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Abstract

Games with strategic complementarities (GSC) possess nice properties in terms of learning

and structure of the equilibria. Two major concerns in the theory of GSC and mechanism

design are addressed. Firstly, complementarities often result in multiple equilibria, which

requires a theory of equilibrium selection for GSC to have predictive power. Chapter 2

deals with global games, a selection paradigm for GSC. I provide a new proof of equilibrium

uniqueness in a wide class of global games. I show that the joint best-response in these

games is a contraction. The uniqueness result then follows as a corollary of the contraction

principle. Furthermore, the contraction-mapping approach provides an intuition for why

uniqueness arises: Complementarities generate multiple equilibria, but the global-games

structure dampens complementarities until one equilibrium survives. Secondly, there is a

concern in mechanism design about the assumption of equilibrium play. Chapter 3 examines

the problem of designing mechanisms that induce supermodular games, thereby guiding

agents to play desired equilibrium strategies via learning. In quasilinear environments, I

prove that if a scf can be implemented by a mechanism that generates bounded substitutes

— as opposed to strategic complementarities — then this mechanism can be converted into

a supermodular mechanism that implements the scf. If the scf also satisfies some efficiency

criterion, then it admits a supermodular mechanism that balances budget. Then I provide

general sufficient conditions for a scf to be implementable with a supermodular mechanism

whose equilibria are contained in the smallest interval among all supermodular mechanisms.

I also give conditions for the equilibrium to be unique. Finally, a supermodular revelation

principle is provided for general preferences. The final chapter is an independent chapter

on political economics. It provides three different processes by which two political parties

nominate candidates for a general election: Nominations by party leaders, by a vote of

party members, and by a spending competition. It is shown that more extreme outcomes

can emerge from spending competition and that non-median outcomes can result via any
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process. Under endogenous party membership, median outcomes ensue when nominations

are decided by a vote but not with spending competition.
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Chapter 1

Introduction

The concept of complementarity, whereby two objects are complements if having more of

one increases the marginal value of the other, is an old preoccupation of literary and math-

ematical economists. It motivated Hicks and Allen [49] and [50] to perform their classical

reconsideration of ordinal demand theory in 1934 and Samuelson [95] asserted in 1974 that

“the time [was] ripe for a fresh, modern look at the concept of complementarity.” Since

then, a large mathematical toolbox to dealing with this notion has been developed, in par-

ticular using lattice theory (Topkis [?]). The concept of complementarity has reached game

theory with the class of games with strategic complementarities (GSC) (Bulow et al. [13]),

a.k.a supermodular games. Similar in spirit, players’ strategies in a game are complements

if the marginal utility of each player increases as other players increase their strategies.

Interestingly, many economic situations naturally present strategic complementarities. In

team production models, it becomes more desirable for a worker in a firm to increase her

effort when other workers put more effort into their job. In oligopoly theory, some models

with differentiated products are such that, when a firm’s competitors raise their prices, the

marginal profitability of the firm’s own price increase rises. In technology adoption models,

when more users adopt a communication system, it increases the marginal return to others

of doing the same. In geopolitical models, if a country increases its stock of armament, it

may increase the value for additional arms of its neighbors.

Beyond their intuitive interpretation, these games have been shown to possess technically

nice properties. First, the monotonicity inherent in GSC guarantees that a Nash equilibrium

always exists. On top of this, the set of equilibria has a lattice structure; in particular,

there exist a largest and a smallest equilibrium. Second, GSC have remarkable comparative

statics and learning properties. If players are given the opportunity to play the game over
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and over again and if they learn adaptively, then they will end up playing profiles within the

equilibrium set. Adaptive learning means that players regard past play as the best predictor

of their opponents’ future play and they best-respond to their forecast. Convergence extends

to sophisticated learners, who react optimally to what their opponents may next best-

respond (Milgrom and Roberts [77]). The different learning behaviors covered by adaptive

and sophisticated learning are so wide that GSC have very robust learning properties. For

example, players always learn to play an equilibrium of a GSC if it is unique.

Unfortunately, complementarities often result in multiple equilibria, which undermines

the predictive power of GSC. In team production models, it is a Nash equilibrium for

everyone to shirk, but so it is for everyone to work hard. Indeed, a worker’s motivation

to put effort into her job strongly depends on her co-workers’ performance. Similarly, in

technology adoption, it is an equilibrium for everyone to adopt technology A, but so it is

for everyone to adopt technology B. In arms race models, war can be the outcome if the

countries build up their arm levels, but so can peace if no one buys weapons.

In parallel to the literature on GSC, a field of economics, called mechanism design, has

been flourishing since the 1970s. Mechanism design involves creating institutions (or games

or mechanisms) so that a group of agents reach some desired objective in equilibrium. In

a public goods context, a government may want to design a tax system so that the level

of a public good is efficient. The mechanism here is the tax system and the objective is

to reach an efficient public good level. In allocation problems, a seller may want to set up

an auction so that the expected price at which she sells her good is maximized. In a team

production model, a manager may want to craft the contracts of her employees so that the

revenue generated by the team is maximized. Although this literature has been successful

at identifying appropriate incentives, it is becoming increasingly aware of its assumption

of equilibrium play. Everything indeed relies on the assumption that agents play their

equilibrium strategies: Efficient public good levels, maximal revenue and expected price are

attained in equilibrium. This important gap in the literature is emphasized in Jackson [56]:

“Issues such as how well various mechanisms perform when players are not at equilibrium

but learning or adjusting are quite important [. . . ] and yet have not even been touched

by implementation theory. [This topic] has not been looked at from the perspective of

designing mechanisms to have nice learning or dynamic properties.”

The question becomes: Do players play a Nash (or Bayesian Nash) equilibrium or not?
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This question is a game-theoretic concern that has received considerable attention. Two

justifications for equilibrium play are usually suggested. The first one is epistemic and

provides conditions on the players’ abilities, such as rationality and knowledge, for an

equilibrium to arise directly. Equilibrium play here is a one-shot affair. The second one is

evolutive and dynamic in nature. It tries to justify Nash equilibria as limit points of “simple”

dynamic processes. As one can imagine, not all games are such that their equilibria are

learnable under a wide range of dynamics; but GSC are.

Chapter 2 studies the theory of equilibrium selection engineered by Carlsson and van

Damme ( [19]) and Frankel, Morris and Pauzner ( [36]). Their method, known as global

games, offers a way to choose a single equilibrium in GSC, thereby restoring some predictive

power to GSC. Although global games are widely used in economics,1 the existing proofs

of uniqueness are intricate and have left us with a limited understanding of the unique-

ness result. The main contribution of the chapter is to identify a general class of global

games where contraction principles apply, which provides a more instructive and intuitively

appealing proof of uniqueness.

The contraction result formalizes the intuition of the global games community (see

Vives [107]) that the noise structure lessens complementarities until a unique equilibrium

survives. GSC have a coordination-game “flavor” that leads to multiple equilibria, and

this relationship can be traced to how strong complementarities are. Since global games

yield a unique equilibrium in GSC (in the limit), the complementarities must somehow be

lessened. The chapter thereby provides the first result that formalizes how the global-games

structure dampens complementarities in a general framework: The slope of the best-reply

measures the strength of complementarities, hence the complementarities cannot be too

strong because the best-reply is a contraction.

Chapter 3 develops the theory of supermodular Bayesian implementation. As previously

mentioned, mechanism design has identified convincing incentives, yet it has neglected to

take into account the likelihood of equilibrium play. GSC have strong learning properties

and, for this reason, a designer may want to look at those supermodular mechanisms pro-

ducing the right incentives. To be more precise, think of a mechanism as describing the

rules of a game: It assigns feasible strategies to the agents and specifies how these strategies
1Global games are used, for example, in models of debt pricing (Morris and Shin [82]), currency crises

(Morris and Shin [83]), bank runs (Goldstein and Pauzner [39]), and merger waves (Toxvaerd [102]).
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map into enforceable outcomes. Since players have preferences over the different outcomes,

a mechanism induces a game in the traditional sense. Supermodular mechanisms are those

that induce supermodular games. By virtue of the GSC, boundedly rational agents find

their way to equilibrium. This theory thus contributes to fill the gap in the literature raised

by Jackson. For example, a principal may actually attain revenue maximization by offering

the agents a contract that they will face repeatedly for a sufficiently long time. A govern-

ment may reach an optimal public goods level by repeatedly applying a supermodular tax

system.

The chapter studies the class of objective functions, called social choice functions (scf),

that the designer can implement using a supermodular mechanism. The key result the

chapter uncovers is that all scf that can be implemented by a mechanism with bounded

strategic substitutes — as opposed to strategic complements — can be implemented by a

supermodular mechanism. What drives this result is the ability to add complementarities

into a mechanism, hence “undoing” substitutes effects, without affecting the incentives.

But only compensable amount of substitutes can be compensated for, which warrants the

condition of bounded substitutes. Fortunately, this condition is general and satisfied in

many environments of interest. At this point, adding complementarities in a mechanism

may seem to require external resources. The chapter demonstrates that it is not the case.

The designer can create supermodular mechanisms whose complementarities are financed

by the agents themselves. In the language of mechanism design, budget balancing is possible

under supermodular Bayesian implementation.

Chapter 3 and 2 are woven together through the multiple equilibrium problem. The

main issue facing Chapter 3 is the existence of potentially many equilibria. Supermodular

games are those games a mechanism should induce, however, these games are often plagued

with multiple equilibria. The major difficulty this causes is that only one equilibrium is

known to deliver the desired outcome, while learning is predicted to end up in between the

extremal equilibria. Therefore, it is not clear which profile the agents will learn to play. In

the context of the above examples, the agents may well end up playing a profile that does

not produce an efficient public goods level or does not maximize the manager’s revenue.

So there is a strong motive for building supermodular mechanisms with tight equilibrium

sets. The chapter addresses this issue by developing two notions of supermodular imple-

mentation: Optimal and unique supermodular implementation. Optimality refers to the
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design of a supermodular mechanism whose equilibrium set is the smallest among the class

of supermodular mechanisms. Uniqueness refers to the design of supermodular mechanisms

with a unique equilibrium, thereby avoiding the problems entailed by multiplicity. The

chapter then studies the class of scf that the designer can implement using supermodular

mechanisms that meet these additional constraints.

Chapter 4 is motivated by an independent concern from political economy. Given a

set of alternatives, social choice theory studies voting rules for how individual preferences

over these alternatives are aggregated to form a collective preference. While considering

the set of alternatives as given is reasonable in some situations, there are contexts where it

is not appropriate. In particular, it is hard to justify in political contexts such as elections,

where the alternatives are endogenously determined. For example, the candidates in the

United States presidential election are the result of primaries, a nomination process by

which a party chooses its candidate. While the modeling of elections is extensive, there

are no systematic studies of how the specifics of the nomination process affect election

outcomes. The chapter develops and analyzes three simple models of prominent nomination

processes, all within the same basic election setting. Two political parties simultaneously

nominate candidates for an election out of their respective memberships. If elected, a

candidate chooses her most preferred policy and the vote over the two nominees is by

majority rule. It is shown that the differences in nomination process can have a large

impact on the election outcome. The first nomination process is a dictatorship. A party

leader, who is a member of the party and a potential candidate, unilaterally chooses the

party’s nominee. The second is majority voting. Party members vote over who should be

the party’s nominee. The last nomination process is campaign spending. The right to be

the nominee can be understood as being auctioned off within the party and the member

who spends or is willing to spend the most money wins the nomination. As the nomination

process varies, the main characterizations of the election outcomes are as follows: In the

nomination by party leaders, the winner can come from either party, but lies between the

overall median and the leader of the party that contains the median. The outcome can

range anywhere between these points. Then it is established that nominations by party

vote are equivalent to situations where nominations are made by party leaders, but where

the party leaders are the medians of the parties. This provides an intuitive relationship

between nominations by a party vote and nominations by party leaders. This then implies
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that the election outcome when nominations are by a vote by party members always lie

between the overall median and the median voter of the party which contains the overall

median voter. In contrast, the outcome under spending competition is not constrained to

any particular interval. Depending on the intensity of voters’ preferences, the outcome can

be almost anywhere. Elections by spending competition differ more dramatically from the

other nomination processes, have more complicated equilibrium existence issues, and depend

on the preferences of various party members in complex and subtle ways. In particular,

nominations by spending competition can lead to extremist nominees from either or both

parties, and can lead to extreme policy outcomes. Finally, party membership is endogenized,

which leads to a convergence to the median in the case of nomination by votes, while if

nominations are by spending competition, extremist outcomes can still ensue. [5]
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Chapter 2

Global Games

2.1 Introduction

As mentioned in Chapter 1,1 complementarities often result in many equilibria, which re-

quires a theory of equilibrium selection for GSC to have predictive power. Pioneering work

by Carlsson and van Damme ( [19], CvD hereafter) and Frankel, Morris and Pauzner ( [36],

FMP hereafter) has provided such a theory of equilibrium selection with the theory of

Global Games. In global games, a unique profile survives iterative elimination of dominated

strategies. Although global games are widely used in economics, the proofs of uniqueness

by CvD and FMP are intricate and have left us with a limited understanding of the unique-

ness result. The main contribution of this chapter is to identify a general class of global

games where contraction principles apply, which provides a more instructive and intuitively

appealing proof of uniqueness.

A function f : C → C is a contraction mapping if there is a constant α ∈ [0, 1) such

that d(f(c), f(c′)) ≤ αd(c, c′) for all c, c′ ∈ C. According to Banach’s fixed point theorem,

a contraction mapping has a unique fixed point if (C, d) is complete. This theorem can be

used to show existence of a unique equilibrium in the normal form of some games: Let (C, d)

be the set of strategy profiles and br be the joint best-reply mapping, then show that (C, d)

is complete and br is a contraction.

This chapter takes a different approach. If an equilibrium is already known to ex-

ist, then uniqueness follows from the weaker condition on the best-reply mapping br that
1This chapter is based on a paper of mine entitled “A Contraction Principle for Finite Global Games.”

For their comments, I am grateful to Chris Chambers, Sylvain Chassang, Jon Eguia, Chryssi Giannitsarou,
Andrea Mattozzi, Stephen Morris, and Flavio Toxvaerd, and the seminar participants of the workshop on
global games (Stony Brook, 2007), and the University of Saint-Etienne.
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d(br(c), br(c′)) < d(c, c′) for all distinct c, c′ ∈ C. Such a map is called a weak contraction.

Since there is no confusion, “contraction” will be used to mean “weak contraction” for ease

of reading. The entire argument is as follows:

1. Global games are GSC, which implies the existence of pure-strategy equilibria, as in

Milgrom-Roberts [76] and Vives [106].

2. Furthermore, the information structure is such that, as in Van Zandt and Vives [105]

(VZV hereafter), (a) best-responses to monotone (in-type) strategies are monotone

and (b) the extremal equilibria are in monotone strategies.

3. I prove that the best-reply mapping, restricted to monotone strategies, is a contrac-

tion. Therefore, there can be only one equilibrium in monotone strategies. Since the

extremal equilibria are in monotone strategies, there can be no other equilibria.

Establishing that the best-reply is a contraction requires certain restrictions on the beliefs.

Global games are a class of games with incomplete information in which players receive a

noisy signal about a random payoff parameter. Conditional on their signal, players formulate

beliefs about their opponents’ signals. The third step requires these beliefs to satisfy a

translation criterion discussed later. Without these restrictions on the beliefs, I use a

limiting argument. Denote by ν the noise parameter in the signal; the precision of each

player’s signal increases as this parameter vanishes. Parameterize the global game by its

noise level and let brν be the joint best-response in this game. Here I show that brν is a

contraction on a set that becomes arbitrarily large as ν gets smaller. That is, the best-reply

is a contraction in the limit, because the set on which it contracts approaches the whole set

as ν goes to zero. The argument implies that the equilibrium must be unique in the limit,

as the noise disappears.

My results require some assumptions in addition to FMP’s, but these assumptions are

either automatically satisfied or unnecessary in 2×2 games. The results apply to finite global

games where the players’ utility depends on their opponents’ actions through an aggregate.

Also, I assume that there always exists a signal making a player indifferent between any two

actions. Last, the strategic complementarities move monotonically with the state of nature:

Larger states lead to weaker (or always stronger) complementarities. These assumptions

define the class of contractive global games. For 2 × 2 games, the contraction result is,
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with some qualifications, as general as the previous results of uniqueness in the literature.2

Those games are of interest because it is the class of games analyzed in the seminal work by

CvD. Even though these assumptions come into play in general finite games, the structure is

still general enough to allow for applications to well-known models such as currency crises,

Diamond’s search, and bank runs.3 In the currency crises model, the first two assumptions

are trivially satisfied, and the last one is a natural property of the exchange rate. In the

(finite) Diamond’s search model, all assumptions are satisfied in the traditional setting

with convex cost functions. The bank run model of Morris and Shin [84] also satisfies these

assumptions.

Contractive global games possess desirable properties. As mentioned before, equilib-

rium uniqueness is transparent, because contraction implies dominance-solvability. It thus

improves our understanding of CvD’s and FMP’s uniqueness result. Moreover, contraction

is simpler to establish than the results in previous literature. This is argued in Section 2.2.

The intuition for the contraction in the 2 × 2 case is straightforward and carries over to

the general case. Finally, FMP’s result relies on a two-step argument where uniqueness in

the actual Bayesian game is shown from a simplified version of the same game. Uniqueness

follows by continuity to this easier environment where uniqueness is more easily verified.

This methodology is not fully informative about the underlying mechanisms of the general

case. While I also consider both versions of the game, I prove uniqueness separately. One

of the advantages of treating the general game directly is that, unlike FMP, I show there is

not always need for a vanishing noise to get uniqueness.

I now discuss some of the related literature. While using a contraction argument has been

suggested in previous literature (inter alia in Levin [66], in unpublished notes by Morris,

and implicitly in FMP [36]) this chapter provides the first work on the subject in a more

general setting. Mason and Valentinyi [69] used a contraction mapping approach to establish

uniqueness of equilibrium in a class of incomplete information games. Their argument

requires sufficiently large perturbations from the complete information case and that players’

signals be sufficiently independent, or uninformative about others’. Their theory mainly

imposes structure on beliefs. On the other hand, this chapter studies global games, and so

the uniqueness typically arises from very small perturbations from the complete information
2The first two assumptions are trivially satisfied in 2×2 games and the last one turns out to be unnecessary.
3See Section 2.5.
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game. In global games, players’ signals become fully informative and correlated as the noise

level goes to zero. My uniqueness result instead imposes structure on payoffs. Finally, in a

recent paper, Oury [90] extended the uniqueness result of FMP to multidimensional global

games. It is an important step forward in global games, but her argument is a generalization

of FMP’s proof technique which is different from my contraction approach.

2.2 A Motivating Example

Consider this adaptation of an example from CvD. Two players are deciding whether

to invest. Each player receives a net profit that depends not only on her action and her

opponent’s action, but also on her type, denoted by s ∈ R. The payoff matrix is the

following:

I NI

I

NI

si, sj si - 1, 0

0, sj − 1 0, 0

Notice that NI is strictly dominant for types strictly below 0, and I is strictly dominant

for types strictly above 1. While there is a unique equilibrium for any (si, sj) ∈ R\[0, 1]2,

there are two strict Nash equilibria when (si, sj) ∈ (0, 1)2. This is the multiple-equilibrium

problem described earlier. Which one should be played?

It would be useful to have a criterion to select one of these equilibria for each (si, sj) ∈

(0, 1)2. CvD and FMP provide a selection method by introducing incomplete information

and I show that it results in a contractive best-response. Uniqueness in the incomplete

information version of the game leads to a selection argument in the complete information

game.

The incomplete information arises when types are thought of as functions of common

and private random parameters. Player i’s type is si = θ + νεi, where ν > 0, θ is the

common parameter (or state) and εi is the private parameter. Common parameter θ is

drawn from a continuous distribution φ whose support is the real line. Private parameter

εi is distributed according to c.d.f. Fi[−1
2 ,

1
2 ], independently from other players’ private

parameter and θ. From the information structure (φ, {Fi}), each player i (through Bayes’

rule) constructs a distribution function Ωi(sj |si, ν), or simply Ωi(sj |si), representing her
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beliefs about j’s type upon receiving si. The cdf Ωi is translation non-decreasing if for all

sj and si, Ωi(sj + ∆| si + ∆) ≤ Ωi(sj | si) for all ∆ ≥ 0. It means that i believes that j’s

type is more likely to be below sj when her type is si than below sj + ∆ when her type is

si + ∆.

In the incomplete information game, it is enough to focus on monotone (in-type) strate-

gies, because there exist extremal equilibria in monotone strategies and best-responses to

monotone strategies are monotone (see Section 2.3.3). These properties follow from mono-

tonicity of the beliefs and the complementarities (a) among actions and (b) between a

player’s type and her action. A strategy for j is fully defined by a cutoff cj ∈ [0, 1]:

aj(sj) =

{
NI if sj < cj

I if sj ≥ cj .

The cutoff between actions NI and I that corresponds to i’s best-response to cj will

be denoted by bri(cj). I will prove that for any i ∈ N , bri is a contraction. That is,

|bri(c′j) − bri(cj)| < |c′j − cj | for all distinct c′j and cj in [0, 1]. Cutoff strategy ci is the

best-response to cutoff strategy cj , if and only if, i receives a higher expected payoff for

playing I than NI for types above ci and smaller for types below. This translates formally:

ci ≡ bri(cj) iff (ci − 1)Ωi(cj | ci) + ci(1 − Ωi(cj | ci)) = 0. Note that there is a unique cutoff

that can satisfy this equality, hence best-responses are almost everywhere functions of the

types, not correspondences. Equivalently,

ci ≡ bri(cj) ⇔ Ωi(cj | ci) = ci. (2.1)

From (2.1), it is straightforward to show contraction using translation non-decreasing beliefs.

Take any ∆ > 0 and cj ∈ [0, 1] and say bri(cj) is some cutoff strategy ci. By (2.1), we

have Ωi(cj | ci) = ci. Consider an increase from cj to cj + ∆. By means of contradiction,

suppose bri(cj + ∆) − bri(cj) = ∆∗ ≥ (cj + ∆) − cj = ∆. Since bri(cj) ≡ ci, we have

bri(cj + ∆) ≡ ci + ∆∗; that is, cutoff strategy ci + ∆∗ is a best-response to cutoff strategy

cj + ∆. This implies ci + ∆∗ = Ωi(cj + ∆| ci + ∆∗) by (2.1). Cdfs are increasing so

Ωi(cj + ∆| ci + ∆∗) ≤ Ωi(cj + ∆∗| ci + ∆∗) and translation non-decreasing beliefs imply
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Ωi(cj + ∆∗| ci + ∆∗) ≤ Ωi(cj | ci). Therefore ci + ∆∗ = Ωi(cj + ∆| ci + ∆∗) ≤ Ωi(cj | ci) = ci,

a contradiction because ∆∗ > 0. As a result, bri(cj + ∆) − bri(cj) < ∆. Moreover, bri is

monotone increasing and so bri(cj)− bri(cj + ∆) < ∆. Since cj , ∆ and ∆∗ were arbitrary,

we conclude |bri(c′j)− bri(cj)| < |c′j − cj | for all distinct cj and c′j .

Notice that contraction of the joint best-response br = ×i∈Nbri follows immediately from

the above. Take any c = (ci, cj), c′ = (c′i, c
′
j) in [0, 1]2 and let d(c, c′) = maxk∈N |c′k − ck|.

Then d(br(c), br(c′)) < d(c, c′). To complete the proof of uniqueness, recall that global

games are GSC and so an equilibrium exists.4 Contraction implies uniqueness.5

Equilibrium selection in the complete-information version of the game is obtained via

uniqueness in its incomplete-information version. For all (si, sj) ∈ (0, 1)2, the Bayesian

equilibrium strategies prescribe a unique action profile.

The translation property drives the result. How restrictive is it? Many distributions are

translation non-decreasing such as those derived from a uniform prior. Examples of such

distributions are beliefs Ωi that are centered around si and normal, or double exponential, or

from other location-scale families. Beyond flat priors, the beliefs can hardly be translation

non-decreasing at every ν when types are linear functions. However, Lemma 2 of Section

2.7.2 shows that, for a general prior, the global-games information structure naturally tends

to be non-decreasing in translation for small noise, which is why uniqueness is then reached

in the limit only. In Sections 2.4.1.1 and 2.4.2, I interpret the role of this property in the

contraction and I formalize the intuition that strategic complementarities are lessened.

2.3 Game and Assumptions

A (finite) global game is a collection (Γ(ν))ν>0, where each Γ(ν) is a tuple (N, (Ai,�i

)N , φ, (τi(., ν), fi)N , g, (πi)N ) with the following meaning. The set and the number of players

are denoted by N < ∞. Player i’s action set is a finite and linearly ordered set Ai =

{ai,1, . . . , ai,Mi}, where the actions belong a vector space and are indexed in increasing

order. A state θ ∈ R is drawn from the real line according to a common prior. This prior is

said to be uniform when each realization from the real line is equally likely (see Hartigan [47]
4Contraction alone does not ensure the existence of a fixed point without further information on its

domain. However, this existence problem is made vacuous by the fact that global games are GSC, and an
equilibrium always exists in GSC.

5Suppose the joint best-response br has at least two fixed points, c and c′. Then by the contraction
property: d(c, c′) = d(br(c), br(c′)) < d(c, c′), a contradiction.
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for a discussion of improper priors); otherwise it is assumed to have a continuous density φ

with convex support on R.

Each player i observes a signal si = τi(.) about θ. The signaling technology τi maps

R × R+ × [−ei, ei] — a typical element of this set is (θ, ν, εi) — into R where ei > 0 and

τi is continuous and strictly increasing in all its arguments. Let e∗ = max{ei : i ∈ N}.

Parameter ν determines the degree of noise in the signal and is sufficiently small for θ− νei

and 2θ − θ + νei to lie in the support of φ for all i ∈ N . The actual noise in the signaling

technology is εi. The signal reveals the state of nature if there is no noise or if ν = 0, that is,

τi(θ, 0, εi) = τi(θ, ν, 0) = θ. For each (ν, εi), θ 7→ τi(θ, ν, εi) is a homeomorphism between R

and R and for each (θ, ν), εi 7→ τi(θ, ν, εi) is a continuous map whose inverse function exists

and is continuously differentiable. There is a case of particular interest, τi(θ, ν, εi) = θ+ νεi

for all i ∈ N . I refer to this case as linear signaling technologies.

The amount of noise εi is distributed according to cdf Fi whose density fi has support

[−ei, ei]. These noises are assumed to be conditionally independent of one another and of

the state of nature: Each εi is independent of θ and of εj for all j 6= i.

Players then choose simultaneously an action in their action space and payoffs accrue

according to π.

2.3.1 The Payoff Functions

Players only care about an increasing and non-constant aggregate g of their opponents’

actions.6 This assumption is restrictive, but still allows for a wide range of applications.

Let (Gi,�) be a totally ordered set and gi :
∏

j 6=iAj → Gi be a continuously increasing

surjection that carries action profiles into Gi. When there is no confusion, the subscript i

is dropped, so gi and Gi become g and G. For example, a player could care about the sum

of her opponents’ actions. In this case, g(a−i) =
∑

j 6=i aj for all a−i ∈ A−i.7 Or she could

care about the proportion of her opponents playing less than some action c. Then, for all

a−i ∈ A−i, g(a−i) = (
∑

j 6=i 1aj≤c)/(N − 1) where c ∈ ∩j 6=iAj .

Player i’s payoff is πi(ai, g(a−i), θ, si) when she receives signal (is of type) si, the

state of nature is θ and the action profile is a. Since θ is a common component and
6The monotonicity of g is crucial to convey the strategic complementarities and the monotonicity of

distribution g|si (in si w.r.t �st) to the incomplete information game. And g non-constant is the most
interesting case, for otherwise best-replies are constant and uniqueness trivial.

7The two-player case with many actions can be modeled (trivially) with the aggregative sum.
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si a private component, this global-games framework allows for common and private val-

ues. But I assume no mixture of the two: Either players’ payoffs depend only on the

state of nature, πi(ai, g(a−i), θ, si) ≡ πi(ai, g(a−i), θ), or they depend only on their type,

πi(ai, g(a−i), θ, si) ≡ πi(ai, g(a−i), si). To avoid redundancy, I will only give the assumptions

in the common values setup.

Let A−i be endowed with the product order.8 Let dπi(ai, a
′
i, g(a−i), θ) = πi(ai, g(a−i),

θ) − πi(a′i, g(a−i), θ), that is, dπi is the difference in player i’s utility of playing ai over a′i

when facing a−i at state θ. The assumptions on the payoff functions are the following.

Assumption 1 [Dominance Regions]

For extreme values of the payoff parameter θ, the extreme actions are strictly dominant:

There exist θ and θ in R with θ < θ such that, for all i and for all a−i, dπi(ai,Mi , ai, g(a−i), θ) >

0 if ai 6= ai,Mi and θ > θ, and dπi(ai,1, ai, g(a−i), θ) > 0 if ai 6= ai,1 and θ < θ.

The support of the prior includes an open interval containing [θ, 2θ − θ].

Assumption 2 [Strategic Complementarities]

The payoff functions have increasing differences in (ai, a−i): For all a′′i and a′i in Ai with

a′′i �i a
′
i, a

′′
−i and a′−i in A−i such that a′′−i � a′−i, dπi(a′′i , a

′
i, g(a

′′
−i), θ) ≥ dπi(a′′i , a

′
i, g(a

′
−i), θ)

for all θ ∈ R.

Assumption 3 [State Monotonicity]

The payoff functions have strictly increasing differences in (ai, θ): For all a′′i and a′i in

Ai with a′′i �i a
′
i, θ

′′ and θ′ in [θ, 2θ − θ] such that θ′′ > θ′, dπi(a′′i , a
′
i, g(a−i), θ′′) >

dπi(a′′i , a
′
i, g(a−i), θ′) for all a−i ∈ A−i.

Assumption 4 [Monotone State Monotonicity]

The payoff functions exhibit decreasing (increasing) state monotonicity (DSM and ISM ,

respectively): For all a′′i and a′i in Ai with a′′i �i a
′
i, g

′′ and g′ in G such that g′′ � g′,

dπi(a′′i , a
′
i, g

′′, θ)− dπi(a′′i , a
′
i, g

′, θ) is weakly decreasing (increasing) in θ on [θ, 2θ − θ].

Assumption 5 [Existence of Cutoffs]

For all i, for any a′′i , a
′
i in Ai and for all a−i in A−i, there exists θ̃ ∈ [θ, θ] such that

dπi(a′′i , a
′
i, g(a−i), θ̃) = 0.

8Let (Xk,≥k) be a partially ordered set for each k in a set K. Letting X =
Q

k∈K Xk, the product order
≥ on X is the relation where x′′ ≥ x′ if x′′k ≥k x′k for each k ∈ K.
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Assumption 6 [Payoff Continuity]

Each πi(ai, g(a−i), θ) is continuous in θ.

Next I discuss this set of assumptions. (A1)–(A3) and (A6) are common assumptions in the

global-games literature. FMP make the same assumptions. CvD require (A1) and (A6).

But CvD’s result is limited to 2 × 2 games so (A2) is trivially satisfied when there are

multiple equilibria, which is the case of interest in selection theory. Further, Morris and

Shin [83] develop a model of currency attacks that satisfies (A1), (A2), (A6), and the weak

version of (A3).

(A4) and (A5) are new assumptions. (A4) is a condition on the curvature of the dif-

ferences. By assumption, the marginal payoff from playing a larger action is a strictly

increasing function of the state. Under DSM, this function increases less as g increases, and

under ISM, it increases more as g increases. Equivalently, DSM (ISM, respectively) asserts

that the strategic complementarities decrease (increase) with the state/signal.

(A4) plays the following role. The complementarities imply that a player has an incentive

to increase (the cutoff of) her strategy when her opponents do the same. As the player is

increasing it, this incentive decreases under DSM so that she will tend not to overreact.

Conversely, ISM gives an upper bound on players’ incentive to increase. But suppose that

when players overreact, they do not believe they are facing higher opposing strategies (which

is the case on average under translation non-decreasing beliefs). Then the greater incentive

to increase does not lead to an overreaction.

For three-times continuously differentiable functions, (A4) comes down to checking the

sign of a third-derivative.

(A5) is a technical condition that will ensure the existence of all cutoff signals. It says

that for any pair of actions and any opposing profile, there is a state/signal at which the

player is indifferent between them. (A5) rules out, for one, actions that are dominated for

all θ. Requiring cutoff θ̃ in (A5) to belong to [θ, θ] is not necessary because the existence of

such θ̃ in R would be sufficient for my purpose.9

9Suppose we only know that all θ̃ ≡ θ̃(a′′i , a′i, a−i) are in R. Since there are only finitely many, they all
are in a compact interval [l, u]. Then let θ2 = min{θ, l} and θ2 = max{θ, u}. Therefore, extreme actions
are dominant outside [θ2, θ2] and the new dominance regions can be readjusted to (−∞, θ2)∪ (θ2,∞). Now
all the cutoffs lie in the non-dominance region as desired. However, by enlarging the non-dominance region,
(A3) and (A4) become stronger.
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Note (A5) is redundant in two-action games since it is implied by the dominance regions

and (A6). Further, payoff functions which are concave in actions satisfy (A5).

I need this hypothesis to derive the existence and the properties of another kind of cut-

offs (real cutoffs) whose definition relies on the above.

Finally, I wish to emphasize that the contraction result is, with some qualifications, as

general as the previous results of uniqueness for 2×2 games, because (A4) and (A5) are not

needed in this class of games. These assumptions become effective in general finite games,

but the result captures interesting applications (see Section 2.5.). I have not been able to

extend the contraction result to general finite games without these additional assumptions.

2.3.2 The Beliefs

There are two categories of beliefs each player formulates upon receiving her signal:

Those about the state of nature θ, and those about the signal of her opponents (sj)j 6=i.

I abuse notation and represent player i’s beliefs about the signal of her opponents by a

distribution function Ωi(s−i| si, ν). Let �st stand for the first-order stochastic dominance

ordering.

I impose the following assumption on beliefs.

Assumption 7 [First-Order stochastic Dominance]

Let Ψi(θ|si, ν) be the conditional distribution of θ given si. For all i and for each ν > 0, if

s′′i > s′i, then Ψi(.|s′′i , ν) �st Ψi(.|s′i, ν).

This condition says that a player whose signal increases puts more weight on higher states.

It is the only assumption I need on beliefs. While it is not a condition directly on the

primitives of the model, it is satisfied by many information structures. For instance, it is

satisfied if the prior is uniform and the signaling technologies linear.

Stochastic dominance is not typically assumed in the global games literature (CvD [19]

and FMP [36]) as it holds in the limit as the noise becomes small and away from the limit

under the normality assumption which is common in applications. But it is useful to obtain

results away from the limit for general distributions. In particular, it is used in Section

2.3.3 to establish that the best-reply to an increasing strategy is itself increasing.
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Unless otherwise specified, assumptions (A1)–(A7) are in effect throughout this chapter.

2.3.3 Increasing Strategies

In this section, I argue that it is enough to study Nash equilibria in increasing strategies

because Γ(ν) is a GSC and its extremal equilibria are increasing in the signal.

For definitions of lattice, supermodularity and GSC, see, e.g., Milgrom-Roberts [76] or

Topkis [?]. The game Γ(ν) is the Bayesian version of a finite GSC, hence it is itself a GSC.

Strategic complementarities yield a greatest and a least equilibrium. VZV [105] proves

that for Bayesian GSC these extremal equilibria are monotone in signals when signals are

affiliated.10 In addition, the best-reply to any increasing strategy (in the signal) must be an

increasing strategy. These two properties define monotone Bayesian GSC. Here I consider

a family of such games, as shown by Proposition 1.11 As a result, if the contraction is

established on the set of profiles in increasing strategies, then uniqueness will follow.

The mapping ai : R → Ai from signals to actions denotes a strategy for player i.

Proposition 1 Assume (A2), (A3), and (A7). Let bri,ν(a−i(.)) : R → Ai be i’s best-

response to a−i(.) in Γ(ν). If aj(sj) is increasing in sj for every j 6= i, then bri,ν(a−i(.)) is

increasing in si. Besides, for all i ∈ N , the greatest (least)-equilibrium strategy is increasing

in si for all ν > 0.

Remark. Assuming (A2) and (A3), the claim of Proposition 1 holds if the prior is uniform,

because (A7) is trivially satisfied. Notice also that (A3) implies that the best-replies are

a.e. functions of the signal, not correspondences.

By Proposition 1, the set of increasing strategies is closed under the best-response op-

eration. Any strategy in this set can be represented as a finite sequence of cutoff points.

I call those cutoff points real cutoffs and a formal definition will be given in Section 2.7.1.

From now on, let player i’s strategy be (cri,ki
)Mi−1
ki=1 where cri,ki

∈ [θ, θ] is the threshold below

which i plays ai,ki
and above which she plays ai,ki+1. For notational purposes, I drop the

superscript f and denote these cutoff points by ci,ki
or simply cki

.

The concept of real cutoffs is fundamentally different from the fictitious cutoffs. Ac-

cording to the next definition, the fictitious cutoff between two actions is the only signal at
10See [105], Theorem 1, p.11.
11This proposition applies to the common and private values games.
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which a player is indifferent between them.

Definition 1 For player i, the fictitious cutoff point between ai,m, ai,n ∈ Ai where n > m

is denoted cfn,m and it is defined as the signal that makes i indifferent between playing ai,n

and ai,m: Edπi(ai,n, ai,m, g(a−i(.)), c
f
n,m) = 0.

Since there are finitely many actions, (A3) and (A5) imply that, for any pair of actions,

there exists a signal below (above) which the expected utility is strictly greater when playing

the smaller (larger) action. By continuity of the expected utility, there exists a signal

making the player indifferent. All fictitious cutoffs are well-defined. The expected payoffs

are continuous in the signal, because the beliefs (Λi below) and the complete information

payoffs are continuous in the signal (A6).

There are `i ≡
(
Mi
2

)
fictitious cutoff points for player i, but many of these pairwise

comparisons are invisible when observing the resulting (increasing) best-response. This

explains the difference with the real cutoffs that only select those fictitious cutoffs that

matter to represent the best-reply.

2.4 The Main Result: Contraction of the Best-Reply

In this section, I prove that under my assumptions, the joint best-reply function in

global games is a contraction according to the following definition.

Definition 2 Let (X, d) be a metric space. If ξ : X → X satisfies the condition d(ξ(x), ξ(y))

< d(x, y) for all x, y ∈ X with x 6= y, then ξ is called a (weak) contraction (or shrinking

map).

Given the two families of cutoffs, I define two metric spaces. Endow the space [θ, θ]`i

of i’s fictitious cutoff vectors with metric d(c′fi , c
f
i ) = max{n,m∈{1,...,Mi}: n>m} |c

′f
n,m − cfn,m|.

Now I construct the space C of profiles in monotone strategies, hence characterized by their

real cutoffs. Notice that contraction of the best-response on C implies uniqueness. Let

ϕ : [θ, θ] →→ [θ, θ] be defined by ϕ(c1) = [c1, θ] and denote its graph by Grϕ. Then, let

ϕk : Grϕk−1 →→ [θ, θ] be defined by ϕk(c1, . . . , ck) = [ck, θ]. Let (C, d) be the metric space

where C =
∏

i∈N GrϕMi−2 and d(c′, c) = maxi∈N maxki
|c′ki

−cki
| for all (c, c′) ∈ C2. Denote

by C−i the set of profiles of i’s opponents that are in increasing strategies, and for any

(c′−i, c−i) ∈ C2
−i, define d(c′−i, c−i) = maxj∈N\{i}maxkj

|c′kj
− ckj

|.



19

2.4.1 Private Values Case

As players focus on aggregates that summarize their opponents’ play, they only formulate

beliefs about g. I slightly abuse notation and refer sometimes to g as an element of G. Let

Λi(g|c−i, si, ν) be i’s beliefs that the aggregate is strictly less than g when she receives signal

si given her opponents play according to c−i ∈ C−i. It results from a theorem by Shaked and

Shanthikumar [99] that Λi is increasing in si with respect to �st.12 Indeed, since for any two

players i and j, εj is independent of si, and τj is strictly increasing in θ, (A7) implies that,

for any s′′i > s′i, distributions sj |s′′i and sj |s′i are such that sj |s′′i �st sj |s′i. Thus Ωi(.|s′′i , ν)

stochastically dominates Ωi(.|s′i, ν). Since strategies a−i(.) ∈ C−i are increasing in signal and

g is monotone, g◦a−i(.) is increasing in s−i, which implies Λi(.|c−i, s
′′
i , ν) �st Λi(.|c−i, s

′
i, ν).

2.4.1.1 Main Results

I show that the joint best-response function is a contraction under the assumption on

beliefs in Definition 3. This assumption holds under CvD’s and FMP’s structures with

a uniform prior, but it may be quite restrictive. I then establish how, in the absence of

assumptions on beliefs, the contraction result is obtained in the limit.

Definition 3 For player i ∈ N , beliefs Λi(g|c−i, si, ν) are said to be translation non-

decreasing if for all g ∈ G, c−i ∈ C−i and ∆ ∈ [0, θ − θ], then Λi(g| c−i + ∆1, si + ∆, ν) ≤

Λi(g| c−i, si, ν).

Beliefs are translation non-decreasing if, whenever player i’s signal increases as does every di-

mension of the opposing cutoff vector, then she believes larger aggregates are more likely. It

plays an important role in global games as it prevents players from “overreacting” to comple-

mentarities. This property guarantees that a player who increases her strategy as do her op-

ponents believes lower aggregates are more likely: Λi(g| c−i, ci, ν) ≤ Λi(g| c−i−∆1, ci−∆, ν).

The complementarities between her action and the aggregate moderates her increase. On

the contrary, if she believed larger aggregates were more likely, then the complementarities

could make her increase optimal.

12Shaked and Shanthikumar [99] Theorem 4.B.10, p.120: For any two n-dimensional random vectors X
and Y , if Y stochastically dominates X and h : Rn → R is any increasing function, then h(Y ) �st h(X).
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I present two contraction results. Proposition 2 says that every single fictitious cutoff

is a contraction of the opposing profile. But many fictitious cutoffs are vacuous in the

description of a strategy. So, following from a selection argument, Theorem 1 shows that

the joint best-reply is a contraction. I defer the discussion of this issue to Section 2.7.1.

Recall that C−i is the set of opposing profiles to player i that are in increasing strategies,

and so every profile in this set is represented by a vector of real cutoffs. On the other hand,

the superscript r marks the fictitious cutoffs.

Proposition 2 Let cfi (ν) and c′fi (ν) be, respectively, the vectors of fictitious cutoffs to c−i

and c′−i in C−i. If for any i ∈ N , beliefs Λi(g|c−i, si, ν) are translation non-decreasing, then

for all c′−i, c−i ∈ C−i and all i ∈ N , d(c′fi (ν), cfi (ν)) < d(c′−i, c−i).

Theorem 1 Let brν : C → C be the joint best-response function. If for any i ∈ N , beliefs

Λi(g| c−i, si, ν) are translation non-decreasing, then brν is a contraction.

Theorem 1 implies equilibrium uniqueness in global games with uniform prior and (A1)–

(A7), and in FMP’s 2×2 environments. This is Proposition 3, which I describe next. First,

Γ(ν) is a GSC, so an equilibrium exists. By Corollary 2 of Section 2.7.2, Theorem 1 then

implies that there can be only one equilibrium under a uniform prior and linear signaling

technologies.

Second, in 2×2 games, (A4) is dispensable and (A5) is trivially satisfied. The proposition

states that the joint best-response in 2 × 2 global games is contractive, and so there is a

unique equilibrium in these games (possibly in the limit) because the joint best-reply is a

contraction. This result is established under the traditional assumptions, which is important

given that the seminal work in global games by CvD dealt with 2×2 games.13 Note that it is

a private values environment, but it is sufficient for uniqueness in the limit (see FMP [36]).

Definition 4 A Bayesian-Nash equilibrium (a∗i (.)) is essentially unique if a∗i (.) is single-

valued for a.e. si ∈ R, for all i ∈ N .

Proposition 3
13Proposition 3 also uses translation non-decreasing beliefs, but the beliefs may not satisfy this condition.

Nevertheless, there is an analogous result of this proposition without the translation hypothesis, along the
lines of Theorem 2 and Proposition 4: Under the traditional assumptions, the best-reply in 2 × 2 global
games is a contraction in the limit.
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1. If the prior is uniform and the signaling technologies are linear, Γ(ν) has an essentially

unique Nash equilibrium for every ν > 0.

2. Let Γ(ν) be a 2 × 2 global game. Under (A1)–(A3) and (A6), if for any i ∈ {1, 2},

beliefs Ωi(cj |si, ν) are translation non-decreasing, then brν is a contraction and so an

essentially unique equilibrium exists.

The translation condition on beliefs requires that shifting the full set of opponents’

cutoffs to the right by ∆ does not change the beliefs on average, if the signal is raised by

∆. If we are agnostic about where interim beliefs come from and use them as primitives,

then this condition is intuitive and satisfied by many distributions. All those distributions

Ωi(s−i| si, ν) that are centered around si1 and normal or from other location-scale families,

generate translation non-decreasing beliefs.14 The approach of uniqueness from interim

beliefs can be fruitful, as shown by Morris and Shin [85] and [86]. There are also nice

examples of interim beliefs that satisfy asymptotic non-decreasingness but do not come

from a signaling model (See Izmalkov and Yildiz [54]).

Extracting translation non-decreasing beliefs from general signaling technologies and

priors is more difficult. Beliefs can hardly be translation non-decreasing with linear signals

beyond flat priors and there are natural information structures that do not generate trans-

lation non-decreasing beliefs. Consider the example of Section 2.2 and take θ ∼ N(µ, σ2)

and εi ∼ N(0, ν2). Then, sj |si is normally distributed with mean (ν2µ + σ2si)/(ν2 + σ2)

and variance (2ν2σ2 + ν4)/(ν2 + σ2). Those beliefs are not translation non-decreasing.15

Further, not only does the best-response fail to be a contraction, but there exist multiple

symmetric equilibria for values of µ, ν, and σ. Therefore translation non-decreasing beliefs

are not only fundamental for contraction, but they also play a role in uniqueness in global

games.

The literature on global games has concentrated on linear signaling technologies and

vanishing noise because, as I show in Lemma 2 of Section 2.7.2, it makes beliefs approx-

imately translation non-decreasing. Existing results in global games can thus be thought

of as proving that the belief structure becomes asymptotically translation non-decreasing.

That is, reducing the study to linear signals and vanishing noise is essentially a way of
14Bounded support is needed to fit the framework but not for translation non-decreasing distributions.
15Notice distribution Ψi is normal with the same mean as sj |si and thus it is not centered around si.
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circumventing this difficulty, and I use it in the remainder of this section. Here I obtain the

limiting result that the best-reply tends to shrink on the whole set of increasing strategies

as the noise disappears. This is Theorem 2.

Definition 5 Let Cν = {(c, c′) ∈ C2: c 6= c′ and d(brν′(c), brν′(c′)) < d(c, c′) for all posi-

tive ν ′ < ν} be the contraction domain of the best-response at ν.

Notice that if ν ′ < ν then Cν ⊂ Cν′ .

Theorem 2 The contraction domain approaches the whole space, that is, ∪ν>0 Cν = C2.

Equilibrium uniqueness in the limit is a corollary of this result. The greatest and the

smallest equilibrium must converge towards one another as ν vanishes.

Proposition 4 Let eν and eν be respectively the largest and least equilibrium in Γ(ν).

Then, d(eν , eν) → 0 as ν → 0 and so there is an essentially unique equilibrium in the limit.

2.4.2 Common Values Case

I show that, under translation non-decreasing beliefs, the joint best-response function is

a contraction for all ν below some threshold. Hence there is not always need for a vanishing

noise to get uniqueness, even under common values. Then, I relax the assumption on

beliefs and prove that the contraction domain approaches the whole space. As a corollary,

the equilibrium is unique in the limit. The intuition behind uniqueness is that the global-

games structure lessens complementarities as ν vanishes, so I provide additional formal

insight into this argument.

When beliefs are not assumed to be translation non-decreasing, the signaling technolo-

gies are linear. Moreover, the analysis is done under Assumption 7’.

Assumption 7’ [Strict First-Order Stochastic Dominance]

For all i and ν > 0, if s′′i > s′i, then Ψi(.|s′′i , ν) �st Ψi(.|s′i, ν) and Ψi(θ|s′′i , ν) < Ψi(θ|s′i, ν)

for all θ in a set of positive measure.

This assumption is not more restrictive than (A7) if for each (si, ν), Ψi(.|si, ν) has full

support. Then (A7) implies (A7’) because, for (si, ν), Ψi : [si − νei, si + νei]→ [0, 1] has a

strictly increasing support in si. For example, Ψi always has full support when signals are

linear and the prior is uniform, since fi has full support by assumption.
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Player i’s beliefs about (s−i, θ) are given by the joint conditional distribution function

Ωi((aj < sj < bj)j 6=i, θ| si, ν) for a < b in Rn−1, which is defined as∫ θ

−∞

∏
j∈J

(
Fj

(
bj − t

ν

)
− Fj

(
aj − t

ν

))
Ψ′

i(t|si, ν)dt. (2.2)

The joint distribution function Λi(g, θ| c−i, si, ν)16 represents i’s beliefs about (g, θ) given

si. This is the probability that the aggregate is strictly less than g and the state less than

θ, and it is a finite sum of probabilities Ωi((aj < sj < bj)j 6=i, θ| si, ν).

For an arbitrary η > 0, I strengthen assumptions (A3) and (A4) by replacing the existing

[θ, 2θ − θ] with [θ − 2η, 2θ − θ + 6η], and I assume ν < η/e∗. This joint condition ensures

that all the fictitious cutoffs are well-defined and is without loss of generality for limiting

results.

Now I define the analog of translation non-decreasing beliefs for the common values.

Definition 6 For player i ∈ N , beliefs Λi(g, θ| c−i, si, ν) are said to be translation non-

decreasing if for all c−i ∈ C−i and ∆ ∈ [0, θ − θ], then Λi(g, θ| c−i + ∆, si + ∆, ν) ≤

Λi(g, θ| c−i, si, ν) for all g ∈ G, θ ∈ R.

Definition 6 says that whenever player i’s signal increases more than does every dimension of

the opposing cutoff vector, then her beliefs about the aggregate and the state increase with

respect to �st. It implies that, when player i increases her strategy more than her opponent,

she thinks that greater aggregative values and higher states are less likely. Proposition 5

and Lemma 317 show that the information structure of global games implies this form of

translation non-decreasing beliefs when the prior is uniform or in the limit (as ν goes to

zero) with a general prior.

Proposition 5 In the common values case with uniform prior, beliefs Λi(g, θ|c−i, si, ν) are

translation non-decreasing.18

The next theorem applies when beliefs are non-decreasing in translation. In this context,

there is ν small enough so that the joint best-response function is a contraction. Unlike
16Note Λi(g, θ| c−i, si, ν) is a finite sum of probabilities of the form Ωi((aj < sj < bj)j 6=i, θ| si, ν) which

are continuous in si (this can be established in a similar way as under private values.). Then Λi is also
continuous in si. The continuity of Λi in (θ, si) is actually uniform for si ∈ [θ − η, θ + η] for all i, as θ is in
[si − νe∗, si + νe∗].

17see Section 2.7.2
18Given Λi is a sum of probabilities of the form (2.2), the claim is fairly clear. The proof is in Mathevet [70].



24

Theorem 4, a unique equilibrium is actually reached for each ν < η/e∗; hence there is no

need for a vanishing noise to get uniqueness.

Theorem 3 Let brν : C → C be the joint best-response function. If for any i ∈ N , beliefs

Λi(g, θ|c−i, si, ν) are translation non-decreasing, then for every ν < η/e∗, brν is a contrac-

tion and an essentially unique equilibrium exists.

The fundamental result in common values is the next theorem which leads to a unique

equilibrium in the limit. From Theorem 4, the proof of Corollary 1 is similar to that of

Proposition 4, hence it is omitted.

Theorem 4 The contraction domain approaches the whole space, that is, ∪ν>0 Cν = C2.

Corollary 1 (FMP [36]) Let eν and eν be respectively the largest and least equilibrium in

Γ(ν). Then, d(eν , eν) → 0 as ν → 0 and so there is an essentially unique equilibrium in the

limit.

If the global game is one where the payoff functions and the density functions φ and ψ′i

are bounded and continuously differentiable in θ (and in si when applicable), then I can

prove the following related result that sheds some light on uniqueness.19 There exists a

game Γ̂(ν) = (N, (ûi(., ν) : [θ, θ]`i ×C−i 7→ R)N ) which is best-response equivalent to global

game Γ(ν) and where the complementarities in Γ̂(ν), ∂2ûi(., ν)/∂c
f
i ∂ckj

, become strictly

smaller than concavity, −∂2ûi(., ν)/∂(cfi )2, as ν vanishes.20 In differentiable games, the

ratio between complementarities and concavity give the slope of the best-response. So, this

result formalizes the idea that the global-games structure dampens complementarities to

the point where a unique equilibrium exists, that is, to the point where they become weak

relatively to concavity.

Remark. FMP proved that as the signal noise shrinks, the sequence of largest equilibria

and the sequence of smallest equilibria in common values converge to the unique outcome

of Γ(ν) under private values and uniform prior.21 In this last case, the sequence of unique
19The proof is available upon request.
20The existence of two types of cutoffs makes the definition of Γ̂(ν) somewhat unusual. But what underlies

the contraction in the limit is that, for any player, the complementarities between her fictitious cutoffs and
her opponents’ real cutoffs become relatively weak.

21This is Lemma 5 in FMP [36].
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equilibrium converges to a limit, hence all three sequences have the same limit which is the

well-known uniqueness prediction of global games.

2.5 Examples

2.5.1 Currency Crises

This is a version of the model by Morris and Shin [83]. Here, a finite number n of spec-

ulators decide whether to attack a fixed-exchange regime by selling short one unit of the

currency. The current value of the currency is r∗. The economy is characterized by a state

of fundamentals θ which is distributed according to φ on a convex subset of IR. The cur-

rency will float to the shadow rate ζ if there is no intervention from the monetary authority.

The cost of attacking the currency c(θ) is strictly increasing in θ, reflecting the fact that

stronger fundamentals make an attack costlier. Writing 1 for the action “not attack” and

0 for the action “attack,” let ∆ = (
∑

j 6=i 1aj<1)/(n − 1) for each i ∈ N . The monetary

authority defends the currency if this intervention is not too costly. Therefore, the cost of

defending the currency is assumed to be increasing in the proportion of speculators who

attack, ∆, and decreasing in the state of the fundamentals. There is a minimal proportion

of speculators who must attack, a(θ), for a devaluation to occur.22 The payoffs are given

by:

u(1,∆, θ) = 0

u(0,∆, θ) =

 −c(θ), if ∆ < a(θ),

r∗ − ζ(θ,∆)− c(θ), if ∆ ≥ a(θ),

where a(θ) and ζ ≡ ζ(θ,∆) are increasing in θ. Let ζ(θ,∆) = r∗ if ∆ = a(θ), and then

suppose that u is continuous in θ for any ∆.23 Let M > 1 and r∗ − c(θ) > ζ(θ,∆) for

∆ > a(θ) + 1
M .24 Finally, the shadow exchange rate is increasing with ∆ for each θ,25

and for any ∆′′ > ∆′, ζ(θ,∆′) − ζ(θ,∆′′) is decreasing in θ which accounts for the larger

resistance of the exchange rate to changes in ∆ when fundamentals are stronger.26

22Here, I assume implicitly that both a(θ) and n make it unnecessary to know whether or not i herself
attacks. In other words, given ∆, a player cannot alone spark or prevent the devaluation. For example,
assume a(IR) ⊂ (−∞, 0) ∪ (1/n, (n− 1)/n) ∪ (1,∞).

23Note that this condition allows for some discontinuities of a when ζ and c are continuous.
24Suppose M is big enough so the model is interesting for a large range of θ.
25This means that ζ(θ, ∆′)− ζ(θ, ∆′′) ≥ 0, whenever ∆′ �st ∆′′ or equivalently ∆′′ > ∆′.
26Morris and Shin [83] originally assumed ζ ≡ ζ(θ) is increasing in θ which satisfies all my requirements

for ζ except ζ(θ, ∆) = r∗ if ∆ = a(θ); but their setting does not allow continuity of u in θ for all ∆.
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This is a model where a devaluation does not always benefit the speculators. There exists

an interval after a(θ) where the devaluation is not substantial enough to be profitable. Even

if attacking results in a devaluation, it is only optimal after ∆ has passed some threshold

a(θ) + 1
M .

This game satisfies the standard assumptions of global games, (A1) through (A3) and

(A6). Also notice the traditional tripartite division of fundamentals. If θ < a−1(− 1
M ), each

player has a dominant strategy to attack and if θ > a−1(1), each of them has a dominant

strategy not to attack. In addition, there is an interval in (a−1(− 1
M ), a−1(1)) where the

two symmetric profiles are both equilibria. There are only two actions so that (A5) is

automatically satisfied, and DSM also holds.

2.5.2 Diamond’s Search Model

This is a version of the Diamond-type search model of Milgrom and Roberts [76]. There

are a finite number of players {1, . . . , n} who exert effort ai ∈ Ai ≡ {0, . . . , a} searching for

trading partners. The probability of any trader to find a partner is proportional to her own

effort and the sum of the efforts of the others denoted Σ−i. The economy is characterized

by a state of the fundamentals θ which is distributed according to φ on a convex subset of

IR, and each player receives a private signal about θ with the properties described earlier.

The positive cost to individual i for exerting a level of search ai is ci(ai, θ) and so her payoff

is defined by:

πi(ai,Σ−i, θ) = αaiΣ−i − ci(ai, θ) (2.3)

where α > 0. Since ∂2πi/∂ai∂Σ = α for i 6= j, this is a supermodular game in (ai,Σ) and

so (A2) is satisfied. For simplicity, cost function ci is assumed to be continuous in θ which

verifies (A6), and it is C2 on Co(Ai) for each θ. Moreover, ci has strictly decreasing differ-

ences in (ai, θ), and in particular, there exist θ and θ with θ < θ such that for all ai ∈ Ai,

c′i(ai, θ) > α(n − 1)(a + ε) for some ε > 0 and all θ < θ, and c′i(ai, θ) < 0 for all θ > θ.

For example, costs may be decreasing when learning is taken into account. The state of the

world θ could summarize knowledge in the economy and as θ increases the marginal cost

strictly decreases, which accounts for (A3). In particular, there exists a state θ from which

learning (by doing) is so high that each unit produced decreases the cost. As a result, (A1)

holds and since ci is traditionally convex in ai, (A5) is satisfied. Finally, (A4) is also satisfied.
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The theory of Section 2.4 then applies. Consider the symmetric version of the game.

Notice that there exists θ̃ > θ such that c(., θ) is strictly increasing in ai for all θ ∈ (θ, θ̃)

because Ai is finite, c′(ai, θ) > α(n−1)(a+ ε) and c′ is continuous. Therefore, ai = 0 for all

i is an equilibrium. Since c is smooth and convex, if Ai is rich enough, then there is also a

symmetric equilibrium where effort levels across players are the same. This equilibrium is

derived from the optimality condition in the case where Ai = [0, a]: α(n− 1)a∗ = c′(a∗, θ).

Consequently, there is an interval in (θ, θ̃) for which there are multiple equilibria.

2.6 Beliefs and Payoff Uncertainty

In this section I compare global games under private values with two other models of

payoff uncertainty, namely Harsanyi’s games with randomly disturbed payoffs and global

games with common values.

2.6.1 Private Values vs. Harsanyi’s Disturbed Payoffs

There is a relationship between Harsanyi’s games with randomly disturbed payoffs and

global games, yet their results differ largely in their conclusions (CvD [19]). Translation-

increasing beliefs provide an explanation for this divergence.

Harsanyi [46] shows that any equilibrium of a strategic-form game is the limit of a

sequence of pure strategy equilibria of slightly perturbed games. He perturbs the payoffs

π∗i of a strategic-form game by adding a random variable sa
i denoting the player’s type at

action profile a: πi(ai, a−i, s
a
i ) = π∗i (ai, a−i) + sa

i . For all a ∈ A, sa
i ≡ νεai where εai is

a random variable with compact range such that different players’ types are statistically

independent and ν is a scale parameter. Thence Harsanyi’s setup with sa
i ≡ νεi or 0 for

any a ∈ A is a special case of global games with private values and degenerate distribution

for the underlying state of nature. Taking linear signals and a degenerate prior at 0 indeed

gives si = νεi, so the resulting global game with private values and payoffs πi amounts to

Harsanyi’s setup. Despite this relationship, the two models provide dramatically different

conclusions. Harsanyi considers the sequence of disturbed games as ν → 0 and shows that

all equilibria can be approximated in the limit by the beliefs associated with equilibria of

the disturbed games. So, multiple equilibria can subsist in the limit which contrasts with
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the global games of Section 2.3. An explanation can be found in players’ beliefs. Degenerate

priors never generate translation-increasing beliefs, a central property for contraction and

uniqueness in global games. Rather, beliefs are translation decreasing and do not tend

to be translation increasing as ν → 0. In Harsanyi’s setup, the point mass removes any

prior uncertainty and, together with type independence, implies that players’ signals are

uninformative about their opponents’ signals. Therefore, the rationale behind translation

increasingness, that signals get so precise as the noise vanishes that each player knows her

opponents’ signals must vary in the same amount as hers, no longer holds.27 So, there are

belief incentives for non-contractive best-responses which are at the source of multiplicity

of equilibria.

2.6.2 Private Values vs. Common Values

The private and common values versions of a global game converge towards one another

as the noise vanishes and their unique equilibrium in the limit is the same. As ν goes to zero,

players indeed discard any state θ that is too far from their signal. Thus the private values

case, where the signals enter payoffs directly, becomes close to common values. In terms

of beliefs, translation increasingness is equally restrictive in both setups under stochastic

dominance. Linear signaling technologies and vanishing noise also remain a way of obtaining

increasing beliefs in common values environments. Under common values, (A7’) implies that

a player expects higher states for higher signals, so that beliefs become strictly increasing in

translation when the prior is uniform (or in the limit). Since payoffs do not depend directly

on types, this strictness is important in order to exploit the assumptions on payoffs.

2.7 Appendix

2.7.1 On the Real Cutoff Points

The real cutoffs are the threshold signals that separate an action from its successor, and

they are sufficient to represent any increasing (simple) function. Since Mi−1 cutoffs suffice

to represent i’s strategy and there are many more available fictitious cutoffs, the dispensable
27The argument that beliefs in Harsanyi’s model are translation decreasing also applies to the quantal

response model [73]. In the quantal response model, players’ signals are also uncorrelated and there are
possibly many equilibria as the noise vanishes. Only one of those equilibria traces back to the centroid
(infinite noise), which is how selection operates.
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ones must be excluded. This is done in Definition 7. For each player, the subset of fictitious

cutoffs which is selected depends on the opposing profile, and thus it is not obvious that

the contraction survives across those selected fictitious cutoffs. This explains the difference

between Proposition 2 and Theorem 1. I begin with an example.

Example 1 Suppose Γ(ν) is a global game with N = {1, 2} and A1 = A2 = {0, 1, 2}.

Further, suppose θ = 0 and θ = 1. Here, there will be three fictitious cutoffs: cf1,0, c
f
2,0,

and cf2,1. But we only need two of them to represent a player’s best-response. For example,

suppose strategy (0.2, 0.8) is a best-response to cj ∈ Cj . It consists in playing 0 for signals

below 0.2, 2 for signals above 0.8, and 1 in between. In this case, the first real cutoff, c0,

that separates 0 and 1 is 0.2 = cf1,0. The second real cutoff, c1, that separates 1 and 2 is

0.8 = cf2,1. Now consider the following best-response (0.4, 0.4) to c′j ∈ Cj . In this case, the

player never plays 1 except possibly on a set of measure zero (when receiving exactly signal

0.4). Then the first real cutoff, c′0, that separates 0 and 1 is 0.4 = c′f2,0, but the second real

cutoff, c′1, is also c′f2,0 since 1 is not played.

Therefore, the real cutoff points take on values of fictitious cutoffs, but they might switch

fictitious cutoffs from one opposing profile to the other, which makes it harder to identify

any contraction. If each real cutoff was attached to the same fictitious cutoff all the way

through, then contraction would follow immediately from Proposition 2.

The derivation of the real cutoffs from a set of fictitious cutoffs works as follows.

Definition 7 I define the real cutoffs inductively. For any i ∈ N , given c−i ∈ C−i, the

greatest real cutoff point, denoted cMi−1, is the fictitious cutoff cfMi,m
such that: Edπi(ai,Mi , ai,

g(c−i), si) > 0 for all ai 6= ai,Mi, and si > cfMi,m
, and Edπi(ai,m, ai, g(c−i), si) > 0 for all

ai 6= ai,m, and si ∈ (cfMi,m
− ε, cfMi,m

), for some ε > 0. Given cki
= cfn,m with n > m, then

the real cutoff that precedes, denoted cki−1, is also equal to cfn,m if ki > m or, if ki = m,

it is the fictitious cutoff cfki,γ
with ki > γ such that: Edπi(aki

, ai, g(c−i), si) > 0 for all

ai 6= aki
, and si ∈ (cfki,γ

, cfki,γ
+ ε), and Edπi(ai,γ , ai, g(c−i), si) > 0 for all ai 6= ai,γ, and

si ∈ (cfki,γ
− ε, cfki,γ

) for some ε > 0.

2.7.2 Proofs

Without further notice, most of the proofs are given assuming DSM. The proofs under

ISM can be found in Mathevet [70] or are available to the reader upon request.
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The next remark is an implication of translation non-decreasing beliefs (Definition 3)

which is used in the proofs.

Remark. For all ∆∗ ∈ [0, θ − θ] and vectors ∆ such that ∆ ≤ ∆∗1, we have Λi(g| c−i +

∆, si + ∆∗, ν) ≤ Λi(g| c−i + ∆∗1, si + ∆∗, ν), because g is an increasing aggregate and

player i believes greater values of the aggregate are more likely when her opponents play

greater strategies (meaning lower their cutoffs). If beliefs are translation non-decreasing,

then Λi(g| c−i + ∆, si + ∆∗, ν) ≤ Λi(g| c−i, si, ν).

Proof of Proposition 2: Let g = g((aj,Mj )) and σ : Gi → Gi be the successor func-

tion defined for all g ∈ Gi by σ(g) = min{g′ ∈ Gi : g′ � g}. Let g = g((aj,1)). Take

any c′−i, c−i ∈ C−i with c′−i 6= c−i. Player i’s expected utility of playing ai when the other

players play according to c−i is:

Eπi(ai, c−i, si) = Λi(σ(g)| c−i, si, ν)πi(ai, g, si) +
∑

{g: g>g>g}

(Λi(σ(g)| c−i, si, ν)− Λi(g| c−i, si, ν))

πi(ai, g, si) + (1− Λi(g| c−i, si, ν))πi(ai, g, si)

which can be rewritten,

Eπi(ai, c−i, si) = πi(ai, g, si) +
∑

{g: g>g≥g}

Λi(σ(g)| c−i, si, ν)(πi(ai, g, si)− πi(ai, σ(g), si)). (2.4)

Now, pick n,m ∈ {1, . . . ,Mi} such that n > m. For any g, g′ in Gi and signal si, let

δ(g, g′, si) = dπi(ai,m, ai,n, g, si)− dπi(ai,m, ai,n, g
′, si).

By definition, cfn,m is the signal si that verifies Edπi(ai,m, ai,n, c−i, si) = 0, which by (2.4)

is equivalent to the signal si such that

∑
{g: g>g≥g}

Λi(σ(g)| c−i, si, ν)δ(g, σ(g), si) = dπi(ai,n, ai,m, g, si). (2.5)

Denote by l(c−i, si) and r(si), respectively, the LHS and RHS of (2.5). Let ∆j,kj
=

|c′j,kj
− cj,kj

|, ∆ = (∆j,kj
) and ∆∗ ≥ maxj 6=i maxkj

∆j,kj
. Suppose, by way of contradiction,

that c′fn,m = cfn,m + ∆∗. By translation non-decreasing beliefs, Λi(σ(g)| c−i + ∆, c′fn,m, ν) ≤

Λi(σ(g)| c−i, c
f
n,m, ν) for all g ∈ Gi, and thus Λi(σ(g)| c′−i, c

′f
n,m, ν) ≤ Λi(σ(g)| c−i, c

f
n,m, ν)
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for all g.28 By (A4), δ(g, σ(g), c′fn,m) ≤ δ(g, σ(g), cfn,m) for all g, and supermodularity of

πi in (ai, g) implies δ(.) is always positive. Hence, l(c′−i, c
′f
n,m) ≤ l(c−i, c

f
n,m). By (A3),

r(c′fn,m) > r(cfn,m). Since l(c−i, c
f
n,m) = r(cfn,m), it implies l(c′−i, c

′f
n,m) < r(c′fn,m). By defini-

tion, (c′−i, c
′f
n,m) must satisfy (2.5), but it does not, which is a contradiction. Consequently,

c′fn,m − cfn,m < ∆∗. Similarly but starting from (c′−i, c
′f
n,m), we obtain |c′fn,m − cfn,m| < ∆∗.

Since n,m were chosen arbitrarily in a finite set and ∆∗ was any real greater or equal to

d(c′−i, c−i), then d(c′fi (ν), cfi (ν)) < d(c′−i, c−i). Q.E.D

Proof of Theorem 1: I want to show that bri,ν : C−i → Ci for all i and brν : C → C

are (weak) contractions for each ν. Pick any ν > 0 that is implicit all throughout. By

Proposition 2, d(c′fi , c
f
i ) < d(c′−i, c−i) for all distinct c′−i, c−i ∈ C−i and all i ∈ N . Let

bri(c−i) = (cki
)ki

and bri(c′−i) = (c′ki
)ki

. I show that |c′fn,m−cfn,m| < d(c′−i, c−i) for all n,m, i

implies |c′ki
− cki

| < d(c′−i, c−i) for all ki and i ∈ N .

I prove this result by induction for an arbitrary pair (c′−i, c−i) ∈ C2
−i of distinct elements.

First, I show it is true for the greatest real cutoff point. Recall that (A1) implies that aMi

must be played in any best-response. Suppose that cMi−1 = cfMi,s
and c′Mi−1 = c′fMi,t

for

some s, t ∈ {1, . . . ,Mi−1}. Then c′Mi−1−cMi−1 = c′fMi,t
−cfMi,s

= c′fMi,t
−cfMi,t

+cfMi,t
−cfMi,s

.

By Proposition 2, c′fMi,t
− cfMi,t

< d(c′−i, c−i). By Definition 7, cfMi,t
− cfMi,s

≤ 0 because

cMi−1 = cfMi,s
implies that aMi is played right after as in the best-reply, and thus the

fictitious cutoff between aMi and at must lie before cfMi,s
. As a result, c′Mi−1 − cMi−1 <

d(c′−i, c−i). Clearly, the same argument applies to show cMi−1 − c′Mi−1 < d(c′−i, c−i) and so

|c′Mi−1 − cMi−1| < d(c′−i, c−i).

Now suppose |c′ki
− cki

| < d(c′−i, c−i) for ki. I prove that |c′ki−1 − cki−1| < d(c′−i, c−i).

Case 1: Action aki
is played both under bri(c−i) and bri(c′−i). Notice this is similar to the

case of the greatest real cutoff and so the proof is analogous.

Case 2: Action aki
is played neither under bri(c−i) nor bri(c′−i). Then, cki−1 = cki

and

c′ki−1 = c′ki
, and so |c′ki−1 − cki−1| < d(c′−i, c−i) by induction hypothesis.

Case 3a: Action aki
is not played under bri(c−i) but it is under bri(c′−i). Then, cki−1 = cki

and so c′ki−1 − cki−1 = c′ki−1 − cki
= c′ki−1 − c′ki

+ c′ki
− cki

. Notice c′ki
− cki

< d(c′−i, c−i) by

induction hypothesis and c′ki−1 − c′ki
≤ 0 since the best-response is increasing in the signal.

28Note Λi(σ(g)| c′−i, c
′f
n,m, ν) ≤ Λi(σ(g)| c−i + ∆, c′fn,m, ν) because g is an increasing aggregate and, when

player i’s opponents lower all their cutoffs (c′−i ≤ c−i + ∆), player i believes higher actions are more likely
and so are greater values of the aggregate.



32

Therefore, c′ki−1 − cki−1 < d(c′−i, c−i).

Case 3b: By a similar argument, if action aki
is not played under bri(c′−i) but it is under

bri(c−i), cki−1 − c′ki−1 < d(c′−i, c−i).

Case 4a: Action aki
is played under bri(c′−i) but it is not played under bri(c−i). Then,

c′ki−1 = c′fki,t
and cki−1 = cki

= cfs,w for some s, t, w ∈ {1, . . . ,Mi} where s > ki and w < ki

(since aki
is not played). Then cki−1 − c′ki−1 = cfs,w − c′fki,t

. Note that cfs,w − cfki,w
≤ 0 as it

is optimal to play aw until cfs,w and so, since w < ki, it must be that aki
can preferred to

aw by player i only for signals higher than cfs,w. By a similar argument, c′fki,w
≤ c′fki,t

. As a

result, cki−1−c′ki−1 = cfs,w−c′fki,t
≤ cfki,w

−c′fki,w
. By Proposition 2, cfki,w

−c′fki,w
< d(c′−i, c−i),

hence cki−1 − c′ki−1 < d(c′−i, c−i).

Case 4b: Similarly, if action aki
is played under bri(c−i) but it is not under bri(c′−i), then

c′ki−1 − cki−1 < d(c′−i, c−i).

Put Cases 3a and 4a (3b and 4b) together to obtain: |c′ki−1 − cki−1| < d(c′−i, c−i),

which completes the induction part of the proof. Therefore, |c′ki
− cki

| < d(c′−i, c−i) for all

ki, and so best-response bri : C−i → Ci shrinks for all i ∈ N . For all distinct c′, c ∈ C and

for all i ∈ N such that c′−i 6= c−i, maxki
|c′ki

− cki
| < d(c′−i, c−i) ≤ d(c′, c) which implies that

maxi∈N maxki
|c′ki

− cki
| < d(c′, c). Equivalently, d(br(c′), br(c)) < d(c′, c) for all c′, c ∈ C

with c′ 6= c. Q.E.D

The next Lemma draws its main idea and technicalities from Lemma 4 in FMP [36], so

its proof is omitted.29 Lemma 1 says that beliefs Ωi tend to be translation invariant in the

limit and this is achieved uniformly in ν for all parameters. Denote

ρ∆∗(ν) = max
si∈[θ,θ]

max
e∈[−ei,ei]

φ(si + ∆∗ − νe)

min
e∈[−ei,ei]

φ(si + ∆∗ − νe)
,

where ∆∗ ∈ [0, θ − θ]. Define ε∆∗(ν) = max{1 − 1/ρ∆∗(ν), ρ∆∗(ν) − 1} and note that, for

all ∆∗, ε∆∗(ν) is decreasing in ν because ρ∆∗(ν) is decreasing.

Lemma 1 Let J = N\{i}, and let K = [θ − νe∗, 2θ − θ + νe∗] be contained in the interior
29The proof can be found in Mathevet [70].
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of the support of φ. Let i ∈ N and ∆∗ ∈ [0, θ − θ]. Denote

κ∆∗(c−i, si, ν) =
∫ ∞

−∞

1
ν

∏
j∈J

Fj

(
cj + ∆∗ − θ

ν

)
fi

(
si + ∆∗ − θ

ν

)
dθ.

Then, ε∆∗(ν) ↓ 0 and |Ωi(c−i + ∆∗1|si + ∆∗, ν) − κ∆∗(c−i, si, ν)| < ε∆∗(ν) for all si ∈

[θ, θ], c−i ∈ C−i.

The next Lemma shows that beliefs about the aggregate tend to be translation non-

decreasing in the limit and this is achieved uniformly in ν for all parameters.

Lemma 2 Let K = [θ − νe∗, 2θ − θ + νe∗] be contained in the interior of the support of φ.

For all i ∈ N , ∆∗ ∈ [0, θ − θ], g ∈ Gi, there exists a positive number M(g) such that

Λi(g| c−i, si, ν) ≥ Λi(g| c−i + ∆, si + ∆∗, ν)−M(g)(ε0(ν) + ε∆∗(ν))

for all si ∈ [θ, θ], ∆ ∈ [0, θ − θ](
P

j 6=i Mj−N+1) such that ∆ ≤ ∆∗1, and all c−i ∈ C−i.

Proof: I prove the result by induction. I will argue that the claim is true for the greatest

value of the aggregate in Gi. But first, suppose the claim is true for all aggregate values

greater or equal to g′ ∈ Gi. Let p(g′) = max{g ∈ Gi : g ≺ g′} be the predecessor function and

show Λi(p(g′)| c−i, si, ν) is translation non-decreasing in the limit. There are possibly several

(but finitely many) ways to obtain p(g′). Let cl−i be the l-th combination of cutoffs of i’s

opponents that leads to p(g′), and recall Λi(p(g′)| c−i, si, ν) = 1− (Prob(g ≥ g′| c−i, si, ν) +

Prob(g = p(g′)| c−i, si, ν). Note:

Prob(g = p(g′)| c−i, si, ν) =
∑

l

Ωi((clkj
< sj < clkj+1)j 6=i| si, ν)

for some kj , and since there are only finitely many combinations of cutoffs that result in

p(g′), Lemma 1 implies that the distance between Prob(g = p(g′)| c−i, si, ν) and

∑
l

∫ ∞

−∞

1
ν

∏
j 6=i

(
Fj

(
clkj+1 − θ

ν

)
− Fj

(
clkj

− θ

ν

))
fi

(
si − θ

ν

)
dθ (2.6)

is bounded by
∑

l ε0(ν) for all si ∈ [θ, θ] and c−i ∈ C−i. Letting m(p(g′)) be the number

of ways of specifying p(g′),
∑

l ε0(ν) = m(p(g′))ε0(ν). A simple change of variables (θ′ =
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θ −∆∗) would establish that (2.6) is equal to

∑
l

∫ ∞

−∞

1
ν

∏
j 6=i

(
Fj

(
clkj+1 + ∆∗ − θ

ν

)
−Fj

(
clkj

+ ∆∗ − θ

ν

))
fi

(
si + ∆∗ − θ

ν

)
dθ. (2.7)

Since Prob(g ≥ g′| c−i, si, ν) = 1 − Λi(g′| c−i, si, ν), the above argument and the induction

hypothesis imply that the distance between Prob(g ≥ g′| c−i, si, ν)+Prob(g = p(g′)| c−i, si, ν)

and

Prob(g ≥ g′| c−i + ∆∗, si + ∆∗, ν) + Prob(g = p(g′)| c−i + ∆∗, si + ∆∗, ν) (2.8)

is less than (M(g′)+m(p(g′)))(ε0(ν)+ ε∆∗(ν)) and this, for all si, and c−i. Let M(p(g′)) =

M(g′) +m(p(g′)). But (2.8) is less than

Prob(g ≥ g′| c−i + ∆, si + ∆∗, ν) + Prob(g = p(g′)| c−i + ∆, si + ∆∗, ν)

for all si, c−i and ∆ ∈ [0, θ−θ](
P

j 6=i Mj−N+1) such that ∆ ≤ ∆∗1, which follows by definition

of Prob(g ≥ p(g′)|.). Indeed, g is increasing in the players’ actions and, when player i’s

opponents lower all their cutoffs, player i believes higher actions are more likely and so are

greater values of the aggregate. Consequently,

Prob(g ≥ g′| c−i, si, ν) + Prob(g = p(g′)| c−i, si, ν) ≤ Prob(g ≥ g′| c−i + ∆, si + ∆∗, ν)+

Prob(g = p(g′)| c−i+∆, si+∆∗, ν)+M(p(g′))(ε0(ν)+ε∆∗(ν)),

for all si, c−i and ∆ which proves the claim for p(g′).

Second, the claim needs to hold for g in order to start the induction argument. The

same reasoning as the above applies in this case, because g has no successor. Finally, since

there are only a finite number of such aggregate values, proceeding inductively completes

the proof. Q.E.D

Corollary 2 In the private values case with uniform prior, beliefs Λi(g| c−i, si, ν) are

translation non-decreasing for every ν > 0.

Proof: It unfolds along the same lines as the proof of Lemma 2, given Ψ′
i(θ| si, ν) =

(1/ν)fi((si − θ)/ν). Q.E.D
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Proof of Proposition 3: (2) Since (A5) is automatically satisfied in 2 × 2 games, I

only need to show Theorem 1 holds in this context whether or not (A4) is satisfied. Take

any cj , c′j ∈ Cj . By definition, for i ∈ {1, 2}, cf2,1 is the signal si verifying

Ω(cj |si, ν)δ(aj,1, aj,2, si) = dπi(ai,2, ai,1, aj,2, si). (2.9)

Denote by l(cj , si) and r(si), respectively, the LHS and RHS of (2.9) and thus l(cj , c
f
2,1) =

r(cf2,1). Let ∆∗ ≥ |c′j − cj |. Suppose, by way of contradiction, that c′f2,1 = cf2,1 + ∆∗.

If δ(aj,1, aj,2, c
′f
2,1) ≤ δ(aj,1, aj,2, c

f
2,1), then the proof goes similarly to that of Theorem 2

as it is covered by DSM. If δ(aj,1, aj,2, c
′f
2,1) − δ(aj,1, aj,2, c

f
2,1) = δ+ > 0, then transla-

tion non-decreasing beliefs imply l(c′j , c
′f
2,1) − l(cj , c

f
2,1) ≤ δ+. But r(si) = δ(aj,1, aj,2, si) +

dπi(ai,2, ai,1, aj,1, si) so that r(c′f2,1) − r(cf2,1) > δ+ by (A3). Therefore, r(c′f2,1) > l(c′j , c
′f
2,1),

a contradiction because (c′j , c
′f
2,1) should satisfy (2.9) by definition. Since i, cj , c′j and the

direction (from cj to c′j) were taken arbitrarily, contraction is proved because in 2-action

games fictitious and real cutoffs coincide. A unique fixed point exists which completes the

proof. Q.E.D

Proof of Theorem 2: I prove ∪ν>0 Cν = C2. Trivially (c, c) ∈ ∪ν>0 Cν for all c ∈ C. So,

take any (c, c′) ∈ C2 with c−i 6= c′−i. Let l(c−i, si, ν) and r(si) be, respectively, the LHS and

RHS of (2.5). Let (c−i, c
f
n,m(ν)) satisfy (2.5) for all ν, that is, l(c−i, c

f
n,m(ν), ν) = r(cfn,m(ν)).

Let ∆j,kj
= |c′j,kj

− cj,kj
|, ∆ = (∆j,kj

), and ∆∗ = maxj 6=i maxkj
∆j,kj

. By means of con-

tradiction, suppose c′fn,m(ν) = cfn,m(ν) + ∆∗. Since (c′−i, c
′f
n,m(ν)) satisfies (2.5) for all ν,

Lemma 2 implies that there exists µ(ν) ↓ 0 such that:30
∑

(Λi(σ(g)| c−i, c
f
n,m(ν), ν) +

µ(ν))δ(g, σ(g), c′fn,m(ν)) ≥ r(c′fn,m(ν)). Because Mj <∞ and πi is bounded as a continuous

function on a compact set, this inequality can be rewritten as

∑
Λi(σ(g)| c−i, c

f
n,m(ν), ν)δ(g, σ(g), c′fn,m(ν)) + ϑi(ν) ≥ r(c′fn,m(ν)) (2.10)

where ϑi(ν) → 0 as ν → 0. Since r(si+∆∗)−r(si) is strictly positive by (A3) and continuous

in si, then it has a strictly positive minimum over [θ, θ], call it m∗. Let m∗∗ = m∗/2. Since
30For example, let µ(ν) = maxg M(g)(ε0(ν)+ε∆∗(ν)). By Lemma 2, we know Λi(g| c−i, si, ν) ≥ Λi(g| c−i+

∆, si + ∆∗, ν)− µ(ν) ≥ Λi(g| c′−i, si + ∆∗, ν)− µ(ν) and since δ(.) is positive, then the inequality follows.
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l(c−i, c
f
n,m(ν), ν) = r(cfn,m(ν)), using (A4) we have

∑
Λi(σ(g)|c−i, c

f
n,m(ν), ν)δ(g, σ(g), c′fn,m(ν))+m∗∗ ≤ r(cfn,m(ν))+m∗∗ < r(c′fn,m(ν)). (2.11)

Since ϑi(ν) → 0, (2.10) and (2.11) lead to a contradiction as soon as ϑi(ν) is less than

m∗∗. It means that there exists ν small enough such that l(c′−i, c
′f
n,m(ν), ν) < r(c′fn,m(ν)),

hence (c′−i, c
′f
n,m(ν)) does not verify (2.5) for all ν, a contradiction. Given this last in-

equality, it is also a contradiction for ∆∗ > maxj 6=i maxkj
∆j,kj

by (A2), (A3), (A4), and

(A7). Therefore, the ν from which the contradiction is reached only depends on i, n,m

and on the direction: from (c−i, c
f
n,m) to (c′−i, c

′f
n,m), or the other way. Since there are only

finitely many players, actions, and directions, then there exists ν > 0 such that for all i ∈ N ,

d(c′fi (ν), cfi (ν)) < d(c′−i, ci) for all ν < ν. From the proof of Theorem 1, the contraction prop-

erty of the fictitious cutoffs extend to the real cutoffs. That is, d(brν(c), brν(c′)) < d(c, c′)

for all ν < ν. Therefore, (c, c′) ∈ ∪ν>0 Cν . Q.E.D

Proof of Proposition 4: The proof has two steps. First, I will show that for any

(c, c′) ∈ C2, there exist ν and a neighborhood U of (c, c′) in the product topology of C2

such that U ⊂ Cν . Second, I will show this implies uniqueness in the limit. To simplify

notation, I do not indicate the dependance on am and an, but recall they belong to a finite

set.

Let us specify function µ∆∗ from the proof of Theorem 2 and then construct ϑi. Let

µ∆∗(ν) = maxg M(g)(ε0(ν) + ε∆∗(ν)) where ∆∗ = maxj 6=i maxkj
|c′kj

− ckj
|. By the Maxi-

mum Theorem, ρ∆∗(ν) is continuous in ∆∗31 and then, so are ε∆∗(ν) = max{1− 1/ρ∆∗(ν),

ρ∆∗(ν)−1}, and µ∆∗(ν) for each ν. Moreover, notice that the minimum of r(si+∆∗)−r(si)

over si ∈ [θ, θ] only depends on i and ∆∗ and thus its half, denoted m∗∗
i (∆∗), is continuous

in ∆∗ by the Maximum Theorem. Now let bi = maxsi∈[θ,θ]

∑
g δ(g, σ(g), si), and define

ϑi(ν,∆∗) = biµ∆∗(ν). Since µ∆∗(ν) ↓ 0, then for any i ∈ N , there exists νi > 0 such that

ϑi(νi,∆∗) < m∗∗
i (∆∗). As ∆∗ is continuous in (c, c′), for any i ∈ N there exists a neighbor-

hood of (c−i, c
′
−i) such that ϑi(νi,∆∗) < m∗∗

i (∆∗), which implies ϑi(ν,∆∗) < m∗∗
i (∆∗) for

all ν < νi because µ∆∗(ν) ↓ 0.32 Therefore, there is a neighborhood U of (c, c′) and ν > 0

such that U ⊂ Cν .

31The definition of ρ∆∗ precedes the proof of Lemma 1.
32Recall that ε∆∗(ν) is decreasing in ν for all ∆∗.
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Now suppose by way of contradiction that there is ι > 0 such that for all ν > 0, there

exists ν < ν for which d(eν , eν) > ι. Since {(eν , eν)} ⊂ C2 and C2 is compact, this sequence

has at least one cluster point and all its cluster points are in C2. For such ι to exist, there

must be a cluster point of the sequence, denoted (e, e), such that e 6= e. By Theorem

2, there exists ν such that a neighborhood U of (e, e) is a subset of Cν . Now, take two

disjoint neighborhoods U and U in C, respectively of e and e, such that U × U ⊂ U . Notice

such neighborhoods exist because U is an open set in the product topology. Since (e, e)

is a cluster point, there exists ν ′ < ν such that (eν′ , eν′) ∈ U × U ⊂ U ⊂ Cν which is a

contradiction. Q.E.D

Lemma 3 Let K = [θ−2η−νe∗, 2θ−θ+6η+νe∗] be contained in the interior of the support

of φ. Letting M(g) be some positive number, then for all i ∈ N , ∆∗ ∈ [0, θ− θ+2η], g ∈ G,

Λi(g, θ| c−i, si, ν) ≥ Λi(g, θ| c−i + ∆, si + ∆∗, ν)−M(g)(ε0(ν) + ε∆∗(ν))

for all si ∈ [θ − η, θ + η], ∆ ∈ [0, θ − θ + 2η](
P

j 6=i Mj−N+1) such that ∆ ≤ ∆∗1, θ ∈ R and

all c−i ∈ C−i.

The next lemma is a technical result that will be useful in proving Theorem 4.33

Lemma 4 Suppose state monotonicity is decreasing. Then there exists a positive function

δ∗(g∗, g, θ) from G2×R to R+ that is decreasing in (g∗, θ) and such that for all g, si, c−i and

ν: ∫
G×R

δ∗(g∗, g, θ)dΛi(g∗, θ|c−i, si, ν)=
∫

θ∈R
δ(g, σ(g), θ)Λi(σ(g), dθ|c−i, si, ν).

Proof: Define

δ∗(g∗, g, θ) =

{
δ(g, σ(g), θ) if g∗ < σ(g)

0 otherwise,

and notice δ∗ is decreasing in (g∗, θ) by construction, DSM and (A2). It is also positive by

(A2). The proof then follows by Fubini’s theorem. Q.E.D

Proof of Theorem 3: Recall that for ν < η/max{ei : i ∈ N}, all real cutoffs exist.

Suppose first that state monotonicity is decreasing. By strict first-order stochastic domi-

nance of Ψi and Lemma 4, Equation (2.12) has a unique solution.34 From then, the proof
33I thank Federico Echenique for suggesting this lemma.
34See the proof of Proposition 2.
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is similar to the proof of Theorem 2. All the real cutoffs shrink as functions of the opposing

profile which translates to the fictitious cutoffs by Theorem 1. Uniqueness then follows from

the contraction of br(ν).

Secondly, suppose state monotonicity is increasing. Take any c−i, c
′
−i ∈ C−i. Pick any

β, α ∈ {1, . . . ,mi} such that β > α. By definition, crβ,α is the signal si such that:

∑
{Σ:Σ>Σ≥Σ}

∫
θ∈IR

δ(Σ, ρ(Σ), θ)Λi(ρ(Σ), dθ|c−i, si, ν))=
∫

θ∈IR
(dπi(aβ, aα,Σ, θ))dΨi(θ|si,ν).

Denote by l(cj , si) and r(si) =
∫
r(θ)dΨi(θ|si, ν) the left- and right-hand sides of that

equation. Now, I argue that there is a unique solution to this equation by Lemma 4 and

(strict) first-order stochastic dominance, hence the best-responses are almost everywhere

functions. Consider the version of Lemma 4 for ISM. An increase (decrease) from si to

si + (−)ε raises (lowers) the left-hand side by less than l(si + ε)− l(si) (or l(si)− l(si − ε))

where

l(si) =
∑

{Σ:Σ>Σ≥Σ}

∫
θ∈IR
δ(Σ, ρ(Σ), θ)dΨi(θ|si, ν).

To see why, notice that by Lemma 4 under (ISM), a variation of si has two contra-

dictory effects on δ∗: It is now increasing in θ and decreasing in Σ∗.35 Since r(θ) =∑
{Σ:Σ>Σ≥Σ} δ(Σ, ρ(Σ), θ) + dπi(ai,β, ai,α,Σ, θ), then by (A3), r(si + ε) − r(si) > l(si +

ε, ν)− l(si, ν) and so only one si can be solution.

Finally, I complete the proof by showing the contraction. Let xj,kj
= |c′j,kj

− cj,kj
|, x =

(xj,kj
)j 6=i and x∗ ≥ maxj maxkj

xj,kj
. Suppose by way of contradiction that c′rβ,α = crβ,α+x∗.

Then by translation invariance and Lemma 7, l(cj + x, c′rβ,α)− l(cj , crβ,α) ≤ l(c′rβ,α)− l(crβ,α)

for the same reason as the above. But we know the right-hand side increases strictly more

than l which leads to a contradiction. Therefore, all the real cutoffs shrink as functions of

the opposing profile which translates to the fictitious cutoffs by Theorem 1. Uniqueness

then follows from the contraction of br(ν). Q.E.D

Proof of Theorem 4: This proof is an adaptation of the proof of Theorem 2, so I

only sketch the main steps. First, take any (c, c′) ∈ C2 with c−i 6= c′−i, and pick n,m ∈
35A complete proof is available upon request.
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{1, . . . ,Mi} such that n > m. After rewriting the payoffs, cfn,m(ν) is uniquely defined36 as

the signal si satisfying:

∑∫
θ∈R

δ(g, σ(g), θ)Λi(σ(g), dθ|c−i, si, ν)) =
∫

θ∈R
(dπi(an, am, g, θ))dΨi(θ|si, ν). (2.12)

Define ∆j,kj
, ∆, ∆∗ as in the proof of Theorem 2. Let l(c−i, si, ν) and r(si, ν) be, re-

spectively, the LHS and RHS of (2.12). Suppose, by way of contradiction, c′fn,m(ν) =

cfn,m(ν)+∆∗. Second, (A3), (A6), (A7’), and the continuity of Ψi(θ|si, ν) in si ∈ [θ−η, θ+η]

imply that, for each ν, r(si + ∆∗, ν) − r(si, ν) is strictly bounded above zero for all si.

So, using the fact that r(si, ν) converges uniformly (in si) to the RHS of (2.5), I show

r(c′fn,m(ν), ν)−r(cfn,m(ν), ν) converges to a strictly positive number as ν → 0. Third, Lemma

3 implies that as ν → 0 there is a vanishing upper bound on how much Λi(g, θ| c−i, c
f
n,m(ν), ν)

can stochastically dominate Λi(g, θ| c′−i, c
′f
n.m(ν), ν). Thus Lemma 4 allows to conclude that

l(c−i, c
′f
n,m(ν), ν)− l(c−i, c

f
n,m(ν), ν) tends to be at most zero.37 Given (2.12), there exists ν

below which l(c−i, c
′f
n,m(ν), ν) < r(c′fn,m(ν), ν), a contradiction. Q.E.D

The proof of Corollary 1 follows similarly to Proposition 4. An analogous argument

applies because both ε∆∗(ν) and the RHS of (2.12) are continuous (respectively, in ∆∗ and

si) for each ν, and ε∆∗ converges monotonically to zero in ν.

36There is only one si verifying this equation for each (c−i, ν) and m, n by Lemma 4 and (A7’).
37Lemma 4 allows to apply the stochastic dominance properties of dΛi(g, θ|.) to the LHS of (2.12), even

though it is a function of a different measure Λi(σ, dθ|.).
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Chapter 3

Supermodular Implementation

3.1 Introduction

The question of how an equilibrium outcome arises in a mechanism is largely open in imple-

mentation theory and mechanism design.1 This literature has produced numerous mecha-

nisms that implement many social choice functions, but theoretical and experimental works

reveal that many mechanisms suffer from learning and stability issues.2 Often mechanisms

do not enable boundedly rational agents to achieve an equilibrium outcome by learning, if

used repeatedly over time. Likewise, slight perturbations in beliefs or behaviors often result

in a departure from an equilibrium outcome, posing stability problems. This is particularly

troublesome, because the idea behind mechanism design is usually practical in nature: In-

centive design explicitly aims to construct mechanisms that achieve some desirable outcome

in equilibrium. In reality, a static mechanism must sometimes be used repeatedly to reach

an outcome. For example, the traffic authorities may set up a toll-system which in the

long-run will minimize congestion and allocate users with higher benefits from driving to
1This chapter is based on a paper of mine entitled “Supermodular Bayesian Implementation: Learning

and Incentive Design.” Special thanks are due to Rabah Amir for his insightful comments as a discussant
at the IESE conference on Complementarities and Information, and to Morgan Kousser, Thomas Palfrey,
and Eran Shmaya for helpful advice and conversations. I also wish to thank Chris Chambers, Paul J. Healy,
Bong Chan Koh, Serkan Kucuksenel, Paul Milgrom, Leeat Yariv, and seminar/conference participants at
Caltech, UBC, UC Irvine, CMU, UT Austin, Oxford, INSEAD, Pompeu Fabra, Autonoma, IESE, London
Business School, the SWET conference, the Game Theory Workshop at Stanford GSB, the IESE conference
on Complementarities and Information, the fifth conference on Logic, Game Theory and Social Choice, and
the international conference on Game Theory at Stony Brook. Andrea Mattozzi is gratefully acknowledged
for financial support. Finally, part of the paper was written while I visited Stanford Economics Department
and I am grateful for their hospitality.

2Muench and Walker [87] , Cabrales [14] and Cabrales and Ponti [15] show that learning and stability
may be serious issues in, respectively, the Groves-Ledyard [42], Abreu-Matsushima [2], and Sjöström [100]
mechanisms. On the experimental side, Healy [48] and Chen and Tang [24] provide evidence that convergence
of learning dynamics may fail in various mechanisms, such as proportional tax or the paired-difference
mechanism.
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better roads (Sandholm [96] and [97]). A manager may design the agents’ contracts to ap-

proach revenue maximization over time. A procurement department may allocate different

jobs sequentially to contractors by running an auction several times. A group of scientists

may create a control system for planetary exploration vehicles, so that the different units

function more efficiently as the mission progresses.3

In this chapter, I develop the theory of supermodular Bayesian implementation to im-

prove learning and stability in mechanism design. Think of a mechanism as describing the

rules of a game: It assigns feasible strategies (or messages) to the agents and specifies how

these strategies map into enforceable outcomes. Since players have preferences over the

different outcomes, a mechanism induces a game in the traditional sense. If this induced

game is supermodular, then the mechanism is said to be supermodular. Then I define a scf

to be supermodular implementable if there is a supermodular mechanism whose equilibrium

strategies yield that scf as an outcome. Assuming strategies are numbers, a supermodular

game is a game with strategic complementarities, i.e a game in which the marginal utility of

an agent increases as other players increase their strategies. The complementarities imply

that an agent wants to play a larger strategy when the others do the same. For instance, it

becomes more desirable for a worker in a firm to increase her effort when others put more

effort into their job.

Supermodular implementation has interesting dynamic properties. Best-replies are al-

ways increasing in supermodular games; this feature helps boundedly rational agents find

their way to equilibrium, for most learning dynamics inherit some monotonicity that guides

them “near” the equilibria. This theory thus contributes to fill the important gap in the

literature emphasized in Jackson [56]: “Issues such as how well various mechanisms perform

when players are not at equilibrium but learning or adjusting are quite important [. . . ] and

yet have not even been touched by implementation theory. [This topic] has not been looked

at from the perspective of designing mechanisms to have nice learning or dynamic proper-

ties.” For example, a principal may actually attain revenue maximization by offering the

agents a contract that they will face repeatedly for a sufficiently long time. A government

may reach an optimal public goods level by repeatedly applying a supermodular tax system.

Supermodular mechanisms are appealing because they receive the theoretical properties

of supermodular games. Milgrom and Roberts [76] show that supermodular games have
3See issues related to cognitive intelligence (Parkes [92] and Tumer and Wolpert [103]).
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a largest and a smallest equilibrium and adaptive learners end up playing profiles in be-

tween, regardless of their starting point. Vives [106] reports a related result for learning à la

Cournot. Adaptive learners regard past play as the best predictor of their opponents’ future

play and best-respond to their forecast. Cournot dynamics, fictitious play, and Bayesian

learning are examples of adaptive learning. This convergence result extends to sophisticated

learners, who react optimally to what their opponents may next best-respond (Milgrom and

Roberts [77]). If a supermodular game has a unique equilibrium, then convergence to the

equilibrium is ensured. Adaptive and sophisticated learning encompass such a wide range of

backward- and forward-looking behaviors that supermodular mechanisms have very robust

learning properties. Supermodular games are also attractive in an implementation frame-

work because their mixed strategy equilibria are locally unstable under monotone adaptive

dynamics like Cournot dynamics and fictitious play (Echenique and Edlin [34]). Ruling out

mixed strategy equilibria is common in implementation theory and often arbitrary; but it is

sensible in supermodular implementation. To the contrary, many pure-strategy equilibria

are stable. In a parameterized supermodular game, all those equilibria that are increasing

in the parameter are stable, such as the extremal equilibria (Echenique [32]).

Supermodular games and mechanisms are supported by strong experimental evidence.

Healy [48] tests five public goods mechanisms in a repeated game setting and observes

convergence only in those mechanisms that induce a supermodular game. Experiments

on the Groves-Ledyard mechanism have shown that convergence is far better when the

punishment parameter is high than when it is low (Chen and Plott [23] and Chen and Tang

[24]). The Groves-Ledyard mechanism turns out to be supermodular when the punishment

parameter is high. Finally, Chen and Gazzale [22] present experiments on a game where

a parameter determines the degree of complementarity. In this game, they observe that

convergence is significantly better when the parameter lies in the range where the game is

supermodular.

The methodology used to derive properties of a mechanism may be promising for mech-

anism design theory. One striking feature of the traditional design approach is how much

it relies on solution concepts to reach certain objectives. For example, if the designer wants

the mechanism to be robust to misspecifications of the prior, then she will likely choose

implementation in dominant strategies or ex-post equilibrium. Conversely, if the designer

targets full efficiency in some quasilinear environment, then she will prefer implementation
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in Bayesian equilibrium. Economists have attempted to solve nearly all design problems by

introducing a solution concept into the implementation framework: Subgame-perfect equi-

librium, undominated Nash equilibrium, coalition-proof equilibrium, etc. However, there

are interesting properties for mechanisms that are attached to families of games rather than

solution concepts.4 So why focus on the solution concept? This chapter proposes an al-

ternative approach by using a weak solution concept — Bayesian equilibrium — and by

instead focusing on a class of games with nice theoretical and experimental properties.

The centerpiece of my analysis is Theorem 5. In quasilinear environments with real

type spaces, I prove that if a scf can be implemented by a direct mechanism that generates

bounded strategic substitutes — as opposed to strategic complementarities — then this

mechanism can be turned into a direct supermodular mechanism that implements the scf.

The condition of bounded substitutes is always satisfied on finite type spaces and in twice-

continuously differentiable environments with compact type spaces. So, the result is fairly

general. The transformation technique is constructive and simple, yet powerful. I explain

it in the next section in the context of a public goods example. The transfers can be

appended a piece that turns the agents’ announcements into complements, and that vanishes

in expectation when the opponents play truthfully; thus truthtelling remains an equilibrium

after the transformation. That piece is a coordination device that rewards the agent for

conforming to the direction and amplitude of her opponents’ report and that punishes her

for not doing so.

In quasilinear environments, the mechanism designer is often interested in that there be

no transfers into or out of the system. This is known as the budget balance condition and

it plays an important role in (full) efficiency. Achieving budget balancing is difficult under

dominant strategy implementation (Green and Laffont [40]) but possible under Bayesian

implementation (Arrow [7] and d’Aspremont and Gérard-Varet [28]). Theorem 6 shows

that budget balancing is also possible under supermodular Bayesian implementation. If

a scf contains an (allocation) efficient decision rule and admits a mechanism producing

bounded substitutes, then it is supermodular implementable with balanced transfers. In-

terestingly, there are cases where dominant strategy implementation cannot balance the

budget, whereas it is possible to balance the budget and induce a supermodular game with
4Sandholm [96] and [97] successfully use implementation in potential games to obtain evolutionary prop-

erties of the mechanism.



44

a unique equilibrium.

Complementarities help guide agents towards the equilibrium, but they are source of

new equilibria with possibly bad outcomes on which agents may coordinate. Supermodular

implementation relies on weak implementation, i.e only the truthful equilibrium is known

to deliver the desired outcome. Yet the mechanisms here generate a largest and a small-

est equilibrium. There is a multiple equilibrium problem and I deal with it by developing

optimal and unique supermodular implementation. Optimal supermodular implementation

involves designing a supermodular mechanism that generates the weakest complementar-

ities among all supermodular mechanisms. I prove that the interval between the largest

and the smallest equilibrium decreases with the complementarities, hence optimal imple-

mentation produces the tightest interval around the truthful equilibrium (Proposition 7).

Since this interval is “small,” learning leads to a profile close to truthtelling and to the

desired outcome. The intuition is that agents should be rewarded or punished to adopt

monotone behaviors but no more than necessary, otherwise they tend to overreact. The

main result (Theorem 7) is that all twice-differentiable scf whose decision rule depends on

types through an aggregate are optimally supermodular implementable. Unique supermod-

ular implementation describes that situation where the truthful equilibrium is the unique

equilibrium of the induced supermodular game. All dynamics converge to the equilibrium.

Theorem 8 gives conditions for unique supermodular implementation. As a by-product, it

implies coalition-proof Nash implementation by Milgrom and Roberts [79].

The theory applies to traditional models of public goods or principal multi-agent mod-

els. In a public goods example with quadratic preferences, suppose that a designer uses

the expected externality mechanism to implement some decision rule (Section 3.2). In the

induced game, many learning dynamics fail to converge to the truthful equilibrium. Never-

theless, the mechanism can be modified to induce a supermodular game where the truthful

equilibrium is unique and all dynamics converge to it. In a team-production example, a

principal contracts with a set of agents and monitors their contribution to maximize net

profits (Section 3.6.1). The scf is optimally implementable and truthtelling is the unique

equilibrium of the induced supermodular game. But there are also challenging applications

for the theory such as binary-choice models of auctions and public goods. A possible way

around this problem is approximate implementation, where the objective becomes to su-

permodularly implement scf that are arbitrarily close to a “target scf.” Most bounded scf
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admit nearby scf that are supermodular implementable (Section 3.5.4). The results apply,

for instance, to auctions, public goods, and bargaining (Myerson and Satterthwaite [88]).

Supermodular implementation is widely applicable in quasilinear environments even

though the chapter limits attention to direct mechanisms. For general preferences, however,

direct mechanisms may be restrictive. The Revelation Principle says that direct mechanisms

cause no loss of generality under traditional weak implementation. It is particularly relevant

to examine the revelation principle for supermodular implementation, because the space of

mechanisms to consider is very large. The Supermodular Revelation Principle (Theorem

9) says that if there exists a mechanism that supermodularly implements a scf such that

the range of the equilibrium strategies in the desired equilibrium is a lattice, then there is

a direct mechanism that supermodularly implements that scf truthfully. I give an example

of a supermodular implementable scf where this range is not a lattice and that cannot be

supermodularly implemented by any direct mechanism. This suggests that the condition of

the theorem is somewhat minimally sufficient. Although this revelation principle is not as

general as the traditional one, it measures the restriction imposed by supermodular direct

mechanisms and gives conditions for their use.

A number of papers are related to learning and stability in the context of implementa-

tion or mechanism design. Chen [21] deserves mention because it is one of the first papers

explicitly aimed at learning and stability in mechanism design. In a complete information

environment with quasilinear utilities, she constructs a mechanism that Nash implements

Lindahl allocations and induces a supermodular game. Here I build the framework of su-

permodular Bayesian implementation and I generalize her result in incomplete information.

Abreu and Matsushima [1] establishes that for any scf f and positive ε, there is an ε-close scf

fε that admits a mechanism where iterative deletion of strictly dominated strategies leads

to a unique profile whose outcome is fε. Even though their result is general and strong,5 it

can be questioned on the basis of learning and stability. Following Cabrales [14], when the

mechanism implements fε, it actually implements it in iteratively strictly ε-undominated

strategies. In other words, elimination of weakly dominated strategies is the solution con-

cept that underlies the exact-implementation problem for f (Abreu and Matsushima [2]);

virtual implementation is a way of turning it into elimination of strictly dominated strate-
5The solution concept is strong enough to predict convergence of many learning dynamics to the unique

equilibrium outcome (See e.g [77]). Note that there are games where some adaptive dynamics from [76] do
not converge to a uniquely rationalizable profile.
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gies for fε.6 Another criticism is that it does not seem to extend to infinite sets of types,

which is related to important theoretical questions (Duggan [30]). Their mechanism also

employs a message space whose dimension increases to infinity as ε vanishes. In contrast,

this chapter studies exact implementation with direct mechanisms on finite or infinite type

sets. Cabrales [14] and Cabrales and Serrano [16] demonstrate that there are learning dy-

namics that converge to desired equilibrium outcomes in a general framework of (Bayesian)

Nash implementation. But those dynamics require players to strictly randomize over all im-

provements on past play.7 This rules out many natural learning dynamics considered here.

Finally, there are general impossibility results on the stability of equilibrium outcomes in

Nash implementation (Jordan [58] and Kim [61]).

The chapter is organized as follows. Section 3.2 presents the leading public goods ex-

ample. Section 3.3 gives the basic definitions of lattice theory and Section 3.4 lays out the

framework of supermodular implementation. Section 3.5 contains the main results. Section

3.6 provides several applications of the theory to traditional models and introduces ap-

proximate supermodular implementation. Section 3.7 presents the supermodular revelation

principle. Finally, Section 3.8.2 gives an interpretation of learning in Bayesian games and

Section 3.9 concludes.

3.2 Motivation and Intuition

This section provides an economic example of a designer who uses the expected exter-

nality mechanism (Arrow [7] and d’Aspremont and Gérard-Varet [28]) to implement a scf.

The environment is simple: Two agents with smooth utilities and compact real type spaces.

Yet the mechanism induces a game where learning and stability fail under many dynamics.

Then I describe a new approach where the existing mechanism is modified in order to

induce a supermodular game. In the example, the benefit is immediate: All learning dy-

namics converge to the truthful equilibrium, and the equilibrium is stable.

Consider a principal who needs to decide the level of a public good, such as the size

of a bridge. Let X = [0, 2] denote the possible values of the public good. There are two
6Elimination of strictly dominated strategies implies robust learning properties, but not for weakly domi-

nated strategies because it has the perverse consequence of excluding limit points of some learning dynamics.
7This feature is crucial, for example, to allow play to exit an integer game after players have fallen into

it.
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agents, 1 and 2, whose type spaces are Θ1 = Θ2 ⊂ [0, 1]. Types are independently uniformly

distributed. The agents’ preferences are quasilinear, ui(x, θi) = Vi(x, θi) + ti, where x ∈ X,

θi ∈ Θi, and ti ∈ R is the transfer from the principal to agent i. The valuation functions

are V1(x, θ1) = θ1x− x2 and V2(x, θ2) = θ2x+ x2/2.

The principal wishes to make an allocation-efficient decision, i.e. she aims to maximize

the sum of the valuation functions by choosing x∗(θ) = θ1 + θ2. To this end, she wants the

agent to reveal their true type, so she opts for the expected externality mechanism.8 The

transfers are set as follows:

t1(θ̂1, θ̂2) =
1
2

+
θ̂2
2

+ θ̂2
2 + θ̂1 +

θ̂2
1

2
, t2(θ̂1, θ̂2) = −t1(θ̂1, θ̂2).

Consider the straightforward application of learning to the (ex-ante) Bayesian game

induced by this mechanism (see Section 3.8.2).9 I will study convergence and stability

of learning dynamics. Time proceeds in discrete periods t ∈ {0, 1, . . .} and agents are

assumed to learn as time passes according to some rule. The strategies at time 0 are given

exogenously. The agents observe the history of play from 0 to t − 1 and then publicly

play a strategy at t. More precisely, from the strategies played in the past, each agent

updates her beliefs about her opponent’s future strategy using some specified rule; then,

given those updated beliefs, she plays the strategy which maximizes her current expected

payoffs in the mechanism. In this context, a strategy is a deception, which is a contingent

plan that specifies a type to be announced for each of an agent’s possible types, and that

she commits to follow after learning her type. Formally, a deception for i at period t is a

function θ̂t
i : Θi → Θi.10

The questions are: Will the profile played at t converge to the truthful equilibrium as

t → ∞? If players were in the truthful equilibrium, will they return to this equilibrium

after an exogenous perturbation? The first question asks whether the agents ever learn to

play truthfully. The second one asks whether truthtelling is a stable equilibrium.

The players’ payoffs determine the answers. For i = 1, 2, define the set of deceptions
8This mechanism allows truthful implementation of allocation-efficient decision rules (see [7], [28], or

Section 23.D in Mas-Colell et al. [68]) i.e. truthtelling is a Bayesian equilibrium of the mechanism.
9See Chapter 1 of Fudenberg and Levine [37] for a justification and discussion of myopic learning.

10Announcing a deception in the Bayesian game might seem more realistic when type sets are finite (the
example has similar conclusions in the finite case), but here it will come down to choosing an intercept
between -1 and 1.
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Σi as the set of measurable functions from Θi into Θi, and let P(Σi) be the set of (Borel)

probability measures over Σi. Let µt
i ∈ P (Σj) be player i’s beliefs about player j’s deceptions

at time t. A learning model is defined by a rule that takes the history of play as input and

that generates beliefs µt
i as output.

Letting cplt(i) = 2(−1)i/i, player i’s expected utility in the mechanism is

E[ui|µt
i] = − θ̂

2
i

2
+
(
θi + cplt(i)E

[
Eθj

[θ̂t
j(θj)] |µt

i

]
− (−1)i/i

)
θ̂i (3.1)

up to a constant, where E[.|µt
i] is i’s expectation over Σj (j’s deceptions) given her beliefs

µt
i.

In (3.1), cplt determines how players’ strategies depend on one another. Since cplt(1) < 0

and cplt(2) > 0, if player 1 believes player 2’s strategy has increased on average, then 1

decreases her strategy and vice-versa; whereas 2 tries to match any average-variation in 1’s

strategy. Players essentially chase one another, and so this game has a flavor of “matching-

pennies” that will be the source of instability and learning deficiency.

Learning often fails to occur in this example. There are many learning dynamics for

which, not only do the agents not converge to truth-revealing but the play cycles forever.

Consider first weighted fictitious play (see e.g. Ho [52]) in the case where, for simplicity,

types are in {0, .5, 1}. So Σi is finite. Deceptions are initially assigned arbitrary weights

and the beliefs are given by the frequencies of the different deceptions in the total weight.

Given 0 < π < 1, beliefs are updated each period by multiplying all weights by 1−π and by

adding one to the weight of the opponent’s deception played at the last period. If players

use an identical rule π, the profile converges to the truthful equilibrium unless π is too high

(π > .8), in which case cycling occurs. But there is no reason a priori for both players to

use the same learning rule. For asymmetric rules, learning becomes more uncertain. The

player with the highest π often outweighs the other one in a non-linear fashion and prevents

learning.11

Consider now the model with continuous types in [0, 1]. A dynamics is said to be

Cournot if each player believes that her opponents will play at t what they played at t− 1.

In the example, Cournot dynamics cycles and this conclusion holds wherever the dynamics

starts (except truthtelling) (see Figure 3.1). Besides, if the agents were to play the truthful
11If 1 learned according to a fictitious play rule with π1 while 2 used π2, then the sequence would enter a

cycle for many values of π1 ≥ .9, π2 ≥ .55.
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Figure 3.1: Cycling under Cournot Dynamics

equilibrium, the slightest belief perturbation would destabilize it under Cournot adjustment.

Given (3.1) is quadratic, the best-reply of an agent is always an affine function whose

intercept varies in response to the opponent’s strategy (the slope is always one). Figure 3.1

depicts the Cournot adjustment between two agents whose strategies are affine functions

with slope one. The curves give the optimal choice of an intercept in response to the other

agent’s intercept. The downward-sloping curve is that of agent 1. The upward-sloping curve

is that of agent 2 and should be understood as a function mapping 1’s intercept (y-axis) to

2’s intercept (x-axis). Clearly, Cournot dynamics cycles and this conclusion holds wherever

the dynamics starts, except at zero, the truthtelling equilibrium. Cournot dynamics is prone

to cycling, because the past only matters through the last period. But cycling prevails for

many families of dynamics with a larger memory size, where for example players remember

the last T periods and believe that a probability distribution over their opponents’ past

strategies best describe their future behavior.12

Learning also fails for other forms of learning dynamics than adaptive dynamics, such
12Consider dynamics where players remember the last T periods. They assign a probability π to the

deception played at t − 1 and (1 − π)δk/C to that played at t − k where C is normalized so that the
probabilities add up to one. Simulations reveal that learning fails under many values of the parameters. Let
(θ̂0

1(.), θ̂
0
2(.)) be the pair of zero-functions. For T ∈ {2, 3}, δ = .9 and π ≥ .5, the process enters a cycle even

though the last few periods are weighted almost equally. This suggests that increasing the memory size may
improve learning. For T = 4, δ = .8, and π ≤ .65, the profile converges to the truthful equilibrium, but it
cycles for π ≥ .7. But a larger memory does not necessarily improve learning, as cycling reappears when
T = {5, 6}, δ = .8 for values of π below .65.
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as the sophisticated learning dynamics à la Milgrom-Roberts [77].

Although strategic complementarities are not necessary for convergence, their absence

clearly causes the learning failures in the example.

The theory I develop suggests to transform an existing mechanism into one which induces

a supermodular game. The main insight is to use transfers to create complementarities be-

tween agents’ announcements. The general transformation technique is simple and efficient.

After transforming the mechanism, all adaptive and sophisticated dynamics converge to the

truthful equilibrium, and the equilibrium is stable.

Consider the above two-agent environment and recall that truthtelling is a Bayesian

equilibrium in the expected externality mechanism. Now player 1 could be subsidized if

she accepts to change the value of the public good as 2 wishes, and taxed otherwise. From

1’s point of view, 2 prefers large values of the public good when 2 reports large types on

average, i.e. Eθ2 [θ̂2(.)] ≥ Eθ2 [θ2]. If 2 prefers small values, then the inequality is reversed.

The new tax system could subsidize 1 if 1 reports large types when 2 does so, and tax 1

if 1 still reports large types when 2 does not. Possible transfers tSM
1 (.) accomplishing this

task are constructed by appending ρ1θ̂1(θ̂2 − Eθ2 [θ2]) to the current transfers, where ρ1 is

an arbitrary parameter capturing the punishment or reward intensity:

tSM
1 (θ̂) = Eθ2 [t1(θ̂1, θ2)] + ρ1θ̂1(θ̂2 − Eθ2 [θ2]).

Agent 2’s transfers are modified similarly with parameter ρ2. The intuition is that

there should be ρ1 large enough such that, regardless of 1’s original incentives, the reward

(punishment) for (not) following 2 now is so high that 1 becomes willing to follow 2 along

any learning dynamics. But by doing so, we actually created a supermodular mechanism.

Note ∂2tSM
1 (θ̂)/∂θ̂1∂θ̂2 = ρ1. Thus, if ∂2V1(x1(θ̂), θ1)/∂θ̂1∂θ̂2 is bounded below, a condition

called bounded substitutes,13 then there is ρ1 large enough such that

∂2V1(x1(θ̂1, θ̂2), θ1)

∂θ̂1∂θ̂2
+
∂2tSM

1 (θ̂1, θ̂2)

∂θ̂1∂θ̂2
≥ 0, for all θ̂, θ1. (3.2)

A similar equation holds for agent 2, which implies that the Bayesian game induced by the
13This condition is satisfied in the present public goods example.
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mechanism is supermodular.14 Further, tSM
1 and t1 have the same expectation when the

opponents play truthfully: Eθ2 [t
SM
1 (., θ2)] = Eθ2 [t1(., θ2)]. Thus if 1’s best-reply under t1

was to tell the truth when 2 played truthfully, then it must be the case under tSM
1 . So

truthtelling is an equilibrium after modifying the transfers.

In addition to its intuitive appeal, this technique can be powerful. Theorem 9 of Section

3.5.3 implies that there are values ρ1 and ρ2 for which truthtelling is the unique equilibrium

of the supermodular mechanism in this example. All adaptive dynamics now converge to

the truthful equilibrium, and the equilibrium is stable.

3.3 Lattice-Theoretic Definitions and Supermodular Games

The basic definitions of lattice theory in this section are discussed in Milgrom-Roberts

[76] and Topkis [?].

A set M with a transitive, reflexive, antisymmetric binary relation � is a lattice if for

any x, y ∈ M , x ∨ y ≡ supM{x, y} and x ∧ y ≡ infM{x, y} exist. It is complete if for every

non-empty subset A of M , infM A and supM A exist. A nonempty subset A of M is a

sublattice if for all x, y ∈ A, x ∨ y, x ∧ y ∈ A. A closed interval [x, y] in M is the set of

m ∈ M such that y � m � x. The order-interval topology on a lattice is the topology

whose subbasis for the closed sets is the set of closed intervals. All lattices are endowed

with their order-interval topology. In Euclidean spaces the order-interval topology coincides

with the usual topology.

Let T be a partially ordered set; g : M → R is supermodular if, for all m,m′ ∈ M ,

g(m)+g(m′) ≤ g(m∧m′)+g(m∨m′); g : M×T → R has increasing (decreasing) differences

in (m, t) if, whenever m � m′ and t � t′, g(m, t) − g(m′, t) ≥ (≤)g(m, t′) − g(m′, t′);

g : M × T → R satisfies the single-crossing property in (m, t) if, whenever m � m′ and

t � t′, g(m′′, t′) ≥ g(m′, t′) implies g(m′′, t′′) ≥ g(m′, t′′) and g(m′′, t′) > g(m′, t′) implies

g(m′′, t′′) > g(m′, t′′). If g has decreasing differences in (m, t), then variables m and t are

said to be substitutes. If g has increasing differences or satisfies the single-crossing property

in (m, t), then m and t are said to be complements.

A game is described by a tuple (N, {(Mi,�i)}, u), where N is a finite set of players; each
14If the complete information payoffs define a supermodular game for each θ ∈ Θ, then the (ex-ante)

Bayesian game is supermodular. Loosely speaking, supermodular games are characterized by utility functions
whose cross-partial derivatives are positive.
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i ∈ N has a strategy space Mi with an order �i and a payoff function ui :
∏

i∈N Mi → R;

and u = (ui).

Definition 8 A game G = (N, {(Mi,�i)}, u) is supermodular if for all i ∈ N ,

1. (Mi,�i) is a complete lattice;

2. ui is bounded, supermodular in mi for each m−i, and has increasing differences in

(mi,m−i);

3. ui is upper-semicontinuous in mi for each m−i, and continuous in m−i for each mi.

3.4 Supermodular Implementation: The Framework

Let N = {1, . . . n} denote a collection of agents. A planner faces a measurable set Y of

alternatives with generic element y ∈ Y . For each agent i ∈ N , let Θi be the measurable

space of i’s possible types. Let Θ−i =
∏

j 6=i Θj . Agents have a common prior φ on Θ known

to the planner. The planner’s desired outcomes are represented by a measurable social

choice function f : Θ → Y .

A mechanism is a tuple Γ = ({(Mi,�i)}, g) where each agent i’s message space Mi is

endowed with an order �i and is a measurable space; g : M → Y is a measurable outcome

function. A strategy for agent i is a measurable function mi : Θi →Mi. Denote by Σi(Mi)

the set of equivalence classes of measurable functions from (Θi,Fi) to Mi. This set is

endowed with the pointwise order, also denoted �i. A direct mechanism is one for which

each Mi = Θi and g = f . In this case, Σi(Θi) is called the set of i’s deceptions and its

elements are denoted θ̂i(.). Direct mechanisms vary by the order on type spaces.

Each agent i’s preferences over alternatives are given by a measurable utility function ui :

Y ×Θi → R. These utility functions are uniformly bounded by some u. For m−i ∈
∏

j 6=iMj ,

agent i’s preferences over messages in Mi are given by her ex-post payoffs ui(g(mi,m−i), θi).

Agent i’s ex-ante payoffs are defined as ug
i (mi(.),m−i(.)) = Eθ[ui(g(mi(θi),m−i(θ−i), θi)]

for any profile m(.), where Eθ[.] is the expectation with respect to φ.

There are three stages at which it is relevant to formulate the game induced by mech-

anism Γ: Ex-ante, interim, and ex-post (complete information). This chapter mostly

adopts an ex-ante perspective, as the objective is that the ex-ante induced game G =

(N, {(Σi(Mi),�i)}, ug) be supermodular (see Section 3.8.2). However, if message sets are
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compact sublattices of some Euclidean space, then a sufficient condition for G to be super-

modular is that the complete information game induced by Γ be supermodular for every

profile of true types. This explains the next definitions. If a scf is Bayesian implementable

with a mechanism that always induces an ex-post supermodular game, then it is supermod-

ular implementable.

Definition 9 The mechanism Γ supermodularly implements the scf f(.) if there exists a

Bayesian equilibrium m∗(.) such that g(m∗(θ)) = f(θ) for all θ ∈ Θ, and if the induced

game G(θ) = (N, {(Mi,�i)}, u(g(.), θ)) is supermodular for all θ ∈ Θ. The scf f is said to

be supermodular implementable.15

Definition 10 A scf is truthfully supermodular implementable if there exists a direct mech-

anism that supermodularly implements the scf f(.) such that θ̂(θ) = θ for all θ ∈ Θ is a

Bayesian equilibrium.

Since I am mostly concerned with direct Bayesian mechanisms, I often omit the quali-

fications of “truthful(ly)” and “Bayesian.”

3.5 Supermodular Implementation on Quasilinear Domains

This section deals with supermodular implementation when agents have quasilinear util-

ity functions. The objective is to give general conditions under which a scf is supermodular

implementable and the mechanism satisfies some further requirements. There are four main

results. The first provides general conditions for supermodular implementability. The sec-

ond answers the question of supermodular implementation and budget balancing. The third

gives sufficient conditions for a scf to be supermodular implementable with a game whose

interval between extremal equilibria is the smallest possible. The fourth offers sufficient

conditions for supermodular implementability in unique equilibrium.
15Definitions 9 and 10 are also simplifying definitions. It is sufficient but not necessary that G(θ) be

supermodular for each θ in order for the ex-ante Bayesian game to be supermodular. For example, if the
prior is mostly concentrated on some subset Θ′ of Θ, it may not be necessary to make the ex-post payoffs
supermodular for types in Θ\Θ′. Of course, the possibility of neglecting Θ\Θ′ depends on how unlikely that
set is compared to how submodular the utility function may be for types in that set.
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3.5.1 Environment and Definitions

An alternative y is a vector (x, t1, . . . , tn) where x is an element of a compact setX ⊂ Rm

and ti ∈ R for all i. Each agent i has a compact type space Θi ⊂ R (finite or infinite).

Endow Θi with the usual order.16

Let Xi be a compact subset of Rmi such that
∏

i∈N Xi = X. In this environment, a scf

f = (x, t) is composed of a decision rule x : Θ 7→ (xi(θ)) where xi : Θ → Xi and transfer

functions ti : Θ → R.

For all i, preferences are quasilinear with utility function ui(x, θi) = Vi(xi, θi) + ti. The

function Vi : Xi×Θi → R is called i’s valuation and the vector of those valuations is denoted

V .

Agents’ types are assumed to be independently distributed. For all i, the distribution

of i’s types admits a bounded density with full support.

A scf is supermodular implementable if truthtelling is a Bayesian equilibrium of the su-

permodular game induced by the direct mechanism.

The next definitions describe conditions on the composition of the valuation functions

and the decision rule.

The valuation functions and the decision rule form a continuous family if V is bounded

and for all i and θi, Vi(xi(θ̂), θi) is continuous in θ̂−i for fixed θ̂i, and Vi(xi(θ̂), θi) is upper-

semicontinuous in θ̂i for fixed θ̂−i.

The valuation functions and the decision rule are (twice) continuously differentiable if

for all i, there exist open sets Oi ⊃ Θi and Ui ⊃ Xi, such that Vi : Ui × Oi → R and

xi :
∏

i∈N Oi → Ui are (twice) continuously differentiable.

For any θ′′i and θ′i, let ∆Vi(θ′′i , θ
′
i, θ−i, θi) = Vi(xi(θ′′i , θ−i), θi) − Vi(xi(θ′i, θ−i), θi). The

same notation is used for the utility functions.

Say that the valuations and the decision rule have bounded substitutes if, for each i

and θi, there is a real number Ti(θi) such that ∆Vi(θ′′i , θ
′
i, θ

′′
−i, θi) − ∆Vi(θ′′i , θ

′
i, θ

′
−i, θi) ≥

Ti(θi)(θ′′i − θ′i)
∑

j 6=i(θ
′′
j − θ′j) for all θ′′i ≥ θ′i and θ′′−i ≥ θ′−i. Substitutes are uniformly

bounded if the lower bound Ti(.) can be chosen to be constant across types.

In twice-differentiable environments, this condition is equivalent to the existence of a
16Notice that Σi(Θi) is a complete lattice with the pointwise order (see Lemma 1 in Van Zandt [104]).
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uniform lower bound on the cross-partial derivatives. Bounded substitutes mean that, if

agents’ announcements are strategic substitutes in the game with no transfers,17 then at

least there is a bound on the negative magnitude of these cross-partial derivatives. This

assumption is always satisfied when type sets are finite and whenever the decision rule and

the valuations are twice-continuously differentiable on compact type sets.

The valuations and the decision rule have strong differences if for each i and θi, there

is γi(θi) such that for all θ̂′′i ≥ θ̂′i and θ′′i ≥ θ′i, ∆Vi(θ̂′′i , θ̂
′
i, θ−i, θ

′′
i ) − ∆Vi(θ̂′′i , θ̂

′
i, θ−i, θ

′
i) ≥

γi(θi)(θ̂′′i − θ̂′i)(θ
′′
i − θ′i).

The utility functions and the scf generate bounded complements if for each i and θi,

there is a real number Ki(θi) such that ∆ui(θ′′i , θ
′
i, θ

′′
−i, θi)−∆ui(θ′′i , θ

′
i, θ

′
−i, θi) ≤ Ki(θi)(θ′′i −

θ′i)
∑

j 6=i(θ
′′
j −θ′j) for all θ′′i ≥ θ′i and θ′′−i ≥ θ′−i. Complements are uniformly bounded if there

is a uniform upper bound Ki. These definitions apply similarly to valuation functions.

Note that the conditions of bounded substitutes and complements, and strong differences

are simple bounds on derivatives, generalized to hold in non-differentiable environments.

3.5.2 General Result and Implementation with Budget Balance

This subsection contains two main results. According to the first theorem, if the scf

and the utility functions are relatively well-behaved, in the sense of continuous families and

bounded substitutes, then a decision rule is implementable with transfers if and only if

it is supermodular implementable with transfers. The second theorem provides sufficient

conditions to satisfy budget balancing.

Theorem 5 Let decision rule and the valuation functions form a continuous family with

uniformly bounded substitutes. There exist transfers t such that f = (x, t) is implementable

and Eθ−i
[ti(., θ−i)] is upper-semicontinuous, if and only if, there are transfers tSM such

that (x, tSM ) is supermodular implementable and Eθ−i
[tSM

i (., θ−i)] is upper-semicontinuous.

Moreover, transfers ti and tSM
i have the same expected value.

Proof: Sufficiency is immediate. So suppose that f = (x, t) is Bayesian implementable

and transfers t are such that Eθ−i
[ti(., θ−i)] is usc for all i. Then,

Eθ−i
[Vi(xi(θi, θ−i), θi)] + Eθ−i

[ti(θi, θ−i)] ≥ Eθ−i
[Vi(xi(θ̂i, θ−i), θi)] + Eθ−i

[ti(θ̂i, θ−i)] (3.3)

17That is ∂2Vi(xi(θ̂), θi)/∂θ̂i∂θ̂j < 0 (Section 3.3).
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for all θ̂i. For ρi ∈ R, let
δi(θ̂i, θ̂−i) =

∑
j 6=i

ρiθ̂iθ̂j , (3.4)

and define

tSM
i (θ̂i, θ̂−i) = δi(θ̂i, θ̂−i) + Eθ−i

[ti(θ̂i, θ−i)]− Eθ−i
[δi(θ̂i, θ−i)]. (3.5)

Note that transfers ti and tSM
i have the same expected value: Eθ−i

[tSM
i (., θ−i)] = Eθ−i

[ti(.,

θ−i)]. Thus (x, tSM ) is Bayesian implementable by (3.3). Moreover, δi : Θ → R is continu-

ous and bounded. So it follows from the bounded convergence theorem that Eθ[δi(θ̂i(θi), θ̂−i

(θ−i))−Eθ−i
[δi(θ̂i(θi), θ−i)]] is continuous in θ̂(.). Since transfers t are such that Eθ−i

[ti(., θ−i)]

is usc, Fatou’s lemma implies that Eθ[tSM
i (θ̂i(θi), θ̂−i(θ−i))] is usc in θ̂i(.) for each θ̂−i(.).

Therefore, payoffs uf
i satisfy the continuity requirements for supermodular games. Next I

show that it is possible to choose ρi so that uf
i has increasing differences in (θ̂i(.), θ̂−i(.)).

Since substitutes are uniformly bounded, there exists Ti such that, for all θ′′i ≥ θ′i and

θ′′−i ≥ θ′−i, ∆Vi(θ′′i , θ
′
i, θ

′′
−i, θi) −∆Vi(θ′′i , θ

′
i, θ

′
−i, θi) ≥ Ti(θ′′i − θ′i)

∑
(θ′′j − θ′j) for all θi ∈ Θi.

Set ρi > −Ti. Choose any θ′′i ≥i θ
′
i and θ′′−i ≥−i θ

′
−i. The function ui(xi(θ̂i, θ̂−i), θi) has

increasing differences in (θ̂i, θ̂−i) for each θi, if the following expression is positive for all θi,

∆Vi(θ′′i , θ
′
i, θ

′′
−i, θi)−∆Vi(θ′′i , θ

′
i, θ

′
−i, θi) +

∑
j 6=i

ρi

(
θ′′i θ

′′
j + θ′iθ

′
j − θ′′i θ

′
j − θ′iθ

′′
j

)
. (3.6)

Given ρi > −Ti, (3.6) is greater than

∆Vi(θ′′i , θ
′
i, θ

′′
−i, θi)−∆Vi(θ′′i , θ

′
i, θ

′
−i, θi)− Ti

∑
j 6=i

(θ′′i − θ′i)(θ
′′
j − θ′j). (3.7)

Bounded substitutes immediately imply that (3.7) is positive for all θi, hence so is (3.6). By

Lemma 5, the utility function uf
i has increasing differences in (θ̂i(.), θ̂−i(.)). Finally, since

Θi is a chain, Lemma 5 implies uf
i is supermodular in θ̂i(.). Q.E.D

Theorem 5 shows that the class of implementable scf that can be supermodularly imple-

mented in Bayesian equilibrium is large, as there are only mild boundedness and continuity

conditions on the utility functions and the scf. The transfers are at the heart of the result:

It is always possible to add complementarities into the transfers without affecting the in-

centives that appear in the expected value.
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Remark. Since players receive the same expected utility in equilibrium from (x, t) and

(x, tSM ), if (x, t) satisfies some ex-ante or interim participation constraints, then so does

(x, tSM ).

Recall that, if type spaces are finite or if the valuations and the decision rule are

twice-continuously differentiable on compact type sets, then the assumptions of uniformly

bounded substitutes and continuity are satisfied. This leads to the following important

corollaries which cover many cases of interest.

Corollary 3 Let type spaces be finite. For any valuation functions, if the scf f = (x, t)

is implementable, then there exist transfers tSM such that (x, tSM ) is supermodular imple-

mentable.

Corollary 4 Let f = (x, t) be an implementable scf such that Eθ−i
[ti(., θ−i)] is upper-

semicontinuous. If the decision rule and the valuations are twice-continuously differentiable,

then there exist transfers tSM such that (x, tSM ) is supermodular implementable.

The previous results state conditions that apply to Bayesian implementable scf. In some

instances it may not be obvious whether the decision rule admits implementing transfers

whose expected value is usc. Standard implementation results in differentiable environments

demonstrate that the expected value of the transfers in an implementable scf takes an

explicit form.18 This leads to the next proposition.

Proposition 6 Let type spaces be intervals. Let the decision rule and the valuations form

a continuous family with uniformly bounded substitutes. If Eθ−i
[Vi(xi(θ̂i, θ−i), θi)] is contin-

uous in (θ̂i, θi) and ∂Eθ−i
[Vi(xi(θ̂i, θ−i), θi)]/∂θi is increasing in θ̂i, then there are transfers

tSM such that (x, tSM ) is supermodular implementable.

To identify supermodular implementable decision rules, Proposition 6 suggests to choose

those rules that lead each agent i’s expected marginal valuation to be nondecreasing. By

Theorem 5 and Proposition 12 in Appendix B, any such rule is supermodular implementable

with transfers tSM , combining (3.5) and (3.13).
18See, e.g., Proposition 23.D.2 in Mas Colell et al. [68] for linear utility functions.
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The rest of this section investigates supermodular implementation under the budget

balance condition. In some design problems, the planner should not realize a net gain from

the mechanism. While the planner cannot sustain deficits, full efficiency requires there be no

waste of numéraire. A scf is fully efficient if it maximizes the sum of the utility functions

(not only the valuation functions) subject to the feasibility constraint
∑
ti ≤ 0. So the

transfers must add up to zero for each vector of true types. However, complementarities

between agents’ announcements may be irreconcilable with budget balancing, as shown in

the next example.

Example 2 Consider the public goods example of Section 3.2. In this example, if there

exist transfers {tSM
i (.)}i=1,2 such that the resulting scf (x, tSM ) is supermodular imple-

mentable, then inequality (3.2) must hold for both agents. That is, the cross-partial deriva-

tives of t1(θ̂) must be greater than 2 and the cross-partial derivatives of t2(θ̂) must be

greater than -1; hence their sum will be strictly greater than 0. The budget balance con-

dition requires
∑

i=1,2 ti(θ̂) = 0, so the sum of the cross-partial derivatives of the transfers

must be null. As a result, budget balancing must be violated in this example if there is

supermodular implementation.

This example points to the difficulty of balancing budget in some situations with two

players. The next theorem provides sufficient conditions for a scf to be supermodular

implementable using balanced transfers. Say that a decision rule x is allocation-efficient, if

x(θ) ∈ argmaxx∈X

∑
i∈N Vi(xi, θi) for all θ ∈ Θ. Basically, if substitutes are bounded, any

allocation-efficient decision rule can be paired with a transfer scheme to give a fully efficient

supermodular-implementable scf.

Theorem 6 Let n ≥ 3. Let valuation functions and the decision rule form a continuous

family with uniformly bounded substitutes. If the decision rule is allocation-efficient, then

there are balanced transfers tBB such that (x, tBB) is supermodular implementable.

The proof appears in Appendix B and it is constructive. Transfers tBB correspond to a

transformation of the transfers in the expected externality mechanism, and they rely on two

observations. First, any player’s transfer in the expected externality mechanism displays

no complementarities or substitutes, because transfers are separable in announcements.

Second, there is a transformation of these transfers similar to that in Theorem 5 that
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enables to add complementarities while preserving incentives and budget balancing. The

key observation is that the transfers from Theorem 5 add complementarity between agents’

announcements in a pairwise fashion. As soon as there is a third agent, it is possible to

subtract from each individual’s transfer those complementarities that come from the other

agents’ transfers and that do not concern that individual, thus balancing the whole system.

Theorem 6 can be modified to apply to situations where, for every realization of types,

enough taxes need to be raised to pay the cost of x. This constraint takes the form∑
i∈N ti(θ) ≥ C(x(θ)) for all θ, where C is the cost function mapping X into R+.19

3.5.3 Optimal and Unique Supermodular Implementation

This subsection deals with the multiple equilibrium problem in supermodular imple-

mentation. Even if a mechanism has an equilibrium outcome with some desirable property,

it may have other equilibrium outcomes that are undesirable. The concept of supermodular

implementation relies on weak implementation: For direct mechanisms, only the truthful

equilibrium is known to have the desired outcome. It follows from [76] that adaptive dy-

namics lead to play between the greatest and the least equilibrium, so players may learn to

play an untruthful equilibrium associated with a bad outcome. Therefore, it is important

to minimize the size of the interval between the extremal equilibria, called the interval pre-

diction, and to take the number of equilibria into consideration. If the interval prediction is

small, then learning leads to a profile close to truthtelling and to the desired outcome. For

these reasons, supermodular implementation is particularly powerful when truth-revealing

is the unique equilibrium.

3.5.3.1 Optimal Implementation

I begin with an example that explains the foundations of this section.

Example 3 Consider the public goods example of Section 3.2. Suppose that transfers are

defined as ti(θ̂) = ρiθ̂iθ̂j +Eθj
[ti(θ̂i, θj)]−ρiθ̂iEθj

[θj ] for i = 1, 2 and j 6= i, where ti is given

by the expected externality mechanism. If ρ1 = 21
2 and ρ2 = −1/2, the game induced by

19An additional sufficient condition to apply the theorem is that C(.) and x(.) produce bounded substitutes.
See, e.g., Lemma 2 in Ledyard and Palfrey [64] for transfers satisfying this budget balance condition. Note
that these transfers are separable in types except (possibly) for C(x(θ)), so there are no complementarities
or substitutes beyond those contained in C(x(θ)).



60

the mechanism is supermodular and truthtelling is the unique Bayesian equilibrium (see

Example 4). For ρ1 = 31
5 and ρ2 = 1/2, the supermodular game induced by the mechanism

has now a smallest and a largest equilibrium. In the smallest equilibrium, agent 1 announces

0 for any type below c1 ≈ 0.47 and θ1 − c1 for types above, and agent 2 announces 0 for

any type below c2 ≈ 0.55 and θ2 − c2 for types above. In the largest equilibrium, agent 1

announces θ1 + c1 for any type below 1− c1 and 1 for types above, and agent 2 announces

θ2 + c2 for any type below 1 − c2 and 1 for types above. Moreover, increasing ρ1 to 4

and ρ2 to 1 produces extremal equilibria with c1 = c2 = 1 and c1 = c2 = 0; the smallest

equilibrium is the smallest profile of the entire space where each agent always announces

her smallest type, and the largest equilibrium is the largest profile of the entire space where

each agent always announces her largest type. Increasing ρ1 and ρ2 has had three negative

consequences: i) By increasing these parameters above, respectively, 5/2 and -1/2, we have

generated two new equilibria. By increasing them more, ii) we have enlarged the size of the

interval prediction to be the whole space, so the Milgrom-Roberts theorem is of little help

now; iii) the truthful equilibrium has become locally unstable.

Before presenting the formal definitions and the results, I discuss some new concepts.

Think of the degree of complementarity between the variables of a function as given by

its cross-partial derivatives. Large cross-partials mean that the degree of complementarity

is high, and vice-versa. In Example 3, the transfers produce more complementarities as

ρi increases. Optimal supermodular implementation involves designing a mechanism whose

induced supermodular game has the weakest complementarities among supermodular mech-

anisms. The rationale behind optimal supermodular implementation is clear from Example

3. First, it is the best compromise between learning, stability, and multiplicity of equilibria.

Adding complementarities improves learning and stability, but too much complementarity

may yield untruthful equilibria. Second, optimal supermodular implementation provides

the tightest interval prediction around the truthful equilibrium (Proposition 7). This is

hinted at by Example 3, because the extremal equilibria move apart as the degree of com-

plementarity increases.

Next I define those concepts formally and I prove the claim that relates the size of

interval prediction to the degree of complementarity. As mentioned above, the cross-partial

derivatives offer a way of measuring complementarities in twice-differentiable environments.
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It is natural to say that a transfer function t̃ generates larger complementarities than t,

denoted t̃ �ID t, if ∂2t̃i(θ̂)/∂θ̂i∂θ̂j ≥ ∂2ti(θ̂)/∂θ̂i∂θ̂j for all θ̂, j, and i. The next definition

formalizes this idea and extends it to non-differentiable transfers.

Definition 11 Define the ordering relation �ID on the space of transfer functions such

that t̃ �ID t if, for all i ∈ N and for all θ′′i > θ′i and θ′′−i >−i θ
′
−i, t̃i(θ

′′
i , θ

′′
−i) − t̃i(θ′′i , θ

′
−i) −

t̃i(θ′i, θ
′′
−i) + t̃i(θ′i, θ

′
−i) ≥ ti(θ′′i , θ

′′
−i)− ti(θ′′i , θ

′
−i)− ti(θ′i, θ

′′
−i) + ti(θ′i, θ

′
−i).

For twice-differentiable transfers, this definition is equivalent to the condition that the

cross-partial derivatives of each t̃i are larger than those of ti.

While �ID is transitive and reflexive on the space of transfer functions, it is not anti-

symmetric. Consider the set of �ID-equivalence classes of transfers, denoted T .20

The next proposition shows that if a transfer function generates more complementarities

than another transfer function, then it induces a game whose interval prediction is larger

than the interval prediction of the game induced by the other transfer. This result is also

interesting for the theory of supermodular games, as it relates the degree of complementarity

to the size of the interval prediction.21

For any t ∈ T and supermodular implementable f = (x, t), let θt(.) and θt(.) denote the

extremal equilibria of the induced game.

Proposition 7 Let the decision rule and the valuation functions be such that Eθ−i
[Vi

(xi(θ̂i, θ−i), θi)] is continuous in (θ̂i, θi). For any supermodular implementable scf (x, t′′)

and (x, t′) with t′′, t′ ∈ T , if t′′ �ID t
′, then [θt′(.), θt′(.)] ⊂ [θt′′(.), θt′′(.)].

This proposition provides the foundation for the next definition. If a scf is supermodular

implementable and its transfers generate the weakest complementarities, then it is optimally

supermodular implementable. This gives the tightest interval prediction around the truthful

equilibrium.

Definition 12 A scf f = (x, t∗) is optimally supermodular implementable if it is super-

modular implementable and t �ID t
∗ for all transfers t ∈ T such that (x, t) is supermodular

implementable.

The next result determines which decision rules are optimally supermodular imple-

mentable. The result uses the following property of decision rules. A decision rule x :
20Any quasi-order is transformed into a partially ordered set using equivalence classes.
21See Milgrom and Roberts [78] (pp.189–190) for a related result.
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Θ 7→ (xi(θ)) is dimensionally reducible if, for each i ∈ N , there are twice-continuously

differentiable functions hi : R2 → Xi and ri : Θ−i → R such that ri(.) is increasing and

xi(θ) = hi(θi, ri(θ−i)) for all θ ∈ Θ. The condition is trivially true when there are two

individuals. If there are more than two, a player’s decision rule can depend on her own type

directly, but it must depend on her opponents’ types indirectly through a real-valued aggre-

gate. Taking types in [0, 1], it excludes, for example, x for which x1(θ) = θθ2θ3
1 +θ1+θ2+θ3.22

Theorem 7 Let the valuation functions be twice-continuously differentiable and f = (x, t)

be a scf whose decision rule is dimensionally reducible. If f is implementable, then there

are transfers t∗ such that (x, t∗) is optimally supermodular implementable.

The theorem gives a powerful conclusion: In twice-continuously differentiable environ-

ments, all implementable scf whose decision rule satisfies the dimensionality condition admit

a supermodular mechanism with the tightest equilibrium set.

3.5.3.2 Unique Implementation and Full Efficiency

After providing conditions for the smallest interval prediction, it is natural to study

situations where truthtelling is the unique equilibrium of the induced supermodular game.

All learning dynamics then converge to the equilibrium. This is the concept of unique super-

modular implementation. As a by-product, it implies coalition-proof Nash implementation

by Milgrom and Roberts [79].

This section also supports what appears to be a conflict between full efficiency and

learning. Example 2 already delivered the message: Sometimes the designer must sacrifice

either learning or efficiency; either she modifies the expected externality mechanism and

secures learning at the price of a balanced budget (full efficiency), or she loses the strong

learning properties by balancing budget via the expected externality mechanism.

Definition 13 A scf f = (x, t) is uniquely supermodular implementable if it is supermod-

ular implementable and the truthful equilibrium is the unique Bayesian equilibrium.

The main result (Theorem 8) gives sufficient conditions for a scf to be uniquely su-

permodular implementable. If the conditions fail, the theorem provides a simple way to

compute bounds on the equilibrium set.
22To see why, h1(θ1, r1) = θ

z(r1)
1 + θ1 + r1 for some z : R → R and r1(θ−1) = θ2 + θ3. But there is no z

such that z(θ2 + θ3) = θ2θ3 for all θ−1, because z(0 + 1) 6= z(.5 + .5).



63

The theorem imposes a condition on the matrix of complementarities. Assuming bounded

complements and strong differences (see Section 3.5.1), the matrix of complementarities is

the n × n matrix whose i -th row contains (n − 1) times the element Eθi
[Ki(θi)] and has

−Eθ−i
[γi(θ−i)] as its i -th element.

Theorem 8 Let f = (x, t) be a supermodular implementable scf. Let the valuations and

the decision rule be continuously differentiable. Assume bounded complements and strong

differences.

1. If the matrix of complementarities is negative-definite, then f is uniquely supermodular

implementable.

2. There exist two systems of 2n equations whose extremal solutions bound the equilibrium

set.

The matrix of complementarities indicates how sensitive players are as a whole to their

own type versus their opponents’ announcements. On the one hand, when the comple-

mentarities between own announcement and type are strong (large E[γ]), players tend to

announce high types regardless of their opponents’ strategies. This favors uniqueness. On

the other hand, when the complementarities between players’ announcements are strong

(large E[K]), it is source of multiplicity. The dominating effect is captured by the definite-

ness of the matrix of complementarities. If it is negative definite, the first effect is stronger,

hence there is uniqueness. For example, if the sum of the entries on each row is negative,

then the matrix is negative-definite.

The theorem also provides a way to bound the equilibrium set, which is useful when

the uniqueness condition fails. Finding these bounds simply involves solving a system of

equations. This system is formed exclusively from the primitives of the model. The ability

to compute bounds on the equilibrium set is attractive for welfare analysis, as it becomes

possible to measure the loss in efficiency caused by learning.

The focus of the next proposition is on optimal transfers and unique implementation.

Optimal transfers produce the smallest interval prediction, so a natural question to ask is

when they actually lead to unique implementation. Unlike Theorem 8, Proposition 8 has

the advantage not to involve conditions on transfers. So one has information on the size of

the equilibrium set beforehand.
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Proposition 8 Let the valuation functions be twice-continuously differentiable, and let

f = (x, t) be a scf with a dimensionally reducible decision rule. Assume strong differences.

Letting

Ki(θi) = max
j 6=i

max
θ̂∈Θ

(
∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

− min
θi∈Θi

∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

)
, (3.8)

if the resulting matrix of complementarities is negative-definite, then (x, t∗) is uniquely

supermodular implementable.

Once the bound on complementarities (3.8) is computed for the optimal transfers, then

Theorem 8 can be used to establish uniqueness or to get an idea of the size of the equilibrium

set under optimal transfers (see Example 7).

The following examples show that there are cases where it is straightforward to apply

the previous results. In Example 5, the original mechanism induces a non-supermodular

game with multiple equilibria where the truthful equilibrium is unstable. Nonetheless this

mechanism can be turned into a supermodular mechanism with a unique equilibrium. In-

terestingly, this also illustrates how weak implementation can be turned into strong imple-

mentation.

Example 4 Consider the public goods example of Section 3.2. Recall that agents’ valuation

functions are V1(x, θ1) = θ1x− x2 and V2(x, θ2) = θ2x+ x2/2. The decision rule is x(θ) =

θ1 + θ2. Since ∂xi(θ)/∂θi = 1 and ∂2Vi(x, θi)/∂x∂θi = 1 for i = 1, 2, it implies γi(θ−i) = 1,

i = 1, 2. Moreover, ∂2Vi(x(θ̂), θi)/∂θ̂1θ̂2 = −2 if i = 1 and 1 if i = 2. By Proposition 8,

Ki(θi) = 0 for i = 1, 2, so the resulting matrix of complementarities is clearly negative-

definite and (x, t∗) is uniquely supermodular implementable.

Example 5 Reconsider the public goods example of Section 3.2. Instead of starting with

the expected externality transfers t, suppose that the designer used t̃i(θ̂) = ti(θ̂)−3θ̂iθ̂j + 3
2 θ̂i

for i = 1, 2. The game induced by this mechanism is not supermodular with respect to

the natural order on R and it has many equilibria. There are two equilibria where one

agent always announces 0 while the other always announces 1. Moreover, truthtelling is

an unstable equilibrium; any perturbation results in a departure from it. We already know

this example falls into Theorem 8.

The rest of this subsection deals with the multiple equilibrium problem under the budget
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balance condition. The proposition gives sufficient conditions in order for the transfers

identified in Theorem 6 to yield truthtelling as a unique equilibrium.

Proposition 9 Let n ≥ 3. Let the valuation functions and the allocation-efficient deci-

sion rule be continuously differentiable. Assume substitutes and complements are uniformly

bounded by, respectively, Ti and τi. Under strong differences, if (τi − Ti) < Eθi
[γi(θi)], then

there are transfers tBB such that (x, tBB) is uniquely supermodular implementable.

As the proposition describes, unique supermodular implementation is compatible with

balancing budget. So there are situations where learning is very robust and can be auto-

financed by the agents themselves. The next example is an application in a public good

context.

Example 6 Consider the same setting as the public goods example of Section 3.2 with an

additional player, player 3, whose type is independently distributed from the other player’s

types in Θ3 = [0, 1]. Player 3’s valuation function is V3(x, θ3) = θ3x. Let X = [0, 3] and

x(θ) =
∑

i θi. x is allocation-efficient and γi(θi) = 1 for all i. The valuations and the decision

rule produce complements and substitutes which admit the same bounds. Proposition 9

says that there exist {ρi} such that (x, tBB) is uniquely supermodular implementable with

a balanced budget.

Although unique supermodular implementation is compatible with balancing budget,

there is sometimes a conflict between the size of the equilibrium set and the budget con-

straint. This is illustrated in the next example where a designer must choose between

meeting her budget requirement and making sure learning ends up close to the efficient

public good level.

Example 7 Consider the public goods setting of Section 3.2 with a third player whose type

is uniformly and independently distributed in [0, 1]. Her valuation function is V3(x, θ3) =

θ3x − x3/10. The decision rule x(θ) = 5
3(
√

1 + 6/5(
∑

i θi) − 1) is allocation-efficient and

dimensionally reducible. The designer has the choice between the budget balanced transfers

tBB and the optimal transfers t∗. On the one hand, if she prefers to have full efficiency, then

she chooses ρ1 ≥ 8, ρ2 ≥ 5, and ρ3 ≥ 6 in order for transfers tBB to induce a supermodular

game. But the interval prediction of the resulting game is always the entire space. On
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the other hand, if she prefers to have strong learning properties, then she uses the optimal

transfers t∗. These transfers give Ki(θi) = 3/5(1−θi) and γi(θ−i) = 1/
√

1 + 6/5(1 +
∑
θj),

hence the matrix of complementarities is

C =


−.55 .3 .3

.3 −.55 .3

.3 .3 −.55

 .

Even though C is not negative-definite, we can find bounds on the equilibrium set by solving

two simple systems of 2n quadratic equations (Theorem 8). All the equilibria are contained

in between the profile where for all i,

si =

 1.1θi − 0.1 if 0 ≤ θi ≤ 1.1
0.1

θi otherwise

and the truthtelling equilibrium. Welfare analysis reveals that learning can at most result

in a .03 loss in total utility under the optimal transfers.

Before turning to applications, some remarks are in order.

Remarks.

1. To obtain uniqueness in a Bayesian game, either one imposes conditions on the utility

functions or on the information structure. Without making assumptions on the beliefs,

any result in the first class, such as Theorem 8, will involve a tradeoff between different

types of complementarities.

2. Optimal supermodular implementation imposes the weakest “admissible” amount of

complementarity, which might imply a low speed of convergence of learning dynamics

towards truthtelling. This is not necessarily true. Sometimes, optimal transfers deliver

the fastest convergence (Example in Section 3.2) and sometimes they do not; although

convergence is possible in one period in Example 7, it takes longer under the optimal

transfers.

3. Neither unique nor optimal supermodular implementation implies the other. The

truthful equilibrium may be unique, although the transfers are not optimal, and the
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transfers could be optimal but the truthful equilibrium not unique.

3.5.4 Approximate Supermodular Implementation

In this section, I generalize some results within the context of approximate (or virtual)

implementation.23 In well-behaved environments, the results are general and compelling.

They apply to a variety of contexts such as principal multi-agent (Section 3.6) and public

goods models. However there are interesting situations, where discontinuities arise nat-

urally, that fall outside the scope of the current results. A way around this problem is

approximate implementation where the objective becomes to supermodularly implement

(well-behaved) scf that are arbitrarily close to a “target scf.” I now describe the failure of

bounded substitutes in the basic auction setting and I present results that accommodate

these situations.

Consider the following auction model. There is one unit of an indivisible good to be

allocated among two buyers {1, 2} whose types lie in [θ, θ]. An outcome is represented by

the vector (x1, x2) where xi = 1 if i gets the good and 0 otherwise. Buyer i’s utility function

is ui(xi, θi) = θixi + ti. The allocation-efficient decision rule x∗ attributes the good to the

buyer with the highest type:

x∗1(θ) =

 1 if θ1 ≥ θ2

0 otherwise
and x∗2(θ) = 1− x∗1(θ). (3.9)

Note that for any types such that θ′′2 > θ′′1 > θ′2 > θ′1, we have x1(θ′′1 , θ
′′
2) − x1(θ′1, θ

′′
2) −

x1(θ′′1 , θ
′
2) + x1(θ′1, θ

′
2) = −1. Hence the assumption of bounded substitutes would require

the existence of T such that −θ1 ≥ T (θ′′1 − θ′1)(θ
′′
2 − θ′2) for all θ1 ∈ Θ1. This is clearly

impossible as we can maintain the above order of types while θ′1 ↑ θ′2 and θ′′1 ↓ θ′2. Substitutes

are unbounded and none of the results apply.

Clearly, the problem is caused by the lack of smoothness of the decision rule. So the idea

is to approximate the scf by smooth implementable functions which are known to satisfy

the desired conditions.

Definition 14 A decision rule x is approximately (optimally) supermodular implementable,

if there exists a sequence of (optimally) supermodular implementable scf {(xn, tn)} such that,
23See Abreu and Matsushima [1] and Duggan [30].
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for 1 ≤ p <∞, ||xn,i − xi||p = 0 for all i where || · ||p is the Lp-norm.

The next results provide conditions so that a scf can be approached by a sequence of su-

permodular implementable scf. The intuition is that the space of smooth functions is dense

in Lp-spaces, hence a smooth approximation exists. Now smooth scf satisfy the bounded

substitutes assumption, so there only remains to establish that incentive-compatibility can

be preserved along the sequence. Further, if the decision rule also satisfies the dimensional-

ity condition from Section 3.5.3.1, then it is approachable by scf whose supermodular game

form gives the tightest interval prediction.

Proposition 10 Let the valuation functions be twice-continuously differentiable such that

∂Vi(xi, θi)/∂θi is increasing in xi for all i. If the decision rule is such that xi ∈ Lp is

increasing in θ̂i for all i, then it is approximately supermodular implementable.

Proposition 11 Let the valuation functions be twice-continuously differentiable such that

∂Vi(xi, θi)/∂θi is increasing in xi for all i. If decision rule is such that, for all i, there exist

hi : R2 → Xi and ri : Θ−i → R such that

1. hi is bounded and increasing in its first variable,

2. ri is continuous and strictly increasing,24

3. xi(θ) = hi(θi, ri(θ−i)),

then it is approximately optimally supermodular implementable.

These results apply to many discontinuous models of interest such as public goods,

auctions (Section 3.6) and bilateral trading (Myerson and Satterthwaite [88]. Besides,

they suggest that there may be a dilemma between close implementability and stability or

learning. This supports Cabrales [14] where a similar trade-off is formalized for Abreu and

Matsushima [1] and [2].
24Function ri is strictly increasing if ri(θ

′′
−i) > ri(θ

′
i) whenever θ′′−i � θ′−i.
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3.6 Applications

3.6.1 Principal Multi-Agent Problem

This subsection applies the theory to the traditional principal-multiagent problem with

hidden information. A principal contracts with n agents. Agent i’s type lies in [θi, θi].

Types are independently distributed according to a common prior. Each agent i exerts

some observable effort xi ∈ Xi and bears a cost ci(xi, θi) when her type is θi. From all the

efforts x = (x1, . . . , xn) and types, the principal receives utility w(x, θ). The principal faces

the problem of designing a profit-maximizing contract subject to incentive and reservation-

utility constraints. A contract is a function that maps types into effort and transfer levels

for each agent. The principal’s problem can be stated as

(x̂, t̂) ∈ argmax
f=(x,t)

Eθ

[
w(x(θ), θ)−

n∑
i=1

ti(θ)

]
(3.10)

subject to

Eθ−i
[ti(θi, θ−i)− ci(xi(θi, θ−i), θi)] ≥ Eθ−i

[ti(θ′i, θ−i)− ci(xi(θ′i, θ−i), θi)] (3.11)

for all θi and θ′i, and

Eθ−i
[ti(θi, θ−i)− ci(xi(θi, θ−i), θi)] ≥ ui (3.12)

for all θi. Condition (3.11) requires truthtelling to be an equilibrium. Condition (3.12) is

an interim participation constraint, as agents may opt out of the mechanism if it does not

meet their reservation utility.

If the underlying functions w, ci, and the prior are smooth and guarantee the existence

of a solution whose decision rule is dimensionally reducible, then the contract is optimally

supermodular implementable in virtue of Theorem 7. In other words, if the principal is

in a position to engage in a smooth revenue-maximizing and incentive-compatible contract

which allows voluntary participation, then she can turn that contract into a supermodular

contract which retains properties (3.10), (3.11), and (3.12), and minimizes the size of the

equilibrium set.
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3.6.2 Auctions, Bilateral Trading, and Allocation Schemes

Auctions are notorious for lacking complementarities. In a first- or second-price auction,

suppose an agent goes from losing to winning the object after increasing her bid. Now

assume her opponents increase their bids to a level where that increase does not suffice to

get the good. Then the agent’s marginal utility, whether she pays her bid or the second-

highest one, decreases as her opponents increase their bids. This configuration displays a

failure of complementarities. If the agent’s increase was large enough to secure the object

in both situations, then her marginal utility would (weakly) increase. This points to the

existence of local substitute effects in auctions.

Consider the auction setting of Section 3.5.4. Two buyers, 1 and 2, have utility function

v(θi)xi + ti, i = 1, 2, where v is strictly increasing. The allocation-efficient decision rule

x∗ is unchanged and, according to Proposition 11,25 it is approachable by a sequence of

optimally supermodular implementable decision rules. An example of such a sequence is

x1,ε(θ̂) = c

∫ P
i(aiθ̂i+bi)

ε

0

1
1 + t2

dt+ k and x2,ε = 1− x1,ε,

where constants c, k and ai, bi, i = 1, 2 are chosen appropriately. From there, the optimal

transfers t∗ε and the matrix of complementarities Cε can be formed. Since substitutes are

unbounded in the exact case, it is not surprising that their bound in the approximated case

decreases infinitely as ε vanishes. To compensate for this, the transfers add more comple-

mentarities as ε vanishes, which leads complementarities to explode on those parts of the

space where reports were already complements. As a consequence, the interval prediction

of the game induced by {xε, t
∗
ε} must be the entire space in the limit. What is interesting,

however, is to find the smallest amount of inefficiency ε for which Cε is still negative-definite

and uniqueness is preserved. Interestingly, this illustrates nicely the forces at work in Theo-

rem 8. Letting v(θ) = θω with ω > 0, it always takes a larger ω to obtain a smaller ε. That

is, the more sensitive an agent is to her own type, the higher is the degree of complemen-

tarities that can be compatible with uniqueness; hence the lower ε can be. Unfortunately,

ω has to be fairly large to accommodate for accurate approximations. In the standard

case with ω = 1, ε ≈ .45. When ω = 6, ε ≈ .15. Although uniqueness may fail for some
25In the case with n ≥ 3, let hi(θi, ri) = 1 if θi > ri, and 0 otherwise for all i. Note hi is bounded and

increasing in θi. Now choose ri(θ−i) = max{θj : j 6= i} which is continuous and strictly increasing.
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ε, it can make sense to use this if the size of the equilibrium set is not too wide (Theorem 8).

The results for approximate implementation also apply to public goods situations where

a society of agents decide whether or not to undertake a public project. The bargaining

mechanism of Myerson and Satterthwaite ( [88], pp.274) also satisfies the assumptions of

Proposition 11 and as such, the decision rule is approachable by a sequence of optimally

supermodular implementable decision rules. The expected gains from trade along the se-

quence converge to the maximal expected gains.

3.7 A Revelation Principle

Supermodular implementation is widely applicable in quasilinear environments even

though the chapter limits attention to direct mechanisms. For general preferences, however,

direct mechanisms may be restrictive. The Revelation Principle says that direct mechanisms

cause no loss of generality under traditional weak implementation. But how restrictive are

direct mechanisms in supermodular Bayesian implementation for general preferences?

It is particularly relevant to analyze this question, because the challenge in any super-

modular design problem is to specify an ordered message space and an outcome function

so that agents adopt monotone best-responding behaviors. The set of all possible message

spaces and orders on those spaces is so large that it might seem intractably complex. A

Supermodular Revelation Principle gives conditions so that, if a scf is supermodular imple-

mentable, then there exists a direct-revelation mechanism that supermodularly implements

this scf truthfully. It is a technical insight which reduces the space of mechanisms to con-

sider to the space of direct-revelation mechanisms. The question is complex because it is

combinatorial in essence; it pertains to the existence of orders on type spaces that make

the (induced) direct-revelation game supermodular.

Example 10 in Appendix A shows that, unfortunately, there exist supermodular im-

plementable scf that are not truthfully supermodular implementable. Consequently, the

revelation principle fails to hold in general for supermodular implementation. Neverthe-

less, it exists in a weaker form, as captured by the next theorem. Although it is not as

general as the traditional revelation principle, it measures the restriction imposed by direct

mechanisms and gives conditions that may warrant their use.
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As mentioned in Section 3.4, there are issues related to non-Euclidean message spaces

that justify the next and more general definition of supermodular implementability.

Definition 15 The mechanism Γ supermodularly implements the scf f(.) if there exists a

Bayesian equilibrium m∗(.) such that g(m∗(θ)) = f(θ) for all θ ∈ Θ, and if the (ex-ante)

induced game G is supermodular.

Theorem 9 (The Supermodular Revelation Principle for Finite Types26) Let

type space Θi be a finite set for i ∈ N . If there exists a mechanism ({(Mi,�i)}, g) that

supermodularly implements the scf f such that there is a Bayesian equilibrium m∗(.) for

which g ◦m∗ = f and m∗
i (Θi) is a lattice, then f is supermodular implementable.

Corollary 5 Let type spaces be finite sets. If there exists a mechanism ({(Mi,�i)}, g) with

totally ordered message spaces that supermodularly implements the scf f such that there is

a Bayesian equilibrium m∗(.) for which g ◦m∗ = f , then f is supermodular implementable.

According to the supermodular revelation principle, limiting attention to direct mech-

anisms amounts to restricting one’s scope to mechanisms where the equilibrium strategies

are lattice-ranged. When the range of the equilibrium strategies is a lattice, it is possible to

construct an order on each player’s type space that makes it order-isomorphic to the range

of her equilibrium strategy. By order-isomorphism, type spaces become lattices under this

order and it also preserves supermodularity from the indirect mechanism to its direct ver-

sion. Therefore, the transmission channel is the range of the equilibrium strategies. Besides,

the theorem states conditions that are verifiable a posteriori. It may be useful to know when

a complex mechanism can be replaced with a simpler direct mechanism.

Corollary 5 says that if the designer is only interested in mechanisms where the message

spaces are totally ordered, then she can look at direct mechanisms without loss of generality.

The theorem only gives sufficient conditions for revelation; but in those cases where

a supermodular direct mechanism exists while the lattice condition is violated, the exis-

tence of an order has little or nothing to do with a revelation principle. In the spirit of

Echenique [33], there may be conditions on the scf and the utility functions such that an

order exists for which the game is supermodular. Since this existence would not follow from

implementability, it is not a revelation approach.
26In Mathevet [?], I generalize the definition of supermodular implementability to incorporate orders that

are not pointwise orders. This allows proving a supermodular revelation principle for continuous types.
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3.8 Discussion

3.8.1 Dominant Strategy vs. Supermodular Implementation

Learning is one of the main arguments in favor of supermodular implementation. So, even

though dominant strategy mechanisms do not necessarily induce games with strong learning

properties,27 it is important to highlight the advantage of supermodular implementation

over these mechanisms.

Strategy proofness, requiring truthtelling to be a dominant strategy, is not always pos-

sible even in smooth environments. Mookherjee and Reichelstein [81] have shown that

a sufficient and “nearly” necessary condition for strategy-proofness is that the valuation

functions and the decision rule satisfy some single-crossing property (Proposition 2 and

Definition 5 in [81]). They make an assumption, the one-dimensional condensation prop-

erty, which makes it easier to satisfy that necessary condition.

The next example is an application of Theorem 8 in a principal-multiagent context

inspired from McAfee and McMillan [72]. The problem violates the one-dimensional con-

densation property and the necessary condition for strategy-proofness. So the decision rule

is not dominant strategy implementable, yet it is uniquely supermodular implementable.

Example 8 Two agents, 1 and 2, whose types are independently and uniformly distributed

in [0, 3], exert some effort to produce an observable contribution xi. The amount of effort

ei necessary for xi is e1(x, θ1) = (3− θ1)(x1−x2)+x1 + 9
2 and e2(x, θ2) = (3− θ2)(x2 +x1).

Agent 2 has positive externalities on her counterpart, whereas 1 has negative externalities.

Before transfers, the principal has utility w(x, θ) = u(x, θ)−cp(x, θ) where cp represents the

production costs. The principal’s objective is to solve (3.10) subject to (3.11) and the ex-

ante minimum wage Eθ[ti(θ)] ≥ 0 on the economy. For simplicity, let u and the production

costs be such that the optimal decision rule is x∗(θ) = (θ2θ1 − 3/2θ1, θ2 − θ1).28 Agent

i’s valuation is Vi(x, θi) = −ei(x, θi). Proposition 12 of Appendix B applies, so there exist

transfers that implement x∗. Constructing optimal transfers from (3.21) and (3.22) gives

t∗1(θ̂) = −θ̂2
1/2− 3θ̂1 + 2θ̂2θ̂1− 13

2 and t∗2(θ̂) = −5θ̂2
2/4 + 3θ̂2 + 3θ̂2θ̂1− 13

2 . Given Ki(θi) = θi

27Learning dynamics may still converge to “unwanted” equilibria, in dominant strategies or not (e.g.
Nash), whose outcomes differ from the scf or they may converge to non-equilibrium profiles or simply cycle.
Saijo et al. [94] report situations where this concept has serious drawbacks.

28For example, let u(x, θ) = θ2(θ1x1 + x2) and cp(x, θ) = (x2
1 + x2

2)/2 + θ1(3/2x1 + x2).
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and γ1(θ2) = θ2 − 1
2 , γ2(θ1) = θ1 + 1, we can check that the matrix of complementarities

C =

−1 3/2

3/2 −5/2


is negative-definite and so truthtelling is the unique equilibrium.

It is well-known that dominant-strategy implementation is often incompatible with bal-

ancing budget (Green and Laffont [40] and Laffont and Maskin [62]). The next example

depicts a situation where unique supermodular implementation allows balancing budget in

a case where dominant strategies cannot. In other words, by weakening the solution concept

and putting structure on the game form, it is possible to balance the budget and maintain

the likelihood of equilibrium play.

Example 9 In the public goods example of Section 3.2, let Θ1 = Θ2 = [2, 3]. Add a third

player, player 3, whose type is independently distributed from the other player’s types in

Θ3 = [2, 3]. Player 3’s valuation function is V3(x, θ3) = θ3x − lnx. Letting X = [5, 10],

the allocation-efficient decision rule is x(θ) = 1
2(
∑

i θi +
√

(
∑

i θi)2 − 4). By Theorem 3.1

in [62], the decision rule is dominant strategy implementable only if transfers are of the

Groves form. However these transfers cannot balance budget, because they violate the

necessary condition from Laffont and Maskin (Theorem 4.1 in [62]). Nevertheless, since

τi − Ti < .03 and γi > 1 for all i, Proposition 9 implies that x is uniquely supermodular

implementable with a balanced budget.

Dominant strategies require conditions on cross-partial derivatives whereas basic smooth-

ness and dimensionality conditions allow for optimal supermodular implementation. As

shown in Example 8, there are even scf that are not strategy-proof and yet can be uniquely

implemented with a supermodular mechanism.

One reason for moving towards Bayesian implementation was to balance budget in situa-

tions dominant strategies cannot. Balancing transfers under supermodular implementation

is nearly as general as Bayesian implementation allows. As shown in Example 9, it is even

possible to balance budget using a supermodular mechanism with a unique equilibrium in a

case where dominant strategies cannot balance budget. Ideally one would like all strategy-

proof scf to be uniquely supermodular implementable, but such a result is not known. Most

likely, neither dominant strategy nor supermodular implementation implies the other.
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3.8.2 Learning in Bayesian Games

The learning literature has a straightforward application to games of incomplete infor-

mation which is the approach taken in this chapter. In the context of Bayesian implementa-

tion, the learning results of supermodular games find a natural interpretation in the ex-ante

Bayesian game. Loosely, learning at the ex-ante stage may be interpreted as pre-playing

the mechanism. At this stage, agents do not know their own type and they can be viewed

as practicing the induced game repeatedly. Each agent submits a deception at each round

until the designer collects the agreed-upon profile of deceptions, and types are revealed.

Until then, no outcome is actually implemented. Learning at the ex-ante stage may also

mean that agents are actually playing the mechanism repeatedly with independently and

identically distributed types across periods. As a round begins, the agents do not know

their own type yet, hence they submit a deception. By the end of the round, they learn

their type and behave according to their deception. An outcome is then implemented at

the end of each round. Here the designer is only interested in implementing the desired

outcome in the long-run.

Although the learning results only apply directly to the ex-ante Bayesian game, they can

be interpreted in the interim formulation. The interim Bayesian game inherits the comple-

mentarities, because most results work by showing that the ex-post game is supermodular

for every type profile. However, the problem at this stage comes from the interpretation

of learning and the technical difficulties related to the Milgrom-Roberts learning theorem.

To illustrate the first difficulty, suppose that there are two agents. At the interim stage,

each agent knows her own type and so she makes a single announcement at each period

that the mechanism is repeated. But to compute her expected utility, an agent uses the

prior distribution and the opponent’s deception telling her what is played for each type.

Since the opponent no longer announces a deception, an agent is unable to compute her

expected utility. One way of interpreting learning then is to consider that there is a contin-

uum of agents, and that prior belief φ actually represents the distribution of types in this

population. An agent now faces a continuum of announcements (one for each opponent) as

the mechanism is repeated, hence she can compute her expected utility. The interpretation

of the process, however, becomes evolutionary in nature. We are now interested in that

the observed proportions of types converge to the true proportions in the population. On
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the technical side, Van Zandt [104] shows that there are issues in applying some results of

supermodular games to interim Bayesian games. But his results can be used to show that

the Milgrom-Roberts learning theorem applies to the interim Bayesian game.29

3.9 Conclusion

This chapter introduces a theory of implementation where the mechanisms implement

scf in supermodular game forms. Supermodular implementation differs from the previous

literature by its explicit purpose and methodology. The chapter does not put an end to the

question of learning and stability in incentive design and implementation, but it explicitly

attacks it and provides answers to this important, yet neglected, question. Given that

mechanisms are designed to achieve some equilibrium outcome, it is rather important to

design mechanisms that enable boundedly rational agents to learn to play some equilibrium

outcome. The methodology consists in inducing supermodular games rather than starting

explicitly with a solution concept. Of course, supermodularity implies properties of iterative

dominance, but it has stronger theoretical and experimental implications (see, e.g., Camerer

[18]). The mechanisms derive their properties from the game that they induce and not

directly from the solution concept.

Beyond the results, this chapter brings out basic questions about learning and the design

problem. We may wonder whether there is a price to pay for learning or stability in terms

of efficiency. The trade-off appears quite clearly in this framework; sometimes the designer

must sacrifice learning for full efficiency or vice-versa. In the public goods example, the

designer can modify the expected externality mechanism and secure learning at the price of

a balanced budget, or she can use the expected externality mechanism to balance budget but

she loses the strong learning properties. This may be related to the specifics of supermodular

implementation, but it is an interesting issue. We may also wonder whether there is a price

to pay for learning or stability in terms of closeness of the decision rule implemented.

This has obvious implications in terms of efficiency. Cabrales [14] also suggests a dilemma

between learning and close implementability for the Abreu-Matsushima mechanism, and it

is verified in the supermodular implementation framework. Although this dilemma may
29The results in [76] can only be directly applied to the ex-ante version G. However, Lemma 2, Proposition

3, Lemma 5 and Proposition 5 in Van Zandt [104] are particularly useful to apply the learning theorem to
the interim formulation. This requires, however, that the utility functions (with transfers) be continuous in
the announcement profile.
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be related to the specifics of these frameworks, it is a question with potentially important

consequences.

This chapter raises issues that have not been discussed. The multiple equilibrium prob-

lem in supermodular implementation suggests an alternative solution, namely strong imple-

mentation. Strong implementation requires all equilibria of the mechanisms to yield desired

outcomes. Instead of relying on weak implementation, supermodular implementation could

be based on strong implementation which would justify indirect mechanisms. Even un-

der strong implementation, learning dynamics may cycle within the interval prediction and

players may learn to play a non-equilibrium profile. Although strong supermodular imple-

mentation cannot substitute for unique supermodular implementation, it is an avenue to

explore.

Like many Bayesian mechanisms, the present mechanisms are parametric in the sense

that they rely on agents’ prior beliefs. Thus the designer uses information other than

that received from the agents (Hurwicz [6]). It may be interesting to design nonparametric

supermodular mechanisms. This is yet another justification for indirect mechanisms, as non-

parametric direct Bayesian mechanisms impose dominant-strategy incentive-compatibility

(Ledyard [63]).

Finally, it is important to pursue testing supermodular games. Since supermodular

Bayesian implementation provides a general framework, it is a good candidate for experi-

mental tests. From a practical viewpoint, discretizing type spaces may simplify the players’

task of announcing deceptions at each round. But there are also simple environments with

continuous types where announcing a deception is equivalent to choosing a real number,

such as the leading public goods and the team-production examples.30.

3.10 Appendix

3.10.1 A Counterexample to the Revelation Principle

This example shows that the revelation principle fails to hold in general for supermodular

Bayesian implementation.

30In the public goods example of Section 3.2, announcing an optimal deception comes down to choosing
an intercept in a compact set (see (3.1)). In Example 8, optimal deceptions are characterized by a positive
slope.
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Example 10 Consider two agents, 1 and 2, with type spaces Θ1 = {θ1
1, θ

2
1} and Θ2 =

{θ1
2, θ

2
2, θ

3
2}. Prior beliefs assign equal probabilities to all θ ∈ Θ. Let X = {x1, . . . , x12} be

the outcome space. Agent 1’s preferences are given by utility function u1(xn, θ1) such that:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

u1(xn, θ
1
1) −10 0 16 −13 −2 33 −21 −2 18 −19 0 36

u1(xn, θ
2
1) −10 0 16 −21 −2 18 −13 −2 33 −19 0 36.

Let u2 be a constant function. Let the scf f be defined as follows

f(., .) θ1
2 θ2

2 θ3
2

θ1
1 x4 x5 x6

θ2
1 x7 x8 x9.

Consider the following indirect mechanism Γ = ((M1,�1), (M2,�2), g). Agent 1’s message

space is M1 = {m1,m
1
1, m

2
1, m1}; �1 is such that m1

1 and m2
1 are unordered, m1 is the great-

est element and m1 is the smallest element. Agent 2’s message space is M2 = {m2,m
1
2,m2};

�2 is such that m2 �2 m
1
2 �2 m2. The outcome function g is given by

g(., .) m2 m1
2 m2

m1 x1 x2 x3

m1
1 f(θ1

1, θ
1
2) f(θ1

1, θ
2
2) f(θ1

1, θ
3
2)

m2
1 f(θ2

1, θ
1
2) f(θ2

1, θ
2
2) f(θ2

1, θ
3
2)

m1 x10 x11 x12.

I show that mechanism Γ supermodularly implements f in Bayesian equilibrium. Given u2

is constant, any strategy m2 : Θ2 →M2 is a best-response to any strategy of 1. So, consider

strategy m∗
2(.) such that m∗

2(θ
1
2) = m2, m∗

2(θ
2
2) = m1

2 and m∗
2(θ

3
2) = m2. Since for all m1 we

have ∑
m2
u1(g(m1

1,m2), θ1
1) >

∑
m2
u1(g(m1,m2), θ1

1)∑
m2
u1(g(m2

1,m2), θ2
1) >

∑
m2
u1(g(m1,m2), θ2

1)

1’s best-responsem∗
1(.) tom∗

2(.) is such thatm∗
1(θ

1
1) = m1

1 andm∗
1(θ

2
1) = m2

1. So (m∗
1(.),m

∗
2(.))

is a Bayesian equilibrium and g ◦ m∗ = f . Moreover, for each θ1, u1(g(m1,m2), θ1) is

supermodular in m1 and has increasing differences in (m1,m2). This implies that ug
1 is

supermodular in m1(.) and has increasing differences in (m1(.),m2(.)), because Σ1(Θ1) is

endowed with the pointwise order. Therefore, Γ supermodularly implements f in Bayesian

equilibrium, because 2’s utility is constant.
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Does this imply that there exists a mechanism ({(Θi,≥i)}, f) which truthfully imple-

ments f in supermodular game form? By means of contradiction, suppose there is such

a mechanism. Then (Θ1,≥1) must be totally ordered, for otherwise Σ1(Θ1) cannot be a

lattice. Assume θ2
1 >1 θ1

1. Let θk
i (.) = θk

i regardless of i’s true type. Let θT
1 (.) be the

truthful strategy for 1 and let θL
1 (.) be constant lying. Note θ1

1(.) <1 θ
T
1 (.), θL

1 (.). Moreover,

θ1
2 and θ2

2 must be ordered, because Σ2(Θ2) is a lattice. Thus θ1
2(.) and θ2

2(.)) are ordered.

Since the direct mechanism must induce a supermodular game, uf
1(θ̂1(.), θ̂2(.)) must

satisfy the single-crossing property in (θ̂1(.), θ̂2(.)).31 Given

−2 = uf
1(θT

1 (.), θ2
2(.)) ≥ uf

1(θ1
1(.), θ

2
2(.)) = −2

−13 = uf
1(θT

1 (.), θ1
2(.)) > uf

1(θ1
1(.), θ

1
2(.)) = −17

uf
1 satisfies the single-crossing property in (θ̂1(.), θ̂2(.)) only if θ1

2 >2 θ
2
2. But

−2 = uf
1(θL

1 (.), θ2
2(.)) ≥ uf

1(θ1
1(.), θ

2
2(.)) = −2

does not imply−21 = uf
1(θL

1 (.), θ1
2(.)) ≥ uf

1(θ1
1(.), θ

1
2(.)) = −17. The single-crossing property

is violated. Now assume θ1
1 >1 θ

2
1. Note θ1

1(.) >1 θ
T
1 (.), θL

1 (.). Given

−2 = uf
1(θ1

1(.), θ
2
2(.)) ≥ uf

1(θL
1 (.), θ2

2(.)) = −2

−17 = uf
1(θ1

1(.), θ
1
2(.)) > uf

1(θL
1 (.), θ1

2(.)) = −21

uf
1 satisfies the single-crossing property in (θ̂1(.), θ̂2(.)) only if θ1

2 >2 θ
2
2. But

−2 = uf
1(θ1

1(.), θ
2
2(.)) ≥ uf

1(θT
1 (.), θ2

2(.)) = −2

does not imply −17 = uf
1(θ1

1(.), θ
1
2(.)) ≥ uf

1(θT
1 (.), θ1

2(.)) = −13. The single-crossing prop-

erty is violated. The scf f is not truthfully supermodular implementable, although it is

supermodular implementable.

This example suggests that the conditions of Theorem 9 are somewhat minimally suffi-

cient. Agent 1’s equilibrium strategy is indeed not lattice-ranged and the scf is not truthfully

supermodular implementable. Whereas this example might indicate that the pointwise-

order structure causes revelation to fail, this is not the case. Allowing more general order
31The single-crossing property, defined in Section 3.3, is implied by increasing differences.
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structures does not weaken the conditions for a revelation principle (see Mathevet [?]).

3.10.2 Proofs

The following lemma shows that if the complete information payoffs are supermodular and

have increasing differences, then the ex-ante payoffs are supermodular and have increasing

differences.

Lemma 5 Assume (Mi,≥i) is a lattice. Suppose that for each θi, ui(g(mi,m−i), θi) is

supermodular in mi for each m−i and has increasing differences in (mi,m−i). Then ug
i is

supermodular in mi(.) for each m−i(.) and has increasing differences in (mi(.),m−i(.)).

The next proposition is a standard result whose proof is omitted (see Proposition 23.D.2

in Mas-Colell et al. [68]).

Proposition 12 Consider valuation functions and a decision rule such that Eθ−i
[Vi(xi(θ̂i,

θ−i), θi)] is continuous in (θ̂i, θi).

1. If the scf f = (x, t) is implementable, then for all θ̂i

Eθ−i
[ti(θ̂i, θ−i)] =−Eθ−i

[Vi(xi(θ̂i, θ−i), θ̂i)] +
∫ θ̂i

θi

∂Eθ−i
[Vi(xi(s, θ−i), s)]

∂θi
ds + ε(θi)

(3.13)

2. Let the decision rule be such that ∂Eθ−i
[Vi(xi(θ̂i, θ−i), θi)]/∂θi is increasing in θ̂i for

each θi and i. If transfers t satisfy (3.13), then f = (x, t) is implementable.

Proposition 13 If the valuation functions and the decision are twice-continuously differ-

entiable, then Vi◦xi(.) has bounded substitutes, is κi-Lipschitz in (θ̂i, θ̂−i) and is ωi-Lipschitz

in θ̂i for all i ∈ N .

Proof: Since Vi and xi(.) are twice continuously differentiable, Vi◦xi is C2 in
∏

k∈N Ok×Oi.

As a result, ∂Vi(xi(θ̂), θi)/∂θ̂i is continuous in (θ̂i, θ̂−i, θi) and so ωi ≡ max(θ̂,θi)∈Θ×Θi

∂Vi(xi(θ̂), θi)/∂θ̂i exists. Then Vi ◦ xi(.) is ωi-Lipschitz. Now let

Dw
−iVi(xi(θ̂), θi) = lim

t→0

Vi(xi(θ̂i, θ̂−i + tw), θi)− Vi(xi(θ̂), θi)
t

. (3.14)
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The limit in (3.14) is the directional derivative of Vi ◦ xi(.) in θ̂−i at (θ̂, θi), in the direction

of vector w. Since

Dw
−iVi(xi(θ̂), θi) =

∑
j 6=i

∂Vi(xi(θ̂), θi)

∂θ̂j

wj , (3.15)

the directional derivatives of Vi ◦ xi(.) are all well-defined. By (3.15),

Dw
−i

∂Vi(xi(θ̂), θi)

∂θ̂i

=
∑
j 6=i

∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

wj for all (θ̂, θi), (3.16)

and it is well-defined because Vi and xi(.) are C2. Let

κi = max
j 6=i

max
(θ̂,θi)∈Θ×Θi

∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

and Ti = min
j 6=i

min
(θ̂,θi)∈Θ×Θi

∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

(3.17)

which are well-defined because Vi and xi(.) are C2 and Θk is compact for all k ∈ N . Pick

any θ̂′′i > θ̂′i, θ̂
′′
−i > θ̂′−i, and let w = θ̂′′−i − θ̂′−i. By (3.16),

κi 1.w ≥ Dw
−i

∂Vi(xi(θ̂), θi)

∂θ̂i

≥ Ti 1.w for all (θ̂, θi),

hence

κi 1.w(θ̂′′i − θ̂′i) =
∫ θ̂′′i

θ̂′i

∫ 1

0
κi 1.w dt dθ̂i ≥

∫ θ̂′′i

θ̂′i

∫ 1

0
Dw
−i

∂Vi(xi(θ̂i, θ̂
′
−i + tw), θi)

∂θ̂i

dt dθ̂i

= ∆Vi(θ̂′′i , θ̂
′
−i, θ̂

′′
−i, θi)−∆Vi(θ̂′′i , θ̂

′
−i, θ̂

′
−i, θi) ≥ Ti 1.w(θ̂′′i − θ̂′i), (3.18)

for all θi. Letting g(t) = ∂Vi(xi(θ̂i, θ̂
′
−i + tw), θi)/∂θ̂i, the second equality in (3.18) follows

from

g′(t) =
∑
j 6=i

∂2Vi(xi(θ̂i, θ̂
′
−i + tw), θi)

∂θ̂i∂θ̂j

wj ≡ Dw
−i

∂Vi(xi(θ̂i, θ̂
′
−i + tw), θi)

∂θ̂i

and

∫ 1

0
Dw
−i

∂Vi(xi(θ̂i, θ̂
′
−i + tw), θi)

∂θ̂i

dt = g(1)− g(0) =

=
∂Vi(xi(θ̂i, θ̂

′′
−i), θi)

∂θ̂i

−
∂Vi(xi(θ̂i, θ̂

′
−i), θi)

∂θ̂′i
.
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By (3.18), Vi◦xi(.) is κi-Lipschitz in (θ̂i, θ̂−i) and has bounded substitutes for all i ∈ N .Q.E.D

Proof of Proposition 7: Let (x, t′′) and (x, t′) be any supermodular implementable scf

such that t′′, t′ ∈ T and t′′ �ID t′. For any supermodular implementable scf, the induced

game has a smallest and a greatest equilibrium along with a truthful equilibrium in between.

Let θT
i (.) denote player i’s truthful strategy, that is, θT

i (θi) = θi for all θi. Let G` be the

game G where the strategy spaces are restricted from Σi(Θi) to [inf Σi(Θi), θT
i (.)], and let

Gu be the game G where the strategy spaces are restricted from Σi(Θi) to [θT
i (.), supΣi(Θi)].

Since closed intervals are sublattices and G is supermodular, those modified games G` and

Gu are supermodular games. Moreover, G` must have the same least equilibrium as game

G and the truthful equilibrium is its largest equilibrium. Likewise, Gu has the same great-

est equilibrium as game G and the truthful equilibrium is its smallest equilibrium. Let

uf
i (θ̂(.), t) = Eθ[Vi(xi(θ̂(θ)), θi)] + Eθ[ti(θ̂(θ))]. I show that (i) In G`, u

f
i (θ̂i(.), θ̂−i(.), t) has

decreasing differences in (θ̂i(.), t) for each θ̂−i(.) and (ii) In Gu, uf
i (θ̂i(.), θ̂−i(.), t) has in-

creasing differences in (θ̂i(.), t) for each θ̂−i(.). In those modified games, this shows how

the untruthful extremal equilibrium varies in response to changes in transfers with re-

spect to �ID. Before proving (i) and (ii), note that Proposition 12 implies that all trans-

fers ti such that (x, t) is implementable have the same expected value Eθ−i
[ti(θ̂i, θ−i)] up

to a constant. Taking any implementable scf (x, t̃), those transfers can thus be written

ti(θ̂i, θ̂−i) = δi(θ̂i, θ̂−i) − Eθ−i
[δi(θ̂i, θ−i)] + Eθ−i

[t̃i(θ̂i, θ−i)] for some function δi : Θ → R.

First consider G` and let δ′′ and δ′ be the δ functions corresponding to t′′ and t′. Choose

any θ′′i (.) > θ′i(.) and notice that for any deception θ̂−i(.), θ̂j(θj) ≤ θj for all θj and j 6= i.

Moreover, note t′′ �ID t
′ implies δ′′ �ID δ

′. Hence for all i ∈ N ,

Eθ[δ′′i (θ′′i (θi), θ−i)− δ′′i (θ′′i (θi), θ̂−i(θ−i))]− Eθ[δ′′i (θ′i(θi), θ−i)− δ′′i (θ′i(θi), θ̂−i(θ−i))]−

− Eθ[δ′i(θ
′′
i (θi), θ−i)− δ′i(θ

′′
i (θi), θ̂−i(θ−i))] + Eθ[δ′i(θ

′
i(θi), θ−i)− δ′i(θ

′
i(θi), θ̂−i(θ−i))] ≥ 0.

(3.19)

But (3.19) is equivalent to

uf
i (θ′′i (.), θ̂−i(.), t′′)+u

f
i (θ′i(.), θ̂−i(.), t′)−uf

i (θ′′i (.), θ̂−i(.), t′)−uf
i (θ′i(.), θ̂−i(.), t′′) ≤ 0 (3.20)
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for each θ̂−i(.), which implies that uf
i (θ̂i(.), θ̂−i(.), t) has decreasing differences in (θ̂i(.), t)

for each θ̂−i(.). It follows from Theorem 6 in Milgrom-Roberts [76] that the smallest equilib-

rium in G` is decreasing in t. The same argument applies to Gu. There, all deceptions θ̂−i(.)

are such that θ̂j(θj) ≥ θj for all θj and j 6= i. As a result, the sign in (3.19) is reversed,

which implies uf
i (θ̂i(.), θ̂−i(.), t) has increasing differences in (θ̂i(.), t) for each θ̂−i(.). The

greatest equilibrium in Gu is thus increasing in t. Q.E.D

Proof of Theorem 7: Suppose f = (x, t) is implementable and x is dimensionally re-

ducible. Letting

δi(θ̂i, θ̂−i) = −
∫ θ̂i

θi

∫ ri(θ̂−i)

ri(θ−i)
min
θi∈Θi

∂2Vi(hi(si, ri), θi)
∂ri∂si

dri dsi (3.21)

for all θ̂ ∈ Θ, I show that

t∗i (θ̂i, θ̂−i) = δi(θ̂i, θ̂−i)− Eθ−i
[δi(θ̂i, θ−i)] + Eθ−i

[ti(θ̂i, θ−i)] (3.22)

is well-defined and that (x, t∗) is optimally supermodular implementable. By Proposition

6, Eθ−i
[ti(θ̂i, θ−i)] is well-defined and given by (3.13). Since Vi and hi are C2 on an open

set containing compact set Θi, minθi∈Θi
∂2Vi(hi(si, ri), θi)/∂ri∂si exists, it is continuous in

(ri, si) by the maximum theorem and it is bounded. Hence δi : Θ → R is continuous, which

implies that it is Borel-measurable. Since δi is also bounded, Eθ−i
[δi(., θ−i)] is well-defined

and so is t∗i : Θ → R. The next step is to verify the continuity requirements. As a con-

tinuous function on a compact set, δi is uniformly continuous in θ̂, and so Eθ[t∗(θ̂(θ))] is

continuous in θ̂−i(.). Since V is C2, (3.13) is usc in θ̂i and so is Eθ−i
[ti(θ̂i, θ−i)] by Propo-

sition 6, which implies Eθ[t∗i (θ̂(θ))] is usc in θ̂i(.). Put together, uf
i satisfies the continuity

requirements. Finally I prove that (x, t∗) is optimally supermodular implementable. Note

Eθ−i
[t∗i (θ̂i, θ−i)] = Eθ−i

[ti(θ̂i, θ−i)] and thus (x, t∗) is implementable. By construction, t∗i is
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twice-differentiable32 and

∂2t∗i (θ̂i, θ̂−i)

∂θ̂i∂θ̂j

=
∂2δi(θ̂i, θ̂−i)

∂θ̂i∂θ̂j

=
∂

∂θ̂j

∫ ri(θ̂−i)

ri(θ−i)
− min

θi∈Θi

∂2Vi(hi(θ̂i, ri), θi)
∂ri∂si

dri

= −

(
min
θi∈Θi

∂2Vi(hi(θ̂i, ri(θ̂−i)), θi)
∂ri∂si

)
∂ri(θ̂−i)

∂θ̂j

. (3.23)

Because

− min
θi∈Θi

∂2Vi(xi(θ̂i, θ̂−i), θi)

∂θ̂i∂θ̂j

= − min
θi∈Θi

(
∂2Vi(hi(θ̂i, ri(θ̂−i)), θi)

∂ri∂si

∂ri(θ̂−i)

∂θ̂j

)
(3.24)

and ri(.) is an increasing function, (3.23) and (3.24) are equal. Therefore, ∂2[Vi(xi(θ̂), θi) +

t∗i (θ̂)]/∂θ̂i∂θ̂j is equal to

(
∂2Vi(hi(θ̂i, ri(θ̂−i)), θi)

∂ri∂si
− min

θi∈Θi

∂2Vi(hi(θ̂i, ri(θ̂−i)), θi)
∂ri∂si

)
∂ri(θ̂−i)

∂θ̂j

≥ 0 (3.25)

for all θ̂, θi and j, i, and so (x, t∗) is supermodular implementable. Moreover, for all transfers

t ∈ T such that (x, t) is implementable, it must be that

∂2ti(θ̂)

∂θ̂i∂θ̂j

≥ − min
θi∈Θi

∂2Vi(xi(θ̂i, θ̂−i), θi)

∂θ̂i∂θ̂j

=
∂2t∗i (θ̂)

∂θ̂i∂θ̂j

for all θ̂ and j, i. This implies that (x, t∗) is optimally supermodular implementable.

Q.E.D

Proof of Theorem 8: 1. By way of contradiction, suppose that the truthful equilibrium

is not the unique Bayesian equilibrium. Since the scf is supermodular implementable, there

exist a greatest and a smallest equilibrium in the game induced by the mechanism. So, one

of these extremal equilibria must be strictly greater/smaller than the truthful one. Suppose

that the greatest equilibrium, denoted (θi(.))i∈N , is strictly greater than the truthful equi-

librium. That is, for all i, θi(θi) ≥ θi for a.e θi, and there exists N∗ 6= ∅ such that, for all

i ∈ N∗, θi(θi) > θi for all θi in some subset of types with positive measure.
32See previous footnote.
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I evaluate the first-order condition of agent i’s maximization program at the greatest

equilibrium; then, I bound it from above by an expression which cannot be positive for

all players (hence the contradiction). Consider player i’s interim utility at type θi against

θ−i(.):

Eθ−i
[Vi(xi(θ̂i, θ−i(θ−i)), θi)] + Eθ−i

[ti(θ̂i, θ−i(θ−i))]. (3.26)

Since Vi, xi, and ti (by Proposition 12) are continuously differentiable, we can show that

for any deception θ̂−i(.) the first-derivative of (3.26) with respect to θ̂i is

Eθ−i

[
∂Vi(xi(θ̂i, θ−i(θ−i)), θi)

∂θ̂i

]
+ Eθ−i

[
∂ti(θ̂i, θ−i(θ−i))

∂θ̂i

]
. (3.27)

By assumption, the utility functions and the decision rule produce bounded complements,

so we have

Eθ−i

[
∂Vi(xi(θ̂i, θ−i(θ−i)), θi)

∂θ̂i

+
∂ti(θ̂i, θ−i(θ−i))

∂θ̂i

− ∂Vi(xi(θ̂i, θ−i), θi)

∂θ̂i

− ∂ti(θ̂i, θ−i)

∂θ̂i

]
(3.28)

≤
∫

Θ−i

Ki(θi)
∑
j 6=i

(θj(θj)− θj)φ−i(θ−i)dθ−i = Ki(θi)
∑
j 6=i

Eθj
[θj(θj)− θj ]. (3.29)

By (3.28) and (3.29),

(3.27) ≤ Ki(θi)
∑
j 6=i

Eθj
[θj(θj)− θj ] + Eθ−i

[
∂Vi(xi(θ̂i, θ−i), θi)

∂θ̂i

]
+ Eθ−i

[
∂ti(θ̂i, θ−i)

∂θ̂i

]
.

(3.30)

By part (i) of Proposition 12,

Eθ−i

[
∂ti(θ̂i, θ−i)

∂θ̂i

]
= −Eθ−i

∂Vi(xi(θ′i, θ−i), θ̂i)
∂θ′i

∣∣∣∣∣
θ′i=θ̂i

 .
Therefore, (3.30) implies

(3.27) ≤ Ki(θi)
∑
j 6=i

Eθj
[θj(θj)− θj ] + Eθ−i

[
∂Vi(xi(θ̂i, θ−i), θi)

∂θ̂i

− ∂Vi(xi(θ̂i, θ−i), θ̂i)
∂θ′i

]
≤ Ki(θi)

∑
j 6=i

Eθj
[θj(θj)− θj ] + Eθ−i

[γi(θ−i)](θi − θ̂i), (3.31)

where the last inequality follows from strong differences.
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Since it is optimal for each player i to play θi(θi) for a.e type θi, then the RHS of (3.31)

evaluated at θ̂i = θi(θi) must be positive for a.e θi and all i. To see why, let Θ∗
i ⊂ Θi

be the set of θi for which the RHS of (3.31) is strictly negative when playing θi(θi). Note

Θ∗
i is measurable by definition, because the RHS of (3.31) is a measurable function in θi

when plugging θi(θi). If there were a player i for whom Θ∗
i had strictly positive measure,

then playing θi(θi) would lead (3.27) to be strictly negative for all θi ∈ Θ∗
i . But for types

in Θ∗
i , player can announce types in [θi, θi(θi)] and so she would strictly prefer playing

θ∗i (θi) = θi(θi)− ε1Θ∗i
for some small ε.33

Since the RHS of (3.31) is positive for a.e θi when playing θi(θi), then it must be true

in expectation for all i,

0 ≤ Eθi
[Ki(θi)]

∑
j 6=i

Eθj
[θj(θj)− θj ] + Eθ−i

[γi(θ−i)]Eθi
[θi − θi(θi)] (3.32)

Letting

C =


−Eθ−1 [γ1(θ−1)] Eθ1 [K1(θ1)] · · · Eθ1 [K1(θ1)]

Eθ2 [K2(θ2)] −Eθ−2 [γ2(θ−2)] · · · Eθ2 [K2(θ2)]
...

...
. . .

...

Eθn [Kn(θn)] Eθn [Kn(θn)] · · · −Eθ−n [γn(θ−n)]

 ,

(3.32) implies the existence of a positive solution w∗ to the system C.w ≥ 0. But then it

must be that w∗TC.w∗ ≥ 0, a contradiction because C is the matrix of complementarities

and it is negative definite. The same argument applies to show that there is no equilibrium

that is smaller than the truthful equilibrium.

2. Find real numbers ai and bi such that Ki(θi) ≤ aiθi + bi for all θi. Define

Ui(θ̂i, θ̂−i(.), θi) = (aiθi + bi)θ̂i

∑
j 6=i

Eθj
[θ̂j(θj)− θj ] + Eθ−i

[γi(θ−i)]θ̂i

(
θi −

θ̂i

2

)
. (3.33)

It follows from (3.31) that ∂Ui/∂θ̂i is larger than ∂ui/∂θ̂i when agents announce types

above their true types. A similar argument to the proof of Proposition 7 then implies that

the game (N, {Σi(Θi), Ui}) has a greatest equilibrium34 which is larger than the greatest

33Note θ∗i (.) ∈ Σi(Θi) because θi(.) ∈ Σi(Θi), so θ∗i (.) is a possible choice of deception.
34From (3.33), this game is obviously supermodular.
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equilibrium of G. Letting

Ai = 1 +
ai(
∑

j 6=iEθj
[θ̂j(θj)]− Eθj

[θj ])
Eθ−i

[γi(θ−i)]
, Bi =

bi(
∑

j 6=iEθj
[θ̂j(θj)]− Eθj

[θj ])
Eθ−i

[γi(θ−i)]
(3.34)

and given Ki(θi) ≥ 0, we obtain i’s best-response to θ̂−i(.) from (3.33),

bri[θ̂−i(.)] =

 Aiθi +Bi if θi ≤ θi ≤ θi−Bi
Ai

θi otherwise.
(3.35)

Computing the expected value of j’s best-response from (3.35) gives

Eθj
[brj [θ̂−j(.)]] = Aj

∫ θj−Bj
Aj

θj

θjφj(θj)dθj + Φj

(
θj −Bj

Aj

)
(Bj − θj) + θj . (3.36)

Plugging (3.36) back into (3.34) results in a system of 2n equations: For i = 1, . . . , n,



Ai = 1 +

ai

∑
j 6=i

Aj

∫ θj−Bj
Aj

θj

θjφj(θj)dθj + Φj

(
θj −Bj

Aj

)
(Bj − θj) + θj − Eθj

[θj ]


Eθ−i

[γi(θ−i)]

Bi =

bi

∑
j 6=i

Aj

∫ θj−Bj
Aj

θj

θjφj(θj)dθj + Φj

(
θj −Bj

Aj

)
(Bj − θj) + θj − Eθj

[θj ]


Eθ−i

[γi(θ−i)]
.

This system has at least one solution where Ai = 1 and Bi = 0 for i = 1, . . . , n and it

corresponds to the truthtelling equilibrium. There also exists a solution which corresponds

to the greatest equilibrium of (N, {Σi(Θi), Ui}). This solution defines strategies that bound

the equilibrium set of G from above. Similarly, by looking at strategies of the form θi if θi < θi < θi − Bi
Ai

Aiθi +Bi otherwise
(3.37)
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where Bi ≤ 0 instead of (3.35), we can construct a system of 2n equations whose smallest

solution provides a lower bound for the equilibrium set of G: For i = 1, . . . , n,

Ai = 1 +

ai

∑
j 6=i

Aj

∫ θj

θj−
Bj
Aj

θjφj(θj)dθj +Bj + Φj

(
θj −

Bj

Aj

)
(θj −Bj)− Eθj

[θj ]


Eθ−i

[γi(θ−i)]

Bi =

bj

∑
j 6=i

Aj

∫ θj

θj−
Bj
Aj

θjφj(θj)dθj +Bj + Φj

(
θj −

Bj

Aj

)
(θj −Bj)− Eθj

[θj ]


Eθ−i

[γi(θ−i)]
.

Q.E.D

Proof of Proposition 8: Since the valuations and the decision rule produce γ-increasing

differences, ∂Eθ−i
[Vi(xi(θ̂i, θ−i), θi)]/∂θi is strictly increasing in θ̂i. Let transfers be the

optimal transfers defined by (3.21) and (3.22), where ti is given by (3.13). By assumption,

Eθ−i
[Vi(xi(θ̂i, θ−i), θi)] is continuous in (θ̂i, θi), so Proposition 12 and Theorem 7 imply

(x, t∗) is supermodular implementable. It follows from (3.25) that ui ◦ f has bounded com-

plements, because V and x are C2. The bound κi on complements is computed as follows,

κi = max
j 6=i

max
(θ̂,θi)∈Θ×Θi

(
∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

− min
θi∈Θi

∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

)
.

Since x is dimensionally reducible and V is C2, the first derivative of t∗i in θ̂i is uniformly

bounded above. Hence transfers are βi-Lipschitz in θ̂i. Applying Theorem 8 completes the

proof. Q.E.D

Proof of Theorem 6: Let

Hi(θ̂−i) = −
(

1
n− 1

)∑
j 6=i

Eθ̃−j

∑
k 6=j

Vk(xk(θ̂j , θ̃−j), θ̃k)

 ,
and for ρi ∈ R, let

δi(θ̂i, θ̂−i) =
∑
j 6=i

ρiθ̂iθ̂j .
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Define

tBB
i (θ̂i, θ̂−i) = δi(θ̂i, θ̂−i)− Eθ−i

[δi(θ̂i, θ−i)] + Eθ̃−i

∑
j 6=i

Vj(xj(θ̂i, θ̃−i), θ̃j)

+Hi(θ̂−i)−

− 1
n− 2

∑
j 6=i

∑
k 6=i,j

ρj θ̂j θ̂k +
1

n− 2

∑
j 6=i

∑
k 6=i,j

ρj θ̂jE(θk). (3.38)

First, (x, tBB) is implementable because x(.) is allocation-efficient and

Eθ−i
[tBB

i (θ̂i, θ−i)] = Eθ̃−i

∑
j 6=i

Vj(xj(θ̂i, θ̃−i), θ̃j)

+ Eθ−i
[Hi(θ−i)],

which is the expectation of the transfers in the expected externality mechanism. Second,

note that for all θ,

∑
i∈N

δi(θi, θ−i)−
1

n− 2

∑
j 6=i

∑
k 6=i,j

ρjθjθk

 =
∑
i∈N

δi(θi, θ−i)−
1

n− 2

∑
i∈N

∑
j 6=i

(n− 2)ρiθiθj = 0

and

∑
i∈N

 1
n− 2

∑
j 6=i

∑
k 6=i,j

ρjθjE(θk)− Eθ−i
[δi(θi, θ−i)]

 =

=
1

n− 2

∑
i∈N

∑
j 6=i

(n− 2)ρiθiE(θj)−
∑
i∈N

Eθ−i
[δi(θi, θ−i)] = 0,

hence ∑
i∈N

tBB
i (θ) =

∑
i∈N

Eθ̃−i

∑
j 6=i

Vj(xj(θi, θ̃−i), θ̃j)

+
∑
i∈N

Hi(θ−i) = 0,

because transfers are balanced in the expected externality mechanism. Furthermore, tBB
i is

clearly continuous in θ̂−i for each θ̂i and usc in θ̂i for each θ̂−i. From standard arguments,

Eθ[tSM
i (θ̂i(θi), θ̂−i(θ−i))] is continuous in θ̂−i(.) and usc in θ̂i(.). Next I show that it is

possible to take ρi so that the complete information payoffs have increasing differences in

(θ̂i, θ̂−i). Since substitutes are uniformly bounded, there exists Ti such that, for all θ′′i ≥ θ′i

and θ′′−i ≥ θ′−i, ∆Vi(θ′′i , θ
′
i, θ

′′
−i, θi)−∆Vi(θ′′i , θ

′
i, θ

′
−i, θi) ≥ Ti(θ′′i −θ′i)

∑
(θ′′j −θ′j) for all θi ∈ Θi.
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Set ρi > −Ti. Choose any θ′′−i ≥−i θ
′
−i and θ′′i > θ′i. From (3.38), note

tBB
i (θ′′i , θ

′′
−i)− tBB

i (θ′′i , θ
′
−i)− tBB

i (θ′i, θ
′′
−i) + tBB

i (θ′i, θ
′
−i) =

= δi(θ′′i , θ
′′
−i)− δi(θ′′i , θ

′
−i)− δi(θ′i, θ

′′
−i) + δi(θ′i, θ

′
−i). (3.39)

If the following expression is positive, then ui(xi(θ̂i, θ̂−i), θi) has increasing differences in

(θ̂i, θ̂−i) for all θi,

∆Vi(θ′′i , θ
′
i, θ

′′
−i, θi) − ∆Vi(θ′′i , θ

′
i, θ

′
−i, θi) +

∑
j 6=i

ρi

(
θ′′i θ

′′
j + θ′iθ

′
j − θ′′i θ

′
j − θ′iθ

′′
j

)
. (3.40)

The proof then follows similarly to that of Theorem 5. Q.E.D

Proof of Proposition 9: Since τi − Ti < γi/(n − 1), then ρi = −Ti implies ρi + τi <

γi/(n− 1).

By Theorem 6, (x, tBB) is supermodular implementable whenever ρi ≥ −Ti.

Because Vi ◦ xi(.) has complements bounded by τi, the definition of tBB
i implies that

ui ◦ f has complements bounded by ρi + τi. Theorem 8 completes the proof. Q.E.D

Proof of Proposition 10: Let O ⊃ Θ be some open set and define the extension of x(.)

from Θ to O. For any θ ∈ O, let ι1(θ) = {j ∈ N : θj ∈ [θj , θj ]}, ι2(θ) = {j ∈ N : θj < θj},

and ι3(θ) = {j ∈ N : θj > θj}. The extension of x(.) from Θ to O, denoted xe, is such that

for all θ ∈ O, xe
(i,k)(θ) = x(i,k)((θj)ι1(θ), (θj)ι2(θ), (θj)ι3(θ)) for all k and i ∈ N . Note that

xe
(i,k) ∈ Lp(O) and it is increasing in θ̂i because x(i,k) is increasing in θ̂i. By Theorem 12.10

in [4], the space of C2-functions on O is norm dense in Lp(O), hence there exists a sequence

{xn} of C2-functions from O into R such that limn→∞(
∫
O |xn,(i,k) − xe

(i,k)|
p)1/p = 0 for all

k and i. This implies limn→∞(
∫
Θ |xn,(i,k) − x(i,k)|p)1/p = 0 for all k and all i. Moreover, we

can take {xn} such that xn,(i,k) is increasing in θi on Oi for all k and i.35 By definition, V

and x are C2 if there exist open sets Ui ⊃ Xi, i = 1, . . . , n, such that V : Ui ×Oi → R and

x :
∏

i∈N Oi → Ui are C2. Therefore, since each Θi is compact and V and xn are C2, then

they form a continuous family, ∂Eθ−i
[Vi(xn,(i,k)(θ̂), θi)]/∂θi = Eθ−i

[∂Vi(xn,(i,k)(θ̂), θi)/∂θi]

is increasing in θ̂i on Θi and substitutes are bounded. Proposition 6 and Theorem 5 imply
35Since xi,k is increasing in θi, it is always possible to take the members of the approximating sequence

to be increasing (see Mas-Colell [67]).
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that, for all n, there exist tSM
n such that f = (xn, t

SM
n ) is supermodular implementable.Q.E.D

Proof of Proposition 11: The proof begins with an approximation of the functions

h(i,k) : R2 → R and ri : Rn → R by C2-functions, and it studies the convergence of the

resulting composite function. Let µn denote the Lebesgue measure on Rn. Because type

sets are compact and hi is bounded, Theorem 12.10 in [4] guarantees the existence of a

sequence of C2-functions that converges to h(i,k) in L1(µ2)-norm. Since hi is bounded, we

can take that sequence so that each element is (uniformly) bounded. From this sequence,

Theorem 12.6 in [4] implies that we can extract a subsequence {hm
(i,k)} of C2-functions that

converges pointwise to h(i,k) for µ2-almost all (θi, ri). Now consider function ri(.). By the

Stone-Weierstrass theorem, for all i ∈ N there exists a sequence of C2-increasing functions

{rq
i } that uniformly converges to ri.36 The triangle inequality gives

∫
Θ
|hm

(i,k)(θi, r
q
i (θ−i))− h(i,k)(θi, ri(θ−i))|dµn ≤

∫
Θ
|hm

(i,k)(θi, r
q
i (θ−i))− hm

(i,k)(θi, ri(θ−i))|dµn

+
∫

Θ
|hm

(i,k)(θi, ri(θ−i))− h(i,k)(θi, ri(θ−i))|dµn. (3.41)

The next step is to demonstrate that the second integral in the RHS of (3.41) converges to

zero, as a result of the µ2-a.e convergence of hm
(i,k).

37 Note that

∫
Θ
|hm

(i,k)(θi, ri(θ−i))− h(i,k)(θi, ri(θ−i))|dµn =
∫

Θi×ri(Θ−i)
|hm

(i,k)(θi, t)− h(i,k)(θi, t)|dµ× µri

(3.42)

where µri = µn−1 ◦ r−1
i . One way to proceed is to apply the Radon-Nikodym theorem. To

this end, I show that µri is absolutely continuous with respect to µ. By way of contradiction,

suppose that µ(A) = 0 for some set A and that there are countable unions of intervals,

∪kI
k
j ⊂ R, such that ri(θ−i) ∈ A for all θ−i ∈

∏
j(∪kI

k
j ). Since ri(.) is continuous and strictly

increasing, ri(
∏

j(∪kI
k
j )) must contain some interval I, in which case I ⊂ A and µ(A) > 0.

This is a contradiction. Therefore, for any A such that µ(A) = 0, there is no {∪kI
k
j }

such that r−1
i (A) ⊂

∏
j(∪kI

k
j ), which implies µri(A) = 0. As a result, µri is absolutely

continuous with respect to µ. Clearly, both µri and µ are (totally) finite on ri(Θ−i). By the

36Since ri is increasing, recall that we can take the members of the approximating sequence to be increasing.
37This is indeed not immediate. Suppose limm→∞ hm

(i,k) = h(i,k) except for {(θi, r
∗
i ) : θi ∈ I}

where I is some interval. If ri(.) is constant and equal to r∗i , then limm→∞ hm
(i,k) = h(i,k) µ2-a.e, butR

Θ
|hm

(i,k)(θi, ri(θ−i))− h(i,k)(θi, ri(θ−i))|dµn does not converge to 0.
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Radon-Nikodym theorem, there exists f on ri(Θ−i) such that µri(A) =
∫
A fdµ for every

measurable set A ⊂ ri(Θ−i). From (3.42), it gives

∫
Θ
|hm

(i,k)(θi, ri(θ−i))− h(i,k)(θi, ri(θ−i))|dµn =
∫

Θi×ri(Θ−i)
|hm

(i,k)(θi, t)− h(i,k)(θi, t)|f(t)dµ2.

(3.43)

Since |hm
(i,k)(θi, t) − h(i,k)(θi, t)|f(t) is integrable and dominated a.e by Hf(t) for H > 0

sufficiently large, the limit of the RHS of (3.43) as m → ∞ is given by the (integral of

the) limit of the integrand, and this limit is 0. This result allows to construct the following

subsequence from {hm
i (θi, r

q
i (θ−i))}:

1. For each m, take α(m) such that
∫
Θ |h

α(m)
(i,k) (θi, ri(θ−i))−h(i,k)(θi, ri(θ−i))| dµn < 1/2m.

2. Since hα(m) is C2, hα(m)
(i,k) (θi, r

q
i (θ−i)) converges uniformly to hα(m)

i (θi, ri(θ−i)) as q →

∞; thus choose β(m) such that
∫
Θ |h

α(m)
i (θi, r

β(m)
i (θ−i))−hi(θi, ri(θ−i))| dµn < 1/2m.

Along the subsequence so constructed, the LHS of (3.41) is less than 1/m for all m and thus

it converges to hi(., ri(.)) in L1-norm. In other words, there is a sequence of dimensionally-

reducible decision rules {xm
i } that converges to xi in L1-space. Implementability of each

xm follows from the fact that ∂Vi(xi, θi)/∂θi is increasing in xi and xm
i (.) is increasing in θ̂i

for each m. Hence xm(.) is implementable. Theorem 7 completes the proof. Q.E.D

Lemma 6 Let (X,≥) be a complete lattice. For Y ⊃ X, let φ : X →→ Y be a correspondence

whose range is Y and such that for all x ∈ X, x ∈ φ(x) and φ(x′)∩φ(x) = ∅ for all x′ 6= x.

Then, there exists an extension ≥∗ of ≥ such that:

(i) (Y,≥∗) is a complete lattice,

(ii) For all distinct x, x′ ∈ X, and all y ∈ φ(x), y′ ∈ φ(x′), y ≥∗ y′ iff x ≥ x′,

(iii) For all x ∈ X, φ(x) is a complete chain.

Proof: Define ≥∗ on X as ≥. Then, for all distinct x, x′ ∈ X, and all y ∈ φ(x), y′ ∈ φ(x′),

let ≥∗ be such that y ≥∗ y′ iff x ≥ x′. So (ii) is satisfied. Finally, complete the definition

of ≥∗ by using the well ordering principle of set theory. This result implies that, for all

x ∈ X, there exists � on φ(x) such that (φ(x),�) is a chain, and such that any B ⊂ φ(x)

has a least upper bound and a greatest lower bound in φ(x).38 Define ≥∗ to be equal to
38Take ω ∈ φ(x). By the well ordering principle, there is an order that well orders φ(x)\{ω}. Extend this

order to all of φ(x) by setting ω as the greatest element. Let � be the extension. Since (φ(x),�) is also well
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� on φ(x) for each x ∈ X. Therefore, for all x ∈ X, φ(x) is a complete chain and (iii) is

satisfied. I show next that (Y,≥∗) is a complete lattice with the order ≥∗ just defined on

all of Y .

First, I prove that it is a partially ordered set. For all x ∈ X, x ∈ φ(x) and thus x ≥∗ x

because (φ(x),≥∗) is a chain. This proves reflexivity. Now take y1, y2, y3 ∈ Y such that

y1 ≥∗ y2 and y2 ≥∗ y3. If y1 ∈ φ(x1), y2 ∈ φ(x2), and y3 ∈ φ(x3) where x1, x2, x3 are

distinct, then y1 ≥∗ y2 implies x1 > x2 and y2 ≥∗ y3 implies x2 > x3. By transitivity of

≥, we have x1 > x3, which implies y1 ≥∗ y3. Suppose that y1, y2 ∈ φ(x1) and y3 ∈ φ(x3)

for distinct x1, x3 ∈ X. Since y2 ≥∗ y3, we have x1 > x3 which implies y1 ≥∗ y3. If

y1, y2, y3 ∈ φ(x1), then y1 ≥∗ y3 because (φ(x1),≥∗) is a chain, which shows transitivity.

Now, if y1 ≥∗ y2 and y2 ≥∗ y1 for some y1 ∈ φ(x1) and y2 ∈ φ(x2), then x1 = x2. Therefore,

y1, y2 ∈ φ(x1) and so y1 = y2 because (φ(x1),≥∗) is a chain. This establishes antisymmetry.

Secondly, I prove that supY S and infY S exist, so (Y,≥∗) is a complete lattice. Let

X ⊂ X be the set of x’s whose image intersects S: x ∈ X iff S ∩ φ(x) 6= ∅. If |X | = 1, then

S ⊂ φ(x) where x is the unique element of X . By definition of ≥∗, S has an infimum and

a supremum in φ(x) ⊂ Y . Now assume |X | ≥ 2 and let S(x) = S ∩ φ(x) for all x ∈ X .

Note {S(x)}x∈X forms a partition of S. Define s(x) = supY S(x) and s(x) = infY S(x),

which exist and belong to φ(x) by definition of ≥∗. Note that if supY S and infY S exist,

then supY S = supY (∪X s(x)) and infY S = infY (∪X s(x)) by associativity. Since (X,≥)

is a complete lattice, supX X exists; call it x. If x ∈ X , then s(x) = supY (∪X s(x)) and

so supY S exists. So suppose x /∈ X . Define s∗ = infY φ(x) and note s∗ ∈ φ(x). I show

s∗ = supY (∪X s(x)). Since x /∈ X , x > x for all x ∈ X . This implies s∗ ≥∗ s(x) for all

x ∈ X . Hence s∗ is an upper bound for ∪X s(x). Take any upper bound y 6= s∗ for ∪X s(x).

Then y /∈ ∪X s(x), for if there were x′ ∈ X such that y = s(x′) then x′ ≥ x for all x ∈ X

would imply that x ≡ supX X = x′ is in X , a contradiction. Therefore, y ∈ φ(x̃) for some

x̃ ∈ X\X and since y ≥∗ s(x) for all x ∈ X , x̃ > x for all x ∈ X . Hence x̃ ≥ x. If x̃ 6= x,

then y >∗ s∗, and if x̃ = x, then y ∈ φ(x) implies y ≥∗ s∗. As a result, s∗ = supY (∪X s(x)).

Finally, infY S exists by a similar argument. Since (X,≥) is a complete lattice, infX X

exists; call it x. If x ∈ X , then infY (∪X s(x)) = s(x). Otherwise infY (∪X s(x)) = supY φ(x).

Q.E.D

ordered, infφ(x)(S) exists for any S ⊂ φ(x). Since the set of upper bounds of S contains ω, it has a least
element because φ(x) is well ordered. Hence supφ(x)(S) exists.
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Proof of Theorem 9: By the traditional revelation principle, (Θ, f) truthfully implements

f in Bayesian equilibrium with any order on Θi. It remains to prove that there is an order ≥∗i
on Θi such that the game induced by ({(Θ,≥∗i )}, f) is supermodular. I prove first that, for

any i ∈ N , the order �i on Mi induces an order ≥∗i on Θi such that (Θi,≥∗i ) is a (complete)

lattice. So, Σi(Θi) is a (complete) lattice with the pointwise order. Second, I establish

that under ≥∗i , u
f
i (θ̂i(.), θ̂−i(.)) is supermodular in θ̂i(.) and has increasing differences in

(θ̂i(.), θ̂−i(.)).

Denote M∗
i = m∗

i (Θi) for all i ∈ N . Define correspondence [ ] : M∗
i →→ Θi where

[mi] = {θi ∈ Θi : m∗
i (θi) = mi} is the equivalence class of mi ∈ M∗

i . Let θs : M∗
i → Θi be

a selection from [ ]. As a mapping from M∗
i to θs(M∗

i ), θs is a bijection because mi 6= m′
i

necessarily implies [mi] ∩ [m′
i] = ∅. Since θs is a bijection, we can define ≥i on a subset of

Θi such that θs(m′′
i ) ≥i θ

s(m′
i) if and only if m′′

i �i m
′
i. Because θs is an order-isomorphism

from (M∗
i ,�i) to (θs(M∗

i ),≥i), it preserves all existing joins and meets. This implies that

(θs(M∗
i ),≥i) is a (complete) lattice because (M∗

i ,�i) is a (complete) lattice. Define the

extension ≥∗i (or simply ≥∗) of ≥i to all of Θi, as follows:

1. For any distinct mi,m
′
i ∈ M∗

i and for all θi ∈ [mi], θ′i ∈ [m′
i], θi ≥∗ θ′i if and only if

θs(mi) ≥i θ
s(m′

i).

2. For all mi ∈M∗
i , ([mi],≥∗) is a complete chain.

By Lemma 6, (Θi,≥∗) is a (complete) lattice. Thus, Σi(Θi) is a (complete) lattice with

the pointwise order. Endow those lattices with their order-interval topology and the Borel

σ-algebra so that all functions are trivially continuous and measurable.

The next step of the proof will use the fact that m∗
i (.) preserves meets and joins,

which I prove now. Take any T ⊂ Θi. Since (M∗
i ,�i) and (Θi,≥∗) are complete lat-

tices, supM∗
i
(m∗

i (T )) and supΘi
T exist. Denote mT = supM∗

i
(m∗

i (T )). Since supΘi
T is an

upper bound for T , ≥∗ implies m∗
i (supΘi

T ) is an upper bound for m∗
i (T ) in M∗

i . Thus,

m∗
i (supΘi

T ) �i mT . But mT is an upper bound for m∗
i (T ), hence sup[mT ]([mT ]) is an upper

bound for T . So, sup[mT ]([mT ]) ≥∗ supΘi
T , and therefore, mT �i m

∗
i (supΘi

T ). A similar

argument applies to show infM∗
i
(m∗

i (T )) = m∗
i (infΘi T ).

Now I show that uf
i (θ̂i(.), θ̂−i(.)) is supermodular in θ̂i(.) and has increasing differences

in (θ̂i(.), θ̂−i(.)). Take any i ∈ N and for all j 6= i, endow Θj with ≥∗j and Σj(Θj) with
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the corresponding pointwise order. Endow
∏

Σj(Θj) with the product order. The first

step is to show that uf
i (θ̂i(.), θ̂−i(.)) is supermodular in θ̂i(.). For any θ′′i (.) and θ′i(.), we

know m∗
i (θ

′
i(.)) ∨ m∗

i (θ
′′
i (.)) = m∗

i (θ
′
i(.) ∨ θ′′i (.)) and similarly for ∧. Since the mechanism

({(Mi,�i)}, g) supermodularly implements f , ug
i (mi(.),m−i(.)) is supermodular in mi(.)

for each m−i(.). For any θ̂−i(.),

ug
i (m

∗
i (θ

′
i(.) ∨ θ′′i (.)),m∗

−i(θ̂−i(.))) + ug
i (m

∗
i (θ

′
i(.) ∧ θ′′i (.)),m∗

−i(θ̂−i(.)))

≥ ug
i (m

∗
i (θ

′
i(.)),m

∗
−i(θ̂−i(.))) + ug

i (m
∗
i (θ

′′
i (.)),m∗

−i(θ̂−i(.))),

which implies that for any θ̂−i(.),

uf
i (θ′i(.) ∨ θ′′i (.), θ̂−i(.)) + uf

i (θ′i(.) ∧ θ′′i (.), θ̂−i(.)) ≥ uf
i (θ′i(.), θ̂−i(.)) + uf

i (θ′′i (.), θ̂−i(.)).

The second step is to show that uf
i (θ̂i(.), θ̂−i(.)) has increasing differences in (θ̂i(.), θ̂−i(.)).

For any θ′′i (.) ≥∗i θ′i(.) and θ′′−i(.) ≥∗−i θ
′
−i(.), we knowm∗

i (θ
′′
i (.)) �i m

∗
i (θ

′
i(.)) andm∗

−i(θ
′′
−i(.)) �−i

m∗
−i(θ

′
−i(.)). Since the mechanism ({(Mi,�i)}, g) supermodularly implements f , ug

i (mi(.),m−i(.))

has increasing differences in (mi(.),m−i(.)). For any θi,

ug
i (m

∗
i (θ

′′
i (.)),m∗

−i(θ
′′
−i(.)))− ug

i (m
∗
i (θ

′
i(.)),m

∗
−i(θ

′′
−i(.))) ≥

≥ ug
i (m

∗
i (θ

′′
i (.)),m∗

−i(θ
′
−i(.)))− ug

i (m
∗
i (θ

′
i(.)),m

∗
−i(θ

′
−i(.))),

which implies that for any θi,

uf
i (θ′′i (.), θ′′−i(.))− uf

i (θ′i(.), θ
′′
−i(.)) ≥ uf

i (θ′′i (.), θ′−i(.))− uf
i (θ′′i (.), θ′−i(.)),

and it completes the proof. Q.E.D



96

Chapter 4

Nomination Processes and Policy
Outcomes

4.1 Foreword

This chapter reproduces the work of “Nomination Processes and Policy Outcomes,” a paper

written jointly by Matthew O. Jackson, Kyle Mattes, and Laurent Mathevet. The part of

the work conducted by the present author cuts across all aspects of the paper and may be

summarized as follows. The paper began as a class project, so the idea of studying election

models is due to Jackson. The present author helped identify what body of theoretical

models to consider. In particular, he proposed the primitive version of the spending com-

petition model in an example. The authors split, more or less equally, the ideas on how to

analyze the models, their mathematical treatment, and the proofs of the results.

4.2 Introduction

Nominations are a critical part of many elections. While the modeling of elections is exten-

sive, there are no systematic studies of how the specifics of the nomination process affect

election outcomes. This chapter develops and analyzes three simple models of prominent

nomination processes, all within the same basic election setting. It is shown that the dif-

ferences in nomination process can have a large impact on the election outcome.

The setting consists of two competing political parties simultaneously nominating can-

didates (out of their respective memberships) for an election. If elected, a candidate chooses

her most preferred policy from a one-dimensional set of potential policies. All voters (who

compose the parties and are thus also the potential candidates) have single-peaked prefer-
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ences. The vote over the two nominees is by majority rule. The three different nomination

processes are as follows:

1. A party leader, who is a member of the party (and thus one of the potential candi-

dates), unilaterally chooses the party’s nominee.

2. Party members vote over who should be the party’s nominee.

3. Party members compete for the nomination by spending. The party member who

spends (or is willing to spend) the most money wins the nomination.

These models of processes should prove useful beyond this chapter, especially when

models of nomination processes become part of more general election models.

In each case an equilibrium is defined to be a pair of nominees, one for each party, such

that the following is true.

• Nomination by party leaders: neither party leader would want to change her

nominee, given the nominee put forth by the other party and anticipating the eventual

election against the other party’s nominee.

• Nomination by a vote of party members: there is no other party member

who would defeat the party’s nominee in a majority vote of the party’s members,

anticipating the eventual election against the other party’s nominee.

• Nomination by spending competition: no other party member would be willing

to spend more than the party’s nominee in order to secure the party nomination,

anticipating the eventual election against the other party’s nominee.

As the nomination process varies, the main characterizations of the election outcomes

are as follows. First, nomination by party leaders is analyzed. In this case, the winner can

come from either party, but lies between the overall median and the leader of the party that

contains the median. The outcome can range anywhere between these points. Then it is

shown that nominations by party vote are equivalent to situations where nominations are

made by party leaders, but where the party leaders are the medians of the parties. This

provides an intuitive relationship between nominations by a party vote and nominations

by party leaders. This then implies that the election outcome when nominations are by a
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vote by party members always lie between the overall median and the median voter of the

party which contains the overall median voter. In contrast, the outcome under spending

competition is not constrained to any particular interval. Depending on the intensity of

voters’ preferences, the outcome can be almost anywhere. Elections by spending competi-

tion differ more dramatically from the other nomination processes, have more complicated

equilibrium existence issues, and depend on the preferences of various party members in

complex and subtle ways. In particular, nominations by spending competition can lead to

extremist nominees from either or both parties, and can lead to extreme policy outcomes.

Finally, party membership is endogenized, which leads to a convergence to the median in the

case of nomination by votes, while if nominations are by spending competition, extremist

outcomes can still ensue.

Although this political framework is a simple one-dimensional left-right spectrum with

single-peaked voter preferences, the median voter’s preferences do not always determine

the outcome.1 This analysis offers a different explanation from other models exhibiting

non-median outcomes, as it is shown that incorporating parties and nominations into the

electoral model can create non-median outcomes.2 Alternative models with non-median

outcomes include analyses that expand the dimensions of the outcomes (e.g., Hinich [51]),

include valence (Groseclose [41], Aragones and Palfrey [5]), have more than two candidates

(e.g., Hotelling [53], Palfrey [91]), have citizen candidates who run at a cost (Osborne and

Slivinsk [89], Besley and Coate [12]), are based on probabilistic voting (e.g., Coughlin [25]),

or focus on candidate signalling and character (Callander [?], Kartik and McAfee [59]). In

the model it is candidates’ willingness to spend to influence the nomination and ultimately

the election that drives the outcome away from the median.

Nomination processes are the focus of empirical work by Gerber and Morton [38], who

show that differences in the laws governing electoral primaries can have an effect on the

outcome. They examine the consequences of different primary laws across states in the U.S.

and show that closed primaries can lead to more extreme nominations, while semi-closed
1In fact, observed political outcomes often deviate significantly from the median. For example, Stone and

Rapoport [101] show that the candidates competing for and winning U.S. Presidential nominations cover a
wide range of political ideologies. (See also Arterton [8], Aldrich [3], and Gurian [43] for more discussion of
the nomination process.)

2Independent work by Serra [98] also shows a model with primaries and non-median outcomes. However,
that model is very different from any model of this chapter, having two Downsian candidates in each
party, with uncertainty over voter preferences, or incumbency or dogmatic preferences generating nonmedian
outcomes.
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primaries (allowing voters to declare a party on election day and for independents to vote

in a primary) lead to even more moderate nominees than completely open primaries (where

strategic voting across parties can occur). The present model is one where party members

are the only ones who vote, and so it is a closed system. However, the differences between

nomination by party leadership and nomination by party members’ vote can be seen as

reflecting different degrees of closure. Moreover, once party membership is endogenized, we

move closest to a semi-closed system. In that case, the outcome converges to the overall

median, which is consistent with their finding that semi-closed systems are the most mod-

erate. The analysis of nomination by spending competition is harder to connect to their

classification.

The rest of the literature that has examined primaries and nomination processes, has

focused on other aspects, such as relating the nomination process to party structure (e.g.,

Ranney [93], Jewell [57], Epstein [35]), or modeling information dispersion and acquisition

through primaries (e.g., Callander [?], Meirowitz [74], Bartels [11]). Thus, this chapter

presents a first systematic modeling of how nomination procedures relate to electoral out-

comes.

4.3 The General Model

The model is related to a citizen-candidate framework,3 but one where the citizens cannot

simply decide to run but must be nominated through their parties. There are n voters,

and voter i’s preferences are represented by a utility function ui : [0, 1] → IR. Voters have

single-peaked preferences over the interval [0, 1], and the peak of voter i is denoted xi.

Without loss of generality, order voters by their labels, so that x1 ≤ x2 ≤ · · · ≤ xn. To

keep things simple, assume that n is odd. Also, assume that no voter is indifferent between

any distinct candidates i and j.

Voters are divided into two parties, P1 and P2, that partition {0, 1, . . . , n}. In the first

part of the chapter, the two parties are fixed; later party formation is studied. Notation P`

and P−` indicates a generic party ` and its competitor.

In general, party structures are arbitrary, so that it could be that the parties are not

simply left- and right parties, but overlap. For instance, it could be that one party has some
3See Osborne and Slivinski [89] and Besley and Coate [12].
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left and right-minded voters, and the other party has some centrists. This means that it is

possible for some voters to vote for the other party in the final outcome. There is no overlap

in parties if for each ` ∈ {1, 2} and any i and j ∈ P`, there does not exist any k ∈ P−` such

that xi ≤ xk ≤ xj .

Let M = (n + 1)/2 be the overall median voter out of P1 ∪ P2, and let M` denote a

median of party `.4 Let W [i, j] denote the majority winner among any two candidates i

and j. Given that a candidate is identified with her ideal point, let ui(j) denote ui(xj), or

the utility that i gets if j wins the overall election. Finally, let

di(j, k) = ui(j)− ui(k). (4.1)

This is the difference in utility between what i gets if j is the overall winner vs. what i gets

if k is the overall winner.

The political process is as follows:

(1) Each party (simultaneously) nominates one of its members to serve as its candidate.

(2) Voters vote for one of the two candidates, and a candidate is elected by majority rule

with ties broken by a fair coin toss.

(3) The policy outcome is the elected candidate’s most preferred policy.

Nomination processes are carefully modeled in (1) through equilibrium definitions, where

everyone anticipates the election and outcome in (2) and (3). Given just two parties, it is

a (weakly) dominant strategy for each voter to vote for her preferred candidate in (2). (3)

is motivated by a standard argument that candidates cannot credibly commit to follow any

policy other than their most preferred policies.5

4.4 Nominations with a Fixed Party Structure

Here, the distribution of voters across the two parties is fixed. As discussed above, three

different processes are given for the ways that parties nominate a candidate.
4One of the parties will have two medians, and we are explicit in cases where that matters.
5It is sufficient to have voters have well-defined expectations regarding what policy each candidate would

implement before the nomination process takes place.
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• A party leader (one of the party members) unilaterally chooses the candidate,

• party members vote over who should be their candidate, and

• party members compete for the nomination by spending, with the nominated candi-

date being the party member who spent the most.

Each of these requires a corresponding definition of equilibrium.

4.4.1 Equilibrium Definitions for the Three Nomination Procedures

The definitions of equilibrium for each of the nomination procedures are as follows.

Equilibrium with Nominations by Party Leaders

An equilibrium in the case of nominations by party leaders is a pair of nominations, de-

notedNom(P1) ∈ P1 andNom(P2) ∈ P2, such that for each party `,W [Nom(P`), Nom(P−`)]

is preferred by the leader of party ` to W [x,Nom(P−`)], for any x ∈ P`.

This definition requires that neither party leader can benefit by changing her nomination.

Equilibrium with Nominations by a Vote of Party Members

An equilibrium in the case of nominations by a vote of party members is a pair of nomina-

tions Nom(P1) ∈ P1 and Nom(P2) ∈ P2 such that there does not exist any x ∈ P` such that

W [x,Nom(P−`)] is preferred by a strict majority of voters in P` toW [Nom(P`), Nom(P−`)].6

This definition requires that a party’s nominee not be beaten in a head-to-head vote with

some other potential nominee, given the other party’s nomination. Thus, the nominee of a

party must be a sort of internal Condorcet winner, given that voters anticipate the eventual

election and overall outcome. This yields some intuitive interactions between the parties’

nominees, as candidates who appeal to the party in the abstract might still be defeated for

the nomination if they lack a chance of winning the subsequent election. Even though most

of the interesting interaction under nomination by voting is between candidates that are

viable given anticipations of what the other party will do, parties’ nominees can still drift

away from the party and overall median voters.

6Note that this definition is related to Duggan [31]’s definition of “group stable” equilibrium, which he
defines for abstract games played between groups of players.
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Equilibrium with Nominations by Spending Competition

An equilibrium in the case of spending competition by party members is a pair of

nominations i = Nom(P1) ∈ P1 and k = Nom(P2) ∈ P2 such that

ui(W [i, k])− ui(W [j, k]) ≥ uj(W [j, k])− uj(W [i, k]) (4.2)

for all j ∈ P1 and

uk(W [k, i])− uk(W [h, i]) ≥ uh(W [h, i])− uh(W [k, i]) (4.3)

for all h ∈ P2.

This definition captures competition by candidates through spending. It requires that

a party’s nominee would not be beaten by some other nominee from the same party in a

head-to-head spending competition, given the other party’s nomination. That is, the party’s

nominee would be willing to outspend any challenger in order to keep the nomination. Here,

for instance, ui(W [i, k])− ui(W [j, k]) represents the maximum that i is willing to spend in

order to win the nomination instead of having j win it, given that k is the nominee of party

2. The definition is somewhat subtle since how much a candidate would be willing to spend

can depend on whom they are bidding against. A candidate might be willing to spend more

to defeat a candidate who differs more drastically from their own stance, than a candidate

who is closer in stance.

This definition captures the essential aspect of competition by spending, namely how

much different candidates would be willing to pay in order to gain a nomination, without

getting caught up in a detailed model of the process itself. One could explicitly model this

via an auction process. One natural process would be an “all-pay” auction, where each

candidate spends as they wish and the winner is the candidate that spends the most. An

equilibrium of an alternating move version of that auction where candidates are aware of

each other’s willingness to pay corresponds to the equilibrium is defined here. That is, a

candidate that is willing to spend more than each other candidate would win the auction

by spending a minimal amount as no other candidate would want to spend given that

they anticipate eventually being outspent. The setting here is slightly more complicated,

as a candidate’s willingness to spend depends on whom they are bidding against, but the
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equilibrium is an extension of that where there are private values. More details are provided

in the appendix.

The important difference between nomination by spending competition and the other

nomination processes is that intensity of preferences matter under spending competition,

while it is only ordinal and not cardinal preferences that matter in the party leadership

and voting nomination settings. This is what allows for a wide variety of outcomes under

this setting, depending on how much different candidates are willing to spend to win office.

Also, there are some other effects that arise, as candidates might seek the nomination even

though they would lose the subsequent election in cases where they wish to prevent another

nominee from obtaining office.

4.4.2 Nomination by Party Leaders

Equilibrium under each of the nomination procedures are now characterized, starting with

the case of a nomination by party leaders.

Example 11 Multiple Equilibria Under Party Leaders, No Overlap

There are seven voters, N = {1, . . . , 7}, and two parties that partition N as follows:

P1 = {1, 2} and P2 = {3, 4, 5, 6, 7}. The voters’ ideal points are ordered by their labels.

First, note that in this example, the winner will come from P2 regardless of who the

leaders are. This follows since if 3 is nominated, 3 will win against any nominee from P1,

and all members of P2 prefer 3 to either nominee of P1.

In this example, there are multiple equilibria, but all equilibria have the same outcome:

the winner is the member of P2 who is most preferred by the leader of P2 out of those who

beat 2. The winner must always lie in the interval between 4 (the median) and the leader

of P2. For example, if the leader of P2 is 3, then 3 is the outcome. Note the multiplicity

of equilibria; P1 is willing to nominate either 1 or 2, as it is irrelevant. Either nomination

leads to the same outcome. If the leader of P2 is 4, then 4 is the equilibrium outcome. If

the leader is 5, then the outcome is either 4 if 2 beats 5, but is 5 if 5 beats 2. If the leader

is 6, then the outcome is in {4, 5, 6}, and is the highest indexed member of this set that

beats 2.

Some features of this example generalize. There may be a multiplicity of equilibria, but

they always lie in a well-defined interval between the overall median and the party leader
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of the party containing the overall median.

Proposition 14 There always exists an equilibrium under a nomination by party leaders.

The winning candidate in any equilibrium lies in the interval between (and including) the

overall median voter and the leader of the party which contains the overall median voter.

The proof appears in the appendix.

The fact that the winner always comes from the interval between the overall median, M ,

and the leader k of the party that contains M is relatively straightforward. If the winner

came from the other side of the median from k, then k could improve by nominating M .

If the winner came from the other side of k, then k could improve by nominating him or

herself. The more specific details of the equilibrium structure are complicated and there is

no simple formula. A simple characterization can be derived in the case of no overlap.

Proposition 15 If there is no overlap in parties, then there is a unique equilibrium winner.

The winning candidate comes from the party that contains the overall median, and the

outcome is that party’s leader’s most preferred member from the set of those who beat all

members of the other party.

The proof is straightforward, following the logic of Example 11, and is left to the reader.

The idea is that each party leader prefers its bordering member to any candidate of the

other party. The larger party (the one with the median), then necessarily wins, as its leader

has a nomination available that will beat all candidates of the other party, and he or she

prefers to any nomination of the other party. The rest of the proposition then follows easily.

It is important to emphasize that, even in the case where the parties have no overlap

and split so that one party includes all voters up to the median and the other has all voters

from the median onward, the outcome might not be the median. As a simple example,

consider a society with three voters, and party 1 is voter 1, and party 2 is voters 2 and 3

with 3 being the leader. If voter 2 prefers 3 to 1, then the outcome will be that voters 1 and

3 are nominated and 3 wins. So the median is not the outcome, even in this most central

case.

While the case with no overlap produces a unique winner, things are more complicated

when there is overlap in parties. In that case there can exist multiple equilibrium outcomes,
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and depending on the configuration of parties, the winning nominee can come from either

party. To get some feeling for this, consider the following example.

Example 12 Multiple Equilibria Under Party Leaders

There are seven voters, N = {1, . . . , 7}, and two parties that partition N as follows:

P1 = {2, 3, 6} and P2 = {1, 4, 5, 7}. The voters’ ideal points are ordered by their labels.

The party leaders are 6 and 7. Let preferences be such that W [i, 5] = i unless i = 6 or

i = 7.

There is an equilibrium where the nominees are 6 and 7. There is also an equilibrium

where the nominees are 3 and 4. This is an equilibrium even though both leaders would

prefer the other equilibrium.7 Note that these two equilibria have different parties winning.

Note also that the set of equilibria is not connected in the sense that there is no equilibrium

where 5 is the winner. The only equilibrium outcomes are 4 or 6.

Refine the set of equilibria using strong equilibrium. Then it leads to selecting equilibria

where the winner lies between the peaks of the party leaders. The details of this refinement

are provided in the appendix.

4.4.3 Nomination by a Vote of Party Members

Nomination processes by a vote of party members is the subject of this subsection. As shown

below, nominations by a vote of party members are equivalent to having nominations by

party leaders where the party leaders are the medians of the parties.

Example 13 Nomination by Voting

Reconsider Example 11 where are seven voters, N = {1, . . . , 7}, and two parties, P1 =

{1, 2} and P2 = {3, 4, 5, 6, 7}. The voters’ ideal points are ordered by their labels.

In the case where 5 beats 2 in an election, then the unique equilibrium outcome and

nominee from P2 is 5, while there are two equilibria in that P1 can nominate either 1 or

2. To verify this, it is enough to check that 5 would be the nominee of party 2 regardless

of party 1’s nomination. Voters 5,6, and 7 prefer to have 5 nominated than either 3 or 4

(either of whom would win in the subsequent election against either candidate from party

1), and so it is clear that 5 would defeat 3 and 4 for the nomination, regardless of party
7Note that this is an equilibrium in undominated strategies given that 1 beats 6 (as 1 beats 5).
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1’s nomination. So consider, a nominee of 6 or 7. If that nominee would win against the

nominee of party 1, then 3, 4 and 5 would all rather have 5 nominated. If that nominee

would lose against the nominee of party 1, then 5, 6, and 7 would all prefer to have 5

nominated. This leaves 5 as the equilibrium nomination from party 2 in all equilibria.

If 2 beats 5, then one can verify that all equilibria have P2 nominate 4, who wins the

subsequent election.

It is now shown that at least one equilibrium always exists and the equilibrium structure

under voting is related to the nominations by party leaders.

Proposition 16 There always exists an equilibrium under a vote by party members. The

set of equilibria coincides with that where the median voter in a party is a “party leader.”8

The winning candidate lies between the overall median and the median9 of the party con-

taining the overall median.

The proof appears in the appendix.

The intuition for a party acting as if the median were a party leader is much more subtle

than it would seem. For example, note that it is not always true that given a comparison

between two arbitrary candidates, if the median prefers one to the other then so does a

majority. It is possible, when comparing candidates from opposite sides of the median,

that the median’s preferences are in the minority.10 Nonetheless, the claim is true. To

understand this, consider the nomination of one party taking the nomination of the other

party as given.11 The set of possible nominees who could defeat the nominee of the other

party is either (i) an interval including the median of the party, or (ii) an interval lying

entirely to one side of the party median (which then must be on the side of the other

party’s nominee). In case (i) where the set of viable nominees includes the party median,

then the party median would be preferred to the nominee from the party by a majority

of the voters of the party, as the comparison would always boil down to a comparison of

the party median and some other outcome. In that case, the party median is the only
8Given that one party will have two medians, this refers to a union of the sets of equilibria where each

one of the two medians is party leader.
9This is the furthest median voter of the party, if there are an even number of voters.

10For example, voters other than the median may prefer candidates to their right over candidates to their
left, while the median’s preferences run in the other direction.

11Consider the case where the first party has a single median and see the appendix for the case with two
medians.
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possible nominee in response to the other party’s nominee. If instead case (ii) applies and

the interval is entirely on one side of the median (the same side of the party median as the

other party’s nominee), then any two viable nominees from that interval both lie on the

same side of the party median and so a majority of the party will have preferences that

agree with the party median’s preferences.

Although there could be a discontinuity here when the median voter changes from one

party to another, as this can move the winning candidate from one side of the median to

the other, in many cases the change will not be very substantial. For instance, if each

party has a fairly dense set of potential nominees near the median voter, then the eventual

winner must be very close to the median. The discontinuity here comes from the finite set

of potential nominees and the fact that a candidate is not allowed to do anything other

than institute her most preferred policy.

While the nomination by party voting allows for non-median outcomes overall, the

chosen candidate still comes from a well-defined interval between the overall median and

the median of the party containing the overall median. The equilibrium looks very different

when nominations by party spending are considered.

4.4.4 Nomination by Spending Competition

The analysis of nomination by spending competition begins with some examples. First, an

equilibrium is shown where there is an extreme outcome in terms of each party’s nominee

and the overall winner.

Example 14 Nomination by Spending Competition

Again, reconsider Example 11 where there are seven voters, N = {1, . . . , 7}, and two

parties, P1 = {1, 2} and P2 = {3, 4, 5, 6, 7}. The voters’ ideal points are ordered by their

labels.

Note first, that there are preference configurations where the nominee of P2 is 3, even

though all other members of party 2 would prefer to nominate 4, and even though that

nominee does not lie between the overall median and the median of P2 (in contrast to the

case of nomination by voting). For example, if d3(3, i) > di(i, 3) for all i > 3, then 3 wins

the nomination of P2 and the overall election.



108

It is also possible to have extremists from both parties nominated. For instance, suppose

that all members of P2 prefer any member of P2 to any member of P1. In this case, the

nominee of party 2 will win the election and so it is as if there were just one party and

spending competition among its members. If d7(7, i) > di(i, 7) for each i ∈ {3, 4, 5, 6}, then

the unique equilibrium outcome would be that 7 wins the nomination and then the overall

election. As the nominee from P1 is irrelevant, extreme nominees from both parties could

occur.

This example shows the contrast between nomination by spending competition and

nomination by voting. Under spending competition the outcome could be any member of

P2, while in the voting case it would have to be either 4 or 5.

While the possible outcomes under nominations by spending competition are more varied

than under nominations by voting, it is still possible to say something about the outcome,

at least in the case where there is no overlap in the parties which is a very natural case to

consider.

Proposition 17 If there is no overlap in parties, then any equilibrium winner under nom-

ination by spending competition is from the party containing the median, and is a candidate

who defeats all candidates from the other party.

The proof again appears in the appendix, but is easy to explain. In this case, all members

of the party containing the median prefer the candidate k closest to the other party to any

nominee of the other party. This means that any candidate willing to outspend k must also

be able to win the election.

Proposition 17 does not mention the issue of existence. This is because of another

contrast between nomination under spending competition and the other nomination proce-

dures. Under spending competition an equilibrium need not always exist, as shown in the

next example. In fact, the example shows nonexistence even in the no overlap case.

Example 15 Non-Existence of Equilibrium Under Party Spending

There are five voters N = {1, . . . , 5} and two parties, P1 = {1, 2} and P2 = {3, 4, 5}.

Consider the utility functions in Figure 1 for voters 3, 4 and 5. Every member of P2 prefers

any member of P2 to any member of P1. So, it is clear that the nominee of P1 is irrelevant.

Let d4(4, 3) > d3(3, 4). Then 3 cannot be the nominee as 3 would be outspent by 4. Also,
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let d5(5, 4) > d4(4, 5). Then 4 cannot be the nominee as 4 would be outspent by 5. This

leaves only 5 as the potential nominee. However, if d3(3, 5) > d5(5, 3), then 5 cannot be the

nominee either. Thus, there are situations where there is no equilibrium.

1 2 3 4 5 

utility 

voter4 

voter5 

voter3  
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Figure 4.1: Preferences Generating an Intra-Party Cycle

The nonexistence of equilibrium in the case of spending competition follows from the

fact that intensities of preferences matter and might not be ordered across party members

in any nice way.

4.4.4.1 Sufficient Conditions for Existence Under Party Spending with No

Overlap in Parties

An equilibrium may not exist under nominations by spending competition, even in a five-

voter12 world with single-peaked preferences and no overlap in parties. Sufficient conditions

on preferences are provided for an equilibrium to exist.

In the case of no overlap, an intuitive condition is sufficient to rule out the cycle exhibited

in the above example and to restore existence. Let i < j denote that xi is to the left of xj .

Let us say that preferences satisfy the extremist condition if di(i, k) ≥ dj(j, k) whenever

i ≤ j ≤ k or i ≥ j ≥ k. This condition says that if one voter is willing to spend a given

amount to move the outcome in a given direction (say to the left), then voters further to the

left would be willing to spend at least as much for the same change. Under this condition,

there is a consistent ordering to the intensity of voters preferences and this is enough to

avoid the cycles from the example above and guarantee existence.

The extremist condition is clearly very strong, and one would expect to find many
12One could even simplify the example further having only one party, and reduce it to a three voter world.
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settings where it fails. However, as seen from Example 15, something on the order of this

condition is really needed to establish equilibrium existence. There are cases where the

extremist condition is satisfied. For instance, if preferences are Euclidean (so that utility is

just the opposite of the distance between the outcome and the peak, as is often assumed in

the literature), then the condition is clearly satisfied.

Proposition 18 If there is no overlap in parties and the extremist condition is satisfied,

then there exists an equilibrium under nomination by spending competition.

The proof of the proposition is constructive and appears in the appendix. The idea is

that under the extremist condition, the relevant candidates are only extreme ones. We have

to be a bit careful, as the relevant ones in some cases need to be defined relative to those

who win against nominees of the other party.

4.4.4.2 Sufficient Conditions for Existence Under Party Spending: The Gen-

eral Case

When there is an overlap in parties, cycles turn out to be surprisingly robust to preference

restrictions. Even the nice ordering of preferences under the extremist condition fails to be

sufficient to guarantee existence. In fact, equilibria may fail to exist even under stronger

preference restrictions. Two preference restrictions are examined: First, a “strong extrem-

ist” property (that is a strengthening of the extremist condition), and second, an ordered

preference intensities condition. The failures of these two conditions to guarantee existence

helps illustrate another condition, which is called the “directional party” condition, which

ensures existence.

Preferences satisfy the strong extremist condition if for all players i, j, k such that i ≤

j ≤ k and all alternatives h, t with i ≤ h ≤ t ≤ k,

1. di(h, t) > dk(t, h) implies di(h′, t′) > dj(t′, h′) for all i ≤ h′ ≤ t′ ≤ j and,

2. dk(t, h) > di(h, t) implies dk(t′, h′) > dj(h′, t′) for all j ≤ h′ ≤ t′ ≤ k.

The strong extremist condition says that if one voter i has more intense preferences than

another voter k regarding pairs of candidates in between those two (h and t), then voter i
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has more intense preferences than some other voter j who lies in the same direction as k,

over pairs of alternatives between i and j. This, again, is a strong condition that imposes

some consistency on preferences to rule out cycles. Similar to the extremist condition, while

it is strong and only satisfied in special cases, it is satisfied by Euclidean preferences that are

directly proportional to distance between an alternative and a voter’s peak. Even with this

strengthening of the extremist condition, there are situations where no equilibrium exists,

provided there is overlap between the parties.

Example 16 Non-Existence of Equilibrium Under the Strong Extremist Condition

There are seven voters with ideal points at locations: x1 = 0, x2 = 1, x3 = 3, x4 =

6, x5 = 7, x6 = 9, x7 = 10. Voters’ preferences are distance based, so they prefer candidates

who are closer to their ideal points to those farther away. Two parties partition N as follows:

P1 = {1, 3} and P2 = {2, 4, 5, 6, 7}.

Suppose that the strong extremist condition is satisfied in terms of preference intensities

and the following are true:13

d7(7, 2) > d2(2, 7)

d1(2, 3) > d3(3, 2)

d2(3, 6) > d6(6, 3).

Let us show that there is no equilibrium. Start by showing that there is no equilibrium

with 1 as the nominee of P1. Every candidate in P2 beats 1. Thus, by the strong extremist

condition, the only candidates for nomination from P2 are 2 and 7. The nominee for P2

must then be 7, since d7(7, 2) > d2(2, 7). However, if 7 is nominated by P2, then both 1

and 3 in P1 would rather have 3 be nominated over 1. Thus, it is impossible to have an

equilibrium with 1 as the nominee of P1. So, let us consider 3 as the nominee of P1. 2

cannot be the nominee of P2, as then d1(2, 3) > d3(3, 2) implies that 1 would outbid 3 for

the nomination of P1. So, the nominee of P2 must come from {4, 5, 6, 7}. It cannot be 6,

since 2 would outbid 6 given that d2(3, 6) > d6(6, 3). By the strong extremist condition, this

also means that it cannot be 5 or 4 for the same reason. So, we are left with 7. However if

7 is nominated, then 3 wins. 6 would then wish to outbid 7 (and 7 would be happy to be

outbid). Thus, there is no equilibrium.
13These three relationships are consistent with the strong extremist condition.
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Suppose now that the intensity of candidate preferences can be ordered. Preferences

satisfy the ordered preference intensity condition if every distinct pair of voters i and j

can be ordered in terms of preference intensity such that either |di(h, k)| > |dj(h, k)| (for

all h 6= k)14 or |dj(h, k)| > |di(h, k)| (for all h 6= k). Notice that having more intense

preferences is a transitive relationship. Even this strong a condition is not enough to

guarantee existence.

Example 17 Non-Existence of Equilibrium when Preference Intensities are Ordered

There are seven voters with ideal points x1 = 1, x2 = 2, x3 = 4, x4 = 7, x5 = 8, x6 =

9, x7 = 11, and who prefer outcomes closest to their own peaks. Two parties partition N

as follows: P1 = {1, 4, 5, 6, 7} and P2 = {2, 3}. Preference intensities are ordered so that

2 > 3 > 7 > 1 > 6 > 5 > 4, where ‘i > j’ means ‘i has more intense preferences than j’.

Check that there is no equilibrium. No equilibrium can support the nomination of voter

2 in P2 without the nomination of 7 in P1 because 7 could win the final election and has the

most intense preferences in P1. But the pair (7, 2) is not an equilibrium either since voter

2 would be outspent by voter 3, as 3 is the best outcome that 2 can rationally expect given

the next round. Following the same logic, (7, 3) is not an equilibrium because 7 would be

outspent by 4, 5 or 6. Furthermore, in each of (4, 3), (5, 3), (6, 3), voter 1 would outspend

these other potential nominees from P1 as she has the most intense preferences in P1 after

7. Finally, voter 2 would not let voter 3 win the nomination under (1, 3), so that cannot

be an equilibrium.

These last two examples suffer similar cycling issues: We first begin to move in one

direction, but then someone on the opposite side breaks the directional trend by stealing

the nomination, and starts a cycle. The following condition is sufficient to prevent cycling,

thus implying equilibrium existence.

Preferences satisfy the directional-party condition if, for each party `, either

1. di(h, t) ≥ dj(t, h) for all i ∈ P` and j ∈ P` and h, t ∈ N such that i ≤ h < t ≤ j, or

2. di(h, t) ≤ dj(t, h) for all i ∈ P` and j ∈ P` and h, t ∈ N such that i ≤ h < t ≤ j.

14It would be more natural to require this only when h and k lie to one side of i and to one side of j, but
even under this very strong condition equilibria fail to exist.
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The directional party condition says that there is a consistent direction with respect to

which a party’s preferences can be ordered. Either it is always voters more to the left that

care at least as much as voters to the right, or vice versa. Again, this condition is very

strong, but satisfied when preferences are Euclidean (the opposite of the distance between

an alternative and the voter’s peak).

Proposition 19 If preferences satisfy the directional-party condition, then an equilibrium

under nomination by spending competition exists.

The proof is in the appendix, and uses an algorithm that identifies an equilibrium under

the directional party condition.

The results have shown that nominations by party leaders and party vote have an

interesting relationship, in that nominations by party vote look as if the party median was

a party leader. These then lead to outcomes lying between the overall median and the leader

(or median) of the party containing the overall median. In both cases equilibria exist. In

contrast, the case of spending competition brings in preference intensity which leads to a

wider variety of possible outcomes, as well as existence problems.

Party membership will now be endogenized. This is important in order to understand

how anticipated outcomes will affect incentives for voters to switch parties and try to affect

the overall outcome.

4.5 Endogenous Parties

Interestingly, it turns out that with nominations by voting, endogenizing parties leads to

median outcomes, while under nomination by spending competition, it is still possible to

get extreme outcomes in both nominations and the overall winner.15

Equilibrium with Endogenous Parties

Consider a partition of the population into two parties, (P1, P2), with the possibility

that one of these is empty. Say that (P ′1, P
′
2) is adjacent to (P1, P2) if there exists i such

that (P ′1, P
′
2) = (P1 \ {i}, P2 ∪ {i}) or (P ′1, P

′
2) = (P1 ∪ {i}, P2 \ {i}). Thus, adjacent pairs

of parties are those where the only difference is that one voter has switched parties.
15In this section we do not consider endogenous parties with party leaders, as it is not so clear how to

properly define equilibrium in that case (e.g., who are the leaders if a leader switches parties?). Moreover,
we already see an interesting contrast between the voting and spending competition cases, which is the more
central focus of this chapter.
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An equilibrium with endogenous parties is a pair of parties (P1, P2), with the possi-

bility that one is empty, that partition the set of voters, and a pair of nominations that

form an equilibrium (Nom(P1), Nom(P2)),16 as well as a specification of an equilibrium

(Nom(P ∗1 ), Nom(P ∗2 )) for every adjacent partition into two parties (P ∗1 , P
∗
2 ), such that:

ui(W [Nom(P`), Nom(P−`)]) ≥ ui(W [Nom(P`\{i}), Nom(P−` ∪ {i})]), (4.4)

for each P` and i ∈ P`. A party structure together with specifications of (equilibrium)

nominations for that party structure and all adjacent ones is in equilibrium if no member

of one party wishes to switch to the other party, anticipating the equilibrium that would

ensue.17

4.5.1 Endogenous Parties and Nomination by Voting

First, nominations by party voting is revisited. Consider the following example.

Example 18 Every Equilibrium Outcome is the Median with Endogenous Parties, but not

with Exogenous Parties

There are seven voters, N = {1, . . . , 7}, and two parties that partition N as follows:

P1 = {1, 2, 3, 7} and P2 = {4, 5, 6}. Let 6 beat 3 in an election. One equilibrium when these

are exogenous parties is (3, 5), with candidate 5 winning. This is not, however, part of an

equilibrium with endogenous parties. Candidate 4, the median, can join P1. With the new

lineup of P ′1 = {1, 2, 3, 4, 7} and P ′2 = {5, 6}, (4, 5) is an equilibrium (with either exogenous

or endogenous parties). Let us check that P ′1 = {1, 2, 3, 4, 7} and P ′2 = {5, 6}, (4, 5) is part

of an equilibrium with endogenous parties. Clearly, candidate 4 would not wish to switch,

as 4 wins the election. Candidates 1, 2, 3, and 7 would have no effect on the outcome by

switching to P2 as it is still an equilibrium to have 4 nominated by P1 against 5 from P2;

and candidates 5 and 6 would have no effect on the outcome by switching to P1 as it is then

still an equilibrium to have 4 nominated against the remaining candidate in P2.
16In the case where one of the parties is empty, then its nomination is ignored, and the other party’s

nominee wins the election by default.
17One might consider other sorts of equilibrium definitions, where coalitions of voters can separate and form

new parties, etc. That is certainly of interest, but beyond the scope of this analysis, given the complications
introduced by handling three or more parties.
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This feature that the median is the winner is not just an artifact of this example, but

is true of all equilibria under nominations by voting when parties are endogenous.

Proposition 20 When nominations are by votes, then in every equilibrium with endoge-

nous parties W [nom(P1), nom(P2)] = M . Moreover, such an equilibrium exists.

The proof is in the appendix. The intuition is roughly as follows. Suppose the outcome

were not the median. Then we know from Proposition 16 that it lies between the median

and the median of the party containing the median. It must then be that the other party

(not having the median) has a majority which would prefer the median over the current

outcome. Then by switching, the median would be nominated and win. This last part

takes some proof, as one has to worry about what possible other equilibria could arise if

the median switched parties, and one has to show that the only possibility is to have the

median nominated.

While the outcome is necessarily the median once parties are endogenized under nom-

inations by voting, the parties can still have a variety of configurations. For instance, it

could be that the equilibrium is to have the median alone in one party, or instead at the

other extreme to have all voters in the same party. What is tied down is that unless one

of the nominees is the median, then the party structure will turn out to be unstable. This

emphasizes that the equilibrium party structure cannot be separated from what the equi-

librium nominees are. It could be that parties are stable with one pair of nominees, but not

with another.

4.5.2 Endogenous Parties and Nomination by Spending Competition

Parties under spending competition are now endogenized. Here, it turns out that non-

median outcomes are possible, as shown next.

Example 19 Existence of Extreme Equilibrium Outcomes with Endogenous Parties

There are five voters N = {1, . . . , 5}, and two parties that partition N as follows:

P1 = {1, 3} and P2 = {2, 4, 5}. Voters’ ideal points are ordered by their labels. More-

over, assume that d1(2, 3) > d3(3, 2), and d2(i, j) > dh(k, t) for all h ∈ {3, 4, 5}, and

all i, j, k, t such that 2 ≥ i > j and 2 ≥ k > t.
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For P1 and P2 above, (1, 2) is a pair of nominations that form an equilibrium where the

general winner is voter 2. Let us check that there is some specification of equilibria for each

possible switching of some voter, so that no voter would desire to switch parties. If voter 1

switches party then P1 only consists of voter 3, the median. In this case, regardless of the

nominee from P2, the final winner is voter 3, and voter 1 is made worse off. If instead voter

3 switched parties, then voter 1 would become the only possible nomination in P1. In P2,

voter 2 outbids any member, so she is nominated as part of any equilibrium. Voter 3 is not

strictly better off since voter 2 is still the general winner. It is clear that voter 2 will not

gain by switching parties, regardless of the equilibrium specification. So, we are left only to

consider what happens if voter 4 (or 5) switches parties. Here, (1, 2) is still an equilibrium

because then 4 (5) does not want to outspend 1 as they would still lose to 2 (and 3 still

does not want to outspend 1 given that d1(2, 3) > d3(3, 2)); and voter 2 continues to outbid

the members of her party.

Example 19 shows that, in contrast to nominations by voting, nomination by spending

can provide non-median outcomes that are robust to party switching. Just as with fixed

parties, there are issues with equilibrium existence, but the directional party condition is

again sufficient to guarantee existence.

Proposition 21 Suppose that nominations are by spending competition. If preferences

satisfy the directional party condition and are in the same direction for each party, and

N ≥ 5, then an equilibrium with endogenous parties exists.18

The proof of the proposition involves an explicit construction of the two parties and

nominations, putting the two most extreme voters (in terms of the directional preference)

in different parties. For instance, if the lowest indexed voters are those who have stronger

preferences under the directional preference condition, then the constructed equilibrium

parties have 1 and 3 together in one party and 2 and 4 together in the other, with any

allocation of the remaining voters between the parties. 1 and 2 are nominated and 2 wins

the election. None of the remaining voters can switch the outcome by changing parties. 2
18In the case where N = 3, there need not always exist an equilibrium. For instance, suppose that 1 cares

most, then 2, then 3, where 2 is the median. Suppose also that 1 beats 3 in an election. If 1 and 2 are in
the same party, then the nomination of that party must be 1 (regardless of whether 3 is present). That is
not stable as then 2 would rather switch parties and win the nomination and then the election. It is also
not stable to have 1 and 2 in separate parties, as then 1 would like to join the party that 2 is in, to win that
nomination and the overall election.
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clearly has no gain from changing, and if 1 changes parties, then 3 wins the nomination and

the election, which cannot be improving for 1.

Example 19 and the proof of Proposition 21 show us that even with endogenous parties,

it is possible to have extreme outcomes under nomination by spending competition. This

contrasts with nominations by party votes, where Proposition 20 shows a median outcome.

This makes the point that how nominations are conducted can have a big impact on election

outcomes, and that if spending plays a substantial role in the nomination process, then

outcomes can differ dramatically from a pure voting setting.

4.6 Concluding Remarks

The nomination process is important in determining the outcome of elections, even in a

simple single-peaked world. When parties of fixed configurations vote over their nominees,

the outcomes that emerge from the election are as if the party medians were party leaders,

so the outcomes lie between one of those median peaks and the overall median, but can

differ from the overall median. The divergence from the median depends on the specific con-

figurations of parties and voters’ ideal points. If parties are endogenous, then the outcome

must be the overall median voter. Depending on preferences, a wider range of outcomes are

possible under nominations by spending competition, even when parties are endogenous.

There it is a very different process that determines the outcome, and intensity of preference

determines the outcome. This chapter provides insight into the diversity of outcomes that

can occur even in settings where the election is well ordered on one dimension and there

are only two parties. This suggests that it is important to model nomination processes in

order to understand electoral outcomes, even in the starkest settings.

There is much room for further research, and important ways in which the analysis

should be extended. We close by mentioning a few of the most obvious directions for

further study.

First, the chapter has modeled extreme versions of nomination processes, where either

there are party leaders, there is a vote among party members, or there is simply a spending

competition among party members. Reality is, of course, more complex, and involves

combinations of these three elements. Party leadership has some discretion in identifying

potential nominees, the electorate has substantial input, and spending by potential nominees
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can also clearly have an effect. Identifying how these different influences interact is of

interest.19

Second, the current analysis has been confined to elections of single representatives or

officials from two-party settings. While this has wide application (even beyond the U.S.),

it is also important to understand nomination processes in multi-party systems, as well

as things like selections of party lists and platform design and their influence on electoral

competition.

Along with multi-party analyses, it would also be important to allow for independent

voters who are not affiliated with any party. The results for fixed party structures are

easily modified to accommodate the existence of independent voters. For the cases of party

leaders and spending competitions, there is no change in the statement of the results as the

independent voters would simply be incorporated through the determination of the eventual

voting outcome (the W function). In the case of nominations by a party vote, there would

be a small modification to the statement of the results. Consider a case where there are

independent voters who cannot run as their own candidate or participate in the nomination

process of either party. These voters only enter the political process by voting for one of

the two candidates in the overall election, and are thus subsumed in the function W [·].

The analysis only requires changes in the case where the general median is an independent

voter. There, it is important that a unique Condorcet winner exist among all potential

candidates from either party.20 That party member then plays a central role in locating

the final winner; the existence part of the results remains unchanged. For example, the

second part of Proposition 14 then reads: The winning candidate in any equilibrium lies

in the interval between (and including) the Condorcet winner among all party members

and the leader of the party which contains the Condorcet winner. While this indicates how

independent voters can be addressed when they are fixed, allowing voters to choose whether

or not to join a party would be another interesting avenue to follow.

Third, general forms of stability with endogenous parties, where one allows either more

than two parties or more than one voter to change at a time, face substantial existence
19Related to this, a referee suggested examining situations where party leaders are chosen endogenously,

potentially by a vote. Here this maps indirectly into choices of candidates, and thus looks like voting over
the nominee; but with richer institutional detail this could be an interesting variation to consider.

20Take the closest party member to the left of the overall median and the closest one to the right (even
if they are from the same party). If one beats the other then that agent is the overall Condorcet winner
among potential candidates.
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hurdles. Nonetheless this needs to be investigated, as in situations where two parties are

nominating extreme candidates, there are strong incentives for centrist voters to split off and

form their own party. This again points to an interest in the modeling of multiple-party

systems, even for the understanding of two-party systems.21 Although modeling party

formation has generally been a difficult task and there is a paucity of workable models, it

is such a important aspect of electoral competition that it begs for further analysis.

4.7 Appendix

4.7.1 Justifying the Equilibrium in a Spending Competition via an All-

Pay Auction

Consider the following all-pay auction.22,23

Time proceeds in discrete periods t ∈ {1, 2, . . .}. Candidates alternate in their moves in

the order of their indices. Spending amounts start at 0 and fall on a grid with increments

of ε > 0. A candidate who is called upon to move can choose to raise her spending to any

higher feasible amount or to leave it unchanged. If a candidate does not match the current

highest spending amount on her turn, then he or she is out of the auction.24 The auction

ends at the first time where there is a single candidate remaining, or where candidates have

each exhausted their budgets. The candidates each have a budget of B. In the case where

candidates each hit their budget, the winner is the last candidate.

Consider a case where ui(W [h, k])− ui(W [j, k]) is not a positive multiple of ε for any i,

j, h, and k, ui(j) is not a multiple of ε for any i, and no “ties” occur (so that each ui(j)

and ui(j)− ui(k) takes a distinct value across all i, j and any k 6= j).25

21There are economies of scale and other aspects of parties (branding, reputation, etc.) that may make it
hard to form new parties (or even to switch parties), and so the endogenous party equilibrium analysis may
still be a good starting point. But understanding party formation more generally is clearly important.

22While this has some specific features to make the analysis relatively easy, some other variations in terms
of tie-breaking and rules for dropping out of the auction can be handled with additional arguments.

23The timing of this auction provides for different conclusions from simultaneous or sealed bid auction
models of electoral contests (e.g., Meirowitz [75]).

24On the first round, the current highest spending amount is considered to be ε > 0, so that a candidate is
dropped from the auction if he or she does not initiate some minimal spending. The last mover has a slight
advantage in that if the other players have not spent anything, then that candidate wins without spending
the ε.

25Note that generically, ties only occur in a situation where the outcomes are the same, so for instance if
W [i, k] = W [j, k] = k, and in that case the eventual election outcome is not dependent on which of i or j
wins.
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The following claim is shown when |P1| = 3. The extension to more candidates holds

by an extension with an inductive argument, although a proof is not included.

Claim 1 Let |P1| = 3 and suppose that there is a candidate i = Nom(P1) ∈ P1 and a

candidate k = Nom(P2) ∈ P2 such that

ui(W [i, k])− ui(W [j, k]) > uj(W [j, k])− uj(W [i, k]) (4.5)

for all j ∈ P1, and that also

uj(W [h, k])− uj(W [i, k]) ≤ uh(W [h, k])− uh(W [i, k]) (4.6)

for any h ∈ P1 and j ∈ P1 both distinct from i. Then there is a small enough ε and a large

enough B such that there is a unique subgame perfect equilibrium outcome (anticipating

Nom(P2) = k) where i wins the above described all-pay auction and spends at most ε.

Before moving to prove the claim, let us discuss the importance of (4.6). It is illustrated

in the following example.

Example 20 Critical Spending by a Non-Winning Candidate.

In this example, i = 3 satisfies (4.5). Yet, in every equilibrium candidate 2 wins,

and candidate 1 campaigns even though 1 loses. Candidate 1 campaigns in order to drag

candidate 2 into the race.

Let W [1, k] = k, W [2, k] = 2, W [3, k] = 3. Let ε be in units and consider the following

preferences:

• Candidate 1’s preferences are u1(k) = −1.4, u1(2) = 6.5, u1(3) = 0.3.

• Candidate 2’s preferences are u2(k) = 0.2, u2(2) = 8.5, u2(3) = 7.6.

• Candidate 3’s preferences are u3(k) = 0.4, u3(2) = 1.5, u3(3) = 4.5.

Let us provide the insight to why even though i = 3 satisfies (4.5), in every equilibrium

candidate 2 wins. Note that if candidate 1 spends 5 at the first opportunity, then candidate

3 will surely end up dropping out of the auction. Also, candidate 2 will respond to outbid

candidate 1, as candidate 2 is willing to spend 8.3 to change the winner from 1 to 2. Thus,
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if candidate 1 spends 5 at the first opportunity, candidate 2 will respond, candidate 3 will

then drop out and candidate 2 will win. This means that it costs at most 5 for candidate 1

to ensure that candidate 2 wins. The equilibrium then cannot be that candidate 1 will win.

Effectively, even though there is a candidate who is willing to outspend every other

candidate in a head-to-head race (4.5), that is not enough to guarantee that the candidate

wins. If there is some other candidate who strongly prefers to see yet another candidate

win, there are situations where the head-to-head winner does not prevail. That is ruled out

by condition (4.6).

To prove Claim 1, we make use of the following observation: By Proposition 2 in Dekel,

Jackson, and Wolinsky [29], for large enough B and small enough ε there is a unique

equilibrium outcome of this game if there are only two candidates, i and j, in the spending

competition.26 That outcome is the candidate for whom

ui(W [i, k])− ui(W [j, k]) > uj(W [j, k])− uj(W [i, k])

if there is such a candidate.27 This also holds in any subgame where we start with large

enough remaining budgets, and a current standing bid such that if it is i’s turn to move i

does not have to bid more than ui(W [i, k])− ui(W [j, k]) in order to stay in the auction.

Proof of Claim 1: Let us label the candidates in P1 as 1,2,3. We need to verify the

claim for each choice of i, because the game is not fully symmetric due to the starting order

of moves.

First, note that the game is finite and given the distinct payoffs, there are only equal

payoffs between actions at a node if the outcome is the same across actions. This implies

that there is a unique equilibrium outcome.28

Let v = maxj 6=i,j∈P1uj(W [j, k])− uj(W [i, k]).

Let us show that there is a large enough budget so that in any subgame where i moves
26As emphasized by Dekel, Jackson, and Wolinsky [29], this result is a variation on a result originally

shown by Leininger [65], who examines ε-equilibria in a slightly different auction.
27Otherwise W [i, k] = W [j, k] = k and then the first mover drops out. The tie-breaking rule here is

slightly different than that in Dekel, Jackson, and Wolinsky [29]; but in a way that actually makes things
slightly easier to see.

28There is a possibility that W [h, k] = W [`, k] and there is indifference over which of h or ` wins, so here
we mean eventual outcome of the election against k. Note, however, that by (4.5), such indifference cannot
involve i.
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last, and there is at least that budget remaining, then i wins without any additional bidding.

Consider a subgame where imoves last and the current starting bid is the smallest increment

larger than v larger than the current bid of any j ≤ i. (Note that in this case the total

budget must be at least the current starting bid.) Then it is clear that i will win, as all

other bidders will drop out at their turns by the definition of v and condition (4.6). Let us

now proceed by induction. Suppose that i wins at no additional cost in any subgame where

i moves last and the current starting bid is at least kε larger than the current bid of any

j ≤ i for some k > 0, and the remaining budget is at least some Bk. We show the same is

true for (k− 1)ε when the remaining budget is at least Bk + v+ ε. If the other bidders bid,

they must expect that there is an outcome other than i winning, as otherwise by dropping

out, the first bidder would be sure that i would win in the continuation by the observation

above and would save whatever payment. Likewise, the second bidder would then drop out.

So, if the other bidders bid, they must be expecting some j 6= i to win. Supposing that the

equilibrium continuation is to have some other bidder bid with an expectation of j winning,

it follows that no bidder raises their bid by more than uj(W [j, k]) − uj(W [i, k]) (recalling

(4.6)). But if i next bids the minimal increment larger than uj(W [j, k]) − uj(W [i, k]), it

follows from the induction step that i will win, and from (4.5) that i gains more than

uj(W [j, k])− uj(W [i, k]). This contradicts j winning in the continuation, and the claim is

established.

Next, we show that if i = 1 and there is a large enough budget, it follows that i will win

with a bid of ε. Note that if i bids ε, then by the claim above, i will be the last mover and

will win in the continuation with no additional payment. If i does not bid, then some other

candidate will win. By assumption, i strictly prefers to win (and by more than ε).

Finally, consider the case where i = 2. We show that i will win with a bid of ε. If 1 were

to bid, it must be that 1 expects some j 6= i to win, as otherwise 1 could drop out and have

i = 2 win in the continuation (by the observation above). It must then also be that 1 bids no

more than u1(W [j, k])− u1(W [i, k]) ≤ uj(W [j, k])− uj(W [i, k]) < ui(W [i, k])− ui(W [j, k]).

By matching 1’s bid, by the claim above i = 2 wins in the continuation, which is strictly

improving for 2 compared to any outcome where j wins; which is a contradiction. Thus, 1

drops out. Then it is clear that i = 2 bids ε and 3 drops out in the continuation. Q.E.D
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4.7.2 Proofs of the Propositions

Proof of Proposition 14: Let D` and D−` respectively be the leaders of parties ` and

−`. Denote by (Nom(P`), Nom(P−`)) the pairs of nominations. Without loss of generality,

assume M ∈ P`.

Suppose D` ≥ M . First, we show that the winning candidate in equilibrium lies in

[M,D`]. By way of contradiction, suppose the winner, call it W ∗, is to the left of (less

than) M . If D` nominates M , then W [W ∗,M ] = M and so D` is strictly better off by

single-peakedness. Outcome W ∗ could not be supported in equilibrium, a contradiction.

If W ∗ > D`, then from a similar argument, D` is better off nominating herself because

W [W ∗, D`] = D`, a contradiction.

Secondly, we prove existence. If D` = M , then it is always an equilibrium for D` to

nominate herself and for D−` to choose arbitrarily a nominee in P−`. If D` > M , then take

x̂ which is defined as the closest point to D` in P` ∩ [M,D`] such that W [y, x̂] = x̂ for all

y ∈ P−`. If x̂ = D`, then (D`, y) with any y ∈ P−` is an equilibrium. If x̂ 6= D`, then for

all x ∈ P` ∩ (x̂,D`], there exists y ∈ P−` such that W [x, y] = y (for if this were not true,

x would be closer to D` which violates the definition of x̂). Define x∗ ≡ min(P` ∩ (x̂,D`]).

Let y∗ ∈ P−` be the closest point to D−` in P−` such that W [x∗, y∗] = y∗. Note that

W [x, y∗] = y∗ for all x ∈ (x̂,D`]. Now, if y∗ ∈ (x̂,D`], then (x∗, y∗) is an equilibrium

because the candidates in P` that could defeat y∗ would make D` strictly worse off, and

so x∗ is a best-response for D`. By definition, y∗ is the best nomination for D−` when

Nom(P`) = x∗. But, if y∗ < x̂, then (x̂, y∗) is an equilibrium because D−` is indifferent

between all the alternatives in P−` while x̂ is D`’s best choice when facing y∗.

Now suppose D` < M and let X be the set of voters’ peaks. Consider the dual (X ′, >′)

of (X,>) where i’s peak in X ′ is greater than j’s if and only if it is smaller than j’s in X.

The above argument completes the proof as D` >
′ M in X ′. Q.E.D

Proof of Proposition 16: First, we prove that a pair of nominations is an equilibrium

under a vote by party members if and only if this pair is an equilibrium with nomination

by medians as party leaders. Then we show existence and conclude.

Let us first show that if a pair of nominations is an equilibrium with medians as party

leaders, then it is an equilibrium under nomination by voting. So, let (one of) the medians of
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each party be a party leader: D` = M` and D−` = M−`. Suppose (Nom(P`), Nom(P−`)) =

(i, j) is an equilibrium with medians as party leaders. This means that W [i, j] �M`
W [x, j]

for all x ∈ P`. If W [M`, j] = M`, then it must be that i = M`. In that case, for any x, since

M` is a median of the party and preferences are single peaked, there is not a strict majority

of the party that prefers W [x, j] to M`, and so it remains an equilibrium nomination for

` under voting. So consider the case where W [M`, j] = j. There, it must be that either j

lies between the overall median and M`, or on the other side of the median from M`. This

means that for any x (including i), W [x, j] lies to the same side of M` as j. In that case,

a (weak) majority has the same preferences as M` over the pair W [i, j] and W [x, j]. Thus,

if W [i, j] �M`
W [x, j], then this is true for at least a weak majority of member of party

P` and so no other nominee would defeat i as a nominee. Since ` was arbitrary, any (i, j)

which is an equilibrium with medians as party leaders is an equilibrium under a nomination

by voting.

To see the converse, consider an equilibrium (i, j) under nomination by voting. By

means of contraction, suppose that this is not an equilibrium for any choice of medians

as party leaders. That is, suppose there exists a party ` such that i is not the choice of

the party median(s) in response to j. As argued above, the only possible outcomes as a

function of the nominations of party ` either include at least one of the party medians,

or all lie on the same side of the party median(s) as j. Consider the former case first,

that is, W [M`, j] = M` where M` is a median of P`. In that case, the median closest to

W [i, j] would also defeat j.29 Therefore, i must be the median closest to W [i, j]; otherwise

a strict majority of P` would prefer that median to W [i, j], contradicting that (i, j) is an

equilibrium. But if i is a median and W [i, j] = i, then she must be the choice of a party

median in response to j, a contradiction. Second, consider the latter case where neither

median would win against j. There, all of the party members to the opposite side of the

party median(s) to j have the same preferences as the party median(s) over all the possible

outcomes since all possible outcomes are to one side of the party median(s). In that case,

it must be that if i is not defeated by a strict majority, then there is no other nomination

that the median (or either median if there is more than one) would prefer to i. Agent i is

thus the choice of a median of P`, a contradiction.
29We know both M` and W [i, j] defeat j (at least weakly). Since the set of winners against any candidate

is a connected set, the median closest to W [i, j] also beats j.
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By Proposition 14, we know that there exists an equilibrium under nominations by any

pair of leaders, and so there exists one where the medians are party leaders. Therefore, by

the first part of the proof, an equilibrium exists under vote by party members. The third

part of our claim follows immediately from Proposition 14. Q.E.D

Proof of Proposition 17: Without loss of generality, let P2 be the party containing

the median. Suppose to the contrary of the claim, that the winner j was from P1. Let k

be the member of P2 closest to P1. Since there is no-overlap and M ∈ P2, k would defeat

any member of P1. So, that the winner j is in P1 implies Nom(P2) ≡ i 6= k. That is,

some i losing to j outspends k. But dk(k, j) > di(j, k), as it must be that di(j, k) < 0 and

dk(k, j) > 0. This is a contradiction, because no such i would outbid k.

Next suppose that the winner Nom(P2) could be beaten by some member of P1. A sim-

ilar argument as the one just given reaches a contradiction. For Nom(P2) to win, a member

of P1 losing to Nom(P2) would have to outspend a member who could defeat Nom(P2), a

contradiction since there is no overlap. Q.E.D

Proof of Proposition 18: Without loss of generality, let P1 contain the median and

lie to the left, and order voters by their labels. Let k be the minimal labeled voter in

P2. Let S1 be the subset of voters in P1 who would beat k in the election (and this set is

non-empty given that the median is in this set). Let k = Nom(P2). Note that all voters in

P1 \ S1 prefer any nominee from S1 to k and so will not wish to outbid any nominee in S1;

and changing the nominee from P2 (given that Nom(P1) ∈ S1) will not change the outcome.

Thus, to complete the specification of an equilibrium, it is enough to find a nominee from

S1 that would not be outbid by any other nominee from S1. Consider the two extreme

candidates from S1, and label them i and j. If di(i, j) ≥ dj(j, i), then set Nom(P1) = i and

otherwise set Nom(P1) = j. Q.E.D

Proof of Proposition 19: With directional parties, there are two cases: either (I) prefer-

ence intensities for both parties (weakly) increase in the same direction, or (II) preference

intensities for the parties increase in opposite directions.

We show that for both cases an equilibrium can be found.

Case I. Without loss of generality, assume that preference intensity in both par-
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ties (weakly) increases as the candidates move leftward. Now, choose 1 ≡ minP` and

2 ≡ minP−`, the leftmost candidates from each party. If 1 ≤ M and 2 ≤ M , then it is

straightforward to check that (Nom(P`) = 1, Nom(P−`) = 2) is an equilibrium. However if

(say) 2 > M , then pick the leftmost candidate from Party ` who can defeat candidate 2 in

a pairwise election. In this case, M ∈ P` and so such a candidate exists. Call this candidate

3. It is straightforward to check that (Nom(P`) = 3, Nom(P−`) = 2) is an equilibrium.

Case II. Let C` be the direction set of party `, which contains all candidates on the side

of the median corresponding to the direction of that party’s increasing preferences. Wlog,

assume that party `’s preference intensities increase for candidates to the right and party

−`’s preferences are increasing to the left. Formally, C` = {i ∈ P` : M ≤ i} and C−` =

{i ∈ P−` : i < M}. Furthermore, assume wlog that M ∈ P`.

Case IIa: C−` = ∅. Let 2 = minC−` be the candidate from C−` that is closest to the

median. If C`\[M, 2] 6= ∅, then choose the candidate closest to 2 in that set and call her

1. Then (Nom(P`) = 1, Nom(P−`) = 2) is an equilibrium. Otherwise, if C`\[M, 2] = ∅,

then choose the candidate from C` that is closest to 2, call her 1, and notice (Nom(P`) =

1, Nom(P−`) = 2) is an equilibrium.

Case IIb: C−` 6= ∅. Let 2 = maxC−` be the candidate from C−` that is closest to

the median. Denote by 1 the candidate from C` that is furthest from the median and can

defeat candidate 2.30 Now, if C−` ∩ [M, 1] = ∅, then (Nom(P`) = 1, Nom(P−`) = 2) is an

equilibrium; otherwise, let 3 = maxC−` ∩ [M, 1] and note (Nom(P`) = 1, Nom(P−`) = 3)

is an equilibrium. Q.E.D

Proof of Proposition 20: We prove that for every equilibrium partition into parties

(P1, P2) it must be that W [Nom(P1), Nom(P2)] = M .

Suppose to the contrary, that W ∗ = W [Nom(P1), Nom(P2)] 6= M in some equilibrium.

Without loss of generality, suppose that M ∈ P1, where M1 ≤ M ≤ M2. The possible

alignments for W ∗ can be divided into two distinct cases.

(1) W ∗ < M . Since M ∈ P1, we know from our characterization of equilibrium that

M1 ≤ W ∗ < M . Now let P ′1 = P1/{M} and P ′2 = P2 ∪ {M}. If (Nom(P ′1), Nom(P ′2)) =

(i,M) for any i, then M would win and so there would be a profitable deviation for M

contradicting equilibrium. Thus, it must be that (Nom(P ′1), Nom(P ′2)) = (i, j), where

30Such a candidate can always be found since it is possible to choose the median.
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j 6= M . In particular, j ∈ (M,M2] without loss of generality, which we explain next. We

know that W [i, j] ∈ (M,M2], by our characterization of equilibrium. So, if j = W [i, j], then

j ∈ (M,M2]. Now suppose i = W [i, j]. Note that the median of P ′1 is to the left of M1, as

removing members to the right of M1 (such as M) moves the median to the left. So, for

(i, j) to be a pair of nominations in equilibrium, j > M because otherwise a majority in P ′1

would always be strictly better off nominating M1 over i. In equilibrium, j must be such

that any nomination which a majority in P ′1 prefers to i = W [i, j] also loses to j. Therefore,

if (i, j) is an equilibrium where j > M2, then there exists j∗ ∈ (i,M2] such that (i, j∗) is

also equilibrium. As a result, j ∈ (M,M2] without loss of generality. Now we show that

(Nom(P ′1), Nom(P ′2)) = (i, j) with j ∈ (M,M2] cannot be an equilibrium. First, Nom(P1)

beats j, or else j would have been the nominee of P2 since j ∈ (M,M2] is preferred to W ∗

by a majority in P2. Second, Nom(P1) ≤ M . To see why, notice that if Nom(P1) = W ∗

then Nom(P1) ∈ [M1,M ], and if Nom(P2) = W ∗ then Nom(P1) > M would imply that a

majority in P2 is strictly better off nominating M2 rather than Nom(P2), a contradiction.

Now we have two cases:

Case I. Nom(P1) ≥ M1: Then, M1 ≤ Nom(P1) ≤ M . Recall that the median of P ′1

lies to the left of M1. Therefore, a majority in P ′1 prefers Nom(P1) to W [i, j] ∈ (M,M2],

and since Nom(P1) = W [Nom(P1), j], (i, j) cannot be an equilibrium.

Case II.Nom(P1) < M1: BecauseW ∗ ∈ [M1,M ],W ∗ = Nom(P2). For (Nom(P1), Nom

(P2)) to be a pair of nominations in equilibrium, Nom(P1) must be such that any nomination

which a majority in P2 prefers toNom(P2) loses toNom(P1). Thus, if (Nom(P1), Nom(P2))

is an equilibrium where Nom(P1) < M1, then there exists Nom∗(P1) ∈ [M1,M ] such that

(Nom∗(P1), Nom(P2)) is also equilibrium. We have seen in case I that it is not possible

either.

(2) W ∗ > M . This cannot be since the outcome must lie between the party median of

the party containing M and M , and so must lie between M1 and M .

To complete the proof, we argue that there exists a partition into parties with the median

as the outcome, and corresponding equilibria (for all possible adjacent party structures).

To see this, choose parties with no overlap such that the median is the most extreme voter

in one of the parties. Let h be the voter immediately to the right of the median and t be

the voter immediately to the left of the median. If h defeats t, then have the median be in

the party that contains t (and nominations be M and h), and otherwise have the median
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be in the party that contains h (and nominations be M and t). Regardless of the deviation

by any voter, let the median be nominated. Q.E.D

Proof of Proposition 21: Without loss of generality, suppose that preference intensity

increases leftwards (left directional parties). Since N ≥ 5, there exists a partition of N into

(P ∗1 , P
∗
2 ) such that minP ∗1 < minP ∗2 < M and no i ∈ N is such that minP ∗1 < i < minP ∗2 .

Let c1 = minP ∗1 (i.e., the leftmost voter in P ∗1 ) and c2 = minP ∗2 . By the algorithm in

the proof of Proposition 19, (c1, c2) is an equilibrium of the nomination process and so

((P ∗1 , P
∗
2 ), (c1, c2)) may be an equilibrium with endogenous parties. We prove next that

it actually is an equilibrium. First, take any voter x > c2. If x switches party, then the

algorithm predicts that (c1, c2) is still an equilibrium. Therefore, x cannot be strictly better

off in all the equilibria of the game with partition (Px\{x}, P−x ∪ {x}). Secondly, if c1

changes party, then Nom(P ∗1 \{c1}) > c2 because c1 and c2 are the leftmost candidates in

each party. Since c1 < c2, by single-peakedness this cannot benefit c1 as it could only push

the final winner to the right. Finally, W [c1, c2] = c2 and thus there is no equilibrium that

could make c2 strictly better off after switching. Q.E.D

4.7.3 Nomination by Party Leaders and Strong Equilibria

A strong equilibrium in the case of nominations by a vote of party leaders is a pair of

nominations Nom(P1) ∈ P1 and Nom(P2) ∈ P2 such that:

(1) The pair is an equilibrium in the case of nominations by a voter of party leaders.

(2) There does not exist any pair of nominees (i, j) where i ∈ P1 and j ∈ P2 such that

W [i, j] is preferred to W [Nom(P1), Nom(P2)] by the leader of P1 and the leader of P2.

The idea is that the party leaders cannot get a better outcome by agreeing to change

strategies.

Returning to Example 12, there are seven voters, N = {1, . . . , 7}, and two parties that

partition N as follows: P1 = {2, 3, 6} and P2 = {1, 4, 5, 7}. The voters’ ideal points are

ordered by their labels. The party leaders are 6 and 7. Let preferences be such that

W [i, 5] = i unless i = 6 or i = 7.

The equilibria are (6, 7) and (3, 4). However,(3, 4) is not a strong equilibrium because

both party leaders prefer W [6, 7] = 6 to W [3, 4] = 4.
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Proposition 22 If the pairs of nominees (i,j) and (i’, j’) are both strong equilibria in the

case of nominations by a vote of party leaders, then W[i,j] = W[i’, j’].

Proof: The possible locations of party leaders can be divided into two cases.

(1) Party leaders are on the same side of the median. Let D` and D−`, respectively,

be the leaders of parties ` and −`. Without loss of generality, assume that M ∈ P`, and

D−` < D` ≤M. We know that W [i,D`] = D` is an equilibrium outcome whenever i < D`,

and we will show that D` is the only strong equilibrium outcome. Suppose that W ∗ is

a strong equilibrium outcome different from D`. Then W ∗ ∈ [D`,M ], since whenever

W ∗ < D`, D` can improve the outcome by nominating himself, and whenever W ∗ > M ,

D` can improve the outcome by nominating M . So W ∗ ∈ [D`,M ]. But, then both D−`

and D` would prefer that i < D` and D` are their respective parties’ nominees. Thus, the

outcome W ∗ 6= D` is not supportable as a strong equilibrium, which is a contradiction.

(2) Party leaders are on opposite sides of the median. Without loss of generality, assume

that M ∈ P`, and D−` < M < D`. We will show that whenever D−` < M < D`, there is

always exactly one equilibrium outcome, and hence only one strong equilibrium outcome.

Recall, from the proof of Proposition 1, that x̂ is defined as the closest candidate to D`

in P` ∩ [M,D`] such that W [x̂, y] = x̂ for all y ∈ P−`. First of all, we know that for any

equilibrium outcome W ∗, W ∗ ∈ [x̂,D`]; otherwise D` could strictly improve the outcome.

Trivially, if x̂ = D`, then the only possible equilibrium outcome is W [D`, nom(P−`)] = D`.

Now, let x̂ 6= D`, and (as in the proof of Proposition 1), define x∗ ≡ min(P` ∩ (x̂,D`])

and y∗ ∈ P−` as the closest point to D−` in P−` such that W [x∗, y∗] = y∗. Whenever

y∗ ∈ [D−`,M ], D`’s best-response is to nominate x̂ which, by definition, defeats all of P−`.

So, in this case, the only equilibrium outcome is W ∗ = x̂. Suppose instead that y∗ ∈ [x̂,D`].

Then, W [x∗, y∗] = y∗ is the only possible equilibrium outcome. Q.E.D
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