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ABSTRACT 

 

During goal-directed movements, primates are able to rapidly and accurately control a 

movement despite substantial delay times (more than 200 milliseconds) incurred in the 

sensorimotor control loop. To compensate for these large delays, it has been proposed 

that the brain uses an internal forward model of the arm to estimate current and upcoming 

states of a movement, which would be more useful for rapid online control. To study 

online control mechanisms in the posterior parietal cortex (PPC), we recorded from 

single neurons while monkeys performed a joystick task. Neurons encoded the static 

target direction and the dynamic heading direction of the cursor. The temporal encoding 

properties of many heading neurons reflected a forward estimate of the current state of 

the cursor that is neither directly available from passive sensory feedback nor compatible 

with outgoing motor commands, and is thus consistent with PPC serving as a forward 

model for online sensorimotor control. In addition, we found that the space-time tuning 

functions of these neurons mostly encode straight and approximately instantaneous 

trajectories. 

 

Recent advances in cortical prosthetics have focused on recording neural activity in 

motor cortices and decoding these signals to control the trajectory of a cursor on a 

computer screen. Building on our encoding results, we demonstrate that joystick-

controlled trajectories can also be decoded from PPC ensembles, presumably extracting 

the dynamic state of the cursor from a forward model. Remarkably, we found that we 
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could accurately reconstruct a monkey’s trajectories using only 5 simultaneously 

recorded PPC neurons. Furthermore, we tested whether we could decode trajectories 

during closed-loop brain control sessions, in which the real-time position of the cursor 

was determined solely by a monkey’s thoughts. The monkey learned to perform brain 

control trajectories at 80% success rate (for 8 targets) after just 4–5 sessions. This 

improvement in behavioral performance was accompanied by a corresponding 

enhancement in neural tuning properties (i.e.,, increased tuning depth and coverage of 2D 

space) as well as an increase in offline decoding performance of the PPC ensemble. This 

work marks an important step forward in the development of a neural prosthesis using 

signals from PPC. 
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Chapter 1 

 

INTRODUCTION 

 

This world is but a canvas to our imaginations. 

Henry David Thoreau  

 

We continuously integrate and evaluate information sensed in our environment in order 

to guide our decisions and actions with an aim to maximize our likelihood of survival. 

Thriving in one’s environment therefore relies upon the ability of neural circuitry to 

accurately specify an internal representation of the interaction of oneself and the outside 

world. For example, the ability to carry out goal-directed activities such as building a 

campfire, catching a fish or watercolor painting depend on the operation of a neural 

model that links our sensory experience of the world with our body’s ability to act 

competently within it. From a systems neuroscience perspective: where in the brain are 

such internal models of sensorimotor experience located, how are they encoded, and can 

they be measured directly? Second, from both a medical and engineering standpoint: can 

we measure such cognitive signals directly and harness them to causally control an 

external apparatus other than our own limbs? 
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1.1 Internal models for sensorimotor integration 

A growing body of clinical and psychophysical evidence supports the theory that the 

brain makes use of an internal model during control of movement; a sensorimotor 

representation of the interaction of one’s self with the physical world (M. Kawato et al., 

1987; M. I. Jordan, 1995). Two primary types of internal models for sensorimotor control 

have been proposed: the forward model and the inverse model. A forward model predicts 

the sensory consequences of a movement (M. I. Jordan and D. E. Rumelhart, 1992; D. M. 

Wolpert et al., 1995). That is, it mimics the behavior of a motor system by predicting the 

expected, upcoming state of an end effector (e.g. one’s own limb) as a function of the 

characteristic dynamics of the system as well as stored copies of recently issued motor 

commands. Conversely, an inverse model encodes the motor commands necessary to 

produce a desired outcome (C. G. Atkeson, 1989). That is, an inverse model estimates the 

set of procedures (e.g. motor commands) that will cause a particular state of the motor 

system to occur. While inverse models likely play an important role in sensorimotor 

control, they will not be discussed further in this thesis and instead emphasis will be 

placed on the forward model, and in particular the role of the posterior parietal cortex 

(PPC) in forward state estimation for motor planning and control.  

 

1.2 Encoding of intention and anticipation in PPC: the seat of the forward model? 

PPC is a critical node for bridging sensory and motor representations in the brain. PPC 

associates multiple sensory modalities (e.g., visual - the dominant input to PPC, 

somatosensory and auditory) and transforms these inputs into a representation useful for 

guiding actions to objects in the external world (R. A. Andersen and C. A. Buneo, 2002). 



 3

Anatomically, PPC is positioned along the dorsal visual pathway of the brain, also known 

as the vision-for-action pathway (L. G. Ungerleider and M. Mishkin, 1982; M. A. 

Goodale, 1998). Evidence from lesions studies indicates that damage to PPC results in an 

inability to link the sensory requirements of a task with the appropriate motor behavior 

needed to complete it. For example, parietal lesion patients can have difficultly planning 

skilled movements, a condition known as apraxia (N. Geshwind and A. R. Damasio, 

1985). Impairments from apraxia can range from an inability to properly follow 

instructions that describe how to make a particular movement to how to coordinate a 

sequence of movements to accomplish an end goal. 
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Figure 1-1. The two streams of visual information in the primate brain and reach intention areas of 

PPC.  (A) The dorsal stream processes visual information for movement and is concerned with how 

visual information is used to form an action. The “vision for action” pathway branches from the 

occipital lobe to the posterior parietal cortex (PPC), which performs sensorimotor transformations, and 

to the motor cortices, which are involved in issuing motor commands to the muscles. The ventral stream 
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is largely concerned with visual perception, for example the inferotemporal cortex (IT) is critical for 

discriminating and recognizing objects. This whole-brain view shows the surface location of the parietal 

reach region (PRR) located along the medial bank of the intraparietal sulcus (IPS), which can extend to 

depths of up to 10 mm. Moving anterior and slightly anterior, PRR merges into area 5, which is situated 

more on the surface of cortex. (B) Coronal section designated by the dashed vertical line in panel (A), 

illustrating the convoluted geometry of the IPS as well as the relative depths of PRR and area 5 (C) 

Nissl-stained coronal section of the rhesus macaque brain, clearly showing the intraparietal sulcus. 

Coronal  section was obtained from www.brainmaps.org (S. Mikula et al., 2007). 

 

Numerous neurophysiological studies in monkeys have shed light on the neural correlates 

of reach planning in PPC. Monkeys have served as a successful model for studying 

sensorimotor representations in humans since the two species engage in a variety of 

similar sensorimotor behaviors. Moreover, functional magnetic resonance imaging 

(fMRI) studies have provided evidence that PPC’s functional role is similar in both 

monkeys and humans (J. F. X. DeSouza et al., 2000; M. F. S. Rushworth et al., 2001; J. 

D. Connolly et al., 2003). When trained monkeys plan a reach to an illuminated target, 

the firing rates of neurons in the medial bank of the intraparietal sulcus (MIP) generally 

reflect a combination of both sensory and motor parameters (V. B. Mountcastle et al., 

1975; D. L. Robinson et al., 1978; R. A. Andersen and C. A. Buneo, 2002). Importantly 

however, during a memory period in which the monkey must maintain a reach plan to the 

remembered location of an extinguished target, elevated neural activity persists in PPC 

before the reach is executed, suggesting that these neurons likely encode the intention to 

reach, rather than the visual stimulus location (L. H. Snyder et al., 1997). Furthermore, 

neurons in MIP are generally correlated more strongly with the motor goal, and not the 

visual cue, during anti-reach paradigms in which the target cue direction is dissociated 

http://www.brainmaps.org/
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from the reach direction (J. F. Kalaska and D. J. Crammond, 1995; E. N. Eskandar and J. 

A. Assad, 1999; A. Gail and R. A. Andersen, 2006). Based on these planning studies, it is 

tempting to hypothesize that memory-period activity might also reflect a prediction of the 

sensory consequences of an upcoming arm movement (i.e. the expected endpoint of a 

reach) derived from efference copy, a signal that is compatible with the output of a 

forward model of arm position. More generally, one could interpret the effector-specific 

segregation of planning activity in the intraparietal sulcus, such as MIP responses 

associated with a reach and LIP responses involved in the formulation of a saccade (R. A. 

Andersen and C. A. Buneo, 2002), as a prediction of the future state of an effector, the 

motor command itself or both. Along these lines multiple researchers have also suggested 

that the ‘early’ discharge of neurons in area 5 prior to initiation of an arm movement 

might reflect an efference copy signal fed back to PPC from frontal motor areas (J. Seal 

et al., 1982; J. F. Kalaska et al., 1983). Interestingly, Seal and colleagues also showed 

that area 5 responses that occurred prior to movement onset were generally not sensory in 

origin and furthermore demonstrated that these early responses persisted even after 

deafferentation. However, caution should be advised when attempting to infer the causal 

flow of information in the parieto-frontal circuit during reach preparation using single-

area correlation analyses. Furthermore, it is quite possible that planning and forward 

model prediction may be carried out by distinct neural processes within the PPC. Future 

simultaneous multi-area recordings, combined with micro-stimulation approaches, should 

shed light on the directional flow of information in these recurrent inter-area circuits 

during movement preparation. 
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PPC is also a good candidate for a forward model of eye position since a variety of eye 

behavior related signals, such as saccade and fixation responses have been described in 

this region (V. B. Mountcastle et al., 1975). Whereas area 7a saccade responses begin 

largely after the saccade, area LIP saccade responses tend to occur before, during or after 

saccades (R. A. Andersen et al., 1987). Interestingly, Duhamel and colleagues also 

showed that the receptive fields of neurons in LIP can update their receptive fields before 

an eye movement occurs (J. R. Duhamel et al., 1992). 44% (16 out of 36) of their LIP 

sample anticipated the sensory effects of an impending saccade (i.e. a stimulus appearing 

in the future location of the receptive field), and adjusted their responses approximately 

80 milliseconds (ms) before the saccade was launched. It is conceivable that this 

predictive remapping relies upon a forward model of eye position within PPC, which 

estimates the upcoming eye position from oculomotor commands, though direct evidence 

of the anticipatory eye position signal itself in PPC has not been reported. Fixation 

related activity commonly found in PPC is sensitive for eye position, and this response 

characteristic is often multiplicatively combined with the sensory and saccade-related 

activity of single neurons (R. A. Andersen et al., 1987). An eye position signal in PPC 

could be derived from proprioceptive feedback from the eye muscles (X. L. Wang et al., 

2007) and/or the integration of saccade command signals. It would be interesting to see if 

a component of the eye position signal might also provide anticipatory information 

(ahead of passive sensory feedback) about the current state of the eye position during 

fixations between saccades. Last, Batista and colleagues showed that neurons in PRR, 

which predominantly encode an intended reach direction in eye-centered coordinates, 

update their receptive fields when an intervening saccade occurs, thereby maintaining an 
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eye-centered motor plan even when gaze is shifted (A. P. Batista et al., 1999; C. A. 

Buneo et al., 2002). It would be interesting to test if the reach receptive fields of these 

PRR neurons also exhibit anticipatory updating just before the eye moves, similar to the 

cells found in LIP by Duhamel and colleagues. 

 

1.3 Forward state estimation to compensate for sensory delay times 

Skilled individuals are capable of guiding their limb movements with remarkable 

accuracy and speed. Examples from athletics are illustrative: hitters in baseball adjust the 

trajectory of their bat-swing so as to make contact with a pitched ball arriving in fewer 

than 500 ms, racquetball players return an oncoming serve traveling at speeds up to 140 

miles per hour, a boxer must avoid or block a punch with less than 200 ms to react. 

 

During execution of a goal-directed arm movement, in order to continuously guide the 

arm to a target the brain must maintain an estimate of the time-varying state of the arm 

(e.g. position and velocity of the arm, possibly coded in a variety of potential coordinate 

frames) and compare that state measurement with the desired state of the movement. 

Unfortunately, the human brain, in particular PPC, does not have direct access to the true 

state of the arm due to delayed and noise-corrupted measurements of the state in the 

visual and proprioceptive domains. (e.g. visual signals typically reach sensorimotor 

association areas of cortex after a delay of approximately 90 ms (S. E. Raiguel et al., 

1999), 30 ms in the case of proprioception (N. Petersen et al., 1998). Subsequent 

processing delays are incurred during control due to sensorimotor integration, motor 

command generation and execution (i.e. resulting in an average loop delay of more than 
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100 ms for proprioceptive control (M. Flanders and P. J. Cordo, 1989) and over 200 ms 

for visuomotor control (A. P. Georgopoulos et al., 1981; R. C. Miall et al., 1993). These 

long delay times severely limit a feedback control system’s ability to make rapid 

adjustments to an ongoing movement and thus increase the likelihood that a reach 

trajectory might become erroneous and/or unstable. 

 

Remarkably, despite substantial transmission and processing delays in the sensorimotor 

control loop, we are able to rapidly and accurately control our movement trajectories. 

Therefore, passive sensory feedback must not be the only signal used by the brain to 

estimate the current state of the arm. Fortunately the brain can also monitor recently 

issued motor commands (i.e. efference copy), which could be transmitted centrally (e.g. 

from frontal motor areas) with little delay time (e.g. one synapse + transmission time < 

10 ms) and used by a forward dynamics model to form an estimate of the current or 

upcoming state of the arm. (M. I. Jordan and D. E. Rumelhart, 1992; D. M. Wolpert et 

al., 1995). Thus a forward model’s prediction can be made available immediately to 

sensorimotor control structures in the brain, well in advance of late-arriving sensory 

information. Since the output of the forward dynamics model reflects a best guess as to 

what the next state of the arm will be, errors due to various sources of noise will 

inevitably accumulate over time into this estimate. Therefore it is likely that sensory 

observations, which arrive at later times, are also continually integrated by the brain in 

order to update and refine the estimate of the forward dynamics model (R. C. Miall and 

D. M. Wolpert, 1996). A system that estimates the state of a movement by combining the 

output of a forward dynamics model with sensory feedback about the state is generally 
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referred to as an “observer” (G. C. Goodwin and K. S. Sin, 1984). For linear systems in 

which the noise is additive and Gaussian, the optimal (i.e. in the mean squared error 

sense) observer is a Kalman filter (R. E. Kalman, 1960). Wolpert and colleagues first 

applied the Kalman filter to model how subjects estimate the sensorimotor state of the 

hand during goal-directed reaches. They showed that a Kalman filter could accurately 

account for subjects’ estimates of the perceived end location of their hand while making 

arm movements in the dark (D. M. Wolpert et al., 1995). Therefore, the Kalman filter 

serves as a useful theoretical model for studying sensorimotor state estimation in the 

brain. 

 

Two linear stochastic equations govern the basic operation of the Kalman filter: 

   111 −−− ++= kkkkk wBuxAx  ,  (forward dynamics model)   (1) 

   kkkk xHy ν+= ,     (state observation model)   (2) 

where xk is the time-varying state of the arm at time step k modeled as a linear function of 

the previous state, xk-1 and the control term, uk. The control term is considered to be a 

known motor command, which is likely specified by frontal motor areas (e.g. primary 

motor cortex (M1)) and then fed back to sensorimotor circuits that perform state 

estimation. For instance, the motor command at each time step might be determined 

using an optimization procedure that minimizes a cost function associated with carrying 

out a particular trajectory (E. Todorov, 2006). yk is a sensory measurement (visual and 

proprioceptive) made at time step k (note that sensory feedback is actually a delayed 

representation of the state of the arm).  
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In order to estimate the state of the arm at each time step k, the output of the forward 

dynamics model,  (i.e. a priori estimate), is linearly combined with the difference 

between the output of the observation model (i.e. predicted sensory measurement) and the 

actual sensory measurement. This, discrepancy, the ‘sensory innovation’, is then 

optimally scaled by the Kalman gain, Kk, to produce an a posterior estimate of the state 

of the arm, 

−
kx̂

       ( ) ˆˆˆ −− −+= kkkkk xHyKxx .      (3) 

In brief, discrete state estimation consists of a two-step recursive procedure; such that the 

forward dynamics model generates an a priori estimate of the state, which is next refined 

by potentially innovative information gleaned from the sensory input to form the final, a 

posterior estimate. PPC, specifically the parietal reach region (PRR) and area 5, seems to 

be a reasonable site for an observer to reside given its large number of feedback 

connections from frontal areas (i.e. efference copy) and substantial sensory input from 

both visual and somatosensory domains (E. G. Jones and T. P. Powell, 1970; P. B. 

Johnson et al., 1996). 
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Figure 1-2. Flow diagram illustrating sensorimotor integration for reach planning and online control 

(after M. Desmurget and S. Grafton, 2000). Items in rounded boxes denote pertinent sensorimotor 

variables; computational processes are contained in rectangular boxes. Prior to a reach, an intended 

trajectory is formulated as a function of both the initial state of the arm and the desired endpoint, the 

target location. An inverse model is used to determine a set of motor plans that will result in the desired 

trajectory. Motor plans are then issued (likely by the primary motor cortex, M1) and subsequently 

executed by muscles acting within the physical environment (i.e. biomechanical plant hexagon). 

Following movement onset, the path of the arm is continuously monitored and corrected, if necessary, to 

ensure successful completion of the reach. Critical to rapid online correction of movement is the forward 

model, which generates a rapid a priori estimate of the next state of the arm, , as a function of the 

previous state and efference copy. Intermittent sensory feedback is used to refine the a priori estimate of 

the forward dynamics model (observer output). This a posterior current state estimate, , is then 

evaluated by comparing it with the target location in order to make corrections to subsequent motor 

commands.  

−
kx̂

kx̂
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1.3.1 A forward model can be used to cancel sensory reafference 

A forward model’s ability to predict the sensory consequences of an action is also useful 

to an organism because a given sensory outcome can be produced by a variety of possible 

causes (R. W. Sperry, 1950; Weiskran.L et al., 1971; G. Claxton, 1975; J. F. A. Poulet 

and B. Hedwig, 2003; K. E. Cullen, 2004; J. E. Roy and K. E. Cullen, 2004). In 

particular, a forward model can provide an internal reference signal that is useful for 

canceling the sensory effects of self-motion. For example, motion on our retina can occur 

because of movement in the physical world (i.e., afference) or because of motion induced 

by an eye movement itself (reafference). Therefore, in order to correctly perceive the 

motion of an external stimulus, the brain must distinguish afferent motion from reafferent 

motion. A subtractive comparison between a forward model’s estimate of the expected 

sensory outcome of an eye movement and the actual sensory signals could remove this 

retinal shift from our perception (T. Haarmeier et al., 2001). Reafference-canceling 

mechanisms are likely to be in operation for perception of limb movements as well. A 

forward model of the arm could be critical for distinguishing self-generated arm 

movement from both movement of the environment and movement of one’s arm by an 

external force. 

 

1.4 Continuous sensorimotor control and state estimation in PPC 

Clinical and psychophysical studies in humans have established that PPC is involved not 

only in specifying movement plans, but also in the execution and control of ongoing 

movement. For example, it is well known that lesions in parietal cortex often lead to optic 

ataxia, impairment in locating and reaching to stimuli in 3D space (R. Balint, 1909; P. 
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Rondot et al., 1977; M. T. Perenin and A. Vighetto, 1988). For instance, optic ataxia 

patients have difficulty making rapid and ‘automatic’ corrective movements when 

guiding the hand to targets that have been jumped (L. Pisella et al., 2000). Similarly, Grea 

and colleagues reported a patient with bi-lateral parietal lesions that was unable to amend 

her movement to pick up a cylinder after it had been jumped to a new location at 

movement onset (H. Grea et al., 2002). Interestingly, instead of making corrective 

movements during the initial trajectory, the subject needed to perform two distinct 

movements, one that represented the initial plan and a second movement to reach to the 

new location of the cylinder. Using transcranial magnetic stimulation (TMS) applied to 

the posterior parietal cortex, Desmurget and colleagues were able to transiently disrupt 

the ability of most subjects to correct reaching trajectories made to targets that were 

displaced around the time of movement onset (M. Desmurget et al., 1999). Later, Della-

Maggiore and colleagues showed that TMS applied to PPC interfered with the ability of 

subjects to adapt to novel force-field environments (V. Della-Maggiore et al., 2004). An 

intriguing, potentially unifying explanation for all of these deficits, which was originally 

suggested by Wolpert and colleagues, is that PPC may serve as an observer, which forms 

an internal estimate of the state of the arm during movement (D. M. Wolpert et al., 

1998a). A failure to accurately maintain this estimate online could result in an inability to 

monitor and therefore correct an ongoing movement. Interestingly, Wolpert and 

colleagues reported a parietal lesion patient who was unable to maintain an internal 

estimate of the state of her hand. For example, she could not maintain a constant 

precision grip force in absence of vision, without vision of her stationary arm she 

perceived it to drift slowly in space over 10-20 seconds until eventually reporting it to 
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disappear, and finally when asked to make slow-pointing movements to peripheral targets 

while maintaining central fixation, large errors accumulated in her trajectories (although 

self-paced movements were not impaired). 

 

Figure 1-3. Examples of patients with sensorimotor deficits due to parietal injury. (A) A patient with a 

biparietal tumor is unable to guide his reach in order to successfully grasp a pen, although his ability to 



 16

see it was not impaired (D. G. Cogan, 1965).  (B) Patient with Balint’s syndrome presents optic ataxia 

symptoms, such that he is unable to direct an arm movement toward a visually cued target (i.e., pour 

liquid into a glass) (R. S. Allison et al., 1969). (C) A patient with a left parietal lesion is unable to 

properly orient his hand to successfully position it inside the slot (M. T. Perenin and A. Vighetto, 1988).   

 

Evidence that PPC is involved in sensorimotor state estimation also comes from studies 

of the mental simulation of movement, which presumably activates circuits overlapping 

with those engaged during motor control, but while inhibiting execution of a movement 

itself (K. M. Stephan et al., 1995; J. Decety, 1996; E. Gerardin et al., 2000). When 

normal healthy subjects imagine making a goal-directed movement, mental simulation 

time typically matches the time needed to execute that same movement (F. C. Donders, 

1969; J. Decety and F. Michel, 1989). This suggests that the brain is able to maintain a 

realistic estimate of the state of the hand over time while imagining a movement, despite 

sensory feedback being unavailable. Interpreting this finding in the context of observer 

theory, this capability suggests that the brain/observer is able to rely entirely upon the 

output of a forward model to estimate the state of the arm during mental simulation (e.g. 

Kalman gain in Equation 3 is set to zero) (R. Shadmehr and J. W. Krakauer, 2008). 

Interestingly, patients with unilateral motor cortex lesions (A. Sirigu et al., 1995) who 

show prolonged movement times compared to normal control subjects are still able to 

accurately imagine the duration of their movements (i.e. the simulation time and 

execution time remain well-matched for these patients). For example, aberrant motor 

commands (u in Equation 1) that are produced by the motor cortex could theoretically be 

used by an intact observer to predict the correct temporal sequence of hand states (and 

therefore the trajectory duration) even for an impaired movement. Interestingly, patients 
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with lesions of the cerebellum (F. A. Kagerer et al., 1998) and of the basal ganglia (P. 

Dominey et al., 1995) also do not show a difference between simulation and execution 

times. 

 

While M1, the cerebellum and the basal ganglia do not appear to be critically involved in 

the state estimation during simulated movements, PPC does appear to be essential for 

maintaining an internal representation of the state of the hand that is necessary for 

representing a consistent relationship between simulated and execution time. Sirigu and 

colleagues later reported an impairment in the ability to simulate a movement in patients 

with right PPC lesions: the time needed to mentally simulate a movement was 

significantly different (generally less) than the time necessary to execute that same 

movement (A. Sirigu et al., 1996). (Note, similar to motor cortex lesion patients, actual 

execution time was also prolonged compared to control subjects). This inconsistency 

suggests that the brain was unable to reliably estimate the state of the hand after damage 

to PPC. This impairment could be explained by multiple possible failures of the observer 

model: 1) an error in the forward dynamics model (i.e. faulty A or B matrices in Equation 

1), 2) an error when incorporating sensory feedback into the a priori estimate of the 

forward dynamics model (i.e. faulty H or K matrices in Equation 3) or 3) a combination 

of 1 and 2. Based on known strong sensory input to PPC, it is probable that PPC is 

involved in integrating sensory feedback into the state estimate. However, because visual 

and proprioceptive input were held constant during the above mental simulation tasks 

(e.g. eyes were closed, muscle activity was absent) it is not likely that erroneous state 

estimation was due exclusively to faulty integration of sensory feedback. Interestingly, 
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most parietal lesion patients significantly underestimated the time it would take to 

complete a movement when simulating it. Therefore, such a systematic decrease in 

imagined movement duration is more likely to have arisen due to an erroneous a priori 

estimate made by a forward dynamics model, whose transition matrices A and B govern 

the speed at which the arm propagates through space (rather than a faulty observation 

model which relates sensory input to the state of the arm using a time-independent 

model). Therefore, these mental simulation results suggest that PPC is also involved in 

propagating the state of the arm forward in time using a forward dynamics model 

(Equation 1). Assuming PPC incorporates sensory information into the forward model 

state estimate as well, then PPC would be best described as an observer, as suggested by 

Wolpert and colleagues.  

 

Psychophysical and clinical reports have pointed to both the parietal lobe and the 

cerebellum as candidate neural substrates for a forward model (R. C. Miall et al., 1993; 

D. M. Wolpert et al., 1998a; D. M. Wolpert et al., 1998b; S. J. Blakemore and A. Sirigu, 

2003). Desmurget and colleagues suggested that PPC encodes a forward model of the 

arm’s dynamics from which it may also compute an estimate of the motor error (i.e. the 

difference between the target vector and the movement vector), which could then be 

transformed into a corrective motor command by the cerebellum (M. Desmurget and S. 

Grafton, 2000). While these insights suggest that PPC and the cerebellum may be 

involved in forward model control, finding direct neural evidence of forward model state 

estimation in the brain has proven difficult.  
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Previous encoding studies have shown that area 5 neurons are correlated with a variety of 

movement and task-related parameters (most notably velocity and target position) during 

reaching movements made with a manipulandum (J. Ashe and A. P. Georgopoulos, 1994; 

B. B. Averbeck et al., 2005). However, these studies concluded that area 5 largely 

encodes a sensory (i.e. proprioceptive) representation that slightly lags the state of the 

movement (i.e. lag time = -30 ms). In Chapter 2 we further investigate the neural 

representation of online directional control signals in PPC while monkeys perform 

center-out and obstacle avoidance joystick tasks. We provide new evidence that neurons 

in PPC compute an estimate of the current and upcoming states of the cursor (G. H. 

Mulliken et al., 2008). This finding provides the first direct evidence of a state estimate 

that is derived from a forward model and is a starting point for future studies designed to 

rigorously reverse-engineer the computational mechanisms and circuits involved in 

forward model control. 

 

1.5 A PPC neural prosthesis: continuous closed-loop control of an end effector 

It would be interesting to test if dynamic state estimates in PPC, presumably reflecting 

the operation of an observer could be used to causally control an external device, besides 

our own limbs. During recent years, several groups have leveraged findings from decades 

of primate neurophysiology toward the development of an important medical application, 

a neural prosthesis to assist paralyzed individuals. Paralysis affects millions of people in 

the United States and can occur as a result of stroke and cervical spine injuries as well as 

neurodegenerative disorders such as amyotrophic lateral sclerosis (Lou Gehrig’s 

Disease). Tragically, paralyzed patients are not able to send motor commands to control 
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their muscles nor are they able to experience sensation from their limbs. Importantly 

however, these individuals can still think about moving, and thus maintain the capacity to 

plan and specify instructions for the control of movement. Therefore, a neural prosthesis 

could directly read out the desired movement intentions of these patients from regions of 

the brain not affected by injury or disease. Sensorimotor areas of cortex, particularly 

those which are strongly innervated by visual feedback projections (e.g., PPC) represent 

candidate regions that are potentially useful for driving a neural prosthesis since their 

primary source of input, visual information, is typically uncompromised after paralysis 

(Fig 1-4). 

 

A cortical prosthesis is composed of multiple parts, which constitute a marriage of 

engineering and scientific advances. Neural signals from a targeted brain region (i.e., 

spiking activity of neurons and the local field potential (LFP)) are extracted by measuring 

the extracellular potential at many different sites in the cortical tissue using metal multi-

electrode arrays, which currently can record from on the order of 100 signals 

simultaneously. Amplification and filtering of these neural signals occurs proximal to the 

implant, maximizing the signal-to-noise ratio of each neural measurement. Signal-

processing, including spike-sorting, firing rate calculations and space-time analysis of 

LFPs, is then performed before passing these assuaged signals along (e.g., via wireless 

transmission) to a decoding algorithm. The decoding algorithm then computes an optimal 

estimate of the desired movement outcome from the neural activity, which is then used to 

control an external device. 
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In general, neurophysiological approaches have emphasized extracting continuous 

movement information (i.e., trajectories) from motor cortices involved in directly 

controlling the limb, such as primary motor cortex (M1) (P. R. Kennedy et al., 2000; J. 

Wessberg et al., 2000; M. D. Serruya et al., 2002; D. M. Taylor et al., 2002; J. M. 

Carmena et al., 2003; K. V. Shenoy et al., 2003; S. Musallam et al., 2004; P. G. Patil et 

al., 2004; J. R. Wolpaw and D. J. McFarland, 2004; G. Santhanam et al., 2006). 

However, recently Musallam and colleagues introduced the concept of decoding 

cognitive signals from the brain (R. A. Andersen et al., 2004; S. Musallam et al., 2004). 

The authors distinguished pure motor-related signals from those involved with the high-

level organization of movement. In contrast to signals extracted from M1, which are 

more likely to encode movement execution signals that are represented in a 

musculoskeletal reference frame, high-level visuomotor signals can be found in earlier 

stages of the vision-for-action pathway, such as in PPC or PMd. For example, the goal of 

a reach in visual coordinates has been decoded successfully from both PPC and PMd 

neurons (S. Musallam et al., 2004; G. Santhanam et al., 2006). In chapters 3 and 4, we 

build on the work of Musallam and colleagues and demonstrate that a PPC prosthesis can 

also be used to perform online, continuous control of movement. In particular, we 

demonstrate that we can successfully read out a trajectory from PPC spiking activity in 

real-time, allowing a monkey to control a cursor on a computer screen using his thoughts 

alone. Presumably, and in contrast to similar approaches in M1, we are decoding from the 

output of an observer, thereby harnessing a dynamic estimate of the expected (i.e., 

current) sensorimotor state of the cursor. In principle, PPC neurons should be more 

flexible for controlling a variety of end effectors, including but not limited to an 
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antrhopomorphic arm. Furthermore, the richness of signals available in PPC may 

ultimately be advantageous for inferring variables beyond just sensorimotor signals, 

which may include, for example, the expected value of an impending action or one’s 

behavioral or cognitive state (S. Musallam et al., 2004).  

 

 

 

Figure 1-4. A neural prosthesis using PPC for trajectory control. A spinal cord injury can render 

communication (afferent and efferent) between somatosensory/motor areas of cortex and the limbs 

useless. However, the function of the “vision for action” pathway is still largely intact, which includes 

PPC. Decoding algorithms are designed to optimally estimate the state of the effector from the 
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measurement of neural activity from PPC ensembles. In principle, the cognitive nature of signals in PPC 

could be used to control a variety of end effectors, such as a robotic arm. 
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Chapter 2 

 

FORWARD ESTIMATION OF MOVEMENT STATE IN PPC1 

 

2.1 Summary 

During goal-directed movements, primates are able to rapidly and accurately control an 

online trajectory despite substantial delay times incurred in the sensorimotor control 

loop. To address the problem of large delays, it has been proposed that the brain uses an 

internal forward model of the arm to estimate current and upcoming states of a 

movement, which are more useful for rapid online control. To study online control 

mechanisms in the posterior parietal cortex (PPC), we recorded from single neurons 

while monkeys performed a joystick task. Neurons encoded the static target direction and 

the dynamic movement angle of the cursor. The dynamic encoding properties of many 

movement angle neurons reflected a forward estimate of the state of the cursor that is 

neither directly available from passive sensory feedback nor compatible with outgoing 

motor commands, and is consistent with PPC serving as a forward model for online 

sensorimotor control. In addition, we found that the space-time tuning functions of these 

neurons were largely separable in the angle-time plane, suggesting that they mostly 

encode straight and approximately instantaneous trajectories. 

                                                 

1 Adapted from Proceedings of the National Academy of Sciences, (in press), Grant H. Mulliken, Sam 

Musallam, Richard A. Andersen (2008), “Forward estimation of movement state in posterior parietal 

cortex.” 
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2.2 Introduction 

The Posterior Parietal Cortex (PPC) lies at the functional interface between sensory and 

motor representations in the primate brain. Known sensory inputs to PPC arrive from 

visual and proprioceptive pathways (Fig. 2-1A). Previous work has suggested how these 

sensory inputs could be integrated to compute a goal vector in eye-centered coordinates 

for an impending reach (L. H. Snyder et al., 1997; A. P. Batista et al., 1999; C. A. Buneo 

et al., 2002). In addition, psychophysical and clinical studies in humans have clearly 

established a role for PPC in rapid online updating and correction of continuous 

movement (M. Desmurget et al., 1999; L. Pisella et al., 2000; V. Della-Maggiore et al., 

2004). In order for a brain area to play an effective role in rapid online control, it would 

have to represent an estimate of the state of the movement (position, direction, speed etc.) 

that is derived from mechanisms other than just sensory feedback, which is generally 

considered to be too slow to accomplish the task much of the time (R. C. Miall and D. M. 

Wolpert, 1996; M. Desmurget and S. Grafton, 2000). Another possible input to PPC is an 

efference copy signal that relays replicas of recent movement commands from 

downstream motor areas back to PPC with little or no delay (J. F. Kalaska et al., 1983).  
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Figure 2-1. Model and experimental design. (A) Diagram of sensorimotor integration for online control 

in posterior parietal cortex (PPC). Inputs to PPC consist of visual and proprioceptive sensory signals 

and potentially an efference copy signal. Plausible PPC outputs to be tested are (1) the static target 

direction (goal angle) and (2) the dynamic cursor heading direction (movement angle). (B) Diagram of 

actual trajectory showing the goal angle and movement angle, and their respective origins of reference. 

The filled green and red circles represent the target and fixation point, respectively. (C) Example 

trajectories for center-out task. The dashed green circle is the starting location of the target and is not 

visible once the target has been jumped to the periphery. Dots represent cursor position sampled at 15 ms 

intervals along the trajectory (black = monkey 1, magenta = monkey 2). (D) Example trajectories for 

obstacle task. Targets, fixation points, and cursor representations are identical to center-out task. Blue 

filled circle represents the obstacle. 

 

Growing evidence supports the idea that the brain overcomes long sensory delay times 

using an internal forward model, which combines efference copy signals with a model of 
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the system dynamics to generate estimates of upcoming states of the effector (otherwise 

not inferable from late-arriving sensory feedback), which are more suitable for the rapid 

control of movement (M. I. Jordan and D. E. Rumelhart, 1992; D. M. Wolpert et al., 

1995). Since the output of a forward model reflects a best guess of the next state of the 

arm in lieu of delayed sensory feedback, it is also likely that sensory observations that 

arrive at later times are continually integrated as well by the online controller in order to 

improve the estimate of the forward model as time goes by (G. C. Goodwin and K. S. 

Sin, 1984).  

 

In addition, the output of a forward model can be used to create an internal estimate of 

the sensory consequences of a movement in a timely manner (i.e., the expected 

visual/proprioceptive state of the effector in the environment), providing a mechanism for 

transforming between intrinsic motor representations and task-based sensory 

representations (M. I. Jordan and D. E. Rumelhart, 1992; R. C. Miall and D. M. Wolpert, 

1996). In particular, a forward model may be useful for distinguishing the motion of an 

effector from motion of the external environment. For example, when we make eye 

movements, it is widely believed that the brain makes use of an internal reference signal 

to avoid mis-interpreting shifts of the visual scene on our retina as motion in the outside 

world (H. von Helmoltz, 1866). von Holst and Mittelstaedt originally proposed a 

reafference-cancelling model, which performs a subtractive comparison of efference copy 

and sensory signals to remove the retinal shift from our perception (E. Von Holst and H. 

Mittelstaedt, 1950). However, a more recent study has provided evidence that this 

comparative mechanism actually uses a forward model of the expected sensory outcome 
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of an eye movement rather than raw, unmodified efference copy as originally envisaged 

by von Holst and Mittelstaedt (T. Haarmeier et al., 2001). Interestingly, additional 

clinical evidence presented by Haarmeier and colleagues suggested that parieto-occipital 

regions may be involved in performing the comparison between self-induced and external 

sensory motion during smooth-pursuit eye movements (T. Haarmeier et al., 1997).  

 

Neurophysiological evidence that identifies the neural substrate of the internal forward 

model for sensorimotor control of limb movement has yet to be reported. PPC, 

specifically the parietal reach region (PRR) and area 5, could be a possible site for the 

forward model to reside given its large number of feedback connections from frontal 

areas and substantial sensory input from both visual and somatosensory domains (E. G. 

Jones and T. P. Powell, 1970; P. B. Johnson et al., 1996). Therefore, we investigated the 

neural representation of online directional control signals in PPC by analyzing the 

correlations of single neuron activity with the static goal angle (fixed angle from the 

starting cursor position to the target) and the dynamic movement angle of the cursor 

(angle of heading) during a joystick task (Fig. 2-1B). We monitored single-unit neuronal 

activity in PPC while monkeys performed center-out and obstacle avoidance tasks with 

central eye fixation. Importantly, monkeys were required to fixate centrally during the 

entire movement so as to maintain a constant visual reference frame and to rule out any 

effects due to eye movements. This control was instituted because earlier studies have 

shown that PRR encodes visual targets for reaching in eye coordinates and area 5 in both 

eye and hand coordinates (A. P. Batista et al., 1999; C. A. Buneo et al., 2002). We found 

strong evidence that both of these angles were encoded in PPC: a representation of the 
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static target direction and a dynamic estimate of the state of the cursor. The temporal 

encoding properties of dynamically tuned neurons provide the first evidence that PRR 

and area 5 encode the current state of the cursor, consistent with the operation of a 

forward model for online sensorimotor control. Furthermore, these state-estimating 

neurons appear to encode rather simple trajectories, encoding instantaneous and mostly 

straight paths in space. 

 

2.3 Results 

2.3.1 Space-time tuning 

We characterized the encoding properties of each PPC neuron during the movement 

period by constructing a space-time tuning function (STTF) (Fig 2-2B), which plots a 

neuron’s instantaneous firing rate as a function of angle (goal or movement) measured at 

a particular lag time (L. Paninski et al., 2004). Importantly, lag time, τ, denotes the 

relative time difference between the instantaneous firing rate and the time that a 

particular behavioral angle occurred, and should not be confused with the absolute 

elapsed time. Therefore, the STTF of a neuron can be thought of as a description of the 

average temporal dynamics of the angle that can be recovered from the firing rate, for 

example, by downstream neurons faced with the task of decoding the goal or movement 

angle at different relative times in the trajectory. We also calculated the mutual 

information between firing rate and angle for each lag time in the STTF to generate a 

temporal encoding function (TEF). Since mutual information is a non-parametric 

measure of statistical dependency between two random variables, this measure allowed 

us to more directly quantify a neuron’s encoding strength. The TEF of a neuron plots the 
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amount of information that could be recovered from the instantaneous firing rate about 

the angle at different lag times (i.e., from past (τ < 0) to future (τ > 0) angles). The lag 

time that contained the maximal mutual information was defined as the optimal lag time 

(OLT), denoting the relative time at which a neuron’s firing rate contained the most 

information about the angle. 

 

Fig. 2-2C shows a movement angle STTF for a single neuron. This neuron contained 

significantly more information about the movement angle than the goal angle at its OLT 

of 0 ms (Fig. 2-2D). However, since it is not possible to classify cells as encoding purely 

goal angle or purely movement angle (due to implicit partial correlation between these 

two angles), we instead determined whether tuning for movement angle was significant, 

independent of tuning for goal angle, and vice versa (Supporting Information). If so, we 

included that cell in the movement angle population. Similarly, if the cell contained 

significant information about the goal angle, independent of the movement angle, we 

included it in the goal angle population. 
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Figure 2-2. Representative neuron and STTF analysis. (A) Movement angle tuning curve, plotting firing 

rate as a function of movement angle measured at zero lag time. The tuning curve was well fit by a 

cosine model (R2 = 0.92). (B) Diagram describing space-time tuning analysis. Neural activity was 

sampled from the middle of the movement period and movement angle was sampled across the entire 

movement period, from movement onset to the time the cursor entered the target zone. This sampling 

scheme allowed each firing rate sample to be paired with angle samples at all possible lag times 

considered. (C) Movement angle space-time tuning function (STTF). Contour plot shows the average 

firing rate of a cell that occurred for different movement angles measured over a range of lag times (-

120 ms ≤ τ ≤ 120 ms) relative to the firing rate. (D) Movement angle temporal encoding function (TEF) 

and corresponding goal angle TEF, where mutual information between firing rate and movement angle 

is plotted as a function of lag time. The firing rate contained the most information about the movement 
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angle at an optimal lag time of 0 ms. All error bars denote 95% confidence intervals. Since the target 

was stationary during each trial (e.g., goal angle did not change during a trajectory), the goal angle 

information was approximately constant across lag time. The dashed lines denote surrogate TEFs, for 

both movement (red-dashed) and goal (green-dashed) angles, that were derived from surrogate spike 

trains and actual angles. Note that there is no temporal tuning structure in the surrogate movement 

angle TEF. 

 

During the center-out task, we recorded from 652 neurons from 2 monkeys. 390 neurons 

were significantly tuned for either the movement angle or goal angle, or both. 220/390 

(56%) significantly encoded the movement angle and 292/390 (75%) significantly 

encoded the goal angle. During the obstacle task, we recorded from 221 neurons from 

monkey 1 and 212 of these were significantly tuned for either the movement angle or 

goal angle. 168/212 (79%) neurons significantly encoded the movement angle and 

197/212 (93%) significantly encoded the goal angle. Since our analysis relies upon the 

neural tuning properties being stationary in time, the above population counts do not 

include any cells that exhibited non-stationarity (Supporting Information).  

 

Interestingly, we found an anatomical correlate for the representation of goal angle and 

movement angle in the medial intraparietal area: the mutual information for goal angle 

tended to increase gradually with the depth of the recording electrode, while information 

for movement angle (peak information, measured at OLT) decreased with depth. A linear 

regression using least squares was performed to quantify a linear relationship between 

encoded information and depth, and 100 (1-α) % confidence intervals were obtained for 

the slope of the line. The average movement angle information decreased by 
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approximately 30% over a 10 mm span (α = 0.038). The average goal angle information 

increased with depth in the sulcus, by about 60%, over 10 mm (α = 0.002). A stronger 

encoding of target-related signals deeper in the intraparietal sulcus (IPS) and conversely a 

favored representation of arm movement related activity in surface regions of the IPS is 

consistent with previous PPC studies of reach planning, in which eye-centered target 

signals were commonly found in deeper structures such as PRR, and more hand-related 

activity was reported for surface area 5 neurons (C. A. Buneo et al., 2002). 

 

2.3.2 Static encoding of goal angle 

Neurons that were significantly tuned for the goal angle persistently encoded information 

about the static direction to the target (measured from the starting cursor position, which 

is also the fixation point), independent of the changing state of the cursor. These cells 

were consistent with previous descriptions of target-sensitive tuning in area 5 (J. Ashe 

and A. P. Georgopoulos, 1994). This target representation is most likely not due simply 

to a cue response since the neural activity we analyzed typically occurred more than 240 

ms after cue onset. Therefore, the intended goal of the trajectory is maintained in the PPC 

population during control of the movement. Knowledge of the target direction during the 

movement could be used downstream, for example by motor cortices, to adjust upcoming 

motor commands to more accurately constrain the trajectory toward the target. Similarly, 

a forward model that estimates current and future states of the cursor could also exploit 

this online target information to generate more accurate estimates of the state of the 

cursor. 
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2.3.3 Temporal encoding of movement angle 

PPC neurons tuned for the movement angle encode dynamic information about the 

changing state of the cursor. Fig. 2-3A shows TEFs for the entire movement angle 

population, normalized on a per cell basis by each cell’s maximal mutual information. 

TEFs were typically single-peaked at each cell’s OLT. The histogram in Fig. 2-3B 

summarizes the distribution of OLTs for the movement angle population, which was 

centered at 0 ± 90 ms and 30 ± 90 ms, for the center-out and obstacle tasks respectively 

(median ± interquartile range (IQR)). Both of these plots show that movement angle 

neurons contained a temporal distribution of information about the state of the ongoing 

movement; some neurons best represented states in the near future (positive-lag time), 

some best represented states in the recent past (negative-lag time), and many peaked 

around the current state (zero-lag time). Passive sensory feedback would require at least 

30-90 ms (proprioceptive-visual) to reach PPC; consistent with some of the negative 

OLTs (≤ -30 ms) observed here (M. Flanders and P. J. Cordo, 1989; R. C. Miall et al., 

1993; N. Petersen et al., 1998; S. E. Raiguel et al., 1999). Conversely, if PPC neurons 

were encoding an outgoing motor command, subsequent motor processing and execution 

of the movement would require at least 90 ms to produce the corresponding cursor 

motion, resulting in positive OLTs above 90 ms (R. C. Miall et al., 1993). For instance, 

similar analyses for velocity have been performed in the primary motor cortex and report 

average OLTs of approximately 90-100 ms (J. Ashe and A. P. Georgopoulos, 1994; L. 

Paninski et al., 2004). Therefore, it is unlikely that PPC is driving motor cortex with 

feedforward commands since it would be expected that PPC would lead the movement 

state by more than motor cortex does, on average (i.e., OLT > 90 ms). Previous studies 
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have reported that velocity information is present in area 5 and suggested that those 

neurons best reflect non-causal, sensory information (J. Ashe and A. P. Georgopoulos, 

1994; B. B. Averbeck et al., 2005). We performed an additional temporal encoding 

analysis for velocity and obtained very similar results to those reported here for 

movement angle (Supporting Information). Neither passive sensory feedback nor efferent 

motor explanations best account for many of the OLTs observed in our data. In contrast, 

the most reasonable description of neurons whose optimal lag times lie between -30 and 

90 ms is that they encode a forward estimate, which is used to monitor the current and 

upcoming state of the movement angle, prior to the arrival of delayed sensory feedback. 

We suggest that these forward state estimates most likely reflect the operation of a 

forward model, which relies upon efference copy and a model of the dynamics of the 

cursor in order to mimic the causal process that governs how the cursor transitions from 

one state to the next. 
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Figure 2-3. Population temporal encoding results. (A) Population TEFs plotted for all movement angle 

neurons showing cell-normalized mutual information as a function of lag time. TEFs are sorted from 

lowest to highest optimal lag time (OLT). The population encoded a distribution of temporal 

information, including past, present, and future states of the movement angle. Note that some neurons’ 

TEFs had more data than others since one monkey made slightly faster movements than the other. (B) 

Histogram summarizing the OLTs for movement angle neurons for both center-out and obstacle tasks. 

Many of these neurons’ OLTs were consistent with a forward estimate of the state of the movement 

angle, which did not directly reflect delayed sensory feedback to PPC, nor were they compatible with 

outgoing motor commands from PPC. Color-coded horizontal bars beneath the abscissa denote the 

approximate lag time ranges for sensory (blue), forward estimate (black), and motor (red) 

representations of the state of the movement angle. 

 

We also observed that the peak information (mutual information at the OLT) encoded by 

those neurons that were clearly forward-estimating (0 ≤ OLT ≤ 60 ms) was significantly 

larger than the peak information encoded by the remaining population of movement angle 

neurons (OLT ≤ -30 ms, or, OLT ≥ 90 ms) (p < 0.001, Wilcoxon rank sum test, 

(Supporting Information)). This result shows that, in addition to PPC having a central 

tendency to encode the current state of the movement angle, these forward-estimating 

neurons will also on average encode more information compared to neurons at other 

OLTs, providing further support that the population best represents forward estimates of 

the state of the cursor. In addition, we observed that the median OLT for the obstacle task 

distribution was significantly larger than the median OLT for the center-out task 

distribution, and shifted forward from 0 to 30 ms (p < 1e-4, Wilcoxon rank sum). This 

result suggests that during situations in which a more demanding ‘control load’ is placed 

on the sensorimotor control system (e.g., the obstacle task), PPC responds by encoding a 
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more forward estimate of the state of the cursor, presumably relying upon a more 

anticipatory estimate of the state of the cursor for online control. 

 

2.3.4 Dynamic tuning and separability of movement angle STTF 

We further analyzed the spatio-temporal encoding properties of movement angle neurons 

by measuring changes in the preferred direction of a neuron, θpd, over a range of lag 

times. θpd is the movement angle at which a neuron fired maximally for a particular lag 

time. We reasoned that if θpd did not vary significantly as a function of lag time compared 

to changes that occurred in the movement angle itself, then that neuron encoded a mostly 

straight trajectory. Fig. 2-4A shows an example of a neuron recorded during the obstacle 

task for which θpd changed smoothly in time. Specifically, θpd changed by 0.87 radians 

from -120 ms to 0 ms lag time and by an additional 0.61 radians from 0 ms to 120 ms lag 

time, implying that this neuron, on average, encoded a slightly nonlinear trajectory. 

Across the population, most neurons’ STTFs exhibited small changes in θpd as a function 

of lag time. We quantified the tendency for the θpd to vary for the movement angle 

population by computing the circular standard deviation of the distribution of all neurons’ 

angle-changes, for each lag time (N. I. Fisher, 1993). We found that the standard 

deviation of θpd changes increased with time away from the OLT and rose to a maximum 

difference of 0.36 ± 0.03 and 0.72 ± 0.03 radians over 120 ms, for the center-out and 

obstacle tasks respectively (Fig. 2-4B). These deviations, while significantly larger than 

zero, were significantly smaller than deviations measured in the movement angle itself, 

which were 0.74 ± 0.03 and 1.91 ± 0.06 radians over 120 ms for the center-out and 

obstacle tasks, respectively (Fig. 2-4B). This result shows that the PPC population 
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encoded significantly less change in movement direction than was observed in the actual 

trajectories themselves (< 50%). We also calculated the average curvature of the 

monkeys’ trajectories and the curvature of simulated trajectories derived from a neuron’s 

STTF, which were considered to be the ‘preferred trajectory’ of a neuron. Consistent with 

the preferred direction results, the average curvature of preferred trajectories (0.06 ± 0.01 

and 0.15 ± 0.04, for center-out and obstacle tasks, respectively) was significantly less 

than the average curvature of the actual trajectories (0.15 ± 0.04 and 0.26 ± 0.02, for 

center-out and obstacle tasks respectively). This result further substantiates the claim that 

movement-related neurons encoded mostly instantaneous straight-line trajectories, which 

contained less curvature than was present in the actual executed movements. 
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Figure 2-4. Curvature and separability of STTFs. (A) Example STTF containing slight curvature. The 

θpd of this cell (dashed line) changed smoothly as a function of lag time. These small changes in θpd over 

time do not implicate a non-separable STTF, however; the percentage of fractional energy (FE) 

accounted for by the first singular vectors for this cell was 89%. (B) Standard deviation of the 

population’s distribution of θpd changes (σdθ), plotted as a function of time relative to the OLT. For both 

center-out and obstacle tasks, the population σdθ (neural, solid lines) was less than the σdθ for the 

movement angle (behavior, dashed lines) over the same time range. Data points represent mean and 

error bars denote 95% confidence intervals derived from bootstrapped distributions of σdθ. (C) 

Population summary of FE accounted for by each singular vector (dots denote median FE and error 

bars depict interquartile range). The majority of energy in movement angle STTFs was captured by the 

first singular vectors for center-out and obstacle tasks, respectively. (D) Population histogram showing 
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distribution of FE of first singular value for all movement angle cells. Unfilled (white) regions of bars 

denote fraction of cells that were not significantly separable. Overall, the distributions for the two tasks 

were largely separable. 

 

We performed an additional separability analysis to further characterize the relationship 

between angle and lag time encoded by a neuron’s STTF. A perfectly separable STTF 

indicated that lag time and angle were encoded independently of one another. We 

determined that the population of movement angle neurons was largely separable in the 

angle-time plane by using singular value decomposition (SVD) (J. L. Pena and M. 

Konishi, 2001; J. A. Mazer et al., 2002). We calculated the fractional energy contained in 

the singular values for each cell’s movement angle STTF. 92.0 ± 14.7% and 78.9 ± 

25.8% of energy (median + IQR) was contained in the first singular value, for the center-

out and obstacle tasks, respectively (Fig. 2-4C). 209/220 (95%) and 130/168 (77%) of 

movement angle STTFs were significantly separable when compared to their 

corresponding surrogate STTFs, for center-out and obstacle tasks. Fig. 2-4D shows the 

distribution of fractional energies of the first singular value for both tasks. These SVD 

results show that movement angle and time were primarily encoded independently by the 

PPC population and suggest that they could be combined in a multiplicative fashion to 

create the observed STTFs.  

 

Together, the above analyses suggest that dynamic sensorimotor control mechanisms in 

PPC encode mostly straight trajectories, with a less substantial component of neurons’ 

firing rates arising due to nonlinear encoding mechanisms that may reflect the slight 

curvature we observed in the STTFs. This interpretation is consistent with PPC neurons 
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encoding a state estimate of the movement angle, such that the majority of information is 

encoded at a cell’s OLT, with decreasing information encoded away from the OLT. 

 

2.4 Discussion 

Our data suggest that neurons in PPC are not only involved in forming plans for 

movement (L. H. Snyder et al., 1997; R. A. Andersen and C. A. Buneo, 2002b), but also 

in monitoring the goal and the dynamic state of the trajectory during movement 

execution. This monitoring is likely important for, among other purposes, continuous 

control and error correction. Rapid online control of movement cannot rely completely 

upon slow sensory feedback but instead must make continuous adjustments to motor 

commands based upon a best estimate of the current and future states of the effector (R. 

C. Miall and D. M. Wolpert, 1996; M. Desmurget and S. Grafton, 2000). The temporal 

encoding properties of many movement angle neurons suggest that PPC computes an 

estimate of the state of the cursor forward in time, consistent with the operation of a 

theoretical forward model. Furthermore, the distribution of OLTs we report in PPC spans 

a continuum of dynamic state estimates, bridging purely sensory with purely motor 

representations of the state of a continuous movement, while having a central tendency to 

encode a forward estimate of the current state of the cursor. We suggest that PPC 

movement angle neurons may provide a sensorimotor linkage necessary for translating 

desired goals and anticipated errors measured in the sensory domain into appropriate 

motor commands necessary for accurate and rapid control of the limb (M. I. Jordan and 

D. E. Rumelhart, 1992; R. C. Miall and D. M. Wolpert, 1996). It should be noted that the 

forward estimate measured using our analysis corresponds to the expected movement 



 47

state of an external object (i.e., the sensory outcome of the cursor motion on the computer 

screen). However, for our joystick task, the movement of the cursor is strongly correlated 

with the movement of the hand, and therefore it is also possible that these state estimates 

might reflect an intrinsic representation of the hand itself. Further experiments should be 

carried out to determine to what extent the forward model in PPC encodes a motor, 

sensory (visual and/or proprioceptive) or intermediate representation of the expected state 

of a movement. 

 

A forward model must rely both upon efference copy and a model of the dynamics of the 

cursor/hand to estimate the next state of a movement from the previous state. Efference 

copy signals could be central in origin (fed back from motor and premotor cortices) or 

may be signals of non-cortical origin that lead the current state of the movement. 

Previous psychophysical, clinical and theoretical studies have pointed to both the parietal 

lobe and the cerebellum as candidate neural substrates for a forward model (D. M. 

Wolpert et al., 1998a; D. M. Wolpert et al., 1998b; S. J. Blakemore and A. Sirigu, 2003; 

A. J. Bastian, 2006). Since both areas are reciprocally connected (cerebellum projects to 

parietal cortex via the thalamus (D. M. Clower et al., 2001); parietal cortex projects to 

cerebellum via the pons (M. Glickstein, 2000)), it is quite possible that the two areas 

might comprise a ‘functional loop’ responsible for monitoring and updating the internal 

state of the limb for online control (S. J. Blakemore and A. Sirigu, 2003). The extent to 

which forward model control is distributed across multiple brain areas and the 

distinguishing functional roles of these areas is an important direction for further 

investigation. 
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The finding that movement angle neurons are largely separable in the angle-time plane 

implies that online directional tuning is mostly stable over time during the movement. 

While PPC neurons do encode some curvature during our tasks, both the average change 

in θpd (approximately π/6 radians in 120 ms) and the amount of curvature encoded by 

PPC neurons were not large and moreover were both significantly smaller than their 

corresponding values measured for the movement itself over the same time range. 

Therefore, these ‘preferred trajectories’ are not complex functions of time but for the 

most part provide a simple dynamic encoding scheme: state estimation of movement 

direction at a particular OLT. This explanation is conceptually similar to the claim that 

M1 neurons encode an instantaneous estimate of movement direction (or velocity) at a 

particular lag time (A. B. Schwartz et al., 1988; D. W. Moran and A. B. Schwartz, 1999). 

Alternatively, Hatsopoulos and colleagues have recently suggested that neurons in M1 

encode more complex ‘pathlets’, which are comprised of a broad range of temporally 

extensive trajectory shapes (N. G. Hatsopoulos et al., 2007). This complex spatio-

temporal encoding scheme may in part reflect M1’s involvement in the execution of 

actions in coordinate frames appropriate for musculoskeletal control, although a single 

coordinate frame for M1 has not been identified (W. Wu and N. Hatsopoulos, 2006). In 

contrast, we suggest that the encoding of space and time that we observe in PPC may best 

reflect a visuomotor representation of the trajectory, which seems reasonable given the 

strong sensory input to PPC as well as its substantial reciprocal connections with 

downstream motor areas (E. G. Jones and T. P. Powell, 1970; P. B. Johnson et al., 1996). 
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A representation of the expected state of the cursor may also be useful for reconciling 

whether the outcome of a movement in space is caused by self-induced or external 

sensory motion. PPC would be a reasonable brain area to perform such a reafference-

cancelling computation during continuous sensorimotor control given both the presence 

of a forward model estimate of the sensory consequences of movement and the 

convergence of substantial sensory inputs. Unfortunately, since the desired sensory 

outcome and the actual sensory outcome of the movement coincide closely in our task, 

we cannot determine from our data whether a comparison between these two signals is 

encoded in PPC or not. A future experiment that perturbs the cursor visual feedback so 

that it is incongruent with the movement of the joystick, dissociating the intended 

movement state and the actual visual state, might modulate the activity of cells that did 

not respond during our task, which would normally encode such a comparison. 

 

Eye-behavior-related signals have also been described previously in PPC (V. B. 

Mountcastle et al., 1975). For instance, some smooth pursuit sensitive cells in area MST 

appear to reflect the integration of an extraretinal signal related to the continuous 

movement of the eye, and continue to respond during periods of the pursuit when the 

stimulus is blinked off (W. T. Newsome et al., 1988). One use of this signal may be for 

perceptual stability during pursuit eye movements (D. C. Bradley et al., 1996; T. 

Haarmeier et al., 2001). It would be interesting to determine whether MST cells estimate 

the current direction of eye movements during pursuit, similar to the forward estimation 

of movement angle we observe for arm movements. Discrete eye behavior related 

signals, such as saccade and fixation responses have also been described in PPC. 
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Whereas area 7a saccade responses begin largely after the saccade, area LIP saccade 

responses tend to occur before, during or after saccades (R. A. Andersen et al., 1987). 

These dynamics have led to the suggestion that this saccade activity is important for 

perceptual stability and coordinate transformations, but not for the execution of eye 

movements (R. A. Andersen et al., 1987). (Note that although LIP does not appear to 

generate the execution signal for saccades, it does appear to be involved in the 

formulation of the plan or intent to saccade (R. A. Andersen and C. A. Buneo, 2002a)). 

The saccade response dynamics in LIP appear to estimate when a saccade is occurring. 

Fixation-related activity commonly found in PPC is sensitive for eye position, and this 

response characteristic is often multiplicatively combined with the sensory and saccade-

related activity of single neurons (R. A. Andersen et al., 1987). The eye position signal in 

the posterior parietal cortex could be derived from proprioceptive inputs from the eye 

muscles (X. L. Wang et al., 2007) and/or the integration of saccade command signals. It 

would be interesting to see if a component of the eye position signal might also provide 

anticipatory information (ahead of passive sensory feedback) about the current state of 

the eye position during fixations between saccades. 

 

Finally, the availability of both goal and dynamic arm movement information in PPC 

make this brain area an attractive target for a neural prosthesis. For example, a continuous 

decoder estimating the dynamic state of the cursor could be improved by incorporating 

target information to constrain the decoded cursor trajectory toward the goal (L. 

Srinivasan and E. N. Brown, 2007). Moreover, at any instant during the movement, the 

trajectory decoder could be switched to a target decoder when sufficient information 
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becomes available about the target, rapidly jumping the cursor to the correct endpoint. 

Lastly, the observation that these neurons appear to encode mostly straight lines in visual 

space may prove to be more straightforward to decode for controlling a variety of end 

effectors. 

 

2.5 Methods 

In our experiment, 2 monkeys were trained to perform a 2D center-out joystick (ETI 

Systems) reaction task. Both monkeys performed a center-out task and the first monkey 

was also trained to perform an obstacle avoidance task to enforce more curvature in the 

trajectories and to further de-correlate goal angle and movement angle (center-out task 

correlation coefficient: ρT = 0.70 ± 0.06., ρT = 0.57 ± 0.12 for monkeys 1 and 2, 

respectively, obstacle task:  ρT = 0.16 ± 0.11, (mean ± standard deviation (s.d.)), T-linear 

association test (N. I. Fisher, 1993)). Example trajectories are shown for both tasks in 

Fig. 2-1 C and D. During joystick trials, we recorded simultaneous single-unit activity 

from multiple neurons (up to 4-channels) in the medial bank of the intraparietal sulcus of 

the posterior parietal cortex (PPC), with chamber coordinates centered at 5 mm posterior 

and 6 mm lateral. 

 

2.5.1 Behavioral task 

The monkeys sat 45 cm in front of an LCD monitor. Eye position was monitored with an 

infrared oculometer (ISCAN Inc.). The monkeys initiated a trial by moving a white 

cursor (0.9 degrees (deg)) into a central green target circle (4.4 deg) and then fixated a 

red concentric circle (1.6 deg). After 350 ms, the target was jumped to 1 of 8 (or 12) 
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random peripheral locations (14.7 deg). The monkeys then guided the cursor smoothly 

into the peripheral target while maintaining central fixation. Once the cursor was held 

within 2.2 deg of the target center for 350 ms, the monkeys were rewarded with a drop of 

juice. In the obstacle task, the monkey initiated the trial as before. After 350 ms, a blue 

obstacle circle (10.0 deg) appeared and the target was jumped simultaneously to 1 of 8 

(or 12) target locations. The obstacle was aligned and equidistant between initial and final 

target positions. During movement, the monkey maintained central fixation and guided 

the cursor around the obstacle and into the peripheral target. If the cursor intersected the 

obstacle or fixation was broken, the trial was aborted. The duration from movement onset 

to the time the cursor entered the target was for the center-out task: 259 ± 80 ms and 392 

± 173 ms for monkeys 1 and 2 respectively, and for monkey 1 for the obstacle task: 360 ± 

99 ms (mean ± s.d.)). 

 

2.5.2 Space-time tuning analysis 

Spike trains and raw joystick positional data were smoothed with a Gaussian kernel (s.d. 

= 20 ms). The standard deviation of the smoothing Gaussian was derived from the 

standard deviation of the inter-spike interval (ISI) distribution of a typical neuron. 

Specifically, a Gaussian curve was fit to every tuned neuron’s ISI distribution. The 

median ISI standard deviation for all neurons was 23 ms, which we then approximated to 

20 ms. 

 

We evaluated the dynamic tuning properties of PPC neurons by constructing a space-time 

tuning function (STTF) for each neuron, described by the bivariate function N(θ,τ) (L. 
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Paninski et al., 2004). Each value in the STTF represented the expected value of the 

firing rate, R, measured at some time during the movement, t, given that a particular 

behavioral angle, θ, occurred at time t + τ. The STTF is then expressed as the conditional 

expectation 

  [ ])(|),( τθτθ REN =        [1] 

where τ is the lag time, which was sampled in 30 ms increments, and E is the expected 

value operator. To compute the average firing rate for a particular STTF bin, N(θbin,τbin), 

firing rate samples were accumulated at all times{ti} for which θ = θbin at times {ti+ τ }, 

and across all trials in a session. This sum was then divided by the total number of firing 

rate samples that occurred for that θbin-τbin bin, to give an average firing rate. Both goal 

and movement angle bins were discretized into π/4 radians increments (π/6 radians, for 

12-target experiments), while firing rates were binned into 1 Hz increments. We tried a 

variety of bin-size resolutions for both parameters, none of which had any qualitative 

effect on the results reported in this study. On average, more than 70,000 firing rate 

samples were used per session, which were compiled over 489 ± 300 and 498 ± 233 trials 

(mean ± s.d.), for the center-out and obstacle tasks respectively (typically resulting in > 

500 samples per θ-τ bin and > 40 trials per target).  

 

The movement angle and goal angle were sampled every millisecond over the entire 

trajectory, from movement onset to the instant the cursor entered the target circle. 

Importantly however, firing rates were sampled from the middle segment of a trial so that 

each firing rate sample could be paired with angles sampled uniformly over the entire 

range of lag times we considered (Fig. 2-2B). This eliminated unwanted edge effects for 
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large-magnitude values of lag time (e.g., a sampling bias would otherwise exist for say τ 

= -120 ms; firing rates would be more likely to be sampled from later times in the 

trajectory and these samples would be less likely to have corresponding angle pairs for τ 

> 0). This segment of neural activity varied in size depending upon the trial length, and 

on average was 145 ± 22 ms and 147 ± 18 ms (mean ± s.d), for the center-out and 

obstacle tasks, respectively. In addition, we only considered firing rates beginning from 

90 ms after movement onset to allow sufficient time for sensory feedback about the state 

of the movement to arrive into PPC. This was important to ensure that none of the PPC 

neural activity we reported reflected encoding schemes that operated without access to 

visual or proprioceptive feedback during online control of the cursor. Finally, it is 

unlikely that this neural activity period reflected stimulus onset or reward since it began 

more than 220 ms (reaction time + at least 90 ms) after cue onset and terminated more 

than 440 ms (350 ms hold + at least 90 ms) before reward delivery. The reaction time to 

initiate movement was 138 ± 51 ms and 159 ± 19 ms (mean ± s.d.), for the center-out and 

obstacle tasks, respectively. 

 

A bootstrap Monte Carlo re-sampling method (> 100 iterations) was used to generate a 

distribution of STTFs, which were averaged to yield the reported STTF, and from which 

we derived 95% confidence intervals. To create a null hypothesis for significance testing, 

we constructed surrogate STTFs by using actual trajectory data (to preserve kinematics) 

but by substituting neural activity with surrogate spike trains. Surrogate spike trains were 

generated by sampling uniformly from a neuron’s actual inter-spike interval distribution 

(i.e., surrogate neurons contained the same ISI spiking statistics and mean firing rate as 
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the actual neurons), and then subsequently smoothing the surrogate spike train as before. 

Using this surrogate neural activity and the actual behavior (movement or goal angles), 

bootstrap Monte Carlo re-sampling was performed again to create a distribution of 

surrogate STTFs. 

 

Cosine goodness-of-fit was also assessed for all lag times in a neuron’s STTF (i.e., an 

angular tuning curve for each lag time) according to the following model   

       [2]  )cos(*)( pdτ acN θθθ −+=

where c is the baseline firing rate, a is the gain, θpd is the preferred direction of the 

neuron, and Nτ denotes the angular tuning function for a particular lag time. This model 

typically provided a good fit for the population of movement angle neurons. The 

coefficient of determination, R2, for the model fit was 0.70 ± 0.43 and 0.83 ± 0.19 (mean 

± s.d.), for the center-out and obstacle tasks, respectively. θpd was computed using the 

mean direction method (N. I. Fisher, 1993). Specifically, vector addition was used to 

determine the resultant vector, B, at which a cell fired maximally for a given lag time as 

follows 
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where M is the number of angle bins (8 or 12) and Ni is a neuron’s average firing rate for 

a particular bin angle, θi. 
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Note that the STTFs we report here differ somewhat from the spatio-temporal receptive 

fields used in sensory cortices, which generally use white noise stimuli to probe a rich set 

of space-time representations (N. Kowalski et al., 1996; G. C. DeAngelis et al., 1999). 

Due to autocorrelation present in natural goal-directed arm movements, we do not 

interpret the structure of STTFs to represent what is directly encoded by PPC neurons for 

all possible stimuli, but instead to reflect the movement angle dynamics that can be 

inferred from the firing rate for our particular task. 

 

2.5.3 Information theoretic analysis 

Because tuning depth and linear correlation metrics such as Pearson’s linear correlation 

coefficient are not a robust measure of all types of statistical dependency, we calculated 

the Shannon mutual information between firing rate and angle for each lag time of the 

STTF to construct a temporal encoding function (TEF) (T. M. Cover and J. A. Thomas, 

1991; L. Paninski et al., 2004). This method allowed us to rigorously quantify the 

dependency of the firing rate on the movement or goal angle at different lag times. 

Mutual information is an entropy-based measure that quantifies how much the variability 

of a particular parameter (i.e., neural firing rate, N) is dependent upon the variability of 

another (i.e., goal or movement angle, θ), and is defined as 

⎟⎟
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⎞
⎜⎜
⎝
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N

.     [4] 

p(N) is the prior probability distribution for firing rates. p(θ|N) is the conditional 

probability distribution for angle given that a particular firing rate was observed. p(θ) is 

the prior probability distribution for angle. We computed the above integral using a non-
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parametric binning approach. Specifically, we did not approximate these distributions 

using a model fit but instead computed them exactly by evaluating the integral in Eq. 4 as 

a finite sum according to 

( ) ( )
( )∑ ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

N p
NpNpNpNI

θ θ
θθθ |log|)();(  .    [5] 

To ensure that mutual information values for goal and movement angle were comparable 

(e.g., to avoid any bias due to possible differences in the individual goal angle or 

movement angle entropies), we normalized mutual information using the symmetric 

uncertainty measure introduced by Särndal (C. E. Sarndal, 1974) 

( ) ( )
( ) ( )θ
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NINNI
+

⋅
=

;2; .       [6] 

The normalized information, NI, effectively varied between 0 and 1, with NI = 1 

denoting perfect correlation. H(θ) and H(N) are the entropy of the angle (goal or 

movement) and the firing rate, respectively, and were computed in a similar manner - for 

example: 

( ) ( ) ( )∑−=
θ

θθθ ppH log .       [7] 

Therefore, the NI scalar quantity was not reported in bits, but should instead be 

interpreted simply as a non-parametric measure of dependency of the firing rate on the 

angle. 

 

Note that goal angle TEFs were mostly flat and did not contain temporal encoding 

structure (e.g., Fig 2-1D). This is because for any given trial, all firing rate samples in the 

neural activity period were paired with the same goal angle (i.e., a single target) at all 

possible lag times. Therefore, each trial contributed only a mean rate for one particular 
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goal angle, with no temporal information. When repeated across all trials, the resultant 

goal angle STTF contained angular tuning but no temporal tuning, resulting in a flat TEF. 

Importantly, a flat TEF does not imply that goal angle information was fixed in absolute 

trial time, but instead represents the average tuning strength for target direction during the 

neural activity period that we sampled. 

 

2.5.4 Temporal dynamics and curvature of movement angle STTF  

To assess how the encoded movement angle varied as a function of lag time, the 

difference between θpd at a cell’s OLT and θpd at all other significantly tuned lag times 

was calculated for a neuron’s STTF. This calculation was carried out for all cells that had 

significantly tuned lag times in the range of -120 to 120 ms. So that we could compare 

these changes in θpd with changes that occurred in the movement angle itself, we also 

calculated the difference between the movement angle for all times {ti} and the 

movement angle at all times {ti+ τ}, for a range of different lag times (-120 ≤ τ ≤ 120 

ms). This process was then repeated for all trials in a session and for all sessions in which 

movement angle neurons were reported. These procedures resulted in a distribution of 

angle-differences associated with each lag time, both for the neural activity (i.e., changes 

in θpd) and the behavior (i.e., changes in movement angle) (Fig 2-4B). We then computed 

the circular standard deviation, σdθ, for each lag time’s distribution of angle-differences 

(N. I. Fisher, 1993) to summarize the average tendency of the angle to deviate over lag 

time. A bootstrap Monte Carlo re-sampling procedure was used to generate multiple 

distributions of angle-differences, from which the mean and 95% CIs for σdθ were 

derived (Fig. 2-4B). 
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In addition to the preferred direction analysis, we calculated the curvature of both the 

actual trajectories themselves and a neuron’s preferred trajectory, which we simulated 

from a neuron’s STTF. First, to derive the curvature of an actual trajectory, a circle was 

fit to a series of points sampled every 30 ms along a 240 ms trajectory segment using a 

non-linear least squares estimation approach presented by Gander and colleagues in (W. 

Gander et al., 1994) and implemented in the Matlab program, ‘fitcircle’, by R. Brown 

(University of Canterbury). The curvature was then calculated simply as the inverse of 

the radius of the circle. This calculation was repeated for a series of subsequent 240-ms 

trajectory segments within each trial, each beginning 30 ms apart (i.e., 0-240 ms, then 30-

270 ms …), and then repeated for all trials in a session. Second, to construct the 

‘preferred trajectory’ encoded by a neuron’s STTF, we combined unit vectors, which 

were derived from each lag time’s θpd, in a tip-to-tail fashion from -120 ms to +120 ms. 

The curvature of the resultant trajectory was then computed as described above and then 

this procedure was repeated for each neuron in the population. 

 

2.5.5 Separability of movement angle STTF 

To assess the separability of an STTF, using SVD we modeled the movement angle 

STTF matrix N as a function of an offset term plus a multiplicative component 

                [8] TUSVN +=α

where U and V are orthogonal matrices containing the singular vectors and S is a diagonal 

matrix containing the nonzero singular values of N. If an STTF was completely 
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separable, then it could be factored using only the first singular vectors and first singular 

value 

                [9] 
TvsuN 111+=α

with s1=1 denoting that all energy could be captured in the space spanned by the first 

singular vectors. Varying α from the minimum to the maximum firing rate of a neuron (in 

increments of 1 Hz), we iteratively fit the separable model of Eq. 9 to reconstruct the 

matrix N. This optimization process allowed us to determine the optimal offset, αopt, 

which minimized the mean squared error for reconstructing N, similar to the approach of 

Pena and colleagues (J. L. Pena and M. Konishi, 2001). Typically, we found that αopt was 

strongly correlated with the mean value of the N matrix (correlation coefficient, ρcc = 0.97 

and ρcc = 0.90, for center-out and obstacle tasks). Using αopt, the full SVD decomposition 

was then performed once more according to Eq. 8 and the fractional energy (FE) 

contained in each set of singular vectors was calculated as 

        
∑
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%100 .       [10] 

 

To determine whether or not the FE contained in the first singular value was significantly 

separable, we also performed SVD decomposition on surrogate STTFs, (which were 

derived from the same behavior but using surrogate spike trains) for comparison with the 

actual STTFs’ separability. If the first singular value computed from the actual STTF was 

larger than 95% of the surrogate STTF’s first singular values, then the SVD 

decomposition was considered to be significantly separable. 
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2.6 Supporting information 

Several additional example movement angle STTFs and TEFs containing a variety of 

tuning strengths and OLTs are shown in Fig. S2-1. 

 

Figure S2-1. Example STTFs and TEFs for neurons recorded during the obstacle task. (A-L) Six STTF-

TEF pairs (A-B, C-D, E-F, G-H, I-J, K-L) for neurons significantly tuned for movement angle. 
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2.6.1 Residual tuning significance testing 

To test for significance of tuning for angle (movement or goal), we subtracted the 

bootstrap distribution of surrogate TEFs from the bootstrap distribution of actual TEFs. A 

cell was initially considered significantly tuned and selected for further analysis if at any 

lag time, 95% of these difference values were significantly larger than zero. However, as 

mentioned in the main text, movement angle and goal angle may be correlated to various 

degrees depending upon trajectory curvature (i.e., center-out task vs. obstacle task). 

Therefore, to control for the possibility that a cell’s tuning for one angle is due entirely to 

tuning for the other angle, we performed an additional analysis to calculate the residual 

information encoded about the movement angle independent of the goal angle, and vice 

versa, as follows: 

 

For each lag time, to test for significant tuning for movement angle, independent of goal 

angle, we randomly shuffled firing rate samples that belonged to the same angle bin of a 

goal angle tuning curve, effectively re-pairing firing rate samples with other goal angles 

from the same angle bin. Clearly, such a permutation would not affect the tuning for goal 

angle, since firing rates were merely re-paired with their original corresponding goal 

angle. However, shuffling the firing rate indices according to goal angle could affect the 

movement angle tuning. In fact, movement angle tuning would not be affected by 

permutation if and only if the goal angle and movement angle were identical during our 

tasks (i.e., perfect correlation). Alternatively, if movement angle and goal angle were 

completely uncorrelated (i.e., zero correlation), then permutation should corrupt the 
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tuning for movement angle entirely. However, since goal and movement angles were 

partially correlated in our tasks, we observed instead that tuning strength for movement 

angle decreased after permutation of the firing rate samples. Therefore, any decrease in 

the movement angle mutual information that resulted from shuffling represented 

information that the cell encoded about movement angle, and not the goal angle. If this 

difference, which we refer to as the residual movement angle information, was 

significantly larger than its null hypothesis (generated in an analogous manner, but using 

surrogate spike trains) for any lag time, then the cell was considered to significantly 

encode movement angle, independent of its tuning for goal angle. If not, then it was 

unclear if the cell encoded movement angle and it was excluded from the movement 

angle population. Fig. S2-2 shows two different examples of cells’ residual TEFs, one 

which was significantly larger than its residual null hypothesis (Fig. S2-2, A) and another 

which was not (Fig. S2-2, B). An analogous procedure was used to assess residual tuning 

for goal angle. Note, we computed the residual TEF only to ensure that movement angle 

tuning could not be trivially explained by its correlation with goal angle. Importantly 

however, for OLT analysis we did not use the residual TEF, but instead used the full TEF 

described initially, since it is possible that movement angle tuning could be a function of 

an interaction between movement angle and goal angle, which the residual tuning 

measure does not reflect. 
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Figure S2-2. Example residual movement angle TEF plots. (A) The residual information is lower than 

the full movement angle information, but is still significantly above its residual noise level. Therefore, 

this cell significantly encoded the movement angle, independent of the goal angle. (I) A second example 

showing a cell that was no longer significantly tuned for movement angle after calculating the residual 

information. 

 

2.6.2 Peak mutual information as a function of optimal lag time 

Fig. S2-3, A and B, plots the peak mutual information that each cell encoded for 

movement angle at its OLT, for both the center-out and obstacle tasks. First, notice that 

the center-of-mass values, -6 ms and 15 ms, for the center-out and obstacle distributions, 

respectively, were consistent with the median OLTs reported in Fig. 2-3B. This was of 

course due largely to the higher proportion of cells’ having OLTs near 0 ms, as illustrated 

in Fig. 2-3B, but also to the larger amount of information encoded by neurons with OLTs 

close to zero lag, as mentioned in the main text. Specifically, during the center-out task, 

clearly forward-estimating neurons’ (0 ms ≤ OLT ≤ 60 ms) mutual information was 0.043 

± 0.04, compared to 0.036 ± 0.03 for movement angle neurons with other OLTs (OLT ≤ -

30 ms, or, OLT ≥ 90 ms). Similarly, for the obstacle task, the average peak information 
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of clearly forward-estimating neurons was 0.043 ± 0.03, while it was 0.034 ± 0.03 for 

movement angle neurons with other OLTs. 

 

Figure S2-3. (A-B) Population summary of peak mutual information encoded at a neuron’s OLT for the 

movement angle population during center-out (A) and obstacle tasks (B). Error bars represent standard 

deviation of points at each OLT. 

 

2.6.3 Neural stationarity 

It is important to show that the neural activity we measured was stationary over the time 

period for which we calculated mutual information. Therefore, we evaluated the 

stationarity of a neuron’s firing rate during a trial and over an experimental session, 

similar to the approach taken by Paninski and colleagues (L. Paninski et al., 2004). 

 

First, we analyzed trends in the firing rate over the course of a session. The average firing 

rate was computed for each trial in a session, and the resulting trend in firing rate over the 

course of that session was fit by a line. The slope of the line and the percentage change in 

the firing rate across the session (from beginning to end) were derived from this fit. For 
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consistency with the literature, we used the criteria of Paninski and colleagues to 

determine neural stationarity: if a cell’s firing rate changed by less than 20% during the 

session or if the slope of the line fit was not significantly different from zero, the cell was 

deemed stationary. If both criteria failed to be met, an additional tuning analysis was 

performed to determine whether the actual STTF of the neuron changed significantly 

over the course of the session. To do this, we divided the experiment into two parts, and 

constructed the STTFs and pseudo-STTFs for both the first (A) and second (B) halves of 

the session. Bootstrap Monte Carlo re-sampling methods were used to generate a 

distribution of STTFs in the same manner as before. To quantify a change in tuning, we 

calculated the sum of squared differences between the bin values in STTFB and STTFA 

matrices as well as for the surrogate matrices, S_STTFB and S_STTFA. If the sum of 

squared difference between the actual STTFs was larger than 95% of the surrogate sum 

of squared differences, the cell was considered non-stationary and was excluded from the 

population. Using the above criteria, we found that the population was largely stationary; 

220/221 and 168/170 movement angle cells had stationary firing properties over the 

course of a session. 

 

To analyze the intra-trial stationarity of the firing rate, we aligned each trial to the 

reaction time and then computed the trial-averaged firing rate as a function of elapsed 

time. A line was fit to this trend and the slope of the line and the percentage change in the 

firing rate were computed. To assess statistical significance of the mean trial slope, 100 

bootstrap reshufflings were performed in which the firing rate time series was randomly 

shuffled, corrupting any trend in the firing rate over time but preserving its mean value. If 
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the absolute value of the slope of the firing rate trend was larger than 95% of the 

bootstrap absolute-value slopes, and the percentage change in the firing rate trend 

changed by more than 20%, the cell could be considered non-stationary. We found that 

104/220 (47%) and 73/168 (44%) movement angle neurons, in the center-out and 

obstacle tasks, respectively, could be considered non-stationary based on this criteria. 

However, it is unlikely that these intra-trial firing rate trends reflected any change that 

was related to the kinematics of the movement. First, any non-stationarity observed in the 

firing rate was not due to non-stationarity in the movement angle itself since the 

movement angle was almost always stationary over the course of the trial. Specifically, 

for 216/220 and 167/168 of the recorded sessions, the movement angle was determined to 

be stationary over the course of the trial based on the same criteria used above to assess 

intra-trial neural stationarity. Moreover, we consistently observed cells that exhibited 

firing rate trends that increased for some trials and decreased for other trials under 

identical target conditions. Furthermore, simultaneously recorded cells frequently had 

opposite slopes for the same trial, also suggesting that any non-stationarity in the 

movement kinematics was not the cause of these trends in firing rate. While it is possible 

that some of the cells we report on may also encode variables that we are not measuring 

or that are unrelated to the kinematics in our task, this does not limit the conclusions 

being drawn about correlations between neural activity and the movement angle. 

 

2.6.4 Optimal lag time statistical analysis 

We performed an additional analysis to determine whether the mutual information 

encoded for movement angle at a cell’s OLT was significantly larger than at all other lag 



 69

times. Our null hypothesis was that the difference between the mutual information at the 

OLT and the mutual information at other lag times was not significantly different from 

zero. Bootstrapped values of mutual information at each lag time were subtracted from 

the mutual information at a cells’ OLT. For each lag time comparison, if 95% of these 

differences were larger than zero, then the null hypothesis was rejected and the mutual 

information at the OLT was concluded to be significantly larger than the mutual 

information encoded at the compared lag time. The outcome of all of these comparisons 

is summarized graphically in the 95% confidence OLT plots of Fig. S2-4, where 

horizontal error bars delineate the lag time range (30, 60, 90 … ms) within which the 

OLT could be claimed to reside with at least 95 % confidence. 160/220 (73%) and 

154/168 (92 %) of movement angle neurons, for the center-out and obstacle tasks, 

respectively, have OLT confidence intervals less than 90 ms wide, suggesting that most 

neurons typically encode a strong dynamic estimate of the state of the movement angle. 

Note that we would not expect the temporal resolution of state-estimating neurons to 

consistently approach very small values due to implicit autocorrelation in the movement 

angle itself (movement angle time constant <140 ms). Importantly however, over a 

variety of confidence interval sizes (i.e., temporal resolutions), these plots show that the 

central tendency of the population was to consistently encode the recent, current or 

upcoming state of the movement angle.  
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Figure S2-4. 95% Confidence intervals for OLT distribution. (A-C) Center-out OLT 95% confidence 

intervals are shown for cells for which the OLT is defined with 30 ms (A), 60 ms (B) and 90 ms (C) 

temporal precision. Extent of horizontal lines denotes the 95% confidence interval of the OLT. Filled 

dots represent the mean OLT for a given confidence interval. Text in upper-right hand corner notes the 

median ± interquartile range OLT for each temporal precision plot. (D-F) Obstacle OLT confidence 

intervals plotted in the same format as A-C. Together these plots suggest that the population best 

encodes the current state of cursor with varying degrees of temporal precision. (G-H) 78% and 93% of 

movement angle neurons had an OLT precision of 90 ms or less, using the 95% confidence criteria, for 

the center-out and obstacle tasks, respectively. The average temporal precision of OLT confidence 
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intervals was smaller for the obstacle task (60 ± 60 ms, median ± IQR) than for the center-out task (90 ± 

60 ms). 

 

Finally, to control for the possibility that an autocorrelation present in the movement 

angle itself might contribute to the OLTs we observed, we also subtracted each surrogate 

TEF from its corresponding actual TEF, and then re-computed the OLT for each 

surrogate-subtracted TEF in the population. As expected, because surrogate TEFs did not 

contain any temporal structure (e.g., Fig. 2-2D, Fig S2-1, B, D, F, H, J, and L) and 

because firing rate and movement angle were stationary (see Neural Stationarity), this 

subtraction did not have any significant effect on the population OLT distributions. 

Indeed, a comparison of the OLT distributions before and after surrogate subtraction 

revealed that they were not statistically different (p = 0.97 and p = 0.98, for the center-out 

and obstacle tasks, respectively, Wilcox rank sum test). 

 

Lastly, note that OLT estimates for trajectories that contained less curvature (e.g., center-

out task) will be, on average, more uncertain than OLTs reported for trajectories with 

more curvature, which contained richer changes in the movement angle (e.g., obstacle 

task). Therefore, the obstacle task may yield a more precise estimate of the shape of the 

OLT distribution. Consistent with this argument, we found that the variance of the 

obstacle OLT distribution was significantly less than the center-out OLT distribution (p < 

0.01, median-subtracted Ansari-Bradley test). This tighter dispersion, combined with a 

forward shift in the median OLT for the obstacle task, resulted in an increase in the 

percentage of clearly forward-estimating movement angle neurons for the obstacle task 
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compared to the center-out task. Specifically, 88/220 (40%) and 94/168 (56%) neurons 

were clearly forward-estimating, for the center-out and obstacle tasks respectively. 

 

2.6.5 Velocity space-time encoding analysis 

To assess dynamic tuning of the movement state of the cursor, we chose to analyze the 

movement angle because 1) it could be fairly compared with the goal angle, and 2) of its 

close relationship to the full velocity vector (movement angle + speed), which has been 

reported to correlate most strongly with the firing intensity of primary muscle spindle 

afferents and has repeatedly been shown to correlate with movement-related activity in 

motor cortices, presumably involved in forming motor commands (P. Bessou et al., 1965; 

P. B. C. Matthews, 1972; J. C. Houk et al., 1981; A. B. Schwartz et al., 1988; A. 

Prochazka and M. Gorassini, 1998; D. W. Moran and A. B. Schwartz, 1999; L. Paninski 

et al., 2004). As an additional control and for a more direct comparison with previous 

studies that have used velocity to represent the dynamic state of the hand, we also 

assessed the correlation of PPC neural activity with the state of the full velocity vector. 

When analyzing velocity tuning, movement angle was binned as before, but speed was 

discretized into 5 bins uniformly spaced across the full range of cursor speeds measured 

in a given session. In addition, when computing the mutual information between firing 

rate and velocity in Eq. 5, the movement angle θ was replaced with the two-dimensional 

variable, V, which consisted of both the direction and speed of the cursor. We found that 

the velocity OLT distributions were very similar to the movement angle OLT 

distributions we reported. In particular, the distribution of OLTs for velocity was centered 

at 0 ± 120 ms and 30 ± 60 ms, for the center-out and obstacle tasks respectively, 
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consistent with an estimate of the current state of the arm. Note that unlike for the 

movement angle, a non-stationarity exists in the speed profile (i.e., it is bell-shaped in 

time) for our task. Therefore, to generate the velocity OLT distributions, we first 

subtracted the surrogate TEFs from the actual velocity TEFs to control for any bias that 

might arise from this non-stationarity before computing the OLTs for velocity. 

 

2.6.6 Mutual information as a function of elapsed time 

We computed the mutual information during early (0 ms ≤ t1 ≤ 75 ms) and late (75 ms < 

t2 ≤ 150 ms) phases of the neural activity sample period to assess any trend in encoding 

strength for movement angle over elapsed time in the trajectory. To improve the accuracy 

of the forward model state estimate, Wolpert and Jordan proposed that the brain also 

integrates sensory feedback as it becomes available during the course of the movement 

(Wolpert D.M., et al., 1995). Specifically, they formulated that online sensorimotor 

control in the brain could operate like a Kalman filter (the ideal observer for linear-

Gaussian systems), which generates a state estimate that is a combination of the forward 

model estimate and a sensory correction term. PPC is well-positioned anatomically to 

combine a forward model signal with incoming sensory feedback. Therefore, it is 

important to clarify whether the state estimates encoded by movement angle neurons are 

generated 1) solely by the forward model estimate (i.e., ‘dead-reckoning’, ((C. R. 

Gallistel, 1990)) or 2) if they also incorporate sensory feedback. Due to various sources 

of noise in the sensorimotor control loop, the feedforward state estimate of a forward 

model controller will accumulate error (both bias and variance) over time unless 

adjustments based upon sensory feedback are made. Thus, a forward model can, at best, 
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maintain the same initial level of accuracy over time but is more likely to degrade in the 

face of noise in the sensorimotor control loop. Therefore, if we observe that the accuracy 

of the state estimate in PPC neurons improves over time, we could conclude that sensory 

information is most likely incorporated into the forward model estimate in order to 

improve its accuracy.  

 

Figure S2-5. Do forward state estimates in PPC reflect only the output of a forward model or do they 

also reflect the integration of sensory signals over time? We derived TEFs using the first and second 

halves of the neural activity sample (left and right red portions of neural activity interval, respectively) to 

test how the encoding strength of movement angle neurons changed over the course of the trajectory. We 

hypothesized that if the mutual information increased from t1 to t2, then sensory information must be 

added to the forward state estimate, which reflects the output of an observer as described in Chapter 1. If 
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the information decreased over time, then the state estimate of these neurons may better reflect the 

output of a forward model by itself. 

 

To test this hypothesis, for movement angle neurons we computed the mutual 

information during early (0 ms ≤ t1 ≤ 75 ms) and late (75 ms < t2 ≤ 150 ms) phases of the 

neural activity sample period (note, we only performed this analysis for trials with similar 

movement durations). Importantly, if mutual information increased from t1 to t2, we 

reasoned that the accuracy of this neuron’s state estimate also increased, and vice versa. 

Several interesting observations arose from this preliminary analysis. First, we found that 

32/106 of cells significantly increased their amount of encoded information, consistent 

with a state prediction that augments the forward model prediction with sensory input 

(Fig. S2-6C). 60/106 cells did not show any significant change in their encoded 

information, which may have relied upon sensory feedback to maintain their accuracy, 

but to a lesser extent than those cells that significantly increased their information content 

from t1 to t2. Third, we observed that the mutual information decreased significantly from 

t1 to t2 for the remaining 14/106 of cells. These cells most likely relied more heavily on a 

forward model prediction and likely did not integrate sensory input. We can reason this 

way due to the fact that some neurons were indeed capable of effectively using sensory 

information to increase their encoded information over the course of the trajectory. 

Therefore, neurons whose encoded information decreased over time appeared to not be 

weighting the contribution of sensory correction very highly (or do not receive sensory 

input at all) and reflect mostly forward model estimation. Lastly, we observed that cells 

that lagged the state of the movement (i.e., OLT ≤ -30 ms) tended to increase their 

information content more, on average, than cells that could have represented a forward 
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estimate of the state (i.e., 0 ≤ OLT ≤ 90 ms). This difference was highly significant (t-

test, p < 0.001). This trend is consistent with sensory cells continually integrating delayed 

afferent information to improve the accuracy of their state estimates, while in contrast the 

state estimates of purely feedforward cells tended to degrade over time since they were 

not corrected by sensory information. 

 

Figure S2-6. Change in encoding strength of movement angle neurons with elapsed time in the 

trajectory. (A-B) TEF for a single neuron during t1 interval (A) and during t2 interval (B) illustrated in 

Fig. S2-5. For this particular cell, the mutual information decreased from t1 to t2. (C) For the 

population, some cells significantly increased their mutual information over time (filled bars with > 0 % 

change) some significantly decreased (filled bars with < 0 % change), and many did not significantly 

change their mutual information (white fraction of bars). (D) Cells with negative OLTs on average 
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tended to increase their information more with time, which is consistent with these cells relying upon 

sensory information to improve their state estimate.  
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Chapter 3 

 

DECODING TRAJECTORIES FROM PPC ENSEMBLES 

 

3.1 Summary 

High-level cognitive signals in the posterior parietal cortex (PPC) have previously been 

used to decode the intended endpoint of a reach, providing the first evidence that PPC 

can be used for direct control of a neural prosthesis (S. Musallam et al., 2004). Here we 

expand on this work by showing that PPC neural activity can be harnessed to estimate 

not only the endpoint but also to continuously control the trajectory of an end effector. 

Specifically, we trained two monkeys to use a joystick to guide a cursor on a computer 

screen to peripheral target locations while maintaining central ocular fixation. We found 

that we could accurately reconstruct the trajectory of the cursor using a relatively small 

ensemble of simultaneously recorded PPC neurons. Using a goal-based Kalman filter 

that incorporates target information into the state-space model, we showed that the 

decoded estimate of cursor position could be significantly improved. In addition, we 

demonstrated that by optimizing the depth of multiple electrodes based upon 

electrophysiological feedback of the recording quality, decoding efficiency (i.e., the R2 

per channel) of the PPC ensemble was markedly improved, compared to traditional 

fixed-depth array recordings.  
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3.2 Introduction 

Scientific and clinical advances toward the development of a cortical neural prosthetic to 

assist paralyzed patients have targeted multiple brain areas and signal types (P. R. 

Kennedy et al., 2000; J. Wessberg et al., 2000; M. D. Serruya et al., 2002; D. M. Taylor 

et al., 2002; J. M. Carmena et al., 2003; K. V. Shenoy et al., 2003; S. Musallam et al., 

2004; P. G. Patil et al., 2004; J. R. Wolpaw and D. J. McFarland, 2004; L. R. Hochberg et 

al., 2006; G. Santhanam et al., 2006). The first generation of motor prostheses focused 

primarily on extracting continuous movement information (trajectories) and emphasized 

the premotor (PMd) and primary motor cortices (M1) in monkeys (M. D. Serruya et al., 

2002; D. M. Taylor et al., 2002; J. M. Carmena et al., 2003; G. Santhanam et al., 2006). 

Studies performed in the posterior parietal cortex (PPC) and in PMd have emphasized 

decoding goal information, such as the intended endpoint of a reach (S. Musallam et al., 

2004; G. Santhanam et al., 2006). Musallam and colleagues also showed that cognitive 

variables (e.g., expected value of a reach) could be exploited to boost the amount of goal 

information decoded from PPC. However, less emphasis has been placed on decoding 

trajectories from PPC. Earlier offline analyses showed that area 5 neurons are correlated 

with various motor parameters during reaching movements (J. Ashe and A. P. 

Georgopoulos, 1994; B. B. Averbeck et al., 2005). Recently, we reported that PPC 

encodes the instantaneous movement direction of a joystick-controlled cursor (i.e., with 

approximately zero lag time), suggesting that these dynamic tuning properties reflect the 

output of an internal forward model (G. H. Mulliken et al., 2008). Nonetheless, these PPC 

studies did not address whether trajectories could be reconstructed from ensemble neural 

activity. Carmena and colleagues decoded trajectories offline from ensembles in multiple 
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brain areas including PPC, M1, PMd and primary somatosensory cortex (S1) (J. 

Wessberg et al., 2000; J. M. Carmena et al., 2003). However, they reported relatively 

poor offline reconstruction performance for their PPC sample, an unexpected result based 

upon previous encoding findings. 

  

Therefore, the extent to which PPC can be used to decode trajectories offline remains 

uncertain. Here we show that trajectories can be reliably reconstructed offline using 

relatively small numbers of simultaneously recorded PPC neurons. We also show that 

goal-based, state-space decoding methods, as well as adjustable-depth multi-electrode 

array (AMEA) recording techniques, can be advantageous for a prosthesis targeting PPC. 

Finally, we show that when recording from ensembles using an adjustable-depth multi-

electrode array (AMEA), in which the single-cell isolation quality of each electrode can 

be optimized, we were able to decode trajectory information more efficiently from PPC, 

requiring fewer electrodes on average.  

 

3.3 Materials and methods 

3.3.1 Animal preparation 

Two male rhesus monkeys (Macacca mulatta; 6–9 kg) were used in this study. All 

experiments were performed in compliance with the guidelines of the Caltech 

Institutional Animal Care and Use Committee and the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals. 
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3.3.2 Neurophysiological recording 

We recorded multi-channel neural activity from two monkeys in the medial bank of the 

intraparietal sulcus (IPS) and area 5. We implanted two 32-channel microwire arrays (64 

electrodes) in one monkey (1st array 6-8 mm deep in IPS, 2nd array 1-2 mm deep in area 

5). Chronically implanted array placements were planned using magnetic resonance 

imaging (MRI) and carried out using image-guided surgical techniques to accurately 

target the desired anatomical location and to minimize the extent of the craniotomy 

(Omnisight Image-guided Surgery System, Radionics, Burlington, MA). In a second 

monkey we performed acute chamber recordings using a 6-channel microdrive (NAN 

Electrode Drive, Plexon, Dallas, TX). The placement of the recording chamber was 

verified using MRI, with the chamber centered at 5 mm posterior, 6 mm lateral in 

stereotaxic coordinates. For the remainder of this report, we will refer to a chronic 

microwire array as a fixed-depth multi-electrode array (FMEA) and the microdrive as an 

adjustable-depth multi-electrode array (AMEA). Spike-sorting was performed online 

using a Plexon multi-channel data acquisition system and later confirmed with offline 

analysis using the Plexon Offline Sorter. Using the AMEA technique, we were able to 

maintain single-unit isolations of several neurons for approximately 1-2 hours. Note that 

we did not specify that isolated neurons be tuned to a particular parameter measured in 

our task, but instead only required that each neuron have a minimum baseline firing rate 

(> 2 Hz). Once single-unit isolations were established manually, isolations were 

maintained using an autonomous electrode positioning algorithm (SpikeTrack), which 

independently adjusted the depth of each of the six electrodes in order to continuously 

optimize extracellular isolation quality (J. G. Cham et al., 2005; Z. Nenadic and J. W. 
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Burdick, 2005; E. A. Branchaud et al., 2006). It should be noted that all neural units 

reported using the AMEA technique were well-isolated single-units, while neural units 

recorded using the FMEA technique consisted of a combination of single and multi-unit 

activity. 

 

3.3.3 Experimental design 

Monkeys were trained to perform a 2D center-out joystick (J50 2-axis joystick, ETI 

Systems, Fort Worth, TX) reaction task, in which they were required to guide a cursor on 

a computer screen to illuminated peripheral targets. After several weeks of training, the 

monkeys were highly skilled at the task and were performing regularly above 90% 

success rate. 

 

The 2D center-out joystick task is illustrated in Figure 3-1A. The monkeys sat 45 cm in 

front of an LCD monitor. Eye position was monitored with an infrared oculometer. 

Monkeys initiated a trial by moving a white cursor (0.9 deg) into a central green target 

circle (4.4 deg) and then fixated a concentric, central red circle (1.6 deg). After 350 ms, 

the target jumped to 1 of 8 (or 12) random peripheral locations (11-14.7 deg). The 

monkeys then guided the cursor smoothly into the peripheral target zone while 

maintaining central fixation. Once the cursor was held within 2.2 deg of the target center 

for 350 ms, the monkeys were rewarded with a drop of juice. If fixation was broken 

during the movement, the trial was aborted. Monkeys were required to fixate centrally 

during the entire trajectory in order to maintain a constant visual reference frame. Earlier 

studies have shown that parietal reach region (PRR) encodes visual targets for reaching in 
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eye coordinates and area 5 in both eye and hand coordinates (A. P. Batista et al., 1999; C. 

A. Buneo et al., 2002). In addition, this control was important in order to rule out the 

possibility that we were decoding activity related to eye position or saccades. (Note that 

this control was not instituted in a previous PPC decoding study (J. M. Carmena et al., 

2003)). The duration of a typical trajectory, from a monkey’s reaction time (i.e., when the 

monkey initiated movement of the cursor) to 80 ms after the cursor first entered the target 

zone was 510 ± 152 ms and 393 ± 152 ms, for monkeys 1 and 2, respectively (mean ± 

standard deviation (sd)). 

 

 

Figure 3-1. Center-out joystick task and example neural recordings obtained using adjustable-depth 

multi-electrode array (AMEA). A, Monkeys initiated each trial by guiding the cursor inside a central 

green circle. After 350 ms, a concentric red circle appeared, directing the monkeys to fixate centrally. 



 86

The target was randomly jumped to 1 of 8 possible targets, at which point the monkey initiated a 

trajectory to the peripheral target location. Monkeys held the cursor inside the target for at least 350 ms 

(100 ms for brain control – see Chapter 4) before receiving a juice reward. Raster plots show responses 

of 5 simultaneously recorded neurons during trajectories to two different target locations, leftward (180 

deg) (B) and rightward (0 deg) (C). Neural activity is aligned to the time of movement initiation (dashed 

vertical line) and is plotted up to 80 ms after the cursor entered the target zone. Standardized firing rate 

time courses for all 5 neurons (sorted by color) are plotted below their respective raster plots for both 

leftward (D) and rightward (E) target conditions. Note the spatial tuning present for two targets in this 

ensemble of 5 neurons. Smoothed (Gaussian kernel, sd = 20 ms) traces were generated for illustrative 

purposes here, while binned standardized firing rates were in fact used to train decoding algorithms (see 

Methods). F, Example trajectories made by monkey 1 for all 8 targets. The dashed green circle is the 

starting location of the target and is not visible once the target has been jumped to the periphery. Dots 

represent cursor position sampled at 15 ms intervals along the trajectory. 

 

3.3.4 Offline algorithm construction 

We sought to construct a decoding model that optimally estimated behavioral parameters 

from the firing rates of simultaneously recorded PPC neurons (e.g., minimized the mean 

squared reconstruction error, MSE). To further illustrate this situation, we have plotted 

simultaneously recorded spike trains from 5 neurons in the raster plots of Figure 3-1B-C, 

which were collected during 10 trials made to both leftward and rightward targets. Neural 

activity is aligned to the reaction time and is plotted up to 80 ms after the cursor entered 

the target zone. Below each set of raster plots are the trial-averaged, standardized firing 

rate time courses associated with each of these two target directions. The instantaneous 

firing rate of a neuron was standardized by first subtracting the neuron’s mean firing rate 

and then dividing by its standard deviation. Using an ensemble of standardized firing 
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rates along with concurrently recorded behavioral data from the joystick training 

segment, we constructed a mathematical decoding model to attempt to reconstruct the 

monkeys’ trajectories offline. To accomplish this, we tested two standard linear 

estimation algorithms: ridge regression and a modified Kalman filter (R. E. Kalman, 

1960; A. E. Hoerl and R. W. Kennard, 1970). 5-fold cross-validation was used to assess 

performance and to perform model selection. Specifically, all trials from a joystick 

training segment were shuffled and then divided into five equal parts. 4/5 parts were used 

to train the model and 1/5 parts was used to validate the model. Thus, the trained model 

was validated five times to obtain an average performance, with each of the five parts 

serving as the validation set one time.  

 

3.3.5 Ridge regression 

We first constructed a linear model of the instantaneous 2D cursor position (or velocity, 

acceleration, target position) at some time, x(t), as a function of the standardized firing 

rates of N simultaneously recorded neural units. Firing rates were computed for non-

overlapping 80 ms bins, and effectively represented the mean firing rate measured at the 

middle of each bin. Each sample of the behavioral state vector, x(t) , was modeled as a 

function of the vector of ensemble firing rates measured for three preceding time bins 

(i.e., lag times), centered at , which effectively 

represented the temporal evolution of the causal ensemble activity prior to each 

behavioral state measurement. To simplify our notation, we will refer to discretized time 

steps (k) for the remainder of this report, where x(k) denotes the instantaneous behavioral 

measurement and r(k) denotes the average binned firing rate of the ensemble 40 ms in the 

)}), r(t-), r(t-{r(t- ms 40ms 120ms 200
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past, r(k-1) denotes the mean firing rate 120 ms in the past, etc. We tried a variety of bin 

sizes and number of lag time steps and found that these values provided the best 

performance over multiple sessions. During a given trial, spiking activity was sampled 

beginning from 240 ms before the monkeys’ reaction time up to 80 ms after the cursor 

first entered the target zone. An estimate of the 2D cursor position (or velocity, etc.), 

, was constructed as a linear combination of the ensemble of firing rates, r, sampled 

at multiple lag time steps according to 
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where ε represents the observational error. The MSE of the estimate, , can generally 

be decomposed into two parts, a bias and a variance component, which can vary in size 

depending upon the method used to obtain β, thereby producing an important trade-off to 

be considered during model selection (S. Geman et al., 1992). The well-known least 

squares solution for β, which can be obtained in a single step, yields the minimum 

variance, unbiased estimator. However, a zero-bias estimator often suffers from high 

MSE due to a large variance component of the error. Often, it is beneficial during model 

selection to slacken the constraint on the bias in order to further reduce the variance 

component of the error. In particular, this is beneficial when confronted with a high-

dimensional input space in which many neural signals may be correlated (e.g., over-

lapping receptive fields or auto-correlated firing rate inputs from different lag time steps), 

which may result in estimators that exhibit large variability over a number of different 

training sets. Ridge regression is a method that can optimize the bias-variance tradeoff by 

penalizing the average size of the coefficients in order to reduce the variance component 

)(ˆ kx
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of the error, while allowing a smaller increase in the bias (A. E. Hoerl and R. W. 

Kennard, 1970). For ridge regression, the traditional least squares objective function is 

augmented by a complexity term, which penalizes coefficients for having large weights 

(T. Hastie et al., 2001), such that                
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where M is the number of training samples used in a session. The regularization 

parameter, λ, was determined iteratively by gradient descent using a momentum search 

algorithm, thereby minimizing MSE by converging to a set of coefficients that 

appropriately balances the bias and variance components of the reconstruction error. For 

a given value of λ, a unique solution for the ridge coefficients can be expressed 

conveniently in matrix notation, for example when estimating the 2D cursor position, 

       ( ) XRIRR TTridge 1ˆ −
+= λβ ,       (3) 

where is the standardized firing rate matrix sampled at 3 lag time steps into the 

past, is the mean-subtracted, 2D position matrix, and  are the model 

coefficients unique to a particular λ. Note that for λ=0, the ridge filter is equivalent to the 

least squares solution. Evidently, such a coefficient shrinkage procedure will reduce the 

effective degrees of freedom of the model, which is a scalar value that can be calculated 

using the expression (derivation available at www.jneurosci.org as supplemental 

material) 
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Since ridge retains all of the original coefficients in the model, albeit shrunken versions 

of them, to make the model more parsimonious we also reduced the actual dimensionality 

of the neural input space by sub-selecting the largest (according to their squared 

magnitude) Ndf coefficients and removing all others from the model. This imposed a kind 

of hard threshold on the noisy predictors that held little predictive power. We then 

repeated ridge regression using only those neural inputs that remained in the truncated 

input space, which typically improved cross-validated performance further over the initial 

ridge solution. This two-step, ridge-selection process was iterated until a minimum cross-

validation error was reached. For our data sets, we found that this method performed 

comparably to or better than other regularization and variable selection methods such as 

lasso, the elastic net, or least angle regression (LARS) (R. Tibshirani, 1996; B. Efron et 

al., 2004; H. Zou and T. Hastie, 2005). 

 

3.3.6 Goal-based Kalman filter 

In addition to ridge regression we implemented a state-space decoding model, 

specifically a variant of the discrete Kalman filter (R. E. Kalman, 1960). The Kalman 

filter was originally proposed by Black and colleagues for decoding continuous 

trajectories from M1 ensembles (W. Wu et al., 2002) and was more recently applied 

using electrocorticographic (ECoG) signals recorded from hand/arm motor cortex (T. 

Pistohl et al., 2008). Here we review its basic operation and emphasize differences taken 

in our implementation. Note that before training the Kalman filter we first applied ridge 

regression to the training data as described above to select the most informative subset of 

neural inputs to be used (as determined by the effective degrees of freedom). In addition 
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to standard kinematic state variables (i.e., position (p), velocity (v), acceleration (a)) used 

in the above mentioned M1 studies, we incorporated goal information into the state-space 

representation by augmenting the kinematic state vector with the static target position, T, 

that is   

      .     (5) 
T

yxyxyxyxk TTaavvppx ],,,,,,,[=

To avoid confusion with the standard Kalman filter, we will refer to our model as the 

goal-based Kalman filter (G-Kalman filter) for the remainder of this report. 

 

Unlike the feedforward ridge filter, the G-Kalman filter operates in a recursive manner 

using two governing equations instead of one: an observation equation that models the 

firing rates (observation) as a function of the state of the cursor, xk, and a process 

equation that operates in a Markov fashion to propagate the state of the cursor forward in 

time as a function of only the most recent state, xk-1 (G. Welch and G. Bishop, 2006). 

Therefore, firing rates are not binned in multiple lag time steps prior to the measured state 

xk, but instead reflect the firing rate of a single 80 ms bin just before (i.e., t-40 ms) the 

measured state of the cursor. The G-Kalman filter assumes that these two models are 

linear stochastic functions, which operate under the condition of additive Gaussian white 

noise according to 

    111 −−− ++= kkkkk wBuxAx

kkkk xHr

,   (process equation)   (6)

    ν+=           (observation equation).  (7) 

The control term, u, is assumed to be unidentified and is therefore set to zero in our 

model, excluding B from the process model. Following the approach of Wu and 

colleagues, we made the simplifying assumption that the process noise ( ), 18×ℜ∈w
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observation noise  ( ), transition matrix ( ) and the observation matrix 

( ) were fixed in time (W. Wu et al., 2002). Simplifying,  
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where A and H were solved using least squares regression and Q and V are the process 

and observation noise covariance matrices, respectively. Note that the transition matrix, 

A, took the form 
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where I is the 2 x 2 identity matrix, indicating that the target was fixed in time during the 

trial. The estimate of the kinematic state of the cursor, , was 

therefore a linear combination of the previous kinematic state, which was weighted by the 

transition matrix , and the estimated target position, which was weighted by 

the linear operator . That is, C biased the estimate of the kinematic state to be 

spatially constrained by the target position, which was inferred from the neural 

observation in Equation 9. 

T
yxyxyx aavvpp ],,,,,[=

A

 

To estimate the state of the cursor at each time step k, the output of the process model,  

(i.e., a priori estimate), was linearly combined with the difference between the output of 

the observation model and the actual neural measurement (i.e., the neural innovation) 

using an optimal scaling factor, the Kalman gain, Kk, to produce an a posterior estimate 

of the state of the cursor, 

−
kx̂
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This standard two-step discrete estimation process, consisting of an a priori time update 

and a posterior measurement update, was iterated recursively to generate an estimate of 

the state of the cursor at each time step in the trajectory (detailed description of this 

process available at www.jneurosci.org as supplemental material). The initial position of 

the cursor was assumed to be known, but the initial velocity, acceleration, and target 

position were set to the expected value of their respective training distributions. 

Similarly, the initial variance of the position was set to zero, reflecting no uncertainty 

about the starting location of the cursor, while the variance for velocity, acceleration, and 

target position were derived from their training set distributions: 
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where E is the expected value operator. 

 

We assessed the decoding performance of the G-Kalman filter for the entire duration of 

the trajectory, though the G-Kalman filter typically converged to a steady-state value 

(i.e., Kalman gain and error covariance decreased exponentially to asymptote) < 1s after 

movement onset (further information available at www.jneurosci.org as supplemental 

material).  
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3.3.7 Model assessment 

We quantified the offline reconstruction performance of each decoding algorithm using a 

single statistical criterion, the coefficient of determination, or R2. R2 values for X and Y 

directions were averaged to give a single R2 value for position, velocity etc. 

 

We also constructed neuron-dropping curves for each session to quantify how well 

trajectories could be reconstructed using PPC ensembles of different sizes. To assess the 

performance of a particular ensemble size, q, we randomly selected and removed Ndf - q 

neural units from the original ensemble, which contained Ndf total neural units. Next, we 

performed 5-fold cross-validation using the remaining q neural units to obtain an R2 

value, then replaced them, and repeated this procedure 50 times to obtain an average R2 

for each ensemble size, q. Note that an equal number of randomly selected trials were 

used from each session (300 trials); however we typically did not observe a significant 

improvement in performance after including much more than 100 trials. 

 

We computed model fits for the resultant neuron-dropping curves so that they could be 

extrapolated to theoretical, larger ensemble sizes, allowing us estimate the average R2 

performance for an arbitrary ensemble size. An exponential recovery function was fit to 

the data according to 

        ,        (14) zqeR /2 1 −−=

where q was the ensemble size used and z was a fitted constant. For all FMEA and 

AMEA plots, the quality of fit obtained using these models was very good (average R2 > 

0.98). 
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3.3.8 Neural unit waveform analysis 

We quantified the signal to noise (SNR) ratio of neural unit waveforms according to the 

method described by Suner and colleagues (S. Suner et al., 2005). Using this method, 

SNR was calculated by dividing the average peak-to-peak amplitude for an aligned spike 

waveform by a noise term. The noise term was equal to the twice the sd of the residuals 

that remained after subtracting the mean spike waveform from all waveform samples for 

a particular neural unit. The minimum threshold SNR required for multi-unit 

classification was 2. Single-units were identified using offline sorting, and always had 

inter-spike intervals above 2 ms and typically had SNR values above 4 when using this 

method. 

 

3.4 Results 

3.4.1 Offline decoding 

Our objective was to construct a decoding model that estimated task-related behavioral 

parameters (e.g., position, velocity, acceleration, target position) at multiple time steps in 

a trajectory from parallel observations of PPC neural activity. Training sets used for 5-

fold cross validation were constructed from approximately 300 joystick trials per session. 

We analyzed a total of 20 different recording sessions offline and found that we could 

reconstruct joystick trajectories with very good accuracy using ensemble activity from 

PPC, accounting for more than 70% of the variance in the cursor position during a single 

session (R2 = 0.71). 10 recording sessions were performed using FMEAs implanted in 

one monkey, yielding recordings which were comprised of a combination of single and 
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multi-units (7.8 ± 5.2 single-units, 107 ± 27 multi-units, Ndf = 65 ± 27 neural units, mean 

± sd). An additional set of 10 sessions was collected using AMEA recordings from a 

second monkey, all 10 of which contained exactly 5 simultaneously recorded single-units 

(no multi-unit activity was included in the AMEA ensembles). Note that offline decoding 

analyses using FMEA data were performed for sessions recorded prior to the monkey 

ever having ever experienced brain control (see Chapter 4). Therefore, all offline analyses 

reflected our ability to decode from PPC ensembles prior to the development of any 

learning effects that occurred as a result of brain control. 

 

3.4.2 Position decoding performance: model comparisons 

We evaluated the performances of several decoding algorithms, including least squares, 

ridge regression, a standard Kalman filter and the G-Kalman filter. In general, when 

estimating the position of the cursor, we found that the G-Kalman filter out-performed 

the other three decoding algorithms, followed next by the Kalman filter, then the ridge 

filter and finally the least squares model (Fig. 3-2A-B). For instance, for FMEA 

recordings, we found that ridge regression significantly improved the decoding 

performance when compared to the least squares model (p = 0.002, two-sided sign test), 

on average resulting in a median improvement of 71% (first quartile (Q1) = 34%, third 

quartile (Q3) = 109%). However, as expected, we did not observe a significant change (p 

= 0.50, two-sided sign test) when using ridge for AMEA-recorded activity (0% median 

improvement, Q1 = 0, Q3 = 1). This discrepancy likely reflects the benefit of using ridge 

regression and subselection for high-dimensional input spaces (i.e., FMEA) that exhibited 

multicollinearity among neural inputs and/or contained little or no tuned activity on some 
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channels. Consistent with this reasoning, we observed that the complexity parameter, λ, 

which was used to shrink the average size of the model coefficients, was significantly 

larger for FMEA data sets than for AMEA data sets (p < 0.007, Wilcoxon rank sum test). 

In addition, we found that for both AMEA and FMEA sessions, the standard Kalman 

filter significantly outperformed the ridge filter (p = 0.001, two-sided sign test)) (53% 

improvement (Q1 = 34, Q3 = 97)). This finding is in agreement with evidence from 

another study that showed that the Kalman filter outperformed the least squares filter 

when decoding trajectories from M1 ensembles (W. Wu et al., 2002), and likely reflects 

the benefit of exploiting velocity information (that is encoded by some PPC neurons and 

inferred via Equation 9) to dynamically estimate the changing position of the cursor (via 

Equation 8). 

 

Figure 3-2. Offline decoding performance for trajectory reconstructions. A, Single session R2 values for 

position estimation using the AMEA and fixed-depth multi-electrode array (FMEA) techniques. 

Performances of several models are compared in the bar chart, including least squares (LS), ridge 

regression, the Kalman filter, and the goal-based Kalman Filter (G-Kalman)). B, Average R2 

performances for 10 FMEA sessions and 10 AMEA sessions for each of the four models. Higher 

decoding performance for FMEA recordings relative to AMEA recordings when using Kalman filter 
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decoding models can likely be explained by the existence of stronger velocity-tuned neurons present for 

FMEA recordings. 

 

Previous neurophysiological studies have established that PPC neurons encode a reach 

plan toward an intended goal location in eye-centered coordinates (L. H. Snyder et al., 

1997; R. A. Andersen and C. A. Buneo, 2002; A. Gail and R. A. Andersen, 2006; R. Q. 

Quiroga et al., 2006). In addition, other studies have shown that PPC maintains a strong 

representation of the target location even during continuous control of a movement (J. 

Ashe and A. P. Georgopoulos, 1994; G. H. Mulliken et al., 2008). Therefore we tested 

whether information about the static target location could be extracted from PPC and 

used to improve the decoding accuracy of cursor position in our task. We found that the 

decoding performance was significantly improved when using the G-Kalman filter (p < 

1e-3, two-sided sign test), on average by 15% (median, Q1 = 9, Q3 = 24)), relative to the 

standard Kalman filter. This result demonstrates that significant goal information could 

be extracted from PPC, which was independent from the kinematic state of the cursor. 

Furthermore, this information was harnessed by the G-Kalman filter to consistently 

improve the estimate of the dynamic position of the cursor. It would be interesting to test 

the extent to which decoding performance can be improved if more accurate target 

information can be extracted from PPC (e.g., stronger target representations have 

generally been found in deeper regions of the IPS (G. H. Mulliken et al., 2008)). 

Therefore, we simulated the hypothetical situation in which the target position could be 

inferred perfectly from the neural activity by assuming that the initial target position was 

given and thereby fixed throughout the trial. This ideal case would result in an 

approximately twofold average increase in performance (98% median increase, Q1 = 52, 
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Q3 = 135) over the standard Kalman filter, theoretically obtaining R2 values of 0.83 ± 

0.12 (mean ± sd). Therefore a strong knowledge of the goal can provide valuable 

information that, when integrated into a state-space framework, significantly improves 

the ability to decode the dynamic state of the cursor. Example trajectory reconstructions 

for multiple target locations obtained using the G-Kalman filter as well as the ridge filter 

are illustrated in Figure 3-3, along with the monkey’s actual trajectories. Notice that the 

G-Kalman filter visibly out-performed the ridge filter, reconstructing paths that more 

closely followed the monkey’s original trajectory. 

 

Figure 3-3. Example offline trajectory reconstructions from 10 different test set trials during a single 

AMEA session. Actual trajectories as well as reconstructions obtained using both ridge regression and 

the G-Kalman filter are shown for each trial. Numbers along each trajectory indicate the temporal 

sequence (time steps are labeled every 80 ms) of the cursor’s path. Note the visible performance 

improvement obtained when using the G-Kalman filter compared to ridge regression. 
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 3.4.3 AMEA vs. FMEA decoding performance 

On average, trajectory reconstructions obtained using the 64-channel FMEA technique 

were significantly more accurate than those obtained using the 6-channel AMEA 

technique (R2 = 0.54 ± 0.10 and 0.39 ± 0.22 for FMEA and AMEA, respectively). 

However, we also sought to test how decoding performance varied as a function of the 

PPC ensemble size. In other words, we aimed to quantify the efficiency of decoding, on a 

per neural unit basis, for the FMEA and AMEA techniques. 

 

Figure 3-4A shows neuron-dropping curves for the single best FMEA and AMEA 

sessions, which plot R2 for decoding cursor position as a function of ensemble size. First, 

notice how the G-Kalman filter significantly outperformed the ridge filter (t-test, p < 

0.05). In other words, using the G-Kalman filter, fewer neural units were needed on 

average to obtain an R2 equal to that achieved by the ridge filter. Second, although both 

recording techniques ultimately achieved high decoding accuracy for these sessions 

(AMEA: R2 = 0.71 ± 0.03, FMEA: R2 = 0.65 ± 0.04), the gain in performance per neural 

unit was significantly higher for the AMEA session than for the FMEA session (e.g., for 

ensemble sizes ranging from 1 to 5 units (t-test, p < 0.05)). Decoding from just 5 single-

units using the AMEA technique, we were able to account for more than 70% of the 

variance (R2 = 0.71) in the cursor position. In comparison, the best FMEA session yielded 

an average R2 of 0.11 ± 0.12 using 5 neural units. By extrapolating the FMEA trend 

forward, it would require approximately 136 units for the FMEA technique to match the 

R2 of 0.71 achieved by the AMEA with only 5 units. 
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Figure 3-4. Neuron-dropping curves comparing AMEA and FMEA decoding efficiencies. A, Recordings 

from a single session showed significant decoding efficiency (R2/unit) advantages when using the AMEA 

technique compared to the FMEA approach. (Note this particular FMEA session contained 115 neural 

units.) B, These decoding efficiency differences were consistently observed when averaged across 

multiple sessions (10 AMEA, 10 FMEA sessions). It is important to note that extrapolations made for 

AMEA neuron-dropping curves were performed only for illustrative purposes and should not be 

considered as accurate estimates of R2 for ensemble sizes much larger than 5 neurons. Future AMEA 

studies will be necessary to collect data to confirm or deny such speculative AMEA projections. In 

contrast, meaningful conclusions can be deduced from extrapolated data for FMEA neuron-dropping 

curves since these projections are considerably more conservative. 

 

To verify that these single-session trends were representative of the decoding efficiency 

differences between AMEA and FMEA techniques in general, we averaged neuron 

dropping curves from 10 AMEA sessions and 10 FMEA sessions. Note that when 

averaging performances across all 10 FMEA sessions, the maximum possible number of 

neural units considered was constrained by an upper limit of 46, the smallest ensemble 

size, Ndf, of any of the 10 FMEA sessions we considered (i.e., in particular, the 46 neural 

units that contained the largest predictive power for a given session). As expected, 
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session-averaged neuron-dropping curves were shifted downward from the single best 

session curves due to variation in decoding performance across multiple sessions (Figure 

3-4B). Nonetheless, trends analogous to those reported for single best sessions in Figure 

3-2A were preserved after averaging across sessions. In particular, we observed 

significant differences in R2 performance between AMEA and FMEA groups for all 

ensemble sizes ranging from 1 to 5 neural units (t-test, p<0.05). On average, when 

decoding with 5 neural units, an R2 of 0.35 ± 0.24 was achieved using the AMEA 

technique while an R2 of 0.10 ± 0.13 was obtained using the FMEA approach. By 

applying a model fit to the FMEA curve, we projected that it would require 

approximately 27 neural units to reach an R2 of 0.71, which the AMEA approach 

achieved using 5 just neural units. These data show that the AMEA technique was 

substantially more efficient at extracting information from neural ensembles in PPC than 

the FMEA technique. In addition, we performed a more quantitative analysis of decoding 

efficiency by fitting Equation 15 to the FMEA and AMEA neuron dropping curves. The 

model fit yielded a decoding efficiency constant, z, which was z = 11.7 and z = 64.1, for 

the AMEA and FMEA traces, respectively. This result suggests that, on average, position 

information could be decoded approximately 6 times more efficiently from the AMEA 

population than from the FMEA implant. 

 

3.4.4 Reconstruction of behavioral and task parameters 

We also tested how well the G-Kalman filter could estimate several other behavioral and 

task parameters. Figure 3-5 illustrates a 4-second time course of position, velocity, and 

acceleration of the cursor as well as the target position, which were constructed by 
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concatenating segments from 9 test trials randomly selected from a single session. 

Superimposed onto the plot are the estimated values of these parameters, which were 

generated using the G-Kalman filter. Notice that the estimated values of position, velocity 

and target position followed their corresponding experimental values reasonably closely. 

As expected, estimation of acceleration from PPC activity was contrastingly less reliable, 

since physical measurements of acceleration tend to be comparably noisy due to the 

higher-frequency characteristic of acceleration. For this session, using the G-Kalman 

filter we found that PPC activity was capable of yielding R2 estimation accuracies of up 

to 0.71, 0.57, 0.25 and 0.64, for position, velocity, acceleration, and target position, 

respectively. On average, across all FMEA sessions, when using the G-Kalman filter we 

found that R2
position = 0.54 ± 0.10, R2

velocity = 0.32 ± 0.09, R2
acceleration = 0.08 ± 0.05, and 

R2
target = 0.40 ± 0.09. In comparison, for the 10 AMEA sessions we found that R2

position = 

0.39 ± 0.22, R2
velocity = 0.25 ± 0.18, R2

acceleration = 0.10 ± 0.08, and R2
target = 0.32 ± 0.21. 

(Note that two of the 5-neuron AMEA ensembles happened to contain very poor 

decoding power (i.e., R2 ≈ 0)). 
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Figure 3-5. Reconstruction of various trajectory parameters using PPC activity. Actual behavior and 

decoded estimates of position, velocity, acceleration and target position time series for 9 concatenated 

trials that were randomly selected from a single AMEA session. All estimates shown were generated 

using the G-Kalman filter. Alternating gray and white backgrounds denote time periods for different 

trials. The scale bar in the “X Position” panel depicts 80 ms duration. 

 

3.4.5 Lag Time Analysis 

The temporal encoding properties of PPC neurons have been studied before for 

continuous movement tasks (J. Ashe and A. P. Georgopoulos, 1994; B. B. Averbeck et 

al., 2005; G. H. Mulliken et al., 2008). Previously, we suggested that PPC neurons best 
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encode the changing movement direction (and velocity) with approximately zero lag time 

(G. H. Mulliken et al., 2008). That is, the firing rates of PPC neurons were best correlated 

with the current state of the movement direction, a property consistent with the operation 

of a forward model for sensorimotor control (M. I. Jordan and D. E. Rumelhart, 1992; D. 

M. Wolpert et al., 1995). Here, we test an extension of this hypothesis: at what lag time 

can the dynamic state be decoded best from PPC population activity? We decoded the 

state of the cursor shifted in time relative to the instantaneous firing rate measurement, 

with lag times ranging from -300 ms to 300 ms, in 30 ms steps (where negative lag times 

correspond to past movement states and positive lag times correspond to future 

movement states). (Note that since the prediction accuracy for acceleration was poor and 

the target position was stationary in time, results for those parameters are not included). 

Since firing rates were averaged over 80 ms bins, the instantaneous firing rate was 

assumed to be measured at the middle of a bin (i.e., 40 ms mid-point). In order to fairly 

combine results across sessions that had variable decoding performances, each session’s 

R2 values were normalized by the maximum R2 measured for that session (for both 

position and velocity). Figure 3-6 plots the temporal decoding functions (TDF) for 

position and velocity. The TDF for decoding velocity using both the ridge and G-Kalman 

filters peaked at an optimal lag time (OLT) of 10 ms, consistent with previous claims that 

PPC best encodes the current state of the velocity (G. H. Mulliken et al., 2008). The 

position of the cursor was best decoded slightly further into the future, at an OLT of 

approximately 130 ms using the ridge model and at 40 ms into the future using the G-

Kalman filter. Lastly, we combined position and velocity TDFs to form a combined state 

vector. The OLTs that the two models yielded for the combined position-velocity state 
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vector were 40 ms and 70 ms, for the ridge and G-Kalman filter, respectively. These 

temporal decoding results suggest that the current or upcoming state of the cursor could 

be best extracted from the PPC population using the G-Kalman filter.  

 

A representation of the current state of the cursor could not be derived solely from 

delayed passive sensory feedback signals in PPC (proprioceptive delay > 30 ms, visual 

delay > 90 ms, i.e., OLT<-30 ms (M. Flanders and P. J. Cordo, 1989; R. C. Miall and D. 

M. Wolpert, 1996; D. L. Ringach et al., 1997; N. Petersen et al., 1998)), nor is such a 

representation compatible with the generation of outgoing motor commands (M1 neurons 

generally lead the state of the movement by more than 90 ms, i.e., OLT > 90 ms (J. Ashe 

and A. P. Georgopoulos, 1994; L. Paninski et al., 2004)). Instead, this dynamic 

representation of the state of the cursor in PPC may best reflect the operation of a forward 

model for sensorimotor control, which relies upon efference copy signals received from 

frontal areas and a forward model of the movement dynamics to estimate the current and 

upcoming state of movement. 

 

Figure 3-6. Temporal decoding functions for position, velocity, and position-velocity state vectors when 

decoding with the ridge filter (A) and the G-Kalman filter (B). 
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3.5 Discussion 

In this study, we showed that 2D trajectories of a computer cursor controlled by a hand 

movement could be reliably reconstructed from the activity of a small ensemble of PPC 

neurons. We were able to account for more than 70% of the variance in cursor position 

when decoding offline from just 5 neurons. This high decoding efficiency (R2 per neural 

unit) likely reflects the ability to reliably isolate neurons in PPC using the AMEA 

recording technique. Consistent with findings from M1 and PMd decoding studies, we 

verified that state-space models (i.e., Kalman filter variants) significantly outperformed 

feedforward linear decoders (e.g., least squares, ridge regression) (W. Wu et al., 2002). In 

addition, by incorporating information inferred about the goal of the movement (i.e., 

target position) into the state-space of the Kalman filter, we were able to significantly 

improve the accuracy of the dynamic estimate of cursor position. 

 

3.5.1 Considerations for decoding trajectories from PPC 

Offline reconstruction of 2D trajectories from PPC activity has been reported in an earlier 

study using FMEA recordings (J. M. Carmena et al., 2003). In one version of their task, 

monkeys used a pole to guide a cursor to random target locations on a computer screen. 

Using a least-squares model, Carmena and colleagues decoded from 64 neural units in 

PPC (multi and single-units) and concluded that they could reconstruct cursor position 

with relatively poor accuracy using PPC activity (R2
pos = 0.25, single session). In 

addition, they did not observe a significant improvement in R2 when using a Kalman 

filter instead of a least squares model. For our FMEA recordings, we found that 
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comparable performance could be achieved on average using linear feedforward models 

(Fig. 3-2B), however a single FMEA session was capable of yielding an R2 of 0.46. 

Furthermore, we found that position could be decoded with much higher accuracy using 

the G-Kalman filter, achieving an average R2 of 0.54 over 10 FMEA sessions, and up to 

0.71 during a single FMEA session. Moreover, when recording from only 5 single-units 

using the AMEA technique, we obtained very accurate trajectory reconstructions (up to 

R2 = 0.71) that approached the accuracy found for M1 ensembles (R2 = 0.73 for 33-56 

single and multi-units) reported by Carmena and colleagues. Therefore, in contrast to the 

previous study, we conclude that 2D trajectories can be reconstructed very well using 

PPC activity, and further propose that AMEA techniques may improve decoding 

efficiency for recording from PPC ensembles. 

 

The G-Kalman filter we present here is similar conceptually to state-space decoding 

algorithms reported by other groups that make use of target-based information. For 

example, Yu and colleagues recently described a linear-Gaussian state-space framework 

in which the process model of Equation 6 (i.e., ‘trajectory model’) is effectively 

comprised of a mixture of trajectory models, each of which is tailored for a distinct target 

location belonging to a predetermined set of targets (B. M. Yu et al., 2007). Another 

recently proposed state-space model described a solution for the time-varying command 

term, uk, of the process model of Equation 6 (L. Srinivasan et al., 2006) that is 

conditioned upon the inferred target location, and which assumes a known arrival time 

for the cursor to reach the target. These methodological advances suggest that goal 

information extracted from PPC could be used to improve the decoding performance of a 
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standard state-space model. Here we confirm this hypothesis using a simpler model, the 

G-Kalman filter, which uses a single process model and does not assume that the target 

arrival time is known. 

 

The G-Kalman filter uses information about the static target location inferred from PPC 

spiking activity to improve the estimate of the dynamic state of the cursor. Interestingly, a 

recent neurophysiological study provided evidence that the local field potential (LFP) 

signal in PPC provides another source of information about the intended endpoint of an 

impending reach (H. Scherberger et al., 2005). Therefore, future algorithms that 

incorporate goal information from the LFP into an aggregate neural observation, both 

during preparation and execution of the movement, may further improve the accuracy of 

the dynamic estimate of the state of the limb. 

 

3.5.2 Decoding efficiency: AMEA vs. FMEA 

The ability to accurately decode trajectories using only five neurons underscores the 

contrasting decoding efficiency of AMEA and FMEA techniques. Several factors might 

account for this discrepancy in efficiency. During insertion, the placement of electrodes 

using the FMEA technique is effectively random with respect to the probable location of 

a neuron(s). In contrast, AMEA recordings enable the experimenter to ‘optimally’ 

position the depth of every electrode using electrophysiological feedback. While we did 

not intentionally target cells that contained specific or desirable tuning properties, we did 

optimize several other factors using the AMEA technique: 1) we optimized extracellular 

isolation quality systematically, maximizing a given channel’s SNR and importantly, 
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facilitating spike sorting, 2) when recording from PRR neurons that were embedded up to 

8-10 mm in the convoluted bank of the IPS, we were able to consistently target gray 

matter and presumably cortical layers that contained task-related neurons. Note, this is in 

contrast to recordings made in surface areas of cortex (e.g., precentral gyrus of M1) 

where the depth of targeted neurons, for example layer 4 pyramidal cells, is considerably 

less variable and can be targeted more reliably, 3) we lowered electrodes into a ‘mapped’ 

region of the recording chamber, known from prior sessions to contain task-related 

neurons. 

 

Since we performed a single FMEA implant some caution is advised when generalizing 

our FMEA results to future additional FMEA implants in PPC as there may be 

considerable variability in the yield obtained from different FMEA implantations. 

Nonetheless, we suggest that it is unlikely, on average, that the decoding efficiency of 

FMEAs will exceed the decoding efficiency achievable using AMEAs, for which the 

signal quality of each electrode can be theoretically maximized. Furthermore, we propose 

that the high decoding efficiency of AMEAs suggests that AMEAs may provide a less 

invasive alternative for extracting information from multiple electrodes, especially when 

recording from deeper cortical and subcortical structures. In addition, by modifying the 

SpikeTrack algorithm to isolate specific neurons that are tuned to task-relevant 

parameters and also by miniaturizating AMEA microdrives to enable chronic 

autonomous positioning of electrodes, we anticipate that the decoding efficiency gap 

between AMEAs and FMEAs reported here will be widened, further favoring AMEA 
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over FMEA approaches for neural prosthetic applications (J. G. Cham et al., 2005; Z. 

Nenadic and J. W. Burdick, 2005; E. A. Branchaud et al., 2006). 

 
 

3.6 Supplemental Material 

3.6.1 Ridge shrinkage and the effective degrees of freedom 

Here we give a more thorough description of how ridge regression shrinks the model 

coefficients, and recount a rough derivation of the effective degrees of freedom, Ndf, 

based largely on a discussion originally presented in (T. Hastie et al., 2001). 

 

The singular value decomposition (SVD) of the centered neural input matrix is given by

         ,                      (S1) TUSVR =

where U and V are orthogonal matrices containing the singular vectors and S is a diagonal 

matrix containing the nonzero singular values of R, where s1 ≥ s 2≥ … ≥ s n≥ 0. Using 

Equation S1, the least squares fitted estimate, LSX̂ , can also be expressed as a projection 

of X onto the orthonormal basis U, that is 
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where uj are the columns of U. Therefore, in addition to performing the orthogonal 

projection as the least squares estimate does, ridge shrinks each coordinate of the 

orthogonal projection of X by the factor 
λ+2

2

j

j

d
d

. Thus, the basis vectors that have the 

smallest receive the largest amount of shrinkage, which notably correspond, to 

principal component directions that have the smallest sample variance. Hastie and 

colleagues then define the effective degrees of freedom, Ndf, as the trace of the projection 

matrix, that is 
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This measure provided us with a convenient way to quantify the effective complexity of 

the ridge model for each neural ensemble. In general, it provides a simple, but 

mathematically sound method for determining a relevant (in a linear sense) set of neural 

inputs to be used for training a variety of decoding algorithms for a neural prosthetic 

application. 

 

3.6.2 Discrete G-Kalman filter two-step estimation 

Estimation using the Kalman filter follows a well-known two-step recursive process, 

consisting of an a priori time prediction followed by an a posterior measurement update. 

This iterative prediction (Equation S5) and update process (Equation S6) are summarized 

below: 
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where W and Q are covariance matrices for the zero-mean Gaussian noise processes 

belonging to the process and observation models (i.e., Equations 6 and 7), respectively. 

and are covariance matrices for the a priori and a posterior estimate errors, 
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The Kalman gain matrix of Equation S6, Kk, is optimal in the sense that it minimizes the 

a posterior error covariance . A derivation of the Kalman gain is not provided here but 

can be obtained by minimizing the trace of (which is equivalent to the MSE of the a 

posterior estimate) (P. S. Maybeck, 1979). Intuitively, the magnitude of the Kalman gain 

depends proportionally on the a priori error covariance  (i.e., the uncertainty in the a 

priori estimate), and inversely proportionally on the measurement noise Q (A. Gelb, 

1974). Two limiting cases give insight into how the Kalman gain is adjusted at each time 

step to optimally combine the contributions of the process and observation equations. 

When uncertainty in the a priori estimate is very low,  and consequently Kk will 

approach zero, and therefore the a posterior estimate will rely entirely on the a priori 

process estimate, ignoring any measurement innovation ( ) altogether. 

Conversely, when the measurement error, Q, is very small, Kk approaches

kP

kP

−
kP

−
kP

R −− kk xHˆ

1−H , and as a 



 114

result the a posterior estimate relies more heavily on the measurement innovation (G. 

Welch and G. Bishop, 2006).  

 

3.6.3 Discrete G-Kalman filter stability 

Figure S3-1A-B illustrates that both the Kalman gain, Kk, and the covariance matrix, Pk, 

quickly converge (via an exponential decrease) toward a stable asymptote by changing 

progressively less from one time step to the next (k to k+1) over the course of a trial. In 

Figure S3-1C, we plotted all of the coefficients in the Kalman gain matrix associated with 

position or velocity as function of time in the trial, again illustrating how Kk stabilizes 

quickly to steady-state values, in less than 1 second. A similar plot for the acceleration 

and target gain coefficients is illustrated in Figure S3-1D. 

 

Note that during the early phases of a trajectory, it is probable that the G-Kalman filter 

does not optimally balance the contributions of the process and observation models, 

potentially resulting in somewhat unstable estimates. However, based on our cross-

validated reconstruction results, we did not observe any substantial decrease in 

performance during these periods in the trajectory, and instead found these early 

estimates to be comparably reliable to those in later periods. In future experiments, we 

expect that a continuous pursuit task (in which multiple trajectories are executed in series 

to a sequence of randomly presented targets) will result in longer periods of continuous 

movement, (W. Wu et al., 2002; T. Pistohl et al., 2008) and undoubtedly enable the 

Kalman gain and covariance to operate at their steady-state values for a larger percentage 

of the time. 
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Figure S3-1. Stability analysis for G-Kalman filter. A, Plot of Frobenius norm of difference between 

consecutive Kalman gain matrices, illustrating that the Kalman gain changes exponentially less with 

elapsed time in the trajectory. B, Similarly, the covariance matrix also changes exponentially less with 

time (same format as A). C-D, Temporal evolution of Kalman gain coefficients for position and velocity 

(C) and target position and acceleration (D), showing that these coefficients move rapidly toward their 

steady-state values (denoted as ‘ss’). 
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Chapter 4 

 

USING PPC TO CONTINUOUSLY CONTROL A NEURAL PROSTHETIC  

 

4.1 Summary 

High-level cognitive signals in the posterior parietal cortex (PPC) have previously been 

harnessed by a brain-computer interface (BCI) to predict the endpoint of a monkey’s 

intended reach (S. Musallam et al., 2004). However, to date it has not been demonstrated 

that PPC can be used independently for continuous control of an end effector. Here we 

tested whether we could decode trajectories during closed-loop brain control sessions, in 

which the real-time position of the cursor was determined solely by a monkey’s neural 

activity in PPC. The monkey learned to perform brain control trajectories at 80% success 

rate (for 8 targets) after just 4-5 sessions. This improvement in behavioral performance 

was accompanied by a corresponding enhancement in neural tuning properties (i.e., 

increased tuning depth and coverage of encoding parameter space) as well as an 

increase in offline decoding performance of the PPC ensemble. Therefore, we show that 

PPC neurons can be harnessed to continuously update the state of a cursor during goal-

directed movements that rely upon closed-loop visual feedback, thus demonstrating the 

efficacy of a PPC prosthesis for reading out the trajectory of an end effector. 
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4.2 Introduction 

A ‘brain-computer interface’ (BCI) is a communication bridge by which recorded neural 

signals are interpreted to control an artificial device. One clinical application of this 

technology is the development of a cortical prosthesis for motor control, which would 

allow paralyzed patients to physically interact with their environment. Though unable to 

actually move their limbs, paralyzed patients still have the ability to think about moving. 

A BCI could harness these thoughts and allow them to control a physical device, such as 

a robotic arm. Several research groups have made significant progress in this area using 

activity from neurons recorded primarily in the motor cortex, an area of the brain that 

encodes low-level movement execution commands (P. R. Kennedy et al., 2000; M. D. 

Serruya et al., 2002; D. M. Taylor et al., 2002; J. M. Carmena et al., 2003; K. V. Shenoy 

et al., 2003; S. Musallam et al., 2004; P. G. Patil et al., 2004; J. R. Wolpaw and D. J. 

McFarland, 2004; L. R. Hochberg et al., 2006; G. Santhanam et al., 2006). These 

commands are highly specific for limb movement since they are known to innervate 

motoneurons in the spinal cord. In contrast, we explored the use of higher-level 

intentional signals from the posterior parietal cortex (PPC) as a source of cognitive 

control signals for a neural prosthetic. Neurons in PPC are more involved in the planning 

and organization of movement, given sensory information about the state of the world. 

For example, when planning an intended reach, neurons in the parietal reach region 

(PRR) represent the endpoint of an intended reach in visual, eye-centered coordinates (A. 

P. Batista et al., 1999).  
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In this study we show, for the first time, that movement paths, or trajectories, can be 

decoded in real time using neural activity recorded exclusively from PPC. That is, we 

developed decoding algorithms to extract movement trajectories from the monkey’s 

thoughts, successfully navigating a cursor to different targets on a computer screen. 

Previously, Carmena and colleagues decoded trajectories offline and during closed-loop 

brain control trials from ensembles in multiple brain areas including PPC, primary motor 

cortex (M1), premotor cortex (PMd) and primary somatosensory cortex (S1) (J. 

Wessberg et al., 2000; J. M. Carmena et al., 2003). However, as discussed in Chapter 3 

they reported relatively poor offline reconstruction performance for their PPC sample, an 

unexpected result based upon previous encoding findings. Therefore, it is unlikely that 

their closed-loop brain control performance relied strongly upon PPC activity relative to 

signals from other areas (e.g., M1), which they reported provided more decoding power 

than PPC. Thus, our data represent the first evidence that PPC ensembles can be 

harnessed independently for real-time continuous control of a cursor. Interestingly, we 

observed strong learning effects in PPC during brain control, which emerged in parallel 

with an increase in behavioral performance over a period of several days.  
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Figure 4-1. The goal of a brain-computer interface for trajectory control is to construct an “optimal” 

estimator that predicts the state of the cursor (or other effector) at each time step, X, given a noisy 

measurement of the neural response, R.  

 

4.3 Materials and methods 

4.3.1 Animal preparation 

One male rhesus monkey (Macacca mulatta; 7 kg) was used in this study. All 

experiments were performed in compliance with the guidelines of the Caltech 

Institutional Animal Care and Use Committee and the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals. 
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4.3.2 Neurophysiological recording 

We recorded multi-channel neural activity from one monkey in the medial bank of the 

intraparietal sulcus (IPS) and area 5. We implanted two 32-channel microwire arrays (64 

electrodes) in one monkey (1st array 6-8 mm deep in IPS, 2nd array 1-2 mm deep in area 

5). Chronically implanted array placements were planned using magnetic resonance 

imaging (MRI) and carried out using image-guided surgical techniques to accurately 

target the desired anatomical location and to minimize the extent of the craniotomy 

(Omnisight Image-guided Surgery System, Radionics, Burlington, MA). For the 

remainder of this report, we will refer to a chronic microwire array as a fixed-depth 

multi-electrode array (FMEA). Spike-sorting was performed online using a Plexon multi-

channel data acquisition system and later confirmed with offline analysis using the 

Plexon Offline Sorter. It should be noted that all neural units reported using the FMEA 

technique consisted of a combination of single and multi-unit activity. 

 

4.3.3 Experimental design 

The monkey was trained to perform a 2D center-out joystick (J50 2-axis joystick, ETI 

Systems, Fort Worth, TX) reaction-time task, in which it was required to guide a cursor 

on a computer screen to illuminated peripheral targets. After several weeks of training, 

the monkey was highly skilled at the task and was performing regularly above 90% 

success rate. Experimental sessions consisted of a joystick training segment followed by 

a closed-loop brain control segment. The central fixation, 2D center-out joystick task was 

described comprehensively in Chapter 3. 

 



 124

During brain control sessions, we disconnected the joystick from the cursor and 

attempted to decode the intended trajectory of the monkey using only his brain signals. 

The cursor was initially placed inside the central green target circle to start each brain 

control trial. The monkey was again required to look at a centrally located red circle to 

initiate the trial, but this time subsequent positions of the cursor were determined by a 

decoding model operating only on the neural signals. Cursor position was updated on the 

computer screen approximately every 100 ms until the cursor was held in the target circle 

(9 deg) for more than 100 ms. The trial was aborted if the monkey moved his eyes, or 10 

s elapsed before successfully reaching the target. 

 

4.3.4 Closed-loop brain control analysis 

We assessed behavioral performance during brain control using two different measures. 

First, we computed the smoothed success rate as a function of trial number (trial outcome 

point process was convolved with Gaussian kernel, sd = 30 trials), as well as the average 

daily success rate for each of 14 sessions. Second, we computed the average time 

necessary for the monkey to guide the cursor into the target zone successfully for each 

session, which was measured from target cue onset to 100 ms after the cursor entered the 

target zone. To calculate a chance level for success rate, we randomly shuffled firing rate 

bin samples for a given neural unit recorded during brain control, effectively preserving 

each neural unit’s mean firing rate but breaking its temporal structure. Chance trajectories 

were then generated by simulation, iteratively applying the actual ridge filter to the 

shuffled ensemble of firing rates to generate a series of pseudo-cursor positions. Each 

chance trajectory simulation was allowed up to 10 seconds for the cursor to reach the 
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target zone for at least 100 ms, the same criteria used during actual brain control trials. 

This procedure was repeated hundreds of times to obtain a distribution of chance 

performances for each session, from which a mean and standard deviation were derived. 

 

4.4 Results 

After building a decoding algorithm to successfully reconstruct trajectories offline, we 

tested whether we could continuously control a cursor in real-time using a ridge filter that 

operated directly on the monkey’s neural activity. We decided to use the ridge filter 

initially because it provides a simple framework (i.e., feedforward, one-to-one linear 

mapping between neural activity and a single parameter, the 2D position of the cursor) 

that is convenient for systematically assessing the learning effects that occur in PPC. The 

ridge filter was trained for each session using data recorded during the joystick training 

segment, and remained fixed throughout the brain control segment of each session. 

Typically, the monkey performed several hundred brain control trials per session. 

 

4.4.1 Behavioral performance 

We found that the monkey was able to successfully guide the cursor to the target using 

brain control, at a level of performance much higher than would be expected by chance. 

Figure 4-2A illustrates the monkey’s behavioral performance for the first brain control 

session, which was fair. The 30-trial moving average of success rate varied up and down 

during the first session, but on average was 32% for 8 targets, which was significantly 

higher than the chance level calculated for that session (chance = 5.2 ± 2.3 %, mean ± 

sd). However, after just three additional sessions, the monkey’s performance had 
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improved substantially, reaching a session-average success rate of 80%, and stabilizing 

around that level for several days (Fig. 4-2C). For instance, during session 6 the session-

average success rate was 80% and 30-trial average climbed as high as 90% during certain 

periods of the session, performing far above chance level (Fig. 4-2B). Figure 4-2C also 

illustrates the median time needed for the cursor to reach the target for each of the 14 

brain control sessions. Concurrent with an increase in success rate during the first several 

sessions, we observed a complementary decrease in the time-to-target. For instance, 

during the first session the median time-to-target was slightly more than 3 seconds and by 

the fourth session it had dropped to 883 ms. As expected, these two parameters were 

strongly anti-correlated (ρ = -0.96, p < 1e-7, Pearson correlation coefficient). Both an 

increase in success rate and a concomitant decrease in the time-to-target showed that the 

monkey was able to learn to proficiently control the cursor using visual feedback of the 

decoded cursor position on the computer screen. Remarkably, these learning mechanisms 

became evident over a brief period of 3-4 days. Improvements in brain control 

performance began to saturate after several days and remained high until the recording 

quality of the FMEA implant started to degrade. 
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Figure 4-2. Brain control performance improvement over multiple sessions. A, 30-trial averaged success 

rate during the first closed-loop, brain control session. Dashed line denotes average success rate for the 

session and dotted line denotes the chance level calculated for that session. B, Improved brain control 

success rate measured during session 6, after learning had occurred. C, After several days, behavioral 

performance improved significantly. Session-average success rate increased more than twofold and the 

time needed for the cursor to reach the target decreased by more than twofold in 4 sessions. 

 

Several example successful trajectories made by the monkey during brain control are 

illustrated in Figure 4-3. Brain control trajectories for which the monkey guided the 

cursor rapidly and directly into the target zone are illustrated in Figure 4-3A. Figure 4-3B 

shows examples of trajectories that initially headed away from the target and required 

correction in order to reach the target. The ability of the monkey to rapidly adjust the path 
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online suggests that he learned to modulate his neural activity in order to steer the cursor 

to the goal using continuous feedback of the visual error. 
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Figure 4-3. Examples of successful brain control trajectories during session 8, illustrating trajectories 

directed toward the target (A) as well as trajectories that initially headed off-course and therefore 

required online correction (B). Brain control targets were made approximately twice as large as target 
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stimuli presented during the training segment (i.e., during joystick trials) in order to allow the monkey to 

perform the task successfully during early brain control sessions. So that behavioral performance and 

learning effects could be compared fairly across multiple sessions, we kept the target size constant, even 

after performance had improved. 

 

4.4.2 Brain control learning effects 

Changes in neural activity were monitored in parallel with behavioral performance trends 

by analyzing PPC population activity recorded during each session’s joystick training 

segment, prior to the brain control segment. Specifically, we averaged the learning effects 

across all neural units that were included in a session’s ensemble. Importantly, when 

defining the PPC ensemble used for offline decoding assessment, we did not assume that 

we recorded from exactly the same ensemble of neural units from session to session 

(though this probably occurred to some extent) because: 1) we did not continuously track 

the spike waveforms 24 hours per day so as to ensure that neurons were identical and 2) it 

is difficult to robustly determine to what extent multi-unit activity consistently reflected 

the same combination of single-units from day to day. Instead, for each session we chose 

to include only those neural units whose spike waveform signal-to-noise ratio (SNR) 

exceeded some arbitrary threshold value (see Methods) when decoding offline. In 

general, the average SNR value for an ensemble (2.7 ± 0.08) as well as the number of 

single-units (5.9 ± 2.9) did not vary significantly over the course of 14 brain control 

sessions, nor did we any observe any significant linear trend in their respective values 

(The slopes of line fits for these two trends were not significantly different from zero, that 

is the 95 % confidence intervals (CI) of the slope included zero). 
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We observed noteworthy changes in the neural activity that demonstrated strong evidence 

of learning in the PPC population. First, we calculated the average R2 for decoding cursor 

position from the ensemble (offline analysis using ridge filter), which is illustrated for all 

14 sessions in Figure 4-4A. Notice that the R2 trend approximately followed the trend for 

behavioral performance, increasing shortly after the first brain control session and 

leveling off after several more sessions. The maximal session R2 using ridge regression 

was 0.64 (or R2 = 0.80 if G-Kalman had been used), more than doubling the decode 

performance obtained on the first day of brain control, which had an R2 of 0.25. The 

offline decoding R2 was strongly correlated with online brain control performance on a 

session-by-session basis (ρ = 0.60, p = 0.02, Pearson correlation coefficient). This result 

suggests that when presented with continuous visual feedback about the decoded position 

of the cursor during brain control, PPC neurons were able to collectively modify/improve 

their encoding properties (as evidenced by an increase in offline decoding performance), 

effectively making more information available to the ridge filter for controlling the cursor 

during subsequent brain control sessions. 
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Figure 4-4. PPC learning effects due to brain control (offline analyses).  A, Offline decoding 

performance illustrates that the PPC population was able to increase the amount of information that 

could be decoded using ridge regression. The tuning properties of the population also showed significant 

learning trends over 14 brain control sessions. Both the Z-statistic of the tuning depth (A) and the 

standard deviation of the preferred position (B) for the ensemble increased significantly over 14 sessions. 

The average ensemble tuning curve overlap also increased significantly during brain control learning, 

however to a lesser extent (B). 

 

In addition to assessing decoding performance while the monkey learned to perform 

under brain control conditions, we investigated the trends of various tuning properties of 

the PPC population that might have been responsible for the increase in R2. When 
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assessing changes in tuning, we included only the most informative neural units in the 

ensemble as determined by the effective degrees of freedom provided by the ridge model 

(i.e., the subset of the original ensemble that contributed most significantly during offline 

and online decoding, Ndf = 77 ± 20 neural units, mean ± sd). For each joystick training 

session, we constructed a 2D position tuning curve for each neural unit in the ensemble; 

using firing rates belonging only to the most recent lag time bin. (Note that similar results 

were obtained for all three lag time bins, but strongest tuning was typically observed for 

the first lag time bin). X and Y cursor positions were discretized into a 6 x 6 array of 36 

bins, extending ±10 deg in the X-Y plane. Accordingly, each X-Y bin contained a 

distribution of firing rate samples corresponding to sample cursor positions measured at a 

particular 2D position (typically > 50 samples). First, to quantify the tuning depth, we 

performed a non-parametric Wilcoxon rank sum test (normal approximation method) 

using the two firing rate bin distributions that contained the maximum and minimum 

mean values. The normal Z-statistic that resulted from this test was defined as the tuning 

depth of the position tuning curve. Using this metric, we then computed the ensemble’s 

average tuning depth for each session. We found that tuning depth increased most 

substantially over the first 8 brain control sessions (by approximately 70%) and 

approximately leveled off for the remaining sessions. When fitting a line to this 

increasing trend, we found that the slope was significantly larger than zero (m = 0.09, 

95% CI : 0.04, 0.14). An increase in ensemble tuning depth can be interpreted as an 

expansion of the firing rate dynamic range, boosting the effective gain of the ensemble 

for the purpose of encoding position (Fig. 4-4A). Second, we quantified the spread of 2D 

tuning for the PPC population by calculating the sd of the preferred positions of all neural 
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units in an ensemble. The preferred position of a neural unit was defined as the X and Y 

position that corresponded to the bin with the maximum average firing rate. To obtain a 

scalar measure for dispersion, we averaged the sd of the X and Y preferred position 

distributions. Similar to the trend we observed for tuning depth, we found that the 

average spread of preferred positions increased significantly throughout the brain control 

sessions (Fig. 4-4B), ultimately to about 35% above its starting level). The slope of a line 

fit to this trend was also significantly larger than zero (m = 2.11, 95% CI : 1.18, 3.04). 

This increase in the spread of tuning by the PPC population presumably enabled the 

monkey to control the cursor over an increasingly broader range of 2D space on the 

computer screen during brain control. Third, we tracked the tuning curve overlap between 

all possible pairs of neural units in an ensemble, which were then averaged to give a 

scalar ensemble tuning overlap value. We found that the ensemble tuning overlap 

increased only slightly (by approximately 6%, Fig. 4-4B), but significantly, over 14 brain 

control sessions (m = 0.004, 95% CI : 0.002, 0.007). This increase in ensemble tuning 

overlap suggests that the PPC population code became slightly more redundant during 

brain control learning.  

 

Summarizing these trends in position tuning, we found that both the tuning depth and 

tuning spread of the ensemble increased substantially during brain control. Importantly, 

both tuning depth and tuning spread showed strong correlations with R2 decoding 

performance, which were highly significant (ρ = 0.71, p = 0.004 and ρ = 0.73, p = 0.003, 

respectively, Pearson’s linear correlation coefficient), and consequently with brain 

control performance as well (ρ = 0.68, p = 0.007 and ρ = 0.61, p = 0.02, respectively). 
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These correlation results suggest that adjustment of these particular tuning properties was 

necessary in order for the ensemble to improve offline decoding performance, and 

ultimately for the monkey to improve his performance during brain control. Tuning 

overlap was also correlated with R2 performance (ρ = 0.62, p = 0.02). (Note however that 

tuning overlap showed a weaker (and less significant) correlation with brain control 

performance (ρ = 0.46, p = 0.09)). An increase in tuning depth probably reflected the fact 

that more neural units became significantly tuned over the course of the 14 brain 

sessions, thereby increasing the likelihood of overlapping tuning curves within the 

ensemble. However, it is also possible that the population deliberately broadened the 

average width of a typical neural unit’s tuning curve. Unfortunately, this possibility was 

difficult to evaluate with our data as positional tuning curves generally comprised a 

variety of functional forms, including planar, single-peaked, and occasionally multi-

peaked representations. Future studies will need to address the extent to which 

redundancy in the population arises due to an increase in the percentage of tuned neural 

units in the ensemble vs. a broadening of the tuning curves of those constituent neural 

units. 

 

Finally, it is unlikely that the improvement in R2 performance and enhanced ensemble 

tuning was trivially due to a sudden increase in newly appearing neurons that happened to 

have stronger tuning properties than previously recorded ensembles. First, during joystick 

sessions prior to the initial brain control session, the offline R2 performance achieved 

using the ridge filter fluctuated up and down from day to day, but typically fell within a 

limited range. For example, the distribution of performances for the 7 sessions prior to 
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beginning brain control was R2 = 0.27 ± 0.03 (mean ± sd). Secondly, as mentioned 

above, the number of single-units and the session SNR did not change significantly 

during brain control. Finally, we did not observe a significant correlation between R2 and 

the session-averaged SNR (ρ = 0.28, p = 0.33). Therefore, the most reasonable 

interpretation of the substantial improvement in decoding performance we observed is 

that the information content of the PPC ensemble increased due to plasticity effects 

characterized by the changes in tuning we reported, and did not occur by the sudden 

chance appearance of new, tuned neurons at the tips of our electrodes. 

 

4.5 Discussion 

In this study, we showed for the first time that PPC can be used independently to control 

a cursor in real-time for a neural prosthetic application. Furthermore, we observed 

significant and rapid learning effects in PPC during brain control, which enabled the 

monkey to substantially improve behavioral performance over several sessions. 

 

4.5.1 Learning to control a cursor using continuous visual feedback 

Operant conditioning of neurons in the primary motor cortex was originally pioneered in 

the 1970s, whereby investigators were able to condition the tuning of individual neurons 

by directly manipulating the reward the animals received for different responses. (E. E. 

Fetz, 1969; E. M. Schmidt et al., 1978). More recently, M1 population learning effects 

have been reported while monkeys learned to perform closed-loop brain control 

trajectories (D. M. Taylor et al., 2002; J. M. Carmena et al., 2003; M. A. Lebedev et al., 
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2005). To date however, there has been little if any emphasis placed on learning effects 

that occur in PPC during neural prosthetic applications. 

 

Learning effects in PPC became evident quite early during brain control sessions, more 

than doubling the offline decoding performance (R2) of the population after 5-6 sessions. 

Studies in M1 have reported brain control learning effects of comparable magnitude to 

the R2 changes we observed here, however, these changes typically occurred over the 

course of 20 sessions or more (D. M. Taylor et al., 2002; J. M. Carmena et al., 2003). In 

particular, Carmena and colleagues reported significant learning effects in multiple 

cortical areas, including PMd, primary somatosensory cortex (S1) and supplementary 

motor area (SMA) during brain control. However, they did not report any change in R2 

decoding performance for parietal cortex. Instead, they reported relatively small changes 

(approximately 25-30 % increase over 14 sessions) in the tuning depth of parietal neurons 

as compared to motor cortex cells which approximately doubled (100% increase) their 

tuning depth over the same time period. Therefore, limited conclusions can be drawn 

about PPC learning from their data, which suggest that only minor learning effects 

occurred in PPC during brain control. In contrast, our data suggest that substantial 

learning can occur in PPC over the course of just several brain control sessions (e.g., R2 

more than doubled and tuning depth increased by roughly 70%). The discrepancy in 

learning evidence between these two studies may reflect the poor quality of the PPC 

sample used in the Carmena study relative to samples obtained from other brain areas 

from which they recorded. As a result, brain control estimates of cursor position in their 

study may have relied more heavily upon contributions from areas other than PPC (e.g., 
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M1), and thus learning was consequently driven more strongly in those areas. Secondly, 

Carmena and colleagues did not control for eye position in their study. Therefore, it is 

unclear how eye position or a plan to make a saccade might have influenced neural 

activity in PPC. Finally, the extent to which plasticity occurs in different brain areas 

during brain control conditions remains an important direction for future experiments. 

We expect, based on our findings here and PPC’s known functional role in combining 

visual and motor representations, that PPC will be particularly well-suited to serve as a 

target for a prosthesis that relies upon visually-guided feedback for continuous control 

and error-driven learning. 
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Chapter 5 

 

CONCLUDING REMARKS 

 

The preceding chapters describe the key contributions from my thesis research. In the 

following remarks, I will summarize the significant contributions of my findings and 

highlight interesting questions to be addressed in future studies. 

 

5.1 Encoding properties of PPC neurons during online control of movement 

5.1.1 Summary of significant findings 

PPC is a critical node for the online control of movement. The information theoretic 

analysis of Chapter 2 indicates that the population of neurons in PPC is largely 

responsible for monitoring the current state of the movement during goal-directed arm 

movements. This internal representation of the instantaneous state of the effector is not 

compatible with a passive sensory representation of feedback originating from muscle 

spindles or the retinae, nor is it probable that these signals represent feedforward motor 

commands that causally drive the next state of movement. Instead, such a dynamic 

encoding scheme is in agreement with PPC serving as an internal forward model, which 

derives the expected state of the effector from knowledge of recently issued motor 

commands and the previous state of the effector. These data represent the first 

neurophysiological evidence that a forward model of the arm exists in the brain. 

Secondly, the application of information theory to the study of temporal encoding 
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properties of motor parameters in non-human primates is relatively new, and has 

previously been applied only in M1 (L. Paninski et al., 2004). 

 

The spatiotemporal analysis of Chapter 2 demonstrates that the tuning properties of PPC 

neurons reflect rather simple computational primitives. That is, for our task the 

movement angle STTFs do not reflect complex paths in space but instead encode 

straight-line trajectories. We used a variety of quantitative tools to assess the structure of 

these movement angle STTFs, including preferred direction and curvature metrics, as 

well as SVD analyses to assess separability. These methods have not been applied 

previously for assessing space-time tuning properties of PPC neurons during goal-

directed arm movements. In the future these basis function-like representations may 

prove useful for theoretical studies aimed at building network-level models of PPC 

computation during online sensorimotor control. 

 

5.1.2 Directions for further investigation 

While the temporal encoding properties of movement angle neurons in PPC are 

compatible with the output of a theoretical forward model, it is difficult to discern to what 

extent the forward model output is related to the state of the cursor on the computer 

screen or the physical state of the hand. One possible way to test for a visual vs. motor-

based reference frame would be to dissociate the movement of the cursor from that of the 

hand, so that they are incongruent. Information theoretic analyses could again be used to 

determine which reference frame is more strongly encoded by PPC neurons.  
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It would be nice to uncover some additional evidence of the efference copy signal being 

input to PPC. Simultaneously monitoring the spiking activity and local field potential 

(LFP) in other motor areas while recording from PPC, especially the dorsal premotor 

cortex (PMd) and primary motor cortex (M1), may provide some additional correlational 

evidence for efference copy projections to PPC. For example, the spike-field coherence 

between M1 and PPC (specifically phase information) may provide additional insight 

into the directionality of information flow between frontal and parietal areas during 

online state estimation. However, causal evidence of the existence of efference copy to 

PPC would be more compelling. For instance, inactivation of M1 and/or PMd may be 

revealing in that any efference copy sent to PPC would likely be blocked in such a 

situation. As a result, a forward model in PPC would be forced to operate without access 

to efference copy and therefore be critically limited in its ability to make rapid, 

anticipatory state estimates. One would expect that in this situation, the accuracy of the 

state estimate and therefore the amount of information encoded by PPC movement angle 

neurons would decrease. Secondly, it is also possible that the optimal lag times of 

movement angle neurons in PPC would shift to become more negative, reflecting a 

heavier reliance upon sensory information when previous motor commands are no longer 

available.  

 

Finally, an obvious extension of this work is to test the existence of a forward model 

estimate in 3D space. One would expect that since reach commands are generally 

specified as paths in 3D space that a forward model should also operate in 3D.  
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5.2 Trajectory decoding and a PPC neural prosthetic 

5.2.1 Summary of significant findings 

PPC ensembles were used to successfully predict the trajectory of an arm movement. We 

found that with only 5 neurons we could account for more than 70% of the variance in 

cursor position when reconstructing center-out trajectories using a goal-based Kalman 

filter. The effectiveness of the goal-based Kalman filter demonstrated that target 

information, which is also present in PPC during an arm movement, can be harnessed to 

further improve the accuracy of a state estimate. We also demonstrated, for the first time 

that PPC can be used independently to drive the desired movement of a cursor on a 

computer screen using only the monkey’s thoughts. The monkey learned to control the 

neural prosthetic very well, guiding the cursor to 8 randomly selected targets with 80% 

success rate. Accompanying this improvement in behavioral performance, we observed 

plasticity effects in the PPC ensemble as well, whereby the offline decoding performance, 

the overall tuning depth and the 2D coverage of the PPC ensemble increased significantly 

over several sessions. These results represent the first proof-of-concept for a neural 

prosthetic targeting PPC for continuous neural control of a cursor. 

 

5.2.2 Directions for further investigation 

There are several important scientific extensions to my decoding work that will facilitate 

further development and smoother transfer of this technology to the clinic. First, the 2D 

experiment reported here needs to be performed in a 3D environment. 3D experiments 

have been successfully performed before using activity recorded in M1 (D. M. Taylor et 
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al., 2002). Second, an attempt to simulate more natural conditions should be made. There 

are several factors that should be considered to address this issue.  

 

1) The eyes should be freed, so that the monkey can look to the target, and then back to 

the hand etc. This will undoubtedly bring up interesting challenges when interpreting the 

coordinate frame encoding scheme used by PPC during sensorimotor control. For 

example, it must first be verified whether eye-centered representations of the state of the 

arm/cursor and the target are updated during a saccade. Batista and colleagues showed 

evidence for the updating of visual space when monkeys made an intervening saccade 

prior to an ensuing reach. However, updating has not been investigated during continuous 

control of an end effector (A. P. Batista et al., 1999). Additionally, it has been shown that 

a change in eye position can result in gain modulatory effects of neural responses in PPC, 

which are likely to be important for coordinate transformations that take place in PPC (R. 

A. Andersen et al., 1985). For example, gain modulation is likely important for 

transforming eye-centered representations into a representation in hand, or body-centered 

coordinates (J. Xing and R. A. Andersen, 2000). Since cells in area 5 have been shown to 

encode intended reaches in a combination of eye and hand-centered representations, it is 

likely that gain modulation effects will be observed in those neurons as well during a free 

gaze task. It will be interesting to test the extent to which visual updating and gain 

modulation effects occur in PPC during online control of movement with free gaze. 

 

2) For the reaction tasks studied in this thesis the initiation of an arm movement was 

determined by the onset of a target stimulus. It would be interesting modify the task so 
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that it was self-paced, such that the monkey could guide the cursor to a target whenever 

he desired to do so. Under these circumstances, the decoder would need to detect the 

cognitive event transitions that indicate when a monkey was ‘resting’, planning a 

movement, or initiating a movement. Hudson and Burdick have begun work in this 

direction and have successfully decoded the event transitions that occur during a standard 

memory period reach task (i.e., cue onset, delay, movement period, etc.). In the future, it 

will be important to apply these methods to more natural, self-paced tasks appropriate for 

a clinical application. 

 

3) Finally, the ability to control the continuous motion of a variety of end effectors, 

which have a diverse range of dynamics, should be tested using PPC signals. In principle, 

PPC’s more cognitive, visuomotor representation of movement should be suitable for 

controlling a variety of objects in the world beyond computer cursors, as demonstrated in 

this thesis. 
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