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Abstract

Due to their many advantages, modular structures commonly exist in artificial and natural systems,

and the concept of modular product design has recently received extensive attention from the en-

gineering research community. Although some work has been done on modularity, most of it is

qualitative and exploratory in nature, and little is quantitative. One reason for this gap is the lack

of a clear definition of modularity. This thesis begins with a detailed discussion on the concepts of

“modularity” and “module”.

Based on the background presented here, a mutual information-based method is proposed to

quantify modularity. The method is based on the view that coupling is information flow instead of

real physical interactions. Information flow can be quantified by mutual information, which is based

on randomness (or uncertainty). Since most engineering products can be modeled as stochastic

systems and therefore have randomness, the mutual information-based method can be applied in

very general cases, and it is shown that the commonly existing linkage counting modularity measure

is a special case of the mutual information-based modularity measure.

The mutual information-based method is applicable to final design products. But at the early

stage of the engineering design process, there are generally only function diagrams. To exploit the

benefits of modularity as early as possible, a minimal description length principle-based modularity

measure is proposed to determine the modularity of graph structures, which can represent function

diagrams. The method is used as criteria to hierarchically decompose abstract graph structures and

the real function structure of an HP printer by evolutionary computation. Due to the specialty

of genome representations in evolutionary computation, new genetic operators are developed to

determine optimal hierarchical decompositions.

This quantitative modularity measure has been developed to synthesize modular engineering

products, especially by evolutionary design. There are many factors affecting evolving modular

structures, such as genome representation, fitness function, learning, and task structure. The thesis

preliminarily studies the effects of the modularity of tasks on the modularity of products in evolu-

tionary computation. Using feed-forward neural networks as examples, the results show that the

effects are task-dependent and rely on the amount of resources available for the tasks.
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Chapter 1

Introduction

1.1 The Ubiquity of Modularity

Modularity is all around us:

• In Figure 1.1, you can see an Indian looking towards you or an Eskimo with his back to you

looking into a cave, but you can’t see them both at the same time because our minds have

“temporal modularity” [76]. That is, different computational configurations of nerve systems

cannot exist contemporaneously.

• Neuroscientific evidence [31, 66] shows that there are two distinct cortical pathways in human

brains for “where” and “what” tasks. Nervous systems have a ventral (temporal) pathway

for recognizing the identity of an object and a dorsal (parietal) pathway for identifying its

location.

• In biological evolution processes, it took about three billion years for nature to evolve single-

celled organisms to multi-celled organisms while it only took about five million years to evolve

from multi-celled organisms to now existing mammals. Why did it take so long for single-celled

organisms to evolve into multi-celled organisms? One reason appears to be that modularity

hastens the evolution process. Modular structures can lead to rapid adaptation to environments

because by adding, subtracting, or modifying submodules, incremental changes can be more

quickly tried and either adopted or rejected.

• There are a small number of kinds of single-celled organisms, while there are thousands of

billions of organisms existing now in the earth. This is also due to their modular structures.

Modular structures can exponentially increase variety.

• Some aspects of language processing also appear to be modular. Recent research [51] shows that

competence in learning a language appears to be quite independent of general problem-solving

skills.
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Figure 1.1: An ambiguous image: Eskimo or Indian.

• Social structures and organization structures in human activities are modular. For example,

the modular organization structure of the Executive Office of the President of the is shown in

Figure 1.2

• People adopt modular methods to tackle complex problems. This modularity is mainly due

to people’s limited short-term memory, which is key to solving many intellectual problems.

Because of this limitation, people can only handle one relatively small and easy problem at

a time. This makes people decompose a complex problem into subproblems, therefore in a

modular way.

• Many engineering designs are modular, probably due to people’s modular way of tackling

complex systems. A Boeing 747-400 has six million parts, and Pentium 4 has as many as

55 million transistors. As shown in Figure 1.3, they both are modular. It is their modular

structures that make such complex systems manageable.

• Computer programming languages have evolved from structural languages like Basic, Fortran

to C++ and object-oriented programming. It is this modular design methodology that makes

it possible to develop large and complex applications.

• This thesis is also modular. First the structure is modular. It has chapters, and each chapter

has sections, which contain subsections. Second it’s modular in semantic sense. Each chapter

has relatively independent contents.

· · ·
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• This list is modular with a collection of independent facts and observations organized into

bulleted points.

The commonality of all of the elements in the above list is their modularity. As listed above, mod-

ular structures are widely employed in artificial and natural systems, and modularity is a necessity

for the development of highly complex systems and a critical issue in understanding large complex

systems. The universality of modularity is mainly due to its many advantages such as expanding

humankind’s limited intelligence capabilities to manage complex systems by making large systems

more manageable, reducing cost [85], increasing flexibility [3, 85, 100], and boosting the rate of

innovation [3]. The benefit of modularity will be discussed in more detail in section 2.2. Due to its

wide use, its importance for understanding complex systems, and many advantages, modularity has

recently received a lot of attention in many different fields, such as engineering design [3, 98, 100],

production and manufacturing [67, 92], industrial infrastructure [58, 86], artificial intelligence [11],

neural computation [5, 12, 32, 36], software engineering [74, 73], robotics[7, 43], brain science [50, 82],

and biological evolution [8, 13, 101, 102].

1.2 Motivation: The Ambiguity and Informality of Modu-

larity

Though the terms “modular” or “modularity” are used throughout the engineering literature, little

empirical or even theoretical work has been done in either measuring or quantifying the modularity

of artificial or natural systems. One reason for this gap is the lack of a clear definition of modularity.

Even though the literature offers some definitions for modularity in different fields from different

views, there seems to be no unified view on such questions as what exactly modularity is and what

determines a “module.” So, it is necessary to clarify the concepts of “modularity” and “module” in

order to take advantage of modularity to provide good guidelines for synthesizing modular structures

or products.

Most literature relies on informal explications of the general concepts of “modularity” and “mod-

ular,” which can be easily understood by people but not so easily by machines (programs) since

people are intelligent enough to draw on their knowledge of systems. Therefore, an additional mo-

tivation for this work is to provide a technical framework to make the definitions of modularity and

related terms formal, precise, and explicit for automatically evolving modular engineering designs.

One specific computational motivation is to use quantitative measures of modularity as criteria to
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Figure 1.4: Non-modular truss structure synthesized automatically by MOSS [96]

synthesize modular structures, such as a truss. The example shown in Figure 1.4 is one automat-

ically synthesized by MOSS, a computer program [96]. The structure is highly non-modular. It is

necessary to propose a quantitative modularity measure to help synthesize modular structures.

1.3 Chapter Overview

In this work, the definition of modularity is clarified first, then information-theoretic measures

for modularity are developed, and then are verified as criteria to decompose graph structures and

function structures in engineering designs. At last, they are used to evolve modular artificial neural

networks.

In the thesis, properties and definitions of “modularity” and “module” are qualitatively discussed

in Chapter 2. A framework of mutual information-based measures of modularity is proposed in

Chapter 3, and the framework can be used to quantify modularity of dynamic behaviors in stochastic

systems, design processes, manufacturing and other processes. Minimal Description Length (MDL)

principle-based measures for structural modularity of graph structures are discussed in Chapter 4.

Chapter 5 uses the measures to decompose graph structures and function structures in engineering

design, and Chapter 6 presents preliminary studies on how to evolve modular topology structures

of artificial neural networks.

1.4 Contributions Made in the Thesis

The thesis contributions are listed below:

1. Several key characteristics of “modularity” and “module” are identified and discussed. Based

on the discussion, a framework to quantify modularity is established. See Chapter 2 and

Chapter 3.
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2. Information flow is introduced as a quantification of interactions between systems. Based on the

information theoretic view, a mutual information-based measure is proposed as a quantitative

measure of modularity. The information-theoretic measure can be applied to more general

systems than those real physical interaction-based methods, and it is shown that the existing

linkage counting methods are a special case of the mutual information based method. See

Chapter 3.

3. Since the mutual information-based method is limited to existing devices or systems, an MDL-

based modularity measure is proposed for structure modularity of graph representations, which

is common at the early phase of engineering design. See Chapter 4.

4. These information-theoretic methods are demonstrated by being used as criteria to hierar-

chically decompose abstract graphs and function structures. New genetic operators for tree

representations of modular structures are developed in evolutionary computation, which is

used to hierarchically decompose graph structures by evolutionary computation according to

the information-theoretic measures. See Chapter 5.

5. The aim of developing quantitative modularity measures is to produce modular engineering

products. To evolve modular structures, the first step is to understand the factors that will

affect the synthesis of of modular structures by evolutionary design. The thesis preliminarily

studies the effects of the modularity of tasks on the modularity of structures generated by

evolutionary computation and shows that the effects are task and resource dependent. See

Chapter 6.

1.5 Design as an Evolutionary Process

Engineering design is discussed from the perspective of biological evolution in this section. Compar-

ing design processes to natural evolution will help to understand the benefits of modularity, origins

of modules, formation of modular structures, and to develop modularity measures.

1.5.1 Design Space

The purpose of design is to synthesize some physical products to satisfy the customer requirements

or customer attributes (CAs). However, design processes do not directly work on CAs , but instead

operate on functional or performance requirements (P̄ ), which are the set of requirements that

completely characterize the design objectives based on customer attributes. The output of a design

is a complete description of an artifact. The description in turn can be broken down into basic

units, called design parameters. For example, to design a cylinder, the radius and height will be

the design parameters, and there are probably some other design parameters such as material and
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color. Let’s denote the set of design parameters as (x1, x2, · · · , xn), and suppose xi takes some value

from domain Ri. Domain Ri could be an interval in R, such as the height of cylinder, or it also

could be a discrete value from a set, such as the color. Then, the design space can be thought of as

R1 × R2 × · · · × Rn. Any specific design can be viewed as a point in the design space.

1.5.2 Design Evolution

Biological evolution is a process where individuals with high fitness survive in a complex environment

to pass their traits on to offspring. The traits of the offspring are determined by a mix of the parents

genes (through crossover) and mutation. The evolution trajectory of an organism can be viewed as

one in the evolution landscape, in which the altitude of the point equals the fitness of the organism.

As an analogy to biological evolution, consider there is a landscape in design space. During design

processes designers create variations of designs by changing design parameters, and move from one

point to another in the landscape. Given adequate knowledge of determining where to move and

the ability to move around in the landscape, designers could drive designs upward toward higher

altitudes.

To formally describe design evolution, the following things are needed:

1. A design space which includes many designs (entities) and where designers can explore design

alternatives.

2. A fitness measure, which the selection of modular design configurations is based on.

3. Sources of variation, which can explore many designs in the design space. A variation can

happen to one design (entity) and produce a new one, like mutation operators in biological

evolution, or it could happen to several entities and produce several new entities, like crossover

operators which produce one or more new entities from two existing ones.

4. Mechanisms of selection, which include criteria to choose designs (entities) for the next genera-

tion (or iteration of the design process. In some contexts, selection mechanisms are two-valued

functions. One value represents keeping a design (entity) for the next generation, and the

other one means throwing away a design (entity).

5. Control units which control sources of variation and selection mechanisms. In typical design

process, designers are the control unit, and their counterparts in biological evolution are com-

plex environments affecting selection mechanism and mutation and reproduction processes

controlling crossover and mutation.

The first two items above comprise of a fitness landscape, which can be formally defined as:



8

Definition 1 (Fitness Landscape) A fitness landscape L is a triple L = 〈D,R, f〉, where D is

the design space, R ⊂ D × D is a neighborhood relation on D, and f : D −→ R is a fitness (or

objective) function.

Peaks in a landscape are defined as:

Definition 2 (Peak) A point x ∈ D is a local peak if f(y) ≤ f(x),∀yRx and a global peak if

f(y) ≤ f(x),∀y ∈ D.

With the definition of a fitness landscape, design evolution (process) can be defined as:

Definition 3 (Design Evolution) A design evolution E is a quadruple 〈L, V, S,C〉, where

• L is a fitness landscape 〈D,R, f〉.

• V is a set of variation operators which are mappings from Dm to Dn,m, n ∈ N.

• S is a selection mechanism, which is a mapping from D to {0, 1}.

• C represents a set of control rules.

1.5.3 Difference between Design Evolution and Biological Evolution

Despite the strong parallels between biological and design evolution, the following differences are

important to observe.

1. Moving around in the landscape in design evolution is not totally random since designers,

the fundamental control units of design evolution, are capable of seeing and seeking values

in design spaces while they are random in biological evolution. This is a key reason why

organisms evolve much more slowly than engineering designs.

2. Biological selection pressures are on the whole systems, i.e., the combined genotypes and phe-

notypes.1 Whereas in modular structures, design evolution can select for specific subsystems

or modules.

3. The fitness landscape and evolution spaces can both vary with time in biological evolution and

design evolution. Yet the speeds of changes in design evolution are much faster than those in

biological evolution.

4. In design evolution, designers are the only control units, while in biological evolution, selection

mechanisms and variations are probably controlled by different units. The variation sources

in biological processes are reproduction processes which are controlled by some mechanism

1In the biology community, there is a debate on whether the biological selection is on genotypes, phenotypes, or
both.
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inside organisms, yet the selection is mainly controlled by the outside complex environment.

Due to the separation of variation and selection in biological evolution, organisms can not

choose their reproduction strategies according to the selection strategies of the outside complex

environment. However, in design evolution, designers are the only control center. Therefore

there is no strict separation of variation and selection. So, human designers can decide what

variations to create and how to select by knowing both the selection and variation mechanisms.

5. In design evolution, human designers can develop models of their design processes and improve

design processes. The relationship between variation and selection itself may be endogenous,

adaptive, and the result of conscious design. Therefore, patterns of variation and selection in

design processes are not “hardwired”: they can and do vary across contexts and over time.



10

Chapter 2

Qualitative Modularity

2.1 Introduction

Due to their importance in understanding and managing complex systems, modular structures are

favored in engineering practice. In order to produce modular structures, engineers need to under-

stand the following questions: What is modularity? What is a module? And what characterizes

modularity? Then a quantitative measure of modularity is needed. These are motivations for this

thesis work.

Though there are already many qualitative discussion of modularity [3, 46, 61, 81, 85, 86,

100](refer to Section 2.4), they are not yet unified and there are still some very basic questions

related to basic properties and quantitative measure of modularity that need to be clarified. This

chapter mainly discusses those questions after a detailed discussion of the benefits and costs of

modularity and a survey on existing views of the definition of modularity.

2.2 Benefits of Modularity

2.2.1 Product Evolution

In nature, single celled organisms dominated the Earth for billions of years. Multi-cellular organisms

came into existence only about 500 million years ago. In mere tens of millions of years, they

evolved so rapidly that they overtook three billion years of evolution of the single-celled organisms,

replacing them as the dominant living things. The main reason for this is the modular structures

of organisms. As discussed in Chapter 1, there are similarities between engineering design and

biological evolution. Modular structures can also hasten product evolution and produce better

performing designs. What is the real mechanisms behind these benefits? Based on the elements of

the design evolution E = 〈L, V, S,C〉, modular structures can speed up the development process by:

• Smoothing the ruggedness of the evolution landscape: This can be explained by Kauffman’s

NK model. The model considers a system of N components, each of which in turn is in-
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terconnected to K(K < N) other components. The neighborhood relation R, i.e., the K

connections for every component, can be chosen randomly. With the value of K varying from

0 to N − 1, the system changes from totally decomposable to wholly integral. The config-

uration (or state) space X is {0, 1}N , and the fitness function is the average of the fitness

values, fi, of each of the N individual components. The fitness value, fi, of component i

is determined by the configurations (or states) of itself and its K neighborhood components

{xi1 , · · · , xiK
}, {i1, · · · , iK} ⊂ {1, 2, · · · , i − 1, i + 1, · · · , N}. That is,

f(x) =
1

N

N
∑

i=1

fi(xi, xi1 , · · · , xiK
), (2.1)

where fi is a randomly generated mapping from {0, 1}K+1 to (0, 1). Then, the fitness landscape

is 〈X,R, f〉. The results in Kauffman [53, 54] showed that

– For K = 0, there is only one peak in the fitness landscape.

– For K = N − 1, the expected total number of local peaks is 2N

N+1 .

– For K large, the average Hamming distance 1 between local peaks is approximately

N log(K + 1)

2(K + 1)
.

Those results imply that with N fixed, as K increases, i.e., the modularity decreases, the total

number of local optima increases to a large number, and the landscape becomes increasingly

rugged.

• Parallelizing the tasks or processes: The clear and well-defined interfaces of modules can

enable design tasks to be decoupled, and every module has a well-defined function, therefore

it is feasible to define a fitness function on the module, which makes design evolution possible

on module levels. This decoupling results in the ability to complete tasks in parallel.

• Reducing design spaces: While decomposable structures can split the design space into several

small ones and evolve on module levels, non-decomposable but not wholly integral systems can

reduce the design spaces, though they can not split design spaces. Due to the reduced design

space, modularity also boosts the rate of innovation [4], and leads to rapid trial-and-error

learning [58].

• Making people (controllers) work more efficiently: People can only consciously work with a

limited number of concepts at any time. Short-term memory, which is you used when solving

an intellectual problem, only holds six or seven items [64]. This drives people to be specialized

and solve problem in modular ways, and therefore they are more efficient in design.

1The Hamming distance of two binary strings is the number of different bits.
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2.2.2 Production Variety

As to be discussed in Section 2.6, a module usually has well-defined interfaces and realizes some spe-

cific functions, and standard interfaces and well-defined functions of modules make it exchangeable.

Usually there are several alternative components which can implement a functional element. The

existence of alternative options makes it possible to construct a large variety of end products from

a much smaller set of different components.

Simon [90] pointed out that “the more complex arise out of a combinatoric play upon the simpler.

The larger and richer the collection of building blocks that is available for construction, the more

elaborate are the structures that can be generated.”

Suppose a system is composed of m modules and every module has ni, i = 1, · · · ,m alternatives,

respectively. Then, by the multiplication principle, ideally there are
∏m

i=1 ni realizations. It is easy

see that the number of combinations expands exponentially with respect to the number of modules.

Though this exponential expansion would not happen in practice, modular structures can provide

many options for production development. For example, IBM was able to create seven different

printer motors by varying only face plates, gears, and end caps of the motor while leaving 25 other

parts unchanged [100].

2.2.3 Cost Saving

The cost of designs includes development cost, test cost, and maintenance cost. All of those costs

can be reduced by modularity. Firstly, a module has well-defined functions, and its interfaces are

standardized so that its interactions with the rest of the product are minimized. This standardization

allows the same component (module) to be used across product lines. This component sharing can

dramatically reduce development costs.

Another cost saving factor is differential consumption [100]. Different parts of systems possibly

have different consumption rates and require different materials, e.g., tires of automobiles. Mod-

ularity makes it possible to separate those parts from the rest of a system, and this strategy can

drastically reduce the cost of the other “non-consumable” parts which otherwise have to be replaced

with the same rate as consumable parts, and therefore, maintenance cost. Another maintenance

cost saving factor is that maintenance can happen locally in modular structures in the sense that

you can maintain modules separately.

Modular structures save test costs by reducing the possible test configurations. Let’s consider

the following two very simple scenarios, each dealing with testing a design with 2n test parameters,

with each parameter having s states. This corresponds to s2n possible combinations. Every test is

assumed to have the same cost no matter what the size of the test, and all possible configuration

combinations will be tested. Usually this number of tests will be very large, so in practice only a
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fraction of all possible combinations are tested, and usually the number of tested cases is proportional

to the total number. The following discussions on the extreme case will still provide some sense of

test cost savings in modular structures.

One scenario is an integral design, and the other is decomposable design, which has two modules,

with each having n test parameters. In the integral design, the system behavior is decided by the

whole set of the test parameters, so the test can not be divided into different tests on subsets of the

test parameters. Then, the possible number of tests is the total number of combinations s2n .

In the decomposable design, since each module has a well-defined function, the test on the whole

system can be divided into two tests on the two modules, respectively. Then, each has sn possible

test combinations, so there are 2sn tests on module levels. How about integration tests on the system

level? Let’s assume each module has m output states, which is much smaller than the number of

its possible state configurations, i.e., m ≪ sn. Then, the number of system level tests is m2, so the

total number of tests is 2sn + m2 ≪ s2n.

2.2.4 Specialization

Decoupling of production and design tasks of modular products enables individuals or firms to

increase specialization [57]. Figure 2.1 shows the specialization in the computer industry due to the

emergence of modular structures in computer architectures.

Specialization makes people concentrate their productive efforts on a rather limited range of

tasks and encourages them to pursue specialized learning curves, increase their differentiation from

competitors [86], and focus on a narrow area of knowledge, skills or activities. Specialization drives

individuals or firms to have unusually effective or efficient performance of some particular function

and increase their productivity and the reliability of products.

2.2.5 Reliability

As mentioned in Section 2.2.4, specialization caused by modularity can improve reliability. Addi-

tionally, in a fault tolerant system, modularity can further increase reliability with redundancy fixed.

That is, modularity can further reduce redundancy with fixed reliability. Let’s consider the follow-

ing simple model. Suppose that there are n possible failure factors{f1, · · · , fn}. For a non-modular

structure A, the failure of any factor, fi, can lead to the failure of the whole structure, and in order

to keep the system running, the whole structure needs to be replaced. Yet, in an extreme modular

structure B where n possible failure factors are separated into n modules, it is only necessary to

replace the failed modules. Now consider the replacement probability, P . Assume all factors fail

with the same probability p. Then:
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Category definition
Computer and Office Equipment Except IBM
Electronic Components and Accessories
Semiconductors and Related Devices
Computer Peripheral Devices
Electronic Connectors
Computer Ternimals
Computer Processing, Data Preparation and Processing
Electronic Computers
Computer Integrated Systems Design
Computer Storage Devices
Prepackaged Software
Computer Communication Equipment
Printed Circuit Boards Computer Programming
Other Services Printed Circuit Boards 
Computer Programming Services
Computer Leasing

Start date
1960
1960
1960
1962
1965
1968
1970
1970
1970
1971
1973
1974
1974
1974
1974
1974

Code
3570
3670
3674
3577
3678
7374
3571
3575
7373
3572
7372
3576
3672
7370
7371
7377

Figure 2.1: Market value of the U.S. computer industry [3]
.
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Figure 2.2: Modularity reduces redundancy.

• In the non-modular structure A,

PA = 1 − (1 − p)n. (2.2)

• In the modular structure B,

PB = p. (2.3)

Figure 2.2 shows the relation between PA and PB.

It can be seen from Figure 2.2 that the smaller p, the more benefits modular structures can gain.

Usually in engineering, p is quite small, so PA can be approximated by a Taylor expansion:

PA = 1 − (1 − np + o(p)) = np + o(p) ≈ np (2.4)

And then
PA

PB
≈ np

p
= n (2.5)

In another limit case: n → ∞, then PA → 1, and therefore PB

PA
= 1

p .

This may partially explain why natural neural systems utilize a redundancy factor of 10,000

while current electronic systems use a factor of 2 to achieve very high reliability? The structures of

neural systems are not so modular compared to modern electronic systems.

2.3 Cost of Modularity

Modularity does not come for free. Firstly, modularity is a result of a creation process. Along with

increasing modularity, systems change from highly integral to modular structures and could be split
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into subsystems (or modules). As shown in the evolution of computer architectures, before the highly

modular system of today, the first general purpose computer “ENIAC” was highly interconnected

and non-modular [4].

Performance is usually not optimal in modular structures. Given unlimited engineering resources,

some performances of any particular product can be improved by reducing modularity. The per-

formance improvement is often in terms of reduced size and mass. Modular designs can contain

redundant physical structures and do not exploit as much function sharing 2 as possible.

Modularity may also increase some costs by introducing some redundancy and using standard

components. When standard components are used in some particular applications while they are

designed for more general applications, they may have excess capability.

Modularity can make products excessively similar by using standard components. Some auto

makers have suffered from this problem because of the customer perception of too much sharing of

styling and systems across models [100]. For this reason, much of the standardization of components

that can be achieved with modularity is confined to hidden components, particularly in consumer

goods [71].

2.4 Brief Survey on Definitions of Modularity

Due to the benefits discussed in the previous section, modularity became an important concept in

engineering design. However, the concept of modularity and modular methods or structures are not

new at all. The modular strategy originated very early. In the 1640s, in his “A Discourse on Method:

Meditations on first Philosophy,” [17] Rene Descartes, the French philosopher and mathematician,

proposed a modular method using decomposition as one of the basic ways to solve problems: “...

to divide each of the difficulties under examination into as many parts as possible, and as might be

necessary for its adequate solution...” The practice of modular strategies in engineering is also very

early. In the 1900s, the Wright brothers used a modular design method to invent the airplane. They

tackled the problem by solving three separate subproblems: lateral control, lift, and propulsion.

To some extent, it was a modular design method that enabled their success [47]. The modular

production paradigm in production is also very old. In 1914, Swan [95], an automotive engineer,

extended the standardization idea across production and for large components, standardizing wheel

sizes, hubs, bearings, axles, and fuel feeding mechanisms. Producing final products by assembling

standard components dominated the early history of the U.S. auto industry through 1930.

In the 1960s, Alexander [1] and Simon [90] systematically studied methods to design complex

systems and analyze their behaviors. In “The Architecture of Artificial,” Simon [90] discussed

a broad ranging set of systems, from business organizations to biological systems, that exhibit

2Function sharing is the implementation of several functional requirements by a single physical element in a
design [99].
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a property of being “nearly decomposable”, and also argued that those complex systems often

take a hierarchical form, whereby the system is composed “... of interrelated subsystems, each

of the latter being in turn hierarchic in structure until we reach some lowest level of elementary

subsystem.” He described nearly-decomposable systems as those where “the short-run behavior of

each of the component subsystems is approximately independent of the short-run behavior of the

other components,” and “in the long run the behavior of any one of the components depends in only

an aggregate way on the behavior of the other components.” Simon suggested that intra-module

interactions are stronger than inter-module interactions in nearly decomposable (modular) systems.

This view fits well with common intuitions and is widely adopted, but it has limits.

Firstly, only considering the strength of intra-module and inter-module interactions is sometimes

overly simplistic when applied to complex dynamical systems. Sometimes the functional behavior of

one module is strongly dependent on the inter-module interaction, despite a week interaction [109].

Secondly, it is necessary to consider the “size” of modules (“granularity”). The granularity of

modules affects the intra-module interactions, therefore the ratio of intra-module and inter-module

interactions.

Considering the effects of the granularity of modules, Wagner [102, 103] introduced function to

limit the size of modules, although this view is limited to the field of biology. He provided three

criteria for recognizing modular phenotypic units: “(1) collectively serve a primary functional role;

(2) are tightly integrated by strong pleiotropic effects of genetic variation; and (3) are relatively

independent from other such units.”

Wagner’s view is not the only one which associates modularity with functionality, even in the

field of biology. Based on Fodor’s work [21], Elman [18] stated: “A module [of mind] is a special-

ized, encapsulated mental organ that has evolved to handle specific information types of particular

relevance to the species.”

In engineering design, Pahl [71] defined modular products as “machines, assemblies, and com-

ponents that fulfil various overall functions through the combination of distinct building blocks or

modules” and different types of modules to implement different types of technical functions including

basic, auxiliary, special, and adaptive.

Ulrich [100] argued modularity depended on two factors – similarity between the physical and

functional architectures of designs and minimization of incidental interactions between physical

components. A modular architecture includes a one-to-one mapping from functional elements in the

functional structure to the physical components of the product and specifies decoupled interfaces

between components. An integral architecture includes a complex (non one-to-one) mapping from

functional elements to physical components and/or coupled interfaces between components [98].

Functionality can only be well-defined for components or systems, which can be clearly separated

from other systems. This means that those views of associating functionality to modularity are only
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suitable for decomposable systems, but not for non-decomposable systems. There are no clear

definitions for module with primary functional roles. Furthermore, functionality is not the only

aspect of modularity. Modularity is multi-dimension and it also includes other aspects such as

physical, temporal, life cycle [67], and design process. For example, modularity in the brain can be

categorized into three different types: architectural modularity, functional modularity, and temporal

modularity [10]

Another question is on the definition domain of modularity. Some views limit modularity to

modular structures. Galsworth [24] viewed modularity as having standardized and interchangeable

components: “modular design is a unit or group of standardized elements or parts that may be

used within a number of different products.” Baldwin and Clark [4, 3] stated “a modular system is

composed of units (or modules) that are designed independently but still function as an integrated

whole.” Langlois [57] stated “modularity is about how parts are grouped together and about how

groups of parts interact and communicate with one other.” Some other scholars view modularity

as a general concept for any system. For example, Shilling [86] viewed modularity as a matter of

degree, and “a complex system can be modular at various degrees.”

2.5 Modularity

The general principles or properties of modularity that have been discussed in the literature surveyed

in the above section are summarized here:

1. Modularity is a systematic concept and is a global characteristic of a system.

2. Modularity is related to intra-module and inter-module coupling.

3. Modularity is hierarchical. A modular system can be separated into subsystems, and subsys-

tems can also be separated into sub-subsystems, and so on.

4. Modularity is multi-dimensional. Modularity is related to many different aspects such as

physical structures, function structures, design processes, and time.

5. Modules usually realize some functions.

The following important aspects of modularity have not been discussed in the literature and need

to be clarified.

1. System vs. Model: It is not common to directly study a system, but instead a model of

the system. So, what people actually talk about is a model of a system. What then is the

relation between the modularity of a system and the modularity of a model of the system?

Furthermore, can the modularity of a system be well-defined?



19

2. Relativity of Interactions: Modularity compares inter- and intra-module interactions of a sys-

tem. Should a modularity measure compare the total quantity of interactions or the interaction

“density”?

3. Hierarchy: Modularity is hierarchical. How then is the modularity of a whole system affected

by the modularity of its subsystems and aggregated from them?

4. Decomposition: If a system is decomposed, there are no modules or subsystems. Therefore,

“inter-module” or “intra-module” is not well defined. That is, what is the specific meaning of

“inter-module” or “intra-module”?

5. Definition Domain: Should modularity be limited to modular structures or be a universal

concept in the sense that any system can be modular to some degree, and the definition of

modularity should work across a broad range of cases?

6. Quantifying Interactions: What is the specific meaning of “couplings”? How to quantify

interaction strength?

The first five questions are discussed in the details below, and the quantification of interactions

(coupling) will be discussed in the next chapter.

2.5.1 System and Model

A system consists of elements and interactions among the elements. Modularity is used to describe

the degree of interactions among the elements. So, modularity is related to the global behavior of

a system, and this leads to a number of questions. For example, what should be considered “global

behavior ”? What constitutes the overall function of a system? Since the understanding of behaviors

of a system depends on observers’ knowledge, how does people’s knowledge affect the modularity of

the system?

Generally, systems, especially natural systems, are complex, and it is difficult or even impractical

to understand behaviors of units in a system and interactions among them. This ignorance will

give you the difference between the modularity you observe and the modularity the system really

has. When you know a reasonable amount of information about functions and components in a

system, you can reliably attribute modularity to the system. Otherwise, you may wrongly assign

low modularity to a system which is really highly modular because of the ignorance. For example,

before people really understood the behaviors of human’s mind, the mind was perceived as a seamless,

unitary system whose functions merged continuously into one another. With continuing studies, it

was found that the mind has modular structures which consist of “a number of distinct, specialized,

structurally idiosyncratic modules that communicate with other cognitive structures in only very
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Figure 2.3: The modeling of a system. Modularity1 is not well-defined. Modularity2 = Modularity3.

limited ways” [26]. The modularity of the mind is objectively there. However our answer changed

from non-modular to modular.

In fact, there is no criterion to tell whether your knowledge of a system is complete or not. That

is, it is really difficult to tell whether the modularity observed is the real modularity of the system

or not. This does not mean, however that it is impractical to talk about modularity, although it is

very difficult to directly measure the modularity of a system. Usually, a given system, especially a

natural system, has too many contents, and it is impractical or unnecessary to arbitrarily accurately

describe it, which is beyond our understanding and modeling abilities. So, the system should be

approximately modeled under some framework and formalized by some representation languages, as

shown in Figure 2.3. Now the behaviors of models and therefore modularity can be studied. Does

this mean the measure of modularity will become subjective? If observers model a system and do

activities related to modularity within an established framework, the modularity of the system can

be determined with respect to the framework, and different observers’ views on modularity should

be consistent.

Then, it seems reasonable to define the modularity of a system as the modularity of the “best”

model of the system, which is the “best” approximation of the system under the agreed framework.

The problem is how to define “best” and the existence of the “best” model. Firstly, knowledge of

a complex system usually increases along time, so the set of models of the system {Modi} evolves.

Secondly, it needs an ordering on the set of all possible models to define “best” formally. Let us

denote the whole set of global behavior or information of a system as I. The behaviors or information

described by a model of the system should be a subset of I, denoted as Ii, for Modi. Usually, the

more information a model can describe a system, the better the model, so it is reasonable to assign

the following ordering ≤ on the models: if Ii ⊂ Ij , then Modi ≤ Modj . Then the question becomes
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whether there is a maximal element in {Modi} under the order ≤. The answer is negative since

ordering ≤ is usually not a total one.3 Suppose there are two model Modi and Modj describing

information sets Ii and Ij respectively, where Ii 6= Ij . Unfortunately it’s not guaranteed that there

exists another model describing the information set Ii ∪ Ij .

So, when people talk about modularity of a system, they are talking about modularity of a model

of the system which is modeled under some default framework.

2.5.2 Multi-Dimensional

Modularity is multi-dimensional. Modularity of a specific aspect could be thought as the projection

of the overall modularity. For example, biological modularity can be classified into three aspects:

development, morphology, and evolution [13]. In engineering, modularity could include physical

structure, function, temporal relationship, life cycles, etc. High modularity in one dimension does

not necessarily mean high modularity in another dimension. A system could have strong inter-

module dependencies in one aspect, though it may clearly be modular in other aspects. Here is a

simple example.

Consider the simple Ising model [110] shown in Figure 2.4. There are 4 spins and connections

between them. Each spin has a state 0 or 1, and the digital number over a line is the number of

connections the line represents. The dynamic behavior follows the following update rules:

P (Si(t + 1) = 1) =
1

∑

j 6=i cij

∑

j 6=i

cijSi(t) and

P (Si(t + 1) = 0) = 1 − P (Si(t + 1) = 1),

where cij is the number of connections between spin i and spin j, and Si(t) is the status of spin i at

time t.

From the structure view, the system can be thought as a modular one, with spin 1 and 2 clustered

as module M1 and spin 3 and 4 clustered as module M2. Does the modular structure imply modular

dynamic behavior?

Let’s denote the system state as a four-bit binary expansion (S1S2S3S4). Given the initial spin

state, the dynamic behavior of the Ising model is a Markov chain. From analysis on the transition

probability matrix, there are two absorbing status (0000) and (1111), so the stationary state, Sf , of

the dynamic system should be either (0000) or (1111). It is not difficult to get that the probability

3A total ordering ≤ on a set A is an ordering satisfying the following four properties:

1. x ≤ y, y ≤ z ⇒ x ≤ z, Transitivity.

2. x ≤ y, y ≤ x ⇒ x = y, Anti-symmetry.

3. x ≤ x,∀x ∈ A, Reflexivity.

4. ∀x, y ∈ A, either x ≤ y or y ≤ x.
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Figure 2.4: A simple Ising system.

of Sf is uniform, i.e., P (Sf = (0000)) = P (Sf = (1111)) = 0.5 if the probability distribution of

initial states is uniform. No matter what the stationary state Sf is, the state of (S1S2), considered

module M1, can completely be inferred from the state of (S3S4), considered module M2, and vice

versa. This means that the dynamic behaviors of M1 and M2 are totally coupled.

2.5.3 Relativity of Interactions

While discussing the modularity of a system, it is necessary to compare the inter and intra-module

interactions of the system. The weaker inter-module interactions and stronger inter-module in-

teractions of a system, the better the modularity of the system. This means that modularity is

related to the relative strength of inter-module interactions compared to that of intra-module inter-

actions. This relativity makes granularity, i.e., the “size” of modules, come into consideration while

defining modularity. “Size” could be the number of basic units or the amount of information from

information-theoretic views. For example, there are two systems, S1 and S2, each having two subsys-

tems. The two systems have the same “size” and inter-subsystem interaction strength, but different

intra-subsystem interaction strength. S1s subsystems are completely integrated, but S2s are fully

decomposable. If only based on the relative strength of inter-subsystem and intra-subsystem inter-

actions, S1 is more modular than S2, but actually S2 is more modular. In this case it is necessary

to compare the modularity of subsystems, i.e., to decompose the subsystems further.

The larger the “size” of a module, the stronger the total intra-module couplings. Highly modular

structures should favor strong intra-module interactions, and therefore a large size of module at a

specific level. Consider the structure shown in Figure 2.5(a), where each subsystems has strong

interactions inside, but the interactions between them are weak. If total interactions are considered,

then the modular structure will be the one shown in Figure 2.5(b), not the usual and intuitive one
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which has three modules at one level, shown in Figure 2.5(c). However, if interaction “density,”

interactions normalized out by the “size”of module, is used, then the structure in Figure 2.5(c) will

be better than the one shown in Figure 2.5(b).

So, to compare modularity, the interactions need to be normalized out by the “size” of modules,

i.e., they become interaction “density”.

2.5.4 Hierarchical

Hierarchical structures are common in complex systems. Complex systems take advantage of the

hierarchy to regulate the states and structures of their subsystems, make them operate nearly inde-

pendently of each other, and evolve rapidly and easily. The hierarchy looks like a tree. The levels

of nodes are increasingly assigned from bottom to root, with the beginning at level 0, and the levels

of modularity begin at node level 1, as shown in Figure 2.6.

Due to the hierarchical structure of a system, it is feasible to separately consider units in different
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Figure 2.7: The effects of modularity at different levels on the overall modularity.

levels and define modularity for the units at a specific level. How then does the modularity of units at

different levels affect the overall modularity of a model? Modularity of units at different levels of the

hierarchy have different effects on the overall modularity. Modularity at a higher levels dominates

those at lower levels, and it is not necessary that modularity of subsystems should be less than

the overall modularity. For the two neural networks in Figure 2.7, units in the left one are highly

integrated, but every unit has a modular structure, and whereas the right one is modular at higher

level and the units at higher level have highly integral structures. It is easily told from general

intuition that the right structure is more modular.4

One problem related to hierarchy is how to aggregate modularity at different levels. There are

some constraints on the form of aggregation functions so that not all general aggregations [87, 69, 68]

work here. Firstly, the modularity of subsystems at lower levels affects the overall modularity

more than those at higher levels. This is consistent with practical intuition, in that the informa-

tion/decisions at system levels are not less important than the information/decisions at module

levels. This puts a special requirement on aggregation functions f(M1, · · · ,Mn):

If i > j, then
∂f(M1, · · · ,Mn)

∂Mi
≥ ∂f(M1, · · · ,Mn)

∂Mj
> 0. (2.6)

There are many different aggregation ways. One special case is linear aggregation. The overall

modularity M is

M =

n
∑

i=1

aiMi, (2.7)

4This is in the sense of structure modularity. Modularity is multi-dimensional. As discussed later in this chapter,
a system can have high modular structure while it has low modularity in other aspects.
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and ai should be an increasing function of i regardless of whether it is linear or nonlinear in i.

To get rid of the side-effects of the number of levels, ais are required to satisfy

n
∑

i=1

ai = 1. (2.8)

The most common linear aggregation function is ai = Ciα, where α is a positive real value, and C

is a normalization coefficient such that equation 2.8 is satisfied. When α = 0, it represents uniform

aggregation.

Another important parameter related to hierarchical structures is the lower bound of sizes of

subsystems– resolution, i.e., the lowest level a system can be decomposed into. Some systems,

especially natural systems, can be divided into very small scales. For example, a computer is

composed of a CPU, memory, motherboard, hard disk, and so on, all of which can be divided

into smaller units. For instance, a CPU can have many different functional circuits, which can

be decomposed into transistors and further decomposed into atoms, molecules, etc., and atoms or

molecules consist of elementary particles at a higher level. Another interesting phenomena which

requires the lower bound is self-similarity. In those systems, subsystems can iterate themselves inside

themselves, and the iteration may be infinite. Usually, the resolution is decided in the framework

under which the system is modeled. So, it is not necessary to discuss the resolution when modularity

of a model is discussed.

2.5.5 Decomposition

While modularity is defined to compare interactions or couplings among different parts, components,

or subsystems, how do “inter-module or intra-module” come to existence in a non-decomposed

system since there are no modules or subsystems in such a system? In this case, an imaginary

decomposition of the model is assumed to exist so that the couplings inside clusters (modules) and

between clusters (modules) can make sense. Then, what is the criterion to partition a system into

an imaginary decomposition? What is the measure of the “size” of a subsystem in the imaginary

decomposition? And what kind of property of a set of elements allows them to be considered as a

component/subsystem?

Many existing views of modularity associate functionality to modularity, and use function to

decompose a system. For a fully modular design, there is a one-to-one correspondence between

each functional element of the design and a single physical component [100]. As Henderson and

Clark [39, 14] defined, a component is a physically distinct portion of the product that embodies

a core design concept [14] and performs a well-defined function [39]. This is consistent with our

intuition that a real component/subsystem should perform some functions.

However, functionality may not be a good criterion to decompose a system into a subsystem.
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Firstly, there is no such thing as a function category which is complete, standard, and formal.

Secondly, as discussed in Section 2.5.2, functionality is not the whole point of modularity. There are

other kinds of modularity. Finally, it is even worse when those systems are not completely modular.

In this case, there is no one-to-one mapping between function domain and physical domain, and there

are no physical modules or subsystems, such as the neural network structure shown in Figure 2.9.

Modularity is multi-dimensional. Modularity in one dimension does not determine the modularity

in another dimension, and any specific one among those modularities is not a sufficient and necessary

condition for modularity of the system. And therefore any specific aspect can not become the

partition criterion. Since there is no specific decomposition criterion for a system, all “possible”

decompositions are considered. A decomposition clusters all elements of the system into units,

denoted as U , which are defined as a collection of elements of a system.

Consider different decompositions of two different networks, one in the left side of Figure 2.8 and

the other one in right side of Figure 2.8. In the top decompositions, intuitively the right one is more

modular than the left one. However, in the bottom decompositions, the left one is more modular

than the right one since they have the same U1 unit and interactions between U1 and U2, yet the

left U2 unit has stronger couplings inside than the right U2 unit. These two different decompositions

give different results on modularity, so it is necessary to compare the modularity of their maximal

decompositions in order to compare the modularity of two systems.

Decompositions of a system are hierarchical. Therefore the units are organized as a hierarchy

according to their relations with other units inside the model. The neural network in Figure 2.9(a),

which calculates Y1 and Y2 from the four inputs I1, I2, I3, and X4, has two level 1 units, U1 and U2,

respectively realizing output Y1 and Y2. U1 has elements of {I1, I2,H1,H2,H3,H4, O1},5 and U2 has

elements of {I3, I4,H5,H6, O2}. U1 can be decomposed further as two child units U11 and U12. For

example, unit U11 has elements {I1,H1,H2}. The right tree in Figure 2.9 represents the hierarchical

relation of the different units. The lowest module is called leave modules. Formally,

Definition 4 (Leave Module) A module which has no submodules.

As discussed in Section 2.5.3, the lower bound size of modules affect the modularity of a sys-

tem. It is necessary to set up a threshold for decomposition. Threshold could be the number of

elements or information inside subsystems. Also, it is possible that there are some constraints on

the decomposition. For example, if the networks in Figure 2.9 are trained to learn two functions,

one mapping (X1,X2) to Y1 and the other one mapping (X3,X4) to Y2, the possible decompositions

should cluster nodes X1,X2, Y1 to the same set. And, similarly, to (X3,X4, Y2). Then, modularity

of a system is taking maximum over the modularity of all the following feasible decompositions.

5In fact, it should include the connects and their weights between those nodes. For concision, we omit them in the
following discussion.
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Figure 2.9: Structures of neural networks.

Definition 5 (Feasible Decomposition) A feasible decomposition is a decomposition which sat-

isfies all possible constraints and in which the sizes of leave modules in the hierarchical tree should

be no larger than the threshold, and the sizes of their parents are larger than the threshold.

2.5.6 Comparative Nature

It is common to say “system A is more modular than B” such and such. This requires that the

formally defined modularity should be comparative. Although “modular” is a very fuzzy concept,

it is feasible to define measurable modularity, just like “high” and “height.”

It has been seen in survey Section 2.4 that some views thought that modularity should be

limited to modular structures. Because of the following three reasons, the better way is to extend

modularity to every system. Firstly, “modular” and “modular structure” are fuzzy. There is no clear

separation between modular structures and non-modular structures. Then, if modular structures

are assumed to have modularity and non-modular structures not, modularity would also be a fuzzy

concept. The fuzziness and informality are not what we need. Secondly, it is common to say

“system A is more modular than B” such and such. This requires formally defined modularity

should be comparative and needs a quantitative parameter to characterize modularity. Thirdly, the

reason to study modularity is to propose a formal measure of modularity and then to evolve a low

modular system to a high modular one. If only modular structures have modularity and non-modular

structures have 0 modularity, there are sharp jumps in evolution landscapes which we attempt to

avoid since it is more difficult to evolve in such a discontinuous landscape than smooth one. If every

system has modularity, then evolution landscapes are smoothed, as shown in Figure 2.10.
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So, modularity should be universal in the sense that modularity is a quantitative parameter of

every system. The extreme cases of modularity is a completely integrative system, which has the

lowest modularity, and fully decomposable systems, which have the highest modularity.

2.5.7 Definition of Modularity

In summary, modularity has the following characteristics:

1. Hierarchy. The modularity of a system is an aggregation of the modularity at different levels.

2. Globality. Modularity is a global characteristic of a system and is an integration of the mod-

ularity of its subsystems.

3. Multi-Dimensionality. Modularity is related to many different aspects such as physical struc-

ture, logical structure, and temporal relationships.

4. Relativity: Modularity compares inter-module interaction “density” to intra-module interac-

tion “density.”

5. Universality. Modularity is defined over every system.

The modularity of a modular structure (fully decomposable) can be defined as,

Definition 6 (Modularity of a Decomposed System) Modularity is an attribute describing the

degree of overall relative coupling among the parts of the decomposition at different levels in different

dimensions.

From the above discussion, a non-decomposed system plus an imaginary decomposition can be

treated a decomposed system, so modularity of a non-decomposed system can be defined on the basis

of the definition of modularity of a decomposed system (decomposition). Let us denote modularity
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of a decomposition of a system as Md and C as the set of all feasible decompositions of the system.

Then

Definition 7 (Modularity of a System) Modularity of a system Mm is defined as the maximum

of the modularity Md of all possible decompositions d in C. That is,

Mm = max
d∈C

Md. (2.9)

2.6 Module

Modules in a system are the outcomes of increasing modularity of the system, so modules appear

in highly modular (decomposable) systems. Since the purpose of defining modules is to make some

parts of a large complex system treated nearly independently and therefore easier to analyze or

design the whole system, it is necessary to have interfaces to make modules nearly independent

from other parts of the system. Sometimes people want to re-use them in other complex systems,

which requires that the interfaces should be standardized to be interchangeable in many different

environments. Combining these points, a module can be defined as:

Definition 8 (Module) A module is a unit of a system which is nearly independent of the context

and interacts with other units by interfaces.

2.6.1 System Associated

The concept of module only makes sense under a specific system, i.e., modules should be associated

with some system. It is not clear to say “something is a module” without contexts, and it is better

to say “something is a module of some system” or “something is a product or system.” For example,

considering an automobile as a system, a gearbox should be a module of the automobile system,

but for manufacturers of the gearbox, they will prefer to think it as a kind of product or system. A

module could become a system if it is isolated from the system.

2.6.2 Interface

Interfaces describe in detail how modules interact, how they fit together, and how they communi-

cate. Specification of component interfaces could include: attachment, spatial, transfer, control and

communication, environmental, ambient, and user interfaces [84].

Interfaces clearly separate module from other parts of a system and minimize couplings between

modules. Therefore, they can be designed, manufactured, and maintained nearly independently. In-

terfaces need to be designed and specified, and usually this kind of design and specification activities

increase the modularity of a system.
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2.6.3 Functionality

Modules are usually designed, manufactured, and tested independently. To achieve the indepen-

dence, it is necessary to provide clear design requirements and well-defined physical behavior (func-

tions). So, a module generally realizes one or a few of the functions of the overall function of the

system.

In system synthesis, what designers are generally required to do is to create mechanisms that

function as desired or design a system to perform some functions. Pahl [71] points out that it is

useful to apply functions to describe and solve design problems. Functional modeling provides a

direct method for understanding and representing an overall artifact function without reliance on

physical structures. Otto and Wood [70] also argued that conceptualizing, defining, or understanding

an artifact, product, or system in terms of function is a fundamental aspect of engineering design.

At the very beginning phase of design, there is only function structure and no physical realization,6

so in order to exploit modularity and identify modules in the initial conceptual design or reverse

engineering, which reduces many efforts, development time, and costs for product design [71], it is

useful to decompose conceptual designs according to function structures and, therefore, later physical

designs.

2.6.4 Interchangeable

It is not necessary that modules be interchangeable. Interchangeability requires that interface speci-

fications of modules should be standard. If a component is just developed and is new to the industry,

then its interfaces are bound to be ill-designed and specified, and even if the component is unique

to a company, then its interface specifications are generally not standardized within the industry.

Only when specifications of a component become well specified and standardized do they become a

standard component.

2.7 Summary

As pointed out in Chapter 1, modularity or modular structures are commonly existing in com-

plex natural and artificial systems. This implies that modular structures are advantageous to non-

modular structures for complex systems. This chapter begins with a discussion on the benefits of

modularity, but modularity is not free, and it also has costs.

Based on the surveys on existing views on modularity, several questions about modularity have

been clarified. Specifically they are system vs. model, specific meanings of “inter-module” and

6According to Pahl and Beitz [71], the design process contains four phases: 1) Product planning and clarifying the
task; 2) Conceptual design: establishing function structures; 3) Embodiment design:developing a working structure;
4) Detail design: optimizing the design parameter.
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“intra-module,” relativity of couplings, aggregation of modularity at different levels in a hierarchical

structure, application domain of definition, and how to quantify couplings. Except for coupling

quantification, the other 5 questions have been discussed in this chapter. The remaining question

on coupling quantification will be discussed in the next two chapters.

For a nearly-decomposable system (or decomposition), modularity describes the degree of over-

all relative couplings between parts at different scales in different dimensions. For a not-fully-

decomposable system, modularity is defined as the maximal modularity of all feasible decompositions

of the system.

Finally, the concept of module has been discussed. A module is viewed as a unit of a system

which is nearly independent of the contexts and interacts with other units by interfaces.
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Chapter 3

Quantifying Couplings with Information-Theoretic

Methods

3.1 Introduction

There are many qualitative and exploratory studies on modularity [3, 28, 46, 61, 81, 85, 86, 100],

but few are quantitative [48, 29, 63]. Existing modular product design methods can be classified into

the following two categories: function-based methods [71, 94] and matrix-based methods [19, 91,

27, 29, 113, 89]. Pahl and Beitz [71] developed a formal function model and proposed that modular

product architectures can be derived from function diagrams which describe the flow of energy,

materials, and signals between subsystems. Based on formal function models described by Pahl and

Beitz, Stone et al.[94] developed a set of three heuristic methods for identifying modules from the

function models. Most function-based methods are heuristic, and not quantitative, methods. The

design structure matrix (DSM) representation method was invented by Donald Steward [93] and

extended and refined by Steven Eppinger [19]. Most matrix-based modular product design methods

are based on some quantitative measures of modularity. Most of those quantitative modularity

measures typically use linkage counting methods, which compare the average number of linkages

between modules with the average number of linkages inside modules. For example, following is one

typical modularity measure of a product [34]:

Modularity =

∑M
k=1

(

Pmk
i=nk

Pmk
j=nk

Rij

(mk−nk+1)2 −
Pmk

i=nk
(
Pnk−1

j=1 Rij+
PN

j=mk+1 Rij)

(mk−nk+1)(N−mk+nk−1)

)

M
,

where nk and mk are indices of the first and last component in kth module, M is the total number

of modules inside the product, N is the total number of components in the product, and Rij is the

value of ith row and jth column element in the modularity matrix.

All of these methods assume that interactions between different function units or design param-

eters have been quantified. How are the interactions quantified? Generally, they are done according

to designers’ experience and subjective intuitions, which are not formal. Though the early stages of
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design processes need some intuition and an art sense, those quantifications could be done formally

in redesign processes and later phases of design processes. According to the author’s knowledge,

there is no such quantitative way to quantify the interactions.

From information-theoretic views, this chapter develops mutual information-based methods which

have been used to quantify independence in independent component analysis [49] to provide quan-

titative ways to measure interactions. Now that information-theoretic methods can quantify in-

teractions, they can directly quantify modularity without mapping designs or products to DSM or

function diagrams first. Most information theoretic concepts, such as entropy and mutual infor-

mation, are based on uncertainty and randomness very commonly existing in engineering practice

and products, which can be modeled as stochastic systems since working conditions for engineering

products are stochastic, noises in working environments are random, and the inputs of the system

are random.

Since mutual information-based methods are based on randomness, systems of random variables

are considered firstly, and a framework of modularity measure based on mutual information is

established. Under the framework, modularity of dynamic behaviors of stochastic systems and

design processes are discussed. According to information-theoretic views, adjacency matrices of

weighted graphs can be mapped to covariance matrices of gaussian random variables, and it can be

shown that general linkage counting methods are a special case of the information-theoretic views.

3.2 Preliminary on Information Theory

Most material in this section is from “The Theory of Information and Coding” by R. J. McEliece [62]

and “Elements of Information Theory” by T. M. Cover and J. A. Thomas [15]. You can refer to

these two books for more details.

3.2.1 Discrete Random Variables

The entropy H(X) of a discrete random variable X with probability distribution p(x) is defined by

H(X) = −
∑

x

p(x) log p(x). (3.1)

The joint entropy H(X,Y ) of two discrete random variables X and Y with joint probability distri-

bution p(x, y) is

H(X,Y ) = −
∑

x,y

p(x, y) log p(x, y). (3.2)
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H(X,Y)

Figure 3.1: Relationship between entropy and mutual information

The conditional entropy H(Y |X) is

H(Y |X) = −
∑

x,y

p(x, y) log p(y|x) (3.3)

= H(X,Y ) − H(X). (3.4)

The mutual information I(X : Y ) is defined as

I(X : Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)

= H(X) − H(X|Y ).

It is not difficult to get:

1. Symmetric: I(X : Y ) = I(Y : X).

2. Non-negativity: I(X : Y ) ≥ 0.

This immediately follows from Jensen’s inequality and the fact that − log x is a convex function:

I(X : Y ) ≥ − log
∑

x,y

p(x, y)
p(x)p(y)

p(x, y)
= − log 1 = 0.

3. I(X : Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). These relations can be expressed in a Venn

diagram shown in Figure 3.1.

3.2.2 Continuous Random Variables

The differential entropy of a set of random variable X1, · · · ,Xn with density f(x1, · · · , xn) is defined

as

h(X1, · · · ,Xn) = −
∫

f(x1, · · · , xn) log f(x1, · · · , xn)dx1 · · · dxn. (3.5)
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Not like discrete case, h(X) is not necessary to be non-negative. For example, let X be a uniform

random variable on [0, a]. Then

h(X) =

∫ a

0

1

a
log adx = log a.

When a < 1, then h(X) = log a < 0. Unlike H(X) in discrete cases, h(X) is not a quantity to

measure the randomness of X [62].

There is no general explicit analytic formula to calculate h(X), but there is one for Gaussian

random variables (vectors). Given a set of random variables S = {X1,X2, · · · ,Xn}, which have a

multivariate normal distribution with mean µ and covariance matrix K, and the probability density

function

f(x) =
1

(
√

2π)n
√

|K|
exp{−1

2
(x − µ)T K−1(x − µ)},

where |K| denotes the determinant of K, then the differential entropy of S is

h(S) =
1

2
log(2πe)n|K|. (3.6)

The mutual information I(X : Y ) between two random variables with joint density f(x, y) is

defined as (refer to [62] for more formal definition):

I(X : Y ) =

∫

f(x, y) log
f(x, y)

f(x)f(y)
dxdy (3.7)

From the above definition,

I(X : Y ) =

∫

f(x, y) log f(x|y)dxdy −
∫

f(x) log f(x)dx

= h(X) − h(X|Y ) (3.8)

= h(X) + h(Y ) − h(X,Y ) (3.9)

The last step derivation in the above equation is due to h(X|Y ) = h(X,Y ) − h(Y ). We must be

careful to use this result if any of the differential entropies is infinite. It is easy to see that I(X : Y )

is nonnegative by the following inference:

I(X : Y ) = −
∫

f(x, y) log
f(x)f(y)

f(x, y)
dxdy ≥ log

∫

f(x)f(y)dxdy = log 1 = 0,

where the inequality comes from Jensen’s inequality.
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3.3 System of Random Variables

3.3.1 Quantifying Interactions

Firstly, when we talk about coupling between two random variables, the first quantity coming into

consideration could be the covariance of the two random variables. Unfortunately, the covariance is

not the whole. Even if two random variables have zero covariance, they could still have higher-order

correlations when they are non-gaussian and, therefore, non-zero coupling. So, couplings should

be quantified by some measure which includes high-order correlations. According to information-

theoretic views, coupling means how much uncertainty (freedom) of the state of one random variable

can be gotten away with if the state of the other one is known. This is actually the mutual information

between the two random variables.

Let us consider quantifying couplings under the case which includes observers (designers in design

processes), as shown in Figure 3.2. Suppose there is a set of random variables S = {X1,X2 · · · ,Xn},
which is separated into two subsystems with subsets S1 and S2, respectively, and there are two

observers O1 and O2 measuring the two subsystem, respectively. From an observer’s view, the in-

teraction of S1 on S2 is how much information the observer can infer about S2 if he has observed

information O1 of S1. In engineering design, Sis are usually fully observable since observers (design-

ers) know designs in design evolution, as discussed in chapter 1. That is, each observer can completely

decide the state (information) of the corresponding subsystem, i.e., H(Si|Oi) = 0, i = 1, 2. Then,

I(O1 : S2) gives the information the observer 1 (O1) can infer about the subsystem S2 based on its ob-

servations on the subsystem S1, and similarly, I(O2 : S1) means how much O2 knows about S1 while

it only observes S2. When the two subsystems totally decoupled, O1 can not infer any information

about S2 and neither can O2 infer any information about S1. That is, I(O1 : S2) + I(O2 : S1) = 0.

On the other extreme case, where S1 and S2 are totally coupled, then O1 and O2 can completely

determine the states of S2 and S1, respectively, and I(O1 : S2) and I(S1 : O2) are maximized. In the

intermediate state between completely uncoupled and totally coupled, the stronger interaction of S1

on S2, the larger I(O1 : S2) and I(O2 : S1). This suggests the following definition of interaction of

one set of random variables on the other random variables, denoted as Cij :

Cij = min
(Oi)∈V

I(Oi : Sj), i, j = 1, 2,

where V = {(Oi) : H(Sj |Oi) = 0}. This definition gives some difficulty to compute since the set V

is not totally determined by the system S, and it is not very clear what elements V have. It can be

simplified and become computable by the following result.
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Figure 3.2: Mutual information as a measure of coupling of two systems of random variables.

Theorem 1 The interaction of Si on Sj is

Cij = I(Si : Sj). (3.10)

Proof:

I(Si : Sj |Oi) = H(Si|Oi) − H(Si|Sj , Oi) = 0, since H(Si|Oi) = 0

We can write I(Si : Sj |Oi) in an other way:

I(Si : Sj |Oi) = H(Sj |Oi) − H(Sj |Si, Oi) = 0.

Therefore,

H(Sj |Si) − H(Sj |Oi) = H(Sj |Si) − H(Sj |Si, Oi) = I(Sj ;Oi|Si) ≥ 0.

The last inequality holds because the negativity of mutual information. Then we have

H(Sj |Oi) ≤ H(Sj |Si).

Therefore,

I(Oi : Sj) = H(Sj) − H(Sj |Oi) ≥ H(Sj) − H(Sj |Si) = 2I(S1 : S2).

That is, I(O1 : S2) + I(O2 : S1) has a lower bound 2I(S1 : S2), and obviously this bound can be

achieved by setting O1 = S1 and O2 = S2. So, C = I(S1 : S2);

Since I(Si : Sj) is symmetric, i.e., I(Si : Sj) = I(Sj : Si), interactions between two sets of

random variables are symmetric and non-directional.

The following example will consider multivariate or bivariate normal random variables. Normal
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distributions are common in engineering, mainly due to the Central Limit Theorem, which states

that given a set of N -independent random variables {X1,X2, · · · ,XN} , the random variable X =
∑N

i=1 Xi/N approaches a normal distribution as N increases.

By the following result from [65], a subset of a set of multivariate normal random variables is

still normal. Let X be an n-dimensional normal random vector with mean µ and covariance matrix

K. Let A be an m × n matrix of rank m. Then, Y = AX has an m-dimensional normal random

vector with mean β and covariance matrix Q given, respectively, by

β = Aµ and Q = AKAT . (3.11)

To see that a subset is still normal, consider the following example: to extract the subset (X1,X3,X4)
T ,

the following A can be used to get the desired elements directly:

A =











1 0 0 0 0 · · · 0

0 0 1 0 0 · · · 0

0 0 0 1 0 · · · 0











.

Now suppose S is separated into two subsets S1 and S2, and we come to calculate the mutual

information I(S1 : S2). From the above result, S1 and S2 both have multivariate normal marginal

distributions. Without the loss generality, it can be assumed that S1 = {X1,X2, · · · ,Xi} and

S2 = {Xi+1,Xi+2, · · · ,Xn}. K is symmetric positive definite and can be represented as

K =





A B

BT C



 ,

where A is an i × i matrix, B is an i × (n − i) matrix, and C is an (n − i) × (n − i) matrix.

Then, by Equation 3.11, S1 has mean µ1 = {µ1, · · · , µi} and covariance matrix A, and S2 has

mean µ2 = {µi+1, · · · , µn} and covariance matrix C. Obviously, A and C are symmetric positive

definite. Therefore, by Equation 3.6,

h(S1) =
1

2
log(2πe)i|A|, and h(S2) =

1

2
log(2πe)n−i|C|.

Then, by Equation 3.9,

I(S1 : S2) = h(S1) + h(S2) − h(S1, S2)

=
1

2
log(2πe)i|A| + 1

2
log(2πe)n−i|C| − 1

2
log(2πe)n|K|

=
1

2
log

|A| · |C|
|K| . (3.12)
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Let D = −A−1B, and compute

|K| =

∣

∣

∣

∣

∣

∣





A B

BT C





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣





I 0

DT I









A B

BT C









I D

0 I





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣





A 0

0 C − BT A−1B





∣

∣

∣

∣

∣

∣

= |A| · |C − BT A−1B|.

Since the determinant of matrix M = [mij ] is continuous with respect to the elements, mij , of

matrix M , as B → 0 in the sense that every elements in B approaches 0, then |C − BT A−1B| will

approach |C| and
|A| · |C|
|K| =

|C|
|C − BT A−1B| → 1,

and, therefore, by Equation 3.12,

I(S1 : S2) → 0 as B → 0.

This shows that generally I(S1 : S2) is “continuous” with respect to the strength of coupling in some

sense.

Note that matrix B represents the covariance between elements in S1 and those in S2. When

the coupling between S1 and S2 is weak, then the elements in B are small, and therefore I(S1 : S2)

is small.

Example: Let us consider bivariate normal random variables X1,X2,X3, and X4 with covariance

matrix

K = σ

















1 ρ ǫ ǫ

ρ 1 ǫ ǫ

ǫ ǫ 1 ρ

ǫ ǫ ρ 1

















.

ρ can be considered the intra-module interaction, and ǫ represents the inter-module interaction if

X1,X2,X3, and X4 are clustered into two module S1 = (X1,X2) and S2 = (X3,X4), as shown in

Figure 3.3. By Sylvester criterion [44] that a matrix is positive definite if and only if its leading prin-

cipal minors have positive determinants, K must satisfy the following conditions to be a covariance
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Figure 3.3: Random system of example 3.3.1.

matrix:

1 − ρ2 > 0 (3.13)

1 − ρ2 − 2(1 − ρ)ǫ2 > 0 (3.14)

1 − 2ρ2 + ρ4 − 4(1 − ρ)2ǫ2 > 0 (3.15)

This gives

−1 < ρ < 1, −ρ + 1

2
< ǫ <

ρ + 1

2
.

Now let us consider the following two-way clustering: S1 = {X1,X2} and S2 = {X3,X4}. Since σ

will not affect the mutual information, let σ = 1. Then,

I(X1 : X2) = I(X3 : X4) = − log
√

(1 − ρ2),

which is plotted in Figure 3.4. It is easy to note that there is no coupling, i.e. I(X1 : X2) = 0

when ρ = 0, i.e., X1 and X2 are independent, and the figure is symmetric with respect to ρ. By

Equation 3.12:

I(S1 : S2) =
1

2
log

(1 − ρ2)2

1 − 2ρ2 + ρ4 − 4(1 − ρ)2ǫ2
= −1

2
log

(

1 − 4

(

ǫ

1 + ρ

)2
)

.

The relation between I(S1 : S2) and ρ, ǫ is shown in Figure 3.5.
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3.3.2 Modularity Measure

3.3.2.1 Two Clusters and One Level

Once coupling can be quantified, modularity can also be measured quantitatively. Firstly, let us

consider the simplest case that the system S = {X1,X2, · · · ,Xn} is separated into two cluster

S1 = {X1, · · · ,Xi} and S2 = {Xi+1, · · · ,Xn}. From the discussion in Chapter 2 briefly , modularity

is to measure the relative strength of inter-module interactions (coupling) compared to intra-module

interactions (cohesion). Inter-module coupling can be quantified by mutual information I(S1 :

S2), but how are intra-module interactions quantified? Basically, intra-module interactions are the

couplings between the elements inside a module. If you consider S1 or S2 as a subsystem, then the

intra-module interaction should be the coupling among the elements. Here, assume the clustering

has only one level. That is, there is no clustering inside S1 and S2. Then, the coupling among the

elements in S1 can be measured as

Cin
1 =

i
∑

k=1

i
∑

j=k+1

I(Xk : Xj).

There are totally i(i− 1)/2 terms in above formula. Due to the relativity of interaction discussed in

Section 2.5.3, the coupling needs to be averaged out. Then,

C̄in
1 =

2

i(i − 1)

i
∑

k=1

n
∑

j=k+1

I(Xk : Xj).

Now, I(S1 : S2) can be normalized by the number Nout of possible interactions between S1 and S2.

Since S1 and S2 have i and n − i elements respectively, Nout
12 = i(n − i). The average intermodule

coupling is

C̄out
12 = Ī(S1 : S2) =

I(S1 : S2)

Nout
12

=
I(S1 : S2)

i(n − i)
.

The overall coupling of the clustering is defined as linear average

C1 =
1

2

(

C̄out
12

C̄in
1

+
C̄out

21

C̄in
2

)

.

When non-linear aggregation in [68, 69, 87] is used,

C1 =

(

1

2

(

C̄out
12

C̄in
1

)s

+
1

2

(

C̄out
21

C̄in
2

)s) 1
s

, s ∈ [−∞,∞],

where s = −∞, 0, and ∞ cases are considered as limits, and they correspond to min, geometric

average, and max, respectively. Then, modularity M can be defined as the inverse of the overall

coupling since the stronger the overall coupling, the lower the modularity.
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The basic idea of above computation is the following. The intuitive meaning of mutual informa-

tion I(S1 : S2) is to measure how much information on S1 can be inferred from the known information

on S2. If it needs to be normalized to a relative quantitative variable, it is natural to normalize

it by the amount of information S1 has. Another way to calculate the information inside S1 is to

use generalized mutual information [49, 97]. The mutual information of a set of random variables

S = {X1,X2, · · · ,Xn} is the Kullback-Leibler distance between p(x1, x2, · · · , xn) and
∏n

k=1 p(xk),

i.e.,

I(S) = I(X1, · · · ,Xn) =

∫

p(x1, · · · , xn) log
p(x1) · · · p(xn)

p(x1, · · · , xn)
dx1 · · · dxn

=
n

∑

k=1

H(Xk) − H(X1, · · · ,Xn),

which is non-negative according to the Jensen inequality. Then, the averaged mutual information is

Ī(S1) =
2I(S1)

i(i − 1)
, Ī(S2) =

2I(S2)

(n − i)(n − i − 1)
(3.16)

The overall coupling of a two-cluster decomposition is defined as

C2 =
1

2

(

Ī(S1 : S2)

Ī(S1)
+

Ī(S1 : S2)

Ī(S2)

)

, (3.17)

or using non-linear aggregation,

C2 =

(

1

2

(

Ī(S1 : S2)

Ī(S1)

)s

+
1

2

(

Ī(S1 : S2)

Ī(S2)

)s) 1
s

, s ∈ [−∞,∞]. (3.18)

Then, modularity is inverse to coupling

M1 =
1

C1
and M2 =

1

C2
.

Example: Let’s continue example 3.3.1. Assume the linear aggregation is used in this example.

Then

C1 = C2 =
Ī(S1 : S2)

Ī(S1)
=

4 log

(

1 − 4
(

ǫ
1+ρ

)2
)

log(1 − ρ2)
.

The relation between C1 and ǫ, ρ is shown in Figure 3.6. Now let’s consider some asymptotic

behaviors of M1 = 1/C1. For any fixed ρ ∈ (−1, 1), as ǫ −→ ±1+ρ
2 , M1 −→ 0. For any fixed
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Figure 3.6: C1 vs. ǫ and ρ.

ǫ ∈ (−0.5, 0.5), as the intra-module interaction approaches zero, ρ −→ 0, then the modularity

should be very low, M1 −→ 0, no matter what positive value the inter-module interaction has. In

Figure 3.6, the larger the ρ, the weaker effects ǫ has on M1. This is consistent with our intuition

that modularity is affected the relative inter-module interactions.

3.3.2.2 Multi-cluster and One Level

It is easy to generalize the idea for the case having two clusters and one level. Suppose there are m

subsystems (modules), and each subsystem Si has ri elements, i = 1, · · · ,m,. Then,

C1 =
1

m(m − 1)

m
∑

i=1

∑

j 6=i

C̄out
ij

C̄in
i

(3.19)

and

C2 =
1

m(m − 1)

m
∑

i=1

∑

j 6=i

Ī(Si : Sj)

Ī(Si)
. (3.20)

When non-linear aggregation is used,

C1 =





1

m(m − 1)

m
∑

i=1

∑

j 6=i

(

C̄out
ij

C̄in
i

)s




1
s

, s ∈ [−∞,∞] (3.21)
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Figure 3.7: A hierarchical structure.

and

C2 =





1

m(m − 1)

m
∑

i=1

∑

j 6=i

(

Ī(Si : Sj)

Ī(Si)

)s




1
s

, s ∈ [−∞,∞]. (3.22)

Then modularity is inverse to coupling

M1 =
1

C1
and M2 =

1

C2
. (3.23)

3.3.2.3 Multi-cluster and Multi-level

In multi-level hierarchy, the average modularity is first calculated at every level. For example,

consider to calculate the modularity at level 2 in Figure 3.7. There are three random subsystems:

S1 = {{S11}{S12}}, S2 = {{S21}{S22}}, and S3 = {{S31}{S32}}. The modularity of each subsystem

is calculated without considering the modules inside the subsystems. That is, assume that every

subsystem is flat without hierarchical structures. For example, when computing modularity of S2

at level 2, the decomposition inside S21 will not be considered. Then, the modularity of subsystems

at the same level is averaged to get the modularity Mi of the level i. Now aggregation methods

introduced in Chapter 2 can be used to aggregate the modularity at different levels to get the

modularity of the system (decomposition).

3.3.2.4 Modularity of a System

Let C be the set of all feasible clustering ways. Then the modularity of the system, M , is calculated

as

M = max
c∈C

Mc
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3.3.3 Mutual Information in Non-gaussian Cases

The calculation of mutual information of multi-gaussian random vectors is given in Section 3.3. How

do we then calculate mutual information for non-gaussian random vector Y? Unfortunately, there

is no explicit analytic formula in this case. So, we want to approximate joint probability density

p(y) with a m dimensional gaussian density φ(y) with the same covariance matrix as p(y). Suppose

p(y) = φ(y)(1 + δ(y)). (3.24)

Then

H(p) = −
∫

p log pdy

= −
∫

p log φdy −
∫

p log
p

φ
dy

=(1) −
∫

φ log φdy −
∫

p log
p

φ
dy

= H(φ) −
∫

φ(1 + δ) log(1 + δ)dy

≈(2) H(φ) −
∫

φ(1 + δ)(δ − δ2

2
)dy

≈ H(φ) −
∫

φ(δ +
δ2

2
)dy, (3.25)

where (1) follows from the fact that log φ only contains the first and second order of y, and p,φ have

the same means and covariance matrices; (2) comes from the approximation log(1 + y) ≈ y − y2

2 .

Now we need a good approximation for δ(y). The multivariate Edgeworth expansion of p(y)

gives an approximation of δ(y). One approximation up to order five is given by [6]

δ(y) =
1

3!
κijkHijk(y) +

1

4!
κijklHijkl(y)

+
10

6!
κijkκlpqHijklpq(y) + O(n−3/2)

≈ 1

3!
κijkHijk(y), (3.26)

where κijk is the third cumulant of Y and Hijk(y) is the ijk-th Hermite polynomial. Generally,

Hi1i2···iv
(y), where y = (y1, · · · , ym), is defined on the basis of Hk(y). Let {j1, j2, · · · , ju} be the

different elements of {i1, i2, · · · , iv}, and each jk has nk repetitions, 1 ≤ k ≤ u. Then, Hi1i2···iv
(y) =

Hn1
(yj1)Hn2

(yj2) · · ·Hnu
(yju

). For example, Hiik(y) = H2(yi)H1(yk).

Plug Equation 3.26 into Equation 3.25, and note that
∫

φδdy = 0 and the orthogonality properties
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of the Hermite polynomials. We have

H(p) = H(φ) − 1

12





m
∑

i=1

κ2
iii + 3

m
∑

i,j=1,i 6=j

κ2
iij +

1

6

m
∑

i,j=1,i<j<k

κ2
ijk



 .

For the univariate case, entropy can be approximated as [49]

p(y) ≈ φ(y)

(

1 +
1

3!
κ3(y)H3(y) +

1

4!
κ4(y)H4(y)

)

(3.27)

H(p) ≈ H(φ) −
(

1

12
κ2

3(y) +
1

48
κ2

4(y) +
7

48
κ4

4(y) − 1

8
κ2

3(y)κ4(y)

)

(3.28)

3.4 Dynamic Behaviors in Stochastic Systems

In the next three sections, engineering systems will be modeled as systems of random variables,

and their interactions can be quantified by mutual information. Therefore, their modularity can be

measured in the framework established in the previous section. This section discusses the modularity

of dynamic behaviors in stochastic systems.

Usually, engineering products can be modeled as stochastic systems since they have stochastic

behaviors, stochastic input (including random noises) from random working environments. From

dynamic views, design products can be viewed as mappings, which map inputs from environments

and initial states to outputs. For any subsystem of a product, the mapping can also be viewed as

one which maps inputs from environments and other subsystems and its initial states to outputs to

environments and other subsystems. Let us begin with two simple dynamic subsystems, shown in

Figure 3.8. Vector Ui, i = 1, 2 represent the inputs, Vi, i = 1, 2 represent the outputs of subsystems

to the outside environment, and Si, i = 1, 2, represent the state status of subsystem i. Wij represents

the outputs from subsystem i to subsystem j.

The simple way to quantify the couplings between dynamic behaviors of two subsystems is

degree of freedom (DOF). Given the states of one subsystem, the number of independent states of

the other subsystem (DOF) can briefly tell the strength of couplings between the two subsystems.

The shortcomings of DOF are 1) they only have integer values, that is, they are 0, 1 functions and

therefore can not quantify the situations between totally independent and fully dependent; 2)usually

they are limited to rigid body systems. More general measures can be defined on the basis of real

physical interaction strength such as power and forces between different modules. However, it is not a

good way by the following four arguments. First, the same value probably has a different significance

for different physical properties. Second, physical properties have units and different properties have

different units. For example, force can use Newton, while distance uses meter. Even one physical

property can use different scale units, such as meter and millimeter for distance. It is difficult to
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Figure 3.8: A model of two-way clustered stochastic systems

compare different physical values with different units. Third, in some systems, especially dynamic

system, very small real values of a physical interaction can dramatically affect the behaviors of the

systems [109]. That is, the real value of a physical interaction is not necessary a good indicator of

interaction between two subsystems from the view of modularity. The last point is that sometimes

the physical types of interactions are not very clear. For example, it is difficult to tell what the

physical interaction is between the two particles in the example shown in Figure 3.8 in this section.

The dynamical states of one system can be viewed as random variables. Based on the discussion

in the previous section, interactions can be viewed as information flow, which can be quantified by

mutual information. Mutual information has no physical units, is applicable to any system which

has uncertainty (randomness) and has nice physical semantic meaning. From the view of information

flow, if there are strong couplings between two systems, one system’s states can be very much inferred

from the other system’s states, and therefore there is large mutual information between them.

Systems of random variables are relatively simple since the interactions between different units

are symmetric and non-directional, and there are no inputs from the outside environment or outputs

to the environments, i.e., they are closed systems. The physical stochastic systems are more com-

plex and could be open, that is, there are possible inputs from outside environments and outputs

to the environments. Observers in stochastic systems care how the states of one subsystem are

affected by the states of the other subsystem and the inputs to the other subsystem from the outside

environments. Considering the interactions between systems and environments, the interaction of
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subsystem i = 1, 2 on subsystem j = 1, 2 can be defined as

Cij = I(Si : Sj , Uj) = H(Si) − H(Si|(Sj , Uj)), i, j = 1, 2, i 6= j. (3.29)

According to this definition, interactions in physical stochastic systems are asymmetric and direc-

tional. That is, Cij is not necessarily equal to Cji.

By replacing I(S1 : S2) and I(S2 : S1) by I(S1 : S2, U2) and I(S2 : S1, U1), respectively, in the

framework to calculate the modularity a system of random variables, the same framework can also

be used to calculate the modularity of dynamic behaviors of stochastic systems.

Let us consider the following simple example, shown in Figure 3.9. Suppose there are two particles

A and B randomly moving around in a two-dimensional lattice, and their locations are limited inside

the square: 0 ≤ xi ≤ 100, 0 ≤ yi ≤ 100. There is a soft link of length l connecting the two particles.

Suppose only locations of the two particles, denoted as (XA, YB) and (XB , YB), are concerned. The

question is how strong the interaction between the two particles is. One extreme case is when l is

larger than the diagonal length of the square. In this case, there is no interaction since the position

of particle A does not affect that of particle B and vice versa. The other extreme case is when l = 0.

In this case, the position of particle B can immediately give that of particle A and vice versa. That

is, the two particles have the strongest interaction. How then strong is the interaction under the

situation between the two extreme cases?

Assume the prior probability distribution of (XA, YA,XB , YB) is uniform over (1, · · · , N)4. The

posterior probability distribution of (XA, YA,XB , YB) can then be calculated according to the fol-
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Figure 3.10: Posterior probability of (XA, YA).

lowing constraint:

P (xA, yA, xB , yB) = 0 if
√

(xA − xB)2 + (yA − yB)2 > l.

The result of the case where l = 100 is shown in Figure 3.10. Then,

H(S1) =
N

∑

i=1

N
∑

j=1

P (XA = i, YA = j) log
1

P (XA = i, YA = j)
= 13.287,

and in this simple example, there are no inputs from outside the system, i.e., Ui doesn’t appear in

the calculation of the coupling Cij . We have

H(S1|S2) =

N
∑

i=1

N
∑

j=1

P (XB = i, YB = j)H(S1|XB = i, YB = j) = 13.252.

By symmetry, the couplings

C21 = C12 = H(S1) − H(S1|S2) = 0.0343

With the length of link varying from 0 to 500, the change of coupling is shown in Figure 3.11.

It is shown in the figure that the coupling decreases exponentially as the length of the link increase,

which is consist with our intuition.



52

0 30 60 90 120 150
0

2

4

6

8

10

12

14

Link length (l)

I(
S

1:S
2)
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3.5 Design Processes and Others

Design process is a search process in a design space, which consists of design parameters. To decouple

design tasks means to separate design parameters into different clusters. Design parameters can

be viewed as random variables taking values from their domains according to some probability

distribution. If there are no specific constraints on the distributions, they can be assumed to be

uniform.

Consider the two design tasks, TA and TB , in Figure 3.12. They manage design parameters(X1, · · · ,Xn)

and (Y1, · · · , Ym), respectively. The coupling between two design tasks can be viewed as how much

information needed to be exchanged to coordinate the two design tasks during the design process. If

there is no coupling between two design parameters, PA and PB , in TA and TB , no information needs

to be communicated since the parameters independently take values from their domains. However,

if they are totally coupled, it is necessary to communicate the information of PAs value to TB and

the information of PBs value to TA. For the intermediate situations, one task doesn’t necessarily

send all information he has, but only need to send the amount of information, which is equal to the

amount of uncertainty of the other task removed by his decisions. That is, the information needed to

be communicated was the mutual information between the two sets of design parameters. Therefore,

the coupling between two design parameters can be quantified by the mutual information between

them. The framework established in Section 3.3 can also be applied in this case. Here is one simple

example.

Example(Fit Interdependency): One simple but general design parameter-interdependency is

“fit interdependency” [3], which can arise in the very realm of design that involves tangible artifacts,

such as mugs. Let us consider designing a mug with a cap. The design parameters of the vessel could
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be diameter(dv), height(hv), color(cv), and material(mv), and the design parameters of the cap are

same and denoted as dc, hc, cc, and mc, respectively. Obviously, design parameters hv, cv, and mv

of the vessel are independent from the design parameters of the cap, and similarly design parameters

hc, cc, and mc of the cap are independent from the design parameters of the vessel. 1 Then, the

mutual information between two design tasks come down to the mutual information between dv and

dc. The domains of dv and dc are [5cm, 11cm], which are determined by the ergonomics of mugs:

if the mug is less than 5 cm or more than 11cm wide, it becomes hard to drink from the vessel.

There are no specific constraints on probability distributions, so let’s assume dv and dc uniformly

take values from their domains. Assume the tolerance of design be about 1 mm. Then, the joint

probability density of dv and dc is shown in Figure 3.13. Let L be the interval length of dvs (or

dcs) domain and δ be the design tolerance. According to the calculation in Section 3.2, the mutual

information between dv and dc, I(dv : dc), is log(L/δ) = log(60/1) = 5.9 bits. When the design

tolerance decreases, the mutual information increases, and therefore the coupling between the two

design tasks increases.

If it is difficult to get probability distributions, coupling can be approximated by the average

number of design parameters in one subsystem which could be affected by one design parameter in

the other subsystem.

If modularity is considered from manufacturing or life-cycle, it is only necessary to define a set

of parameters related to manufacturing or life-cycle and then follow the framework used to quantify

couplings in design processes.

1It is possible that there are some couplings in those parameters, such as, from the aesthetic view, the colors of
vessels and caps should be consistent though they are weak.
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Figure 3.13: Probability distribution of dv and dc in example: fit interdependency.

3.6 Information Theoretic Views on DSM and Graphs

Design structure matrices (DSM) [93, 19] can be mapped to a graph where components or design

parameters are represented as nodes and the interaction is mapped to an edge with the value of

interaction strength as weight. This type of graph is included in a more general graph type, a

graph with attributes associated to links. It is feasible to separate the attributes into two categories:

unordered attributes and ordered attributes. There is no order between different values of unordered

attributes. Generally, unordered attributes are multi-state and used to represent class indices, such as

domain attribute in mechanical systems. Ordered attributes are usually used to represent physical

quantities. They could take integers or real values. According to the orderness of attributes of

links, graphs can be classified into four types: graphs without attributes, graphs only with ordered

attributes, graphs only with unordered attributes, and graphs with both unordered and ordered

attributes. The first two classes are considered in this section, and the first and third classes will be

discussed in next chapter.

3.6.1 Adjacency Matrix as Covariance Matrix

Consider a finite graph without self-loops G(E, V ) on n vertices V = {v1, · · · , vn}. Then the

adjacency matrix of graph G is an n × n matrix A = [aij ], where

aij =







number of edges joining vertex i and j if i 6= j

0 i = j
.
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Then, adjacency matrix A is symmetric but not necessary positive definite. For weighted graphs,

aij should be the weight between node i and j. Let us consider the following matrix K = [kij ]n×n,

obtained by replacing aii to some positive number d. That is,

kij =







aij i 6= j

d i = j
.

Since the diagonal elements of A are always zeros, K, called a modified adjacency matrix, contains

all the information A has. By the following result [44], K is a positive definite matrix for a big

enough d.

Theorem 2 If an n × n symmetric matrix A = [aij ] is strictly diagonally dominant, i.e.,

|aii| >

n
∑

j=1,i 6=j

|aij | for all i = 1, · · · , n. (3.30)

Then, all the eigenvalues of A are real and positive, i.e., A is a symmetric definite matrix.

If graph G is an abstract representation of some system, aij represents the level of interactions

between vertices i and j. The nodes can be viewed as random variables, and aij can be viewed as the

covariance between random variable i corresponding to node i and random variable j corresponding

to node j. Then, clustering and modularity of a graph G with modified adjacency matrix K will

be equivalent to the clustering and modularity of a system of multivariate normal random variables

with K as covariance matrix.

Example: As an example, let us consider the graph shown in Figure 3.14. The graph intuitively

may have four clusters {{1, 2, 3, 4}{5, 6, 7, 8}{9, 10, 11, 12}{13, 14, 15, 16}}. Now let’s assume the

vertices are clustered into two subsets: S1(i) = {1, ·, i} and S2(i) = {i+1, · · · , 16}, 2 ≤ i ≤ 14. With

i increasing from 2 to 14, M1 and M2 are calculated for each clustering, and the results are shown

in Figure 3.15. The maxima along the curve give you the four clusters. By comparing Figure 3.15(a)

and Figure 3.15(b), it is shown that the results of M2 and M1 are nearly the same.

Effects of Diagonal Element: When an adjacency matrix is modified into a covariance matrix,

the diagonal element d could be any large enough positive number. The immediate question is how

the diagonal element d affects the results. Figure 3.15(a)(b) shows that M1 and M2 are very robust

on d. The intuitive explanation is that modularity measures the couplings between two modules,

while d represents the variance of a random variables itself.

Effects of Vertex Ordering on M1 and M2: Another question worth of study is how the

results are affected by the vertex ordering. Let us reorder the clusters and consider the following

vertex order:{{1, 2, 3, 4} {13, 14, 15, 16} {9, 10, 11, 12} {5, 6, 7, 8}}, denoted as order 2. Let’s denote

the original order as order 1. In Figure 3.16(a)(b), the distributions of maxima of M1 and M2 do
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not change, i.e., M1 and M2 are robust on the order of clusters. This will be verified more in Section

5.4, where all possible permutations will be considered.

3.6.2 Asymptotic Approximation as d −→ ∞

Now let us consider the asymptotic behaviors of M1 and M2 as d −→ ∞ under two-way clustering.

The set of nodes is assumed to be split into two subsets, S1 and S2. Without loss of generality, it

can be assumed that S1 = {1, 2, · · · ,m} and S2 = {m + 1,m + 2, · · · , n}. K is symmetric positive

definite and can be represented as

K =





K1 B

BT K2



 .

By the Leibniz formula,

|K| =
∑

σ∈Sn

sgn(σ)

n
∏

i=1

kiσ(i),

where the sum is computed over all possible permutations σ of the numbers {1, 2, · · · , n}, and sgn(σ)

denotes the signature of permutation σ, which is defined as

sgn(σ) =







1 if σ is an even permutation

−1 if σ is an odd permutation
,
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where an even permutation is one that can be produced by an even number of exchanges of two

elements, called transpositions, from permutation (1, 2, · · · , n), and an odd permutation is one that

can be produced by an odd number of transpositions. Let us consider the coefficients of dn, dn−1, dn−2

terms in the expansion of |K|. Since ds are only on the diagonal, only those permutations, which

exactly change i elements, can have dn−i term in
∏n

i=1 kiσ(i). There is only one permutation,

(1, 2, · · · , n), which doesn’t change elements, and no permutation which only changes one element,

so the coefficients of dn and dn−1 are 1 and 0 respectively. Only transpositions can change two

elements. Any transposition has form (1, · · · , i − 1, j, i + 1, · · · , j − 1, i, j + 1, · · · , n). That is,

σ(m) = m if m 6= i, j, σ(i) = j and σ(j) = i. Note that sgn(transposition) = −1 and kii = d, the

dn−2 term is
∑

σis transposition

sgn(σ)

n
∏

i=1

kiσ(i) = −
n

∑

i=1

n
∑

j=i+1

kijkjid
n−2.

Then

|K| =
∑

σ∈sn

sgn (σ)

n
∏

i=1

ki,σ(i)

= dn −
n

∑

i=1

n
∑

j=i+1

kijkjid
n−2 + o

(

dn−2
)

= dn



1 −
n

∑

i=1

n
∑

j=i+1

k2
ijd

−2 + o
(

d−2
)





= dn
(

1 − Σd−2 + o
(

d−2
))

,

where Σ =
∑n

i=1

∑n
j=i+1 k2

ij . Then by Taylor expansion, ln(1 − x) = x + o(x) for x ≪ 1:

ln |K| = n ln d − Σd−2 + o(d−2).

Similarly,

|K1| = dm



1 −
m

∑

i=1

m
∑

j=i+1

k2
ijd

−2 + o
(

d−2
)





= dm
(

1 − Σ11d
−2 + o

(

d−2
))

ln |K1| = m ln d − Σ11d
−2 + o

(

d−2
)

,
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where Σ11 =
∑m

i=1

∑m
j=i+1 k2

ij , and

|K2| = dn−m



1 −
n

∑

i=m+1

n
∑

j=i+1

k2
ijd

−2 + o
(

d−2
)





= dn−m
(

1 − Σ22d
−2 + o

(

d−2
))

ln |K2| = (n − m) ln d − Σ22d
−2 + o(d−2),

where Σ22 =
∑n

i=m+1

∑n
j=i+1 k2

ij . Then, by Equation 3.12

I(S1 : S2) =
1

2
(ln |K1| + ln |K2| − ln |K|)

=
1

2

[

m ln d − Σ11d
−2 + (n − m) ln d − Σ22d

−2 − n ln d + Σd−2 + o(d−2)
]

=
1

2
(Σ − Σ11 − Σ22)d

−2 + o
(

d−2
)

=
1

2
Σ12d

−2 + o(d−2),

where Σ12 = Σ − Σ11 − Σ22 =
∑m

i=1

∑n
j=m+1 k2

ij , and

I(Xi : Xj) =
1

2
ln

d2

d2 − k2
ij

=
k2

ij

2d2
+ o(d−2).

Then,

Cin
1 =

m
∑

i=1

m
∑

j=i+1

(

1

2d2
k2

ij + o(d−2)

)

=
1

2
Σ11d

−2 + o(d−2),

and

I(S1) =
m

∑

i=1

h(Xi) − h(X1, · · · ,XM )

= −1

2
ln

|K1|
dm

= −1

2
ln(1 − Σ11d

−2 + o(d−2))

=
1

2
Σ11d

−2 + o(d−2).
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From the above equations, Cin
1 and I(S1) have the same asymptotic approximation to first order.

Now let’s consider the coupling

C =
Ī(S1 : S2)

Ī(S1)

=
Σ12d

−2 + o(d−2)

m ∗ (n − m)
× m(m − 1)

2(Σ11d−2 + o(d−2))

≈ m(m − 1)

2m ∗ (n − m)
× Σ12

Σ11
. (3.31)

For adjacency matrix, kij = 1, then

Σ11 =

m
∑

i=1

m
∑

j=i+1

k2
ij =

m
∑

i=1

m
∑

j=i+1

1

= the number of links inside S1.

Similarly, Σ22 is the number of links inside S2, and Σ12 is the number of links between S1 and S2.

Then, the second fraction in Equation 3.31 is

Σ12

Σ11
=

the number of links between S1 and S2

the number of links inside S1
,

and the coupling is

C =
Ī(S1 : S2)

Ī(S1)
≈ 2Σ12/m(m − 1)

Σ11/m ∗ (n − m)
=

the average number of links between S1 and S2

the average number of links inside S1
.

The mutual information-based modularity of the two-way clustering is

C2 =
1

2

(

Ī(S1 : S2)

Ī(S1)
+

Ī(S1 : S2)

Ī(S2)

)

=
m − 1

4(n − m)

Σ12
∑

11

+
n − m − 1

4m

Σ12

Σ22
.

Since Cin
1 and I(S1) (Cin

2 and I(S2)) have same approximation to the first order, C1 equals C2 up

to the first order approximation.

3.7 Summary

In Chapter 2, several questions on modularity have been proposed: system vs. model, specific

meanings of “inter-module” and “intra-module,” relativity of couplings, aggregation of modularity

at different level in a hierarchical structure, application domain of definition, and how to quantify

couplings. This chapter has tried to discuss the last but most important question, which is the key
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for quantitative measure of modularity.

In this chapter, mutual information-based methods have been proposed as a way to quantify

interactions (couplings) and a framework to quantify modularity by mutual information has been

established. Those methods are based on information flow instead of directly on the real strength

of interactions between subsystems. The mutual information-based method has been discussed for

simple systems of random variables, where interactions are symmetric and non-directional, and real

complex stochastic systems including dynamic behaviors, design processes, manufacturing and other

processes, where the interactions could be asymmetric and directional. Even some graph structures

can be viewed as a covariance matrix of some gaussian random vector and therefore, modularity can

be quantified by mutual information. It has been shown that the general linkage counting measure

of modularity is a special case of the mutual information-based measure of modularity.
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Chapter 4

MDL-Based Measure for Topology Modularity of

Graphs

4.1 Introduction

In the previous chapter, mutual information-based measure has been proposed for the modularity

of dynamic behaviors of final products, design processes, and other processes. At the early phase

of design processes, designs are not finalized, and the physical behaviors and design parameters are

not very clear. Yet function structures commonly exist at the early stages of design processes. So

this chapter studies how to quantify the topology or structure modularity.

Function structures and design structure matrices (DSM), which general modular production

design methods [29, 48, 63] are based on, can be represented by graph structures, and graph

representations are more general. Besides as a modeling tool for function structures and DSM

in engineering design, abstract graph representations are also used to model many complex sys-

tems [20, 55, 52], including bondgraphs [52] in the analysis of dynamical systems. This chapter

proposed an information-theoretic method of modularity measure [107, 108]. It can be applied to

graph structures whose edges have unordered attributes. The method is based on Shannon’s mea-

sure of information complexity [88], specifically the minimal description length (MDL) principle,

and built on the observation that there are strong (inverse) relations between complexity and mod-

ularity. Yassine et al. [113] introduce a modularity measure of design structure matrices (DSM)

based on the minimal description length principle and use it to cluster (not hierarchically) DSM.

This thesis work is independent of and more general than Yassine’ work. It can be used to identify

and measure modularity of graph structures and to decompose complex systems into hierarchical

modular configurations.
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4.2 Minimal Description Length Principle

The primary motivation for relying on Minimal Description Length (MDL) is the inductive inference

of a general hypothesis for given data [77, 78, 79, 80, 104, 106, 105]. In the practice of science and

engineering, it is common to develop inferences in two steps:

1. Propose possible hypotheses based on the observed phenomena and data.

2. Evaluate the hypotheses and select one according to an objective measure of how well it models

the observed data.

A common approach to selecting a hypothesis or theory is Occam’s Razor principle, which is both

intuitively appealing and informally applied throughout the sciences. This principle indicates that

in general one should pursue the simplest hypothesis which gives a good prediction. The MDL

principle is a form of Occam’s Razor. The basic idea behind MDL is that any regularity in the data

can be used to compress the data, since it takes a shorter message to describe the regularity than the

length of the message needed to describe the data literally. So, MDL must represent the regularities

in the data and that information which cannot be represented by the regularities. That is, MDL

represents data as a string S consisting of two parts. The first part SH encodes a hypothesis, and

the second part SD encodes the data based on the hypothesis with an efficient coding method, i.e.,

S = SH : SD. The principle states that the best hypothesis is the one giving the shortest description

of the data based on the hypothesis. MDL chooses a hypothesis that trades-off between how well it

fits on the observed data and the complexity of the hypothesis.

To formalize the MDL principle, it is necessary to provide a description, that is, a formal language,

to express regularities and properties of the data. The MDL principle depends on the particular

language or representation used. However, it has been shown that for any two general languages,

the description lengths differ by no more than a constant c, which is the so-called invariance the-

orem. That is, as long as the sequence is long enough, it is not critical which general language or

representation is chosen. The idealized MDL is general and powerful from a theoretic viewpoint,

but is not computable in its general form .

In practice, MDL employs more restrictive languages, not general ones. However, the restrictive

language used must be able to describe most regularities, although it could miss some. Another

difficulty met in the application of MDL is to encode data in an efficient way. Fortunately, it is

not necessary to construct an encoding. Instead it is only necessary to calculate the length of the

encoding for any hypothesis with sufficient accuracy and then find a hypothesis which minimizes the

approximate length. The practical applications of MDL use such approximations [105]. The general

approach is to choose an encoding scheme which provides reasonably compact encodings of the data

and yet is not too complicated to decode. This gives a good approximation to the true complexity

of the objects being analyzed.
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Figure 4.1: Modularity is a kind of regularity.

4.3 MDL and Modularity

Modularity is intrinsic and beneficial to complex systems [82] and may be a general principle for

managing complexity. Modular architectures make complex systems easier to understand and man-

age and may play a critical role in the synthesis of complex artificial systems [102]. By breaking up

a complex system into discrete modules or building a complex system using modules, it is possible

to clarify complicated systemic interconnections and therefore render complexity manageable. In

engineering, increasingly large teams are needed to design an artifact as it becomes more and more

complex. It is necessary to divide the knowledge and effort needed in the design process into multiple

smaller units and to provide mechanisms to coordinate interactions between these modules.

Complex systems, which usually have low regularity, are likely to have modular (decomposable)

structures, and on the other hand modular structures can simplify the complex systems and make

them easier to understand. So, modularity can be viewed as a kind of regularity inside the complex

systems, as shown in Figure 4.1. As discussed in the previous section, MDL is a kind of measure of

regularity. It is natural to reason that MDL could provide some measure on modularity

In the framework developed in Chapter 2, the modularity of a system is defined as the maximum of

the modularity of all feasible decompositions. With the MDL principle, different feasible hierarchical

decompositions can be viewed as different hypotheses and the abstract graph as data waiting to be

described by the decompositions. The higher the modularity of a system, the more compression

can be made on the description length, and therefore the shorter description length. A measure of

modularity of a decomposition can be considered to be the inverse of the minimal description length
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of the messages describing a system under a decomposition.

Weak coupling between modules means that most of the units inside one module should not

interact with other units outside the module. That is, only a small number of components inside

each module should be known to other modules, and most of the contents of modules are invisible

to other modules and only visible to other units in the same module. Therefore, a small number of

descriptive elements (an alphabet) are needed to describe (or encode) a modular system. Where a

high level of intra-module integration exists, units in the same module have much shared common

information compared to units in different modules. By putting those units into a module, naming

the module, and encoding shared common information in the module, some of the information in

units inside modules can be obtained by reference to the module name, and therefore the encoding

of the message is shortened. Compared to the information (message) of a non-modular structure,

less information (shorter message) is required to describe a modular structure.

The information used to describe two systems realizing different customer requirements (or cus-

tomer attributes) are totally different. The more functions a system realizes, the more information

is needed to describe it. So, it is nonsense to compare the message lengths of two descriptions of

two totally different complex systems, yet it is reasonable to compare normalized deductions of the

message lengths. Suppose:

• L0 is the description length of the complex system without decomposition.

• Ld is the message length of the complex system under some decomposition.

Then, the modularity of a decomposition is computed as

Md =
L0 − Ld

L0
.

As shown in Figure 4.2(a), modular structures are hierarchical and represented as a tree struc-

ture, in which the whole system is represented as the root or trunk, and modules or submodules are

represented as nodes or leaves. The modularity of a decomposition is an aggregation of the modu-

larity of subsystems(modules) at different levels. Let’s consider the hierarchical structure shown in

Figure 4.2(a). There is only one subsystem R at level 1 (the highest level in the structure), which

has two modules M21 and M22. The tree structure of the module at level 1 is shown in Figure 4.2(b).

The modularity at level 1 is considered to be how much compression can be caused by the modular

structures at this level, and the measure is to compare the minimal description lengths at the fol-

lowing two cases. One case calculates the description length L1
0 for the left tree structure shown in

Figure 4.2(b). The other case considers the tree structure where there are no modules M21 and M22

as shown in the left tree structure in Figure 4.2(b), and calculates the description length L1
d. Then,

the modularity at level 1 is Md(1) =
L1

0−L1
d

L1
0

.
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Figure 4.2: Modularity at different levels.
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At level 2 there are two subsystems, M21 and M22, as shown in Figure 4.2(c). The modularity

at this level, Md(M21) and Md(M22), can be calculated with a method similar to that method used

to calculate the modularity at level 1. Then, the modularity of level 2 is the average of Md(M21)

and Md(M22). Then, the modularity of the decomposition is the aggregation of the modularity at

different levels. The techniques discussed in Section 2.5.4 can still be used. A specific implementation

on abstract graph structures G(V,E) will be introduced in the next section.

4.4 Encoding Graph Structures

What is the information in a graph? Obviously it includes nodes, links, and attributed associated

to links, and more it could include another thing called interfaces which are interpreted as the nodes

of modules, which have links to nodes outside the modules. Interfaces do not exist in a graph

without modular structure but in one with modular structure. In modular structures, interfaces

clearly separate modules from other parts of the system and hide most of the information inside

modules. Interfaces should be a part of modules and should be considered while describing modular

structures. In dealing with abstract graphs, the interfaces are interpreted as the nodes of modules

which have links to nodes outside the modules.

In messages describing graph structures, the following information should be recorded:

1. Units inside modules, including nodes and submodules.

2. Links which connect different units including nodes and submodules.

3. Interfaces through which units inside modules interact with other units outside modules.

The message format used to encode graph structures is as follows:

1. The whole graph is a unit.

2. Unit = Name tables + list of Links.

3. Name tables = Names of units and interfaces which are visible in the level.

4. Link = Name of two vertex units + attributes.

5. Name of vertex units could be 〈Node〉 or 〈SubMod M1〉〈M1’s SubMod 〉 · · · 〈Mi’s SubMod

〉〈Interface in SubMod Mi〉.

For the graph structure shown in Figure 4.3, nodes in the structure are labeled n1 through

n12. Links represent interaction between different units. For instance, Ei represents an interaction

between nodes n2 and n4. The boundaries of the modules are shown with the double-dot-dashed

lines. The larger region labeled M1
1 is a module, and the smaller regions labeled M2

1 and M2
2 are
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Figure 4.3: An example graph representation and its hierarchical tree representation.
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submodules. Interface O2
11 is the node which is inside module M2

1 but is visible to other nodes

and links outside module M2
1 in the sense that it can be connected to other nodes outside module

M2
1 . Then the message format described above can be used describe the links and the graph

structures. For instance, link Ei in Figure 4.3 can be represented as “n2n4〈attribute values〉.”
Nodes may be those inside submodules, e.g., link Ej in Figure 4.3 can be represented as “M2

2 O2
22

M2
1 O2

12〈attribute values〉.” Links can pass through several module levels. For example, the link Ek

in Figure 4.3 passes through M1
1 and into M2

1 . Then it can be represented as n1M
1
1 M2

1 O2
11.

An example message for the decomposition of the graph structure shown in Figure 4.3:

M1
1 (Module name) O1

11 (List of Interfaces) {
M2

1 (Module name) O2
11O

2
12(List of Interfaces) {

n2 n3 (links)

n2 n4

n2 n5

n3 n4

n3 n5

n4 n5}
M2

2 O2
21 O2

22 {
n6 n7

n6 n8

n7 n8}
n9 M2

1 O2
11

n9 M2
2 O2

21

M2
2 O2

22 M2
1 O2

12}
n1 n10

n1 n12

n12 n11

n11 n10

n1M
1
1 M2

1 O2
11.

4.4.1 Names and Links

Links can be represented as messages containing codes for two nodes and attributes. For instance,

link Li in Figure 4.3 can be represented as “n2n4 < attribute values >.” The nodes may be those

inside submodules, e.g., link Lj in Figure 4.3 can be represented as “n5Mjn6 < attribute values >.”

Messages for attributes will be discussed in Section 4.4.2. This section will discuss encoding for node
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names. Now consider a module, and suppose that there are N (n) nodes and N (m) submodules. Let

• L
(n)
j be the name length of node j,

• L
(m)
j be the name length of submodule j,

• L
(o)
jk be the name length of interface k of submodule j.

A link can be represented as:

<Node p Name><Node q Name>, and the corresponding message length for name encoding is

L
(n)
p + L

(n)
q .

<Node p Name><Submodule t Name><Interface v Name in Submodule t >, and the corre-

sponding message length for name encoding is L
(n)
p + L

(m)
t + L

(o)
tv .

<Submodule s Name><Interface u Name in Submodule s ><Node q Name>, and the corre-

sponding message length for name encoding is L
(m)
s + L

(o)
su + L

(n)
q .

<Submodule s Name><Interface u Name in Submodule s ><Submodule t Name><Interface v

Name in Submodule t >, and the corresponding message length for name encoding is Lm
t + L

(o)
tv +

L
(m)
s + L

(o)
su .

The names of units are only used to distinguish those units from each other; they have no physical

meaning. Names could be represented by any code which has a unique name for each of the different

units. The message of a module includes the information of the interfaces and the information inside

the module, but not the the information of submodules. That is, the submodules are treated as a

whole, and the information inside them is hidden from the module while calculating the information

of the module.

Let

• L
(n)
j be the name length of node j,

• L
(m)
j be the name length of submodule j,

• L
(o)
jk be the name length of interface k of submodule j.

Then the message length for names of links (name tables) in the module is:

I(nk) = Sum of the lengths of all links in the module

=

N(n)
∑

j=1

L
(n)
j × N

(n)
j +

N(m)
∑

j=1

L
(m)
j × N

(m)
j

+

N(m)
∑

j=1

(

N
(o)
j

∑

k=1

L
(o)
jk × N

(o)
jk ), (4.1)
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where:

• N (n): number of single nodes.

• N
(n)
j : number of links connected to node j.

• N (m): number of submodules.

• N
(m)
j : number of links connected submodule j.

• N
(o)
j : number of interfaces of submodule j.

• N
(o)
jk : number of links connected to interface k of submodule j.

With this information, it is possible to calculate the encoding length for nodes, submodules, and

interfaces in submodules. Within a module, nodes and submodules are at the same level, so it is

applicable to encode them with the same name table. If one unit j has Nj connections to other

units inside the same module, then the encoding for this unit will be used Nj times in the total

coding used to describe links inside the module. From an information-theoretic view, the message

length could be minimized if the more frequently occurring names are assigned to the shorter codes.

In accordance with Shannon coding [88], the optimal length of the label, which has frequency of pj ,

should be − log(pj). In our problem, pj can be estimated as Nj/
∑N

(u)
i

j=1 Nj . Then the total encoding

length related to unit labels is:

−
N

(u)
i

∑

j=1

Nj log(pj) = −
N

(u)
i

∑

j=1

Nj log(Nj/

N
(u)
i

∑

j=1

Nj) (4.2)

The message length at a specific level is the summation of message lengths of modules at this

level. Then, it is easy to get the total length of messages needed to encode names in links at level

n as:

I(n)
n =

∑

all modules at level n

I(nk)

= −
∑

all

N
(u)
i

∑

j=1

Nj log(Nj/

N
(u)
i

∑

j=1

Nj) −

∑

all

N(m)
∑

j=1

(

N
(o)
j

∑

k=1

N
(o)
jk log(N

(o)
jk /

N
(o)
j

∑

k=1

N
(o)
jk )) (4.3)

4.4.2 Attributes

According to whether there exists order between different values of attributes, attributes can be

separated into two categories: unordered attributes and ordered attributes. Generally, unordered



73

attributes are multi-state and used to represent class index, such as domain attribute in mechanical

system. Ordered attributes are usually used to represent physical quantities and can be discrete

(such as power level in digital system) and continuous (such as power level in analogy system).

Here, only unordered attributes are considered, mainly due to the following two reasons. One is that

most common graph representations, such as function structures, only have unordered attributes,

and the other is that there are no good encoding methods for continuous values. One possible way

is to discretize a continuous value into an integer, then encode the integer. The encoding length

heavily depends on the integer value, which is determined by the discretization step. However, there

is no criterion to choose the discretization step.

For unordered attributes, the techniques used for encoding names can be applied. Let tj be a

value for Tj and Ntj
be the number of links having value tj of multi-state attribute Tj . The relative

frequency of occurrence of state tj of attribute Tj in the module will be estimated by

ptj
=

Ntj
∑

tj
Ntj

. (4.4)

Suppose there are NT multi-state attributes in a module then the message length used to encode

multi-state attributes at in the module is

I(Ti) = −
NT
∑

j=1

∑

tj

Ntj
log(ptj

). (4.5)

Then, total message length used to encode multi-state attributes at level n is

I(mA)
n = −

∑

all modules at level n

NT
∑

j=1

∑

tj

Ntj
log(Ptj

). (4.6)

4.4.3 Total Message Length

The total message length of level n is

In = I(n)
n + I(mA)

n . (4.7)

Then, the overall description length is

I =

n
∑

i=1

In =

n
∑

i=1

I(n)
n + I(mA)

n . (4.8)
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Table 4.1: Code lengths for units in case without decomposition.

Node # of Links ni/N Code Length
n1 2 1/9 log 9
n2 1 1/18 log 18
n3 4 2/9 log 9 − 1
n4 5 5/18 log 18 − log 5
n5 3 1/6 log 6
n6 3 1/6 log 6

4.4.4 Modularity Measure

The description length of any tree structure can be calculated by the above process. Then, the

modularity Mi at a specific level i can be calculate the method discussed in Section 4.3. The

modularity at different levels can be aggregated into the overall modularity M by some aggregation

function f ,

M = f(M1, · · · ,Mn). (4.9)

4.5 Examples

One simple example is shown in Figure 4.4(a). There are 6 nodes, whose coding lengths are shown

in table 4.1. The message lengths of links are shown in table 4.2. Then, the total message length

L0 is 43.94 bits.

Now let us consider one possible decomposition (one level, not hierarchical) shown figure 4.4(b).

There are three units, i.e., one module M1 and two nodes n1 and n2, and inside module M1 there

are four nodes, n3, n4, n5, and n6, and two interfaces, O1 and O2. First, consider the message length

for nodes inside module M1. The code lengths for nodes and interfaces are shown, respectively, in

Table 4.3 and Table 4.4. There are 6 links inside M1, and they have all length 2+2 = 4, so the total

message length I0 for links inside module M1 is 6 × 4 = 24. Now consider the message for nodes

and links at level 1. The code lengths for nodes and links are shown, respectively, in Table 4.5 and

Table 4.6. The total message length for links at this level I1 is 14.90. Then, the total description

length of the system under the decomposition is Ld = I0 + I1 = 38.90 bits. So the modularity of the

system under the decomposition is

Md =
L0 − Ld

L0
=

43.94 − 38.90

43.94
= 0.115.
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(a)  Original graph and its hierarchy tree.

(b)  One possible decomposition and its hierarchy tree.

Figure 4.4: A simple example for information measure of modularity of graph structures.

Table 4.2: Code lengths for units in case without decomposition.

Link # representations Coding Length
l1 n1n3 2 log 9 − 1
l2 n1n4 log 9 + log 18 − log 5
l3 n2n4 2 log 18 − log 5
l4 n3n4 log 18 + log 9 − log 5 − 1
l5 n4n5 log 18 − log 5 + log 6
l6 n4n6 log 18 − log 5 + log 6
l7 n3n5 log 9 − 1 + log 6
l8 n3n6 log 9 − 1 + log 6
l9 n5n6 2 log 6

Total 43.9392 bits
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Table 4.3: Code lengths for units in M1.

Node # of Links Code Length
n3 3 − log(1/4) = 2
n4 3 2
n5 3 2
n6 3 2

Table 4.4: Code lengths for interfaces in M1.

Interfaces # of Links Code Length
O1 1 − log 1/3 = log 3
O2 2 − log 2/3 = log 1.5

Table 4.5: Code lengths for units at level 1.

Units # of Links Code Length
n1 2 − log 2/6 = log 3
n2 1 − log 1/6 = log 6
M1 3 − log 3/6 = 1

Table 4.6: Code lengths for links at level 1.

Link Representation Code Length
1 n1M1O1 log 3 + 1 + log 3
2 n1M1O2 log 3 + 1 + log 1.5
3 n2M1O2 log 6 + 1 + log 1.5

Total: 14.90
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4.6 Summary

Since structure modularity is commonly used in engineering practice, especially at the early phase of

engineering design, an MDL-based measure of modularity is proposed for abstract graph structures.

The idea is based on the observation that modularity can be thought as a kind of regularity which

can be used to compress data and can be measured by MDL. Therefore, MDL can provide a measure

of modularity under some situations. In the next chapter, the MDL-based measure will be used to

hierarchically decompose graph structures and function structures in engineering design.
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Chapter 5

Module Identification

5.1 Introduction

A mutual information-based modularity measure for random systems was developed in Chapter

3, and Chapter 4 has developed an MDL-based measure for graph representations with or without

attributes. This chapter will demonstrate those two methods by using them to hierarchically decom-

pose abstract graphs and real function structures in engineering design. It is common in engineering

practice to hierarchically decompose large complex systems into small subsystems. A particularly

interesting situation is in redesign processes, where a configuration already exists, and it is required

to redesign the architectures of products to make them more efficient and more modular.

At the very beginning phase of design, there are only function structures and no physical real-

izations, and furthermore it’s pointed out that it is better to produce modular structures as early

as possible. So, it is significant to consider the modularization of function structures. Function

structures can be abstracted as graph representations. Every node models a basic function unit, and

links represent the interactions between different units, including control signals, data information,

material and power flow, etc. An example of this type of graph representation is shown in Figure 5.1.

In engineering modeling, it is common to associate the links of graphs with some attributes repre-

senting the strength and types(domains) of interactions. For example, the interactions in Figure 5.1

could be energy, signal, or material.

Given a graph structure, the process of partitioning the graph into different hierarchical clusters

involves searches in a large space with a complicated landscape. Garey [25] has shown that a

k-way graph partitioning problem, which splits a weighted undirected graph into k clusters, is NP -

complete. One suitable way to search such a difficult space is using a genetic algorithm, whose

search procedure is based on the mechanism of natural selection.
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Figure 5.1: Graph representation of a function structure. It’s a function structure of an HP 1200C
desktop inkjet printer from K. Otto and K. Wood’s Product Design [70]

5.2 Brief Introduction to Genetic Algorithm

Genetic algorithms were introduced in [41], and they were subsequently developed by Goldberg et

al. [30]. The algorithms maintains a population whose individuals are encoded forms of solutions to

the problem under consideration and iteratively evolve the population to the optimal or near-optimal

solution. Each individual is called a genome, and each iteration is called a generation. At the be-

ginning of the algorithm, the initial population is generated randomly. During each generation, the

individuals (genomes) are evaluated by a fitness evaluation function and selected according to the fit-

ness values using a selection mechanism so that fitter individuals (genomes) have higher probabilities

of being selected. New individuals (genomes) can be formed by either exchanging genetic information

between two individuals (genomes) selected from the current generation using a crossover operator

or modifying an individual (genome) using a mutation operator. Crossover potentially leads to a

better pool of population since it happens between two relatively better individuals of the popula-

tion, while mutation is to ensure a more thorough exploration of the search space since it randomly

introduces new features. Crossover and mutation is to balance exploitation and exploration. A new

population is generated by selecting individuals (genomes) from the present population and the new

generated individuals (genomes). Because of exploitation of crossover operators and exploration of

mutation operators, the algorithm will converge to the optimal or near-optimal solution.
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Figure 5.2: General structure of genetic algorithm.

A general structure of genetic algorithms is shown in Figure 5.2 in flowchart form. In order to

use genetic algorithms, the following elements must be provided:

1. Encoding schemes. Since GAs work with a coding of the parameter set, not on parameters

themselves, an encoding scheme is required. The scheme used in the following experiments is

discussed in Section 5.3.1.

2. Population initialization. A commonly used way is to randomly and uniformly sample the

search space, which is used in the following experiment.

3. Genetic operators. The population is evolved with mutation and crossover operators. The

operators in this experiment are discussed further in Section 5.3.3.

4. Evaluation Function. A measure is used to tell how fit individuals are as solutions to the

problem.

5. Selection Mechanisms. In genetic algorithms, selection occurs in two ways. One is how par-

ents are selected to reproduce offspring, and the other is how individuals are selected from

this generation and their offspring to form the next generation. There are many different

selection mechanisms such as rank-based, roulette wheel selection, tournament selection, and

deterministic selection [30]. One important parameter related to the second kind of selection

is the generation gap: the percentage of new individuals in the new generation. For example,
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Figure 5.3: Tree representation of hierarchically modular structures.

the generation gap of a simple genetic algorithm is 1.00, and steady state genetic algorithms

have a low generation gap. In steady state genetic algorithms, only a fraction of the weakest

individuals will be replaced by offsprings.

5.3 Computation: Algorithm Setup

In the following experiments, steady state genetic algorithms are used, and 12% individuals are

replaced in every generation. Roulette wheel selection is used to select parents, and deterministic

selection is used for generational selection. The encoding scheme, fitness function, and genetic

operators are discussed in the following sections.

5.3.1 Encoding Scheme

As shown above, decomposition is to cluster the nodes of a graph. The only thing that needs to be

encoded is which cluster a node belongs to. It’s unnecessary to encode links in order to represent

a decomposition. An obvious way to represent the hierarchical relation between the different nodes

is using tree structures, in which every graph node appears once on the leaves of the tree represen-

tation, and every leave represents one graph node. For example, the modular structure shown in

Figure 5.3(a) could be represented as shown in Figure 5.3(b),
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Figure 5.4: Crossover step 1: genome structures of initial parents.

5.3.2 Fitness Function

The information-theoretic measure of modular structures is used as an indicator of fitness. The

fitness of genomes x is defined to be:

The Fitness f(x) = M(x), (5.1)

where M(x) is the modularity measure of the modular structure encoded as genome x.

5.3.3 Genetic Operators

There are some existing operators for tree structures [56]. But those methods can not guarantee

that the resulting tree structures are legal in the sense that every leaf of the tree represents one

graph node, and every graph node appears once on the leaves of the tree representation. There are

two approaches to deal with this problem. One is to insert a penalty in the fitness function for illegal

structures, and the other is to design new operators which only produce legal genomes. It is not

very clear how to integrate penalty into the fitness function in the first method, so the later method

is used here. That is, it is necessary to design new genetic operators.

5.3.3.1 Crossover

The crossover operator includes five steps.

1. Randomly select two parents (T1, T2) by roulette wheel method. Two parents are shown in

Figure 5.4.

2. Uniformly randomly select two hidden nodes from the two parent trees, respectively, label the

two subtrees under the selected nodes as DT1, DT2 and the two leftover subtrees as LT1, LT2,

and make copies (CT1, CT2) of DT1, DT2, as shown in Figure 5.5.
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Figure 5.5: Crossover step 2: select crossover points.

3. Keep subtrees LT1, LT2 unchanged, delete common leaves of CT1 and CT2 from T1 and T2,

and delete the uncommon leaves from CT1 and CT2, as shown in Figure 5.6.

4. Randomly select a hidden node from (T1 - LT1) and add subtree CT2. Do the same for T2 and

CT1, as shown in Figure 5.7.

5. Clean fragments. The hidden nodes that have no child nodes will be removed. Those hidden

nodes having only one child node will be removed, and its child node will be attached to its

parent, as shown in Figure 5.8.

5.3.3.2 Mutation

There are four different mutation operators: swapping two leaves, swapping two subtrees, merging

leaves, and splitting a large subtree.

1. Swapping two leaves: First, randomly select two leaves from different clusters and then ex-

change them, as shown in Figure 5.9.

2. Swapping two subtrees: First, randomly select two subtrees, neither of which is a subtree of

the other, and then exchange them, as shown in Figure 5.10.

3. Merging leaves: Randomly select a subtree, and merge the leaves according to the following

cases:

• CASE 1: If the subtree has few single nodes (say 1 or 2), those single nodes will be

merged into a randomly selected subtree under the subtree, as shown in Figure 5.11.
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Figure 5.6: Crossover step 3: delete repeated leaves.
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Figure 5.7: Crossover step 4: add subtrees.
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Figure 5.10: Mutation: swapping two subtrees.
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Figure 5.11: Mutation: merging single nodes into other subtrees.
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Figure 5.12: Mutation: merging single nodes as a subtree.
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Figure 5.13: Mutation: merging two subtrees.

• CASE 2: If the subtree has many single nodes, all those nodes will be merged into a

cluster under the subtree, as shown in Figure 5.12.

• CASE 3: If one submodule in the selected subtree has very few single nodes, the sub-

module will be merged into another submodule with the least leaves among the remaining

submodules, as shown in Figure 5.13.

4. Splitting a large subtree: If a tree has many subtrees, it will be split into two subtrees, as

shown in Figure 5.14.
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Figure 5.14: Mutation: splitting a subtree.
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5.4 Abstract Graph Without Attributes

As discussed in Chapter 4, the MDL-based measure can be used to measure the modularity of ab-

stract graph structures without ordered attributes. As for the mutual information-based modularity

measure, it can also be used to decompose an abstract graph without unordered attributes if the

adjacency matrix of the graph is viewed as a covariance matrix in some way, as discussed in Sec-

tion 3.6. So in this section, both measures are verified on decomposition of abstract graphs without

attributes.

5.4.1 Results and Discussions

In this experiment, the mutual information-based measure and MDL-based measures are used to

decompose two examples of abstract graphs. The decomposition procedure is as follows: Given an

abstract graph without attributes, the nodes of the graph are decomposed into a modular structure,

and the modularity of the decomposition is calculated. Then, the best decomposition of the abstract

graph is searched by evolutionary computation. In the genetic algorithm, the crossover rate is set

to 0.9 and the mutation rate to 0.3. The initial population is set to 50 and randomly initialized,

and 50 offspring are generated by crossover and mutation operators. The worst 6 individuals in

parent generation are replaced by the best 6 offspring. This process is repeated until the population

converges.

The first example is shown in Figure 5.15(a), which has a flat, not hierarchical, structure. In the

mutual information-based method, the diagonal element of covariance matrix (modified adjacency

matrix) is set to d when changing adjacency matrix into covariance matrix. Since the maximal degree

of vertices is 5, d takes values 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120,∞. The d = ∞ case

corresponds to general linkage counting methods. The mutual information-based method gives you

the same decomposition under different ds, shown in Figure 5.15(b). The convergence of evolutionary

computation with d = 10 is shown in Figure 5.16.

The MDL-based method also gives you the same decomposition, and the convergence of evolu-

tionary computation is shown in Figure 5.18.

Another example is shown in Figure 5.19(a), which has a hierarchical structure. In mutual

information based method, the diagonal element of covariance matrix (modified adjacency matrix) is

also set to be d, which takes values 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120,∞. In this case,

we need to consider the aggregation of modularity measures at different levels. In this experiment,

they are uniformly weighted. The mutual information-method with different ds gives you the same

decomposition shown in Figure 5.19(b). The convergence of evolutionary computation with d = 10

case is shown in Figure 5.20.

The MDL-based method also gives the same decomposition, and the convergence of evolutionary



88

13

3

8

15

61

9

12

14

7

11

10

5

16

4

2

0

13

1 2

3 4
5

6

7
8 9

10 11 12

14 15

Figure 5.15: Decomposition result for example 1.

0 40 80 120 160 200

0

2

4

6

8

10

12

F
it
n

e
s
s
 (

M
o

d
u

la
ri

ty
)

Generation

 Average

 Best

Figure 5.16: GA convergence of mutual information-based measure for example 1.



89

20 40 60 80 100 120
5

6

7

8

9

10

11

12

13

14

15

d

T
he

 B
es

t F
itn

es
s 

(M
od

ul
ar

ity
)

Figure 5.17: The effect of d on the fitness (modularity) of the best individuals in example 1.
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Figure 5.21: The effect of d on the fitness (modularity) of the best individuals in example 2.

computation is shown in Figure 5.22.

5.5 Function Structures

Function structures can be mapped into an abstract graph which can be accessed by computers.

For example, the function structure of HP1200C printers [70]shown in Figure 5.1 can be presented

as a graph shown in Figure 5.23(a). It is common that there are several attributes associated to the

edges of an abstract graph, and those attributes are unordered. So, the mutual information-based

measure is not applicable in this case. As pointed out in Chapter 4, the MDL-based method still

works. In this experiment, evolutionary computation is used to decompose the function structure of

HP1200C printers on the basis of MDL-based modularity measure.

5.5.1 Pre-measure

Generally, physical semantics of attributes associated to an abstract graph as well as engineering

design practical experience are not shown in function structures and, therefore, neither in their

abstract graph representations. How then is this knowledge and design expertise integrated into the

decomposition process?

For decomposing the function structure of the HP printer, a pre-measure step is introduced, which

is strongly related to the interfaces in modular structures. In engineering design, if one module M has
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Figure 5.22: GA convergence of MDL-based measure for example 2.

1312 14 15 16

E

E
E

E

E

s

s

s

I

p ppp
e ee

a

s

S
E

s

E

1

119

456

2 3

10

87

E E

Es

s

s

I

h

hh

a a

1

1312

119

456

2

14

3

15 16

10

87

E E

EEEE

E

Es

s

s

s

ss

I

I

h

hh

a a

p ppp
e ee

a

s

(a) (b)

Figure 5.23: Function structure decomposition: (a) The abstract graph representation of the function
structure of HP1200C. E: power; e: human energy; s: signal; p: paper; I: ink; h: heat; a: air. (b)
One decomposition found by the algorithm.
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Figure 5.24: Pre-measure: (a) The original graph; (b) One configuration after one pre-measure
process.

many of the same kinds of interactions with other modules, it is highly possible to build an outport

inside M and make the components of M interact with other modules through the outport. The

assumption in this step is that the changes happened in graph representations should not affect the

functional behaviors of the original systems represented by the graph representations. For example,

the electrical or signal interactions can satisfy this assumption. However, in engineering practice,

for some kinds of interactions, especially those related to geometry, it is not feasible to apply this

technique. In those cases, the pre-measure step should not be applied. In the HP printer example,

the pre-measure is only applied to the links whose attributes are signal or electrical energy.

In Figure 5.24, module M2 has four type t interactions with module M1, so a new outport P is

built in module M2. Then, components A,B,C,D do not directly interact with module M1, but

through outport P . Is it always better to introduce an extra outport? In Figure 5.24 module M2

has only two type s interactions with M1. This raises the question of whether it is good to have an

outport in this case? It is necessary to have rules to tell whether it’s good or not to have an outport.

One way to do this is to compare the modularity measure of the structures with or without the

outport. In general, the modularity measure of all structures with different outport configurations

should be calculated, and then the structure with the best modularity has the configuration of the

outports.
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Figure 5.25: The modular decomposition of the function structure from [70].

5.5.2 Results and Discussions

In genetic computation, the population size is set to 50, the crossover rate to 0.9, the mutation rate to

0.3, and the uniformly weighted aggregation function is used. The algorithm applies a pre-measure

process on every individual (genome) before it is evaluated by the MDL measure. Figure 5.23(b)

shows the best modular decomposition found by the algorithm.

The result obtained by MDL-based modularity measure, shown in Figure 5.23(b), is very close

to the modular decomposition [70] shown in Figure 5.25. Components 6, 7, 8, 11, 12, 13, 14 are put

into one module in our result, while they are separated into two modules, 6, 7, 8 and 11, 12, 13, 14,

in the Figure 5.25. If only looking at the abstract graphs, it is difficult to tell which decomposition

is better. In real design activities, the real physical meaning and the preference of human experts

affect the design results very much. How to integrate these factors into our method needs further

investigation. One advantage about our technique is that it also provides some information on the

configuration of the outports of modules.

5.6 Summary

Chapter 3 and Chapter 4 propose information-theoretic measures of modularity. In this chapter,

the measures are used to hierarchically decompose abstract graphs and a real function structure.

Some new case specific mutation and crossover operators of genetic algorithms have been developed

to stochastically search hierarchical decompositions.

The work described in this chapter shows that the techniques are promising, and the information-

theoretic measures are applicable for comparing hierarchical decompositions and identifying hierar-

chical modular structures in graph-type diagrams (structures), which are commonly used in engi-

neering design.
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The method still needs to be verified in more complex systems, and it is still worth investigating

the computation complexity of the technique and scalability of the computation while the sizes of

graphs or systems grow up.
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Chapter 6

Modularization

6.1 Introduction

The main motivation to clarify the concept of modularity and study on modularity measures is to

produce modular engineering design, especially by evolutionary design, such as truss structure syn-

thesis [2, 42] and artificial neural network synthesis. There are many factors affecting the evolution

of modular structures, such as genome representation, fitness function, learning, task structure.

If representations of genomes in an evolutionary system are designed in such a way that favors

modular structures, this should definitely help to produce modular results. This kind of representa-

tion can be achieved by indirect encoding schemes which adopt a non-trivial genotype-phenotype-

mapping. Most of them are grammar-based generative representations [23, 33, 45], such as L sys-

tem [59, 60]. In [23, 33], the adjacency matrix of the graph describing neural networks is not directly

stored in a genome, but a grammar-based generative system is used to construct the neural network

from a give genotype.

Modularity-favorable fitness function can exert more selective pressure on modular structures.

This can be done by integrating modularity measure into one fitness function or making modularity

measure an independent fitness measure in an multi-objective genetic algorithm [16].

The structures of building blocks which final products are built greatly from affect the modularity

of products. Take neural network synthesis as an example. Compared to synthesizing networks from

every basic unit, connection, and node, it should be much easier to build modular networks from

some higher level units which can realize some high level functions. Happel et al. [35, 36] have

built Categorizing And Learning Module (CALM) from building blocks which can realize several

functions, such as excitation and inhibition. Another strategy is to begin with very basic units and

form modules by learning during evolutionary computations.

Another factor affecting modularity evolution is the internal structures of tasks. How does the

modularity of a task affect the modularity of final design products by evolutionary computation?

What kinds of tasks are modular structure-favorable?
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Much work needs to be done to look into the effect of the above factors on evolving modular

structures. This preliminary investigation studies the effects of modularity of tasks and tries to

see if modular problems are solved better by modular structures than non-modular structures. The

experiment is to learn two separated tasks in a two-layer feed-forward neural network.

6.2 Multi-layer Neural Networks and Backpropagation

The artificial neural networks are built from artificial neurons, which together with learning algo-

rithms need to train such structures. An artificial neuron is an abstract model of the biological

neuron. The strength of a connection is coded in the weight. The intensity of the input signal is

modeled by using a real number instead of a temporal summation of spikes. The artificial neuron

works in discrete time steps. The inputs are read and processed at one moment in time. The arti-

ficial neuron shown in Figure 6.1 is a very simple processing unit. The neuron has a fixed number

of inputs n and an activation function f . Each input is connected to the neuron by a weighted

link wi. The neuron firstly sums up the inputs xi according to
∑n

i=1 xiwi, then input the weighted

sum into the activation function f to get the output. Two often-used kinds of activation functions

are a simple threshold function and a sigmoid function. As we will see later, the backpropagation

algorithm requires the function to be differentiable, so it is normal to use a sigmoid function instead

of a threshold function for the activation function, which is normally wanted to be saturate at both

extremes. Either a 0/1 or a ±1 range can be used, with

f(h) =
1

1 + exp(−h)

and

f(h) = tanh(h) =
exp(x) − exp(−x)

exp(x) + exp(−x)
,

respectively, for the activation function.

The simplest neural network is a single layer network which consisting of m neurons, each hav-

ing n inputs. The type of network is widely used for linear separable problems, but a single layer

network is not capable of classifying nonlinearly separable data. One very simple example of a data

set which is not linearly separable is the two dimensional XOR problem. Then people introduced

multi-layer networks to solve nonlinear classification problems by employing hidden layers. The

additional hidden layers can be interpreted geometrically as additional hyper-planes, which enhance

the separation capacity of the network. For example, a network with just one hidden layer can repre-

sent any Boolean function (including for example XOR). One typical two-layer network architecture

is shown in Figure 6.2. The input vector has n dimensions, the output vector has m dimensions,

the bias (the used constant input) is −1, and there is one hidden layer with l neurons. The matrix
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Figure 6.2: Multi-layer artificial neural network.
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V holds the weights of the neurons in the hidden layer. The matrix W denotes the weights of the

neurons in the output layer.

The immediate question is on the capabilities of multi-layer neural networks. It can be seen from

the following Hecht-Nielsen Theorem that multi-layer networks are universal approximators. The

Hecht-Nielsen Theorem states that any continuous function f : In 7→ R
m can be approximated by a

feed-forward network with n inputs, 2n + 1 hidden neurons, and m output nodes [37, 38].

However, this theorem is only an existence theorem, and gives no assistance in how to find it.

In particular, it gives no indication of a method to find the appropriate weights. Fortunately, many

different learning methods have been developed. Most of the supervised methods are based on the

idea of changing the weights in a direction such that the difference between the calculated output

and the desired output is decreased. Examples of such rules are the Perceptron learning rule, the

Hebbian learning rule, the Widrow- Hoff learning rule, and the gradient descent learning rule. The

most commonly used method is the backpropagation learning algorithm, which is a gradient descent

learning rule.

6.2.1 Backpropagation Algorithm

The backpropagation algorithm was invented independently by Bryson and Ho [9], Werbos [111],

Parker [72], and Rumelhart, Hinton and Williams [83]. The basic idea is to present the input vector

to the network; calculate in the forward direction the output of each layer and the final output of

the network. For the output layer, the desired values are known, and therefore the weights can be

adjusted as for a single layer network, in the case of the BP algorithm, according to the gradient

decent rule. To calculate the weight changes in the hidden layer, the error in the output layer

is backpropagated to these layers according to the connecting weights. This process is repeated

for each sample in the training set. One cycle through the training set is called an epoch. The

number of epochs needed to train the network depends on various parameters, especially on the

error calculated in the output layer. The following description of the backpropagation algorithm is

based on the descriptions in [75, 40]. The assumed architecture is depicted in Figure 6.2, which is

a two-layer network with n inputs, l hidden neurons, and m outputs. The bias (the used constant

input) is -1. For convenience, let us introduce the following notations.

• x = {x1, · · · , xn} be input vector,

• x′ = {−1, x1, · · · , xn} be the enlarged input vector,

• h = {h1, · · · , hl} be the aggregated input vector of hidden neurons,

• p = {p1, · · · , pn} be the output vector of hidden neurons,

• p′ = {−1, p1, · · · , pl} be the enlarged aggregated output vector of hidden neurons,
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• q = {q1, · · · , qm} be the aggregated input vector of output neurons,

• z = {z1, · · · , zn} be the output vector of output neurons

• matrix V = [vij ](n+1)×l hold the weights of the hidden neurons,

• matrix W = [wij ](l+1)×m hold the weights of the output neurons,

• T = {(x1,y1), · · · , (xd,yd)} be the training set, where xi is the input vector and yi be the

desired output vector.

Then, the backpropagation procedure is:

1. Initialize the weights V and W to small random values, and choose learning rate η.

2. Randomly choose a pair of training data (x,y) ∈ T .

3. Propagate the signal forwards through the network.

h = V T x′, p = g(h),

q = WT p′, z = g(q).

4. Compute the deltas for the output layer and propagate the errors back-wards to compute the

deltas for the hidden layers.

δy
i = g′(qi)(yi − zi), i = 1, · · · ,m,

δh
i = g′(hi)

m
∑

j=1

wijδ
y
j , i = 1, · · · , l,

where g′ is the differentiation of g.

5. Update the connection weights.

W ← W + ηδyq′,

V ← V + ηδhh′.

6. Repeat from step 2 until every pair in the training data has been used once.

7. Calculate the error by the following equation. Repeat from step 2 until error is small enough.

E =
1

md

d
∑

i=1

m
∑

j=1

(yi
j − zi

j)
2. (6.1)

The selection of the parameters for the backpropagation algorithm and the initial settings of the

weight influences the learning speed as well as the convergence of the algorithm. The initial weights
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chosen determine the starting point in the error landscape, which controls whether the learning

process will end up in a local minimum or the global minimum. The easiest method is to select the

weights randomly from a suitable range, such as between (-1,1). If the weight values are too large,

the net value will large as well; this causes the derivative of the activation function to work in the

saturation region and the weight changes to be near zero. For small initial weights, the changes

will also be very small, which causes the learning process to be very slow and might even prevent

convergence.

The learning coefficient η determines the size of the weight changes. A small value for η will

result in a very slow learning process. If η is too large, the large weight changes may cause the

desired minimum to be missed. A useful range is between 0.05 and 2, dependent on the problem.

An improved technique is to use an adaptive learning rate. A large initial learning coefficient should

help to escape from local minima, while reducing η later should prevent the learning process from

overshooting the reached minimum.

6.3 Modularity Measure

Only the topology modularity is considered in this experiment. Since in the experiments the de-

compositions of input nodes and output nodes are fixed, it’s only necessary to consider the decom-

positions of hidden nodes. One possible decomposition is shown in Figure 6.3. Let L be the MDL

of the structure without modular clustering and Lm be the MDL of the structure with modular

architecture. Let c be a decomposition and C be the set of all possible decompositions. Then,

M =
L − minc∈C Lm(c)

L
. (6.2)

6.4 Experiments and Results

To test the hypothesis that a modular problem is solved better by modular structures, networks

are trained to learn a completely separable problem. Specifically, the learning data set is generated

from the following functions

y1 = (x1 and x2) or x3, and (6.3)

y2 = (x4 or x5) and x6. (6.4)

It contains all possible combinations of inputs. The neural network has 6 inputs (not including

the bias input), 2 outputs, and one hidden layer. The learning capability of a neural network

is affected by the number of paths from inputs to outputs and the overlap among those paths,
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Figure 6.3: An example decomposition for modularity measure.

which is determined by the number of links and nodes, and their connectivity. The following three

experiments test the hypothesis. One has a fixed number of hidden nodes; one has a fixed number

of links; and the last one has a fixed number of links and nodes.

6.4.1 Experiment 1: Fixed Numbers of Links

In this case, the hidden nodes are split into three subsets: {1, · · · , 10 − i}, {11 − i, · · · , 10},
{11, · · · , 20 − i}. There are totally 20 − i hidden nodes, and they form two coupling neural net-

works. Both are fully connected. One has {x1, x2, x3} as inputs, {1, · · · , 10} as hidden nodes, and

y1 as output. The other one has {x4, x5, x6} as inputs, {11 − i, · · · , 20 − i} as hidden nodes, and

y2 as output, as shown in Figure 6.4. The learning results are shown in Figure 6.5. The completely

separable network, i.e. i = 0, is located at the left-most and lowest point. That is, it has the best

learning errors. This means the modular problem favors modular neural networks in this case.

6.4.2 Experiment 2: Fixed Number of Hidden Nodes

This case compares the learning accuracy of a completely integral network shown in Figure 6.6(a),

and a completely modular network, shown in Figure 6.6(b), which has 20 hidden neurons. As shown

in Figure 6.6, the hidden neurons in the completely modular network are split into two sets. One

has i nodes, and the other one has 20− i nodes. Since the two subnetworks learn different tasks, and

it is unknown which task is more complex and therefore needs more hidden neurons, the number
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Figure 6.4: The structures of neural networks used in experiment 1.
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Figure 6.5: The learning errors for networks with fixed number of links.
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Figure 6.6: The structures of neural networks used in experiment 2.

of nodes i varies from 2 to 18. The learning results are shown Figure 6.7. It is obviously the

completely integrative network gives better learning errors. Different total numbers of hidden nodes

give the same results. Another result of 14 hidden nodes is shown in Figure 6.8. This preliminary

result shows that a modular problem is not necessarily solved better by modular structures than

non-modular structures. Then,

Do modular problems favor modularity to some extent?

This question will be investigated by evolutionary computation, which is often used to find a

suitable network for a given task [112]. The experiments are performed on two-layer neural networks

with 21 hidden neurons and with tanh(x) as an activation function. The topology structures of

networks are evolved by evolutionary computation, and the weights of connections are learned from

back-propagation algorithms. The whole algorithm structure is shown in Figure 6.9.

The genome representation includes two matrices, W and V , which represent the input weights

for hidden neurons and output neurons, respectively. The crossover operator is to exchange blocks

in W matrices and V matrices of two parent genomes. The mutation operator is to randomly move

connections (i.e., to delete a connection and insert it afterwards again at a random position). The

learning error is used as the fitness function. The initial population contains 50-randomly generated

individuals. A state steady genetic algorithm with gap rate 0.16 is used. In the Back-propagation

algorithm, the weights are initialized with values from the interval [−1, 1], and the learning rate is

set to 0.1. In the computation, the modularity and number of paths from inputs to outputs are

calculated for every individual in every generation.

From the results shown in Figure 6.10, the processing at the hidden layer tends to become fully

distributed, and the modular problem doesn’t favor modularity in this specific case.
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Figure 6.7: The learning errors for networks with 20 hidden nodes.

0.0 2.0x10
-5

4.0x10
-5

6.0x10
-5

8.0x10
-5

1.0x10
-4

1.2x10
-4

1.4x10
-4

0.0

1.0x10
-5

2.0x10
-5

3.0x10
-5

4.0x10
-5

 

 

L
e

a
rn

in
g

 e
rr

o
r 

o
f 
f_

2

Learning error of f_1

 Modular

 Nonmodular

 Exponential Fit

Figure 6.8: The learning errors for networks with 14 hidden nodes.
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Figure 6.9: Algorithm used in experiment 2.

6.4.3 Experiment 3: Fixed Numbers of Hidden Nodes and Links

In this case, the number of hidden nodes and links are fixed to 21 and 80. Since the number

of connections is fixed, the crossover operator proposed in Section 6.4.2 does not work since its

two offspring have the same number of connections as the parents. Since it is not easy to design

crossover operators which can guarantee the offsprings and parents have same number of connections,

the evolutionary programming introduced in [22] is used here. It does not need crossover operators.

The algorithm is shown in Figure 6.11. The genome representation, mutation operators, fitness

function, and learning algorithm are the same as those in Section 6.4.2.

The results are shown in Figure 6.12. The increase of modularity means that modular structures

are favorable in this case. While the modularity increases, the number of path almost doesn’t

change. This shows that the topology structures of neural networks are gradually separating during

evolution, and therefore the increase of modularity.

6.5 Discussion

If neural networks are viewed as an approximator, the number of weights over the paths from

inputs to outputs could be viewed as the number of coefficients of the approximator. The more the
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Figure 6.10: Results of evolving networks with 20 hidden nodes.



108 ôõö÷øùøú ûõùúüýþÿ����������� ��	
������
��������
�
����������
�����
���	���� ���� ÿ������
���� ���

ÿ�������������
�������  ��
�����!������  ��
������

���	�"	���� #������ �����

õ$%ô$ùøú ý%&%ô%ú'

Figure 6.11: Algorithm used in experiment 3.

coefficients, the more the power of the approximator. This can explain the strong correlation between

learning errors and number of paths. In Experiment 3, the number of paths has no significant change

during the evolution, yet the learning error becomes better. This means that the decrease of learning

errors is mainly due to the increase of modularity.

Rueckl et al. [82] studied the “what” and “where” model in similar neural networks used in

Experiment 2. They showed that modular structures are favored to get better learning errors. This

is different from the conclusion gotten in Section 6.4. It can be concluded that the validity of the

hypothesis depends on the tasks. Usually, there are some function overlaps in two different tasks.

For example, the two functions in Section 6.4 have some function overlap since they have some

common data. This overlapping affects the modularity of network structures when only the learning

error is used as fitness.

The validity of the hypothesis varies in the three different experiments. The links and nodes

are considered as resources since the learning performance is determined by them. Then, whether

a modular task is solved better by modular neural networks or non-modular ones depends on how

many and what kind of resources are available for the task.

The results in Experiment 3 show that the fitness function without modularity measure can

drive networks to be more modular, but the selective pressure is not very strong since the increase

of modularity is slow. The possible next step is to integrate the modularity measure into fitness
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Figure 6.12: Results of evolving networks with fixed number of links.



110

function to increase the selective pressure.

6.6 Summary

The results in this preliminary study show that the relation between modular tasks and modular

topology of feed-forward neural networks is task-dependent and depends on the amount of resources

available for the tasks. The work in this chapter is a step to understand the evolution of modularity.

To achieve our goal to evolve large engineering systems with modular architectures, much work can

be done on the relations between the modularity evolution and factors such as genetic operators,

genome representations, and fitness functions.
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Chapter 7

Conclusion

7.1 Summary

Although much work has been done on modularity, most of it is qualitative and exploratory in

nature. The few quantitative studies typically are function-based or design structure matrix-based,

and most quantitative measures of modularity are linkage counting methods. This thesis provides

a first attempt to quantify modularity from information-theoretic views and provide a more general

quantitative measure of modularity.

To quantify modularity, several key characteristics of “modularity” are identified, and several

questions about modularity are clarified. Specifically, they are system vs. model, specific meanings

of “inter-module” and “intra-module,” relativity of couplings, aggregation of modularity at different

levels in a hierarchical structure, application domain of definition, and how to quantify couplings.

The last question is the key to developing quantitative modularity measure.

Discussions in Chapter 2 show that modularity is actually discussed over a model of a system

and, therefore, the representation of the model. According to different purposes, different aspects

of design processes and products can be modeled with different representations including function

structures, design structure matrices (DSM), graph representations, and systems of random vari-

ables. The graph representations can be separated into four subclasses according to whether edges of

a graph are associated with attributes and whether the attributes are ordered or not. Those different

representations are related. Design structure matrices can be mapped to graphs only with ordered

attributes, and function structures can be mapped to graphs only with unordered attributes. By

viewing adjacency matrices as covariance matrices of gaussian random vectors, a graph only with

ordered attributes can be equivalent to a system of gaussian random variables.

The thesis provides two information-theoretic methods, the mutual information-based method

and the Minimal Description Length (MDL)-based method to quantify modularity of these different

representations. The mutual information-based method views couplings as information flow instead

of real physical interactions between systems. The intuition behind this view is that the stronger
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the coupling between two systems, the more information about one system can be inferred from the

known information of the other system, i.e., the more information flows between them. Information

flow can be quantified by mutual information, which is based on randomness and uncertainty. Since

most engineering products can be modeled as stochastic systems and therefore have randomness,

mutual information-based methods are applied in very general cases, and it is shown that the general

existing linkage counting modularity measure is a special case of the mutual information-based

modularity measure.

The mutual information-based methods are applied to products which have physical behaviors,

but usually this is not the case at the early phase of engineering design, where only function diagrams

exist. To exploit the benefits of modularity as early as possible in engineering design processes, an

MDL-based modularity measure is proposed for structure modularity of graph structures, which can

represent function diagrams. The method views modularity as a kind of regularity, which can be

measured by the MDL principle.

The diagram shown in Figure 7.1 summarizes the relations of different modularity quantification

methods. Systems of random variables can be quantified by the mutual information-based method;

graphs without attributes, and therefore 0, 1-design structure matrices (binary design structure ma-

trices), can be quantified by both methods and the demonstration in Chapter 5 shows that the

they are equivalent in this case; graphs only with ordered attributes, and therefore function struc-

tures, can be quantified by the MDL-based method; and graphs only with ordered attributes, and

therefore design structure matrices, can be quantified by the mutual information-based method. Un-

fortunately, both methods do not work well for graphs with both unordered and ordered attributes.

To get design structure matrices, it is required to quantify the interactions between different com-

ponents or design parameters. Generally the quantifying is done by designers’ subjective knowledge

and experience. The mutual information-based method can provide a formal and quantitative way

to get design structure matrices.

Both methods have been verified to hierarchically decompose abstract graph structures and a

real function structure of an HP printer. Due to the complexity of graph decomposition, genetic

algorithms are used, and new genetic operators for tree representation are developed to find the

optimal hierarchical decomposition.

The main motivation to quantify modularity is to produce modular engineering designs, especially

by evolutionary design. There are many factors affecting the evolution of modular structures, such

as genome representation, fitness function, learning, and task structure. The preliminary work in

this thesis looks into how the modularity of tasks affect the modularity of products produced by

evolutionary computation. Using neural networks as examples, the study shows that the relation

between modular tasks and modular topology of feed-forward neural networks is task-dependent and

depends on the amount of resources available for the tasks.
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Figure 7.1: Summary of the modularity measure methods.
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7.2 Future Work

One theoretical work is to remove the question mark in Figure 7.1, that is, to find a quantitative

measure of the modularity of graphs with both unordered and ordered attributes. One possible

approach is to integrate mutual information-based measure and MDL-based measure. It is known

that a mutual information-based measure can quantify the modularity of graphs only with ordered

attributes, and the MDL-based method works well for unordered attributes. The whole set of infor-

mation of graphs with both unordered and ordered attributes can be separated into two sets. One

only includes ordered attributes, which can be quantified by the mutual information-based method,

and the other one only has unordered attributes, which can be measured by MDL-based method.

The integration of the two measures, and their separate information, needs to be investigated.

The framework of mutual information-based methods developed in Chapter 3 is based on sys-

tems of random variables. How can real physical systems, such as design products, design pro-

cesses, and manufacturing processes, be modeled as systems of random variables? Chapter 3 has

provided some examples to explain this. It is still necessary to extend those methods to more com-

plex systems. Sometimes it is quite difficult to get probability distributions for random variables

and sometimes systems are very complex, so it is useful to provide some approximate methods to

mutual information-based methods though they are theoretically natural and beautiful. An approx-

imate method could approximate probability distributions, or mutual information, or even mutual

information-based methods. One possible approximation is to use 0, 1-function and consider the

number of interactions. If there is an interaction between two components, the strength of interac-

tion is 1, and otherwise the strength is 0. This method is oversimplified. Are there any intermediate

approximations, and if so, what are they?

Another problem is relates to aggregation. As pointed out in Chapter 2, since modularity is

hierarchical, the modularity of a system is an aggregation of the modularity at different levels of

the system. There are many different ways to aggregate information. What is the best aggregation?

What could be the criteria? How is the modularity measure affected by aggregation functions? One

possible way to avoid aggregation is to use a sequential method: to decompose systems by several

sequential steps and one level at one step. How is the sequential method different from the one step

but multi-level method?

In computational aspects, due to complexity of clustering, evolutionary computations can be

used. There are no existing genetic operators available for the special tree representations of modular

structures. Though some operators have been designed in Chapter 5, it is still useful to design better

operators to more efficiently and quickly explore the space of all possible decompositions. It is worth

investigating the computation complexity of the techniques and scalability of the computation while

the sizes of systems grow up.
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The last but largest problem is to investigate how to produce modular structures in engineering

design, especially in evolutionary design. It is worth applying biological understandings of modu-

larization to engineering modularization. On the other hand, engineering study could also provide

some thoughts on biological modularity since the biological modularization is still far from being

fully understood. It could be useful to look into how genome representation, fitness function, learn-

ing and task structures affect modularization in evolutionary design, how to integrate modularity

measure into fitness measures, and how to develop generative genome representations.
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