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Abstract

In this thesis we examine several ways in which we can explore the early universe through gravitational-

waves and the fundamental nature of gravity through cosmology and observations of dynamics within

the solar system. Both of these topics have taken center stage, as we are living at a unique time

which promises to bring fundamental insights into the nature of gravity with the discovery of new

binary pulsar systems, the building of increasingly precise solar system and tabletop experiments

and the birth of gravitational-wave observatories– to name a few recent and upcoming advances.

We first discuss whether we may be able to directly detect gravitational waves from inflation

using future space-based interferometers. We then describe how the direct detection of inflationary

gravitational waves will allow us to probe the fundamental physics that operated at the earliest

moments of the universe. Next, a new constraint to a general cosmological gravitational wave

background is presented using the observations of the cosmic microwave background. Moving away

from general relativity, we consider alternative theories of gravity. One reason to consider alternative

theories of gravity is the observation that the expansion of the universe is currently accelerating. It

is possible that this accelerated expansion is due to a modification of gravity. However, any theory

that modifies gravity in order to produce accelerated expansion must also conform to the dynamics

that we observe within the Solar System. We discuss how the observation of the deflection of light

around the Sun places severe limitations on a particular modified gravity theory, known as f(R)

gravity. Our discussion of f(R) gravity leads us to ask whether the parameterized post Newtonian

parameter, γPPN, takes on a universal value. We identify measurements made of strong lensing

around early type galaxies in the Sloan Lens ACS (SLACS) survey as a first step in performing this

new test of gravity. Finally, we explore some consequences of Chern-Simons gravity. One of the

unique aspects of Chern-Simons gravity is that it introduces parity violation into the gravitational

sector. As a consequence, it predicts a different gravitomagnetic field around the rotating Earth

than is predicted in general relativity. We show how recent measurements of this gravitomagnetic

field made by observing the two LAser GEOdynamics Satellites (LAGEOS) and Gravity Probe B

satellites constrain Chern-Simons gravity. Finally, we discuss how future observations of binary

pulsar systems may allow for a more general exploration of the gravitomagnetic structure around

rotating objects.
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Chapter 1

Introduction and Summary

1.1 The uniqueness of gravity

Among the four basic forces, gravity plays a very special role. This statement has been made so

many times that it may be considered cliché, but this does not belie its truth. As the ‘universal

force’ it plays a fundamental role in the evolution of the universe, from the big bang to today. As

the only known force that cannot be written within a consistent quantum theory its fundamental

nature is expected to elucidate the complete ‘theory of everything’. As the weakest force it allows

us to observe physics at energy scales approaching the Planck scale. Besides playing this unique role

within nature, we are living at a unique time which promises to bring fundamental insights into the

nature of gravity: incredibly precise measurements of the motion of bodies within the solar system

have recently allowed us to test the behavior of gravity around the Sun and Earth to previously

unimaginable accuracy; table-top experiments are being designed which test gravity on smaller and

smaller length scales; laser interferometers are currently collecting data which will inevitably lift the

veil from the gravitational-wave sky; the discovery of binary pulsars presents us with a laboratory in

which to ask new questions of the strong-field behavior of gravity; measurements of the polarization of

the cosmic microwave background (CMB) may soon give evidence of gravitational waves produced

during the earliest moments of the universe; measurements indicating that the expansion of the

universe is accelerating may actually be pointing us toward previously unknown aspects of gravity.

In the first part of this thesis we take the point of view that general relativity is correct and use the

properties of gravitational waves in order to probe processes occurring during the earliest moments

of the universe. Our ability to make quantitative statements about cosmology is directly linked to

the requirement that the photons from the primeval fireball travel to us undergoing relatively few

interactions. This in turn sets the earliest time from which we have direct information about the

universe: 300,000 years after the big bang electrons combined with protons freeing the photons to

travel to us nearly unimpeded. If we were able to directly observe neutrinos, the earliest directly

observable epoch would be pushed back 13 orders of magnitude to around 1 s. Following Ref. [1],
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we can estimate this time by noting that neutrino decoupling occurs when the interaction rate, Γ,

drops below the Hubble parameter. The interaction rate between neutrinos and electrons is given

by Γ = ne〈σv〉 where ne is the electron number density and 〈σv〉 is the thermally averaged cross

section. The interaction vertex involves a factor of GF since the interaction proceeds through the

weak force, which leads to σ ∝ G2
F . Dimensional analysis (in units where c = ~ = 1) tells us that we

have σ ∼ G2
FE

2. Furthermore, since the electrons and neutrinos are relativistic when they decouple

we have v = 1 and ne ∼ T 3 so that

Γ ∼ G2
FT

5. (1.1)

We also know that H ∼ T 2/mPl, where mPl is the Planck mass, so that

(
Γ
H

)
ν

∼ G2
F

mPl
T 3 ∼

(
T

1 MeV

)3

, (1.2)

which corresponds to a decoupling epoch of t ∼ 1/H(T = 1 MeV) ∼ mPl/(MeV)2 ∼ 1 s. Performing

the same analysis for gravitons we need only note that the interaction strength is dictated by 1/mPl

as opposed to GF so that σ ∼ G = 1/m2
Pl and we have

(
Γ
H

)
grav

∼
(

T

1 mPl

)3

, (1.3)

which corresponds to a decoupling epoch of t ∼ 1/mPl = 10−44 s. Therefore, in principle, by

detecting gravitational waves we would be able to directly probe the dynamics of the universe up to

a temperature of mPl = 1.2× 1019 GeV or a time of 10−44 s! Such energies are far beyond what we

may have access to in any sense of the ‘near future’—for comparison, the Large Hadron Collider at

CERN will probe energies approaching 10 TeV, a full 15 orders of magnitude smaller.

One possible origin for a background of gravitational waves in the early universe is a period of

early accelerated expansion known as inflation [2–4]. Inflation was first proposed to solve theoretical

issues related to the initial conditions of the homogeneous and isotropic universe we see around us

today. One of its generic predictions is the production of a scale-invariant spectrum of perturbations

in the energy density of the universe [5–8]. This prediction has been confirmed by observations

of the CMB and the clustering of galaxies. Another generic prediction is the production of a

background of gravitational waves which has yet to be observed [9–15]. If observed, the amplitude

of this background would tell us the energy scale at which inflation took place, an essential piece of

information in our attempt to understand the fundamental physics which underlies inflation. The

additional measurement of the slope of the spectrum of gravitational waves would allow for an even

more fundamental test of inflation. The simplest model that leads to inflation proposes that the

energy density of the universe was dominated by a single scalar field at early times. Since in this

case a single degree of freedom would be responsible for producing both fluctuations in the density
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and the gravitational wave background there exists a consistency relation between these two spectra.

A confirmation of this consistency relation would be a ringing confirmation of the single scalar field

model for inflation; if not confirmed it would force us to consider more complicated models.

Besides understanding what information we may learn by observing a gravitational-wave back-

ground from inflation it is also of use to consider how we may detect the influence of a generic

gravitational-wave background. Many possible exotic processes may produce gravitational-wave

backgrounds including networks of global cosmic strings, phase transitions in the early universe,

cosmic turbulence and the cyclic universe [16–19]. There are many ways in which we may make

observations which are sensitive to a generic background of gravitational waves. A detection would

force us to consider how such a background was produced and what information we may glean from

its discovery; a non-detection serves to constrain new theories.

The second half of this thesis is dedicated to exploring modifications of general relativity. Given

that general relativity has passed every test we have put before it we must have good reasons to look

for alternative theories. Recent interest in alternative theories of gravity peaked when it became clear

that the universe is currently undergoing an epoch of accelerated expansion [20, 21]. Although this

observation can be explained within the context of general relativity, this explanation must evoke

the existence of a mysterious and exotic new material, i.e., ‘dark energy’ [22–27]. Unfortunately, this

explanation has yet to lead to any fundamental insights into the true nature of this acceleration and

as a result there have been many attempts to explain it through an alternative gravity theory [28–

33]. However, it is not a simple task to build a theory of gravity that both agrees with the observed

dynamics within the solar system as well as ‘naturally’ leads to a period of late time acceleration.

Part of the difficulty is due to the fact that general relativity has many special properties (such as

Birkhoff’s theorem [34]) which simplify many calculations and which are lost in alternative theories.

We must then take care in computing the predictions in these theories and in understanding the

consequences of those predictions. Articulating how to compute these predictions serves to develop

the framework in which we may start to explore new tests of the basic nature of gravity, whatever

that nature may be.

Another view on why it is important to look for alternative theories is related to the fact that

we have access to a very limited set of tests of gravity. As Sir Arthur Eddington said in the preface

to his famous book The Mathematical Theory of Relativity [35] (published only eight years after

Einstein’s formulation of general relativity): “The present widespread interest in the theory [of

general relativity] arose from the verification of certain ‘minute deviations from Newtonian laws.’

To those who are still hesitating and reluctant to leave the old faith, these deviations will remain

the chief centre of interest....” General relativity has now been with us for 93 years and anyone who

would still maintain the absolute validity of Newton’s laws would be considered a quack. However,

the direct evidence of its validity is still predominantly attached to those “minute deviations from
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Newtonian laws.” In other words, our only direct experience with gravity is through its effects in the

Solar System and since the gravity of the Sun is so (relatively) weak we can only hope to measure

small deviations from Newton’s predictions.

It is only recently, with the discovery of the Hulse-Taylor and other binary pulsars [36–39], that we

have had access to more extreme gravitational laboratories. In the near future, with the fifth science

run complete at the two Laser Interferometer Gravitational Wave Observatory (LIGO) sites [40], we

may look forward to the direct observation of gravitational waves. Such observations will allow us to

peer into dynamics displaying the strongest gravitational interactions that are accessible. However,

since most of our experience with gravity has been in the weak-field regime we have yet to develop

many of the tools and framework that will be needed to interpret the consequences of what we are and

will soon be observing. In this sense, explorations into the gravitational unknown is very different

than explorations into unknown parts of the electromagnetic spectrum. In the electromagnetic

case it is easy to imagine how serendipitous discoveries can occur. In the gravitational case most

observations are looking for effects which lie just above the noise or which may have other, non-

gravitational, explanations.

For this reason it is necessary to explore the consequences of alternative gravity theories in order

to properly understand the implications of the observations. Starting soon after Einstein’s first

formulation of general relativity in 1915, people took an agnostic view of alternative theories of

gravity: if a new term in the action isn’t forbidden by some fundamental symmetry or observation

then add it and explore the consequences [35]. In this thesis we take the same point of view.

Such studies make progress formulating tests of fundamental properties of gravity. For example,

as pointed out by Stückelberg [41] soon after the verification of parity violation in the weak sector,

there are no known reasons why parity violation should not also occur in the gravitational sector and

therefore it is of interest to construct gravity theories that violate parity in order to understand the

consequences. Such arguments are especially important when we consider what information we may

extract from the observation of gravitational waves. Unlike other types of radiation, the inherent

weakness of gravitational waves forces us to know, a priori, what form the gravitational-wave signal

will take [42]. It is clear that with such an observing scheme serendipitous discoveries will be hard to

come by and that we must compare the data to a suite of predicted signals in order to be confident

that we understand how those observations test our understanding of gravity.

The rest of this chapter summarises the contents of this thesis which, in part, consists of the

contents of seven previously published papers. In Chapter 2 we discuss how we may use current

constraints to inflationary models from observations of the CMB and matter power spectrum to

predict the inflationary gravitational-wave signal that may be observed directly with a gravitational-

wave observatory. In Chapter 3 we articulate what insight into the fundamental physics of inflation

we may gain by combining observations of the CMB and the direct observation of the inflationary
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gravitational waves. In Chapter 4 we present a new constraint to the cosmological gravitational-

wave background. In Chapter 5 we present work on using solar system tests in order to constrain

an alternative theory of gravity which leads to a period of accelerated expansion, known as f(R)

gravity, and by doing so identify a new test of gravity. In Chapter 6 we present work on an

alternative theory of gravity, known as Chern-Simons gravity, which violates parity, and show how

tests of gravitomagnetism serve to constrain such theories.

1.2 Gravitational waves from inflation

The second chapter of this thesis discusses the production and (possible) observation of gravitational

waves produced during inflation. There are two ways we may detect the inflationary gravitational-

wave background (IGWB). First, it induces a curl component in the polarization signal of the

CMB [43–47]. Many groups are currently conducting observations that are approaching interesting

sensitivities to this component of the CMB polarization [48]. Second, we may be able to directly

observe the IGWB with a future gravitational wave observatory (GWO) [1]. Many studies have

explored under what circumstances the IGWB will be indirectly observed in the polarization signal

of the CMB. In this chapter we emphasize the use of laser interferometers to directly observe these

gravitational waves. Current observations of the CMB and matter power spectrum serve to place

several constraints on models of inflation which can then be used to constrain the gravitational-wave

background produced in these models. In particular recent results from the Wilkinson Microwave

Anisotropy Probe (WMAP) team indicate that the slope of the primordial density fluctuations is

different from scale invariant [49]. Many groups have claimed that such a finding indicates that

the gravitational-wave signal from single scalar field inflationary models will produce an observable

gravitational-wave background in the CMB [50, 51]. We explore the validity of these claims and

extend the analysis to gravitational waves that may be observed at a GWO. In doing so we must

be careful in how we extend our analysis between CMB/matter power spectrum observations and

observations with a GWO since these observations span a length interval of about 16 orders of

magnitude. In this chapter we solve for the inflationary dynamics directly, instead of appealing

to approximations as is usually done in the literature. We find that if gravitational waves from

inflation are observed in the CMB, it is likely for them to be seen at a GWO. We also discuss what

information we may gain if the IGWB is too weak to be observed in the CMB.
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1.3 Combining CMB/matter power spectrum and GWO ob-

servations

In the third chapter we explore how we may combine observations of the CMB and the clustering

of galaxies with GWO observations to constrain the inflationary parameter space. In the first part

of this chapter we use a Monte Carlo method to generate a large set of inflationary models that are

consistent with current and future CMB/matter power spectrum observations. We then consider how

GWO observations, made at length scales 16 orders of magnitude smaller than CMB observations,

further restrict the allowed set of models. Several different proposed GWO designs are considered.

In addition to placing further constraints on the inflationary model space, GWO observations may

allow us to test a unique consistency relation between the spectrum of density fluctuations and the

spectrum of inflationary gravitational waves. The ability to test this consistency relation depends

on our ability to measure the slope of the gravitational wave spectrum. Observations of the IGWB

in the CMB are limited to a small range in frequencies due to contamination from weak lensing and

are therefore poor at measuring the slope of the gravitational-wave spectrum. Direct observations

with GWOs may have access to a much larger range in frequencies and hence may make a more

precise measurement of the slope. Combining such a measurement with measurements made in the

CMB may allow for a significant measurement of the consistency relation which would present us

with a truly fundamental test of the inflationary paradigm. We discuss how such a measurement

of the consistency relation may be made and under what conditions it may be precise enough to

discriminate between different theories.

1.4 A new constraint to the cosmological gravitational-wave

background

In the fourth chapter we discuss a new constraint to the cosmological gravitational-wave background

(CGWB). There are many ways in which we can place constraints to the CGWB, some of which

are shown in Fig. 1.1. At the longest wavelengths (smallest frequencies) we have constraints coming

from measurements of the CMB and the clustering of galaxies (labeled ‘WMAP’ and ‘CMB Pol’ in

Fig. 1.1). As a result of error intrinsic to measurements of the CMB (known as cosmic variance),

current observations are sensitive to CGWB amplitudes down to around a tenth of the amplitude of

the density fluctuations. This will improve as CMB experiments become more sensitive to the curl

component of the polarization signal. Constraints placed at intermediate frequencies monitor the

path length between us and some source. As a gravitational wave passes it will cause this length

to change in time. An example is the monitoring of timing residuals from pulsars (labeled ‘msec
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Figure 1.1: Current limits and projected sensitivities to a stochastic gravitational-wave background.
The solid curves all indicate current upper limits, while the dashed curves indicate projected sensi-
tivities. The LISA curve is from Ref. [52] and BBO correlated from Ref. [53]. The BBN constraint
results from the limit to the number of relativistic degrees of freedom at big-bang nucleosynthesis
(e.g., Ref. [54]); the ‘M/R’ constraint is from CMB/LSS constraints to matter-radiation equality
[55]; the ‘z. var’ curve is from Ref. [56]; and the quasar-astrometry limit from Refs. [57, 58]. LIGO
sensitivities, taken from the LIGO Scientific Collaboration White Paper on Detector Research and
Development [59] are given in terms of a correlated analysis between the Hanford, WA and Liv-
ingston, LA, sites. The run 1 LIGO limit (‘S1 LIGO’) is from Ref. [60] and the run 3 LIGO limit
(“S3 LIGO”) is from Ref. [61]. Also shown are millisecond-pulsar timing constraints (current [62, 63]
and sensitivities projected for the Square-Kilometer Array [64]).

Pulsar’ in Fig. 1.1). Timing residuals from pulsars allow us to constrain the CGWB above frequencies

f & 1/Tobs, where Tobs is the total duration of the observation (this is due to the inability to observe

a complete cycle for frequencies greater than this value) and below frequencies f . 1/day = 10−5 Hz

(since we must add the timing residuals over some time interval in order to have significant signal).

The sensitivity of these constraints depends on the accuracy of the timing residuals. We can also

monitor the location of quasars through both their redshift and their transverse location (labeled as

‘z var.’ and ‘QSO Astrom.’, respectively, in Fig. 1.1). Since these objects are at a distance of about

1 Gpc from us these constraints apply to frequencies between the Hubble horizon (10−17 Hz) and
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the inverse of the length of time of the observations (10−9 Hz for a 10-year observation). At the

highest frequencies the LIGO team has used its data in order to place constraints on the CGWB.

In Fig. 1.1 we also show the projected sensitivities of various future GWOs. Finally, the widest

constraint, in terms of a frequency range, comes from measurements of the primordial abundance

of light elements, such as 4He (labeled ‘BBN’ in Fig. 1.1) [1]. This constraint takes advantage of

the fact that the short wavelength part of the CGWB behaves as a radiative fluid. The primordial

abundance of the light elements was set through the competition between the Hubble expansion

rate, which depends on the radiative content of the universe, and the rate of light element creation.

Only that part of the CGWB whose wavelengths were within the Hubble horizon during Big Bang

nucleosynthesis (BBN) will contribute to the radiative energy density. This constraint therefore only

applies to frequencies greater than ∼ 10−11 Hz.

In this chapter we present a new constraint to the CGWB made in the same spirit as the BBN

constraint. The CGWB that is within the horizon when the CMB was formed (corresponding to

a frequency of 10−16 Hz) contributes to the total radiative energy density and hence affects our

observations of the CMB and the clustering of galaxies. The constraint we obtain is competitive

with the BBN constraint (see the line labeled ‘M/R Eq.’ in Fig. 1.1) but, in contrast to the BBN

constraint, will both improve with future observations (i.e., the Planck satellite) and extends down

to lower frequencies by 5 orders of magnitude. In this chapter we also discuss how different data

sets affect the final constraint, as well as describe the unique subtleties encountered when viewing

the short wavelength CGWB as a radiative fluid.

1.5 Solar system tests of f(R) gravity

The alternative gravity theory, known as f(R) gravity, is an attempt to explain the observed late

time accelerated expansion of the universe through a modification of general relativity. The theory

proposes to alter the Einstein-Hilbert action from R, where R is the Ricci scalar, to R+f(R), where

f(R) is some function of the Ricci scalar. The simplest example to consider takes f(R) ∝ 1/R

[32, 65]. We can heuristically understand how this modification leads to a late period of accelerated

expansion: as the universe evolves it becomes increasingly dilute driving the cosmological Ricci

scalar toward zero and causing the ‘correction’, f(R) ∝ 1/R, to grow in comparison to R. Once this

term becomes dominant the dynamics of the theory change and we find the universe evolves towards

a period of accelerated expansion. It is possible to construct a function f(R) which reproduces the

observed expansion history but we must then check whether this theory conforms to our observations

of gravity in other contexts. In particular, we present an analysis that calculates the behavior of

this theory within the solar system. Before the appearance of this work the literature was filled with

conflicting results: some claiming that the 1/R theory passed solar system tests, others claiming it
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did not.

After establishing that the 1/R theory severely violates the measurement of the deflection of

light around the Sun (parameterized by γPPN, which is measured to be equal to unity to one part

in 104 but which can be 1/2 in some f(R) theories) we go on to generalize our results and present

conditions which, if satisfied, imply an f(R) theory violates solar system observations. Our findings

indicate that non-linear effects may allow certain f(R) theories to pass solar system tests (i.e., these

theories predict γPPN = 1). The conditions which lead to these non-linear effects may depend both

on the redshift as well as on the strength of the local gravitational field.

This leads to a proposal for a new test of gravity. In all previous studies the value of γPPN has

been assumed to be universal but here we have a theory of gravity for which the value of γPPN

depends on both the local environment and redshift. In this chapter we present a preliminary

analysis to explore how we might test the universality of γPPN. We discuss how one may be able

to use measurements of strong lensing to build a set of measurements of γPPN and what types of

statistical tests we may use to explore whether these measurements imply a universal value. We

then apply our analysis to a small data set of 15 strong lenses using observations from the Sloan

Lens ACS (SLACS) survey [66], noting that this survey should increase the number of strong lenses

to 100 in the near future.

1.6 Constraints to Chern-Simons gravity

Continuing to consider alternative theories of gravity, in the next chapter we explore some observable

consequences of an alternative gravity theory known as Chern-Simons gravity [67, 68]. One of the

main aspects of this theory is that it introduces parity violation into the gravitational sector. As

such it has the notable property of leaving many of the best tested spacetimes unchanged [69, 70]. In

particular, any spacetime with spherical symmetry is still a solution of this new theory. This includes

the Schwarzschild and Friedmann-Robertson-Walker spacetimes, so that our standard solar system

and cosmological tests of gravity are insensitive to Chern-Simons gravity. Instead we must look

for spacetimes that break spherical symmetry. This leads us to consider the spacetime due to the

rotation of the Earth. The rotation of the Earth produces gravitational effects akin to the magnetic

field generated by a rotating sphere of charge and hence are called gravitomagnetism. These effects

were fully worked out for the weak-field limit of general relativity by Lense and Thirring [71]. It turns

out that in weak-field general relativity the field equations can take a form which is formally identical

to Maxwell’s equations of electromagnetism. Using this analogy we know that the gravitomagnetic

field around the rotating earth will be dipolar and completely poloidal. However, Chern-Simons

gravity alters the gravitational field equations and, because of its parity violation, produces both

poloidal and toroidal gravitomagnetic fields. This modification of the spacetime around the Earth
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is then used to constrain parameters in Chern-Simons gravity by using data collected from the two

LAser GEOdynamics satellites (LAGEOS) satellites. We also explore what types of constraints we

may expect from another satellite mission known as Gravity Probe B [72]. Finally, through our

study of Chern-Simons gravity we discuss how future observations of binary pulsar systems may

allow a more general exploration of the gravitomagnetic structure around rotating objects.
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Chapter 2

Detecting the stochastic
gravitational wave background1

2.1 Introduction

Long a subject of theoretical speculation, inflation [2–4] has now, with the advent of precise cosmic

microwave background (CMB) measurements [73–81], become an empirical science. The concordance

of the measurements with the inflationary predictions of a flat Universe and a nearly scale invariant

spectrum of primordial density perturbations [5–8] is at least suggestive and warrants further tests

of inflation. Among the predictions of inflation yet to be tested is a stochastic gravitational-wave

background with a nearly scale invariant spectrum [9–15]. Detection of the CMB polarization pattern

induced by inflationary gravitational waves of wavelengths comparable to the horizon has become

a goal of next-generation CMB experiments [43–47]. And now, direct detection of the inflationary

gravitational wave background (IGWB) with future spaced-based gravitational-wave detectors at

deci-Hertz frequencies has become the subject of serious study [82, 83].

Detection of a gravitational-wave background, at either CMB or direct-detection frequencies,

would constitute a ‘smoking gun’ for inflation. Moreover, since the amplitude of the IGWB is

determined by the energy scale of inflation at the time that the relevant distance scale exited the

horizon during inflation, detection would provide important information about the new ultra-high-

energy physics responsible for inflation [84, 85]. Since the frequencies probed by the CMB and by

direct detection are separated by 16 orders of magnitude, the combination of both provides a large

lever arm with which the shape of the inflaton potential can be constrained.

In this chapter, we survey a range of inflationary models to investigate the detectability of the

IGWB with satellite experiments, like NASA’s Big Bang Observer (BBO) [82] and the Japanese

1Most of the material presented in this chapter was first published in, Direct detection of the inflationary gravita-
tional wave background, Tristan L. Smith, Marc Kamionkowski, and Asantha Cooray, Phys. Rev. D73, 023504 (2006)
and The inflationary gravitational-wave background and measurements of the scalar spectral index, Tristan L. Smith,
Marc Kamionkowski, and Asantha Cooray, astro-ph/0802.1530. Reproduced here with permission, copyright (2006)
by the American Physical Society.
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Deci-Hertz Interferometer Gravitational-Wave Observatory (DECIGO) [83], currently under study.

We restrict our attention to slow-roll inflation models that are consistent with measurements from

the CMB and large-scale structure. We show how measurements of the IGWB amplitude at both

CMB and direct-detection scales can be used to constrain the inflationary parameter space.

Previous work [86–88] on direct detection of the IGWB has taken the gravitational-wave spectrum

to be a pure power law, considered chaotic inflation [89, 90] or the IGWB due to a broken scale-

invariant potential [91]. In this chapter, we consider a wider range of inflationary models (in the spirit

of Refs. [92, 93]), and we solve the inflationary dynamics to go beyond the assumption of power-

law power spectra. With this more accurate analysis, we find that for the forms of the inflaton

potential considered here the direct detection of the IGWB can break degeneracies between distinct

inflationary models that produce the same slow-roll parameters at CMB/large-scale-structure scales

for broken scale invariant potentials.

Recent results from the WMAP team [94] indicate that the slope of the scalar perturbations, ns,

is different from scale invariant with a best fit value at ns ≈ 0.95 (for a zero tensor contribution).

Although some groups have challenged the exact statistical significance of this result (see, e.g.,

Refs. [95, 96]) the conclusion that ns < 1, if upheld by future observations, may have important

implications for the IGWB. In particular, as argued in Refs. [50, 51], the confirmation of a spectral

index less than one may indicate (with caveats that we explore below) that the effects of the IGWB

on the CMB polarization pattern will be large enough to be detectable with future missions [48, 97].

In this chapter we discuss how the curvature of the inflaton potential determines, to a large extent,

whether the indication that ns < 1 implies a large IGWB amplitude. The same reasoning applies to

the chances of directly observing the relic IGWB today with future space-based gravitational-wave

observatories.

2.1.1 Inflationary dynamics and perturbations

2.1.1.1 Homogeneous evolution

Inflation occurs when the cosmological expansion accelerates; i.e., when ä > 0, where a(t) is the

scale factor, and the overdot denotes a derivative with respect to time t. The evolution of the scale

factor is determined by the Friedmann equation,

H2 ≡
(
ȧ

a

)2

=
8π

3m2
Pl

ρ− K

a2
, (2.1)

the continuity equation, ρ̇+ 3H(ρ+ P ) = 0, and an equation of state P (ρ), where H is the Hubble

parameter, ρ is the total energy density, P is the pressure, mPl is the Planck mass, and K is a

constant related to the 3-space curvature. From Eq. (2.1) and the continuity equation follows the
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‘acceleration’ equation,
ä

a
= − 4π

3m2
Pl

(ρ+ 3P ). (2.2)

For an equation of state of the form P = wρ, where w is a constant, inflation occurs when w < −1/3.

Consider now a spatially homogeneous scalar field φ, the ‘inflaton’. It has an energy density and

pressure,

ρ =
1
2
φ̇2 + V (φ), (2.3)

P =
1
2
φ̇2 − V (φ), (2.4)

from which it follows that inflation occurs if V (φ) > φ̇2.

The equation of motion for the inflaton is given by φ̈+ 3Hφ̇+ V ′ = 0, where the prime denotes

differentiation with respect to φ. We assume that inflation has been proceeding for a long time

before any observable scales have exited the horizon, and so for our purposes, the energy density

is dominated by the inflaton during inflation, the curvature term, K/a2, is negligible as compared

to the inflaton energy density, and the evolution of the inflaton has been attracted to the slow-

roll regime (e.g., Ref. [98]). If so, the evolution of the inflaton and the scale factor are uniquely

determined by V (φ). Within the slow-roll approximation, the evolution is described by the usual

slow-roll parameters,

ε ≡ m2
Pl

16π

(
V ′

V

)2

, (2.5)

η ≡ m2
Pl

8π
V ′′

V
, (2.6)

ξ ≡ m4
Pl

64π2

V ′V ′′′

V 2
, (2.7)

which are required to be small compared with unity for the slow-roll approximation to be valid.

Toward the end of inflation, ε grows, and inflation ends when ε ' 1. This statement can be made

precise by the use of ‘Hubble slow-roll’ parameters [98].

2.1.1.2 Perturbations

To leading order in the slow-roll approximation, the amplitudes of the power spectra for density per-

turbations (scalar ‘s’ metric perturbations) and gravitational waves (tensor ‘t’ metric perturbations)
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can be written (e.g., Refs. [99, 100])

Ps(k) ≈ 128π
3m6

Pl

V 3

V ′2

∣∣∣∣∣
k=aH

, (2.8)

Pt(k) ≈ 128
3

V

m4
Pl

∣∣∣∣∣
k=aH

, (2.9)

as a function of wavenumber k, where V and V ′ are evaluated when the relevant scale exits the

horizon during inflation. The power spectra can be expanded in power laws,

Ps(k) ≈ Ps(k0)
(
k

k0

)1−ns+(αs/2) ln(k/k0)

, (2.10)

Pt(k) ≈ Pt(k0)
(
k

k0

)nt+(αt/2) ln(k/k0)

, (2.11)

where k0 is a pivot wavenumber at which the spectral parameters (e.g., Ref. [101]),

ns(k) ' 1− 6ε+ 2η, (2.12)

nt(k) ' −2ε, (2.13)

αs(k) ' 16εη − 24ε2 − 2ξ, (2.14)

αt(k) ' 4εη − 8ε2, (2.15)

are to be evaluated. To a first approximation, the power spectra are power laws with power-law

indices ns and nt, although these indices may ‘run’ slightly with k, with a running parameterized

by αs and αt [102]. Finally, the tensor-to-scalar ratio is

r ≡ Pt(k)
Ps(k)

= 16ε. (2.16)

In this chapter, we will generally evaluate Ps, ns, and αs at the distance scales of the CMB and

large-scale structure (LSS), where they are measured or constrained. In the figures below, the tensor

spectral index nt will be evaluated at the distance scale relevant for direct detection of gravitational

waves.

2.1.1.3 Number of e-foldings

The number of e-foldings of expansion between the time, determined by k = akHk, when a comoving

distance scale labeled by k exited the horizon during inflation, and the end of inflation is N(k) ≡

ln (aend/ak), where aend is the scale factor at the end of inflation. A given scale exits the inflationary
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horizon when k = akHk, so we can form the ratio

k

a0H0
=
akHk

a0H0
=
aend

a0

Hk

H0
e−N(k). (2.17)

After the initial period of inflation the universe must be populated with matter and be dominated by

radiation by the formation of the light elements (∼ 1 MeV). This period is referred to as reheating.

We then suppose that during the reheating phase the dominant energy density scales as ρ ∝ a−p

(so that, for coherent oscillations of a scalar field with a potential of the form V ∼ φn we have

p = 6n/(n + 2) [103]) and we have the relationship, a ∝ ρ−1/p. With this and the conservation of

entropy density we can write

eN(k) =
(

k

a0H0

)−1(
g∗(T0)
g∗(Trh)

)1/3(
ρrh

ρend

)1/p
Hk

H0
, (2.18)

where Trh is the temperature at the beginning of radiation domination, T0 is the temperature of the

CMB today, and g∗(T ) is the number of relativistic degrees of freedom at temperature T . Writing the

energy density at reheat in terms of the reheat temperature we have ρrh = π2/30T 4
rhg∗(Trh). Finally,

we can write the energy density at the end of inflation, ρend = E4
end and Hk =

√
8π/3E2

k/mPl. With

this we have (e.g., Ref. [104]),

N(k) = 60.5 +
3.5
p
− ln

k

a0H0
− ln

1016 GeV
Ek

+ ln
Ek
Eend

− 4− p
p

ln
Eend

Trh
+

3− p
3p

ln g∗100(Trh),(2.19)

and we have g∗(T0) = 3.36 for photons and three species of massless neutrinos; g∗100(Trh) is the

number of relativistic degrees of freedom in units of 100 at the beginning of radiation domination.

In terms of the inflaton potential, the number of e-foldings between two field values, φi and φf , is

N(φi, φf ) ≈ 8π
m2

Pl

∫ φi

φf

V (φ)
V ′(φ)

dφ, (2.20)

where we have supposed the potential increases as the field increases so that the field rolls towards

the origin. Furthermore, if the potential determines a field value at which inflation ends, we can

combine this equation with Eq. (2.19) and ρrh to identify the field value when the current Hubble

volume exited the inflationary horizon.

Fixing p = 3, and using 1016 GeV for all the densities in Eq. (2.19), we require 62 e-folds of

inflation between the time the current horizon distance exited the horizon during inflation and the

end of inflation. The strength of the IGWB is proportional to the inflaton-potential height [see

Eq. (2.9)], and as we will see, detectability requires E & 1015 GeV. We will also see that Eend is

never much smaller than Ek. Thus, the only ratio in Eq. (2.19) that might be large is the second to

last. Conservatively, the reheat temperature must be & 1 MeV to preserve the successes of big-bang
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nucleosynthesis, implying a lower limit of N(a0H0) & 47. This lower limit is significant, as the ratio

of gravitational-wave frequencies probed by the CMB/LSS (corresponding to k ' 0.05 Mpc−1) and

direct detection is ∼ e35. Therefore, if inflation results in an IGWB in the ballpark of detectability

by the CMB, then inflation will last long enough to ensure the production of gravitational waves on

BBO/DECIGO scales (although it does not necessarily guarantee a detectable amplitude).

When we apply the above analysis to a specific class of inflationary models we assume that the

form of the inflation potential is known throughout observable inflation. Removing this assumption

we can alternatively view a specific class of modes as a good approximation for only that part of

inflation between CMB and BBO/DECIGO scales. In this case the constraint to the total number

of e-folds of inflation does not apply.

2.1.2 Constraints to inflationary observables

We would like to survey only those inflationary models that are consistent with current data. Mea-

surements of the ‘inflationary observables’—i.e., the scalar and tensor power-spectrum amplitudes,

spectral indices, and running—come from CMB measurements that probe scales from the current

Hubble distance (∼ 104 Mpc) to ∼ 10 Mpc scales, galaxy surveys that constrain the matter power

spectrum from 600 Mpc down to 20 Mpc, and from the Lyman-α forest, which probes down to ∼

1 Mpc [105, 106]. Constraints to the classical cosmological parameters (e.g., the Hubble parame-

ter, the deceleration parameter, the baryon density, the matter density) from other measurements

help limit the range of plausible values for the inflationary observables that come from CMB/LSS

measurements.

The precise constraints to the inflationary observables depend in detail on the combination

of observational data sets. In our discussions, we simply take as conservative ranges Ps(k0) =

(2.45 ± 0.23) × 10−9 and |αs| < 0.04 at a pivot wavenumber k0 = 0.05 Mpc−1 [107]. These ranges

are in agreement with the constraints using the latest data (e.g., Ref. [108]).

In our numerical analysis we use the CMB constraints derived from considering the WMAP third-

year data release (WMAP3, Ref. [94]) and those derived by considering a suite of CMB observations

(including WMAP3) as well as measurements of the linear matter power spectrum coming from the

Sloan Digitial Sky Survey (SDSS) and the Lyman-alpha forest, measurements of the baryon acoustic

peak from SDSS, and measurements of supernovae luminosity distances (WMAP3+, Ref. [109]). We

note that the analysis in Ref. [94] fixes the pivot wavenumber at k0 = 0.002 Mpc−1 whereas the

analysis in Ref. [109] uses k0 = 0.05 Mpc−1. As pointed out in Ref. [110], the overall constraints

do not depend on the choice of k0, but the value of k0 may change the shape of contours for

marginalized constraints (such as contours in the ns − r plane). The CMB constraints used in this

chapter fix the running of the scalar spectral index to zero and therefore, according to the analysis

in Ref. [110], are only slightly affected by the choice of pivot wavenumber. The results from the
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5-year WMAP data release change our results slightly. In their analysis [49] (as opposed to previous

analyses) it was found that ns > 1 is disfavored even when considering a non-zero tensor-to-scalar

ratio. Furthermore, they find that r . 0.2 at 95% confidence level. Although our results make use of

observational constraints our conclusions are made independent of those data sets and are applicable

to both the most recent as well as future constraints.

2.1.3 Gravitational-wave transfer function

The gravitational-wave power spectrum Pt(k) provides the variance 〈|hk|2〉 of the gravitational-wave

amplitude hk as that mode enters the horizon. Once the wavelength is smaller than the horizon,

the gravitational wave begins to oscillate, and its energy density ρk ∼ k2h2
k redshifts ∝ a−4 like

radiation. It follows that the gravitational-wave amplitude today is hk(t0) = hk(tk)(ak/a0), where

t0 is the time today, tk is the time of horizon entry, and ak = a(tk)2. During radiation domination

(RD), H ∝ a−2, so that k ∝ 1/ak, and during matter domination (MD), H ∝ a−3/2, so that

k ∝ 1/a1/2
k . From these relations, we find that the value of hk today scales with k as

hk ∝ k−1 (horizon entry during RD), (2.21)

hk ∝ k−2 (horizon entry during MD). (2.22)

Calculations (e.g., Refs. [111, 112]) of the transfer function intended for CMB predictions evolve

the wave equation more carefully through matter-radiation equality, but the direct-detection fre-

quencies are so high that the scalings we have used here are fairly precise. The sensitivities of

BBO/DECIGO will peak near a frequency 0.1 Hz, or wavenumber k = 6.47× 1013 Mpc−1. Matter-

radiation equality corresponds to keq ≈ 0.05h2 Mpc−1. Therefore, the primordial gravitational

waves observed by the planned gravitational-wave observatories entered the horizon well before

matter/radiation equality. In fact, the modes that entered the horizon during big-bang nucleosyn-

thesis (at T ∼ 1 MeV) have frequencies ∼ 10−11 Hz. Therefore, the gravitational waves probed by

BBO/DECIGO are ∼ 10 orders of magnitude smaller than those associated with big-bang nucle-

osynthesis (BBN) and must have entered the horizon at temperatures T ∼ 107 GeV or, if Trh < 107

GeV, then the observed gravitational waves enter the horizon during reheating.

The transfer function during reheating can have different behavior than the transfer function

during the standard expansion history. We may understand how the transfer function depends on

k through the same argument above. Generalizing to an equation of state w we have

hk ∝ k1/(1−3/2[1+w]). (2.23)

2This can be shown more rigorously by solving the equation of motion for h during radiation domination and
then comparing the oscillation amplitude at late times with the initial amplitude. We perform such an analysis in
Appendix A.
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The simplest reheating scenario involves coherent oscillations of the inflaton within a quadratic

potential. This leads to w = 0 [103]. In the other extreme, the kinetic energy of the scalar field may

dominate the universe leading to w = 1. It is important to note that for reheating temperatures

below 107 GeV [corresponding to a total number of e-folds of inflation N < 55 for p = 3 (w = 0)]

the transfer function depends on knowledge of the reheating epoch (see Appendix A).

We outline the derivation of the high-frequency transfer function for gravitational waves in Ap-

pendix A. If the wavenumber entered the horizon during radiation domination we then have

Ωgwh
2 =

16
9

Ωrh2

(
g∗(T0)
g∗(Tk)

)1/3
V

m4
Pl

, (2.24)

where Ωgw ≡ (1/ρc)dρgw/d ln k, Ωr ≡ ρ0
r/ρc,

ρ0
r =

π2

30
T 4

0 g∗(T0), (2.25)

ρ0
c =

3H2
0m

2
pl

8π
, (2.26)

V is the inflaton potential, H0 is the Hubble parameter today, T0 = 2.73 K [113] is the photon

temperature today, and mPl = 1.2 × 1019 GeV is the Planck mass. Photons plus three species of

massless neutrinos [g∗(T0) = 3.36] give

Ωgwh
2 = Agw

V

m4
Pl

, (2.27)

where Agw = 2.39× 10−5g
−1/3
100 and g100 ≡ g∗(Tk)/100.

2.2 Direct-detection thresholds

Since the detection of a stochastic background of gravitational waves has to be separated from

the effect of sources of noise intrinsic to the detector, the sensitivity to a stochastic background

is different than the sensitivity to a nonstochastic source. The total stochastic signal in a given

detector can be written as a sum of a stochastic signal plus a stochastic noise, s(t) = hn(t) + h(t).

Taking the Fourier transform of the total signal and considering the spectral density of the noise

and of the stochastic signal, we find that in order to have a signal-to-noise greater than unity,

〈
|h(f)|2

〉1/2
&

(
2fSn(f)

F

)1/2

, (2.28)

where F is a filling factor that accounts for the fact that a primordial stochastic background will be

isotropic on the sky, but the detector will only be sensitive to a fraction of the sky, while Sn(f) is
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the spectral density associated with the detector noise.

For omni-directional interferometers, such as the Laser Interferometer Space Antenna (LISA),

F = 2/5. There is a great improvement in sensitivity when the signal from two independent

detectors can be combined through a correlation analysis between the two detectors [1, 114–116].

Such a correlation increases the sensitivity to a stochastic background such that,

〈
|h(f)|2

〉1/2
& 1.12× 10−2

(
2fSn(f)

F

)1/2( Hz
∆f

)1/4 ( yr
∆T

)1/4

,

where ∆f is the bandwidth over which the signals can be correlated and ∆T is the integration time.

For a correlation analysis, the increase in sensitivity is under the assumption that the detector noises

are independent between the two detectors, while the only correlation expected is due to stochastic

signals such as inflation. For the single detector, the minimum observable strain is independent of the

integration time, while for a correlation analysis, long-term observations are essential. While LISA

will not allow an opportunity for such a correlation analysis, some mission concept studies for NASA’s

Big Bang Observer (BBO) and Japan’s Deci-Hertz Interferometer Gravitational Wave Observatory

(DECIGO) consider two (or more) systems such that the improvement related to the correlation

analysis can be exploited. The design for LISA currently places the sensitivity at approximately

Ωgwh
2 ∼ 10−11. Current designs for BBO place the sensitivity of a single detector at Ωgwh

2 ∼ 10−13

and the sensitivity of a correlated extension at Ωgwh
2 ∼ 10−17. Finally, the ultimate goal for

DECIGO is a sensitivity to Ωgwh
2 ∼ 10−20 [83], corresponding to V 1/4 ∼ 1.71×1015 GeV (r ∼ 10−6

where we have taken nt = 0 consistent with the consistency relation).

Besides a sensitivity to a stochastic background, one must also be concerned about sources of

a stochastic background, other than inflation. Such sources have the potential to wash out any

signal that would otherwise be observed from a primordial source, but the characterization of the

amplitude and frequency dependence of these sources is still uncertain. Other sources of cosmological

gravitational-wave backgrounds are white-dwarf/white-dwarf binaries [117], neutron-star/neutron-

star binaries [118] and neutron-star/white-dwarf binaries [119].

Fig. 2.1 shows the sensitivities to a stochastic gravitational-wave background as a function of

frequency f for a variety of gravitational-wave detectors. Also shown are various current limits (as

solid curves) as well as a variety of projected direct and indirect sensitivities (dashed curves), and

scale-invariant spectra parameterized by an energy scale V 1/4 of inflation (dotted curves). We also

show limits from current CMB experiments as well as the sensitivities expected for future CMB-

polarization experiments currently under study.

Fig 2.2 shows three putative foregrounds that may interfere with measurements of the IGWB in

future gravitational-wave observatories. In particular, the background due to cosmological neutron

star- neutron star binary systems overwhelms the expected amplitude of the IGWB for r = 0.1
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Figure 2.1: Current limits and projected sensitivities to a stochastic gravitational-wave background.
The solid curves all indicate current upper limits, while the dashed curves indicate projected sensi-
tivities. The LISA curve is from Ref. [52] and BBO correlated from Ref. [53]. The BBO sensitivity
is estimated by increasing the BBO-correlated curve by 4 orders of magnitude [see Eq. (2.29)]. The
BBN constraint results from the limit to the number of relativistic degrees of freedom at big-bang nu-
cleosynthesis (e.g., Ref. [54]); the ‘M/R’ constraint is from CMB/LSS constraints to matter-radiation
equality [55]; the ‘z. var’ curve is from Ref. [56]; and the quasar-astrometry limit from Refs. [57, 58].
LIGO sensitivities, taken from the LIGO Scientific Collaboration White Paper on Detector Research
and Development [59] are given in terms of a correlated analysis between the Hanford, WA and Liv-
ingston, LA sites [see Eq. (2.29)]. The run 1 LIGO limit (‘S1 LIGO’) is from Ref. [60] and the run 3
LIGO limit (‘S3 LIGO’) is from Ref. [61]. Also shown are millisecond-pulsar timing constraints (cur-
rent [62, 63] and sensitivities projected for the Square-Kilometer Array [64]). Curves corresponding
to scale-invariant (i.e., nt = 0) gravitational-wave backgrounds are shown (dotted curves), labeled
by the associated inflationary energy scales at CMB/LSS scales (but keep in mind that slow-roll in-
flation generically predicts nt < 0, less power on small scales). The CMB/LSS currently constrains
this value to be below 3.36 × 1016 GeV at CMB/LSS scales. Future CMB measurements may be
able to reach energy scales near 1015 GeV [120–123].

(Einf = 2 × 1016 GeV). However, recent studies such as Ref. [124] show that with the current

specifications for BBO’s design this foreground may be able to be significantly reduced so that the

sensitivity is only slightly degraded.
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Figure 2.2: Here, as a companion to Fig. 2.1, we show the foreground sources of gravitational waves
at frequencies related to the proposed BBO mission. We show foregrounds expected from white
dwarf-white dwarf binarys [117], neutron star-neutron star binaries [118] and neutron star-white
dwarf binaries [119]. We do not show the foreground from cosmological supernovae [53] since its
presence is less certain than these other backgrounds (see Ref. [124]).

2.3 The connection between ns < 1 and the IGWB amplitude

Many authors [50, 51] have noted that when ns 6= 1 then the amplitude of the IGWB is, generically,

significant. The argument for this conclusion is made by looking at the expression for ns in terms

of the slow-roll parameters ε and η,

1− ns = 6ε− 2η, (2.29)

and the tensor-to-scalar ratio

r ≡ At
As

= 16ε. (2.30)
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In order to infer a value for r given the indication that 1 − ns ≈ 0.053 one has to suppose some

‘natural’ relationship between ε and η. Many authors have supposed that ε & η so that ‘at worst’ we

have O(ε) ≈ O(η). We can then conclude that 1− ns ≈ 0.05 implies that r ≈ O(0.1). Such a value

for the tensor-to-scalar ratio is easily accessible to future CMB experiments as well as to space-based

gravitational-wave observatories. However, as we shall now show, there are caveats when making

the above argument.

Taylor expanding the potential in terms of these slow-roll parameters evaluated at some value of

the inflaton field, φ∗, we obtain [125]

V (φ) ≈ m2
PlH

2
∗

8π

{
(3− ε∗) + 12

√
πε∗

δφ

mPl
+ 2π[3

√
ε∗/π + 6(η∗ − ε∗)]

(
δφ

mPl

)2}
, (2.31)

where δφ ≡ φ−φ∗. If we suppose that ε∗ � η∗ then we can see that the potential is well approximated

by a quadratic function with the coefficient (3/2)H2
∗m

2
Plη∗. Looking at Eq. (2.29) the fact that

1− ns > 0 implies η∗ < 0 in this case— i.e., the curvature of the potential must be negative.

For the case where η < 0 at some point, in order for inflation to lead to oscillations in φ resulting

in the reheating of the universe, η must change sign so that the field evolves into a minimum of the

potential. In Ref. [50] the fact that η must change sign was used to indicate fine tuning. However,

as Ref. [50] points out, there are several scalar-field potentials that have this property as a result

of particular symmetries (such as the Higgs potential) so that, in some sense, their ‘fine tuning’ is

justified. As we shall see, it is exactly these potentials that allow for ns < 1 and r � 1− ns.

2.4 BBO/DECIGO amplitudes

In this section, we calculate the gravitational-wave amplitude at BBO/DECIGO scales for several

families of slow-roll inflation models consistent with CMB/LSS constraints.

Measurements of the scalar amplitude Ps and spectral index ns at CMB/LSS scales, as well

as upper limits to the tensor contribution r to the CMB and to the running αs of the spectral

index, constrain the inflaton potential and its derivatives at the field value φc that corresponds to

the time at which CMB/LSS scales kc exited the horizon. To be precise, we use kc = 0.05 Mpc−1.

In this work, we take as the nominal BBO/DECIGO frequency f = 0.1 Hz, corresponding to

k = 6.47 × 1013 Mpc−1 (and we note that Ωgw(k)h2 ' constant for nt ' 0, so our results will not

depend too sensitively on the precise value of f we use). CMB/LSS and BBO/DECIGO scales are

therefore separated by ∆N = ln(6 × 1013/0.05) ' 35 e-folds of inflation4. Eq. (2.20) can then be

used to find the field value φg at the time that BBO/DECIGO scales exited the horizon.

3When making this argument we ignore the fact that current analyses indicating ns < 1 fix r = 0. The full
analysis presented in this chapter does not fix r.

4We note that the actual expression that relates two field values corresponding to known length-scales is not given
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Table 2.1:

Potentials considered in this chapter

Potential name V (φ)

Higgs: V0(1− [φ/µ]2)2

Coleman-Weinberg: V0

“
φ
µ

”4 “
log
h
φ
µ

i
− 1

4

”
+ 1

4

ff
PNGB: V0[1− cos(φ/µ)]

Chaotic: V0

“
φ
mPl

”p
Power-law: V0e−pφ/mPl

Hybrid: V0

»
1 +

“
φ
µ

”2
–

2.4.1 Power-law inflation

In power-law inflation [10] the inflaton potential takes the form,

V (φ) = V0e
−pφ/mPl . (2.32)

This form for the inflaton potential often appears in scalar-tensor models for inflation [126, 127].

Power-law inflation is so called because the scale factor is a power law a(t) ∝ t16π/p2 , and the

Hubble parameter also evolves as a power of time t. The resulting scalar and tensor power spectra

are then pure power laws, with no running of the spectral indices. The parameter ε = p2/(16π)

always, so that inflation must be ended artificially at some φend. Although the potential has only

two free parameters (V0 and p), there is an additional free parameter, namely, the value of φc,

which we are free to choose in this particular family of models. This model has also η = p2/8π, so

ns = 1− p2/8π = 1− 2ε, and for ns > 0.9 we find a constraint ε < 0.05. The constraint r = 16ε . 1

is comparable or a bit weaker. Since ns and r depend in this model only on the parameter p, these

models occupy a curve in the ns–r parameters space, which is indicated by the left two panels in

Fig. 2.3. The constraint ∆N = 35 to the number of e-folds between CMB/LSS and BBO/DECIGO

scales tells us that

∆N =
8π
p

φg − φc
mPl

' 35, (2.33)

by Eq. (2.20), which ignores, in part, the variation of H during inflation. Instead, the exact expression is given by,

ln

„
k1

k0

«
=

s
4π

m2
Pl

Z φ0

φ1

1− ε
√
ε
dφ.

The error in our expression is expected to be small, since we are only considering the epoch of inflation far from
its end, so that we can always take ε � 1, in which case the above expression becomes approximately equivalent to
Eq. (2.20).
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Figure 2.3: Results for power-law inflation. The left two panels show constraints (68% and 95%
confidence levels) from CMB measurements, whereas the right two panels show the predicted ampli-
tude and slope of the IGWB at 0.1 Hz. The upper panels correspond to WMAP3-only constraints,
whereas the lower two panels correspond to WMAP3+ constraints. The dashed lines on the left-
hand panels indicate r = 0.01 roughly the limit for CMBPol [128]. The panels on the right show
the corresponding predictions for the IGWB given the CMB constraints. The dashed lines on the
right-hand panels indicate the sensitivity of the second generation BBO interferometer known as
‘BBO correlated’ [129–131]. The stars indicate values for the power-law index, p. For a fixed scalar
amplitude, Ps, this model occupies only a line in the ns−r plane because both ε and η are functions
only of the index p and not of the field value.

from which it follows that
V (φg)
V (φc)

= e−(p2/8π)∆N = e−(r/8)∆N . (2.34)

We thus find the gravitational-wave amplitude at DECIGO/BBO scales is

Ωgwh
2 = AgwV (φg) =

3
128

rPsAgwe
−(r/8)∆N

= 1.37× 10−15r e−(r/(0.23))(∆N/35) ×
(

Ps(kc)
2.45× 10−9

)(
Agw

2.39× 10−5

)
. (2.35)

This expression is maximized for r = 8/∆N ' 0.23 at a value Ωmax
gw h2 = 1.15× 10−16. Interestingly

enough, the IGWB detectability through direct detection is maximized for relatively small ε, while
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the detectability with the CMB is maximized at larger ε [89]. Given that CMB sensitivities are

expected to get to r ∼ 0.01 in the relatively near future with the CMB, and then to r ∼ 10−4 with a

next-generation satellite experiment, it is unlikely that this model would produce a direct detection

without producing a detectable CMB signal.

Fig. 2.3 shows the region of the Ωgwh
2–nt parameter space (at BBO/DECIGO scales) that the

ns–r parameter space shown in Fig. 2.3 maps to for power-law inflation. If power-law inflation is

the correct model of inflation, then the IGWB is directly detectable with BBO for r & 10−3 and

r & 10−6 with DECIGO.

2.4.2 Chaotic inflation

In chaotic inflation, the inflaton potential is,

V (φ) = V0

(
φ

mPl

)p
. (2.36)

This model was first proposed in Ref. [132]. Except for the choice of p = 2 (massive scalar field) and

p = 4 this model may be thought of as a local approximation to a more complete theory. It is also a

good approximation to both the PNGB potential and the Higgs potential in the appropriate limits.

In this family of models, ε(φ) = (p2/16π)(mPl/φ)2, and therefore inflation ends when φ = φend ≡

pmPl/(4
√
π). If there are Nc e-folds of inflation between CMB horizon exit and the end of inflation,

then Eq. (2.20) gives us φ2
c = (m2

Pl/16π)(4pNc + p2). We also have η(φ) = p(p − 1)(mPl/φ)2/(8π)

from which it follows that at CMB/LSS scales,

ns = 1− 2
p+ 2

4Nc + p
. (2.37)

Noting that 47 . Nc . 62, the constraint ns > 0.9 gives us a constraint p . 4Nc/19 − 40/19.

The constraint on the tensor-to-scalar ratio, r = 16ε = 16 p/(4Nc + p) . 1, leads to a slightly

less stringent limit, p . 4Nc/15. We note that the scalar running αs = −2(1 − ns)2/(2 + p) is

always within the current observational constraints since |1 − ns| . 0.1. This family of models is

thus parameterized by two parameters: 47 . Nc . 62 and p . 4Nc/19 − 40/19. Note that each

choice of (p,Nc) maps onto a point in the ns–r parameter space, so we could just as well choose

ns and r as our two independent parameters. If we choose to do so, then we assign Nc and p by

Nc = (1− ε)/(1− ns − 2ε) and p = 4ε/(1− ns − 2ε), where ε = r/16.

For a fixed value of Nc, this family of models is represented by a curve in the ns–r parameter

space; a spread in the range of values for Nc broadens this curve into a region in the ns–r parameter

space, as indicated by left two panels in Fig. 2.4
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Figure 2.4: Same as Fig. 2.3 but for the chaotic potential. As commented in the text, only those
models for which the index p is a positive even integer allow for a proper end to inflation. For other
choices of p the form of the inflaton potential must change before inflation ends. As a result, we
allow for the field value φCMB to be a free parameter, as discussed in the text. In order to indicate
the predictions for those models in this class that reach a proper end of inflation (i.e., where p is a
positive even integer), the solid black lines correspond to between 62 and 47 e-folds of inflation and
the dotted lines indicate constant values for the index of the potential. As is commented in Ref. [94],
a massive scalar field (p = 2) is a good fit to the data, whereas a quartic potential lies outside of
the 2σ confidence region using just WMAP3 data. This disagreement is worsened when using the
WMAP3+ constraints.
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Once p and Nc are specified, the potential prefactor is fixed by

V0 =
3p2Ps(kc)

128π

(
16π

4 pNc + p2

)(p+2)/2

m4
Pl. (2.38)

The gravitational-wave amplitude at direct-detection scales is then simply,

Ωgwh
2 =

128
3
Agw

V0

m4
Pl

(
φg
mPl

)p
, (2.39)

where the field value φg at the time direct-detection scales undergo horizon crossing is given by

φ2
g =

m2
Pl

16π
(4pNg + p2), (2.40)

and where Ng = Nc − 35 ≡ Nc − ∆N is the number of e-folds before the end of inflation that

DECIGO/BBO scales exit the horizon. For chaotic inflation, the value of nt at DECIGO/BBO scales

will differ from (and generally be larger in amplitude, or more negative than) that at CMB/LSS

scales. The value of nt at DEICGO/BBO scales will differ from that at CMB/LSS scales; it will be

given by nt(φg) = −2ε(φg).

Since in order for inflation to end and for oscillations in the inflaton field to begin, p must be

even, by considering models for with arbitrary p we are implicitly supposing that the form of the

potential changes between the field values corresponding to CMB and gravitational-wave observatory

observations and the end of inflation. In order to take this into account we allowed the field value

corresponding to CMB observations, φc, to be a free parameter, only requiring that it be at least

35 e-folds before the field reached the value φ = p mPl/(4
√
π) where ε = 1. If we allowed for a

value for φc to be lower then this, then the form of the potential must change between field values

corresponding to CMB observations and the direct observation of the IGWB. Such a situation was

explored in Ref. [133] in the form of a broken scale-invariant potential.

The right-hand panels in Fig. 2.4 show the region of the Ωgwh
2–nt parameter space (at BBO/DECIGO

scales) that the ns–r parameter space shown in the left-hand panels in Fig. 2.4 maps to for chaotic

inflation. The breadth in Ωgwh
2 of the region is due to the spread in the p–Nc parameter space for

fixed Ps(kc) = 2.45× 10−9; there will be a slight additional vertical broadening beyond that shown

due to the uncertainty in this parameter. If chaotic inflation is the correct model of inflation, then

the IGWB is directly detectable with BBO for r & 10−3 and r & 10−6 with DECIGO.
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Figure 2.5: Results for hybrid inflation. See the caption for Fig. 2.3 for details.
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2.4.3 Hybrid inflation

Hybrid inflation generally requires two scalar fields [134], but the phenomenology can be modeled

by a single scalar field with the potential,

V (φ) = V0

[
1 +

(
φ

µ

)2
]
, (2.41)

and the selection of a value for φend (with the only requirement that φend > 0). We note that this

form for the potential is not to be taken to be generic within the class of hybrid inflation but only

as a particular example. Other forms exist, such as those found in, e.g., Refs. [135–137]. Defining

y ≡ φ/µ, we find that the slow-roll parameters are given by, ε(y) = (mPl/4πµ2)y2[1 + y2]−2, and

η(y) = (mPl/4πµ2)[1 + y2]−1. In these models, ε is maximized at y = 1 with a value less than unity

if µ > mPl/(4
√
π). For smaller values of µ, inflation ends soon after y = 1 [138]5. The dynamics

of these models resembles those of chaotic inflation, which we have already considered, and so we

consider them no further. New inflationary dynamics arises for µ > mPl/(4
√
π) and y ≤ 1, and so

we restrict our attention here to this regime.

The field value at which CMB/LSS scales undergo horizon crossing during inflation is,

y2
c = 2 ln

(
yc
yend

)
− y2

end −
Nc
2π

(
mPl

µ

)2

. (2.42)

Since yc is taken to be a free parameter, Eq. (2.42), along with 47 . Nc . 62, determines the value

of yend. From the slow-roll parameters,

ns = 1 +
m2

Pl

2πµ2

1− 2y2
c

(1 + y2
c )2

, (2.43)

at CMB/LSS scales. The above expression for ns is maximized at y = 0, and at this field value

becomes ns = 1+m2
Pl/2πµ

2, which shows that we can have ns > 1 in hybrid inflation. The pre-factor

V0 is then fixed by the constraint,

V0 =
3

32π

(
mPl

µ

)2

Ps(kc)
y2

c

(1 + y2
c )3

m4
Pl. (2.44)

Once this normalization is fixed, these models are parameterized by µ and yc, and ns and r are fixed

once these two parameters are specified. As in chaotic inflation, we may alternatively take as our

two free parameters ns and r, and then determine µ and yc. In particular, these can be determined
5One can numerically determine that within a fraction of an e-folding y → 0 and therefore must pass through

yend.
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from

yc =
[

r

8(ns − 1) + 2r

]1/2

, (2.45)

µ = 2

[
2
π

4(ns − 1) + r

[8(ns − 1) + 3r]2

]1/2

mPl. (2.46)

The gravitational-wave amplitude at direct-detection scales is then simply given by,

Ωgwh
2 =

128
3
Agw

V0

m4
Pl

(1 + y2
g), (2.47)

where the field value yg at the time direct-detection scales undergo horizon crossing is given by

y2
g = 2 ln

(
yg
yend

)
− y2

end −
Ng
2π

(
mPl

µ

)2

, (2.48)

and where again, Ng = Nc − 35 ≡ Nc −∆N is the number of e-folds before the end of inflation and

the time when DECIGO/BBO scales exit the horizon. The value of nt at DECIGO/BBO scales will

differ from that at CMB/LSS scales; it will be given by nt(yg) = −2ε(yg). The running of the tensor

spectral index,

αt(y) =
1

4π2

(
mPl

µ

)4
y2(1− y2)
(1 + y2)4

, (2.49)

can be positive in this class of models. Thus, for y < 1, αt > 0, and the running is positive,

indicating that as y evolves, the tensor spectral index becomes less negative. As we have seen in the

previous models, a non-negligible gravitational-wave amplitude at CMB/LSS scales leads to a “large”

amplitude at direct-detection scales primarily due to a small, negative, tensor spectral index. We

therefore expect this model to produce the largest gravitational-wave amplitude at direct-detection

scales. We also note that the running of the scalar spectral index at CMB/LSS scales is

αs =
m4

Pl

2π2µ4

y2
c (y2

c − 2)
(1 + y2

c )4
. (2.50)

With the restriction that yc ≤ 1, αs is maximized at y =
√

2−
√

3. We note from this that if

µ ≥ 0.69mPl the observational bound on αs is satisfied for all yc ≤ 1. For µ not satisfying this

restriction, there will be some range of yc which are incompatible with observations. This restriction

is taken into account in our numerical calculations.

The right-hand panels in Fig. 2.5 show the region of the Ωgwh
2–nt parameter space (at BBO/DECIGO

scales) that the ns–r parameter space shown in the left-hand panels of Fig. 2.5 maps to for symmetry-

breaking inflation. The breadth in Ωgwh
2 of the region is due to the spread in the µ–Nc parameter

space for fixed Ps(kc) = 2.45 × 10−9. If hybrid inflation is the correct model of inflation, then the
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Figure 2.6: Results for the Higgs potential. See the caption for Fig. 2.3 for details.

IGWB may be detectable with BBO and DECIGO, but it is not guaranteed.

2.4.4 Symmetry breaking inflation

We now consider the Higgs potential,

V (φ) = V0

[
1−

(
φ

µ

)2
]2

, (2.51)

parameterized by V0 and a Higgs vacuum expectation value µ. Our treatment of this family of

models will parallel that for chaotic inflation. In these models, φ starts near the origin and then

rolls toward φ = µ. The slow-roll parameters are ε(φ) = (m2
Plφ

2/4πµ4)[1 − (φ/µ)2]−2, and η(φ) =

(m2
Pl/2πµ

2)[3(φ/µ)2 − 1][1− (φ/µ)2]−2, from which we infer an end to inflation,

φend =

[
m2

Pl

2π

(
1 + 2π

µ2

m2
Pl

−

√
1 + 4π

µ2

m2
Pl

)]1/2

. (2.52)

The field value at which CMB/LSS scales undergo horizon crossing during inflation is
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φ2
c =

Ncm
2
Pl

π
+ φ2

end − 2µ2 ln(φend/φc). (2.53)

At CMB/LSS scales,

ns = 1− 1
π

(
mPl

µ

)2 1 + 3y2
c

(1− y2
c )2 , (2.54)

where yc ≡ φc/µ. Since ns is a decreasing function of y, the constraint ns > 0.9 requires µ & 1.8mPl.

The prefactor V0 is then fixed by the constraint,

V0 =
3

8π
Ps(kc)(mPl/µ)2 y2

c

(1− y2
c )4

m4
Pl. (2.55)

Once this normalization is fixed, these models are parameterized by µ and Nc, and ns and r are

fixed once these two parameters are specified. As in chaotic inflation, we may alternatively take as

our two free parameters ns and r, and then determine µ and Nc, although the inversion is not as

tractable algebraically as in chaotic inflation.

The gravitational-wave amplitude at direct-detection scales is then simply,

Ωgwh
2 =

128
3
Agw

V0

m4
Pl

(
1− y2

g

)2
, (2.56)

where yg ≡ φg/µ, and the field value φg at the time direct-detection scales undergo horizon crossing

is given by

φ2
g =

Ngm
2
Pl

π
+ φ2

end − 2µ2 ln(φend/φg), (2.57)

and where again, Ng = Nc − 35 ≡ Nc −∆N is the number of e-folds before the end of inflation and

the time when DECIGO/BBO scales exit the horizon. The value of nt at DECIGO/BBO scales will

differ from that at CMB/LSS scales; it will be given by nt(φg) = −2ε(φg). We also note that the

running of the scalar spectral index at CMB/LSS scales is

αs = − 1
π2

(
mPl

µ

)4

y2
c

5 + 3y2
c

(1− y2
c )4

. (2.58)

We check in our numerical results that all of the models we consider are consistent with the bound

to this parameter, |αs| < 0.04. In particular we find that |αs| . 10−3.

The right-hand panels of Fig. 2.6 show the region of the Ωgwh
2–nt parameter space (at BBO/DECIGO

scales) that the ns–r parameter space shown in the left-hand side of Fig. 2.6 maps to for symmetry-

breaking inflation. The breadth in Ωgwh
2 of the region is due to the spread in the µ–Nc parameter

space for fixed Ps(kc) = 2.45×10−9. If symmetry-breaking inflation is the correct model of inflation,

then the majority of the parameter space indicates that the IGWB will be detectable with BBO

and DECIGO. Incidentally, we have also investigated potentials of the form V (φ) = V0[1− (φ/µ)p]2
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Figure 2.7: Results for the PNGB potential. See the caption for Fig. 2.3 for details.

with p > 2 [139]. In these models, the symmetry-breaking scale can be reduced below mPl, however

the IGWB amplitude is then reduced below the level accessible to BBO/DECIGO for µ . 0.1mPl.

2.4.5 PNGB inflation

The pseudo Nambu-Goldstone boson (PNGB) potential [140–143] proposes that the inflaton may

be associated with explicit symmetry breaking within an already spontaneously broken symmetry.

Its form is given by

V (φ) = V0(1− cos[φ/µ]). (2.59)

An example is the Peccei-Quinn axion which gains a small mass as the result of an explicit symmetry

breaking through non-perturbative corrections. The strength of the interactions between the PNGBs

and other fields are set by the the inverse of the energy scale at which the explicit symmetry is broken.

Therefore, if the symmetry is broken at a high energy scale, it is natural for this field to have very

weak interactions. The theoretical strength of this model is that its small mass and weak interactions

are ‘natural’ and are not spoiled by higher order corrections.
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Comparing the functional form for the PNGB and the Higgs potential it is clear that its dynamics

will be closely related to those of the Higgs potential. Additionally, the dynamics cannot be derived

in an analytic form. Therefore, we refer the reader to Sec. 2.4.4 for an approximate discussion of

the dynamics of this model but solve the model numerically. We check in our numerical results that

all of the models we consider are consistent with the bound |αs| < 0.04. The right-hand panels of

Fig. 2.7 show the region of the Ωgwh
2–nt parameter space (at BBO/DECIGO scales) that the ns–r

parameter space shown in the left-hand side of Fig. 2.7 maps to for symmetry-breaking inflation. If

PNGB inflation is the correct model of inflation, then, just as in the Higgs case, the most of the

parameter space produces an IGWB that will be detectable with both BBO and DECIGO.

2.4.6 Coleman-Weinberg inflation

Coleman-Weinberg inflation [3, 8, 144–146] is inflation driven by a scalar field possessing a potential

produced through loop corrections as first outlined in Ref. [147]. The potential takes the form

V (φ) = V0

{(
φ

µ

)4(
log
[
φ

µ

]
− 1

4

)
+

1
4

}
. (2.60)

If we couple a scalar field in an SU(5) field theory to gauge bosons we develop such a potential.

However, the amplitude of that potential (of order g4 where g is the gauge coupling) is too large in

order to drive a period of inflation [144]. An alternative scenario is to couple an SU(5) singlet to

the adjoint and fundamental Higgs fields [148]. Such a coupling also leads to a Coleman-Weinberg

potential, but with a largely arbitrary normalization. Observationally, the unique aspect of this

potential is that it is exceptionally flat near the origin. This property leads to a particularly ‘steep’

region in the ns−r plane, with r decreasing rapidly around ns ∼ 0.94. This is particularly interesting

given our desire to understand how a measurement of ns impacts our predictions for r.

The flatness of this potential near the origin brings up an interesting question of ‘fine tuning’. In

Ref. [50] it is argued that an inflaton potential should be considered to be fine tuned if it possesses

a large number of zeros in its derivatives throughout the period of inflation. A convenient way of

measuring this is given by considering either slow-roll parameter (ε or η) and its derivatives. If a

potential has many zeroes in either ε or η during inflation it is considered to be fine tuned. We show

the value of η for the Coleman-Weinberg potential in Fig. 2.9 and it is clear that η passes through

many zeros during inflation. Therefore, according to the criteria of Ref. [50] the Coleman-Weinberg

potential is fine tuned. However, it can also be argued that it is produced through natural couplings

and therefore should be considered as such. As in the case of the PNGB potential, the dynamics of

Coleman-Weinberg inflation are not analytical. We solved for the dynamics numerically and check

that all models that we consider are consistent with the bound |αs| < 0.04. The right-hand panels of

Fig. 2.8 show the region of the Ωgwh
2–nt parameter space (at BBO/DECIGO scales) that the ns–r
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Figure 2.8: Results for the Coleman-Weinberg potential. See the caption for Fig. 2.3 for details.
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Figure 2.9: Here we show the slow-roll parameter η as a function of the inflaton field value φ for the
Coleman-Weinberg potential. For this example we have chosen µ = 2 in units of mPl. Given the
large number of zeros found in η and its derivatives throughout inflation, this potential is considered
extremely fine tuned according to the criteria discussed in Ref. [50].
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parameter space shown in the left-hand side of Fig. 2.8 maps to for symmetry-breaking inflation. If

Coleman-Weinberg inflation is the correct model of inflation, then, just as in the Higgs case, the most

of the parameter space produces an IGWB that will be detectable with both BBO and DECIGO.

2.5 The (running) power-law approximation

During inflation, the value φ of the scalar field can change very little as the scale factor a(t) grows

extremely rapidly. It is therefore a feature of inflation that a vast range of distance scales can

correspond to a small change in φ. This motivates the power-law expansions (with a slight running

of the spectral index) in Eqs. (2.10) and (2.11), which assume that the inflaton potential can be

accurately approximated by its Taylor expansion (to second order) about a given inflaton value.

These power-law expansions are particularly appropriate when studying the CMB and large-scale

structure (e.g., Refs. [88, 107, 149]), which involve a spread in distance scales of maybe three orders

of magnitude.

However, BBO/DECIGO frequencies are separated from those probed by the CMB/LSS by

roughly sixteen orders of magnitude. The inflaton may thus traverse a significant distance, and so it

is not obvious that the Taylor expansion approximation that underlies the power-law approximation

(even with the running of the spectral index) will remain valid. For example, in Eqs. (2.12) and

(2.13), the tensor and scalar tilt are written in terms of the first-order slow-roll parameters, while

second- and higher-order corrections (e.g., Ref. [150]) may be important when extending the power

spectrum over large physical scales. Similarly, one must also account for higher-order derivatives

of the tilt, beyond the running considered with αs and αt. For the calculation performed here,

higher-order corrections are not important as Ωgwh
2 was directly determined with model parameters

describing the inflaton potential, rather than through the power spectrum. Assuming the Taylor

approximation is valid, then measurements of Ps, ns, and r at CMB/LSS scales fix the parameters

Pt(kc), nt, and αt in Eq. (2.11), which can then be used to predict Pt(kg) ∝ Ωgwh
2, the IGWB

amplitude at BBO/DECIGO scales. An approach based on the Taylor expansion was considered in

Ref. [88] to estimate the GW amplitude at frequencies corresponding to direct detections. Fig. 2.10

plots the exact IGWB amplitude obtained from the calculation in the previous section vs. that

obtained from the power-law approximation. For small IGWB amplitudes, r = 16ε→ 0, and so the

potentials are very close to flat and the power law tends to be a good approximation, and is indeed

a good approximation for the classes of models we have considered. For power-law inflation, where

the power spectra are precisely power laws, the two results are identical. For chaotic and symmetry-

breaking inflation, ε becomes large when the IGWB amplitude becomes large, and ε evolves during

inflation in such a way that the power-law approximation overestimates the true IGWB amplitude

at direct-detection scales. The behavior of hybrid inflation is a bit more subtle. The running of
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Figure 2.10: Here we plot the inflationary gravitational-wave background amplitude Ωgwh
2 obtained

with the exact inflationary dynamics described in Section IV versus the amplitudes obtained with
the power-law approximations (with slow-roll parameters fixed by CMB/LSS observations) given in
Section IIb. The panels show results for (a) power-law, (b) chaotic, (c) symmetry-breaking, and (d)
hybrid inflation. The regions are models taken from the allowed ns–r parameter space and the blue
dashed curves indicate equality.
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the tensor spectral index is αt = (r/8)(ns − 1 + r/8) which, for ns > 1 − r/8 can be positive. The

(running) power-law would then suggest that nt will become positive at some small distance scale,

which cannot be [see Eq. (2.13)]. The power-law approximation can then overestimate the true

IGWB amplitude at BBO/DECIGO scales. On the other hand, in hybrid inflation, unlike chaotic

and symmetry-breaking inflation, ε can indeed decrease as inflation proceeds, and so the direct-

detection amplitude may also be underestimated by the power-law approximation. Both behaviors

are seen in Fig. 2.10.

It should also be kept in mind that the tensor spectral index nt is most generally different at CMB

scales than it is at direct-detection scales, and it is conceivably measurable at both. Determination

of nt at both distance scales could therefore distinguish between inflationary models. For example,

in power-law inflation, nt remains precisely constant, while it can change by roughly a factor of two

for chaotic inflation for models with a directly detectable IGWB. Realistically, though, the tensor

spectral indices are generically (although not in full generality) small, and so running of the tensor

spectral index will be difficult to measure.

Finally, the classes of models we have considered are not at all exhaustive, and another inflaton

potential could yield a direct-detection IGWB amplitude different from those we have considered

here and different from what extrapolation from CMB/LSS would suggest from the power-law ap-

proximation. For example, in models with broken scale invariance [151, 152], the direct-detection

amplitude could be considerably different.

2.6 Broken scale invariant spectrum

To demonstrate that direct observations of the IGWB can distinguish between different forms of

the inflaton potential, we consider as a toy model the broken scale invariant (BSI) potential, which

features a sharp change in the slope of the inflaton potential at some transition scale [91, 151, 152].

Such models have been invoked to explain, e.g., the paucity of dwarf galaxies observed around the

Milky Way [153–155].

Consider a potential of the form,

V (φ) = V0 ×

(1 +Aφ), φ & 0

(1 + cAφ), φ . 0,
(2.61)

where V0 is the overall normalization, A is the slope of the potential at CMB/LSS scales and c

parameterizes how the slope changes after the break at φ = 0. We allow φc to be a free parameter,

only requiring that it be before the break in the potential at φ = 0. This freedom supposes that

the field value at which inflation ends is not necessarily determined by the form of the potential in
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Eq. (2.61). In order to choose φc, we place the break (i.e., φ = 0) N0 e-folds from φc. A natural

choice for N0 is 10, since we suppose that CMB/LSS scales constrain the inflaton potential from

104 Mpc to 1 Mpc. The normalization of the scalar power-spectrum then fixes the normalization V0

of the potential through the expression,

V0 =
3Ps(kc)

128
A2m2

Pl

(1 +Aφc)3
m4

Pl. (2.62)

We then integrate Eq. (2.20), assuming the transition at φ = 0 has a negligible contribution, between

φc and φg with N = 35 in order to find φg. We require that inflation not end before we reach

φg. For V (φ) as in Eq. (2.61), we find that inflation ends soon after the field reaches a value,

φ∗ = mPl/(4
√
π)− (cA)−1. This then places a constraint on the combination cA,

cA <
4
√
π

mPl

√
1 + 4(Ng −N0)

. (2.63)

At CMB/LSS scales we find that η(φc) = 0, and

ε(φc) =
A2m2

Pl

4A2m2
PlN0 + 16π

. (2.64)

From the above expression and Eqs. (2.12) and (2.16), we can see explicitly that ns and r only

depend on our choice of N0 and A. At BBO/DECIGO scales we find

Ωgwh
2 = 4AgwPs(kc)A2m2

Pl

√
A2c2m2

Pl(N0 −Ng) + 4π
(A2m2

PlN0 + 4π)3/2
, (2.65)

where Ng is the number of e-foldings between φc and φg. In order for there to be Ng e-folds between

φc and φg the slope of the potential cannot be too large, requiring

cA ≤ 2
√
π

mPl

√
Ng −N0

. (2.66)

Comparing this to Eq. (2.63), we find that this constraint is slightly less restrictive. We can see that

this amplitude depends not only on N0 and A but also on c. Therefore, potentials that share approx-

imately the same Taylor expansion at CMB/LSS scales, but different expansions at BBO/DECIGO

scales, will produce overlapping observations in the (ns, r) plane at CMB/LSS scales and different

gravitational-wave amplitudes at BBO/DECIGO scales. With the constraint in Eq. (2.63), we find

that as c increases towards its maximum value (for a fixed A), the amplitude of the IGWB changes

by an order of magnitude. For example, for ns = 0.9 and r = 0.27 we have 2.0× 10−17 . Ωgwh
2 .

2.0× 10−16; for ns = 0.99 and r = 3.16× 10−3 we have 4.3× 10−19 . Ωgwh
2 . 4.3× 10−18; and for

ns = 1.0 and r = 3.18× 10−5 we have 4.3× 10−21 . Ωgwh
2 . 4.3× 10−20.
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2.7 Discussion

In this chapter we have calculated the gravitational-wave amplitude at direct-detection scales for

six classes of inflationary potentials with parameters consistent with current constraints from the

CMB and LSS. The gravitational-wave amplitude Ωgwh
2 is proportional to the height V (φg) of the

inflaton potential at the time that direct-detection comoving scales exit the horizon. Our current

theoretical understanding does not fix V (φg); it is constrained to be V 1/4 . 3.4×1016 GeV from the

CMB, and it could conceivably be as low as T ∼ 1 MeV without violating observational constraints.

Moreover, detectability of the IGWB with BBO or DECIGO requires V 1/4 & 1015 GeV, close to

the upper allowed limit. It thus seems, a priori, that detectable models occupy a small region of

parameter space.

That said, however, there are indeed constraints to inflationary models that come from the CMB

and large-scale structure, notably constraints to the density-perturbation amplitude and spectral

index. The results for the six classes of inflationary models indicate that when we go through

the exercise of writing down simple functional forms for the inflationary potentials and imposing

current constraints, there are large regions of parameter space that lead to directly detectable IGWB

amplitudes. In particular, for the symmetry-breaking potential, which looks perhaps like the type

of Higgs potentials we might associate with grand unification, current constraints lead to a directly

detectable IGWB amplitude.

The promise of detectability traces back to the fact that ΩGWh
2 ∝ V ∝ (V ′)4/3, the last

proportionality tracing back to Eqs. (2.8) and (2.9) for fixed density-perturbation amplitude Ps.

Thus, if the potential is extremely flat, V ′ → 0, then the IGWB will be tiny. However, if the

potential takes a form in which V ′ ∼ V/φ, which seems theoretically natural, then the required

density-perturbation amplitude is achieved with V ∼ 10(15−16) GeV, the range that produces an

accessible IGWB amplitude.

There is of course still plenty of room for inflation to be correct and for the IGWB amplitude

to be well below the BBO or DECIGO threshold. For example, in power-law inflation and chaotic

inflation, the IGWB amplitude becomes small when ns → 1; i.e., when scale invariance is achieved

which, in these models corresponds to small V ′. On the other hand, a value ns → 1 does not, more

generally, imply a small IGWB amplitude. For example, in hybrid inflation one can have ns = 1 if

y2
c = 1/2 [see Eq. (2.43)], and for µ & 1.8mPl, the potential can reach values at CMB/LSS scales of

V ∼ 3× 1016 GeV, which even after the decrease to BBO/DECIGO scales remains within reach of

detection, as shown in the figures.

There may of course be alternatives to inflation, such as cyclic models [156] or the pre big-bang

model [157–162], that have completely different IGWB spectra. Although the cyclic model predicts

a blue tensor spectrum, which might improve detectability at small scales, BBN constrains the
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amplitude of the gravitational-wave amplitude to be orders of magnitude below the BBO/DECIGO

sensitivities [19].

Recent measurements of the scalar spectral index indicate that it may be less than unity. This

fact has caused a great deal of excitement given that it is believed that having ns < 1 implies a

significant amplitude for the gravitational-wave background produced by inflation. In this chapter we

have investigated this claim by analyzing predictions derived from six classes of models of inflation.

We have also extended the analysis to include not only the amplitude of the IGWB accessible to

observations of the polarization of the CMB but also the IGWB accessible to direct observation.

Our results can be divided into two different classes of inflationary potentials. These classes

are characterized by the curvature of the potential evaluated at the field value corresponding to

CMB observations. The curvature of the potential at a given field value is related to the sign of the

slow-roll parameter η. Models that have η < 0 (the inflaton is ‘falling off of a cliff’) have decreasing

r as ns deviates further from unity. Models that have η > 0 (the inflaton is ‘rolling down a bowl’)

have increasing r as ns deviates further from unity. This classification is directly related to the

classification scheme presented in Ref. [163] in which inflationary models are said to be ‘large field’,

‘small field’, or ‘hybrid’. In their classification scheme the sign of η as well as its relation to ε is used

to divide inflationary models. However, in this chapter we have emphasized how just the sign of η

indicates how various constraints to ns affect the model’s prediction for the IGWB.

In attempting to set a lower limit to the expected IGWB accessible to direct observation these

two different classes of models split up accordingly: with η < 0 an increase in the lower limit to the

amplitude of the IGWB is obtained with an improvement in the lower limit to ns; with η > 0 an

increase in the lower limit benefits from an improvement in the upper limit to ns.

In terms of the possibility of observing the IGWB directly, quoted sensitivities for a second

generation BBO mission for a year long integration sets the lower limit to a detectible IGWB at

Ωgwh
2 & 10−17. As can be seen in the figures, current constraints to ns for the six inflationary

models considered here imply that a large region in parameter space for all six models will produce

IGWB amplitudes within reach of BBO. However, except for Higgs and PNGB inflation, there are

regions of parameter space for which the IGWB amplitude can be arbitrarily small. As the errors on

ns shrink on both sides then, depending on the central value for ns, each of the six models analyzed

here may eventually predict a minimum IGWB amplitude. In particular, the Planck satellite is

expected to attain 0.5% in a determination of ns at a fiducial value ns = 0.957 [97]. This would

then translate into a lower bound, r & 0.0046, for Coleman-Weinberg inflation which translates into

Ωgwh
2 & 10−17 for direct observation.

Barring a detection of the IGWB in the CMB our discussion shows that even an upper limit

to r and a precise measurement of ns tells us useful information on the curvature of the inflaton
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Figure 2.11: An upper limit to r along with a measurement of ns will tell us information on the
curvature of the inflaton potential. If we find that r . 0.1 and 0.94 . ns . 0.96 then we may
conclude, within the context of single-field slow-roll inflation, that η < 0 which implies V ′′ < 0.
Although qualitative, this conclusion would have far-reaching implications for inflationary model
building.

potential. From the Eqs. (2.29) and (2.30) we can write

r =
8
3

(1− ns + 2η). (2.67)

In Fig. 7 we show curves in the (η, r) plane for 0.94 ≤ ns ≤ 0.96. From that figure, we can see that

for ns in this range an upper limit of r . 0.1 implies that the potential has a negative curvature (this

trend can also be seen in Fig. 9 in Ref. [125]). This qualitative conclusion would have important

implications for inflationary model building.

Our conclusion is that direct detection of the IGWB is unlikely without detection with the CMB

polarization. Still, direct detection could be extraordinarily valuable even if the IGWB is detected

first in the CMB. Direct detection would provide yet another cross-check that the curl component

in the CMB polarization is due to gravitational waves, as opposed to some other mechanism (e.g.,

vector modes, cosmic shear, or foregrounds). Since it occurs on such vastly different distance scales,

direct detection can verify that it is a nearly scale invariant spectrum of gravitational waves, as pre-

dicted by inflation, as opposed to some other phenomenon that might only produce large-wavelength
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gravitational waves. It would provide evidence for the continuation of inflation to distance scales

well beyond those implied by the smoothness of the Universe suggested by the successes of BBN.

The large lever arm provides an opportunity to discriminate between inflationary models that pro-

duce the same CMB/LSS observables. Even within the context of a given inflationary potential, the

large lever arm associated with direct detection may allow a measurement of inflationary param-

eters that may be more precise than those accessible with the CMB/LSS alone. For example, an

uncertainty of 10% in ε from the CMB/LSS translates to a ∼ (1015)0.2 ∼ 1000 uncertainty in the

BBO/DECIGO amplitude. Thus, a detection alone, with no better than an order-unity amplitude

uncertainty, corresponds to a measurement of ε to roughly 0.02, probably better than is accessible

with the CMB/LSS alone. Finally, the deci-Hertz IGWB amplitude counts the number of relativistic

degrees of freedom at temperatures a bit above the electroweak symmetry-breaking scale, and may

thus be used to probe for new degrees of freedom associated with supersymmetry of some other new

physics at the electroweak scale [164]. The direct search for inflationary gravitational waves may

thus be warranted.
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Chapter 3

Deciphering inflation with
gravitational waves: cosmic
microwave background polarization
vs. direct detection with laser
interferometers1

3.1 Introduction

Recent high precision measurements of the cosmic microwave background (CMB) anisotropy power

spectrum [81, 94, 125, 149] have confirmed inflation [2–4] as the dominant paradigm to explain

the origin of primordial fluctuations with a nearly scale invariant spectrum. In addition to density

perturbations, inflationary models predict a stochastic background of gravitational waves [9, 10] with

the amplitude of the gravitational wave background given by the height of the inflaton potential

when relevant modes exit the horizon.

Inflationary gravitational waves with wavelengths comparable to the horizon size are now being

sought via ground-based CMB polarization experiments [44, 46], and eventually with a dedicated

satellite generally named CMBPol [128]. In addition to the CMB effort, concept studies are now

underway to investigate the possibility of directly detecting the relic background with a laser inter-

ferometer in space (Big Bang Observer [82]; for the DECIGO proposal in Japan, see Ref. [83]). The

direct-detection technique will be sensitive to modes with wavelengths roughly an arm length of the

interferometer. Based on the expected foreground confusion and technological improvements, cur-

rent concept studies aim for the frequency regime between 0.1 Hz to a few Hz. Since physical scales
1The material presented in this chapter was first published in, Deciphering inflation with gravitational waves:

Cosmic microwave background polarization vs. direct detection with laser interferometers, Tristan L. Smith, Hiranya
V. Peiris, and Asantha Cooray, Phys. Rev. D73, 123503 (2006). Reproduced here with permission, copyright (2006)
by the American Physical Society.
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probed by the CMB and laser interferometers differ by ∼ 17 orders of magnitude in wavelength, the

large lever arm produced by combining the two techniques allows the inflaton potential to be pinned

down better than any single method [87, 88, 133, 165].

Here, we consider two separate studies on inflation using the combined information from CMB

and direct detection experiments. First, based on a Monte Carlo description of the inflationary

dynamics, we study the relative abilities of the CMB and a direct detection method to probe the

inflaton potential in detail by making no assumptions on the power-law behavior [88] or on a model

shape for the potential [133]. We first consider inflationary models allowed by CMB data, making

use of constraints on both the scalar and tensor spectrum, and address if laser interferometers

can further improve the identification of potentials. For the CMB, we make use of the expected

level of uncertainty with Planck2, a possible detection with CMBPol, and the foreground-limit from

CMBPol. For details on the potential detectability of the tensor amplitude with CMB polarization

observations, we refer the reader to Ref. [166]. For the direct detection experiments, we make use

of predictions related to BBO and DECIGO [130, 131]. Since our goal is to see how the simplest

models of inflation can be constrained, our comparisons are for a general single-field potential in the

slow-roll regime.

In the second part of the chapter, we drop all assumptions related to single-field slow-roll inflation

and study how well the CMB and the direct detection experiments can be combined to constrain

the single-field consistency relation between tensor spectral index and the ratio of tensor-to-scalar

amplitudes for single-field inflationary models. Previous work on this possibility is found in Ref. [167]

where the test was limited to simply the information on the tensor spectral index from CMB data

alone. We show the extent to which a CMB-only analysis can be improved by adding direct-detection

information as the latter allows a better determination of the tensor spectral index.

3.2 Monte Carlo calculational method

To calculate observable spectra, we make use of a Monte Carlo technique to formulate the inflationary

dynamics through an infinite hierarchy of flow equations involving the generalized ‘Hubble Slow Roll’

(HSR) parameters [168–171]. We link the Hubble parameter directly to the field φ instead of time,

H ≡ H(φ), under the assumption that φ is monotonic in time. The equation of motion for the

background is

[H ′(φ)]2 − 12π
m2

Pl

H2(φ) = −32π2

m4
Pl

V (φ) , (3.1)

2http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI(2005)1.pdf



46

where the inflaton field evolves as φ̇ = −m2
PlH

′(φ)/4π. Here, an overdot corresponds to the time

derivative and a prime denotes the derivative with respect to φ. The advantage of this formulation

is that one can study the generic behavior of slow-roll single-field inflation without assuming a

particular shape for the potential, except for the assumption of a single field. In terms of the HSR

parameters `λH , the dynamics of inflation is described through:

ε(φ) ≡ m2
Pl

4π

[
H ′(φ)
H(φ)

]2

; (3.2)

`λH ≡
(
m2

Pl

4π

)` (H ′)`−1

H`

d(`+1)H

dφ(`+1)
; ` ≥ 1. (3.3)

Substituting Eq. (3.3) in Eq. (3.1) gives the inflaton potential

V (φ) =
(

3m2
PlH

2 (φ)
8π

)[
1− 1

3
ε (φ)

]
. (3.4)

The trajectories of the flow parameters are now governed by a set of coupled first-order differential

equations. In practice, one has to truncate the infinite hierarchy at some finite order; in this chapter

we retain terms up to 10th order. Truncating the hierarchy of flow parameters at the term MλH

means that M+1λH = 0 at all times as well. From Eq. 3.3, it also follows that d(M+2)H/dφ(M+2) = 0

at all times. This simply describes a polynomial of order M + 1 in H(φ) [172] with

H(φ) = H0

[
1 +A1

(
φ

mPl

)
+ ...+AM+1

(
φ

mPl

)M+1
]
. (3.5)

Further, from the definition of ε(φ),

ε(φ) =
m2

Pl

4π

[
(A1/mPl) + ...+ (M + 1) (AM+1/mPl) (φ/mPl)

M

1 +A1 (φ/mPl) + ...+AM+1 (φ/mPl)
M+1

]2

,

when the coefficients Ai, with i > 1, are written in terms of the initial values of the HSR parameters

as

A`+1 =
(4π)` `λH,0

(`+ 1)! A`−1
1

, (3.6)

where A1 =
√

4πε0 specifies the direction the field is rolling. These slow-roll parameters require a

prior assumption on the ranges of values taken. In the absence of any a priori theoretical knowledge,

one can assume flat priors with the requirement that the potential satisfies the slow-roll condition;

the latter is simply a statement about the smoothness of the potential. Since we are not attempting

to make any statements about the measure of inflationary trajectories, but simply use the method

as a Monte Carlo generator for potentials satisfying the slow roll conditions, such an assumption is
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justified. This work does not depend on the density of potentials as a function of tensor-to-scalar

ratio, which is determined by the measure on the initial conditions.

Figure 3.1: The set of potentials satisfying 0.9 < ns < 1.0 from the Monte Carlo flow simulations: Upper
Left: constraints from Planck with r = 0.02 ± 0.01, dns/d ln k = 0.0 ± 0.01, BBO-standard, BBO-grand
(factor 10 more sensitive than BBO-standard) Upper Right: constraints from CMBPol with optimistic fore-
grounds [166]: r = 0.001 ± 0.0003, dns/d ln k = 0.0 ± 0.005, BBO-standard, BBO-grand Lower Center:
the sensitivity limit due to foregrounds for CMBPol with r < 10−4 and DECIGO (factor 400 more sensi-
tive than BBO-standard). Color coding: red and blue denote the CMB experiment without and with the
dns/d ln k constraint, respectively. Green: BBO-standard. Black: BBO-grand (Upper Left, Upper Right)
and DECIGO (Lower Center). The direct detection constraints are applied to the tensor amplitude and tilt
at 1 Hz, following the procedure described in the text. If a particular color does not appear in a plot, it has
been overwritten by the next tightest constraint, and the latter is therefore not helpful in constraining the
potential. The meaning of the color coding is further clarified in the text. Here φ = 0 corresponds to CMB
scales while curves end at φ < 0 corresponding to a frequency of 1 Hz probed by direct detection methods.

Without loss of generality, we can pick some fiducial physical scale that corresponds to φc, which

we take to be at kCMB = 0.002 Mpc−1. Then, with the above convention, φ > φCMB corresponds

to scales larger than kCMB (i.e., going further back in time), and φ < φCMB corresponds to smaller

scales. The physical wavenumber is associated with a value of φ through

dφ

d ln k
= −mPl

2
√
π

√
ε

1− ε
, (3.7)

while the number of e-folds before the end of inflation, N , comes from dφ/dN = mPl
√
ε/2
√
π, with
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the convention that N increases as one goes further back in time. Here, we require that each potential

generated by the Monte Carlo flows provide at least N = 55 e-folds of inflation. For potentials where

inflation ends through the breakdown of slow-roll, the CMB observables are calculated at 55 e-folds

before the end of inflation; for potentials corresponding to the hybrid case, the CMB observables

are arbitrarily calculated at the 600th e-fold, assuming inflation ends at 655 e-folds through an

orthogonal mechanism.

The standard observables are given in terms of the flow parameters to second order in the slow

roll [98, 99]:

ns = 1 + 2η − 4ε− 2(1 + C)ε2 − (3− 5C)
2

εη +
(3− C)

2
ξ (3.8)

r = 16ε [1 + 2C(ε− η)] (3.9)

nt = −2ε− (3 + C)ε2 + (1 + C)εη , (3.10)

where ns, r, and nt are the tilt of the scalar spectrum, tensor-to-scalar ratio, and the tilt of the

tensor spectrum, respectively. Additionally, we consider the running of the scalar tilt with

dns
d ln k

= − 1
1− ε

{
2
dη

dN
− [4 + 4 (1 + C) ε]

dε

dN
(3.11)

− (3− 5C)
2

(
ε
dη

dN
+ η

dε

dN

)
+

(3− C)
2

dξ

dN

}
,

where dε/dN = 2ε(η − ε), dη/dN = −εη + ξ, and dξ/dN = ξ(η − 2ε) + 3λH . Here and above,

C = 4(ln 2 + γ)− 5 and γ = 0.5772 is the Euler-Mascheroni Constant, η = 1λH , and ξ = 2λH .

For direct-detection experiments, we take a fiducial frequency of f = 1 Hz with kdir = 6.47×1014

Mpc−1 for observations. With ln(kdir/kCMB) = 40.3 the large lever arm is expected to improve

constraints on the inflationary model [133]. The direct detection observables are calculated from the

potentials by finding the φ corresponding to ln(kdir/kCMB) = 40.3. In these experiments, at 1 Hz, the

signal-to-noise ratio for a detection of the gravitational wave background is SNR = X(Ωgw/10−18),

where X is ∼ 0.25, 2.5, and 100 for concept study designs involving a standard BBO, an optimistic

version of BBO, and DECIGO. The last two possibilities improve sensitivities through multiple

detector correlations. The uncertainty of the tensor spectral index at 1 Hz is taken to be σnT ∼

6/SNR [130, 131].

Fig. 3.1 shows a set of potentials from the Monte Carlo flow simulations that satisfy levels

of tensor and scalar modes reachable by Planck, a CMBPol-style polarization satellite designed to

probe primordial gravity waves [166], and the foreground limit of this satellite. We show all potentials

with 0.9 < ns < 1.0, though in practice the CMB measurements will also yield strong constraints

on this parameter. In Fig. 1 we also show the improvement in constraints on the potential using
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information from direct detection experiments with uncertainties in the tensor amplitude and tilt

calculated following results of the analysis in Ref. [130, 131].

In Fig. 1, the potentials generated by the Monte Carlo process are color-coded in the following

way. First, all potentials with 0.9 < ns < 1.0 which are not ruled out by applying the constraints

on r from the CMB experiment are shown in red. Then the potentials which are not ruled out

by further applying the dns/d ln k constraint from the CMB experiment are over-plotted in blue.

Next, the potentials which are not eliminated by adding the constraint from BBO-standard on the

tensor amplitude and tilt to the CMB experiment are over-plotted in green. Finally, the potentials

which are not eliminated by adding the constraints from either BBO-grand (left, centre) or DECIGO

(right) to the CMB experiment are over-plotted in black. At each stage, the elimination of a larger

fraction of potentials indicates the usefulness of the extra constraints. If a particular color does not

appear in a given panel, it means that all potentials have been overwritten by the next tightest

constraint, and therefore the next tightest constraint does not aid in constraining the potential.

Therefore, while the combination of Planck and BBO-standard, and especially BBO-grand, leads to

an improvement in constraints on the potential, these direct detection experiments do not compete

at all with CMBPol either in the case of a detection at r = 0.001 or the limit of r < 10−4 at CMB

scales. A more sensitive experiment such as DECIGO probing Ωgwh
2 > 10−20 competes well with

CMBPol if r . 0.01 and is both desirable and useful to understand inflation.

3.3 A fundamental test of slow-roll inflation

To further understand the usefulness of a direct-detection experiment, we also study how well the

inflationary single-field consistency condition can be tested [167], as any departure can capture

important physics [173]. We define R ≡ −r/8nt so that R = 1 corresponds to the consistency

relation. The uncertainty in determining R (given R = 1 as the fiducial value) can be written in

terms of uncertainty in measurements of r and nt assuming these are uncorrelated,

σR =
[
σ2
r + 64σ2

nt

]1/2
r−1. (3.12)

A 10% determination ofR with the expected value of unity requires measuring nt with an uncertainty

of σnt ∼ 0.0125r. Using tables of Ref. [166], CMBPol with a 10% foreground contamination and

r = 0.01 gives R = 1.0 ± 80. The obstacle is the inability of CMB polarization observations to

measure nt precisely, since polarization anisotropies probe a limited range in the underlying tensor

spectrum modes, and the range probed is also contaminated by cosmic shear [120, 121].

When combining with a direct-detection experiment, however, the situation improves signifi-

cantly. We calculate the 1σ error expected in R at CMB scales based on a determination of nt from
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Figure 3.2: Left: The mapping between tensor-to-scalar ratio r at CMB scales and Ωgwh
2 at 1 Hz for

a direct detection. The gray shaded region shows the uncertainty implied with ns = 0.95± 0.1 [107]
by keeping terms up to second order (running of the tensor spectral index) in the slow-roll power-law
expansion. We include the line ‘Unphysical for inflation’ to indicate the region above which nt > 0.
The three horizontal curves are the 2σ detection amplitudes for BBO-standard, BBO-grand, and
DECIGO in solid, dashed, and dotted lines respectively. In these three experiments, at 1 Hz, the
signal-to-noise ratio for detecting the gravitational wave background is SNR = X(Ωgw/10−18), with
values for X shown in the panel. Right: The 1σ uncertainty in the single-field consistency relation
R ≡ −r/8nt. The thin lines follow laser interferometers in the right panel, showing the error
expected by combining direct detection measurements of nt with CMBPol measurements of the
tensor-to-scalar ratio, r. The two thick lines indicate errors in R when nt is determined from CMB
alone. The thick solid curve corresponds to the expected accuracy of ESA’s Planck satellite, the
thick dashed curve corresponds to CMBPol. The shaded region indicates a 50% determination of
the consistency relation (R = 1.0 ± 0.5). For direct-detection observations, sensitivity is degraded
at large r because of an increase in the uncertainty of the importance of the running of the tensor
spectral index from direct detection scales to CMB scales; at small r, the accuracy with which R can
be determined is dominated by the error in measuring nt with CMB [167] and laser interferometers
[130, 131], where the latter is σnt ∝ 1/r.

direct-detection scales and a determination of r by CMBPol. In Ref. [130, 131] it was shown that

a laser interferometer (whose sensitivity peaks at ∼ 1 Hz) would be able to determine the spectral

tilt of a gravitational wave background, with an amplitude Ωgw, to an accuracy of

σnt
=

6× 10−18

XΩgwh2
, (3.13)

where the various values of X corresponding BBO-standard, BBO-grand, and DECIGO are shown

in Fig. 3.2 and h is the Hubble parameter today in units of 100 km s−1 Mpc−1.

While we take our fiducial model to be single-field slow-roll inflation (i.e., R = 1.0), we make no

assumptions about single-field slow-roll inflation when we relate Ωgwh
2 to the tensor-to-scalar ratio.
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First we relate Ωgwh
2 to the primordial spectrum as in Ref. [133],

Ωgw(k)h2 = AgwPt(k), (3.14)

where Pt(k) is the primordial power spectrum of inflationary gravitational waves, and Agw = 2.74×

10−6.3 The factor, Agw, takes into account how the gravitational waves have evolved after re-entering

the horizon. The primordial inflationary gravitational wave power spectrum can be approximated

as a power law with a running spectral index,

Pt(k) ≈ Pt(k0)
(
k

k0

)nt+ 1
2αt ln(k/k0)

. (3.15)

Using the expressions in Eqs. (3.8–3.10) to first order in the slow-roll parameters along with the

expression for the running of the tensor spectral index, αt,

αt(k) ' 4εη − 8ε2, (3.16)

we are able to express nt and αt in terms of r and ns,

Pt(k) ≈ rPs(k0)
(
k

k0

)− r
8 [1−((ns−1)+ r

8 ) ln(k/k0)]
, (3.17)

where Ps(k0) is the amplitude of the scalar perturbations at some pivot wavenumber k0 and all of

the spectral quantities are also measured at this wavenumber. For this analysis we take ns = 0.95

and Ps(k0) = 2.21× 10−9 at k = 0.002 Mpc−1 [81, 94, 125, 149].

Since we must connect a measurement of nt at BBO scales to the nt at CMB scales in order to

determine R, we must posit some scale-dependent relation between these two measurements. We

emphasize that we cannot use the flow equation approach of the previous section here; those equa-

tions assume single-field inflation and therefore implicitly embody the consistency relation, whereas

here we are attempting to test the single-field assumption. Instead, we assume that the gravita-

tional wave spectrum is close to scale invariant with an unknown, but higher order, running so that

nBBO
t ≈ nCMB

t . Since the running of nt is unlikely to be determined by either the CMB or direct de-

tection we include an additional uncertainty due to the unknown running, ∼ (1/2) ln(kdir/kCMB)n2
t ,

as in Eq. (3.16). This leads to a decrease in the sensitivity of direct-detection measurements of R
3The value of Agw used in this chapter differs by a factor of four from the value used in the previous Chapter.

As derived in Appendix A the value used in the previous Chapter is correct. However, this difference does not have
a significant affect on the conclusions.
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at ‘large’ values of r. In particular, the error on our determination of nt is given by the expression,

σnt(r) =

{[
6× 10−18

XAgwPt(k)

]2

+
[

1
2

ln
(
kdir

kCMB

)(r
8

)2
]2
}1/2

. (3.18)

Our results are summarized in Fig. 3.2. The left panel shows the mapping between tensor-to-

scalar ratio r at CMB scales and Ωgwh
2 at 1 Hz for a direct detection. After this work appeared in

preprint, another study [174] was submitted, where a criticism was made of a region on this panel,

describing it as unphysical. In fact this region is only unphysical if inflation is being assumed as the

generating mechanism for tensor modes, and one cannot do that if one is attempting, as we are, to

test that assumption in the first place. Therefore we continue to show this region, while indicating

that it is unphysical under the assumption of inflation. As shown in the right panel, BBO improves

relative to CMBPol alone by a factor of ∼ a few in the uncertainty of R if r ∼ 0.1. This is unlikely

to be useful given that current observations already limit r to be below 0.3. A determination of R

as 1.0 ± 0.5 is achievable when 10−1 & r & 10−2 with DECIGO, while if r ∼ 10−4, it is unlikely

that even DECIGO would provide a determination of R to a reasonable accuracy. In general, either

version of BBO is unlikely to be competitive with CMBPol, and the sensitivity level of DECIGO

must be considered as the experimental target goal to pursue a direct detection at ∼ 1 Hz. Further

limits on r from the CMB will tighten this conclusion and could only lead to a further increase

in required sensitivity unless a detection is made with the CMB at r > 0.01. Our conclusions are

independent of the choice of a fiducial frequency between 0.1 Hz and few Hz, but could be subjected

to the highly uncertain impact of foregrounds at direct detection frequencies [130, 131]. Additional

physics between the CMB and 1 Hz scales [175] only strengthen our conclusions on the required

sensitivity for a laser interferometer as these exotic models generally lower the tensor amplitude

further.

3.4 Summary

To summarize, we have considered the relative strengths of CMB polarization observations and

direct-detection laser interferometers in constraining the inflaton potential. For single-field slow-

roll inflation models, without relying on any particular shape for the potential, we find that direct

detection experiments with sensitivities around BBO can improve constraints on inflationary models

relative to Planck. However, when combined with CMBPol, these direct detection sensitivities are

unlikely to be competitive. While we have not considered exotic models, and a case can certainly

be made for a low-sensitivity direct-detection experiment based on non-standard descriptions for

inflation including models of bubble nucleation [16, 17, 176, 177] and pre-Big Bang descriptions

[178], it is also important to understand first how these experiments test the simplest forms of
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inflation.

In this context, we also discuss a determination of the single-field slow-roll consistency relation,

which is a way to establish an underlying model within the inflationary paradigm to probe physics at

the earliest times of the Universe. In general, we find an experiment like DECIGO, with sensitivity

level of Ωgwh
2 > 10−20 to be the preferred option; however, it is unlikely that the consistency relation

will be determined to the accuracy needed to see loop corrections [173], unless the tensor-to-scalar

ratio is greater than 0.05 and loop corrections are at the level of 10% or more.
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Chapter 4

A new cosmic microwave
background constraint to
primordial gravitational waves1

4.1 Introduction

There are many conjectured sources of a primordial cosmological gravitational-wave background

(CGWB), including inflation, pre-big bang theories, phase transitions, and the ekpyrotic model [1].

Such backgrounds are among the targets of the Laser Interferometric Gravitational-Wave Observa-

tory (LIGO), and they will be sought with future observatories, such as NASA’s Laser Interferom-

eter Space Antenna (LISA), the Big Bang Observer (BBO), and Japan’s Deci-Hertz Interferometer

Gravitational-Wave Observatory (DECIGO).

The CGWB amplitude is constrained at the lowest observable frequencies, ∼ 10−17 − 10−16

Hz (corresponding to wavelengths comparable to the cosmological horizon today), by large-angle

fluctuations in the cosmic microwave background (CMB) temperature [10–13]. Prospects for probing

lower CGWB amplitudes at these frequencies come from future measurements of the polarization of

the CMB [44, 46]. Apart from a window around 10−9−10−8 Hz, where the CGWB is constrained by

pulsar timing [62, 63], the strongest constraint to the CGWB amplitude for frequencies greater than

∼ 10−10 Hz comes from big-bang nucleosynthesis (BBN) [54]. The lower limit to the frequency range

is determined by the comoving horizon size at the time of BBN. Primordial gravitational waves of

shorter wavelengths, or larger frequencies, contribute to the radiation density at the time of BBN,

thereby increasing the expansion rate and thus the light-element abundances. Measurements of light-

element abundances limit the number of additional relativistic species at BBN to the equivalent of

1.4 neutrino degrees of freedom [179], which translates to a limit to a current CGWB energy density

Ωgwh
2 . 7.8× 10−6.

1The material presented in this chapter, except for Sections 4.4 and 4.5, is previously unpublished work by the
author.
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The frequency range ∼ 10−16−10−10 Hz remains largely unconstrained. An upper limit Ωgwh
2 .

0.1 can be placed in this frequency range from QSO astrometry [57, 58]. It has been proposed that

future measurements of anisotropy in the global rate of change of observed redshifts might someday

get down to Ωgwh
2 ∼ 10−5 [56].

Here we note that recent measurements of the angular power spectrum of the cosmic microwave

background (CMB) that constrain the nonrelativistic-matter density Ωmh2 to roughly 10% [73–

81] are, to a first approximation, constraints to the radiation energy density at the time of CMB

decoupling; the constraint corresponds to a limit of a few extra neutrino degrees of freedom. From

this, we infer that the CMB provides a limit to Ωgwh
2 that may be competitive with that from BBN,

but extends to the lower frequencies, ∼ 10−15 Hz, corresponding to wavelengths comparable to the

comoving horizon at CMB decoupling2. This limit therefore improves upon previous constraints

over the frequency interval 10−15 − 10−10 Hz by four orders of magnitude.

More precisely, the CGWB behaves as a free-streaming gas of massless particles, just like massless

neutrinos, and therefore affects the growth of density perturbations in ways in addition to their effect

on the expansion rate at decoupling. If the CGWB energy-density perturbations are adiabatic (i.e.,

have the same density distribution as other relativistic species), then the effects of the CGWB on

the CMB/LSS are indistinguishable from those due to massless neutrinos. In this case, CMB/LSS

constraints to the number of massless neutrino species [180] translates directly to a constraint to

the CGWB energy density. If, however, the primordial perturbations to the CGWB energy-density

perturbations are non-adiabatic, as might be expected if they are produced by inflation, pre-big-bang

models, ekpyrotic, or phase transitions and/or cosmic turbulence (see, e.g., Refs. [16–19, 176, 181]),

then the CMB/LSS effects of the CGWB may differ from those of adiabatic massless neutrinos.

In this chapter, we carry out a detailed analysis of current constraints to the CGWB amplitude

that come from current measurements of the CMB power spectrum and matter power spectrum. Our

calculations of the CMB and matter power spectra include the effects of the CGWB on the expansion

rate and on the growth of perturbations, for both adiabatic and non-adiabatic initial conditions for

the CGWB. We include current constraints from the CMB, galaxy surveys, and the Lyman-α forest.

We then forecast how these constraints may be improved with future CMB measurements.
2This estimate was provided in Fig. 2 of Ref. [133].
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4.2 The high-frequency CGWB as a component of the radia-

tive energy density

We suppose that the zeroth-order (background) metric is given by the Friedmann-Roberston-Walker

(FRW) solution to Einstein’s equations,

ds2 = a(τ)2

(
−dτ2 +

dr2

1−Kr2
+ r2dΩ2

)
, (4.1)

where the conformal time, τ , is related to the cosmic time by dτ ≡ dt/a(t); length units are used such

that the constant K can take on the values 0, +1, or -1; and dΩ is a differential solid angle. In terms

of conformal time, the Hubble parameter is written in terms of the scale factor as H = (1/a(τ)2)ȧ,

where the dot refers to a derivative with respect to conformal time. We let ρc denote the critical

energy density for which the geometry is flat (i.e., K = 0). We then define Ω ≡ ρ/ρc and the

evolution of the scale factor is determined by the equation,

K

H2a(τ)2
= Ω− 1. (4.2)

From this equation, we are able to see that the normalization of the scale factor today, a0, is

determined by K and the total energy density today through a0 =
√
|K/(Ω0 − 1)|H−1

0 ; when K = 0

(Ω0 = 1) we take a0 = 1, where the subscript ‘0′ indicates that the quantity is evaluated today. We

now suppose that the metric can be written in the following form:

gµν = g(0)
µν + hµν , (4.3)

where the background metric, g(0)
µν , is defined by Eq. (4.1) and hµν is some small rapidly varying

perturbation. We then proceed as in Refs [182–184] to write the Einstein equation as,

Gµν ≈ G(0)
µν +G(1)

µν +G(2)
µν ≈ 8π(T (0)

µν + T (1)
µν ), (4.4)

where we have taken geometrized units, G = c = 1, T (0)
µν is the spatially averaged stress-energy

tensor (i.e., it contains ρ̄ and P̄ ), and T
(1)
µν contains fluctuations in the cosmic fluid. Now we use a

two-length scale approximation, denoting the typical length scale for the background metric (taken,

typically, as the radius of curvature) by R and the typical wavelength of the perturbation by λ. We

then find that the zeroth order piece (the Einstein tensor evaluated using the background metric)

is of order 1/R2, the first-order piece is of order h/λ2 and the second-order piece is of order h2/λ2,

where h denotes the typical amplitude of the perturbations. If we take an appropriate average over

a region of space-time that is large compared to λ but a region small compared to the radius of
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curvature of the background metric then the terms which are linear in the perturbation will vanish,

leaving the relationship,

G(0)
µν ≈ 8πT (0)

µν −
〈
G(2)
µν

〉
. (4.5)

Considering that G(0)
µν ∼ 1/R2 and that

〈
G

(2)
µν

〉
∼ h2/λ2, we find that h . λ/R. Therefore, looking

at the decomposition in Eq. (4.4), we see that in order for it to be satisfied, G(1)
µν must be determined

by the first-order stress-energy tensor, T (1)
µν (the other terms are both smaller by an extra factor of

h). Therefore the equation of motion for the perturbation is given by,

G(1)
µν ≈ 8πT (1)

µν . (4.6)

From the above expressions [Eqs. (4.5) and (4.6)], we conclude that perturbations to the met-

ric follow a linear equation of motion, sourced by fluctuations in the otherwise homogeneous and

isotropic stress-energy tensor (e.g., Ref. [185]) but contribute, though a quadratic average, to the

evolution of the background metric. This non-linear average can be thought of as an effective

stress-energy tensor due to the perturbations,

T eff
µν ≡ −

〈
G(2)
µν

〉
. (4.7)

In particular, it can be shown that it obeys the usual conservation equation, ∇µT eff µ
ν = 0, to

within a fractional error of order (λ/R)(T eff
µν /R) [186]. A detailed analysis of the above equations

shows that the accuracy of the evolution equation, Eq. (4.6), is independent of the length-scale

of the perturbation (it is of order h2) whereas the effective stress-energy tensor is only useful to

a fractional error of order h and λ/R. Therefore, as is found in the literature (e.g., [187]), the

evolution equation is used to evolve the perturbations past the Hubble horizon, however we must

be aware of the applicability of the effective stress-energy tensor when considering perturbations on

length-scales comparable to the Hubble horizon. The Ricci scalar for a metric of the form given in

Eq. (4.1) is given by,

R = −6
(

1
a

d2a

dt2
+H2 +

K

a(τ)2

)
∼ 1
R2

. (4.8)

Einstein’s equations applied to the background metric shows that the first and second terms are of

the same order, we find that the typical radius of curvature for the background metric is given by

R ∼ min{H−1, a(τ)|K|−1/2}.

We will now specialize to consider only tensor perturbations to the metric, i.e., gravitational-

waves. However, we note that Eq. (4.5) dictates that scalar, vector, and tensor perturbations induce

an effective stress-energy tensor which sources the expansion. With the definition,

h̄αβ ≡ hαβ −
1
2
hg

(0)
αβ , (4.9)
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and a gauge choice such that h̄ α
µ |α and h̄ = 0, the effective stress-energy tensor for gravitational-

waves takes the form,

T gw
µν =

1
32π

〈
h̄αβ|µh̄

αβ
|ν

〉
, (4.10)

where the subscript bar indicates covariant differentiation with respect to the background metric.

For perturbations well within the horizon and fluctuating much faster than the typical time-scale of

the background evolution (i.e., H−1), we can consider the gravitational-waves as though they were

propagating on a flat, Minkowski, background. On a flat background the equation of motion for h̄µν

becomes [34],

∂α∂αh̄µν = 0. (4.11)

General solutions to this equation can be built from plan-wave solutions, so we consider an unpo-

larized plane-wave solution traveling up the positive z-axis which yields,

T gw
tt = T gw

zz = −T gw
tz =

ω2h2
c

16π
, (4.12)

where hc is the strain amplitude. In order to be consistent with our assumption of an FRW back-

ground we require the CGWB to be isotropic and homogeneous, which implies that there must also

be waves of the same frequency traveling along the other two axes in both the positive and negative

directions. With this, we find that the total effective stress-energy tensor is given by

T gw
µν = diag(6A, 2A, 2A, 2A), (4.13)

where A ≡ (ω2h2
c)/(16π). Therefore, ρgw = (3ω2h2

c)/(8π), Pgw = (ω2h2
c)/(8π). Given that the

stress-energy tensor is locally conserved, it follows that the stress-energy tensor associated with an

isotropic homogeneous background of weak gravitational-waves has the form of a perfect fluid with

an equation of state, Pgw = (1/3)ρgw, as we would expect for true radiation, so that ρgw ∝ a−4. We

note that the equation of state of a fluid is a gauge-invariant quantity.

From this point on we take the point of view that the short wavelength component of a stochastic

background of gravitational waves acts as a fluid of non-interacting massless particles. Furthermore,

we do not deal with the subtlety of considering how the gravitational-wave energy density sourcing

the expansion changes as the universe expands and more modes fall within the Hubble horizon.

Instead, we suppose that either the CGWB we are constraining is always contained within the

horizon on the length scales probed in order to establish the constraint, or we only consider that

part of the CGWB which is contained within the horizon on the length scales probed in order to

establish the constraint (usually the CGWB extends to very small scales, in which case ignoring the

dynamical effects of the long-wavelength part of its spectrum should be justified). Therefore, since

CMB measurements extend down to a length-scale of ∼ 1 Mpc, when using CMB measurements to



59

constrain the energy density in the CGWB we only consider that part of the CGWB spectrum that

has frequencies greater than 10−15 Hz. The same criteria is applied when using the BBN constraint:

since the BBN horizon has an associated frequency of 10−12 Hz, only that part of the spectrum of

the CGWB with frequencies greater than this are constrained. We have left such details to future

work.

Since we are considering the short-wavelength CGWB as a fluid of non-interacting massless

particles there is a natural association between the CGWB and massless neutrinos, which, in the

standard scenario, decouple from the cosmic fluid at a temperature T ∼ 1 MeV. The evolution of

the distribution function for massless neutrinos has been worked out in detail before [185]. However,

an important difference exists between constraints placed on the number of neutrinos from CMB

and LSS studies and those placed on a CGWB: in all such studies considering the constraints on

Nν from the CMB and LSS the initial conditions for the perturbations in the neutrino fluid were

assumed to be adiabatic. In general, however, the initial behavior of the gravitational-wave fluid

will not follow that of the conventional species, such as photons and neutrinos. This statement is

true even for the case of single-field inflation where it is usually assumed all fluids obtain adiabatic

perturbations.

4.3 The effects of a relativistic species on the CMB and LSS

In this section we will outline the predominant ways in which extra relativistic energy density affects

predictions for the CMB and clustering of large scale structure.

4.3.1 Homogeneous influence

The presence of extra relativistic energy density which contributes to the homogeneous evolution of

the Universe will affect observations in several ways. We write the total relativistic energy density

as

Ωradh
2 = Ωγh2 [1 + 0.2271(3.04 +Neff)] , (4.14)

where Ωγh2 = 2.469 × 10−5 for TCMB = 2.725K [113]. When we have Neff = 0 we regain the

standard cosmology with 3.04 neutrino species (see Refs. [188–192] for a discussion of the various

effects that lead to the ‘0.04’ correction). Physically, it is clear that the presence of both radiation

and matter defines a value of the scale factor (and corresponding length scale) that should be

imprinted in measurements of the perturbations. The scale factor when ΩM = Ωrad is denoted by

aeq = Ωrad/ΩM. Associated with this, we have a length scale given by the value of the Hubble

parameter evaluated at aeq,

H(aeq) =
√

2H0

√
ΩM

a3
eq

. (4.15)
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We divide our discussion into effects seen in the CMB and effects seen in the clustering of matter.

4.3.1.1 Effects in the CMB

This new scale will be imprinted in the height of the first acoustic peak in the temperature anisotropies.

Besides the initial anisotropy of the photon fluid at the surface of last scattering and perturbations

due to its motion, the height of the first peak is in large part determined by the evolution of the

Newtonian potentials as the photons propagate to us. As a photon approaches a deeper potential,

it is blueshifted, and as it emerges from that potential it is redshifted. If the potential is static

during this time, the photon’s overall frequency is unchanged. However, if the potential is evolving,

then the photon can gain or lose energy (if the potential decays then the photon will undergo an

overall blueshift; if the potential strengthens then the photon undergoes an overall redshift). This

effect is referred to as the integrated Sachs-Wolfe (ISW) effect; in particular, the ISW effect which

contributes to the first peak in the temperature powerspectrum is called the early ISW. During

matter domination the potentials do not evolve, therefore if photon decoupling occurred within a

totally matter dominated universe, then there would be no ISW effect on these scales. On the other

hand, the potentials (in conformal Newtonian gauge) decay during radiation domination. Photon

decoupling depends weakly on cosmology since, for the most part, it is determined by atomic physics

[193], so for the purposes of this discussion we take it to occur at zdec = 1089. Therefore, as the

time elapsed between matter-radiation equality and photon decoupling decreases, the strength of

the early ISW grows. Recasting this in terms of Neff , as Neff increases the height of the first peak

increases.

The presence of extra relativistic energy density also shifts the location of the peaks in the CMB.

Limber’s approximation3 allows us to relate a given multipole to a physical size through the relation

` ≈ kχ(zdec), where χ(zdec) is the conformal distance to the surface of last scattering. The physical

size observed in the acoustic oscillations in the CMB is set by the sound horizon at decoupling. This,

in turn, is approximately proportional to the conformal time at decoupling. Therefore, the location

of the peaks are proportional to

` ∝ χ(zdec)
τ(zdec)

. (4.16)

Fixing the geometry to flat, we then have

` ∝
√

1 + aeq −
√
adec + aeq

√
aeq −

√
adec + aeq

. (4.17)

3The peak structure in the CMB is formed by the Sachs-Wolfe contribution whose time evolution can be ap-
proximated as a Dirac delta function at the surface of last scattering. Limber’s approximation uses the fact that
the transfer function P (k)∆2

SW(k) varies much slower than the spherical Bessel function which allows us to write
C` ∼

R
k2dkP (k)∆2

SW(k)[j`(kχdec)]2 ∝
R
k2dkP (k)∆2

SW(k)δ(`+ 1/2− kχdec), where χdec is the conformal distance
to decoupling. The Dirac delta function then enforces the equality k = (` + 1/2)/χdec ≈ `/χdec, where the second
equality follows from the limit `� 1.
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Figure 4.1: Panel (a) shows the suppression of power in the small scale CMB temperature
anisotropies as a function of Neff fixing all other cosmological parameters. We can see that the
suppression increases with increasing Neff . Panel (b) shows the ratio rs(zd, Neff) as is measured by
the BAO. As Neff is increased while holding ΩMh

2 fixed the sound horizon is increased. Panel (c)
shows the suppression of power in the matter powerspectrum for large wavenumbers. We can see
that, just as in the CMB case, as Neff is increased the suppression becomes more pronounced. The
lowest panel (d) shows the ratio of the location of the peaks in the CMB temperature anisotropy
powerspectrum for the standard cosmology to a cosmology with extra relativistic degrees of freedom.
As Neff is increased the peaks shift to higher values since R ≡ `Neff=0/`. The red vertical dashed
line indicates a constraint to within Neff = 1 for each of these measurements. For the location of the
peaks in the CMB this corresponds to a determination of the location to within a few percent; for
the suppression of small scale power in the matter powerspectrum this corresponds to a fractional
error of about ten percent; for a measurement of the BAO this corresponds to a fractional error of a
few percent; for a measurement of the relative power in the small and large scale CMB to a fractional
error of a few percent. Current measurements can reach these accuracies. However, in this figure
we are ignoring any degeneracies that exist between Neff and other cosmological parameters.
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We then define a ratio as in Ref. [194] R ≡ `Neff=0/`. We show this ratio for a flat geometry in

Fig. 4.1. From that figure it is clear that if the location of the peaks can be determined to an

accuracy of less than ∼ 10% then, with ΩMh
2 fixed, we could constrain Neff to within a few.

4.3.1.2 Effects on the matter powerspectrum

At large scales the matter powerspectrum rises as k and at small scales it falls off as k−3. The break

between these two behaviors occur at keq, the wavenumber at the time of matter-radiation equality,

keq = aeqHeq =
√

2H0

(
ΩM

Ωrad

)1/2

. (4.18)

In addition to this, writing the matter powerspectrum in terms of a transfer function, P (k) ∝

knsT 2(k), the transfer function on scales k � keq is given by [195]

T (k) ≈
12k2

eq

k2
ln
(

k

8keq

)
, (4.19)

while it is normalized to unity on large scales. Therefore, the power at a given wave number k � keq

relative to the large scale power is suppressed as keq decreases. We show this behavior in Fig. 4.2.

The acoustic oscillations found in the CMB are also present in the matter powerspectrum. These

oscillations are called baryon acoustic oscillations (BAO). Just as the location of the peaks in the

CMB is set, in part, by considering the sound horizon, rs, of the photon-baryon fluid at decoupling,

the peaks in the BAO are set by the sound horizon in the photon-baryon fluid when the baryons fully

decouple from the photons. This redshift is not necessarily coincident with decoupling. Denoting

this redshift (known as the drag redshift since it is at this redshift that Compton drag is insufficient

to couple the baryons to the photons) by zd and taking the best fit cosmology to the WMAP 3rd

year maximum likelihood we have zd = 1017 according to the fitting formula presented in Ref. [193].

BAO observations average over a sphere giving a measurement of the ratio rs(zd)/DV (z) where the

distance DV (z) is given by [196]

DV (z) =
[
(1 + z)2DA(z)2 cz

H(z)

]1/3

, (4.20)

and DA(z) is the angular diameter distance to redshift z. The results from Ref. [197] indicate that

this ratio can be measured to an accuracy of about 3% at z = 0.2 and z = 0.35 using galaxy

clustering data from both the Sloan Digital Sky Survey (SDSS) and the Two Degree Field Galaxy

Redshift Survey (2dFGRS) [197]. If we fix the cosmological parameters that determine the low

redshift evolution [i.e., fix DV (z)] then we can see that these measurements allow us to constrain

Neff . We show this in Fig. 4.1.



63

Figure 4.2: The temperature anisotropy (upper panel) and the matter powerspectrum (lower panel)
for the standard cosmology (solid line) and for a cosmology with extra relativistic degrees of freedom
(dashed). The lower curves in the upper panel also show the ISW effect for the two cosmologies.
Note that, as discussed in the text, the additional relativistic energy density causes the early ISW
to become enhanced.
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4.3.2 Inhomogeneous influence

The perturbative effects of adding additional non-interacting relativistic degrees of freedom is to

change the amplitude of the anisotropic stress and free streaming as well as possibly introduce

non-adiabatic initial conditions.

The presence of anisotropic stress alters the relationship between the two Newtonian potentials

(in conformal Newtonian gauge). Since a massless species propagate at the speed of light they

stream out of any initial perturbations. This further dampens the size of the potentials during

radiation domination, so that the small scale CMB anisotropy powerspectrum is damped relative to

the Sachs-Wolfe plateau as [198]
CSW
`

C`�100
≈ 1

25
(

1 + 4f
15

)2 , (4.21)

where the fraction f ≡ (ρrad − ργ)/ρrad = [0.2271(3.04 + Neff)]/[1 + 0.2271(3.04 + Neff)]. Finally,

the acoustic horizon for a decoupled radiative fluid is greater than that of the photon-baryon fluid.

This induces a small additive phase shift ∆` ≈ −4 for Neff = 1 [199]. However, this phase-shift is

subdominant to the mutiplicative shift caused by the change in the sound horizon and the distance

to the surface of last scattering.

From the preceding discussion it is clear that extra radiative energy density is degenerate with

ΩM. In particular, the homogeneous effects depend on either aeq or keq, which in turn depend on

some combination of Neff and ΩM. This degeneracy is shown in Fig. 4.3. Since zeq and keq depend

on ΩM and keq differently, measurements of both quantities can be used to break the degeneracy

to a certain extent. Measurements of the luminosity distance from type Ia supernovae also help to

break this degeneracy since they given an independent constraint to ΩM and ΩΛ. Finally, since the

presence of extra relativistic energy density suppresses the temperature powerspectrum at large ` (or

large k) we have a degeneracy between Neff and ns, the scalar spectral index. As Neff is increased,

an increase in ns will offset the loss of power on small scales.

Finally, the introduction of a new species might introduce non-adiabatic initial conditions. In

particular this will occur when a species is created during inflation but has only gravitational inter-

actions with the rest of the species that fill the universe so that it cannot come into thermodynamic

equilibrium. Axions and the CGWB are two examples of such species.

There are many different initial conditions that are accessible to the CGWB. In this chapter we

explore how the constraints depend on the choice of initial condition by considering two different

examples. In the first case, we choose the usual adiabatic initial conditions. In this case, the CGWB

is indistinguishable from a massless neutrino species. In the second case we choose to set the density

contrast (δρgw/ρ̄gw) to zero in the conformal Newtonian gauge (a choice of coordinates such that

the spatial hypersurfaces are shear free [200]). We call this second choice ‘homogeneous’ initial
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Figure 4.3: This figure shows the degeneracy between ΩMh2 and Neff through measurements of both
the redshift at matter-radiation equality (zeq) and the wavenumber at matter-radiation equality
(keq). The solid lines correspond to constant keq in units of h Mpc−1; the dashed lines correspond
to constant zeq.

conditions. We discuss how we set the initial conditions in Appendix B, here we only discuss how

the homogeneous initial conditions affect the theoretical predictions.

The choice of initial conditions has little affect on the matter powerspectrum. Therefore, we

concentrate on the CMB and in particular the temperature anisotropies since these are the measured

with the highest signal to noise. We find that the homogeneous initial conditions cause a rise in

power at large scales. This behavior breaks the degeneracy between Neff , ΩMh
2, and nS for the

CGWB and produces a tighter constraint on the CGWB than adiabatic initial conditions. In order

to explore why these new initial conditions have this effect, we have divided the calculation of

the temperature powerspectrum into three parts. These three parts are easiest to identify if one

calculates the powerspectrum using the line-of-sight technique first introduced in Ref. [201]. Without
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Figure 4.4: Here we present a decomposition of the temperature anisotropies. The dotted curves
correspond to the case with zero gravitational waves and three neutrinos with adiabatic initial
conditions, the solid curves correspond to 3 standard neutrinos plus 2 effective gravitational waves
with homogeneous initial conditions. We have decomposed the temperature anisotropies as discussed
in the text into various terms. Most importantly we can see that the main difference between these
two cases comes from the ISW-doppler cross correlation: the homogeneous initial conditions for the
ISW-doppler cross correlation are less negative than the adiabatic case.

going into the details, we can schematically write the full power spectrum as

CTT` =
∫
k2dkPΨ(k)

[
∆SW
` (k) + ∆ISW

` (k) + ∆DOP
` (k)

]2
, (4.22)

where ∆SW
` (k) is the transfer function for the Sachs-Wolfe effect, ∆ISW

` (k) is the transfer function

for the integrated Sachs-Wolfe effect, and ∆DOP
` (k) is the transfer function for the doppler motion

of the photons in the photon-baryon fluid. In this decomposition, the full powerspectrum is then

composed of six terms. We show the results of this calculation in Fig. 4.4. From this figure we can

see that the homogeneous initial conditions causes a decrease in the cross correlation between the
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Sachs-Wolfe and integrated Sachs-Wolfe effects, effectively boosting the large scale power.

4.4 Results4

We first consider the case when the CGWB has adiabatic initial conditions. In this case, the effects

of the CGWB on the expansion history and structure formation are identical to those of massless

neutrinos. The analysis proceeds just as in Ref. [180]. We have updated this analysis to include new

small-scale CMB results, as well as constraints from the Lyman-α forest. The CMB results we use are

from WMAP, ACBAR, CBI, VSA, and BOOMERanG, and we use the measurement of the galaxy

power spectrum from the 2dF Galaxy Redshift Survey and the Sloan Digital Sky Survey (SDSS),

and the Lyman-α forest [202–212]. We implement the Lyman-α constraints following the method

discussed in Ref. [213], with minor modifications that were suggested by the authors. To translate

the constraint to the number of extra neutrino degrees of freedom to a CGWB energy density, we

use the relation Ωgwh
2 = 5.6× 10−6, the density contributed by a single massless-neutrino species.

Results for adiabatic initial conditions are shown in Fig. 4.5. A limit at 95% CL of Ωgwh
2 . 3.9×

10−5 is obtained from a combination of current CMB data, galaxy power spectrum, and the Lyman-

α forest, and under the assumption that the number of neutrino degrees of freedom is Nν = 3.04

and that neutrino masses are free to vary. Due to a slight discrepancy between the matter power

spectrum from the best-fit CMB model and that measured in galaxy surveys and Lyman-α forest

measurements, the addition of galaxy surveys and the Lyman-α forest weakens the bound by roughly

a factor of two. A small CGWB component improves slightly the CMB+galaxy+Lyα agreement (see

the solid curve in Fig. 4.5), although the difference between Ngw = 0 and Ngw = 2 is statistically

insignificant. Although not shown, we find that the exclusion of the Lyman-α forest weakens the

CMB+galaxy+Lyα bound only slightly. If neutrino masses are assumed to be undetermined, then

the CMB+galaxy+Lyα bound is shifted by approximately two neutrinos (see the dot-dash curve in

Fig. 4.5), which indicates that there is a degeneracy between the neutrino mass and the CGWB.

This same trend has been observed in Ref. [214]. Note that the bound is improved by roughly a

factor of 4 if we include only current CMB data.

If the CGWB is initially homogeneous, then the initial conditions for the CGWB perturbations

differ from those for massless neutrinos. This will affect the growth of perturbations, especially at

large scales, and the degeneracy between the CGWB and massless neutrinos is thus broken, as shown

in Fig. 4.4. The bound to the CGWB then turns out to be stronger than in the adiabatic case. Fig. 4.5

shows results for the likelihood for Ωgwh
2 for different combinations of current data sets as well as

forecasts for the likelihoods expected when future CMB experiments are included. If the CGWB
4The results presented in this section and Section 4.5 were first published in, A new cosmic microwave background

constraint to primordial gravitational waves, Tristan L. Smith, Elena Pierpaoli, and Marc Kamionkowski, Phys. Rev.
Lett. 97, 021301 (2006). Reproduced here with permission, copyright (2006) by the American Physical Society.
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Figure 4.5: Adiabatic: The marginalized (unnormalized) likelihoods for the CGWB energy density
if perturbations to the CGWB density are adiabatic. The dotted curve is the result obtained using
only CMB data. The thick solid curve includes galaxies as well as the Lyman-α forest. In all of the
aforementioned curves, the marginalization is over the nonrelativistic-matter density Ωmh2, baryon
density Ωbh2, scalar spectral index ns, power-spectrum amplitude As, the optical depth τ to the
surface of last scatter, and the angle θ subtended by the first acoustic peak (marginalization over
θ essentially stands in for marginalization over the Hubble constant). We hold the geometry fixed
to flat, the number of neutrinos to Nν = 3.04, and the neutrino masses fixed to zero. Finally,
the dot-dash curve (to the right) shows current constraints from the CMB+galaxies+Lyα if we
allow for and marginalize over nonzero neutrino masses as well. The number of equivalent neutrino
degrees of freedom (Ngw) is shown on the bottom axis. Homogeneous: same as the left panel, except
for homogeneous initial conditions for the CGWB. The arrow indicates the 95% CL upper limit
Ωgwh

2 ≤ 6.9 × 10−6 that we adopt as our central result. This is obtained from the analysis that
includes current CMB+galaxy+Lyα+free mν .

is produced by some mechanism that leaves its primordial density uncorrelated with the curvature

perturbation—e.g., inflation or perhaps some post-inflation phase-transition mechanism—then this is

the result that should be applicable. We adopt as our 95% CL upper bound, Ωgwh
2 . 6.9×10−6, for

homogeneous CGWB initial conditions from the combination of data from current CMB experiments,

galaxy surveys, and the Lyman-α forest and under the assumption that the number of neutrino
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Table 4.1:

CMB Experimental Specifications for Fisher Matrix

Experiment θbeam (wT )−1/2 (wP )−1/2 fsky Ωgwh2

Planck: 7.1 42.2 80.5 0.8 1.4× 10−6

5.0 64.8 132.3 – –

CMBPol: 4.0 1.0 1.4 0.8 5× 10−7

NOTES—The beam width, θbeam, (FWHM) is given in arcminutes. Weights, (wT,P )−1/2, are in arcminutes µK. The
sky fraction is given by fsky. The sensitivities to Ωgwh2 are 95% CL for homogeneous initial conditions.

degrees of freedom is Nν = 3.04 and that neutrino masses are free to vary. Note, again, that

the bound would be roughly twice as strong if we were to restrict ourselves only to CMB data.

And again, although not shown, we find that the exclusion of the Lyman-α forest weakens the

CMB+galaxy+Lyα bound only slightly.

4.5 Conclusions

Our central results are summarized in Fig. 4.6, which shows Ωgwh
2 vs. gravitational-wave frequency.

Our new constraints are competitive with the BBN constraint over the frequency range where both

constraints apply. The precise value of the BBN constraint depends on the precise constraint to the

maximum number of neutrino degrees of freedom allowed by BBN. Some authors [215] claim a limit

(Nν − 3.04) . 0.2 (at 95% CL), but more recent and conservative estimates (that include new 4He

measurements and the CMB value for the baryon density) [179], which we choose to adopt, place the

limit at (Nν − 3.04) . 1.4, comparable to the CMB/LSS bound we have derived. However, our new

results apply four decades lower in frequency, and provide the strongest constraint to the CGWB

amplitude over the frequency range 10−15 − 10−10 Hz.

To forecast the sensitivity of future CMB experiments to the CGWB, we have carried out a

Fisher analysis that shows that when Planck and CMBPol fly, the sensitivity should be increased by

a factor of roughly 10, while the BBN constraint may continue to be limited by the same astrophysical

systematic uncertainties. See Table 1 for the experimental specifications used in our Fisher analysis.

In our Fisher analysis we included the improved CMB observations as well as the current galaxy

and Lyman-α constraints and allowed mν to vary with Nν = 3.04.

We have not determined precisely the lower end of the frequency range for which our bound

applies. In order for the constraint to apply, the gravitational-wave wavelength must be within

the horizon at roughly the time of, or slightly before, recombination. Otherwise the waves do

not propagate as massless modes. Analytic and numerical integrations of the mode equations for

gravitational waves in an expanding Universe (e.g., Fig. 2 in Ref. [112]), indicate that the mode
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Figure 4.6: The gravitational-wave density Ωgwh
2 vs. frequency. The BBN constraint corresponds

to a limit of 1.4 extra neutrino degrees of freedom. We also show our constraints, from current
CMB, galaxy, and Lyman-α data, for a CGWB with adiabatic primordial perturbations (‘Adiabatic
(current)’) and for homogeneous initial conditions (‘Homogeneous (current)’), as well as our forecasts
for the sensitivities if current CMB data are replaced by data from CMBPol. Also shown are
the reaches of LIGO and LISA. BBO (not shown) should go deeper, but primarily at frequencies
∼ 1 Hz. Large-angle CMB fluctuations (also not shown) constrain Ωgwh

2 . 10−14, but only at
frequencies . 10−16 Hz. The LIGO S3 upper limit is from Ref. [61] and the msec pulsar curve is
from Refs. [62, 63].

is oscillating when kτ ' 10, where k is the wavenumber and τ the conformal time evaluated at

decoupling. This translates to a frequency ν ' 5 × 10−17 Hz. More realistically, the gravitational

wave will need to oscillate for a while before recombination in order to have the effects we have

considered here. We therefore tentatively estimate 10−15 Hz as the lowest frequency for which our

bound applies, although the precise value may differ slightly. We leave a more precise calculation

for future work.
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There is also a slight correction if our bound is applied to a scale-invariant spectrum. In this

case, the number of gravitational-wave modes propagating as massless modes changes with time, as

more modes enter the horizon. As a result, the energy density does not scale with scale factor a

simply as a−4. This, however, produces only a logarithmic correction, which is within the theoretical

error of the treatment we have presented here.

We point out that the limit is probably not relevant for scale-invariant spectra, such as those

produced by inflation. Those are already constrained to be roughly eight orders of magnitude lower

in amplitude, at slightly lower frequencies ∼ 10−17 Hz, from large-angle fluctuations in the CMB.

However, phase transitions or other exotic mechanisms that produce a CGWB at frequencies & 10−15

Hz will now face this new constraint.
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Chapter 5

Observational tests of f (R) gravity1

5.1 Introduction

The discovery of an accelerated cosmic expansion [20, 21] has led to a flurry of theoretical activity.

One class of solutions to the cosmic-acceleration puzzle consists of modifications to the general-

relativistic theory of gravity. One particular proposal is the addition of a 1/R term to the Einstein-

Hilbert action [32, 65]. Such a term gives rise to a vacuum solution with constant curvature, the de

Sitter spacetime, rather than the Minkowski vacuum of the usual Einstein-Hilbert action.

Shortly after this proposal, Chiba [216] argued that this theory is inconsistent with solar system

tests of gravity. In particular, he showed that the theory is equivalent to a scalar-tensor theory that

is known to make solar system predictions that conflict with measurements.

Since then, however, there have been a number of papers arguing or implying that Chiba’s

analysis is flawed [217–221]. The crux of the counter-argument is that 1/R theories admit as a static

spherically symmetric solution the usual vacuum Schwarzschild-de Sitter spacetime. Apart from a

cosmological constant that is too small by many orders of magnitude to affect anything observable

in the solar system, these solutions are just the usual Schwarzschild solution. Consequently, they

argue, there is no effective difference between the solar system spacetime in these models and that

in ordinary general relativity.

Here we point out that these arguments are incorrect, and that Chiba was right. The crucial point

is that although the Schwarzschild-de Sitter spacetime is indeed a spherically symmetric vacuum

solution to the 1/R equations of motion, it is not the unique spherically symmetric vacuum solution

in this theory. The correct solution is determined by matching onto the solution in the interior of

the star. When this is done correctly, it is found that the Schwarzschild-de Sitter spacetime does not

describe the spacetime around the Sun, and that Chiba’s result stands. This misunderstanding has
1The material presented Sections 5.1-5.3 in this chapter were first published in, Solar system tests do rule out

1/R gravity, Adrienne L. Erickcek, Tristan L. Smith, and Marc Kamionkowski, Phys. Rev. D74, 121501 (2006) and
Solar system constraints to general f(R) gravity, Takeshi Chiba, Tristan L. Smith, and Adrienne L. Erickcek, Phys.
Rev. D75, 124014 (2007). Reproduced here with permission, copyright (2006 and 2007) by the American Physical
Society.
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now propagated through a number of papers. There are moreover a number of other papers that

cite these incorrect papers in a way that suggests that they may be onto something. We thought it

worthwhile to correct the error before it propagates any further.

Before describing the correct spherically-symmetric spacetime for 1/R gravity, we consider a very

simple and analogous problem that illustrates what is going on. Suppose we wanted to know the

electric field around a spherically-symmetric charge distribution ρ(r) confined to radii r < R. For

radii r > R, the Poisson equation ∇2φ = 4πρ relating the electric potential φ to the charge-density

distribution ρ reduces to ∇2φ = 0. A spherically symmetric solution to this equation, one might

argue, is φ = 0, implying no electric field. This is clearly incorrect.

What went wrong? Although φ = 0 is indeed a spherically symmetric solution to ∇2φ = 0, it

is not the unique solution. Another solution is φ = c/r, for r > R. The constant c in this equation

is furthermore fixed in this case to be c = Q, where Q =
∫
ρ d3x is the total charge, by integrating

the right- and left-hand sides of the Poisson equation ∇2φ = 4πρ over the entire volume.

In brief, something similar happens in 1/R gravity. The differential equations for the metric

components gtt(r) and grr(r) are supplemented by a differential equation for the curvature R, as

we will see below. The three differential equations have the Schwarzschild-de Sitter spacetime as a

solution, but these vacuum solutions do not match onto the solutions in the presence of a source

(i.e., the Sun). There is an additional vacuum solution that correctly matches onto the solution in

the presence of the source.

In this chapter we first consider the example of a particular form for f(R) = −µ4/R. In doing

so, the salient features of the solar system predictions of this theory can be clearly understood. In

the next section of this chapter we generalize these results and show under what conditions a theory

with an unspecified form for f(R) will violate solar system tests. Finally, we briefly discuss how a

mechanism particular to f(R) theories may allow the theory to evade solar system tests and how

this mechanism allows us to identify a new test of gravity theories.

5.2 The particular example of f(R) = −µ4/R

The gravitational action of 1/R gravity is given by,

S =
1

16πG

∫
d4x
√
−g
(
R− µ4

R

)
+
∫

d4x
√
−gLM, (5.1)

and may be varied with respect to the metric gµν to obtain the field equation [32]

8πGTµν =
(

1 +
µ4

R2

)
Rµν −

1
2

(
1− µ4

R2

)
Rgµν + µ4 (gµν∇α∇α −∇µ∇ν)R−2. (5.2)
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We begin by using the trace of the field equation to determine the Ricci scalar R. Contracting

Eq. (5.2) with the inverse metric yields

�
µ4

R2
− R

3
+
µ4

R
=

8πGT
3

, (5.3)

where T ≡ gµνTµν .

The constant-curvature vacuum solution is obtained by setting T = 0 and ∇µR = 0. It is R2 =

3µ4, corresponding to the de Sitter spacetime with Hubble parameter H2 = µ2/(4
√

3), equivalent

to the general-relativistic vacuum solution with a cosmological constant Λ = 3H2 =
√

3µ2/4. The

metric for this spacetime can be written as a static spherically symmetric spacetime:

ds2 = −
(
1−H2r2

)
dt2 +

(
1−H2r2

)−1
dr2 + r2dΩ2. (5.4)

To match the observed acceleration of the universe, the effective cosmological constant must be set

to Λ ∼ µ2 ∼ H2 ∼ 10−56 cm−2.

We now consider the spacetime in the solar system in this theory. First of all, the distances

(∼ 1013 cm) in the solar system are tiny compared with the distance µ−1 ∼ 1028 cm, so µr � 1

everywhere in the solar system. Moreover, the densities and velocities in the solar system are

sufficiently small that we can treat the spacetime as a small perturbation to the de Sitter spacetime.

The spacetime should also be spherically symmetric and static. The most general static spherically

symmetric perturbation to the vacuum de Sitter spacetime given by Eq. (5.4) can be written

ds2 = −
[
1 + a(r)−H2r2

]
dt2 +

[
1 + b(r)−H2r2

]−1
dr2 + r2dΩ2, (5.5)

where the metric-perturbation variables a(r), b(r)� 1. In the following, we work to linear order in

a and b, and also recall that µr � 1. However, a, b are not necessarily small compared with µr.

We now return to the trace of the field equation, given by Eq. (5.30), and solve it for the Ricci

scalar R(r) in the presence of the Sun. We write the trace equation in terms of a new function,

c(r) ≡ −1
3

+
µ4

R2(r)
, (5.6)

and demand that c(r) → 0 as r → ∞ so that R approaches its background value of
√

3µ2 far from

the source of the perturbation. Therefore, c(r) parameterizes the departure of R from the vacuum

solution, and we anticipate that c(r) will be the same order in the perturbation amplitude as the

metric perturbations a(r) and b(r). In terms of c(r), Eq. (5.30) becomes an exact equation,

�c(r) +
µ2c√
c+ 1

3

=
8πG

3
T. (5.7)
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In the Newtonian limit appropriate for the solar system, the pressure p is negligible compared to the

energy density ρ, and so T = −ρ. Neglecting terms that are higher order in a(r), b(r), and µ2r2, we

are able to rewrite Eq. (5.7) as

∇2c+
√

3µ2c = −8πG
3

ρ, (5.8)

where ∇2 is the flat-space Laplacian operator. Note that in writing this equation, which is linear

in c(r), we have also neglected higher-order terms in c(r). Below, we will check that the solutions

we obtain have c(r) � 1 everywhere, consistent with our assumptions. The Green’s function for

Eq. (5.8) is − cos(31/4µr)/(4πr). Convolving this with the density gives us the solution to Eq. (5.8).

However, we are restricting our attention to the region where µr � 1, so the Green’s function reduces

to that for the Laplacian operator. Therefore the equation we need to solve is ∇2c = −(8πGρ)/3.

Integrating the right-hand side over a spherical volume of radius r gives us −8πGm(r)/3, where

m(r) is the mass enclosed by a radius r. Using Gauss’s law to integrate the left-hand side gives us

4πr2c′(r), where the prime denotes differentiation with respect to r. Thus, the equation for c(r)

becomes
dc
dr

= −2Gm(r)
3r2

[1 +O(µr)] . (5.9)

Integrating Eq. (5.9) and using the boundary condition that c → 0 as r → ∞ gives us the solution

c(r) = (2/3)(GM/r)[1 +O(µr)] for r > R�. Note also that integration of the equation for c′(r) to

radii r < R� inside the star implies that the scalar curvature R remains of order µ2, even inside the

star. We thus see that c� 1, so we were justified in using the linearized equation for c(r).

This solution for c(r) implies that

R =
√

3µ2

(
1− GM

r

)
, r > R�. (5.10)

We have thus shown that R is not constant outside the star and have already arrived at a result at

odds with the constant-curvature Schwarzschild-de Sitter solution. Notice that had we (incorrectly)

used ρ = 0 in Eq. (5.8), then the equations would have admitted the solution c(r) = 0; i.e.,

the constant-curvature solution. However, this would be incorrect, because even though ρ = 0 at

r > R�, the solution to the differential equation at r > R� depends on the mass distribution ρ(r)

at r < R�. In other words, although the Schwarzschild-de Sitter solution is a static spherically

symmetric solution to the vacuum Einstein equations, it is not the solution that correctly matches

onto the solution inside the star. Note further that the solution for R both inside and outside the

star is (to linear order in c),

R =
√

3µ2

[
1− 3

2
c(r)

]
. (5.11)

Clearly, 1/R gravity produces a spacetime inside the star that is very different from general relativity.

This result shows that in this theory one should not assume that R = 8πGρ; this has lead to some
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confusion [222–224].

To proceed to the solutions for a(r) and b(r), we rearrange the field equation for 1/R gravity

[Eq. (5.2)] to obtain equations,

Rµν =
(

1 +
µ4

R2

)−1 [
8πGTµν +

1
2

(
1− µ4

R2

)
Rgµν −µ4 (gµν∇α∇α −∇µ∇ν)R−2

]
, (5.12)

for the Ricci tensor in terms of the Ricci scalar. When the expression for R obtained from the trace

equation is inserted into the right-hand side, we obtain equations for the nonzero components of the

Ricci tensor,

Rtt = 3H2 − 6πGρ− 3
4
∇2c, (5.13)

Rrr = 3H2 − 3c′(r)
2r

, (5.14)

Rθθ = Rφφ = 3H2 − 3
4

(
c′(r)
r

+ c′′(r)
)
, (5.15)

where we have neglected terms of order µ2c, Gρc, and c2 in all three expressions.

For the perturbed metric given by Eq. (5.5), the tt component of the Ricci tensor is (to linear

order in small quantities) Rtt = 3H2−(1/2)∇2a(r). Applying ∇2c = −(8πGρ)/3 to Eq. (5.13) leaves

us with an equation for a(r),
1
2
∇2a = 4πGρ, (5.16)

plus terms that are higher order in GM/r and µr. The solution to this equation parallels that for

c(r); it is
da
dr

= 2G
m(r)
r2

(5.17)

both inside and outside the star. Outside the star, this expression may be integrated, subject to the

boundary condition a(r)→ 0 as r →∞, to obtain the metric perturbation,

a(r) = −2GM
r

, r > R�, (5.18)

exterior to the star. Note that this recovers the Newtonian limit for the motion of nonrelativistic

bodies in the solar system, as it should.

The rr component of the Ricci tensor is (to linear order in small quantities) Rrr = 3H2− (b′/r)−

(a′′/2). Given our solution for a′(r) and c′(r) = −(2/3)Gm(r)/r2, Eq. (5.14) becomes a simple
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differential equation for b(r),

db
dr

=
Gm(r)
r2

− Gm′(r)
r

=
d
dr

[
−Gm(r)

r

]
. (5.19)

Integrating this equation subject to the boundary condition b(r)→ 0 as r →∞ gives an expression

for b(r) that is applicable both inside and outside the star:

b(r) = −Gm(r)
r

. (5.20)

This expression for b(r) and Eq. (5.17) for a′(r) also satisfy Eq. (5.15) for the angular components

of the Ricci tensor. The Ricci scalar [Eq. (5.10)] is recovered from the Ricci tensor components if

terms higher order in O(µr2GM/r) are included in our expressions for a(r) and b(r).

The linearized metric outside the star thus becomes

ds2 = −
(

1− 2GM
r
−H2r2

)
dt2 +

(
1 +

GM

r
+H2r2

)
dr2 + r2dΩ2. (5.21)

Noting that in the solar system, Hr � 1 and that the PPN parameter γ is defined by the metric,

ds2 = −
(

1− 2GM
r

)
dt2 +

(
1 +

2γGM
r

)
dr2 + r2dΩ2, (5.22)

we find that γ = 1/2 for 1/R gravity, in agreement with Chiba’s claims [216, 225], and prior

calculations; e.g., Refs. [226, 227]. We note that recent measurements give γ = 1+(2.1±2.3)×10−5

[228, 229].

Other authors have noted that Birkhoff’s theorem—that the unique static spherically symmetric

vacuum spacetime in general relativity is the Schwarzschild spacetime—is lost in 1/R gravity, and

that there may be several spherically-symmetric vacuum spacetimes. Although this is true, what we

have shown here is that the solar system spacetime is determined uniquely by matching the exterior

vacuum solution to the interior solution. When this is done correctly, it is found that the theory

predicts a PPN parameter γ = 1/2 in gross violation of the measurements, which require γ to be

extremely close to unity.

A few final comments: It is important to note that the structure of 1/R gravity (for example, the

way matter sources the metric) is completely different than the structure of general relativity, even

in the limit µ→ 0. In particular, the theory does not reduce to general relativity in the µ→ 0 limit,

and this can lead to confusion. This is due to the fact that the introduction of additional terms

in the Einstein-Hilbert action brings to life a scalar degree of freedom that lies dormant in general

relativity. We also note that Chiba’s mapping of f(R) theories to scalar-tensor theories is perfectly
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valid; it amounts to no more than a variable change, from R to φ ≡ 1 +µ4/R2. The trace equation,

Eq. (5.30), is then equivalent to the scalar-field equation of motion in the scalar-tensor theory. Also,

the fact that general relativity is not recovered in the µ → 0 limit becomes particularly apparent

in the scalar-tensor theory, as we will discuss elsewhere. Although we have restricted our analysis,

for clarity, to 1/R theory, similar results can also be derived for other f(R) theories. For example,

the correct matching of the exterior and interior solutions can be used to distinguish between the

spherically symmetric vacuum spacetimes for R1+δ gravity discussed in Ref. [230].

5.3 Conditions on general f(R) theories

In this section, we generalize the analysis of Ref. [231] to a broad class of f(R) gravities, namely

those theories that admit a Taylor expansion of f(R) around the background value of the Ricci

scalar. We work in the metric formalism, where the field equations are obtained by varying the

action with respect to the metric and treating the Ricci scalar as a function of the metric. The

Palatini formalism, which treats the Ricci scalar as a function of the connection and varies the

action with respect to the connection and the metric independently, yields different field equations

for f(R) gravity and has been studied extensively elsewhere (e.g., Refs. [232–236]).

This section is organized as follows: In Section 5.3.1, we solve the linearized field equations

around a spherical mass and find that the solution in the solar system is in agreement with the

solution obtained using the equivalent scalar-tensor theory. When f(R) satisfies a condition that is

analogous to the scalar field being light in the equivalent scalar-tensor theory, the resulting spacetime

is incompatible with solar system tests of general relativity. In Section 5.3.2, we consider how our

analysis applies to several f(R) gravity theories, including general relativity. This particular example

illustrates the connection between f(R) gravity and general relativity and clarifies the requirements

for a general relativistic limit of an f(R) theory. We summarize our conclusions in Section 5.6.

5.3.1 Weak-field solution around a spherical star

We consider gravitational theories with actions of the form

S =
1

2κ

∫
d4x
√
−gf(R) + Sm, (5.23)

where f(R) is a function of the Ricci scalar R and Sm is the matter action. The field equation

obtained by varying the action with respect to the metric is

fRRµν −
1
2
fgµν −∇µ∇νfR +�fRgµν = κTµν , (5.24)
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where fR ≡ df/dR. In previous studies, predictions of solar system dynamics in these theories

were analyzed by appealing to an equivalence with scalar-tensor theories [216]. We review this

equivalence in Appendix 1. Since the equivalent scalar-tensor theory is incompatible with solar

system observations if the scalar field propagates on solar system scales, Ref. [216] concluded that

the corresponding f(R) theories are ruled out. We now show that this conclusion can be made

without appealing to the equivalence between f(R) and scalar-tensor gravity. Instead, we work

directly with the linearized field equations about a spherical mass distribution. Our treatment

clarifies and amends a similar analysis presented in Ref. [237], and we extend it to cases where the

background value of the Ricci scalar equals zero.

We now find the metric that describes the spacetime around a spherical body in f(R) gravity in

the weak-field regime. To do this, we must choose a background spacetime around which to linearize

the field equations. The only physically relevant choice is an isotropic and homogeneous background

spacetime that solves Eq. (5.24) for some spatially uniform cosmological stress-energy tensor T cos
µν .

The evolution of the time-dependent and spatially homogeneous background scalar curvature R0(t)

is determined by the trace of Eq. (5.24),

fR0(t)R0(t)− 2f0(t) + 3�fR0(t) = κT cos(t), (5.25)

where fR0 ≡ df/dR|R=R0 , f0 ≡ f(R0) and T cos ≡ gµνT cos
µν .

In order to investigate perturbations away from this background, we express the Ricci scalar as

the sum of two components:

R(r, t) ≡ R0(t) +R1(r), (5.26)

where R0(t) is the spatially homogenous background curvature that solves Eq. (5.25) and R1(r) is

a time-independent perturbation to this background curvature. We assume that all derivatives of

f(R) are well defined at the present-day value of R0 so that we may use a Taylor expansion of f(R)

around R = R0 to evaluate f(R0 + R1) and fR(R0 + R1). We will terminate the expansion by

neglecting terms nonlinear in R1. Provided that the higher-order terms of the Taylor series do not

cancel in some contrived way, neglecting the higher-order terms is only justified if the sum of the

zeroth-order and linear terms is greater than all other terms in the Taylor expansion. Specifically,

we require that

f0 + fR0R1 � 1
n!
f (n)(R0)Rn1 , (5.27)

fR0 + fRR0R1 � 1
n!
f (n+1)(R0)Rn1 , for all n > 1, (5.28)

where fRR0 ≡ d2f/dR2|R=R0 and f (n)(R0) ≡ dnf/dRn|R=R0 .

Now we consider the trace of Eq. (5.24) with both a cosmological matter source described by
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T cos and a finite, time-independent, spherically symmetric matter source, described by T s:

fRR− 2f + 3�fR = κ (T cos + T s) . (5.29)

Using first-order Taylor expansions to evaluate fR and f and neglecting O(R2
1) terms, we obtain a

linearized version of Eq. (5.29):

3fRR0�R1(r)−
[
fR0(t)− fRR0(t)R0(t)− 3�fRR0(t)

]
R1 = κT s. (5.30)

To obtain this equation, we used the fact that R0(t) solves Eq. (5.25) to eliminate terms that are

independent of R1. By dropping O(fRR0R
2
1) terms from Eq. (5.30) while keeping the fRR0R0R1

term, we have implicitly assumed that R1 � R0 if R0 is nonzero. We will check that this condition

is satisfied after the discussion following Eq. (F.21). If R0 is zero, then the O(fRR0R
2
1) is guaranteed

to be smaller than the nonzero terms in Eq. (5.30) by virtue of Eq. (5.27). Note that if fRR0 = 0,

as in general relativity, this equation becomes simply fR0R1 = −κT s. If in addition fR0 is nonzero

then R1 must vanish outside the star and hence the Schwarzschild-de Sitter solution becomes the

solution to the field equation outside the source. However, if fRR0 6= 0, this is no longer necessarily

the case.

Finally, we take our background metric to be a flat Friedmann-Robertson-Walker (FRW) metric.

We then consider a spherically symmetric perturbation to this background so that the linearized

perturbed metric takes the form

ds2 = −[1 + 2Ψ(r)]dt2 + a(t)2
{

[1 + 2Φ(r)]dr2 + r2dΩ2
}
, (5.31)

where the present value of a(t) is one. When solving the field equations, we will keep only terms

linear in the perturbations Ψ and Φ.

We will now solve Eq. (5.30) for a nonzero fRR0. Since we confine our analysis to a static

perturbation R1(r), � becomes the flat-space Laplacian operator ∇2. Restricting our analysis to a

source with mass density ρ(r) and negligible pressure, we may rewrite Eq. (5.30) as

∇2R1 −m2R1 = − κρ

3fRR0
, (5.32)

where we have defined a mass parameter

m2 ≡ 1
3

(
fR0

fRR0
−R0 − 3

�fRR0

fRR0

)
. (5.33)

Due to the evolution ofR0(t), this mass parameter varies in time. However, the time-scale of variation

in the cosmological background spacetime is comparable to the current Hubble time. Since this time-
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scale is much longer than the time-scale of solar system dynamics, we may neglect the time variation

of the background spacetime when considering the behavior of bodies within the solar system [227].

Therefore, for the purposes of this calculation, we take m to be time-independent.

The Green’s function G(r) for this differential equation depends on the sign of m2:

G(r) =

 − cos(mr)/(4πr) m2 < 0,

− exp(−mr)/(4πr) m2 > 0,
(5.34)

where m ≡
√
|m2|. If mr � 1, then both Green’s functions are approximately −1/(4πr), which is

the Green’s function for Laplace’s equation. In this case, the term proportional to m2 in Eq. (E.5)

may be neglected and the solution outside the star is given by

R1 =
κ

12πfRR0

M

r
, (5.35)

where M is the total mass of the source. We note that when applied to 1/R gravity with a static

de Sitter background, this result agrees with the result presented in Ref. [231].

We emphasize that in order for this solution for R1 to be valid, we must have mr � 1. Only when

this condition is satisfied is the trace of the field equation well-approximated by Laplace’s equation.

This restriction was not mentioned in Ref. [237]. The physical interpretation of this constraint is

clear when one considers the equivalent scalar-tensor theory. When one switches to a frame where

the scalar degree of freedom is canonical, the effective mass of the scalar field evaluated in the Jordan

frame is [216]

m2
ϕ =

fR0

3

(
1

fRR0
+
R0

fR0
− 4f0

(fR0)2
− 2κT cos

(fR0)2

)
. (5.36)

Since R0 is the solution to Eq. (5.25), this expression may be simplified to

m2
ϕ =

1
3

(
fR0

fRR0
−R0 − 6

�fR0

fR0

)
. (5.37)

It is clear that both mϕ and m [defined by Eq. (5.33)] are of the same order. Therefore, the condition

that mr � 1 is equivalent to demanding that the scalar field be light (mϕr � 1). See Appendix A

for more details.

In summary, Eq. (5.35) is a solution to the trace of the field equation within the solar system only

if the scalar degree of freedom propagates on solar system scales. In terms of f(R), the necessary

condition is

|m2|r2 ≡
∣∣∣∣13
(
fR0

fRR0
−R0 − 3

�fRR0

fRR0

)∣∣∣∣ r2 � 1. (5.38)
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The triangle inequality tells us that the mass constraint given by Eq. (5.38) implies that∣∣∣∣ fR0

fRR0

∣∣∣∣ r2 −
∣∣∣∣R0 − 3

�fRR0

fRR0

∣∣∣∣ r2 � 1. (5.39)

Finally, since �fRR0/fRR0 ∼ H2, where H ≡ ȧ/a is the current Hubble parameter, and we know

that R0r
2 ∼ H2r � 1 by cosmological constraints, the mass constraint implies that∣∣∣∣ fR0

fRR0

∣∣∣∣ r2 � 1. (5.40)

We will now use the expression for R1 given by Eq. (5.35) to solve the field equations for the

metric perturbations Ψ and Φ. As we did for the trace of the field equation, we simplify the field

equations by replacing f(R) and fR(R) with first-order Taylor expansions around the background

value R0 to obtain field equations that are linear in R1. Using Eq. (5.25) to simplify this expression,

we obtain

fR0(Rµν − [R0]µν ) + fRR0R1R
µ
ν −

1
2
fR0R1δ

µ
ν − fRR0∇µ∇νR1 + δµν fRR0�R1 = κT sµ

ν , (5.41)

where [R0]µν is the unperturbed FRW Ricci tensor and δµν is the Kronecker delta. We neglected

time derivatives of the background metric when deriving this equation. As previously noted, the

time-scale of variations in R0 is much longer than that of solar system dynamics, making the terms

involving time derivatives of R0 irrelevant to gravitational effects within the solar system.

We simplify Eq. (5.41) further by dropping several negligible terms. We continue to ignore terms

that depend on the variation of the background spacetime by dropping terms that involve products

of Φ, Ψ, and fRR0R1 with H and dH/dt. Since we are working in the weak-field regime, we neglect

all terms that are nonlinear functions of the metric perturbations Φ and Ψ. Keeping only terms that

are linear in Φ and Ψ allows us to replace the � with the flat-space Laplacian operator ∇2 since

the perturbation is assumed to be static. Finally, we know from Eq. (5.35) that fRR0R1 ∼ κM/r,

and we expect Ψ and Φ to be proportional to κM/r as well. Therefore, fRR0R1Ψ and fRR0R1Φ

are second-order quantities, and we may neglect them. With these simplifications, the tt, rr, θθ

components of Eq. (5.41) are respectively

fR0∇2Ψ +
1
2
fR0R1 − fRR0∇2R1 = κρ, (5.42)

fR0

(
−Ψ′′ +

2
r

Φ′
)
− 1

2
fR0R1 +

2
r
fRR0R

′
1 = 0, (5.43)

fR0

(
1
r

Φ′ − 1
r

Ψ′ +
2
r2

Φ
)
− 1

2
fR0R1 +

1
r
fRR0R

′
1 + fRR0R

′′
1 = 0, (5.44)

where the prime denotes differentiation with respect to r. The φφ component of Eq. (5.41) is
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identical to the θθ component given by Eq. (5.44).

Recalling that R1 solves Eq. (E.5) with m2 = 0 so that ∇2R1 is proportional to the density ρ,

Eq. (5.42) may be rewritten

fR0∇2Ψ =
2
3
κρ− 1

2
fR0R1. (5.45)

We express Ψ as the sum of two functions: Ψ = Ψ0 + Ψ1, where

fR0∇2Ψ0 =
2
3
κρ, (5.46)

fR0∇2Ψ1 = −1
2
fR0R1. (5.47)

Provided that fR0 6= 0, Eq. (5.46) may be integrated via Gauss’s Law to give

Ψ′0(r) =
κ

6πfR0

m(r)
r2

, (5.48)

where m(r) is the mass enclosed in a sphere of radius r. If we assume that Ψ0 vanishes as r →∞,

we may integrate Eq. (5.48) to obtain

Ψ0 = − κ

6πfR0

M

r
, (5.49)

outside the star. Solving Eq. (5.47) outside the star using Eq. (5.35) for R1 yields

|Ψ1| =
1

48πfRR0
κMr � 1

fR0

κM

r
, (5.50)

where the inequality follows from Eq. (5.40). Since Ψ0 ∼ κM/(fR0r) outside the star we have shown

that |Ψ1| � |Ψ0|. Therefore, we may neglect Ψ1 and conclude that Ψ = Ψ0 as given by Eq. (5.49).

This expression for Ψ is used to define Newton’s constant: G ≡ κ/(6πfR0). For 1/R gravity with a

static vacuum de Sitter background, fR0 = 4/3, so κ takes its standard value of 8πG and Eq. (5.49)

matches the corresponding result in Ref. [231].

We now turn our attention to Eq. (5.43), which we will solve for Φ. First, we note that Eq. (5.35)

implies that R′1 = −R1/r. Therefore, the ratio of the second two terms in Eq. (5.43) is∣∣∣∣ (1/2)fR0R1

2fRR0R′1/r

∣∣∣∣ ∼ ∣∣∣∣ fR0

fRR0

∣∣∣∣ r2 � 1, (5.51)

where the inequality follows from Eq. (5.40). Consequently, the fR0R1 term is negligible, and we

drop it from the equation. Differentiating Eq. (5.48) to find Ψ′′, and using Gauss’s Law to obtain

R′1 from Eq. (E.5) (with m2 = 0), we may then rewrite Eq. (5.43) as

Φ′(r) =
κ

12πfR0

d
dr

(
m(r)
r

)
. (5.52)
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Assuming that Φ vanishes as r →∞, this equation may be integrated to obtain

Φ =
κ

12πfR0

M

r
, (5.53)

outside the star. It is easy to verify that Eqs. (5.49) and (F.21) also satisfy the third field equation,

Eq. (5.44).

We may now check our assumption that R1 � R0 for nonzero R0. From the expression for R1

given by Eq. (5.35) and our definition that κ ≡ 6πfR0G, we see that

R1

R0
∼<

1
R0

(
GM

Rs

)
fR0

fRR0
, (5.54)

where Rs is the radius of the star. It is easy to check that this expression holds inside the star as

well by integrating Eq. (E.5) into the interior of the star. Therefore, our assumption that R1 � R0

places an additional condition on the ratio fR0/fRR0:∣∣∣∣ fR0

fRR0

∣∣∣∣� R0

(
Rs

GM

)
for R0 6= 0. (5.55)

If fR0/fRR0 ∼ R0, as is the case for many f(R) theories with nonzero R0, then this condition is

always satisfied.

Thus we have shown explicitly that Ψ = −2Φ = −GM/r for all f(R) theories with nonzero fRR0

that satisfy the conditions given by Eqs. (5.27), (5.28), (5.38), and (5.55). Transforming the metric

given by Eq. (5.31) to isotropic coordinates, taking a = 1 today, and keeping only terms that are

linear in GM/r gives

ds2 = −
(

1− 2GM
r

)
dt2 +

(
1 +

GM

r

)[
dr2 + r2dΩ2

]
. (5.56)

It is clear that this spacetime is equivalent to a Parameterized Post-Newtonian spacetime with PPN

parameter γ = 1/2. This result is in gross violation of observations; solar system tests require that

γ = 1 + (2.1± 2.3)× 10−5 [228, 229]. We also note that this result is in precise agreement with the

results obtained using the equivalent scalar-tensor theory [216] (see also [225]).

5.3.2 Case studies

First, we show how we regain the results of general relativity if we take fRR0 = 0 and assume that

our linearized Taylor expansion is a valid approximation. We note that general relativity [f(R) = R]

satisfies both of these conditions.

Taking fRR0 = 0, Eq. (5.30) yields

fR0R1 = κρ. (5.57)
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When fRR0 = 0, the fR0R1 terms in the field equations [Eqs. (5.43–5.44)] are no longer negligible

compared to the terms proportional to fRR0 since these terms vanish. The field equations then

become

fR0∇2Ψ +
1
2
fR0R1 = κρ, (5.58)

fR0

(
−Ψ′′ +

2
r

Φ′
)
− 1

2
fR0R1 = 0, (5.59)

fR0

(
1
r

Φ′ − 1
r

Ψ′ +
2
r2

Φ
)
− 1

2
fR0R1 = 0. (5.60)

Using Eq. (5.57), Eq. (5.58) becomes

fR0∇2Ψ =
κ

2
ρ, (5.61)

and the solution outside the star is

Ψ = − κ

8πfR0

M

r
. (5.62)

From Eq. (5.59) and Eq. (5.60), we have

fR0

r2
(rΦ)′ =

κ

2
ρ, (5.63)

and the solution outside the star is

Φ =
κ

8πfR0

M

r
= −Ψ. (5.64)

Since Ψ = −Φ = −GM/r, transforming to isotropic coordinates reveals that γ = 1 as expected.

With this result it is easy to see why the µ → 0 limit in 1/Rn (n > 0) gravity does not recover

general relativity. In 1/Rn gravity [32], we have

f(R) = R− µ2+2n

Rn
, n > 0. (5.65)

The static solution to Eq. (5.25) with T cos = 0 is R0 = (n+2)1/(n+1)µ2, and fRR0 ∝ µ−2. Therefore,

fRR0 diverges rather than vanishes in the limit that µ → 0, and general relativity is not regained.

The mass parameter for this theory has the dependence m2 ∝ µ2 and hence it vanishes in the limit

that µ→ 0. Furthermore, a Taylor series of Eq. (5.65) around R0 is well behaved, and cosmological

constraints tell us that µ ∼ H, so that m2r2 � 1 in the solar system. We conclude that the analysis

of general f(R) gravity given in Section 5.3.1 applies and γ = 1/2 for these theories in a static

background.

We note however that the static solution to Eq. (5.25) may not describe the current cosmolog-

ical background in 1/Rn gravity. This solution is unstable, and without fine-tuning of the initial
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conditions, this spacetime will evolve toward a spacetime with R0 � µ2 [32]. In that case, we note

that

(m!)−1f (m)(R0)Rm1
f0 + fR0R1

∼<
(
GM

r

)m
� 1, (5.66)

(m!)−1f (m+1)(R0)Rm1
fR0 + fRR0R1

∼<
(
GM

r

)m
� 1, (5.67)

so that Eqs. (5.27) and (5.28) are still satisfied. Furthermore, m2 ∝ R0, so, as in the static-

background case, the mass is of order the Hubble parameter today. Therefore, the γ = 1/2 result

holds even during the late-time evolution of 1/Rn gravity.

Next we consider Starobinsky gravity [238] which has

f(R) = R+
R2

α2
. (5.68)

The static solution to Eq. (5.25) with T cos = 0 is R0 = 0 for this theory. Since f(R) is a second-

order polynomial, the first-order Taylor expansion of fR(R0 +R1) is exact. The O(R2
1) term in the

Taylor expansion of f(R0 + R1) is suppressed compared to the linear term by a factor of GM/r

and is therefore negligible. The mass parameter for this theory is proportional to α2, so Eq. (5.35)

is a solution for R1 if α2r2 � 1. Therefore, γ = 1/2 in this theory if α2r2 � 1 inside the solar

system. If the mass parameter α is made large (i.e., if α ' 1012 GeV as proposed in Ref. [238]),

then this condition is not satisfied and we cannot use the analysis in Section 5.3.1 to calculate γ for

this theory.

Next we consider an example of a theory that uses two mass parameters: a hybrid between

Starobinsky gravity and 1/R gravity. In particular, consider the function

f(R) = R+
1
α2
R2 − µ4

R
. (5.69)

We then find that, as in the usual 1/R case, we have R0 =
√

3µ2 (for a static background in vacuum).

However,

m2 = 3µ2

(
α2

9µ2 −
√

3α2

)
. (5.70)

We can make this quantity as large as we want by letting the denominator tend towards zero, which

gives the condition α → 33/4µ. Thus, in this model we can violate the conditions listed in Section

5.3.1 by fine-tuning the parameters.

Finally, we consider power-law gravitational actions [230]:

f(R) =
(
R

α

)1+δ

. (5.71)
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Assuming that δ 6= 1, the static vacuum solution to Eq. (5.25) is R0 = 0. If δ is not an integer,

there will be some derivative that is not defined at R = 0, which causes the Taylor expansion to fail

around that point. In particular, if it is supposed that δ � 1, then at least the second derivative

will be undefined so that the Taylor expansion will fail. For δ = 1 the static vacuum background

value R0 is undetermined. However, if we choose R0 6= 0 then all of the conditions listed in Section

5.3.1 are satisfied and we conclude that γ = 1/2 in agreement with Ref. [239]. If δ is an integer

greater than one, then the Taylor expansion around f(R0 = 0) is well-defined, but we cannot drop

the terms that are nonlinear in R1 since the linearized function vanishes. Therefore, this analysis is

incapable of determining whether f(R) = R1+δ gravity with δ 6= 1 conflicts with solar system tests.

5.4 How to evade solar system tests in f(R)-gravity2

The results of our previous discussion rely on the ability to linearize the equations so that R1/R0 � 1.

This condition [given in Eq. (5.55)] can be rewritten in terms of the Newtonian potential of the source

as ∣∣∣∣R0fRR0

fR0

∣∣∣∣� ΨN , (5.72)

where R0 6= 0. Let us explore what may happen when this condition is not met.

Going back to the trace of the field equation we have

�fR +
dV
dfR

= 0, (5.73)

with
dV
dfR

≡ 1
3

[κT + 2f − fRR] . (5.74)

We have rewritten the trace of the field equation in a suggestive form, identifying fR as a new scalar

degree of freedom. The extremum of this potential can be found by solving dV/dfR = 0 which gives

κT = fRR− 2f (5.75)

We can see that in the limit that f(R) ≈ R and fR ≈ 1 (i.e., the GR limit) we regain the algebraic

relationship between T and R at the extremum of this effective potential. The stability of this

extremum is determined by the sign of the second derivative of the potential,

d2V

df2
R

=
1
fRR

[fR − fRRR] . (5.76)

For the rest of our discussion we shall assume we are within a region of spacetime where T 6= 0.
2This section and Section 5.5 consists of previously unpublished work by the author.
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Furthermore, we shall assume that κT � {f(R0), R0fR0, . . . }. Therefore, within the region, the

effective potential is well approximated by

V ≈ 1
3
κTfR. (5.77)

Now, if the system is able to reach this extremum in some region of spacetime then Eq. (5.75)

indicates the Ricci scalar is locally determined by the trace of the stress energy tensor in that region

of spacetime. If we suppose that fR ≈ 1 and f � κT then from Eq. 5.75 we can see that we

approximately regain the GR algebraic relationship between R and T . For the rest of this discussion

we will assume that the extremum is a minimum [i.e., that the right-hand side of Eq. (5.76) is

negative].

The question of whether a given system is able to reach this extremum can be understood by a

simple argument [240]. We must compare the energy cost of fixing the field fR at a high point in its

effective potential against the gain in maintaining a nearly homogeneous field. The potential energy

cost is simply given by V ∼ κT (1− fR) whereas the gradient gain is E ∼ (1− fR)2/R2
s . If the cost

outweighs the gain then we have

(1− fR) . κTR2
s ∼ fRΨN . (5.78)

This condition is the opposite of Eq. (5.72) if we have 1 − fR ∼ RfRR, which will typically be

the case (it holds for 1/R theories). Therefore, when the assumption of linearity breaks down (i.e.,

R1/R0 � 1) the solution to the trace of the field equation forces the fR towards the minimum in the

potential and we regain an algebraic relationship between R and T . We expect the point at which

this transition occurs is set by the location when R1(r)/R0 ∼ 1.

We can see that the ability to reach the minimum in the effective potential then depends on the

combination
fR0

R0fRR0
ΨN . (5.79)

When this quantity is small then linearization is accurate throughout the object; when it is unity

or larger then linearization breaks down at some point and the field reaches the minimum of the

effective potential. This quantity depends both on the local strength of the Newtonian potential

as well as on the value of the background curvature and derivatives of f(R). For example, in the

case of the Sun we have ΨN ≈ 10−6. If we take the background curvature to be cosmological,

R0 ∼ H2 = H2
0

[
ΩM (1 + z)3 + 1− ΩM

]
and consider f(R) = R + µ4/R with µ = αH0 then the

ratio in Eq. (5.79) evolves with redshift as

fR0

R0fRR0
=
{1 + z[3 + zΩM (3 + z)]}2 − α4

2α4
. (5.80)
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Figure 5.1: Here we show the evolution of the ratio given in Eq. (5.79) for the sun (Ψ� = 10−6).
We have set f(R) = R+ u4/R and ΩM = 0.3 and α = 0.05. We can see that as we approach today
(z = 0) the solution transitions from nonlinear to linear. Although this particular choice of f(R)
model is ruled out [241] the example shows how the solution can evolve from nonlinear to linear as
a function of time.

We show a figure of this ratio in Fig. 5.1 for ΩM = 0.3 and α = 0.05. We can see that the solution

transitions from nonlinear to linear as we approach z = 0. Although this particular choice of f(R)

is ruled out due to the fact that it does not lead to an period of late acceleration [241], the time

dependence of the linearity of the trace equation is instructive. We can also see that the linearity

will be impacted by the environment around the object. For example, since the Sun resides within

the galactic halo it may be inappropriate to consider the solution where the background curvature

is taken to be cosmological. If instead our model is made slightly more complicated, we can ask

whether the transition from a cosmological curvature to a galactic curvature forces the trace equation

in the galactic halo to its minimum. It turns out that Ψgal ∼ 10−5 so that requiring the ratio to be

larger than unity forces us to require
fR0

R0fRR0
& Ψ−1

gal. (5.81)

Using the same model as before this implies that

1− fR = α4 .
Ψgal

2 + Ψgal
, (5.82)

and with Ψgal ≈ 10−5 this gives 1− fR . 5× 10−6. This compares very well with the limits placed

on 1 − fR in Ref. [240]. Then, when analyzing the linearity of the trace equation around the Sun

the background curvature is given by R0 = κρgal. Since ρgal ≈ 105ρcrit = 3 × 105H2
0/κ we have
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R0 ≈ 3× 105H2
0 and α ≈ 0.05 so that in the solar system

(
fR0

R0fRR0
ΨN

)
�
≈ 7× 109 � 1, (5.83)

and gravity around the Sun is well approximated by GR.

5.5 Testing for the universality of γPPN

The preceding discussion inspires a new test of gravity: a test of the universality of γPPN. In

f(R)-gravity we have just seen that γPPN = 1/2 when we are able to linearize the trace of the field

equation. When nonlinear effects are important, GR is restored and we would measure γPPN = 1.

Furthermore, we saw how the measurement of γPPN in f(R) gravity depends on redshift as well

as on environment (through the choice of the appropriate value for the background curvature R0).

Therefore, it is interesting to test gravity by measuring γPPN around various objects at various

redshifts and to test whether we obtain a universal value. Data sets which would allow a test of the

universality of γPPN are currently being assembled.

There are two obvious ways of constructing such a data set. First, we can combine measurements

of the velocity dispersion of stars in massive galaxies, in order to get a measure of their dynamical

masses, with measurements of strong lensing around these galaxies. A comparison of these two

measurements, along with a model of the mass distribution in the lens galaxy, yields a measurement

of γPPN. We have limited knowledge of the distribution of mass within these lenses so we must

also consider degeneracies between various parameters (such as the slope of the density profile). As

discussed below, we expect a one sigma error on γPPN of ∼ 0.3. Another way of building this data

set is to use measurements of strong lens timing delays along with an external determination of H0

(such as from the Hubble Key Project [242]). However, given the large uncertainties and systematic

errors inherent to measurements of timing delays, we only concentrate on the latter method.

5.5.1 Universality of γPPN from strong lensing

The original idea of measuring γPPN from strong lenses was first discussed in Ref. [243]. It was first

applied to real data in Ref. [244]. We can understand how we may measure γPPN from the data

using the following simplified model. We suppose that the density distribution is well approximated

by a singular isothermal sphere,

ρ =
σ2

2πGr2
, (5.84)
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where σ is the velocity dispersion. We imagine placing this galaxy within an FRW universe so that

the scalar line element reads

ds2 = a2
{
−(1− 2Φ)dτ2 + (1 + 2Ψ)dxidxjγij

}
, (5.85)

and we write Φ = γPPNΨ. The angular size of the Einstein ring for this lens is

ΘE = (1 + γPPN)2π
σ2

c2
DLS

DS
, (5.86)

where DX is the angular diameter distance between the lens and the source (X = LS) and between

us and the source (X = S). We assume that we have measured the spectrum of the lens, so that

we have a measurement of the redshift z as well as of σ from the broadening of the spectral features

[245]. Finally, we fix a fiducial cosmology although the choice of cosmological parameters do not

have a big impact. We are then able to constrain γPPN. In practice, the problem is more complicated

since we do not have such a simple model for the lens structure.

We can generalize this model in the following way due to Ref. [246]. First, we assume that the

total mass density of the galaxy can be decomposed into a spherically symmetric part, νM (r), and

a small departure from spherical symmetry. We then assume that the spherically symmetric part

is dominant in determining the dynamics of the system. We suppose that the stars are a trace

component of the total mass and have a power law distribution

νs(r) = νs,0r
−δ. (5.87)

The total mass density follows

νM (r) = νM,0r
−α. (5.88)

Finally, we allow for a non-zero anisotropy in the stellar velocity ellipsoid which is constant with

radius,

β = 1− 〈σ
2
θ〉
〈σ2
r〉
. (5.89)

We then obtain the functional form for the radial velocity dispersion from the spherically symmetric

Jeans equation [247] for the stellar component sourced by the total mass density. Using the fact

that the line of sight velocity dispersion is related to the radial velocity dispersion through 〈σ2
||〉 =

[z−
√

1− βρ]2/(z2 +ρ2)]〈σ2
r〉 where ρ ≡

√
x2 + y2 we have an expression for the luminosity weighted

line of sight velocity dispersion within a circular aperture of projected radius RA [which we denote

by 〈σ2
||〉(< RA)],

〈σ2
||〉(< RA) =

1
π

(
GME

RE

)
f(α, δ, β)

(
RA
RE

)2−α

, (5.90)
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where

f(α, δ, β) = 2
√
π

(
δ − 3

(ξ − 3)(ξ − 2β)

){
Γ[(ξ − 1)/2]

Γ[ξ/2]
− βΓ[(ξ + 1)/2]

Γ[(ξ + 2)/2]

}{
Γ[δ/2]Γ[α/2]

Γ[(δ − 1)/2]Γ[(α− 1)/2

}
,

(5.91)

and
ME

R3−α
E

= −π3/2νM,0
Γ[(α− 1)/2]

Γ[α/2]
. (5.92)

Measurements of the mass ME and the radius which encloses this mass, RE , are made through

lensing. Even though we are strictly interested in measuring the spherically symmetric part of the

total mass density, the ellipticity of the lens must be taken into account when fitting the lensed

images. Therefore, we model the lens as a singular isothermal ellipsiod (SIE) [248] and then expand

the result in the ellipticity only keeping the lowest (spherically symmetric) terms. We note that

lensing due to a spherically symmetric mass distribution is sensitive to both the total mass enclosed

within a radius as well as the slope of the mass enclosed. The dependence on the total mass enclosed

is independent of the specific density model used to analyze the data; it is the dependence on the

slope that introduces a dependence on the specific model. However, as noted in Ref. [249], this

model dependence results in a systematic error which is less than a few percent.

The SIE lens model yields a projected mass density (appropriately centered and rotated)

Σ(~ξ) =
√
qSIEσ

2
SIE

2G
√
ξ2
1 + q2

SIEξ
2
2

, (5.93)

where qSIE = (b/a) is the axial ratio of constant elliptical surface density contours. For qSIE ≈ 1 we

may expand the above projected mass density to find the spherically symmetric part,

Σ0(ξ) =
σ2

SIE

2Gξ
. (5.94)

Associated with Σ0 is an Einstein radius

RE = 4π
σ2

SIE

c2
DLDLS

DS
, (5.95)

Integrating the projected mass density inside of RE this model yields

ME = 4π2σ
4
SIE

c2G

DLDLS

DS
. (5.96)

In order to introduce γPPN we note that the deflection angle is given in terms of the projected mass

as

~̂α =
4G
c2

1 + γPPN

2

∫
Σ(~ξ′)

~ξ − ~ξ′

|~ξ − ~ξ′|2
d2ξ′. (5.97)
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Figure 5.2: Here we show ratio (DLDLS)/(DSH
−1
0 ) as a function of the redshift of the lens zL and

the redshift of the source zS . We have fixed the cosmology to ΩM = 0.3 and ΩΛ = 1−ΩM . We can
see that this factor can range from ∼ 0.1 (for the largest zL and the largest difference with zS) to
∼ 0.01 (for the smallest zL and the largest difference with zS).

Therefore we need only make the substitution σ2
SIE → [(1 + γPPN)/2]σ2

SIE. With this we can write

our measured ‘lens’ mass and radius in terms of the dynamical mass and radius,

M lens
E =

(
1 + γPPN

2

)2

Mdyn
E , (5.98)

Rlens
E =

(
1 + γPPN

2

)
Rdyn
E , (5.99)

In order to get a sense of the lens galaxy masses that we are working with, we write the mass enclosed

can be expressed in terms of σSIE

Mdyn
E = 3× 1010M�h

−1

(
σ2

SIE

100 km/s

)4(1 + γPPN

2

)−2
DLDLS

DSH
−1
0

. (5.100)

In Fig. 5.2 we show the ratio DLDLS/(DSH
−1
0 ) for a range of lens and source redshifts.

We can now express the predicted luminosity averaged line-of-sight velocity dispersion in terms
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of the observables,

〈σ2
||〉(< RA) =

1
π

(
GMdyn

E

Rdyn
E

)
f(α, δ, β)

(
RA

Rdyn
E

)2−α

, (5.101)

=
(

2
1 + γPPN

)
σ2

SIEf(α, δ, β)
(

1 + γPPN

2

)α−2(
θAc

2DS

σ2
SIEDLS

)2−α

, (5.102)

where we have rewritten RA = θADL and θA is the angular aperature (in radians) of the spectrograph

which measures the line of sight velocity dispersion. For the Sloan Digital Sky Survey (SDSS) it

is approximately 1.188 arcseconds. In practice we are able to determine σ2
SIE, zL, zS , δ, and 〈σ2

||〉

from observations. Given that the lens galaxies are well represented by a de Vaucouleurs profile

(where the projected luminosity profile is given by I(R) ∝ exp[−7.67(R/Re)1/4]) and the fact that

the SLACS observations probe around 0.5Re we have that δ ≈ 2.6. We are then left with three free

parameters, γPPN, α, and β. Let us investigate correlations between these parameters.
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Figure 5.3: Here we show the constraints in the α-γPPN plane while varying 〈σ2
||〉

1/2, σSIE, β, and δ.
The solid black line corresponds to the fiducial model where we have chosen γPPN = 1 at α = 2. The
red long-dashed (dashed-dot) line corresponds to plus (minus) the fiducial value of the parameter
indicated in the upper left of each panel. For 〈σ2

||〉
1/2 we took ±10 km/s, the typical error in

this parameter from SDSS observations; for σSIE we took ±10 km/s to explore the effects of any
systematic error in a determination of this parameter; for β we took ±0.1; for δ we took ±0.1.

We shall consider a fiducial lens with zL = 0.1 and zS = 0.6 with 〈σ2
||〉

1/2 = 247 km/s, σSIE = 280

km/s, β = 0 and δ = 2.6. These choices ensure that at α = 2 we have γPPN = 1. Fig. 5.3 shows the

results of varying 〈σ2
||〉

1/2, σSIE, β, and δ in the α-γPPN plane.

First, it is clear that we must place a prior on the value of α in order to measure γPPN. For
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concreteness we show dotted lines corresponding to α = 2 ± 0.1, however a physically motivated

choice could use intrinsic scatter in α as observed in low redshift systems [244]. In using this low

redshift data we must assume that the intrinsic scatter and central value do not evolve significantly

with redshift. From Fig. 5.3 we can see that a ∼ 3% error on the line-of-sight velocity dispersion

leads to a ∼ 20% error in γPPN. If we systematically overestimated (underestimated) σSIE then we

obtain a systematically lower (higher) value for γPPN. Shifting the power-law index for the luminous

material affects the determination of γPPN by increasing (decreasing) γPPN for higher (lower) values

of δ. Finally, varying the velocity anisotropy (β) has little effect.

Our main goal in this study is to look at the statistics of a collection of measurements of γPPN.

Our discussion of f(R) gravity as well as Ref. [250] indicates that within the context of scalar-tensor

theories of gravity we can expect 1/2 ≤ γPPN ≤ 1. Supposing that we have a collection of N

measurements of γPPN with best fit values distributed between 1/2 + C ≤ γPPN ≤ 1 + C (where C

takes into account any systematic error) we want to understand when we would be able to distinguish

between a universal value for γPPN and a non-universal value.

The simplest assumption for the distribution of values is for any given measurement to have

either γ̄PPN = 1/2 + C or γ̄PPN = 1 + C (where the bar denotes the mean value). We can then

consider our N measurements as coming from two different distributions each with a different mean

value for γPPN and different variance. Looking at Eq. (5.102) we can see that a fixed error in 〈σ2
||〉

1/2

we have the error on σPPN scales as (1+γPPN)3/2 (with α = 2). Therefore, a smaller best fit value of

γPPN gives a smaller error on γPPN for the same error in 〈σ2
||〉

1/2. We show this error (for a fiducial

α = 2) in Fig. 5.4 as a function of the error in 〈σ2
||〉

1/2. Current measurements have an error in

〈σ2
||〉

1/2 of ∼ 3% (which, for the lenses we are considering, corresponds to ∼ 10 km/s). However, we

can see that if we were able to reduce this by a factor of two we would improve our determination

of γPPN by the same factor.

In order to understand when we might expect to be able to make a statistically significant

statement concerning the universality of γPPN we consider several mock data sets which consist of

values for γPPN pulled from two distributions. One is a normal distribution with a mean γPPN

at 1 and a variance of either 0.3 (corresponding to an error of 10 km/s [3.5%] for 〈σ2
||〉

1/2), 0.2

(corresponding to an error of 7 km/s [2.5%] for 〈σ2
||〉

1/2), or 0.15 (corresponding to an error of 5

km/s [1.7%] for 〈σ2
||〉

1/2). The other population is also a normal distribution with a mean at γPPN

at 1/2 and a variance of either 0.2, 0.15, or 0.1, respectively. We consider mock data sets with 20,

50, and 100 measurements. Finally, for each mock data set we consider three distributions for the

value of γPPN: 50–50, 30–70, and 10–90. For each data set we perform a standard Lilliefors test

[251, 252] in order to compare our full distribution of values for γPPN against the null hypothesis

that the values come from a single normal distribution. The Lilliefors test is related to the more

common Kolmogorov-Smirnov test except it does not require a priori information on the mean and
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Figure 5.4: Here we show the error in γPPN as a function of the error in the line-of-sight velocity
dispersion of the lens galaxy. We have assumed that the dominant statistical error will come from
the line-of-sight velocity dispersion of the lens galaxy.

variance of the null hypothesis normal distribution. For each case we produce 500 realizations. We

show the results in Fig. 5.5. In that figure we can see many trends that we would expect. As the

accuracy of the measurement of γPPN improves and/or the total number of measurements in the set

increases the ability to reject the hypothesis of a single Gaussian distribution for the total data set

improves.

For surveys with a percent error in 〈σ2
||〉

1/2 of ∼ 3.5% we find that if the distribution of values

of γPPN is any different then 50-50 then we cannot reject the null hypothesis. This is because an

accuracy of 3.5% in 〈σ2
||〉

1/2 corresponds to an error on γPPN of 0.3, which, for a separation in the

mean of the distributions of 0.5 is well within the 1σ of both distributions. Therefore, if we wish

to test the universality of γPPN for distributions different from 50-50 we must obtain an accuracy

better than ∼ 0.3.

Besides looking at the distribution of measurements of γPPN we also want to look for correlations

between the values of γPPN and other measurements associated with those values. One obvious choice

is to look for a correlation with redshift, since, as we saw before, the value of γPPN may evolve with

redshift for the example of f(R) gravity. Furthermore, we may want to look for correlations between

γPPN and the environment around the lens. As mentioned previously, Ref. [244] has already compiled

a collection of 15 measurements of γPPN. Their analysis used strong lenses measured in the Strong

Lens ACS survey (SLACS) as described in their paper. In their analysis they assumed that the value

of γPPN is universal and averaged their measurements to obtain an mean value of γPPN = 0.98±0.07

at 68% confidence. For the rest of this section we will take another look at their measurements in

light of testing the universality of γPPN.
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Figure 5.5: Here we show the results of the Lilliefors test on our mock data sets. Each panel shows a
different distribution of values of γPPN (i.e., 30–70 means that 30% of the measurements come from
the γ̄PPN = 1/2 distribution and 70% from γ̄PPN = 1). The three different point shapes correspond
to different assumptions on the accuracy with which the velocity dispersion is measured in the lens
galaxies. The lowest point on each curve corresponds to a data set with Ntot = 20, the second point
corresponds to Ntot = 50 and the highest point to Ntot = 100. The x-axis gives the significance at
which the null (normal) hypothesis is excluded for 95% of the trials and the y-axis gives the percent
of samples which exclude the null hypothesis at 95%.
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Figure 5.6: Here we show measurements of γPPN from the 15 SLACS objects as analyzed in Ref. [244].
We show these results as a function of the redshift of the lens as well as a function of the richness
of the environment around the lens [253]. Because of the small number of measurements we do not
attempt to search for any correlations. However, the SLACS survey reports that it will increase the
number of lenses to ∼ 100 in the near future [254]. With such an increase a search for statistically
significant correlations may be possible.

In order to investigate a possible correlation between γPPN and the environment of the SLAC

objects we use the results of Ref. [253] which presented estimates for the richness of the environments

surrounding each of the 15 SLAC objects. Although the lens galaxies are necessarily massive and

hence preferentially occur in over dense regions, the SLACS objects are chosen to be ‘isolated’ in

the sense that those systems with two similar galaxies within ∼ 4 Einstein radii from each other are

excluded from the sample [255].

We present the results in Fig. 5.6. The upper panel gives the value of γPPN as a function of

redshift. The lower panel shows γPPN as a function of the richness of the environment around the

given lens. Finally, we performed a Lilliefors test on this data and found that the null hypothesis

of a single normal distribution had a probability of 5.3%. Said another way, this rejects the null

hypothesis at nearly 2σ. Splitting the data set into two subsets with higher and lower values of γPPN

and performing the same test we find that the lower (higher) subset has a 11% (53%) probability of

coming from a single normal distribution according to the Lilliefors statistic. We then fit a normal

distribution to these subsets and found that the lower (higher) subset has a mean γ̄PPN = 0.72

γ̄PPN = 1.33) and a variance σγPPN = 0.14 (σγPPN = 0.2). Producing 1000 mock data sets with
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these parameters we find that ∼ 20% of the trials exclude the null hypothesis at 95%. We note

that the width of the distribution for each subset is much smaller than the errors attributed to each

measurement (∼ 0.2 for γ̄PPN = 0.72 and ∼ 0.3 for γ̄PPN = 1.33) and attribute this to the paucity

of the data. We must keep in mind that the number of measurements in this data set are too small

(15) to perform any statistically significant tests. This is especially true if we want to look for any

significant correlations between these parameters. Instead, the above analysis is meant to be an

example of the types of statistical tools we can use in order to test for the universality of γPPN. We

note that the SLACS survey will increase the number of measured lens systems to roughly 100 in

the near future which will greatly increase the statistics and should enable such an analysis [254].

5.6 Conclusions

By analyzing the field equations around a spherically symmetric mass, we have shown that, in agree-

ment with the analysis in Ref. [216], the PPN parameter γ of general f(R) gravity is γ = 1/2 given

the following conditions:

I. The Taylor expansions of f(R) and df/dR about the current background value R = R0, where R0

solves Eq. (5.25), are well defined and dominated by terms that are linear in deviations away from

R = R0. If R0 is non-zero, then the deviations from R0 are small compared to R0. This condition

may be re-expressed as Eq. (5.55) and is closely related to the third condition stated below.

II. The second derivative of f(R) with respect to R is nonzero when evaluated at the background

value of R = R0.

III. The mass parameter given by Eq. (5.33) respects the condition mr � 1 within the solar system.

For theories with one extra mass parameter and non zero R0, as in 1/R gravity, it is reasonable to

assume that fR0/fRR0 ∼ R0. In that case, the latter part of the first condition is always true and the

third condition is satisfied provided that R0r
2 � 1 within the solar system. However, for theories

with multiple mass parameters, such as the Starobinsky-1/R hybrid presented in this chapter, it is

possible that this condition can be violated.

The second and third conditions listed above correspond to synonymous conditions in the scalar-

tensor treatment: f(R) and scalar-tensor gravity are equivalent only if the second derivative of f(R)

is nonzero, and γ = 1/2 only if the scalar field is light enough to propagate through the solar system.

Therefore, we have also verified that, contrary to the claim of some authors [217–221], calculating

the solar system predictions of f(R) gravity using the equivalent scalar-tensor theory is a valid
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technique.

We have described a new test of gravity which attempts to establish whether the measurement

of the parameterized post Newtonian parameter, γPPN, has a universal value. Our experience with

f(R) gravity gives us an example of an alternative gravity theory for which the value of γPPN

depends both on the local environment as well as on redshift. We explored whether we can use

recent measurements of γPPN around 15 strong lenses in the SLACS survey in order to test its

universality. Future results from this survey promise to increase the number of measurements to

∼ 100 greatly improving our ability to determine whether γPPN is a universal parameter.
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Chapter 6

Solar system constraints to
Chern-Simons gravity1

6.1 Introduction

The study of modifications of the theory of general relativity has been of interest ever since Einstein

first formulated general relativity in 1915. Particularly interesting are modifications that introduce

terms to the Einstein-Hilbert action that are second order in the curvature, as such modifications

represent high-energy corrections to the Einstein-Hilbert action that might arise in quantum gravity.

Chern-Simons gravity is an example of such a second-order modification of the Einstein-Hilbert

action.

Chern-Simons modifications to gravity were first considered in 2+1 dimensions [257]. Refs. [69,

70] investigated the structure of these theories in 3+1 dimensions and showed how they could arise

as a low-energy consequence of string theory. Ref. [67] considered some early-universe implications

of such theories. Refs. [258, 259] investigated how Chern-Simons terms might participate in lep-

togenesis. Ref. [68] renewed the investigation of Chern-Simons gravity, working out the linearized

equations of the theory and their implications for gravitational waves. Most recently, Refs. [260, 261]

solved the linearized Chern-Simons field equations around a collection of spinning point masses. In

much of the work on Chern-Simons gravity, the Chern-Simons term is coupled to a scalar field (as

detailed below), and this scalar field is assumed to be spatially homogeneous but time varying. This

assumption can be motivated by arguments analogous to those that have been made suggesting that

the quintessence field should be coupled to the Chern-Simons term of electromagnetism [262].

Chern-Simons gravity has thus far eluded constraints from solar system tests of weak-field gravity

because it is indistinguishable from general relativity for all spacetimes that possess a maximally
1The material presented in this chapter, except for Section 6.5, was first published in, The effects of Chern-

Simons gravity on bodies orbiting the Earth, Tristan L. Smith, Adrienne L. Erickcek, Robert R. Caldwell, and Marc
Kamionkowski, Phys. Rev. D77, 024015 (2008). Reproduced here with permission, copyright (2008) by the American
Physical Society.
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symmetric two-dimensional subspace and for all conformally flat spacetimes [69]. Therefore, the

Schwarzschild spacetime as well as the Robertson-Walker spacetime are also solutions of the Chern-

Simons gravitational field equations. Distinguishing Chern-Simons gravity from general relativity

requires considerations of spacetimes that are not spherically symmetric, such as the spacetime

around a spinning body. To this end, Refs. [260, 261] investigated the Chern-Simons modifications to

the motion of bodies around a spinning point mass and found that the motion was indistinguishable

from that in general relativity.

In this chapter we take further steps to link Chern-Simons gravity to current and forthcoming

experimental tests of weak-field gravity. We assume, as in other recent work, that the scalar field

coupled to the Chern-Simons term is time varying but spatially homogeneous. We then determine

the spacetime around an extended spinning mass and find that it differs from the spacetime around

a spinning point mass. We determine the orbits of test particles and the precession of gyroscopes

moving in this spacetime and find that the Chern-Simons modification does lead to observable

deviations from the predictions of general relativity. These deviations allow us to evaluate constraints

to the Chern-Simons parameter space from current satellite experiments, as well as those regions to

be probed with forthcoming experiments.

6.2 Chern-Simons gravity

We consider the theory defined by the action

S =
∫

d4x
√
−g
[
− 1

2κ2
R+

`

12
θRR̃− 1

2
(∂θ)2 − V (θ) + Lmat

]
, (6.1)

where Lmat is the Lagrangian density for matter, g ≡ det gµν is the determinant of the metric gµν ,

R is the Ricci scalar (with the convention Rλ µνκ ≡ Γλµν,κ + · · · for the Riemann tensor), and RR̃ is

a contraction of the Riemann tensor and its dual:

RR̃ ≡ Rβ γδ
α R̃αβγδ, (6.2)

where the dual of the Riemann tensor is defined by

R̃
µ

ναβ ≡
1
2
εσταβR

µ στ
ν , (6.3)

where εσταβ is the Levi-Civita tensor, including a factor of
√
−g. Finally, ` is a new length scale,

a parameter of the theory, and κ2 ≡ 8πG, where G is Newton’s constant. Throughout this chapter

we take Greek indices to range from 0 to 3. Appendix A shows how such an action may arise in

string theory. This action is different from the action considered in Ref. [68] in that here θ is a
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dynamical scalar field with a canonical kinetic term, so the ` parameter is required to make the

action dimensionless.

The equation of motion for θ is given by

�θ =
dV
dθ
− 1

12
`RR̃. (6.4)

The gravitational field equations take the form

Gµν −
2
3
`κ2Cµν = −κ2Tµν , (6.5)

where Gµν is the Einstein tensor, Tµν is the stress-energy tensor for the scalar field and the matter

Lagrangian, and we refer to Cµν as the Cotton-York tensor2,

Cµν =
1
2

[
(∂σθ)

(
εσµαβ∇αRνβ + εσναβ∇αRµβ

)
∇τ (∂σθ)

(
R̃τµσν + R̃τνσµ

)]
. (6.6)

Appendix D provides an alternative expression for the Cotton-York tensor.

Ref. [68] notes that if θ is a non-dynamical field (a Lagrange multiplier), the theory cannot

accommodate a spacetime with a nonzero RR̃ because the Cotton-York tensor would have a non-

zero divergence. However, if θ is a dynamical field, then the theory can indeed accommodate

spacetimes with nonzero RR̃ since we have

−2
3
`κ2∇µCµν =

`κ2

12
(∂νθ)RR̃ = −κ2∇µT θµν , (6.7)

where T θµν is the stress-energy tensor for θ. We see that whereas the scalar-field stress-energy and

the Cotton-York tensors are separately conserved when RR̃ = 0, the divergence of the scalar field

stress-energy tensor is precisely balanced by the divergence of the Cotton-York tensor for non-zero

RR̃ due to the novel coupling between the scalar field and gravity.

6.3 The Chern-Simons gravitomagnetic equations

We begin with a perturbation to the flat metric [using signature (−+ ++)],

gµν = ηµν + hµν , (6.8)
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and compute the linearized Einstein and Cotton-York tensors,

Glinear
µν =

1
2

(�hµν + ∂µ∂νh− ∂µ∂αhαν − ∂ν∂αhαµ − ηµν [�h− ∂α∂βhαβ ]), (6.9)

C linear
µν =

1
8
∂α∂βθ[ηνγεγβστ (hµσ,ατ −hασ,µτ −hµτ ,ασ +hατ ,µσ) + ηµγε

γβστ (hνσ,ατ −hασ,ντ −hντ ,ασ +hατ ,νσ)]

+
1
4
∂βθε

αβστ [ηαµ∂τ
(
�hνσ − ∂ν∂λhλσ

)
+ ηαν∂τ

(
�hµσ − ∂µ∂λhλσ

)
], (6.10)

where � is the flat-space d’Alembertian and the comma denotes partial differentiation. Since we

will require below only the gravitomagnetic fields, we will be primarily interested in the time-space

components of the linearized field equations.

In this chapter, we suppose that the scalar field depends only on cosmic time, θ = θ(t), the

assumption being that θ is either a quintessence field or some other field that somehow echoes the

arrow of time associated with the cosmic expansion. This choice implies that the field equations

are not Lorentz invariant in the solar system since ∂σθ points in the cosmic time direction and

couples to local gravity through the Cotton-York tensor [Eq. (6.6)]. We note that a nonzero RR̃

will source spatial variations in θ through Eq. (6.4). By restricting θ to be spatially homogenous, we

are effectively treating θ as a nondynamical field, and we leave a full dynamical treatment to future

work. Finally, we neglect corrections due to the motion of the Earth with respect to the rest frame

of the cosmic microwave background.

We work with the trace-reversed metric perturbation,

h̄µν ≡ hµν −
1
2
ηµνh, (6.11)

and impose the Lorenz-gauge condition, ∂µh̄µν = 0, to obtain the linearized time-space field equa-

tions,

Glinear
0i − 2

3
`κ2C linear

0i = −κ2T0i, (6.12)

with

Glinear
0i =

1
2
�h̄0i, (6.13)

C linear
0i =

θ̇

4
ε0ijk∂

j�h̄k0, (6.14)

where the dot denotes differentiation with respect to time and Latin indices are purely spatial and

range from 1 to 3. The stress-energy tensor for θ(t) is diagonal, so it does not contribute to the

time-space field equations.
2We note that this definition differs from the usual expression for the four-dimensional Cotton-York tensor (see

Ref. [68]).
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Let tα be a unit vector in the coordinate time direction, and then define the 4-vector potential

of this linearized theory,

Aµ ≡ −
1
4
h̄µνt

ν = −1
4
h̄µ0. (6.15)

We consider a source with mass density ρ, mass current ~J and negligible pressure, so we can express

the matter stress-energy tensor as

Tµν = 2t(µJν) − ρtµtν , (6.16)

where Jµ ≡ −Tµνtν = (−ρ, ~J). In general relativity, the time-space components of the linearized

field equations take the form

∂µ∂µAi = −4πGJi, (6.17)

which is (nearly) identical to Maxwell’s equations for the vector potential in Lorenz gauge (∂µAµ =

0). Given our definition of Aµ, the Lorenz-gauge condition for Aµ is implied by our earlier gauge

choice for h̄µν .

The classically ‘physical’ fields (i.e., those that enter into the geodesic equation) ~E and ~B are

given by

Ei = ∂iA0 − ∂0Ai, (6.18)

Bi = ε0ijk∂jAk, (6.19)

where we have defined ε0ijk = 1. Two of the Maxwell equations,

~∇ · ~B = 0, (6.20)

~∇× ~E = −∂
~B

∂t
, (6.21)

are a direct consequence of the way in which the ~E and ~B fields are defined in terms of the vector

potential, and so these two equations will be the same in Chern-Simons gravity. Gauss’ law, which

follows from the time-time component of the field equation, is now

~∇ · ~E = 4πG(ρ+ ρθ) (6.22)

where ρθ is the energy density of the scalar field θ(t) and is uniform throughout the solar system.

Since ρθ cannot be larger than the mean cosmological energy density, it must be negligible compared

to the density of the source ρ, and we do not consider it further. The only significant modification
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will be to Ampère’s law, which, for Chern-Simons gravity, is now given by

~∇× ~B − ∂ ~E

∂t
− 1
mcs
� ~B = 4πG~J, (6.23)

where we have defined mcs ≡ −3/(`κ2θ̇).

Given the metric perturbation represented by the gravitomagnetic potential and neglecting the

time variation of the metric, slowly moving particles travel on geodesics such that a ‘Lorentz force

law’ of the form,

~a = − ~E − 4~v × ~B, (6.24)

is obtained. Therefore, as in electrodynamics, only the physical fields, and not the potentials, have

physical relevance.

We furthermore note that RR̃ can be expressed in terms of gravito-electric and gravitomagnetic

fields as

RR̃ = −16(∂iEj)(∂kBl)(ηikηjl + ηilηjk). (6.25)

Unlike the case with Maxwell fields [263], it is not sufficient for the fields to have a non-vanishing

~E · ~B in order to have a non-trivial coupling between gravity and the scalar field. The best example

of a gravitational source which produces a non-vanishing RR̃ is a spinning, spherical body.

6.4 Gravitomagnetism due to a spinning sphere in Chern-

Simons gravity

We are now in a position to calculate the gravitomagnetic field in Chern-Simons gravity for a spinning

body. Appendix B provides details of the calculation.

We consider a homogeneous rotating sphere, and so the mass current is

~J = ρ [~ω × ~r] Θ(R− r), (6.26)

where R is the radius of the rotating body, ρ is its density, ~ω is its angular velocity, r is the distance

from the origin, and Θ is the Heaviside step function. As detailed in Appendix B, the field equation,

Eq. (6.23), is rewritten as an equation for ~A and is solved by imposing the condition that the metric

be continuous everywhere and that the gravitomagnetic field be finite and well behaved at the origin;

the resulting vector potential is given in Appendix B. We note that in deriving this solution we have

assumed that the time derivative of mcs is negligible. The gravitomagnetic field is then obtained by
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taking the curl of ~A and may be written as ~B = ~BGR + ~BCS, where

~BGR =
4πGρR2

15
×


(

5− 3 r
2

R2

)
~ω + 3 r

2

R2 r̂ × (r̂ × ~ω), r ≤ R,

R3

r3 [2~ω + 3r̂ × (r̂ × ~ω)] , r ≥ R,
(6.27)

is the gravitomagnetic field inside and outside a spinning sphere in general relativity, and

~BCS = 4πGρR2 {D1(r) ~ω +D2(r) r̂ × ~ω

+D3(r) r̂ × (r̂ × ~ω)} , (6.28)

is the new contribution in Chern-Simons gravity. Inside the sphere (r ≤ R),

D1(r) =
2

(mcsR)2
+

2R
r
y2(mcsR)j1(mcsr),

D2(r) =
mcsr

(mcsR)2
+mcsRy2(mcsR)j1(mcsr),

D3(r) = mcsRy2(mcsR)j2(mcsr), (6.29)

and outside the sphere (r ≥ R)

D1(r) =
2R
r
j2(mcsR)y1(mcsr),

D2(r) = mcsRj2(mcsR)y1(mcsr),

D3(r) = mcsRj2(mcsR)y2(mcsr), (6.30)

where j`(x) and y`(x) are spherical Bessel functions of the first and second kind. We see that the

Chern-Simons terms alter the components of the gravitomagnetic field along the rotation axis ~ω and

r̂× (r̂×~ω), and they also introduce a new component perpendicular to the plane defined by ~ω and ~r.

In other words, while in general relativity a toroidal mass current implies a poloidal gravitomagnetic

field, the parity violation introduced in Chern-Simons gravity introduces a toroidal component to the

gravitomagnetic field. Something similar occurs in Chern-Simons electromagnetism [263], although

the detailed fields differ since the � ~B term in Eq. (6.23) is simply ~B in the electromagnetic theory.

The Chern-Simons addition to Ampère’s law, Eq. (6.23), changes that equation from a first-order

differential equation for ~B to a second-order differential equation. As a result, the Chern-Simons

modification to the gravitomagnetic field cannot, in general, be obtained by perturbing around

the general-relativistic result, as the solution in Eq. (6.28) shows. In Chern-Simons gravity, the

gravitomagnetic field oscillates with distance outside the source, and the amplitude of the oscillating

field is not necessarily smaller than the general-relativistic gravitomagnetic field. Still, we expect

from Eq. (6.23) that as mcs →∞, the general-relativistic solution should be recovered. This occurs
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since the oscillatory terms vanish as mcs → ∞, and so the effects on geodesics of these new terms

will vanish.

If we take ~ω to lie in the ẑ direction, then the Chern-Simons gravitomagnetic field has a nonzero

azimuthal component Bφ. Since Bφ 6= 0, one cannot find a coordinate transformation that causes

both Ar and Aθ to vanish. This is at odds with claims (see, e.g., Ref. [264]) that a metric for

stationary axisymmetric spacetimes in Chern-Simons gravity can always be found with htθ = htr =

0. In general relativity, one can always find a coordinate system for which Ar = Aθ = 0 for a

stationary axisymmetric spacetime sourced by rotating perfect fluid. However, the proof of this

statement assumes time-reversal invariance of the fundamental equations. This invariance implies

that the metric components possess the same symmetries as the source, namely invariance under

a transformation that takes t → −t and φ → −φ. In that case, Ar and Aθ must be zero to keep

the line element invariant under the same transformation. In Chern-Simons gravity, time-reversal

invariance is explicitly broken by the rolling of the scalar field, θ̇ 6= 0, and it is straightforward to

verify that our solution for ~A, given in Appendix B, implies that Ar and Aθ are both odd under

time reversal. Consequently, the line element has the same symmetry as the source even though Ar

and Aθ are nonzero.

Inspection of our solution for the vector potential given in Appendix B shows that it differs

from the solution for a point-like mass-current dipole (i.e., a gravitomagnetic dipole) obtained by

Alexander and Yunes (AY) [260, 261]. When applied to a single spinning source, the metric given

by Refs. [260, 261] corresponds to a vector potential

~AAY = ~AGR −
4πGρR3

mcsR

[
2R3

15r3
~ω +

R3

5r3
r̂ × (r̂ × ~ω)

]
. (6.31)

This vector potential is an exact solution to Eq. (6.23) outside of a spinning sphere, and we can see

that every term in ~AAY also appears in our solution for ~A. The additional oscillatory terms in our

solution constitute a homogeneous solution to Eq. (6.23), but without these terms, ~A would not be

continuous across the surface of the sphere. Furthermore, only these oscillating terms contribute to

~BCS because ~∇ × ~AAY = ~∇ × ~AGR. The inclusion of oscillatory terms results in a Chern-Simons

gravitomagnetic field that differs from general relativity, so we may use observations of the motion

of test bodies in the Earth’s gravitomagnetic field to constrain Chern-Simons gravity.

6.5 Gravitomagnetic perturbations to Keplerian orbits3

Since orbital dynamics is one of the oldest branches of modern theoretical physics [265] it comes

as no surprise that the tools we need to analyze gravitomagnetic perturbations to Keplerian orbits
3This section consists of previously unpublished work by the author.
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are already well developed. A solution for the perturbed motion, due to Lagrange, is expressed in

terms of what are known as Lagrange’s planetary equations [266]. These equations describe the time

evolution of the usual Keplerian orbital elements, such as semi-major axis and eccentricity, due to

the perturbation. However, we cannot use these equations as they are typically written since they

explicitly assume that the perturbing force is derivable from a scalar potential. Gravitomagnetic

forces follow a force law analogous to the Lorentz force in electromagnetism and hence cannot be

derived from a scalar potential. Therefore we use a generalization of Lagrange’s planetary equations,

known as the Gaussian perturbation equations, which can easily accommodate nonconservative

forces.

We note that previous work has observed that gravitomagnetic effects can be described in terms of

the time variation of the Keplerian orbital elements. The original papers by Lense and Thirring [71]

apply the Gaussian perturbation equations only to the gravitomagnetic field of a rotating spherical

mass in GR, whereas the expressions presented here generalize the result to any gravitomagnetic

field. More recently, Ref. [267] applied Lagrange’s planetary equations to gravitomagnetism but, as

we discuss later in this chapter, their expressions only apply to time-averaged perturbations. Here,

by applying the Gaussian perturbation equations we present a system of equations that describe the

full time evolution of the Keplerian orbital elements in the presence of a general gravitomagnetic

force. In this section we work with units where G = c = 1.

6.5.1 Perturbed planetary equations

The derivation of the perturbed planetary equations can be found in most textbooks on celestial

mechanics. In the following discussion we follow the treatment presented in Ref. [266].

We consider a binary system which moves under a Keplerian force and perturbative force, δ ~F1,2

~̈x1 +G
m2(~x1 − ~x2)
|~x1 − ~x2|3

=
δ ~F1

m1
, (6.32)

~̈x2 +G
m1(~x2 − ~x1)
|~x1 − ~x2|3

=
δ ~F2

m2
, (6.33)

where m1,2 is the mass of body 1 and 2 respectively, ~x1,2 is the position vector of body 1 and 2,

respectively, the dot refers to a total time derivative, and G is Newton’s gravitational constant. As

is usually done for the 2 body problem, we consider the equivalent problem of the motion of body

1 with respect to body two and write ~r ≡ ~x1 − ~x2, combining Eqs. (6.32) and (6.33),

~̈r +
µ

r3
~r = δ ~f, (6.34)

where µ ≡ G(m1 +m2) and we have defined the perturbing function δ ~f ≡ δ ~F1/m1 − δ ~F2/m2. The

unperturbed motion (with δ ~f = 0) is exactly soluble and therefore the location of the particle in



110

phase space is described by six constants of the motion which we shall denote by cj ,

xi = xi(c1, . . . , c6, t), (6.35)

ẋi = vi = vi(c1, . . . , c6, t). (6.36)

As we shall see, these six constants are usually taken to coincide with the Keplerian orbital param-

eters which include the semi-major axis and the eccentricity.

Once the perturbation is ‘turned on’ the motion of the particle will not be described by these

constants. Instead, we choose to describe the perturbed motion by viewing the cjs as functions

of time. This can be thought of as an inversion of Eqs. (6.35) and (6.36) given xi(t) and vi(t).

Therefore, in order to follow the perturbed motion we need to seek out six differential equations

that dictate the time evolution of the six functions cj(t).

The total time derivative of the position vector is now written

dxi
dt

=
∂xi
∂t

+
∑
j

∂xi
∂cj

dcj
dt
. (6.37)

Without loss of generality we demand that even in the perturbed motion both the coordinates and

the velocity at time t are given in terms of the instantaneous value of the orbital elements cj(t).

The cj(t) defined in this way are known as osculating orbital elements. This means that we have

the identity,
∂xi
∂t

=
dxi
dt

(6.38)

at all times. With this Eq. (6.37) implies that

∑
j

∂xi
∂cj

dcj
dt

= 0. (6.39)

With this the force law can now be written

∂2xi
∂t2

+
µxi
r3

+
∑
j

∂vi
∂cj

dcj
dt

= δfi. (6.40)

Since the xi are the coordinates for a particle moving in a Keplerian orbit with the instantaneous

orbital elements cj(t), we have
∂2xi
∂t2

+
µxi
r3

= 0 (6.41)

and we obtain ∑
j

∂vi
∂cj

dcj
dt

= δfi. (6.42)

Eqs. (6.39) and (6.42) are the six desired equations that dictate the time evolution of the cj(t).
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A derivation of Lagrange’s planetary equations then assumes that the perturbing force can be

written as the gradient of a scalar, δ ~f = ~∇R, where R is known as the disturbing function. One

is then able to invert Eq. (6.42) to obtain evolution equations for the orbital elements in terms of

∂R/∂cj . It is at this point that Ref. [267] identifies a disturbing function associated with magnetic-

like forces. In particular, Ref. [267] writes R = ~A · ~v, where ~A is the vector potential and ~v is

the velocity of the test body. From this they conclude dcj/dt ∼ ∂( ~A · ~v)/∂cj . We can see this

expression is not gauge invariant by noting that if we take ~A → ~A + ~∇λ, where λ is some scalar

function, then the equations of motion for the orbital elements gain an additive correction of the form

∂(~v · ~∇λ)/∂cj . This shows that unless we restrict ourselves to time-averaged effects these equations

lack gauge invariance and hence lead to unphysical results.4

The formulation of Lagrange’s planetary equations in Ref. [267] is incomplete because magnetic-

like forces are not conservative and hence cannot be written in terms of the divergence of a scalar

function R. Instead, to obtain the general form of the equations we invert Eq. (6.42) to obtain

dcj
dt

=
∂cj
∂~v
· δ ~f. (6.43)

Since these equations refer only to the gravitomagnetic force they are manifestly gauge invariant.

These perturbation equations, also known as the Gaussian perturbation equations [268], allow us to

calculate the evolution of the orbital elements in the presence of a gravitomagnetic force.

6.5.2 Application of the Gaussian perturbation equations to gravitomag-

netism

The application of these generalized equations to gravitomagnetism requires an expression for the

gravitomagnetic force. Most texts that discuss GR have a discussion of gravitomagnetic forces (see,

e.g., Ref. [34]). The gravitational four-vector potential is given in terms of the time-space metric

coefficients Aµ = −(1/4)g0µ. In GR the field equations linearized about a flat Minkowski spacetime

(an approximation applicable for weak gravity) in Lorenz gauge (∇µAµ = 0) assume a form that

is analogous to Maxwell’s electromagnetic field equations. Alternative theories of gravity will, in

general, have modified linearized field equations (see, e.g., Ref. [269]). Therefore, for a specific

gravity theory and a specific source one can calculate the resulting gravitomagnetic field from the

linearized field equations. For the following discussion we shall restrict ourselves to the Lorentz

gauge, ∇µAµ = 0, where Greek indices denote spacetime indices that run from 0 − 3 and Latin

4To demonstrate this, consider the following example. Take the vector potential associated with a gravitomagnetic
field to be ~A and take the spacetime to be stationary (independent of the time coordinate). As we discuss in Sec. 6.3

the vector potential must be in Lorentz gauge so that ~∇ · ~A = 0. Gauge freedom is then restricted to scalar functions
λ such that ∇2λ = 0. An example of such a gauge transformation is given by λ = (K/r2) cos(θ), where K is an
arbitrary constant. For the case of Lense-Thirring drag one can show, using the formulae of Ref. [267], that this gauge
transformation alters the equations of motion for the orbital parameters cj(t) leading to observable effects and hence
violates gauge invariance.
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indices are purely spatial and run from 1− 3. We denote a vector in three-space by a vector arrow

such as ~A.

For the discussion here we need only note that under the approximation of slow motion and weak

gravity the geodesic equation yields a force law

~a = − ~E − 4~v × ~B, (6.44)

where ~E = ~∇Φ + ∂ ~A/∂t, Φ is the usual Newtonian gravitational potential, ~v is the velocity of the

test body, and ~B = ~∇ × ~A is the gravitomagnetic field in terms of the three-vector potential ~A.

With this gravitomagnetic field, we write the perturbative force per unit mass as

δ ~f = −4~v × ~B. (6.45)

In order to solve for the perturbed motion, we must also specify the six orbital elements of the

unperturbed motion. Following Ref. [266] we choose the semi-major axis (a), the eccentricity (e),

the inclination (i), the argument of pericenter (ω), the longitude of the ascending node (Ω), and the

time the test body passes pericenter (τ).

Ω

ω
i

pericenter

orbit
f

reference plane

Figure 6.1: Here we show a diagram explaining the meaning of the various angular orbital elements
discussed in the text. For the example of the Lense-Thirring drag the reference plane, (X,Y ), is
taken to coincide with the earth’s equator. Adapted from Ref. [270].

We will now explain the meaning of these orbital elements. We refer the reader to Fig. 6.1 for the

geometrical meaning of these constants. The semi-major axis and eccentricity describe the shape of

the unperturbed ellipse. The inclination angle, i, gives the angle between the plane of the orbit of
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the test body and the reference plane (X,Y ). The argument of pericenter ω lies within the orbital

plane and describes the angle between the intersection between the orbital plane and the reference

plane and the line that extends between the origin and the location of pericenter (closest approach)

of the test body. The longitude of the ascending node, Ω, describes the angle between the X-axis

and the intersection between the orbital plane (x, y) and the reference plane (X,Y ). Finally, we

must introduce the mean anomaly M defined by

M ≡ n(t− τ), (6.46)

where n2a3 = µ is the mean motion and τ is the time at which the test body passes pericenter.

The location of the test body in space can be written, in terms of the reference coordinate system

(X,Y, Z), as


X

Y

Z

 = r


cos(Ω) cos(u)− sin(Ω) sin(u) cos(i)

sin(Ω) cos(u) + cos(Ω) sin(u) cos(i)

sin(u) sin(i)

 , (6.47)

where r, for an elliptical orbit (e < 1) is given by

r =
a(1− e2)

1 + e cos(f)
, (6.48)

f , defined in Fig. 1, is called the true anomaly, and u ≡ ω+f . In order to express the position of the

test body in terms of time, t, we must write f , the true anomaly, in terms of M , the mean anomaly.

Unfortunately this relationship cannot be written in a simple form. Instead, one takes advantage of

the fact that most orbits of interest have small eccentricities. Expanding in small eccentricity, one

can derive a relationship between f and M . See Ref. [266] for details. To linear order in eccentricity

we have

sin(f) ' sin(M) + e sin(2M), (6.49)

cos(f) ' cos(M) + e[cos(2M)− 1] (6.50)

We are now in a position to write down the Gaussian perturbation equations in a useful form.

First we note that when writing the Gaussian perturbation equations we need to decide on a

coordinate system that is attached to the test mass in its orbit. Since the gravitomagnetic forces

act perpendicular to the velocity, it makes most sense to use the direction of the velocity of the

orbiting body as one of our axes. Setting up the rest of the coordinate system, we will choose an

axis perpendicular to the velocity but within the orbital plane and then an axis parallel to the orbital
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orbital plane

Figure 6.2: Here we show the coordinate system associated with the orbiting test body in which we
write our perturbation equations.

angular momentum.

The tangential component of the force is obtained from

T̂ =
~v

|~v|
. (6.51)

We can express the other two unit vectors in terms of the instantaneous Keplerian motion of the

test particle,

N̂ =
~h× ~v
|~h× ~v|

=
~h× ~v

µ[e2 + 2p/r − 1]1/2
, (6.52)

P̂ =
~h

|h|
=
~r × ~v
√
µp

, (6.53)

where ~h ≡ ~r × ~v is the orbital angular momentum vector and p is the semi-latus rectum which, for

e < 1, is given by p = a(1− e2).

6.5.3 Lorentz force

The componets of the Lorentz force perturbing function is given by

δfT = 0, (6.54)

δfN = −∆L
~B · ĥ, (6.55)

δfP = ∆L
~B ·
(
~r + ~e

|~r + ~e|

)
(6.56)

where we have defined

∆L ≡ 4an

√
1 + e2 + 2e cos(f)

1− e2
, (6.57)
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and ~e is known as the eccentricity vector and is given by

~e =
1
µ

(
~v × ~h− µ~r

r

)
. (6.58)

The eccentricity vector points towards the pericenter of the orbit and has magnitude e. In the

unperturbed motion ĥ is constant,

ĥ =


0

− sin(i)

cos(i)

 , (6.59)

and we have

~r + ~e

|~r + ~e|
= [1 + e2 + 2e cos(f)]−1/2 ×


e cos(ω) + cos(u)

cos(i)[e sin(ω) + sin(u)]

sin(i)[e sin(ω) + sin(u)]

 . (6.60)

With these expressions we can now write down the perturbation equations in terms of the gravito-

magnetic field [268]

da

dt
= 0, (6.61)

de

dt
= −1

v

r

a
sin(f)δfN̂ , (6.62)

dτ

dt
=
√

1− e2

nev

r

a
cos(f)δfN̂ , (6.63)

di

dt
=

r cos(f + ω)
na2
√

1− e2
δfP̂ , (6.64)

dΩ
dt

=
r sin(f + ω)

na2
√

1− e2 sin(i)
δfP̂ , (6.65)

dω

dt
=

1
ev

(
r

p
cos(f) + e

[
1 +

r

p

])
δfN̂ − cos(i)Ω̇. (6.66)

Note that since a determines the energy of the system and since magnetic forces do no work it

makes sense that da/dt = 0. We emphasize that these equations are exact and do not depend on

the magnitude of the perturbing force per unit mass, δf .

We can immediately see how such a set of equations yields quick intuition for the effect a given

gravitomagnetic field has on the orbit of a test body. First, note that the radial position of the test

body is determined by a, e, and τ . Therefore, the radial position can be perturbed only by the

component of the magnetic field perpendicular to the plane of the orbit. Additionally, for orbits

with small eccentricities the component δfP̂ picks out, to zeroth order, the radial component of the

magnetic field. In turn, it is the radial component of the magnetic field that produces variation in

the inclination i and longitude of the ascending node Ω.
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6.5.4 Application to the Lense-Thirring drag

In this section we shall use the perturbation equations to derive the perturbations to an orbit-

ing test body due to the gravitomagnetic field of a spherical homogeneous rotating source. The

gravitomagnetic field due to a spherical homogeneous rotating source is given by [34],

~B = −1
2

~J − 3( ~J · r̂)r̂
r3

, (6.67)

where

~J =
2
5
MpR

2~Ω (6.68)

is the angular momentum, Mp is the mass of the rotating object, R is its radius, and ~Ω is its angular

velocity. We choose ~Ω to coincide with the Ẑ axis (see Fig. 6.1). Using the expression for the radial

position of the test body given in Eq. (6.47) we can easily derive an expression for the velocity in

terms of the instantaneous orbital elements given that

ṙ = n
a√

1− e2
e sin(f), (6.69)

ḟ = n
a2
√

1− e2

r2
. (6.70)

Using our expressions for the right-hand side of the perturbation equations we then find

de

dt
=

2J cos(i)
a3(1− e2)2

sin(f)∆0(f), (6.71)

dτ

dt
= − 2J cos(i)

a3e(1− e2)3/2n
cos(f)∆0(f), (6.72)

di

dt
=

J

[a(1− e2)]3
cos(ω + f)∆0(f)∆1(f), (6.73)

dΩ
dt

=
J

[a(1− e2)]3
sin(ω + f)∆0(f)∆1(f), (6.74)

dω

dt
= − J

2e[a(1− e2)]3
∆0(f)∆2(f), (6.75)

where

∆0(f) ≡ [1 + e cos(f)]2, (6.76)

∆1(f) ≡ e sin(ω) + 4 sin(ω + f) + 3e sin(ω + 2f), (6.77)

∆2(f) ≡ 4 cos(f) + e
{

4 + 4 cos(2[ω + f ]) + e[cos(2ω + f) + 3 cos(2ω + 3f)]
}
. (6.78)

In order to demonstrate how we may use these equations to determine the perturbed orbital

motion we consider perturbations to the radial position of the test body with zero eccentricity.
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Writing e = δe(f) and r = r0 + δr we have

δr ' −a cos(f)δe(f). (6.79)

We can then approximate the evolution of δe(f) by evaluating the right-hand side of Eq. (6.71) on

the unperturbed orbit. We stress that this is the first time that we have made any approximations.

We obtain

δe(f) = −2J̃ [1− cos(f)] cos(i) (6.80)

where J̃ ≡ J/(a3n
√

1− e2), the ratio of the orbital angular momentum to the rotational angular

momentum and we have set the perturbations to zero at f = 0. We can then conclude that the

radial position of the perturbed motion relative to the unperturbed motion will oscillate as,

δr(f)
a

= 2J̃ cos(f)[1− cos(f)] cos(i). (6.81)

This does not imply that the radial motion of the test particle oscillates. The actual motion of the

test particle is an ellipse which is shifted to coincide with the unperturbed ellipse at f = 0 (following

our choice of initial conditions for δe) but which has an increased semi-major axis and an oscillating

eccentricity. One can show this by matching the solution for the perturbed radial motion to an

ellipse that is shifted to coincide with the unperturbed orbit at f = 0. The semi-major axis of the

new orbit in the limit of small eccentricity is given by

a = a0

[
1 + 2

Jĥ · ẑ
a3

0n0
cos(i)

]
. (6.82)

The eccentricity oscillates as

e(f, J) = A0[J/(a3
0n0)] +A1[J/(a3

0n0)] cos(f), (6.83)

with limJ→0 e(f, J) = e0. For small J/(a3
0n0) the amplitude of the oscillation is much smaller than

the offset (it is second order in the perturbation) so that the orbit is nearly elliptical. This makes

sense since the gravitomagnetic force per unit mass in the N̂ direction is given by

(δfN )LT = −2Jn cos(i)ĥ · ẑ
a2

[1 + 4e cos(f)]. (6.84)

To understand what this implies for the motion of the test particle we consider an instantaneous

mass loss or gain by the central body (δµ) so that the test particle experiences a perturbative force
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Figure 6.3: The oscillation of the eccentricity of the orbit of a test particle that is perturbed by
the Lense-Thirring gravitomagnetic field given in Eq. (6.83) as a function of the rotational angular
momentum. We have set the inclination to zero and e0 = 0.01. We can see that the offset term, A0,
in the upper panel approaches the initial eccentricity as J → 0. The amplitude of the oscillations
in the eccentricity, shown in the lower panel, decrease rapidly with J → 0. At J/(a3n) = 10−3 the
amplitude of the oscillations is only 4% of the mean eccentricity. These oscillations occur at second
order for the Lense-Thirring field.

per unit mass in the N̂ direction is given by

(δfN )Newton =
δµ

a2
[1 + 2e cos(f)], (6.85)

where we have assumed e� 1. If the mass loss/ gain were instantaneous and spherically symmetric

we know that the angular momentum remains unchanged whereas the specific energy of the test

particle instantaneously changes to δẼ = −δµ/r. From this we can determine that the semi-major

axis and the eccentricity change to

δa

a0
= −δµ

µ0
, (6.86)

δe = −δµ
µ0
, (6.87)

where we have assumed that the mass loss occurs when the particle had a true anomaly f0. We can

now see that the Lense-Thirring gravitomagnetic field is approximately equivalent to an decrease

in the gravitational field for a co-rotating orbit and a decrease for a counter-rotating orbit with a
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magnitude

δµ = −2Jn cos(i)ĥ · ẑ. (6.88)

Therefore once the Lense-Thirring perturbation is ‘turned on’ the orbit will adjust to a semi-major

axis and an eccentricity

a ≈ a0

[
1 +

2J cos(i)ĥ · ẑ
a3

0n0

]
, (6.89)

e ≈ e0 +
2J cos(i)ĥ · ẑ

a3
0n0

. (6.90)

Since the perturbations have such small amplitudes (the size of J̃ for a satellite around the Earth

is ∼ 10−12!) the largest effect will occur for non-oscillatory (secular) perturbations, since these build

up in time. In order to derive approximate expressions for the secular perturbations we will take

the right-hand side of the evolution equations to be evaluated on a fixed Keplerian orbit. Taking

the average over one period will separate out the secular part of the perturbation. Letting X denote

the right-hand side of any of the perturbation equations we compute

〈X〉 =
1
T

∫ T

0

X(f)dt =
(1− e2)3/2

2π

∫ 2π

0

X(f)
[1 + e cos(f)]2

df. (6.91)

With this, we find that the only two orbital elements which have secular perturbations are Ω and ω,

(
dΩ
dt

)
S

=
2J

a3(1− e2)3/2
, (6.92)(

dω

dt

)
S

= − 6J
a3(1− e2)3/2

, (6.93)

where the subscript ‘S’ indicates this is just the secular part of the perturbation. These results

agree precisely with the original Lense-Thirring calculation [71]. It is straightforward to generalize

this calculation to any gravitomagnetic field and, in particular, the field generated by a rotating

homogeneous sphere in Chern-Simons gravity [see Eq. (6.28)].

6.5.5 Detecting gravitational parity violation through gravitomagnetism

As commented before, the presence of a gravitomagnetic field in the direction of a given mass

current is an indication of the break down of parity conservation in the gravitational sector. In

order to explore how such a gravitomagnetic field will affect our observations, we have considered a

gravitomagnetic field of the form

~B 6P = α
J

r3
φ̂, (6.94)
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where we have supposed that the mass current flows in the direction φ̂. We repeat the analysis we

performed above for the Lense-Thirring result.

Oscillations of the radial position of the test body for the case of ~B 6P are both qualitatively

and quantitatively different than in the Lense-Thirring case. We can understand this through a

simple physical argument. As the test body orbits both its velocity vector and the gravitomagnetic

field maintain their relative orientation. Therefore, the gravitomagnetic force (∝ ~v × ~B) is always

pointing in the same direction leading to a situation where the test particle experiences an enhanced

attraction towards the central body for half of its orbit and a slight repulsion for the other half. For

the Lense-Thirring case the gravitomagnetic field points in the same direction for the entire orbit,

so as the velocity vector rotates the direction of the gravitomagnetic force is either always attractive

or repulsive.

The normal force for a parity violating gravitomagnetic field, which determines the radial motion

of the test particle is given by

(δfN )6P = −4nαJ cos(f + ω) sin(i)ĥ · ẑ√
1− sin2(i) sin2(f + ω)

[1 + 4e cos(f)]. (6.95)

As we did in the Lense-Thirring case we compare this perturbative force to the Newtonian pertur-

bation to find an equivalent change in the mass of the gravitating body,

δµ = −2nαJ cos(f + ω) sin(i)ĥ · ẑ√
1− sin2(i) sin2(f + ω)

. (6.96)

We can now see the qualitative difference between the Lense-Thirring and parity violating cases. Here

the instantaneous mass is changing in time— for half of the orbit the perturbation ‘subtracts’ mass

and for the other half it ‘adds’ mass. This is exactly what we expected given our reasoning that the

parity violating field produces a force which is always pointing in the same direction. Furthermore,

referring to the instantaneous eccentricity and semi-major axis in Eq. (6.87) we can see that they will

also oscillate in time with a frequency of once per orbit. This oscillation is fundamentally different

than the oscillation for the Lense-Thirring case since the oscillation of the eccentricity in that case

is second order in J/(a3n) whereas in the parity violating case it comes in at first order as well as

occurs for the semi-major axis.

The parity violating field also leads to secular perturbations for all of the orbital elements except

a. The expressions for these secular perturbations cannot be written in an analytical form, however,

we can evaluate them for particular orbits.

We wish to use measurements of the orbits of satellites and planets in the Solar System in order

to constrain the value of α. We do not attempt to reanalyze the data here, but quote results that can

be easily compared to previous analyses. Therefore, we only compute the secular evolution of the
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Table 6.1:

Orbital elements and secular perurbations for the LAGEOS satellites and Mercury

a e i Ω ω nτ a3/(αJ)〈Ω̇〉 a3/(αJ)〈ω̇〉

LAGEOS 1 12,265 0.0051 109.86 314 – – 0.0046 –
LAGEOS 2 12,163 0.0136 52.68 48 – – 0.0203 –

Mercury 5.8× 107 0.2056 3.38 48.331 29.124 174.796 -6.9 6.299

NOTES.— The semi-major axis is given in km and all angular parameters are given in degrees. We do not quote
numbers for the argument of pericenter and the time of pericenter passage for the LAGOES satellites because their
orbits are so close to circular that these parameters are poorly determined from the orbital data [272]. Orbital data for
the LAGEOS satellites from http://ilrs.gsfc.nasa.gov/satellite_missions/list_of_satellites/lag2_general.

html. Orbital data for Mercury was obtained from NASA’s HORIZONS web interface http://ssd.jpl.nasa.gov/

horizons.cgi.

longitude of the ascending node (Ω), measured to be equal to its general relativistic value to 10% by

the LAGEOS satellites [271], and the secular evolution of the argument of pericenter (ω) measured

to a few tenths of an arcsecond per century for Mercury. See Table 6.1 for the orbital parameters

and the corresponding secular evolution. We note that more in depth analysis might find other

test bodies which place more restrictive constraints on α. The LAGEOS measurement of 〈Ω̇〉 gives

α < 2 − 10 where the range takes into account that the analysis of Ref. [271] combined the orbital

data from both satellites. Using the rotational parameters of the Sun gives J�/a3 = 0.0027′′/century

so that we find that the measurement of the perihelion advance of Mercury gives α < 37.

6.5.6 Secular gravitomagnetic perturbations and the disturbing function

Finally, we show how the formulation discussed in Ref. [267] leads to correct results only when

restricted to computing secular perturbations. We start with a Lagrangian formulation of the elec-

tromagnetic equations of motion. The Lagrangian can be written as

L =
1
2
~̇v · ~̇v − Φ + ~A · ~v, (6.97)

where we identify Φ with the Newtonian potential and ~A is the gravitomagnetic vector potential.

We can then write the perturbative force as

δ ~F = ~∇
[
~A · ~v

]
− d ~A

dt
. (6.98)

Taking the time average of the perturbative force it is clear that since ~A depends only on the position

of the test body we have

〈δ ~F 〉 = ~∇〈 ~A · ~v〉. (6.99)
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Therefore we see that Lagrange’s planetary equations with the disturbing function R = ~A · ~v are

only applicable when considering secular perturbations. See Ref. [273] for a further discussion.

6.6 Orbital and gyroscopic precession in Chern-Simons grav-

ity

6.6.1 Orbital precession

In order to investigate how the Chern-Simons gravitomagnetic field will affect the motion of test

particles around the Earth, we will use what are known as the Gaussian perturbation equations

[266, 267]. Details of how these equations are applied to gravitomagnetic forces are discussed in the

previous section. We will concentrate on analyzing the secular (non-periodic) time variation of the

longitude of the ascending node5, Ω, but note that other Keplerian elements will also vary due to

the terms introduced by Chern-Simons gravity. The time variation of Ω has been well studied since,

in general relativity, it is connected with the Lense-Thirring drag [71],

Ω̇GR =
2GL

a3(1− e2)3/2
, (6.100)

where L is the magnitude of the angular momentum of the central body, a is the semi-major axis

of the orbit of the test body, and e is the orbit’s eccentricity. Finally, in order to evaluate the

secular perturbations, we approximate the orbit of the test body as circular (i.e., e = 0, a good

approximation for current measurements), and we average the perturbing force over one orbital

period to obtain
Ω̇CS

Ω̇GR

= 15
a2

R2
j2(mcsR)y1(mcsa), (6.101)

where Ω̇CS is the precession due to ~BCS. The total precession is Ω̇GR + Ω̇CS. We note that Ω̇CS is

an even function of mcs.

Recent measurements of laser ranging data to the LAGEOS I and LAGEOS II satellites have

measured Ω̇ to within 10% of its value in general relativity [271]. Requiring that the Chern-Simons

contribution does not exceed 10% of the general relativity result, we find that we can place a lower

limit to the Chern-Simons mass, |mcs| & 0.001 km−1, as shown in Fig. 6.4.

The Laser Relativity Satellite (LARES) mission [274] proposes to deploy a new laser ranging

satellite and is predicted to measure Ω̇ to within 1% of its value in general relativity. With this

improvement the bound on mcs is increased by a factor of roughly five.
5The longitude of the ascending node is defined to be the angle between a stationary reference line and the line

connecting the origin of the coordinate system and the point where the orbiting body intersects the XY reference
plane as it is moving upwards (see Ref. [270]).
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Figure 6.4: The ratio Ω̇CS/Ω̇GR for the LAGEOS satellites orbiting with a semi-major axis of
a ≈ 12, 000 km. A 10% verification of general relativity [271] (the shaded region) leads to a lower
limit on the Chern-Simons mass of |mcs| & 0.001 km−1. A 1% verification of the Lense-Thirring
drag will improve this bound on mcs by a factor of roughly five.

6.6.2 Gyroscopic precession

The Earth’s gravitomagnetic field will also cause a precession of gyroscopes moving in the spacetime.

A gyroscope will undergo precession due to two torques. One is known as the geodetic precession

and is independent of the Earth’s gravitomagnetic field. The other torque is due to a coupling to the

gravitomagnetic field and results in a rate of change of the spin of a gyroscope given by [275–277]

~̇S = 2 ~B × ~S, (6.102)

where ~S is the angular momentum of the gyroscope.

NASA’s Gravity Probe B (GPB) mission is currently attempting to measure this gyroscopic

precession [72]. GPB consists of a satellite, in a polar orbit at an altitude of about 640 km, that

contains four drag-free gyroscopes and a telescope. The gyroscopes are initially oriented such that

their spins are aligned parallel to the optical axis of the telescope, which is pointing within the plane
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of the orbit. The telescope points towards a guide star, allowing a measurement of the precession

of the direction of the spins of the gyroscopes. Geodetic precession results in an annual precession

in the North-South direction of about 6600 milliarcseconds (mas) whereas the general relativistic

gravitomagnetic field causes an annual East-West precession of around 42 mas [72].

Figure 6.5: The ratio Φ̇CS/Φ̇GR for Gravity Probe B in a polar orbit at an altitude of approximately
640 km. A 10% verification of general relativity (the shaded region) leads to a lower limit on the
Chern-Simons mass of |mcs| & 0.01 km−1, an order of magnitude improvement over the LAGEOS
result.

With the Chern-Simons expression for the gravitomagnetic field, given in Eq. (6.28), it is straight-

forward to calculate the resulting gyroscopic precession for a polar orbit (applicable to GPB). Rel-

ative to the general relativity result, we find

Φ̇CS

Φ̇GR

= 15
a2

R2
j2(mcsR) [y1(mcsa) +mcsay0(mcsa)] , (6.103)

where Φ̇ ≡ | ~̇S|/|~S| = Φ̇GR + Φ̇CS is the rate at which the angle of axis Φ changes in time due to the

gravitomagnetic field. We note that Φ̇CS is an even function of mcs.

It was initially projected that GPB would achieve a percent-level measurement of the gravitomag-



125

netic contribution to Φ̇GR. However, since its launch in 2004, it has encountered several unexpected

complications that will degrade the precision of the tests of gravity [278], although the extent of

the degradation has yet to be reported. In Fig. 6.5, we plot Eq. (6.103) for a GPB detection of the

gravitomagnetic precession to within 10% of its value in general relativity.

We have idealized the Earth to be a sphere of constant density throughout this work, when

in reality, it is an oblate spheriod with layers that have different mean densities. However, we

expect that the non-spherical corrections would affect both the general relativity and Chern-Simons

calculations similarly and, to the accuracy we require, are negligible when we consider the ratio

between general relativity and Chern-Simons results. Furthermore, it is easy to generalize our results

to spheres with layered density profiles because ~B depends linearly on ρ. We replaced our model

of a homogeneous Earth with a model of the core and mantle and we found that the amplitudes of

the oscillations in Ω̇CS and Φ̇CS were not affected. We conclude that our constraints on mcs are not

sensitive to the details of the density profile of the Earth.

Theories of gravity, including general relativity (GR), predict gravitational forces that act on

test particles in the same way that a magnetic field acts on a moving charge. This phenomenon,

called gravitomagnetism, is one of the most intriguing predictions of metric theories of gravity. The

best known is the Lense-Thirring precession of the line of nodes due to the presence of a rotating

mass [71].

6.7 Conclusions

The addition of a Chern-Simons term to the action for gravity is of interest as it may arise as a

low-energy limit of string theory. The theory and formalism of this modification of gravity have been

worked out in a number of previous papers, and some of the early-Universe consequences of such a

term have been investigated. However, there has been little work on tests of such modifications in

the present Universe.

In this chapter, we have calculated the linear-theory spacetime around a spinning massive body,

finding new corrections that were overlooked in previous work. The gravitomagnetic field in Chern-

Simons gravity differs from that in general relativity in two ways: (1) there is an oscillating compo-

nent, and (2) there is a toroidal component to the gravitomagnetic field that arises as a consequence

of the parity-breaking nature of the theory and that has no counterpart in ordinary general relativity.

We then determined the precession of orbits of test particles in this spacetime and also of gyro-

scopes moving in this spacetime. We showed that current constraints from the LAGEOS satellites

restrict the inverse Chern-Simons mass parameter m−1
cs to be less than roughly 1000 km, correspond-

ing to a mass constraint mcs & 2× 10−22 GeV. This bound may be improved by a factor of 5–10 by

future observations.
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The mass parameter mcs is related to the more fundamental parameters ` and θ̇ of the theory

through mcs = −3/(8πG`θ̇), where ` is a length parameter that enters into the Chern-Simons

Lagrangian, and θ̇ is presumably related to the time variation of the quintessence field. In principle,

a precise constraint to ` can be derived once the precise nature of the field (a quintessence field?) θ

and its time evolution are specified. We leave such model building for future work.

In this chapter we have also presented a method to compute the perturbations on the orbit of

a test body due to a general gravitomagnetic field. The original calculation by Lense and Thirring

uses similar methods but only considers gravitomagnetic fields produced by a homogeneous rotating

sphere in GR. The derivation we have presented here generalizes their results to include any grav-

itomagnetic field. This includes gravitomagnetic fields due to various mass currents as well as fields

produced by alternative theories of gravity.

An ability to calculate these effects for any gravity theory is important given that gravitomag-

netism is already constrained by current measurements [271]. Furthermore, there are several ongoing

projects to measure gravitomagnetic effects to higher accuracy. In particular, the LARES satellite is

expected to measure the Lense-Thirring drag to within 1% of its GR value [274] and LLR has moved

from centimeter to millimeter accuracy with the APOLLO system at the Apache Point Observatory

[279]. With these measurements it is clear that gravitomagnetic effects are now part of the battery

of tests any gravity theory must pass in order to remain viable.
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Appendix A

An expression for the
high-frequency gravitational-wave
transfer function1

The derivation of the gravitational-wave transfer function has been presented in many previous

studies. For our purposes here we are interested in those wavenumbers which re-entered the Hubble

horizon at very high temperatures (T ∼ 107 GeV) during which we suppose that the Universe was

radiation dominated. We will therefore restrict our attention to this epoch.

Gravitational radiation represents the true tensor degrees of freedom when perturbing about

some background metric. In the case of a spatially-flat Freidmann-Robertson-Walker (FRW) metric

we have

ds2 = a2[−dτ2 + (δij + hij)dxidxj ]. (A.1)

Gravitational radiation is expressed as the gauge invariant quantity hij which is symmetric (hij =

hji), traceless (hii = 0), and transverse (∇ihij = 0). These restrictions remove 4 of the 6 de-

grees of freedom contained in hij leading to the two standard polarization states, “+” and “×”, of

gravitational radiation.

In general, we may Fourier transform hij to obtain [1]

hij(τ, ~x) =
∑

A=+,×

∫
d3k

(2π)3
εAij(k̂)

√
16πGhA~k (τ)ei~k·~x, (A.2)

where εAij are the polarziation tensors given by

ε+ij(k̂) = m̂im̂j − n̂in̂j , (A.3)

ε×ij(k̂) = m̂in̂j + n̂im̂j , (A.4)

1This appendix consists of previously unpublished work by the author.
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where m̂ and n̂ are unit vectors orthogonal to the direction of propagation of the wave, k̂. We have

also introduced a normalization,
√

16πG, which will simplify certain expressions. We also note that

εAij(k̂)εA
′, ij(k̂) = 2δAA

′
. The linearized Einstein equations yield an equation of motion for hij [280]

h′′ij + 2
a′

a
h′ij −∇2hij = 0, (A.5)

where we have neglected the tensor part of the anisotropic stress and the prime denotes a derivative

with respect to conformal time, τ . Finally, by Fourier transforming this equation the mode function,

hA~k can be shown to evolve according to

(hA~k )′′ + 2
a′

a
(hA~k )′ + k2hA~k = 0. (A.6)

Changing variables to gA~k ≡ ah
A
~k

we have

(gA~k )′′ +
(
k2 − a′′

a

)
gA~k = 0. (A.7)

The second Friedmann equation dictates the evolution of the acceleration of the scale factor,

a′′

a
= −a

2H2

2
(1 + 3w), (A.8)

where w ≡ P/ρ is the equation of state parameter. Therefore, for long wavelength modes (i.e,

k � aH) we have the solution gA~k ∝ a and once a given mode is well within the horizon (i.e.,

k � aH) we have the solution gA~k ∝ sin(kτ + φk). We therefore find

hA~k ∝

const, k � aH

sin(kτ + φk)/a k � aH.

(A.9)

From this it is clear that the evolution of the gravitational wave spectrum, up to an arbitrary

phase and amplitude, is universal for wavenumbers k � aH. Therefore, the phase and amplitude

is established around horizon crossing, when k ∼ aH. We will now discuss how this amplitude is

established assuming that the mode enters the horizon when the energy density is dominated by a

fluid with ρ ∝ a−p which leads to a ∝ τ1/(p/2−1) ≡ τν . In this appendix we will consider reheating

for both a massive scalar field (p = 3, ν = 2) and expansion due to the domination of the kinetic

energy of a scalar field (p = 6, ν = 1/2). With this, the evolution equation for the mode becomes

(hA~k )′′ +
2ν
τ

(hA~k )′ + k2hA~k = 0. (A.10)
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The solution that behaves properly on superhorizon scales is

hA~k (τ) = A(kτ)1−νjν−1(kτ), (A.11)

where j`(x) is the spherical Bessel function of order `. Taking the limit as kτ → 0 we have

A = (2ν + 1)!!hP~k , (A.12)

where (2ν + 1)!! = (2ν + 1)(2ν − 1)(2ν − 3)... and hP~k is the primordial amplitude. Finally, taking

the limit that kτ � 1 we have

h~k(τ) ≈
(h~k)P (2ν + 1)!!

(kτ∗)ν
sin(kτ − (ν − 1)π/2)

a
, (A.13)

where τ∗ is the proportionality constant between a and τν . To solve for this constant we need to

compute the integral

τ =
∫

da
a2H(a)

. (A.14)

A given mode can enter the horizon either during reheating or during radiation domination.

A.0.1 Transfer function during reheating

During reheating the Hubble parameter evolves according to

H =

√
8π
3
E2

end

mPl

(aend

a

)p/2
. (A.15)

Then, up to a constant we have

τ = τ∗a
1/ν , (A.16)

with

τ∗ =
2mPl√

8π/3E2
end(p− 2)ap/2end

. (A.17)

We can then write

aend = T0(Trh)4/p−1E
−4/p
end

(
π2

30

)1/p

g∗(T0)1/3g∗(Trh)1/p−1/3. (A.18)

With p = 3 we get

aend = 2.55× 10−32

(
Trh

107 GeV

)1/3(1016 GeV
Eend

)4/3

, (A.19)
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and with p = 6 we get

aend = 1.43× 10−26

(
Trh

107 GeV

)−1/3(1016 GeV
Eend

)−2/3

g
−1/6
100 . (A.20)

Finally, for p = 3, we have

τ∗ = 1.3× 10−4

(
Trh

107 GeV

)−1/2

Mpc, (A.21)

and for p = 6 we have

τ∗ = 4.56× 1025

(
Trh

107 GeV

)
g

1/2
100 Mpc. (A.22)

A.0.2 Transfer function during radiation domination

In the case of radiation domination the Hubble parameter evolves according to

H =
2π3/2

3
√

5mPl

g∗(T0)2/3g∗(T )−1/6

(
a0T0

a

)2

. (A.23)

We then have

τ∗ =
3
√

5
2π3/2

mpl

(a0T0)2g∗(T0)2/3
g∗(Tk)1/6, (A.24)

where we have evaluated the number of relativistic degrees of freedom on horizon crossing, k =

a(Tk)H(Tk). We then have

τ∗ ≈ 1.42× 106 Mpc. (A.25)

As discussed in Ref. [186] we can associate a stress-energy tensor with gravitational radiation

which takes the form

Tµν =
1

32πG
〈hαβ,µhαβ,ν〉, (A.26)

where the average occurs over length/time scales greater than the wavelength/frequency of the

gravitational waves but smaller than the curvature of the background spacetime (for an FRW metric

this is approximately equal to H2). We can identify

ρgw = −T 0
0 =

1
32πGa2

〈(hij)′(hij)′〉. (A.27)

First we note that we are assuming that the stochastic background is isotropic, unpolarized, and

stationary so that [1]

〈h∗ P~k hP~k′〉 = (2π)3δ3(~k − ~k′)1
2
Sh, (A.28)
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where we have introduced the spectral density, Sh. We then obtain

ρgw =
1
a2

∫
4πk2dk
(2π)3

[(2ν − 1)!!]2

(kτ∗)2ν

〈[
d
dτ

sin(kτ + φν)
a

]2〉
Sh. (A.29)

In the limit where k � aH we have

〈[
d
dτ

sin(kτ + φν)
a

]2〉
≈ 1

2
k2

a2
, (A.30)

so that

ρgw =
[(2ν − 1)!!]2

a4τ2ν
∗

∫
d ln k
(2π)2

1
k2ν−5

Sh. (A.31)

Therefore we find that

Ωgw ≡
1
ρc

dρgw
d ln k

=
[(2ν − 1)!!]2

a4τ2ν
∗

k5−2ν

(2π)2

Sh(k)
ρc

, (A.32)

where ρc = 3m2
plH/(8π) is the critical energy density. A given source for a stochastic background of

gravitational waves will then specify the spectral density Sh. We will consider gravitational waves

produced during an epoch of accelerated expansion.

As we saw in Eq. (A.7), the mode function evolves as a scalar field. Following the treatment in

Ref. [10, 11] we quantize the field g(~k, τ),

ĝ(~k, τ) = v(k, τ)â~k + v∗(k, τ)a†~k, (A.33)

and v(k, τ) satisfies Eq. (A.7). We make the transition from a quantum to a classical analysis by

identifying the propagator for ĝ with the spectral density of classical gravitational waves,

〈0|ĝ(~k, τ)ĝ†(~k′, τ)|0〉 = |v(k, τ)|2(2π)3δ3(~k − ~k′) (A.34)

=
a2

2
Sh(k)(2π)3δ3(~k − ~k′), (A.35)

therefore in terms of the mode function we can write

Sh(k) =
2
a2
|v(k, τ)|2. (A.36)

A given mode starts well within the horizon, where the mode function satisfies a massless Klein-

Gordon equation. Therefore, the properly normalized vacuum state is given by

vin(k, τ) =
exp(−ikτ)√

2k
. (A.37)

Using this as an initial condition, the value of the field after the mode has exited the horizon
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Figure A.1: Here we show the transfer function Agw at a frequency of 0.1 Hz (corresponding to the
frequency of BBO) as a function of the reheating temperature. As we discuss in the main body of
the text, for reheat temperatures below around 107 GeV the gravitational wave enters the horizon
during reheating and hence the value of the transfer function is different. Here we show the behavior
of two different reheating scenarios: the solid line corresponds to a reheating epoch dominated
by the coherent oscillations of a massive scalar field; the dashed line corresponds to a reheating
epoch dominated by the kinetic energy of a scalar field. In the fist case the transfer function has a
negative slope, whereas in the second case the transfer function rises at shorter scales. This leads
to a smaller transfer function for a massive scalar field and a large transfer function for the kinetic
energy dominated expansion.

(k � aH) is given by

vout(k, τ) =
exp(−ikτ)√

2k
−i
kτ
. (A.38)

From this we find

Sh =
H2
∗
k3

=
8π

3m2
pl

V

k3
, (A.39)

where H∗ is the Hubble parameter during inflation when k = a∗H∗. We then find

Ωgw =
16[(2ν − 1)!!]2

9a4
(kτ∗)−2ν

(
k

H0

)2
V

m4
Pl

. (A.40)

The transition from reheating to the radiation dominated transfer function occurs at the wavenumber

k0 =
(

[(2ν − 1)!!]
τ∗ rad

(τ∗ rh)ν

)1/(ν−1)

. (A.41)

For a wave that enters during radiation domination we can rewrite the transfer function in a

more compact form. Noting that

ρ0
r =

π2

30
T 4

0 g∗(T0), (A.42)
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and

ρ0
c =

3H2
0m

2
pl

8π
, (A.43)

we finally obtain

Ωgwh
2 =

16
9

Ωrh2

(
g∗(T0)
g∗(Tk)

)1/3
V

m4
pl

, (A.44)

where Ωr ≡ ρ0
r/ρ

0
c .
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Appendix B

Setting the homogeneous initial
condition for the CGWB1

In this appendix we show that the evolution equations in conformal Newtonian gauge allow for

a solution in which δgw = 0. We start by considering the equations governing the evolution of

perturbations in the conformal Newtonian gauge well outside the horizon and within the radiation-

dominated epoch. Corrections due to the fact that the universe is not strictly radiation-dominated

come in at the order (kτ)2τ/τeq, which can be ignored at the time we establish the initial conditions

since we are well into the radiation-dominated epoch. Furthermore, during the setting of the initial

conditions we suppose that the photons and baryons are tightly coupled so that the photons behave

as a perfect fluid; i.e., the anisotropic stress in the photon fluid is negligible. Finally, for the case

where the Newtonian potentials, φ and ψ, are strictly time independent it is found that on super-

horizon scales (the scales on which we set the initial conditions) the higher Boltzmann moments

for fully decoupled fluids (in our case, the CGWB fluid and neutrinos) behave as spherical Bessel

functions, i.e., the lth moment evolves as Jl(kτ). Therefore, for kτ � 1, the lth moment evolves as

≈ (kτ)l. This allows us to ignore all l > 3. Our notation in this appendix follows that of Ref. [185].

In conformal Newtonian gauge the equations which govern the evolution of the perturbations are

given by,

Photons:

δ̇γ +
4
3
θγ − 4φ̇ = 0, (B.1)

θ̇γ − k2

(
1
4
δγ + ψ

)
= 0. (B.2)

Massless Neutrinos:
1This appendix consists of previously unpublished work by the author.
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δ̇ν +
4
3
θν − 4φ̇ = 0, (B.3)

θ̇ν − k2

(
1
4
δν − σν + ψ

)
= 0, (B.4)

σ̇ν −
4
15
θν = 0. (B.5)

Cosmological gravitational-wave background (CGWB):

δ̇gw +
4
3
θgw − 4φ̇ = 0, (B.6)

θ̇gw − k2

(
1
4
δgw − σgw + ψ

)
= 0, (B.7)

σ̇gw −
4
15
θgw = 0. (B.8)

Baryons:

δ̇b + θb − 3φ̇ = 0, (B.9)

θb = θγ . (B.10)

CDM:

δ̇c + θc − 3φ̇ = 0, (B.11)

θ̇c +
1
τ
θc − k2ψ = 0. (B.12)

(B.13)

The linearized Einstein equations are given by,

k2τ2φ+ 3τ
(
φ̇+

1
τ
ψ

)
= −3

2

(
ργδγ + ρνδν + ρgwδgw

ρ̄

)
, (B.14)

τ φ̇+ ψ =
2
k2τ

(
ργθγ + ρνθν + ρgwθgw

ρ̄

)
, (B.15)

τ2φ̈+ τ
(
ψ̇ + 2φ̇

)
− ψ +

k2τ2

3
(φ− ψ) =

1
2

(
ργδγ + ρνδν + ρgwδgw

ρ̄

)
, (B.16)

φ− ψ =
6

k2τ2

(
ρνσν + ρgwσgw

ρ̄

)
, (B.17)

where ρ̄ = ργ + ρν + ρgw. We then take Eq. (B.14) and solve for ψ. When we do this we get,

ψ = −
(

1
2

[
ργδγ + ρνδν + ρgwδgw

ρ̄

]
+ τ φ̇+

(τk)2

3
φ

)
. (B.18)

Our starting point will be the assumption that the density contrast in the CGWB is subdominant
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to the density contrasts in the photons and neutrinos. We also want to investigate a solution that

reverts back to the usual adiabatic mode when ρgw → 0. In order to do this we first review the basic

results for the adiabatic case,

δc = δb =
3
4
δν =

3
4
δγ = δr0, (B.19)

φ ∝ ψ ∼ ψ0, (B.20)

where δr0 and ψ0 are constant. We then suppose that δgw is at least linear in kτ . In particular, we

suppose the following expansion,

ψ = ψ0 + ψ1(kτ) + ψ2(kτ)2, (B.21)

φ = φ0 + φ1(kτ) + φ2(kτ)2, (B.22)

δγ = δr0 +A1(kτ) +A2(kτ)2, (B.23)

δν = δr0 +B1(kτ) +B2(kτ)2, (B.24)

δgw = C1(kτ) + C2(kτ)2, (B.25)

δb =
3
4
δr0 +D1(kτ) +D2(kτ)2, (B.26)

δc =
3
4
δr0 + E1(kτ) + E2(kτ)2. (B.27)

In the usual, adiabatic, case all of the constant pieces can be written in terms of ψ0,

ψ0 =
20C

15 + 4Rν
, (B.28)

φ0 =
(

1 +
2
5
Rν

)
ψ0, (B.29)

δr0 = −2ψ0, (B.30)

where Rν ≡ ρν/(ργ + ρν) and C is the constant that appears in the adiabatic solution in the

synchronous gauge as h = C(kτ)2. We will find that all of the unknowns in the more general case

can also be written in terms of ψ0.

We now consider the hydrodynamical equations for θ and σ. From the above expressions for the
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perturbation potentials and the perturbations we are able to conclude that,

θγ =
(

1
4
δr0 + ψ0

)
k2τ, (B.31)

θν =
(

1
4
δr0 + ψ0

)
k2τ, (B.32)

θgw = ψ0k
2τ, (B.33)

θc =
1
2
ψ0k

2τ, (B.34)

σν =
2
15

(
1
4
δr0 + ψ0

)
k2τ2, (B.35)

σgw =
2
15
ψ0k

2τ2. (B.36)

We are now able to use the linearized Einstein equations to solve for ψ0. We can either use the (0, 0)

or the (0, i) equation. In both cases we are able conclude that,

ψ0 = −δr0(ργ + ρν)
2ρ̄

. (B.37)

We are now able to use the (i, j) linearized Einstein equation to find φ0 and we find,

φ0 =
ψ0

5ρ̄
[(5 + 9Rgw)ργ + 7(1 +Rgw)ρν ] , (B.38)

where we have defined Rgw ≡ ρgw/(ργ +ρν). It is a simple matter to check to see that when ρgw = 0

we regain the adiabatic relationship between φ0 and ψ0. To find the higher-order behavior we use

the expansions written down above, the three equations that dictate the evolution of the density

contrasts, the expression for ψ [Eq. (18)] and the (i, i) linearized Einstein equation [Eq. (16)]. We

then get two sets of 4 equations involving 4 unknowns. However, we find that the (i, i) linearized

Einstein equation is automatically satisfied for both the linear and second-order terms. We are

therefore free to choose one of the coefficients, and we choose to set C1 and C2 equal to zero

(corresponding to a homogeneous initial condition). We then find for the linear order,

A1 = B1 = C1 = D1 = E1 = φ1 = ψ1 = 0. (B.39)

To quadratic order we find that,

A2 =
ρ̄ψ0

3(ργ + ρν)
, (B.40)

B2 = A2, (B.41)

C2 = 0, (B.42)
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D2 =
3
4
A2, (B.43)

E2 =
ψ0

4
, (B.44)

φ2 =
ψ0

6
, (B.45)

ψ2 = −1
6

(3ψ0 − 2φ0) . (B.46)

Collecting all of these results, we find that in the conformal Newtonian gauge,

δγ = − 2ρ̄
ργ + ρν

ψ0 +
ρ̄

3(ργ + ρν)
ψ0k

2τ2, (B.47)

δν = δγ =
4
3
δb, (B.48)

δc = −3
2

ρ̄

ργ + ρν
ψ0 +

ψ0

4
k2τ2, (B.49)

δgw = 0 +O(k3τ3), (B.50)

θγ = ψ0

(
1− ρ̄

2(ργ + ρν)

)
k2τ, (B.51)

θν = θb = θγ , (B.52)

θc =
1
2
ψ0k

2τ, (B.53)

σν =
2
15
ψ0

(
1− ρ̄

2(ργ + ρν)

)
k2τ2, (B.54)

σgw =
2
15
ψ0k

2τ2. (B.55)

We now need to transform these results from conformal Newtonian gauge to synchronous gauge.

The expressions for this transformation can be found in Ref. [185]. We write them down here for

completeness,

ψ(τ) = β̈(τ) +
ȧ

a
β̇(τ), (B.56)

η(τ) = φ(τ) +
ȧ

a
β̇(τ), (B.57)

h(τ) = 2k2β(τ)− 6η(τ), (B.58)

where β describes the shift in the time coordinate between the two gauges, τsyn = τcon + β(τcon).

We note we solve Eq. (B.56) as a power series in kτ and we are able to conclude that,

β(τ) =
ψ0

4
τ2 +

ψ2

16
k2τ4. (B.59)

With this, we are able to deduce the functional form for η up to order k2τ2 using Eq. (B.57) and using

Eq. (B.58) we find a functional form for h up to order k2τ2. We note that we ignore the constant

term in h since such a term can be eliminated by an appropriate gauge transformation within the
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synchronous gauge. Finally we need to transform the perturbed elements of the stress-energy tensor

to synchronous gauge. Such a transformation is presented in Ref. [185]. However, here we correct a

typo in their Eq. (27a) with our Eq. (B.60):

δ(syn) = δ(con)− β̇
˙̄ρ
ρ̄
, (B.60)

θ(syn) = θ(con)− β̇k2, (B.61)

σ(syn) = σ(con). (B.62)

We note that these transformations apply to each species individually. Finally, we use the hy-

drodynamic equations in synchronous gauge in order to derive higher-order corrections to the θ

perturbations (we need these corrections, since in the limit of ρgw → 0 to our accuracy in conformal

Newtonian gauge these perturbations vanish). Finally, we find that in synchronous gauge,

h(τ) =
1
4

(2φ0 + ψ0)k2τ2, (B.63)

η(τ) =
1
2

(2φ0 + ψ0) +
1
24

(ψ0 − 2φ0)k2τ2, (B.64)

δγ = −2Rgwψ0

−1
6

[(2φ0 + ψ0)− 2Rgwψ0] k2τ2, (B.65)

δν =
4
3
δb = δγ , (B.66)

δgw = 2ψ0 −
1
6

(2φ0 + 3ψ0)k2τ2, (B.67)

δc = = −3
2
Rgwψ0 −

1
8

(2φ0 + ψ0)k2τ2, (B.68)

θγ = −1
2
Rgwψ0k

2τ − 1
72

[2φ0

+(1− 2Rgw)ψ0]k4τ3, (B.69)

θν = −1
2
Rgwψ0k

2τ

− 1
360

[10φ0 + (13− 18Rgw)ψ0]k4τ3, (B.70)

θgw =
1
2
ψ0k

2τ − 1
360

(10φ0 + 31ψ0) k4τ3, (B.71)

θc = 0, (B.72)

θb = θγ , (B.73)

σν =
1
15
ψ0(1−Rgw)k2τ2, (B.74)

σgw =
2
15
ψ0k

2τ2. (B.75)
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In order to use this in the CAMB program2 we need to do one more transformation. The

CAMB program uses the covariant gauge invariant formalism in order to evolve the perturbations

and calculate anisotropies pioneered by Hawking [282] and Ellis and Bruni [283] and expanded

upon by many subsequent authors [284, 285]. In this formalism, instead of dealing directly with

perturbations to a background metric, one considers a 4-velocity field, ui, and expands the Reimann

tensor in coordinates where the directions orthogonal to ui define the 3-space hypersurfaces. This

approach is manifestly gauge invariant. A particular choice of 4-velocity field is related to a choice of

gauge in that it specifies a set of observers in whose frame the perturbations are written. The zero-

acceleration (ZA) frame corresponds to the choice that the 4-velocity coincides with the 4-velocity

of the cold dark matter fluid, and hence follows geodesics. This frame is related to the synchronous

gauge and in order to find this relationship we compare the evolution equations in both formalisms.

We first consider the evolution equation for the perturbation potential (h in the synchronous

gauge), and the gradient of the local expansion (δθ in the zero-acceleration frame). In the two

formalisms we have,

ZA : (B.76)

x2δθ′ + xδθ + 3[(1−Rν)δγ +Rνδν ] = 0

Syn : (B.77)

x2h′′ + xh′ + 6[(1−Rν)δγ +Rνδν ] = 0.

From this we are able to conclude,

δθ =
1
2
h′. (B.78)

Next we consider the evolution of the density contrasts for relativistic species,

ZA : (B.79)

δ′α + qα +
4
3
δθ = 0

Syn : (B.80)

δ′α +
4
3k
θα +

2
3
h′ = 0.

Using the above result, we are able to conclude from this equation that,

qα =
4
3k
θα. (B.81)

2http://camb.info/
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Now we look at the equations that determine the evolution of the heat flux of a relativistic species,

ZA : (B.82)

q′α −
1
3

(δα − 2πα) = 0

Syn : (B.83)

θ′α −
1
4
k(δα − 4σα) = 0.

From this we are able to conclude that,

πα = 2σα. (B.84)

Finally we look at the equations that dictate the evolution of the anisotropic stress,

ZA : (B.85)

π′α −
2
5

(
qα +

4
3
σ

)
= 0

Syn : (B.86)

σ′α −
2
15

(
2
k
θα + h′ + 6η′

)
= 0.

From this we conclude that,

2σ = h′ + 6η′. (B.87)

One final note is that the CAMB program evolves all of the usual perturbation variables, however the

only perturbation potential that it evolves is the 3-curvature perturbation, ηµ ≡ (1/2)a (3)∇µ (3)R

[285, 286] where (3)∇ is the spatial covariant derivative. Then, in the case where the vorticity of the

4-velocity field vanishes (the assumption needed to investigate scalar-type perturbations, see, e.g.,

Ref. [285]),
(3)R = 2κρ− 2

3
θ2 + σµνσ

µν , (B.88)

where κ ≡ 8πG and σµν is the shear of the 4-velocity field, σµν ≡(3) ∇(µub) − θhµν/3, and hµν is

the projection operator given by hµν ≡ gµν − uµuν . From this expression, we are able to write the

linear comoving 3-curvature perturbation,

ηµ = κρδµ − 2Hδθµ. (B.89)

When we expand these variables in terms of a generalized harmonic basis discussed in Ref. [285],

we note that the powers of k and a are chosen so that the coefficient is dimensionless and so

that all harmonic coefficients are comoving. Hence, δθa =
∑
k(k2/a)θkQka. From the expression

for the 3-curvature above, we can see that (3)R ∼ a−2. Furthermore, since R ∼ 1/λ2 we have
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ηa =
∑
k(k3/a2)ηkQka. Finally, equating these expansion coefficients, we find that,

k3

a2
η = κρkδ − 2H

k2

a
δθ. (B.90)

Cleaning things up a bit, we finally obtain,

η = κρδ
a2

k2
− 2H

a

k
δθ. (B.91)

Now we use the definition, x ≡ k/(aH), to rewrite this as,

η =
3
x2

(
ργδγ + ρνδν + ρgwδgw

ρ̄

)
− 2

δθ

x
. (B.92)

We will now be able to write the zero-acceleration frame variables from what we have already

worked out in synchronous gauge. In the following we only present the leading order terms,

η = −(2φ0 + ψ0), (B.93)

δγ = −2Rgwψ0, (B.94)

δν =
4
3
δb =

4
3
δc = δγ , (B.95)

δgw = 2ψ0, (B.96)

qγ = −2
3
Rgwψ0x, (B.97)

qν = qγ , (B.98)

qgw =
2
3
ψ0x, (B.99)

qc = 0, (B.100)

vb =
3
4
qγ , (B.101)

πν =
2
15
ψ0(1−Rgw)x2, (B.102)

πgw =
4
15
ψ0x

2. (B.103)

Finally we need to relate our normalization, φ0, to the normalization used in CAMB. In order to do

this we note that δγ = −(1/3)χx2 in CAMB, which yields,

ψ0 =
10

15 + 4Rν
χ. (B.104)

In Fig. (B.1) we show the numerically determined evolution of the perturbations as a function of kτ .

We also show that our analytical expression for the evolution of δγ [Eq. (B.65)] follows the numerical

solution.
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Figure B.1: Evolution of the various perturbation variables as well as the perturbation potential,
η. For this figure we took the WMAP concordance model [81], Ngw = 0.1 and k = 0.112 Mpc−1.
The dashed line that follows the evolution of δγ is the analytic expression given in Eq. (B.65). We
can see that this analytic solution follows the numerically determined evolution up to and beyond
horizon crossing.
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Appendix C

Review of scalar tensor
equivalence1

The action for the scalar-tensor theory that is equivalent to f(R) gravity is

S =
1

2κ

∫
d4x
√
−g [f(φ) + fφ(φ)(R− φ)] + Sm, (C.1)

where fφ(φ) ≡ df/dφ and Sm is the matter action. The field equation for φ is φ = R if d2f/dφ2 6= 0.

Since the relation between φ and R is purely algebraic, it can be resubstituted into the action to

reproduce the action for f(R) gravity given by Eq. (5.23). After the conformal transformation

gEµν ≡ fφ(φ)gµν , the action becomes that of general relativity with a minimally coupled scalar field:

S =
1

2κ

∫
d4x
√
−gE

(
RE −

3
2fφ(φ)2

gµνE [∇Eµfφ(φ)][∇Eνfφ(φ)]− 1
fφ(φ)2

[φfφ(φ)− f(φ)]
)

+ Sm.(C.2)

Introducing a canonical scalar field ϕ such that fφ(φ) = exp(
√

2κ/3ϕ), Eq. (C.2) can be rewritten

as

S =
∫
d4x
√
−gE

(
1

2κ
RE −

1
2

(∇Eϕ)2 − V (ϕ)
)

+ Sm,

where the potential is defined by

V (ϕ) ≡ φ(ϕ)fφ[φ(ϕ)]− f [φ(ϕ)]
2κfφ[φ(ϕ)]2

. (C.3)

The absence of the kinetic term in Eq. (C.1) implies the Brans-Dicke parameter of f(R) gravity

theories is ω = 0 [226]. From an analysis of Brans-Dicke gravity, if the scalar degree of freedom can

propagate on scales much larger than the solar system, we can conclude that γ = (1+ω)/(2+ω) = 1/2

[226].

1The material presented this appendix was first published in, Solar system constraints to general f(R) gravity,
Takeshi Chiba, Tristan L. Smith, and Adrienne L. Erickcek, Phys. Rev. D75, 124014 (2007). Reproduced here with
permission, copyright (2007) by the American Physical Society.
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In the frame where ϕ is canonical (the Einstein frame) ϕ has the equation of motion

�Eϕ =
dV

dϕ
+
√
κ

6
f ′(φ)−2TM, (C.4)

where the prime denotes differentiation with respect to φ. When we re-express Eq. (C.4) in terms of

f ′(φ) and the usual metric gµν , we recover Eq. (5.29). Therefore, we stress that this reformulation

contains no new dynamics compared to the expressions used in this chapter. The two formulations

are entirely equivalent.

In order to derive the mass mϕ, we let ϕ = ϕ0(t)+ϕ1(r) and TM = T cos+T s so that ϕ0(t) satisfies

Eq. (C.4) with T cos. We then expand to linear order in the perturbation ϕ1, writing Eq. (C.4) in

terms of the physical metric gµν . We find

�ϕ1 = f ′(φ0)

(
d2V

dϕ2

∣∣∣∣
ϕ0

− 2
3
κ

T cos

[f ′(φ0)]2

)
ϕ1 +

√
κ

6
T s

f ′(φ0)
, (C.5)

where φ0 denotes the background field value for the φ field. Using Eq. (C.3) to evaluate d2V/dϕ2,

we have

m2
ϕ =

f ′(φ0)
3

[
1

f ′′(φ0)
+

φ0

f ′(φ0)
− 4f(φ0)

[f ′(φ0)]2
− 2κ

T cos

[f ′(φ0)]2

]
. (C.6)

Finally, we may rewrite m2
ϕ as Eq. (5.36) since φ0 = R0. We conclude that if m2

ϕr
2 � 1 then

γ = 1/2 as discussed in Ref. [216].
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Appendix D

A string-inspired derivation of the
Chern-Simons field equations1

The effective 4-D string action for heterotic and type II string theory can be written as [69, 287]

S =
∫

d4x
√
−g
[
− 1

2κ2
R− αHµνλH

µνλ + · · ·
]
, (D.1)

where R is the Ricci scalar, Hµνλ is the Kalb-Ramond (KR) three-form field strength, and α is a

constant with units of length squared. We are neglecting numerous terms, including Gauss-Bonnet

terms, dilaton terms, and matter terms, some of which depend on compactification. The Kalb-

Ramond field is written in differential-form notation as

H =
1
3

dB + ωL, (D.2)

where B is a two-form field (known as the KR field) and ωL is the Lorentz-Chern-Simons term.

The Lorentz-Chern-Simons three-form can be written in terms of the spin connection ω as [288]

(ωL)µνλ =
1
2

Tr
[
ω[λ(dω)µν] +

4
3
ω[µω[νωλ]]

]
, (D.3)

where the trace is over the suppressed vector indices of the spin connections. We then have the

identity,

dH =
1
6

Tr(R ∧R), (D.4)

associated with the KR field strength, where R is the Riemann tensor and the trace is over the

tensor indices; the right-hand side is also known as the Hirzebruch density. Taking the Hodge dual
1The material presented in this appendix was first published in, The effects of Chern-Simons gravity on bodies

orbiting the Earth, Tristan L. Smith, Adrienne L. Erickcek, Robert R. Caldwell, and Marc Kamionkowski, Phys. Rev.
D77, 024015 (2008). Reproduced here with permission, copyright (2008) by the American Physical Society.
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of the Hirzebruch density, we obtain

1
6
∗Tr(R ∧R) =

1
4!
εµνρλRαβµνR

αβ
ρλ = − 1

12
RR̃. (D.5)

Let us now consider the equation of motion for the two-form KR field. We can rewrite the action

involving B as

SB ∝
∫

H ∧∗H − ωL ∧∗ ωL (D.6)

∝
∫

1
9

dB ∧∗ dB +
1
3

dB ∧∗ ωL +
1
3
ωL ∧∗ dB.

On variation of this action with respect to B, we have the equation of motion,

d∗H = 0. (D.7)

Therefore the equation of motion for the KR two-form field shows that ∗H is closed. In other words,

at least locally, there exists a pseudo-scalar b (the KR axion, or sometimes called the universal axion)

such that

H = ∗db. (D.8)

Noting that −∗d∗dφ = �φ, we have the equation of motion for b,

�b = −∗dH = −1
6
∗Tr(R ∧R) =

1
12

RR̃. (D.9)

Varying the action given by Eq. (D.1) with respect to the metric we obtain2 [70]

−Gµν = κ2α{6Hµ
λρH

νλρ − gµνHλρσHλρσ + 4∇σ(Hλα(µR
ν)σ

αλ)}, (D.10)

where Gµν is the usual Einstein tensor. Given that the equation of motion for the two-form field B

allows us to write H = ∗db, we have

Hµνρ = εσµνρ∇σb. (D.11)

We can rewrite the field equation as

−Gµν = κ2α12
[
Tµνb +

1
3
∇σ(Hλα(µR

ν)σ
αλ)
]
, (D.12)

where Tµνb is the canonical stress-energy tensor for the pseudo-scalar field b. We will now show that

2The sign of the last term in this equation is different in Ref. [70]. The sign given here makes the divergence of
the right-hand side vanish as required by the Bianchi identity.
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the last term is actually the Cotton-York tensor.

Using the Bianchi identities for the Riemann tensor, we first note that we have the identity,

∇σR̃σ(µ|τ |ν) = ε(µ|τσρ∇ρR|ν)
σ. (D.13)

With this, it is straightforward to show that

∇σ([∇τ b]ετλα(µR
ν)σ

αλ) = 2∇σ([∇τ b]R̃σ(ν|τ |µ)) = 2Cµν , (D.14)

where Cµν is the Cotton-York tensor defined in Eq. (6.6). Choosing α = `2/12 and taking b→ −θ/`

so that in the absence of the Cotton-York tensor we regain general relativity sourced by a canonical

scalar field θ, the equations of motion are

Gµν − 2`κ2

3
Cµν = −κ2Tµνθ , (D.15)

�θ = − 1
12
`RR̃. (D.16)

We can see that these field equations are identical to Eqs. (6.4) and (6.5) with vanishing scalar

potential.
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Appendix E

Calculation of the vector potential1

In Lorenz gauge (∂µAµ = 0) the Chern-Simons Ampère’s law, Eq. (6.23), can be written,

�

[
~A+

1
mcs

~B

]
= −4πG~J, (E.1)

where we have neglected the time variation in θ̇ in order to place mcs inside the d’Alembertian

operator. We are dealing with a stationary source, and so � = ∇2. We may invert Eq. (E.1) to

obtain

~A+
1
mcs

~∇× ~A = G

∫ ~J

|~r − ~r′|
d3r′. (E.2)

We can write this as (
I +

1
mcs

~∇×
)
~A = G

∫ ~J

|~r − ~r′|
d3r′, (E.3)

where I is the identity matrix. Multiplying both sides of the equation by
[
I − (1/mcs)~∇×

]
, we

obtain

~A− 1
m2

cs

~∇× ~∇× ~A = G

(
I − 1

mcs

~∇×
)∫ ~J

|~r − ~r′|
d3r′. (E.4)

Noting that ~∇× ~∇× ~A = −∇2 ~A in Lorenz gauge, we have

∇2 ~A+m2
cs
~A = ~S, (E.5)

where

~S ≡ m2
csG

(
I − 1

mcs

~∇×
)∫ ~J

|~r − ~r′|
d3r′. (E.6)

We recognize this as the inhomogeneous Helmholtz equation. For a rotating homogeneous sphere,

the mass current is given by

~J = ρ[~ω × ~r]Θ(R− r), (E.7)

1The material presented in this appendix was first published in, The effects of Chern-Simons gravity on bodies
orbiting the Earth, Tristan L. Smith, Adrienne L. Erickcek, Robert R. Caldwell, and Marc Kamionkowski, Phys. Rev.
D77, 024015 (2008). Reproduced here with permission, copyright (2008) by the American Physical Society.
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where ρ is the density, ω is the angular velocity, R is the radius, and Θ is the Heaviside step function.

The most general Green’s function for the inhomogeneous Helmholtz equation is

G(~r, ~r′) = −cos(mcs|~r − ~r′|) + γ̃ sin(mcs|~r − ~r′|)
4π|~r − ~r′|

, (E.8)

where γ̃ is a constant. However, the second term (that is proportional to γ̃) remains constant for

|~r′ − ~r| � m−1
cs , implying that the influence of the source does not decrease with distance (for

distances r � m−1
cs ), which we interpret as unphysical. We therefore set γ̃ = 0. We then use

multipole expansions for the Green’s function,

−cos(mcs|~r − ~r′|)
4π|~r − ~r′|

= mcs

∑
`,m

j`(mcsr<)y`(mcsr>)Y ∗`m(r̂′)Y`m(r̂), (E.9)

where j`(x) and y`(x) are, respectively, spherical Bessel function of the first and second kind, Y`m(r̂)

is a spherical harmonic, and the subscript < (>) means the argument is the lesser (greater) of r or

r′. The solution for ~A is then obtained by integrating,

~A =
∫

d3r′G(~r, ~r′)~S(~r′), (E.10)

where all vectors are expanded in a Cartesian basis.

The resulting expression for ~A may be split into a general-relativistic and a Chern-Simons term,

~A = ~AGR + ~ACS, where

~AGR = −4πGρ
3

R3(r̂ × ~ω)×


r
R

[
1
2 −

3
10

(
r
R

)2]
, r ≤ R,

R2

5r2 , r ≥ R,
(E.11)

is the gravitomagnetic vector potential in general relativity, and

~ACS = −4πGρR3

mcsR
[C1(r) ~ω + C2(r) r̂ × ~ω

+C3(r) r̂ × (r̂ × ~ω)] , (E.12)

with

C1(r) = − r2

5R2
+

1
3

+
2

m2
csR

2
+

2R
r
y2(mcsR)j1(mcsr),

C2(r) =
mcsr

m2
csR

2
+mcsRy2(mcsR)j1(mcsr),

C3(r) =
r2

5R2
+mcsRy2(mcsR)j2(mcsr), (E.13)
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inside the sphere, and

C1(r) =
2R3

15r3
+

2R
r
j2(mcsR)y1(mcsr),

C2(r) = mcsRj2(mcsR)y1(mcsr),

C3(r) =
R3

5r3
+mcsRj2(mcsR)y2(mcsr),

(E.14)

outside the sphere. We note that this solution for ~A is finite at the origin and continuous across the

boundary of the sphere, so it produces a finite ~B at the origin and a continuous metric. Taking the

curl of this solution for ~A yields the expressions for ~B given in Section 6.4.

Thus far, we have not discussed any boundary conditions on the gravitomagnetic field ~B at the

surface of the sphere. The field equations for ~B imply two such boundary conditions, and we will

now prove that the continuity of ~A guarantees that these two boundary conditions are satisfied. The

first boundary condition follows from ~∇ · ~B = 0; as in electromagnetism, this condition implies that

the component of ~B that is perpendicular to the surface must be continuous. The second boundary

condition follows from the Chern-Simons version of Ampère’s law:

~∇× ~B − 1
mcs
∇2 ~B = 4πG~J. (E.15)

Integrating this equation over a surface with vanishing area that is perpendicular to the surface of

the sphere and contains the boundary implies that the components of [ ~B + (1/mcs)~∇× ~B] that are

parallel to the sphere’s surface must be continuous across the boundary.

Generally, the continuity of ~A would not imply continuity of its curl. However, our ~A is a solution

to Eq. (E.2), which may be rewritten as

~A+
1
mcs

~B = ~AGR. (E.16)

Since ~A and ~AGR are both continuous across the surface of the sphere, this equation implies that

~B is also continuous across the surface of the sphere. Furthermore, taking the curl of this equation

shows that ~∇× ~B is continuous provided that ~B and ~∇× ~AGR are continuous. Taking the curl of

Eq. (E.11) confirms that ~∇× ~AGR is continuous across the surface of the sphere. Therefore, we have

shown that the continuity of ~A implies that both ~B and ~∇× ~B are also continuous, which guarantees

that both boundary conditions on ~B are satisfied by our solution.



152

Appendix F

An alternative method to solve the
Chern-Simons gravitomagnetic
field equations1

Here we present an alternative method to solve the Chern-Simons altered Amperè’s law. This

method allows us to explicitly derive the complete set of homogeneous solutions to the Chern-Simons

Amperè’s law.

We begin with a quick review of the relevant field equation. For a homogeneous scalar field, θ(t),

we find that in Chern-Simons gravity the new Amperè’s law is given by

~∇× ~B − ~̇E − 1
2
`3θ̇� ~B = 4πG~J. (F.1)

We can rewrite this equation as

�

[
~A+

1
mcs

~B

]
= −4πG~J, (F.2)

where we have defined a mass, mcs ≡ 2/(`3θ̇). For a general mass current, ~J , we can invert the

above equation and we are now left to solve the system of equations

~∇× ~A+mcs
~A = mcs

~S, (F.3)

where ~S ≡ −4πG�−1 ~J . Now we wish to rewrite this expression so that the unknown vector field

has vanishing divergence. Clearly, in general, the above expression implies

mcs
~∇ · ~A = ~∇ · ~S. (F.4)

1This appendix consists of previously unpublished work by the author.
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We then define a new vector field, ~χ ≡ ~A− ~S. Rewriting Eq. (F.3) in terms of ~χ we have

~∇× ~χ+mcs~χ = −~∇× ~S. (F.5)

With this, we can see that ~∇ · ~χ = 0. It is therefore said that ~χ is a soleniodal vector field. This is

what we wanted because with this there is a very nice decomposition theorem that will allow us to

solve Eq. (F.3) directly.

F.0.3 Decomposition of a soleniodal vector field

The general theory of the decomposition of a soleniodal vector field is presented in Refs. [289–291].

We now review the necessary details of this decomposition.

It can be shown that any soleniodal vector field ~χ can be generally written in terms of two scalar

functions,

~χ = ~∇×
(

Ψ
r
~r

)
+ ~∇× ~∇×

(
Φ
r
~r

)
. (F.6)

The first term on the right-hand side is said to be toroidal with defining scalar Ψ and the second

term is said to be poloidal with defining scalar Φ. It can then be shown that, if we expand these

defining scalars in terms of spherical harmonics,

Ψ =
∑
`,m

T`m(r)Y`m(θ, φ), (F.7)

Φ =
∑
`,m

P`m(r)Y`m(θ, φ), (F.8)

then in spherical coordinates we have

Tr = 0, (F.9)

Tθ =
T`m(r)
r sin(θ)

∂Y`m
∂φ

, (F.10)

Tφ = −T`m(r)
r

∂Y`m
∂θ

, (F.11)

Pr =
`(`+ 1)
r2

P`mY`m, (F.12)

Pθ =
1
r

dP`m
dr

∂Y`m
∂θ

, (F.13)

Pφ =
1

r sin(θ)
dP`m
dr

∂Y`m
∂φ

, (F.14)

where for the rest of the chapter the sum over ` and m is implied, Ti is the component of the toroidal

vector field, and Pi is the component of the poloidal vector field.
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We want to solve the equation

~∇× ~χ+mcs~χ = ~S, (F.15)

for some known source ~S. We write ~χ as in Eq. (F.6) and expand the scalar functions as in Eqs. (F.7)

& (F.8) . We now wish to express ~∇× ~χ in terms of T`m and P`m.

We have that

~χ = ~∇× ~∇×
(

Ψ
r
~r

)
+ ~∇× ~∇× ~∇×

(
Φ
r
~r

)
. (F.16)

We can see that the first term is just a poloidal vector field with defining scalar Ψ and it turns out

that we can rewrite the second term as a toroidal vector field with defining scalar given by

Φ̃ = −r∇2 Φ
r
. (F.17)

Rewriting the last term in terms of P`m we have

Φ̃ =
∑
`,m

[
`(`+ 1)
r2

P`m −
d2P`m
dr2

]
Y`m(θ, φ). (F.18)

We can now write out Eq. (F.15) for each component:

Sr = mcs
`(`+ 1)
r2

P`mY`m +
`(`+ 1)
r2

T`mY`m, (F.19)

Sθ = mcs

[
T`m

r sin(θ)
∂Y`m
∂φ

+
1
r

dP`m
dr

∂Y`m
∂θ

]
+

1
r

dT`m
dr

∂Y`m
∂θ

+
1

r sin(θ)
∂Y`m
∂φ

[
`(`+ 1)
r2

P`m −
d2P`m
dr2

]
, (F.20)

Sφ = mcs

[
−T`m

r

∂Y`m
∂θ

+
1

r sin(θ)
dP`m
dr

∂Y`m
∂φ

]
+

1
r sin(θ)

dT`m
dr

∂Y`m
∂φ

−1
r

∂Y`m
∂θ

[
`(`+ 1)
r2

P`m −
d2P`m
dr2

]
. (F.21)

We now write

Sr =
∑
`,m

Sr`mY`m (F.22)

and with this we see that Eq. (F.19) implies

T`m = S̃r`m −mcsP`m, (F.23)

where we have defined

S̃r`m ≡
r2

`(`+ 1)
Sr`m. (F.24)

It is clear that this equation isn’t defined for ` = 0. However, we can see that since ~∇ · ~S = 0 we
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have that Sr00 = 0. We can now rewrite Eqs. (F.20) and (F.21) to find

S̃θ =
1

sin(θ)
∂Y`m
∂φ

[
`(`+ 1)
r2

(
P`m −m2

cs

)
− d2P`m

dr2

]
, (F.25)

S̃φ = −∂Y`m
∂θ

[
`(`+ 1)
r2

(
P`m −m2

cs

)
− d2P`m

dr2

]
, (F.26)

where we have defined

S̃θ ≡ rSθ −mcs
S̃r`m

sin(θ)
∂Y`m
∂φ

− dS̃r`m
dr

∂Y`m
∂θ

, (F.27)

S̃φ ≡ rSφ +mcsS̃r`m
∂Y`m
∂θ

− 1
sin(θ)

dS̃r`m
dr

∂Y`m
∂φ

. (F.28)

We now note that the raising/lowering operator for spherical harmonics is given by

L± = e±iφ
[
i cot(θ)

∂

∂φ
± ∂

∂θ

]
. (F.29)

With this we can see that we have

e−iφ[i cos(θ)S̃θ + S̃φ] =
√

(`+m)(`−m+ 1)Y`m−1 × (F.30)[(
`(`+ 1)
r2

−m2
cs

)
P`m −

d2P`m
dr2

]
.

At first glance this is an odd equation since it seems to place a restriction on the source function.

In particular it seems to imply that in its spherical harmonic expansion this source function cannot

have nonzero terms with `+m = 0. However, this is a consequence of the fact that we have supposed

that the source function is soleniodal itself. Assuming that we knew the two defining scalars for the

source, we can show that the source function in Eq. (F.31) can be written as

√
(`+m)(`−m+ 1)Y`m−1

[
ST`m −mcsSP`m

]
, (F.31)

where ST,P`m are the spherical harmonic coefficents for the toroidal and poloidal defining scalars for

the source. Therefore, Eq. (F.31) allows us to find P`m for `+m 6= 0. We must use either Eq. (F.27)

or Eq. (F.28) in order to solve for cases where `+m = 0.

Let us now consider how we are to solve this equation for the two cases we are interested in:

the field due to a moving point mass and the field due to a rotating homogeneous sphere. It will

turn out that for both of these sources we have the condition that Sr = 0. With this we also have

S̃θ = rSθ and S̃φ = rSφ. Then solving the CS gravitomagnetic field equations entails two steps.

First, we expand

e−iθr[i cos(θ)Sθ + Sφ] (F.32)
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in spherical harmonics and solve Eq. (F.31). We then have to check that we haven’t missed any

terms with ` + m = 0. We do so by looking at either Eq. (F.27) or Eq. (F.28) and expanding Sθ
or Sφ in spherical harmonics, respectively, for values of ` and m such that ` + m = 0. We then

solve each equation that respects this condition. With this, we have found the particular solution

for Φ. Since Sr = 0 we have that T`m = −mcsP`m therefore we have Ψ = −mcsΦ. With this, we

can reconstruct ~χ through Eq. (F.6).
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