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Abstract 
 
On-chip, single mode semiconductor lasers are usually fabricated using conventional 

distributed feedback (DFB) structures. Due to the limitation of index guiding in the 

transverse direction, the width of these lasers has to be less than a few microns. 

Meanwhile, the laser output power is limited by catastrophic optical damage (COD) at 

the facets and thus large optical cavities are necessary for high power semiconductor 

lasers. Therefore, high power, single mode applications are challenging, due to the 

conflicting requirements for large modal volume (to prevent COD by reducing optical 

power density) and narrow width (to obtain the single mode operation). Increasing the 

width of single mode semiconductor lasers is fundamentally important for obtaining high 

spectral and spatial optical power densities. 

This thesis reports on achieving the single mode operation of large area, edge emitting 

semiconductor lasers, using the photonic crystal Bragg structure (two dimensional 

distributed feedback structure). Both theoretical and experimental results are presented. 

Two dimensional coupled mode approaches and transfer matrix methods are developed to 

analyze and design the photonic crystal Bragg structure. It is shown that the single mode 

lasing can be obtained by satisfying both the transverse and longitudinal Bragg conditions 

and a single lobe, diffraction limited far field can be obtained by optimizing the coupling 

coefficient of the photonic crystal.  

Electrically pumped, large-area (100 µm x 500 µm), single mode semiconductor 

photonic crystal Bragg lasers are experimentally demonstrated in pulsed and continuous 

wave conditions with single lobe, diffraction limited far fields. Two dimensional lasing 

wavelength tuning is demonstrated, which proves that the lasing mode is truly defined by 



 vi

the photonic crystal lattice. Furthermore, a wavelength tuning sensitivity about 80 times 

smaller than a conventional DFB laser is also achieved, allowing for more accurate 

control of the lasing wavelength.  

Photonic crystal lasers based on effective index guiding are also studied. Single mode 

operation is achieved by combining the transverse confinement provided by an effective 

index guiding mechanism with the longitudinal mode selection provided by the Bragg 

reflection from the photonic crystal cladding. These devices represent an important first 

step toward using photonic crystals in a different way for the modal control of 

semiconductor lasers in planar optical circuits. 
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Chapter 1 
 
Introduction  
 
 
The invention of the semiconductor laser is considered to be a breakthrough that has 

revolutionized industry. Semiconductor lasers have a lot of applications in 

telecommunication, data storage, sensing, material processing, and medical science. 

Advances in device design concepts, crystal growth technologies, micro/nano 

fabrications and packing technologies have all contributed to the development of 

semiconductor lasers in the last half century. The performance of semiconductor lasers, 

such as thresholds, emission frequencies, linewidths, and beam qualities, is associated 

with the modal properties of the laser cavity [1–4]. Thus the modal control of the 

semiconductor laser has always been a key issue in developing new types of 

semiconductor lasers. 

  Waveguiding mechanism based on total internal reflection (TIR) is commonly used for 

the modal control of semiconductor lasers. For example, in a typical Fabry-Perot (FP) 

cavity laser, the lasing modes are guided by the epitaxially grown separate confinement 

heterostructure (SCH) in the vertical direction [5] and the buried waveguide structure in 

the transverse direction [6]. (For edge emitting lasers, we define the wafer growth 

direction as the vertical direction, the light emitting direction as the longitudinal direction, 

and the last direction as the transverse direction.) Through the appropriate design of the 

SCH and the buried waveguide structures, single vertical and transverse mode operation 

of a FP laser can be obtained. However, single longitudinal mode operation cannot be 
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obtained, since two cleaved facets in the longitudinal direction provide the feedback 

mechanism and thus support multiple longitudinal modes [2–4]. 

By using periodic Bragg gratings in the longitudinal direction, the single longitudinal 

mode operation of semiconductor lasers was demonstrated in the 1970s [7, 8]. These 

semiconductor lasers are generally referred as the distributed feedback (DFB) lasers. As 

shown in Fig. 1.1(a), the Bragg grating of a DFB laser is designed to only reflect a 

narrow band of wavelengths, so single longitudinal mode operation can be obtained. 

Combining with the single vertical and transverse mode distribution, we can realize the 

single mode operation of semiconductor lasers.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1: Schematic illustration of (a) a DFB laser, (b) a VCSEL laser, (c) a two- 
dimensional photonic crystal defect laser 
 

Since then, Bragg reflections from periodic structures have been widely used for the 

laser cavity designs. As shown in Fig. 1.1(b), there are two Bragg gratings below and 

above the active region in a vertical cavity surface emitting laser (VCSEL) [9, 10]. These 

two Bragg reflectors are epitaxially grown to serve as high reflectivity mirrors. This high 

DFB VCSEL(a) (b)

(c)

defect

PC laser
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reflectivity is important to compensate the loss associated with a short cavity in the 

vertical direction. As shown in Fig. 1.1(c), in a surface emitting photonic crystal defect 

laser [11], the in-plane confinement is fully provided by the Bragg reflections from the 

photonic crystal. 

  In contrast to the DFB and VCSEL lasers, the transverse Bragg resonance (TBR) laser 

is a type of the edge emitting semiconductor laser which includes a periodic Bragg 

grating in the transverse direction [12–14]. TBR structures use the Bragg reflection from 

the grating rather than total internal reflection to confine light in the transverse direction. 

In the vertical direction, light is still confined by the wafer epitaxial structure for the TBR 

lasers. In the same way that the DFB structure fixes the longitudinal wavevector, the 

transverse grating selects a single wavevector in the transverse direction. The TBR 

structure is very important for designing single mode, high power semiconductor lasers.  

In the index-guided single mode DFB laser (using a ridge waveguide or a buried 

waveguide), the refractive index difference between the core and the cladding is usually 

around 1e-2 [3]. Thus, the transverse laser width has to be less than a few microns in 

order to obtain single transverse mode operation. Meanwhile, due to catastrophic optical 

damage (COD) at the end facets, the laser output power is limited by the device 

transverse size [15]. Ultimately, we need to increase the width of the semiconductor laser 

to obtain high power operation.  

However, if we simply increase the laser width, we cannot maintain the single 

transverse mode operation. First, the refractive index difference between the core and the 

cladding needs to be very small to keep the single transverse mode operation if the laser 

width is large. The current injection will then change the refractive index profile due to 

the carrier distribution [2, 3]. In this way, the single transverse mode operation will not 

hold any more. Second, there are some spots with higher material gain along the facet if 

the laser width is large. This is because the material is not perfectly uniform. Since the 

waveguiding is very weak, these high gain spots will eventually become filaments above 
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the lasing threshold [16]. 

In contrast, the TBR waveguide can be designed to support only a single transverse 

mode regardless of the transverse width of the device [17]. This gives the TBR laser two 

attractive features for high power applications: good beam quality without filamentation, 

as defined by a single transverse mode, and a large emitting aperture for high power 

output. It is also feasible to design a single mode, broad-area, high power semiconductor 

laser by incorporating a longitudinal grating into a TBR waveguide. We define such a 

structure as the two dimensional TBR structure or the photonic crystal Bragg structure. In 

a photonic crystal Bragg laser, the longitudinal and transverse wavevectors of the lasing 

mode are both selected by the Bragg reflections from the photonic crystal. Thus the single 

mode operation can be achieved by the appropriate design of the photonic crystal and the 

lasing wavelength can be tuned by changing either the longitudinal or transverse lattice 

constant of the photonic crystal [18].  

 

1.1 Distributed feedback structures 
 

The DFB laser is the first example where the periodic structure is used for the modal 

control of semiconductor lasers. Here we briefly review the basic concepts of the DFB 

structure. The results will also help understand the TBR and photonic crystal Bragg 

structures discussed in the following chapters. 

Figure 1.2 shows the schematic illustrations of a DFB laser and its longitudinal Bragg 

grating. For a typical DFB laser, the waveguiding mechanism is provided by the epitaxial 

structure in the vertical direction (y) and the buried waveguide structure in the transverse 

direction (x). The Bragg grating is along the longitudinal direction (z) and is usually 

placed inside the cladding layer away from the active region. This is because direct 

etching of the active layer can introduce defects and thus increase the nonradiative 

recombination rate, which leads to a high lasing threshold [3]. Since the grating only 
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interacts with part of the optical mode, the grating exact location and the corrugation 

depth are critical in determining the grating strength (effectiveness). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2: (a) Schematic illustration of a DFB semiconductor laser, (b) schematic 
illustration of the longitudinal Bragg grating 
 

We usually use the parameter lκ  (the longitudinal grating coupling coefficient) to 

evaluate the grating strength. From the coupled mode analysis [3], we have 

∫∫
∫∫∆=

dxdyyxU

dxdyyxUyxk m
l

),(

),(),(

2 2

22
0

ε

β
κ                   (1.1) 

λπ /20 =k                   (1.2) 

where λ  is the wavelength, 0k  is the wavevector, β  is the propagation constant (the 

longitudinal wavevector), ),( yxU  is the optical modal distribution without the grating, 

and ),( yxmε∆  is the mth order index perturbation of the grating. Given the wafer 

structure in the vertical direction and the waveguide structure in the transverse direction, 

Λ
lown

highn  
1Λ

y 

P Type 

N Type 

DFB Laser (a) 

(b) 

Grating 

Active 

z



6 

we can numerically solve for the optical modal distribution ),( yxU  and the effective 

index effn  of the waveguide mode without the grating. Then we can calculate the 

propagation constant as 

0kneff=β . (1.3) 

Appling the well-known Bragg condition, we can determine the grating period 

βπ /m=Λ .  (1.4) 

Using the grating profile in Fig. 1.1(b), we have 

m
mnny lhm π
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where Λ  is the grating period and Γ  is the confinement factor. The confinement factor 

can be calculated from the optical modal distribution and it represents how much of the 

optical mode interacts with the grating. 

In Fig. 1.3, we plot the index profile of a typical wafer design and the associated 

optical modal distribution in the vertical direction. The transverse direction is assumed to 

be uniform without any optical confinement. The peak of the modal profile is located at 

the quantum well region of the wafer. Due to the limitation of the fabrication, the 

corrugation depth of the grating is usually less than 50 nm. Thus the relative distance 

from the grating to the quantum well region has a strong impact on the confinement 
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factor, as shown in Fig. 1.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3: The index profile of a typical wafer design and the associated optical modal 
distribution in the vertical direction 
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Figure 1.4 shows the simulated reflectance of a Bragg grating with the length of 500 
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µm. It is clear that the coupling coefficient has an impact on both the reflectance and the 

spectral bandwidth of the grating. It can also be approximately estimated that the grating 

bandwidth is equivalent to the coupling coefficient κ , since significant contradirectional 

coupling only occurs in the spectral regime where κβκ <∆<− . Because the Bragg 

grating only reflects light in a narrow bandwidth, it can be used to select a single 

longitudinal mode of semiconductor lasers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Simulated reflectance for a 500 µm long Bragg grating with different 
coupling coefficients  
 

1.2 Transverse Bragg resonance structures 
 

The concept of optical waveguiding by Bragg reflection has attracted a lot of attention 

due to the recent progress in photonic crystal fibers [19–21] and planar photonic crystal 

waveguides [13, 22]. The main applications focus on guiding light in a low-index region 

[23] or through a sharp waveguide bend [24]. As a generalization of these photonic 

crystal structures, the TBR waveguide was proposed and analyzed using the coupled 

mode theory [13]. In Ref. [13], the analysis was applied for the two dimensional periodic 
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structures but the coupling in the longitudinal direction was ignored for simplicity. In the 

following sections, we will start with a full coupled mode analysis of two dimensional 

periodic structures and then apply the results for the TBR waveguides.  

 

1.2.1 Coupled mode analysis of two dimensional periodic structures 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.5: Schematic of the planar two dimensional periodic structures 
 

 

 
 
Figure 1.6: Schematic illustration of the four plane waves in the two dimensional periodic 
structures 
 

Figure 1.5 shows the schematic of the planar two dimensional periodic structures. a is 

the transverse lattice constant and b is the longitudinal lattice constant. In the limit of 

small index perturbation, the electrical field satisfies the time-independent wave equation 

+iE  

+rE  

−iE  

−rE  

x
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[13] 

0),,( 2
0

2 =+∇ EkzyxE ε   (1.12) 

),,(),,(),,(
_

zyxzyxzyx εεε ∆+=   (1.13) 

where ),,(
_

zyxε  is the average value of ε  and ),,( zyxε∆  is the small index 

perturbation. 

First, we consider the unperturbed situation with 0=∆ε . Eq. (1.12) is satisfied by 

either harmonic or plane wave solutions. We take the solution to be the form of four 

intersecting plane waves propagating at an equal angle relative to the z axis, as shown in 

Fig. 1.6 

))](exp())(exp(
))(exp())(exp()[(),,(

zxkiEzxkiE
zxkiEzxkiEyUzyxE

ri

ri

ββ
ββ

−−−+−−
++−−++−=

⊥−⊥−

⊥+⊥+   (1.14) 

where ⊥k  is the transverse wavevector and β  is the longitudinal wavevector. Then we 

substitute this solution form into the wave equation, and we have 

0))(( 222
0

_

2

2

=−−+ ⊥ Ukky
dy

Ud βε .  (1.15) 

For a specific index distribution along the vertical direction y, which is determined by the 

wafer epitaxial layer structure, we can solve for the modal distribution U(y) and the 

effective index effn . We also have the dispersion relation 

2
0

222 knk eff=+⊥ β .   (1.16) 

Now we consider the structure with the index perturbation. This problem deals with the 

four waves coupling into each other ( ),( zxEi+ , ),( zxEr+ , ),( zxEi− , and ),( zxEr− ), 

assuming the modal profile in the vertical direction U(y) is unaffected. We express the 

optical field in the medium as 
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),()(),,( zxEyUzyxE =   (1.17) 

)).(exp(),())(exp(),(
))(exp(),())(exp(),(),(

zxkizxEzxkizxE
zxkizxEzxkizxEzxE

ri

ri

ββ
ββ

−−−+−−
++−−++−=

⊥−⊥−

⊥+⊥+   (1.18) 

We also define 

→→

⊥+ +≡ zxkKi β  
→→

⊥+ +−≡ zxkKr β  
→→

⊥− −≡ zxkKi β  
→→

⊥− −−≡ zxkKr β   (1.19) 

).exp(),()exp(),(
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→
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→

++

⋅−+⋅−

+⋅−+⋅−=

riKzxEriKzxE

riKzxEriKzxEzxE

rrii

rrii   (1.20) 

),( zxEi+ , ),( zxEr+ , ),( zxEi− , and ),( zxEr−  are all assumed to have slowly varying 

amplitude. We then put the field expression Eq. (1.20) into the wave equation, we have 
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Using the slowly varying amplitude assumption, we can ignore all the high order terms in 
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Eq. (1.21) 
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Using Eq. (1.15), we can further simplify the above equation 
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Multiplying the above equation with U(y) and integrating over y, we obtain 
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where Γ  is the confinement factor. 
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We take advantage of the two dimensional periodicity of the index refraction to write it 

as 

∑
→

⋅∆=∆
ml

mlml riKzx
,

,, )exp(),( εε    
→→

+= z
b

mx
a

lK ml
ππ 22

,     (1.25) 

∫ ∫− −

→

⋅−∆=∆
2/

2/

2/

2/ ,, )exp(),(1 b

b

a

a mlml dxdzriKzx
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εε .   (1.26) 

Thus, we have 
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 (1.27) 

This equation shows that each plane wave can couple into the other three waves through 

different Fournier components of ),( zxε∆ , given the condition 

 ,,
a

lk
b

m ππβ == ⊥  ( 0,0 ≠≠ ml ).  (1.28) 

For example, we consider the first order Fournier component coupling in both directions. 

Eq. (1.27) becomes 
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 (1.29) 

The coupling relationship is illustrated in Fig. 1.7. 

 

 

Figure 1.7: Coupling relationships between −−+ rir KKK ,, , and +iK   

 

1.2.2 One dimensional TBR waveguides 

 

For one dimensional TBR waveguides, light is guided by Bragg reflection only in the 

transverse direction. Thus, we can design one dimensional TBR waveguides by using one 

dimensional Bragg gratings in the transverse direction. In Ref. [13], although two 

dimensional periodic structures were used, the longitudinal feedback was not taken into 

account in the analysis. So the structure analyzed in Ref. [13] is essentially an example of 

one dimensional TBR waveguides.  
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Figure 1.8: Schematic of a one dimensional TBR waveguide 

 

Figure 1.8 shows the schematic of a one dimensional TBR waveguide. As shown in Fig. 

1.8, the TBR waveguide consists of a slab guiding channel (with dielectric constant coε  

and width Wco) sandwiched between two Bragg reflectors. The Bragg reflectors alternate 

between a high-index layer with dielectric constant 1ε  and a low-index layer with 

dielectric constant 2ε . The Bragg grating period is a. 

The electrical fields in the guiding channel and grating region can be, respectively, 

written as 

))(exp())(exp(),( zxkiEzxkiEzxE riGC ββ +−−++−= ⊥+⊥+  (1.30) 

))(exp()())(exp()(),( zxkixEzxkixEzxE rigrating ββ +−−++−= ⊥+⊥+ . (1.31) 

Using Eq. (1.16), (1.28), and (1.29), we can obtain the coupled wave equation for the 

transverse Bragg grating region 
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alk /π=⊥  (1.34) 

2
0

222 knk eff=+⊥ β .  (1.35) 

We can write the solution for Eq. (1.32) as 
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Using Eq. (1.30), we have  
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Then, we can obtain 

1)2exp(2 =− ⊥ coWkir , )tanh( Lir ⊥= κ . (1.38) 

Focusing on the phase condition part of Eq. (1.38), we have 

πmWk co =⊥2 , ...7,5,3,1=m . (1.39) 

Using Eq. (1.30) and assuming the first order Bragg condition, we have 

2/maWco = , ...7,5,3,1=m . (1.40) 

It is clear that the width of the guiding channel has to satisfy Eq. (1.40) to support a 

guided optical mode. 

  For a particular optical wave its transverse wavevector has to match the transverse 

Bragg grating vector to satisfy the phase matching condition. The transverse Bragg 
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grating limits the allowed transverse wavevectors in a narrow band defined by the grating 

reflection spectrum, similar to the situation where the DFB structure limits the 

longitudinal wavevectors. Meanwhile, the device has a limited size in the transverse 

direction. Thus, we can engineer the grating to support only one low loss mode while all 

the other high order modes experience significant diffraction losses. This low loss mode 

spreads out the entire width of the device and can be as wide as hundreds of microns. In 

terms of laser applications, this feature will allow us to design the single transverse mode, 

large-area semiconductors laser [25]. 

 

1.2.3 Asymmetric TBR waveguides 

 

 
 
 
 
 
 
 
Figure 1.9: Schematic of the asymmetric one dimensional TBR waveguide 

 

In principle, two Bragg reflectors of the one dimemnsional TBR waveguide do not 

have to be the same. As shown in Fig. 1.9, the asymmetric TBR waveguide consists of a 

slab (with dielectric constant coε  and width Wco) sandwiched by two different Bragg 

reflectors. Similar to the symmetric TBR waveguide, the Bragg reflectors alternate 

between a high-index layer with dielectric constant 1ε  and a low-index layer with 

dielectric constant 2ε . Here, we also consider the gain of the medium, represented by the 

dielectric constant Iiε . For simplicity, we assume that two Bragg reflectors have the 

same index perturbation profile, total length L and duty cycle of 50%. But the upper 

Bragg grating has a period of a1 and the lower one has a period of a2.  
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Similar to Eq. (1.30) and (1.31), we can express the electrical field in the grating 

region as 

)exp()()exp()(),( zixikxBzixikxAzxE ββ −+−−= ⊥⊥   (1.41) 

IR iβββ +=   (1.42) 

222
⊥+= kRβεµω    2/)( 21 εεε += .  (1.43) 

Using the coupled-wave formalism proposed in Ref. [13, 17, 25], we can describe the 

coupling relationship in the grating region using the following equation 
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where m = 1, 2 correspond to the upper grating and lower grating, respectively. 

From Eq. (1.44), we can obtain the field distribution in the grating region subject to the 

condition that at the outer edges of the grating there is no reflected wave 
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2

1
2

1 )( kS ∆−−= γκ   2
2

2
2 )( kS ∆−−= γκ   (1.50) 

where F and G are scale factors that will be needed for matching the fields at the 

boundaries ( 0=x  and coWx −=  ).  

Assuming coεε = , we can also use Eq. (1.44) to describe the field in the core region 

with 0=κ . We write the confined field in the core region as 

{ } )exp()]2/(exp[)]2/(exp[),( zWxikBWxikAzxE coccoc β−+±+−=   (1.51) 

γikkc += ⊥ .  (1.52) 

For an asymmetric TBR waveguide, A and B are not real numbers, which is different 

from a symmetric TBR waveguide. Thus, the corresponding field distribution in the core 

region is not symmetric to the core center ( 2/coWx −= ). 

Using the boundary conditions in Ref. [25], we have 
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It follows that  
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This condition can be written in terms of the magnitude and phase as 
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For a passive and sufficiently wide ( 1>>L ) waveguide, we have 

0=γ  1)coth()coth( 11 == LSLS .  (1.58) 

Eq. (1.56) automatically satisfies when κ<∆ 2,1k . 

Therefore, assuming 12 bb >  and 2,1/bπκ < , for a guided mode we have  

κπκπ +≤≤− ⊥ 21 // bkb .  (1.59) 

Using the analysis in Ref. [17], we can obtain the total number of the guided modes 

co
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π
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+−
≅   (1.60) 

)/2/()/2/1/1/(1 21212112 πκπκ bbbbbbbbW sig
co +−=+−= .  (1.61) 

sig
coW  is defined as the largest core width of a TBR waveguide that can support only one 

mode. By carefully selecting b1 and b2, we can significantly increase this width, as shown 

in Fig. 1.10.  
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Figure 1.10: Dependence of sig

coW on the coupling constant κ  for different symmetric 
and asymmetric TBR waveguides 
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Chapter 2 
 
Modal gain analysis of TBR waveguides and lasers  
 
 
In Chapter 1, we have introduced the coupled mode analysis of the one dimensional TBR 

waveguide with a “defect” guiding channel. The coupled mode approach solves for the 

Bragg-guided modes but does not account for other optical modes in the structure, such 

as the effective index-guided and gain-guided modes. In this chapter, we use a transfer 

matrix method (TMM) to analyze the modal gain/loss of all the possible modes supported 

by the one dimensional TBR waveguide with and without a “defect”. We compare 

different low loss optical modes for these two structures. We show that gain modulation 

in the transverse direction can also guide TBR modes. We conclude by suggesting three 

possible feedback mechanisms that can be used to ensure the lasing of Bragg-guided 

modes only. 

 
2.1 Introduction 
 

Total internal reflection (TIR) is the most common waveguiding mechanism for the 

semiconductor lasers. In these structures, the single transverse mode operation at a 

particular wavelength can be achieved by controlling the refractive index difference 

between the waveguide core and cladding. For a large-area (> 20 µm modal width) single 

mode operation, a very small index contrast ( 410−<∆n ) is needed. The weak index 

difference makes the laser sensitive to fluctuations in its operating conditions that alter its 
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refractive index profile. Filamentation also often occurs for large-area semiconductor 

lasers, which leads to the multiple transverse mode operation and broad, multi-lobe far 

field. 

In order to overcome these problems, waveguiding structures that use the Bragg 

reflection from a periodic structure rather than total internal reflection to confine light in 

the direction transverse to the propagation direction have been proposed and used for 

large-area, edge emitting lasers [14, 25–30]. These structures do not require very small 

index contrast and can be designed to have a single lateral mode that is distributed 

throughout the entire width of the laser for efficient and stable operation even at 

relatively high powers.  

One example of these structures is the angled-grating distributed feedback (α-DFB) 

semiconductor laser proposed by Lang et al., in which a uniform transverse grating 

provides the waveguiding mechanism and the angle facet selects the desired mode [14, 

26]. Another example proposed by Yariv uses a guiding channel sandwiched between two 

gratings [13, 25]. The guiding channel is a “defect” in the grating and can suppress the 

radiation loss. In these grating waveguide structures, a resonance condition needs to be 

satisfied in the transverse direction to support a low loss optical mode. Here, we 

generalize these two examples as the transverse Bragg resonance (TBR) structures, and 

we refer to the modes that depend on the transverse grating resonance as the TBR modes. 

However, in these structures, optical modes which are not guided by the transverse 

Bragg grating can also lase when the gain is provided. First, effective index-guided mode 

can exist when the cladding index is smaller than the low index region of the transverse 

grating. Second, low loss leaky modes due to incomplete TIR (gain-guided modes) can 

exist in these wide waveguide structures regardless of the cladding index. Thus, we need 

a formalism that accounts for all the optical modes of the structure as well as their losses. 

For the practical laser design based on the transverse Bragg reflection, we also need to 

engineer the Bragg-guided modes to be the preferred lasing modes. 
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2.2 Transverse Bragg Resonance waveguides with and 

without a defect 
 
2.2.1 Transfer Matrix Method 

 

Figure 2.1 shows the TBR structure without and with a defect. In Fig. 2.1(a), the TBR 

structure consists of uniform Bragg reflectors in the transverse direction. In Fig. 2.1(b), a 

defect core (with refractive index con  and width Wd) is present at the center of the 

grating. The Bragg reflectors consist of alternating high- and low- index layers with 

refractive indices hn  and ln , respectively. The refractive index outside the waveguide 

region is outn . The grating has N layers, a period a and a duty cycle d. We define the 

average index of the grating avgn  as: )1( dndnn lhavg −⋅+⋅= . The refractive index of 

the defect core con  is assumed to be hn  or ln . In accordance with the round-trip 

resonance condition and the phase of reflection from the grating, for a mode to be 

supported by the defect, we have amWd )2/1( += , where m is an integer (Eq. (1.40)).  
 

 

Figure 2.1: Transverse Bragg resonance structures (a) without a defect core, (b) with a 
defect core 
 
 
 

x 
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layer 1 
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…
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Figure 2.2: Schematic definition of the modal angle 

 

Using the plane wave approximation, we can define an important parameter—the 

modal angle θ for the optical mode of the TBR structures, as shown in Fig. 2.2 

)/(sin)/(cos 11
avgavg kkk ⊥

−− == βθ .  (2.1) 

According to the coupled-mode analysis in Chapter 1, light can be confined by the 

transverse Bragg grating when its transverse wavevector matches the Bragg grating 

vector. Therefore we define the corresponding modal angle as the transverse resonance 

angle for both structures. Using Eq. (1.34), (1.35) and (2.1), we have 

)]/2/()/()/2([cos 221 λππλπθ avgavgres nbn −= − .     (2.2) 

The grating coupling coefficient around the resonance condition can be calculated using 

Eq. (1.33) and (1.5) 

)sin())(/2( 222 dnnb lhindex πλκ −= .                   (2.3) 

Our analysis is based on the transfer matrix method proposed in Ref. [14]. In this 

approach, the structure is considered to consist of a series of dielectric layers, each 

characterized by a label n=0,1,…,N, N+1 (see Fig. 2.1). We assume that an optical mode 

propagating in the positive z direction has a spatial dependence )exp( ziβ− , where β  is a 

real or complex constant. It should be pointed out that β  needs to be a real number for a 

regular waveguide mode in most situations. Thus, when the corresponding optical mode 

β

avgk⊥k

θ
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propagates through the structure, there is no diffraction loss. However, the structure here 

is for the laser applications and we want to include the radiation (leaky) modes in the 

discussion. The complex propagation constant accounts for the leaky mode. The 

imaginary part of a complex β  is the propagation loss of the corresponding leaky mode. 

In the following analysis, we are going to show that some leaky modes can have small 

propagation losses and thus can lase when the gain is provided.  

In each layer, the electrical field can be written as the sum of the forward going (Ef,n, 

+x) and backward going waves (Eb,n, -x) 

))(exp())(exp()( ,, nnnbnnnf xxikExxikExE −+−−=   (2.4) 

n
n

ns ignk += λ
π2

,       (2.5) 

22
, β−= nsn kk  (2.6) 

where nsk ,  is the wavevector for the plane wave in each layer with gain ng  and nx  is 

the x coordinate of the start of the nth layer. We can express the field and its derivative 

within one layer in the following format using a matrix 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

nb

nf
nn

n

n

E
E

xxT
xE
xE

,

,
' )(

)(
)(

 (2.7) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−
=

)exp()exp(
)exp()exp(

)(
xikikxikik

xikxik
xT

nnnn

nn
n .  (2.8) 

Since β  is the same for all the layers, we can match the field and its derivative at every 

interface and propagate the field from layer 0 to layer N+1. We self-consistently solve for 

the field distribution where the field outside the cladding layers is purely outgoing. The 

corresponding boundary condition for the transfer matrix method is 00, =fE  and 

01, =+NbE . Thus, we can start with the field in the layer 0 

⎟⎟
⎠

⎞
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⎝
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E
E

.  (2.9) 
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Using Eq. (2.7), we have 
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Matching the field and its derivative at the boundary, we have 
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Using Eq. (2.7) again，we have 
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Keeping matching the fields and derivatives through each boundary of the waveguide, we 

can obtain the expression for the layer N+1 
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Satisfying the boundary condition at layer N+1, 01, =+NbE , gives a series of β .  

A lossless optical mode corresponds to a real β . In our structures, the lossless mode is 

the effective index-guided mode. A complex β  corresponds to a leaky mode and it 

experiences an exponential decay of the field amplitude in the propagation direction and 

an exponential increase in the transverse direction of the cladding region [31]. This 

means that a complex β  is not a physical solution of Maxwell’s equations because the 

field amplitude increases to infinity in the transverse direction. However, when the gain is 

provided for the grating region to exactly compensate the decay of the field, β  becomes 

real and the field amplitude remains constant in the propagation direction. Thus, in our 

approach, the imaginary part of β  corresponds to the gain required to support a lossless 

optical mode with its propagation constant equal to the real part of β . So we define the 

real part of β  as the phase propagation constant and the imaginary part as the modal 
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gain and regard the corresponding field distribution as the mode for the waveguide. 

Negative modal gain is equivalent to the modal loss. Using Eq. (2.1), we also define the 

modal angle as 

))/2/()(Re(cos 1 λπβθ avgn−= . (2.14) 

Using this transfer matrix method, we can account for both lossless modes and leaky 

modes in the TBR structure. 

 

2.2.2 Optical modes of transverse Bragg resonance waveguides 

 

First, to compare the performance of the TBR structures with and without a defect, we 

calculate the modal gain for each mode as a function of the modal angle for three 

different passive structures in Fig. 2.3. We assume: 25.3=hn ; 245.3=ln ; 5.0=d ; 

25.3=outn ; 1=b  µm; 5.0=dW  µm; 100=N ; 55.1=λ  µm. Therefore, the 

resonance angle calculated from Eq. (2.2) is 13.8° and the coupling constant calculated 

from Eq. (2.3) is 270/cm.  

In Fig. 2.3, the y coordinate is the modal loss, which is the imaginary part of β ; the x 

coordinate is the modal angle, which is determined by the real part of β . Thus, each 

point in Fig. 2.3 corresponds to a β , essentially an optical mode. As shown in Fig. 2.3, 

in all the structures considered, the optical modes with small modal angles experience 

zero or very low radiation loss. We define these modes as the small modal angle (SMA) 

modes. SMA modes include both lossless effective index-guided modes and low loss 

leaky modes. They are almost parallel to the grating and do not radiate significantly. 

SMA modes will be discussed in detail later.  
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Figure 2.3: (a) Modal gain (loss) versus modal angle for passive TBR waveguides with 
and without a defect. (b) Modal gain of TBR modes near the resonance angle (solid lines) 
and the transmission spectrum of the grating (the dashed line)  
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As the modal angle increases, all the modes experience higher radiation loss. However, 

around the transverse resonance angle of 13.8°, low loss modes exist. These modes are 

supported by the transverse grating and are therefore the TBR modes. For a finite 

structure, TBR modes are leaky due to non-unity grating reflectivity. Compared to the 

SMA modes, TBR modes have much larger intermodal discrimination between the lowest 

loss and the next lowest loss modes, which is the key in realizing the single transverse 

mode operation. 

Figure 2.3(b) shows the modal gain for the modes near the transverse Bragg resonance. 

We also plot the transmission spectrum of the grating at different modal angles to 

illustrate the relationship between the location of TBR modes and the stop band of the 

grating. For the TBR waveguide without a defect (the line with circles), the two lowest 

loss modes are located on either side of the stop band of the grating, similar to a 

longitudinal DFB structure. While for the TBR waveguide with a defect (the lines with 

squares and triangles), the lowest loss mode is in the middle of the stop band of the 

grating, similar to a longitudinal DFB structure with a π phase slip [32]. The defect TBR 

modes experience about 7/cm less radiation loss than the lowest loss modes for the same 

TBR waveguide without a defect. The modal losses are similar between the TBR 

waveguide with a low-index defect and a high-index defect. For these two structures, the 

modal angles of the lowest loss TBR modes are both 13.8°, which match the prediction 

from the coupled-mode analysis.  

In Fig. 2.3(b), the allowed modal angles of the TBR modes correspond to the discrete 

transmission peaks (without a defect) and dips (with a defect) of the grating spectrum. 

TBR structures with and without defects both support multiple Bragg-guided modes 

because the finite device width imposes a second transverse resonance condition and thus 

leads to the mode splitting. For all the three cases we discussed, the gain difference 

between the lowest loss TBR modes and the next lowest loss TBR modes is as high as 

17/cm. 

 



31 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4: The normalized field amplitude. (a) Lowest loss TBR mode (no defect) with 
13.63° modal angle and 16.88/cm loss. (b) Lowest loss TBR mode (high-index defect) 
with 13.80° modal angle and 9.94/cm loss 
 

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 A
m

pl
itu

de

Distance (um)

(a) 

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 A
m

pl
itu

de

Distance (um)

(b) 



32 

Figure 2.4 shows the normalized electric field amplitudes for different lowest loss TBR 

modes. The modes possess a “fast” spatial oscillation due to the grating. Since the field in 

the cladding is assumed to be purely outgoing, the energy leaks out at two boundaries (x 

= 0 and x = 100 µm). In Fig. 2.4, it is clear that the more confined mode has relatively 

smaller amplitude at the boundary. 

We can reduce the loss of TBR modes to be almost zero through the grating design. In 

Fig. 2.5, we show the modal gain and the field profile of the lowest loss TBR mode for 

such a design. The design is for the TBR waveguide with a high-index defect and all the 

parameters are the same as in Fig. 2.3 except that 24.3=ln . The coupling constant of 

this grating is about 540/cm, much higher than the one in Fig. 2.3. Thus we can obtain a 

more confined TBR mode. In Fig. 2.5, the radiation loss for the lowest loss TBR mode is 

about 1 dB/cm. 
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Figure 2.5: (a) Modal gain (loss) versus modal angle for the TBR waveguide with a 
high-index defect. (b) The electric field amplitude of the corresponding lowest loss TBR 
mode. All the simulation parameters are the same as in Fig. 2.3 except for 24.3=ln . 
 

2.2.3 Gain-guided transverse Bragg resonance waveguides 

 

Periodic gain (loss) modulation in the transverse direction can also support TBR modes. 

For the transverse gain-modulated grating structure, we assume that the refractive index 

is the same everywhere and the grating alternates between a high gain layer with hg  and 

a low gain layer with lg . There is no defect in this gain grating. The grating, as in the 

above example, has N layers, a period b, and a duty cycle d. We calculate the modal gain 

of all the modes for this transverse gain-modulated structure in Fig. 2.6. The simulation 

parameters are as follow: cmgh /50= ; 0=lg ; 2475.3=backgroundn ; 5.0=d ; 1=b  µm; 

100=N ; 55.1=λ  µm.  
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Figure 2.6: Modal gain versus modal angle for a gain-guided TBR waveguide 
 

We obtain both SMA modes and TBR modes for the gain coupled TBR waveguide as 

well. The lowest loss mode of TBR modes is exactly located at the 13.8° transverse 

resonance angle predicted by the coupled mode theory, similar to a pure gain coupled 

DFB structure [33]. Since gain is provided for the waveguide, SMA modes possess 

positive modal gain. On the contrary, the lowest loss TBR mode still experiences about 

20/cm radiation loss. This means that the confinement for this gain coupled grating is not 

very strong. The coupling constant for the gained coupled grating can be calculated as: 

ππλκ /)sin())(/2( dggb lhgain −=  [33]. In the example above, the gain coupling constant 

is about 20.5/cm, which is much weaker than the coupling constant of the index coupled 

grating in Fig. 2.3.  
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with SMA modes since they propagate almost parallel to the grating. In Fig. 2.7, we show 

the modal gain of both the SMA and TBR modes for a high-index defect TBR waveguide 

with different values of nout. The three lines correspond to the situation when the cladding 

index is smaller than, equal to, and larger than the average index of the grating, 

respectively. When the cladding index is the same as the average index of the grating, the 

SMA modes experience the most radiation loss. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.7: Modal gain (loss) versus modal angle for the passive defect TBR waveguide 
with different outside claddings. All simulation parameters are the same as in Fig. 2.3 
except outn . 
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dependence on the defect. In contrast to the TBR modes shown in Fig. 2.4 and Fig. 2.5, 

the field profiles of the effective index-guided SMA modes only have very small 

amplitude oscillations corresponding to the grating period on top of the overall slowly 

varying envelope. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.8: The electrical field amplitudes of the lossless effective index-guided modes 
when the outside cladding index 24.3=outn . Other simulation parameters are the same 
as in Fig. 2.3.  
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lossless effective index-guided modes in Fig. 2.8. When the modal angle is larger than 

this range (Region II, λπβ /2)Re( ln< ), the radiation loss increases unless the mode can 

be guided by the grating. 

Now, it is clear that TBR structures support two kinds of modes: TBR modes and SMA 

modes. TBR modes are supported by the transverse grating. The loss difference between 

the lowest loss (order) and the next lowest loss TBR modes is high. SMA modes include 

lossless effective index-guided modes and leaky modes with small modal angles. The 

existence of lossless effective index-guided waveguide modes depends on the cladding 

index, while leaky modes with small modal angles exist regardless of the cladding index. 

The loss difference among all the SMA modes is small. In Fig. 2.9, we plot the dispersion 

relation of the lowest loss TBR mode and six lowest loss (order) SMA modes for a 

passive TBR waveguide. The loss for the TBR mode is about 1dB/cm, and losses for the 

SMA modes are all less than 2dB/cm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9: Dispersion relation of the lowest loss TBR mode (the black line) and SMA 
modes (the gray region). There are six lines in the gray region, and each of them is 
corresponding to one particular SMA mode. All simulation parameters are the same as in 
Fig. 2.5. 
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When the gain is provide for a TBR waveguide, the lowest loss TBR mode and SMA 

modes have similar gain. Thus, the TBR modes and SMA modes compete with each other 

and both of them can lase.  

 

2.3 Feedback mechanisms for the transverse Bragg 

resonance lasers 
 

Thus far, we have only discussed TBR waveguides. To analyze lasers, we must include 

the effect of the feedback mechanism that defines the resonator. To ensure a single 

transverse mode operation near the Bragg resonance, the feedback mechanism needs to 

be tailored. Compared to SMA modes, TBR modes have a much “faster” spatial 

oscillation in the transverse direction. Thus, if we can integrate a spatial filter at the facet 

to favor the fast spatial oscillation, TBR modes can be preferred. Angled facets were 

proposed in Ref. [14] to realize this goal. The angled facets act exactly like a spatial filter 

and the feedback from the facet will only be provided for the mode whose modal angle is 

very close to the tilt angle.  

 
 
 
 
 
 
 
 
 
 
 
Figure 2.10: (a) An angled facet with a tilt angle tθ . (b) fr  for all the modes with 
different modal angles 
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The reflectivity of different modes at an angled facet can be calculated using the model 

in Ref. [34]: 

ftf rARR ⋅⋅= )(θ  with ∫
+∞

∞−
= dxeEr xi

f
)Re(22)Re( βθβ    (2.15) 

where x is the transverse coordinate, tθ  is the tilt angle for the facet (see. Fig. 9) and 

)( tfR θ  is the Fresnel reflection coefficient of the dielectric interface between 

semiconductor and air. A  is a constant. In Fig. 2.10, we calculate fr  in Eq. (2.15) for 

all the normalized modes with different modal angles of the TBR waveguide described in 

Fig. 2.5. The tilt angle is assumed to be 13.8° in the calculation. fr  in Eq. (2.15) 

possesses a maximum value for the mode with a modal angle same as the tilt angle. The 

reflectivity for TBR modes can thus be designed to be maximum by choosing the tilt 

angle tθ  to be the same as the resonance angle resθ . While for SMA modes, fr  in Eq. 

(2.15) is almost zero. Thus, these modes are not reflected by the facet. Indeed, the angled 

facet is a spatial filter which gives the strongest reflection for the mode with the modal 

angle same as the tilt angle. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.11: (a) A coated facet design. The coating layer has a refractive index nc and 
thickness h. (b) The reflectivity for all the modes with different modal angles 
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with small modal angles is almost zero while the reflection for the modes around the 

transverse resonance angle is high. Thus, a similar selection mechanism can be achieved 

as an angled facet design. Since the modal angle difference between the SMA modes and 

TBR modes are large, a typical single layer antireflection coating can achieve this goal, 

as shown in Fig. 2.11. 

In Fig. 2.11 (a), the laser facet is coated with a dielectric layer with a refractive index 

nc and thickness h. Details of the antireflection coating design can be found in Ref. [35]. 

Here, we optimize our design for the mode with 0° modal angle. Thus, we have 

airavgc nnn = ， cnh 4/λ=      (2.16) 

where airn  is the refractive index of air and λ  is the wavelength. Given 1=airn , 

245.3=avgn , and 55.1=λ  µm, we calculate the reflectivity for the modes with different 

modal angles in Fig. 2.11 (b). When the modal angle is less than 2°, the reflectivity of all 

the calculated modes is smaller than 2*10-3. Thus the SMA modes can not obtain enough 

feedback from the facet. While for the TBR modes (modal angle ~ 13.8°), the reflectivity 

is around 0.18, two orders higher than the SMA modes. Since the SMA modes and TBR 

modes are the only low loss modes supported by the structure, the coating layer can 

effectively discriminate against the SMA modes and ensure the lasing in the TBR modes. 

The third way is to introduce a second grating in the longitudinal direction to select the 

propagation constant corresponding to the TBR mode [27, 28, 36, 37]. It should be 

pointed out that the angled facet design was also used to suppress the SMA modes and 

provide a single lobe far field output. However, the facet reflection is not the feedback 

mechanism. Thus the tilt angle does not need to be the transverse resonance angle and the 

exact value is not critical, which is different from the first approach. 
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Chapter 3 
 
Design of photonic crystal Bragg lasers  
 
 
3.1 Introduction 
 

In the past chapters, we show that one dimensional TBR structures can support only one 

low loss Bragg-guided transverse mode. Combining with an angled facet design to 

suppress gain-guided modes, the TBR structure can be used to make the large-area, edge 

emitting semiconductor laser with a single transverse mode. However, these structures 

still support multiple longitudinal modes since the feedback is provided by the end facets 

[39–41].  

  In order to obtain a stable single mode operation, we incorporate an additional 

longitudinal grating into the one dimensional TBR structure. There are essentially two 

methods to integrate the longitudinal grating: (1) The transverse and longitudinal Bragg 

gratings are located at the different layers in the vertical direction and we refer this 

structure as the double-layer two dimensional grating structure; (2) The transverse and 

longitudinal Bragg gratings are located at the same layer. Thus we obtain a two 

dimensional photonic crystal structure， and we refer this structure as the photonic crystal 

Bragg structure. For simplicity, we do not consider the defects in these structures. 

Due to the fabrication limitation, we can not process the semiconductor regrowth. 

Since the double-layer two dimensional grating structure requires the regrowth process, 

we only discuss the basic concepts of this structure. We will focus on the design of the 
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photonic crystal Bragg structure in this chapter. In order to avoid the regrowth process, 

the photonic crystal is fabricated on the surface of the semiconductor wafer. Unlike 

conventional two dimensional photonic crystal lasers [11, 42, 43], which use a large 

refractive index perturbation to confine light in a plane, the two dimensional periodic 

structures described here selectively control the longitudinal and transverse wavevector 

components using a weak index perturbation. Thus, the optical modes confined by the 

grating in these laser designs will spread out into the periodic active medium, allowing 

for high power operation. 

  The angled facet design prevents gain-guided modes from lasing. Thus, we can use the 

coupled mode analysis for the design of the photonic crystal Bragg structure since it 

works well with Bragg-guided modes and provides analytic solutions. We will show that 

the photonic crystal Bragg structure is theoretically identical to the double-layer two 

dimensional grating structure by ignoring the cross coupling terms in the coupled mode 

analysis.  

 
3.2 From one dimensional TBR structures to two 

dimensional TBR structures 
 

Figure 3.1 shows the schematic of the one dimensional TBR laser based on the analysis 

developed in Chapter 2. The Bragg grating in the transverse direction provides the 

waveguiding mechanism and supports a single transverse mode operation [44]. The 

angled facets are used to suppress gain-guided modes. If the facet tilt angle is the same as 

the mode angle of the Bragg-guided mode, the facets can provide the feedback for the 

Bragg-guided mode. However, it is difficult to obtain a single longitudinal mode 

operation due to this kind of feedback mechanism. In order to obtain the single mode 

operation, we need both the single transverse mode and single longitudinal mode. 



43 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1: Schematic illustration of a one dimensional TBR laser structure 
 

  It is well known that we can use the DFB structure to control the longitudinal mode of 

semiconductor lasers. Thus, we can incorporate a longitudinal DFB structure into the one 

dimensional TBR laser to obtain the single mode operation of large-area, edge emitting 

semiconductor lasers. First, we can put two orthogonal one dimensional gratings along 

the vertical direction. One grating is for the transverse mode control and the other grating 

is for the longitudinal mode control. We refer this structure as the double-layer two 

dimensional grating structure. The drawback of this approach is that we need a 

semiconductor regrowth process in fabrication. Second, we can use a photonic crystal 

structure in the wafer plane for the modal control of both the transverse and longitudinal 

directions, since the photonic crystal structure can provide the distributed feedback in 

both directions [45]. We can also fabricate the photonic crystal structure on the surface of 

the semiconductor wafer in order to avoid the regrowth process. We refer this structure as 

the photonic crystal Bragg structure. In the following sections, we discuss both structures 

in detail. 
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3.3 Double-layer two dimensional Bragg grating lasers 
 

Figure 3.2 shows the schematic of a double-layer two dimensional grating laser 

structure. The laser has two orthogonal gratings, each in a different layer. One grating is 

for the longitudinal mode control and the other is for the transverse mode control. The 

active quantum well region below the gratings provides the optical gain. In the limit of 

weak index perturbation, the optical mode for this structure can be separated into 

transverse (x), vertical (y), and longitudinal (z) components. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: Schematic illustration of a double-layer two dimensional Bragg grating laser 
structure 
 

Using a similar analysis to Chapter 1’s, we begin with the wave equation 
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_
  (3.2) 

where )(
_

yε  is for the unperturbed structure without two gratings.  

First we consider the unperturbed situation with 0=∆ε ; the general solution takes the 

form 

))(exp()(),,( // zkxkiEyUzyxE zx +−=   (3.3) 

where xk  is the transverse wavevector, zk  is the longitudinal wavevector, and //E  is a 

constant. Then we substitute this solution form into the wave equation, we have 
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yUd
zxε .  (3.4) 

For a specific index distribution along y, we can obtain the modal distribution U(y) and 

the effective index effn . Then we include the index perturbation, assuming the U(y) is 

unaffected. We express the field as 

),()(),,( zxEyUzyxE = .  (3.5) 

Putting the field expression into the wave equation, we have 
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We assume tgε∆  and lgε∆  are uniform along y in the grating region (straight 

sidewalls). Multiplying the above equation with U(y) and integrating over y, we obtain 
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where tΓ  is the transverse grating confinement factor and lΓ  is the longitudinal grating 

confinement factor. Eq. (3.8) describes the field distribution in the transverse and 

longitudinal directions. 

We can also assume 

)()(),( zExEzxE = .  (3.11) 

Substituting Eq. (3.11) into Eq. (3.8) and separating the equation into x terms and z terms, 

we have 
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2
1 effnnn =+ .   (3.14) 

It shows that we can treat the index perturbation as two independent, one dimensional 

gratings, each with a different confinement factor. At this stage, we can take advantage of 

the general properties of a DFB laser and a TBR laser to analyze the double-layer two 

dimensional Bragg grating laser.  

In principle, the double-layer two dimensional Bragg grating structure can control both 

the longitudinal and transverse wavevectors for single mode, high power semiconductor 
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laser applications. Since the two gratings are not coupled to each other, the analysis and 

design are also simple. However, the fabrication of this structure needs the semiconductor 

regrowth, which is beyond our capability. We only present the basic concepts of the 

double-layer two dimensional grating structure. Future work can explore more properties 

of this interesting structure.  

 

3.4 Photonic crystal Bragg lasers 
 

 

 
 
Figure 3.3: Schematic illustration of a photonic crystal Bragg laser structure 
 

Figure 3.3 shows the schematic illustration of a photonic crystal Bragg laser structure. 

The surface photonic crystal controls the wavevectors of an optical mode in both the 

longitudinal and transverse directions, since we can think of the photonic crystal here as 

two one dimensional gratings on top of each other. Usually we do not etch through the 

active quantum well region since that could introduce the defects in the active region. 

Thus the distance from the quantum well region to the wafer surface and the etch depth of 
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the photonic crystal are critical in determining the effectiveness of the photonic crystal. 

The photonic crystal does not have to consist of circular holes. But other types of shapes, 

such as rectangles, have sharp corners, which can cause the optical nonlinearity. The end 

facts are tilted to suppress gain-guided modes. It should be pointed out that the laser 

operates at the band edge of the photonic crystal since the defect is not included in the 

design. Although the photonic crystal possesses a fourfold rotational symmetry, the laser 

can operate in a single mode due to additional perturbing reflections from the cleaved 

facets. This additional perturbation breaks the unwanted degeneracy as in regular DFB 

lasers with cleaved facets [3]. 

 

3.4.1 Wafer structures 

 

 
Figure 3.4: Schematic illustration of the cross section of a photonic crystal Bragg laser 
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Layer Description Material Thickness(˚A) Index doping 

0 Substrate InP  3.1720 n 

1 Buffer InP 10000 3.1720 n+ 

2 Waveguide InGaAsP 700 3.2911 n 

3 Waveguide InGaAsP 300 3.3203 undoped 

4 Waveguide InGaAsP 500 3.3755 undoped 

5 QW InGaAsP 85 3.5300 undoped 

6 Barrier InGaAsP 100 3.3755 undoped 

7 QW InGaAsP 85 3.5300 undoped 

8 Barrier InGaAsP 100 3.3755 undoped 

9 QW InGaAsP 85 3.5300 undoped 

10 Barrier InGaAsP 100 3.3755 undoped 

11 QW InGaAsP 85 3.5300 undoped 

12 Waveguide InGaAsP 500 3.3755 undoped 

13 Waveguide InGaAsP 400 3.3484 undoped 

14 Cladding InGaAsP 1300 3.3484 p 

15 Cladding InP 4000 3.1720 p 

16 Contact layer InGaAS 50 3.5550 p+ 

 

Table 3.1: Epitaxial wafer structure 

 

  Figure 3.4 shows the schematic illustration of the cross section of a photonic crystal 

Bragg laser. For each etched hole, we usually fill it with the planarization polymer so that 

the subsequently deposited metal will not fall into the hole. When fabricating the surface 

photonic crystal, we want to keep the etch depth less than 500 nm to ensure good etching 

profiles. Thus we should design the active quantum well region close to the wafer surface. 
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However, since the electrical contact will be directly put on the etched surface, the active 

region can not be too close to the surface. Otherwise, the metal contact will cause 

significant absorption losses and lead to a high threshold. With these two constricts, we 

come up with the wafer design in Table 3.1. In this design, the p+ contact layer is only 5 

nm thick. This is because this wafer is also designed for other research projects and this 

InGaAs layer serves as a thin etch mask [46]. Ideally, the contact layer should be thicker 

than 50 nm.  

  Given this wafer structure, we can calculate the modal distribution in the vertical 

direction and the effective index effn . With this vertical modal profile, we can then 

calculate the confinement factor of the photonic crystal with different etched depths using 

Eq. (1.7).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5: The index profile of the wafer epitaxial structure and the modal distribution in 
the vertical direction 
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Figure 3.6: The vertical confinement factor as a function of the etch depth 
 

Figure 3.5 shows the epitaxial wafer index profile and the mode distribution in the 

vertical direction. The modal profile is a little bit asymmetric relative to the position of 

the quantum well region since the upper cladding layer of the SCH structure is only about 

500 nm thick. This also implies that the metal contact will introduce a small amount of 

absorption loss for the laser. As we mentioned before, this is the design compromise we 

have to take. It is clear that the etch depth and the modal profile will determine how much 

of the optical mode interacts with the photonic crystal, as shown in Fig. 3.5. We can also 

calculate the effective refractive index in the wafer plane 26.3=effn . Figure 3.6 shows 

the vertical confinement factor as a function of the etch depth. The vertical confinement 

factor is very sensitive to the etch depth in the range of 200 nm–500 nm. Thus the etch 

depth needs to be accurately controlled in this range. 
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3.4.2 Photonic crystal lattice constants 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7: Schematic of a two-dimensional photonic crystal Bragg laser in the wafer 
plane. a is the transverse lattice constant, b is the longitudinal lattice constant, and tiltθ  is 
the facet tilt angle. 
 

Using Eq. (1.25)–(1.29), we can design the photonic crystal Bragg structure. Figure 3.7 

shows the photonic crystal structure in the wafer plane. It consists of a rectangular lattice 

array of polymer filled holes. a is the transverse lattice constant, b is the longitudinal 

lattice constant, and tiltθ  is the facet tilt angle. Here, we briefly review the basic 

concepts developed in Chapter 1. In the wafer plane (x-z), an optical mode that satisfies 

both transverse and longitudinal Bragg resonance conditions will be confined due to the 

Bragg reflections. This Bragg condition can be expressed as  

b
mk

a
lk zx

ππ
== ,  ( 0,0 ≠≠ jl ),             (3.15) 

where xk  is the transverse wavevector, zk  is the longitudinal wavevector, and l, m are 

the orders of the grating. Because the vertical wavevector yk  is determined by the wafer 
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θtilt 
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epitaxial layer structure, xk  and zk  satisfy the dispersion relation  

2
0

222 knkk effzx =+ .           (3.16) 

Using Eq. (2.1) and (2.2), the resonance modal angle resθ  is given by 

)/(tan)/(sin)/(cos 1
0

1
0

1
zxeffxeffzres kkknkknk −−− ===θ .  (3.17) 

The key here is to select a suitable resonance angle. If the resonance modal angle is small, 

we can not effectively discriminate against gain-guided modes; while if the modal angle 

is big, we need a strong grating to suppress radiation losses, and it is difficult for the 

fabrication. For practical designs, we choose the resonance modal angle in the range of 

10o to 20o [13]. After the resonance angle is determined, we can calculate the transverse 

and longitudinal lattice constants using Eq. (3.15) and Eq. (3.16). Due to the fabrication 

limitation, we use the first order Bragg reflection in the transverse direction and the 

second order Bragg reflection in the longitudinal direction.  

Using these design guidelines, we come up with the following design parameters for 

the photonic crystal lattice with a targeting wavelength of 1.55 µm  

26.3=effn , 55.1=λ  µm (3.18) 

1=a  µm, makx µπ /14.3/ ==   (3.19) 

490=b  nm, mbkz µπ /82.12/2 ==  (3.20) 

o
res 8.13=θ . (3.21) 

In our design, we have the facet tilt angle same as the resonance angle 

o
tilt 8.13=θ . (3.22) 
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3.4.3 Photonic crystal etch depths 

 

In the next step, we will determine the etch depth and the hole radius of the photonic 

crystal. Both of them are relatedto the coupling coefficients of the photonic crystal and 

determine the field distribution inside the laser. In order to solve this problem, we use the 

two-dimensional coupled mode analysis developed in Chapter 1. Using Eq. (1.25)–(1.29), 

we write the index distribution of the photonic crystal as 

∑
→
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For a rectangular lattice, inside a unit cell, we have 
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We can focus on the first order Bragg reflection in the transverse direction and the 

second order Bragg reflection in the longitudinal direction because other order 

combinations of the Bragg reflections correspond to the wavelengths far away from the 

gain spectrum peak. We have 0,1ε , 0,1−ε , 2,0ε , 2,0 −ε , 2,1ε , 2,1 −ε , 2,1−ε , and 2,1 −−ε  as the 

index perturbation terms. The components 2,1ε , 2,1 −ε , 2,1−ε , and 2,1 −−ε  will cause the 

cross coupling between the transverse direction and the longitudinal direction. If we 
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ignore these components, we can get a simplified model similar to Eq. (3.12)–(3.14). We 

then have the expressions for the transverse and longitudinal coupling coefficients, using 

Eq. (1.6) and (1.33) 

Γ∆= 0,1

2
0

2
εκ

x
x k

k
, Γ∆= 2,0

2
0

2
εκ

z
z k

k
.            (3.29) 

Using Eq. (3.27)–(3.29) and the results of Fig. 3.5, we can calculate the transverse and 

longitudinal coupling coefficients of the photonic crystal. The laser usually has a width W 

of 100 µm and a length L of 500 µm. The calculation results of Wxκ  and Lzκ  are 

shown in Fig. 3.8 and Fig. 3.9. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8: Wxκ  and Lzκ  as a function of the radius of etched holes with the etch 
depth of 350 nm 
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Figure 3.9: Wxκ  and Lzκ  as a function of the etch depth with 100 nm etched hole 
radius 

 

The products of the coupling coefficients and the device dimensions, Wxκ  and Lzκ ,  

are important for the design of the photonic crystal. If Wxκ  and Lzκ  are too small, the 

transverse confinement and the longitudinal feedback are not strong enough to support 

the lasing action with a low threshold. If Wxκ  and Lzκ  are too large, high order spatial 

modes supported by the photonic crystal can lase and spatial hole burning can occur. For 

practical designs, we have the condition 

10,2 ≤≤ LW zx κκ .   (3.30) 

Due to the fabrication limitation, it is not practical to design the holes with the radius 

smaller than 20 nm or larger than 200 nm. We calculate the Wxκ  and Lzκ  product as 

a function of the hole radius in Fig. 3.8, assuming the etch depth is 350 nm. It is clear that 

the Wxκ  product increases as the etched hole radius increases, while the Lzκ  product 
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peaks around hr  = 100 nm and hr  = 200 nm. In order to obtain a large longitudinal 

coupling constant and a moderate transverse coupling constant, we choose the hole radius 

to be 100 nm.  

In Fig. 3.9, we calculate the Wxκ  and Lzκ  products as a function of the etch depth 

with the etched hole radius of 100 nm. Both of them increase as the etch depth increases. 

In order to satisfy Eq. (3.30), we choose the etch depth to be in the range of 250 nm to 

400 nm.  
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Chapter 4 
 
Fabrication of photonic crystal Bragg lasers  
 
 
4.1 Introduction 
 

The challenge in the fabrication of two dimensional photonic crystal Bragg lasers in III-V 

compound semiconductor materials includes highly accurate electron-beam lithography, 

high quality dry etching techniques, and high quality metal contacts [47]. In our design, a 

single laser device has a relatively large area of about 0.5 mm x 0.1 mm consisting of 

about one hundred thousand holes each with a radius of only 100 nm. The large 

difference in scale between the device area and the grating feature size (i.e., the hole area), 

nearly 6 orders of magnitude, presents a fundamental challenge to the fabrication process.  

  The fabrication process can be roughly divided into lithography, etching, planarization, 

metallization, and packing. First, the photonic crystal pattern is defined by the electron 

beam lithography. Electron beam lithography is flexible for different designs and 

provides high resolution features, in comparison to the conventional UV 

photolithography [48, 49]. In the next step, the photonic crystal is transferred to a 

dielectric hard mask and then to the semiconductor surface. The etched holes in the 

semiconductor are then planarized with polymer in order to prevent the metal contact 

from falling into etched holes. After this, we thermally evaporate electrical contacts on 

the top and bottom side of the device. Finally, a single device is cleaved and packaged on 

a C-mount. The whole fabrication process is summarized in Fig. 4.1. 
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4.2 Electron beam lithography  

 
We start the fabrication by depositing a 120 nm thick SiO2 layer on the top of the 

semiconductor wafer by plasma enhanced chemical vapor deposition (PECVD). A 

suitable size semiconductor chip is then cleaved from the wafer. Before we spin the 

ebeam resist for the chip, we need to thoroughly clean the chip using acetone and IPA 

(isopropanol). Then, a 250 nm 495 K C4 PMMA (Microchem) resist layer is spun on the 

substrate at 4000 rpm and the chip is baked on a hotplate at 180 ºC for 3 minutes. We 

expose the PMMA resist in a Leica Microsystems EBPG 5000+ direct electron beam 

writer at an accelerating voltage of 100 kV and a beam current of 3.9 nA. Development 

of the patterned PMMA film is carried out in a solution of 1:3 MIBK (methyl-isobutyl 

ketone) : IPA for 60 seconds. 

Photonic crystal Bragg lasers require highly uniform patterns defined by electron beam 

lithography over a large area, such that the holes for a single device should be nearly 

identical. A non-uniform index perturbation in our structures, which can be caused by the 

size variation of small holes, results in undesired chirp and variation in the grating period. 

Proximity effect correction in the electron beam lithography is required to obtain the 

desired uniformity [50, 51].  

Proximity effect refers to the dependence of the actual electron beam exposure dosage 

on the density of local features, and it has been the major problem for obtaining fine 

resolution and large-area uniformity in electron beam lithography. The incident electrons 

experience forward and backward scattering in the resist. In addition to exposing the 

desired areas, the scattered electrons can also expose the areas beyond the designed 

patterns. A Monte Carlo simulation of this scattering of 100 kV electrons in the material 

stack used in the fabrication process is shown in Fig. 4.2, and illustrates that the scattered 
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electrons can expose the PMMA “from below” laterally outside of the beam spot. This 

deleterious scattering has a slight impact on isolated patterns, such as the holes near the 

edges of our structure. However, for dense patterns, such as the holes in the center region 

of our structure, this undesired exposure can be significant. Therefore, if a constant 

electron dosage is used over the pattern area, the actual, effective exposure dosage of the 

holes around the center will differ from that at the edge, manifesting in pattern distortion 

due to the proximity effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.2: Monte Carlo simulation of 100 kV electrons scattering in the material stack. 
The top (white) layer is 250 nm of PMMA. The second layer (light grey) is 120 nm SiO2, 
and the substrate (dark grey) is InP. The ordinate is the radial distance in µm from the 
incident beam spot, and the abscissa is penetration depth in µm into the material. 

 

To characterize the extent of the proximity effect and to determine the degree of 

proximity effect correction required, we quantitatively compare the feature sizes at 
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various regions of the pattern with various degrees of correction. Our test pattern consists 

of a 96 µm x 96 µm square array of holes with a designed radius of 100 nm spaced at a 

period of 480 nm. The size of the test pattern is sufficient in modeling the lithography of 

the actual photonic crystal Bragg lasers which consists of a rectangular array of holes of 

the same radius but over a much larger area of ~ 500 µm x 100 µm. 

The calculations to determine the dose variations required to compensate for the 

proximity effect fall into three stages. The first stage is a Monte Carlo simulation of the 

scattering of the incident electron beam as it passes through the various layers of the 

material “stack.” We used a commercial numerical simulation package for this calculation 

called SCELETON (SCattering of ELECTrONs in matter) by PDF Solutions Aiss 

division (licensed by Synopsys Inc., to work with PROXECCO and CATS). This program 

takes a user defined resist substrate multilayer “stack” of components defined in a 

materials database and traces a specified number of electrons in the material. Monte 

Carlo simulation is carried out using a single scattering model, where the electron 

trajectory is followed through a series of scattering events in the resist/substrate stack. 

Elastic scattering events are described using the screened Rutherford formula. Energy 

dissipation due to inelastic scattering is modeled by Bethe's energy loss formula in the 

continuously slowing down approximation (CSDA). Typical calculation time for the 

stack used in this paper was 11 hours on a Linux-based Xeon processor system in which 

1x107 electrons were traced. The resulting calculated radial energy density distribution 

(point spread) can be used directly as input for PROXECCO. 

The Monte Carlo simulation results are used as input for the program PARAPROX, 

which determined what is called the proximity function. The mathematical algorithm of 

PROXECCO uses a fast variant of the deconvolution method which describes the physics 

behind the proximity effect very well. The accuracy and efficiency is based on a separate 

treatment of pattern and correction. PROXECCO performs a determination of this 

proximity function in a plane of the resist specified by the user, and then calculates the 



63 

correction factors, or conditional frequency assignments (CFA), to apply when fracturing 

the pattern data. A particularly useful feature of this approach is that it treats the material 

stack and pattern data independently, which vastly improves both the flexibility of 

application and speed of computation. 

The CFA data file is used by the fracturing program (CATS by Transcription 

Enterprises, now licensed by Synopsys, Inc.) by convolution with the proximity 

parameter file to prepare the pattern data for exposure with variable doses such that the 

effective dose over the pattern is uniform.  The number of conditional frequency 

assignments determines how fine the variation of the dose is.  The number of CFAs to 

use is something to be determined experimentally, as too few factors result in 

under-correction and too many factors result in excess computational and exposure time. 

 

4.2.1 Electron beam lithography without proximity effect correction 

 

We first characterize the electron beam lithography without any proximity effect 

correction. We find that at an electron beam dosage of 700 µC/cm2, while the radius of 

the holes in the central region is closest to the designed value, the holes at the edge of the 

pattern are under-exposed, as shown in Fig. 4.3. However, when the holes near the edge 

are sufficiently exposed and closest to the designed size, the central region is 

over-exposed.  

Figure 4.4 shows the relative error in the hole sizes as a function of the distance from 

the center of the pattern when the holes at the edges are closest to the designed size and 

are sufficiently exposed such that no PMMA remained. The relative error (R.E.) is 

defined as 

c

cd

r
rr

ER
−

=..  (4.1) 

where rc is the measured hole radius at the center of the pattern and rd is the measured 
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hole radius at a particular distance from the center. The solid line in Fig. 4.4 shows the 

R.E. for the lithography without proximity effect correction with a dosage of 750 µC/cm2. 

The sizes of the holes vary up to 10% over the test pattern area. This variation would be 

sufficient to result in chirped gratings that would modify the spectral properties of the 

photonic crystal lasers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3: Scanning electron micrographs of the PMMA resist after uncorrected 
electron-beam lithography at a dosage of 700 µc/cm2. At this dosage, the radius of the 
holes in the center region is closest to the designed value. (a) The holes at the center of 
the test pattern. (b) The holes at the edge of the test pattern   

(a) 
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Figure 4.4: The relative error in the hole radius as a function of the distance from the 
center of the pattern for different degrees of proximity effect correction. The solid line is 
for the uncorrected lithography with a dosage of 750 µc/cm2. The dotted line is for the 
corrected lithography using a set of 16 dosages centered at 260 µc/cm2. The dashed line is 
for the corrected lithography using a set of 64 dosages centered at 230 µc/cm2. 
 

4.2.2 Electron beam lithography with proximity effect correction 

 

To compensate for the proximity effect, we use CATS with proximity correction, as 

described above, which fractures the pattern into a large number of divisions and assigns 

one of the defined dosages to each division. The required dosage is calculated by the 

program from the pattern density while accounting for the resist and substrate electron 

scattering properties. We repeat the electron beam lithography with sets of 16 and 64 

dosages in the proximity effect correction program.  

The dashed and dotted lines in Figure 4.4 show the relative hole size errors for the two 
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cases. Again, the relative error is taken at the dosage range where the holes near the edges 

of pattern are closest to the designed size and are sufficiently exposed. As shown in Fig. 

4.4, a set of 16 dosages result in a maximum relative size error of 6% at the edge region 

of the pattern. 64 dosages are required to limit the error to less than 5%, which is 

acceptable for our 2DBG laser designs. Therefore, for the fabrication of the photonic 

crystal Bragg lasers, we use 64 dosages in the proximity effect correction code to obtain 

sufficiently uniform patterns over the large area of the device. 

 

4.3 Reactive ion etching  

 
After the PMMA development, the photonic crystal patterns are transferred to the SiO2 

layer by reactive ion etching (RIE) using CHF3 plasma [52]. This is because we could not 

directly use the PMMA layer as a mask to etch InP. In this SiO2 etch process, the PMMA 

layer is a soft mask. So it is important to prevent the polymer redeposition. As shown in 

Fig. 4.5, there are a lot of particles in the etched region. This is mainly due to the polymer 

redeposition. These particles in the etched region would eventually cause the roughness 

of the photonic crystal pattern during the following fabrication process. The key here is to 

optimize the chamber pressure during the etching so that the etch product can be quickly 

removed from the main chamber. Figure 4.6 shows several scanning electron 

micro-spectroscopy (SEM) images of the etch results using an optimized etch recipe. The 

etched region is clean in both images. In the optimized recipe, we use a CHF3 flow rate of 

20 sccm, chamber pressure of 60 mTorr, and RF power of 110 W. The plasma DC 

self-bias is about 455 V, and the etch rate is around 40 nm/min.  

The SiO2 layer then serves as a hard mask to etch the semiconductor surface photonic 

crystal using an ICP-RIE with HI/Ar chemistry [53]. In this etch process, we do not have 

the redeposition problem since the SiO2 layer is a hard mask. However, we still need to 

balance the chemical etching and the physical etching in order to obtain a smooth surface 
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and a straight sidewall. Figure 4.7 shows the etch results using both the nonoptimized and 

the optimized etch recipe. In the optimized etch recipe, the HI/Ar gas flow is 10/6 sccm, 

the chamber pressure is 5 mTorr, and the ICP and RF electrodes are driven with 650 W 

and 30 W, respectively. The plasma DC self-bias is around 104 V, and the etch rate is 

about 250 nm/min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: SEM images of non-optimized SiO2 etch 
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4.4 Planarization and metallization 
 

After the etch of InP, the remaining SiO2 layer is about 80 nm thick. If we remove this 

leftover silica layer and directly deposit the metal contact at this stage, some of the metal 

will fall into the etched holes. This part of the metal will be very close to the quantum 

well region and introduce a lot of absorption losses. In order to prevent this, we coat the 

devices with a 2 µm thick polyimide (PI-2562, HD Microsystems) planarization layer. 

The polyimide is subsequently etched back to the SiO2 layer by an ICP-RIE using pure 

oxygen. Since the etch depth needs to be accurately controlled, the etch rate should be 

small. In the optimized etch recipe, the O2 gas flow is 30 sccm, the chamber pressure is 

10 mTorr, and the ICP and RF electrodes are driven with 200 W and 20 W, respectively. 

The plasma DC self-bias is around 200 V, and the etch rate is about 200 nm/min.  

During this process, the sacrificial SiO2 layer provides additional 80 nm tolerance for 

the polyimide etch-back process. After the etch-back, we strip off the remaining SiO2 in 

buffered hydrofluoric (HF) acid solution, creating a polyimide post inside each etched 

semiconductor hole. In contrast to the regular planarization methods, we can obtain a 

clean semiconductor surface without any polymer residue due to the SiO2 isolation layer 

between the semiconductor and the polymer. Figure 4.8 shows several SEM images of 

this planarization process. 

Next, the p-side electrical contact is deposited using a standard lift-off process. A 1.8 

µm thick layer of 1813 resist (Microposit) is spun on and exposed photolithographically. 

The p-side contact, Cr/AuZn/Au 2 nm/6 nm/250 nm, is thermally evaporated, covering 

the photoresist and the areas where the photoresist has been cleared. During the actual 

lifting-off, the photoresist under the metal layer is removed with acetone, taking the metal 

with it. The chip is then mechanically thinned to about 100 µm thick, and the n-side 

contact, Cr/AuGe/Au 2 nm/6 nm/250 nm, is evaporated. Finally, the laser bars are 
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cleaved to lengths of about 500 µm, and the facets are left uncoated. Figure 4.9 illustrates 

the cross section of the laser after we put down the p-side electrode. 
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Figure 4.9: SEM image of the cross section of the laser after metallization 
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Chapter 5 
 
Characterization of photonic crystal Bragg lasers  
 
 
5.1 Introduction 
 

In this chapter, we describe the characterization results of electrically pumped, large-area, 

edge emitting photonic crystal Bragg lasers with angled facets in the InGaAsP/InP 

semiconductor material at low and room temperatures. At low temperature (140 K to 180 

K), semiconductor materials have higher optical gain due to the reduced rate of 

non-radiative, thermal transitions [3]. Thus it is easy to obtain the continuous wave (CW) 

operation with a relatively low lasing threshold at low temperature. At room temperature, 

we first try pulsed pumping without active cooling since we do not have thermal 

problems with the pulsed operation. However, under the CW room temperature operation, 

the laser generates a lot of heat due to the large size of the device. Thus, thermal 

engineering is a key factor to realize the CW room temperature operation of the PC Bragg 

laser. 
Figure 5.1 shows two different setups for the low temperature and room temperature 

measurements, respectively. In Fig. 5.1(a), the laser is placed inside a cryostat to obtain 

the low temperature operation. We need to bond the laser to a C-mount. The inset in Fig. 

5.1(a) shows the SEM image of a single laser die bonded a C-mount underneath. On the 

top of the laser die, the metal contact is wire bonded.  
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Figure 5.1: (a) Low temperature measurement setup and (b) room temperature 
measurement setup 
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through a metal needle. With the pulsed operation, we do not use any cooling device. 

With the CW operation, we have to actively cool the laser using a thermal-electric cooler 

(TEC), as shown in Fig 5.1(b). 

For the characterization of the PC Bragg laser, we measure the output power versus the 

input current (L-I) curve, the optical spectrum, the near field, and the far field. From the 

L-I curve, we can obtain the laser threshold and the slope efficiency. From the optical 

spectrum, we can obtain the emission wavelength. For the near field and far field 

measurement, we use the setups shown in Fig. 5.2 [54]. In Fig. 5.2(a), we place a lens in 

front of the PC Bragg laser and put a camera at the imaging plane of the lens to measure 

the near field. Thus the near field is the image of the laser emitting facet. In Fig. 5.2(b), 

we directly put the camera in front of the laser to capture the far field image and the 

camera needs to be far away from the laser (> 1 mm). The far field is essentially the 

spatial profile of the laser output beam. We usually use an angular coordinate for the far 

field measurement. The full-width half-maximum (FWHM) angle is defined as the 

divergence angle of the laser. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: (a) The near field measurement setup and (b) the far field measurement setup 
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5.2 Low temperature measurement  
 

  In this section, we measure the L-I curves of the PC laser at different temperatures. We 

compare the laser threshold current and slope efficiency of the PC laser with those of a 

straight facet broad-area (BA) laser fabricated from the same wafer with the same size 

and under the same operating conditions. We show that the performance penalty in terms 

of threshold current and slope efficiency incurred by the presence of lasing in a photonic 

crystal mode is small. This is important for practical applications of our PC lasers. We 

also measure the laser spectra at different temperatures and obtain a temperature tuning 

sensitivity dλ/dT of 0.09 nm/℃, which is similar to a regular distributed feedback (DFB) 

laser [3]. Finally, we measure the PC laser linewidth using an optical heterodyne 

approach [55] and show that the laser truly operates in a single mode.  

The device structure is detailed in Chapter 3. We use a first order Bragg reflection (l = 

1) for the transverse direction with a lattice constant of a = 1 µm, and a second order 

Bragg reflection (j = 2) for the longitudinal direction with a lattice constant of b = 470 nm. 

The design corresponds to a resonance wavelength of 1483 nm ( effn  is estimated to be 

3.24). The metal contact width is about 100 µm and the facet tilt angle is 13.2°. The 

lasers are cleaved to lengths of about 450 µm and widths of about 400 µm. Each cleaved 

laser is then bonded to a C-mount and placed in a micro cryogenic refrigerator (MMR 

Tech.). We test the lasers in the temperature range of 140 K to 180 K to obtain the CW 

operation. 

 

5.2.1 L-I curves and temperature tuning 

 

The PC laser L-I curves at different temperatures are shown in Fig. 5.3(a). In the test 

temperature range, the threshold current varies from 47 mA to 88 mA. We optimize the 

measurement setup and make sure that the output light collection efficiency is the same 
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Figure 5.3: (a) L-I curves for the photonic crystal laser at different temperatures. (b) 
Comparison of the threshold current and slope efficiency between the photonic crystal 
laser and broad area laser 
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for different tests. Thus we can compare the threshold current and slope efficiency 

between the PC laser and the BA laser. The comparison results are shown in Fig. 5.3(b).  

 

The PC laser is theoretically expected to have a lower threshold due to the gain 

enhancement at the band edge [56]. But the PC structure fabricated by dry etching 

technique causes extra losses due to the scattering and surface recombination, which lead 

to a higher threshold. In Fig. 5.3(b), the threshold current for the PC laser is slightly 

higher than the BA laser. As the temperature increases, the material gain decreases and 

gain peak shifts to longer wavelengths. The threshold of the BA laser is determined by 

the peak of the material gain spectrum and varies almost linearly with the temperature in 

our experiment. In contrast, the threshold of the PC laser is determined by the gain at the 

resonance wavelength. Thus, the threshold of the PC laser varies linearly with the 

temperature only when the peak of the material gain spectrum is well aligned with the 

resonance wavelength (150 K to 170 K). In Fig. 5.3(b), the PC laser exhibits higher slope 

efficiency than the BA laser despite of the extra losses induced by the PC structure. This 

is mainly due to the fact that the PC structure has a wide optical mode and prevents the 

formation of filamentation [38]. The comparison results show that our PC lasers can 

perform similarly to or better than the BA laser fabricated from the same material in 

terms of the threshold current and slope efficiency and these PC lasers are suitable for 

practical applications.  

Figure 5.4(a) shows the lasing spectra at the pump current I = 1.6 Ith when the 

temperature changes from 140 K to 170 K. The side mode suppression ratios of the 

spectra at different temperatures are all greater than 30 dB. The lasing wavelength 

changes from 1483.95 nm to 1486.80 nm as the temperature changes from 140 K to 170 

K. This corresponds to a temperature tuning sensitivity dλ/dT of 0.09 nm/℃. Figure 5.4(b) 

compares the temperature tuning sensitivity of the lasing wavelength between the PC 

laser and BA laser. For the BA laser, the temperature tuning sensitivity is 0.5 nm/℃.  
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Figure 5.4: (a) Lasing spectra of the PC laser at different temperatures (1.6 Ith). (b) The 
laser peak wavelength as a function of the temperature for the PC laser and BA laser 
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When the temperature changes, there are two reasons that can lead to the change of the 

lasing wavelength. First, the refractive index of semiconductor materials changes; second, 

the gain spectrum of the semiconductor material, especially the peak position of the gain 

spectrum, changes. If the lasing mode is selected by the photonic crystal, the change of 

the lasing wavelength should only correspond to the change of the refractive index, not to 

the change of the material gain. For a broad area laser, it is similar to a free running 

oscillator. Its peak lasing wavelength always matches the peak position of the material 

gain spectrum as the temperature varies. In Fig. 5.4(b), it is clear that the temperature 

tuning sensitivity of the PC Bragg laser is different from the BA laser. This implies that 

the lasing mode of the PC Bragg laser is not selected by the material gain. We also 

compare the temperature tuning sensitivity of the PC Bragg laser with a temperature 

tuned DFB laser operated under similar conditions and obtain very similar results. This 

indicates that the lasing mode of the PC Bragg laser is indeed selected by the photonic 

crystal lattice. 

 

5.2.2 Single mode operation 

 

  Figure 5.5 shows the lasing spectrum at the pump current I = 1.3 Ith and the 

temperature T = 150 K. The spectrum has a single lobe and the side mode suppression 

ratio is about 32 dB. The FWHM linewidth (3 dB linewidth) is 0.15 nm. Optical spectrum 

analyzers usually have limited resolution; in our case, it is 0.08 nm. Thus we are not sure 

if there is more than one peak inside the single lobe in Fig. 5.5. In order to determine if 

the laser operates in a true single mode, we have to resolve the lasing spectrum with a 

higher resolution. 
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Figure 5.5: The lasing spectrum of the PC laser at 1.3 Ith (150 K) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6: The optical heterodyne detection measurement setup 
 

We use an optical heterodyne detection approach to resolve the fine features of the 

lasing spectrum, as shown in Fig. 5.6. We couple the light from the PC laser into a single 

mode fiber and combine it with the light from a tunable laser using a 3 dB fiber coupler. 
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The optical beating signal is then photodetected by a 25 GHz photodiode. The spectrum 

of the electrical current is measured on a 50 GHz RF spectrum analyzer. We set the 

wavelength of the tunable laser output light to be the same as the PC laser and sweep the 

wavelength in a range of 0.2 nm with a step of 0.001 nm. A single-peaked electrical 

spectrum is always observed during the measurement and is shown in Fig. 5.7. This 

proves that the PC laser operates in a single mode and the linewidth of the PC laser is 

estimated to be 110 MHz from Fig. 5.7 This linewidth is broader compared to a 

commercial DFB laser, mainly due to the large size of the laser and the temperature 

variation inside the refrigerator.  
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
Figure 5.7: The electrical spectrum of the beating signal between the PC laser and a 
tunable laser 
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5.3 Room temperature measurement 
 

5.3.1 Pulsed operation 

 

At room temperature, the peak of our semiconductor material gain spectrum is around 

1550 nm. Thus, we use a first order Bragg reflection (l = 1) for the transverse direction 

with a lattice constant of a = 1 µm and a second order Bragg reflection (j = 2) for the 

longitudinal direction with a lattice constant of of b = 490 nm. The hole radius is 100 nm 

and the etch depth is about 430 nm.The metal contact width is about 100 µm and the tilt 

angle is 13.8°.The laser bars are cleaved to lengths of about 480 µm and are tested in 

pulsed operation at room temperature with no active cooling. Current pulses with a 

duration of 100 ns and a period of 10 µs are injected to drive the lasers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.8: The lasing spectra at different pump currents (1.1×, 2.2×, and 3.5× threshold) 
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the single mode operation under pulsed operation, which shows the performance of the 

laser is stable. Due to pulsed excitation, the spectra are obtained under transient 

conditions with the attendant broadening. As the pumping current increases, the lasing 

spectrum shifts to longer wavelengths and the linewidth increases due to excessive 

heating. We can keep the single mode operation up to four times above the threshold. 

Further increase of the pump current is limited by the current source we have. We believe 

the single mode operation can be maintained higher than this pump current. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: The far field profile of the PC Bragg laser at 3.5× threshold 

 

The far field profile at 3.5× threshold is shown in Fig. 5.9. It has a 1.7× 

diffraction-limited divergence angle of 1.8°and two parasitic side peaks. We assume the 

emitting aperture of the laser is about 100 µm when we calculate the diffraction limited 

divergence angle of the laser [54]. Four possible reasons account for the non- 

diffraction-limited divergence angle and two side peaks: pulsed pump currents, current 

leakage outside the contact region, high order transverse modes and unwanted Bragg 
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reflection due to fabrication errors. Detailed discussion of the spatial modal control of the 

PC Bragg laser is in Section 5.5. 

 

5.3.2 Continuous Wave operation 

 

One important application of the PC Bragg laser is to provide high power, single mode 

light sources. Thus it is important to demonstrate the room temperature CW operation of 

the PC Bragg laser. In order to obtain the room temperature CW operation, we have to 

improve the performance of the laser and effectively dissipate the heat through good 

thermal engineering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: The PC Bragg laser design with the ion implantation 

 

The first step we try is an ion implantation process. As shown in Fig. 5.10, outside the 

metal contact region, the lasers are implanted with protons. The implantation process can 

create a high resistance layer in the implanted region. There are two main reasons to use 
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this process: First, since the resistance is higher outside the metal contact stripe, the 

current is confined under the metal contact region, preventing current leakage. In this way, 

the laser could have a lower threshold. A low threshold is important for the room 

temperature CW operation; second, there is no gain outside the electrode due to the 

confinement of the current. Then gain-guided modes outside the laser will be suppressed. 

Thus this implantation process can make the performance of the laser more stable with 

high pump currents. 

In Fig. 5.11, we compare two samples with and without the ion implantation. When 

there is no implantation, we can see the light outside the contact stripe, as shown in Fig. 

5.11(a). This is mainly due to the current leakage. In Fig. 5.11(b), although we pump this 

implanted sample with higher pump currents, there is no light outside the electrode. 

 

(a)                                   (b) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.11: The comparison between samples (a) without the implantation and (b) with 
the implantation 
 
 
 
 
 
 
 

contact
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Figure 5.12: The IV curves of the PC Bragg lasers with different planarization structures  

 

The turn-on voltage of the PC Bragg lasers depends on the relative height of the 

planarization polymer inside the photonic crystal to the semiconductor surface, as shown 

in Fig. 5.12. When the polymer inside the etched hole is higher than the semiconductor 

wafer surface, the turn-on voltage of the laser is much smaller. We believe this is mainly 

due to the surface state of the etched semiconductor. The metal layer is in direct contact 

with the etched semiconductor if the polymer post is lower than the wafer surface; while 

the metal layer only contacts with the highly doped, unetched semiconductor if the 

polymer post is higher. A small turn-on voltage is important for the room temperature CW 

operation since it reduces the heat generation a lot. Thus in our fabrication process, we 

intentionally make the polymer post higher then the semiconductor wafer surface, as 

shown in Fig 5.13. 
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(a) 

 
 
 
 
 
 
 
 

 

 

(b) 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.13: SEM images of the planarization polymer with and without the metal contact 

 

We also try other methods to improve the thermal performance of the bonded laser, 

such as using thin and uniform indium solder, increasing the size of the laser die, and 

annealing the metal contact. By combining all these efforts, we finally obtain the first 

room temperature CW operation of two dimensional, single mode, edge emitting, 

photonic crystal Bragg lasers. These lasers break the limit of index guiding for designing 

edge emitting, single mode semiconductor lasers using distributed feedback structures. 

Our results constitute the most critical step toward broad area, single mode, high beam 

quality, high power semiconductor lasers with multiple available wavelengths. 
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We use a first order Bragg reflection for the transverse direction with a lattice constant 

of a = 1.04 µm and a second order Bragg reflection for the longitudinal direction with a 

lattice constant of b = 490 nm. The design corresponds to a resonance wavelength of 

1553 nm (The effective index effn  is estimated to be 3.257). The hole radius is 100 nm 

and the etch depth is about 400nm. The metal contact width is 100 µm and the tilt angle 

is 13.8°. The lasers are cleaved to lengths of about 550 µm and are p-side up bonded to 

a C-mount using indium solder. The C-mount is then screwed on a thermoelectric cooling 

(TEC) stage and the temperature is set at 13 ℃.We measure the light current (L-I) curve, 

spectrum, near field and far field of the laser. Despite the non-uniform intensity 

distribution in the near field, the far field is single lobed and diffraction limited. This 

proves that the photonic crystal Bragg structure can prevent the filamentation and ensure 

the single mode operation. 
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(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.14: (a) L-I and I-V curves for the photonic crystal Bragg laser. The turn-on voltage 
is 0.75 V and the resistance is 0.68 Ω . The threshold is 560 mA. (b) The emission 
spectrum at the injection current I = 1.2 A 

 

Figure 5.14 shows the photonic crystal Bragg laser characteristics of the output power 

versus the input current (L-I) and the voltage versus the input current (I-V). In the I-V 

curve, the turn-on voltage of 0.75 V is much lower compared to our previous devices (~ 

1.5 V) since we make the planarization polymer slightly higher than the wafer surface. In 

the L-I curve, the laser has a clear threshold at 560 mA. The device can be operated up to 

~ 2.5x threshold and further increase of the pumping current leads to thermal rollover. 

The slope efficiency is 0.08 W/A, which is similar to the broad area lasers fabricated 

from the same wafer under the same test conditions. This efficiency is mainly limited by 

the wafer material and the thermal management. Although p-side down bonding provides 

much better thermal performance, we use p-side up bonding since the metal contacts are 

relatively thin (~ 250 nm). Figure 5.14(b) shows the emission spectrum at an injection  
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.15: (a) Near field and (b) far field profiles of the photonic crystal Bragg laser (I = 
1.2 A). The insets are direct images captured by an infrared camera. 
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current of 1.2 A. The single mode operation is obtained with the side mode suppression 

ratio (SMSR) higher than 30 dB. The laser also maintains the single mode operation 

under different pumping currents. 

  The photonic crystal Bragg laser, by limiting the operation to a single transverse mode, 

prevents filamentation, which leads to spatial coherence over a large emitting aperture. 

This results in a single lobe diffraction limited far field with small beam divergence. 

Figure 5.15 shows the near field and far field profiles of the test laser when the pumping 

current is 1.2 A. As shown in Fig. 5.15(a), the laser has a multi-lobe near field. This is 

mainly due to the material gain non-uniformity over a large width (100 µm). This kind of 

non-uniformity generally leads to filamentation for a typical broad area laser or a ridge 

waveguide laser, resulting in multi-lobe far fields and big beam divergence. However, the 

far field of the photonic crystal Bragg laser is single lobed and possesses a small beam 

divergence angle of 1°, as shown in Fig. 5.15(b). (In the far field image, the fringes in the 

vertical direction are due to unwanted interferences in the measurement.) The emitting 

aperture of the laser is about 100 µm, corresponding to a theoretical diffraction limited 

far field FWHM width of 0.99° [54]. This shows that the photonic crystal Bragg laser can 

operate with a single lobe, diffraction limited far field. 

 

5.4 Two dimensional wavelength tuning 
 
 
 
 
 
 
 
 
 
Fig. 5.16: The phase matching conditions of the PC Bragg structure 
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Transverse and longitudinal Bragg conditions need to be satisfied simultaneously for 

the PC Bragg laser 

b
mk

a
lk zx

ππ
== ,    (5.1) 

2
0

222 knkk effzx =+ . (5.2) 

In other words, we can tune the lasing wavelength by changing either the transverse 

lattice constant or the longitudinal lattice constant 

 2/12222 )//(2 −+= bmalneffλ . (5.3) 

We then calculate the tuning sensitivity for both the longitudinal and transverse directions 

from Eq. (5.3) 
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.       (5.4) 

   If we design the transverse wavevector much smaller than the longitudinal 

wavevector, the transverse wavevector only contributes a little to the lasing wavelength. 

In this way, the lasing wavelength changes a small amount when we change the 

transverse lattice constant. This means that we can finely tune the lasing wavelength with 

a relatively large step of the transverse lattice constant.  

We first use a first order Bragg reflection (l = 1) for the transverse direction with a 

lattice constant of a = 1 µm and a second order Bragg reflection (j = 2) for the 

longitudinal direction with three different lattice constants of b = 480 nm, 490 nm and 

500 nm. With the pulsed current injection, lasing is obtained for the b = 490 nm and 500 

nm designs with different threshold current densities of Jth = 1.10 kA/cm2 and 1.33 

kA/cm2, respectively. Figure 5.17(a) shows the optical spectra for all the three designs at 

the same pump current density J = 1.40 kA/cm2. While lasing is not obtained for the 

device with b =  480nm, the resonance peak at 1523.1 nm is evident in the spectrum. 
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The reason that the b = 480 nm design does not lase is due to the fact that the resonance 

peak wavelength for this design is far away from the peak wavelength of the gain 

spectrum and intrinsic losses at short wavelengths are high. Since the resonance 

wavelength of the 490 nm design is closer to the gain spectrum peak, the threshold of this 

design is lower.  

In all the three designs, the experimental resonance wavelengths of 1523.1 nm, 1550.3 

nm, and 1575.9 nm are close to the theoretical predictions of 1520.2 nm, 1550.1 nm and 

1579.9 nm calculated from Eq. (5.3). effn  is chosen to be 3.257 in the calculation and it 

is numerically calculated by a mode solver at the wavelength of 1550 nm. The slight 

difference at 1523.1 nm and 1575.9 nm is mainly due to the dispersion. Tuning of the 

longitudinal lattice constant leads to a lasing wavelength tuning sensitivity of 2.6, which 

is similar to that of regular second order DFB lasers and photonic crystal lasers with large 

index contrasts [57–59]. 
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(b) 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.17: (a) Optical spectra for the lasers with the same transverse lattice constant a = 
1 µm but different longitudinal lattice contants b = 480 nm, 490 nm and 500 nm at J = 
1.40 kA/cm2. (b) Lasing spectra for the lasers with the same longitudinal lattice constant 
b = 490 nm but different transverse lattice contants a = 0.92 µm, 0.96 µm, 1.0 µm, 1.04 
µm, and 1.08 µm at ~ 1.5× threshold 

 

  We then fabricate the lasers with the same longitudinal constant of b = 490 nm and five 

different transverse lattice constants of a = 0.92 µm, 0.96 µm, 1.0 µm, 1.04 µm, and 1.08 

µm on the same chip. Other fabrication parameters are the same as the previous examples. 

Figure 5.17(b) shows the lasing spectra at ~ 1.5× threshold for all the five lasers. We also 

show the lasing wavelength as a function of the transverse lattice constant and 

corresponding theoretical calculations in Fig. 5.18. As the transverse lattice constant 

changes from 0.92 µm to 1.08 µm, the lasing wavelength shifts 12.7 nm. This 

corresponds to a transverse tuning sensitivity of 0.08, eighty times smaller than a regular 

first order DFB laser. The small tuning sensitivity is important for the accurate control of 

the lasing wavelength. If we only need the same control accuracy, the fabrication 

tolerance can be much bigger. 
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Figure 5.18: Comparison between the experimental and theoretical results for the lasing 
wavelength. Good match is obtained and the slight difference is mainly due to the 
dispersion. 

 

5.5 Spatial modal control 
 

To understand the spatial modal distribution of the PC Bragg laser, we first look at a 

simple structure—a slab waveguide. As shown in Fig. 5.19(a), the Eigen mode of the slab 

waveguide is the slab mode. In Fig. 5.19(b), we put down the metal contact on the slab 

waveguide and provide the gain to make a laser. The lasing modes are gain-guided modes. 

The spatial modal profiles of gain-guided modes are illustrated using the blue lines. We 

have the first order mode, the second order mode, and other high order modes. As we 

know, the Eigen mode of the photonic crystal is the Bloch mode. In Fig. 5.19(c), the blue 

line shows the spatial distribution of the Bloch mode. Similarly, we provide the gain for 

the photonic crystal structure to make a laser. The angled facet here is used to suppress 

0.92 0.96 1.00 1.04 1.08

1542

1545

1548

1551

1554

1557

 

 

La
si

ng
 W

av
el

en
gt

h 
(n

m
)

Transverse Lattice Constant (µm)

 experimental
 theoretical



96 

the gain-guided modes. We would expect that the lasing mode is the Bloch mode 

modulated by the gain-guided mode profile, as shown in Fig. 5.19(d). We also have the 

first order mode, the second order mode, and other high order modes. This is just our 

initial estimation of the spatial modal profiles of the PC Bragg laser. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.20: (a) Modal losses for different order TBR modes as a function of the modal 
angle (the solid line) and the grating transmission spectrum (the dashed line). (b) The 
electrical field distributions for the three lowest order TBR modes 
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Using the transfer matrix model in Chapter 2, we analyze different order transverse 

modes for the PC Bragg structure and calculate different modal profiles in the transverse 

direction. We define the modal angle as ))/2/()(Re(cos 1 λπβθ effn−= . Figure 5.20(a) 

shows the modal angles and modal losses for different order TBR modes and Fig. 5.20(b) 

shows the electrical field distributions for the three lowest order TBR modes. The 

transverse coupling coefficient tκ ，which is proportional to the index contrast/the etch 

depth, is 0.108/µm. The transverse coupling coefficient is calculated using Eq. (3.29).  

All the TBR modes in Fig. 5.20(a) are supported by the same order (first order) Bragg 

reflection. In Fig. 5.20(a), we also calculate the transmission spectrum of the passive 

grating to illustrate the origin of high order TBR modes. In Fig. 5.20(b), only the first 

order mode has a single lobe, near field profile and thus a single lobe. far field profile due 

to the angled facet design. Thus, the first order mode is the only preferred lasing mode 

since a single lobe. far field profile is necessary for most applications. 

There are two important facts we can obtain from Fig. 5.20. First, it is clear that each 

TBR mode corresponds to one peak in the grating transmission spectrum. Indeed, these 

modes are guided by the photonic crystal structure. The finite device width (metal contact 

width) imposes a second transverse resonance condition and thus leads to the mode 

splitting. This is consistent with the fact that multiple peaks in the grating transmission 

spectrum are due to the finite width of the grating. Second, we define the modal loss 

difference between the lowest loss TBR mode and the next lowest loss TBR mode as the 

intermodal discrimination. A large intermodal discrimination is the key to keep the lasing 

in the first order mode. This can be understood as this: we provide the gain for the PC 

Bragg structure and when the gain compensates the loss of the first order TBR mode, the 

first order TBR mode starts to lase; but due to the large intermodal discrimination, the 

second order TBR mode will not lase. From the analysis in Chapter 2, we know the large 

intermodal discrimination is an advantage of using the PC Bragg structures to control the 

lasing modes of large-area semiconductor lasers.  
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However, if the etch depth of the photonic crystal, essentially the strength of the 

photonic crystal, is not properly designed, the intermodal discrimination could be small 

and this can lead to lasing in the high order transverse mode or multiple transverse modes. 

In Fig. 5.21, we calculate the intermodal discrimination between the first and second 

order TBR modes with different transverse coupling coefficients (the dashed line). We 

also calculate the modal loss of the first order TBR mode as a function of the transverse 

coupling coefficient in Fig. 5.21 (the solid line).   

In Fig. 5.21, it is clear that a smaller transverse coupling coefficient corresponds to a 

larger intermodal discrimination against high order TBR modes. But this does not mean 

that we have to design the transverse coupling coefficient/the etch depth of the photonic 

crystal as small as possible, because the modal loss for the first order TBR mode 

increases as the transverse coupling coefficient decreases. This is due to the decrease of 

the grating reflectivity. Thus, we have to select a suitable transverse coupling coefficient 

(etch depth) of the photonic crystal to balance between the intermodal discrimination and 

the modal loss. Since the lasing threshold depends on the modal loss, this also means that 

there exists a trade-off between obtaining a single lobe, diffraction limited far field 

(ensuring the lasing in the first order mode) and reducing the threshold for a given device 

width. From Fig. 5.21, we expect the optimum transverse coupling coefficient to be in the 

range of mm t µκµ /08.0/02.0 <<  to obtain the lasing in the first order mode combined 

with a relatively low threshold. Since the modal waveguiding loss is only one of a 

number of loss mechanisms such as scattering, absorption, and output coupling, which in 

total are comparable in magnitude to the modal loss, we expect a relatively small 

variation of the laser threshold over the range of mm t µκµ /08.0/02.0 << . 
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Figure 5.21: Modal losses for the first order TBR mode (the solid line) and intermodal 
discrimination between the first order TBR mode and second order TBR mode (the 
dashed line) as a function of the transverse coupling coefficient 
 

Relying on the theoretical analysis, we fabricate the PC Bragg lasers with three 

different etch depths of 250 nm, 305 nm, and 430 nm. The corresponding transverse 

coupling coefficients are 0.012 /µm, 0.024 /µm, and 0.122 /µm, respectively. These lasers 

are tested at 150 K to obtain the CW lasing. Fig. 5.22 shows the L-I curve of these three 

lasers. The laser with etch depth of 250 nm does not lase due to the high modal loss (we 

injected the current up to 300 mA). The threshold currents for the lasers with etch depths 

of 305 nm and 430 nm are 120 mA and 58 mA, respectively. These experimental results 

match well with the analysis of the modal losses of the PC Bragg lasers with different 

transverse coupling coefficients. 
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Figure 5.22: L-I curves of the three lasers with different etch depths: 250 nm, 305 nm and 
430 nm  
 

The measurement results of the spectra, near fields and far fields for the two lasers 

with 305 nm and 430 nm etch depths are shown in Fig. 5.23. The single mode lasing is 

obtained for both lasers with more than 30 dB side mode suppression ratios, as shown in 

Fig. 5.23(a-1) and (b-1). In Fig. 5.23 (a-2) and (a-3), the laser with 305 nm etch depth has 

a single lobe near field and a single lobe far field. The FWHM width of the near field 

profile is about 50 µm, corresponding to a theoretical diffraction limited far field FWHM 

width of 1.97° [54]. The measured FWHM width of the laser far field profile is about 2°, 

which proves that the single lobe, diffraction limited far field is obtained for this single 

mode laser. In Fig. 4 (b-2) and (b-3), the near field and far field of the laser with 430 nm 

etch depth both have three lobes, which corresponds to the lasing in the third order TBR 

mode. These measurement results agree well with the theoretical predictions and they 

prove that it is important to select a suitable etch depth (transverse coupling coefficient) 

to obtain the single lobe far field and maintain the single mode operation. 
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It should be pointed that our theoretical calculations assume a uniform material gain 

(loss) distribution. Thus, the first order mode always has a lower threshold compared to 

high order modes [44]. In the fabricated devices, however if the transverse coupling 

coefficient is large, high order modes may possess a lower threshold depending on the 

actual gain distribution. This explains why the single mode lasing in the third order TBR 

mode is obtained for the device shown in Fig. 5.23 (b).  
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Chapter 6 
 
Effective index guided photonic crystal lasers  
 
 
6.1 Introduction 
 

For more than three decades, structures with spatially periodic dielectric constants have 

played a crucial role in engineering the propagation and confinement of optical waves 

[31]. Photonic crystals, which typically refer to structures with periodicities in two or 

more dimensions, have garnered significant interest [60，61]. Based on the index contrast 

of the photonic crystal, we can divide the photonic crystal into two categories: strong 

index contrast photonic crystal and weak index contrast photonic crystal.  

Chip scale photonic crystals with strong refractive index contrast (e.g., suspended 

semiconductor with air holes) can be used for the tight confinement of the optical field 

beyond the limits of total internal reflection. In particular, photonic crystal defect cavity 

lasers have been demonstrated as highly compact, coherent sources of light [11]. 

However, to achieve the large index contrast required by these devices, suspended 

membranes are often required, making these lasers structurally less robust and raising the 

problem of heat dissipation. In consequence, there have been relatively few reports of 

electrically driven photonic crystal lasers with strong index contrast [43, 62], something 

essential for the optoelectronic integration of photonic crystal devices.  

Photonic crystals with weak refractive index contrasts can be used for the modal 

control of large-area semiconductor lasers. In general, these photonic crystal structures 



106 

can support two different kinds of modes: Bragg-guided and effective index-guided. For 

Bragg-guided modes, light is confined by Bragg reflections of the photonic crystal [63]. 

Since the index contrast is weak, these photonic crystals are essentially two dimensional 

distributed feedback structures. The idea of using two dimensional distributed feedback 

in lasers dates back to 1973 [64]. There are two different approaches to design two 

dimensional distributed feedback structures: surface emitting [65–68] and edge emitting 

[18, 27, 69–72]. For surface emitting lasers, light has to satisfy the Bragg conditions to 

diffract out of the plane. Two dimensional distributed feedback surface emitting lasers 

have been demonstrated in both semiconductor and polymer materials. Room 

temperature CW operation has been obtained for a 50 µm*50 µm single mode surface 

emitting semiconductor laser [67]. For edge emitting lasers, the design has to include 

discrimination mechanisms to suppress gain-guided modes. Photonic crystal distributed 

feedback structures with angled facets have been proposed to overcome this problem [69]. 

In the previous chapters, we report the first room temperature continuous wave (CW) 

operation of two dimensional distributed feedback (photonic crystal Bragg), single mode, 

edge emitting semiconductor lasers [72].  

Effective index-guided modes are only useful for edge emitting structures. The 

confinement in the transverse direction is due to the index difference between the core 

and the effective medium formed by the periodic structure in the cladding. In photonic 

crystal fibers, the effective index guiding mechanism can be used to design single mode 

fibers with large modal areas over a wide range of wavelengths [21]. In this chapter, we 

describe the photonic crystal lasers with weak index contrast using the effective index- 

guiding mechanism. These are edge emitting devices and are well suited for planar 

integration. We show that it is possible to find a regime where effective index guiding and 

Bragg reflection strongly couple together, resulting in a hybrid mode with a large volume 

and reduced group velocity and thus an enhanced gain. In contrast to the photonic crystal 

Bragg lasers, the lasing mode frequency is away from the Brillouin zone edge of the 
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photonic crystal [73, 74]. 

 

6.2 Laser design and fabrication 
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Figure 6.1 shows the schematic of our two dimensional photonic crystal laser. The 

surface structure consists of a rectangular lattice array of polymer filled holes with a 

waveguide core on the wafer surface. The active multiple-quantum-well layers are 

underneath the photonic crystal layer. The photonic crystal lattice consists of about 106 

nanoscale holes each with a radius of 100 nm. Light is confined in the vertical direction 

by total internal reflection. The size of the electrical contact is 600 µm×160 µm (length × 

width). The refractive index contrast between the etched hole and unetched region is on 

the order of 10−2, which is about two orders of magnitude smaller than conventional 

photonic crystals but also two orders of magnitude larger than a single mode step-index 

waveguide of comparable dimensions. 

The fabrication procedure consists of a series of lithography, etching, planarization, 

and metallization steps (see also Chapter 4). First, the photonic crystal lattice is defined 

using electron-beam lithography and etched into the surface of the wafer. The wafer 

design details are in Table 3.1. The etch depth of 410 nm is chosen to obtain the desired 

refractive index contrast and avoid etching through the quantum wells. Next, we 

planarize the structure by depositing a layer of polyimide and etching it back until the 

device surface is exposed. The planarization is necessary to reduce the optical losses from 

the metallic contacts and to obtain good contact quality. The top (p-side) contact is then 

deposited onto the lasers by metal evaporation and lift-off. The devices are then 

mechanically thinned, and the n-side contact is deposited. Finally the laser bars are 

separated from the wafer by cleaving. Figure 6.2 shows the SEM image of a photonic 

crystal laser after the polyimide planarization. 

We fabricate lasers with various lattice constants and core widths and test them at room 

temperature in pulsed operation without active cooling. Current pulses from a HP 8114A 

pulse generator with a duration of 100 ns and a period of 10 µs are injected to drive the 

lasers. The output optical signal from the device is first collected by a 50× microscope 

lens from the cleaved facet and is coupled into a multimode fiber. The optical spectrum is 
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then measured by a HP 70951B optical spectrum analyzer with a maximum resolution of 

0.08 nm. 

We take the near field image of the test laser diode using the same 50× microscope lens 

and a SUI SU640SDV InGaAs room temperature solid-state camera. We use a 

micrometer stage to adjust the position of the lens between the laser and the camera. We 

directly measure the far field pattern by putting the camera in front of the laser without 

any imaging optics. The distance between the laser facet and the camera sensor plane is 8 

cm. The center of the acquired image represents the optical intensity at 0o relative to the 

optical axis. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.2: SEM image of a polymer planarized photonic crystal laser, showing 
rectangular array of etched holes with a waveguide core 
 

 

 

 

 



110 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3: (a)The L-I curve of the structure with a = 1.0 µm and b = 400 nm. (b)Lasing 
spectra above the threshold (with J = 1.1 Jth) for structures with different lattice constants. 
Single mode operation is observed for the structure with a = 400 nm and b = 1.0 µm. The 
inset shows the spectrum for the single mode laser near threshold. 
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6.3 Measurement results 
 

Single mode lasing, with a single peak in the spectrum, a single lobe in the near field 

profile, and a diffraction limited far field pattern, is achieved. First, we test a set of lasers 

with a transverse lattice constant, a, of 1 µm, core width of 1.5 µm, and longitudinal 

lattice constant, b, ranging from 400 nm to 500 nm in 20 nm steps. Single-mode lasing is 

observed for b = 400 nm. To explore this effect in greater detail, we next test two sets of 

lasers with a = 1 µm and a = 0.8 µm, with waveguide core widths of 1.5 µm and 1.2 µm, 

respectively. For each set of lasers, b is varied from 390 nm to 410 nm in 10 nm steps. 

Figure 6.3(a) shows the light current density curve (average power verse peak current 

density) for the PC laser with a = 1.0 µm and b = 400 nm. It has a clear threshold around 

890 A/cm2. Using the fact that light is only collected from one facet and the duty cycle of 

the current pulse is 0.01, we calculate a slope efficiency of 0.1 W/A (average power 

versus average current). Other lasers with different lattice constants have similar L-I 

curves with clear thresholds.  

Figure 6.3(b) shows the measured optical spectra for different photonic crystal lattices. 

These spectra are obtained for devices on the same cleaved bar under the identical pump 

current density level J = 1.1 Jth. The laser with a = 1 µm and b = 400 nm shows a single 

peak in the lasing spectrum, while the other lasers exhibit multiple peaks. The side mode 

suppression ratio for the single mode laser is about 30 dB. We have also measured the 

single mode lasing spectrum at different positions along the emitting facets and obtained 

the same results. For the multimode lasers, the free spectral range (FSR) is about 0.6nm, 

in agreement with the laser length of 600 µm. The FSR suggests that these emission 

peaks arise from the longitudinal modes of the laser defined by end facets. The lasing 

wavelength for the single mode laser is near 1543.8 nm, while the highest lasing peaks 

for other two lasers with the same transverse periodicity but a different longitudinal 
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period are around 1541.2 nm and 1544.8 nm respectively. This indicates the lasing 

wavelength is determined by the lattice geometry of the photonic crystal rather than the 

material gain spectrum. The spectrum of the single mode laser has two very closely 

spaced peaks near threshold, similar to a DFB laser. As the pump current increases, the 

mode at the longer wavelength (1543.8 nm) dominates. The single mode behavior is 

maintained until J = 1.5 Jth. 

Figure 6.4(a) shows near field profiles for some tested devices above the threshold. As 

shown in Fig. 6.4(a), the near field of the single mode laser has a clear single lobe 

centered at the core in the middle of the metal contact, which suggests that only one 

transverse mode exists. The 1/e2 modal width from the near field profile is about 25 µm. 

In contrast, the multimode lasers have multiple lobes along the cleaved facet including 

the lobe at the core. Multi-lobed near field profiles are always accompanied by a 

multi-peaked laser spectra, which indicates that more than one transverse mode can 

oscillate in the multimode lasers. 

In addition to the single lasing peak and the single lobe near field, the single mode 

laser also possesses a diffraction-limited single lobe far field pattern with a divergence 

angle of 2.9o. The measured far field profile for this laser is shown in Fig. 6.4(b) and it is 

similar to that of a large-area index-guided ridge waveguide mode. This implies effective 

index guiding, rather than Bragg reflection is the main waveguiding mechanism for the 

lasing mode. 

Since the contact width is bigger than the lasing modal width, there are some tails in 

both the near field and far field profiles. We also expect more robust and efficient single 

mode output if we match the contact with the lasing modal width. 
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Figure 6.4: Near and far field profiles for the measured photonic crystal lasers. (a) 
Experimentally observed near field profiles for the single mode (red line) and a 
multimode structure (gray line) above threshold. For comparison, a numerically 
calculated near field profile is also shown (purple line). For this simulated mode, the 1/e2 

-150 -100 -50 0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

 numerical simulation
 I=1.1Ith, single-mode
 I=1.1Ith, multi-mode

 

 

Relative Distance (µm)

(a)

-8 -6 -4 -2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
or

m
al

iz
ed

 In
te

ns
ity

Angle (degree)

FWHM=2.9o

(b)



114 

modal width is approximately 26 µm, which matches closely with the experimentally 
observed value of 25 µm (b) Experimentally observed far field pattern. The far field 
single lobe has a FWHM of 2.9o. 
 

 

6.4 Numerical simulations and discussions 
 

In general, the effective index guiding mechanism alone does not guarantee the single 

mode operation since all of the tested laser geometries support effective index-guided 

modes. To explain quantitatively the single mode lasing spectrum in Fig. 6.3, we employ 

a two dimensional frequency domain supercell method [75] and numerically solve for 

modes that are localized in the core. Our supercell consists of 50 photonic crystal unit 

cells on each side of the core, with the same geometry as the single mode laser. Since the 

multi-layer quantum well structures give preferential gain to TE modes of our system, we 

restrict ourselves to TE modes (H-field out-of-plane) in the simulation. 

The results from the simulation are summarized in Fig. 6.5. The dispersion curve of 

index-guided modes is shown in Fig. 6.5(a) (red circle). It has a mini-bandgap, with 

details shown in the inset, in close vicinity of 2535.0/ ≈λb , which is approximately 

corresponding to the lasing wavelength of the single-mode laser. The black dotted lines in 

Fig. 5 (a) represent the band structure of the photonic crystal cladding (the photonic 

crystal structure without the defect core). Fig. 6.5(b) and (c) show the associated H-fields 

at various points of the dispersion curve. Around the mini-gap the field is delocalized 

(Fig. 6.5(c)) and the group velocity is reduced (Fig. 6.5(d)). It is the reduction of group 

velocity around the mini-bandgap that contributes to the single mode lasing observed in 

Fig. 6.3. 
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 The origin of the mini-bandgap of the dispersion curve of index-guided modes is the 

coupling between effective index-guided modes and a particular order of Bragg reflection 

from the cladding photonic crystal. For modes away from the mini-bandgap in Fig. 6.5(a), 

such as at points (1) and (3), the field profiles have a main lobe slowly varying on the 

scale of the unit cell and thus resemble fundamental ridge waveguide modes. Within the 

simplest approximation, these modes can be described as plane waves with no transverse 

components. In the vicinity of the mini-bandgap, this plane wave is scattered by the 

photonic crystal cladding. The scattering process is best illustrated using the band 

structure of the cladding photonic crystal. At the Bloch wavenumber 0=xK , the 

dispersion relation of the photonic crystal cladding (dotted lines in Fig. 6.5(a)) shows that 

near the frequency of the mini-bandgap of the photonic crystal waveguide dispersion 

relation, there is an anti-crossing between the photonic crystal bands. Physically, this 

anti-crossing corresponds to the situation where the forward/backward propagating plane 

wave is scattered sideways.  

The mode coupling described here can be best illustrated using the band structure of a 

two dimensional photonic crystal with infinitesimally small index variation. The 

dispersion relation for an empty rectangular lattice (along the Γ−M direction, 0=xK ) is 

shown in Fig. 6.6. The band structure consists of lines with:  

22 )2()2()2()2()( y
avg

y
avg

y K
b
q

a
p

n
cyK

b
qx

a
p

n
cK ++=++=

→→ ππππω .  (6.1) 

Kx and Ky are Bloch wavenumbers. In Eq. (6.1), c is light speed in vacuum, navg is the 

average refractive index for the photonic crystal, a is the transverse lattice constant, b is 

the longitudinal lattice constant, and p and q are integers. Each line in Fig. 6.6 is 

associated with a particular pair of (p,q), and they represent plane waves with different 

wavevectors propagating inside the structure. For example, when (p,q) = (0,0) we have 
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yavg Knc )/(=ω , which represents plane waves propagating in the 
→

± y  direction; when 

(p,q) = (±1,0) we have 22)/2()/(
y

Kanc avg += πω , which represents plane waves with 

both forward (
→

y ) and transverse (
→

x ) components. At the crossing points of the 

dispersion relation, two (or more) modes with different wavevectors are coupled together, 

and phase matching conditions in space and time are satisfied simultaneously.  

(p,q)=(+1,0)

(p,q)=(+2,0)(p,q)=(0,1) (p,q)=(0,-1)

(p,q)=(0,0)

π/Λy

π/Λy

−π/Λy

 

Ky

2π/Λy

ω

(p,q)=(0,0)

anti-crossing

 
Figure 6.6: Photonic crystal dispersion relation with the Bloch wavenumber 0=xK  

 

Of particular interest is the crossing denoted by the purple dot in Fig. 6.6, where plane 

waves with no transverse components (with )/2)(/( yavg Kbnc −= πω ) are coupled to 

plane waves propagating sideways (with 22)/4()/(
y

Kanc avg += πω  ). This coupling 

is mediated by the lattice vectors 
→→→

±±= ybxaG )/2()/4( ππ . We illustrate this coupling 
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with the wavevector diagram shown in Fig. 6.7. This coupling is the origin of the 

mini-bandgap in Fig. 6.5(a). 

 

 

 

 

 

 

 

 
 
Figure 6.7: Schematic of the coupling between different wavevectors. The backward 
propagating field (blue arrow) is coupled to the sideways propagating fields (purple 
arrows) by the reciprocal lattice vectors (gray arrows). 

 

For the structures with different geometries in Fig. 6.3, the location of the mini-gap 

will be at a different frequency. As a result, the reduction in group velocity will be at a 

frequency that is far away from the peak of the gain spectrum of the laser material. Thus, 

a single mode is not necessarily preferred for laser oscillation. 

The feedback effect we have described differs from a conventional DFB laser. In a 

DFB, a grating couples a forward propagating index-guided mode couples to its 

backward propagating counterpart without adding any transverse component and the laser 

oscillates at the Brillouin zone edge ( bK y /π= ). Operation at λ0 = 1.54 µm corresponds 

to a photonic crystal lattice with b = 480 nm and a = 1.0 µm when the second order Bragg 

reflection condition in the longitudinal direction is satisfied. However, single mode lasing 

is not observed in that case, which may be attributed to multiple modes with similar gain 

at that Brillouin zone edge and the increased vertical out-of-plane loss accompanying the 
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second order Bragg reflection [76, 77]. To achieve single mode operation using 

conventional DFB feedback, first order Bragg gratings, which possess a shorter period 

and are thus more difficult to define lithographically, are necessary. 
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Chapter 7 
 
Conclusion  
 
 
In the preceding chapters, the design, fabrication, and characterization of two different 

photonic crystal structures based on the InGaAsP-InP material system have been 

described for the modal control of large-area semiconductor lasers.  

  First, the photonic crystal Bragg laser, in which the transverse guiding and longitudinal 

feedback are both provided by the Bragg reflection from two dimensional periodic 

structures, are described and demonstrated. In contrast to the DFB structure, the photonic 

crystal Bragg laser breaks the limit of index guiding, allowing for the single-mode 

operation of large-area semiconductor lasers.  

In Chapter 2, a transfer matrix method is presented to analyze the waveguiding 

mechanisms in the transverse periodic structures, and is used to show that both TBR 

modes and SMA modes are supported by these structures. TBR modes are guided by the 

transverse grating and the large modal discrimination of TBR modes is ideal for the 

design of single mode, large-area semiconductor lasers. SMA modes include effective 

index-guided modes and leaky modes with small modal angles, and they always exist in 

large-area waveguide structures. The angled facet design is proposed to suppress the 

SMA modes. In Chapter 3, a longitudinal Bragg grating is incorporated into the one 

dimensional TBR waveguide, resulting in the photonic crystal Bragg structure, to obtain 

both the single transverse and the single longitudinal mode. A two dimensional coupled 

mode approach is used to design the photonic crystal. In Chapter 4, a versatile process for 
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the fabrication of the photonic crystal Bragg laser is presented. This process makes use of 

electron beam lithography, several reactive ion etching steps, and a planarization step to 

pattern the photonic crystal on an InGaAsP-InP active substrate. The electrodes are 

subsequently deposited, and the laser die is cleaved and bonded for test. In Chapter 5, the 

single mode photonic crystal Bragg laser with the single lobe, diffraction limited far field 

is experimentally demonstrated in both CW and pulsed conditions. The lasing wavelength 

is lithographically tuned by changing either the transverse or the longitudinal lattice 

constant. Through the transverse tuning, a wavelength tuning sensitivity of 0.08 is 

obtained, about 80 times smaller than a regular DFB laser. 

Second, the photonic crystal laser using effective index guiding is described and 

demonstrated. In this structure, the confinement in the transverse direction is due to the 

index difference between the core and the effective medium formed by the periodic 

structure in the cladding. Single mode operation is achieved by combining the transverse 

confinement provided by an effective index-guiding mechanism with the longitudinal 

mode selection provided by the Bragg reflection from the photonic crystal cladding. 

Further investigation of the effective index guided photonic crystal laser should improve 

the single mode operation stability high above threshold. One possible solution is to 

match the width of the metal contact with the width of the optical mode.  
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