
Investigating Psychology-Influenced Economic Models in Lab, Field,
and Theory

Thesis by

Alexander L. Brown

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2008

(Defended May 15, 2008)



ii

© 2008

Alexander L. Brown

All Rights Reserved



iii

Acknowledgements

First and foremost, I thank my mom and dad. They have provided me with tremendous support

throughout graduate school (and a tremendous amount of encouragement before graduate school!).

Even though they have entirely different styles of parenting, they both made me feel like I always

had someone there if I needed it. Yet, at the same time, they knew how to talk to me so I felt stronger

and more self-reliant.

Second, I would not have attended Caltech if not for John Kagel. He introduced me to exper-

imental economics at Ohio State as an undergraduate, which began to my interest in the field. At

Caltech, Colin Camerer, my advisor, provided a great deal of support, creativity, and influence on

my research. He is the most responsible for developing my skills as an economist.

Surviving at Caltech is as much a social matter as an academic one, for that reason I am tremen-

dously grateful for the support of the pigeonholers, Rafael Verduzco, Justin Bois, and Aditya Khair.

There were times when I would see them for every lunch and every weekend; I miss you guys. Akira

Villar, the one pigeonholer who remains, deserves special thanks for putting up with me during this

last year on the job market.

I am also thankful to have had the opportunity to work with Charlie Plott. I thank Leeat Yariv

for her initiative in helping me prepare for the job market. Dave Grether provided valuable insight

as my fourth committee member.

For the rest of HSS, I must thank Sera Linardi, especially; she has the power to cheer me up

on even the bleakest days. Morgan Llewellyn and Mike Alton are the type of friends I hope I can

have in every department. Laurent Mathevet deserves credit for finally teaching me Kuhn-Tucker. I

cherish the lunch conversations I had with Kyle Mattes. I thank Julian Romero for always inviting

me to run a barefoot marathon with him, regardless of my limitations in fitness.

I wish to thank the TGIF regulars, John Ledyard, Kim Border, P.J. Healy, and Stuart McDonnell,

our time together not only helped me through my first few years, it also gave me inside story on the

department.



iv

My sisters, Katie Brown and Anjuli Agarwal also deserve credit; knowing they were out there

gave me a little extra fire. And without Suzan Brown, I would not have had the ability to contact

them as often as I did.

Yoshie Narui, Nick Brunelli, and Tony Roy deserve praise for watching nearly every Ohio State

football game with me over the last five years. Go Bucks!

I thank miscellaneously Mandy Agler, Ariana Arredondo, Meghana Bhatt, Jo Ducey, Will Ford,

Julie Goldstein, Heidi Kamp, Ian Krajbich, Laurel Auchampaugh, Edith Liu, Howard Marvel,

Mitchell Muessen, and Merrielle Spain.

Finally, I want to thank the people I met on the Graduate Student Council, Ernie’s AF, the Two

Baggers, the Laugh out Louds, HSS Softball, Union Station Foundation, the Budapest Behavioral

Economics Workshop, and the Undergraduate Economics Society.

I also have chapter-specific aknowlegements:

My first chapter “Learning And Visceral Temptation In Dynamic Optimization Experiments”

was coauthored with Colin F. Camerer and Zhikang Eric Chua. I thank them both for their contri-

butions. Zhikang ran most of the first study experiments himself, I ran most of the second study.

Colin helped with much of the writing. I ran the second set of experiments and did most of the data

analysis. We all thank the support of NSF grant SES-0078911, Chris Carroll, Daniel Houser, Paul

Kattman, George Loewenstein, Tanga McDaniel, John Hey, Nat Wilcox, three anonymous referees,

and editor Ed Glaeser for helpful comments. We also thank Julie Malmquist of the SSEL Caltech

lab, Chong Juin Kuan (NUS), Hackjin Kim, Tony Bruguier, and especially Min Jeong Kang (who

ran several of the beverage-condition subjects herself) for help in doing the experiments.

My second chapter “To Review or Not Review? Limited Strategic Thinking at the Box Office”

was coauthored with Colin F. Camerer and Dan Lovallo. I thank them both for their contributions.

Colin helped with much of the writing and Dan arranged for the initial data and organized inter-

views with movie insiders. We all thank audiences at Caltech, especially Tom Palfrey, Leeat Yariv,

Stuart McDonald, and Robert Sherman. We also thank audiences at Chicago GSB, Berkeley, Yale

Graduate Student Conference on Behavioral Science, 2007 North American ESA, SJDM, and SEA.

Thanks to Sera Linardi for a suggestion that lead to an 8-fold improvement in CH runtimes; to Es-

ther Hwang, Ferdinand Dubin, and especially Jonathan Garrity for help with initial data collection.

We also thank Carmina Clarke and Ferdinand Dubin for additional data collection.

My third chapter “Endogenous Time Preference and Personal Rules” is my own. I thank Robert
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Abstract

This thesis demonstrates the effectiveness of novel, psychology-influenced models of economics on

traditional economic structures through the lab, field, and theory.

Chapter 2 observes how subjects are able to solve the computationally difficult buffer stock sav-

ings model first for monetary earnings and then in terms of cola when thirsty. The first experiments

suggested that subjects saved too little initially, but learned to save optimally within four repeated

lifecycles, or 1–2 lifecycles when examining the behavior of others. The second experiment, the first

of its kind to combine savings models with visceral temptation in a laboratory, found evidence that

subjects when receiving rewards immediately did worse than with a ten-minute delay, consistent

with the quasi-hyperbolic discounting models and several other studies.

Chapter 3 examines the decision of film distributors to deliberately withhold from critics low-

quality movies. In equilibrium, through iterative reasoning, moviegoers should correctly infer qual-

ity and a cold opening should not be profitable. Therefore, cold openings provide a natural field

setting to test models of limited strategic thinking as well as the rational-actor, quantal response

equilibrium model. In a data set of 856 widely released movies, cold opening produces a signifi-

cant, 14–17%, increase in domestic box office revenue. Parameter estimates of moviegoers behavior

fit those observed in experiments. However, distributor parameters imply they overestimate their

consumers and could earn more by increasing the frequency of cold openings.

Chapter 4 examines two types of “personal rules” through a model where immediacy preference

changes with decisions. That is, choosing (or not choosing) a tempting alternative makes it more

(less) tempting in the future. “Descriptive” rules are the backward-induction solution to the problem.

With finite periods, agents may avoid the tempting alternative if their choice is going to be repeated,

exhibiting the precedent effect, but they also may exhibit procrastination knowing that in the future,

they will avoid temptation anyway. “Prescriptive” rules, involving an agent changing his belief

structure in order to bring about a more preferred outcome, can eliminate this procrastination effect,

but lose their power under an infinite time horizon.
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A.3.2.2 Naı̈veté . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.3.2.3 Immediate and Delayed Beverage Rewards . . . . . . . . . . . . 117

A.3.3 A Dual-Self Planner-Doer Model . . . . . . . . . . . . . . . . . . . . . . 118

A.4 Rules of Thumb: Spending as a Proportion of Cash-on-Hand . . . . . . . . . . . . 120

A.5 Myopic Loss Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B Supplemental Materials for To Review or Not Review? 126

B.1 Description of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.2 Supplemental Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.3 Details of Iterative Estimation Procedures (QRE, Cursed, CH) . . . . . . . . . . . 135

C Supplemental Materials for Endogenous Time Preference and Personal Rules 139

C.1 Stochastic Grapefruit Quality Example for T=2 . . . . . . . . . . . . . . . . . . . 139

C.2 Characterization of the Extensive Form Game . . . . . . . . . . . . . . . . . . . . 140

C.3 Proof of Theorem 4.2, the Existence of an Infinite Horizon Solution . . . . . . . . 142

C.4 One-Step Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



ix

List of Figures

2.1 Screenshot of the Excel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 An optimal consumption path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Deviations from conditional optima, lifecycle 1 and 7, private learning . . . . . . . . 15

2.4 Deviations from conditional optima, lifecycle 1 and 7, social learning . . . . . . . . 16

2.5 Ratio of average consumption to conditional optimal by condition, beverage lifecycle,

periods 1–10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Cold openings by year, 2000–2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Scatterplot of metacritic.com quality ratings and log box office revenue . . . . . . . 38

3.3 Scatterplot of metacritic.com quality ratings and imdb user ratings . . . . . . . . . . 38

4.1 Benabou and Tirole style descriptive rules from Example 4.3 . . . . . . . . . . . . . 76

4.2 Extensive form equivalent for t = T − 1 in model . . . . . . . . . . . . . . . . . . . 76

4.3 Extensive form equivalent for t = T − 2 in model . . . . . . . . . . . . . . . . . . . 77

A.1 Diagram of 3-syringe beverage delivery apparatus used in Study 2 . . . . . . . . . . 101

A.2 Quasi-hyperbolic consumption path for naı̈ve and sophisticated cases (β = 0.8, δ =

0.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.3 Spending as a proportion of actual income each period, lifetimes 1 & 7, private learn-

ing condition (N = 36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.4 Spending as a proportion of actual income each period, lifetimes 1 & 7, social learn-

ing condition (N = 36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.5 Proportion of available cash spent each period, lifetimes 1 & 7, private learning con-

dition (N = 36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.6 Proportion of available cash spent each period, lifetimes 1 & 7, private learning con-

dition (N = 36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



x

A.7 Actual and conditionally optimal utilities, study 1 . . . . . . . . . . . . . . . . . . . 124

A.8 Frequency of actual and conditionally optimal utilities, study 1 . . . . . . . . . . . . 124

A.9 Actual (y) and conditionally optimal (x) utilities, study 2, money lifecycles . . . . . 125

A.10 Actual (y) and conditionally optimal (x) ml of beverage . . . . . . . . . . . . . . . 125

B.1 Probability of movie being cold opened in QRE model by critic rating (λd = 1.345) 130

B.2 Expected movie quality given it is cold opened in QRE model by critic rating (λd =

1.345) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.3 Probability of movie being cold opened in CH model with QR by critic rating (λ =

7.085, τd = 8.567) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.4 Expected movie quality given it is cold opened in CH model with QR by critic rating

(λ = 7.085, τd = 8.567) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



xi

List of Tables

2.1 Summary statistics of actual point outcomes . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Regression of conditional deviations from optimal decisions, study 1) . . . . . . . . 17

2.3 Summary statistics comparing immediate and delayed conditions in the beverage life-

cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Regression of periods and condition on subject performance . . . . . . . . . . . . . 21

2.5 Two-stage parameter estimates of δ̃ and β̃ . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Estimated β̃ of individual subjects in immediate condition . . . . . . . . . . . . . . 25

2.7 Two-stage parameter estimates of β̃ and δ̃ by learning condition . . . . . . . . . . . 29

3.1 Summary statistics for variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Regressions of log box office revenues (in millions) . . . . . . . . . . . . . . . . . . 40

3.3 Data separated by genre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 The cold opening coefficient in non-US box office markets . . . . . . . . . . . . . . 43

3.5 The iterative estimation process for the QRE model after 6 Iterations . . . . . . . . . 50

3.6 Expected quality of When a Stranger Calls . . . . . . . . . . . . . . . . . . . . . . 54

3.7 The iterative estimation process for the QRE Model with CH after 5 iterations . . . . 55

3.8 Comparison of the three models for moviegoer predictions . . . . . . . . . . . . . . 56

3.9 Predictions of cold opening choices of distributors . . . . . . . . . . . . . . . . . . 57

3.10 Predictions of cold opening choices of distributors . . . . . . . . . . . . . . . . . . 57

A.1 Notation for the buffer stock model . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.1 Regressions of log opening day revenues (in millions) . . . . . . . . . . . . . . . . 128

B.2 Regressions of log box office revenues after first weekend (in millions) . . . . . . . 129

B.3 Correlation between variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.4 The iterative estimation process for the QRE model . . . . . . . . . . . . . . . . . . 131



xii

B.5 The iterative estimation process for the QRE model with CH . . . . . . . . . . . . . 132

B.6 Predicted and actual revenues for cold openings in CH model with QR . . . . . . . . 133

B.7 Predicted probability of distributor release decisions in CH model with QR . . . . . 135



1

Chapter 1

Introduction

This thesis demonstrates the effectiveness of novel, psychology-influenced models of economics

on traditional economic structures through the lab, field, and theory. Traditional economic theory

views individuals as consistent selves with one motivational drive that maximizes utility and, by

assumption, individual welfare. However, empirical evidence has begun to refute that assumption.

This thesis adds to that rebuttal in a constructive manner: rather than just pronounce traditional

theory wrong, it aims to find a specific theory to support as an alternative to ultimately inform

economic theory.

Specifically, this thesis focuses on two of the most recognized areas of behavioral economics:

immediacy preference and limited iterated strategic thinking. Immediacy preference represents the

idea that individuals do not have uniform time preferences: an individual who prefers $10 today vs.

$12 tomorrow may not have the same preference when thinking about $10 in 10 days from now vs.

$12 in 11 days, though standard economic theory would suggest just that. This property can lead to

very peculiar behavior on the part of economic agents as two chapters investigate. Chapter 2 finds

evidence of dynamically inconsistent preferences as thirsty subjects make simulated savings deci-

sions for cola rewards. Chapter 4 theoretically examines how individuals might overcome dynamic

inconsistency by making personal rules to enforce habits.

Limited strategic thinking is the idea that one cannot continue the process of thinking about

another thinking about one thinking about another... etc. For instance when a producer refuses to

disclose the quality of his product when he can costlessly do so, the equilibrium result is that his

good is the worst quality possible. But this inference takes several steps of strategic thinking and

most people to not make the equilibrium inference. Chapter 3 examines the box office of movies

that distributors did not show to the critics and finds they do much better than their counterparts.

But there is a caveat to those unfamiliar with these types of models. The intent of these studies
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is not even to disprove traditional economic theory with another established theory that can take on

any number of values. It is more than that. It is to validate the theory within a range of established

parameters for a global class of problems (both in the field, and in the lab). For these theories to be

integrated into economic theory, they must give specific predictions. Currently, both the cognitive

hierarchy model and quasi-hyperbolic models give around 1.5 and 0.6, respectively, in both the lab

and the field (Chapters 2 and 3 provide more evidence of that).

The last chapter also uses quasi-hyperbolic discounting; its aim is to design new theory to ex-

plain a dilemma created by immediacy preference. Personal rules have been suggested to solve that

dilemma (Ainslie, 1975, 1992), and the chapter attempts to explain those rules in a manner both con-

sistent with game theory and psychology. Ultimately by bringing those two fields together, it would

create a model that could be tested and calibrated in the future like the previous two aforementioned

models.

This thesis proceeds as follows:

Chapter 2 observes how subjects are able to solve the computationally difficult buffer stock sav-

ings model first for monetary earnings and then in terms of cola when thirsty. The first experiments

suggested that subjects saved too little initially, but learned to save optimally within four repeated

lifecycles, or 1–2 lifecycles when examining the behavior of others. The second experiment, the first

of its kind to combine savings models with visceral temptation in a laboratory, found evidence that

subjects when receiving rewards immediately did worse than with a ten-minute delay, consistent

with the quasi-hyperbolic discounting models and several other studies.

Chapter 3 examines the decision of film distributors to deliberately withhold from critics low-

quality movies. In equilibrium, through iterative reasoning, moviegoers should correctly infer qual-

ity and a cold opening should not be profitable. Therefore, cold openings provide a natural field

setting to test models of limited strategic thinking as well as the rational-actor, quantal response

equilibrium model. In a data set of 856 widely released movies, cold opening produces a signifi-

cant, 14–17%, increase in domestic box office revenue. Parameter estimates of moviegoers behavior

fit those observed in experiments. However, distributor parameters imply they overestimate their

consumers and could earn more by increasing the frequency of cold openings.

Chapter 4 examines two types of “personal rules” through a model where immediacy preference

changes with decisions. That is, choosing (or not choosing) a tempting alternative makes it more

(less) tempting in the future. “Descriptive” rules are the backward-induction solution to the problem.

With finite periods, agents may avoid the tempting alternative if their choice is going to be repeated,
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exhibiting the precedent effect, but they also may exhibit procrastination knowing that in the future,

they will avoid temptation anyway. “Prescriptive” rules, involving an agent changing his belief

structure in order to bring about a more preferred outcome, can eliminate this procrastination effect,

but lose their power under an infinite time horizon.



4

Chapter 2

Learning And Visceral Temptation In
Dynamic Savings Experiments

2.1 Introduction

Dynamic optimization of sequential choices is central to many different economic analyses. In the

most interesting cases, current choices affect state variables, which either constrain future choices or

influence future utility. Decisions of this type include extensive-form games with type updating, job

search, fertility timing, purchases of durables and equipment replacement, investment with learning-

by-doing, and many diet and health choices (including addictive consumption).

Our paper explores how well people make these types of decisions in a complex experimental

environment. The essential design parameters were taken from models of consumer savings with

income uncertainty and habit formation, which created a two-state finite dynamic program. Optimal

saving required subjects to save a lot in early periods to buffer against bad income shocks and to

avoid creating an early consumption “internality” from habit that reduces utility from future con-

sumption. Field evidence on whether people save optimally is mixed. The earliest sophisticated

analyses assumed certain (or certainty-equivalent) income in order to solve the models, and rejected

many of the predictions of lifecycle theory. With the advent of better computing power and relax-

ation of restriction on the income process, Zeldes (1989) and Carroll (1992, 1997) were able to

explain many aspects of consumption found in data using Friedman’s 1957 original ideas.

Some recent studies suggested saving is optimal (Scholtz et al., 2006; Lusardi et al., 2001;

Darlin, 2007). Still other research has argued that consumers make fundamental mistakes regarding

savings (Haveman et al., 2006; Choi et al., 2003, 2005) and typically undersave relative to optimal

levels (though see Rick et al., 2008). The fact that minor changes in details of savings plans induced
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higher saving is consistent with the hypothesis that people save too little, left to their own devices,

but can be “nudged” to save more. (e.g., Thaler and Benartzi, 2004; Choi et al., forthcoming)

Finally, the research that is most parametrically related to our own is on “tightwads” who overspend

(Rick et al., 2008). Angeletos et al. (2001) modeled undersaving using a quasi-hyperbolic (β-δ)

consumption model. They found that a model in which agents have an immediate preference for

consumption (β < 1) was better calibrated to aggregate data than a model with only exponential

discounting.1

Laboratory experiments may be of some use in this area of research. The experiments in-

evitably reflect the classic trade-off in generalizing from stylized lab experiments to naturally oc-

curring choice: Experiments have high “internal validity” because the maintained assumptions of a

particular theory (e.g., about utility functions and beliefs about the income process) can be clearly

implemented with experimental control. Experimental comparison of different treatments can also

shed some light on competing explanations (that is the potential advantage of the immediate-delayed

consumption comparison in our second study). However, the generalizability of the experiments to

most actual savings decisions is debatable because experiments necessarily take place over a very

short horizon and the savings lifecycle is long. These experiments, much like a time-lapse photo-

graph, show a process in a short amount of time (a few hours) that usually spans a much longer time

interval (many years). Therefore, while we discuss the results in terms of their relevance to debates

about lifecycle savings, readers are entitled to think of the data as more generalizable about much

shorter-term dynamic decisions like consumption of addictive substances, or taking up an exercise

regimen or diet.

Two classes of explanations for apparent evidence of undersaving are: Bounded rationality,

and a preference for immediacy (or present-bias). Each was addressed in a separate experiment.

Reporting the two experiments together enables direct judgment of which explanation is generally

better (or whether both have some merit) and allows some parametric comparison.

In the first experiment, subjects had an oppurtunity to learn privately over seven experimental
1As the differences in these studies indicate, it is difficult to conclusively reject or accept the basic premise of lifecycle

saving, which is that current saving correctly anticipates future needs and income variation, and smoothes consumption
(Browning and Lusardi, 1996; Venti, 2006). The difficulty stems from the fact that econometric tests of the lifecycle
model typically depend on many auxiliary assumptions about utility functions, separability across time, income expec-
tations, retirement and other institutional rules, sorting, and credit market constraints. Apparent statistical evidence of
undersaving in any particular study might be due to one or more econometric misspecifications or to mismeasurement
of capital gains, educational returns, or durable consumption flows (Gale et al., 1999). For example, using the economic
surprise of German reunification, Fuchs-Schundeln and Schundeln (2005) find that evidence of buffer-stock savings is
sensitive to self-selection of risk-averse workers into low-risk professions.
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lifecycles or to learn “socially” from the choices of other subjects. If learning created movement

toward optimal choice, that was prima facie evidence of bounded rationality in initial choices (be-

cause highly rational subjects would not need to learn). The goal in this study was to see how close

subjects were to optimal, how well they learned, and whether deviations from optimality resemble

those in field data (as calibrated by β and δ) in quasi-hyperbolic models. The results of the first

experiment were that subjects undersaved at first but were able to learn very quickly from social

information and less quickly from private learning.

The approximation to optimality observed after learning was surprisingly close, which turned

our attention to the second basic explanation for undersaving, which was a preference for immediacy

(perhaps reflecting visceral temptation). Even if people fully understand optimal savings rules,

optimal saving might be hard to implement if the choices that generate current utility are viscerally

tempting (as in addictions).

Therefore, the second experiment used thirsty subjects who chose how much beverage to con-

sume, as an experimental-scale model of more dramatic types of visceral temptation. Some subjects

received beverages immediately (i.e., their period t decisions led to physical consumption in pe-

riod t) and others received beverages with a 10-period delay (as if ordering from a catalog for

later delivery). This immediate-delayed contrast was a simple way to detect the preference for im-

mediacy (since the β term only influenced decisions when consumption was immediate). In the

second experiment, subjects generally consumed more when rewards were immediate than when

rewards were delayed, a difference which is consistent with models of hyperbolic discounting (i.e.,

Ainslie, 1975; Laibson, 1997) and dual-self conflict (e.g., Bernheim and Rangel, 2004; Fudenberg

and Levine, 2006; Loewenstein and O’Donoghue, 2004). Structural parameter estimates of β and

δ yielded values comparable to those in other lab and field studies (mean β of 0.6–0.7), albeit over

very different time horizons.

2.2 Two Explanations for Undersaving

The experimental design implemented the assumptions of the buffer stock savings model of Carroll

et al. (2000). Agents earned income each period, subject to stochastic independent shocks from a

distribution they knew. In each period their available cash was the previous buffer stock, plus new

income. In each period they chose how much of this available cash to spend on consumption and

the rest was saved. Utility in each period depended upon a ratio of current consumption to a habit
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index. The habit index was a depreciated sum of previous consumption (as in the pioneering design

of Fehr and Zych (1998), based on Becker and Murphy (1988)). An entire 30-period lifecycle was

repeated several times with different income realizations each time. Two alternative explanations,

which have been hypothesized to explain consumer undersaving in the field, suggested why subjects

might have saved too little in this experimental environment.

2.2.1 Bounded Rationality

One explanation for apparent undersaving is the bounded rationality of consumers; They may under-

save because their rationality is bounded, and solving for optimal saving in the buffer stock model

is computationally difficult.2 As Carroll (2001) put it bluntly

“One problem is the spectacular contrast between the sophisticated mathematical ap-

paratus required to solve the optimal consumption problem and the mathematical im-

becility of most consumers. (p. 41)”

After all, the reason economists used an approximation with certainty-equivalent income for many

years was because they were not able to solve the same problem posed in our experiment themselves,

before later advances in computing.3 Allen and Carroll (2001) also showed that learning by simple

reinforcement is far too slow to produce convergence to optimal saving in reasonable time scales. It

is possible that consumers simply cannot figure out or learn over time from modest experience how

to save optimally.

With the exception of Bernasconi and Kirchkamp (2000), previous experimental work with sim-

pler models also found evidence of undersaving and attributed it to bounded rationality. (Kotlikoff

et al., 2001; Carbone, 2005; Carbone and Hey, 2004; Hey, 1988; Hey and Dardanoni, 1988; Fehr

and Zych, 1998; Ballinger et al., 2003, 2006). Since there was no widely accepted theory of how

bounded rationally should be modeled formally in these settings,4 the presence of rationality bounds

was inferred indirectly: if subjects made mistakes in the first lifecycle, but learned over time or from
2Another kind of bound on rationality is that consumers are overoptimistic about future income or underestimate

the force of habit formation. Note that these possibilities are ruled out by inducing beliefs about the income process
and subjects understanding of the degree of habit formation. So if we find that subjects save optimally, but believe that
Americans do not, then the experiments suggest that misperceptions about income and habit formation could be the
culprit in generating suboptimal saving in the field data.

3Friedman (1953) also had another idea about complex models. Perhaps individuals are not able to solve dynamic
savings models, but are able to reach near optimal results through trial and error, much the same way a pool player sinks
balls in pockets without understanding the physics behind shots. However, Carroll (2001) was also not satisfied with this
explanation, his own experiments revealed this process could take hundreds of lifecycles (Allen and Carroll, 2001). He
suspected social learning from others might allow individuals to learn to save optimally in far less time.

4Ballinger et al. (2006) modeled bounded rationality as individuals only looking ahead a fixed number of periods.
They interpreted the results of Ballinger et al. (2003) to suggest most subjects only look ahead two periods.
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the social examples5 (our first study also included social learning (similar to Ballinger et al., 2003)),

then we would infer that their initial mistakes resulted from bounds on rationality, because subjects

with unbounded rationality would not need to learn from experience. Development of a more pre-

cise theory of rationality bounds and learning remains a priority for future research (and is discussed

further in the conclusion).

2.2.2 Temptation and Dynamically Inconsistent Preferences

A second explanation for undersavings is that consumers know how to save optimally, but can-

not resist short-term temptations to consume for some products. For example, the availability of

widespread credit can contribute to overspending if, psychologically, credit cards anesthetize the

“pain of paying” (Prelec and Loewenstein, 1998). As Carroll (2001) suggested

“There certainly seems to be strong evidence that American households are now using

credit cards in non-optimal ways. The optimal use of credit cards (at least as implied

by solving the final optimizing model discussed above) is as an emergency reserve to

be drawn on only rarely, in response to a particularly bad shock or series of shocks.

However, the median household with at least one credit card holds about $7000 in debt

on all cards combined. (p. 42)”

Laibson et al. (2003) argued that this pattern is explained by consumers who have a powerful pref-

erence for immediate consumption, rather than an expression of bounded rationality.

To test this explanation for undersavings, in the second experimental study we converted con-

sumption from numbers to actual sips of beverage (for thirsty subjects). Comparing immediate and

delayed delivery of beverage consumption enabled us to study the strength of temptation and dy-

namic inconsistency that might result. Of course, small amounts of beverage are not as dramatic

as temptations like drug addiction, gambling, and credit card spending, but they were feasible in

the lab and gave us a first contrast between money rewards and visceral temptations that can guide

future research.
5Social learning can be considered a form of aggregating several lifetimes of information. For other experiments on

information aggregation, see research on markets (Plott and Sunder, 1982, 1988) and information cascades (in markets)
(Anderson and Holt, 1997).
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2.3 Study 1: Learning with Money Rewards

2.3.1 Experimental Design

Participants were carefully instructed about the basic concepts of the experiment, and how their

decisions and the random income draws would determine how much money they would earn (see

sections A.1 and A.2 for details and instructional tables). To avoid demand effects and to enhance

memorability, economic jargon like “income shocks,” “habit stock,” and “utility,” were translated

into plainer language—“adjustment factor,” “lifestyle index,” and “points,” respectively.

Subjects choseCt in each period from cash-on-hand, which is the sum of previous cash plus new

income (Yt). Income in each period was Yt = Ptηt, the product of Pt permanent income that grew

at five percent (Pt = (1.05)Pt+1, with initial Pt = 100) and a multiplicative shock ηt, which was

lognormally distributed
(
log η ∼ N

(
1
2 , 1
))

. There was no interest rate and discount factor, and no

borrowing or investment. Period-specific utility depended on consumption and on an accumulated

level of habit, according to

u(Ct, Ht−1) = k +
θ

1− ρ

(
Ct + ε̂

Hγ
t−1

)1−ρ
(2.1)

with risk-aversion parameter ρ = 3 and a habit strength exponent γ = 0.6.6 The habit stock grew

according to Ht = λHt − 1 + Ct where λ = 0.7 is a depreciation rate (as in Fehr and Zych,

1998) and the initial habit H0 = 10. Thus, larger early consumption built up the habit level and

depreciated future-period utility. This “internality” implied that optimization requires restrained

consumption in early periods.

The subject’s problem was to choose the stream of consumption C̃ in each period t to maximize

his expected utility,

Et

[
T∑
s=t

u
(
C̃s, H̃s−1

)]
. (2.2)

Because T = 30 in the experiments, the problem could be simplified to a dynamic programming

problem with two state variables, cash-on-hand Ct and habit Ht (after dividing both variables by

the permanent income Pt).

The experimental environment was designed to have some basic empirical features of savings

in the modern American economy. The 5% income growth and lognormality of multiplicative
6Since ρ = 3, the term k is the upper asymptote of utility. θ is a scaling parameter, and ε̂ bounds the utility function

from below. In the experiments, ε̂ = 2.7, similar to Ballinger et al. (2003). Scaling factors are θ = 750 and k = 40.
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shocks were shown by Carroll (1992) to characterize US data. However, we chose T = 30 to

compress the lifecycles (compared to American annualized lifetimes) in order to create “lifecycles”

which were long enough to create a savings challenge and interesting dynamics, but short enough

to allow several lifecycles in each experimental session. We also multiplied the standard deviation

of multiplicative income shocks ηt by five (creating a standard deviation of 1, rather than Carroll’s

estimate of 0.2) in order to deliberately produce more income variation.

The goal of experiments like these was not to precisely recreate all the empirical properties of

naturally occurring decisions in a particular setting. After all, parametric properties of savings prob-

lems vary widely across periods of history and across countries so there is no single “real world” to

serve as a unique design target. The goal, instead, was to explore a range of environments in which

the theory might apply in order to judge when the theory is likely to work and when it is likely to

fail. We deliberately chose income shock volatility that is larger than that observed in the modern

American economy because higher income variation created a more analytically challenging en-

vironment in which deviations from rationality would be more clearly observed. The design also

combined uncertain income and habit formation, because (a) previous experiments have already

studied each separately and (b) since combining them made the problem much more complicated,

if learning would occur then the power of learning would be established with more force.

The instructions explained all the details of the structure described above. To make the details

easier to understand, we included 30-draw samples from the lognormal distribution to give partici-

pants a feel for how much their income could vary and showed the utility functions and habit stock

evolution using numerical tables (see A.2 for instructions and descriptions of tables). One table

illustrated how the habit stock in each period was determined by the previous periods habit stock

and the current spending. A separate table showed how their spending and habit stock in one period

determined their utility points in that period. Before participating, subjects took a quiz testing them

on how their choices, habit levels, and income shocks would determine utility points. The quiz was

designed to satisfy concerns that suboptimal consumption decisions do not arise from confusion

about how their decisions map into points (and eventual money earnings).

Consumption decisions were input to an Excel interface which displayed the income obtained,

the corresponding cash available, and the habit stock for each consumption choice (see Figure 2.1).

The program also calculated and displayed the possible points (i.e., utilities) that could be obtained

from different levels of spending, and the corresponding savings available for the next period. Par-

ticipants could experiment by inputting different consumption amounts and see how much utility
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Figure 2.1: Screenshot of the Excel interface

they would earn, and how much cash they would have available at the start of the next period.

Most participants tried out several spending choices before making a decision (especially in the first

couple of lifecycles). This process was repeated until the end of the lifecycle of 30 periods. (The

program automatically spent all cash in the final period 30.) There were a total of seven lifecycles,

to see how rapidly subjects could learn across lifecycles. Each participant’s total payoff was a pre-

announced linear function of the total points earned in all lifecycles7 plus a $5 show-up payment.

Subjects earned between $7.50 to $65 with an average of $45.

After thirty-six (36) subjects had participated in the private learning condition described above,

thirty-six (36) more participated in a “social learning” condition.8 In the social learning condition,

as part of their initial instructions, subjects were also given samples of what three actual subjects

had done in the private learning condition. The three samples were taken from the highest-earning

subject, the lowest-earning subject, and from one subject chosen at random from the private condi-

tion in their subject pool. The social learning subjects were told exactly how these three samples

were chosen.

There were many ways to implement social learning or imitation (e.g., Ballinger et al., 2003,

used direct talking). Our method mimicked intergenerational imitation in which a parent points
7The exchange rates were US $1.50 for every 100 experimental points in Caltech, and US $2.50 in Singapore (using

an exchange rate of US $1 ≈ Sing $1.70).
8The tables looked like the screens the participants had, showing income each period, cash-on-hand, spending deci-

sions, and points from each period of a 30-period lifecycle.
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out three role models—a great success who retires wealthy, a neer-do-well who ends up broke, and

a random acquaintance. The high-earning role model might have been a subject who overspent

early on (relative to the optimum) but got lucky by receiving high-income draws. In that case,

subjects copied the “successful” subject too directly, they would have easily overspent relative to

the optimum; so it was not clear whether social learning would have actually helped, hurt, or had

no effect.9

Participants were 35 undergraduates from the National University of Singapore (NUS) and 37

undergraduates from California Institute of Technology. These students were unusually adept at

analytical thinking so they should represent an upper bound on how well average consumers do in

these intertemporal optimization problems. The participants were recruited using the universities

mail servers. Half the participants (18 from each school) did the experiment with private learning

and approximately half (17 NUS, 19 Caltech) did the experiment with social learning. Each group

had seven lifecycles of 30 periods of income draws. To simplify data analysis, within each condition

all participants received the same income draws (but the draws were different in the two learning

conditions).10 Most participants completed the instruction and seven lifecycles in about 90 minutes.

2.3.2 Basic Results

Under optimality people should act as if they make ex ante optimal savings decisions under uncer-

tainty, discounting future utilities exponentially, given their beliefs about future income and other

structural parameters. In our experimental design, subjects should have saved a lot to build up a

buffer stock, and then spent roughly their average income once their buffer stock is large enough.

The buffer stock would protect against bad future income draws, and high early saving would limit

the negative “internality” of current spending on future utility, (which occurs because of the con-

trolled effect of habit formation). Figure 2.2 illustrates an optimal path of consumption, and cash-

on-hand, given a particular lifecycle of income shocks (based on parameters used in the experiment,

described later). Savings is the gap between the black optimal consumption line and the gray cash-

on-hand line. In this example, the optimal consumer should spend less than current income in early

periods except 6–7 (when income happened to be unusually low and consumers should dip into their
9Ex post we know that the highest scoring subject underconsumed for the first ten periods, but then overconsumed

for the remainder. The subject was lucky to draw a high income realization in the later periods so he could still produce
positive utility under a high level of lifestyle habit.

10The income realizations were different so that the social learning subjects would never have a lifecycle that matched
exactly the income realizations seen by the role model subjects (drawn from the private learning condition).
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Figure 2.2: An optimal consumption path

savings to earn a reasonable utility from consumption). The optimal cash-on-hand in the example

steadily rises to 1500 in period 20, building up a buffer stock which is about six times the annual

income at that point. That is, consumers should brace themselves for a rainy day by saving until

about period 20. After period 20, they should start to dissave by spending more than their current

income and dipping into their cash-on-hand (i.e., the optimal consumption line is usually above the

dotted income line after period 20).

Table 2.1 gives summary statistics of actual point outcomes in the two learning conditions. The

first and second rows give the average of total lifecycle points in each condition, and the standard

deviation across subjects. The third row is the difference between the average point total and the

(unconditional) optimal point total.11 The fifth row is the total income in each lifecycle (which gives

an idea of whether deviations from optimality in a particularly lifecycle are due to bad decisions or

to bad income luck). With only private learning, performance in the first three lifecycles was well

below the unconditional optimum and highly variable across subjects. However, by lifecycle four

the average subject earned point totals within 80% of the optimum and the variability across subjects

shrank.

Table 2.1 (bottom panel) shows that social learning brought point outcomes close to the optimum
11Note that in some cases, the average subject does better than the unconditional or conditional optimum (i.e., the

deviation from optimality is positive). This can happen if participants overspend (underspend) but get lucky (unlucky)
and have good (bad) income shocks in later periods.
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Table 2.1: Summary statistics of actual point outcomes

rapidly. The mean and variation of points in the very first lifecycle with social learning are similar

to those statistics from lifecycles 4–7 with only private learning.12

2.3.3 Behavior Relative to Conditional Optimization

The Table 2.1 statistics compare point totals to unconditional optimal level of spending in each

period. This can be a misleading comparison because conditional optimal spending in each period

depended on the participants actual cash-on-hand and accumulated habit stock. A subject who

had made some bad decisions in early periods, but then wised up and made conditionally optimal

decisions in later periods, would look bad in Table 2.1 but may have been close to conditionally

optimal overall when those few early mistakes are averaged with the smarter later decisions.

Each subject’s average conditional deviation for each period is the difference between their

actual spending and the optimum (conditioned on that participants earlier decisions). Figure 2.3

plots the conditional deviation paths for lifecycles 1 and 7 with private learning, along with 95%
12It should be noted that in both conditions lifecycle 5 featured the lowest total income (the harshest income draws).

In condition 1 it managed to cause the subjects and the ex ante optimal path to have negative utility. In condition 2 it only
reduced the utility of the subjects.



15

Figure 2.3: Deviations from conditional optima, lifecycle 1 and 7, private learning

confidence intervals (dotted lines). Since the optimal conditional path in Figure 2.3 is the zero-

deviation horizontal line, the reader can judge at a glance whether deviations are significant by

seeing whether the confidence interval covers the zero line or is far from it.

Figure 2.3 confirms the conclusion from Table 2.1: With only private learning, participants

in lifecycle 1 spent significantly more than optimal in early periods, until about period 20 (when

they often spent too little). However, the lifecycle 7 conditional deviations are never significantly

different from zero, which shows that learning was very effective over the seven lifecycles. In fact,

the actual spending path is insignificantly different from the conditional optima by lifecycle 4.

Figure 2.4 shows the analogous data for the social learning condition. These small deviations

are deliberately plotted with the same y-axis scale as in Figure 2.3, to show how much smaller the

deviations are when there is social learning compared to private learning. Deviations are insignifi-

cantly different from zero in most periods. There is also little difference between lifecycles 1 and 7

in the social learning condition. The initial performance is so close to optimal that there is little left

to learn over the seven lifestyles.

To measure the effects of private and social learning, we regressed the log of the absolute de-

viation from the conditional optimum on dummy variables for lifecycles (excluding the first lifecy-

cle), the period number and its square, and dummy variables for social learning condition, gender

(Female= 1, mean=.43) and ethnicity (Chinese= 1, mean=.50).13

13See Chua and Camerer (2004) for details. Ethnicity is of interest because Singaporean Chinese have one of the
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Figure 2.4: Deviations from conditional optima, lifecycle 1 and 7, social learning

Table 2.2 shows the results. The period effect is positive (but nonlinear because the period2

effect is negative) because the absolute deviations are larger in later periods, when incomes are

larger. The social learning main effect is highly significant (it implies a 24% reduction in conditional

deviation), as are the dummy variables lifecycles, 5 and 7, reflecting learning across lifecycles.

There is no significant effect of ethnicity and a small effect of gender (women deviate about 20%

more).

2.4 Study 2: Beverage Rewards and Temptation

2.4.1 Experimental Design

Study 2 was the same as the first study except for one large change.14 Lifecycles 1, 2, 4 and 5

(with money rewards) were the same as in study 1. However, in lifecycle 3 subjects received a

fixed monetary payment for their participation but did not earn any additional money for decisions.

highest savings rates in the world (see Carroll et al., 1999). Participant random effects were also included to control for
individual differences, which are substantial. In a broader specification a Caltech dummy variable was also included but
is insignificant and is dropped. The Chinese dummy variable is correlated with subject pool, but not strongly. There are
many ethnic Chinese students at Caltech, and Singaporean students are not exclusively Chinese.

14One reason to keep the complex design with habit formation and stochastic income was because behavioral research
suggests that higher cognitive loads make people more likely to succumb to visceral temptation (Shiv and Fedorikhin,
2002). Additionally subjects are more likely to succumb to temptation if they are unaware they are doing so (Baumeister
et al., 1994) or if the signals of doing so are noisy (Bodner and Prelec, 2003; Benabou and Tirole, 2004).
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Table 2.2: Regression of log(absolute conditional deviation) (t-statistics in parentheses)
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Instead, in each period they drank an amount of a beverage15 proportional to their consumption

decisions each period (1 ml beverage for each 2 points). The Excel interface was modified to

show the total milliliters of beverage reward to be obtained, rather than points (utilities). It also

displayed the maximum milliliters of beverage reward that could be obtained from spending all

available cash immediately. As noted in the introduction, this change was designed to see if savings

decisions about abstract money reward were different than viscerally tempting rewards—namely,

liquid consumption by thirsty subjects.

To make this reward appealing and limit satiation across the experiment, subjects were asked

not to drink for four hours before the experiment began.16 They also began by eating some salty

snacks. Since it took them 45 minutes to read the instructions and to complete two 30-period

lifecycles for money before the beverage lifecycle, they were definitely thirsty by the time they

reached the beverage lifecycle. It is likely that they did not satiate during the lifecycle because no

subject received more than 350 ml of soda (less than a 12 oz. can) of Coca-cola in that lifecycle,

subjects would only be able to drink a maximum of 20 ml/period (0.7 oz), and beverage periods

were separated by one minute.17 Subjects were required to drink their entire beverage consumption

in that one-minute period (and they always did).

A syringe pump was used to deliver an exact amount of beverage into a cup.18 If subjects

incurred a negative number of points in any period, they incurred a debt of sorts—they would not

receive any beverage until that level had been offset by future positive point totals. This debt was

“forgiven” at the end of the beverage lifecycle because we could not force subjects to “pay back”

the debt by taking away the beverage (as we do in the money lifecycles).

There were two different reward-delivery conditions in the beverage lifecycle. In the immediate

condition subjects received their beverage reward right after making their decision. In the delayed

condition subjects received their beverage reward chosen in period t ten periods after making their

decision, in period t + 10.19 Quasi-hyperbolic or present-bias models of time discounting had
15Subjects were given their preference of Coke or Pepsi, and could substitute Diet Coke or Diet Pepsi if they requested

it. We used these beverages because they are widely valued, water was as motivating as colas, and because pilot subjects
(including the middle coauthor) thought fruit juices that were tried were too filling and might induce satiation which
complicates the analysis.

16There is no way to know whether all subjects obeyed our request to show up thirsty. However, because assignment
to the immediate and delayed conditions did not depend upon apparent thirst, uncontrolled and unmeasured differences
in pre-experiment thirst are sources of sampling error in comparing the two groups which lower the power of the test and
bias the test against finding a difference between the immediate and delayed conditions.

17The concavity of utility and properties of the buffer stock savings model ensure that no subject could earn more than
700 points in any beverage or monetary lifecycle.

18See section A.1 for a diagram of the beverage delivery apparatus.
19To standardize both conditions completely there were forty periods of one minute each in lifecycle 3. In the imme-
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predicted that subjects would drink more beverage in the early periods of the immediate condition

because delayed rewards would be heavily discounted (for much more detail on this model and the

similar dual-self model, see supplemental section A.3). In the delayed condition, immediate choices

did not lead to immediate consumption so the present bias term in β-δ discounting would disappear.

Intuitively, the delayed condition would provide external self-control that helps β-δ discounters.

Subjects should have drunk more overall in the delayed condition if they were quasi-hyperbolic

discounters.

Subjects were n = 52 Caltech students.20 Because a single liquid-delivery apparatus was used,

experiments were conducted in a single office rather than a computer lab with one subject at a time.

As a result, this study was more laborious than most economics experiments (taking about 130 hours

of experimenter-subject contact time).

2.4.2 Results

2.4.2.1 Total Beverage Awarded

The hyperbolic discounting and dual-self models predicted that subjects in the immediate condition

would receive less beverage than in the delayed condition, because they would consume relatively

more compared to a total-reward-maximizing optimum in early periods.21 This prediction is em-

pirically correct (see Table 2.3, row 1). The immediate-condition subjects drank less total beverage

on average (179 ml, s = 84.6) than the delayed-condition subjects (226 ml, s = 79.0). There

was substantial variation across subjects, but this difference is significant at conventional levels by

one-tailed tests (t-test p = 0.047, Mann-Whitney rank sum test p = 0.015).

diate condition, subjects did nothing in the last ten periods. In the delayed condition, subjects made decisions in the first
ten periods of the delayed condition but received no rewards. In the last ten periods of that condition subjects received
their rewards from periods 21–30 but made no decisions.

20The first 44 subjects were run from April 21 to July 27, 2005. After that, 11 more subjects were run from February
7–16, 2006 to enlarge the sample and check robustness of the result. Two subjects refused to drink during the beverage
period and were dropped from the analysis. Another subjects data were lost by mistake.

21An alternative explanation is that the first taste of cola primed subjects to consume more. Since immediate subjects
first received cola after period 1 and delayed subjects first received cola after period 11, this priming could be responsible
for the difference in total rewards. While thirst priming has been studied in psychology through subliminal means (e.g.,
Strahan et al., 2002), to our knowledge no psychological work has studied of found evidence of this specific type of
priming. Further the data finds an average consumption increase (11.7 vs. 14.2 ml) between periods 1 and 2 for the
immediate condition, but an average consumption decrease (10.4 vs. 8.2 ml) for the delayed. The jump between periods
1 and 2 in the immediate condition is most likely explained by a very high income draw in period 2 (ηt ≈ 3.56) that on
average sextupled cash-on-hand (76.6 vs. 429.1).
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Table 2.3: Summary statistics comparing immediate and delayed conditions in the beverage lifecy-
cle. Sample standard deviations are in parentheses below means. All p-values are one-tailed.

2.4.2.2 Adjusting for Skill

Simply comparing total beverages in the immediate and delayed conditions does not control for

possible differences in skill or discounting between subjects in those conditions, which could be

evidenced by differential performance in the four money lifecycles. To control for these skill differ-

ences, we estimate the regression

Pit = a+ b1r1 + b2r2 + b3r4 + b4r5 + b5I + eit (2.3)

where Pit is the point total for subject i in lifecycle t, r is a dummy variable for lifecycle i, and I is a

dummy variable for the immediate condition. If immediate consumption triggered overconsumption

and poorer savings accumulation, b5 < 0.

Notice that point totals can be negative for the beverage lifecycle, but the total ml of beverage

consumed cannot be negative. (Subjects could not have been forced to “pay back” liquid once it is

consumed.) This constraint is different than for the money rounds because a monetary point debt

accumulated in one lifecycle could be offset by other lifecycles (and subjects are aware of this dif-

ference in incentive structures). If a large beverage deficit (> 350 ml) occurred in an earlier period,

subjects would have known that no amount of spending could have erased this deficit. As a result,

when subjects had large negative point totals they could have become indifferent about future deci-

sions (their marginal incentive disappears) and produced high negative points. These high deviations

occurred disproportionately in the immediate condition, which then greatly overstates b5 when the

dependent variable is points (see Table 2.4).22 In order to reduce the effects of these outliers, two
22Since subjects know they will not be forced to pay back previously consumed beverage, it is conceivable that they

exploit this design property by deliberately overconsuming in early periods and then running up point debts they do not
have to pay. We do not estimate such a model because the period-specific maximum of liquid consumption is 20 ml per
period, so the marginal beverage value of increased consumption falls sharply. As a result, subjects who are trying to
optimize total liquid would smooth consumption and would never deliberately run up a debt. In terms of our estimation
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Table 2.4: Regression of periods and condition on subject performance. The standard errors on
dummy variables are identical because of the type of covariance matrix.

alternative regressions were run. In the second specification, each lifecycle money point total was

calculated as if it were a beverage lifecycle (i.e., periods with negative utility are ignored). In the

third specification, extreme point totals were reduced in magnitude by taking the logarithms of their

absolute values with their sign preserved (i.e., the dependent variable is [|Pit|/Pit] log(|Pit|).

Table 2.4 shows the results of a random effects regression run on each model. In all three

specifications the sign of b5, the effect of the immediate condition, is negative and significant at

p < 0.05. In fact, these results are stronger in significance than the parametric t-tests reported in

Table 2.3, which implies that accounting for individual differences in skill by using the money-

lifecycle results actually enhances the significance of the immediate-delayed condition difference

(by reducing variation from cross-subject differences in skill or patience.)

These analyses use the overall point totals in the lifecycle. As in study 1, it is also useful to

examine conditional deviations in each period given decisions in previous periods. For each period

in the beverage lifecycle we calculated the future expected points for that subject resulting from

her decision, compared to the future expected points from a conditionally total-reward-maximizing

optimal decision in that period. We then converted these amounts to ml of beverage and totaled

these values over all thirty periods. Since no subject received more than 350 ml of beverage in the

below, a deliberate strategy of overconsuming because of anticipated “bankruptcy” would be misclassified as a low value
of the discounting parameter δ. There is no a priori reason to think this pattern will be more common in the immediate
and delayed conditions if both types of subjects have similar discounting patterns.
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Figure 2.5: Ratio of average consumption to conditional optimal by condition, beverage lifecycle,
periods 1–10

lifecycle or less than 0 ml, we bounded all totals at 350 ml. Row 2 of Table 2.3 shows the results.

The average total expected beverage loss, in conditional deviation from optimality, was much higher

for the immediate condition than for the delayed condition (about twice as high).

2.4.2.3 Exploring the Time Series of Overspending in Early Periods

Figure 2.5 shows the average ratios of spending to conditionally optimal spending. (In the first 10

periods the optimal line is now just a flat line at a ratio of 1.) Figure 2.5 confirms that even when

conditioning on past decisions, the immediate-condition subjects were spending more in the first

five periods. (After that period the higher number of subjects with beverage deficits and large habits

in the immediate condition pushed down their overspending.)23 Another diagnostic statistic is the

average overspending in those periods in which subjects overspent compared to the conditional

optimum. The immediate group subjects actually made somewhat fewer overspending decisions

than the delayed-condition subjects (41% vs. 51% of decisions),24 but when they had overspent, the

immediate condition subjects spent much more than was optimal (Table 2.3, row 3), which created

greater expected losses.
23Immediate subjects have more beverage deficits (4 subjects vs. 1 in period 6; 15 vs. 8 by period 10) and higher

average habit levels accumulated (218 vs. 185 in period 6) than the delayed condition. It is not the case that the immediate
subjects have satiated on soft drinks compared to the delayed group, because the immediate subjects have only drunk
about 57 ml (2 oz) on average after five periods.

24Periods in which a subject encountered a deficit of 20 ml or greater were omitted in this analysis.
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2.5 Estimating Quasi-Hyperbolic Discounting Parameters

The results presented to this point have supported the basic prediction of the hyperbolic discounting

and dual self models, that subjects in the immediate condition would consume less overall. Because

the hyperbolic model is clearly parameterized, we can also estimate best-fitting values of the pa-

rameters δ̃ and β̃ from savings decisions and compare those values to estimates from other studies.

The analysis is restricted to observations when subjects did not encounter beverage deficits. When a

subject encountered a beverage deficit, their decision could only be made to receive future rewards

and so β̃, the immediate bias term, should not apply even in the immediate-beverage condition.25

In the quasi-hyperbolic model, the weights placed on immediate and future rewards are 1, βδ,

βδ2, . . . βδt . . . If δ is close to one the terms δt are close in numerical value, so there will be many

combinations of (β, δ) values which produce similar sequences of weights and similar choices. It is

therefore difficult to estimate the two parameters separately. When (β, δ) were maximized simulta-

neously, the analysis often yielded toward 0 or above 1. We therefore use a two-stage procedure to

calibrate δ and β for each subject.

Since behavior in the delayed condition gave no information about the present bias β, in theory,

the delayed-condition data is used to estimate δ. So we first search for best-fitting values of δD

which explain delayed-condition subject choices as if they were maximizing discounted expected

utility of consumption with a discount rate δD and β = 1. These estimates minimize the sum of

squared percentage deviations between the actual consumption and the consumption predicted by

the model. This estimation gives a distribution of δD estimates with a mean of 0.904 and standard

deviation, across subjects, of 0.230. This mean value is reasonable but is significantly less than one

at the 2% level by a cross-subject t-test (see Table 2.5). (Note that a discount factor around 0.9 is

more plausibly interpreted as a reduced-form expression of suboptimal choice rather than true time

preference for these short-horizon experiments.)

The next challenge is to estimate βI values in the immediate condition, using reasonable values

of δ.26 The procedure we use first fixes β = 1 for each immediate-condition subject and then
25Additionally, subjects with high enough beverage deficits knew they would not receive liquid again and have no

incentive to choose one spending decision over another. While some subjects never encountered a beverage deficit, and
others encountered them early, each subject was given a single parameter value and the results were analyzed so that each
subjects value counts as much as any other.

26Using the mean of the delayed-condition estimates δD and estimating subject-specific βI works poorly because
differences in δ values for those subjects from the mean δD leads to implausible variation in estimates of βI . The
problem with using the delayed-condition mean δD for the immediate-condition subjects is the following: suppose an
immediate-condition subjects δ is smaller than the mean δD . Then the best-fitting sequence of weights 1, βδ, βδ2, . . . βδ2

will overestimate β because the β parameter is forced to pick up the slack for the under-estimated δ. Similarly, if the
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Table 2.5: Two-stage parameter estimates of δ̃ and β̃

estimates a best-fitting value of δI for each of those subjects. These values are shown in Table 2.6;

the mean δI is 0.85 and the standard deviation is 0.24. Since we are fixing β = 1, but we believe

the actual βI values might be below 1, we need to adjust the δI values in some way that permits

more precise estimation of β. We do this by projecting the subject-specific values of δI onto the

value of the distribution of δD estimated from the delayed-condition subjects which has the same

standardized deviation. That is, a specific immediate-condition estimate δI is adjusted to an estimate

δ∗I where (δ∗I − 0.904)/0.23 = (δ − 0.85)/0.24. This procedure permits individual differences in

δI values, but yokes their distribution to the distribution of δD values to permit better identification

of β. Using these adjusted values of δ∗I for each immediate-condition subject, we then estimate βI

for each subject.

There is one further complication. In quasi-hyperbolic models, people can be either sophisti-

cated or naı̈ve (e.g., O’Donoghue and Rabin, 1999). Sophisticated subjects discount delayed pay-

offs steeply but understand that in the future they will discount steeply too. Naı̈ve subjects discount

steeply but believe, mistakenly, that their current discount factors applied to future periods will also

be applied to later decisions.

The difference between sophistication and naı̈veté can be illustrated in a three period example.

In the first period, both types of subjects apply weights 1, βδ and βδ2 to the three periods. However,

the sophisticated subject knows that the discount rates 1 and βδ will actually be applied to periods

2 and 3 when period 2 decisions are made, and accounts for this weighting in forecasting period 2

and 3 choices. The naı̈ve subject thinks the discount rates βδ and βδ2 will be used in period 2 to

weight period 2 and period 3 utilities; since the βδ term will divide out in optimization, the naı̈ve

subject therefore thinks the relative weights applied in periods 2 and 3 will be 1 and δ (i.e., the naı̈ve

subject thinks he will act like an exponential discounter in the future).

immediate-condition δ is below the mean δD , β will be underestimated. Indeed, when we tried this procedure the estimate
of β tends to bifurcate to the lower and upper bounds placed on β.
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Table 2.6: Estimated β̃ of individual subjects in immediate condition
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In simple choice experiments these two behavioral assumptions are difficult to distinguish em-

pirically, but our 30-period experiment gives some empirical leverage for distinguishing them. We

therefore estimate β values (using the adjustment procedure described above) assuming both so-

phisticated and naı̈ve forecasting of future behavior (see supplemental section A.3 for full details).

The results are summarized in Table 2.5. The estimates of β in both the sophisticated and naı̈ve

models are clustered around 0.6–0.7. Table 2.6 shows individual results;27 all but one subject’s

estimate is below 1 for both specifications, so the hypothesis that there is no present bias (β =

1) is strongly rejected.28 The estimates of β̃ are in the ballpark of estimates of Angeletos et al.

(2001) (β̃ = 0.55), Laibson et al. (2007) (β̃ = 0.7), DellaVigna and Paserman (2005) (β̃ = 0.9),

and Tanaka et al. (2006) (β̃ = 0.74–0.89) (from macroeconomic calibration, consumption data,

unemployment spells, and experiments in Vietnam, respectively). The values also are close to other

experiments with a much different design that used juice and water rewards (β̃ = 0.52, McClure et

al. (2007)).

Measured by the sum of squared deviations, the naı̈ve model fits better in 16 of 26 subjects.

Since this structure is not deliberately designed to distinguish the two specifications, this is just a

clue that both specifications should be taken seriously as explanations of behavior in future work.

2.6 Applying the Quasi-Hyperbolic Model to Bounded Rationality and

Social Learning

Study 1 and study 2 both feature decisions made by subjects in the same experimental framework,

so it is useful to have a unified approach to compare the results parametrically. In the previous

section, we estimated the results in study 2 using the quasi-hyperbolic model because that model

has been designed and commonly used to calibrate the tradeoffs between immediate and delayed

rewards over time, and used to model temptation. Any reasonable unified model must accommodate

the empirical immediate-delayed difference and the β-δ model is one way to do so. However, it has

never been used to represent bounded rationality or the effects of private and social learning on

decisions
27A possible correlate of individual β values are subject values on the Barratt Impulsivity Scale. After subjects had

completed their experimental session, they answered a survey measuring their total “impulsivity” on the BIS 11 Barratt
Impulsivity scale (Patton et al., 1995). However, these values show little correlation with the individual naı̈ve betas,
sophisticated betas, and subject performance (correlations smaller than 0.1 in absolute value).

28The correlation of β and δ estimates across subjects is around .35 for both specifications of β, so there is no serious
identification problem.
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One approach to creating a unified model is to estimate β-δ parameter values for the private

and social learning effects. Since learning means, empirically, saving more at the beginning, in

the β-δ framework learning is expressed as a change in these preference parameters. While this is

clearly a reduced-form approximation, it is the approach we take below. We return to the details

after discussing why other approaches are not likely to fit these data any better. Of course, future

research should certainly tackle the problem of developing a more sensible and unified approach,

and designing the best experiments to test it.

Two other ways to potentially model private and social learning involve limited planning hori-

zons and rules of thumb.

Limited planning horizons: Ballinger et al. (2006) found that their data are reasonably explained

by a model in which subjects tend to only think ahead three periods. A more general version of this

approach is a model in which people optimize but act as if only K periods remain (Ballinger et

al. estimate K = 3). Note that full optimality is K > 30 (in these 30-period experiments) and

in beginning period T −K subjects fully optimize (conditionally). Empirically, this model cannot

explain all our data. The period at which consumption becomes conditionally optimal can be used

to approximate K, because in period T −K people will begin to (conditionally) optimize. Figure

2.3 suggests K is around 10 because their decisions are conditionally optimal beginning around

period 20. But a model with a horizon K = 10 predicts that subjects will consume everything in

the delayed condition of study 2 (since consumption is delivered 10 periods later in the delayed

condition). This appealing model cannot easily account parametrically for both the oversavings in

study 1 (which implies K around 10) and the fact that there is a limit on consumption in the 10-

period-delayed condition of study 2. To be clear, our view is that the truncated-horizon model is a

very plausible one, but it just does not do well in explaining the central empirical features of both

of our studies.

Rules of thumb: Another approach to model bounded rationality and observed learning is that

consumers use a rule of thumb which is adjusted by experience (e.g., Cochrane, 1989). Two plausi-

ble rules are consuming a constant fraction of current income or a constant fraction of accumulated

cash-on-hand. Neither model fits our experimental data especially well.29

The actual consumption-to-income ratio does not exhibit a trend across periods, but fluctuates
29See Chua and Camerer (2004) for a regression of consumption against conditionally optimal consumption and rule-

of-thumb spending of a constant percentage of current income. The latter term has no statistical weight. Our interpretation
is that while subjects are not exactly optimizing (they clearly undersave in early periods with only private learning), the
variation across the 30 periods is much better picked up by variation in optimal consumption than by a constant rule of
thumb.
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wildly across periods (see supplemental section A.4 for details). For example, in the first lifecycle of

the private learning condition, in half the periods the propensity to consume out of current income is

less than 1, but in six of 30 periods it is above 2 (i.e., subjects spend all the current income and also

dip into savings, because current income is too low to produce an adequate consumption utility).

Subjects seem to have some intuitive ability, even in the first lifecycle, to adjust spending from

current income to smooth consumption across periods so a simple rule-of-thumb model is strongly

rejected. The actual consumption-to-cash-on-hand ratio also exhibits little trend before learning

takes place, but also fluctuates substantially (in six periods it is around .4, and in seven periods it is

around .7, in the first private learning lifecycle). Learning does change this ratio so it looks like a

quadratic polynomial across periods after learning takes place.

The most promising approach to modeling bounded rationality is a propensity to consume pol-

icy function, which is a low-order polynomial in the state variables (including cash-on-hand and

the number of periods remaining), which adjusts with experience (e.g., Houser et al., 2004). Ad-

justing from experience is not so straightforward, however, because each lifecycle only provides

one observation on performance of a particular cross-period policy. It is not clear how to adjust

a polynomial policy across 30 periods from a single observation on the entire dynamic policy’s

performance rapidly enough to match the human learning we observe (see the well-known “credit

assignment” problem in learning of dynamic policies, e.g., Holland, 1985).

Furthermore, even if we had an ideal model of variation and learning across rule-of-thumb

policies that could explain the observed learning in experiment 1, these models are not likely to

explain the immediate-delayed condition effect in study 2. Therefore, we use the β-δ approach

as a benchmark unified model (since it is the most natural way to explain the immediate-delayed

difference). We treat estimated changes in those parameters as very reduced-form expressions of

learning as expressed through these parameters.

Because of the problem in separately identifying β and δ in this design, ad hoc methods are used

to first identify δ, then estimate β given the estimates of δ.

First consider private learning. We assume that β = 1 in lifecycle 7, estimate δ values from

those subjects in lifecycle 7 (the estimate is 1.00), then apply those estimates of δ to estimate β in

lifecycles 1 and 4. These numbers indicate the strength of learning, if learning is assumed to only

change β and not affect δ. These results are shown in Table 2.7. The estimates of first- and fourth-

lifecycle β are 0.415 and 0.778 for the naı̈ve model and 0.273 and 0.585 for the sophisticated model.

These numbers are a crude indication of the size of the suboptimality in consumption; they suggest
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Table 2.7: Two-stage parameter estimates of β̃ and δ̃ by learning condition (N = 36)

that about half the gap between the first lifecycle β and the value of one is closed by lifecycle 4.

For social learning, we use the same procedure. First β = 1 is assumed in lifecycle 7 and an

estimate of δ is derived from the lifecycle 7 data (the estimates is 1.03). Since the estimate of δ is

so close to 1, we use the value of 1 to enhance comparability across the two conditions when later

estimating β in lifecycles 1 and 4. The resulting estimates are 0.671 and 0.974 for the naı̈ve model

and 0.421 and 1.025 for the sophisticated model.

Together, all these figures give us a crude parametric index of the strength of learning, when

learning is parameterized by a change in the immediacy preference β—more appropriately, a reduced-

form proxy for undersaving. Assuming β = 1 in the last lifecycle (to permit identification), social

learning increases β estimates substantially in the first lifecycle compared to private learning (from

0.415 to 0.671, assuming naı̈veté, or 0.273 to 0.421 assuming sophistication). The learning is ap-

parently much more rapid in social learning, as well, since the estimates of β are very close to one

even in lifecycle 4 but are still far from one in private learning.

2.7 Conclusion

Dynamic choice models in which current choices influence future constraints or utilities are com-

putationally difficult. Savings in the presence of income uncertainty and habit formation are an

example of choice models in this class, which are especially relevant in the economy.

Empirical evidence on savings suggests people are not always saving optimally (though many

studies are consistent with some features of optimal savings). However, tests with field data depend

sensitively on assumptions about expectations, separability of consumption, and other unobserv-

ables. Experiments control for these assumptions. Simple experiments done by others generally

show that experimental subjects save too little. Our goal in this paper was to extend this research to

a more complicated (and lifelike) environment that combines income uncertainty and habit forma-

tion.
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The experiments are designed to examine two explanations for undersavings. The first is bounded

rationality and the second is an immediacy preference (i.e., even if people knew the optimal saving

rules they could not execute them). We test these explanations in two experimental studies using a

common design and pool of highly skilled subjects. We use the β-δ model to measure undersaving

across both studies.

We find that subjects saved much too little at first, but learned to save close to optimal amounts

after three or four lifecycles of direct experience (private learning). Furthermore, subjects who have

received social learning, examples of successful, unsuccessful, and average experimental perfor-

mance, produced savings decisions that are quite close to optimal even in their first lifecycle. Since

consumers are limited to one lifecycle of private learning (absent reincarnation with memory), it

would be interesting to know what types of social learning are more effective. Does social learning

work better when it comes from family and friends, from total strangers, from financial planners,

or from training and education? Our data suggest that one type of social learning works well but

invites consideration of other forms which can be tested in future experiments and in field data.

The fact that subjects could learn to save optimally for money rewards led us to explore whether

they saved optimally when rewards are more immediate and visceral—when thirsty subjects’ re-

wards were immediate sips of a cola beverage. The subjects who sipped the beverage immediately

also overspent (i.e., overdrank), compared to group of subjects who made decisions in one period

but did not get to sip that period’s beverage amount until ten periods later. As a result of their over-

spending, subjects in the immediate-reward condition earned less total rewards than those in the

delayed condition, and received less than the theoretical, total-reward-maximizing optimum. This

unique feature of our second study provides a model for future studies of highly tempting decisions

like addiction, overeating, and perhaps spending splurges. The difference in the performance of the

immediate and delayed conditions is consistent with the predictions of both the quasi-hyperbolic

and dual self models, and is not consistent with the standard exponential model. When parameters

of the quasi-hyperbolic model are calibrated from subject decisions in the immediate condition, the

mean best-fitting (the degree of present bias) is 0.62 for the sophisticated case and 0.72 for the naı̈ve

case. These values are close to values observed in some other studies using both calibrations to

aggregate data and direct experimental measurement. Parameter estimates using beta as a represen-

tation of inexperience are much lower than those observed in field data and experiments which allow

immediacy preference. Although this model was not intended to be applied to measure bounded ra-

tionality in a reduced-form way, the lower β suggest that if consumers were inexperienced and did
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not know how much to consume, they would be much more impatient than has been inferred by

Angeletos et al. (2001) and Laibson et al. (2007) from aggregate savings and investment.

There are many directions for future research. The experimental paradigm could also be ex-

tended by adding more lifelike features, such as stochastic mortality, retirement, and supply-side

advice that either tempts subjects more or gives them good advice. The fact that subjects in the

delayed condition are able to resist temptation better (and drink more total beverage as a result)

corroborates the conclusion of models like Bernheim and Rangel’s (2004), that creating a time

wedge between “ordering” and consuming may be helpful to people. This observation suggests an

experimental way to measure demand for external self-control. The immediate-condition subjects

are making a mistake, but they can’t help doing so. If they had access to external commitment,

sophisticated hyperbolics would seek external commitment. Future experiments could allow sub-

jects in beverage studies the choice between whether they want to participate in the immediate or

delayed condition; sophisticated subjects should opt for the imposed delay. Naı̈ve hyperbolics and

exponential discounters would be indifferent about both conditions. An alternative theory (Gul and

Pesendorfer, 2001) suggests that agents might prefer the delayed condition if it reduces disutility

from temptation.

The natural question about experiments of this type is how well their results generalize to nat-

urally occurring savings by different groups of people. While economic agents cannot experience

more than one lifecycle, they can learn from the savings success and mistakes of others. Retirement

advisors may exist because individuals are unable to make retirement decisions in one lifecycle but

can make good decisions after observing multiple lifecycles (and those histories are bottled and

sold by advisors) and with formal tools to analyze and explain what to do. The market may have

solved the cognitive problem in savings models by producing a supply of helpful retirement ad-

visors. These phenomena can be studied in experiments too, by allowing markets for advice and

group-level decisions (e.g., household saving) to see whether these institutions contribute to optimal

choice.



32

Chapter 3

To Review or Not Review? Limited
Strategic Thinking at the Box Office

3.1 Introduction

The central principle in Bayesian-Nash equilibrium analysis of games with information asymmetry

is that players can correctly infer what other players know from their actions. In contrast, models

in which strategic thinking is limited due to cognitive constraints allow the possibility that some

players do not correctly infer what the actions of other players imply.

Models of limited strategic thinking have been shown to explain data from a wide variety of

experimental games1 and auctions2 better than equilibrium predictions. In many cases, these models

express the idea that players with private information can fool some of the people, some of the time,

in contrast to the equilibrium assumption that nobody is ever fooled (see Crawford, 2003).

This paper is one of the first applications of different models of limited strategic thinking,3 to a

novel field setting. The novel setting is the differential box office earned by movies that are “cold

opened,” i.e., deliberately unavailable for pre-release review by critics, compared to movies that get

pre-release reviews. Through an iterative reasoning process, rational moviegoers should correctly

infer quality and a cold opening premium should not exist. In equilibrium, therefore, cold openings

provide a natural field setting to examine models of limited strategic thinking (cognitive hierarchy

and cursed equilibrium) as well as the rational-actor, quantal response equilibrium model.

This study estimates behavioral parameters (which ideally include full rationality as a limiting
1See Nagel (1995), Stahl and Wilson (1995), Camerer et al. (2004), Crawford and Iriberri (2007a).
2See Crawford and Iriberri (2007b) and Wang (2006).
3Two unpublished studies using field data and cognitive hierarchy approaches are Östling et al., (2007) using Swedish

lottery choices and experimental analogues, and Goldfarb and Yang (2007) using estimation of firm adoption of 56K
modems. The Östling et al. study compares QRE and cognitive hierarchy approaches but Goldfarb and Yang do not
compare to QRE, and neither paper estimates the cursed equilibrium model as we do.
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case) to see whether parameters have some stability across economic domains and have similar

value for consumer (moviegoers) and firm (distributors) behavior.

Ours is one example of a more general class of games in which a producer or person that

knows something about a product’s quality can choose whether to disclose its quality or not (see

Verrecchia (2001, section 3) and Fishman and Hagerty (2003) for surveys). For instance, a car

salesman can signal a vehicle’s quality by adding a warranty (Grossman, 1981). Online daters can

decide whether to post a picture or not (Levitt and Dubner, 2005). Restaurants can voluntarily post

health department ratings when not required to by law (Jin and Leslie, 2003). HMOs can choose

whether to voluntarily disclose quality by submitting to independent accreditation (Jin, 2005). A

regulated firm can selectively report information about its industry to regulators (Milgrom, 1981).

A hedge fund can selectively report past earnings (Malkiel and Saha, 2005). In politics and law,

the analogous situation is when one can choose to answer a direct question about a fact they might

know, or avoid answering the question (e.g., “pleading the fifth” in legal settings).4

The interesting empirical question in these settings is what limitedly rational consumers and

voters infer from the reluctance to reveal quality when it is easy to do so.

The behavioral explanation of cold opening of movies is straightforward. Suppose moviegoers

prefer to see high-quality movies, but some moviegoers do not pay attention to reviews or do not

infer anything negative about the quality of cold opened films (even though unreviewed movies are

lower in quality, empirically).5 If film studios know a film’s quality in advance, believe that critics

will judge quality fairly but think that some moviegoers will not realize that no review is bad news

about quality, they will deliberately keep some mediocre movies from being critically reviewed in

advance, by opening them cold.6 The technique has been used in the industry for some time (and is

increasingly used recently). As Litwak (1986) notes

“As a courtesy, and to ensure that reviews are ready by the time a film is released, stu-

dios arrange advance screenings for critics. However, if negative reviews are expected,

the studio may decide not to screen a picture, hoping to delay the bad news. (p. 241)”
4In 1999 while campaigning for President, George W. Bush was the only one of the twelve major candidates to not

disclose whether he had used cocaine. He subsequently revealed that he had not used cocaine for the previous seven
years, and then later disclosed he had not used cocaine for the 15 years before his father had become President in 1989.
(DeFrank, 1999) Although no physical evidence of cocaine use was found, disclosure literature would suggest this implies
Bush had used cocaine prior to 1974.

5Cold-opened movies have an average metacritic rating (0–100) of 22, while all movies have an average rating of 48.
See Section 3.2 for an explanation of metacritic ratings.

6As Greg Basser, CEO of Village Roadshow Entertainment Group, told us, “If you screen [a bad movie] for critics all
they can do is say something which may prevent someone from going to the movie.”
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If some moviegoers do not realize that a cold opening is bad news about quality, there will be a

cold opening premium: Box office revenues will be higher for movies opened cold (controlling for

quality as measured by later critic ratings and other characteristics such as budget, star power, etc.,

that influence revenue).

A fully rational analysis, due originally to Grossman (1981) and Milgrom (1981), implies no

cold opening premium. If moviegoers correctly infer that a cold opened movie is probably bad

news, and form conditional rational expectations given that belief, then there will be no cold opening

premium and only the worst movies will be opened cold.

The argument can be illustrated numerically. Suppose movie quality is uniformly distributed

from 0 to 100. If distributors cold open movies with quality below a cutoff 50, moviegoers with

rational expectations will infer that the expected quality of a cold opened movie is 25. But then it

would pay to screen movies with qualities between 26 and 100, and only cold open movies with

qualities 25 or below. Generally, if the distributors do not screen movies with qualities below q∗,

the consumers’ conditional expectation if a movie if unscreened is q∗/2, so it pays to screen movies

with qualities q ∈ (q∗/2, 100] rather than quality below q∗. The logical conclusion of iterating this

reasoning is that only the worst movies (quality 0) are unscreened.7

The rational logic does not appear to completely jibe with some basic facts about movies. Seven

percent of the movies in our sample are opened cold (and that percentage has increased sharply in

recent years, see Figure 3.1). Regressions show that cold opening appears to generate a box office

premium (compared to similar-quality movies that are pre-reviewed, and including other controls).

The estimated premium is robust to various specifications and is absent in UK and Mexico grosses

(which are typically later than US releases, so that information about movie quality is likely to have

leaked out across national borders).8

Assuming moviegoers infer quality from critics, we estimate specific parametric models of the
7There are other models of discretionary disclosure that do not have this full unraveling result. Some models have

costly disclosure, which cause distributors to only reveal information up to a certain threshold (Viscusi, 1978; Jovanovic,
1982). Other models have sellers uninformed about the quality of their product but able to learn it with some probability
(Dye, 1985; Jung and Kwon, 1988; Dye and Sridhar, 1995) or at a cost (Matthews and Postlewaite, 1985; Farrell, 1986;
Shavell, 1994).

We do not believe either assumption fits this particular industry. Fishman and Hagerty (2003) allow a portion of
consumers to be unable to interpret revealed information. They find three main equilibria, one where quality is always
revealed, one where it is never revealed, and one where high quality is revealed and low quality is not. However, because
there are only two quality levels, in the third equilibrium all quality is also revealed. To our knowledge, an explanation
involving a proportion of uniformed consumers in the population cannot generate a box office premium or explain why a
non-zero percentage of movies were cold opened.

8For all practical purposes, there are no cold-opened movies in Mexico or the UK, since only the biggest blockbusters,
which are not cold opened in the US, are released simultaneously in those countries.
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Figure 3.1: Cold openings by year, 2000–2006

degree of limited strategic thinking. A benchmark equilibrium model is quantal reponse equilibrium

(QRE). Two models which allow systematic errors in beliefs about the actions of other players,

developed to explain experiments, are cursed equilibrium (Eyster and Rabin, 2005) and a cognitive

hierarchy (Camerer et al., 2004). It is important to note that fully rational behavior is a special case

of those models, because their behavioral parameters have specific numerical values if players are

fully rational. Thus, the model estimation allows a sharp comparison of rational limiting cases and

more general behavioral specifications, and gives us a numerical measure of the degreed limited

rationality. Field applications like these are important in showing whether principles of limited

rationality that were inspired and calibrated by experimental data can also explain some basic facts

in larger-scale field settings (see DellaVigna, 2007, for many examples).

The degree of limited rationality by consumers shown here is not large. Roughly speaking,

the estimates suggest about ten times a year a few million Americans pay $5–10 in money, and an

hour or two in time, to see a movie they might not have seen if they had inferred from the lack

of pre-release reviews that the movie was not very good. But this small, synchronized mistake

by millions of moviegoers is a multi-million-dollar profit opportunity for movie distributors. This

example is a reminder that the industrial organization implications of a behavioral mistake depends

on the psychology underlying the mistake and on industrial structure (e.g., Ellison, 2006).
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Furthermore, the central conclusion here is that some consumers fail to infer that product quality

is bad when objective quality reviews are actively avoided or withheld by producers. This possibility

could be explored in many other types of markets and settings where the failure to signal quality

should itself be informative.

In fact, three field studies of consumer quality disclosure found results consistent with the hy-

pothesis that not all consumers fully infer quality information from a failure to disclose (a conclusion

similar to ours), by comparing firm behavior under voluntary and mandatory disclosure. Mathios

(2000) studied nutrition labelling of salad dressing. Most low-fat dressings (less than 9 grams of fat

per serving) were voluntarily labelled for fat content before mandatory disclosure, while only 15%

of high-fat dressings were labelled. After mandatory disclosure, the share of the high-fat dressings

fell by about 20%. Jin and Leslie (2003) studied the effects of a shift from voluntary to mandatory

posting of health-rating cards in Los Angeles restaurants. They find that mandatory disclosure in-

creases hygiene scores by 5.3%, which is about half a standard deviation of the distribution, and

which is modestly significantly higher than under voluntary disclosure.9 Jin (2005) shows that

HMOs do not voluntarily disclose quality (via NCQA accreditation) in markets that are the least

competitive. She also finds that HMOs which voluntarily disclose by seeking accreditation tend to

serve areas with large employers, which suggests that HMOs are responding to more sophisticated

customers (big firms with more savvy benefits managers).

All of these studies (and ours) are inconsistent with the strong hypothesis that customer strategic

thinking leads to complete disclosure.

This chapter is organized as follows: Section 3.2 describes the dataset, the cold-opening pre-

mium, and refutes possible alternative explanations for the premium. Section 3.3 introduces a gen-

eral model for moviegoer and distributor behavior; Section 3.4 calibrates it from the data to the

QRE, Cursed, and CH models, and compares those models to data observed in the labratory. Sec-

tion 3.5 concludes, examines this empirical work with others, and provides suggestions for future

research.
9Their test probably understates the effects of a shift from voluntary to mandatory disclosure because some of the

voluntary-disclosure cities were expected to adopt mandatory disclosure in the near future. Restaurants might have begun
complying early during the last parts of the voluntary regime, and earlier than they would have if they did not expect a
shift to mandatory disclosure.
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3.2 Data

The data set contains all 890 movies widely released10 in the U.S. in their first weekend, over the

61
2 year period from January 1, 2000 to June 30, 2006.11

Critic and moviegoer ratings are used to measure quality. Metacritic.com ratings are used to

measure critic ratings. Metacritic.com quantifies and averages ratings from over 30 movie critics

from newspapers, magazines, and websites. The metacritic rating is available for all non-cold-

opened movies on the day they are released and available on Monday for cold opened movies. In

this way it is generally exogenous from box office revenue measures.12

A natural question to ask is whether metacritic.com ratings accurately capture the quality of

movies as perceived by moviegoers and revealed by demand. Our analysis indicates they do. Figure

3.2 indicates that metacritic ratings are highly correlated with the logarithm of total US box office

revenue. This result is also found in studies of critic influence (Eliashberg and Shugan, 1997;

Reinstein and Snyder, 2005).

We also examine the aggregated user ratings on imdb.com, the largest internet site for user

movie reviews. We find a high correlation (.76) between metacritc scores and imdb user reviews

(see Figure 3.3). The result is not specific to genre (see Table 3.3 below). Metacritic scores align

with two clear indicators of movie popularity (imdb and box office).13

The squares in Figure 3.2 represent the cold-opened movies in our sample. No cold opened

movie has a metacritic rating higher than 55, and the average rating for those movies is 25. However,

the graph does not conclusively show whether cold opened movies do better than non-cold-opened
10Attention is restricted to movies initially released in over 300 theaters. Movies in more limited release have much

less box office impact (they are usually art house movies that use a platform strategy of starting on a few screens, then
expanding). It is also likely that information about quality leaks out more rapidly for these movies if they later go into
wide release, even when they are initially opened cold.

11Movies before 2000 are excluded because Metacritic.com’s records did not cover every movie from before 2000.
12Ratings such as the imdb.com user rating are determined by the people who see the movie and who give reviews

afterwards. We treat that variable as a measure of popularity, but consider it endogenous to box office.
13Of course the assumption that we are making is that critic reviews influence moviegoers. Alternatively, (i) critics

have different sensibilities than moviegoers and have no correlation with actual popularity; (ii) critics have the same
sensibilities, but moviegoers ignore them so they have predictive, but no influencing power.

We find a strong correlation between box office revenue and critic rating as well as ex post moviegoer ratings of movies
and critic ratings across genres. With this result and the findings of both Eliashberg and Shugan (1997) and Reinstein
and Snyder (2005) (who both studied this very issue) we assume that critics generally have the same quality beliefs as
moviegoers. The evidence is weaker that critics influence moviegoers. While survey evidence (Simmons, 1994) suggests
one third of moviegoers use critical reviews to make decisions, Eliashberg and Shugan reached no definitive conclusion
on this issue, and Reinstein and Snyder found evidence that critic ratings matter for specific genres. However, that study
only examined the effect of a specific two critics (i.e., Siskel and Ebert) delaying their review. A cold opening delays
all reviews and thus might have a greater effect. Because this evidence is somewhat inconclusive, we will use several
different tests to check our hypothesis that it is indeed the cold opening increasing box office and thus the critic reviews
(or lack thereof) influencing moviegoers.
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Figure 3.2: Scatterplot of metacritic.com quality ratings and log box office revenue

Figure 3.3: Scatter plot of metacritic.com quality ratings and imdb user ratings
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Table 3.1: Summary statistics for variables. There are only 856 observations for production budget;
all other variables have 890 values.

movies because there are other variables that are not included in Figure 3.2 that correlate with box

office revenues (e.g., the initial number of screens on which the movie is shown).

Cold opening, box office revenues, movie genres and ratings, production budgets, and star power

ratings are collected from various data sources (see Supplemental Section B.1 for a more detailed

description). All these variables were used in a regression model to test if movies that are cold

opened have significantly greater logged opening weekend and total US box office. Table 3.1 pro-

vides summary statistics for all variables.

Each movie, j, has a metacritic.com rating, qj , a dummy variable for whether a movie was cold

opened, cj , (=1 if cold) and a vector Xj of other variables. The regression model is

log yj = aXj + bqj + dcj + εj (3.1)

where yj is logged opening weekend or total US box office for movie j in 2003 dollars, standardized
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Table 3.2: Regressions of log box office revenues (in millions)
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Table 3.3: Data separated by genre

using the GDP deflator (www.bea.gov). Table 3.2 shows the regression results.

The point of this initial regression is not to estimate a model that captures the cold opening

premium or the decision to cold open; that will be done in Sections 3.3 and 3.4. Instead, it is to

determine whether there is a difference in the revenue between cold opened and screened movies.

(Notice that if taken as a literal model for the industry equation 3.1 suggests that all or no movies

should be cold opened depending on the sign of d.) Under the standard equilibrium assumption that

all quality information of cold opened movies is revealed, we should see no difference in revenues,

and the cold coefficient should be zero.14

The “cold” coefficient in the first row of Table 3.2 shows that cold opening a movie is positively

correlated with the logs of opening weekend and total US box office (see Supplemental Section B.2,

Table B.1 for a similar result with opening day data). These coefficients suggest that cold opening

a movie increases revenue from 14–17%.15,16 These effects persist when the “lean” regressions are

run with the most significant variables (i.e., only including the highly significant variables cold,

metacritic, theaters, budget, competition, star ranking, sequel or adaptation dummy, and year of

release). The lean regressions show a more significant effect for opening weekend box office as

conventional wisdom suggests, because critic reviews of cold opened movies are normally available

after the Monday after the first weekend.17 The coefficients also suggest that cold opening increases
14Alternatively, a switching regression model (similar to Borjas, 1987) for the choice to cold opened could be used to

capture the cold opening premium and characterize the decision to cold open. We have instead chosen to describe the
industry through a quantal response model (see Section 3.4).

15For the average gross of a cold opened movie, $20 million, this is roughly $3 million of box office revenue.
16Although we would consider it a regression with endogeneity, these results do not change using imdb.com user

ratings instead of metacritic ratings.
17It is somewhat surprising that the effect of a cold opening continues after the first weekend when critical reviews

are available. Intuitively, the cold opening effect should occur during the first weekend and then dissipate as moviegoers
learn the true quality of a cold opened movie. However, a likely alternative explanation is that moviegoers infer quality
from the first weekend’s revenue (see De Vany and Walls (1996) for a model with such dynamics). Then the perceived
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movie revenue by roughly the same amount as the previous regressions (14–17%). The regression

results in Table 3.2 are generally sensible. Higher quality leads to higher box office — an increase in

one metacritic point increases revenues by 2.1%. An extra ten million dollars in production budget

is correlated with a 3% increase in revenues. The number of theaters opened, which often indicate

expectations about movie revenues, have a very large effect.18 For an increase of 1000 theaters

movie revenue increases 86%. The averaged logged star power rankings have a negative correlation

(higher numbers indicate lower rankings and less revenue). Adaptations and sequels increase box

office by roughly 13%, a result which may foreshadow the recent explosion in the fraction of movies

in this category.

3.2.1 Alternative Explanations of the Cold Opening Premium

It is possible that cold opened movies have some other characteristic omitted from the Table 3.2

regressions that causes these movies to generate apparently greater box office (an omitted variable

bias). In this case, our regressions are not capturing the effect of cold opening, but are capturing

the effect of an omitted variable that is correlated with cold opening. Since many controls are

included, the most likely omitted variable that could be correlated with the decision to cold open

is spending on publicity and advertising.19 Omitting this variable would explain the cold opening

premium if revenues increase with spending on advertising, and if advance screening and advertising

are substitutes (i.e., distributors spend more on ads to compensate for cold opening). However, a

senior executive at Fox Studios we interviewed contradicted this notion, suggesting that if anything

distributors are tighter with their spending on advertising once the decision to cold-open is made

(which happens late in the process, after the number of screens and most other variables have been

determined). The executive’s view was that distributors know cold-opened movies are not very

good, and see high levels of ad spending on such movies as throwing good money after a bad

movie.20 Further, the industry appears to typically set advertising budgets as a fixed proportion

“effect” of a cold opening on post-first-weekend box office is a secondary result from cold opening affecting the first
weekend’s box office. The data agree with this assessment; if we run a regression on logged box office revenues after
the first weekend (see Table 3.3), including logged first weekend with our other independent variables, then we find
cold has an insignificantly negative effect (−3%, p ≈ 0.5) after first weekend revenue. The lean regression finds a
significantly negative relationship between cold and post-first weekend box office, (−10%, p < 0.1). Still, the increase
in first weekend revenue and its correlation with post-opening weekend box office more than offset any negative effect of
cold opening on post-opening-weekend box office.

18Theaters may be a proxy for ad budget as well, which may magnify their effect.
19Unfortunately, we found advertising budgets for only 445 of the 856 movies in our sample, and only 12 of the 59

cold openings.
20Our regression on log advertising budget suggests a cold opening is associated with a 10% drop in advertising budget,

but recall this result is only based off 12 cold openings and is not significant (p ≈ 0.3; lean regression p ≈ 0.23).
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Table 3.4: The cold opening coefficient in non-US box office markets

of production budgets (Vogel (2007) suggests 1
2 , an executive at Village Roadshow told us 2

3 ). If

these rules of thumb are true, then our production budget variable will pick up the omitted effect of

advertising.21

Another potential problem is that annoyed critics might give cold-opened movies lower critical

ratings than they would have if the movies were screened in advance (perhaps as a way of punishing

the studios for making the movie unavailable).22 This explanation seems unlikely since critics pride

themselves on objectivity (for example, they rarely mention in late reviews of cold opened movies

that the movie was unavailable in advance).

One way to test an omitted-variable bias is to look at the log total box office of the U.K. and

Mexico, and log of US video rental data. In these markets, the possible deception of cold opening

should be less effective because movies are almost always released in the U.K. and Mexico after the

initial U.S. release, and home video rentals are always later. If information about the movie’s quality

is widely disseminated by these later releases, the cold opening effect should disappear. Table 3.4

reports the cold-opening coefficients (from regression including all variables as in 3.2). There is

apparently no cold opening premium in these two foreign markets and the rental markets, which

works against the hypothesis that the premium is due to an omitted-variable bias and is consistent

with the hypothesis that some moviegoers are fooled by cold openings.23

Another way to check whether cold opened movies have any inherent differences in sensitivity
21A regression of production budget on marketing budget has R2 = 0.496, indicating much of adverting budget is

dependent on production budget.
22Litwak (1986) mentions this idea when describing a cold opening.
23Another explanation is that moviegoers of cold-opened movies are less sensitive to critic reviews. Then the high

turnouts for cold-opened movies have nothing to do with the opening, but just the fact that given identically low critic
reviews, cold-opened movies turn out more viewers. This explanation may appear appealing as the correlation of critic
reviews and user reviews for cold-opened movies while high (0.5122) is much lower than the correlation of critic reviews
and user reviews of non-cold opened movies (0.7649). However, this relationship likely results from the fact that cold-
opened movies are on a smaller range of critic ratings (x̄ ≈ 25, s2 ≈ 11). If we restrict non-cold opened movies to
those with critic ratings under 40 (x̄ ≈ 29, s2 ≈ 8) or above 60 (x̄ ≈ 70, s2 ≈ 7), we find similar values for correlation
(0.5128 and 0.5256, respectively).
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to critic ratings is to examine the movies by genre. Comedies and Suspense/Horror movies account

for 80% of cold openings and only 54% of all movies (see Table 3.3). If fans of these genres have

less sensitivity to bad reviews (suggested by Reinstein and Snyder, 2005) and are more likely to

go to a movie that has low critic ratings than fans of other genres then the cold opening premium

could be a result of the selection of cold-opened movies to this genre.24 Table 3.3 shows that this is

not the case. Throughout genres moviegoers’ correlation between critic reviews and self-reported

reviews are all around 0.75. Further, the cold open premium is positive for all genres (6–21%) with

the exception of animated, but that result is based off one movie (Doogal). However, given the few

number of data points in each genre and low number of cold openings in most genres, the level of

significance is low. At the very least, we can say it does not seem like the cold opening premium is

a genre-specific effect.

Finally, our hypothesis is that limited iterated strategic thinking causes moviegoers to be “tricked,”

incorrectly overestimating the ex-ante quality of cold opened movies. Since moviegoers presum-

ably go to these movies based on, among other factors, their perception of quality, a greater number

of cold opening moviegoers will have negative impressions of their movie. Then if user reviews are

representative of the audience that views a film, we should find lower user reviews for cold-opened

movies holding everything else constant (like critic ratings). Using imdb.com user data and the

usual independent variables, we find cold opened movies have a rating 0.4 points (out of 10) lower

than non-cold opened movies. The result is highly significant (p < 0.001).

In the next section we will develop three structural models of strategic thinking by moviegoers

and distributors and estimate behavioral parameters which measure the degree of limited strate-

gic thinking for both groups. If some of these models can successfully explain the cold opening

premium with similiar values to what has been observed before, that success is another piece of

evidence that the premium is not due to an omitted variable.

3.3 The General Model

In designing a model of movie viewing and distributor choice, the aim is to create a model that

can be analyzed with box office data, but allow us to estimate behavioral parameters of individual

thinking.
24This explanation would not explain why distributors would be more likely withhold bad news in genres where the

intended audience is the least receptive to bad news.
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Every movie j has specific characteristics Xj and (integer) quality qj ∈ [0, 100]. We assume

that the distributor of movie j and moviegoers both knowXj . The game form is simple: Distributors

observe qj and then choose whether to open cold (cj = 1) or to screen for critics in advance (cj = 0).

Moviegoers form a belief Em(qj |cj , Xj) about a movie that depends on its characteristics Xj and

whether it was cold opened cj .25 Below we consider three models of belief formation. One is a

standard equilibrium concept and two incorporate forms of limited strategic thinking.

The first assumption is that if a movie is screened to critics, its quality is then known to movie-

goers:

Assumption 3.1. Em[qj |0, Xj ] = qj .

To model moviegoing and distributor decisions jointly, we use a quantal response approach in

which moviegoers and distributors choose stochastically according to either utilities and expected

profits. Since we have no data on individual choices or demographic market-segment data, we use

a representative-agent approach to model moviegoers. Assumption 3.2 is that moviegoer utility is

linear in movie characteristics and expected quality, subtracting the ticket price.

Assumption 3.2. U(Xj , Em(qj |cj , Xj)) = αEm(qj |cj , Xj) + βXj − t̂+ εj

where α and β give the corresponding predictive utility associated with expected quality and other

known characteristics of movies. The opportunity utility of not going to the movies is defined as

zero.26 In the quantal response approach, probabilities of making choices depend on their relative

utilities. We use a logit specification (e.g., McFadden, 1974). The probability that the representative

moviegoer will go to movie j with characteristics Xj and expected quality Em(qj |cj , Xj), at ticket

price t̂27 is

p(Xj , Em(qj |cj , Xj)) =
1

1 + e−λm(αEm(qj |cj ,Xj)+βXj−t̂+εj)
(3.2)

where λm is the sensitivity of responses to utility. Higher values of λm imply that the higher-utility

choice is made more often. At λm = 0, choices are random.28 As λm → ∞, the probability of
25It is not crucial that moviegoers literally know whether a movie has been cold-opened or not (e.g., surveys are likely

to show that many moviegoers do not know). The essential assumption for analysis is that beliefs are approximately
accurate for pre-reviewed movies and formed based on some different behavioral assumption for cold-opened movies.

26This is without loss of generality because a constant term is included in the revenue regression, which in this model
is equivalent to the estimated utility of not going to the movie.

27The term t̂ is the average US ticket price in midyear 2003 (recall box office revenues are in 2003 dollars). For an
explanation on why movie ticket prices do not differ by movies see Orbach and Einav (2007) or for a more general
explanation, Barro and Romer (1987).

28This model implies that if λm = 0, the representative moviegoer will attend each movie in its first weekend with
.5 probability. While that result may be unappealing, note that a multinomial specification (i.e, if λm = 0, the repre-
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choosing the option with the highest utility converges to one (best-response).29

Expected box-office revenues are assumed to equal the probability of attendance by a represen-

tative moviegoer, times the population size N and ticket price t̂, which is R(Xj , Em(qj |cj , Xj)) =

Nt̂p(Xj , Em(qj |cj , Xj)). Note that the distributor’s choice of cj is assumed to enter the revenue

equation solely through its effect on moviegoer expectations of quality Em(qj |cj , Xj).

The distributor’s decision to screen the movie (cj = 0) or open it cold (cj = 1) is also modelled

by a stochastic choice function based on a comparison of expected profits from the two decisions.

Given assumption 3.1, the revenue from screening isR(Xj , qj) and the revenue from cold opening is

R(Xj , Em(qj |1, Xj)). Given the same logit choice specification as for moviegoers, the probability

of a distributor opening the movie cold is therefore given by assumption 3.3,

Assumption 3.3. π(Xj , qj) = 1/ (1 + exp [−λd [R(Xj , Em(qj |1, Xj))−R(Xj , qj)]])

where λd is the sensitivity of distributor responses to expected revenue.30

The logic of the model and our data (see Section 3.2 and Table 3.2) suggest that cold open-

ing most strongly affects the first weekend’s revenue (which may then affect cumulative revenue).

Therefore, we use the first weekend’s revenue to calibrate the models’ revenue equations and dis-

tributor decisions in the next section. Then our probability and utility functions given in assumption

3.2 and equation 3.2 are based on the moviegoers’ behavior in the first weekend. Results are similar

(see Supplemental Section B.2) when total box office is used.

3.4 Models of Strategic Thinking

The crucial behavioral question is what moviegoers believe about the quality of a movie that is cold-

opened—i.e., what is Em(qj |1, Xj)?—and how those expected beliefs influence the distributor’s

cold opening choice probability, π(Xj , qj). This section compares three models of beliefs: Quantal

response equilibrium, cursed equilibrium, and a cognitive hierarchy.

sentative moviegoer will go to the movies with .5 probability and which movie he goes to will depend on its underlying
characteristics) would be much more complicated to calculate and also has unappealing results. For instance, movies that
open alone each weekend should have much higher box office than those that open with three other movies (generally not
true). For these reasons and because it was the most apparent logit model, this model was chosen.

Additionally, this point is moot. The later λm estimates will be far from 0 (see Table 3.5). As it turns out when one
looks at equation 3.5, it is apparent that it would require on average movies to make roughly $800 million in their first
weekend to push λ̂m to 0. Instead this value can be thought of as an upper bound on movie revenue and a lower bound
on rationality.

29See Luce and Raiffa (1957), Chen et al. (1997), McKelvey and Palfrey (1995, 1998).
30In many previous applications of these games to experimental datasets the response sensitivity parameters λ are the

same since game payoffs are on similar payoff scales. We use two separate parameters here, λm and λd, because the
payoffs are on the order of dollar-scale utilities for moviegoers and millions of dollars for distributors.
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Quantal response equilibrium combines the stochastic choice functions described above with

the standard equilibrium assumption that agents’ beliefs about the behavior of other agents are

statistically correct—in this case, moviegoers’ beliefs reflect an understanding of the distributors’

decisions, and vice versa the “QR” part of QRE reflects the fact that players do not choose best

economic responses all the time. The “E” part suggests their expectations about other players’

behavior are still correct (i.e., they are still in equilibrium).

The cursed equilibrium and cognitive hierarchy approaches both allow limits on strategic think-

ing which are parsimoniously parameterized by a single behavioral parameter.

In cursed equilibrium, moviegoers’ beliefs about the quality of a cold-opened movie are a

χ-weighted average of unconditional overall average quality (with weight χ) and the rationally-

expected quality that fully anticipates distributors’ decisions (with weight 1 − χ). The parameter

χ is a measure of the degree of naı̈veté in the moviegoers’ strategic thinking (i.e., to what extent

beliefs about cold-opened movies are biased toward average unconditional quality). An alternative

interpretation is that all χ is the fraction of moviegoers who do not find out whether a movie was

reviewed or cold-opened (e.g., they did not bother to check whether there are reviews available or

not). This study is not well-designed to distinguish the cursed hypothesis (that they know there is no

review but draw the wrong inference) from the lack-of-information hypothesis. Below we will call

these two parametrically equivalent hypotheses into “limited rationality” but will remind the reader

in the conclusion that they are fundamentally different.31

In the cognitive hierarchy approach, there is a hierarchy of levels of strategic thinking. The

lowest-level thinkers do not think strategically at all, and higher-level thinkers best-respond to cor-

rectly anticipated choices of lower-level thinkers. For parsimony, the frequencies of players at dif-

ferent levels in the cognitive hierarchy are characterized by a Poisson distribution with mean level

parameter τ . Importantly, both models allow full rationality as a limiting case of their behavioral

parameters. Full rationality corresponds to χ = 0 and τ → ∞. Therefore, the data, will indicate

the degree of moviegoer rationality and distribution expectation of moviegoer rationality.
31In some applications χ is more naturally interpreted as a fraction of people who are uninformed or not thinking

strategically, which might be measured directly in surveys or methods to classify people into types. However, in our
specific structural framework, box office revenues are not linear in expected beliefs (through assumption 3.2). So a model
in which there are a fraction χ of people who use average quality for cold-opened movies, and a fraction 1 − χ who
form rational expectations is not exactly equivalent. (The difference is that between a nonlinear probability function of a
weighted average and a weighted average of nonlinear probabiliites.)
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3.4.1 Logistic Quantal Response Equilibrium (QRE) Model

In QRE, the moviegoers use Bayes’ rule and rational expectations to infer the expected quality of

movies that are cold-opened from the distributors actual choice probabilities. That is,Eqrem (qj |1, Xj),

the QRE expectation of moviegoers about the quality of unscreened movies is

Eqrem (qj |1, Xj) =
∑100

q=0 qP (q|Xj , 1)

=
P100

q=0 qP (1,Xj ,q)

P (1,Xj) (Bayes’ rule)

=
P100

q=0 qP (1,Xj ,q)P100
q=0 P (1,Xj ,q)

(laws of probability)

=
P100

q=0 qP (1|Xj ,q)P (Xj ,q)P100
q=0 P (1|Xj ,q)P (Xj ,q)

(laws of probability)

=
P100

q=0 qP (1|Xj ,q)P (Xj)P (q)P100
q=0 P (1|Xj ,q)P (Xj)P (q)

(independence assumption)

=
P100

q=0 qπ(Xj ,q)P (q)P100
q=0 π(Xj ,q)P (q)

(definition in (A3)).

(3.3)

Intuitively, for agents to form an expectation about the quality of a cold opened movieEqrem (qj |1, Xj),

they must consider all possible levels of quality that a movie could have (hence the summations over

all integers in [0,100]), and the conditional probability that it would be of that quality given its char-

acteristics and the fact that a distributor decided to cold open it with probability P (q|1, Xj) (which

is equal to π(q|1, Xj) under QRE). Using laws of probability, and the assumption that the proba-

bility of any movie’s quality level P (q) is independent from the probability of it having any other

characteristics P (Xj)32 then a cold opened movie’s expected quality Eqrem (qj |1, Xj) only depends

on the probability that a distributor would cold open a movie with such characteristics for any qual-

ity π (Xj , q), and the frequency of quality ratings P (q). From this transformation we are able to

calculate Eqrem (qj |1, Xj) if π (Xj , q) is known.

The cold opening probabilities π(Xj , q) depend on estimated revenues from opening the movie

cold or screening it (and revealing its quality, assuming (A1)). We use a transformation, then re-

gression, to estimate the revenue as a function of Xj and q. The revenue equation is

R(Xj , Em(qj |cj , Xj)) = Nt̂p(Xj , Em(qj |cj , Xj))

= Nt̂/
[
1 + e−λm(αEm(qj |cj ,Xj)+βXj−t̂+εj)

]
. (3.4)

Rearranging terms and taking the logarithm, yields a specification which is easy to estimate because
32Supplemental Section B.2, Table B.3 shows the intercorrelation matrix. There is only one variable which has a

correlation with quality higher than .20—namely, the budget (ρ=.28).
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it is linear in characteristics Xj and expected quality Em(qj |cj , Xj),

log
(

R(Xj , Em(qj |cj , Xj))
Nt̂−R(Xj , Em(qj |cj , Xj))

)
= −λm

(
αEm(qj |cj , Xj) + βXj − t̂+ εj

)
. (3.5)

The QRE is recursive: Moviegoers’ beliefs about the quality of cold opened movies depend on

which movies the distributors choose to open cold (through equation 3.3). The distributors’ choice

to open cold depends on moviegoers’ beliefs about the quality of cold opened movies (through

assumption 3.3).

Because of this recursive structure, we estimate the model using an iterative procedure (see

B.3 for details). The procedure first uses the large number of screened movies (where quality is

assumed to be known to moviegoers by 3.1) to estimate regression parameters that forecast rev-

enues conditional on quality in 3.5. Then specific expected qualities for all cold opened movies are

imputed using a maximum-likelihood procedure that chooses a distributor response sensitivity λd

which explains actual decisions best and satisfies the rational expectations property. These inferred

expected qualities are then added to qualities of screened movies to re-estimate equation 3.5 and the

process iterates until parameters converge. Convergence means that parameters have been found

such that both the representative moviegoer and the distributors best-respond (stochastically) and

the moviegoer rational-expectations constraint on cold-opened movies equation 3.3 is satisfied.

Table 3.5 shows the regression results from six iterations from this process (which stopped

according to the step 6 convergence definition in Supplemental Section B.3). The r-squared value,

0.682, shows our model has a reasonable fit with the data. The final log likelihood value, −205.7

implies that the (geometric) mean predicted probability of actual decisions for all movies is 0.79,

much better than chance guessing and a little better than simply guessing that all movies have a cold

opening probability equal to the 7% (59/856) base rate (which yields a value of−211.62). Standard

error estimates, determined by 100 bootstraps of this process, are shown in Table 3.10 and will be

discussed later.

3.4.2 Cursed Equilibrium

Eyster and Rabin (2005) created a model of “cursed equilibrium” to explain stylized facts like the

winner’s curse in auctions, and other situations in which some agents do not seem to infer the private

information of other players from those players’ actions. Their idea is that such an incomplete

inference is consistent with agents not appreciating the degree to which other players’ actions are
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Table 3.5: The iterative estimation process for the QRE model after 6 iterations
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conditioned on information.

In our context, for every cold opened movie, all moviegoers believe that the movie has quality

equal to some weighted average of the true expected movie quality (given distributor decisions) and

the average of all movies. That is,

Ecem(qj |1) ≡ (1− χm)Erem (q|Xj , 1) + χmq̄ (3.6)

where Erem (q|Xj , 1) reflects rational expectations about distributor decisions. We use an iterative

procedure nearly identical to the one used above to find a best-fitting value of χm. The difference in

the procedure is that Ecem(qj |1) and χm are used in forecasting revenue rather than Eqrem (qj |1), and

hence are also used in predicting distributor decisions.

If χm = 0 this model is equivalent to QRE. The best-fitting value, based on first weekend cold

box office data, is χ̂m = .922 however, which indicates a high degree of curse.

Since the estimated correct expectationErem (q|Xj , 1) for cold opened movies is low (Em (q|1)=

25), and average overall quality is much higher (q̄ = 48), cursed moviegoers vastly overestimate

the quality of movies that are opened cold. Since box-office revenues are increasing in quality, the

fact that cursed moviegoers overestimate the quality of cold opened movies is consistent with the

box office premium found in the basic regressions in Section 3.2. Indeed, the best-fitting cursed

parameter estimate given the expectations found in the previous model is χ̂m1 = .922. This pa-

rameter predicts an average log box office premium on weekend box office of 0.33 (an increase in

revenue of 33%). This value is considerably higher than 15% estimate determined from our initial

regression — i.e., it appears that the model implies too little rationality of moviegoers, compared to

the revenue effect from regression (see Supplemental Section B.2 for more detail).

Eyster and Rabin applied their model to experimental data from Forsythe et al. (1989) on agents

“blind bidding” for objects of unknown value, after the producers of the objects have decided

whether to reveal their values. In their estimation, all values of χ ∈ (0, 1] fit better than the no-

curse value χ = 0, and the best-fitting χ = .8. This number is similar to our estimate. Both

estimates indicate high degrees of curse, with agents inferring quality of unknown goods at levels

much greater than the fully correct expectation.

However, ignoring the distributor decision function, the result above only describes what best

fits first weekend box office revenues. If cursed equilibrium requires the moviegoer curse parameter

χm to be the same as the distributor’s estimate of the curse (as the model intends), then iterating the
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procedures leads to χm = Ed(χm) = 0, which is equivalent to the QRE restriction in which there

is no curse.33

The intuition is simple: Given an apparent curse of χm = .922, distributors should be cold-

opening a lot more movies of low quality than they actually are. Within the simple structure of this

model, the only way to explain their anomalous behavior is that they do not believe moviegoers are

as cursed as the box office revenue data suggest they are.

3.4.3 A Cognitive Hierarchy Model

Cognitive hierarchy models assume the population is composed of individuals that do different num-

bers of steps of iterative strategic thinking. The lowest level (0-level) thinkers behave heuristically

(perhaps randomly) and k level thinkers optimize against k− 1 type thinkers.34 Zero-level thinkers,

as moviegoers, do not think about the distributor’s actions of cold opening a movie. For any cold-

opened movie they infer the movie’s quality E0
m(qj |Xj , 1) at random35 by selecting any integer on

[0,100] with equal probability. They will go to any movie with probability defined as an analogue

of equation (2)

p0

(
Xj , E

0
m(qj |cj , Xj)

)
=

100∑
q=0

(1/101)
1

1 + e−λm(βXj+αq−t̂+εj)
(3.7)

where E0
m(qj |cj , Xj) ∼ U [0, 100]. Similarly, a 0-level distributor will cold open movies at random,

that is,

π0(qj , Xj) = 1/2. (3.8)

A 1-level moviegoer knows 0-level distributors cold open movies at random, and assumes all dis-

tributors behave in this manner. For each movie he calculates the expected quality given it has been
33That is, the maximum likelihood parameter for distributor’s decisions is χd = 0 (i.e., distributors act as if moviegoers

have no curse). If we only try to fit first weekend box office revenue, we have χm = 0.922. If we must use the same
value for both, the process will converge in the same way as QRE with χm = Ed(χm) = 0.

34This classification differs from some other version of the cognitive hierarchy model (Camerer et al., 2004) which
suggests k level thinkers optimizes against a distribution of 0,1,...k − 1 level thinkers.

35In many games, assuming that 0-level players choose randomly across possible strategies is a natural starting point.
However, the more general interpretation is that 0-level players are simple, or heuristic, rather than random. For example,
in “hide-and-seek” games a natural starting point is to choose a “focal” strategy (see Crawford and Iriberri (2007a)). In
our game, random choice by moviegoers would mean random attendance at movies. That specification of 0-level play
doesn’t work well because it generates far too much box office revenue. Another candidate for 0-level moviegoer play is
to assume a cold-opened movie has sample-mean quality q̄. For technical reasons, that does not work well either. It is
admittedly not ideal to have special ad hoc assumptions for different games. Eventually we hope there is some theory of
0-level play that maps the game structure and a concept of simplicity or heuristic behavior into 0-level specifications in a
parsimonious way.
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cold opened as

E1
m (q|Xj , 1) =

∑100
q=0 qP (q)π0 (q,Xj)∑100
q=0 P (q)π0 (q,Xj)

=

∑100
q=0 qP (q) 1

2∑100
q=0 P (q) 1

2

= q̄. (3.9)

A 1-level distibutor expects all moviegoers to behave like 0-level moviegoers; they will assign

quality ratings to cold-opened movies at random from the uniform U [0, 100] distribution. The

1-level distributor will therefore cold-open movie j with probability

π1(qj , Xj) = 1/

1 + exp

λd( 100∑
q=0

(1/101)R(Xj , q)−R(Xj , qj))

 . (3.10)

Proceeding inductively, for any strategic level k, the valuesEk−1
m (q|1, Xj) and πk−1(qj , Xj) are

computed from response to k-1 level type beliefs and actions. The k-level distributor and moviegoer

have beliefs and

πk(qj , Xj) = 1/ (1 + exp [λm(R(Xj , Ek−1(q|Xj , 1))−R(Xj , qj))]) (3.11)

and

Ek(q|Xj , 1) =

∑100
q=0 qP (q)πk−1 (q,Xj)∑100
q=0 P (q)πk−1 (q,Xj)

(3.12)

which leads to moviegoing probability

pk

(
Xj , E

k
m(qj |cj , Xj)

)
=

1

1 + e−λm(βXj+αEk
m(qj |cj ,Xj)−t̂+εj)

(3.13)

where every level-k distributor and moviegoer is playing a quantal response to the level-k-1 movie-

goer and distributor respectively.

The cognitive hierarchy model of Camerer et al. (2004), based on dozens of structurally dif-

ferent experimental games, suggests that the proportion of thinkers in the population is often well
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Table 3.6: Expected quality of When a Stranger Calls (q = 27) given it is cold opened by level-k
moviegoer and probability it is cold opened by level-k distributor in CH with QR model (λd =
7.085)

approximated by a one-parameter Poisson distribution with mean τ ,

P (x = n|τ) = τne−τ/n!, (3.14)

where τ is the average number of steps of strategic thinking (and also the variance).

As an example, Table 3.6 shows moviegoer-inferred quality and distributor probability of cold

opening for the movie When a Stranger Calls, for various levels of thinking and their proportions

within the population with λd = 2.755, (a figure estimated from the data, as estimated below) if the

distribution of levels is Poisson distributed.

To determine QRE parameters {λd, λm} and additional CH parameters {τd, τm}, we use an

iterative procedure for estimating values similar to the QRE procedure. The procedure is much

easier, however, because level-k player behavior is determined by level-k-1 behavior. The iteration

is a “do loop” for specific on λm, λd values, naturally truncated when the percentage of high level-k

players is very small (which depends on τ ). Looping through for various λm, λd makes it easy to

then grid-search over the λ values and find best-fitting values, values of both τ and λ.

Table 3.7 shows the results of the iterative process for the CH model with QR. The process

stopped after six iterations with a log likelihood value of −166.232, which is a significant im-

provement over the QRE model. The value for λd (7.085) is also much greater than for the QRE

(λ=1.345), which indicates less noise in the estimated decision process and suggests a better fit.

Note that the estimated value of τ̂∗m = 1.12 is lower but is in the ballpark36 of estimates from

36The objective function (sum of squared residuals) is rather flat in the vicinity of the best-fitting τm, so values from 2–
4 give comparable fits to τ̂∗m = 1.12. So an ex ante prediction based on τ = 1.5 from lab data would forecast reasonably
well in this field setting.
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Table 3.7: The iterative estimation process for the QRE Model with CH after 5 iterations
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Table 3.8: Comparison of the three models for moviegoer predictions with bootstrapped standard
errors (N = 100)

experimental games (around 1.5) and for the initial week of Swedish LUPI lotteries (2.98, Östling et

al., 2007) and managerial IT decisions (2.67, Goldfarb and Yang (2007)). The parameter estimates

lead to an average cold opening box office premium of 35.7% (see Table 3.8, which like the estimate

for the cursed model is much higher than the regression estimate.)

3.4.4 Comparing Distributor Estimation across Models

Table 3.10 provides standard error estimates from 100 random bootstraps of the data set for each

parameter and each model. These bootstrapped samples are then used to give standard error esti-

mates for comparative statistics between the three models and other benchmarks in Tables 3.8 and

3.9. Among other things, Table 3.10 indicates the cognitive hierarchy model with quantal response

fits distributor decisions (in terms of log likelihood) far better than any other model.

One other thing to note is that few of the cursed model bootstraps did not result with a best fitting

χd value of 0. This endpoint value explains that randomly sampling the dataset does not take away

distributors’ reluctance to cold open movies. However, random sampling may not greatly change

the best-fitting moviegoer’s curse parameter (χm). Standard errors indicate that the moviegoer’s

value is far more variable.

Table 3.8 compares best-fitting parameter values in sums of squared residuals (for moviegoer

decisions). The non-equilibrium cursed model best predicts the box office revenues of cold opened

movies in terms of deviations from actual data, and the cognitive hierarchy model is second best.

This is not surprising since both models predict a box office premium. Even a prediction that
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Table 3.9: Predictions of cold opening choices of distributors with bootstrapped standard errors
(N = 100)

Table 3.10: Predictions of cold opening choices of distributors with bootstrapped standard errors
(N = 100)
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moviegoers assume uniformly random quality (all 0-level thinkers) to cold opened movies fits the

data better than the QRE model which assumes correct expectations for cold opened quality.

For distributor decisions (Table 3.10) the cursed model and QRE models perform identically

since the best-fitting cursed parameter is zero, so the rational expectations part of the QRE ex-

plains behavior pretty well if we must assume the system is in equilibrium. All models are also

an improvement over the baseline case which predicts all movies to be cold-opened with the same

probability.

The CH model improves on the predictions of the other two models. The key to its relative

success is that the model estimates a low τ for moviegoers (close to experimental estimates of τ

around 1.5–2.5) but the distributor τd is much higher. These parameters express the intuition that

some moviegoers are easily fooled—they think cold openings are close to random—but distributors

do not think moviegoers are so easily fooled, which is why so few movies are cold-opened. The

CH model also predicts the most number of opening decisions correctly because its high τd predicts

very few movies will be cold opened but the higher λd predicts some movies will be cold opened

because of noise. The bootstrapped standard errors show these results are reasonably robust and do

not depend on only a few data points. Importantly, the bootstrapped standard error around the mean

bootstrapped estimate τm = 1.260 is .121.

3.5 Conclusion

In games in which information can be considered good or bad news, and may be strategically dis-

closed or withheld at no cost, the only equilibrium involves the information receiver believing all

withheld information conveys the worst possible signal, and the information sender choosing to

reveal all information (except the worst). However, these equilibria require many steps of iterated

strategic thinking.

Numerous laboratory experiments have shown in a variety of games that a small number of steps

of strategic thinking tends to explain data well, as parameterized by quantal response equilibrium

(QRE), cursed equilibrium, and cognitive hierarchy (CH) approaches. These models explain both

experimental results that are far from equilibrium and other results that are surprisingly close to

equilibrium, even in one-shot games. This paper is the first to apply all three parametrized models

to a naturally occurring field phenomenon, an example of “structural behavioral economics.”

We study a market in which information senders (movie distributors) are strategically withhold-
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ing information (the quality of their movie) from information receivers (moviegoers). We find evi-

dence that a Bayesian-Nash equilibrium has not been reached in our data since cold-opened movies

do not have the worst possible quality values (qj = 0) and there is a “box office premium” movies

that have been cold opened earn more than other pre-screened movies of similar characteristics.

This premium does not exist in foreign or video rental markets, where movies are released after the

initial US release (so reviews are widely available), which suggests that the premium is due to some

moviegoers failing to realize that no review is a bad signal about quality.

The QRE and cursed equilibrium models do not do a great job of explaining these facts. The

QRE model performs poorly because moviegoers should correctly anticipate that cold opened movies

are of low quality, which is inconsistent with the cold opening box office premium. The CH

model with a low τm to represent moviegoer naı̈veté and a high τd to represent distributor over-

sophistication can represent the mismatch of moviegoer perceptions and the reluctance (given movie-

goer perceptions) of distributors to cold open.

The mismatch of parameter values for moviegoers and distributors suggest that either movie-

goers should learn that cold opened movies are bad, or distributors should learn to cold open more

movies. It does appear that distributors are learning. Figure 3.1 shows cold opening decisions

by year. Near the end of this paper’s dataset (January 1, 2006), distributors began to cold open

movies with much higher frequency.37 The models in this paper would suggest distributors have

cold opened more movies as a best-response to moviegoer behavior.

One should wonder if consumers will eventually learn. In fact, experiments on lemons (e.g.

Lynch et al., 2001) suggest consumers will ultimately infer the quality low-quality goods (when

information is withheld). However, primary moviegoers are of age 14–18. By the time these movie-

goers would realize cold openings are of lower quality than the average movie, they no longer are

primary moviegoers, and another generation is already entering the prime moviegoing years. In this

way, the model can be thought of as having overlapping generations of consumers.

There are hints of a difference between consumer and producer strategies in previous studies.

With the benefit of this study’s results, the somewhat contrary results of Mathios (2000) and Jin and

Leslie (2003) make sense. Mathios found that mandatory disclosure was necessary for consumers

to buy low-fat salad dressing (i.e., with voluntary disclosure they did not infer what the absence of a

“low-fat” label meant). Jin and Leslie found suggestive evidence that voluntary disclosure of health
37Through 2000–2005 distributors cold opened around 5–8% of widely released movies. In 2006 and 2007 distributors

cold opened 19% (30/160) and 23% (30/131).
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ratings improved health quality nearly as much as mandatory disclosure, but the data on revenue

for non-disclosing restaurants was inconclusive. Given that one choice is a consumer decision

(buying salad dressing) and one is a producer decision (improving health quality in a restaurant),

we may have more evidence of a different level of iterative thinking by diverse consumers and

expert producers. Of course, this is only speculation and more investigation is needed before any

conclusions can be drawn from these types of investigations. As noted earlier, there are many

markets with asymmetric information in which the failure to reveal information that is often revealed

should be informative—if the receiver makes the proper strategic inference. Our approach and some

of its technical details could be applied to these markets and to other markets with this property.
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Chapter 4

Endogenous Time Preference and
Personal Rules

4.1 Introduction

Although Adam Smith (1759/1892) introduced the concept of “self-command” into political econ-

omy nearly 250 years ago, economists did not treat internal conflict systematically until Strotz

(1955–1956) analyzed Odysseus’s Sirenic dilemma. All economists who recognized intrapersonal

conflict after Strotz, agreed with Homer’s intuition on two important points: (i) internal conflict is

between a side representing present drives and another representing long-term interests, (ii) if given

the opportunity, an individual may choose to limit his future actions, like Odysseus tying himself to

the mast of his ship, to prevent future impulses from hampering long-term goals1 (c.f., Thaler and

Shefrin, 1981; Laibson, 1997; Loewenstein and O’Donoghue, 2004; Gul and Pesendorfer, 2001;

Fudenberg and Levine, 2006).

Accepting the idea of internal conflict, economists are left with another problem: given no

external commitment device and a repeated succession of identical choices between myopic and

responsible alternatives, an individual may take the tempting alternative in each period, even if, in

any period, he would choose to take all responsible alternatives over all tempting alternatives given

the aggregate choice, forgoing that period’s temptation.2 For example, suppose an individual has

a daily vice (e.g., spend an additional 0.1% of yearly income, consume an additional serving of a

junk food, smoke an extra cigarette) and faces immediate temptation to do so everyday, and over

the course of ten years, the daily vice leads to ruin (e.g. debt, diabetes/heart conditions, respiratory
1See chapter 2 for an example of experimental results consistent with intrapersonal conflict.
2Psychological literature uses a non-economic model, called “melioration,” to model the choices between two alter-

natives under many short-term decisions. See Herrnstein and Prelec (1991) for a survey.
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problems, respectively). However, if each day he prefers the vice, and his choice has no impact on

future behavior, then each day he will choose the vice regardless of his feelings about the aggregate

choice.3 But if the responsible aggregate choice is preferred on each day while the daily choice is

taken, then a pareto-efficient (to each period’s self) outcome is not being realized in intrapersonal

conflict.

“Personal rules” may remedy this predicament. Ainslie (1992) suggested that personal rules

may serve as an internal commitment device to enforce an aggregate decision. Today’s self chooses

the responsible alternative because if he does not, tomorrow’s self (who was going to also choose

the responsible alternative) will retaliate and choose the tempting alternative. Much the way agents

playing the repeated prisoner’s dilemna may make rules (to cooperate for a limited period of time),

Ainslie (1992) believed a present self would make an agreement with a future self. This has lead

many psychologists to model the problem of self-control with the repeated prisoner’s dilemna. (e.g.,

Yi and Rachlin, 2004)

While experimental evidence agrees with the end result—Kirby and Guastello (2001) showed

individuals are less likely to take the myopic reward when choices are repeated compared to a

single decision—even Ainslie admitted the repeated prisoner’s dilemna is an imperfect comparison

for making a multitude of repeated decisions under temptation. In intrapersonal conflict, if any

future self (t + k) defects and chooses the tempting alternative, the present self cannot retaliate

(t), unlike in the repeated prisoner’s dilemma. Thus, free from retaliation, future selves will likely

choose temptation regardless of previous history. Knowing that his actions have no effect on future

selves, the present self chooses temptation as well. Thus, the grim-trigger rule developed by Ainslie

is not compatible with backward induction.4

This chapter models personal rules in a manner compatible with game theory. By making one

more assumption, that committing (forgoing) an action makes it more (less) tempting in the future,

this chapter shows that the “precedent effect” of Kirby and Guastello (2001) can be obtained with

backward induction. In this manner personal rules are sequentially rational (see Kreps and Wilson,

1982) and the subgame perfect equilibrium to an extensive-form game.

The findings and theories of Baumeister and colleagues (Baumeister et al., 1994; Baumeister

and Vohs, 2003; Muraven et al., 1999; Muraven and Baumeister, 2000) provide the main evidence
3In a way, the situation is similar to each period’s self failing to contribute to a public good.
4The results of the repeated prisoner’s dilemna are not compatible with backward induction either. In that game two

players may make an agreement to cooperate with a finite end, but often they break that agreement shortly before the last
period. (Selten and Stoecker, 1986; Camerer and Weigelt, 1988)
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that temptation or immediate utility is endogenous to personal choice. Their findings suggest that

willpower can be built up with frequent exercise and then rest, like a muscle. As it relates to this

chapter, an individual who uses willpower to avoid a tempting alternative will be stronger, after

rest, to all temptations (and thus that specific alternative). However, since this chapter involves

temptation from only one choice, one could think of this as an assumption of habit formation5

where the habit affects immediacy preference. However one thinks about the assumption,6 the

simple notion that people can develop “good” and “bad” habits and find them difficult to break is

quite intuitive. This intuition and the belief that the habit acts on immediate impulses is roughly all

it takes to accept the main assumption of this chapter.

Like other works involving personal rules (e.g., Ainslie, 1992; Benabou and Tirole, 2004) this

chapter concerns a binary choice between two alternatives: one that is tempting and yields an im-

mediate benefit, and one that is better long-term but yields no immediate benefit. Those two models

differed on the description of personal rule, Ainslie believed rules were “perscriptive,” they could

effect agent’s behavior, while Benabou and Tirole only believed they were “descriptive” and did not

affect behavior.

The model shows as a result of backward induction, that at certain levels of immediacy-preference

(or self-control) agents will forgo the myopic alternative if the choice is repeated, but will consume

it if the choice will only be made once, a result that is consistent with the hypthesis of Ainslie

(1992) and experimental evidence (Kirby and Guastello, 2001). However, an agent may defect in

any given period, exhibiting the “procrastination effect” knowing that in the future he will exercise

self-control. One remedy for this procrastination is for an agent to institute a personal rule, if we

think of beliefs about future actions as personal rules, then there always exists a consistent personal

rule that can eliminate this procrastination effect. If we restrict are rules to the descriptive type and

thus only subgame perfect beliefs, we only find that agents may persevere under high costs. Re-

gardless, when we expand our model to an infinite horizon we find that pure-strategy decision may

not exist and no personal rule can be consistent.
5Economists have a long history with habit formation (see Duesenberry, 1949; Becker and Murphy, 1988). Of course,

these models do not involve dynamic inconsistency.
6There are other psychological explanations for this habit component: it is possible that by avoiding a choice an indi-

vidual makes himself less susceptible to cues concerning that choice and no longer feels the same temptation. Conversely
giving into those cues make the choice stronger (see Laibson, 2001, for a cue-based model of addiction). It also could
be by repeatedly avoiding (or succumbing) to a temptation an individual makes the action of avoiding (or succumbing)
more of an automated process (see Schneider and Shiffrin, 1977; Shiffrin and Schneider, 1977, for an example of frequent
practice making a difficult action automatic). Any of these three reasons would be enough to justify the main assumption
of the chapter.
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This chapter contributes to the literature on time preference, willpower, and personal rules by

unifying all three. It incorporates psychological ideas from Ainslie (1992) and Baumeister et al.

(1994), and the respective economic models of Benabou and Tirole (2004) and Ozdenoren et al.

(2006). While similar, both sides have rarely if ever been united in an academic work. The chapter

also provides an alternative to self signaling—endogenous immediacy preferece—to explain the

reasons behind personal rules and precedent effects.

The chapter proceeds as follows: Section 4.2 presents an example, the model, and finite period

solutions for both certain and stochastic cases. Section 4.3 provides an extensive form characteri-

zation of the model, and proves the existence of a solution for all periods. Section 4.4 develops a

characterization for personal rules, and shows their effectiveness. Section 4.5 studies the problem

in the infinite case. Section 4.6 and 4.7 provide testable implications of the model and conclude,

respectively.

4.1.1 Literature Review

To model intrapersonal conflict, this chapter assumes that individuals have inconsistent preferences

over time. Economic models have represented this dynamic discord literally, with time-discounting

(Ainslie, 1975, 1992; Laibson, 1997), or metaphorically, with long-term and short-term selves

(Thaler and Shefrin, 1981; Fudenberg and Levine, 2006) and multiple preferences (Gul and Pe-

sendorfer, 2001). This chapter will use the quasi-hyperbolic model (Laibson, 1997) to represent

an agent’s time preferences in this chapter, because it is widely used, allows making a compari-

son to Benabou and Tirole (2004), and has parameters that have been estimated in experiments.

That model features two discount terms, β and δ, to represent dynamic inconsistency. Agents dis-

count all periods but the present once with the factor β and again with an factor, δ, which increases

exponentially over future periods. The model expands on Laibson’s framework by allowing β to

dynamically change each period as individuals make decisions.

This is not the first model to suggest that time preference dynamically changes with agents’

decisions. Becker and Mulligan (1997) created a model where time preference could be built up by

increasing wealth. But that model only featured an exponential discount term—it did not represent

intrapersonal conflict. Because nearly all intrapersonal conflicts manifest themselves in time pref-

erence, we justify the dynamic β term, an immediate preference, by using it as a representation of

willpower. The idea of endogenous choice is also not new to economics, and is most commonly

seen in papers on habit formation. (e.g., Duesenberry, 1949; Becker and Murphy, 1988).
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Most of the considerable research done on willpower has treated it as a resource that behaves

much like a muscle. Experiments showed that willpower is like a muscle because it can (i) be

worn down with constant use over a period of time, (ii) be recharged after rest, and (iii) be built

up after periodic use and rest. Baumeister and Vohs (2003) surveyed recent work on willpower

and concluded that willpower can be depleted when individuals perform several tasks requiring

willpower on the same day. They also found that individuals will ration willpower knowing that

it will be depleted when they are presented with consecutive tasks that require willpower. Other

studies suggest repeated use of willpower over a series of days will increase its capacity (Muraven

et al., 1999; Muraven and Baumeister, 2000). That is, if an individual repeatedly performs a task

requiring willpower, and his willpower is given sufficient time to recharge, he will become better at

his conservation of willpower over time. Ozdenoren et al. (2006) provided an economic model of

these results, a model which we use as a basis for changes in β. Unlike our model, their model had

agents who made decisions in continuous time and did not exhibit dynamic inconsistencies. Perhaps

because its agents did have dynamic conflict, their model did not feature any personal rules.

Ainslie (1975), drawing upon the ideas of Becker (1960) and Schelling (1960), first suggested

that personal rules could solve dynamic conflicts. The first papers dedicated to personal rules

(Schelling, 1985; Prelec and Herrnstein, 1991) did not provide a formal or single explanation of

why personal rules were effective. Later, Ainslie (1992) argued that personal rules were an agree-

ment that an individual would make with his future selves. Normally, the agreement would be to

forsake present rewards in favor of long-term goals. If an individual violated the agreement, he

would lose all benefits from it, because his future selves would not follow it again. Unfortunately,

it is not always the case that a future self will credibly follow or break any rule. To make a personal

rule “self-sustaining,” Benabou and Tirole (2004) defined personal rules as solutions to a perfect

Bayesian equilibrium; if an agent defects, he will not be maximizing utility. Expanding on Bodner

and Prelec’s (2003) concept of self-signaling, Benabou and Tirole argued that agents, who either

have high or low willpower, signal information about their type to their future selves who have im-

perfect memory. Personal rules are a description of what each type does in states with high and low

costs of perseverance.

This chapter uses the same binary decision of Benabou and Tirole’s model. And both papers

view β as a representation of willpower, and feature rules that describe an action for a given type

and state. The similarities end there. This chapter features dynamic immediacy preference, while

their paper assumes that an individual’s willpower type is constant. In this chapter, low willpower
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types persevere against immediate impulses to become high willpower types in the next period. In

their paper, low willpower types persevere against immediate impulses to deceive their future selves

into believing they have high willpower. Additionally, this chapter models the type of “prescriptive”

rules that Ainslie (1975, 1992) suggested in his writings.

4.2 The Model

Each morning an agent chooses what to eat for breakfast. He can choose the healthy option (e.g., a

grapefruit) or the sweet, tempting option (e.g., a donut). The donut and grapefruit both give the agent

utility (d and g respectively), but they are of different types.7 The sweetness of the unhealthy donut

gives the agent immediate utility, but because it is unhealthier it has less total utility (g > d). The

agent has quasi-hyperbolic preferences (Laibson, 1997)—he discounts the future with two seperate

terms, β and δ. He discounts all non-immediate benefits by a factor 0 < β < 1 and discounts

all future periods by a standard exponential term δ < 0. That is, an agent has a traditional utility

function,

u(a) =


g if a = grapefruit (G),

d if a = donut (D),
(4.1)

and present-preferring utility function,

v(a, β) =


g if a = grapefruit (G),

d
β if a = donut (D),

(4.2)

where it is assumed d, g > 0 (food is better than no food). Therefore the agent will chose to eat the

donut if β < d/g and choose the grapefruit if β ≥ d/g. However, from the point of view of the past

periods, the agent would always prefer to eat the grapefruit.8 With static β, agents can be divided

into two groups, those with high willpower (βi ≥ d/g) who will always choose the grapefruit, and

those with low willpower (βi < d/g) who will always choose the donut.9

The situation in this chapter is more complicated. When facing repeated decisions, the choice
7Grapefruit and donut are just examples. If an agent were given only two choices for breakfast, he might make

decisions for the sake of variety. In a more generalized form this is a decision between a healthy and tempting, but
unhealthy breakfast.

8In other words, in any period our agent would seek external commitment (if available) to prevent himself from eating
donuts in the future. See Section A.3 for an in-depth description of the quasi-hyperbolic model.

9This is the characterization of Benabou and Tirole (2004).
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an agent makes in the present period will alter their future ability to make that decision. If the agent

chooses to eat the donut in the current period, it becomes harder for him to resist impulses to eat the

donut in the future. Conversely, avoiding the donut and eating the grapefruit in the present makes

it easier to avoid the donut and eat the grapefruit in the future. This change will be modeled as

an increase or decrease in β, the term that represents immediate preference.10 This interpretation

draws on psychological literature which suggests that willpower, usually defined as control over

impulses, can be built up like muscle through repeated use11 (Baumeister and Vohs, 2003; Muraven

et al., 1999; Muraven and Baumeister, 2000).

Therefore, in this example, the agent has a more complicated decision to make with multiple

periods and a dynamically changing β. He could choose to eat the donut, but that may make his

future self more likely to eat the donut,12 something he prefers not to have happen in the future. The

model of the chapter will capture this decision.

4.2.1 The Finite Horizon Case

To formalize our previous example, consider the choice of eating the donut to be choosing D, and

eating the grapefruit to be choosing G. That decision will be made over T ∈ N, T ≥ 1 periods.

Equation 4.1 gives the utility function in the last period (t = T ) from the point of view of previous

periods.

In period t the agent has βt, a variable which represents his immediate preference. Because an

agent has quasi-hyperbolic preferences, he will discount future utility by a standard discount factor

δ and the immediate preference factor. In period t he will discount the utility of period t+k by βtδk.

As the example indicates, only d is experienced by the agent immediately, so all utility other than

the experience of the donut (d) will be discounted once by β.13 The function v : A × (0, 1) → R

represents the agent’s preferences under this preference. Equation 4.2 shows this function in the last

period (t = T ).

Since no external commitment devices are available to the agent in period T − 1, the present-
10This interpretation differs from a traditional habit formation model (Becker and Murphy, 1988), as the parameters in

the utility function (i.e., d and g do not change).
11Remember, because we are concerned only with the temptation increasing or decreasing for one activity, it is not

necessarily the case that willpower needs to be reduced or increased for this assumption to hold. It could be instead that
the action becomes endogenously more (or less) tempting with consumption (avoidance) because of cue-based (Laibson,
2001) or automatic processes (Schneider and Shiffrin, 1977; Shiffrin and Schneider, 1977).

12It is not always the case that eating the donut in period t makes one eat cake in t + 1. See Example 4.2 for the
“procrastination effect.”

13Equivalently, we often inflate d by β.
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preferring utility function, v(a, β) given in equation 4.2 will determine the period’s action. That

is, with only one period, the agent will choose the donut if βT < d
g and the grapefruit if βT ≥ d

g

(we are giving ties in preference to the grapefruit). We will define one more important term, β̂1, the

threshold for choosing grapefruit over donut in the last period

β̂1 ≡
d

g
. (4.3)

The new addition to this model is that immediate preference and its numerical representation,

βt,will change with each decision.14 To put it another way, the past matters, or the choices are “path

dependent.” The preference will increase in the next period when an agent chooses the tempting al-

ternative (i.e., donut). It will decrease when one chooses the wholesome alternative (i.e., grapefruit).

The value will represent the current “state.” If βt+1 represents the next period’s state given the initial

state, βt, and current action at then

βt+1(βt, at) =


Γ(βt) if at = G

∆(βt) if at = D,
(4.4)

where ∆(β) < β < Γ(β).

For notational ease, we will denote z ∈ Z iterations of ∆ on β as ∆z(β). The function Γ

will follow the identical convention. For example, Γ6(β) ≡ Γ(Γ(Γ(Γ(Γ(Γ(β)))))), and ∆−2 =

∆−1(∆−1(β)). We will put further restrictions on ∆(β) and Γ(β).

Assumption 4.1 (convergence). For all β ∈
(
β, β

)
, the transformation functions will converge,

limn→∞∆n(β) = β and limn→∞∆n(β) = β.

Assumption 4.2 (monotonicity). Functions Γ and ∆ are monotonic. Specifically, ∀β′, β′′, β′ > β′′

implies Γ(β′) > Γ(β′′) and ∆(β′) > ∆(β′′). That is, Γ and ∆ are increasing.

Assumption 4.1 ensures that βt ∈ (β, β) for any transformations undertaken in the model. As-

sumption 4.2 ensures that states do not jump one another—if an individual has a higher immediacy

preference than another to begin a period, and they both take the same action, then that individual

will still have the higher immediacy preference.

To solve this model when T ≥ 2, an important distinction needs to be made. An agent who

has quasi-hyperbolic preferences may be either be naı̈ve or sophisticated. A “naı̈ve” agent does
14Note that as immediacy preference increases, β decreases, and vice versa.
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not see his future shift in preferences and believes he will make decisions in the future with his

present period preferences. A “sophisticated” agent foresees his future shift in preferences and

acts accordingly. Often the solutions between the naı̈ve and sophisticated agents are very different.

(O’Donoghue and Rabin, 1999) Both models will be considered in this chapter, but as lemma 4.1

will show, the naı̈ve model has a very simple solution.

It is helpful to define the concept of solution to this dynamic programming problem in the

“naı̈ve” and “sophisticated” cases. These solutions can be thought as either dynamic optimization

(see Section A.3 and/or Harris and Laibson, 2001) for T periods with inconsistent preferences or a

subgame perfect equilibrium to an extensive game with T players and periods. Both will yield the

same solution (see Section 4.3 for extensive form representations); the difference is in terminology.

We will use terms consistent with dynamic programming, with an action function a∗t and value

function V ∗t . Alternatively, a∗t could be thought of as player t’s best response to t+ 1, . . . , T .

In the t = T case we have already shown that for either a naı̈ve or sophisticated agent, we will

have

a∗T (β) =


G if β ≥ β̂1

D if β < β̂1

(4.5)

and value functions V ∗T can be defined.

However at time T − 1 a naı̈ve hyperbolic does not believe he will have hyperbolic preferences

in the next period. Since g > d by assumption, he believes in the future he will always take the

healthy option. His future value function can be thought of as

V̆ ∗T = g. (4.6)

We can classify the naı̈ve hyperbolics’ decisions for all t.

Lemma 4.1 (naı̈ve solution). For all T, for every t ≤ T . The naı̈ve hyperbolic will choose the

healthy option if β ≥ β̂t and will choose temptation if β < β̂t. If δ < 1, this will occur at T = ∞

as well.

Proof. At T the naive hyperbolic prefers D if d/β ≥ g → β ≥ d
g = β̂1. Then at T − 1, the naı̈ve

hyperbolic believes V̆T = g. Since at any β, VT (Γ(β)) = VT (∆(β)), we have ăT−1(β) = G if

β ≥ β̂1, and ăT−1(β) = D if β < β̂1.

Suppose now, for some 1 ≤ n < T , V̆T−n =
∑T

i=T−n δ
i−T+ng and ăT−n(β) = G if β ≥ β̂1,
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and ăT−n(β) = D if β < β̂1. At T −n−1, the naı̈ve agent believes a β term will not influence him

at T − n, since g > d, this is a belief that at T − n he will always choose G. Then V̆T−n−1(β) =

g + δV̆T−n(β) =
∑T

i=T−n−1 δ
i−T+n+1g, ∀β. Since ∀β, VT−n(Γ(β)) = VT−n(∆(β)), we have

ăT−n−1(β) = G if β ≥ β̂1 and ăT−n−1(β) = D if β < β̂1. This completes the inductive proof.

It follows that as n < T , n → ∞, VT−n = g
1−δ , ∀β. Then the condition VT−n(Γ(β)) =

VT−n(∆(β)) still holds. Thus n→∞, ăT−n(β) = G if β ≥ β̂1 and ăT−n(β) = D if β < β̂1.

The rest of the chapter will be concerned with the sophisticated hyperbolics. Their solution is

much more interesting. We begin by defining the sophisticated solution for any t periods.

Definition 4.1 (sophisticated solution). For T periods {a∗t , V ∗t } is a sequence of actions and value

functions (a∗t , V
∗
t ), . . . , (a∗T , V

∗
T ) where a∗t : (β, β) → {G,D} and V ∗t : (β, β) → R. For a∗T (βT )

defined in equation 4.5, V ∗T = u(a∗T (βT )), and ∀t < T,

a∗t (β) =


G if v(G, β) + δV ∗t+1(Γ(β)) ≥ v(D,β) + δV ∗t+1(∆(β))

D if v(G, β) + δV ∗t+1(Γ(β)) < v(D,βt) + δV ∗t+1(∆(β))
(4.7)

V ∗t (β) =


u(G) + δV ∗t+1(Γ(β)) if a∗t (β) = G

u(D) + δV ∗t+1(∆(β)) if a∗t (β) = D.

(4.8)

The logic of backward induction is involved in this definition. After (a∗T , V
∗
T ) is defined, we

cannot define (a∗t , V
∗
t ) unless we know (a∗t+1, V

∗
t+1). The solution to these problems, like the cases

without quasi-hyperbolic preferences, is solved by starting at the last period first and working back

to the current period. In the sophisticated case, it follows from definition 4.1 and equation 4.5 that

the solution for the T th period is

V ∗T (β) =


g if β ≥ β̂1,

d if β < β̂1.

(4.9)

Then for all 1 ≤ t ≤ T − 1, we have a solution if and only if ∀β ∈ (β, β)

a∗t (β) =


G if β ≥ d

/(
g + δ[V ∗t+1(Γ(β))− V ∗t+1(∆(β))]

)
,

D if β < d
/(
g + δ[V ∗t+1(Γ(β))− V ∗t+1(∆(β))]

)
.

(4.10)
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To explain the solutions in the finite period case, we need to define a few more terms. The term

β̂T−t+1 is the lowest value of β such that an agent would prefer to choose the healthy alternative for

all remaining periods (T − t+ 1) rather than choose the unhealthy alternative for all the remaining

periods, and the decision is feasible to do so. Alternatively, β < β̂T−t+1 implies the tempting

alternative is preferred, because either β is so low the immediate temptation outweighs all future

benefits, or choosing the wholesome alternative will still lead to temptation chosen in the next period

(because Γ(β) < β̂T−t).

Definition 4.2 (threshold β). For all s ∈ N, s > 1, let

β̂s = max

{
d

g +
∑s−1

i=1 δ
i(g − d)

,Γ−1
(
β̂s−1

)}
(4.11)

and

β̂∞ = lim
s→∞

=
d

g + δ
1−δ (g − d)

. (4.12)

It follows that ∀s > 1, β̂s ≤ d
g = β̂1 < β. It turns out these threshold values (β̂1, β̂T−t+1) will

be essential in describing any t < T period solution. Proposition 4.1 shows that for any period t the

actions and agent takes in with state β are clearly defined above and below these values.

Lemma 4.2. For all T , t, 2 ≤ t < T .

(i) If the solution for the value function for t is V ∗t (β) =
∑T

i=t δ
i−td, ∀β < β̂T−t+1, then a∗t−1(β) =

D, ∀β < β̂T−t+2.

(ii) If the solution for the value function for t is V ∗t (β) =
∑T

i=t δ
i−tg, ∀β ≥ β̂1, then a∗t−1(β) = G,

∀β ≥ β̂1.

Proof. For any 2 ≤ t < T , either β̂T−t+2 = Γ−1(β̂T−t+1) or β̂T−t+2 = d
g+

PT−t+1
i=1 δi(g−d)

.

Suppose β̂T−t+2 = Γ−1(β̂T−t+1), then ∀β, β < β̂T−t+2, ∆(β) < Γ(β) < Γ(β̂T−t+2) ≤

β̂T−t+1. So V ∗t (∆(β)) =
∑T

i=t δ
i−td = V ∗t (Γ(β)), and a∗t−1(β) = G. If instead β̂T−t+2 =

d
g+

PT−t+1
i=1 δi(g−d)

= d
g+

PT
i=t−1 δ

i−t+1(g−d)
, then β < β̂T−t+2 implies d

β +
∑T

i=t−1 δ
id > g +∑T

i=t−1 δ
ig → d

β + δVt(∆(β)) > g + δVt(Γ(β)), thus a∗t−1(β) = D.

(ii) If β ≥ β̂1, then v(G, β) > v(D,β). Since V ∗t (Γ(β)) ≥ V ∗t (∆(β)), by equation 4.7 we

must have a∗t−1(β) = G.

Proposition 4.1. For all t, if β ≥ β̂1 then a∗t (β) = G. If β < β̂T−t+1, then a∗t (β) = D.
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Proof. At T − 1, equation 4.9 and lemma 4.2 shows us that a∗T−1(β) = G, ∀β ≥ β̂1, and

a∗T−1(β) = D, ∀β < β̂1. It follows that V ∗T−1(β) = g + δg, ∀β ≥ β̂1 and V ∗(β)T−1 =

d + δd, ∀β < β̂1. Suppose for some n, V ∗T−n+1(β) =
∑T

i=T−n+1 δ
i−T+n−1d, ∀β < β̂T−t+1

and V ∗T−n+1(β) =
∑T

i=T−n+1 δ
i−T+n−1g, ∀β > β̂1, and a∗T−n+1(β) = D, ∀β < β̂T−t+1

and a∗T−n+1(β) = G, ∀β > β̂1. Then V ∗T−n(β) =
∑T

i=T−n+1 δ
i−T+n−1d, ∀β < β̂T−t+1 and

V ∗T−n(β) =
∑T

i=T−n+1 δ
i−T+n−1g, ∀β > β̂1. It follows from lemma 4.2 that a∗T−n(β) = D,

∀β < β̂T−t+1 and a∗T−n(β) = G, ∀β > β̂1.

Example 4.1 shows how over multiple periods, for states β̂ < β̂1 we still can have the agent

choose the healthy alternative. The future reward for developing a positive habit and promise of G

in the future incentivizes the non-myopic choice.

Example 4.1 (precedent effect). Suppose T ≥ 2. The t = 2 solutions are given by equations 4.5

and 4.9. Then for t = T − 1, if β̂2 > β we have

a∗T−1(β) =


G if β ≥ β̂2

D if β < β̂2

(4.13)

V ∗T−1(β) =


g + δg if β ≥ β̂2

d+ δd if β < β̂2

(4.14)

if β̂2 < β, a∗T−1(β) = G and V ∗T−1(β) = g + δg.

Proof. Consider β̂2 ≥ β. Then proposition 4.1 defines a∗T−1(β) on (β, β̂2)∪[β̂1, β). If β ∈ (β̂2, β̂1),

Γ(β) > Γ(β̂2) > β̂1 and ∆(β) < β̂1, then VT (Γ(β)) = g > d = VT (∆(β)). But β > β̂2 implies
d
β + δVT (∆(β)) < g + δVT (Γ(β)), so we must have a∗T−1(β) = G. The value function, V ∗T−1, is

defined from this process.

If β̂2 < β, proposition 4.1 defines a∗T−1(β) on [β̂1, β). For β̂1 > β > β > β̂2, a similar

argument to above shows a∗T−1(β) = G. The value function, V ∗T−1, is defined from this process.

In experiments, Kirby and Guastello (2001) were able to show that individuals were more likely

to move away from immediacy preference (choose the non immediate, but greater quantity award)

more often in instances when they were told the identical choice was going to be repeated in the

future. They called this observation the “precedent effect.” Our model is consistent with this obser-

vation. Example 4.1 at shows this may happen even if the choice is going to be repeated only one
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more time. Notice that β̂2 < β̂1, so agents at state levels β̂2 < β < β̂1 would choose the healthy

alternative if their choice was going to be made once more, but would choose the tempting alterna-

tive in a single period. In future periods, the precedent effect will be mitigated by a “procrastination

effect.”

Example 4.2 (procrastination effect). Suppose T ≥ 3, and we have ∆(β̂1) > β̂2. The t = T − 1

solutions are given by equations 4.13 and 4.14. Then for t = T − 2, if β̂3 > β we have

a∗T−2(β) =



G if β ∈ [β̂1, β)

D if β ∈
[
∆−1(β̂2), β̂1

)
G if β ∈

[
β̂3,∆−1(β̂2)

)
D if β ∈ (β, β̂3).

(4.15)

Proof. Proposition 4.1 defines a∗T−1(β) on (β, β̂2) ∪ [β̂1, β). For β ∈ (∆−1(β̂2), β̂1) we know

that V ∗T−1(Γ(β)) = g + δg = V ∗T−1(∆(β)). Since β < β̂1 we have a∗T−2(β) = D. For β ∈

(β̂3,∆−1(β̂2)), ∆(β) < β̂2, so VT−1(∆(β)) = d+ δd, and Γ(β) > Γ(β̂3) > β̂2, so VT−1(Γ(β)) =

g + δg. Since β > β̂3, we have a∗T−2(β) = G. The value functions V ∗T−2 are determined from

a∗T−2.

So even though the agent will ultimately choose G in later periods, currently he chooses D on

the interval
[
∆−1(β̂1), β̂1

)
, exhibiting the procrastination effect. The effect is rather intutive: there

is a long tradition of self-indulgence before periods of restraint, whether as a bachelor party, New

Year’s Eve, or Mardi Gras.

4.2.2 Stochastic Utility and Descriptive Rules

At this point, for the sake of consistency with Benabou and Tirole (2004) we will expand the model

further, to include stochastic costs. Each period an agent encounters a high- or low-quality grapefruit

gt ∈ {gL, gH} where gt = gH with probability π, and gt = gL with probability 1 − π. Ignoring

temptation, the low-quality grapefruits will be worse to eat than the donuts, but the high-quality

grapefruits will still be better, gL < d < gH . This modification changes the solutions in the cases of

1 and 2 total periods. With only one period, agents will always choose the donut rather than endure

bad grapefruit. With two periods and certain restrictions, agents may still choose the bad grapefruit.
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We will rewrite utility functions, defined in equations 4.1 and 4.2 as

u(a, g) =


g if a = G

d if a = D.

(4.16)

v(a, g, β) =


g if a = G

d/β if a = D.

(4.17)

An agent who is a sophisticated quasi-hyperbolic discounter will have a pure-strategy solution to

his problem defined below.

Definition 4.3. For T periods, (a, V ) is a stochastic solution to the sophisticated model with finite

periods if ∀t, 1 ≤ t ≤ T , we have at : (β, β)× {gh, gl} → {G,D} and Vt : (β, β)× {gh, gl} → R

s.t.

a∗T (β, g) =


G if v(G, β, g) ≥ v(D,β, g)

D if v(G, β, g) < v(D,β, g)
(4.18)

and

EV ∗T (β) = πu(a∗T (β, gH), gH) + (1− π)u(a∗T (β, gL), gL) (4.19)

and ∀1 ≤ t < T

a∗t (β, g) =


G if v(G, β, g) + δEV ∗t+1(Γ(β)) ≥ v(D,β, g) + δEV ∗t+1(∆(β))

D if v(G, β, g) + δEV ∗t+1(Γ(β)) < v(D,β, g) + δEV ∗t+1(∆(β))
(4.20)

EV ∗t (β) = πV ∗t (β, gH) + (1− π)V ∗t (β, gL) (4.21)

V ∗t (β, g) =


u(G, g) + δEV ∗t+1(Γ(β)) if at(β, g) = G

u(D, g) + δEV ∗t+1(∆(β)) if at(β, g) = D.

(4.22)

Example 4.3. If T = 2 we can define solutions as before with thresholds. Let β̂HL = d
gH

. And let

β̂L2 = max
{

d

gL + δπ(gH − d)
,Γ−1(β̂H1 )

}
(4.23)

β̂H2 = max
{

d

gH + δπ(gH − d)
,Γ−1(β̂H1 )

}
. (4.24)
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Then if β̂L2 ≤ β, and ∆(β) > β̂H1 > ∆(β̂L2 ), Figure 4.1, R0 represents the solution to t = T − 1

where β1 ∈
[
β, β̂H2

)
, β2 ∈

[
β̂H2 , β̂

L
2

)
, and β3 ∈

[
β̂H2 ,∆

−1
(
β̂H1

)]
β4 ∈

(
∆−1

(
β̂H1

)
, β
]
. If

instead, β̂L2 ≤ β, and ∆(β) < β̂L2 , define β′3 ∈
[
β̂L2 , β

)
, then R1 represents the solution to

t = T − 1. See Supplemental Section C.1 for more detail.

Example 4.3 reveals a solution that varies by type and state and provides us with an example of

a “descriptive” rule. We refer to this decision as a descriptive rule, because no agent has altered his

state or perceptions because of the rule, rather he is following a solution given his type. An observer

might describe his actions as a rule, but whether he describes what he is doing as rule does not affect

the outcome. Notice that Benabou and Tirole (2004) have a similar definition of a personal rule.

Definition 4.4 (Benabou and Tirole). A sustainable behavioral rule is a perfect Bayesian equilibrium

of the dynamic game between an individual’s incarnations (possible types).

In Benabou and Tirole’s model, two types with fixed self-control reached a perfect Bayesian

equilibrium. The types that myopically preferred to “persevere” (G) under low costs (equivalent to

β ≥ β̂H1 ) were called high types. The types that myopically preferred to give up under low costs

were called low types. The solution described in example 4.3 contains four types, two low and two

high, by that definition. We will define two low types β1 ∈
[
β, β̂H2

)
, β2 ∈

[
β̂H2 , β̂

L
2

)
, and two high

types β3 ∈
[
β̂H2 ,∆

−1
(
β̂L1

)]
, β4 ∈

(
∆−1

(
β̂H1

)
, β
)

. Under different conditions in 4.3 we have

only three types, two low and one high, as before β1, β2, and additionally β′3 ∈
[
β̂L2 , β

)
. The types

in this model do not interact; the actions of one type do not influence the other. The solution is a

Bayesian optimal and we can interpret it as a personal rule.

Following the language of Benabou and Tirole, rule R0 for β3 and β′3 would be referred to as a

“bright line” rule, because the type perseveres against both low and high quality; that type’s rule is

always to eat the grapefruit regardless of state. Those authors suggested that the types persevered to

avoid signaling to themselves that they had little willpower. In this model, they persevered to avoid

having low willpower. Rule R0 for β2 and β4 and R1 for β2 resemble “flexible” rules because the

types have flexibility under which state to eat the grapefruit.

4.3 An Extensive-Form Representation

Section 4.2.1 concerned viewing the model as a dynamic optimization problem with βt as a state

variable and dynamically inconsistent preferences. Harris and Laibson (2001) have shown that such
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Figure 4.1: Benabou and Tirole style descriptive rules from 4.3. Types β3 under (R0) and β′3 under
(R1) follow a “bright line” rule. Types β2, β2 under (R0), and β2 under (R1) follow a “flexible”
rule.

Figure 4.2: Extensive form equivalent for t = T − 1 in model. Players are named T and T − 1.
Initial value is βT−1. Decisions nodes are X = {τ11, τ21, τ22}.

models can describe a dynamically inconsistent consumer under certain assumptions. But Gul and

Pesendorfer (2005) have shown that under wider assumptions such models may not have a solution.

This section approaches the sophisticated solution in a game-theoretical manner to show that a

solution to the problem exists for all finite periods.

Consider Example 4.1 in the previous section. Figure 4.2 expresses this game as a sequential

game between two players. Notice at each decision node (of the set X = T\Z)15 agent T will only

choose G if βT ∈ {∆(βT−1),Γ(βT−1)} is greater than or equal to d
g . That is, βT ≥ β̂1. Figure 4.3

shows the game with three players starting at T = t− 2. Notice that the decision nodes τij ∈ X are

labeled in order.

Using the definition of Kreps and Wilson (1982) (see Section C.2 for the full version), it is

possible to show that for any n ∈ N, t = T − n the model can be expressed as an extensive form

game. In terms of terminology each “player” will be the representation of the agent at time t. In

other words, there will be n players, but only one agent.

Lemma 4.3. For any n ∈ N, and initial state β0 the model can be expressed as a extensive game

with perfect information, nodes τij ∈ T, players T − n + 1 ≤ i ≤ T , actions ai ∈ {G,D}, and

15This is the set characterization of Kreps and Wilson (1982): Z is the set of terminal nodes and T is the set of all
nodes. We use T instead of T to avoid confusion with the last period.
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Figure 4.3: Extensive form equivalent for t = T − 2 in model. Players are named T , T − 1, T − 2.
Initial value is βT−2. Decisions nodes are X = {τ11, τ21, τ22, τ31, τ32, τ33, τ34}.

utility functions

Ui = v(ai, β|τij) +
T∑

k=i+1

δku(ak) (4.25)

where β|τij is determined by the previous actions leading back to β0 as defined by equation 4.4.

Proof. See Supplemental Section C.2.

Theorem 4.1 (Myerson (1991), 4.7). A finite extensive form game with perfect information has at

least one sequential equilibrium in pure strategies. Furthermore, for all generic games with perfect

information, there is exactly one sequential equilibrium.

Proposition 4.2. For every t ∈ N, there exists a sophisticated solution (defined in definition 4.1).

The model has an equilibrium where each player T − n ≤ i ≤ T plays at ∈ {D,G} that is

sequentially rational.

Proof. From lemma C.1 and Myerson’s theorem, we know a pure-strategy sequential equilibrium

exists in the extensive form game defined in lemma C.1. Since this game has perfect information

it is also a subgame perfect equilibrium. That means for any player i the function Ui (see equation

4.25) is maximized based on future player behavior (in other words, backward induction). This is

identical to the definition of the model in definition 4.1
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From Myerson’s theorem we see that our model has at least one solution for any finite time

horizon. The solution is also sequentially rational; since the game has full information this implies

the solution is from backward induction (i.e., subgame perfect). Now that we know that we always

have a solution our results (i.e., proposition 4.1) apply more generally. Generally the solution is

unique, but the game could be considered a non-generic game if at a node a player were indifferent

between G and D. However, we have assumed at this case each player will only choose G, so when

multiple equilibria do exist we are only looking at one of them.

Now that we know there will always be a solution for this model, we turn our attention to

personal rules.

4.4 Personal Rules

We will begin with a very broad definition of a personal rule: it is a mapping from decision nodes

to actions. To begin, we will put no additional restrictions on the definition.

Definition 4.5. For any n ∈ N . For each player i, T − n + 1 ≤ i ≤ T define Ti the set of

future nodes as Ti = {τkj : k > i − (T − n + 1) + 1} and future decision nodes as Xi = T\Z.

Then for every i, T − n + 1 ≤ i ≤ T , each µi is a mapping of future decision nodes to future

actions, that is µi : Xi → Ai where Ai = {G,D}T−i−1. An agent’s personal rule is the set

µ = {µT−n+1, . . . , µT }.

From this characterization and proposition 4.2, the sophisticated solution for any β0 and n can be

expressed as a personal rule, provided an action is added at the initial node. If we only consider rules

consistent with subgame perfection, then it is a “descriptive” personal rule—it describes a type of

equilibrium but does not influence it. Benabou and Tirole (2004) also used descriptive personal rules

in their model (see Section 4.2.2), but their results were the result of a perfect Bayesian equilibrium.

4.4.1 Prescriptive Rules

Ainslie (1992) defines personal rules as agreements an agent makes with his future self. Schelling

(1985) suggests that personal rules are principles people “impose on themselves” to “govern their

future behavior.” These other definitions imply that making a personal rule changes an agent’s

perception of the problem he will solve. This type of rule, will be defined as “prescriptive,” because

it is determined before an agent chooses a solution to a problem, and it influences that solution.
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The rules in the previous solution were descriptive because they satisfied neither criterion. It should

be noted that with definition 4.5, because the definition is not limited to sequentially rational rules,

there is great freedom to make a personal rule that alter decisions by the agent. However, in the next

section the rules will follow the conventions of the chapter before and will consist of beliefs that are

sequentially rational.

4.4.1.1 Ainslie’s Example

Ainslie (1992) provides an example that can distinguish descriptive personal rules from prescriptive.

We will modify the example slightly to fit the model of this chapter, but the spirit of Ainslie will

be preserved. In the example, the agent faces sequential choices (T = 10). In the first period, the

agent myopically prefers to give up rather than persevere (β1 < β̂1), and would prefer to persevere

for all periods rather than give up for all periods (β1 > β̂10). Ainslie suggests that the agent

forces himself to persevere in each period by playing a “grim-trigger strategy,” a strategy which is

similar to strategies used in repeated prisoner’s dilemma games with certain endings. The agent tells

himself that if he gives up once, he will never persevere again. He and his future selves have made

an agreement: persevere in the past and they will persevere. His concept of a rule is prescriptive

to decision making. Using the model with certain costs, we can find values that match Ainslie

description of the situation, even without defining a personal rule, in this way it can still be thought

of as a descriptive rule.

Example 4.4. Let T = 10. Given g, d, Γ, ∆, and β0 ∈
(
β, β

)
, suppose that ∀t, 1 ≤ t ≤ 9,

Γt−1(β0) < ∆−1(β10−t+1), and β0 > β̂10. An agent in state β0 in period 1 will choose the

grapefruit every period. If he gave up once, he would choose the donut and would continue to do so

for the remainder of the periods.

Proof. First, β0 > β̂10 implies Γt−1 (β0) > β̂10−t, for all 1 < t ≤ 9, by definition 4.2. Then at

t = 10, Γ9(β0) > β̂1, and ∆(Γ9(β0)) < β̂1 the agent will choose (G) after nine previous Gs and,

trivially, choosing D leads to never choosing G again (since there are no more choices). Let us

proceed inductively: consider any t − 1 where at a∗t (Γt−1(β0)) = G and our agent will choose G

indefinitely until T . For t− 2, since Γt−2(β0) > β̂10−t, our agent prefers the aggregate choice of G

to D until T, and Γt−2(β0) < ∆−1(β10−t) implies giving up once will once will lead to giving up

for all future periods. Thus the agent chooses G. This completes the inductive argument.

As the example shows, Ainslie’s example can be duplicated in the model by having each period’s
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state such that if an agent chooses donut, he will be have dropped below the lower threshold of self-

control and will always chooseD. Nonetheless this situation only applies to a small set of {βt,Γ,∆}

and requires strict assumptions on the transfer functions.

Definition 4.6. For any n ∈ N let µ be a all-or-nothing rule defined as, ∀T − n+ 1 ≤ i < T

µi(τkj) =


G if j = 1

D if j > 1
(4.26)

where k > i− (T − n+ 1) + 1.

In this type of rule, the initial player believes that G will only be chosen at the highest node of

the tree, if he defects he believes no one will choose G again, all other future nodes have the same

condition; one defection leads to permanent defection. While this description may sound outlandish,

consider that several real life policies for abstinence from alcohol and strict diets fit this description.

(Marlatt, 2005; Baumeister et al., 1994)

If we allow rules that are not sequentially rational, they are very powerful in the finite period

case. We define a looser restriction of consistency on personal rules. It is modeled from the concept

of Kreps and Wilson (1982). Basically, a consistent rule is defined in such a way that no player will

ever witness it proved false.

Definition 4.7. For any µ define a set of best responses Âi = argmaxai
Ui(ai, µ−i) where Ui is

defined as in equation 4.25. Let X̂ be all possible nodes that could be reached from action set Â. If

for every x̂ ∈ X̂ , a ∈ Â, µ(x̂) = a(x̂) then we say that our rule µ is consistent.16

Proposition 4.3. Suppose at t and β0 > β̂T−t+1, agent t defines an all-or-nothing rule. Then an

agent will choose G for all periods. Furthermore, the beliefs are consistent.

Proof. Consider the decision node τ(T−t)1, with state ΓT−t(β0) and player T − 1. Player T −

1’s beliefs µT−1 suggest µT−1(τ(T−t)1) = G and µT−1(τ(T−t)2) = D. Since β0 > β̂T−t−1,

ΓT−t(β0) > β̂2, so T − 1 prefers G based on beliefs, and ΓT−t+1(β0) > β̂1 so T prefers G. Thus

T − 1 will choose G, believing future T ’s will choose G, and that belief is consistent because T

chooses G.

Now consider any n where T − n + 1 chooses τ(T−t+n)1. Then µT−1(τ(T−t+n+1)1) = G and

µT−1(τ(T−t+n+1)2) = D. Since β0 > β̂T−t+1 we must have ΓT−t+n−1(β0) > β̂n so by beliefs

16This concept is similar to the idea of “self-confirming” from citetfude93, although our model has perfect information.
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T − n+ 1 chooses G, and since T − n+ 1 chooses G at τ(T−t+n+1)1, this belief is consistent. This

completes our inductive argument.

In the finite period case, without any stochastic parameters, the all-or-nothing rule is very ef-

fective. However, it should be noted that given these stochastic parameters the rule might not work

as well as more agents would given in and choose D given the gL state. In the infinite period the

all-or-nothing rule does not work as well.

4.5 The Infinite Horizon Case

In the infinite period case there is a continuum of β and an infinite number of periods, so it is not

possible to represent the game as a finite extensive-form game. By defining a very specific type of

solution, we can find another equilibrium. A stationary17 solution with infinite periods is defined

as:

Definition 4.8. The twople, (σ∗∞, V
∗
∞) :

(
β, β

)2 → ([0, 1],R) is a stationary infinite period solution

if ∀β ∈
(
β, β

)
,

0 ≤ σ∗∞(β) ≤ 1 (4.27)

V ∗∞(β) = σ∗∞(β) [u(G) + δV ∗∞(Γ(β))] + (1− σ∗∞(β)) [u(G) + δV ∗∞(∆(β))] (4.28)

σ∗∞(β) =


1 if v(β,G) + δV ∗∞(Γ(β)) > v(β,G) + δV ∗∞(Γ(β))

0 if v(β,G) + δV ∗∞(Γ(β)) < v(β,G) + δV ∗∞(Γ(β)).
(4.29)

Notice that we are suggesting that there is a solution where every node, β, plays the same

solution over time.18 We make one more assumption to ensure that for values above β̂1, G will

always be chosen.

Assumption 4.3. There exists a β
′
< β s.t. β

′
> d(1−δ)

g−δd .

Let β̆ ≡ d(1−δ)
g−δd .

Corollary 4.1. For any function d
1−δ < v < g

1−δ ,

v(D,β) + v(∆(β)) > v(G, β) + v(Γ(β)), ∀β < β̂∞ (4.30)

v(D,β) + v(∆(β)) < v(G, β) + v(Γ(β)),∀β > β̆. (4.31)
17The solution is called stationary because it does not depend on history, only the current β.
18Some may find this concept reminiscent of forward induction (Kohlberg and Mertens, 1986).
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Proof. Follows directly from definitions.

Corollary 4.2. If a solution exists satisfying 4.27, 4.28, 4.29 it must have

v(D,β) + v(∆(β)) < v(G, β) + v(Γ(β)),∀β ≥ β̂1. (4.32)

Proof. From Corollary 4.1, we know if a solution existed v(β) = g
1−δ , ∀β ≥ β̆ It follows that

∀β > Γ−1(β̆), we will see action (G) because their value function is at an upper bound, and they

prefer G anyway. Then this argument will hold for ∀β > Γ−1(β̆) and this process can continue

indefinitely Γ−t(β̆) < β̂ at which point we will have shown all β ≥ β̂ have (G).

Much like proposition 4.1 did for the finite period, corollaries 4.1 and 4.2 provide a set of

boundaries on states outside of which we always know what actions will take place. We can think

of the interval [β̂∞, β̂) as the interior of the state space. We are now ready to make a fixed-point

argument. It is actually very similar to Nash (1950) if we think about having each β between(
β̂∞, β̂1

)
as representing a player with its own utility function.

Theorem 4.2. Suppose

V ∗∞(β) =


g

1−δ if β ≥ β̂1

d
1−δ if β < β̂∞.

(4.33)

For β0 let there only be finite n number of states created from all transformations of Γ and ∆ where

β̂∞ ≤ βt < β̂1. Then there is a vector ω̃ that satisfies 4.27, 4.28, 4.29.

Proof. See supplemental section C.3.

Corollary 4.3. Provided for β0 there are only a finite n number of states created from all trans-

formations of Γ and ∆ where β̂∞ ≤ βt < β̂1. There exits a vector σ̃ that satisfies 4.27, 4.28,

4.29.

Proof. The results of Theorem 4.2, corollaries 4.1 and 4.2 are all compatible with each other and

4.27, 4.28, 4.29. Since a fixed point exists (Theorem 4.2), it can exist with the conditions of corol-

laries 4.1 and 4.2.

Thus in the infinite period case as long as there are only finitely many possible transformations

that can be done to β0 inside the interior, an equilibria always exists. The next section will inves-
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tigate a special case where the Γ and ∆ functions are inverses. Note that in this special case, there

are always finitely many states in the interior, and thus a solution always exists.

4.5.1 One-Step Cases

The class of infinite solutions that can exist is quite broad. This section concerns a specific class

of solutions, those in the case where Γ and ∆ are inverses. In this case each move is one step to a

higher or lower state.

Assumption 4.4. The functions Γ and ∆ are inverse of each other Γ = ∆−1 and Γ−1 = ∆.

Definition 4.9 (interior nodes). For any β̂∞ ≤ β < β̂1 let n denote the number of reachable nodes

between β̂1 and β̂∞. That is

n = 1 + max
{i:Γi(β)<β̂1}

i+ max
{j:∆i(β)≥β̂∞}

j. (4.34)

Also for any n, β we will number the interior nodes in increasing order N = {βn, . . . , β1}.

For the sake of notational simplicity, define u ≡ g − d, di ≡ 1 − d
βi
− d, ū = u

1−δ . It follows

that d1 < . . . < dn < ū.

Example 4.5. If n = 2 and δ ≥
√

1− u
d1

we will have a∗∞(βi) = G, ∀i ∈ {1, 2}. Otherwise we

will have

p1 = 1− ū− d2

δd1
p2 =

ū− d1

δd2
. (4.35)

Proof. See Appendix C.4.

Proposition 4.4. For any even19 n ∈ 2N, there exists a stochastic solution where

pi = 1−
ū+ n−i−1

2 u+ i−1
2 δu−

∑n/2
m=i+1 d2m + δ

∑m−1
2

m=i d2m+1

δdi
, ∀i < n, i ∈ 2N + 1

pj =
ū+ j−2

2 un−i2 δu−
∑m/2

m=1 d2m−1 − δ
∑m−2

2
m=i d2m

δdj
∀j < n, j ∈ 2N (4.36)

provided pi, pj ∈ (0, 1) ∀ j, i < n, j ∈ 2N i ∈ 2N + 1.

19Notice that if n is odd we can have the stochastic solution over k-1 nodes, these conditions depend on δ, and to a
lesser extent the other parameters.
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Proof. See Appendix C.4.

Given the existence of these mixed strategy equilibria in the infinite period case, and possible

non-existence of pure-strategy equilibria, it becomes easy to see that there may not be a consistent

all-or-nothing rule for every infinite period game. In the finite period setting without variable costs

the all-or-nothing rules were consistent and very effective at causing and agent to persevere indef-

initely. With infinite periods this does not happen: consider any β0 where β0 < Γ(β0) < β̂1 if

σ(Γ(β0)) ∈ (0, 1) we do not have a consistent rule. Example 1 suggests if n ≥ 2 and δ <
√

1− u
d1

we will likely have no consistent rules.

4.6 Testable Implications

There are some general patterns of this model that could be examined by empirical methods.

1. Precedent and Procrastination effect. With repeated tasks over finite periods we should find

that more people avoid temptation when the choice is repeated rather than as an a single

decision (e.g., Kirby and Guastello, 2001, also see example 4.1). But the procrastination

effect may interfere with this result, and lead to more choices of temptation with multiple

periods (see example 4.2). However, the procrastination effect only works in a few distinct

ways. First, we will never see a pattern like {G,G,D,D}. For any precedent effect to occur,

the last period must be the non-tempting choice. Further a procrastination effect also only

occurs at periods greater than the last two. So, generally, if a sequence of actions contains

any decisions away from temptation, this model predicts it must include the two decisions.

2. Descriptive Rules. The results of this study under stochastic costs are nearly identical to Ben-

abou and Tirole (2004). Both models can explain low and high types persevering under high

and low conditions. However they occur for different reasons. In an experiment with per-

fect monitoring (suppose subjects record the difficulty of their task) their model predicts low

willpower types should not persevere because they cannot signal future selves. Monitoring

will have no effect on this type of model. Also under their model, any signal of great strength

should lead to more signs of strength, while the signal without the action would have no effect

on the predictions of this model.

3. Prescriptive Rules. Under this model prescriptive all-or-nothing rules are very effective in

finite periods, but not in infinite periods. If we find can find an instance in an experiment
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where individuals appear to be using an all-or-nothing strategy, an interesting test would be

to see if that would continue in an infinite horizon environment.

4. Habit Formation. The main assumption of the study is that immediacy peference for a given

item increases (or decreases) with use (or disuse). Charness and Gneezy (2007) have shown

evidence of habit with excercise, that after offering a treatment group incentives to go to the

gym, that group was more likely to continue to go to the gym than a control even after all

incentives had been removed.

However, it is not clear whether this is a habit being built up on a standard utility function (i.e.,

Becker and Murphy, 1988) or immediacy preference parameter. One way our model could be

tested is through an experiment for four weekly lab sessions. In the session subjects have the

opportunity to partake in some tempting task, or menial. Each session they use a second-price

mechanism to evaluate their true cost of doing the test. In one treatment the mechanism could

be used instantaneosly to ascertain β on the other it could be done the session before. Standard

habit formation models would suggest both values would be equal across treatments, but the

value to do the task should decrease when it is performed. Alternatively, this model suggests

the group giving immediate preferences should have higher valuations than the control group,

but that immediate group’s preferences should change dependent on whether they do the task.

The test could evaluate this model against standard habit formation and also may lead to some

explanation of the functions Γ and ∆ that underly β’s changes.

4.7 Conclusion

This chapter attempts to solve the dilemna brought about by repeated choices for a dynamically in-

consistent agent. In every period the agent may wish to take the sensible alternative always over the

tempting one, but will not make that choice on an individual level if does not affect future outcomes.

Several explanations have attempted to explain how an individual can remedy this predicament,

most notably Ainslie (1992) suggests an individual can make an agreement with future selves and

Benabou and Tirole (2004) suggest an individual perseveres to give positive signals of willpower to

future selves.

This chapter gives a different explanation, that individuals persevere to build up their resistance

to the current temptation in later periods. This result is based off the findings of Baumeister et al.
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(1994), but it can be thought of as adding a habit formation component to immediacy preference.

With this assumption the model can create a precedent effect—the tendency of individuals to forgo

temptation when making a repeated choice—in the form of a subgame perfect (and sequential)

equilibrium among selves.

It is this assumption that allows for so strong of a descriptive rule. Without altering one’s

preferences, in the last period an individual would always want to seek temptation, and there would

not be a backward induction solution that suggests agents will persevere. The unique assumption

of this model is very helpful in giving agents rational incentives to persevere: if they do, they will

become better in the future.

However, this incentive has its drawbacks, if an agent knows he will become better in future

anyway (because the incentive will also affect his future self) he will exhibit a procrastination effect.

He will seek temptation now, knowing his future is unaffected, because his future self will pick up

the slack. The effect is very similiar to those who attend Mardi Gras, bachelor parties, or New Year’s

Eve parties before making strong commitments (i.e., Lent, marriage, New Year’s resolutions).

By representing the model as an extensive form game, it is shown that a backward induction

solution exists for all periods. The extensive form also allows for a more general form of personal

rules. The subgame perfect form of the rules is classified as a descriptive rule and is similiar to

other studies (Benabou and Tirole, 2004). A set of beliefs that moves an individual off the subgame

perfect path is classified as a descriptive rule. Those rules are characterized on whether they are

consistent, meaning each player never learns his beliefs are wrong.

The idea of a descriptive rule may be criticized because it is an incorrect belief, but by allowing

a concept of consistency, we allow rules that are irrational, but never tested. There is evidence that

these type of consistent rules exist. Individuals who do not use drugs admit to believing the first

use of cocaine or heroin would lead to unavoidable addiction (Miller and Brown, 1991), a falsehood

(Peele, 1989; Robins et al., 1975; Baumeister et al., 1994).

When the infinite horizon problem is examined it is simplified so that the solution is classified

without history, the state value β is all that determines an action. Under this form there always exists

an equilibrium, albeit sometimes a stochastic one. When the results are stochastic, personal rules

cannot be consistent, thus implying personal rules are favored in finite period horizons.

Section 4.6 provides guidelines for this theory to be tested against others, especially models of

self-signaling and standard habit formation.
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Figure A.1: Diagram of 3-syringe beverage delivery apparatus used in Study 2

A.1 Diagram of the Apparatus

Diagram A.1 shows the beverage delivery apparatus. Tubing from Cole-Parmer was used to deliver

an exact amount of beverage into a cup that a subject would drink each period.
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A.2 Experimental Instructions

 1 

INSTRUCTIONS (Version 1): 
 
Before we begin, there are some rules in this experiment that are necessary for its 
validity.  First we have asked you not to drink liquids for four hours before this 
experiment.  We also will ask you not to drink during this experiment, except for the 
liquid rewards you receive.  Additionally, you will be asked to consume a salty snack 
before this experiment begins.  To ensure that you do not break these rules, if you need to 
leave the experimental room for a bathroom break, the experimenter or female assistant 
of the experimenter will monitor that you do not drink liquids during this time.  If you 
feel at any time your health is at risk in this experiment, please tell the experimenter and 
the session will be stopped.  You will receive all earnings up to that point and your show 
up payment.  At the end of the experiment you will be asked to take a small 
questionnaire.  At that time the experimenter will provide you with any beverages you 
may require. 
 
What you need to know about this experiment. 

 
In this experiment, we are interested in how you make your spending and saving 
decisions over a 30 period ‘lifetime’.  You will make these decisions for money and for a 
liquid reward.  The instructions will explain how the computer interface works.  It will 
also explain how the decisions you make determine the amount of money you will earn.  
The money for the experiment has been provided by a research foundation.  If you follow 
the instructions, and think carefully before making your decisions, you can earn a 
considerable amount of money.  This will be paid to you in cash at the end of the 
experiment. 
 
You will play 5 sequences of a 30 period spending/saving game. 
 
There will be 5 sequences of a 30 period game.  In each sequence you will make 30 
decisions in a row.  The third sequence will be different from the other four.  It will be for 
a liquid reward rather than cash.  This round will be explained later.  You will receive a 
fixed amount of money for participating in this round.  The point totals from the other 
four sequences will be calculated to determine the total amount you will earn at the end 
of the experiment.  The game will be played on a Microsoft Excel workbook.  Table A 
below shows an example of what the first period of one non-liquid reward sequence 
might look like.  An explanation of the liquid reward sequence will be given at the end of 
these instructions. 
 
Period Expected Adjustment Actual Available Lifestyle Spending Total Points  

 Salary Factor Salary Cash Index Choice Savings Obtained  
1 100.00 1.321 132.10 132.10 10.00   nil Next Period 
2 105.00         
3 110.25         
4 115.76         
5 121.55         

Table A (First period) 
 

 2 

In table A the row representing period 1 is highlighted because the computer is waiting 
for you to make a decision about what to do in period 1.  After you make a decision in 
period 1 (and click on the pink box labelled ‘Next Period’), the computer will record 
the decision and highlight the row for period 2.  After you have made decisions for all 30 
periods in a sequence, you will see your total point earnings for that sequence at the 
bottom right corner, and a pink box marked “Continue”.  When you click on the 
“Continue” box you will begin the next 30-period sequence.   
  
Your total point earnings will be determined by a series of decisions about how much to 
spend from a sum of available cash.  In each period you will have some cash available, 
which is the addition of what is left over from the previous period, and a new amount 
called “Actual Salary”.  The actual salary in each period is determined by multiplying 
two numbers—the expected salary, and a random adjustment factor.  You will know 
the expected salary in advance (in fact, your computer screen will show the expected 
salary for all 30 periods in a sequence, and it is the same across all of the 5 sequences you 
will play).  The adjustment factor will go up and down in each period in a way that we 
will explain about shortly. 
 
Your expected salary grows by 5% each period. 
 
The values of expected salary are shown for all thirty periods in the second column of the 
table.  Expected salary increases at 5% each period.  Therefore, if the first period’s 
expected salary is 100 as shown in the table, then the second period’s expected salary: 
100 x 1.05 = 105.00.  The third period’s expected salary is: 105 x 1.05 = 110.25, and so 
forth for future periods.   
 
Your expected salary is susceptible to adjustments. 
 
The actual salary you get each period is determined by multiplying the expected salary by 
an adjustment factor.  You will experience both good and bad adjustments to your 
expected salary, because the adjustment factor is often less than 1 (so that the actual 
salary is less than the expected salary), and the adjustment factor is often also greater 
than 1 (so that the actual salary is more than the expected salary).  The exact adjustment 
factor in any one period is determined by a random draw from a probability distribution.  
The distribution is shown in the graph below, which may help you try to guess what 
adjustment factors are most likely to occur.   
 

Adjustment Factor 
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 3 

 
The x-axis of the graph shows the possible adjustment factors (where 0 is the lowest 
possible factor).  The y-axis shows how likely it is that an adjustment factor on the x-axis 
will actually randomly occur.  Notice that the most common adjustment factors are less 
than one (because the curve is very tall for values on the x-axis between 0 and 1); but 
some of the adjustment factors are very large.  This means that most of the time, your 
actual salary will be below your expected salary, but sometimes your actual salary will be 
much larger than your expected salary.  In fact, half the time the adjustment factor will be 
below 0.607 and half the time the adjustment factor will be above 0.607.  About 10% of 
the time the adjustment factor will be very low, 0.168 or less, and about 10% of the time 
it will be very high, 2.185 or above.  (In case you are curious, we can tell you that the 
statistical distribution of the adjustment factor is generated by taking a “normal” or “bell 
curve” distribution, then taking the mathematical constant “e” (which is roughly 2.718) 
raised to a power equal to the number drawn from the bell curve distribution.)  
 
Note also that each adjustment factor is statistically independent of the factors in early 
periods.  This means that whether the factor is particularly high or low does not depend 
on whether it was high or low in the previous periods.   
 
Table B below shows three example sequences of 30 adjustment factors (Sequence A, B 
and C), randomly drawn using the above-described distribution. 
 

  Sequence A   Sequence B   Sequence C 
Period Adjustment Factors   Adjustment Factors   Adjustment Factors 

1 1.364   0.845   0.624 
2 0.461   2.464   2.660 
3 0.498   0.403   2.643 
4 0.223   0.199   1.298 
5 0.323   0.413   0.840 
6 0.108   0.296   0.389 
7 0.283   0.199   0.530 
8 0.588   0.926   2.592 
9 4.793   1.989   0.599 

10 0.780   1.601   1.246 
11 2.721   0.230   0.674 
12 0.334   1.270   0.159 
13 2.203   0.715   1.586 
14 1.363   0.404   0.129 
15 0.289   0.100   0.471 
16 0.194   0.170   0.309 
17 0.369   0.426   0.364 
18 1.296   0.604   0.703 
19 0.256   0.248   1.120 
20 0.308   1.033   0.219 
21 0.767   1.441   0.780 
22 0.671   0.910   0.049 
23 0.578   0.198   0.486 
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24 0.956   1.665   0.446 
25 2.000   1.636   0.265 
26 1.782   0.174   0.549 
27 0.140   0.482   0.276 
28 0.384   0.342   0.406 
29 0.087   0.929   0.457 
30 1.692   1.625   0.367 

Table B  
 
Please note that these sequences of adjustment factors are only examples of what a 
sequence of 30 adjustment factors might look like; the actual sequences of adjustment 
factors you will get in your experiment will be different, even though the underlying 
probability distribution from which it was drawn is the same.   
 
Period Expected  Adjustment  Actual  Available  Lifestyle  Spending  Total  Points   

  Salary Factor Salary Cash Index Choice Savings Obtained  
1 100.00 1.321 132.10 132.10 10.00 60.00 72.10 38.49  
2 105.00 0.345 36.23 108.33 67.00     nil  Next Period 
3 110.25                
4 115.76                
5 121.55                

Table C (Second Period) 
 
Actual Salary = Expected Salary multiplied by Adjustment Factor. 
 
Each period, the actual salary is equal to the expected salary in that period times the 
adjustment factor.  For example, in table C, the actual salary in period 1 is given by: 100 
x 1.321 = 132.10.  A low adjustment factor in period 2 (0.345) means that the actual 
salary in that period is only 36.23, which is much lower than the expected salary of 
105.00.  Keep in mind that these adjustment factors are just examples.  When you 
participate in the experiment and make your own decisions, the adjustment factors will 
probably be different.   
 
Available Cash = Last Period’s Savings + Current Period’s Actual Salary. 
 
Remember that the one decision you must make in each period is how much of your 
available cash to spend.  In table C, suppose you decide to spend 60.00 in Period 1.  The 
total savings for period 1 is then your available cash (equal to actual salary because there 
was no past savings before period 1) minus your spending choice, which is 132.10 – 
60.00 = 72.10.  Please note that you do not earn interest on savings.   
In period 2 of the table above, your actual salary is 36.23.  Therefore, your available cash 
for period 2 is your savings left over from period 1, which was 72.10, plus your actual 
salary in period 2, which is 36.23.  The total is 72.10 + 36.23 = 108.33, which will be 
automatically calculated for you and shown in the available cash column.   
 
Spending earns you points.  Make your Spending Choice in the yellow box. 
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Enter your spending choice each period in the yellow box.  For your spending decision, 
the corresponding Points Obtained will be shown in the green box. 
 
In table D below, entering a spending decision of 60.00 in period 2 will show that you 
can get 25.18 points for that period.  You can try out different levels of spending before 
you make your final decision, by entering different values in the yellow spending choice 
box.  Every time you input a value and press “enter” the computer will calculate how 
many points obtained you would get from that spending choice.   
 
Period Expected  Adjustment  Actual  Available  Lifestyle  Spending  Total  Points   

  Salary Factor Salary Cash Index Choice Savings Obtained  
1 100.00 1.321 132.10 132.10 10.00 60.00 72.10 38.49  
2 105.00 0.345 36.23 108.33 67.00 60.00 48.33 25.18 Next Period 
3 110.25       106.90        
4 115.76                
5 121.55                

Table D 
 
The number of points obtained also depends on your Lifestyle Index. 
 
For each level of spending, the number of points you earn is dependent on your lifestyle 
index.  At a higher lifestyle index, you will earn a smaller amount of points for a given 
level of spending than when you are at a lower lifestyle index.  In table D for example, 
the lifestyle index is at a higher level in period 2 (67.00) than in period 1 (10.00), 
therefore, the same level of spending of 60.00 yields a lower level of points in period 2.   
 
A point transformation table is placed on your desk.  Table E below shows part of this 
point transformation table.  At each level of lifestyle index, it displays the number of 
points you can get at different levels of spending.   
 

Lifestyle Index 
 -60 10 20 50 100 150 200 250 300 
 5 -60.2 -190.3 -651.5 -1548.7 -2544.4 -3609.9 -4730.7 -5897.4 
 10 3.2 -44.7 -214.2 -544.0 -910.0 -1301.7 -1713.7 -2142.6 
 20 28.5 13.5 -39.6 -142.8 -257.4 -380.0 -508.9 -643.2 
 40 36.7 32.5 17.5 -11.7 -44.0 -78.7 -115.1 -153.1 
 60 38.5 36.5 29.6 16.0 1.0 -15.0 -31.9 -49.5 
 80 39.1 38.0 34.0 26.2 17.6 8.4 -1.4 -11.5 

Spending 100 39.4 38.7 36.1 31.1 25.5 19.5 13.2 6.6 
Choice 120 39.6 39.1 37.3 33.7 29.8 25.6 21.2 16.6 

 140 39.7 39.3 38.0 35.4 32.5 29.4 26.1 22.7 
 160 39.8 39.5 38.5 36.4 34.2 31.8 29.3 26.7 
 180 39.8 39.6 38.8 37.2 35.4 33.5 31.5 29.5 
 200 39.9 39.7 39.0 37.7 36.3 34.7 33.1 31.4 
 220 39.9 39.7 39.2 38.1 36.9 35.6 34.3 32.9 
 240 39.9 39.8 39.3 38.4 37.4 36.3 35.2 34.0 
 260 39.9 39.8 39.4 38.6 37.8 36.9 35.9 34.9 
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    Table E (Point Transformation Table) 
 
As you can see, a lifestyle index of 10 and a spending choice of 60 gives you 38.5 points.  
However, if the lifestyle index is 50 and you spend the same level of 60, the points 
obtained will be at a lower level of 29.6.   
 
You are advised to look up this table before you make your spending choice.  
Alternatively, you can find out how many points you can earn by inputting different 
values of spending in the yellow box.   
The lifestyle index grows with spending.   
 
In general, the lifestyle index for a period is calculated by taking the value of the index 
from the previous period times .70, and adding in the previous period’s spending.  For 
example, in table D, the lifestyle index for period 2 is calculated as shown: 
0.7 * 10.00 (1st Period Lifestyle Index) + 60.00 (1st Period Spending) = 67.00. 
Likewise, if spending is again 60.00 in the second period, the lifestyle index for period 3 
is: 0.7 * 67.00 (2nd Period Lifestyle Index) + 60.00 (2nd Period Spending) = 106.90 
When you enter a spending level each period, the lifestyle index for the next period will 
be automatically calculated and shown. 
 
A lifestyle conversion table is also provided on your desk.  It shows you how your 
lifestyle index in the next period is dependent on how much you spend in the current 
period.  Table F below shows part of this lifestyle conversion table. 
 

Lifestyle Index, Current Period 
  10 20 50 100 150 200 250 
 10 17 24 45 80 115 150 185 
 20 27 34 55 90 125 160 195 
 40 47 54 75 110 145 180 215 
 60 67 74 95 130 165 200 235 
 80 87 94 115 150 185 220 255 
 100 107 114 135 170 205 240 275 

Spending 120 127 134 155 190 225 260 295 
Level, 140 147 154 175 210 245 280 315 

Current 160 167 174 195 230 265 300 335 
Period 180 187 194 215 250 285 320 355 

 200 207 214 235 270 305 340 375 
 220 227 234 255 290 325 360 395 
 240 247 254 275 310 345 380 415 
 260 267 274 295 330 365 400 435 
 280 287 294 315 350 385 420 455 
 300 307 314 335 370 405 440 475 
 320 327 334 355 390 425 460 495 

   Table F (Lifestyle Conversion Table) 
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As you can see, choosing a spending level of 60, when lifestyle index is 10, will result in 
a lifestyle index in the next period of 67.  If you decide to spend more, for example 140, 
then your lifestyle index for the next period will be at a higher level of 147.   
 
Note that the more you spend in the current period the higher your lifestyle index will be 
in future periods.  The point transformation table (table E) shows that for any particular 
level of spending, you earn fewer points if the lifestyle index is higher.  So if you spend a 
lot in early periods, you will receive many points in those periods, but you also increase 
the lifestyle index for future periods, which will then reduce the points you obtain in 
future periods.   
 
You cannot spend more than your available cash. 
 
Each period, you are not able to spend more than the available cash you have.  If you 
choose a spending level greater than the cash you have, the program will tell you to lower 
your spending.   
  
Proceed to the next period when you have made your spending choice. 
 
Once you have thought carefully about how much to spend each period, proceed to the 
next period by using your mouse to click once on the pink box labelled ‘Next Period’.  
Please note that the program prevents you from returning to earlier periods to 
change your spending choice.  Therefore, please be careful not to click the ‘Next 
Period’ box before you enter your spending decision, because you will not be able to 
return to change it.   
 
Once you have completed each 30 period sequence, proceed to the next sequence of 30 
periods by clicking the ‘Continue’ link, which will appear at the bottom right of your 
screen.   
 
Please note that the sequence of adjustment factors will be different in each of the 5 
sequences, but the overall statistical distribution of possible adjustment factors will be the 
same.  Once you have completed all 5 sequences, a screen will appear to tell you your 
overall points obtained from all 5 sequences.    
 
The computer will automatically spend all available cash in the last period of each 
sequence. 
 
Available cash from one sequence will not be carried over to the next sequence.  This 
means that the computer will be automatically spend all remaining available cash in 
period 30 of each sequence.   
 
How your earnings are determined: 
 
After you make your spending choice each period, the points you obtain that period, in 
addition to all points you obtain in previous periods will be tallied at the bottom of the 
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screen.  Some of the point outcomes each period will be negative but your total points 
from each sequence should be positive. 
 
The total points you obtained from your four non liquid reward rounds will be calculated 
and will be converted to cash at a rate: 
14 points = $0.03 
466.67 points = $1   
Your earnings from the money rounds, in addition to the $5.00 show-up payment and a 
$25.00 fixed payment for the liquid round, will be paid to you in cash when you leave the 
laboratory.  They will be rounded up to the nearest dollar. 
 
For the third sequence you will make decisions for a liquid reward. 
 
The third sequence will be identical to the other sequences except your point totals will 
be converted to mL of liquid and dispensed in a cup to your right.  Each mL of liquid will 
be equal to two points.  Table G shows the first period of the liquid reward round: 
 

Period Expected Adjustment Actual Available Lifestyle Spending Total Liquid Liquid  
 Salary Factor Salary Cash Index Choice Savings Max (mL) (mL)  

1 100.00 1.321 132.10 132.10 10.00   19.84 Nil Next Period 
2 105.00          
3 110.25          
4 115.76          
5 121.55          

 
The first eight columns are identical to those in the monetary reward rounds, and were 
explained in the instructions previously.  ‘Liquid Max (mL)’ is the maximum amount of 
liquid that can be delivered at the end of the period.  To achieve this amount you must 
spend all your available cash.  Liquid (mL) is the actual amount of liquid that will be 
delivered to you at the end of the period.  It is equal to half of ‘Total Points’ from 
previous rounds.   
 
After you have made your spending choice and clicked ‘Next Period’ the program will 
ask you to close Microsoft Excel.  The liquid reward will be delivered to you at the 
amount specified under the liquid column.  You then will have a 60 second break, before 
the program opens.  You must consume all of the liquid reward during this break.  You 
cannot save it for future periods. 
 
If you sustain a negative result for any round, you will not receive liquid until you have 
produced enough positive periods to offset that result.  For example, if you sustain a 
negative liquid mL total of -20 in period 8, 10 in period 9, and 15 in period 10, you will 
receive no liquid reward in period 8 or 9 but 5 mL of liquid reward in period 10. 
 
Please note that if the liquid reward is a carbonated beverage, the volume of liquid may 
be slightly different than the value in the excel spreadsheet.  This is due to the 
carbonation gas being measured as liquid in the syringe pump.  It is unavoidable when 
using carbonated beverages.   
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After you have made decisions for thirty periods and received your liquid rewards, there 
will be an additional ten dummy periods.  In these periods you will not make a decision 
or receive any liquid reward.  They are a necessary part of this experiment and we 
appreciate your patience in this matter.  These ten dummy periods should last about ten 
minutes. 
 
Here is a brief summary of what you need to know.   
 
You will be making decisions in 5 sequences of 30 periods.  In each period you will have 
some available cash and will choose a level of spending.  In the third sequence your 
decisions will determine the liquid rewards you receive over that round.  All of the other 
sequences are important in determining your overall cash earnings, because your earnings 
will depend on the point total of sequences 1, 2, 4 and 5. 
 
Expected salary grows at 5% each period.  The actual salary that you get depends on a 
random adjustment factor that occurs during each period.  These factors are randomly 
determined and the adjustment factor in one period does not depend on whether the 
previous period’s adjustment factor was high or low.  The available cash you have during 
each period is the actual salary you get in the current period plus the level of savings that 
was left over from the previous period. 
 
The level of points (mL of liquid reward) you can get during each period depends on the 
level of spending you make, as well as your lifestyle index.  More spending this period 
increases the lifestyle index for next period.  A higher level of lifestyle requires a higher 
level of spending than before to obtain the same level of points.  The point transformation 
table on your desk will give you a better idea on how this works. 
 
Take as much time as you like to make your spending decision in each period.  Please 
note that your spending level in each period cannot exceed the available cash you have.  
Remember that you cannot go back to earlier periods to change your spending level once 
you have clicked on the ‘Next Period’ box.  Therefore, please make sure that you have 
correctly entered your final spending decision in the yellow spending choice box before 
proceeding to the next period.   
 
The total points you have obtained for all four non-liquid reward sequences will be 
calculated and converted to cash.  In the liquid reward round your decisions will 
determine how many mL of liquid you will receive between periods.  Remember that the 
liquid reward round is very similar to the other rounds.  The mL of liquid you receive at 
the end of each period is equivalent to half your period’s points total in any other round. 
 
If these instructions were not clear to you, or you have a question of any sort, please tell 
the experimenter now. 
 
If you don't have any questions, please attempt the short quiz on the following page 
before you start the experiment.  These questions will test whether you have fully 
understood the instructions.  Once you are done with the questions, the experimenter will 
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come by to check your answers.  If your answers are not right, the experimenter will 
give the correct answer and help you understand how the tables and instructions 
should enable you to give the correct answers.   
 
You can only start the experiment when all your answers are correct. 
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Quiz 
Answer questions 1-7 for non-liquid reward sequences.  (Sequences 1,2,4,5). 

1) If you spend 60.00 this period, and your lifestyle index is 50.00, how many points 
will you obtain? 

 
Ans: _________________ 
 
2) If you spend 80.00 this period, and your lifestyle index is 250, how many points 

will you obtain? 
 
Ans: _________________ 
 
3) If you spend 450.00 this period, and your lifestyle index is 700, how many points 

will you obtain? 
 
Ans: __________________ 
 
4) If you increase your spending level from 60.00 to 100.00, and your lifestyle index 

is 100.00, how many additional points will you get? 
 
Ans: _________________ 
 
5) Your expected salary in period 2 is 150.00.  The adjustment factor is 0.500 in the 

same period.  Total savings from period 1 was 40.00.  How much available cash 
do you have in period 2? 

 
Ans: _________________  
 
 
6) Your lifestyle index is 50 in period 1.  If you decide to spend 60.00 in the same 

period, what would be the level of lifestyle index in period 2? 
 
Ans: _________________ 

 
7) In period 20, your lifestyle index is 200.00.  You decide to spend 120.00. 

a) How many points will you get? 
b) What will your lifestyle index be in period 21? 

      
       Ans: ______________________________________ 
 

8) Answer questions 1-4 again except assume they have been asked for the liquid 
reward  sequence.  That is substitute ‘mL liquid reward’ for ‘points’. 

Ans: _________________ 
Ans: _________________ 
Ans: _________________ 
Ans: _________________ 
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Table A.1: Notation for the buffer stock model

A.3 The Experimental Problem in Formalized Detail

This section repeats the description of the experimental problem, and theoretical predictions of the

exponential and quasi-hyperbolic models in much greater detail. The text should provide enough

description for the reader to understand the predictions of the models, but this section adds greater

depth to that understanding and includes similar predictions of the dual-self model.

The experimental design implements the assumptions of the buffer stock savings model of Car-

roll et al. (2000). Agents earn income each period, subject to stochastic independent shocks from a

distribution they know. In each period they choose how to divide their available cash the previous

buffer stock, plus new income—between spending and savings. Utility in each period depends upon

a ratio of current consumption to a habit index. The habit index is a depreciated sum of previous

consumption. Agents should maximize the discounted utility from consumption over the remainder

of their lifetimes, which is a dynamic programming problem. The variables in this dynamic program

are listed in Table A.1.
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A.3.1 Exponential Discounting

Assuming exponential discounting of future rewards, the consumer’s maximization problem is

maxEt

[
T∑
s=t

∆s−tu(C̃s, H̃s

]
. (A.1)

The utility function incorporates constant relative risk-aversion (CRRA) and habit formation as

follows:

u(Ct, Ht−1) + k +
θ

1− ρ

(
Ct + ε̂

Hγ
t−1

)1−ρ
. (A.2)

The parameter ρ is the coefficient of relative risk aversion, and γ determines how strongly previous

habitual consumption affects current utility (e.g., if γ = 0 there is no effect of habit).1

The habit stock is given byHt = λHt1 +Ct where λ is a depreciation rate (as in Fehr and Zych,

1998). Actual income each period is equal to permanent income multiplied by an income shock,

Yt = Ptηt, where ηt is a random variable drawn from a distribution each period. The value function

for cumulative future utility, at period t, depends on three state variables: permanent income Pt,

habit Ht−1, and available savings Xt. The optimal value function is

Vt(Pt, Xt, Ht−1) = max
ct
{u(Ct, Ht−1) + ∆Et [Vt+1(Pt+1, Xt+1, Ht)]} (A.3)

or, writing out the state variables,

Vt(Pt, Xt, Ht−1) = max
ct
{u(Ct, Ht−1) + ∆Et [Vt+1(GPt, R(Xt − Ct) + ηn+t, GPt, λHt−1 + Ct)]}

(A.4)

subject to constraints

St = Xt − Ct, St ≥ 0 (A.5)

Xt+1 = St + ηn+1Pt+1 (A.6)

Ht = λHt−1 + Ct. (A.7)

To make the problem easier to solve computationally, the state variable Pt can be eliminated by
1Since ρ = 3, the term k is the upper asymptote of utility, θ is a scaling parameter, and ε̂ bounds the utility function

from below. In the experiments, ε̂ = 2.7, similar to Ballinger et al. (2003).
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normalizing each variable by permanent income.2

In the experiment, most parameter values were roughly calibrated to those measured in actual

savings data from the U.S. Carroll (1992) found income shocks ηt to be lognormally distributed

with a mean value of one and a standard deviation of 0.2. We use ηt drawn from a lognormal

distribution. We pick σ = 1 rather than .2, to create more income variation. This makes the

problem more challenging for subjects, and therefore gives a better chance of observing a range of

conditions under which performance is very bad or surprisingly good. Permanent income grows

according to Pt+1 = (1.05)Pt with Pt = 100. The discount factor and gross interest rate are both

set equal to one (∆ = 1, R = 1). The risk-aversion coefficient is ρ = 3, an estimate often used in

consumption studies which seems to fit many types of aggregate data. For habit formation, γ = 0.6,

depreciation λ = 0.7, and the initial habit is H0 = 10. There are thirty periods in this experiment

so T = 30.

Exponential discounting is dynamically consistent—the current tradeoff between two future

points which is reflected in current decisions is preserved when those future points eventually arrive.

We discuss two approaches—β-δ quasi-hyperbolic discounting, and a dual-self model in which a

foresightful “planner” tries to restrain a myopic “doer” from spending too much.

A.3.2 Quasi-hyperbolic Discounting

In this section we show how these models work and contrast them with the exponential model.

These models are also of special interest in study 2, which uses beverage rewards rather than money

(as in study 1). In study 2, in one lifecycle thirsty subjects earn the same number of utility points

as in the study with money, but x points are converted into x/2 milliliters of cola. In the immediate

condition they drink the cola right away. In the delayed condition they “order in advance,” so that

spending decisions in period t determine the amount of cola that can be drunk in period t + 10.

Dynamically consistent subjects should make the same decisions in these immediate and delayed

conditions. However, under β-δ discounting or dual-self models, subjects may “spend” more (i.e.,

earn more points which are converted to beverage) in the immediate condition than in the delayed

condition. For notational simplicity define ω,

ω(C̃t, ˜Ht−1) = v

(
C̃t, ˜Ht−1

2

)
(A.8)

2That is, xt = Xt/Pt, ht = Ht/Pt−1, andεt = ˆepsilon/Pt
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where ω(C̃t, ˜Ht−1) is the beverage reward (in terms of a beverage utility function v) associated with

consumption decision C̃t and habit H̃t−1.

In the quasi-hyperbolic discounting (or present-bias) model, current utilities have a weight of

one, and utilities t periods in the future (t > 1) have a weight of β̃δ̃t.

In the β-δ, the implicit tradeoff between future periods is not necessarily the same as the tradeoff

which is made when the future arrives. Therefore, the model requires a behavioral assumption about

whether current agents are “naı̈ve” or “sophisticated” about their own future behavior.

Naı̈ve agents believe—incorrectly—that the weights they currently apply to future periods are

the same as the (relative) weights they will apply when the future arrives. Intuitively, even though

all future periods are discounted by a present bias β, the naı̈ve discounter believes that in future

evaluations there will no such present bias. This model corresponds to chronic procrastination

which is justified by the hope that starting tomorrow, the activity that has been put off for so long

will finally get done.

Sophisticated discounters have a present bias, but correctly realize that they will have a present

bias in the future, too. A crucial difference is that sophisticated discounters will seek external

commitment devices (to restrain the present bias they know they will have) while naı̈ve discounters

do not. Our view is that it is too early in the empirical literature to consider only one model,

when both can be considered and compared, so we develop both here and calibrate them on the

experimental data in Section 2.5.

A.3.2.1 Sophistication

Similiar to the design of Harris and Laibson (2001), optimal consumption can be determined by

backward induction because we have a finite number of periods T. In the last period the subject will

solve

V̈T (XT , HT1 , PT ) = ω(C ′T , H̃T−1) (A.9)

where

V̈T (XT , HT1 , PT ) = ω(C ′T , H̃T−1). (A.10)

Assuming sophistication, the optimization problem can then be solved recursively using equations

A.11 and A.12.

C ′t = argmax
ct

ω(Ct, H̃t−1) + β̃δ̃Et

[
V̈t+1(GPt, Xt − Ct + ηt+1GPt, λHt−1 + ct)

]
(A.11)
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V̈ (Pt, Xt, Ht−1) = ω(Ct, H̃t−1) + β̃δ̃Et

[
V̈t+1(GPt, Xt − Ct + ηt+1GPt, λHt−1 + ct)

]
(A.12)

Notice that the function V̈t is different than a typical dynamic programming value function as in

equation A.3. In that equation the value function is the maximum of the current consumption utility

plus the (discounted) continuation value function conditioned on that level of consumption. But

the possibility of dynamic inconsistency requires us to create a pseudo-value function V̈t instead.

Equation A.11 dictates that a sophisticated agent will maximize utility consistent with her present

preferences. However, the sophisticated hyperbolic knows that in the future she will not apply

the same weights and make the same tradeoffs, so she needs a way to keep track of consumption

utilities in future periods without aggregating them into a conventional value function. Here, V̈t is

a pseudo-value function which is simply a sum of future utilities from consumption, discounted at

the exponential rate δ̃.

A.3.2.2 Naı̈veté

A naı̈ve agent believes that her future decisions will be made as if she is an exponential discounter.3

A naı̈ve agent therefore creates a value function V̆t(Pt, Xt, Ht1) which exhibits present bias but uses

the exponential value function V̆t(Pt, Xt, Ht1) (a modified version of equation A.3) with ∆ = δ̃

and u = ω in forecasting future utilities.

C∗t (Pt, Xt, Ht−1) = argmax
Ct

ω(Ct, Ht−1)+β̃δ̃Et
[
V̆t+1(GPt, Xt − C + t+ ηt+1GPt, λHt1 + Ct)

]
(A.13)

where

V̆t(Pt, Xt, Ht1) = max
Ct

ω(Ct, Ht−1) + δ̃
[
V̆t+1(GPt, Xt − C + t+ ηt+1GPt, λHt1 + Ct)

]
.

(A.14)

Figure A.2 shows an example consumption path which compares sophisticated and naı̈ve hyperbolic

consumption paths for δ = 0.9 and β = 0.8, compared to the optimal path (with δ = β = 1) from

Figure 2.2.

As O’Donoghue and Rabin (1999) have stressed, present bias and sophistication can interact

in interesting ways. Generally, a naı̈ve person exhibits more present bias than a sophisticated one.

However, a sophisticated person who is sufficiently present-biased can succumb to temptation im-

3The reason is that her current weights on all future periods (for t > 1), β̃δ̃t, imply relative tradeoffs in future periods
in which the β̃ terms divide out for optimization.
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Figure A.2: Quasi-hyperbolic consumption path for naı̈ve and sophisticated cases (β = 0.8, δ =
0.9)

mediately because she knows her future self will too, while a naı̈ve person might postpone tempta-

tion because she thinks in the future she will be more patient than she currently is. In the model, as

A.2 indicates both sophisticated and naı̈ve hyperbolic discounting cause an individual to overcon-

sume relative to optimal in this experiment. The difference between the two paths is very small [as

in Angeletos et al, 2002], but the naı̈ve consumer does consume a little more than the sophisticated

one in early periods.

A.3.2.3 Immediate and Delayed Beverage Rewards

To compare the immediate and delayed beverage reward conditions, we first assume that the utility

of beverage is linear in volume. Then u(CT , Ht−1 = ṽ
(
u(Ct,Ht−1)

2

)
= ω̃(Ct, Ht−1). For simplic-

ity, we also assume that subjects do not satiate in beverage, and utilities are additively separable

across periods. Even if these assumptions do not hold, there is no reason to think that they are vio-

lated more or less in the two conditions (immediate and delayed). In the delayed condition subjects

do not receive the beverage amount they decided upon in period t until period t+ 10. Since there is

no immediate reward, all future consumption has a weight of β̃ (along with discount factors δ̃) and
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the β̃ terms divide out in optimization. Then each subject will solve:

V ′t (Pt, Xt, Ht−1) = max
Ct

{u(Ct, Ht−1) + ∆Et [Vt+1(GPt, Xt − C + t+ ηt+1GPt, λHt1 + Ct)]}

(A.15)

subject to constraints A.5, A.6, and A.7. Notice that V ′(Pt, Xt, Ht−1) = 1
2Vt(Pt, Xt, Ht1) (from

equation A.3) if ∆ = δ̃. In this case both value functions will have the same optimal consumption

path. If we assume β̃ < 1 (present bias), subjects in the immediate condition will weigh payoffs in

the earlier periods more heavily than subjects in the delayed condition weigh them, and will choose

to consume more beverage in early periods; this spending over the total beverage-maximizing level

will be greater in the earlier periods of the immediate condition. As a result, β̃ < 1 predicts that

subjects in the immediate condition will receive a lower beverage total because they are deviating

from the optimal beverage maximizing total.

A.3.3 A Dual-Self Planner-Doer Model

Another way to model dynamic inconsistency is by positing two systems, or a “dual self,” which

interact to create behavior (see Thaler and Shefrin, 1981; Bernheim and Rangel, 2004; Loewenstein

and O’Donoghue, 2004). For brevity, we focus on just one of these models, the Fudenberg and

Levine (2006) approach. They assume long-run and short-run players, much as in Thaler and She-

frin’s earlier “planner-doer” model. For consistency with the hyperbolic discounting model, assume

that the long-run player (L) has a linear discount factor for beverage, δ̃. L also knows that the

short-run player (S) will spend all resources in a given period if L does not exercise self-control. In

equilibrium Lwill choose a strategy from historiesm ∈M and states to actions σSC : M×Y → A

to maximize the following reduced form objective function:

Ut =
T∑
s=t

δ̃t−s
∫

[ω(y, 0, a)− q(y, a)] dπt(y(m)). (A.16)

In our application the only actions are spending decisions, so a is replaced by C̃t, and the current

state is defined as y = (Pt, Xt, Ht−1). The function q(y, a) is the self-control cost of the long-run

player enforcing spending C̃t in state y. The function πt is the measure associated with histories of

previous short-run actions and a given state. Histories are irrelevant to the long-run player (except as

summarized by the state variables); only the probabilities of other states are relevant. Thus equation
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A.16 can be rewritten as (A.17),

Ut =
T∑
s=t

δ̃t−s
∫ [

ω(Pt, Xt, Ht−1, 0, C̃t)− q(y, a)
]
dµ((Pt, Xt, Ht−1) (A.17)

where dµ(Pt, Xt, Ht−1) is the probability measures of the states. If the subject is an expected utility

maximizer, than her problem becomes very similar to the hyperbolic case. She will solve

max
C̃t

T∑
s=t

δ̃t−s
[
ω(Pt, Xt, Ht−1, 0, C̃t)− q(y, a)

]
. (A.18)

In the delayed condition the short-run player has no control over how much utility she receives

because the decision determining her current utility was made ten periods ago. According to as-

sumption 4 of Fudenberg and Levine (2006) this means L can make all choices without exerting

a self-control cost. So her optimization procedure will be identical to the traditional exponential-

discounting case. L will maximize

maxEt

[
T∑
s=t

δ̃s−tω(C̃s, C̃s−1)

]
. (A.19)

The optimal value function will be

V ′t (Pt, Xt, Ht−1) = max
Ct

{u(Ct, Ht−1) + ∆Et [Vt+1(GPt, Xt − C + t+ ηt+1GPt, λHt1 + Ct)]}

(A.20)

subject to constraints A.5, A.6, and A.7 as before. In the immediate condition, if there are positive

self-control costs in restraining S’s spending in each period, the subject will consume more than is

optimal (since S’s myopic ideal is to consume everything). The implication is that subjects in the

immediate condition will spend more than is optimal in early periods, and will therefore spend more

than the delayed-condition subjects (who, by assumption, optimize). Hence the planner-doer and

hyperbolic discount models both predict more early consumption, and less overall consumption, in

the immediate condition compared to the delayed condition. To make a more precise prediction (and

comparison between theories) requires a detailed specification of the utility costs of self-control,

which is an important topic that lies beyond the scope of this paper.
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Figure A.3: Spending as a proportion of actual income each period, lifetimes 1 & 7, private social
learning condition (N = 36)

A.4 Rules of Thumb: Spending as a Proportion of Cash-on-Hand

These figures show that simple rule-of-thumb models of constant consumption across periods are

badly rejected by actual behavior. Figures A.3 and A.4 show that consumption as a proportion

of current income fluctuates a lot across periods. Figures A.5 and A.6 show that consumption as

a proportion of cash-on-hand fluctuates a lot, as well. However, those figures show that learning

could conceivably be modeled as a shift in the consumption function from one that exhibits little

trend across periods (in lifetime 1) to one which is clearly increasing across periods and jumps

up sharply in the last couple of periods. (Keep in mind that the software automatically spends all

available cash-on-hand in the last period, so the consumption/cash-on-hand ratio is necessarily equal

to 1 in the the last period 30.)

A.5 Myopic Loss Aversion

A widely used concept in behavioral economics which might apply here is myopic loss-aversion.

Loss-aversion is the idea that people are disproportionately averse to making decisions that create
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Figure A.4: Spending as a proportion of actual income each period, lifetimes 1 & 7, social learning
condition (N = 36)

Figure A.5: Proportion of available cash spent each period, lifetimes 1 & 7, private learning condi-
tion (N = 36)
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Figure A.6: Proportion of available cash spent each period, lifetimes 1 & 7, private learning condi-
tion (N = 36)

nominal losses relative to a point of reference (see Kahneman and Tversky, 1979; Camerer, 2005,

2006; Goldstein et al., 2006). Myopic loss-aversion means that people focus on losses only in

a small segment of time or a part of a portfolio, neglecting the benefits of decision rules which

aggregate losses and gains across choice sets. In our setting, one hypothesis from myopic loss-

aversion is that subjects will be unusually reluctant to choose a consumption level that generates

a period-specific utility which is negative (assuming zero is a reference point).4 Figure A.7 tests

this hypothesis using study 1 data, by plotting nominal utility losses in each period from actual

consumption on the y-axis, and corresponding losses that would have resulted from conditionally-

optimal consumption (for utilities between -50 and +50, n = 14, 228). There is a sharp visible

drop-off in points between the bottom and top halves of the Figure A.7 scatter plot. It appears

that subjects hate to lose a small amount of nominal utility, even when they should take a small

loss to build up savings (as shown in Fehr and Zych, forthcoming).5 A piecewise-linear jackknife

regression through the origin gives coefficients in the domain of positive and negative conditionally
4Subjects sometimes input a series of consumption levels, trying to find the value that would give a positive utility.

Unfortunately, the software did not capture these attempts; data like these would be useful to understand the nature of
loss-aversion and its persistence.

5The result is reminiscent of DeGeorge et al. (1999) finding that small negative earnings announcements, and small
year-to-year drops, are relatively rare for corporations.
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optimal utilities of 0.79 and 0.15, respectively. The ratio of these two slopes is 5.2. Another way to

see the effect is to plot histograms of small actual and optimal utilities (between -10 and +10), across

all subjects and periods (see Figure A.8). In the actual period-by-period utilities there is a huge spike

on the slight positive side. This spike is not at all evident in the corresponding distribution of optimal

utilities, so the preference for a small positive utility and aversion to loss is not normative.

Figures A.9 and A.10 show actual-optimal utility scatter plots like FigureA.7, for the money

periods and beverage periods of study 2. For money (Figure A.9), the jackknife regression gives

positive and negative slopes of 0.88 and 0.10 (a ratio of 8.8). For beverage (Figure A.9), the slopes

are 0.92 and 0.62 (a ratio of 1.49). The difference between money and beverage is consistent with

the idea that in the domain of beverage, subjects know that a large loss creates a debt that they must

pay off before getting more sips, so they are more willing to accept small losses rather than run up

large debts. Johnson et al. (2006) also show variations in loss-aversion across domains.

The myopia underlying Figures A.7–A.10 is surprising. The subjects make 210 separate money

decisions in study 1, and 120 decisions in study 2. They know that the utilities in each of those

periods will be added up at the end to determine their total money earnings. (The software even

updates the total points for each lifecycle every period and shows the total at the bottom of the

screen.) There is no good normative reason to avoid a small loss in any single period (as Figure

A.8 showed). These data are a reminder that a complete theory of theory of loss-aversion and its

interaction with a myopic focus needs to account for how broadly decisions are bracketed or lumped

together (Thaler, 1999; Read et al., 1999).
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Figure A.7: Actual (y) and conditionally optimal (x) utilities, study 1, observations between -50
and +50 (N = 14, 228)

Figure A.8: Frequency of actual and conditionally optimal utilities, study 1, observations between
-10 and +10 (N = 14, 228)
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Figure A.9: Actual (y) and conditionally optimal (x) utilities, study 2, observations between -50
and +50 (N = 5, 840)

Figure A.10: Actual (y) and conditionally optimal (x) ml of beverage, observations between -25
and +25 (n = 1346)
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Appendix B

Supplemental Materials for To Review
or Not Review?

B.1 Description of Variables

To determine if a movie was cold opened (cj = 1) we examined the dates on three or four major

news publications (the Los Angeles Times, New York Times, San Francisco Chronicle, and New

York Post). If the dates of reviews in any of these publications were later than the release date we

examined the reasoning behind the late reviews. A movie was classified a “cold open” if at least

one source stated the movie was not screened for critics before release (in most cases, all of the

available sources did not have advance reviews).

Weekend and total US box office data were obtained from a FilmSource database (Nielsen EDI,

www.filmsource.com). The FilmSource database also included the number of theaters that

showed a movie during its first weekend, the number of days in the opening weekend, and if the

movie was released before Friday (generally only for anticipated blockbusters). FilmSource also

gave a description of the genre of the movie, its MPAA rating (G, PG, PG-13, R), and whether the

movie was adapted from previous source material.

Production budget information came from imdb.com for most movies, and from boxoffice-

mojo.com or the-numbers.com for those missing from imdb.com. Budget data were available for

856 of the 890 movies, including 59 or the 62 cold openings (95%). Of this set, 832 movies also

had the first day’s box office data available on imdb.com including 59 of the 62 cold openings.

The imdb.com database was used to determine the star power rating of each movie’s stars. Each

week imdb.com determined this value by ranking the number of searches done on the imdb.com site

for every person affiliated with movies. The most searched star would have value 1. Since there
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are over one million stars on imdb.com, we took the natural logarithm of the star ranking to reduce

effect of unknown stars with very high numbers. We averaged the logged star ranking for the top

two stars for each movie during its opening week.

Three other variables, competition (the average production budget of other movies released on

the same opening weekend), the summer dummy variable (whether the movie was released in June,

July and August), and the year of release variable (2000=-3, 2001=-2, 2002=-1, 2003=0, 2004=1,

2005=2, 2006=3) were calculated from the previous data.1

B.2 Supplemental Tables and Figures

Table B.1 shows the regressions done on logged opening day box office in the full and lean regres-

sions. Table B.2 shows regressions done on logged post-opening-weekend box office in the full

and lean regressions including logged opening weekend box office as a regressor. Table B.3 shows

the correlations between the regressors in the full regressions done on box office. Table B.4 shows

values after each iteration in estimating the QRE parameters. Table B.5 shows values after each

iteration in estimating the CH parameters with QR.

Figure B.1 shows the predicted probabilities of cold opening by critic quality and actual deci-

sion. About half the movies cold-opened (squares) have high predicted probabilities and half have

low probabilities. There is a clear relation between quality and the predicted probability of cold

opening. The model is on the right track but the correlation is far from perfect. Figure B.2 shows

the expected quality of each movie given it was cold opened vs. the actual quality. Since movie-

goers correctly infer expectations in the QRE, about half the cold opened movies have quality less

than their actual critic ratings. The low value of λd causes a wide variety of expectation values for

cold opened movies between 0 and 40.

Figure B.3 which represents the estimated probability that each movie will be cold opened,

with actual cold-openings plotted in red. The implied line from the scatter plot is much clearer in

Figure B.3 than in Figure B.1 for the QRE model. The cold opened movies on average have higher

probabilities of being cold opened, so the model fits better. Figure B.2 shows the estimated value

of the expected quality belief moviegoers would have if each movie had been cold opened. This

is almost a constant because of the relatively high λd and lower τm. Moviegoers expect few cold

opening decisions to be the result of quantal response, but they mostly expect distributors to be best
1The regressions had similar results when dummy variables for year were used instead of one year variable.
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Table B.1: Regressions of log opening day revenues (in millions)
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Table B.2: Regressions of log box office revenues after first weekend (in millions)
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Table B.3: Correlation between variables

Figure B.1: Probability of movie being cold opened in QRE model by critic rating (λd = 1.345)
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Table B.4: The iterative estimation process for the QRE model
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Table B.5: The iterative estimation process for the QRE model with CH
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Figure B.2: Expected movie quality given it is cold opened in QRE model by critic rating (λd =
1.345)

responding to 0 or 1 level moviegoers who do not associate quality with movies or the decision to

cold open. Note that cold opened movies (red squares) tend to have expected quality above actual

quality and screened movies have expected quality below actual quality.

Tables B.6 and B.7 show the sum of squares and log likelihood for the various values of esti-

mates of τd and {τd, λd}, respectively.

Table B.6: Average squared difference between predicted and actual weekend revenues (in $) for all
cold openings (N = 59) by moviegoer sophistication in CH model with QR (λd = 7.085)
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Figure B.3: Probability of movie being cold opened in CH model with QR by critic rating (λ =
7.085, τd = 8.567)

Figure B.4: Expected movie quality given it is cold opened in CH model with QR by critic rating
(λ = 7.085, τd = 8.567)
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Table B.7: Log likelihood for all distributor release decisions (N = 856) in CH model with QR by
distributor sophistication

B.3 Details of Iterative Estimation Procedures (QRE, Cursed, CH)

This section provides the general iterative procedure for obtaining estimates for the relevant param-

eters of the QRE, cursed and CH models.

1. The iteration counter begins at i = 1.

2. The coefficients in equation 3.5 are estimated using a linear regression,

log
(

yj

Nt̂− yj

)
= (−λmα)Em(qj |cj , Xj)− (λmβ)Xj − (λm)t̂− (λm)εj (B.1)

assuming N = 300 × 106 and t̂ = 5.34.2 In iteration i = 1 only the 797 movies which are

screened to critics (cj = 0) are used. Using assumption 3.1, the observed qj is substituted

for the unobserved expectation Em(qj |0, Xj) for these movies. Then all the independent and

dependent variables are measured and we can estimate the regression easily.3 In later iter-

ations, expected quality values
(
Eqremi (qj |cj , Xj), Ecemi

(qj |cj , Xj), or Echmi
[Ek(qj |cj , Xj)|τd]

)
after iteration i will have been computed, and a regression on the full sample can be run.

3. Since simply using R̂(Xj , Em(qj |cj , Xj)) = Nt̂
(

1 + exp[λ̂mαEm(qj |cj , Xj) + λ̂mβXj + λ̂mt̂]
)

to estimate R(Xj , Em(qj |cj , Xj) would produce biased estimates, non-parametric kernel re-

gression techniques are used. A consistent Gaussian kernel regression is used to estimate

revenue from the parameter estimates from equation B.1.

R̂(Xj , Em(qj |cj , Xj)) = m̂
(
−λm(αEm(qj |cj , Xj) + βXj − t̂)

)
=

∑
l∈Ji

Kh(g(j)− g(l))yl∑
l∈Ji

Kh(g(j)− g(l))
(B.2)

2Results are highly similar for N = 100× 106, 200× 106, and t̂ = 5.34.
3A crucial maintained assumption below is that the coefficient on expected quality, α, in determining moviegoer

attendance, and hence revenue, is the same for known-quality (screened) and unknown-quality (cold opened) movies.
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where g(j) = −λ̂m
(
α̂Em(qj |cj , Xj) + β̂Xj − t̂

)
, and K is the Gaussian kernel, Kh(x) =

h 1√
2π
e

x
2h , with bandwidth, h = 0.9w‖Ji‖−1/5 where w = min(sy, IQRy/1.34) (from Sil-

verman, 1986) and Ji is the current iteration’s set of movies (with length 797 for iteration 1,

856 thereafter).

4. The regression results from step 2 give iteration-i coefficients α̂i and β̂i and a response sen-

sitivity λ̂m,i. Step 3 gives estimated revenue equation R̂i from these parameters for different

values of Xj and qj . From equation (3) we have

Eqrem (qj |Xj , 1) =
P100

q=0 qπ(Xj ,q)P (q)P100
q=0 π(Xj ,q)P (q)

⇒ Eqrem (qj |Xj , 1)
∑100

q=0 π (Xj , q)P (q) =
∑100

q=0 qπ (Xj , q)P (q)

⇒
∑100

q=0 π (Xj , q)P (q) [Eqrem (qj |Xj , 1)− q] = 0

⇒
P100

q=0 P (q)[Eqre
m (qj |Xj ,1)−q]

1+exp(λd(R̂(Xj ,E
qre
m (qj |Xj ,1))−R̂(Xj ,qj))) = 0

(B.3)

where the last step follows from the definition of π(Xj , q) (assumption 3.3). All the terms

in B.3 can be estimated from regression coefficients (α̂i, β̂i, λ̂m,i from step 2), determined

from the revenue equation R̂i (from step 3), fit from the quality distribution P (q), or fixed by

assumption (t̂, N), except for λd and Eqremi (qj |Xj , 1). To create an iteration of estimates of

Eqrem (qj |Xj , 1) ∀j we fix a value of λd and solve B.3 for each movie j. Next, using fixed λd,

and newly calculated estimates of Eqremi (qj |Xj , 1) for each movie, along with the estimated

parameters in step 2 and revenue equations in step 3, the predicted iteration-i probability

(π̂i(Xj , qj , λd)) that each movie j will be cold opened can be computed from assumption

3.3.

Additionally, in the cursed procedure: For any fixed χd, the newly calculated estimates of

Eqrem (qj |Xj , 1) (see above equation B.3) for each movie can be converted to Ecem(qj |Xj , 1),

by equation 3.6. With those values, along with the estimated parameters in step 2 and revenue

equations in step 3, the predicted iteration-i probability (π̂i(Xj , qj , λd) that each movie j will

be cold opened can be computed from assumption 3.3 for each value of χd.

The ch procedure obtains the probabilities that each movie is cold opened differently:

For a given λd and τd, we use our estimated values α̂i, β̂i, λ̂m,i, and estimated revenue equa-

tion R̂i to estimate πki(qj , Xj), Eki(q|Xj , 1), and R̂i(Ek(q|Xj , 1)) for k = 0 . . . k̄ using
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equations 3.9–3.12.4 Since the probability of a given distributor being level k isP (x = n|d) =

τnd e
−τ/n! and the probability of that distributor cold opening given he is level k is πk(qj , Xj),

the total probability that a movie is cold opened is

π̂i(Xj , qj , λd, τd) =
k̄∑
k=0

πk(qj , Xj)× τnd e−τ/n! (B.4)

5. Step 4 is performed repeatedly for a grid search over sets of values of λd ∈ Ai (or (λd, χd) ∈

{Ai, B}, (λd, τd) ∈ {Ai, Bi}), where the grid search becomes progressively finer across

iterations i.5

The maximum likelihood estimate ω (λ∗d,i, (λ∗d, χ
∗
d), or (λ∗d, τd)) is chosen from the set Ωi

(Ai, {Ai, B}, or {Ai, Bi}).6 That value satisfies

ω∗i = argmax
ω∈Ωi

L(ω)

= argmax
ωi∈Ωi

∏
j

[π̂i (Xj , qj , ω) cj × (1− π̂i (Xj , qj , ω)) (1− cj)] (B.5)

where L(ω) is the joint probability that distributors would choose to screen and cold open

each of the 856 movies in the exact manner they did under the QRE (or cursed, CH) model

with parameter(s) ω.7

6. The value for the maximum likelihood parameter λ∗d,i determined from the last step 3.5 is

then used in equation B.3 to solve for iteration-i values of Eqremi (qj |cj , Xj) for each of the 59

cold opened movies.

For the ch procedure: The maximum likelihood value λ∗d,i is used to compute the population-

4We used k̄ = 40, because given regular τ values the probability of k > 40 is nearly zero.
5The initial λd,i grid is A1 = {1, 1.25, ..., 2}. The second grid A2 takes an interval of values in increments of .1

around the maximum likelihood estimate λ∗d,1. The next grids Ai take on values of values of width .05, 0.01, 0.005, and
0.001 around the maximum likelihood estimate λ∗d,i−1.

For cursed: The initial λd,i grid is A1 = {1, 1.25, ...2}. The second grid A2 takes an interval of values in increments
of .1 around the maximum likelihood estimate λ∗d,1. The next grids Ai take on values of values of width .05, 0.01, 0.005
and 0.001, around the maximum likelihood estimate λ∗d,i−1. The grid for χd, B is always {0,0.005,...1}.

For ch: The initial λd,i grid is A1 = {1, 2, ..., 10} and τd,i grid is B1 = {0.05, 0.1, ..., 10}. The second grid A2

takes an interval of values in increments of .1 around the maximum likelihood estimate λ∗d,1. The next grids Ai take
on values of values of width .05, 0.01, 0.005 and 0.001, around the maximum likelihood estimate λ∗d,i−1. For grids
i ≥ 2, Bi = 8.001, ...9.

6In the early steps of iteration (i.e., steps 1–3) this value is determined by interpolating inside the grid to achieve more
decimal precision.

7This process takes roughly 15 minutes (8 minutes for CH) for each λd on a single PC running Mathematica 5.2.
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averaged expectation for each of the 59 cold opened movies in the sample with

E[Ek(q|Xj , 1)|τm] =
m̄∑
k=0

πk(qj , Xj)Ek(q|Xj , 1). (B.6)

The value of τm that minimizes the squared residuals in equation 3.5 is considered the best

estimator for this step, that is

τ∗m,i = argmin
τm

∑
j:cj=1

(
R̂i (Xj , E [(Ek(q|Xj , 1)|τm])− yj

)2
(B.7)

where R̂i(...) is estimated from the kernel estimation B.1 in step 2.

Now we have a full set of quality measures qj and expected qualities for every movie.

7. The process is stopped when the regression values and parameter estimates (λ∗m, ω∗m) from

the current iteration i are all within .001 of those from iteration i− 1. Otherwise, the process

is repeated with the iteration counter increased by one, starting with the regression step 2. For

the cursed procedure: When the process converges, a new value χm is calculated to minimize

the sum of squares between predicted and actual values over all cold openings. That value is

determined by

χ∗m = argmin
χm

∑
j:cj=1

(
R̂ (Xj , (1− χm)Ere∗m (q|Xj , 1) + χmq̄)− yj

)2
(B.8)

where R̂(...) is the last estimate done in step 3.

8. The process is repeated 100 more times with different bootstrapped data sets. A bootstrapped

data set is created by randomly sampling with replacement from the 856 movies in the original

data set. Parameter estimates are obtained by repeating steps 1–7. Standard errors (see Table

3.10) are calculated by taking the standard deviation of these 100 parameter estimates.8

8Depending on the bootstrap and number of iterations, the process for a single bootstrap takes 2–6 hours (2–6 for
cursed, 2–12 for ch) on a single PC running Mathematica 5.2
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Appendix C

Supplemental Materials for Endogenous
Time Preference and Personal Rules

C.1 Stochastic Grapefruit Quality Example for T=2

Definition C.1. For T periods, {(a, V )} is a stochastic solution to the sophisticated model with finite

periods if ∀t, 1 ≤ t ≤ T , we have at : (β, β)×{gH , gL} → {G,D} and Vt : (β, β)×{gH , gL} → R

s.t.

a∗T (β, g) =


G if v(G, β, g) ≥ v(D,β, g)

D if v(G, β, g) < v(D,β, g)
(C.1)

and

EV ∗T (β) = πu(a∗T (β, gH), gH) + (1− π)u(a∗T (β, gL), gL) (C.2)

and ∀1 ≤ t < T

a∗t (β, g) =


G if v(G, β, g) + δEV ∗t+1(Γ(β)) ≥ v(D,β, g) + δEV ∗t+1(∆(β))

D if v(G, β, g) + δEV ∗t+1(Γ(β)) < v(D,β, g) + δEV ∗t+1(∆(β))
(C.3)

EV ∗t (β) = πV ∗t (β, gH) + (1− π)V ∗t (β, gL) (C.4)

V ∗t (β, g) =


u(G, g) + δEV ∗t+1(Γ(β)) if at(β, g) = G

u(D, gt) + δEV ∗t+1(∆(β)) if at(β, gt) = D.

(C.5)
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Example C.1. If T = 2 we can define solutions as before with thresholds. Let β̂HL = d
gH

. And let

β̂L2 = max
{

d

gL + δπ(gH − d)
,Γ−1(β̂H1 )

}
(C.6)

β̂H2 = max
{

d

gH + δπ(gH − d)
,Γ−1(β̂H1 )

}
. (C.7)

Then if β̂L2 ≤ β, and ∆(β̂L2 ) > β̂H1 the solution to t = T − 1 is

a∗T−1(β, g) =



D if β ∈
(

∆−1(β̂H1 ), β
)

and g = gL

G if β ∈
[
β̂H2 , β

]
and g = gH

G if β ∈
[
β̂L2 ,∆

−1
(
β̂H1

)]
and g = gL

D if β ∈
[
β̂H2 , β̂

L
2

)
and g = gL

D if β ∈
(
β, β̂H2

)
(C.8)

if β̂L2 ≤ β, and ∆(β) < β̂H1 the solution to t = T − 1 is

a∗T−1(β, g) =



G if β ∈
[
β̂L2 , β

)
and g = gL

G if β ∈
[
β̂H2 , β

)
and g = gH

D if β ∈
(
β̂H2 , β̂

L
2

)
and g = gL

D if β ∈
(
β, β̂H2

)
.

(C.9)

Proof. For β < β̂H2 < β̂H1 , v(G, β, g)+δEV ∗T (Γ(β)) < v(D,β, g)+δEV ∗T (∆(β)), so a∗T−1(β, g) =

D, ∀g. If β ∈ [β̂H2 , β̂
L
2 ) and β̂H1 > ∆(β̂L2 ), then EV ∗T (Γ(β)) = πgH + (1−π)d and EV ∗T (Γ(β)) =

d. Then a∗T (β, gH) = G and a∗T (β, gL) = D.

If β̂H1 < ∆(β̂L2 ), then for ∆−1(β̂H1 ) < β < β, EVT (Γ(β)) = EVT (∆(β)) and a∗T−1(β, gL) =

D, a∗T−1(β, gH) = G. If instead, ∆(β) < β̂H1 , for β̂L2 < β < β, EVT (∆(β)) = d and

EVT (Γ(β)) = πgH + (1 − π)d, so a∗T−1(β, g) = G. A similar argument shows that if ∆(β) >

β̂H1 > ∆(β̂L2 ) for β ∈ [β̂L2 ,∆
−1(β̂H1 )), a∗T−1(β, g) = G.

C.2 Characterization of the Extensive Form Game

We will use the Kreps and Wilson (1982) definition of an extensive form game.



141

Definition C.2 (Kreps and Wilson (1982)). In a finite extensive form game the following are spec-

ified:

1. The physical order of play. The physical order of play is given by a finite set of nodes T1 with

a binary relation on that represents precedence.

2. The choices available to each player when it is his turn to move. A finite set A of actions and

a function, α : T\W → A that labels each non-initial node with the last action taken to reach

it. A is required to be one-to-one.

3. Rules for determining whose move it is at any point. A finite set of players I and a function

ι(x) : X → I that assigns to each decision node the player whose turn it is.

4. The information a player has whenever it is his turn to move. Information possessed by

players is represented by a partition H of X that divides the decision nodes into information

sets.

5. The payoffs to the players as functions of the moves they select. For each player i, the pay-

off function ui : Z → R assigns a real-valued von Neumann-Morgenstern utility to each

outcome.

6. The initial conditions that begin the game (that is the actions of nature). Player i’s intial

assesment ρi is a probability measure on the set W of states or initial nodes.

Lemma C.1. For any n ∈ N, and initial state β0 the model can be expressed as an extensive game.

Proof. For any n we can define a finite set of nodes T where |T| =
∑n

k=0 2k. Index the nodes so

that for any 1 ≤ i ≤ n there are 2i−1 nodes of the form τik. Starting with τ11, each node τij is the

parent of nodes
{
τ(i+1)(2j), τ(i+1)(2j−1)

}
which gives a binary relation satisfying (1). Then there

are 2n terminal nodes, denoted τ(n+1)k. Decision nodes are xij = τij ∀i, T − n ≤ i ≤ T .

The game always begins at node τ11 and this is known to all players T − n+ 1, . . . , T , satisfy-

ing (6).

We have T−n+1 players. The function ι(xij) = i+T−n assigns movement at every decision

node to a player. Satisfying (3) Player T − n+ 1 moves first.

All players have perfect knowledge so H=X. Satisfying (4).
1Used instead of Kreps and Wilson’s T to avoid confusion.
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At every node xij , player T − n+ i may make actions from the set {D,G}. Also define

α(τij)→=


G if j ∈ 2N,

D if j ∈ 2N + 1
(C.10)

satisfying (2).

Given state β0 at τ11 the state βij at node τij (β|τij) is defined recursively as

β|τij =


Γ
(
β|τ(i−1)( j

2
)

)
if j ∈ 2N

∆
(
β|τ(i−1)( j+1

2
)

)
if j ∈ 2N + 1.

(C.11)

Then given a sequence of actions aT−n+1 . . . aT and player i, T − n + 1 ≤ i ≤ T . Condition (2)

gives us a unique node that was reached by that sequence for any i. Let τij be that node. Then let

Ui = v(ai, β|τij) +
T∑

k=i+1

δku(ak) (C.12)

then u is a real-valued von Neumann-Morgenstern utility function for each outcome, satisfying

(5).

C.3 Proof of Theorem 4.2, the Existence of an Infinite Horizon Solu-

tion

Theorem C.1. Suppose

V ∗∞(β) =


g

1−δ if β ≥ β̂1

d
1−δ if β < β̂∞.

(C.13)

For β0 let there only be finite n number of states created from all transformations of Γ and ∆ where

β̂∞ ≤ βt < β̂1. Then there is a vector ˜omega that satisfies 4.27, 4.28, 4.29.

Proof. LetB = {β0, . . . , βn} be the ordered set of all possible transformations of β0 by Γ, ∆ where

β̂∞ < β < β̂1. We first must show that there exists a V ∗∞ satisfying 4.28 that is defined over B.

Let I be the set of functions defined on [0, 1]n that map to Rn, that are continuous and concave.
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Define operator T : I → I s.t.

(Tv)(σi) = σi
(
g + δvΓ(i)(σi)

)
+ (1− σi)

(
d+ δv∆(i)(σi)

)
(C.14)

where

Γ(i) = j s.t. βj = Γ(βi) and Γ(βi) ≤ βn (C.15)

Γ(i) = j s.t. βj = ∆(βi) and Γ(βi) ≥ β1 (C.16)

VΓ(i) =
g

1− δ
, if Γ(βi) > βn (C.17)

V∆(i) =
d

1− δ
, if Γ(βi) < β1 (C.18)

Now for any u, v ∈ I , σ ∈ [0, 1]n

|(Tv)(σi)− (Tu)(σi)| = |σi
(
g + δvΓ(i)(σi)

)
+ (1− σi)

(
d+ δv∆(i)(σi)

)
−

σi
(
g + δuΓ(i)(σi)

)
+ (1− σi)

(
d+ δu∆(i)(σi)

)
|

≤ δ
∣∣σi(vΓ(i)(σi)− uΓ(i)(σi)) + (1− σi)(v∆(i)(σi)− u∆(i)(σi))

∣∣
≤ δ

∣∣∣∣σi sup
σi

[v(σi)− u(σi)] + (1− σi) sup
σi

[v(σi)− u(σi)]
∣∣∣∣

≤ δ|ui − vi| (C.19)

Now we have a contraction mapping, so there exists a unique Tv∗ = v∗. Since T maps continuous

concave functions to continuous concave functions (because convex combinations of continuous

and concave functions are continuous and concave), and v∗ is the limit of any repeated mapping

(including concave and continuous functions) v∗ (henceforth V ∗) must be continuous and concave.

To proceed further, let us define

Ui(σ) = σi(g + δV ∗Γ(i)(σ)) + (1− σi)
(
d

βi
+ δV ∗∆(i)(σ)

)
(C.20)

Now let us defined a best response function, r(σ) : [0, 1]n → [0, 1]n s.t. ri(σ) ∈ argmaxσi
Ui(σi, σ−i)

∀i. We now must show a fixed point exists (σ ∈ r(σ)), to show our solution holds.

First, note that [0, 1]n is a compact, convex, nonempty subset of Euclidean space.
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Second, since Ui(σ) is linear with respect to σi and V (σ) and V (σ) is continuous with respect

to σ, U is continuous with respect to σ. Therefore r(σ) is non-empty and by Berge’s maximum

theorem r(σ) is upper-hemi-continuous.

Finally, since V (σ) is concave, and U is a convex combination of that function plus constants,

U is also concave. Then r(σ) is convex.

By Kakatani’s fixed point theorem, there exists a σ ∈ r(σ). Therefore at every node βi there is

a σ that satisfies the solution to the system.

C.4 One-Step Cases

For notational simplicity, Vi will denote V ∗∞(βi) in this section.

Example C.2. If n = 2 and δ <
√

1− u
d1

we will have a∗∞(βi) = G,∀i ∈ {1, 2}. Otherwise we

will have

p1 = 1− ū− d2

δd1
p2 =

ū− d1

δd2
. (C.21)

Proof. Let us use notation V1 = V ∗(β1) and V2 = V ∗t (β2). By definition, V1 = p1û+(1−p1)δV2),

and V2 = p2(u + δV1)). Solving we have p = V1−δV2
û−V2δ

and p2 = V2
u+δd2

. If û = d1 + δV2 and

d2 = u + δV1, then we have p1 = 1 − û−d2
δd1

p2 = ū−d1
δd2

Now we must show p2, p1 ∈ (0, 1). Since

ū − di > 0, p1 < 1, p2 > 0. Our given indicates δ <
√

1− u
d1
<
√

1− u
d2

because d2 > d1.

Then ∀ i ∈ {1, 2}, δ <
√

1− u
di

. We know δ2 < 1 − u
/di and this implies u < (1 − δ2)di.

Let j = {1, 2}\{i}, then u < (1 − δ2)di + (1 − δ)dj which implies ū < δdi + dj . Therefore,

p2, p1 ∈ (0, 1)

Proposition C.1. For any even n ∈ 2N, there exists a stochastic solution where

pi = 1−
ū+ n−i−1

2 u+ i−1
2 δu−

∑n/2
m=i+1 d2m + δ

∑m−1
2

m=i d2m+1

δdi
, ∀i < n, i ∈ 2N + 1

pj =
ū+ j−2

2 un−i2 δu−
∑m/2

m=1 d2m−1 − δ
∑m−2

2
m=i d2m

δdj
∀j < n, j ∈ 2N (C.22)

provided pi, pj ∈ (0, 1).
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Proof. For even n, we may write

V1 = p1û+ (1− p1)δV2,

Vi = pi(u+ δVi−1) + (1− pi)δVi+1, ∀i, i ∈ N, 1 < i < n

Vn = pn(u+ δVn−1). (C.23)

Then solving for pi we have

p1 =
V1 − δV2

ū− δV2
,

pi =
Vi − δVi−1

u+ δVi−1 − δVi+1
, ∀i, i ∈ N, 1 < i < n

pn =
vn

u+ δVn−1
. (C.24)

If we have a stochastic solution we also have indifference between the two joining nodes. That is,

d1 = ū− δV2

di = u+ δVi−1 − δVi+1 ∀i, i ∈ N, 1 < i < n

dn = u+ δVn−1. (C.25)

Solving for Vi we have

Vi =
1
δ

 n/2∑
m=i

d2m −
n− i− 1

2
u

 ∀i < n, i ∈ 2N− 1

Vi =
1
δ

ū+
i− 2

2
u−

n/2−1∑
m=1

d2m−1

 . (C.26)

Substituting equations C.26 into C.24 yields equations C.22.


