions that are evenly distributed in frequency

space [221, 222]. The amplitude of the dipole moment {~µj} at each frequency is given a

Gaussian weight {fi} according to the inhomogeneous distribution such that |~µj | =
√

fj|〈~µ〉|
and

∑

fj = 1. If the frequency separation between the transitions is less than their homo-

geneous, their combined susceptibility is a smooth function, from which α and ng can be

obtained using Eqs. (4.14) and (4.15).

The results of this model for the polariton resonances at 8.6 K are displayed in Fig. 4.11;

the peak absorption coefficient and group index at each transition are summarized in Ta-

ble 4.2. Compared to the absorption spectrum at T = 300 K in Fig. 4.5(b), the larger

low-temperature peaks reflect the trends in Eq. (4.16) regarding narrower homogeneous

linewidths and increased population of the lowest sublevel—recall the collective coupling

rate depends on the population: |ḡN | =
√
N |ḡ1|. Rare-earth ions commonly used in slow-

light experiments because of their long radiative lifetimes. For example, coherent population

oscillations have been used to achieve ng ≈ 108 by opening a narrow hole at 1536 nm in

inhomogeneously broadened Er3+:Y2SiO5 [231], but Fig. 4.11(b) also illustrates the poten-
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tial for high-bandwidth fast-light experiments in Er2O3 without coherent control fields. At

the absorption peaks, pulse advancement of tadv ≈ 36 ps (for –10 dB signal attenuation)

is possible at all the observed Z1→Yx lines, which is expected based on Eq. (4.16) for a

homogeneously broadened transition:

tadv = (1 − ng)
L

c
= 0.230(1 − ng)

A

αc
≈ 0.230

A

γh
, (4.17)

where A is the desired signal attenuation in dB and by assuming ng ≪ 0. Despite

the small advancement, the large γinh value allows the advancement-bandwidth product

(tadv∆ω/2π = 4.9 for Z1→Y1) to considerably exceed those in other fast-light systems, such

as Cr3+:BeAl2O4 (tadv∆ν = 0.061) [232]. The prospects for collective coherent emission are

discussed at the end of the next section.

4.2.5.2 High-Temperature Polaritons

At 300 K, the transmission spectra of Er2O3 microdisks contain split resonances near 1537

and 1549 nm similar to those at 8 K. Unfortunately, the N2 adsorption technique used to

tune the microdisk resonances at cryogenic temperatures has no convenient analogue near

300 K, and digitally etching [233] the devices is not ideal due to the chemical resistance

of Er2O3. The temperature dependence of the refractive index offers a convenient and

reversible alternative, but the low tuning rate for these modes (9.7 pm/K, corresponding to

dn/dT = 1.9×10−5 K−1) limits the wavelength range for simply heating the entire sample

(maximum ∆λ ≈ 0.6 nm for ∆T ≈ 60 K). Instead, we use optical absorption and the low

thermal conductivity associated with undercut microcavities to locally heat the optical mode

volume of a single device, similar to Ref. [234] but more efficient. Pumping conventional

microdisks, as in the previous sections, with ∼3mW of absorbed power only achieves ∆λ ≈
2.0 nm, which corresponds to ∆T ≈ 200◦C. To obtain a wider tuning range, we further

decrease the resonator’s thermal conductivity by fabricating microdisks with three thin

spokes supporting a 4-µm wide ring where the mode resides [Fig. 4.12(a)]. The spokes,

nominally 2µm wide, incur some additional scattering [Fig. 4.12(b)] but only marginally

degrade the Q of the TEp=1 WGMs—the second-order WGMs experience higher scattering

losses due to greater overlap with the spokes [Fig. 4.12(d)]. With 3.6 mW of pump power

in Fig. 4.12(e), we are able to red-shift a WGM from 1489.8 to 1495.5 nm. Assuming the
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Figure 4.12: (a) Optical image of a spoked Er2O3 microdisk. (b) Visible upconversion
luminescence shows the spatial profile of a fundamental mode and additional scattering
where the spokes attach to the ring. (c) Scanning electron micrograph showing the smooth
edge of an undercut microdisk. (d) Electric field profile (|E|2) of the first- and second-order
radial modes calculated using FEM. (e) Thermo-optic tuning of a single WGM in a spoked
microdisk. The pump power increases ∼200µW between traces from blue (146µW) to red
(3.58 mW).

thermo-optic coefficient of Er2O3 rate remains constant, the 5.7 nm change corresponds to

∆T = 590 K and a final temperature of T = 890 K; currently we have no method to verify

temperatures above ∼375 K.

To tune the resonator and observe the anticrossing, we perform a counterpropagating

pump-probe measurement that simultaneously heats the cavity, monitors the cavity trans-

mission, and collects the Er3+ luminescence [Fig. 4.13]. The counterpropagating configu-

ration and edge-pass filters combine/split the beams with <1 dB loss and provide >100 dB

pump-probe isolation at the probe detector and OSA. Unlike many cQED experiments that
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Figure 4.13: Schematic layout for polariton pump-probe measurements.

must minimize Veff , the uniform dipole density for planar microdisks [see Eq. (4.10)] makes

ḡN independent of Veff so Γ and ρ become more important design parameters. For these

experiments, a microdisk radius of ∼20µm is again chosen so the quasi-TE mode spectrum

consists of evenly spaced first- and second-order radial modes—Γ = 0.67 and has a weak

dependence on radius. This radius is also chosen because the FSR between modes of a single

family is approximately equal to the separation of the polaritons (∆λ ≈ 12 nm) so the cavity

can be tuned onto resonance simultaneously with both transitions. The cavities’ radii are

also varied slightly to acquire a device with first-order WGMs slightly blue detuned from

the polariton features at 1537 and 1549 nm. With the fiber-taper input/collection waveg-

uide in contact with the disk to stabilize the coupling against mechanical noise, we pump

a fundamental WGM near 1490 nm with 0.5 to 2.5 mW in the clockwise direction to heat

the disk and drive the 4I13/2↔4I15/2 transition. While the 1490-nm pump laser is tuned

to maximize the dropped pump power, a second ∼200 nW tunable laser probes the cavity’s

transmission spectrum in the counterclockwise direction. The C-band PL is also measured

by simply blocking this probe beam.

As the cavity is heated, the split resonances clearly anticross in both transmission

[Fig. 4.14(a)] and PL [Fig. 4.14(b)] while the bare cavity modes tune as a quadratic poly-

nomial of the pump power—the nonlinearity stems from Er3+ cooperative upconversion
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which produces a cascade of multiphonon transitions. Parts of these anticrossings are also

observed in separate measurements when we heat the sample stage from 300 to 361 K,

but, as discussed previously, this temperature range is insufficient to tune a cavity mode

completely across the Er3+ transitions. In both measurements when the cavity modes are

detuned from the Er3+ transitions as in Fig. 4.14(d), weak transmission features remain

near the polariton resonance wavelengths due to single-pass loss in the taper waveguide as

it evanescently senses the Er2O3 absorption spectrum.

In addition to the spectral anticrossing, the linewidths of the polariton branches average

as the cavity modes and Er3+ lines become resonant, further indicating the hybridization of

the photonic and atomic degrees of freedom. For each trace in Fig. 4.14(a), we fit a series

of Lorentzian valleys [Fig. 4.14(d)] to extract the resonances’ loaded linewidths and demon-

strate they become equal near the anticrossing for both sets of polaritons [Fig. 4.14(e,f)].

At higher pump powers (higher cavity temperature), the widths of the Er3+ lines broaden,

which is likely due to added phonon-related dephasing [225,226].

To quantitatively describe the polaritons and obtain ḡN , we diagonalize and fit a coupled-

oscillator Hamiltonian to the Rabi-split eigenfrequencies in Fig. 4.14(a). Assuming the

quasi-TE cavity modes are linearly polarized, ḡN becomes real, and we use five parameters

for the tuning of each cavity-polariton pair: δωvrs, the Er3+ transition wavelength (λo),

and the three coefficients that describe the quadratic tuning of the bare cavity mode. For

δωvrs ≈ 2|ḡN |, the fit in Fig. 4.14(c) gives ḡN/2π of 99 and 57 GHz for the Er3+ transi-

tions at 1537.2 and 1549.2 nm, respectively. The weak coupling to each ion (ḡ1/2π ≈ 0.3

and 0.1 MHz for N ≈ 1011) reflects the necessity of high ion densities to achieve resolved

vacuum-Rabi splitting while compensating for erbium’s small dipole moment. Based on the

spectroscopy of Er3+ in Y2O3 [178] and the data in Fig. 4.10 at 8 K, we associate the 1537.2

and 1549.2 nm splittings with 4I13/2↔4I15/2 transitions between their lowest Stark levels

on the C2 (Y1↔Z1) and C3i (Y ′
1↔Z ′

1) lattice sites, respectively. However, neighboring res-

onances between higher sublevels have significant dipole moments and may also contribute

to the polariton behaviour—e.g., the Y2↔Z2 (C2) and Y3↔Z3 (C3i) transitions near 1537

and 1549 nm, respectively [178].

The calculation in the previous section can be reversed using the absorption data in

Fig. 4.5(b) to estimate effective dipole matrix elements that include contributions from

multiple transitions. However, there is some ambiguity in deconvolving {γh, γinh} from the
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Figure 4.14: (a) Normalized probe transmission and (b) PL as a function of wavelength
and pump power. To compensate for upconversion effects, the PL spectra are normalized
to give a constant value for the peak near 1525 nm. (c) Comparison of measured resonance
wavelengths, the coupled-oscillator eigenvalues (solid lines), and the uncoupled transition
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mode detuning and a constant tuning rate of 9.7 pm/K. (d) Transmission for two devices
tuned on and off resonance with the Er3+ transitions; a sample fit is also included. (e,f)
Linewidth averaging of the polariton modes.
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Table 4.3: Summary of cavity-polariton parameters at T > 300 K

Polariton γinh/2π δωvrs/2π ∆ω/2π ∆ω data γh/2π |ḡN |/2π
(GHz) (GHz) (GHz) source (GHz) (GHz)

1537.2 nm
{

130 198
435.8
510

Absorption

Luminescence

361
475

113
128

1549.2 nm
{

59 114
94.3
135

Absorption

Luminescence

57
115

31
39

measured high-temperature linewidths (∆ω). We use the γinh values for Y1↔Z1 and Y ′
1↔Z ′

1

in Table 4.2 which assumed γh/2π = 10 GHz at 8.6 K; errors in γinh due to this assumption

(error < 6GHz) are less significant at 300 K because the total linewidths are larger. Greater

uncertainty arises if nearly resonant transitions between other Stark levels further inhomo-

geneously broaden the absorption lines. For simplicity, we assume this increase is marginal

compared to γh. Finally, the measured values for {∆ω} differ in the absorption spectrum

[obtained from Fig. 4.14(e,f) when the WGMs are not resonant] and in the PL spectrum

[from the full width at half maximumin Fig. 4.5(a)]. The results for {δωvrs,∆ω, γh} are

summarized in Table 4.3 along with the calculated ḡN values for each transition.12 For

comparison, the Rabi splitting for a homogeneously broadened atomic ensemble is

δωvrs = 2

√

|ḡN |2 − 1

4

(

κ− γh

2

)2
, (4.18)

where κ is the cavity field decay rate in the absence of the atomic transition [214]. Neglecting

the inhomogeneous broadening, the fitted splitting around 1537.2 nm and Eq. (4.18) give

|ḡN |/2π = 105 GHz with {δωvrs, κ, γh}/2π = {198, 113, 361} GHz. Given that γinh can also

slightly reduce the observed splitting, the method in the previous section predicts 113 GHz

with the absorption spectrum linewidth (which is preferred in Ref. [222]). Following the

generally observed behavior for the magnetic-dipole transitions on the C3i sites, the Rabi

splitting around Y ′
1↔Z ′

1 at 1549.2 nm is larger than expected from the absorption. Treating

this polariton resonance as a single homogeneous transition shows δωvrs ≈ 2|ḡN | and γh is

not significant—in Eq. (4.18), |ḡN |/2π = 58 GHz with {δωvrs, κ, γh}/2π = {114, 50, 57} GHz.

We are also working to understand why high-temperature polaritons only form around

Y1↔Z1 transitions and not around transitions involving higher Stark levels with similar

12The inhomogenous linewidths obtained at T = 8K are repeated for completeness.
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absorption peaks.

The robust collective coupling we have observed between Er3+ transitions and the optical

modes in Er2O3 resonators is an appealing route to improving the material’s efficiency

or gain through cQED effects, like cavity-enhanced superradiance [235] and the Purcell

Effect [4]. Unfortunately to achieve superradiant emission, with yield increasing as N2,

the ensemble must be first excited into a Dicke state that quickly decoheres due to fast

dephasing above cryogenic temperatures and excitation diffusion [236]. Because collective

relaxation of the polariton modes is difficult to initiate, Purcell enhanced emission from

individual Er3+ ions is a more promising direction and can be realized by decreasing Veff

to increase the coupling rate per ion [6, 214]. From the perspective of a single excited ion

in the present devices, the other (N–1) ions create a dispersive resonance in the refractive

index that generates the paired polariton modes [213]. The weak coupling between each ion

and the large WGM at rate ḡ1 can then be treated perturbatively, which causes negligible

enhanced for these system parameters—the expected Purcell “enhanced” lifetime κ/2ḡ2
1 >

150 ms [214] is much longer than the 7.2 µs (8 ms) bulk nonradiative (radiative) lifetime.

Quantum master equation models produce similar behaviour using a single Er3+ ion and a

“privileged” ion coupled to an optical cavity mode at rates of ḡ1 and ḡN , respectively. By

integrating proposed ultrasmall mode volumes formed using nanoscale slots [18] with recent

low-loss photonic crystals in Si [237], a hybrid Si cavity containing a Er2O3 slot [∆n ≈ 1.5,

Veff ≈ 0.18(λ/n)3, Q ≈ 106, κ/2π ≈ 100 MHz] could exhibit an enhanced emission lifetime

of κ/2ḡ2
1 ≈ 0.23 µs.

4.2.6 Rate Equation Estimates

In more conventional cavities where the Purcell Effect is negligible, the large Er2O3 upcon-

version rate at low pump power alters the population dynamics for the Er3+ levels when

compared to the quasi-two-level system present in fiber amplifiers [165]. To accurately de-

scribe an Er2O3 cavity at the pump rates used during the radiative efficiency measurement

(Fig. 4.9), a rate equation model must include the populations of several excited states

(likely all levels up through 4S3/2 and 2H11/2) and the accompanying coupling terms and

coefficients (e.g., radiative and nonradiative decay into other levels or upconversion paths).

However with only the {τrad, τnr, Cup} parameters for 4I13/2, we can roughly estimate the

power necessary to reach transparency in the C/L-bands by solving a simplified three-state
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model for pumping at ∼1480 nm:

N1 = NEr −N2 −N3, (4.19)

dN2

dt
= −N2

τnr
− CupN

2
2 + sΦ(N1 − rN2), (4.20)

dN3

dt
= −N3

τnr
+

1

2
CupN

2
2 . (4.21)

The populations {N1,N2,N3} represent densities for ions in the {4I15/2,
4I13/2,

4I9/2} states,

respectively; higher states are neglected because we lack reasonable estimates for the appro-

priate upconversion and/or excited-state absorption coefficients. The 4I11/2 level is omitted

because it quickly decays to 4I13/2 through multiphonon emission—this assumption pro-

duces a lower effective upconversion rate into 4I9/2. For simplicity, the crystal-field splitting

for all levels is ignored except that the emitted photons from 4I13/2 are red-shifted from

pump photons. The total ion density on C2 lattice sites (NEr) is 2.05×1022 cm−3, and we use

our estimated value for the cooperative upconversion coefficient Cup = 5.1×10−16 cm−3/s.

We assume the 4I13/2 and 4I9/2 lifetimes are approximately equal (τnr = 7.2µs) because

both transitions to the ground state are dipole forbidden and likely subject to similar exci-

tation diffusion rates. This analysis excludes spontaneous emission (low radiative efficiency)

and stimulated emission (leaky cavity at the emission wavelength). The pump photon flux

within the cavity is given by Φ, and r is the ratio of the emission and absorption cross sec-

tions at the pump wavelength. For Er3+-doped silica, r ≈ 1/3 at 1480 nm [165] and accounts

for emission stimulated by the pump beam. The adjustable parameter s = 2.5×10−12 en-

compasses a number of factors including the value of the absorption cross section; it is set to

give N2 ≈ 2.7×1020 cm−3 at Pd = 204 µW—corresponding to the inferred values from the

radiative efficiency results in Fig. 4.9. This model for the Er3+ transitions is then applied

to a microdisk cavity (20 µm radius, material volume V = ΓVeff = 20.1 µm3).

Steady-state solutions to these rate equations give approximate pump powers at which

N2 ≈ N3 and at which these transitions near transparency. By Pd ≈ 0.6 mW, there are

∼5×1020 ions/cm3 in both the 4I13/2 and 4I9/2 levels. These microdisks approach trans-

parency for 4I9/2→4I15/2 (λ ≈ 800 nm) and 4I13/2→4I15/2 (λ ≈ 1480 nm) with pump powers

of Pd ≈ 18 mW and Pd ≈ 130 mW, respectively. To improve the accuracy, this model should

include 4S3/2, which would encompass the minimum number of levels to account for the

green emission. Since the upconverted luminescence is most intense around λ ≈ 550 nm,
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the combined upconversion-emission path for 4I9/2→4S3/2→4I15/2 may provide a fast route

back to the ground state. A fast green relaxation would increase the transparency thresholds

and may make the 4I9/2→4I15/2 relaxation a secondary process. Exploratory pulsed mea-

surements using a Tm3+-doped fiber amplifier at 1480 nm also suggest some of the upper

levels may be longer lived (on the order of 100µs). In summary, the upconversion processes

close to transparency are quick enough to produce substantial populations in every level up

to and including 4S3/2, and the 4I13/2 level is likely not the first level to reach transparency

when pumping at ∼1480 nm.

4.3 Conclusions

The rate-equation estimates suggest a prohibitive amount of power is required to invert

the 4I15/2 manifold in microphotonic Er2O3 cavities due to the fast excitation diffusion

to nonradiative sites and the large cooperative upconversion coefficient. Since the rapid

upconversion prevents transparency in the C-band until most of the ions are sequestered

in higher states, individual upper levels (e.g., 4S3/2) may be the first to invert relative to

the ground state making Er2O3 upconversion green lasers a possibility [187–190]. Epitaxial

Er2O3-on-Si might also be developed into an incoherent visible emitter—rough estimates

based on the camera’s sensitivity in Fig. 4.9 give a green radiative efficiency on the order

of 5% for an absorbed power density of 0.15 mW/µm3. Additionally, there is potential for

using Er2O3 to shift infrared radiation into the visible spectrum (i.e., above the bandgap of

silicon) as part of multijunction silicon solar cells.

To achieve technological maturity for the original application of Er2O3 to waveguide

amplifiers and lasers for on-chip optical networks, it is possible, but improbable, that the

performance of pure Er2O3 films can be improved by identifying and eliminating the quench-

ing impurities and finding suitable dopants to screen the ion-ion interactions. More likely,

future progress will be due to the precision and flexibility of the ALE growth. Ternary

oxides with Y and Gd, such as (Y1−xErx)2O3, would be better lattice matched to silicon,

and their lack of infrared and visible transitions would slow the upconversion and non-

radiative processes by increasing the inter-ion separation for the optically active species.

Detailed relaxation studies (as in Ref. [202]) of these alloys are necessary to characterize

the excitation diffusion and to optimize the emitter density for the desired gain. Electrolu-
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minescence may be achieved through R2O3-Si heterostructures and superlattices [238–240],

but efficient excitation must be explored first including the alignment of the R2O3 4f levels

to the Si bands. Finally, the spectral response of rare-earth oxides can be designed for spe-

cific applications. For example, (Gd1−xPrx)2O3 may be more suitable for silicon photonics

because the 1G4→3H5 transition in Pr3+ at 1310 nm does not terminate in the ground state

(3H4) and operates at the same wavelength as SiGe electro-absorption modulators [156] and

APDs [241], and the phase space for engineering sensitization and cross-relaxation processes

increases significantly in quaternary oxides. As in III-V systems, high-quality epitaxy will

become crucial in controlling the material’s structure and optical properties while moving

toward CMOS-compatible rare-earth laser diodes and photodetectors.
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Appendix A

Experimental Supplement

A.1 Mach-Zehnder Interferometer

The accurate determination of spectral linewidths is essential to much of this research. The

typical testing arrangement in Fig. 2.4 employs an external-cavity tunable diode laser to

sweep across the desired wavelengths and a computer to synchronize the laser’s reference

output (or start trigger) with the analog transmission/reflection signal acquired by the

photodetector. The method and accuracy of this synchronization depends on the laser

model and is particular to each unit. For example, the piezo-tuning mode for the New

Focus Velocity lasers applies a sawtooth waveform to a piezoelectric element attached to

the tuning mirror; the computer also receives this waveform and applies a set calibration to

its amplitude to determine the wavelength. Unfortunately, the wavelength span can vary

up to 10% from day to day for a given voltage, and the forward and backward scans are

hysteretic (see Ref. [60] for more information). Another common problem in older Velocity

lasers is that the position sensor on their tuning arm (used for coarse motor scans) can

begin to malfunction and produce an offset between the laser’s true wavelength and the

wavelength indicated by the laser head—this offset can be removed during post-processing

using the OSA. In general, the repeatability issues with the Velocity lasers do not impede

daily testing, but precise measurements over several days (e.g., Ref. [56]) require calibration.

In contrast, the discontinued Vidia lasers only send a single pulse at the beginning of the scan

(after their acceleration phase), and the computer simply assumes the laser is sweeping at

the set rate after that time. To date, there has been no need to repeatedly calibrate narrow

Vidia sweeps.

To calibrate a laser’s sweep range, we use a fiber-based Mach-Zehnder interferome-
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ter consisting of two 50:50 splitters connected by two SMF-28e patch cords with different

lengths. The entire assembly is placed inside a insulated cooler with fiber thru-ports to

prevent thermal drift. The interference fringe spacing is given by δfs = λ̄2/n̄effL, where λ̄

is the average wavelength between the two fringes, n̄ is the fiber’s effective index at λ̄, and

L is the path length difference between the two arms. For L ≈ 1m, the reference spac-

ing and wavelength are δo = 1.57±0.03 pm at λo = 1460.5 nm. The fringe spacing can be

measured by performing laser scans over a small range without the customary acceleration

phase, finding the start and stop wavelengths on the OSA, and dividing by the number of

fringes. The resulting transmission interferogram consists of a chirped signal as a function

of wavelength:

T (λ) = To sin

[

2πλ2
o

δo

(

1

λ
− 1

λ1

)]

+ Tdc, (A.1)

where {To, Tdc} are amplitudes to account for incomplete interference contrast and λ1 is the

wavelength of a fringe maximum [to set the phase of T (λ)]. At N fringes from the maximum

at λ1, the wavelength (λ) and the uncertainty (σ∆) in the separation (∆ = λ− λ1) are

λ =
λ2

o

λ2
o/λ1 −Nδo

and σ∆ =

∣

∣

∣

∣

Nλ2
o

(λ2
o/λ1 −Nδo)2

∣

∣

∣

∣

σδ, (A.2)

where +N corresponds to a red shift (λ > λ1), σδ is the uncertainty in the measured δo

fringe spacing, and σ∆ assumes δo is the only significant source of error. For practical

measurements, the fractional uncertainty in the calibrated linewidth (σ∆/∆) is the same as

the fractional uncertainty in the fringe spacing (σδ/δo).

The calibration procedure for spectral measurements depends on the desired accuracy.

For general exploratory testing, the piezo-tuning ranges should be calibrated when the laser

arrives from the factory and then periodically verified; the DC motor accuracy can be

assessed by comparing the wavelength set point and the laser output on the OSA. Much of

the early data in §3.2 and §2.2 was taken by checking the piezo calibration daily or even

more frequently. A more accurate procedure is to acquire a real-time calibration signal on

a second detector, as in Fig. 2.4. The most expedient use of this data is to find the true

wavelength span of the data by counting fringes and then scale any raw linewidths by the

ratio of the true and raw spans. This method was used throughout §4.2, but it assumes

the scan rate is constant. The most accurate method is to simply count fringes starting at

the beginning of the scan and to ignore the wavelength data from the laser. Time used for
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further improvements would likely be better spent building another MZI with smaller δo

and σδ.

The pure fringe counting method has been implemented to calibrate large wavelength

ranges while studying dispersion-engineered microdisks for degenerate four-wave mixing.

Designed and fabricated by Q. Lin, the disks consist of a Si core and SiO2 cladding to

control the GVD, similar to the waveguides in Ref. [117]. The disks are repeated oxidized

to tune the ZDWL for the TMp=1 modes toward 1550 nm in order to achieve momentum

and energy conservation for four-wave mixing between three consecutive modes. Because

future experiments call for a coarse wavelength division multiplexer (20 nm channel spac-

ing), the FSRs separating the signal and idler modes from the pump mode must be ap-

proximately equal to the channel spacing (2530 GHz) with mismatched comparable to the

modes’ linewidths (∼0.6 GHz). For comparing two wavelength spans, the measurement is

less sensitive to uncertainty in δo, and the uncertainty in the difference (∆1 −∆2) between

the two spans is

σ(∆1 − ∆2) =

∣

∣

∣

∣

N1λ
2
o

(λ2
o/λ1 − δoN1)2

− N2λ
2
o

(λ2
o/λ2 − δoN2)2

∣

∣

∣

∣

σδ. (A.3)

Using the MZI and sampling every ∼0.1 pm, Fig. A.1 shows a sample calibrated data set

for a device with signal and idler modes well matched about the pump mode at 1528.8 nm.

The difference between the calibrated and raw wavelengths is at most 0.25 nm, and the scan

rate is clearly not linear. The pump-signal and pump-idler separation is ∼2676.7 GHz with

a difference of 0.2±2.8 GHz, which is a relative error of 0.1%. To achieve the necessary ac-

curacy of .0.02%, the MZI fringe spacing must be increased to δo ≈ 7 pm if the uncertainty

in the spacing cannot be reduced (σδ = ±0.03 pm).

In the current implementation, the MZI reference signal is loaded into an (N×1) matrix

and analyzed as a function of the matrix index. First, the mean is subtracted, and a zero-

finding routine determines the “fractional” indices where the fringes cross the axis. These

positions in the matrix are separated in wavelength by half the fringe spacing, and they pro-

vide a piecewise function for interpolating the indices of the original vector onto calibrated

wavelengths. Since the reference and transmission signals are sampled simultaneously, the

same calibrated wavelength vector applies to the transmission data. The dependence of the

fringe spacing on wavelength is included by quadratically scaling δfs at each “zero” crossing
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to δ′fs = δo(λ
′/λo)

2 where the reference splitting again is δo = 1.57 pm at λo = 1460.5 nm.

It assumes the starting wavelength is accurate; the lasers’ ±0.05 nm repeatability is suffi-

cient for these purposes. This method also ignores dispersion in the optical fiber because

it introduces a correction an order of magnitude smaller than the present uncertainty in

δfs,o. For completeness, the dispersion can be calculated using parameters obtained from the

manufacturer (Corning for SMF-28e) and is presented below for 1200 nm ≤ λ ≤ 1625 nm:

D ≡ −2πc

λ2

(

∂2k

∂ω2

)

=
πcSo

2

[

1

ω
− ω3

ω4
o

]

, (A.4a)

ng = π2c3So

[

ω2

2ω2
o

+
1

2ω2

]

+ C1, (A.4b)

neff = π2c3So

[

ω2

6ω4
o

− 1

2ω2

]

+ C1 +
C2

ω
, (A.4c)

where ωo/2π = 228.3 THz (λo = 1313 nm) is the zero-dispersion frequency, the slope of

D(ω = ωo) is So = 0.086 ps/(nm2·km), C1 = 1.45647 is an integration constant to give

ng = 1.4682 at 1550 nm and 1.4676 at 1310 nm (specified by Corning), and the second

integration constant C2 = −4.6547×1012 rad/s gives neff = 1.4462 at 1550 nm (via FEM

using 0.36% core-cladding contrast, a core diameter of 8.2 µm, and a cladding index of

refraction for pure silica n = 1.4440). With the correction to neff , the fringe spacing

at 1568 nm is 1.8128 pm, and it decreases by less than 2 fm when dispersion is neglected

(δfs = 1.8109 pm). The (λ′/λo)
2 scaling has been verified to within the accuracy of the

measurements for wavelengths from 1460 to 1625 nm.

A.2 Pulse Optimization for EOSPACE Modulators

The performance specifications for the LiNbO3 electro-optic modulators from EOSPACE

are typically given for general use when the modulator is biased to give a linear response to

the signal voltage. Because many factors contribute the EOM’s operation, only a minimum

extinction ratio is specified, but this value can be exceeded by 15 dB or more by carefully

controlling the bias and polarization. To achieve square pulses with minimum insertion loss

and &35 dB extinction using the standard 10 Gb/s modulator (nominal extinction ratio of

>20 dB),
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1) Connect the laser source and a FPC1 to the modulator, and affix the modulator

and patch cords to the optical table. Maximizing the extinction ratio requires great

stability in the polarization and source wavelength. Let the laser warm up and adjust

any fiber and electrical connections prior to this procedure.

2) Attach the modulator’s output pigtail to the table. The output does not need to be

stabilized to the same extent as the input, but movement of the output fiber should

not cause the modulator’s input to shift.

3) With the output connected to an OSA or power meter, maximize the transmission

polarization and modulator’s DC bias to calibrate the modulator’s insertion loss. This

step needs to be done only once.

4) Optimize the polarization and DC bias to minimize the transmission. The optimal

polarization should be close to that found in the previous step.

5) Wait. The modulator takes a few hours to fully settle. Periodically readjust the

polarization (should not significantly change) and DC bias to minimize transmission.

The bias must be monitored frequently at first while the transmission is changing

rapidly. At >30 dB extinction, the transmission will be very sensitive to any small

changes.

6) Once the EOM has settled, it requires small tweaks to maintain the maximum extinc-

tion.

7) Connect the EOM output to an oscilloscope. Be aware of the maximum peak power

for the high-speed detectors, and attenuate the optical pulses if needed.

8) Set the amplitude of the RF signal/pulses to obtain the desired optical waveform

and measure the peak power. Prior to acquiring data, it is prudent to examine the

optical signal produced by the modulator and a given voltage source. For example,

the trailing edge of pulses from the Avtech pulse generator (AVPP–1–C) overshoots

zero and produces a small secondary pulse. These after pulses are ∼15 dB attenuated

from the main pulse and occur ∼15 ns after the trailing edge; the exact waveform is

1The FPC may not be necessary when using polarization-maintaining (PM) fiber, but this procedure
assumes the polarization of a standard single-mode fiber must be matched to the modulator’s PM input
fiber.
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dependent on the pulse width and amplitude. In addition, the optical transmission

between the pulses is increased 1.2 dB relative to the transmission without the RF

signal. For small amplitudes and widths, there are also small prepulses.

9) Throughout the experiment, adjust the signal and bias amplitudes to maintain the

pulse shape and extinction ratio because the modulator response will continue to

slowly drift. It is convenient to incorporate a few splitters into the optical path so the

pulses can be easily monitored without constantly breaking fiber connections.

The high extinction modulator (>40 dB) utilizes polarization filters at the input and output

and an additional port for fine tuning the DC bias, and the above procedure can be used to

generate pulses with an extinction ratio >62 dB with one modification. Once the bias and

polarization are optimized for maximum transmission, the input polarization should not be

changed at any point. Otherwise the laser will be partially attenuated by the polarization

filters and not the LiNbO3 MZI within the modulator.

A.3 Effective Index for the HE11 Mode

Because of the ubiquitous use of fiber-tapers throughout these measurements, it is often

convenient to have a fast ,accurate function to calculate the effective index for the funda-

mental HE11 taper mode. For the cylindrical step-index waveguide with infinite cladding,

the eigenvalues require the solutions of a transcendental equation similar to Eq. (1.6), al-

though without the radiating fields (see Ref. [49]). Unfortunately, the complexity of this

equation makes numerical solvers prone to bugs. While benchmarking various versions of

these solvers, it is was noticed that the graphical solutions presented by Barnoski [242] and

later Yariv and Yeh [49] contained slight errors when compared to code implementing their

analytic solutions and independent FEM models. These errors are approximately 1%–3%

and plotted in Fig. A.2.

A.4 Coherent Coupling to a Uniform Density of Dipoles

Because the coherent coupling rate between a dipole and an optical mode in a cavity depends

on the local electric field at the dipole, significant effort is given to localizing the emitter

at an antinode of the cavity as in laser-cooled Cs atoms within a Fabry-Pérot cavity [243]
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Figure A.2: Comparison of neff values for the HE11 mode of a fiber-taper or step-index
optical fiber with n1 = 1.45 (silica) and n2 = 1.0 (air). Data points for the published curves
by Barnoski [242] and Yariv and Yeh [49] were scanned and digitally extracted from the
original sources. The analytic solver was implemented by P. Barclay. The FEM model
calculated neff at a fixed wavelength (1550 nm) while varying the core radius from 0.2 to
1.5µm.

and precisely aligning photonic crystal cavities to buried quantum dots [244]. For many-

body systems, the collective interaction must account for the field seen at every dipole.

Cooperative interactions delocalize the excitations in Er2O3 and highly doped solids, and

the dipoles can be treated approximately as a gas. Following Ref. [219], the collective

coupling rate (ḡN ) is proportional to the mean rate experienced by each dipole (ḡ1):

|ḡN |2 = N |ḡ1|2 =

∫

ρ(~r)|g1(~r)|2dV, (A.5)

where ρ(~r) and N are the distribution and number of dipoles, respectively. The coupling

rate for a single emitter within the cavity mode is

g1(~r) =

√

|~µ|2ωc

2ℏǫ(~r)Veff
U(~r), (A.6)

where U(~r) describes the cavity field and is normalized so
∫

|U(~r)|2dV = Veff [6]. If the

dipole density (ρo) within the solid is uniform, Eq. (A.5) simplifies to

ḡN =
|~µ|2ωcρo

2ℏn2ǫoVeff

∫

δV
|U(~r)|2dV, (A.7)
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where n is the refractive index of the dipole medium. The integral is taken over the vol-

ume containing the dipoles (δV ) where ρ(~r) 6= 0. By inspecting Eqs. (1.28) and (1.29),
∫

δV
|U(~r)|2dV = ΓVeff , and the collective coupling rate is independent of the cavity size,

|ḡN |2 = N |ḡ1|2 ≈ |~µ|2ωcρΓ

2ℏn2ǫ0
, (A.8)

which is consistent with the classical approach of treating many-atom Rabi splitting as a

consequence of absorption [213].
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Appendix B

Calculation of the β-Factor for

Er2O3 Microdisks

In laser physics, the β-factor is the ratio near the lasing threshold of the spontaneous

emission into the lasing mode over the emission into all modes, and it can range from 10−6

to 10−5 for large gas lasers to nearly 100 for few quantum-dot microcavity lasers [245]. In

this work, we modify this definition so β is the ratio of emitted power into a chosen subset of

modes (P ′
c,T ) over the total power emitted into free-space (Pfs,T ) and cavity modes (Pc,T ):

β =
P ′

c,T

Pfs,T + Pc,T
. (B.1)

From Fermi’s Golden rule, the total emitted power (PT ) in a given spectral range is approx-

imately

PT =
2π

ℏ

∫

ρf

∣

∣〈ψf |Ĥint|ψi〉
∣

∣

2
NErℏωidωi, (B.2)

where ρf is the density of final states andNEr is the number of excited Er3+ ions. We express

the final density of states as a product of the density of electronic states (ρe) per energy

per ion and the density of emission modes (ρm) per unit frequency. Using a semiclassical

electric-dipole interaction Ĥint = −q ~E · ~r and averaging over all polarizations and wave

vectors for a fixed dipole orientation, PT can be expressed as

PT =
2π

3ℏ

∫

ρf

∣

∣〈 ~E(ωi)〉
∣

∣

2∣
∣~µ(ωi)

∣

∣

2
NErℏωidωi, (B.3)

where 〈 ~E(ωi)〉 is the time-averaged electric-field strength per emitted photon and the

|ψi〉→|ψf 〉 transition’s dipole moment is ~µ(ωi) = −q〈ψf |~x|ψi〉. For emission into free-space
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modes, ρm and 〈 ~E(ωi)〉 are given by

ρm = ρfs(ωi) =
Vbω

2
i n

3

π2c3
, (B.4)

|〈 ~E(ωi)〉| =

√

ℏωi

2n2ǫoVb
, (B.5)

where Vb is the volume of the “box” containing the free-space modes and n ≈ 2.0 is the

refractive index of Er2O3. Since Eq. (B.3) for the free-space modes is proportional to the

measured photoluminescence spectrum in Fig. 4.5 from the unpatterned film, the spectral

dependence of ρe(ωi)|~µ(ωi)|2 is known without obtaining its explicit form. Utilizing the

free-space PL data also accounts for the thermal distribution of electrons within the 4I13/2

and 4I15/2 manifolds (width ∆E ≈ 2kBT at T = 300 K).

For emission into the microdisk cavity modes, ρm is

ρm = ρc(ωi) =
∑

j

2L(ωi, ωj , δωj), (B.6)

where L(ωi, ωj, δωj) is a Lorentzian with a center at the jth cavity mode (ωj) and full

width at half maximum (δωj) given by the mode’s loaded linewidth (γe + γi); L(ωi, ωj, δωj)

is normalized such that
∫ +∞

−∞
L(ωi)dωi = 1. The factor of 2 accounts for the degenerate

clockwise and counterclockwise traveling-wave modes. Since the cavity field is not spatially

uniform, the average field strength per photon in the jth cavity mode experienced by the

ions is

|〈 ~E(ωi)〉j | =

√

ℏωiϑj

2n2ǫoVc,j
, (B.7)

where Vc,j is the cavity mode volume and ϑj accounts for the overlap between the jth

emission mode and the distribution of excited ions. Because the excited ion distribution

depends on the intensity of the pump mode and Eq. (B.3) includes |〈 ~E(ωi)〉j |2, ϑj is a scalar

integral over the cavity volume

ϑj =

∫

| ~Ej |2| ~Ep|2dV
max(| ~Ej |2)

∫

| ~Ep|2dV
, (B.8)

with the field components of the pump mode ( ~Ep) and jth emission mode ( ~Ej) computed

with finite-element models. Figure B.1 shows this method is able to reasonably predict the
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Figure B.1: Comparison of calculated and measured spontaneous emission into Er2O3

WGMs. The PL intensity is calculated using Eqs. (B.3,6–8), and the measured power
into each mode is integrated and corrected for collection losses according to Eq. (4.5). Since
the exact values for ρe(ωi)|~µ(ωi)|2 and the absolute collection efficiency are unknown, the
theoretical and empirical values for Pc,j are normalized to their maxima—i.e., this graph
compares the PL intensity in each mode relative to modes near the emission peak. The PL
spectrum was excited by pumping a TEp=1 mode at 1493.3 nm [repeated from Fig. 4.9(b)];
the TEp=1 emission modes are again highlighted in gray. Beyond our lasers’ ranges, the
fractional PL in the observed peaks at λ > 1620 nm is overestimated because the WGMs
are extremely over coupled and we can only approximate {γi, γe}.

fractional emission into each WGM.

Using the thin film PL data and the cavity mode parameters, the β-factor can be calcu-

lated for any individual or collection of modes. While Pc,T in Eq. (B.1) includes a summation

over all cavity modes (both observed and unobserved1), the ϑj/Vc,j factor heavily weights

the contribution of the modes with low radial order. In this analysis we include the quasi-TE

modes of the first 8 radial families; the quasi-TM modes are poorly confined and have little

overlap with the Er3+ ions. For first and second radial-order emission modes at λ > 1520 nm

as in the radiative efficiency measurement, we estimate βobs = 0.091 which is in reasonable

agreement with the experimental value of 0.038. Increasing the sum to include all observed

modes across the S/C/L-bands (Fig. 4.4) gives β12 = 0.127. By including all the cavity

modes in P ′
c,T , βT = 0.227 is the fraction of the total 4I13/2→4I15/2 photoluminescence that

is emitted into the microdisk WGMs.

1The higher-order quasi-TE modes have large bending losses (Q < 100) and are poorly phase matched
to the taper waveguide. Since they cannot be observed in transmission or taper-collected PL, all necessary
parameters are obtained through finite-element simulations.
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monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,”

Opt. Lett. 20, 813–815 (1995).

[89] J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of

whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).

[90] M. Cai, G. Hunziker, and K. Vahala, “Fiber-optic add-drop device based on a silica

microsphere-whispering gallery mode system,” IEEE Photon. Technol. Lett. 11(6), 686–687

(1999).

[91] M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by

use of a symmetrical dual-coupling configuration,” Opt. Lett. 25, 260–262 (2000).

[92] C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. C. Magi, D. J. Moss, and

B. J. Eggleton, “Efficient coupling to chalcognide glass photonic crystal waveguides via silica

optical fiber nanowires,” Opt. Express 14, 1070–1078 (2006).

[93] P. E. Barclay, K. Srinivasan, and O. Painter, “Design of photonic crystal waveguides for

evanescent coupling to optical fiber tapers and integration with high-Q cavities,” J. Opt. Soc.

Am. B 20(11), 2274–2284 (2003).



105

[94] P. J. Paddon, M. K. Jackson, J. F. Young, and S. Lam, “Photonic input/output port,” U.S.

Patent 7031562 (Apr. 18, 2006).

[95] T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey,

“Highly efficient unibond silicon-on-insulator blazed grating couplers,” Appl. Phys. Lett. 77,

4214 (2000).

[96] D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft,

K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between

compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955

(2002).

[97] G. Roelkens, D. V. Thourhout, and R. Baets, “High efficiency silicon-on-insulator grating

coupler based on a poly-silicon overlay,” Opt. Express 14, 11622–11630 (2006).

[98] I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber

photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).

[99] I.-K. Hwang, G.-H. Kim, and Y.-H. Lee, “Optimization of coupling between photonic crystal

resonator and curved microfiber,” IEEE J. Quantum Electron. 42(2), 131–136 (2006).

[100] C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J.

Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal

nanocavities for single photon sources,” Opt. Express 15, 1267–1276 (2007).

[101] M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-

Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, “Photosensitive post tuning of chalcogenide

photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007).

[102] A. J. Fielding, K. Edinger, and C. C. Davis, “Experimental observation of mode evolution in

single-mode tapered optical fibers,” J. Lightwave Technol. 17(9), 1649 (1999).
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“Influence of Structural Disorder and Light Coupling on the Excitonic Response of Semicon-

ductor Microcavities,” Phys. Rev. Lett. 80(21), 4795–4798 (1998).

[230] A. Yariv, Quantum Electronics, 3rd ed. (John Wiley & Sons, Inc., New York, 1989).

[231] E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow Light Prop-

agation in an Inhomogeneously Broadened Rare-Earth Ion-Doped Crystal,” Physical Review

Letters 95(14), 143601 (2005).

[232] M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation

in a Room-Temperature Solid,” Science 301, 200–202 (2003).

[233] K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and

A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,”

Appl. Phys. Lett. 87(2), 021108 (2005).

[234] A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. Petroff, “Local quantum
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