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Abstract

Biology as a scientific discipline is becoming evermore quantitative as tools become available

to probe living systems on every scale from the macro to the micro, and now even to the

nanoscale. In quantitative biology, the challenge is to understand the living world in an in

vivo context, where it is often difficult for simple theoretical models to connect with the

full richness and complexity of the observed data. Computational models and simulations

offer a way to bridge the gap between simple theoretical models and real biological systems;

towards that aspiration are presented in this thesis three case studies in applying computa-

tional models that may give insight into native biological structures. The first is concerned

with soluble proteins; proteins, like DNA, are linear polymers written in a twenty-letter

“language” of amino acids. Despite the astronomical number of possible protein sequences,

a great amount of similarity is observed among the folded structures of globular proteins.

One useful way of discovering similar sequences is to align their sequences, as done, e.g.,

by the popular BLAST program. By clustering together amino acids and reducing the

alphabet that proteins are written in to fewer than twenty letters, we find that pairwise

sequence alignments are actually more sensitive to proteins with similar structures. The

second case study is concerned with the measurement of forces applied to a membrane.

We demonstrate a general method for extracting the forces applied to a fluid lipid bilayer

of arbitrary shape and show that the subpiconewton forces applied by optical tweezers to

vesicles can be accurately measured in this way. In the third and final case study we ex-

amine the forces between proteins in a lipid bilayer membrane. Due to the bending of the

membrane surrounding them, such proteins feel mutually attractive forces which can help

them to self-organize and act in concert. These findings are relevant at the areal densities

estimated for membrane proteins such as the MscL mechanosensitive channel. The findings

of the analytical studies were confirmed by a Monte Carlo Markov Chain simulation using

the fully two-dimensional potentials between two model proteins in a membrane. Living
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systems present us with beautiful and intricate structures, from the helices and sheets of

a folded protein to the dynamic morphology of cellular organelles and the self-organization

of proteins in a biomembrane and a synergy of theoretical and in silico approaches should

enable us to build and refine models of in vivo biological data.
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Chapter 1

Introduction

Biology finds itself at the opening of this new millenium with one of the most exciting

outlooks of any field in science. Techniques to observe, probe, and quantify biological

processes now range from the macroscopic down to the level of nanometers and single

molecules. As biological systems are probed in ever greater and ever more quantitative

detail, the demand for quantitative models and a theoretical understanding of biology will

only increase. Although sometime accused by detractors of “stamp collecting”1, it is with

deep respect that we acknowledge the contributions and genius of biologists working to

build a description of the living world around us. However like all other good citizens of the

universe, biological systems must obey the laws of physics! Applying those laws and ideas

to biology forms the basis of the field of physical biology. The challenge in quantitative

biology has always been to understand the living world in its native, in vivo, context.

As physicists, our understanding begins with making order-of-magnitude estimates. In

cellular biology the typical length scales are nanometers to microns, and the time scales

vary from picosecond thermal fluctuations in a folded protein to many minutes for the

time it takes an Escherichia coli cell to divide. Back-of-the-envelope estimates give way to

abstracted theoretical models, treating, e.g., DNA as a bent beam or a protein as a polymer

on a regular lattice.

If biologists have been accused of stamp collecting, their retort to physicists must be that

their models, while perhaps successful in describing in vitro behavior, often have little to do

with the full complexity and subtle interplay between in vivo systems. How, for example,

can a pithy equation from a simplified model hope to shed light on the full richness and
1Ernest Rutherford once (in)famously pronounced, “In science, there is only physics. All the rest is stamp

collecting.”
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complexity of, e.g., globular protein structure or the intricate morphology of cell organelles?

The bridge between these two worlds, theoretical biology on the one hand and in vivo

observations on the other, lies in the world of computation and simulation. Simulations allow

us to unfetter our theoretical models from the simplifications necessary to obtain tidy (and

useful) analytical expressions and allow their full splendour to be unleashed and compared

with experiment. In this thesis I present three case studies in applying computational

techniques to biological systems to generate insights into their structure.

In Chapter 2 we study the use of reduced alphabets as a tool for identifying proteins

with structural similarity. When the sequences of two proteins are compared with one

another, a reference table or matrix must be used to specify the reward or penalty for

aligning any two amino acids with one another. Given that there are twenty naturally

occurring amino acids, this scoring matrix must contain 210 such parameters, and when

better performance is desired, even more parameters are added to the mix. Our study in

bioinformatics departs from the seeming status quo in a field which typically dictates that

the more parameters, the better. By taking a contrarian approach of coarse-graining, we

show that the sensitivity of pairwise alignments between protein sequences with structural

similarity is actually increased. See Fig. 2.15 where we observe that two reduced alphabets,

SDM12 and HSDM17 with 12 and 17 letters, respectively, outperform the popular and

widely-used BLOSUM62 scoring matrix in identifying structurally similar proteins with

pairwise sequence alignments [1, 2]. Our study was sweeping in its scope, testing over

150 different schemes for reducing the amino acid alphabet and included statistical tests

of the significance of those results using state-of-the-art bootstrapping techniques [3]. We

expect that the promising improvements afforded by reduced alphbets shown in this study

of pairwise alignments will also be observed in future studies with reduced alphabets and

profile or HMM alignments.

In Chapter 3 we demonstrate the measurement of applied force by analyzing the ob-

served conformation of a phospholipid bilayer. Since the 1970s when the membrane elasticity

theory of Helfrich, Canham, and Evans [4–6] was first exposited it has been known that

this measurement was possible; however the combined difficulty of accurately determining

and numerically analyzing the shape of the membrane made it too difficult to attempt.

We demonstrate for the first time a general technique for measuring the forces on a fluid

lipid bilayer based on its conformation alone and verify the forces measured in this way
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Figure 2.15: Reduced alphabet performance in area under the Receiver Operating
Characteristic curve. (A) Receiver Operating Characteristic (ROC) curves for the top
performing alphabets. The integral of this curve gives a measure of how well the entire
pooled list of hits is sorted; a perfect method would have an ROC area of unity. (B) Overall
sensitivity of the SDM alphabets as measured by the area under the ROC curve. The level
of sensitivity of BL62 11/1 is shown with the black dashed line. Points indicate reduced
alphabets that were tested; the connecting lines are a guide to the eye.

by comparison with force measurements from the optical trap used to apply force to giant

unilamellar vesicles. The key result of this project is shown in Fig. 3.13 where we show

that this technique accurately measures force in the subpiconewton regime. Given the

explosion in fully three-dimensional membrane structures that are now becoming available

through techniques like electron cryo-tomography and confocal microscopy we envision that

this technique will become a valuable tool for informing models of membrane remodeling

processes in vivo.

Finally in Chapter 4 we study the physics of proteins in a lipid bilayer interacting

via the bending of the membrane. Within the lipid bilayer of the cell are a multitude of

proteins which help to broker the interactions of a cell with its outside environment. These

proteins bend the membrane surrounding them and through this interaction create forces

which may attract or repel other nearby proteins. This effect is observed in everyday life as

attractive forces between Cheerios in a cereal bowl or bubbles in a champagne glass [7] and

in this case has interesting implications for nanoscale interactions in a cell. We show that

proteins interacting through bending of the surrounding lipid bilayer not only attract one

another but may also have cooperative effects in gating of, e.g., membrane channels such
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Inset above: Membrane conformations as a function of axial length (µm).

as MscL, a protein channel with both open and closed states that helps prokaryotic cells

cope with hypo-osmotic shock [8]. Fig. 4.5 shows how two protein channels, interacting

through a membrane, increase their probability of being in the open state. Such effects are

relevant at the estimated in vivo density of MscL channels and may have consequences for

our thinking about how MscL and other such membrane proteins function in living cells.

The challenge going forward is to stand on the shoulders of such giants as Darwin and

Mendel to describe biology quantitatively, ultimately allowing us to explore, understand

and predict the behavior of living systems as never before possible. As a discipline, biology

is one of the most demanding, requiring insights and understanding from such a wide variety

of fields: chemistry, physics, and mathematics all play their part. It is my opinion that the

integration and synergy of theoretical, in silico, in vitro, and in vivo insights from these

areas will combine to make biology the source of some of the most exciting developments

in science during the next century.
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Figure 4.5: Conformational statistics of interacting MscL proteins. Interactions
between neighboring channels lead to shifts in the probability that a channel will be in
the open state (dashed lines). The sensitivity and range of response to tension, dPopen/dτ ,
are also affected by bilayer deformations (solid lines). Popen and dPopen/dτ are shown for
separations of 0.5 nm (red) and 1.5 nm (green) with reference to noninteracting channels
at d = ∞ (blue). Interactions shift the critical gating tension for the closest separation
by ∼ 12%. Additionally, the peak sensitivity is increased by ∼ 90% from ∼ 5 nm2/kBT to
∼ 9.5 nm2/kBT , indicating a Hill coefficient of ∼ 2.
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Chapter 2

Reduced amino acid alphabets can
improve the sensitivity and
selectivity of pairwise sequence
alignments

2.1 Introduction

Both DNA and proteins are linear polymers that can be thought of usefully in terms of their

sequences: DNA as a sequence of nucleotides and proteins as a sequence of amino acids.

The alphabet of DNA is well known; the (perhaps) less familiar alphabet of amino acids is

shown in Table 2.1 below.

One-letter code Three-letter code Amino acid One-letter code Three-letter code Amino acid
A Ala alanine M Met methionine
C Cys cysteine N Asn asparagine
D Asp aspartic acid P Pro proline
E Glu glutamic acid Q Gln glutamine
F Phe phenylalanine R Arg arginine
G Gly glycine S Ser serine
H His histidine T Thr threonine
I Ile isoleucine V Val valine
K Lys lysine W Trp tryptophan
L Leu leucine Y Tyr tyrosine

Table 2.1: One and three letter codes for the 20 commonly occurring amino acids

One instructive way to compare two sequences (DNA or protein) is to align them so

that the conserved parts of the sequence (the parts that have stayed the same) line up with

one another. Methods to do this quickly and accurately are an active area of research in

bioinformatics, but most of them rely on one of two main schemes for comparing sequences:
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global alignment [1] and local alignment [2]. In a global alignment we seek to align ev-

ery letter in the sequences, whereas in a local alignment we only seek the best matching

subsequences. This can be illustrated by a simple artificial example taken from Reference

[3]. Suppose we want to align the sequences PELICAN and COELACANTH. In a global

alignment we must use every letter from both sequences, but we allow ourselves to use gaps.

One such global alignment is:

P-ELICAN--
COELACANTH

where a “-” character indicates a gap. With a local alignment we are only concerned with

subsequences that match well; in this case the best matching subsequences are:

ELICAN
ELACAN

Local alignments are well-adapted to quickly finding the regions of greatest similarity

in two sequences and will be discussed in more detail in Section 2.2.2. However both global

and local alignments require a lookup table or matrix which prescribe a score (positive or

negative) for lining up letters in the two sequences being compared; in the simplest case,

this table will be symmetric and at least 20 by 20 in the case of proteins since there are

20 naturally occurring amino acids. The score for the entire alignment is calculated by

simply adding up the score tabulated in the matrix for each pair of aligned letters. These

matrices are called substitution or scoring matrices and they tell us nature’s affinity for

substituting one amino acid in favor of another as proteins evolve. Substitution matrices

will be discussed in more detail in Section 2.2.1 but here it will suffice to say that they are

formulated such that a favorable or likely substitution is assigned a positive score while one

that is unlikely will have a negative score. Pairwise alignment of sequences has become a

useful tool for quickly finding relationships among proteins and DNA, as manifest by the

tremendous popularity of tools such as BLAST [4].

An interesting property of proteins beyond their linear sequence is that they can fold

into compact, globular structures. These compact structures exhibit common themes or

“folds”, i.e., a common group of secondary structures with the same orientation and topol-

ogy. In 1972 Anfinsen, Moore, and Stein shared the Nobel Prize in Chemistry for showing
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compelling evidence for the so-called “thermodynamic hypothesis” that the final three-

dimensional configuration of a protein in its native environment is determined entirely by

its linear sequence. Since that time it has been an area of intense research to successfully

predict the folding of proteins from linear polymers to their final compact, globular native

state.

As an example of theoretical efforts to understand protein folding we showcase the “HP

model”, first introduced by Dill [5]. This model derives from the observation that hydropho-

bicity will tend to dictate a minimum free energy protein conformation with hydrophobic

residues buried in the interior and the hydrophilic residues exposed at the surface of a

folded protein, suggesting that these gross features are dominant in dictating the fold. The

HP model has been used fruitfully with lattice folding methods to generate structures with

motifs analogous to those in natural proteins [6] as well as to design de novo small globular

proteins by patterning of polar and nonpolar residues [7].

We show below in Fig. 2.1 examples of two-dimensional and three-dimensional structures

generated in an HP folding study [6] which highlight the types of insights that may be

gained from HP lattice folding models. The authors of that study used a simple model for

the energy of a particular lattice configuration:

H =
∑
i,j

δijEσiσj , (2.1)

where H is the total energy of the structure, σi is the type (H or P) of residue i, Eσiσj is

the energy of interaction of two given residue types (one of EHH , EHP or EPP ), and δij has

a value of one if residues i and j are immediate neighbors on the lattice and do not share

a bond (i.e., they do not follow one another in the primary sequence) and zero otherwise.

By choosing EHH < EHP < EPP and EPP + EHH < 2EHP configurations that place

hydrophobic residues on the interior and segregate H and P residue types are favored. Even

with such simple rules, protein-like secondary structures, reminiscent of alpha helices and

beta sheets, are observed in the lowest-energy configurations as shown in Fig. 2.1. Despite

these auspicious developments, the protein folding problem remains, as yet, unsolved in its

most general form and adding to the difficulty is the fact that many sequences may adopt or

“design” the same protein fold. This fact was recognized in the just-mentioned theoretical

study [6] and is observed widely among natural proteins as well.
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Figure 2.1: Examples of minimum energy configurations in three dimensions
(panel A) and two dimensions (panel B) generated by a simple HP folding
model. The light and dark colored balls represent polar and hydrophobic residues, respec-
tively. In both of these structures rudimentary secondary elements akin to alpha helices
and beta sheets can be discerned, arising from the favorable, non-bonded interactions of like
residues. In (B) the horizontal dashed lines highlight beta-sheet-like interactions while the
vertical dashed lines highlight alpha-helix-like interactions. Figure adapted from Reference
[6].

An example of diverse sequences adopting a common fold is shown below1 in Fig. 2.2.

The protective protein shell or capsid surrounding the nucleic acid of three viruses (PBCV-1,

adenovirus, and PRD1) have very similar architectures due to the fact that the major protein

constituent of their capsids (Vp54, hexon, and P3, respectively) share a common fold.

Even more fascinating is the fact that these three viruses afflict a diverse set of hosts: green

algae (PBCV-1), mammals (adenovirus), and bacteria (PRD1). However this similarity was

only discovered after the major capsid proteins of these viruses were crystallized and then

compared with one another; since the three sequences have negligible sequence similarity to

one another the common fold and probable evolutionary relationship between them could

not have been discovered by pairwise sequence alignment.

This example from viruses highlights a weakness of pairwise sequence alignment: the

sequence similarity shared by two proteins must exceed a certain threshold in order to

be detectable above the “noise” of aligning random sequences. Protein relationships such

as those shared by the three major capsid proteins of PBCV-1, adenovirus, and PRD1

belong to a so-called “twilight zone” [9] of homologous sequences having less than about
1Copyright c©2002 by The National Academy of Sciences of the United States of America, all rights

reserved.
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Adenovirus HexonPBCV-1 Vp54 PRD1 P3

Figure 2.2: Comparison of the major capsid proteins of three viruses: PBCV-
1, adenovirus, and PRD1. The PBCV-1, adenovirus, and PRD1 viruses share similar
capsid architectures and their major capsid proteins, Vp54, hexon, and P3, respectively,
share a common fold consisting of two eight-stranded β-barrels termed “jelly rolls”. In the
case of Vp54 and hexon there have been insertions creating the extra loops above the jelly
rolls. These proteins share negligible sequence similarity and their common structure was
discovered by direct comparison of crystal structures. Figure adapted, with permission,
from Reference [8].

30% sequence identity, i.e., less than 30% of their residues have been conserved identically.

Many interesting relationships exist in the twilight zone and given the difficulty and expense

of crystallizing proteins any improvements in our ability to detect homology using sequence-

based methods is of great interest.

Along these lines we highlight an encouraging example from proteins with homology

to actin, a key component of the cytoskeleton in eukaryotes. Using a “property pattern”

technique with then-known proteins with structural similarity to actin, Bork et al. identified

five motifs common to the actin ATPase fold. Searching for these motifs yielded many hits,

among them MreB, FtsA, and ParM, proteins which now after crystallization have been

confirmed as having a common fold with actin. Like the viral capsid proteins, these proteins

belong to the twilight zone of low mutual sequence identity. Actin-like proteins are found

across all three domains of life as depicted below in Fig. 2.3. The figure shows ParM which is

encoded on a transferable plasmid found in bacteria such as E. coli; actin, which is found in

eukaryotes, and the recently crystallized protein Ta0583 from the archaeon T. acidophilum.
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Figure 2.3: Comparison of sequence vs. structural similarity. Shown are eukaryotic
actin from humans and two actin homologs, prokaryotic ParM from E. coli and archaeal
Ta0583 from T. acidophilum. These three proteins share a common fold but have very low
sequence identity, illustrated here by comparing sequence vs. structural agreement following
superposition of the three structures. In both panels A and B red indicates low, white
moderate, and blue high agreement. In panel A we see that sequence conservation is poor
between the three proteins overall, with only a few residues conserved identically in all three
(blue) or in two of three (white). In panel B we observe that the structures themselves show
much higher similarity; the structures of ParM and Ta0583 are colored by the RMSD of their
α-carbon backbones from actin. There are numerous examples of proteins in this “twilight
zone”[10] of low sequence identity (. 30%) that have a common fold. The proteins shown
here were aligned using STAMP [11], included in the MultiSeq [12] extension of VMD [13]
and the figure was made with MolScript v2.1.2 [14]. The PDB accession codes are 1YAG
for actin, 1MWM for ParM, and 2FSJ for Ta0583.
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How were Bork and coworkers able to correctly identify remote homologs of actin more

than 10 years before any of those three proteins were crystallized? The key was to leverage

the physicochemical properties of amino acids to construct motifs with a pattern of prop-

erties observed in the actin ATPase fold. The motifs they constructed can be represented

approximately as drawing on 5 classes of amino acids: purely hydrophobic (VLIFWY),

partly hydrophobic (VLIFWYMCGATKHR), tiny (GSAT), small (GSATNDVCP), and

tiny plus polar (GSATNDQEKHR). The structure of actin, together with the five motifs

found by Bork et al., are shown in Fig. 2.4. This study gave an early indication of the

advantages that could be gained from grouping the amino acids together into classes with

common properties.

Figure 2.4: Structure of actin together with the property pattern motifs found by
Bork et al. [15]. The motifs are written in terms of the classes of amino acids allowed at
that position, according to a five letter code: h, purely hydrophobic (VLIFWY); f, partly
hydrophobic (VLIFWYMCGATKHR); t, tiny (GSAT); s, small (GSATNDVCP), and p,
tiny plus polar (GSATNDQEKHR). An upper-case letter indicates a conserved amino acid,
- denotes a gap, and x indicates any amino acid. Figure reproduced, with permission, from
Reference [15].
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Furthermore, previous experimental work with reduced amino acid alphabets in protein

folding studies has shown that, in many cases, a reduced alphabet is sufficient to produce

native-like proteins. The four-helix bundle protein Rop was studied by Munson et al., who

showed that 32 amino acids in the hydrophobic core comprising eight different residues

(ACEFILQT) could be replaced by patterning with just two amino acids (AL) to produce

native-like proteins that showed activity in vitro [16], though only one mutant showed

activity in vivo [17]. Schafmeister et al. designed de novo a 108 residue four-helix bundle

with a seven letter alphabet (AEGKLQS) and validated their results with a crystal structure

[18]. Riddle et al. were able to produce functional variants of the 57 residue Src SH3 β-

sheet domain in which 38 of 40 targeted residues comprising 15 distinct amino acids were

successfully mutated to a reduced alphabet of just 5 amino acids (AEGIK) [19].

Let us step back for a moment and consider the sequence and structural universe that

proteins occupy. Current estimates of the number of protein folds in Nature is estimated

to be between one thousand and ten thousand in total [20], an astonishingly low number

compared with the huge space of possible amino acid sequences. Let us follow Frances

Arnold [21] and make a simple estimate to get a feel for the numbers we are dealing with.

Taking as a rule of thumb that a typical protein is composed of roughly 300 amino acids,

the number of possible protein sequences is

Nseq = 20300 ≈ 2× 10390, (2.2)

an unfathomably large number! However we realize that not all amino acid sequences will

adopt a compact, well-ordered globular structure as is found in native proteins. In fact

it was estimated by Gutin and Shaknovich that the number of sequences which adopt a

protein-like nondegenerate ground state which is well removed from other low energy states

decreases exponentially with chain length [22]. Still, the sequence space that proteins have

to explore is large and already the number of known protein sequences is upwards of 6.5

million, the current size of the NCBI nr database as of this writing. It has been suggested

that natural protein folds are those which have high designability, i.e., many sequences will

fold to that particular structure [23]. As we have seen in two examples from viruses and

actin-like proteins, such sequences may share little to no similarity with one another in the

conventional 20 letter alphabet. This large degeneracy of sequences designing the same fold
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invites us to look for a coarse-grained sequence description that will reveal the underlying

structural similarities between these apparently dissimilar sequences.

Given the success of reduced alphabet models in reproducing important features of pro-

tein structure and folding together with the experimental success in designing native-like

proteins from reduced alphabets, we surmise that these simple folding ideas might also

be reflected in pairwise alignments of the sequences of structurally similar proteins. We

hypothesize that by properly grouping the 20 naturally occurring amino acids into classes

and thereby coarse-graining the scoring matrices, similarities in protein sequence that are

not readily seen in the full 20 letter alphabet would be revealed. By all of the measures

we used, reduced alphabets showed increased effectiveness at identifying structurally sim-

ilar proteins as defined by the DALI database by a modest though statistically significant

amount. Based on these gains in pairwise alignments and other past successes in the liter-

ature, we believe that the reduced alphabet approach applied to more sensitive methods,

e.g., PSI-BLAST profile searches, holds promise for detecting structurally related proteins

with weak sequence similarity.

The remainder of this chapter is organized as follows. In Section 2.2 we describe our

procedure for coarse-graining substitution matrices, outline the reduced alphabet schemes

tested, and reference databases used in this study, as well as describe the principal met-

rics for this work: area under the Receiver Operating Characteristic curve, mean pooled

precision, and recall at 0.01 errors per query. In Section 2.3 we present the results of all

vs. all sequence alignments using each of the reduced alphabets, showing the performance

of reduced alphabets in comparison with various common full 20 letter substitution ma-

trices. The results of a study comparing structural alignments with sequence alignments

are also shown for the full and reduced alphabets. Finally in Section 2.4 we compare the

results of this study with other similar work and speculate on promising avenues for further

development with the reduced alphabet concept.

2.2 Methods

2.2.1 Substitution matrices

Suppose that we have a trial alignment of two sequences A and B, and that we would like to

evaluate the quality of the alignment. During the course of evolution, as sequences change
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with time, we may (correctly) suppose that there are preferred mutations for each of the

20 amino acids, and we would like to reward alignments that tend to reflect such preferred

substitutions over random mutations. Consider the hypothetical alignment shown below in

Fig. 2.5.

Sequence A LKITYED
Sequence B AKKTWED

Figure 2.5: Hypothetical sequence alignment. Matching residues have a gray back-
ground; non-identical pairs are shown with a black background.

What is the likelihood that sequences A and B are related by evolution? One way to

begin to answer this question would be to compare the probability of observing the aligned

residue pairs according to the preferred substitution patterns observed in actual evolution

vs. the likelihood of those pairings due to drawing sequences randomly according to some

background frequency of amino acids. We may write this (relative) probability thusly:

prel(ΞAB) =
pE(AL) pE(KK) pE(IK) pE(TT ) pE(WY ) pE(EE) pE(DD)
pR(AL) pR(KK) pR(IK) pR(TT ) pR(WY ) pR(EE) pR(DD)

(2.3)

=
∏
i

pE(ΞABi )
pR(ΞABi )

, (2.4)

where ΞAB is the particular alignment of sequences A and B, and prel(Ξ) is the relative prob-

ability of an alignment Ξ due to evolution vs. random chance. The quantities pE(X1X2)

and pR(X1X2) are the probabilities of observing a pairing of amino acids X1 and X2 in se-

quences related by evolution and by random chance, respectively. The symbol ΞABi denotes

the pair of amino acids observed at position i in the alignment ΞAB.

Working with this large fraction is rather unwieldy, however. Let us take the logarithm

of both sides of Eq. 2.4; we will define the logarithm of the relative probabilities pE/pR

to be scores for various pairs of amino acids and the sum of the scores for each of the

amino acid pairings will be the overall score for the alignment. Since the logarithm is

a monotonic function of its argument, this score will still provide a consistent means of
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comparing alignments:

S(ΞAB) = log

[∏
i

pE(ΞABi )
pR(ΞABi )

]
(2.5)

=
∑
i

log
[
pE(ΞABi )
pR(ΞABi )

]
(2.6)

=
∑
i

s(ΞABi ). (2.7)

The quantity s is the score associated with a pair of aligned amino acids and is calculated

by taking the logarithm of the ratio of the observed pairing probability to the expected

pairing probability (often called a log-odds ratio). We note that s can be represented as

a 20 by 20 symmetric matrix which can be calculated if the probabilities pE and pR are

known. One way to determine these probabilities is from a reference set of aligned proteins

that have been curated in some way, e.g., by hand or by structural alignment. With the

reference alignments in hand, one may determine the background frequencies of the amino

acids as well as the observed pairings of various amino acid pairs through time in sequences

believed to be related by evolution. This is the basis of the scheme proposed by Henikoff and

Henikoff [24] in their landmark work introducing the BLOSUM series of scoring matrices

(also called substitution matrices).

We will briefly describe here the BLOSUM method for deriving substitution matrices

from a reference set of alignments. Let us label the naturally occurring amino acids with

indices 1–20; we may then derive a matrix cij with each entry of the matrix being the tally of

the observed pairings of amino acid i with amino acid j in the reference alignments. Pairwise

alignments do not distinguish between aligning, e.g., AD and DA, so if the total count of

ij and ji pairs is C (with i 6= j) we assign cij = cji = C/2 to reflect this symmetry. The

underlying reason for this symmetry is that we assume no a priori knowledge of the order

in which the sequences arose; without such knowledge, the likelihood of a substitution from,

e.g., A to G and G to A, are equal. The observed probability matrix oij is the normalized

cij matrix:

oij =
cij∑20

i=1

∑20
j=1 cij

. (2.8)
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The background frequencies of each of the amino acids pi is now easily calculated from oij :

pi =
20∑
j=1

oij , (2.9)

and the expected (random) probability of aligning amino acid i with j is:

eij = pi pj . (2.10)

The substitution matrix score mij is calculated from the observed and expected probabilities

as a log-odds ratio:

mij = mji = logb

(
oij
eij

)
, (2.11)

where the base of the logarithm is usually chosen as b = 2 so that mij has units of bits

of information (though substitution matrix values are sometimes measured in half-bits or

other fractional bit units). For convenience of notation, the BLOSUM series of matrices

will be referred to hereafter as BL followed by the level of sequence identity used in building

the matrix, e.g., BL62 for the BLOSUM matrix with 62% identity cutoff.

We follow this log-odds method in formulating matrices based on a reduced alphabet.

Each reduced alphabet scheme clusters amino acids together into groups where all amino

acids within a group are considered identical. Given N groups of amino acids defining a

reduced alphabet, the new frequency of group I is calculated as:

pI =
∑
k∈I

pk, (2.12)

where k runs over each amino acid in group I. The new expected and observed probabilities

to align group I with group J are:

eIJ = pI pJ , (2.13)

oIJ =
∑
i∈I

∑
j∈J

oij . (2.14)
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Finally, the new matrix entries in the reduced N ×N matrix are:

MIJ = logb

(
oIJ
eIJ

)
(2.15)

= logb

[ ∑
i∈I
∑

j∈J oij∑
i∈I pi

∑
j∈J pj

]
. (2.16)

This method differs from that used in some previous reduced alphabet studies [25, 26]

which used the arithmetic mean of the substitution matrix entries; using the mean of the

substitution matrix scores is inconsistent with the log-odds probability scheme upon which

the substitution matrices are based.

Example of deriving a log-odds substitution matrix Let us illustrate the process of

deriving a log-odds substitution matrix with a simple example. Shown below in Fig. 2.6 is a

multiple alignment of human, cow, and carp alpha-chain hemoglobin sequences from which

we will derive a simple substitution matrix. Here we have defined the hydrophobic residues

to be VILMFWYAC (black background) and the polar residues to be EDRKGPSTHQN

(gray background).

Human MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DL 49
Cow MVLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHF-DL 49
Carp MSLSDKDKAAVKGLWAKISPKADDIGAEALGRMLTVYPQTKTYFAHWADL 50

Human SHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNF 99
Cow SHGSAQVKGHGAKVAAALTKAVEHLDDLPGALSELSDLHAHKLRVDPVNF 99
Carp SPGSGPVKKHGKVIMGAVGDAVSKIDDLVGGLAALSELHAFKLRVDPANF 100

Human KLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR 142
Cow KLLSHSLLVTLASHLPSDFTPAVHASLDKFLANVSTVLTSKYR 142
Carp KILAHNVIVVIGMLYPGDFPPEVHMSVDKFFQNLALALSEKYR 143

Figure 2.6: Multiple alignment of alpha-chain hemoglobin sequences from hu-
man, cattle, and carp. Hydrophobic residues are shown with a black background and
polar with a gray background. The NCBI Entrez Protein accession numbers used were
57013850 (human), 13634094 (cow), and 122392 (carp).

We first tabulate pairs at each position in the alignment to create the cij matrix. For

instance, in the second position of the alignment we have H paired with H (human-cow), H

with P (human-carp) and H with P (cow-carp). Repeating this process for each ungapped
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position yields:

cij =

cHH cHP

cPH cPP

 =

167 33

33 193

 .

Note that 66 pairings of H with P were observed, and these were split equally between cHP

and cPH. Normalizing by the total number of pairs gives the observed probability of each

kind of pair:

oij =

 0.39 0.077

0.077 0.45

 .

The background frequencies of H and P are:

pH = oHH +
1
2
oHP +

1
2
oPH = 0.39 +

1
2

0.077 +
1
2

0.077 = .47

pP = oPP +
1
2
oPH +

1
2
oHP = 0.45 +

1
2

0.077 +
1
2

0.077 = .53,

which can now be used to form the expected probability matrix eij :

eij =

pH pH pH pP

pP pH pP pP

 =

0.22 0.25

0.25 0.28

 .

Already we can see a large discrepancy between the expected probabilities of pairing vs. the

observed probabilities. The final log-odds HP scoring matrix in half-bit units is calculated

to be:

sij = 2 log2

(
oij
eij

)
=

 1.65 −3.37

−3.37 1.39

 .

The large negative score for HP and PH pairs reflects the high conservation of the hy-

drophobic/polar pattern in the alpha-chain hemoglobin sequences: mutations from P to H

and vice versa are highly suppressed. The BLOSUM matrices were derived in this same

way for the full amino acid alphabet using blocks of ungapped multiple alignments. The

Henikoff and Henikoff log-odds scheme was followed later by other authors who derived

substitution matrices used in this study [27, 28].



21

2.2.2 Sequence alignment

We introduce the Smith-Waterman algorithm for local alignments here briefly with an

example adapted from reference [3]. The algorithm proceeds in three stages:

1. Initialization

2. Fill

3. Traceback.

We will use the sequences COELACANTH and PELICAN and a simple scoring scheme:

+1 for matching letters, -1 for mismatched letters and gaps. We write our sequences on

the axes of a matrix and then initialize the matrix by filling in zeros on the first row and

column as shown in Fig. 2.7. Now the alignment matrix is filled by starting at the upper-left

C O E L A C A N T H

P
E
L
I

C
A
N

0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0

Figure 2.7: Initialization of the alignment matrix

and working right and down until we reach the first matching letters from both sequences

which in this case is E, as shown in Fig. 2.8. Up until that point every cell has received

a zero score because the letters in the two sequences do not match there and in a local

alignment we do not consider negative scores. Proceeding with the fill, we reach the next

two letters that align from each sequence, L, shown in Fig. 2.9. In order to get a score

of 2, we proceeded down and right from the initial aligned E from each sequence and we

make a note of where we came from with an arrow as shown in the upper-left hand corner

of the cell. These arrows will help us traceback the best alignment in the final step of the

algorithm. The next cell in the matrix is our first gap, shown in Fig. 2.10. By not adding

a letter from PELICAN and proceeding from the L to the A of COELACANTH we add a
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C O E L A C A N T H

P
E
L
I

C
A
N

0 0 0 0 0 0 0 0 0 0 0
0
0

0 0 0
0 0 1

0 0 0 0 0 0 0

Figure 2.8: Beginning to fill the alignment matrix

gap which incurs a penalty of -1 and reduces the score for that cell to 1. We note where

we came from by putting an arrow to the left in the corner of the cell. In general when we

visit a cell in the matrix during the fill, we have three options:

1. Align letters from both sequences, incurring either a benefit or cost according to the

scores in the substitution matrix.

2. Add a gap in the first sequence along the top of the matrix.

3. Add a gap in the second sequence along the side of the matrix.

Among those options we choose the one that will generate the highest score for the cell. If

there is a tie we may take any of the highest scoring options. If the best score a cell can

receive is negative, then we simply fill in a zero. After choosing one of these three options,

we then note the choice we made for the traceback by putting either a diagonal, upwards

C O E L A C A N T H

P
E
L
I

C
A
N

0 0 0 0 0 0 0 0 0 0 0
0
0
0

0 0 0
0 0 1

0 0 0 0 0 0 0

2
0 0 0 0 0 0 0

0 0 0

Figure 2.9: The next non-zero score in the matrix
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C O E L A C A N T H

P
E
L
I

C
A
N

0 0 0 0 0 0 0 0 0 0 0
0
0
0

0 0 0
0 0 1

0 0 0 0 0 0 0

2 1
0 0 0 0 0 0 0

0 0 0

Figure 2.10: A gap is added to the alignment

or leftwards pointing arrow, respectively, to indicate which direction the best scoring path

follows. We do not fill in arrows inside of or pointing to cells with a zero score since those do

not contribute usefully to the alignment. The filled matrix is shown in Fig. 2.11. Finally we

C O E L A C A N T H

P
E
L
I

C
A
N

0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0

0 0 0
0 0 1

0 0 0 0 0 0 0

1
2

2
3

4
1

3 2
2 1

2

1
1

0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0
0

0
0

0 00 0 0 0
0 0 0 0
0 0 0 0
0 0 0
0 0 0

Figure 2.11: The final alignment matrix

traceback the best alignment from our matrix. This is done by simply starting at the cell

in the matrix with the highest score and tracing back through the cells using the arrows we

noted during the fill phase. In this case, we start at the cell with the alignment of N from

each sequence which had a score of 4 and follow the arrows to construct our final, globally

optimized alignment with our chosen scoring scheme:

ELICAN
ELACAN
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2.2.3 Statistics of optimal local alignments

In the previous section we saw that in an optimal local alignment as executed by the Smith-

Waterman algorithm we always choose the best alignment from among the population of

other suboptimal alignments calculated in the alignment matrix. That is, we generate a

population of scores in the matrix and always choose from that population the highest

score. The statistics of extremes describes the distribution of best or highest scores one

would expect by alignment of sequences drawn from a random background of amino acids.

These statistics were worked out by Gumbel [29] and the distribution associated with highest

scores is often termed a Gumbel distribution; the connection to optimal, ungapped local

alignments was first worked out by Karlin and Altschul in their seminal work on the statistics

of sequence alignment [30]. The statistical significance of each hit is estimated with the so-

called E-value, which is given by the Karlin-Altschul equation:

E = Kmn exp (−λS), (2.17)

where S is the score of the alignment and mn is the product of the number of letters in

the database and query sequence. The remaining variables, K and λ, are parameters of

the distribution and are typically estimated from the distribution of scores produced in a

database search. Strictly speaking the Karlin-Altschul equation only holds for ungapped

alignments, but in practice gapped local alignments also follow extreme value statistics as

long as the gap penalties are not too small. The probability of obtaining an alignment with

a score S′ at least as high as S is simply:

P (S′ > S) = 1− e−E , (2.18)

and by analogy to Poisson statistics the E-value is roughly the number of alignments with

score S or better that one would expect to obtain by random chance. For this reason the

E-value is also often called the “Expect” value and this value serves as the basis for ranking

alignments in this study.
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2.2.4 Reduced alphabet schemes

A reduced alphabet is any clustering of amino acids based on some measure of their rel-

ative similarity. Many such schemes have been proposed; the ones used in this study are

briefly reviewed here together with the abbreviations used to refer to them. If a name

for the scheme is given by the authors (e.g., SDM and DSSP) it has also been used here,

otherwise abbreviations are formed by using the first letters of the names of the first and

last authors. Thomas and Dill [31] created a hierarchy of amino acid groupings based on

intuitive physicochemical considerations (TD). Mirny and Shakhnovich [32] constructed a

six letter alphabet based mostly upon intuition as well as a study of the effects of disulfide

bonds on protein folding which suggested separating aliphatic hydrophobic and aromatic

hydrophobic residues [33] (MS). Solis and Rackovsky [34] posited clusters based on maxi-

mum preservation of structural information (DSSP and GBMR). Andersen and Brunak [35]

searched for clusters of amino acids based on the ability of standard methods to correctly

predict secondary structure from the simplified sequences (AB). Cieplak et al. [36] used the

Miyazawa-Jernigan interaction matrix [37] together with a distance-based clustering scheme

to partition the naturally occurring amino acids into 2- and 5-letter groups (CB). Prlić et al.

[28] derived new substitution matrices based on structural alignments of proteins with low

sequence identity and then clustered the amino acids based on those matrices (SDM and

HSDM). On the basis of a comparison of early substitution matrices, Landès and Risler [38]

proposed a 10-letter alphabet that showed promise for increasing the sensitivity of protein

alignment searches (LR). Li et al. [26] proposed grouping schemes based on preservation

of information in global sequence alignments between a sequence and its reduced-alphabet

version. They produced two groupings, one allowing amino acids to change their order or

“interlace” (LW-I) and one where they were not allowed to change order (LW-NI). The

LW schemes were identical at the levels of 2, 3, and 15 through 19 letters. We also note

that the CB and LW schemes were identical at the 2 letter level. Melo and Marti-Renom

[39] created a 5 letter clustering of amino acids based on the Johnson-Overington matrix

(JO20) [27], which they found performed well in aligning homologous sequences and fold

assessment (MM). Murphy, Wallqvist, and Levy [25], inspired by experimental successes

in designing proteins with reduced alphabets, proposed clusters of amino acids based on

the BL50 substitution matrix (ML). Liu et al. [40] studied the pair frequency counts in the
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2 LIVFMYWC DNTSKEQRAGPH
3 LIVFMYW C DNTSKEQRAGPH
4 LIVFMYW C DNTSKEQRAGP H
5 LIVFMY W C DNTSKEQRAGP H
6 LIVFMY W C DNTSKEQRAG P H
7 LIVFMY W C DNTSKEQRA G P H
8 LIVFM Y W C DNTSKEQRA G P H
9 LIVFM Y W C DNTSKEQR A G P H
10 LIVFM Y W C DN TSKEQR A G P H
12 LIVF M Y W C DN TSKEQ R A G P H
14 LIV F M Y W C DN TS KEQ R A G P H
15 LIV F M Y W C D N TS KEQ R A G P H
16 LIV F M Y W C D N TS KE Q R A G P H
17 LIV F M Y W C D N T S KE Q R A G P H
20 L I V F M Y W C D N T S K E Q R A G P H

Table 2.2: The hierarchy of amino acid classes in the HSDM reduced alphabet
scheme [28]. The first column gives the number of groups or “letters” in the reduced
alphabet; the amino acid groupings at each level are shown on the right.

Miyazawa-Jernigan and BL50 matrices to find deviations from a random background and,

based thereon, proposed a clustering of amino acids (LZ-MJ and LZ-BL). Finally, Wang

and Wang [41] derived clusters from the Miyazawa-Jernigan matrix by preserving maximal

similarity between a reduced-alphabet version of the matrix and the full 20 by 20 matrix

(WW). They found a five letter alphabet (IKEAG) that matched with what Baker et al.

[19] had found in their experimental study producing SH3 domains from reduced alphabets.

Each of these schemes produced a hierarchy of amino acid classes, as typified by the den-

drogram of the HSDM scheme [28] in Table 2.2. At each level in the hierarchy the number

of classes or “letters” in the alphabet is increased. We tested each of the reduced alpha-

bet schemes in the papers just cited; Table 2.3 shows the abbreviations for each scheme,

the various levels of clusterings comprising the scheme and the frequency matrix and gap

penalties used. In this work, reduced alphabet matrices will be referred to by the alphabet

scheme (TD, SDM, HSDM, etc.) followed by the number of letters in the alphabet, e.g.,

HSDM17.

2.2.5 Protein database

Proteins can be thought of as being roughly made up of independently folding, compact

globular units or domains. We chose the DALI (Distance mAtrix aLIgnment) database [42],

which uses fully automated methods to cluster protein domains based on their structural

similarity as our “gold standard” for determining the structural relatedness of proteins.
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Alphabet Substitution Gap penalties
Scheme sizes matrix Open Extend
AB* [35] 2-19 BL62 11 1
CB* [36] 2,5 BL62 11 1

DSSP* [34] 2-14 BL62 11 1
GBMR* [34] 2-14 BL62 11 1
HSDM [28] 2-10,12,14-17 HSDM 19 1

LR* [38] 10 BL62 11 1
LW-I* / LW-NI* [26] 2-19 BL62 11 1
LZ-MJ* / LZ-BL [40] 2-16 BL50 11 1

MM [39] 5 JO20 140 0
ML [25] 2,4,8,10,15 BL50 12 2
MS [32] 6 BL62 11 1

SDM [28] 2-4,6-8,10-14 SDM 7 1
TD* [36] 2-10,14 BL62 11 1

WW* [41] 5 BL62 11 1

Table 2.3: Reduced alphabet schemes investigated in this thesis. Abbreviations
and references are listed in the first column; alphabet sizes, matrix used, and gap penalties
are also shown. Wherever possible we used the matrices and gaps given in the original
articles referenced, though we note that the starred schemes were proposed independently
of any particular substitution matrix. In those cases, the BL62 frequency counts were used
to derive the coarse-grained matrices with 11/1 gaps. In addition to the reduced alphabet
schemes tested above we also tested the following full 20 by 20 matrices: BL50 11/1, BL50
12/2, BL62 7/1, BL62 11/1, JO20 140/0, SDM 7/1 and HSDM 19/1.

DALI partitions each protein structure in the PDB into domains by maximizing criteria of

compactness and recurrence of those domains [43]. After determining the domains, all vs.

all structural alignments of the domains are executed and a z-score2 estimated to indicate

the statistical significance of those alignments [43]. Finally, the domains are clustered into

families based on z-score cutoffs; a cut-off z-score greater than 2, indicating statistically

significant structural similarity at the 2σ level, is used to define proteins with roughly the

same “fold” [43].

As an example of how DALI domains are identified from a protein structure we show the

domains determined by the DALI decomposition procedure from diphtheria toxin (1DDT)

in Fig. 2.12, taken from reference [43]. In diphtheria toxin, three domains are present which

each have a vital role in the infection process: receptor binding, membrane insertion, and

catalysis of ADP-ribosylation of elongation factor 2, which inhibits the synthesis of new

proteins by the host ribosome. The DALI protein decomposition procedure illustrated here

was used on all proteins in the PDB to identify recurring domains or folds.

The sequence library for this study was drawn from the DALI pdb90 database using each
2A z-score or standard score is defined to be the difference of an observation x from the population mean

µ divided by the standard deviation σ: z = (x− µ)/σ.
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Figure 2.12: The domains of diphtheria toxin. Diphtheria toxin (1DDT) breaks down
neatly into three compact, globular domains as identified here by the DALI automatic
protein decomposition algorithm. Each of the domains present in diphtheria represents a
recurring structural motif or fold found in other proteins, examples of which are shown
adjacent to each colored domain: myoglobin (blue), cellulose-binding domain (red), and
exotoxin A (yellow). Figure from reference [43].

of the representative sequences in the domain fold classes defined by the DALI Domain

Dictionary [43, 44], both available for download at the DALI website [45]. All pairs of

sequences within the same domain fold class are considered to be structurally related “hits”

(true positives) in our database searches. In total 13,351 sequences were drawn from the

pdb90 database, representing 2780 fold classes. One domain fold class, number 1636, was

not represented in the database because its representative sequence, 1mwxA 1, was not

found in the latest version of pdb90 available for download. We also note that there were

1264 sequences which were singletons, i.e., they were the only members of their DALI fold

class; these sequences are in some sense undetectable since they have no relationship to

other proteins in the database.

2.2.6 Alignment program

All vs. all Smith-Waterman alignments were executed using SSEARCH version 3.4 from

the FASTA sequence alignment suite [2, 46]; the alignments were ranked by E-value as

calculated by the default SSEARCH statistics option (specified by the “-z 1” switch on the

command line).
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2.2.7 Generation of search results

We executed all vs. all alignments, using each sequence in the DALI pdb90 database in turn

as a query against the remaining sequences. The results of all these searches were then

pooled into a single list of results ranked by the E-value assigned by SSEARCH; when true

and false positives shared an E-value, the false positive alignments were ranked ahead of

the true positives to obtain a conservative estimate of discriminating power. After pooling

the results of querying the database with each sequence, we choose a particular E-value and

consider all results at this E-value or lower to be “hits”. The recall, fall-out, precision, and

errors per query (EPQ) are calculated from the list of hits as follows:

recall =
tp

Ntp
, (2.19)

fall-out =
fp

Nfp
, (2.20)

precision =
tp

tp + fp
, (2.21)

EPQ =
fp

Nseq
, (2.22)

where tp is the number of true positive hits, fp is the number of false positive hits and Nseq

is the total number of sequences; Ntp and Nfp are the total number of true and false positive

relationships in the database, respectively. Moving down the pooled list of search results

we generate successively larger groups of hits at increasing E-values with associated values

for recall, fall-out, precision, and EPQ.

Some of the basic principles of information retrieval can be illustrated by an example

from a Google search, in this case on the term “mouse”. Suppose now that the actual

subject of interest is the rodent; as one looks at the results returned in Fig. 2.13 one notes

several different kinds of mice, only some of which relate to the biological organism. Google

has used its own proprietary technology to try and rank the results of the database search

based on their model for what will be of interest to a user of their search engine. In Table 2.4

we tally the various quantities just described above.

Now let us apply these metrics to an example of the data that is obtained in the

SSEARCH database query, as shown in Table 2.5 which lists the first 20 hits from query-

ing the DALI pdb90 sequence database with the first domain of 1BIG (1big 1), a toxin
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Figure 2.13: Google results for a search on “mouse”
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tp fp Recall Fall-out Precision
0 1 0 0.17 0
1 1 0.2 0.17 0.5
2 1 0.4 0.17 0.67
3 1 0.6 0.17 0.75
3 2 0.6 0.33 0.6
3 3 0.6 0.5 0.5
3 4 0.6 0.67 0.43
3 5 0.6 0.83 0.38
4 5 0.8 0.83 0.44
4 6 0.8 1.0 0.4
5 6 1.0 1.0 0.45

Table 2.4: Table of results for a Google search on the term “mouse”. The true
positives (tp), false positives (fp), recall, fall-out, and precision for the list of hits where the
subject of interest is the biological organism. We begin with the three images shown at the
top and move down the list in order of relevance as calculated by Google. False positive
rows are labeled with a gray background.

found in the venom of the Chinese scorpion Buthus martensi. In this case the parameter of

“relevance” is the E-value, based on the model of extreme value statistics and the various

quantities are tallied in the same way, by moving progressively down the list. For 1big 1

there are a total of 18 true hits that also belong to the same fold class, class number 2366.

Since these results are for a single query, the number of false positives is also equal to the

number of errors per query. In the actual computation, the full results of this database

query would be pooled with the results from the other 13,350 database queries to obtain a

single list ranked by E-value. The number of true positives, false positives, as well as recall,

fall-out and precision, and errors per query can then all be tallied as one moves down the

pooled list.

Finally we note some limitations of the DALI clustering scheme. The first “false pos-

itive” in the search results shown in Table 2.5 has an E-value of 1 × 10−10 so from the

sequence alignment one would feel confident that 1big 1 and 1hlyA 1 are homologous. An

alignment with DaliLite (http://www.ebi.ac.uk/DaliLite/) of chain A from these two PDB

files confirms that they are structural homologs with an estimated z-score of 4.1. However,

in the process of clustering domains some relationships such as these are lost: although

all proteins within a fold class have a mutual z-score of 2 or higher, not all proteins with

z-scores higher than 2 can be clustered into the same fold class. Ideally one would have all

structural pairwise alignments and z-scores from DALI and measure the correlation of those

scores with the pairwise SSEARCH sequences alignment results. Such a comparison was

not possible because pairwise alignments of all domains in the PDB has proved impractical
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Domain Fold ID Description E-value tp fp Recall Fall-out Precision
2bmt 1 2366 TOXIN BMTX2 2.4× 10−15 1 0 0.0556 0 1
1lglA 1 2366 BEKM-1 TOXIN 3.9× 10−12 2 0 0.111 0 1

1hp2A 1 2366 TITYUSTOXIN K ... 8.1× 10−12 3 0 0.167 0 1
1lir 1 2366 LQ2 2.3× 10−11 4 0 0.222 0 1

1hlyA 1 2379 HONGOTOXIN 1 1.0× 10−10 4 1 0.222 7.5× 10−5 0.8
1mtx 1 2366 MARGATOXIN 2.0× 10−10 5 1 0.278 7.5× 10−5 0.833

1m2sA 1 2374 TOXIN BMTX3 5.5× 10−10 5 2 0.278 0.00015 0.714
1sxm 1 2366 NOXIUSTOXIN 3.4× 10−9 6 2 0.333 0.00015 0.75

1wpdA 1 2492 MTX-HSTX1 6.0× 10−9 6 3 0.333 0.000225 0.667
1n8mA 1 2380 POTASSIUM CHANNEL ... 6.5× 10−7 6 4 0.333 0.0003 0.6
1bah 1 2366 CHARYBDOTOXIN 2.4× 10−6 7 4 0.389 0.0003 0.636

1qkyA 1 2366 TOXIN 7 ... 5.4× 10−6 8 4 0.444 0.0003 0.667
1tsk 1 2366 TS KAPA 7.1× 10−6 9 4 0.5 0.0003 0.692

1v56A 1 2381 SPINOXIN 2.0× 10−5 9 5 0.5 0.000375 0.643
2ktx 1 2366 KALIOTOXIN 3.1× 10−5 10 5 0.556 0.000375 0.667
1sco 1 2366 SCORPION TOXIN ... 3.1× 10−5 11 5 0.611 0.000375 0.688
1agt 1 2366 AGITOXIN 2 ... 6.3× 10−5 12 5 0.667 0.000375 0.706

1wmtA 1 2373 ISTX 6.7× 10−5 12 6 0.667 0.00045 0.667
1quzA 1 2366 HSTX1 TOXIN 0.00023 13 6 0.722 0.00045 0.684
1c49A 1 2366 TOXIN K-BETA 0.00034 14 6 0.778 0.00045 0.7

Table 2.5: Results of a database query using SSEARCH with 1big 1 of fold class
2366. The identification code, fold number, description, and E-value from the SSEARCH
results are shown in the left half of the table. On the right half we show a running tally of
the number of true and false positives found (tp and fp) together with the values for recall,
fall-out, and precision. Rows with false positive hits are shown with a gray background.

to maintain without more computational resources (Sakari Kääriäinen, personal commu-

nication, August 15, 2007). The consequence for the current work is that there are some

pairwise relationships like that between 1big 1 and 1hlyA 1 which are classified incorrectly

as false positives.

2.2.8 Reference sequence alignments

Structural alignment of protein domains with the DALI method produces a reference list

of structurally equivalent pairs of residues [42]. We compared these structure-based align-

ments with the alignments produced by SSEARCH and tallied the fraction of structurally

equivalent residues found by SSEARCH local alignments. The database of structurally

equivalent residues, dali fragments, was obtained from the DALI downloads website [45].

2.3 Results

A scoring matrix should ideally be able to both detect related pairs of proteins (true posi-

tives) and reject non-related pairs (false positives); these properties are termed sensitivity

and selectivity, respectively, and in many instances they compete with one another in the
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sense that as a matrix is tuned to be more sensitive it often loses selectivity and vice versa.

The three curves analyzed in this work are precision vs. recall, recall vs. fall-out (also called

the Receiver Operating Characteristic or ROC curve), and recall vs. EPQ (also called the

coverage vs. errors per query or CVE plot), all parametrized by increasing E-value. We

define the mean pooled precision to be the integral of the precision vs. recall curve for

the combined list of search results; this number gives the average precision achieved over

the entire range of recall and HSDM17 achieves the best result by this metric. The area

under the ROC curve measures the ability of a matrix to identify related pairs by assign-

ing them lower E-values than pairs of proteins that are not related over the entire list of

pooled results; SDM12 is the top performer here. Both the mean pooled precision and the

area under the ROC curve measure the sensitivity of a matrix since they are derived from

the whole pooled list of results. Finally the recall at 0.01 EPQ gives the number of true

positives returned at a fixed, low error rate, and gives an indication of the selectivity of a

substitution matrix. Recall may be normalized in several ways, as defined by Green and

Brenner [47]. Recall without normalization gives equal weight to each true positive rela-

tionship; quadratic normalization weights true positive hits so that each fold represented in

the database has equal weight. Linear normalization is a compromise between these two,

giving each sequence in the database equal weight, and is meant to take into account the

fact that folds are not equally represented in Nature [20]. We find that the top performer in

recall at 0.01 EPQ with linear normalization to be GBMR4; this matrix also ranked in the

top ten in recall without normalization and under quadratic normalization (see Table 2.7).

We wish to also note that many reduced alphabets beyond the three we mentioned

above outperform the BLAST-default matrix, BL62 with 11/1 gaps. Among the 151 scoring

matrices tested in this work, BL62 ranked 38th overall in area under the ROC curve, 18th in

mean pooled precision, and 111th, 102nd, and 104th in recall at 0.01 EPQ with no, linear,

and quadratic normalization, respectively. In the remaining plots we will compare the top

performers in mean pooled precision (HSDM17), area under the ROC curve (SDM12), and

recall at 0.01 EPQ (GBMR4) with one another, using BL62 11/1 as the baseline.

2.3.1 Mean pooled precision

Precision vs. recall curves are shown in panel A of Fig. 2.14 for GBMR4, HSDM17, and

SDM12; the mean pooled precision is the area under this curve. A perfect method would
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have a mean pooled precision value of unity, maintaining 100% precision until all true

positives have been identified. The mean pooled precision for all of the HSDM, SDM, and

GBMR alphabets is plotted in panel B of Fig. 2.14. Section A of Table 2.6 shows that

mean pooled precision tends to favor larger alphabets, and the HSDM family of alphabets

consistently achieves good results in this area.

Note that even the strongest performers in mean pooled precision cannot maintain a

high level of precision beyond a recall value of about 0.4. This means that only about

40% of the total number of true positives can be reliably identified before additional true

positives in the list of hits become buried in a flood of false positives in a sort of “needle-

in-a-haystack” situation. The steep dropoff in mean precision in Fig. 2.14A indicates the

limits of what can be achieved with pairwise sequence alignment.

2.3.2 Area under the ROC curve

The area under the ROC curve has a very specific interpretation: it is equal to the prob-

ability of assigning a lower Expect value to a true positive than to a false positive [48].

Therefore it gives a measure of the sensitivity of a scoring matrix to related sequences over

the entire pooled list of results. The top 10 finishers according to this metric are shown in

section B of Table 2.6. The top overall performer in detecting structurally related proteins

by pairwise search is the SDM12 matrix; another notable high performer is LZ-MJ6 which

finished in the top ten with only six letters. Receiver Operating Characteristic curves are

shown in Fig. 2.15A for SDM12, HSDM17, and GBMR4. The total area under the curve

vs. number of letters in these schemes is shown in panel B; note that the area under the

ROC curve does not necessarily increase monotonically with alphabet size.

Although it is of interest that HSDM17 maintains the best selectivity as measured by

mean pooled precision and SDM12 the best sensitivity as measured by the area under the

ROC curve, what is of most interest to a typical user of an alignment program with a query

protein and a target database is to find a scoring matrix that will yield the most number of

true positives at a fixed, low error rate. Operationally, a researcher will have an intuition

for what E-values indicate hits that are likely to be significant and will ignore hits below

that intuitive threshhold. In the DALI database we used there are more than 150 times as

many false positives as true positives, so much of the advantage shown by HSDM17 and

SDM12 is in a regime beyond what could be reasonably processed “by hand”. Therefore
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Figure 2.14: Reduced alphabet performance in mean pooled precision. (A) Preci-
sion vs. recall curves for the top reduced alphabet performers. The mean pooled precision
is the area under this curve and indicates the ability of a particular matrix to maintain high
selectivity over a wide range of error rates. At some point, each matrix loses the ability to
selectively reject false positives and the curve drops precipitously to low precision values.
(B) Mean pooled precision indicates the average precision achieved by a matrix over the
entire range of recall. A perfect method would achieve a mean pooled precision value of
unity, with all true positives ranked ahead of false ones. The HSDM17 matrix is the top
performer in this metric; the dashed black lines in panels A and B show the performance of
BL62 11/1 for reference. Points indicate reduced alphabets that were tested; the connecting
lines are a guide to the eye.
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we also examine the performance of reduced alphabets in recall of true relationships at an

error per query rate of 0.01.

(A) Mean pooled precision (B) Area under ROC curve
Rank Scheme Letters MPP Scheme Letters AUC

1 HSDM 17 0.347 SDM 12 0.801
2 BL62 7/1 20 0.347 SDM 11 0.800
3 BL50 11/1 20 0.346 SDM 13 0.800
4 LZ-BL 16 0.346 HSDM 17 0.796
5 HSDM 20 0.345 SDM 14 0.795
6 HSDM 16 0.344 LZ-MJ 6 0.793
7 HSDM 15 0.343 HSDM 20 0.791
8 HSDM 14 0.341 HSDM 16 0.789
9 LZ-BL 15 0.339 HSDM 9 0.784
10 SDM 13 0.335 HSDM 15 0.783

Table 2.6: Top 10 performers in mean pooled precision (MPP) and area under
the Receiver Operating Characteristic curve (AUC). Mean pooled precision is a
measure of the selectivity of a matrix, i.e., its ability to retain high recall of true positive
relationships at low error rates. The area under the ROC curve measures the sensitivity of
a matrix to true positive alignments over the entire list of results.

2.3.3 Recall at 0.01 EPQ

The second measure of the selectivity of each reduced alphabet scheme was calculated as the

recall (also called coverage) at 0.01 errors per query; this is the metric of the most practical

interest. Panel A of Fig. 2.16 shows the recall vs. error rate curves under linear normalization

for GBMR4, HSDM17, and SDM12 with better-performing matrices generating curves that

tend toward the lower-right hand corner, indicating high recall at low error rates. Comparing

this with panel A of Fig. 2.14 we can see that GBMR4 is able to maintain the highest level of

precision initially, but it rapidly loses precision at higher recall values. Panel B of Fig. 2.16

shows the recall at 0.01 EPQ with linear normalization vs. number of letters for the GBMR,

SDM, and HSDM alphabets. Table 2.7 shows the top ten ranked matrices in recall at 0.01

EPQ under each of the normalizations described earlier with GBMR4 and other relatively

small alphabets being the top performers.

These results would seem to indicate that reduced alphabets offer an advantage of im-

mediate practical value over currently used matrices based on the full alphabet. To fur-

ther investigate this possibility we performed all vs. all alignments with HSDM17, SDM12,

GBMR4, and BL62 11/1 using proteins belonging to the same SCOP superfamily to define

true positives. The results of a preliminary study with the scop40 and scop95 sequence
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Figure 2.15: Reduced alphabet performance in area under the Receiver Operating
Characteristic curve. (A) Receiver Operating Characteristic (ROC) curves for the top
performing alphabets. The integral of this curve gives a measure of how well the entire
pooled list of hits is sorted; a perfect method would have an ROC area of unity. (B) Overall
sensitivity of the SDM alphabets as measured by the area under the ROC curve. The level
of sensitivity of BL62 11/1 is shown with the black dashed line. Points indicate reduced
alphabets that were tested; the connecting lines are a guide to the eye.

0 0.02 0.04 0.06 0.08 0.110-4

10-3

10-2

10-1

Recall

Er
ro

rs
 P

er
 Q

ue
ry

GBMR4
HSDM17
SDM12
BL62 11/1

(A) (B)

GBMR
HSDM
SDM
BL62 11/1

 

 

2 4 6 8 10 12 14 16 18 20
0.01

0.012

0.014

0.016

0.018

0.02

0.022

Number of letters

R
ec

al
l

 

 

Figure 2.16: Reduced alphabet performance in recall vs. errors per query with
linear normalization. (A) Linearly normalized recall (or coverage) vs. the number of
errors per query (EPQ). Curves that tend toward the lower right-hand corner perform
better, detecting more true positives at a given error rate. Small alphabets show good
performance at lower error rates (EPQ < 0.1) with GBMR4 being the top performer. (B)
Recall with linear normalization at 0.01 EPQ for various numbers of letters in the GBMR,
HSDM, and SDM reduced alphabet schemes. The level of performance of BL62 11/1 is
shown with the black dashed line. Points indicate reduced alphabets that were tested; the
connecting lines are a guide to the eye.
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Recall at 0.01 EPQ
No normalization Linear normalization Quadratic normalization

Rank Scheme Letters Recall Scheme Letters Recall Scheme Letters Recall
1 GBMR 6 0.0097 GBMR 4 0.022 LZ-BL 7 0.036
2 GBMR 7 0.0089 CB/LW 2 0.021 GBMR 4 0.036
3 GBMR 8 0.0085 HSDM 2 0.021 HSDM 2 0.036
4 GBMR 9 0.0067 LZ-BL 7 0.021 HSDM 20 0.036
5 DSSP 2 0.0044 SDM 8 0.021 LZ-BL 8 0.036
6 GBMR 10 0.0038 TD 2 0.021 GBMR 12 0.035
7 ML 2 0.0036 BL50 11/1 20 0.021 LW-I 9 0.035
8 SDM 6 0.0030 LZ-BL 6 0.020 GBMR 3 0.035
9 GBMR 4 0.0029 HSDM 20 0.020 CB/LW 2 0.035
10 CB/LW 2 0.0029 SDM 7 0.020 SDM 8 0.035

Table 2.7: Top 10 performers in recall at 0.01 errors per query with default,
linear, and quadratic normalization. Like mean pooled precision, recall at 0.01 EPQ
measures the selectivity of a matrix but is drawn from a limited set of hits such as a
researcher might reasonably peruse manually, rather than the entire pooled list of search
results which comprises approximately 170 million alignments.

databases, containing sequences sharing no more than 40% and 95% sequence identity,

respectively, are compared with DALI in Table 2.8. We note that BL62 11/1 outper-

formed GBMR4 in linearly normalized recall at 0.01 EPQ with both SCOP databases.

However larger reduced alphabets maintained their advantage in selectivity and sensitivity

with SCOP since HSDM17 and SDM12 both achieved higher mean pooled precision, area

under the ROC curve and linear recall at 0.01 EPQ scores than BL62 11/1. This indicates

that small reduced alphabets can show an increased sensitivity and selectivity for proteins

that are structurally related, the only criteria used by DALI, but seem to lose selectivity

when criteria such as function and evolution are taken into account, as is done with the

human-curated SCOP superfamily classification [49]. To the extent that performance with

the SCOP and DALI databases indicates real world performance, these results suggest that

larger alphabets like SDM12 and HSDM17 offer increased sensitivity and selectivity over

the standard BL62 11/1 matrix based on a full alphabet.

2.3.4 Statistical significance of results

The three top-performing alphabets (GBMR4, SDM12, and HSDM17) are shown in Ta-

ble 2.9 together with the results of BL62 11/1 shown for reference. We used the Bayesian

bootstrap method developed by Price et al. [50] to evaluate the statistical significance of

the successes of the reduced alphabets in comparison with the standard BL62 11/1 scoring

matrix. First the differences in performance are tabulated between each pair of bootstrap
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scop40 scop95 DALI
Scheme MPP AUC Recall MPP AUC Recall MPP AUC Recall
GBMR4 0.089 0.658 0.100 0.259 0.727 0.204 0.212 0.667 0.022
SDM12 0.156 0.734 0.136 0.419 0.833 0.250 0.332 0.801 0.020

HSDM17 0.173 0.751 0.148 0.436 0.840 0.259 0.347 0.796 0.020
BL62 11/1 0.156 0.714 0.134 0.408 0.812 0.245 0.329 0.759 0.019

Table 2.8: Comparison of results from all vs. all studies with scop40, scop95,
and DALI. In the SCOP results GMBR4 is unable to maintain its advantage in linearly
normalized recall at 0.01 EPQ over BL62 11/1. However both SDM12 and HSDM17 are
able to match or better the results of BL62 11/1 in mean pooled precision (MPP), area
under the ROC curve (AUC) and linearly normalized recall at 0.01 EPQ. Version 1.71 of
the scop40 and scop95 sequence databases were used.

replicas and then a z-statistic is calculated by dividing the mean of distribution of differences

by its standard deviation. This statistic, rather than the difference in mean performance,

was found to be the most sensitive for evaluating the significance of differences in perfor-

mance between two scoring matrices [50]. We find a strongly significant z-value of 6.17 for

the superior performance of SDM12 relative to BL62 11/1 in area under the ROC curve, and

marginally significant z-values of 1.33 for HSDM17 vs. BL62 11/1 in mean pooled precision

and 1.49 for GBMR4 vs. BL62 11/1 in recall at 0.01 EPQ with linear normalization.

Recall AUC MPP
GBMR4 ADKERNTSQ YFLIVMCWH G P 0.022(0.001) 0.667(0.004) 0.212(0.006)
SDM12 A D KER N TSQ YF LIVM C W H G P 0.020(0.001) 0.801(0.005) 0.332(0.009)

HSDM17 A D KE R N T S Q Y F LIV M C W H G P 0.020(0.001) 0.796(0.004) 0.347(0.008)
BL62 11/1 A D K E R N T S Q Y F L I V M C W H G P 0.019(0.001) 0.759(0.005) 0.329(0.009)

Table 2.9: The results for the top performing alphabets found in this study in
linearly normalized recall at 0.01 errors per query (GBMR4), area under the ROC curve
(SDM12), and mean pooled precision (HSDM17) with the standard deviation of 1000 boot-
strap replicas given in parentheses. Results for BL62 11/1 are shown for comparison.

2.3.5 Alignment accuracy

We evaluated how well pairwise sequence alignments with reduced alphabets identified

pairs of residues that are structurally equivalent as defined by DALI. The results are shown

in Fig. 2.17, plotted as the fraction of structurally equivalent residue pairs identified by

SSEARCH using the SDM, HSDM, and GBMR reduced alphabet schemes. The curves tend

to saturate at around 10 letters, implying that expanding the alphabet beyond this point

does not improve the alignments but tends to increase their sensitivity to more recently
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diverged proteins. The top 10 finishers in alignment accuracy are shown in Table 2.10;

HSDM and SDM show the best performance, which is not surprising given that they were

derived from structurally equivalent pairs of residues [28]. It is interesting that the highly

simplified GBMR4 alphabet is able to achieve nearly the same level of accuracy as the full

BL62 11/1 matrix. The DALI database of structurally equivalent residues is an exceedingly

challenging test of pairwise sequence comparison since those residues share only 11% identity

overall; even the best alphabet, HSDM17, achieves exact agreement with less than one tenth

of all residues in the DALI structural alignments.
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Figure 2.17: Agreement of structural and sequence alignments. The fraction of
DALI equivalent residue pairs found by SSEARCH alignment is shown for various reduced
alphabet schemes. Most of the gains are made as classes are added up until around 10
classes, after which the performance levels off. Points indicate reduced alphabets that were
tested; the connecting lines are a guide to the eye.

The relative strengths and weaknesses of using a reduced alphabet for alignment of

proteins is perhaps better illustrated by a specific example. In Fig. 2.18 and Fig. 2.19 below

are shown alignments of a fragment of the SNAP-25 fusion protein (1L4A chain D) with

the bZIP leucine zipper motif of the transcription factor Pap1 (1GD2 chain E) using the

GBMR4 and BL62 11/1 substitution matrices. Both are coiled coils and GBMR4 is able

to align all structurally equivalent residues correctly (37 total) according to the reference

structure alignment by DALI. In contrast the standard BL62 11/1 matrix only aligns two
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Rank Scheme Letters Fraction aligned
1 HSDM 17 0.08887
2 HSDM 20 0.08882
3 HSDM 14 0.08862
4 HSDM 15 0.08857
5 HSDM 16 0.08849
6 HSDM 9 0.08714
7 HSDM 10 0.08691
8 SDM 11 0.08686
9 HSDM 12 0.08676
10 SDM 13 0.08675

Table 2.10: The top 10 performers in agreement between sequence and struc-
tural alignments, using DALI structurally equivalent residues as the “gold standard”. As
expected, the two structure-derived matrices, HSDM and SDM, completely dominate the
results.

residues correctly. In this particular case, the coarse-grained GBMR4 alphabet is able

to correctly identify the pattern of residues underlying the formation of these coiled coil

proteins whereas BL62 is not. We note however that a coiled coil is a simple motif to

generate and that, overall, BL62 11/1 is able to slightly outperform GBMR4.

••••••••••••••••••••••••••••••••
1L4A chain D 1 PSSGYVTRITNDAREDDMENNMKEVSSMIGNLRNMAIDMG 40
1GD2 chain E 1 --DQEPSSKRKAQNRAAQRAFRKRKEDHLKALETQVVTLK 38

••••••••••••••••••••••••••••••••

•••••
1L4A chain D 41 NEIGSQNRQVDRIQQKAESNESRIDEANKKATKLL 75
1GD2 chain E 39 ELHSSTTLENDQLRQKVRQLEEELRIL-------- 65

•••••

Figure 2.18: Pairwise sequence alignment of two coiled coil domains with the
GBMR4 alphabet. Structurally equivalent residues as determined by DALI are indi-
cated with a black dot above and below the alignment. GBMR4 correctly identified all of
the DALI-equivalenced residues in this case. In GBMR4, glycine and proline are specifi-
cally singled out, with the remaining residues forming hydrophobic (YFLIVMCWH) and
polar (ADKERNTSQ) classes, shown with white characters on blue and black backgrounds,
respectively.
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1L4A chain D 1 -----PSSGYVTRITNDAREDDMENNMKEVSSMIGNLRNM 35
1GD2 chain E 1 DQEPSSKRKAQNRAAQRAFRKRKEDHLKALETQVVTLKEL 40

••
1L4A chain D 36 AIDMGNEIGSQNRQVDRIQQKAESNESRIDEANKKATKLL 75
1GD2 chain E 41 H-------SSTTLENDQLRQKVRQLEEELRIL-------- 65

••

Figure 2.19: Pairwise sequence alignment of two coiled coil domains with the
BL62 11/1 matrix. Structurally equivalent residues as determined by DALI are indicated
with a black dot above and below the alignment. BL62 11/1 correctly identified only two
DALI-equivalenced residues. Identical residues are shown with white characters on a blue
background.

2.3.6 Comparison of detected relationships

It is also valuable to compare the hits returned by two matrices at a given errors per

query level to see what types of relationships are more easily detected by one relative to

another. We compared the hits returned by the SDM12 and BL62 11/1 matrices at or

above 0.01 EPQ and found that each matrix finds about 3000 true positives at that error

level. After separating out the hits that were unique to each matrix (they share 2724

hits in common) SDM12 was left with 271 unique hits and BL62 11/1 with 139. The

approximate mean percent identity of the SDM12 unique hits is 60% whereas for BL62

11/1 it is 70%. Although SDM12 and BL62 have essentially identical relative entropy (-

0.703 and -0.699 bits, respectively) SDM12 is able to detect more distant relationships than

BL62. A histogram of the hits unique to each matrix is shown in Fig. 2.20.

2.4 Discussion

We find, perhaps counter to common intuition, that reduced alphabets increase the selec-

tivity and sensitivity to pairs of proteins with structural similarity as measured by the mean

pooled precision, area under the ROC curve, and recall at 0.01 errors per query (under all

normalizations). In addition we found that reduced alphabets can return more distantly

related pairs of proteins. This is in contrast to some earlier studies [25, 26, 40] which found

that reduced alphabets would only result in losses in performance relative to a full alpha-
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Figure 2.20: Histogram of the hits at or above 0.01 errors per query unique
to the SDM12 and BL62 11/1 matrices. The results from SDM12 are both more
numerous and shifted towards lower identity, showing its increased ability to detect more
remote relationships.

bet. Landès and Risler also observed improved sensitivity with reduced alphabets; in an

early study with aminoacyl-tRNA synthetases, LR10 showed an increased ability to identify

distant homologs over methods using the full alphabet [38]. This work also adds to the en-

couraging results with reduced alphabets found by Melo and Marti-Renom [39], who tested

the 20 letter Johnson-Overington matrix against several small reduced alphabets: WW5,

GBMR5, ML4, MM5, and 100 randomly reduced five-letter alphabets. They found that

the GBMR5 alphabet produced performance gains over the full matrix in alignment accu-

racy as measured by the root-mean-square deviation of Cα atoms after using the pairwise

alignment as the initial seed for an optimal structural superposition.

As an example of how the reduced alphabets studied here might offer a practical ad-

vantage we estimate the number of additional true hits that would be found by the best

alphabet in unnormalized recall at 0.01 EPQ, GBMR6, vs. the standard BL62 11/1 matrix.

In the DALI pdb90 database there were 13,351 sequences with a total of 1,133,086 true

relationships. The number of true relationships should scale as the square of the number of

database sequences so with the current NCBI nr database, comprising 4.6 million sequences,

and assuming the same scaling as with DALI pdb90 we would estimate that there are about
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250 billion true relationships. Assuming in addition that GBMR6 and BL62 11/1 return

the same fraction of true hits that they did with the DALI pdb90 database we find that

GBMR6 returns an average of about 400 true hits per protein whereas for BL62 it is just

100 true hits.

A point of diminishing returns is observed in mean pooled precision (Fig. 2.14, panel

B), area under the ROC curve (Fig. 2.15, panel B) and alignment accuracy (Fig. 2.17) at

an alphabet size of about 10 letters. For instance, we find that in area under the ROC

curve, HSDM10 achieves 98% of HSDM20’s performance, GBMR10 achieves 96% of the

performance of BL62 11/1, and SDM10 slightly exceeds the total area achieved by SDM20.

Similar results have been observed elsewhere in reduced alphabet studies. Weathers et al.

found that a Support Vector Machine model using reduced alphabets (as small as 4 letters)

retained nearly as much ability to detect intrinsically disordered proteins as the full 20

letter alphabet [51]. Rackovsky and coworkers showed that using seven groups of amino

acids best conserves information about local backbone conformation [34] and in a separate

work found that current knowledge-based statistical potentials, though often assumed to

discriminate between all 20 amino acids, actually only distinguish at most between about

eight classes of residues [52]. In their work testing the ENERGI method for building of

statistical potentials, Dill and Thomas found that using a 20 letter alphabet was no more

successful than a 5 letter alphabet for fold detection, with the peak of detection occurring

at an alphabet of 10 letters [31]. In their study of pairwise sequence alignment, Murphy

et al. estimated that a minimum of a 10–12 letter alphabet is necessary to design foldable

sequences for most protein families [25]. Fan and Wang also found that the minimum

alphabet size for protein folding requires approximately 10 types of amino acids [53]. The

consensus seems to be the there is little to lose and possibly gains to be made by properly

clustering the amino acids.

It is interesting that the top performing alphabets, shown in Table 2.9, are compatible

with one another in the sense that SDM12 can be derived from GBMR4 and HSDM17

can be derived from SDM12 by simply breaking down larger clusters into smaller ones

without needing to interchange the grouping of any of the amino acids. In the GBMR4

alphabet glycine and proline are singled out as being structurally dissimilar from the other

amino acids; the remaining two groups reflect a hydrophobic (YFLIVMCWH) and polar

(ADKERNTSQ) classification. In this sense, the GBMR4 alphabet is a modest refinement
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of the simple HP concept. The SDM12 alphabet maintains clusters for acidic/basic (KER),

polar (TSQ), aromatic (YF), and mostly aliphatic (LIVM) groups. Two non-intuitive results

in these groupings are the omission of aspartic acid from the acidic/basic KER cluster and

the inclusion of methionine in the otherwise aliphatic LIVM cluster. In HSDM17 only the

strongest associations among these are maintained: acidic/basic (KE) and aliphatic (LIV).

By clustering together amino acids with similar properties in this way we increase the signal

to noise in our database searches and avoid over-assigning importance to differences among

the naturally occurring amino acids.

We wish to note several promising avenues for further investigation which could not

be pursued in this work for lack of sufficient time and computing resources. In theory

an optimum alphabet could be searched for at each alphabet size by, e.g., Monte Carlo

search. Likewise it would be ideal to optimize the gap penalties with respect to each

reduced alphabet. Lack of sufficient computational resources made it impractical to carry

out these optimizations. We chose to use the DALI database as our standard for determining

structural relationships among proteins in the PDB over databases like, e.g., SCOP [49],

because its determinations are informed only by structural similarity and require no human

curation. Although we obtained some preliminary results with SCOP it would be instructive

to compare the results using the DALI database to what would be obtained by testing all

the reduced alphabets in this work using SCOP superfamilies as the “gold standard” for

structural relatedness. Given the encouraging results shown by SDM12 and HSDM17 with

both SCOP and DALI we believe that further investigation into the practical advantages

of reduced alphabets for general use with pairwise alignment matrices merits additional

exploration.

Another promising area for application of the results of this study is in the building of

protein profiles or hidden Markov models (HMMs). Such models are built up from a multiple

alignment of many putatively homologous proteins. At each position in the alignment, a

number can be assigned for the probability of observing a particular amino acid based on

the sequences in the multiple alignment. The simplest type of protein profile is simply

a consensus sequence of the most commonly occurring amino acid at each position. One

current limitation of these methods is the limited sample of sequences with which to build

up the multiple alignment; experimentally determined sequences account for only a fraction

of the total sequence space available to a given protein fold. By thinking of a protein as
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being made up of amino acids drawn from classes with particular physical properties we

can leverage the physicochemical similarities of amino acids to help make up for this lack of

statistics in our sampling of sequence space. This problem of undersampling was recognized

by Sjölander et al. [54] who developed a method of Dirichlet mixtures for use with multiple

alignments to improve detection of remote homologs. The method of Dirichlet mixtures

estimates the most likely expected distribution of amino acids at a given position in a

multiple alignment and could be extended to estimate the most likely expected distribution

of classes of amino acids, as studied here, instead of individual amino acids.

One especially exciting opportunity for the reduced alphabet concept to be applied is

the search for translational motors in prokaryotes. Motor proteins such as myosin and

kinesin, which translate on the cellular cytoskeleton, are presently only known to exist in

eukaryotes. Now that it has been established that prokaryotes also possess a cytoskeleton,

the possibility arises that they may also have motors which use prokaryotic cytoskeletal

filaments to translate. In the specific case of myosin and kinesin there is a heart-shaped

ATPase domain, shown below3 in Fig. 2.21, which was found to be common to both proteins

and indicates an ancient ancestor of these two motors [55]. A combination of a reduced

alphabet studied here together with the motif-based technique of Bork et al. or perhaps

applying an HMM to a diverse set of known sequences of this heart-shaped domain should

produce a “lure” which could be used to search prokaryotic genomes and identify possible

homologs.

In sum, a reduced alphabet approach to building up protein profiles, motifs or HMMs

may improve our ability to detect proteins with structural homology by leveraging our

knowledge of the chemical properities of the amino acids in building up a physical picture

of a fold.

3Adapted by permission from Macmillan Publishers Ltd: Nature 380(6574):550, copyright 1996.
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Figure 2.21: The heart-shaped ATPase domain common to myosin and kinesin.
Figure adapted, with permission, from Reference [55].
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Chapter 3

Membrane shape as a reporter for
applied forces

3.1 Introduction

Phospholipid bilayers are responsible for forming the boundaries between cells and or-

ganelles. This partitioning function is particularly apparent in eukaryotic cells, where

organelles like the endoplasmic reticulum, Golgi apparatus and mitochondrion adopt com-

plex shapes. An example of the labyrinthine morphologies adopted by biomembranes is

illustrated by the endomembrane system shown1 in Fig. 3.1. The roughly spherical, double-

membraned nucleus is continuous with the endoplasmic reticulum, an intricate tubular

network which directs constant traffic into the Golgi apparatus which in turn trafficks with

the outer plasma membrane and other organelles of a eukaryotic cell. Much more than a

passive scaffolding element, membranes in cells are dynamic elements which are continually

reshaped and exchanged between the various parts of a cell.

Many of the mechanisms responsible for the remodelling of cellular membranes have

now been studied in molecular detail. In a recent review by McMahon and Gallop [3], five

principal molecular methods for bending a membrane were described as shown2 in Fig. 3.2.

Some of the methods used by cells to restructure their membranous features include the

aggregation of transmembrane proteins [4, 5], active remodeling by molecular motors [6–8],

assembly and disassembly of cytoskeletal filaments [9–11], and direct or indirect scaffolding

by proteins [12, 13].

Together with the recent molecular understanding of the mechanisms that remodel mem-
1Fig. 3.1B reprinted by permission from PNAS 98(5):2399, copyright 2000.
2Reprinted by permission from Macmillan Publishers Ltd: Nature 438(7068):590, copyright 2005.
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(A) (B)

Figure 3.1: The endomembrane system of a eukaryotic cell. The membranes of
eukaryotic cells adopt fascinating shapes such as tubes, vesicles, and flattened disks in
support of their cellular function. Panel A. Schematic diagram of the endomembrane
system [1]. Panel B. Three-dimensional reconstruction from electron cryotomography of
the endoplasmic reticulum (yellow) surrounding the cisternae of the Golgi apparatus (multi-
colored); scale bar = 500 nm. Figure reproduced, with permission, from Reference [2].

branes have developed exciting new technologies for imaging cell membranes at unprecen-

dented resolution. Perhaps the most dramatic examples come from the technique of electron

cryotomography which enables a detailed three-dimensional reconstruction of the contents

of a cell at a resolution of a few nanometers from a “tilt series”, images of a sample taken at

various angles [14]. For instance, electron cryotomography has enabled the reconstruction

of high-resolution, three-dimensional models of organelle structure (the mitochondrion [15],

the Golgi apparatus [16], and endoplasmic reticulum [16]) as well as HIV viral entry [17],

the architecture surrounding synaptic vesicles [18], and the endocytotic machinery [19]. An

example of an image of a mitochondrion imaged with this technique is shown3 in Fig. 3.3.

Qualitative insights gained from such imaging has been substantial, and in the particular

case of the mitochondrion has corrected a decades-old misperception of the structure of the

inner mitochondrial membrane based on two-dimensional imaging (see Fig. 3.4).

Although these microscopy-based membrane structures have led to revolutions in our

qualititative understanding of membrane morphology, no general technique exists as yet for

their quantitative analysis. For instance, it has long been postulated that the mechanics
3Reprinted from Trends Biochem Sci, Frey and Mannella “The internal structure of mitochondria” 25:319–

324 (2000) with permission from Elsevier.
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Figure 3.2: The five ways to bend a membrane as identified by McMahon and Gal-
lop. A variety of methods are used by cells to induce positive and negative curvature and
shape their membranes into the intricate structures observed under a microcope. Figure
reproduced, with permission, from Reference [3].

of the membrane play an important role in the aggregation of membrane proteins [22],

and recent simulations have also lent support to this idea [23]. In this case, knowledge

of the mechanical forces applied by aggregating membrane proteins to an experimentally

observed membrane structure would shed further light on their size, distribution, and mutual

interaction. Further questions along these lines could include that of the nature of the

scaffold, or forces, that give rise to the cristae structure of mitochondria seen in Fig. 3.3. The

quantitative measurement of the location and magnitude of the forces applied by cellular

machinery promises to yield important insights into the detailed mechanisms of membrane

remodeling processes, from the life cycle of a membrane-bound virus to the scaffolding

underlying organellar structure.

In this chapter we propose a general technique that may be applied to fluid phospho-

lipid bilayers to directly measure the forces applied to the membrane from knowledge of its

shape alone, as observed by, e.g., electron cryotomography. After developing the necessary

theoretical and computational tools, we apply the method to experimental data from an

optical tweezer microscope used to draw membrane tethers out of giant unilamellar vesicles

or GUVs. This experiment provided a convenient test for validating the measurement of

forces from an observed membrane conformation since the applied force is known indepen-

dently by measurement from the optical tweezers. The technique applied here, which is

easily adapted to the axisymmetric conformations observed in the optical tweezing experi-

ments, is equally applicable to arbitrary membrane shapes and has been implemented in a
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Figure 3.3: Two views of a three-dimensional reconstruction of a mitochondrion
from a chick cerebellum cell. On the left the full reconstruction is shown; on the right, only
a few cristae are shown to illustrate typical details of these structures. The outer membrane
is shown in purple. The inner membrane of the mitochondrion is made up of cristae (yellow)
interconnected by small tubules termed crista junctions to a surrounding envelope of inner
membrane which encloses all the cristae (light blue). Figure reproduced, with permission,
from Reference [15].

general finite element framework [24]. We envision that the measurement of applied force

by analysis of membrane conformation offers exciting possibilities for the analysis of in vivo

membranes, though the heterogeneity and extraction of reliable conformational data from

tomograms are challenges that remain to be overcome in this area [25].

The remainder of this chapter is organized as follows. In Section 3.2 we review the nec-

essary theoretical preliminaries to measure the force applied to a fluid lipid bilayer based

on its observed shape. In Section 3.3 we review the experimental setup used to trap the

optical beads and apply a known force with optical tweezers to giant unilamellar vesicles

and in Section 3.4 elaborate the computational methods used to extract the membrane

conformation and numerically calculate the applied force. Finally in Section 3.5 we show

the results of the membrane force measurements and discuss the implications in Section 3.6.

Additional material can be found in Appendix B on artifacts encountered during the ex-

periments as well as detailed derivations of the normal force from the Helfrich energy and

the dependence of membrane tether radius on the applied force.
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(A) (B)

Figure 3.4: Comparison of the old view of mitochondrial membrane structure
with the new view informed by electron cryotomography. (A) A outdated text-
book view of the inner mitochondrial membrane. The so-called “baffle” model of
the inner mitochondrial membrane which visualized the cristae as invaginations which form
large folds continuous with the surrounding envelope of inner membrane. Figure reproduced
from Reference [20], published in 2000. (B) A current textbook view of the inner
mitochondrial membrane. The cristae are now known to connect to the surrounding in-
ner membrane not through continuous folds but rather through small tubules termed crista
junctions. Figure reproduced from Reference [21], published in 2008.

3.2 Theory

The mechanical theory of fluid-phase lipid membranes has been the subject of extensive

study [25, 26] and experiments suggest that the response of membranes to the application

of force is well-approximated by the theory of Helfrich, Canham, and Evans [27–29]. The

Helfrich model describes the conformational energy of the membrane in terms of an areal

energy density ε that is a function of the local shape of the membrane:

ε = 1
2kC (S − C)2 + kGK, (3.1)

where K is the Gaussian curvature (the product of the principal curvatures) and S is the

sum of the principal curvatures; C is the spontaneous curvature. The spontaneous curvature

describes the spontaneous bending of the membrane induced by asymmetries in the lipid

composition or chemical environment of the individual leaflets. The bending modulus kC is
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typically 10–20 kBT [30] and kG is the Gaussian bending modulus. By the Gauss-Bonnet

theorem, the kGK term in the Helfrich energy contributes only a topological term to the

free energy and is therefore irrelevant for describing closed membranes (see, e.g., Nakahara

[31]). We also wish to note that the Helfrich energy is functionally identical to the Area-

Difference Elasticity model (ADE) up to the first variation. The effect of an area difference

between the two leaflets of the membrane is to produce an effective spontaneous curvature.

Incorporation of the parameter C in the Helfrich model can therefore be interpreted to

include the contribution of ADE. More detail on this can be found, e.g., in Seifert’s review

of the mechanics of fluid membranes [26].

Given that we may neglect the term proportional to K in the energy density, the func-

tional integral which we will use to find local forces is:

E =
∫

dA
[

1
2kC

(
S2 − 2SC

)
+ α

]
+
∫

dV p, (3.2)

where we have included the membrane tension α and osmotic pressure p as Lagrange mul-

tipliers. Note that we absorbed the constant 1
2kCC

2 term into the definition of the tension.

The elastic force density of the membrane is determined by performing the first variation

of the Helfrich energy [32]. Since the membrane is fluid in-plane [33, 34], the equilibrium

elastic force per unit area is in the direction perpendicular to the membrane:

f⊥ = Sα− p− kC
[
∇2S − 2K (S − C) + 1

2S
3
]
, (3.3)

where the parameter p is the osmotic pressure. A detailed derivation of Eq. 3.3 for the

elastic force density f⊥ is given in Appendix B.2.

The force density depends on the local membrane geometry, which is directly observable,

and three additional parameters: the pressure, tension, and spontaneous curvature, which

must be determined. To compute these unknown parameters, we apply the Proximal Equi-

librium Approximation which uses a maximum-likelihood principle to determine the values

of pressure, tension, and spontaneous curvature which predict an equilibrium conformation

closest to the observed conformation.

The total force applied by a region of the membrane is calculated as the integral over the

force density in that region. Due to the particular mathematical form of the Helfrich energy,
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the total elastic force (applied by the membrane) can also equivalently be computed as a

contour integral on the region boundary [35]. The concept of the equivalence of these two

integrals is illustrated graphically in Fig. 3.5. Consider a fluid lipid bilayer membrane with

F3

F2

F1

¡
¡        '

Figure 3.5: Membrane with three external forces applied. Dotted lines indicate
contours Γ and Γ′. The external forces in these regions can be computed with line integrals.
Figure by Paul Wiggins

forces applied as shown in the figure. The total external force ~F1 applied to the membrane

can be equivalently calculated as an integral over an areal region M′ or as an integral on

the bounding contour Γ:

~F1 = −
∫
M′

d2s
√
g ~fint =

∮
Γ

ds ~Fint. (3.4)

The total external force in the region M′′, bounded by contour Γ′, can be computed simi-

larly:

~F1 + ~F3 = −
∫
M′′

d2s
√
g ~fint =

∮
Γ′

ds ~Fint. (3.5)

There are two advantages to calculating the external force as a contour integral rather than

an integral over an areal region:

1. The internal force ~Fint on the boundary has been integrated relative to ~fint therefore

it is one order lower in derivatives (third order instead of fourth order) making it more

tractable numerically.

2. We may determine the external force without detailed knowledge of the structure of

the membrane in the areal region; as long as the boundary has been well determined

experimentally, we may measure the force on the region internal to that boundary.

With the necessary theoretical pieces now in place we now turn to the implementation
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of an experiment to test the predictions of the Helfrich theory outlined above.

3.3 Experimental materials and methods

3.3.1 Optical setup

The force measurements were performed using a custom apparatus comprised of two optical

traps integrated with a fluorescence microscope. (See panel A of Fig. 3.6 for a schematic

drawing of the vesicle force-extension apparatus.) Forces were applied to vesicles by binding

streptavidin-coated 1 µm beads to DOPC giant unilamellar vesicles doped with biotin and

TRITC. The vesicles were composed of 99% DOPC, 0.5% DOPE-biotin, and 0.5% DOPE-

TRITC by molar fraction. The product numbers of the reagents used from Avanti Polar

Lipids were: DOPC, 850375; DOPE-rhodamine, 810150; and DOPE-biotin, 870282. The

beads used were Invitrogen catalog no. F-8777 FluoSpheres R© NeutrAvidin R©-labeled 1 µm

nonfluorescent microspheres.

A 1064 nm trap was used as a force detector. The beam deflection was detected in

the back focal plane by a position sensitive detector (PSD) [36]. A second 808 nm trap was

employed to deform the vesicles. This second color trap was used to avoid crosstalk between

the deflection and force detection beams at the PSD. The position of the 808 nm trap was

varied using a beam steering telescope driven by a computer-controlled voltage actuator.

The radius of a typical vesicle was approximately 15 µm. In order to avoid membrane

contact with the surface, experiments were performed at a distance of roughly 100 µm from

both surfaces of the experimental chamber. To trap beads at these long working distances,

it was necessary to employ a 60X water immersion objective. The trap stiffness was nearly

independent of the working distance. The vesicles were imaged using TRITC fluoresence,

excited by a mercury lamp. We used brightfield microscopy, lit by a white LED, to find

and capture beads in the two optical traps (“bead fishing”). Vesicles were imaged using a

Hamamatsu ORCA 285 camera.

The vesicle manipulations were performed in a two-input flow chamber. After blocking

the chamber with BSA, the vesicle solution was pipetted into one of the input ports to fill

the chamber. This input port was then sealed and the buffer was allowed to slowly evaporate

from the unsealed input port, increasing the external osmotic pressure. When the vesicles

became sufficiently soft, a charge of streptavidin-coated 1 µm beads was pipetted into the
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Figure 3.6: Experimental apparatus schematic drawing and chamber detail. (A)
Experimental apparatus schematic drawing. The measurements were performed us-
ing a custom setup composed of two optical traps integrated with a fluorescence microcope.
The beam deflection from the 1064 nm trap was detected in the back focal plane by a po-
sition sensitive detector (PSD). A second 808 nm trap with a beam-steering telescope was
employed to deform the vesicles. (B) Experimental chamber detail. The experiments
were performed in a sealed two-input flow chamber. Forces were applied to vesicles by bind-
ing streptavidin-coated 1 µm beads to DOPC giant unilamellar vesicles labeled with biotin
and TRITC. Images of the fluorescently labeled lipid were analyzed to extract dynamic in-
formation about thermal membrane fluctuations as well as calculate the static elastic forces.
Figure by Paul Wiggins
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remaining input port and the port was sealed. The flow chamber is depicted schematically

in panel B of Fig. 3.6.

3.3.2 Optical trap force measurement

Measurement of piconewton forces with optical traps is a well-studied subject, reviewed,

e.g., in Neuman and Block [37]. A brief exposition of the method is also given here. The

data that is directly read from the PSD is not position but voltage. In the limit of small

deflections, one can apply Taylor’s theorem to obtain a linear relation between voltage and

position:

V (t) = EX(t), (3.6)

where E has the units of an electric field.

We took voltage data from the PSD for each step in an extension series for a total of

10 seconds at a rate of 10 kHz, giving a time history of the movement of the trapped bead

as a voltage time series V (t). For the zero-force points, we took data for 10 seconds at 100

kHz. In terms of this voltage, the autocorrelation function is

〈
V (t)V (t′)

〉
= CV exp(−ω0|t− t′|), (3.7)

where CV is the amplitude of the voltage autocorrelation function with corner frequency

ω0. Using the equipartition theorem, we have the following relation for the spatial autocor-

relation function:
1
2
κ
〈
X(t)X(t′)

〉
=

1
2
kBT, (3.8)

where κ is the effective spring constant of the optical trap. We may now use Eq. 3.6 to

relate the voltage and spatial autocorrelation functions and obtain CV as a function of

known parameters:

CV =
kBTE

2

κ
. (3.9)

We can therefore use the amplitude of the voltage autocorrelation function to determine

E. The stiffness of the optical trap is a function of the corner frequency and the diffusion

coefficient of the bead:

κ =
ω0kBT

D
. (3.10)
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In terms of experimental observables, the effective electric field E is

E =

√
CV ω0

D
. (3.11)

We can write the force on the bead in terms of the voltage and E

F = −κV V = −κX, (3.12)

where the voltage spring constant is

κV =
κ

E
= kBT

√
ω0

DCV
. (3.13)

Assuming room temperature T = 300 K and given values for D, ω0 and CV the trap

stiffness κV is determined and the force exerted by the optical trap will be known. The

diffusion constant D of beads in the sucrose solution used in this experiment was measured

by tracking the diffusion of 1 µm beads, with no lipid present, in the sealed two-input

flow chamber described in Section 3.3.1. A custom software package, kindly provided by

Robert Bao, was used to analyze the time-series images of bead diffusion; the diffusion

constant for the bead solution was measured to be 0.44 µm2/s. The remaining parameters

were determined by fitting the observed voltage autocorrelation to the exponential function

given in Eq. 3.7, giving ω0 = 6100 s−1 and CV = 0.0013 V2. Thus the trap stiffness was

determined to be 13 pN/V.

In our experiment, forces were applied via optically trapped beads to DOPC giant

unilamellar vesicles. The streptavidin-coated beads were linked to the vesicles via biotin-

labeled lipids. The bending modulus kC for DOPC is 0.85× 10−19 J [30].

In a typical experiment, fifty image frames were captured at each step in an extension

series. An extension series consisted of about fifty steps, split between outward and inward

movement, with a step size of roughly 1.5 µm. In the next section we describe the procedure

for tracing the shape of the vesicle from the captured images and the method used to

estimate the unknown parameters p, α, and C.
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3.4 Computational methods

In order to proceed with the calculation of the force applied to a membrane by analyzing its

shape we must first determine its conformation. The vesicle conformation is represented as

a cubic spline with control vertices traced from the images of the fluorescent membrane. A

combination of tracing by hand together with fitting to an empirical model for the intensity

profile of a vesicle was used to generate spline control vertices. At the close of this section

we describe the Proximal Equilibrium Approximation which was used to determine the

pressure, tension, and spontaneous curvature of the membrane, and discuss how the error

on these parameters can be estimated.

3.4.1 Spline representation

We implemented the vesicle spline representation with the MATLAB command interp1 and

the v5cubic option. This interpolation scheme was chosen because it was convenient to

implement in MATLAB. Using the v5cubic spline affords a number of desirable features:

1. The cubic splines were constructed with C2 smoothness, i.e., continuous up to the sec-

ond derivative. This property was necessary in order to produce well-defined deriva-

tives of the curvature when computing forces.

2. The interpolation method implemented by the v5cubic option makes use of basis

functions with modest support. The interpolated curve over each segment depends

on the positions of the two nearest neighboring points on each side. Other spline

options in MATLAB with larger or smaller supports produced curves that differed more

noticeably from the vesicle contours.

3.4.2 Vesicle tracing

In Fig. 3.7 we show an image of a vesicle together with the control vertices traced from

that image. The position of the vertices in the direction parallel to membrane surface

was chosen by hand; the position in the direction normal to the surface was fit to the

fluorescence profile independently in each frame. We attempted a number of automated

procedures for choosing the parallel positions of the control points but these algorithms

were difficult to implement in a robust manner. In this analysis, we assume that the vesicle
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is axially symmetric so that the observed cross-sectional structure determines the entire

vesicle shape. This approximation is excellent at large extensions, but breaks down at low

force.
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Figure 3.7: Capturing the membrane conformation. (A) Fluorescence image of
a vesicle from a force-extension series. The vesicle conformation is represented as a
cubic spline. The positions of the control vertices are fit from the fluorescence profile. The
red vertices were traced from the fluorescence image shown in the figure; the blue vertices
correspond to a trace of the mean of the fifty images at this step in the extension series.
The localized fluorescence in the body of the vesicle is the result of an internal vesicle. The
increase in external osmotic pressure often leads to a budding transition. Note also that the
beads are not fluorescent themselves, they appear fluorescent due to the aggregation of lipid
there. (B) Fitting control point positions. The positions of the control points normal
to the contour were fit to the fluorescence profile (red curve), employing an empirical model
(blue curve). The intensity values shown here were taken from a one dimensional slice of
the image, shown as a blue dotted line in panel A.

The positions of the control points in the direction perpendicular to the membrane

contour were fit to the fluorescence profile, employing an empirical model. A good model

for the fluorescence profile was found to be a convolution of a structure function with a

Gaussian point spread function (PSF):

Ij(ρ; ρ0) = ΨPSF ⊗ I0(ρ; ρ0), (3.14)

where I is the intensity of the grayscale fluorescence image for vertex j at position ρ, defined
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as the distance to the vesicle symmetry axis in a direction perpendicular to the membrane

surface. ρ0 is the value of ρ at the vertex j, and I0 and ΨPSF are the structure function and

Gaussian point spread function, respectively. We interpolated to find the intensity of the

fluorescence image along a ray perpendicular to the membrane and then fit this intensity

profile to the right half of the empirical function in Eq. 3.14 and depicted in Fig. 3.8. The

structure function is

I0(ρ; ρ0) = Aδ(ρ− ρ0) +Aδ(ρ+ ρ0) +BΘH(ρ+ ρ0)ΘH(ρ0 − ρ), (3.15)

where A and B are constants, δ is the Dirac delta function, and

ΘH(x) =


1, x ≥ 0

0, x < 0,
(3.16)

is the Heaviside step function. The Gaussian point spread function is defined to be

ΨPSF(x) = exp(−x2/2b2), (3.17)

where b is the point spread width. The structure function I0 and convolved empirical

function are shown in Fig. 3.8. We have idealized the in-plane membrane as an infinitely

thin surface, normal to the plane of focus, with a delta function source of fluorescence.

The out-of-focus membrane is represented as a region of uniform intensity (the Heaviside

function). A number of more elaborate (non-empirical) models were implemented, but this

model led to the best approximation of the observed fluorescence profile. The fit to a typical

fluorescence profile is shown in panel B of Fig. 3.7.

Mathematically, the force measurement should not depend on the vesicle representation

(the parallel positions or number of the spline control vertices ). However human, experi-

mental, and numerical error could, in principle, make the conformational force measurement

sensitive to these factors. We found however that the conformational force is independent

of a particular choice of control vertices, as shown in Fig. 3.9. The close agreement of

these two independent sets of tracings from the same vesicle extension series show that the

conformational force does not depend sensitively on the position or number of the spline

control points, as asserted.
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Figure 3.8: Empirical model used to fit vertex normal positions. (A) Structure
function I0. Panel A on the left depicts the structure function, which consists of a delta
function of intensity at the edge of the membrane with a uniform fluorescence source on
the interior. (B) The empirical fitting function. Panel B shows the empirical fitting
function, a convolution of the structure function I0 and a Gaussian point spread function.
The parameters used were A = B = 1, b = 0.2, and ρ0 = 2.

3.4.3 Proximal Equilibrium Approximation

Analysis of the fifty image frames at each step in the extension and retraction series yielded

a traced contour representing the axisymmetric shape of the vesicle. After determining

the membrane structures, the unknown experimental parameters, pressure p, tension α,

and spontaneous curvature C must still be determined. The condition of (approximate)

mechanical equilibrium was used to calculate these three quantities.

In mechanics, there are at least three ways of expressing mechanical equilibrium; at

every point on the membrane:

1. The energy associated with normal displacement of the membrane is minimized.

2. The total force is zero.

3. The normal displacement to the equilibrium position is zero.

Mathematically, all three of these statements are exactly equivalent. Therefore, for confor-

mations that are dominated by deterministic mechanical forces rather than fluctuations, all

three formulations of equilibrium should be equivalent.

Although these approaches for determining proximity to equilibrium appear equivalent,

we argue that, from an experimental standpoint, using the normal displacement to the

equilibrium position as the objective function (hereafter the “distance objective function”)
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Figure 3.9: The conformational force is independent of the tracing representa-
tion. The figure shows two independent tracings of the vesicle extension series. It is clear
that the two tracings are in quantitative agreement with one another, confirming that our
results are not sensitive to a particular choice of spline control points.

is the most powerful. The first advantage of the distance objective function is that it is

the position of vertices that is determined from the experimental fluorescence images, not

the force or energy at each vertex. It is therefore most natural to describe the experiment

in terms of the the observed quantities: the positions of the control vertices. But most

importantly, the distance objective function is least susceptible to high frequency noise and

gives the most robust results in the numerical minimization. For configurations that are

close to equilibrium, the distance to equilibrium ψ can be computed by multiplying the

vertex forces by the inverse stiffness matrix:

ψ = −K−1f⊥. (3.18)

The stiffness matrix K is obtained by performing the second variation of Eq. 3.2 for the

Helfrich energy and was derived in detail by Zhong-can and Helfrich [38].

With the displacement of each vertex to equilibrium chosen as the objective function,

we are ready to apply the Proximal Equilibrium Approximation, as follows:

1. The observed membrane shape is represented as a cubic spline with an associated set
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of vertices serving as control points. We fix the vertices near the points of contact with

the trapped beads, where forces are applied and the membrane cannot be resolved

with confidence.

2. We choose trial values for the unknown parameters of pressure p, tension α, and

spontaneous curvature C.

3. We compute the vertex normal forces fi and stiffness matrix K with the trial values

of the parameters.

4. We calculate the estimated equilibrium displacement ψi at each vertex i with Eq. 3.18.

5. We minimize the sum of the squares of the equilibrium displacements for all non-

fixed vertices with respect to the parameters p, α, and C using the MATLAB function

lsqnonlin.

Particularly for conformations close to the transition, when a membrane tether forms it

was necessary to carefully choose the initial values of the parameters for pressure, tension,

and spontaneous curvature or the minimization would fail to find a satisfactory solution.

Conformations not close to the transition were less sensitive to the initial values of the

parameters and could be fit robustly without hand-tuning the initial parameter values. The

Proximal Equilibrium Approximation is illustrated visually in Fig. 3.10 for the vesicle shown

earlier in Fig. 3.7. The optimized parameters found were pressure: 3.4± 0.2 mPa, tension:

7.4± 0.5 kBT/µm2, and spontaneous curvature: −0.27± 0.10 µm−1.

One of the interesting outcomes of our experiments is the necessity for the spontaneous

curvature parameter C. Intuitively one might suppose this parameter to be unnecessary

since there is no asymmetry in the leaflets of the two membranes of the pure DOPC giant

unilamellar vesicles we used in the experiments. Nevertheless, due to the finite thickness of

the membrane there is an area difference between the two leaflets and in pulling a tether

out of the GUV the effects of this difference are noticeable. In Fig. 3.11 we show how

the parameter C is determined by the Proximal Equilibrium Approximation procedure and

demonstrate its necessity in describing the conformation of the membrane.
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Figure 3.10: The Proximal Equilibrium Approximation. (A) Vesicle conforma-
tion. The axisymmetric vesicle conformation is represented as a cubic spline with control
vertices shown as points along the contour. In order to find the pressure, tension, and
spontaneous curvature of the membrane, we choose initial values of these parameters which
produce a trial membrane configuration. On the right we show a magnified view of the
observed membrane shape (solid curve) as well as the trial shape (dotted line) near control
vertex i where the displacement between the vertex in the observed shape (light blue) and
the trial shape (light gray) is labeled as ψi. We minimize the mean square displacements
ψi with respect to the trial values of pressure, tension, and spontaneous curvature in order
to form a best estimate for the values of these parameters. During the minimization we ex-
clude the regions in the proximity of the bead attachment points, shaded in gray on the left
and right, where the membrane shape cannot be resolved with sufficient precision to make
reliable force estimates. (B) Vertex force. The vertex force fi is the sum of components
from membrane bending elasticity, tension, pressure, and spontaneous curvature. In the
body of the vesicle, force balance is dominated by tension (red curve) acting to contract the
vesicle radius, and pressure (blue curve) acting to expand the radius. In the vesicle tether,
force balance is dominated by the competition between elasticity (green curve) acting to
expand the tether radius, and tension (red curve) acting to contract the tether radius. The
induced spontaneous curvature has its greatest effect in the neck of the vesicle where there
is a transition between the two regions. (C) Estimated displacement to equilibrium.
The distance to equilibrium along the normal to the membrane surface is shown in panel
C. The optimal values for the parameters p, α, and C are found by minimizing the sum
of squares of the vertex equilibrium displacements. (D) Summed force: The summed
force at vertex i, F iz , is the sum of the z components of the vertex forces in the dark gray
region which excludes vertices with z < zi. Therefore F iz is the total force applied by the
right-hand side of the vesicle in the z direction. In this panel we plot the total summed
force (black) which, as expected, is approximately constant throughout the body of the
vesicle, since the forces are applied only at the poles of the vesicle. The summed force is
also shown decomposed into individual contributions from pressure, tension, spontaneous
curvature, and bending elasticity.
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Figure 3.11: The determination of C. The unknown parameters are determined by the
Proximal Equilibrium Approximation: the sum of the squared equilibrium displacements
ψi are minimized with respect to a three-dimensional parameter space corresponding to
(p, α, C). Panel A. The plot shows the

∑
i ψ

2
i landscape along the direction of smallest

curvature, parameterized by C. Panel B. The estimated equilibrium shape in the neck
region for three C values corresponding to the vertical lines in Panel A is depicted. The
green curve, corresponding to C = 0.2 µm−1 (close to the optimal C value), qualitatively
matches the observed membrane conformation (black).

3.4.4 Calculation of curvature and forces

We computed the curvatures from the spline interpolation by finite difference and then

numerically integrated to calculate the membrane bending energy. Vertex normal forces

were calculated using a centered finite difference technique: we deformed the spline contour

by perturbing vertices by a small amount ∆N/2 outward and inward in the direction of

the surface normal, then took the difference of the outward and inward perturbed energies:

f⊥ = ∆E/∆N . The integrated force was computed by a forward finite difference, moving

vertices in a region of the membrane by a slight amount ∆z in the axial direction and

computing the change in the energy ∆E, giving us a force Fz = ∆E/∆z.

3.4.5 Error computation for the conformational force

The error in the force computed from the conformation of the membrane was estimated in

two ways. One method consists of tracing each of the 50 images at each step in the extension

series, applying the Proximal Equilibrium Approximation, and then analyzing the resulting

distribution of force, pressure, tension, and spontaneous curvature measurements. This is
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the method used to generate the r.m.s. errors on the force shown in Section 3.5, Fig. 3.13.

Another method consists of calculating confidence intervals for the unknown parameters

(p,α,C) and then deriving the error in the force based on those uncertainties. This can be

done by standard methods; see, e.g., Bevington and Robinson [39], whose analysis we follow

here. The Proximal Equilibrium Approximation amounts to a non-linear least-squares fit

of the membrane contour given values for the pressure, tension, and spontaneous curvature

to the observed membrane contour. The χ2 goodness-of-fit parameter in the Proximal

Equilibrium Approximation is:

χ2 =
∑
i

1
σ2
i

[yi − yobs]
2, (3.19)

where σi is the uncertainty in the position of vertex i in the direction normal to the mem-

brane contour, yobs is the observed position of the vertex in the normal direction, and yi is

the position of the ith vertex given parameter values p, α, and C. The uncertainty in the

normal positions, σi, was essentially constant for each of the vertices in a given image from

our experiments. In the neighborhood of the minimum χ2 value found by the Proximal

Equilibrium Approximation, we may use a Taylor expansion of our fitting function, yi, to

find:

∆aj = εjkβk (3.20)

where ∆aj is the uncertainty on the jth parameter, εjk is the error matrix, and βk is

the derivative of χ2 with respect to the kth parameter. This was the technique used in

generating the errors shown as dotted lines on the plots of pressure, tension, and spontaneous

curvature in Fig. 3.14 below. More generally, after finding the optimal point in χ2 space, we

may calculate the χ2 values in the neighborhood of this point and find contours in parameter

space where χ2 increases by a given amount to find arbitrary confidence intervals on the

parameters. We found that using the χ2 method of estimating confidence intervals on the

parameters predicted larger errors than the r.m.s. method from the 50 images at each step

in the experiment.
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Applicability of the Proximal Equilibrium Approximation

In order to apply the Proximal Equilibirum Approximation, the conformation must be

close to mechanical equilibrium rather than fluctuation dominated. The effect of thermal

fluctuations as a source of error in the Proximal Equilibrium Approximation can be tested

directly: we generated membrane tracings from both individual image frames, as well as

from the mean of the fifty images at each step in the extension series. The analysis of

traces from individual image frames results in a distribution of force measurements whose

mean can be taken as the value of the force at that step in the experiment. The mean force

from the 50 individual tracings varied by an average of 0.07 pN from the value of the force

calculated from the traced average image for the results shown in Section 3.5, Fig. 3.13,

and is small in comparison with other sources of error in the experiment.

A second limitation of the Proximal Equilibrium Approximation is the approximate

degeneracy of some membrane conformations with respect to the estimated parameters p,

α, and C. Perhaps the most obvious example is the sphere. The Proximal Equilibrium

Approximation essentially solves for the unknown values of pressure, tension, and spon-

taneous curvature by balancing the constraint forces due to those parameters against the

elastic force. In the case of a sphere, there are no elastic forces to balance. Since the elastic

forces vanish, there is a two-dimensional continuum of pressure and tension values that will

satisfy the force balance equations. For such a degenerate case, the Proximal Equilibrium

Approximation cannot yield meaningful results and the numerical optimization will fail to

find a good local minimum. Obviously, the sphere is a special case, but shapes near the

transition point when a membrane tether forms appear to have only a weak dependence

on the spontaneous curvature, and this near degeneracy makes it difficult for the numerical

optimization to converge. Uncertainties in the spontaneous curvature dominate the error

in conformation force computation, as can be seen in Fig. 3.14.

Finally, the Proximal Equilibrium Approximation is limited by the necessity of guessing

and excluding points where external forces are applied. While the location of the applied

forces is obvious in the analysis of deformed vesicles, for biological examples, the position

of the applied forces may not be known. Indeed, in many examples, the contacts may be

so frequent as to not permit large, force-free regions to be identified and analyzed. On the

other hand, in biological applications the pressure can often be neglected and the tension and
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spontaneous curvature may be regulated by the cell or determined using other techniques

[40]. If these parameters can be neglected or are otherwise known or determined, it is

straightforward to compute membrane forces without applying the Proximal Equilibrium

Approximation.

3.5 Results

Force-induced membrane tether formation [41, 42] provides a convenient test of the con-

formational force computation: a known force, applied to an optically trapped bead, can

be directly compared to the conformational force. The progression of vesicle shapes in

our experiment as the tether forms is illustrated by the membrane conformations shown in

Fig. 3.12. As the axial force is increased, the vesicle first assumes an elongated shape before

reaching a transition in which a cylindrical tether forms at one end of the vesicle. This

transition is seen in reverse in the retraction phase of the experiment. In order to resolve

the structure of vesicles with a membrane tether by light microscopy, the force at which

tethers formed had to be less than 2 pN, implying that the undeformed vesicles had a large

excess of area, i.e., the vesicles were in a low tension regime.

In Fig. 3.13, we compare the conformational forces to the applied force for the tether

extension series shown in Fig. 3.12. We measure a mean relative error of 10% for forces

in the range of 0.2 to 1 pN, showing that the applied and conformational force are in

both qualitative and quantitative agreement in that range. The optical tweezing force

measurements have two important shortcomings in the subpiconewton regime:

1. Subpiconewton force measurements are generically susceptible to drift.

2. The vesicles themselves were also found to weakly scatter the trapping beam, resulting

in anomalous force signals during large-scale changes in vesicle structure. For instance,

only data sets where the force sensor bead was not positioned on the end of the tether

were found to result in consistent force traces. This effect is documented further in

Appendix B.1.

The mismatch between conformational and applied forces appears to increase towards the

end of the retraction, consistent with both trap drift and vesicle-induced beam scattering.

Our analysis also revealed limitations in the conformational force technique. At forces
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Figure 3.12: Vesicle conformations. In the figure above we show the vesicle conforma-
tions from an experimental extension series labeled by the corresponding step number. As
force is applied to either end of the vesicle it first assumes an elogated shape before reach-
ing a transition where a cylindrical tether is formed at one end. The maximal extension of
83.1 µm is reached at step number 34 in this series.

lower than about 0.2 pN, the conformational force is limited by the determination of the

unknown parameters: pressure, tension, and spontaneous curvature. At high force, the

conformational force is limited by diffraction as the typical length scale of the neck of the

tether shrinks below that limit.

3.5.1 Results of the Proximal Equilibrium Method

As described in Section 3.4.3, the unknown parameters p, α, and C for each configuration

are determined by applying the Proximal Equilibrium Approximation. We found that the

values of all three of these parameters evolved with the vesicle conformation. These results

are shown in Fig. 3.14 where these parameters are plotted as a function of the step number

in the extension series. In Fig. 3.15, we plot the effective constitutive relations for the

vesicle.
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Figure 3.13: Comparison of the applied and conformational force. The computed
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qualitative and quantitative agreement from 0.2 to 1 pN. The red and blue shaded regions
are the error in the trapping force and the r.m.s. variation of the conformational force,
respectively. Note that the x-axis orientation has been inverted in the retraction data.
Inset above: Membrane conformations as a function of axial length (µm).
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Figure 3.14: Tension, pressure and spontaneous curvature of a vesicle with a
membrane tether. In this figure we plot the estimated values of pressure p, tension α,
and spontaneous curvature C (blue solid lines) as a function of extension number for the
extension (pink region) and contraction (blue region) of the vesicle featured in Fig. 3.12.
These values and their r.m.s variation (dashed lines) were obtained by application of the
Proximal Equilibrium Approximation method discussed in Section 3.4.3. The volume V ,
area A and integrated curvature S are also shown. Panels A and B. In the top panes of
panels A and B, the apparent volume and area of the mean conformation are plotted vs.
step number in the extension series. The true volume and area of the membrane are fixed,
therefore the change in apparent volume and area upon extension and contraction is the
result of volume and area hidden in fluctuations from the mean axisymmetric conformation.
In the lower panes of panels A and B, the pressure and tension are seen to rise steadily
with tether extension and are peaked, as expected, at the maximum extension. Panel C.
The integrated curvature and spontaneous curvature as a function of step number in the
extension series. The spontaneous curvature is predicted to be a linear function of the
integrated curvature by the ADE theory. This linear relationship is not observed and some
possible explanations for this discrepancy are discussed in Section 3.5.1.
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Figure 3.15: Effective constitutive relations for a vesicle with a membrane tether.
In this figure we plot force vs. length, tension vs. area, pressure vs. volume, and spontaneous
curvature vs. integrated curvature for the vesicle shown in Fig. 3.12. The black points
indicate measured values and the blue regions show the corresponding errors in the ordinate
variable. We note that the error in the right-most points on the the tension and pressure
plots, which appear here to be small and approximately constant, are actually dominated by
the errors in area and volume, respectively, which are not shown. The predicted theoretical
curve according to Eq. 3.21 (which did not require a fit) is shown in red in the plot on the
lower right.
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Pressure and tension

At the beginning of the extension (the end of the retraction) in Fig. 3.14, there is a steep

rise (drop) in the apparent volume and area of the membrane, seemingly contradicting the

claim that the vesicle volume and area are incompressible. This is due to the fact that

although the actual volume and area of the membrane are in fact nearly incompressible,

some volume and area are hidden in the thermal membrane undulations. In Fig. 3.15,

the fluctuation-dominated regime is clearly visible, corresponding to the (nearly) constant

tension and pressure regimes. In the high-tension limit, little membrane remains in mem-

brane undulations and the tension and pressure can be interpreted as constraint forces.

This regime is characterized by the constant area and volume at high tension as shown in

Fig. 3.15.

Spontaneous curvature

Area-difference elasticity theory predicts the dependence of spontaneous curvature on mem-

brane deformation [26, 43, 44]:

C = −KADE (〈S〉 − S0) , (3.21)

where KADE is a non-local bending modulus and

〈S〉 ≡ A−1S = A−1

∫
dAS, (3.22)

is the integrated sum of the principal curvatures 〈S〉 over the deformed vesicle and S0 is a

constant. If the membrane is initially equilibrated by the slow processes of lipids flipping

between leaflets, we would expect S0 to be zero for the undeformed vesicle. In Fig. 3.15,

this simple linear dependence on the mean summed curvature is not observed. Following

are a few items to bear in mind when considering the lack of support in the data for a linear

relationship between the spontaneous curvature and the integrated mean curvature:

1. The relative error in determining the spontaneous curvature C is larger than for the

other two parameters. The optimization landscape for the distance objective function

discussed in Section 3.4.3 is the most “flat” as C is varied. The higher error in C

makes it difficult to clearly discern a linear relationship.
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2. At low force, the effects of themal undulations become important and entropic effects

dominate the results. Since we cannot observe the curvature (or area, or volume)

stored in fluctuations in this regime we cannot make a good comparison with the

theoretical prediction in the low-force regime.

3. Finally, the slow process of lipids flipping between the leaflets of the bilayer may also

have an effect on our results. ADE theory assumes a fixed lipid number in each leaflet

and so to the extent that lipids are able to equilibrate between the two leaflets, this

condition is violated. The aggregation of lipid on the optically trapped beads, as well

as the budding processes observed during the experiments, may all indicate sources

of deviation from the assumption of fixed lipid number.

3.5.2 More vesicle experiments

In this section we show six additional force measurements from other experiments that were

not analyzed in the full detail of the series shown in Fig. 3.13. In each plot, the red curve is

the force measured from the optical trap and the blue curve represents the force measured

from the conformation of the membrane using the Proximal Equilibrium Approximation to

estimate the unknown parameters p, α, and C.
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Figure 3.16: Data set 2. This extension series was executed immediately following the
series shown in Fig. 3.12 on the same vesicle shown there. Anomalous forces due to light
scattered by the membrane itself are apparent in the first few steps of this extension in the
trap force; see Appendix B.1 for more discussion of this effect.
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Figure 3.17: Data set 3. Again, anomalous forces due to light scattered by the mem-
brane itself are apparent in the trap force. We found that data sets where the membrane
tether formed on the extension side resulted in the best quantitative agreement with the
conformational force. See Appendix B.1 for more details.
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Figure 3.18: Data set 4. This extension series was conducted immediately following the
series shown in Fig. 3.17 and shows excellent agreement between the trap and conformational
force.
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Figure 3.19: Data set 5. This experiment shows an extreme example of the anomalous
trapping forces discussed in Appendix B.1 induced by large-scale membrane conformational
changes at the force sensor bead.
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Figure 3.20: Data set 6. In this experiment we again observe excellent agreement between
the trap and conformational force for higher forces.
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Figure 3.21: Data set 7. This final set of experimental data also demonstrates good
agreement between the trap and conformational force.
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3.6 Discussion

Our goal with this chapter was to develop a general method for calculating the forces

applied to arbitrary membrane conformations observed by new microscopy techniques. We

have validated the model with the axisymmetric shapes derived from an in vitro optical

tweezing experiment pulling membrane tethers from GUVs, a well-studied system in the

membrane mechanics literature [43, 45–47]. Nothing about the method however limits

it to such symmetric membrane shapes and the full power of the conformational force

technique will be unleashed when it is applied to in vivo data such as that obtained from,

e.g., electron cryotomography or confocal microscopy. Computational techniques to analyze

three-dimensional membrane conformations have been described elsewhere [24] and extend

our framework in a natural way to general membrane structures. As of yet there are no

other experimental tools which allow the measurement of forces applied to membranes in

vivo such as the method described here.

We can estimate the spatial resolution required to image cellular structures of interest

by examining the dependence of the force at tether formation on curvature. Given an

applied force F , the approximate scale of membrane bending R is given by R ∼ 2πkC/F =

0.4 (1 pN/F ) µm. (See Appendix B.3 for a derivation of this equation.) Since typical

subcellular biological forces are on the order of several piconewtons, the typical scale R of

membrane bending is on the order of 100 nm; thus, the conformational force technique will

be most powerful in the analysis of structures captured at resolutions lower than the optical

diffraction limit.

A number of challenges remain to be dealt with before this method can be applied

generically to membrane conformations observed from, e.g., electron cryotomography. The

first and perhaps most serious difficulty is the heterogeneity of biomembranes [25]. Though

the condition of fluidity is probably often met in the in vivo setting, the presence of proteins

in the membrane and associated cytoskeletal elements together with the presence of many

species of lipid would, in general, necessitate a more sophisticated elasticity model than the

Helfrich model our method is based on. All is not lost, however. Though this method would

not be applicable to whole cell deformations, if a smaller area of membrane is considered

where, for example, a lipid raft has concentrated one type of lipid around an embedded

protein inclusion, the forces within that region may be computed by knowledge of the
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boundary of that region. In general, as long as a fluid membrane region can be found for

which the phospholipid bilayer on the interior of the region can be described by a bending

modulus, this technique allows a measurement of the forces applied within that region.

This is particularly important for data from electron cryotomography, where it is often

impossible to collect data from all angles and the resulting “missing wedge” results in a

partially incomplete membrane surface.

One of the most difficult and time-consuming aspects of applying the conformational

force measurement to the axisymmetric vesicle shapes analyzed in this work was the tracing

of the membrane from fluorescence microscopy data into a cubic spline. The general process

of extracting information about various features in digital images is termed “segmentation”

and is one of the most difficult problems in image analysis. The combination of an extra di-

mension, the lack of symmetry and other complicating factors such as the “missing wedge”

all combine to make the general problem of segmenting a membrane from three-dimensional

data such as a tomogram still more difficult. In addition, the typically low signal-to-noise

ratio of electron cryotomography data make the extraction of features by hand, as was done

with the optical tweezing experiments, prone to bias: one may see only what one expects

to see. The difficulty and danger of segmenting by hand make it desirable to find reli-

able automated methods for segmentation of membranes. Current automatic segmentation

techniques such as isosurface extraction suffer limitations such as producing meshes that

are ill conditioned for analysis by the presence of, e.g., elements with poor aspect ratios

and inclusion of non-membranous features in the triangular mesh. Notwithstanding, some

promising progress on automatic segmentation of membranes from tomograms has been

made [48] and as microscopy techniques mature, so will the methods to reliably segment

features from the data they yield.

A final challenge is the determination of the unknown parameters: pressure, tension,

and spontaneous curvature. The determination of these parameters using the Proximal

Equilibrium Approximation is, to a large degree, a peculiarity of the in vitro tether forma-

tion experiments where the membrane undergoes a dramatic conformational change on the

same scale as the vesicle itself. For most biological membrane remodeling examples where

the membrane mechanics is relevant, the osmotic pressure difference across the membrane

is negligibly small compared to factors like bending and tension. Furthermore, studies sug-

gest that the tension (and spontaneous curvature) may be a regulated property of many
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cytoplasmic and organelle membranes [40]. When these parameters are known or otherwise

determined, the forces can be directly computed without resort to the Proximal Equilibrium

Approximation.

If these challenges can be overcome, a whole array of interesting avenues of investigation

are opened through use of the conformational force measurement method we have described.

Is a protein scaffold necessary to maintain the cristae and crista junctions observed in the

inner membrane of a mitochondrion? How are the fenestrae of the Golgi apparatus and

endoplasmic reticulum formed and regulated? Is the aggregation of Gag protein sufficient

to induce the HIV budding process, as it is for the viral capsids recently modeled by molec-

ular dynamics [23]? The promise of measuring piconewton scale forces applied to in vivo

phospholipid bilayers presents an exciting possibility for informing quantitative models of

the processes underlying the beautiful and complex world of biomembranes.
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Chapter 4

Cooperative gating and spatial
organization of membrane proteins
through elastic interactions

All of us have had the experience of staring, perhaps bleary-eyed, into the remnants of an

early morning bowl of Cheerios and were perhaps intrigued to find that the few remaining

Os had clumped together in the middle of the bowl and at the edges. Equally familiar is the

experience with a glass of fizzy beverage: the bubbles floating at the top will tend to stick

to one another and to the edges of the glass. This well-known effect, humourously dubbed

“the Cheerios effect” and illustrated in Fig. 4.1, stems from capillary forces generated by

the surface tension at the liquid-gas interface [1]. The bubbles, Cheerios, and container

edges bend the surface of the liquid and the energy of bending that interface due to surface

tension can be minimized when objects bending the surface draw nearer to one another.

The Cheerios effect is also leveraged by the living world. Water-dwelling insects use the

effect to help them navigate their watery realm and even to reach sources of nourishment.

In Fig. 4.2 we show the beetle larva Pyrrhalta, an inept swimmer, using this effect in order

to reach its leafy green food source. The larva simply arches its back, creating a meniscus

which is attracted to the meniscus created by the leaf. In this way it is able to move at

speeds in excess of 10 cm/s towards its intended goal [2].

Interestingly enough, this effect is also observed on the nanoscale in biomembranes. A

protein inclusion in a phospholipid bilayer also bends the membrane surrounding it and, as

with Cheerios and water bugs, attractive forces between those proteins may arise depending

on the particulars of the mechanics of the membrane and the geometry of the transmem-

brane protein. An interesting twist on the macroscopic examples cited above in the case



93

Figure 4.1: Cheerios in a bowl of milk are attracted to one another due to attractive
forces stemming from the surface tension of the milk [1].

Figure 4.2: The Pyrrhalta beetle larve using the “Cheerios effect” to propel itself
towards a leafy snack. By arching its back and pulling up the water in front of it,
the larva is drawn by capillary forces towards the meniscus created by the leaf [2]. Photo
courtesy of Hu and Bush.
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of membrane protein channels is the effect of the channel’s state. The membrane is bent

differently when the protein is in an open as opposed to a closed state which creates an

additional dependence on the state of the channel rather than its geometry alone. Finally,

the state of the channel is coupled to the surface tension in the membrane: more tense

membranes are more likely to gate the channel into an open conformation. In this chapter

the interplay between tension, state, and geometry of the protein channel and the bending

of a lipid bilayer are studied in detail. We find that these effects can combine to aggreate

membrane channels and alter the statistics of their gating so that acting in aggregate the

channels may more easily be found in the open conformation than when acting alone.

The text below was originally published as Ursell, Huang, Peterson, and Phillips, PLoS

Comput Biol 3(5):e81 (2007) with the exception of two additions: Markov Chain Monte

Carlo (MCMC) simulations were conducted on a square lattice with periodic boundary

conditions to confirm the theoretical results and are shown in Section 4.3.3; the computa-

tional method used to conduct the MCMC simulations is described in Section 4.5. Examples

of input files and the source code for the MCMC simulation are given in Appendix C.

Biological membranes are elastic media in which the presence of a transmembrane pro-

tein leads to local bilayer deformation. The energetics of deformation allow two membrane

proteins in close proximity to influence each other’s equilibrium conformation via their lo-

cal deformations, and spatially organize the proteins based on their geometry. We use the

mechanosensitive channel of large conductance (MscL) as a case study to examine the im-

plications of bilayer-mediated elastic interactions on protein conformational statistics and

clustering. The deformations around MscL cost energy on the order of 10 kBT and ex-

tend ∼ 3 nm from the protein edge, as such elastic forces induce cooperative gating, and we

propose experiments to measure these effects. Additionally, since elastic interactions are

coupled to protein conformation, we find that conformational changes can severely alter the

average separation between two proteins. This has important implications for how confor-

mational changes organize membrane proteins into functional groups within membranes.
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4.1 Author summary

Membranes form flexible boundaries between the interior of a cell and its surrounding envi-

ronment. Proteins that reside in the membrane are responsible for transporting materials

and transmitting signals across these membranes to regulate processes crucial for cellular

survival. These proteins respond to stimuli by altering their shape to perform specific tasks,

such as channel proteins, which allow the flow of ions in only one conformation. However,

the membrane is not just a substrate for these proteins, rather it is an elastic medium

that bends and changes thickness to accommodate the proteins embedded in it. Thus, the

membrane plays a role in the function of many proteins by affecting which conformation is

energetically favorable. Using a physical model that combines membrane elastic properties

with the structure of a typical membrane protein, we show that the membrane can commu-

nicate structural and hence conformational information between membrane proteins in close

proximity. Hence, proteins can “talk” and “respond” to each other using the membrane as a

generic “voice.” We show that these membrane-mediated elastic forces can ultimately drive

proteins of the same shape to cluster together, leading to spatial organization of proteins

within the membrane.

4.2 Introduction

Biological membranes are active participants in the function and spatial organization of

membrane proteins [3–5]. At the simplest level, the membrane positions proteins into a two-

dimensional space, where they are often laterally organized into groups. These groups can

serve specific purposes on the cell surface and within organelles, such as sensing, adhesion,

and transport [6–11]. Electrostatic and van der Waals forces help drive lateral organization

[12]; however, there is an additional class of purely bilayer-mediated elastic forces that can

facilitate the formation of complexes of membrane proteins.

Conformational changes of membrane proteins result from a wide range of environmental

factors including temperature, pH, ligand and small molecule binding, membrane voltage,

and membrane tension. Likewise, conformational state is often tightly coupled with func-

tion (e.g., for ion channels) [13–15]. In this work, we demonstrate how elastic interactions

can communicate information about protein conformation from one neighboring protein

to another, coupling their conformational state. Additionally, we find that these interac-



96

tions lead to spatial organization within the bilayer that is strongly dependent on protein

conformation.

We suggest that elastic forces play a role in the function and spatial organization of

many membrane proteins across many cell types, given the generically high areal density of

membrane proteins [16] and the strength of these interactions. We use the mechanosensitive

channel of large conductance (MscL) from Escherichia coli as the model protein for this

study. MscL is a transmembrane homopentamer found in the plasma membrane of E.

coli (and many other bacteria) serving as an emergency relief valve under hypo-osmotic

shock [13, 17, 18]. As membrane tension increases, this nonselective ion channel changes

conformation from a closed state to an open state, releasing water and osmolytes [19, 20].

Though several substates have been identified in this gating transition, the relatively short

dwell-times in these substates as compared with the fully open or fully closed states allows

us to approximate the protein as a simple two-state system [19, 21]. Crystal and electron-

paramagnetic-resonance structures suggest the bilayer-spanning region is nearly cylindrical

in both the open and closed conformations [17, 22, 23], making MscL particularly amenable

to mechanical modeling. Electrophysiology of reconstituted channels allows measurement

of the state of one or more of these proteins with excellent temporal and number resolution.

Therefore, theoretical predictions for how elastic interactions change the gating behavior

of a MscL protein can be readily tested using electrophysiology and other experimental

techniques.

Following earlier work, we use continuum mechanics to break down the deformation

caused by a cylindrical transmembrane protein into a term penalizing changes in bilayer

thickness and a term penalizing bending of a bilayer leaflet [24–28], and we introduce a

third term that preserves bilayer volume under deformation [29]. Due to its structural

symmetry, MscL can be characterized by its radius and bilayer-spanning thickness in its two

conformations (i.e., open and closed), neglecting any specific molecular detail (see Fig. 4.3).

As these geometric parameters change with conformation, the bilayer-mediated interaction

between two channels is altered. Using the interaction potentials in each combination of

conformations, we explore how both the single-channel and interacting energetics affect the

spatial and conformational behavior of two channels.

In the first section we cover the physical principles behind bilayer deformation due to

the presence of membrane proteins. In the second section we explore the differences in
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Figure 4.3: Schematic of bilayer deformations due to MscL. Mismatch between the
hydrophobic regions of the lipid bilayer and an integral membrane protein gives rise to
bending and compression deformations in each leaflet of the bilayer. The largest deforma-
tions occur at the protein-lipid interface, and over the scale of a few nanometers the bilayer
returns to its unperturbed state. MscL is shown schematically at zero tension in its closed
and open states with relevant dimensions. The red region of the protein indicates the hy-
drophobic zone. The hydrophobic mismatch at the protein-lipid interface is denoted by uo.
The deformation profile, denoted by u(r), is measured with reference to the unperturbed
leaflet thickness (l) from the protein center at r = 0.

gating behavior of two MscL proteins when held at a fixed separation. In the third section

we explore the conformational and spatial behavior of diffusing MscL proteins as a function

of areal density. Finally, in the fourth section we discuss the relevance of these forces as

compared with other classes of bilayer-mediated forces and support our hypotheses with

results from previous experiments.

4.3 Results

4.3.1 Elastic deformation induced by membrane proteins

The bilayer is composed of discrete lipid molecules whose lateral diffusion (D ∼ 10 µm2/s)

[30] is faster than the diffusion of transmembrane proteins (D ∼ 0.1–1 µm2/s) [31–33].

In the time it takes a transmembrane protein to diffuse one lipid diameter, many lipids

will have exchanged places near the protein to average out the discreteness of the lipid

molecules. Additionally, the transition time for protein conformational change (∼ 5 µs) [34]
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is slow compared with lipid diffusion. Hence, we argue the bilayer can be approximated

as a continuous material in equilibrium with well-defined elastic properties [35]. Further,

we choose to formulate our analysis in the language of continuum mechanics, rather than

lateral pressure profiles [36]. In particular, each leaflet of the bilayer resists changes in the

angle between adjacent lipid molecules, leading to bending stiffness of the bilayer [24, 37].

Likewise, the bilayer has a preferred spacing of the lipid molecules in-plane and will resist

any changes in this spacing due to external tension [38]. Finally, experiments suggest

that the volume per lipid is conserved [39, 40] such that changes in bilayer thickness are

accompanied by changes in lipid spacing [4, 35].

Transmembrane proteins can compress and bend a bilayer leaflet via at least two mecha-

nisms. The protein can force the bilayer to adopt a new thickness, matching the hydrophobic

region of the protein to the hydrophobic core of the bilayer. Additionally, a noncylindrical

protein can induce a slope in the leaflet at the protein-lipid interface [27, 41].

For transmembrane proteins such as MscL that can be approximated as cylindrical,

symmetry dictates that the deformation energy of the bilayer is twice the deformation

energy of one leaflet. Presuming the protein does not deform the bilayer too severely, we

can write the bending and compression (thickness change) energies in a form analogous to

Hooke’s law, and account for external tension with a term analogous to PV work. We denote

the deformation of the leaflet by the function u(r), which measures the deviation of the lipid

head-group from its unperturbed height as a function of the position r (see Fig. 4.3). In all

the calculations that follow, the physical parameters chosen are representative of a typical

phosphocholine (PC) lipid bilayer, and the number of lipids in this model bilayer is fixed.

The energy penalizing compression of the bilayer is

Gcomp =
KA

2

∫ (
u(r)
l

)2

d2r, (4.1)

where KA is the bilayer area stretch modulus (∼ 58 kBT/nm2, kBT is the thermal energy

unit) and l is the unperturbed leaflet thickness (∼ 1.75 nm) [38]. The bending energy of a

leaflet is

Gbend =
κb
4

∫
(∇2u(r)− co)2 d2r, (4.2)

where κb (∼ 14 kBT ) is the bilayer bending modulus, co is the spontaneous curvature of the

leaflet [35, 38, 42], and ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator.
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Coupling external tension to bilayer deformations is more subtle than the previous two

energetic contributions. We note that the bilayer is roughly forty times more resistant to

volume change than area change [39, 40]; hence if a transmembrane protein locally thins

the bilayer, lipids will expand in the area near the protein to conserve volume. Likewise, if

the protein locally thickens the bilayer, lipids near the protein will condense (see Fig. 4.3).

Therefore, the area change near the protein is proportional to the compression u(r), and

the work done on the bilayer is the integrated area change multiplied by tension

Gten = τ

∫
u(r)
l

d2r, (4.3)

where τ is the externally applied bilayer tension [26, 29]. Slightly below bilayer rupture, and

near the expected regime of MscL gating, τ ≈ 2.6 kBT/nm2 [19, 38]. In total, the bilayer

deformation energy is

G =
1
2

∫ (
KA

(
u

l
+

τ

KA

)2

+ κb
(
∇2u− co

)2) d2r, (4.4)

where we have made use of the constant bilayer area to elucidate the interplay between

tension and compression. Specifically, we added a constant proportional to membrane area

and τ2, which is identically zero when calculating differences in free energy.

To obtain the length and energy scales of these deformations, we nondimensionalize

the bilayer deformation energy, G. We scale both the position r and displacement u(r) by

λ = (κbl2/KA)1/4 ≈ 1 nm, the natural length scale of deformation, to give the new variables

ρ and η(ρ), respectively, where ρ = r/λ and η(ρ) = u(r)/λ. Then G can be written as

G =
κb
2

∫ (
(η + χ)2 +

(
∇2η − νo

)2) d2ρ, (4.5)

where νo = λco is the dimensionless spontaneous curvature and χ = τ l/KAλ is the dimen-

sionless tension, which is ≈ 0.09 in the regime of MscL gating. The energy scale is set by

the bending modulus, κb.

Using the standard Euler-Lagrange equation from the calculus of variations [43], the

functional for the deformation energy can be translated into the partial differential equation

∇4η + η + χ = 0. (4.6)
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The deformation profile u(r) that solves this partial differential equation depends on four

boundary conditions. In the far-field, we expect the bilayer to be flat and slightly thinner in

accordance with the applied tension, i.e., |∇u(∞)| = 0 and u(∞) = −τ l/KA, respectively.

At the protein-lipid interface (|r| = ro) the hydrophobic regions of the protein and the bilayer

must be matched, i.e., u(ro) = uo (see Fig. 4.3), where uo is one-half the mismatch between

the hydrophobic region of the protein and the hydrophobic core of the bilayer. Finally, the

slope of the bilayer at the protein-lipid interface is set to zero (i.e., |∇u(ro)| = 0). The

motivation for this last boundary condition is subtle and will be examined in more detail

in the Discussion.

To understand how the deformation energy scales with hydrophobic mismatch (uo),

protein size (ro), and tension (τ), we solve Eq. 4.6 analytically for a single cylindrical

protein. The deformation energy is

Gsingle = πκb

∫ ∞
ρo

(
(η + χ)2 +

(
∇2η − νo

)2)
ρdρ, (4.7)

where ρo = ro/λ is the dimensionless radius of the protein. The leaflet deformation around

a single protein is a linear combination of zeroth-order modified Bessel functions of the

second kind (K0) [27, 28]. For proteins such as MscL with a radius larger than λ (i.e.,

1 nm), the deformation energy is well approximated by

Gsingle = πκb

(
uo
λ

+
τ

KA

l

λ

)2 (
1 +
√

2
ro
λ

)
. (4.8)

The deformation energy scales linearly with protein radius and depends quadratically on

the combination of hydrophobic mismatch (uo) and tension (τ). This makes the overall

deformation energy particularly sensitive to the hydrophobic mismatch, and hence leaflet

thickness l. The deformation energy is fairly insensitive to changes in KA (i.e., most terms

in the energy are sublinear), and generally insensitive to changes in the bending modulus

since G ∝ κ1/4
b .

Using our standard elastic bilayer parameters and the dimensions of a MscL channel

(see Fig. 4.3), the change in deformation energy between the closed and open states is

∆Gsingle ≈ 50 kBT . The measured value for the free energy change of gating a MscL protein,

including internal changes of the protein and deformation of surrounding lipids is ≈ 51 kBT
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[21]. This close correspondence does not indicate that bilayer deformation accounts for all

of the free energy change of gating [44], but does suggest that it is a major contributor.

The gating energy of two channels in close proximity is a complex function of their con-

formations and the distance between them. As two proteins come within a few nanometers

of each other (i.e., a few λ), the deformations that extend from their respective protein-lipid

interfaces begin to overlap and interact. The bilayer adopts a new shape (i.e., a new u(r)),

distinct from the deformation around two independent proteins, and hence the total defor-

mation energy changes as well. This is the physical origin of the elastic interaction between

two bilayer-deforming proteins [25, 26].

Each protein imposes its own local boundary conditions on the bilayer, which vary

with conformation; hence, the deformation around a pair of proteins is a function of their

individual conformation and the distance between them. A MscL protein has two distinct

conformations, hence there can be pairwise interactions between two closed channels, an

open and a closed channel, or two open channels (see Fig. 4.4). Tension also affects the

deformations. The hydrophobic mismatch can be either positive or negative (i.e., the protein

can be thicker or thinner than the bilayer), thus tension will strengthen the interaction of

proteins that are thicker than the bilayer (e.g., the closed-closed interaction of two MscL

proteins) and weaken the interaction of proteins that are thinner than the bilayer (e.g.,

the open-open interaction). This effect is demonstrated in Fig. 4.4. The interactions due

to leaflet deformations have been explored before [25, 26], but our model elucidates the

role that these interactions can play in communicating conformational information between

proteins. Additionally, in our model, tension can play an important role in determining the

overall deformation energy around a protein.

In a one-dimensional model, the interaction potentials can be solved for analytically. For

two identical proteins in close proximity (e.g., closed-closed and open-open interactions), the

approximate shape of the potential is linearly attractive κb(uo/λ)2(d/2λ −
√

2). Between

two dissimilar proteins in close proximity (e.g., open-closed interaction), the potential is

approximately κb(uo/λ)2π4/4(d/λ)3, where in both cases d is measured from the edges

of the proteins. This illustrates the general principle that two similar proteins attractively

interact, while two dissimilar proteins tend to repel each other. This one-dimensional model

helps build intuition for what governs the strength of elastic interactions. Whether the

interaction is attractive or repulsive, the strength of the interaction is dominated by its
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Figure 4.4: Elastic potentials between two MscL proteins. To minimize deformation
energy, two transmembrane proteins exert elastic forces on each other. MscL has three
distinct interaction potentials between its two distinct conformations. External tension
weakens the interaction between two open channels (Voo) and strengthens the interaction
between two closed channels (Vcc), but has almost no effect on the interaction between an
open and closed channel (Voc). The open-open and closed-closed interactions are both more
strongly attracting than the open-closed interaction, indicating that elastic potentials favor
interactions between channels in the same state. The “hard core” distance is where the
proteins’ edges are in contact.

quadratic dependence on the combination of hydrophobic mismatch and tension-induced

thinning. Hence, interactions between proteins that deform the membrane more severely

are simultaneously more sensitive to tension. These effects are demonstrated in Fig. 4.4,

where the closed-closed interaction, which has less hydrophobic mismatch, is both weaker

and less sensitive to tension than the open-open interaction. In a two-dimensional bilayer,

the geometry of the two proteins makes it difficult to solve for the interaction analytically,

thus numerical techniques were used (see Section 4.5).

This theoretical framework provides a strong foundation for understanding how protein

geometries and lipid properties give rise to elastic interactions. With this, we can investigate

how elastic forces change the conformational statistics of a two-state protein population.

4.3.2 Gating behavior of two interacting channels

To probe the range of separations over which elastic interactions affect the gating of two

MscL proteins, we need to account for the noninteracting energetics of gating a single chan-

nel in addition to the interactions between two channels. The noninteracting energy is the
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sum of three effects. First, there is some energetic cost to deform the surrounding mem-

brane, which we already calculated as ∆Gsingle. Second, there is some cost to change the

protein’s internal conformation, independent of the membrane. Together, these first two

effects are the gating energy ∆Ggate ≈ 51 kBT for MscL [21]. Finally, there is an energetic

mechanism that overcomes these costs and opens the channel as tension increases. This

mechanism is provided by the bilayer tension working in concert with the conformational

area change of the protein (∆A ≈ 20 nm2 for MscL [21]). Given the experimentally deter-

mined values for ∆Ggate and the area change during gating, the critical tension, defined by

∆Ggate = τc∆A, is τc = 2.6 kBT/nm2.

In our thermodynamic treatment, we need to keep track of the conformations of each

protein in a population in a way that allows us to tabulate the noninteracting and interacting

contributions to the free energy. To this end, we assign a state variable, si, to each channel,

indicating the conformational state of a protein, where si = 0 indicates that the ith channel

is closed and si = 1 indicates that the ith channel is open. The noninteracting energy for

two channels is then

Hnon(s1, s2; τ) = (∆Ggate − τ∆A) (s1 + s2). (4.9)

If both channels are closed (s1 = s2 = 0), the free energy is defined to be zero. If one

channel is open and the other closed (s1 = 1, s2 = 0, or, s1 = 0, s2 = 1), this counts as

the cost to gate one channel working against the benefit at a particular tension to opening

the channel. Likewise, this counts twice if both channels are open (s1 = s2 = 1). We will

measure all energies that follow in units of kBT (≈ 4.14× 10−21J).

As we alluded to earlier, the interacting component of the free energy between two

channels is a function of their states (s1 and s2), their edge separation (d), and the ten-

sion. Using a numerical relaxation technique to minimize the functional in Eq. 4.5 (see

Section 4.5), we calculated the interaction potentials Hint(s1, s2, d; τ) for a range of tensions

and separation distances (see Fig. 4.4). The total energy, Hnon +Hint, is used to derive the

Boltzmann weight for the three possible configurations of the two-channel system,

z(s1, s2) = e−(Hnon(s1,s2;τ)+Hint(s1,s2,d;τ)). (4.10)
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The probability that the system has two closed channels is

P0 =
z(0, 0)
Z

, (4.11)

where the partition function Z is the sum of the Boltzmann weights for all possible two-

channel configurations,

Z =
1∑

s1,s2=0

z(s1, s2) = z(0, 0) + 2z(0, 1) + z(1, 1). (4.12)

Likewise, the probabilities for the system to have exactly one or two open channels are

P1 =
2z(0, 1)
Z

and P2 =
z(1, 1)
Z

, (4.13)

respectively. Finally, the probability for any one channel in this two channel system to be

open is

Popen(τ, d) =
z(0, 1) + z(1, 1)

Z
. (4.14)

If the distance between two channels is much greater than λ, they will behave independently.

As the channels get closer (d . 5λ) they begin to interact and their conformational statistics

are altered. Popen as a function of tension for certain fixed separations is shown in Fig. 4.5.

The open-open interaction is the most energetically favorable for most separations, hence

the transition to the open state generally shifts to lower tensions as the distance between

the two proteins is decreased. Though the edge spacing can be small, even fractions of the

width of a lipid molecule, the two-dimensional nature of the interaction means that the

majority of the interaction is mediated by lipids in the intervening region between the two

proteins. Thus, a continuum model is still applicable, albeit less accurate, for very small

protein separations.

Interactions also affect channel “sensitivity,” defined as the derivative of Popen with

respect to tension, which quantifies how responsive the channel is to changes in tension.

The full-width at half-maximum of this peaked function is a measure of the range of tension

over which the channel has an appreciable response. The area under the sensitivity curve

is equal to 1, hence increases in sensitivity are always accompanied by decreases in range of

response, as demonstrated by the effects of the beneficial open-open interaction on channel
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Figure 4.5: Conformational statistics of interacting MscL proteins. Interactions
between neighboring channels lead to shifts in the probability that a channel will be in
the open state (dashed lines). The sensitivity and range of response to tension, dPopen/dτ ,
are also affected by bilayer deformations (solid lines). Popen and dPopen/dτ are shown for
separations of 0.5 nm (red) and 1.5 nm (green) with reference to noninteracting channels
at d = ∞ (blue). Interactions shift the critical gating tension for the closest separation
by ∼ 12%. Additionally, the peak sensitivity is increased by ∼ 90% from ∼ 5 nm2/kBT to
∼ 9.5 nm2/kBT , indicating a Hill coefficient of ∼ 2.

statistics (see Fig. 4.5).

In summary, we find that elastic interactions between two proteins have significant

effects when the protein edges are closer than ∼ 5 nm. At these separations the elastic

interactions alter the critical gating tension and change the tension sensitivity of the channel

(see Fig. 4.5). The critical gating tension and sensitivity are the key properties that define

the transition to the open state, and are analogs to the properties that define the transition

of any two-state membrane protein. Hence, we have shown that elastic interactions can

affect protein function at a fundamental level.

4.3.3 Interactions between diffusing proteins

With an understanding of how two proteins will interact at a fixed distance, we now study

the conformational statistics of two freely diffusing MscL proteins allowed to interact via

their elastic potentials. In biological membranes, transmembrane proteins that are not

rigidly attached to any cytoskeletal elements are often free to diffuse throughout the mem-

brane and interact with various lipid species, as well as other membrane proteins. On

average, the biological areal density of such proteins is high enough (∼ 103–104 µm−2 [16])

that elastic interactions should alter the conformational statistics and average protein sep-
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arations.

We expect that if two MscL proteins are diffusing and interacting, the open probability

will be a function of their areal density as well as the tension. It then follows that for a

given areal density, elastic interactions will couple conformational changes to the average

separation between the proteins. To calculate the open probability of two diffusing MscL

proteins, the Boltzmann weight for these proteins to be in the conformations s1 and s2 must

be summed at every possible position, giving

〈z(s1, s2)〉 = e−Hnon

∫ ∫
e−Hint d2r1 d2r2, (4.15)

where 〈. . .〉 indicates a sum over all positions. The distance between the proteins is mea-

sured center-to-center as |r1 − r2| and only the absolute distance between the two proteins

determines their interaction, hence we can rewrite the integrand as a function of r = |r1−r2|.

We then change the form of the integrand to

e−Hint(s1,s2,r;τ) = 1 + f12(r), (4.16)

which allows us to separate the interacting effects from the noninteracting effects (the

function f12 is often called the Mayer-f function). Thus, the position-averaged Boltzmann

weights are

〈z(s1, s2)〉 = e−Hnon

(
1 +

2π
A

∫ ∞
0

f12(r)r dr
)
, (4.17)

where A is the total area occupied by the two proteins. Following our previous calculations,

the probability that any one channel is open in this two-channel system is

Popen(τ, α) =
〈z(0, 1)〉+ 〈z(1, 1)〉

〈Z〉
, (4.18)

where α is the protein areal density (i.e., α = 2/A) and 〈Z〉 =
∑

s1,s2
〈z(s1, s2)〉.

In Fig. 4.6A, we plot Popen(τ, α) over a wide range of areal density, from the area of

∼ 100 lipids up to areas on the whole-cell scale. The more beneficial open-open interaction

tends to shift the transition to the open state to lower tensions, with the most pronounced

effect being when the two proteins are most tightly confined. For the estimated biological

membrane protein density of ∼ 103–104 µm−2 (or ∼ 10–30 nm spacing) [16], the gating ten-
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sion is decreased by ∼ 13%, the sensitivity is increased by ∼ 85%, and the range of response

is decreased by ∼ 55%. For the in vivo expression of MscL of ∼ 1–10 µm−2 [45], the gating

tension is reduced by ∼ 7%, the sensitivity is increased by ∼ 70%, and the range of response

is decreased by ∼ 40%. These changes in gating behavior are accessible to electrophysi-

ological experiments where MscL proteins can be reconstituted at a known areal density

(∼ 0.1–10 µm−2), and the open probability can be measured as a function of tension.

In addition to lowering the critical tension and augmenting channel sensitivity, the

conformational states of channels are tightly coupled by their interaction. The probability

that exactly one channel is open (P1) decreases dramatically as areal density increases. For

tensions above the critical tension, interacting channels (∼ 103 µm−2) are nearly three orders

of magnitude less likely to gate as single channels than their noninteracting counterparts

(∼ 10−3 µm−2), as shown in Fig. 4.6B. Additionally, the tension at which it is more likely to

have both channels open, rather than a single channel, is significantly lower for interacting

channels, signaling that gating is a tightly coupled process. In addition to altering the

open probability of two channels, the favorable open-open interaction provides an energetic

barrier to leaving the open-open state. Based on a simple Arrhenius argument, the average

open lifetime of two channels that are both open and interacting will be orders of magnitude

longer than two open but noninteracting channels.

Having shown conformational coupling over a range of areal densities, it is reasonable to

expect that elastic interactions will affect the separation between two proteins. We ask, how

do interactions affect the average separation between proteins? How often will we find the

two proteins separated by a distance small enough that we can consider them “dimerized”?

From Eq. 4.15 and 4.16, it follows that the Boltzmann weight for the two proteins to be

separated by a distance r is

z(s1, s2, r) = e−Hnon
2π
A

(1 + f12)r. (4.19)

The probability that the proteins are separated by a distance r, regardless of their confor-

mation, is

P (r) =
Z(r)
〈Z〉

=

∑
s1,s2

z(s1, s2, r)
〈Z〉

, (4.20)
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Figure 4.6: Elastic interactions lower open probability transition and couple con-
formation changes. Two MscL proteins in a square box of area A diffuse and interact
via their elastic potentials. (A) At low areal density, the response to tension is the same
as an independent channel. As the areal density increases, the more beneficial open-open
interaction (see Fig. 4.4) shifts the open probability to lower tensions and decreases the
range of response (dashed lines) while increasing the peak sensitivity, indicating that areal
density can alter functional characteristics of a transmembrane protein. (B) The probability
for exactly one channel to be open (P1, solid lines) is shown at a low (blue) and high (red)
areal density. For tensions past the critical tension, interacting channels are ∼ 1,000 times
less likely to gate individually. The probability for both channels to be open simultaneously
(P2, dashed lines) is shown for low (blue) and high (red) areal density. The tension at
which two simultaneously open channels are favored is significantly lower for interacting
channels. Together these facts signify a tight coupling of the conformational changes for
two interacting channels.
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from which we calculate the average separation

〈r〉 =
1
〈Z〉

∫
Z(r)r dr (4.21)

=
1
〈Z〉

∑
s1,s2

e−Hnon

(
δ
π

6

√
A+

2π
A

∫ ∞
0

f12r
2 dr

)
.

This equation is valid as long as the area does not confine the proteins so severely that they

are sterically forced to interact. The constant δ is an order-one quantity that is defined by

the entropic component of average separation on a surface S, given by

∫ ∫
S(A)
|r1 − r2|

d2r1

A

d2r2

A
= δ

π

6

√
A (4.22)

and depends on the actual shape of the surface. For a square box, δ ≈ 1, and for a circle,

δ ≈
√

2. The average separation of two MscL proteins as a function of tension is plotted

for various areal densities in Fig. 4.7. For certain densities, elastic interactions couple

the conformational change from the closed to open state with a decrease in the average

separation by more than two orders of magnitude. Our estimates of biological membranes

yield fairly high membrane-protein densities (∼ 103–104 µm−2) [16], which correspond to the

more highly confined conditions on Fig. 4.6–4.8. In the native E. coli plasma membrane,

MscL, with a copy number of ∼ 5 [45], is present at a density of ∼ 1–10 µm−2, which means

that even membrane proteins expressed at a low level are subject to the effects of elastic

interactions.

To quantify the effects of interaction on the spatial organization of two channels, we

define a “dimerized” state by the maximum separation below which two channels will fa-

vorably interact with an energy greater than kBT (i.e., Hint(s1, s2, τ, r) < −1). This defines

a critical separation, rc(s1, s2, τ), which depends on the conformations of each protein and

the tension. The probability that the two proteins are found with a separation less than or

equal to rc is

Pdimer(τ, α) =
1
〈Z〉

∑
s1,s2

e−Hnon

(
πr2

c

A
+

2π
A

∫ rc

0
f12r dr

)
. (4.23)

This “dimerization probability” is plotted as a function of tension and areal density in

Fig. 4.8.

At low tension and high areal density, the channels are closed and near enough that
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Figure 4.7: Average separation between proteins drops significantly due to elastic
interactions. The average separation between two diffusing MscL proteins in a box of area
A is plotted as a function of tension for a range of areal densities, each shown as a different
line color. The grey region roughly indicates when gating is occurring. At low areal density
(mostly blue), the conformational change does not draw the proteins significantly closer
together. As the areal density increases, the conformational change is able to draw the
proteins up to ∼ 100 times closer than they would otherwise be. At the highest areal density
(mostly red), the steric constraint of available area intrinsically positions the proteins close
to one another regardless of their conformation. The average separation begins to increase
again as higher tension weakens the open-open interaction.

the closed-closed interaction can dimerize them a fraction of the time. Keeping the areal

density high, increasing tension strengthens the closed-closed interaction, and the dimeriza-

tion probability increases until tension switches the channels to the open state, where the

significantly stronger open-open interaction dimerizes them essentially 100% of the time.

When the areal density decreases to moderate levels, as denoted by the white dashed lines

in Fig. 4.8, the dimerization is strongly correlated with the conformational change to the

open state. The zero tension separation between the two proteins for this one-to-one corre-

lation is ∼ 40 nm to ∼ 2 µm. Finally, when the areal density is very low, entropy dominates,

and neither the closed-closed, nor the open-open interaction is strong enough to dimerize

the channels. Understanding the onset and stability of dimers is an important first step in

understanding the formation of larger oligomers of membrane proteins. As the areal den-

sity of membrane proteins increases, clusters of more than two proteins become favorable

and are energetically stabilized by their multibody interactions. For a rigorous theoretical

treatment of these multibody interactions, we refer the interested reader to [46–48].
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Figure 4.8: Elastic interactions tightly couple conformational change with pro-
tein dimerization. Diffusing MscL proteins are considered dimerized when they are close
enough that they attract with an energy greater than kBT . At high areal density, the net
attractive closed-closed interaction is sufficient to dimerize the two channels part of the
time. As the areal density decreases, the closed-closed interaction is not strong enough to
dimerize the two channels—now dimerization only happens at higher tensions after both
channels have switched to the open conformation. As the areal density decreases further,
the open-open interaction is no longer strong enough to overcome entropy. This loss of
dimerization is amplified by the fact that the open-open interaction is weaker at higher
tensions (see Fig. 4.4). The white dashed lines roughly indicate the range of areal densities
for which dimerization probability and open channel probability are equal to each other
(see Fig. 4.6).

We tested the analytical results of this section with a Markov Chain Monte Carlo

(MCMC) simulation, shown in Fig. 4.9 and described in more detail in Section 4.5. The

MCMC simulations were run with two proteins on a square lattice with sides of length

49.5 nm. The simulation and theoretical results show excellent agreement and lend further

confidence to the conclusions of this section with one exception: the average separation at

low tension. In this regime, the channels are nearly always closed and interact only very

weakly—the average separation is essentially just the average separation of two freely diffus-

ing channels. On a square lattice with periodic boundary conditions this separation cannot

exceed L
√

2/2 where L is the length of one side of the lattice; in the analytical calculations

all separation lengths were integrated over. This artifact leads to the disagreement shown

at low tension in Fig. 4.9C.

In summary, we have shown that over a broad range, areal density plays a nontrivial role

in allowing two channels to communicate conformational information. This communication
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Figure 4.9: Comparison of theoretical results (blue) with MCMC simulation
(red). Theory and simulation show excellent agreement for (A) Popen, (B) Pdimer and (C)
〈r〉 at higher tension values. The average separation at low tension does not match theory
because the lattice disallows all configurations where the channels are separated by more
than L

√
2/2 where L is the length of one side of the lattice. This artifact leads to the chan-

nels approaching the average separation for (nearly) freely diffusing proteins on a square
lattice with periodic boundary conditions, shown as a dotted green line. This effect could
be corrected for by increasing the area of the lattice at constant areal density of proteins.

can lead to large changes in the average separation between two proteins and the probability

that they will be found together in a dimerized state. This may have implications for how

conformational changes of transmembrane proteins in biological membranes are able to

facilitate the formation of functional groups of specific proteins.

4.4 Discussion

In this section, we will perform a brief survey of other bilayer-mediated forces between

proteins and make a comparison of their relative length and energy scales. We will also

address some of the finer details of our model and how boundary conditions can affect

deformation energy around a protein. Finally, we will suggest experiments using MscL to

observe the predicted changes in conformational statistics, as well as provide evidence from

previous experiments that leaflet interactions lead to significant changes in conformational

statistics.

There are at least two other classes of purely bilayer mediated forces between membrane

proteins. The first is a different type of bilayer deformation that bends the mid-plane of

the bilayer. This arises from transmembrane proteins with a conical shape that impose a

bilayer slope at the protein-lipid interface [41, 49]. If the protein does not deform the bilayer
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too severely, the mid-plane deformation energy of a bilayer is

Gmid =
∫ (τ

2
(∇h(r))2 +

κb
2

(∇2h(r))2
)

d2r, (4.24)

where h(r) is the deviation of the height of the mid-plane from a flat configuration [28, 37].

These kinds of interactions have been calculated for a variety of bilayer curvature envi-

ronments and protein shapes at zero tension [49, 50]. Using a bilayer bending modulus of

∼ 100 kBT , attractive interactions of order ∼ 1–5 kBT were found when the proteins were

separated by one to two protein radii (which we estimate to be 5–10 nm measured center-to-

center for a typical transmembrane protein). If we adjust the energy scale to be consistent

with a PC bilayer bending modulus of ∼ 14 kBT , this lowers the interaction energetics to

∼ 0.4–2 kBT . Hence, although the length scale of appreciable interaction for mid-plane

deformation is longer than for leaflet deformation, the interaction energies from leaflet de-

formation can be ten times greater depending on protein geometry. The deformation fields

h(r) and u(r) exert their effects independent of one another [28], suggesting that while ener-

getically weaker than leaflet deformation, mid-plane deformation probably also contributes

to the spatial organization and conformational communication between transmembrane pro-

teins. However, for the resting tension of many biological membranes [51], the interaction

due to midplane deformation has a length scale (
√
κb/τ ≈ 50 nm) longer than the nominal

spacing of proteins (≈ 10–30 nm [16]). Thus, one protein can shield other proteins from

feeling the deformation of a neighboring protein, and hence interactions are not (in general)

pairwise additive. In fact, this is a general feature for both leaflet and midplane elastic

interactions—they can be shielded by the presence of other proteins, and nonspecific pro-

tein interactions can couple to conformation and position within the membrane in the same

manner as the specific interactions we have explored in the previous sections.

The second class of bilayer-mediated forces is a product of the thermal fluctuations of

the bilayer. There is a small thermal force due to the excluded volume between two proteins,

calculated via Monte Carlo methods to have a favorable ∼ 2 kBT interaction [52]. This force

only exists when the proteins are separated by a fraction of the width of a lipid molecule.

There is also a long-range thermal force, due to the surface fluctuations of the bilayer, which

tends to drive two rigid proteins closer together [12, 53]. This force is proportional to 1/r4

and is generally attractive. Estimates using this power law indicate that the interaction is
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∼ 1 kBT when the center-to-center separation is roughly two protein radii. Though elegant,

the derivation of this force is only valid in the far-field, thus how this force might contribute

to conformational communication between proteins in close proximity is not entirely clear.

To gauge the overall importance of leaflet interactions, the virial coefficient used in

Eq. 4.17,

CV = 2π
∫ ∞

0
f12(r)r dr, (4.25)

quantifies how the combination of length and energy scales leads to a deviation from nonin-

teracting behavior; it is exponentially sensitive to the energy but only quadratically sensitive

to the length scale. One can interpret the virial coefficient as the area per particle that

makes the competing effects of entropy and interaction equivalent. Using this measure,

we estimated the virial coefficients for all of these bilayer-mediated forces and found that

leaflet deformations, while having a short length scale, actually lead to the most significant

deviation from noninteracting behavior, due to their high energy scale. We estimate the

virial coefficients from leaflet interactions to be ∼ 104–106 nm2, while mid-plane bending

interactions are ∼ 103 nm2, and the thermal forces ∼ 102 nm2.

Examining our elastic model in greater detail, we have assumed that the slope of the

leaflet at the protein-lipid interface is zero, which eliminates any dependence on the spon-

taneous and Gaussian curvatures of the leaflet. In a more general continuum-mechanical

theory, the slope would be left as a free parameter with respect to which the energy could

be minimized [27]. We examined this possibility and found that, at most, the energy was

reduced by a factor of two. Spontaneous curvature couples to the slope of the leaflet at the

protein-lipid interface; however, the spontaneous curvature of bilayer-forming lipids, such

as phosphocholines, is small [54]. In addition, for proteins whose radius is larger than λ,

if we assume the modulus associated with Gaussian curvature is of the same magnitude

as the mean curvature modulus (κb) [55], the Gaussian contribution to the deformation

energy is a second-order effect. We also examined the possibility of a term proportional to

(∇u)2, using the interfacial tension (∼ 5 kBT/nm2) as a modulus for this term; these effects

were also second-order. Finally, we imposed the “strong hydrophobic matching” condition

at the protein-lipid interface, assuming that the interaction of lipids with the hydrophobic

zone of the protein is very favorable. Relaxing this condition would result in a decrease in

the magnitude of the hydrophobic matching condition, uo, and hence an overall decrease of
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interaction energetics [28].

There are experimental and mechanical reasons to believe the boundary slope on a

cylindrical protein is small. The membrane protein gramicidin was used to comment on

this so-called “contact angle” problem of lipid-protein boundary conditions [24, 56]. It was

found that indeed the slope was nearly zero. From a mechanical standpoint, if the lipids

are incompressible, a positive boundary slope that deviates significantly from zero would

correspond to the creation of an energetically costly void at the protein-lipid interface when

the protein is shorter than the bilayer. Conversely, lipids would have to penetrate the core

of the protein to produce a negative slope when the protein is taller than the bilayer, again

a very costly proposition.

We examined a roughly cylindrical protein and demonstrated the interesting effects

elastic interactions would have in such cases. However, the scope of possible effects increases

when noncylindrical proteins are considered. Most notably, noncylindrical cross-sections

allow for orientational degrees of freedom in the interaction, hence such proteins do not just

attract or repel each other, but would have preferred orientations in the membrane with

respect to each other.

Measuring the changes in conformational statistics of two MscL proteins held at a fixed

separation would allow for quantitative verification of our predictions. Electrophysiology

is a common tool used to probe the conformation of ion channels, and is routinely used to

measure the open probability of a single MscL protein in vitro [19, 21, 57]. Cysteine point

mutations on the outer edges of two MscL proteins [22] could be covalently linked [58–61] by

a polymer with a specific length (∼ 0.5–10 nm) to control the separation distance [62, 63].

Linking stoichiometry could be controlled genetically [64] to ensure one channel interacts

with only one other channel.

Similar experiments have been performed using gramicidin A channels [65]. The con-

ducting form of gramicidin A is a cylindrical transmembrane protein which, like MscL, tends

to compress the surrounding bilayer [24, 35, 66] and hence have a beneficial interaction.

Electrophysiology of polypeptide-linked gramicidin channels [65] qualitatively supports our

hypothesis that the beneficial interaction of the deformed lipids around two gramicidin

channels significantly increases the lifetime of the conducting state [67]. As another exam-

ple, recent FRET studies showed that oligomerization of rhodopsin is driven by precisely

these kinds of elastic interactions, and exhibits a marked dependence on the severity of the
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deformation as modulated by bilayer thickness [68]. Additionally, recent experimental work

has shown that the bacterial potassium channel KscA exhibits coupled gating and spatial

clustering in artificial membranes [69].

In summary, we have demonstrated that leaflet deformations are one of the key mecha-

nisms of bilayer-mediated protein-protein interactions. We provided support for our choice

of boundary conditions at the protein-lipid interface, and suggested that extensions of our

model have exciting possibilities for the specificity of elastic interaction. Finally, we sug-

gested how one might measure the predicted changes in conformational statistics and drew

an analogy to previous gramicidin channel experiments.

Conclusion

We have described the important role of an elastic bilayer in the function of, and communi-

cation between, membrane proteins. The interplay between the length scale of interaction

(a few nanometers) and the energetics of interaction (on the order of 10 kBT ) mean elastic

interactions are relevant over a wide range of areal densities, from protein separations on

the order of nanometers up to a micron or more. Transmembrane proteins can communi-

cate information about their conformational state via the deformations they cause in the

surrounding bilayer. We demonstrated with a model protein, the tension-sensitive channel

MscL, how deformations lead to elastic forces and result in cooperative channel gating. Ad-

ditionally, we found that elastic interactions strongly correlate conformational changes to

changes in spatial organization, aggregating two channels even at low areal densities, and

hence bringing them together over very large distances relative to their size.

The elastic theory presented here can be easily expanded to include more complex de-

formation effects (such as spontaneous curvature) and protein shapes, and is applicable to

any protein that causes thickness deformation in the membrane. Our calculations for the

conformational statistics, average separation, and dimerization are insensitive to the actual

stimulus triggering the conformational change. Hence, we suggest that elastic interactions

are likely to play a role in the function and organization of many membrane proteins that

respond to environmental stimuli by forming functional groups of multiple membrane pro-

teins. Recent work suggests chemotactic receptors in E. coli function by precisely this kind

of spatially clustered and conformationally coupled modality [70].
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4.5 Materials and methods

To compute the pairwise elastic potentials in Fig. 4.4, we discretize the bilayer height,

η(ρ), and minimize the deformation energy in Eq. 4.5 using a preconditioned conjugate

gradient approach. A separate minimization with the aforementioned boundary conditions,

including the zero-slope boundary condition, was computed for each combination of channel

configurations, protein-protein separation, and bilayer tension. Except in the regions of

the bilayer nearby a protein at position (xo, yo), we use a Cartesian grid with spacing

dx = dy = 0.1λ = 0.093 nm. However, since deformations in the bilayer are largest at the

circular membrane-protein interface, we interpolate between a polar grid at the interface

at |r| = ro and a Cartesian grid along the square S defined by |x − xo| < ∆, |y − yo| < ∆,

where ∆ is chosen to be an integral multiple of dx. This interpolation ensures an accurate

estimate of the elastic deformation energy of a single protein and preserves the symmetry

of the protein in its immediate vicinity.

The lines connecting the grid points along S define nθ angular grid points θi (i =

1, . . . , nθ), and nr + 1 grid points within the interpolation region are defined by the polar

coordinates (rij , θi) = (ro+δrij/nr, θi), where ro is the radius of the protein and the distance

from the center of the protein to S along θi is ro + δri (e.g., for θi = 0, δri = ∆ − ro; for

θi = π/4, δri = ∆
√

2− ro). For a protein in the open or closed configuration, ∆ was chosen

such that nθ = 320 or 224, respectively.

The deformation energy determined using this numerical relaxation method is converged

with respect to dx, ∆, and the overall dimensions of the bilayer (18.5 nm × 37.1 nm), and

reproduces the analytic results for a single protein given by Eq. 4.8. The elastic potentials

were determined over the relevant range of channel separations from 0 to ∼ 8 nm (measured

from protein edge to protein edge), and for a range of bilayer tensions from 0 to 3.4 kBT/nm2.

We compared the analytic results of Section 4.3.3 with the results of a Markov Chain

Monte Carlo (MCMC) simulation utilizing the Metropolis algorithm. The simulation was

set up on a square grid with two proteins, each occupying a single lattice site. Periodic

boundary conditions were applied so that a channel protein at position (x, y) is periodically

repeated at positions (x+na, y+ma) where (n,m) take all integer values and a is the length

of one side of the lattice. The values of the numerically calculated, two channel potential

were tabulated at tension values of χ = 0 and χ = 1.3; linear interpolation was used to
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calculate the potential at tension values and spatial points not explicitly tabulated. The

total energy of the lattice configuration as a function of the distance r between their centers

is:

E =

 K, r < R

Hint(s1, s2, r; τ) +Hnon(s1, s2; τ), r > R
, (4.26)

where Hint and Hnon are defined as in Section 4.3.3 and R is the sum of the radii of the

two channel proteins. The constant K is chosen to be very large to avoid a situation where

the two proteins would “overlap” one another. At each step in the Markov chain a channel

and an empty lattice site are chosen at random. The current configuration with energy

E0 is compared with two new configurations having energies Efi with the selected protein

moved to the empty lattice site: one configuration leaves the internal state (open or closed)

of the channel unaltered (Ef1) and the other switches the protein’s internal state (Ef2).

The Metropolis acceptance formula is calculated for each of the new configurations: a new

configuration is accepted and becomes the current configuration always if Efi ≤ E0 and

with probability e(Efi−E0) if Efi > E0. In a situation where both of the new configurations

would be accepted by the Metropolis condition one of them is chosen at random to become

the new configuration. The open probability Popen, average channel separation 〈r〉 and

dimerization probability Pdimer are then calculated as averages over all the configurations

in the Markov chain.

4.6 Supporting information

Accession numbers

The primary accession numbers (in parentheses) from the Protein Data Bank (http://www.pdb.org)

are: MscL (2OAR; formerly 1MSL), gramicidin A ion channel (1GRM), bacterial potassium

ion channel KscA (1F6G), and bovine rhodopsin (1GZM).
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Appendix A

Reduced amino acid alphabets can
improve the sensitivity and
selectivity of pairwise sequence
alignments

A.1 Performance of substitution matrices vs. family size

In order to tease out the reason for the improved performance of some reduced alphabets

over the full alphabet, we conducted a study of how the additional performance in mean

pooled precision, area under the ROC curve, and recall at 0.01 EPQ was distributed as a

function of family size. The results are shown in Fig. A.1 through Fig. A.5. In the case of

mean pooled precision and area under the ROC curve the three larger alphabets perform

comparably as a function of family size; in mean pooled precision GMBR4 does markedly

worse. In recall at 0.01 EPQ under all three normalizations it is clear that the additional

gains made by GBMR4 are accumulated in slight increments among the smaller families,

which tend to be more diverse.
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Figure A.1: Performance of GBMR4, SDM12, HSDM17, and BL62 11/1 in mean
pooled precision as a function of family size. The distribution over family size is
shown on the bottom and the integrated distribution is shown above. The three larger
alphabets perform comparably to each other; the smaller GBMR4 alphabet performs more
poorly.
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Figure A.2: Performance of GBMR4, SDM12, HSDM17, and BL62 11/1 in area
under the ROC curve as a function of family size. The distribution over family size
is shown on the bottom and the integrated distribution is shown above. In this metric all
four alphabets perform comparably across most of the range of family sizes.
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Figure A.3: Performance of GBMR4, SDM12, HSDM17, and BL62 11/1 in un-
normalized recall at 0.01 EPQ as a function of family size. The distribution over
family size is shown on the bottom and the integrated distribution is shown above. The
superior performance of GBMR4 is gained chiefly at smaller family sizes.
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Figure A.4: Performance of GBMR4, SDM12, HSDM17, and BL62 11/1 in lin-
early normalized recall at 0.01 EPQ as a function of family size. The distribution
over family size is shown on the bottom and the integrated distribution is shown above.
The superior performance of GBMR4 is gained chiefly at smaller family sizes.
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Figure A.5: Performance of GBMR4, SDM12, HSDM17, and BL62 11/1 in
quadratically normalized recall at 0.01 EPQ as a function of family size. The dis-
tribution over family size is shown on the bottom and the integrated distribution is shown
above. The superior performance of GBMR4 is gained chiefly at smaller family sizes.
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A.2 Table of all substitution matrices tested

Table A.1: Results for all alphabets and matrices tested

Recall at 0.01 EPQ

Scheme Letters AUC MPP Align None Linear Quadratic

AB 2 0.665 0.159 0.04844 0.0026 0.020 0.034

AB 3 0.674 0.178 0.04968 0.0025 0.019 0.033

AB 4 0.682 0.194 0.05828 0.0026 0.020 0.034

AB 5 0.702 0.206 0.06143 0.0025 0.019 0.033

AB 6 0.719 0.210 0.05877 0.0024 0.019 0.034

AB 7 0.731 0.234 0.06827 0.0025 0.019 0.033

AB 8 0.721 0.252 0.07310 0.0026 0.020 0.034

AB 9 0.728 0.294 0.07554 0.0026 0.019 0.033

AB 10 0.740 0.297 0.07509 0.0026 0.020 0.034

AB 11 0.749 0.310 0.07690 0.0027 0.020 0.034

AB 12 0.749 0.313 0.07736 0.0027 0.020 0.034

AB 13 0.750 0.312 0.07610 0.0027 0.020 0.034

AB 14 0.755 0.314 0.07599 0.0026 0.020 0.034

AB 15 0.753 0.319 0.07603 0.0026 0.020 0.033

AB 16 0.754 0.320 0.07648 0.0026 0.019 0.033

AB 17 0.752 0.322 0.07702 0.0026 0.019 0.033

AB 18 0.756 0.326 0.07876 0.0026 0.020 0.034

AB 19 0.757 0.323 0.07828 0.0026 0.019 0.033

BL50 11/1 20 0.779 0.346 0.08476 0.0027 0.021 0.035

BL50 12/2 20 0.762 0.334 0.08111 0.0026 0.020 0.034

BL62 11/1 20 0.759 0.329 0.08322 0.0025 0.019 0.033

CB 2 0.705 0.188 0.06774 0.0029 0.021 0.035

CB 5 0.674 0.191 0.05904 0.0024 0.018 0.031

DSSP 2 0.679 0.154 0.05393 0.0044 0.019 0.033

DSSP 3 0.731 0.209 0.07479 0.0025 0.020 0.034

DSSP 4 0.709 0.222 0.07996 0.0027 0.020 0.033

DSSP 5 0.723 0.219 0.07736 0.0026 0.019 0.032

DSSP 6 0.729 0.230 0.07913 0.0025 0.019 0.033

DSSP 7 0.738 0.246 0.08042 0.0025 0.019 0.032

DSSP 8 0.730 0.233 0.07572 0.0024 0.018 0.031

DSSP 9 0.731 0.244 0.07631 0.0024 0.019 0.033

DSSP 10 0.733 0.253 0.07740 0.0025 0.019 0.032

DSSP 11 0.757 0.282 0.07829 0.0026 0.019 0.033

DSSP 12 0.759 0.287 0.07942 0.0026 0.019 0.033

DSSP 13 0.758 0.290 0.08084 0.0026 0.019 0.033

DSSP 14 0.768 0.297 0.08252 0.0026 0.020 0.034

GBMR 2 0.605 0.091 0.02423 0.0029 0.018 0.032

GBMR 3 0.614 0.122 0.03261 0.0025 0.020 0.035
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Table A.1: Results for all alphabets and matrices tested (continued)

Recall at 0.01 EPQ

Scheme Letters AUC MPP Align None Linear Quadratic

GBMR 4 0.667 0.212 0.07676 0.0029 0.022 0.036

GBMR 5 0.678 0.220 0.07549 0.0027 0.020 0.033

GBMR 6 0.691 0.196 0.06778 0.0097 0.019 0.031

GBMR 7 0.709 0.202 0.06784 0.0089 0.019 0.032

GBMR 8 0.716 0.205 0.06857 0.0085 0.020 0.032

GBMR 9 0.719 0.206 0.06871 0.0067 0.018 0.030

GBMR 10 0.726 0.217 0.07052 0.0038 0.020 0.033

GBMR 11 0.735 0.240 0.07264 0.0028 0.019 0.032

GBMR 12 0.738 0.240 0.07098 0.0027 0.020 0.035

GBMR 13 0.742 0.250 0.07096 0.0026 0.020 0.034

GBMR 14 0.742 0.249 0.07022 0.0026 0.020 0.034

HSDM 2 0.725 0.199 0.07214 0.0029 0.021 0.036

HSDM 3 0.732 0.203 0.07266 0.0026 0.020 0.034

HSDM 4 0.726 0.210 0.07306 0.0026 0.019 0.034

HSDM 5 0.751 0.234 0.07562 0.0027 0.019 0.034

HSDM 6 0.751 0.262 0.07827 0.0027 0.020 0.035

HSDM 7 0.751 0.279 0.08154 0.0028 0.020 0.033

HSDM 8 0.759 0.295 0.08235 0.0027 0.020 0.034

HSDM 9 0.784 0.319 0.08714 0.0028 0.020 0.033

HSDM 10 0.776 0.325 0.08691 0.0027 0.020 0.034

HSDM 12 0.771 0.323 0.08676 0.0026 0.020 0.035

HSDM 14 0.783 0.341 0.08862 0.0027 0.020 0.035

HSDM 15 0.783 0.343 0.08857 0.0026 0.020 0.035

HSDM 16 0.789 0.344 0.08849 0.0026 0.020 0.035

HSDM 17 0.796 0.347 0.08887 0.0027 0.020 0.035

HSDM 20 0.791 0.345 0.08882 0.0026 0.020 0.036

JO20 20 0.725 0.274 0.05900 0.0024 0.019 0.033

LR 10 0.719 0.280 0.07019 0.0026 0.020 0.034

LW-I 2 0.705 0.188 0.06774 0.0029 0.021 0.035

LW-I 3 0.720 0.203 0.06403 0.0027 0.020 0.034

LW-I 4 0.697 0.232 0.07038 0.0026 0.019 0.032

LW-I 5 0.701 0.227 0.06388 0.0027 0.020 0.034

LW-I 6 0.695 0.241 0.06369 0.0027 0.020 0.034

LW-I 7 0.688 0.240 0.06681 0.0026 0.020 0.033

LW-I 8 0.737 0.286 0.07320 0.0026 0.020 0.034

LW-I 9 0.740 0.290 0.07389 0.0026 0.020 0.035

LW-I 10 0.728 0.292 0.07218 0.0025 0.019 0.033

LW-I 11 0.735 0.303 0.07579 0.0026 0.020 0.035

LW-I 12 0.740 0.303 0.07605 0.0026 0.020 0.034

LW-I 13 0.754 0.310 0.07662 0.0026 0.020 0.034
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Table A.1: Results for all alphabets and matrices tested (continued)

Recall at 0.01 EPQ

Scheme Letters AUC MPP Align None Linear Quadratic

LW-I 14 0.756 0.307 0.07569 0.0025 0.020 0.034

LW-I 15 0.757 0.308 0.07593 0.0025 0.020 0.034

LW-I 16 0.754 0.314 0.07599 0.0026 0.020 0.034

LW-I 17 0.752 0.317 0.07619 0.0026 0.020 0.034

LW-I 18 0.753 0.318 0.07663 0.0026 0.020 0.034

LW-I 19 0.755 0.321 0.07693 0.0026 0.020 0.034

LW-NI 2 0.705 0.188 0.06774 0.0029 0.021 0.035

LW-NI 3 0.720 0.203 0.06403 0.0027 0.020 0.034

LW-NI 4 0.723 0.224 0.06361 0.0025 0.019 0.032

LW-NI 5 0.702 0.229 0.06417 0.0026 0.019 0.032

LW-NI 6 0.707 0.243 0.06453 0.0026 0.019 0.033

LW-NI 7 0.698 0.245 0.06795 0.0026 0.020 0.033

LW-NI 8 0.698 0.244 0.06509 0.0025 0.020 0.034

LW-NI 9 0.696 0.249 0.06569 0.0025 0.019 0.034

LW-NI 10 0.706 0.263 0.06816 0.0025 0.020 0.034

LW-NI 11 0.739 0.292 0.07406 0.0025 0.020 0.034

LW-NI 12 0.740 0.303 0.07605 0.0026 0.020 0.034

LW-NI 13 0.754 0.310 0.07662 0.0026 0.020 0.034

LW-NI 14 0.756 0.312 0.07688 0.0027 0.020 0.034

LW-NI 15 0.757 0.308 0.07593 0.0025 0.020 0.034

LW-NI 16 0.754 0.314 0.07599 0.0026 0.020 0.034

LW-NI 17 0.752 0.317 0.07619 0.0026 0.020 0.034

LW-NI 18 0.753 0.318 0.07663 0.0026 0.020 0.034

LW-NI 19 0.755 0.321 0.07693 0.0026 0.020 0.034

LZ-BL 2 0.690 0.194 0.06969 0.0026 0.020 0.033

LZ-BL 3 0.719 0.217 0.07751 0.0026 0.019 0.033

LZ-BL 4 0.736 0.242 0.08056 0.0027 0.020 0.033

LZ-BL 5 0.734 0.282 0.08134 0.0028 0.020 0.034

LZ-BL 6 0.742 0.299 0.08337 0.0028 0.020 0.035

LZ-BL 7 0.744 0.297 0.08129 0.0027 0.021 0.036

LZ-BL 8 0.736 0.299 0.08115 0.0026 0.020 0.036

LZ-BL 9 0.744 0.300 0.08092 0.0026 0.020 0.034

LZ-BL 10 0.749 0.327 0.08417 0.0026 0.020 0.034

LZ-BL 11 0.750 0.325 0.08184 0.0026 0.020 0.035

LZ-BL 12 0.769 0.328 0.08326 0.0025 0.019 0.033

LZ-BL 13 0.774 0.331 0.08380 0.0026 0.020 0.034

LZ-BL 14 0.774 0.334 0.08391 0.0025 0.019 0.033

LZ-BL 15 0.777 0.339 0.08413 0.0026 0.020 0.034

LZ-BL 16 0.783 0.346 0.08451 0.0027 0.020 0.034

LZ-MJ 2 0.700 0.165 0.05816 0.0026 0.019 0.033
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Table A.1: Results for all alphabets and matrices tested (continued)

Recall at 0.01 EPQ

Scheme Letters AUC MPP Align None Linear Quadratic

LZ-MJ 3 0.666 0.173 0.05389 0.0023 0.018 0.032

LZ-MJ 4 0.722 0.203 0.06992 0.0024 0.019 0.032

LZ-MJ 5 0.779 0.221 0.07165 0.0022 0.017 0.031

LZ-MJ 6 0.793 0.220 0.07124 0.0022 0.018 0.031

LZ-MJ 7 0.770 0.246 0.07434 0.0023 0.018 0.030

LZ-MJ 8 0.750 0.250 0.07749 0.0025 0.019 0.032

LZ-MJ 9 0.757 0.261 0.08010 0.0024 0.018 0.031

LZ-MJ 10 0.764 0.266 0.08065 0.0024 0.018 0.031

LZ-MJ 11 0.759 0.265 0.07871 0.0023 0.018 0.030

LZ-MJ 12 0.782 0.279 0.07966 0.0023 0.018 0.031

LZ-MJ 13 0.782 0.285 0.08017 0.0024 0.018 0.031

LZ-MJ 14 0.783 0.285 0.08082 0.0023 0.018 0.031

LZ-MJ 15 0.773 0.311 0.08207 0.0024 0.019 0.032

LZ-MJ 16 0.773 0.312 0.08259 0.0024 0.019 0.032

ML 4 0.693 0.236 0.07146 0.0026 0.019 0.032

ML 8 0.753 0.294 0.07733 0.0027 0.020 0.035

ML 10 0.757 0.304 0.08087 0.0027 0.020 0.033

ML 15 0.762 0.331 0.08063 0.0027 0.020 0.034

MM 5 0.691 0.210 0.06894 0.0023 0.017 0.030

MS 6 0.715 0.232 0.06853 0.0027 0.020 0.035

SDM 2 0.740 0.145 0.06695 0.0022 0.013 0.020

SDM 3 0.775 0.184 0.07099 0.0022 0.016 0.026

SDM 4 0.767 0.212 0.07450 0.0026 0.015 0.024

SDM 6 0.766 0.232 0.07591 0.0030 0.016 0.029

SDM 7 0.773 0.255 0.08029 0.0028 0.020 0.034

SDM 8 0.759 0.268 0.07952 0.0028 0.021 0.035

SDM 10 0.764 0.310 0.08642 0.0026 0.019 0.031

SDM 11 0.800 0.329 0.08686 0.0027 0.019 0.033

SDM 12 0.801 0.332 0.08670 0.0026 0.020 0.034

SDM 13 0.800 0.335 0.08675 0.0027 0.020 0.034

SDM 14 0.795 0.332 0.08603 0.0027 0.020 0.034

SDM 20 0.770 0.331 0.08594 0.0026 0.019 0.033

TD 2 0.678 0.162 0.05673 0.0027 0.021 0.035

TD 3 0.679 0.162 0.05631 0.0025 0.020 0.034

TD 4 0.704 0.175 0.06090 0.0024 0.019 0.031

TD 5 0.718 0.185 0.06316 0.0023 0.018 0.032

TD 6 0.768 0.224 0.07772 0.0023 0.018 0.031

TD 7 0.740 0.237 0.08096 0.0023 0.018 0.031

TD 8 0.748 0.265 0.08159 0.0024 0.018 0.031

TD 9 0.737 0.278 0.08153 0.0025 0.019 0.032
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Table A.1: Results for all alphabets and matrices tested (continued)

Recall at 0.01 EPQ

Scheme Letters AUC MPP Align None Linear Quadratic

TD 10 0.743 0.283 0.08033 0.0025 0.019 0.032

TD 14 0.743 0.306 0.07984 0.0026 0.020 0.034

WW 5 0.709 0.219 0.07172 0.0026 0.019 0.033
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Appendix B

Membrane shape as a reporter for
applied forces

B.1 Vesicle-induced force artifacts

We checked that the size of the fluctations (the spring constant) remains nearly constant

during vesicle extension experiments, implying that the presence of the vesicle does not

affect the trap stiffness and the trap remains close to the linear regime. The mean and

variance of the voltage are shown in Fig. B.1.

Although the vesicle does not significantly affect the trap stiffness, it does affect the DC

offset of the PSD. If the trap is zeroed without contact with the vesicle, the presence of the

vesicle in the beam scatters light, leading to an offset voltage at the PSD. It was therefore

necessary to assume a zero on bead contact. The beads were bound to the membrane by

squeezing the vesicle between the trapped beads.

We also discovered that changes in the vesicle conformation in proximity to the bead

could also lead to force artifacts. The evidence for this effect is discussed in Fig. B.2. Data

sets where the vesicle tethered on the pole opposite from the force sensor did not appear

to show these anomalous forces, presumably because the local vesicle conformation was not

appreciably changed by deformation.

We also note that the trapping force is susceptible to drift in the subpiconewton regime.

Due to the competing effects of drift and systematic uncertainties related to membrane-

induced beam scattering, the most meaningful comparisons between the conformational

force and the trapping forces are differences between conformations separated by a few

steps in the extension series, since the membrane-induced scattering is similar and the
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Figure B.1: Issues in determining the zero of the PSD force measurements. Panel
A. The mean PSD voltage plotted vs. step number for a data set where a membrane tether
was extended and retracted three times. The trap deflection (and force) are proportional
to the PSD voltage. The last three circled points are the zeros for the experiment with
beads unattached to the vesicle. The initial points on the trace correspond to beads bound
to the vesicle, but without extension. Binding the vesicle causes an anomalous force due to
scattering of light. See discussion in the caption of Fig. B.2. Panel B. The voltage variance
vs. step number. The voltage variance is inversely proportional to the trap stiffness. Note
first that the voltage variance is stable relative to its magnitude throughout the extension.
(The data has been plotted to accentuate variations by not including zero on the y axis.)
As the force is increased in the first tether extraction, the voltage variance is increased
slightly, corresponding to a slight reduction in the trap stiffness, as would be expected due
to the large-deflection non-linearity in the optical trap. Two larger features are visible in
the voltage variance at step number 65 and 110. These features are the result of changes
in the local structure of the vesicle surrounding the bead. See discussion in the caption of
Fig. B.2.
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Figure B.2: A limitation of measuring trap forces in the presence of a vesicle.
The vesicles themselves scatter the trapping beam, which can result in the detection of
anomalous forces. In the figure above, we depict the most compelling evidence for this
effect. At the beginning of this data set, an internal vesicle is bound to the lipid aggregate
surrounding the bead. Between step number 65 and 66, the vesicle is released and diffuses
into the body of the outer vesicle. This release causes a precipitous drop in the detected
trap force (red curve). For reference purposes, we have also plotted the force calculated
from the membrane conformation (blue curve). A similar offset in force is observed upon
attachment of the force detection bead to the vesicle. Rigorously, this implies that at best
we can detect relative forces, not absolute forces. Similar anomalies occur when the vesicle
becomes tethered at the detection bead, due to a dramatic change in local vesicle structure.
The most reliable force traces resulted from vesicles tethering at the extension bead. In
spite of these complications, the trap stiffness was not significantly affected by the vesicle.
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drift between adjacent steps is smaller than between measurements taken ten to twenty

minutes apart. As a practical matter of reducing the influence of drift and low-tension

vesicle structure induced force anomalies, the DC offset was calculated by minimizing the

difference between the trapping force and conformational force at high force.

B.2 Derivation of the local force density

B.2.1 The manifold

In a coordinate system (s1, s2) on a two-manifold M the canonical energy of a fluid lipid

bilayer membrane is (valid for small displacements from equilibrium) [1–3]:

E =
∫
M

ds1ds2√g
[
α+

1
2
kC (S − C0)2

]
. (B.1)

In this expression for the energy we omit the Gaussian curvature term, since it is purely

topological for closed membranes and does not contribute to the local membrane forces. The

Lagrange multiplier α is introduced to constrain the area of the membrane to be constant.

The other factors appearing are kC , the bending modulus of the membrane; S, the sum

of the principal curvatures; and C0, the spontaneous curvature. It is useful to embed the

membrane in a three-dimensional Cartesian space; vectors in this space will be denoted

X. Greek indices will be used in the Cartesian embedding space, and Latin indices for the

manifold. Note that we don’t have to be careful about raising and lowering Greek indices

since the metric for the Cartesian space is just the identity tensor.

B.2.2 The metric

The metric on the membrane in terms of the vectors Xα of the embedding space is:

gij = δαβ
∂Xα

∂si
∂Xβ

∂sj
(B.2)

= ∂iX
α ∂jX

α. (B.3)

B.2.3 The tangent space

A right-handed coordinate system can be formed for the tangent space of the membrane

by using the tangent vectors ∂iXα. These two vectors span the subspace of the tangent
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space parallel to the membrane; we can form the normal vector by taking the antisymmetric

product of the tangent vectors:

εijn
α = A εαβγ ∂iX

β ∂jX
γ . (B.4)

The εij is present since we are taking the right-handed set of basis vectors to be {∂1X
α, ∂2X

α, nα}.

Now we need to work out the normalization factor A of nα:

1 = nαnα

= A2 εαβγ εαδξ ∂1X
β ∂2X

γ ∂1X
δ ∂2X

ξ

= A2 (δβδδγξ − δβξδγδ) ∂1X
β ∂2X

γ ∂1X
δ ∂2X

ξ

= A2 (g11g22 − g12g21)

A =
1
√
g
.

So the normal vector in the membrane tangent space is:

nα =
1
√
g
εαβγ ∂1X

β ∂2X
γ . (B.5)

B.2.4 The shape operator

The shape operator (also called the second fundamental form) says something about the

curvature of the membrane. Given a normal vector and a tangent direction, the shape

operator tells one how the normal vector changes in that direction. Following are some

identities that will be needed in the calculation:

Sij = − ∂iXα ∂jn
α (B.6)

Sij = nα ∇i∇jXα (B.7)

∇iSij = ∇jS. (B.8)

Let us also define what we mean by S and K which are the trace and determinant of
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the shape operator:

S = tr S (B.9)

= gijSij (B.10)

K = det S (B.11)

=
1
2
εijεlmSilSjm. (B.12)

Another useful identity that we will use is:

K =
1
2
(
S2 + tr S2

)
, (B.13)

where tr S2 = SijSij .

B.2.5 Finding the normal force

We will find the forces needed to maintain the membrane in mechanical equilibrium with a

virtual work principle. Before launching into the variation of the whole membrane energy

expression it will be useful to derive a few preliminary results.

B.2.5.1 Preliminary variations

When we vary the membrane energy, the δ operator will find two terms to operate on:
√
g

and (S − C0)2. Why only these terms? First, there is no dependence on the embedding

coordinates Xα in C0 or kC . Also, there is also no dependence in α on the coordinates; it is

a property of the membrane lipids (total surface area) and is independent of the embedding.

First let us work out δ
(√
g
)

in a locally diagonal basis, so that g = g11g22:

δ (
√
g) = δ

√
g11g22

=
1
2

(√
g11

g22
δg22 +

√
g22

g11
δg11

)
=

1
2
√
g

(
1
g22

δg22 +
1
g11

δg11

)
.
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From this we can surmise the following identity:

δ (
√
g) =

1
2
√
g gij δgij . (B.14)

This identity is also derived in Reference [4] (see Eq. E.1.17 in Appendix E).

Now for the variation of the quadratic curvature term, using Eq. B.10:

δ
(

(S − C0)2
)

= 2 (S − C0) δ
(
gijSij

)
= 2 (S − C0)

(
Sijδg

ij + gijδSij
)
.

So we need the variation of the inverse of the metric and the variation of the shape operator

itself. The variation of the inverse metric is most easily obtained from the orthogonality

condition of the metric:

δik = gijgjk

0 = δ
(
gijgjk

)
0 = gjkδg

ij + gijδgjk

gjkδg
ij = −gijδgjk

glkgkjδg
ij = −glkgijδgjk

δljδg
ij = −glkgijδgjk.

Now if we rename indices and simplify we obtain:

δgij = −gilgjkδglk. (B.15)

The variation of the shape operator is:

δSij = δ (nα∇i∇jXα)

= ∇i∇jXα δnα + nαδ (∇i∇jXα)

= Sijn
α δnα + nαδ (∇i∇jXα) .
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The first term on the RHS vanishes because of the normalization of the normal vector:

nαnα = 1

δ (nαnα) = 0

nα δnα = 0.

Now for the other term.The ∇j can be converted to a ∂j since Xα is a Cartesian vector:

nαδ (∇i∇jXα) = nαδ (∇i∂jXα)

= nαδ (∂i∂jXα + Γmij∂mXα)

= nα∂i∂jδX
α + nα∂mX

αδΓmij + nαΓmij∂mδXα.

The second term on the RHS is zero because nα and ∂mX
α are othogonal. If we choose a

local frame where the connection vanishes, then the third term is also zero, leaving us with

the final result:

δSij = nα∇i∇jδXα. (B.16)

Going back to the variation of δ
(

(S − C0)2
)

we find:

δ
(

(S − C0)2
)

= 2 (S − C0)
(
nα∇2Xα − Sijδgij

)
. (B.17)

B.2.5.2 Variation of the membrane energy

With these expressions in place, we are now in a position to evaluate the variation of the

membrane energy.

E =
∫
M

ds1 ds2√g
[
α+

1
2
kC (S − C0)2

]
δE =

∫
M

ds1 ds2

{
δ (
√
g)
[
α+

1
2
kC (S − C0)

]
+
√
g

1
2
kCδ

(
(S − C0)2

)}
.
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Now using Eqs. B.14 and B.17 we have:

δE =
∫
M

ds1 ds2
√
g

gijδgij
1
2

[
α+

1
2
kC (S − C0)

]
︸ ︷︷ ︸

1

−

kC (S − C0)Sijδgij︸ ︷︷ ︸
2

+

kC (S − C0)nα∇2δXα︸ ︷︷ ︸
3

 .

(B.18)

We must now integrate by parts and then collect terms to find the force. For simplicity

let us assume the membrane is closed so that we may ignore the boundary terms (total

derivatives) that arise.

B.2.5.3 Term 1

The integration by parts for the first term will use this result:

∇i
(
δXαV i

)
= V i∇iδXα + δXα∇iV i (B.19)

V i∇iδXα = −δXα∇iV i + · · · (B.20)

where · · · is a total derivative that we may neglect for a closed surface and V i represents

all prefactors of ∇iδXα. Term 1 looks like Φgijδgij where Φ is a scalar function; using the

above result we obtain:

Φgijδgij = Φgij (∇iδXα∇jXα +∇iXα∇jδXα)

= 2Φ∇iXα∇iδXα

= −2δXα
(
∇iXα∇iΦ + Φ∇2Xα

)
= −2δXα

(
∇iXα∇iΦ + nαSΦ

)
.

The first term on the RHS corresponds to a force in the place of the membrane since it is

proportional to ∇Xα, and the second is normal to it. In this derivation we will only collect

terms multiplying the normal vector, since it is the normal force we are most interested in.
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The final result for term 1 with Φ = 1
2

[
α+ 1

2kC (S − C0)2
]

is:

gijδgijΦ = −δXα

{
∇iXα (· · · )− nαS

[
α+

1
2
kC (S − C0)2

]}
. (B.21)

B.2.5.4 Term 2

For term 2 we have, using Eq. B.20 with V i = −2kC (S − C0)Sij∇jXα:

−kC (S − C0)Sijδgij = −2kC (S − C0)Sij∇jXα∇iδXα

= 2kC δXα∇i
[
(S − C0)Sij∇jXα

]
= 2kC δXα

[
∇jXα (· · · ) + (S − C0)Sij∇i∇jXα

]
.

Now using Eq. B.7 the final result for term 2 is:

−kC (S − C0)Sijδgij = 2kC δXα
[
∇jXα (· · · ) + nα (S − C0)SijSij

]
. (B.22)

B.2.5.5 Term 3

For term 3 we apply Eq. B.20 twice to find:

(S − C0)nα∇2δXα = kC δXα∇2 [(S − C0)nα]

= kC δXα
[
nα∇2S + (S − C0)∇2nα

]
.

We can use the definition of the shape operator (Eq. B.6) along with Eqs. B.7 and B.8 to

calculate ∇2nα:

∇2nα = ∇i∇inα

= ∇i
[
Sij (−∇jXα)

]
= ∇iSij

(
−∇jXα

)
− Sij∇i∇jXα

= ∇jS
(
−∇jXα

)
− nαSijSij .
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Putting this all together the final form of term 3 is:

(S − C0)nα∇2δXα = kCδX
α
[
∇iXα (· · · ) +

nα
(
∇2S − SijSij (S − C0)

)]
.

(B.23)

B.2.5.6 Combining terms

Going back to Eq. B.18 and putting in the results for the three terms worked out above

gives:

δE =
∫
M

ds1 ds2
√
g

{
∇iXα (· · · ) +

nα
[
−Sα+ kC∇2S + kC (S − C0)SijSij −

1
2
kCS (S − C0)2

]}
.

(B.24)

Now using Eq. B.13 and the equilibrium condition δE = 0 we arrive at an expression for

the external force density needed to maintain mechanical equilibirum for our membrane

model:

f⊥ = −Sα+ kC

[
∇2S + (S − C0)SijSij −

1
2
S (S − C0)2

]
= −Sα+ kC

[
∇2S + (S − C0)

(
S2 − 2K

)
− 1

2
S (S − C0)2

]
.

After a few lines of algebra to simplify things we arrive, finally, at the expression:

f⊥ = −Sα+ kC

[
∇2S − 2K (S − C0) +

1
2
S
(
S2 − C0

2
)]
. (B.25)

B.3 Derivation of the tether equation

Let us write down the energy of a spherical vesicle of radius R having a cylidrical tether of

length L and radius r pulled out of it, with the tether being closed by a hemispherical cap:

E = Ebend − f L− αA− p V. (B.26)
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The energy of bending is:

Ebend = 8πκB +
1
2
κB

(
1
r

)2

2πrL+ 4πκB (B.27)

= 12πκB + πκB
L

r
. (B.28)

The constant bending terms aren’t actually going to contribute anything useful. The area

and volume are:

A = 4πR2 + 2πrL+ 2πr2 (B.29)

V =
4
3
πR3 + πr2L+

2
3
πr3. (B.30)

Now we need to find out what values of L, r, and R will minimize the energy. We have 3

equations:

∂E(R,L, r)
∂R

= 0 (B.31)

∂E(R,L, r)
∂L

= 0 (B.32)

∂E(R,L, r)
∂r

= 0. (B.33)

A membrane tether’s length is typically long compared to its radius, and the radius of the

tether is also small compared to the radius of a typical vesicle from which it is drawn. Let us

assume our geometry meets these approximations and simplify the calculation by neglecting

any terms that go like r/L or r/R.

Tackling the first equation, we have

∂E

∂R
= −8παR− 4πpR2 = 0 (B.34)

−2αR = pR2 (B.35)

p = −2α
R
, (B.36)

which is just the Laplace law familiar from the study of soap bubbles. In the body of the

vesicle, away from the tether, this law still applies.
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Now for the second equation:

∂E

∂L
=

πκB
r
− f − 2παr − πpr2 = 0 (B.37)

f =
πκB
r
− 2παr − π

(
−2α
R

)
r2 (B.38)

f =
πκB
r
− 2παr

(
1− r

R

)
(B.39)

f ≈ πκB
r
− 2παr. (B.40)

And the final equation:

∂E

∂r
= −πκB

L

r2
− 2παL− 4παr − 2πprL− 2πpr2 = 0 (B.41)

πκBL

r2
= −2παL− 4παr − 2π

(
−2α
R

)
rL− 2π

(
−2α
R

)
r2 (B.42)

πκB
r2

= −2πα− 4πα
( r
L

)
+ 4πα

( r
R

)
+ 4πα

( r
R

)( r
L

)
(B.43)

πκB
r2

≈ −2παr. (B.44)

Using this last result we may eliminate the term with α from Eq. B.40 and obtain a

very simple equation relating the tether force and radius:

f =
2πκB
r

. (B.45)

So as we increase the force on the end of the tether, its radius shrinks. Other ways of

writing this result are [5]:

f =
2πκB
R

, (B.46)

= 4πRα, (B.47)

= 2π
√

2κBα. (B.48)
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Appendix C

Cooperative gating and spatial
organization of membrane proteins
through elastic interactions

C.1 Simulation input files

Two input files are required for the Monte Carlo simulation: one with values of physical

parameters and another with values for simulation parameters. The physical parameter file

we used followed by an example of a simulation parameter file are given below.

C.1.1 Explanation of physics.inp

The values of various necessary physical parameters are input through this file. Values are

given one per line, in the following order and units:

1. Area stretch modulus KA in kBT/nm2

2. Single leaflet bending modulus κb in kBT

3. Single leaflet thickness l in nm

4. Area change of the channel upon gating ∆A in nm2

5. Radius of the open channel ro in nm

6. Radius of the closed channel rc in nm

7. Internal conformational energy change upon gating ∆Ggate in kBT.
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C.1.2 physics.inp

29
7
1.75
20
3.5
2.5
52

C.1.3 Explanation of sim.inp

The parameters for the simulation itself are read in from this input file. Just as with

physics.inp the values are given one per line, as follows:

1. Path to the text file with closed-closed potentials Vcc

2. Path to the text file with open-closed potentials Voc

3. Path to the text file with open-open potentials Voo

4. Resolution res of the lattice

5. Side length side_len of the lattice in nm

6. Total number of channel proteins M on the lattice

7. Total number of steps NMC to be taken in the Markov chain

8. Random number generator seed

9. Initial value of (dimensionless) tension τi

10. Final value of (dimensionless) tension τf

11. Optional output directive(s), one per line:

(a) !history

Write out a file history.txt with a detailed log of simulation activity. The

first line in the file is the number of Markov chain steps to be taken at each

tension value, NMC. At each new tension value from τi to τf , one line is written

out with the current value of τ . Following the line with the value of τ , there

follow lines with tab-separated values each time a gating change occurs: M values
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with the open/closed state of each protein on the lattice, the current number of

interacting dimers and the current Markov chain step number.

(b) !channel

Write out a file channel.txt with data calculated at each tension value. The

tab-separated values on each line are: tension value τ , probability of being open

Popen, probability of being in an interacting dimer Pdimer, and average separation

of the channels 〈r〉 in nm.

(c) !dimer

Write out a file dimer.txt having the lifetimes of interacting dimers given, one

per line, in units of Markov chain steps.

(d) !gating

Write out a file gating.txt having the lifetimes of open channels given, one per

line, in units of Markov chain steps.

The parameters res and side_len are used to determine the total number of lattice sites

N as

N = res× side len/λ, (C.1)

with the natural deformation length scale given by λ = (κbl2/KA)1/4 ≈ 1 nm. The simula-

tion is run with M channel proteins on an N ×N lattice from an initial tension value of τi

to a final value of τf in increments of 0.01 with NMC Markov steps taken at each increment.

The example input file shown below specifies that two channel proteins be placed on a

45 nm × 45 nm grid with 10 million Markov chain steps generated at each of the tension

values from τi = 1.10 to τf = 1.30 in increments of ∆τ = 0.01 (the increment is fixed in

the source code and not specified in the input file). The random number seed is set to

92478 and output is requested for the lifetimes of interacting dimers (!dimer) as well as the

standard statistics (!channel) at each tension value: Popen, Pdimer, and 〈r〉. The potentials

are found in the current directory in the files Vcc.txt, Voc.txt, and Voo.txt. The lattice

will be set up so that each typical interaction length λ is split into 10 lattice sites.

C.1.4 sim.inp

Vcc.txt
Voc.txt
Voo.txt
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10
45
2
10000000
92478
1.10
1.30
!dimer
!channel

C.2 MCMC source code

Below are listings for the source code to the Markov Chain Monte Carlo (MCMC) simula-

tion.

C.2.1 main.cc

#include "channels.hh"

int main( int argc, void **argv ) {
// error check
if ( argc < 2 ) {

cout << "Usage: channels physics.inp sim.inp" << endl;
return -1;

}

// input file names
const string p( (char *)argv[1] );
const string s( (char *)argv[2] );

// run simulation
channel_KMC *sim = new channel_KMC( p, s );
sim->PrintParams();
sim->DoSeries();
delete sim;

return 0;
}
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C.2.2 channels.hh

#include <climits>
#include <cmath>
#include <string>
#include <iostream>
#include <iomanip>
#include <fstream>

#include "RNGXCI.h"
#include "potential.hh"

using std::string;
using std::cout;
using std::cerr;
using std::endl;
using std::ifstream;
using std::ofstream;
using std::ios;
using std::setprecision;
using std::setiosflags;

// (fast?) integer absolute value
// from http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs
#define ABS(x) ((x) ^ ((x) >> (sizeof(int) * CHAR_BIT - 1))) -

((x) >> (sizeof(int) * CHAR_BIT - 1));

/*********************/
/* class channel_KMC */
/*********************/

class channel_KMC {
public:

channel_KMC( const string, const string );
~channel_KMC( void );

// print parameter values
void PrintParams( void );

// calculate the order parameter and dimer probabilty
// for one tension value
double DoTension( const float, double&, double&, double& );

// calculate a series of tension values
void DoSeries( void );

// print out potential
void PrintV( int, float, const string );
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private:
enum { FALSE, TRUE };

enum { MATCH }; // for comparing strings

// move types in metropolis()
enum { NO_CHANGE, LATTICE_HOP, HOP_AND_SWITCH };
// NOTE: any type of accepted move must have values > 0
// DoTension() depends on this

enum { VCC, VOC, VOO }; // potentials

enum { L_UNOCC, L_CLOSED, L_OPEN }; // lattice states

enum { CLOSED, OPEN }; // channel states
// NOTE: the following must hold:
// OPEN + OPEN = VOO
// OPEN + CLOSED = VOC
// CLOSED + CLOSED = VCC
// interaction() depends on this
// !OPEN = CLOSED
// !CLOSED = OPEN
// metropolis() depends on this

// physical constants, read from file
//-----------------------------------

float Ka; // leaflet strech modulus (kT/nm^2)
float kappa; // leaflet bending modulus (kT)
float l; // leaflet thickness (nm)
float da; // measured gating area change (nm^2)

float ro; // open channel radius (nm)
float rc; // closed channel radius (nm)

float gating; // gating energy (kT)

// simulation constants, read from file
//-------------------------------------

string fnames[3]; // file names with potential data

int res; // lattice resolution
float side_len; // length of box side (nm)

int M; // number of proteins on lattice
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int NMC; // number of (accepted) MC steps to be taken
RNlong seed; // random number generator seed

// derived constants
//------------------

float lambda; // natural length scale (nm)

float delta; // dimensionless tension

float dalpha; // dimensionless gating area change

float rhoo; // scaled open channel radius
float rhoc; // scaled closed channel radius

float h; // lattice spacing
int N; // number of lattice sites is N x N
int N2; // = N/2
long unocc; // number of unoccupied lattice sites

// excluded radius; hard core potential at r < rex
float rex[3];

// dimer interaction energy threshold
float dimer_energy;

// simulation variables
//---------------------

RNGXCI *rgen; // random number generator

int *channel_i; // channel i (x) indices
int *channel_j; // channel j (y) indices
int *channel_s; // channel state: OPEN or CLOSED

int *ui; // unoccupied sites, i index
int *uj; // unoccupied sites, j index

int **lattice; // values: L_UNOCC, L_OPEN, L_CLOSED
float **dist; // distance array

potential *Voo, *Voc, *Vcc; // elastic potentials

float ***U; // potential look-up table
// U(VCC, *, *) is the closed - closed potential
// U(VOC, *, *) is the open - closed potential
// U(VOO, *, *) is the open - open potential
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// lipid & area energies, units of kappa
float Elipid[2]; // lipid configuration energy
float Esurf[2]; // surface tension energy
float Ela[2]; // sum of lipid and area energies

float tau_i, tau_f; // initial and final tension values
int nopen; // number of channels in the OPEN state
int ndimer; // number of dimers
long dimer_start; // keep track of MC step where dimer forms
long *gating_start; // vector with MC step where channel opened
float total_dist; // total separation between all channels

// output request strings
//-----------------------
const static string history_request;
const static string channel_request;
const static string dimer_request;
const static string gating_request;

// output request flags
//---------------------
bool history_flag;
bool channel_flag;
bool dimer_flag;
bool gating_flag;

// file storing transition/dimer data
//-----------------------------------
ofstream *channel; // data on open probability, dimerization,

// average separation
ofstream *history; // history of system state changes
ofstream *dimer; // dimer lifetimes
ofstream *gate; // open channel lifetimes

// internal methods
//-----------------

void show_lattice( int ** );

/**********/
/* get_ij */
/**********/

inline void get_ij( const int i1, const int j1,
const int i2, const int j2,
int& di, int& dj ) {
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int idif = i1 - i2;
int jdif = j1 - j2;

di = ABS(idif);
dj = ABS(jdif);

// PBC
// get the distance to the nearest image
if ( di > N2 ) di = N - di;
if ( dj > N2 ) dj = N - dj;

} // end get_ij()

/***************/
/* interaction */
/***************/

inline float interaction( int c, int s, int i, int j ) {
float E = 1.;
for ( int ci = (c+1) % M; ci != c; ++ci %= M ) {

int di, dj;
get_ij( i, j, channel_i[ci], channel_j[ci], di, dj );

// interaction energy
E *= U[ s + channel_s[ci] ][ di ][ dj ];

}
return E;

} // end interaction()

/**************/
/* metropolis */
/**************/

inline int metropolis( int c, int old_s, int old_i, int old_j,
int new_i, int new_j,
int *ai, int *aj, int n ) {

// c is the channel under consideration
// old_* and new_* are the new states and positions
// ai,j is an array of i/j that would
// need swapping with ci channel’s i/j
// n is the index into the ai,j array

float Ei, Ef1, Ef2, Vi, Vf1, Vf2; // initial/final energies

Vi = interaction( c, old_s, old_i, old_j );
Ei = Vi * Ela[ old_s ];

Vf1 = interaction( c, old_s, new_i, new_j );
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Ef1 = Vf1 * Ela[ old_s ];

Vf2 = interaction( c, !old_s, new_i, new_j );
Ef2 = Vf2 * Ela[ !old_s ];

double r = rgen->GetRandom();

// two states are considered:
// (1) a move w/o state change: LATTICE_HOP
// (2) a move w/ state change: HOP_AND_SWITCH
// if both would be accepted, choose randomly between them
// if only one would be accepted, accept it
// otherwise reject both

int move;
if ( (Ef1 < Ei) && (Ef2 < Ei) )

( r < 0.5 ) ? move = LATTICE_HOP
: move = 2;

else if ( Ef1 < Ei )
move = LATTICE_HOP;

else if ( Ef2 < Ei )
move = HOP_AND_SWITCH;

else {
float k1 = Ei/Ef1;
float k2 = Ei/Ef2;

if ( r < k1 && r < k2 )
( rgen->GetRandom() < 0.5 ) ? move = 1

: move = 2;
else if ( r < k1 )

move = LATTICE_HOP;
else if ( r < k2 )

move = HOP_AND_SWITCH;
else

return NO_CHANGE;
}

// MOVE ACCEPTED
int new_s;
float Vf;
if ( move == LATTICE_HOP ) {

new_s = old_s;
Vf = Vf1;

} else {
new_s = !old_s;
Vf = Vf2;
( new_s == OPEN ) ? nopen++ : nopen--;
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}

channel_i[ c ] = new_i;
channel_j[ c ] = new_j;
channel_s[ c ] = new_s;

ai[ n ] = old_i;
aj[ n ] = old_j;

// ONLY WORKS FOR M=2!!!
( Vf <= dimer_energy ) ? ndimer = 1 : ndimer = 0;

for ( int ci = (c+1) % M; ci != c; ++ci %= M ) {
int i = channel_i[ci];
int j = channel_j[ci];

int old_di, old_dj;
int new_di, new_dj;

get_ij( old_i, old_j, i, j, old_di, old_dj );
get_ij( new_i, new_j, i, j, new_di, new_dj );

total_dist -= dist[old_di][old_dj];
total_dist += dist[new_di][new_dj];

}

return move;
} // end metropolis()

}; // end class channel_KMC



163

C.2.3 channels.cc

#include "channels.hh"

// const member initializations
//-----------------------------

const string channel_KMC::history_request = string("!history");
const string channel_KMC::channel_request = string("!channel");
const string channel_KMC::dimer_request = string("!dimer");
const string channel_KMC::gating_request = string("!gating");

/**********************/
/* constructor method */
/**********************/

channel_KMC::channel_KMC( const string phys, const string sim ) {

// read in physical parameters
ifstream phys_params( phys.c_str() );

phys_params >> Ka;
phys_params >> kappa;
phys_params >> l;
phys_params >> da;
phys_params >> ro;
phys_params >> rc;
phys_params >> gating;

phys_params.close();

// read in simulation parameters
ifstream sim_params( sim.c_str() );

sim_params >> fnames[VCC];
sim_params >> fnames[VOC];
sim_params >> fnames[VOO];
sim_params >> res;
sim_params >> side_len;
sim_params >> M;
sim_params >> NMC;
sim_params >> seed;
sim_params >> tau_i;
sim_params >> tau_f;

// read in output requests
history_flag = FALSE;
channel_flag = FALSE;
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dimer_flag = FALSE;
while (! sim_params.eof() ) {

string tmp;
sim_params >> tmp;

if ( tmp.compare( history_request ) == MATCH )
history_flag = TRUE;

if ( tmp.compare( channel_request ) == MATCH )
channel_flag = TRUE;

if ( tmp.compare( dimer_request ) == MATCH )
dimer_flag = TRUE;

if ( tmp.compare( gating_request ) == MATCH )
gating_flag = TRUE;

}

sim_params.close();

// initalize derived parameters
lambda = pow( (kappa*l*l)/Ka , 0.25 );
dalpha = da/(lambda * lambda);
rhoo = ro/lambda;
rhoc = rc/lambda;

N = int( (side_len/lambda)*res );
N2 = int( N/2 );
h = side_len/N;
unocc = N*N-M;

// dimer interaction energy
// V(r) <= -1 kT is a dimer
dimer_energy = exp(-1.);

rex[VCC] = 2*rc;
rex[VOC] = rc+ro;
rex[VOO] = 2*ro;

// allocate storage (1d)
channel_i = new int[M];
channel_j = new int[M];
channel_s = new int[M];
gating_start = new long[M];

ui = new int[unocc];
uj = new int[unocc];

// allocate storage (2d)
lattice = new int*[N];
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dist = new float*[N];
for ( int i = 0; i < N; ++i ) {

lattice[i] = new int[N];
dist[i] = new float[N];

}

// allocate storage (3d)
U = new float**[3];
for ( int i = 0; i < 3; ++i ) {

U[i] = new float*[N];
for ( int j = 0; j < N; ++j )

U[i][j] = new float[N];
}

// initialize random number generator
rgen = new RNGXCI( seed );

// initialize channels
for (int i = 0; i < M; ) {

int ii = int( rgen->GetRandom() * N );
int jj = int( rgen->GetRandom() * N );

if ( lattice[ii][jj] == L_UNOCC ) {
channel_i[i] = ii;
channel_j[i] = jj;

// initially closed
channel_s[i] = CLOSED;
lattice[ii][jj] = L_CLOSED;

++i;
}

}
nopen = 0;

// find unoccupied sites and initialize dist
long n = 0;
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j ) {
dist[i][j] = sqrt( i*i*h*h + j*j*h*h );
if (lattice[i][j] == L_UNOCC) {

ui[n] = i;
uj[n] = j;
++n;

}
}



166

// initialize the potentials
Voo = new potential( fnames[VOO], N, h, side_len, rex[VOO], dist,

U[VOO], lambda, kappa );
Voc = new potential( fnames[VOC], N, h, side_len, rex[VOC], dist,

U[VOC], lambda, kappa );
Vcc = new potential( fnames[VCC], N, h, side_len, rex[VCC], dist,

U[VCC], lambda, kappa );

// initiallize ndimer, total_dist
ndimer = 0;
total_dist = 0.;
for (int c = 0; c < M; ++c ) {

int i = channel_i[c];
int j = channel_j[c];

for ( int ci = (c+1) % M; ci != c; ++ci %= M ) {
int di, dj;
get_ij( i, j, channel_i[ci], channel_j[ci], di, dj );

total_dist += dist[di][dj];
if ( U[ VCC ][ di ][ dj ] <= dimer_energy ) ndimer++;

}
}

// ONLY works for M=2!!!
if ( ndimer ) dimer_start = 0;

// we counted everything twice in the loop
total_dist *= 0.5;
ndimer = round( ndimer / 2 );

// open output files
if ( history_flag ) {

history = new ofstream( "history.txt" );
// write out number of MC steps for each tau
(*history) << NMC << endl;

}
if ( channel_flag )

channel = new ofstream( "channel.txt" );
if ( dimer_flag )

dimer = new ofstream( "dimer.txt" );
if ( gating_flag )

gate = new ofstream( "gating.txt" );

} // end constructor channel_KMC
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/*********************/
/* destructor method */
/*********************/

channel_KMC::~channel_KMC( void ) {
// deallocate storage (1d)
delete [] channel_i;
delete [] channel_j;
delete [] channel_s;
delete [] gating_start;

// deallocate storage (2d)
for ( int i = 0; i < N; ++i )

delete [] lattice[i];
delete [] lattice;

// deallocate storage (3d)
for ( int i = 0; i < 3; ++i ) {

for ( int j = 0; j < N; ++j )
delete [] U[i][j];

delete [] U[i];
}
delete [] U;

delete Voo;
delete Voc;
delete Vcc;

// cleanup output files
if ( history_flag ) {

(*history).close();
delete history;

}

if ( channel_flag ) {
(*channel).close();
delete channel;

}

if ( dimer_flag ) {
(*dimer).close();
delete dimer;

}
} // end destructor channel_KMC
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/***************/
/* PrintParams */
/***************/

void channel_KMC::PrintParams( void ) {

cout << " General" << endl;
cout << "-------------------" << endl;
cout << "Number of proteins: " << M << endl;
cout << "MC steps per point: " << NMC << endl;
cout << " random seed: " << seed << endl;
cout << endl;

cout << "Physical parameters" << endl;
cout << "-------------------" << endl;
cout << " Ka: " << Ka << endl;
cout << " kappa: " << kappa << endl;
cout << " l: " << l << endl;
cout << " da: " << da << endl;
cout << " ro: " << ro << endl;
cout << " rc: " << rc << endl;
cout << "gating: " << gating << endl;
cout << endl;

cout << "Interaction potential" << endl;
cout << "---------------------" << endl;
cout << "cc potential: " << fnames[0] << endl;
cout << "oc potential: " << fnames[1] << endl;
cout << "oo potential: " << fnames[2] << endl;
cout << endl;

cout << " Lattice" << endl;
cout << "---------------------" << endl;
cout << " box side length: " << side_len << endl;
cout << " grid spacing: " << h << endl;
cout << " lattice resolution: " << res << endl;
cout << "grid points per side: " << N << endl;
cout << endl;

// print derived parameters

cout << " Other" << endl;
cout << "--------" << endl;
cout << " lambda: " << lambda << endl;
cout << " dalpha: " << dalpha << endl;
cout << " rhoo: " << rhoo << endl;
cout << " rhoc: " << rhoc << endl;
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cout << endl;
} // end PrintParams()

/************/
/* DoSeries */
/************/

void channel_KMC::DoSeries( void ) {
double sigma, sigma_D, r_avg;

cout << "\tOne channel series" << setiosflags( ios::fixed) << endl;
for ( float tau = tau_i; tau <= tau_f; tau += 0.01 ) {

cout << "\t\t" << setprecision( 2 )
<< tau
<< "\t" << setprecision( 1 )
<< 100*DoTension( tau, sigma, sigma_D, r_avg )
<< "%\n";

if ( channel_flag )
(*channel) << tau << "\t"

<< sigma << "\t"
<< sigma_D << "\t"
<< r_avg << endl;

}
} // end DoSeries()

/*************/
/* DoTension */
/*************/

double channel_KMC::DoTension( const float tau, double &order_param,
double &dimer_prob, double &r_avg ) {

// tau is the leaflet tension (kT/nm^2)
float delta = tau*lambda*lambda/kappa; // dimensionless tension

float dfac = 1/( 0.5 * float(M) * float(M-1) );

Elipid[CLOSED] = 0;
Elipid[ OPEN ] = gating/kappa;

Esurf[CLOSED] = 0;
Esurf[ OPEN ] = -2*delta*dalpha;

Ela[CLOSED] = exp( kappa*(Elipid[CLOSED] + Esurf[CLOSED]) );
Ela[ OPEN ] = exp( kappa*(Elipid[ OPEN ] + Esurf[ OPEN ]) );

long order_sum = 0; // order parameter for the system
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// probability of a channel being open

long dimer_sum = 0; // number of dimers observed

// total separation of all channels for all MC steps
double dist_sum = 0.;

// initialize counters
dimer_start = 0;
for ( int i = 0; i < M; ++i )

gating_start[i] = 0;

// fill the potential look-up table U
Voo->table( tau );
Voc->table( tau );
Vcc->table( tau );

if ( history_flag ) {
(*history) << tau << endl;

// if this is the first tension, write out the initial state
if ( tau == tau_i ) {

for ( int i = 0; i < M; ++i )
(*history) << channel_s[i] << "\t";

(*history) << ndimer << "\t0" << endl;
}

}

if ( dimer_flag )
(*dimer) << tau << endl;

if ( gating_flag )
(*gate) << tau << endl;

long naccept = 0;
for ( long nloop = 1; nloop <= NMC; ++nloop ) {

// nloop keeps track of the total number of MC loops
// c is the index of the channel we’re working with

// randomly choose the next channel
int c = int( rgen->GetRandom() * M );

int old_i = channel_i[c]; // i index
int old_j = channel_j[c]; // j index
int old_s = channel_s[c]; // internal state

// calculate a move



171

int new_i, new_j;

// lattice hop (non-local)
// move to an unoccupied site
long ii = long( unocc * rgen->GetRandom() );
new_i = ui[ ii ];
new_j = uj[ ii ];

int prev_ndimer = ndimer;
int move = metropolis( c, old_s, old_i, old_j,

new_i, new_j, ui, uj, ii );

if ( move ) naccept++;

if ( history_flag ) {
// if a transition occurred (state or dimer)...
if ( move == HOP_AND_SWITCH || prev_ndimer != ndimer ) {

// write out state and dimerization info
for ( int i = 0; i < M; ++i )

(*history) << channel_s[i] << "\t";
(*history) << ndimer << "\t";
(*history) << nloop << endl;

}
} // history data output

if ( gating_flag && move == HOP_AND_SWITCH ) {
// write out an open channel lifetime
if ( old_s == CLOSED )

gating_start[c] = nloop;
else

(*gate) << ( nloop - gating_start[c] ) << endl;
}

if ( dimer_flag && prev_ndimer != ndimer ) {
// only works for M=2!!!
if ( ndimer == 0 )

(*dimer) << ( nloop - dimer_start ) << endl;
else

dimer_start = nloop;
} // dimer data output

order_sum += nopen;
dimer_sum += ndimer;
dist_sum += total_dist * dfac;

} // end main Monte Carlo loop
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order_param = double(order_sum)/double(NMC)/double(M);
dimer_prob = double(dimer_sum)/double(NMC);
r_avg = dist_sum/double(NMC);
return double(naccept)/double(NMC);

} // end DoTension()

/****************/
/* show_lattice */
/****************/

void channel_KMC::show_lattice( int **L ) {
for ( int i = 0; i < (N+2); ++i )

cout << "#";
cout << endl;

for ( int i = 0; i < N; ++i ) {
cout << "#";
for ( int j = 0; j < N; ++j )

( L[i][j] == L_UNOCC ) ? cout << "." :
( ( L[i][j] == L_OPEN ) ? cout << "O" : cout << "C" );

cout << "#" << endl;
}

for ( int i = 0; i < (N+2); ++i )
cout << "#";

cout << endl;
}

/**********/
/* PrintV */
/**********/

void channel_KMC::PrintV( int V, float tau, const string fname ) {
potential *U;

switch ( V ) {
case VOO :

U = Voo;
break;

case VOC :
U = Voc;
break;

case VCC :
U = Vcc;
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break;
}

// calculate table
U->table( tau );

// write out file
U->write_potential( fname );

}
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C.2.4 potential.hh

#include <cmath>
#include <string>
#include <iostream>
#include <fstream>

using std::cout;
using std::cerr;
using std::endl;
using std::string;
using std::ifstream;
using std::ofstream;

/*******************/
/* class potential */
/*******************/

class potential {
public:

potential( const string, int, float, float, float,
float **, float **, float, float );

void table( float );
~potential( void );
void write_potential( string );

private:
int nt, nr;
float lmax; // maximum interaction distance
float hard_core; // value of hard core in potentials
float h; // lattice spacing
float side_len; // length of box side (nm)
int N; // number of lattice sites is N x N
float **t; // potential look-up table
float lambda, kappa; // conversion factors;

// KC uses length units of lambda
// and energy units of kappa

float *r; // radius
float *tension; // tension
float **u; // potential table read from file
float **dist; // table of distance values

// excluded radius; hard core potential at r < rex
float rex;

void interp( float, float * );

}; // end class potential
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C.2.5 potential.cc

#include "potential.hh"

/**********************/
/* constructor method */
/**********************/

potential::potential( const string fname, int N, float h,
float side_len, float rex, float **d,
float **t, float lambda, float kappa ) {

this->hard_core = 80.;
this->rex = rex;
this->N = N;
this->h = h;
this->side_len = side_len;
this->t = t;
this->dist = d;
this->lambda = lambda;
this->kappa = kappa;

ifstream ufile( fname.c_str() );

// read in tension values
ufile >> nt;
this->tension = new float[nt];
for ( int j = 0; j < nt; ++j ) {

ufile >> tension[j];
}

// read in radius values
ufile >> nr;
this->r = new float[nr];
for ( int j = 0; j < nr; ++j ) {

// read radius, convert to nm
// KC measures radius from hard core
float tmp;
ufile >> tmp;
r[j] = lambda*tmp + rex;

}

// read in potential table
// columns are by tension
// rows are by radius
this->u = new float*[nr];
for ( int j = 0; j < nr; ++j ) {

u[j] = new float[nt];
for ( int k = 0; k < nt; ++k ) {
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// read potential, convert to kT
ufile >> u[j][k];
u[j][k] *= kappa;

}
}

ufile.close();
}

/*********************/
/* destructor method */
/*********************/

potential::~potential( void ) {
// clean up
delete [] tension;
delete [] r;

for ( int j = 0; j < nr; ++j )
delete [] u[j];

delete [] u;
}

/*********/
/* table */
/*********/

// return a table with interpolated potential values at a given tension

void potential::table( float tau ) {
lmax = 0.; // maximum interaction distance

// get interpolated potential ui at tension tau
float *ui = new float[nr];
interp( tau, ui );

// create potential look-up table at tension tau
for ( int j = 0; j < N; ++j )

for ( int k = 0; k < N; ++k ) {
float d = dist[j][k];

if ( d < rex ) {
t[j][k] = exp( hard_core );
continue;

}

int m;
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for ( m = 0; m < nr && d > r[m]; ++m );
// d lies between r[m-1] and r[m]

if ( m == nr ) {
t[j][k] = exp( ui[m] );

}
else {

// for points outside rex but before 1st potential value
if (m == 0) m++;

// linear interpolation
float a = ui[m] - ui[m-1];
float x = (d - r[m-1])/(r[m] - r[m-1]);

t[j][k] = exp( a*x + ui[m-1] );
}

// update the maximum interaction distance
if ( d > lmax && t[j][k] != 1. )

lmax = d;
}

// end double loop over lattice points

// check that our lattice is large enough for PBC
if ( side_len < 2*lmax ) {

cerr << "ERROR: lattice not large enough"
<< " to safely impose periodic BC"
<< endl;

cerr << "maximum interaction length: " << lmax << endl;
cerr << " minimum lattice size: " << lmax*2 << endl;
cerr << "requested lattice size: " << side_len << endl;
exit(-1);

}
}

/**********/
/* interp */
/**********/

void potential::interp( float tau, float *v ) {
if ( tau < 0 ) {

cerr << "Can’t do tension value: " << tau << endl;
exit(-1);

}

int m;
if ( tau > tension[nt-1] )



178

m = nt-1;
else {

for ( m = 0; m < nt && tau > tension[m]; ++m );
// tension[m-1] < t <= tension[m]

}

if ( m == 0 || tau == tension[m] )
for ( int j = 0; j < nr; ++j )

v[j] = u[j][m];
else

for ( int j = 0; j < nr; ++j ) {
// linear interpolation/extrapolation
float a = u[j][m] - u[j][m-1];
float x = (tau - tension[m-1])/(tension[m] - tension[m-1]);

v[j] = a*x + u[j][m-1];
}

}

/*******************/
/* write_potential */
/*******************/

void potential::write_potential( const string fname ) {
ofstream output( fname.c_str() );

for ( int i = 0; i < N; ++i )
for ( int j = 0; j < N; ++j )

output << sqrt( i*i*h*h + j*j*h*h ) << "\t" << t[i][j] << endl;

output.close();
}


