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Abstract

In this work, we describe three analyses, all of which involve physics beyond the

Standard Model. The first two discussed here are closely related; they use effec-

tive operator analyses to constrain the contributions of physics beyond the SM to

observable processes. The third project involves the investigations of a particular

extra-dimensions model which addresses the cosmological constant problem.

The first project which we will discuss uses the scale of neutrino mass to place

model-independent constraints on the coefficients of the chirality-changing terms in

the muon decay Lagrangian. We list all of the dimension-six effective operators which

contribute to muon decay and Dirac mass for the neutrino. We then calculate the

one-loop contributions that each of these operators makes to neutrino mass. Taking

a generic element of the neutrino mass matrix to be of order ∼ 1 eV, we derive limits

on the contributions of these operators to the muon Michel parameters which are

approximately four orders of magnitude more stringent than the current experimental

results, and well below near-future experimental sensitivity. We also find two chirality-

changing operators, which, due to their flavor structure, are unconstrained by neutrino

mass yet contribute to muon decay. However, as these two operators differ from

those constrained by neutrino mass only by their flavor indices, we naively expect

their contributions to also be small; if their effects instead turn out to be observable,

this may be an indication of beyond-the-Standard-Model physics with an interesting

flavor structure.

In the second analysis, we again perform an effective operator analysis, this time

applied to Higgs production at a linear collider. Here we include all dimension-

six operators containing fermions which contribute to Higgs production. We again
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include operators that contain right-handed Dirac neutrinos. We obtain limits on

these operators from electroweak precision observables, the scale of neutrino mass,

and limits on neutrino magnetic moments, and use these limits to constrain the

contributions of these operators to the Higgs production cross-section. Although

we find that all operators containing right-handed neutrinos contribute negligibly to

Higgs production, we do find three operators containing only SM fields which could

have observable contributions at an e+e− linear collider.

Lastly, we discuss the characteristics of a particular extra-dimensions model orig-

inally proposed by Carroll and Guica [54]. This model has two extra dimensions

compactified into a sphere, a bulk magnetic field, and a bulk cosmological constant.

In this model, the cosmological constant seen by a four-dimensional observer can

be set to zero by fine-tuning the bulk magnetic field against the bulk cosmological

constant. If branes with a tension are added at each of the poles of the two-sphere,

solutions with zero four-dimensional cosmological constant are still possible, but the

compactified dimensions must acquire a deficit angle which depends on the brane

tension. However, the brane tension does not affect the fine-tuning relationship

between the bulk cosmological constant and the bulk magnetic field. This feature

led to the hope that, after this fine-tuning, the model might self-tune, keeping the

four-dimensional cosmological constant zero regardless of what happens to the brane

tension by adjusting the deficit angle. We speculated that this self-tuning property

would imply a massless scalar mode in the perturbed Einstein’s equations; as there

exist very stringent limits on scalar-tensor theories of gravity, a massless scalar mode

would make this model incompatible with observation. We conducted a search for

such modes, and found none which satisfied the boundary conditions. This finding

led us to speculate that this model does not, in fact, have a self-tuning property.
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Ṽ , AD
and (b) O(6)

W, AD (denoted by

the shaded box) to the amplitude for µ-decay. Solid, dashed, and wavy

lines denote fermions, Higgs scalars, and gauge bosons, respectively.

After SSB, the neutral Higgs field is replaced by its vev, yielding a four-

fermion µ-decay amplitude. . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 One-loop graphs for the matching contributions of the n = 6 operators

(denoted by the shaded box) to the n = 4 mass operator O(4)
M, AD. Solid,

dashed, and wavy lines denote fermions, Higgs scalars, and gauge bosons,

respectively. Panels (a, b, c) illustrate contributions from O(6)
B,W , O(6)

Ṽ
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Chapter 1

Introduction

The Standard Model (SM) has demonstrated remarkable success in explaining particle

interactions at energies up to a few hundred GeV. The experimental value for the

anomalous magnetic moment of the muon agrees with the SM prediction to seven

significant figures [1]. Fits to the LEP and SLD Z pole data [2] show that the current

experimental data is well-described by the the Minimal Standard Model. And, of

course, no non-SM particles have yet been discovered.

However, despite this success, few physicists believe that the SM is valid up to

arbitrarily high energies; the SM contains 19 free parameters (not including neutrino

masses and mixing angles!) which currently must be put in by hand, does not explain

why fermions seem to come in three flavors or predict their masses, and requires the

existence of a Higgs boson with a mass not too far from the weak scale, even though

radiative corrections would be expected to push its mass up to the Planck scale.

Additionally, as the SM does not address the issue of neutrino mass at all, does

not explain the matter-antimatter asymmetry in the universe, and fails miserably to

explain the cosmological constant, we now have conclusive evidence of physics beyond

the SM.

To address some of these issues which the SM leaves unresolved, many ideas

have been proposed for physics beyond the SM. These include supersymmetry (for an

introductory review, see [3]), models of extra dimensions (see reviews [4, 5, 6]), models

with with extra gauge bosons [7], technicolor [8], and many other ideas. Currently, the

favored explanation for the scale of neutrino mass is the see-saw model [9, 10, 11, 12],
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and the cosmological constant problem is a subject of intense study. (For some very

recent reviews on the cosmological constant, see [13, 14, 15].)

While the value of studying particular new physics scenarios is evident, the rich-

ness of possibilities for physics beyond the Standard Model indicates that model-

independent analyses are also worthwhile. In this work, we will use both approaches.

First, in Chapters 2 and 3 we will use general operator analyses to obtain model-

independent constraints on the contributions of new physics to two processes—muon

decay and Higgs production. (Interestingly, both of these processes can, in prin-

ciple, receive contributions from new physics which also gives rise to the (not-yet-

understood) phenomenon of neutrino mass.) Then, in Chapter 4, we will study a

particular extra-dimensions model which attempts to address the cosmological con-

stant problem. We discuss the motivation for each of these analyses below.

1.1 Neutrino Mass and Muon Decay

Although the first direct evidence for neutrino mass came in the 1960s [16] with the

observation of an unexpectedly low νe flux coming from the sun, it wasn’t until the

last two decades that the case for nonzero ν mass became compelling. For recent

reviews, see [1], [17], and [18]. Fig. 1.1 (taken from [1]) gives a visual summary of

the current knowledge of neutrino oscillation parameters taken from experiments.

Two mass regions in Fig. 1.1 are of particular interest. These roughly correspond

to the regions explored by the “solar” (oscillations of νe or ν̄e into ν’s of other flavors)

and “atmospheric” (oscillations of νµ) experiments. The former is dominated by the

most recent results of Super-Kamiokande (Super-K) [19] and the Sudbury Neutrino

Observatory (SNO) [20], which look for disappearance of solar νe, and KamLAND

[21], a reactor experiment which looks for disappearance of ν̄e. Combining the results

of the three experiments [19] gives the region marked “Super-K+SNO+KamLAND

95%” in Fig. 1.1, which indicates ∆m2 close to 8 × 10−5 eV2 and the Large Mixing

Angle solution for tan2 θ�. Observations of neutral-current ν interactions by SNO [22]

are consistent with solar models, favoring oscillations of νe to other active flavors.
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Tha atmospheric neutrino data, however, are dominated by Super-K. They report

in [23] a deficit of νµ events dependent upon zenith angle and energy, with no corre-

sponding deficit in νe events. They thus report sin2 2θatm > 0.92 and 1.5 × 10−3 <

∆m2 < 3.4 × 10−3 eV2 at 90% CL. They also report [24] a dependence upon L/E

(where L is the ν flight distance and E is its energy) in their muon disappearance

results, which yields similar results. Finally, they see [25] a ντ appearance at the 2.4σ

level and find that their results are completely compatible with full νµ − ντ mixing.

Also shown in Fig. 1.1 is the region favored by the LSND experiment [26, 27, 28,

29], whose results favored ν̄µ to ν̄e oscillations with ∆m2 ∼ 1 eV2. Assuming three

neutrino flavors, neutrino mass results must satisfy the simple relation

∆m2
12 + ∆m2

23 = ∆m2
13 (1.1)

where ∆m2
ij = m2

i −m2
j . This relation cannot be satisfied by the ∆m2

ijs implied by the

solar, atmospheric, and LSND experiments. Thus, the LSND results were considered

possible evidence for a sterile neutrino νs. However, the very recent results of Mini-

BooNE [30] do not support the LSND results and there is currently no compelling

evidence for a sterile ν.

While constraints from neutrino oscillations give us information about the squared

mass differences ∆m2
ij between different mass eigenstates, they tell us nothing about

the overall scale of neutrino mass. Results from tritium β decay [31, 32] give a limit

of < 2 eV [1] on the sum
∑

i

|Uei|2 m2
νi

(1.2)

where U is the neutrino mixing matrix.

Limits also exist on the sum of the neutrino masses from cosmology. Constraints

from WMAP and the Sloan Digital Sky Survey [33] give a limit of

∑
mν < .42 eV at 95%, CL (1.3)

assuming three flavors of neutrinos.
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It is these last two results which will be the most relevant to our work in Chapters 2

and 3. However, the presence of neutrino oscillations (and therefore nonzero neutrino

mass) imply that the SM Lagrangian is not complete. If neutrinos are purely Dirac

particles, the Lagrangian will receive terms of the form

δL = −mij
ν ν̄R

iνj
L + h.c. (1.4)

where i and j are flavor indices. Thus, we must necessarily add a right-handed

neutrino νR to the SM. However, if neutrinos are instead purely Majorana particles

and receive a mass term of the form

δL = −1

2
mij

ν ν̄R
iνcj

R + h.c. (1.5)

then we find that nature allows lepton number violation. Therefore, when considering

extensions to the SM, we should allow the Lagrangian to contain terms which contain

right-handed Dirac neutrinos or to contain terms which violate lepton number, or

both. In this work, for simplicity, we will assume that neutrinos are purely Dirac

particles.

Given that neutrino mass is a window onto physics beyond the SM, it makes

sense to consider the possibility that the current knowledge of neutrino mass could

already be used to place constraints on new physics and its possible manifestations

in observable processes. The first such process which we consider is muon decay. One

can write the effective muon decay Lagrangian in the form

Lµ−decay = −4Gµ√
2

∑

γ, ε, µ

gγ
εµ ēεΓ

γνν̄Γγµµ (1.6)

where Γγ runs over all possible Lorentz structures (1, γµ and σµν/
√

2) and ε and

µ are the electron and muon chiralities. In the SM, gV
LL = 1 and all others are

zero. It is easy to see from Eq. 1.6, however, that the sum also includes terms that

differ from those given by the V −A structure of the SM and, in particular, includes
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terms which contain right-handed neutrinos, such as the case γ = V , ε or µ = R.

Thus, it is not hard to imagine that if neutrino mass compels us to include in the

Lagrangian effective operators which contain right-handed neutrinos, that some of

these operators could contribute to Lµ−decay. A key point of the analysis which we

present in Chapter 2 is that some of these operators will contribute to neutrino mass,

and, thus, can be constrained by current limits on mν . (More specifically, one can

note that dimension-six operators that contribute to mν without insertions of tiny

neutrino Yukawa couplings will contain a single νR field. This implies that the terms

in Lµ−decay which can be constrained by limits on mν will contain one right-handed

ν and one left-handed ν, and, thus, ε 6= µ.)

These coefficients gγ
εµ can be translated into effects on the muon decay spectrum,

which can be written as

d2Γ

dx d cos θ
=

mµ

4π2
W 4

eµG
2
µ

√
x2 − x2

0

× [FIS(x) ± Pµ cos θ FAS(x)] (1.7)

×
[
1 + ~ζ · ~Pe(x, θ)

]

where Weµ = (m2
µ + m2

e)/2mµ is the maximum e energy, x = Ee/Weµ, x0 = me/Weµ,

and ~Pµ and ~Pe are the µ and e polarizations. ~ζ is a vector dependent on the experimen-

tal configuration. The isotropic and anisotropic components of the decay spectrum,

FIS(x) and FAS(x), can be written in terms of four of the Michel parameters (MPs)

ρ, η, ξ, and δ [34, 35]:

FIS = x(1 − x) +
2

9
ρ(4x2 − 3x − x2

0) + ηx0(1 − x) (1.8)

FAS =
1

3
ξ
√

x2 − x2
0

[
1 − x +

2

3
δ

(
4x − 3 +

(√
1 − x2

0 − 1

))]
. (1.9)

In the SM these parameters take the values ρ = δ = 3
4
, η = 0, and ξ = 1.

For our purposes, ρ will be particularly useful. It can be expressed in terms of the
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gγ
εµs as

ρ =
3

4
−

(
3

4

∣∣gV
LR

∣∣2 +
3

2

∣∣gT
LR

∣∣2 +
3

4
Re

(
gS

LRgT ∗
LR

)
+ (L ↔ R)

)
. (1.10)

It should be noted that the gS,V,T
LR,RL all correspond to terms in Eq. 1.6 which contain

right-handed neutrinos. Recently, ρ (and δ) has been measured by the TWIST Col-

laboration [36, 37], who hope to eventually improve their precision to the few× 10−4

level.

In Chapter 2, we set out investigate whether the scale of neutrino mass can be

used to place limits on some of the gγ
εµ. We enumerate the dimension-six operators

which can contribute to a Dirac mass of the neutrino or to muon decay, and then use

current upper bounds on neutrino mass to derive constraints on contributions of these

operators to chirality-changing (i.e, ε 6= µ) terms in the muon decay Lagrangian. We

obtain model-independent constraints considerably stronger than the current experi-

mental bounds and, finally, discuss the implications for currently ongoing experiments

to measure the muon decay parameters. The content of Chapter 2 is largely borrowed

from the work of Erwin et al. [38].

In the analysis of Chapter 2 (and later in Chapter 3), we will assume a scale of 1 eV

for an upper limit on a generic entry of the neutrino mass matrix, and, for simplicity,

we will assume that neutrinos are purely Dirac particles. For a similar study of muon

decay where neutrinos are allowed to have Majorana mass terms, see [39]. It should

be noted that our limits from neutrino mass on the effects of physics beyond the SM

given in those chapters will improve if the upper bounds on the neutrino mass scale

become more stringent in future measurements.

One can also ask what ramifications our results can have for certain models. A

class of models for which the Michel parameters have particular relevance is Left-

Right-Symmetric Models (LRSM). For a treatment of the interplay of muon decay

and LRSM, we direct the reader to [40].
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1.2 Fermionic Operators and Higgs Production

Continuing with our work with effective operators, we move from muon decay to Higgs

production at an e+e− Linear Collider. Unlike muon decay, all that is known about the

properties of the Higgs boson is theoretical or through indirect experimental evidence.

Direct searches [41] have ruled out the ranges of the Higgs boson mass mH < 114.4 at

the 95% confidence level. Fits to mH by the LEP Electroweak Working Group have

yielded the range shown in Fig. 1.2 (from [42]); they obtain a 95% CL upper limit of

186 GeV, which rises to 219 GeV when the direct search results are included.

0

1

2

3

4

5

6

10030 300

mH [GeV]

∆χ
2

Excluded

∆αhad =∆α(5)

0.02758±0.00035

0.02749±0.00012

incl. low Q2 data

Theory uncertainty

Figure 1.2: χ2 plotted as a function of MH , taken from [42]. The yellow band shows
the region excluded by the direct searches at 95% CL.

Given the range of mH compatible with the SM, it (or something like it) is expected

to be discovered at the LHC. Assuming that such a Higgslike particle is, in fact,

discovered, a linear collider will be necessary to measure its properties to determine

if it really is an SM Higgs boson. Especially important are measurements of the
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particle’s mass, spin, and couplings to other particles. (For a short review, see [43].)

Is the new particle a scalar? Are its couplings to the W± and Z particles compatible

with it being the source of electroweak symmetry breaking? Are its couplings to

fermions proportional to their masses? For an excellent discussion of Higgs physics

at a future LC, we direct the reader to [44].

Here, we will concentrate on the observable most relevant to our work in Chapter

3, the Higgs Boson production cross-section. As the production cross-section is also

important for measurements of the Higgs branching fractions [45], we will discuss

their relevance as well.

A precise measurement of the Higgs production cross-section is critical for distin-

guishing an SM Higgs boson from scalars predicted by other models, such as super-

symmetry. For example, the production cross-section for the lightest MSSM Higgs

will differ from that of the SM Higgs. (For a calculation of the cross-sections for

the MSSM Higgses with radiative corrections included, see [46].) In addition, [47]

describes in detail how partial width and branching ratio measurements at a linear

collider could be used to distinguish an SM Higgs boson from an MSSM Higgs. This

would be particularly important for values of tanβ and MA where it is possible that

only one of the MSSM scalars would be observable at the LHC.

The branching fractions of a Higgslike scalar can also be useful in distinguish-

ing the SM from extra-dimensions scenarios. The authors of [48] find that an SM

Higgs boson can be distinguished from the Randall-Sundrum scalar radion by precise

measurements of its branching fractions, particularly to gg; for a particularly light

radion, gg can actually be the primary decay mode, whereas a Higgs of the same mass

would decay primarily to b̄b. The authors of [49] and [50] consider how Higgs-radion

mixing could affect the properties of a Higgs boson; they find that the branching

ratios, particularly H → gg, could differ substantially from the SM expectation. [50]

additionally find that the HZZ coupling would differ from the SM scenario, leading

to changes in the overall Higgs production cross-section.

There are multiple reasons why it is important to understand how much physics

at a high energy scale Λ could affect the measurements of the Higgs boson properties.
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First and foremost, if it turns out that the possible effects of new physics are large

enough to substantially change either the expected Higgs mass range or its production

or decay mechanisms, search strategies may have to be changed accordingly. Secondly,

given the importance of determining the Higgs production cross-section, we would like

to know whether an observed deviation from the SM expectation favors particular

models, or if unknown new physics at energy scale Λ could make the interpretation

of such a deviation ambiguous.

In Chapter 3, we describe the use of a general operator analysis to constrain the

effects of physics beyond the SM on Higgs production at a linear collider. We restrict

ourselves to dimension-six operators which contain fermions and Higgs fields (for

similar analyses considering other operators, see [51, 52]), including three operators

which we borrow from the muon decay analysis. We then use precision electroweak

data and limits on neutrino mass to place limits on the contributions of these operators

to Higgs production at a linear collider, and find operators that could have observable

effects on the Higgs production cross-section. Chapter 3 borrows heavily from the

work of Kile and Ramsey-Musolf [53].

1.3 Extra Dimensions and the Cosmological Con-

stant

After the discussion of these two model-independent analyses, in Chapter 4 we inves-

tigate the characteristics of a specific model of extra dimensions which was originally

proposed in [54]. This model was proposed to possibly shed new light on the cosmo-

logical constant problem, the observation of a cosmological constant more than 120

orders of magnitude smaller than the naive SM expectation of M4
P .

Other models of extra dimensions have been proposed to address the cosmological

constant problem [55, 56, 57, 58, 59]. In models with extra dimensions, the cosmolog-

ical constant seen by a four-dimensional observer can receive contributions from both

brane and bulk terms. Thus, in order to make the cosmological constant small, these
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models introduce an unpleasant fine-tuning between different terms which contribute

to the cosmological constant. The model presented in [54] also required such a fine-

tuning; however, it appeared possible in this model that, once this fine-tuning took

place, the volume of the extra dimensions would adjust itself so that the cosmological

constant would remain zero, independent of the brane tension.

We expected that this self-tuning property would imply a massless mode in the

perturbed Einstein’s equations, and searched for such modes. The presence of such

a mode would cause this model to be strongly disfavored, as tests of the equivalence

principle [60, 61] place tight constraints on scalar-tensor theories of gravity. We found

no such modes and speculated that this model did not, in fact, have a self-tuning

property. Chapter 4 is taken from Graesser, Kile, and Wang [62].
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Chapter 2

Muon Decay Parameters From

Neutrino Mass

In this chapter, we discuss the first of our two model-independent analyses: using

current limits on the scale of neutrino mass (∼ 1 eV) to constrain the effects of new

physics on muon decay. We specifically consider operators which can contribute to

the chirality-changing terms in the muon decay Lagrangian, and we only consider the

case of Dirac neutrinos. The contents of this chapter are, aside from small cosmetic

changes, taken from [38].

2.1 Introduction

Precision studies of muon decay continue to play an important role in testing the

Standard Model (SM) and searching for physics beyond it. In the gauge sector of

the SM, the Fermi constant Gµ that characterizes the strength of the low-energy,

four-lepton µ-decay operator is determined from the µ lifetime and gives one of the

three most precisely known inputs into the theory. Analyses of the spectral shape,

angular distribution, and polarization of the decay electrons (or positrons) probe for

contributions from operators that deviate from the (V −A)⊗(V −A) structure of the

SM decay operator. In the absence of time-reversal (T) violating interactions, there

exist seven independent parameters—the so-called Michel parameters [34, 35, 63]—

that characterize the final state charged leptons: two (ρ, η) that describe the spatially

isotropic component of the lepton spectrum; two (ξ, δ) that characterize the spatially
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anisotropic distribution; and three additional quantities (ξ′, ξ′′, η′′) that are needed

to describe the lepton’s transverse and longitudinal polarization1. Two additional

parameters (α′/A, β ′/A) characterize a T-odd correlation between the final state

lepton spin and momenta with the muon polarization: Ŝe · k̂e × Ŝµ.

Recently, new experimental efforts have been devoted to more precise determi-

nations of these parameters. The TWIST Collaboration has measured ρ and δ at

TRIUMF [36, 37], improving the uncertainty over previously reported values by fac-

tors of ∼ 2.5 and ∼ 3, respectively. An experiment to measure the transverse positron

polarization has been carried out at the Paul Scherrer Institute (PSI), leading to sim-

ilar improvements in sensitivity over the results of earlier measurements [64]. A new

determination of Pµξ with a similar degree of improved precision is expected from the

TWIST Collaboration, and one anticipates additional reductions in the uncertainties

in ρ and δ [65].

At present, there exists no evidence for deviations from SM predictions for the

Michel parameters (MPs). It is interesting, nevertheless, to ask what constraints

these new measurements can provide on possible contributions from physics beyond

the SM. It has been conventional to characterize these contributions in terms of a set

of ten four-fermion operators

Lµ−decay = −4Gµ√
2

∑

γ, ε, µ

gγ
εµ ēεΓ

γνν̄Γγµµ (2.1)

where the sum runs over Dirac matrices Γγ = 1 (S), γα (V), and σαβ/
√

2 (T), and

the subscripts µ and ε denote the chirality (R, L) of the muon and final state lepton,

respectively2. In the SM, one has gV
LL = 1 and all other gγ

εµ = 0. A recent, global

analysis by Gagliardi, Tribble, and Williams [67] give the present experimental bounds

on the gγ
εµ that include the impact of the latest TRIUMF and PSI measurements.

Theoretically, the gγ
εµ can be generated in different scenarios for physics beyond the

1The parameters η and η′′ are alternately written in terms of the independent parameters α/A
and β/A.

2The normalization of the tensor terms corresponds to the convention adopted in [66]. We do
not specify the neutrino flavors in Eq. (2.1) since the µ-decay experiments do not observe the final
state neutrinos.
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SM. The most commonly cited illustration is the minimal left-right symmetric model

that gives rise to non-zero gV
RR, gV

RL, and gV
LR. From a model-independent standpoint,

the authors of [68] recently observed that the operators in Eq. (2.1), having different

chiralities for the muon and final state charged lepton, will also contribute to the

neutrino mass matrix mAB
ν through radiative corrections. Consequently, one expects

that the present upper bounds on mν should imply bounds on the magnitudes of the

gγ
εµ. The authors of [68] argued that the most stringent limits arise from two-loop

contributions because the one-loop contributions are suppressed by three powers of

the tiny, charged lepton Yukawa couplings. The two-loop constraints are nonetheless

stronger than the present bounds given in [67] and could become even more so with

the advent of future terrestrial and cosmological probes of the neutrino mass scale.

In this chapter, we present the results of a follow-up analysis of mν constraints

on the µ-decay parameters, motivated by the observations of [68] and the new exper-

imental developments in the field. Our study follows the approach of [69],[70], and

[71], used recently in deriving model-independent naturalness bounds on neutrino

magnetic moments implied by the scale of mν . We concentrate on the case of Dirac

neutrinos, deferring a detailed consideration of Majorana neutrinos to a separate anal-

ysis. Although there exists a long-standing theoretical prejudice favoring the see-saw

mechanism with light, Majorana neutrinos as an explanation of the small scale of mν ,

we see several reasons for studying the Dirac and Majorana cases separately:

(i) From the standpoint of string phenomenology, obtaining models with neutrino

self-couplings and a type I see-saw mechanism appears to be quite difficult. Re-

cently, the authors of [72] performed a systematic study of 175 viable ways of

embedding the Standard Model gauge group in the E8×E8 heterotic string with

Z3 orbifold compactification and found that only two of the twenty classes of

such inequivalent models admitted neutrino self-couplings. The natural scale of

mν in these two classes lies many orders of magnitude below the scale implied by

neutrino oscillation data. Interactions leading to Dirac masses occur more abun-

dantly in such constructions. On the other hand, a subsequent study of a specific
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Z3 × Z3 orbifold string construction [73] indicated the plausibility of obtaining

a type II see-saw mechanism, wherein left-handed lepton-number-violating neu-

trino self-couplings arise from interactions with scalar SU(2)L triplet fields. Ei-

ther way, however, the appearance of Majorana mass terms is not at all a generic

feature of string constructions, leaving the Dirac case as a logical possibility.

(ii) Experimentally, there exists no conclusive evidence for or against the presence of

light Majorana neutrinos. New searches for neutrinoless double β-decay (0νββ)

could provide conclusive proof that the light neutrinos are Majorana, provided

the neutrino mass spectrum has the “inverted” rather than “normal” hierar-

chy (for recent reviews, see, e.g., [74] and [75]). If, on the other hand, future

long-baseline oscillation experiments establish the existence of the inverted hi-

erarchy and/or ordinary β-decay measurements indicate a mass consistent with

the inverted hierarchy, a null result from the 0νββ searches would imply that

neutrinos are Dirac particles3. Either way, the investment of substantial ex-

perimental resources in these difficult measurements indicates that determining

the charge conjugation properties of the neutrino is both a central question for

neutrino physics as well as one that is not settled. Until it is, considering the

implications of Dirac neutrinos remains a valid enterprise.

(iii) The phenomenological analyses of Dirac and Majorana masses for other neu-

trino properties and interactions are quite distinct. As illustrated by the recent

analyses of neutrino magnetic moments in [69], [70], and [71], the characteristics

of the operator basis and renormalization can be sufficiently different and com-

plex for the two cases that separate studies of each are warranted. Moreover, the

parameterization of the µ-decay Michel spectrum in the presence of Majorana

neutrinos may require modification from the standard form, as indicated by the

recent work of [76]. Rather than lose the reader in the details of differences in

both the Michel parameterization and operator renormalization for Dirac and

Majorana neutrinos, we prefer to concentrate on the Dirac case in the present

3We thank S. J. Freedman for useful discussions on this point.
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study and consider the Majorana case in a separate paper.

Having this focus in mind, we work with an effective theory that is valid below a

scale Λ lying above the weak scale v ≈ 246 GeV and that contains SU(2)L×U(1)Y -

invariant operators built from Standard Model fields plus right-handed (RH) Dirac

neutrinos. We consider all relevant operators up to dimension n = 6 that could be

generated by physics above the scale Λ. For simplicity, we restrict our attention

to two generations of lepton doublets and RH neutrinos. Extending the analysis to

include a third generation increases the number of relevant operators but does not

change the substantive conclusions. While the spirit of our work is similar to that of

[68], the specifics of our analysis and conclusions differ in several respects:

i) The effective theory that we adopt allows us to compute contributions to mν

from scales lying between the weak scale v and the scale of new physics Λ. In

contrast, the authors of [68] used a Fierz transformed version of Lµ−decay in Eq.

(2.1), which is not invariant under the SM gauge group and, therefore, should

be used to analyze only contributions below the weak scale.

ii) We show that for the two-flavor case the operators in Lµ−decay proportional to

gS,T
LR and gS,T

RL arise from twelve independent dimension n = 6 gauge-invariant

four-fermion operators, while those containing gV
LR and gV

RL are generated by

four independent n = 6 operators that contain two fermions and two Higgs

scalars.

iii) While the operators that contribute to µ-decay have dimension n = 6 or higher,

the lowest dimension neutrino mass operator occurs at n = 4. The authors of

[68] used dimensional regularization (DR) to estimate the mixing between the

n = 6 µ-decay and neutrino mass operators4 but did not consider matching

with the n = 4 operator at the scale Λ that cannot be determined with DR.

We derive order-of-magnitude expectations for the n = 6 operator coefficients

4Since the computation of [68] did not employ gauge invariant operators, we consider the results
to give at best reasonable estimates of constraints implied by two-loop mixing.
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implied by this matching, which depends only linearly on the lepton Yukawa

couplings and which gives the dominant constraints for Λ � v.

iv) For Λ not too different from v, constraints associated with mixing among the

n = 6 operators can, in principle, be comparable to expectations arising from

contributions to the n = 4 mass operator. We carry out a complete, one-loop

analysis of this mixing and show that only the neutrino magnetic moment and

two-fermion/two-Higgs operators mix with the n = 6 neutrino mass operator

to linear order in the lepton Yukawa couplings. We derive the resulting bounds

on the gV
LR,RL that follow from this mixing and find that they are comparable

to expectations based on one-loop matching with the n = 4 mass operator for

Λ ∼> v.

v) From the mixing with the n = 6 mass operator, we find that the bounds on the

|gV
LR,RL| are two or more orders of magnitude stronger than those obtained in

[68] and at least three orders of magnitude below the experimental limits given

in [67].

vi) The neutrino mass implications for the couplings gS,T
LR,RL are more subtle. Of the

twelve independent four-fermion operators that contribute to these couplings,

only eight are directly constrained by the scale of neutrino mass and naturalness

considerations. Based on one-loop matching, we expect that their contributions

to the gS,T
LR,RL are generally ∼ 104 times smaller than the present experimental

bounds, and ∼ 103 times smaller than obtained in the analysis of [68]. We show,

however, that the flavor structure of the remaining four operators allows them

to evade constraints implied by either one-loop matching or two-loop mixing.

While from a theoretical perspective one might not expect their contributions to

be substantially larger than those from the constrained operators, experimental

efforts to determine the gS,T
LR,RL remain a worthwhile endeavor.

A summary of our results is given in Table 2.1. In the remainder of the paper

we give the details of our analysis. In Section 3.3, we write down the complete set
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Table 2.1: Constraints on µ-decay couplings gγ
εµ. The first eight rows give naturalness

expectations in units of (v/Λ)2 × (mν/1 eV) on contributions from n = 6 muon decay
operators (defined in Section 3.3 below) based on one-loop matching with the n = 4
neutrino mass operators. For Λ ∼ v, the bounds on gV

LR,RL obtained from one-
loop mixing are similar to those listed. The ninth row gives upper bounds derived
from a recent global analysis of [67], while the last row gives estimated bounds from
[68] derived from two-loop mixing of n = 6 muon decay and mass operators. A
“-” indicates that the operator does not contribute to the given gγ

εµ, while “None”
indicates that the operator gives a contribution unconstrained by neutrino mass. The
subscript D runs over the two generations of RH Dirac neutrinos.

Source |gS
LR| |gT

LR| |gS
RL| |gT

RL| |gV
LR| |gV

RL|

O(6)
F, 122D 4 × 10−7 2 × 10−7 - - - -

O(6)
F, 212D 4 × 10−7 - - - - -

O(6)
F, 112D None None - - - -

O(6)
F, 211D - - 8 × 10−5 4 × 10−5 - -

O(6)
F, 121D - - 8 × 10−5 - - -

O(6)
F, 221D - - None None - -

O(6)

Ṽ , 2D
- - - - 8 × 10−7 -

O(6)

Ṽ , 1D
- - - - - 2 × 10−4

Global [67] 0.088 0.025 0.417 0.104 0.036 0.104
Two-loop [68] 10−4 10−4 10−2 10−2 10−4 10−2

of independent operators through n = 6 that contribute to mAB
ν and/or µ-decay.

Section 2.3 gives our analysis of operator mixing and matching considerations, while

in Section 2.4 we discuss the resulting constraints on the gγ
LR,RL that follow from this

analysis and the present upper bounds on the neutrino mass scale. We summarize in

Section 3.6.

2.2 Operator Basis

To set notation, we follow [69] and consider the effective Lagrangian

Leff =
∑

n,j

Cn
j (µ)

Λn−4
O(n)

j (µ) + h.c. (2.2)
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where µ is the renormalization scale, n ≥ 4 is the operator dimension, and j is

an index running over all independent operators of a given dimension. The lowest

dimension neutrino mass operator is

O(4)
M, AD = L̄Aφ̃νD

R (2.3)

where LA is the left-handed (LH) lepton doublet for generation A, νD
R is a RH neu-

trino for generation D, and φ̃ = iτ2φ
∗, with φ being the Higgs doublet field. After

spontaneous symmetry breaking, one has

φ →


 0

v/
√

2


 (2.4)

so that

C4
M, ADO

(4)
M, AD → −mAD

ν ν̄A
L νD

R

mAD
ν = −C4

M, AD v/
√

2 . (2.5)

The other n = 4 operators are those of the SM and we do not write them down

explicitly here.

For the case of Dirac neutrinos that we consider here, there exist no gauge-

invariant n = 5 operators. In considering those with dimension six, it is useful

to group them according to the number of fermion, Higgs, and gauge boson fields

that enter:

Four fermion:
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L̄γµLL̄γµL

¯̀
Rγµ`R

¯̀
Rγµ`R

¯̀
Rγµ`Rν̄RγµνR

ν̄RγµνRν̄RγµνR

L̄`R
¯̀
RL

L̄νRν̄RL

εijL̄i`RL̄jνR

Here `R is the right-handed charged lepton field. Several of the operators appearing

in this list can contribute to µ-decay, but only the last one can also contribute to

mAD
ν through radiative corrections. Including flavor indices, we refer to this operator

as

O(6)
F, ABCD = εijL̄A

i `C
RL̄B

j νD
R (2.6)

where the indices i, j refer to the weak isospin components of the LH doublet fields

and ε12 = −ε21 = 1.

Fermion-Higgs:

i(L̄AγµLB)(φ+Dµφ)

i(L̄AγµτaLB)(φ+τaDµφ)

i(¯̀ARγµ`B
R)(φ+Dµφ) (2.7)

i(ν̄A
RγµνB

R )(φ+Dµφ)

i(¯̀ARγµνB
R )(φ+Dµφ̃)

Neither of the first two operators in the list (2.7) can contribute significantly to
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mAD
ν since they contain no RH neutrino fields. Any loop graph through which they

radiatively induce mAD
ν would have to contain operators that contain both LH and

RH fields, such as O(4)
M, AB or other n = 6 operators. In either case, the resulting

constraints on the operator coefficients will be weak. For similar reasons, the third

and fourth operators cannot contribute substantially because they contain an even

number of neutrino fields having the same chirality and since the neutrino mass

operator contains one LH and one RH neutrino field. Only the last operator

O(6)

Ṽ , AD
≡ i(¯̀ARγµνD

R )(φ+Dµφ̃) (2.8)

can contribute signficantly to mν since it contains a single RH neutrino. It also

contributes to the µ-decay amplitude after SSB via the graph of Fig. 2.1a since the

covariant derivative Dµ contains charged W -boson fields. We also write down the

n = 6 neutrino mass operators

O(6)
M, AD = (L̄Aφ̃νD

R )(φ+φ) (2.9)

as well as the charged lepton mass operator (L̄φ`R)(φ+φ) that we do not use in the

present analysis.

Fermion-Higgs-Gauge:

L̄τaγµDνLW a
µν

L̄γµDνLBµν

¯̀
RγµDν`RBµν

ν̄RγµDννRBµν (2.10)

g2(L̄σµντaφ)`RW a
µν

g1(L̄σµνφ)`RBµν

g2(L̄σµντaφ̃)νRW a
µν

g1(L̄σµνφ̃)νRBµν
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As for the fermion-Higgs operators, the operators in (2.10) that contain an even

number of νR fields will not contribute significantly to mAB
ν , so only the last two in

the list are relevant:

O(6)
B, AD = g1(L̄

Aσµν φ̃)νD
R Bµν (2.11)

O(6)
W, AD = g2(L̄

Aσµντaφ̃)νD
R W a

µν (2.12)

In addition to these operators, there exist additional n = 6 operators that contain

two derivatives. However, as discussed in [69], they can either be related to O(6)
B, AD

and O(6)
W, AD through the equations of motion or contain derivatives acting on the νR

fields so that they do not contribute to the neutrino mass operator. Consequently,

we need not consider them here. We also observe that the operator O(6)
W, AD will

also contribute to the µ-decay amplitude via graphs as in Fig. 2.1b. We have com-

puted its contributions to the Michel parameters and find that they are suppressed

by ∼ (mµ/Λ)2 ∼< 1.7 × 10−7 relative to the effects of the other n = 6 operators. This

suppression arises from the presence of the derivative acting on the gauge field and the

absence of an interference between the corresponding amplitude and that of the SM.

Finally, we note that the operators whose chiral structure suppresses their contribu-

tions to the neutrino mass operator (as discussed above) may, in general, contribute

to muon decay via the terms in Eq. (2.1) having ε = µ. We do not consider these

terms in this study.

2.3 Operator Renormalization: Mixing and Match-

ing Considerations

In analyzing the renormalization of operators that contribute to both µ-decay and

mAD
ν it is useful to consider separately two cases: (i) one-loop matching conditions

at the scale Λ involving the n = 6 operators that enter µ-decay and the n = 4 mass

operator, O(4)
M, AD, and (ii) mixing among the relevant n = 6 operators. In general,
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W

φ

νD
R

lR

φ

W

φ

νD
R

L

(a) (b)

OṼ OW

Figure 2.1: Contributions from the operators (a) O(6)

Ṽ , AD
and (b) O(6)

W, AD (denoted by

the shaded box) to the amplitude for µ-decay. Solid, dashed, and wavy lines denote
fermions, Higgs scalars, and gauge bosons, respectively. After SSB, the neutral Higgs
field is replaced by its vev, yielding a four-fermion µ-decay amplitude.

contributions to mAD
ν involving the second case will be smaller than those implied

by matching with O(4)
M, AD by ∼ (v/Λ)2, since O(6)

M, AD contains an additional factor

of (φ†φ)/Λ2. We first consider this case and employ dimensional analysis to derive

neutrino mass naturalness expectations for the n = 6 operator coefficients. For v not

too different from Λ, the impact of the n = 6 mixing can also be important, and in

this case we can employ a full renormalization group (RG) analysis to derive robust

naturalness bounds.

2.3.1 Matching with O(4)
M, AD

The analysis of [68] employed dimensional regularization (DR) to regularize the one-

and two-loop graphs through which four-fermion operators containing a single νR field

contribute to the n = 6 mass operator. Mixing with lower-dimension operators does

not arise in DR since the relevant graphs are quadratically divergent and must be

proportional to the square of a mass scale. For µ > v, all fields are massless, and µ

itself appears only logarithmically. Since the mass operator exists for zero external

momentum, all quadratically-divergent graphs vanish in this case.

The n = 4 mass operator will nevertheless receive contributions at the scale Λ

associated with loop graphs containing the n = 6 operators. Simple power counting

shows that these contributions go as ∼ Λ2/(4π)2 times a product n = 6 operator co-

efficient C6/Λ2 and the gauge couplings ∼ g2 appearing in the loop. Thus, matching
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of the effective theory with the full theory (unspecified) at the scale Λ implies the

presence of a contribution to C4
M of order ∼ αC6/4π. As emphasized in [77], the

precise numerical coefficient that enters this matching contribution cannot be com-

puted without knowing the theory above the scale Λ. One may, however, estimate

the size of these contributions either using a gauge-invariant regulator, such as the

generalized Pauli-Villars regulator of [78], or using naive dimensional analysis. Since

we are interested in order-of-magnitude expectations, use of the latter is sufficient.

We emphasize that these expectations can only be relaxed in specific models that

suppress the matching conditions.

LνR L

φ

OB,W

(a)

LlRνR

φ φ

OṼ

(b)

νR L

φ

LlR

OF

(c)

Figure 2.2: One-loop graphs for the matching contributions of the n = 6 operators
(denoted by the shaded box) to the n = 4 mass operator O(4)

M, AD. Solid, dashed, and
wavy lines denote fermions, Higgs scalars, and gauge bosons, respectively. Panels (a,

b, c) illustrate contributions from O(6)
B,W , O(6)

Ṽ
, and O(6)

F , respectively, to O(4)
M, AD.

The relevant one-loop graphs are shown in Fig. 2.2. For the matching of the four-

fermion operators O(6)
F, ABCD onto O(4)

M, AD, two topologies are possible, associated with

either the fields (L̄A, νD
R ) or (L̄B, νD

R ) living on the external lines. For the matching
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of O(6)
F, ABCD as well as of O(6)

Ṽ , AB
into O(4)

M, AD, one insertion of the Yukawa interaction

f ∗
AC l̄CRLA is needed to convert the internal, RH lepton into a LH one. In contrast, no

Yukawa insertion is required for the matching of O(6)
B, AD and O(6)

W, AD onto O(4)
M, AD.

To simplify the analysis of matching involving the O(6)
F, ABCD we note that one may

always redefine the fields LA and `D
R so that the charged lepton Yukawa matrix fAD

is diagonal. Specifically, we take

LA → LA ′ = SABLB (2.13)

`C
R → `C ′ = TCD`D

with SAB and TCD chosen so that

L̄ f̃ ` = L̄′ f̃diag `′ (2.14)

where L, L′ denote vectors in flavor space, f̃ denotes the Yukawa matrix in the original

basis, and f̃diag = S̃† f̃ T̃ . We note that the field redefinition (2.13) differs from

the conventional flavor rotation used for quarks, since we have performed identical

rotations on both isospin components of the left-handed doublet. Consequently, gauge

interactions in the new basis entail no transitions between generations. We also note

that Eqs. (2.13) also imply a redefinition of the operator coefficients C4
M, AD, C6

F, ABCD,

etc.. For example, one has

C4,6
M, A′D = C4,6

M, AD SM, A′A (2.15)

C6 ′
F, A′B′C′D = C6

F, ABCD SA′A SB′B T ∗
C′C

where a sum over repeated indices is implied. Diagonalization of the neutrino mass

matrix requires additional, independent rotations of the νD
L,R fields after inclusion of

radiative contributions to the coefficients C4,6
M, AD generated by physics above the weak

scale. Since we are concerned only with contributions generated above the scale of

SSB, we will not perform the latter diagonalization and carry out computations using
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the L′, `′R basis5.

In this case, the only four fermion operators O(6)
F, ABCD that can contribute sub-

stantially to mAD
ν are those having either A = C or B = C. Thus, we obtain the

following estimates of the contributions from the n = 6 operators to the coefficient of

the n = 4 mass operator:

O(6)
B, AD → C4

M, AD(Λ) ∼ α

4π cos2 θW
C6

B, AD(Λ)

O(6)
W, AD → C4

M, AD(Λ) ∼ 3α

4π sin2 θW

C6
W,AD(Λ)

O(6)

Ṽ , AD
→ C4

M, AD(Λ) ∼ fAA

16π2
C6

Ṽ , AD
(Λ) (2.16)

O(6)
F, ABAD → C4

M, BD(Λ) ∼ fAA

8π2
C6

F, ABAD(Λ)

O(6)
F, ABBD → C4

M, AD(Λ) ∼ fBB

16π2
C6

F, ABBD(Λ)

where θW is the weak mixing angle and where we have made the dependence on the

matching scale Λ explicit6.

The relative factor of 3 cot2 θW for the mixing of O(6)
W, AD compared to the mixing

of O(6)
B, AD arises from the ratio of gauge couplings (g/g′)2 and the presence of a ~τ · ~τ

appearing in Fig. 2.2a. The factor of two that enters the mixing of O(6)
F, ABAD compared

to that of O(6)
F, ABBD arises from the trace associated with the closed chiral fermion

loop that does not arise for O(6)
F, ABBD.

We observe that there exist two four-fermion operators that contribute to µ-decay

that do not contribute to C4
M, AD in the basis giving a diagonal fAB: O(6)

F, AABD with

either A = 1, B = 2 or A = 2, B = 1. It is similarly straightforward to see that these

operators do not mix with C6
M, AD, since in the basis of charged lepton mass eigen-

states, there exist no Yukawa interactions that couple lepton doublet and charged

lepton singlet fields of different generations. As we discuss in Section 2.4, the oper-

ators O(6)
F, AABD with either A = 1, B = 2 or A = 2, B = 1 contribute to gS,T

LR and

5For notational simplicity, we henceforth omit the prime superscripts.
6In relating the coefficients C(Λ) to those at the weak scale as needed for the analysis of both

µ-decay and mν , we will neglect corrections to the relations in Eqs. (2.16) generated by running, as
they are higher order in the gauge couplings and numerically insignificant for our purposes.
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gS,T
RL , respectively. Consequently, the magnitudes of these couplings are not directly

bounded by mν and naturalness considerations, as indicated in Table 2.1.

These conclusions differ from those in [68], which did not take into account oper-

ators that contribute to µ-decay but do not mix with the neutrino mass operators.

The corresponding bounds on gS,T
LR and gS,T

RL obtained in that work are, thus, not gen-

eral and would apply only in scenarios for which C6
F, 112D and C6

F, 221D vanish. From

a theoretical standpoint, one might expect the magnitudes of C6
F, 112D and C6

F, 221D to

be comparable to those of the other four-fermion operator coefficients in models that

are consistent with the scale of neutrino mass. Nevertheless, we cannot a priori rule

out order of magnitude or more differences between operator coefficients.

2.3.2 Mixing among n = 6 operators

Because O(6)
M, AD contains one power of (φ†φ)/Λ2 compared to O(4)

M, AD, the constraints

obtained from mixing with the former will generally be weaker than the one-loop

n = 4 matching contributions by ∼ (v/Λ)2 . However, for Λ not too different from

the weak scale, the n = 6 mixing can be of comparable importance to the n = 4

matching. Here, we study the mixing among n = 6 operators by computing all one-

loop graphs that contribute using DR and performing a renormalization group (RG)

analysis. Doing so provides the exact result for contributions to the one-loop mixing

from scales between Λ and v, summed to all orders in fAA ln(v/Λ) and α ln(v/Λ).

In carrying out this analysis, it is necessary to identify a basis of operators that

close under renormalization. We find that the minimal set consists of seven operators

that contribute to µ-decay and mAD
ν :

O(6)
B, AD, O(6)

W, AD, O(6)
M, AD, O(6)

Ṽ , AD
, O(6)

F, AAAD, O(6)
F, ABBD, O(6)

F, BABD . (2.17)

For simplicity, we have included a single RH neutrino field νD
R in all seven operators.

While one could, in principle, allow for different νR generation indices, the essential

physics can be extracted from an analysis of this minimal basis.

The classes of graphs relevant to mixing among these operators are illustrated in
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Fig. 2.3, where we show representative contributions to operator self-renormalization

and mixing among the various operators. The latter include mixing of all operators

into O(6)
M, AD (a–c); mixing of O(6)

M, AD, O(6)
B, AD, and O(6)

W, AD into O(6)

Ṽ , AD
(d, e); and

mixing between the four-fermion operators and the magnetic moment operators (f,

g). Representative self-renormalization graphs are given in Fig. 2.3(h–j). As noted in

[68], the mixing of the the four-fermion operators into O(6)
M, AD contains three powers

of the lepton Yukawa couplings and is highly suppressed. In contrast, all other mixing

contains at most one Yukawa insertion.

Working to first order in the fAA we find a total of 59 graphs that must be

computed, not including wavefunction renormalization graphs that are not shown.

Twenty-two of these graphs were computed by the authors of [69] in their analy-

sis of the mixing between O(6)
M, AD and the magnetic moment operators. Here, we

compute the remaining 37. As in [69], we work with the background field gauge

[79] in d = 4 − 2ε spacetime dimensions. We renormalize the operators using mini-

mal subtraction, wherein counterterms simply remove the divergent 1/ε terms from

the one-loop amplitudes. The resulting renormalized operators O(6)
jR are expressed in

terms of the unrenormalized operators O(6)
j as

O(6)
jR =

∑

k

Z−1
jk Z

nL/2
L Z

nφ/2
φ O(6)

k =
∑

k

Z−1
jk O(6)

k0 , (2.18)

where

O(6)
j0 = Z

nL/2
L Z

nφ/2
φ O(6)

j (2.19)

are the µ-independent bare operators; Z
1/2
L and Z

1/2
φ are the wavefunction renormal-

ization constants for the fields LA and φ, respectively; nL and nφ are the number of

LH lepton and Higgs fields appearing in a given operator; and Z−1
jk Z

nL/2
L Z

nφ/2

φ are the

counterterms that remove the 1/ε divergences.

Since the bare operators O(6)
j0 do not depend on the renormalization scale, whereas

the Z−1
jk and the O(6)

jR do, the operator coefficients C6
j must carry a compensating µ-

dependence to ensure that Leff is independent of scale. This requirement leads to the
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RG equation for the operator coefficients:

µ
d

dµ
C6

j +
∑

k

C6
k γkj = 0 (2.20)

where

γkj =
∑

`

(
µ

d

dµ
Z−1

k`

)
Z`j . (2.21)

is the anomalous dimension matrix. We obtain7 γjk =




− 3(α1−3α2)
16π

3α1

8π
−6α1(α1 + α2) − 9α1f∗

AA

8π
− 9α1fAA

4π
− 9α1fBB

2π

9α1fBB

4π

9α2

8π

3(α1−3α2)
16π

6α2(α1 + 3α2)
27α2f∗

AA

8π
− 9α2fAA

4π
− 9α2fBB

2π
9α2fBB

4π

0 0 9(α1+3α2)
16π

− 3λ
2π2 0 0 0 0

0 0 9α2fAA

8π
− 3fAAλ

8π2

3α1

4π
0 0 0

− 3f∗
AA

128π2 − f∗
AA

128π2 0 0 3(3α1−α2)
8π

0 0

− 3f∗
BB

128π2 − f∗
BB

128π2 0 0 0 3(α1+α2)
8π

3(α1−α2)
4π

0 0 0 0 0 3(α1−α2)
4π

3(α1+α2)
8π




(2.22)

where the αi = g2
i /(4π) and λ is the Higgs self coupling defined by the potential

V (φ) = λ[(φ†φ) − v2/2]2.

Using this result for γij and the one-loop β functions for α1, α2, and the lepton

Yukawa couplings, we solve the RG equations to determine the operator coefficients

C6
k(µ) as a function of their values at the scale Λ. As in [69] we find that the the

running of the gauge and Yukawa couplings has a negligible impact on the evolution

of the C6
k(µ). It is instructive to consider the results obtained by retaining only the

leading logarithms ln(µ/Λ) and terms at most first order in the Yukawa couplings.

7The term in γ33 proportional to λ differs from that of [69], which contains an error. However,
this change does not affect the bounds on the neutrino magnetic moments obtained in that work.
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Figure 2.3: One-loop graphs for the mixing among n = 6 operators. Notation is as
in previous figures. Various types of mixing (a–g) and self-renormalization (h–j) are
as discussed in the text.
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Figure 2.4: Two-loop graphs for the mixing of the n = 6 operators. Only representive
graphs for the mixing of the four-fermion operators O(6)

F, ABCD into O(6)
M, AD are shown.

We find

C6
M, AD(µ) = C6

M, AD(Λ)
[
1 − γ33 ln

µ

Λ

]

−
[
γ−C6

−(Λ) + γ+C6
+(Λ) + γ43C

6
Ṽ , AD

(Λ)
]
ln

µ

Λ

C6
+(µ) = C6

+(Λ)
[
1 − γ̃ ln

µ

Λ

]

+
[(

f ∗
AA/32π2

)
C6

F, AAAD(Λ) +
(
f ∗

BB/32π2
)
C6

F, ABBD(Λ)
]
ln

µ

Λ

C̃6(µ) = C̃6(Λ)
[
1 + γ̃ ln

µ

Λ

]

+[
(
3fAA/128π2

)
(α1 − α2)C6

F, AAAD(Λ)

+
(
3fBB/128π2

)
(α1 − α2)C6

F, ABBD(Λ)] ln
µ

Λ

C6
Ṽ , AD

(µ) = C6
Ṽ , AD

(Λ)
[
1 − γ44 ln

µ

Λ

]
+ (9fAA/8π)C̃6(Λ) ln

µ

Λ
(2.23)

C6
F, AAAD(µ) = C6

F, AAAD(Λ)

[
1 +

3(α2 − 3α1)

8π
ln

µ

Λ

]

+(9fAA/4π)
[
C6

B, AD(Λ)α1 + C6
W, AD(Λ)α2

]
ln

µ

Λ

C6
F, ABBD(µ) = C6

F, ABBD(Λ)

[
1 − 3(α1 + α2)

8π
ln

µ

Λ

]

−3(α1 − α2)

4π
C6

F, BABD(Λ) ln
µ

Λ

+(9fBB/2π)
[
C6

B, AD(Λ)α1 + C6
W, AD(Λ)α2

]
ln

µ

Λ

C6
F, BABD(µ) = C6

F, BABD(Λ)

[
1 − 3(α1 + α2)

8π
ln

µ

Λ

]

−3(α1 − α2)

4π
C6

F, ABBD(Λ) ln
µ

Λ

−(9fBB/4π)
[
C6

B, AD(Λ)α1 + C6
W,AD(Λ)α2

]
ln

µ

Λ
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where

C6
±(µ) ≡ C6

B, AD(µ) ± C6
W, AD(µ)

C̃6(µ) ≡ α1C
6
B, AD(µ) − 3α2C

6
W,AD(µ) (2.24)

γ± ≡ (γ13 ± γ23) /2

γ̃ ≡ 3(α1 + 3α2)/16π .

We note that the combination of coefficients C6
+(v) enters the neutrino magnetic

moment. Its RG evolution was obtained in [69] to zeroth order in the Yukawa cou-

plings; here we obtain the corrections that are linear in fAA and fBB. The correspond-

ing contributions to the neutrino mass matrix δmAD
ν and magnetic moment matrix

µAD
ν are then given by

δmAD
ν = −

(
v3

2
√

2Λ2

)
C6

M, AD(v) (2.25)

µAD
ν

µB
= −4

√
2
(mev

Λ2

)
Re

{
C6

+(v)
}

. (2.26)

From Eqs. (2.23), (2.25), and (2.26) we observe that to linear order in the lepton

Yukawa couplings, C6
M, AD(µ) receives contributions from the two magnetic moment

operators and O(6)

Ṽ
but not from the four fermion operators. This result is consis-

tent with the result obtained by the authors of [68], who computed one-loop graphs

containing the four-fermion operators of Eq. (2.1) using massive charged leptons and

found that contributions to mν ∝ m3
` . In the effective theory used here, the latter

result corresponds to a one-loop computation with three insertions of the Yukawa in-

teraction. However, mixing with O(6)

Ṽ
was not considered in [68], and our result that

this operator mixes with O(6)
M, AD to linear order in the Yukawa couplings represents

an important difference with the former analysis.

We agree with the observation of [68] that the four fermion operators can mix

with O(6)
M, AD to linear order in the fAA via two-loop graphs, such as those indicated in

Fig. 2.4. These graphs were estimated in [68] by considering loops with massive W±
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and Z0 bosons that correspond in our framework to the diagrams of Fig. 2.4a. We

observe, however, that the two-loop constraints will be weaker than those obtained by

one-loop matching with O(4)
M, AD by ∼ (α/4π)(v/Λ)2 (modulo logarithmic and model-

dependent corrections), so we do not consider this two-loop mixing in detail here.

Moreover, because we work at a scale µ > v for which the use of massless fields is

appropriate, and because we adopt a basis in which the Yukawa matrix and gauge

interactions are flavor diagonal (but mAD
ν is not), the operators O(6)

F, 112D and O(6)
F, 221D

will not mix with O(6)
M, AD even at two-loop order.

2.4 Neutrino Mass Constraints

To arrive at neutrino mass naturalness expectations for the gγ
εµ coefficients, it is

useful to tabulate their relationships with the dimension-six operator coefficients. In

some cases, one must perform a Fierz transformation in order to obtain the operator

structures in Eq. (2.1). Letting

gγ
εµ = κ

( v

Λ

)2

C6
k(v) (2.27)

we give in Table 2.2 the κs corresponding to the various dimension-six operators.

Using the entries in Table 2.2 and the estimates in Eqs. (2.16), we illustrate how

the bounds in Table 2.1 were obtained. For the operator O(6)
F, 122D, for example, we

have from Eqs. (2.5) and (2.16)8

|C6
F,122D| ∼< 16π2

(
δm1D

ν

mµ

)
(2.28)

leading to

|gS
LR| ∼< 4π2

(
δm1D

ν

mµ

) ( v

Λ

)2

|gT
LR| ∼< 2π2

(
δm1D

ν

mµ

) ( v

Λ

)2

(2.29)

8In what follows, we suppress the scale dependence of the C(µ) and, as indicated earlier, neglect
the effects of running in translating the one-loop matching bounds into constraints at the weak scale.
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where δmAD
ν denotes the radiative contribution to mAD

ν . Choosing Λ = v and δm1D
ν =

1eV (corresponding to the scale of upper bounds derived from 3H β-decay studies[31,

80]) leads to the bounds in the first row of Table 2.1. Similar arguments yield the

other entries in the table. Note that the bounds become smaller as Λ is increased

from v.

The constraints on the gV
LR,RL that follow from mixing among the n = 6 operators

follows straightforwardly from Eqs. (2.23) and (2.25) and Table 2.2. We obtain

gV
LR =

(
δm2D

ν

mµ

) (
8π sin2 θW

9

) (
α − λ sin2 θW

3π

)−1 (
ln

Λ

v

)−1

. (2.30)

A similar expression holds for gV
RL but with mµ → me and δm2D

ν → δm1D
ν . Note

that in arriving at Eq. (2.30) we have ignored the running of the C6
Ṽ , AD

(µ) between

Λ and v, since the impact on the gV
LR,RL is higher order in the gauge and Yukawa

couplings. To derive numerical bounds on the gV
LR,RL from Eq. (2.30) we use the

running couplings in the MS scheme α = α̂(MZ) ≈ 1/127.9, sin2 θ̂W (MZ) ≈ 0.2312

and the tree-level relation between the Higgs quartic coupling λ, the Higgs mass mH ,

and v: 2λ = (mH/v)2. We quote two results, corresponding to the direct search lower

bound on mH ∼> 114 GeV and the one-sided 95 % C.L. upper bound from analysis of

precision electroweak measurements, mH ∼< 186 GeV [81]. We obtain

∣∣gV
LR

∣∣ =

(
δm2D

ν

1 eV

) (
ln

Λ

v

)−1






1.2 × 10−6, mH = 114 GeV

7.5 × 10−6, mH = 186 GeV

(2.31)

∣∣gV
RL

∣∣ =

(
δm1D

ν

1 eV

) (
ln

Λ

v

)−1





2.5 × 10−4, mH = 114 GeV

1.5 × 10−3, mH = 186 GeV .

For Λ ∼ 1 TeV, the logarithms are O(1) so that for δmν ∼ 1 eV, the bounds on the

gV
LR,RL derived from n = 6 mixing are comparable in magnitude to those estimated

from one-loop matching with the n = 4 mass operators.

Although the four fermion operators do not mix with O(6)
M, AD at linear order in

the Yukawa couplings, they do contribute to the magnetic moment operators O(6)
B, AD



35

and O(6)
W, AD at this order. From Eqs. (2.23) and (2.26) we have

δµAD
ν

µB
=

√
2

8π2

(me

v

)( v

Λ

)2

Re
[
f ∗

AAC6
F,AAAD + f ∗

BBC6
F, ABBD

]
ln

Λ

v
, (2.32)

where δµAD
ν denotes the contribution to the magnetic moment matrix and µB is

a Bohr magneton. While O(6)
F, AAAD does not contribute to µ-decay, the operator

O(6)
F, ABBD does, and its presence in Eq. (2.32) implies constraints on its coefficient

from current bounds on neutrino magnetic moments. The most stringent constraints

arise for A = 1, B = 2 for which we find

|C6
F, 122D|

( v

Λ

)2

∼< 5 × 1010

(
ln

Λ

v

)−1 (
µ1D

ν

µB

)
. (2.33)

Current experimental bounds on |µexp
ν /µB| range from ∼ 10−10 from observations of

solar and reactor neutrinos [82, 83, 84, 85] to ∼ 3 × 10−12 from the non-observation

of plasmon decay into ν̄ν in astrophysical objects [87]. Assuming that the logarithm

in Eq. (2.33) is of order unity, these limits translate into bounds on gS
LR and gT

LR

ranging from ∼ 1 → 0.03 and ∼ 0.3 → 0.01, respectively. The solar and reactor

neutrino limits on |µexp
ν /µB| imply bounds on the gS,T

LR that are weaker than those

obtained from the global analysis of µ-decay measurements, while those associated

with the astrophysical magnetic moment limits are comparable to the global values.

Nevertheless, the bounds derived from neutrino magnetic moments are several orders

of magnitude weaker than those derived from the scale of neutrino mass.

The naturalness expectations for the C6
k associated with the scale of mν have

implications for the interpretation of µ-decay experiments. Because the coefficients

C6
F, 112D and C6

F, 221D that contribute to gS,T
LR,RL are not directly constrained by mν ,

none of the eleven Michel parameters is directly constrained by neutrino mass alone.

Instead, it is more relevant to compare the results of global analyses from which limits

on the gγ
εµ are obtained with the mν naturalness bounds, since the latter imply tiny

values for the couplings gV
LR,RL. Should future experiments yield a value for either

of these couplings that is considerably larger than our expectations in Table 2.1, the
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Table 2.2: Coefficients κ that relate gγ
εµ to the dimension six operator coefficients C6

k

via Eq. (2.27)

Coefficient gS
LR gT

LR gS
RL gT

RL gV
LR gV

RL

C6
F, 122D 1/4 1/8 - - - -

C6
F, 212D 1/2 - - - - -

C6
F, 112D 3/4 1/8 - - - -

C6
F, 211D - - 1/4 1/8 - -

C6
F, 121D - - 1/2 - - -

C6
F, 221D - - 3/4 1/8 - -

C6
Ṽ , 2D

- - - - −1/2 -

C6
Ṽ , 1D

- - - - - −1/2

new physics above Λ would have to exhibit either fine-tuning or a symmetry in order

to evade unacceptably large contributions to mν . In addition, should future global

analyses find evidence for non-zero gS,T
LR,RL with magnitudes considerably larger than

given by the mν naturalness expectations listed in Table 2.1, then one would have

evidence for a non-trivial flavor structure in the new physics that allows considerably

larger effects from the operators O(6)
F, 112D and O(6)

F, 221D than from the other four fermion

operators.

Finally, we note that one may use a combination of neutrino mass and direct stud-

ies of the Michel spectrum to derive bounds on a subset of the Michel parameters that

are more stringent than one obtains from µ-decay experiments alone. To illustrate,

we consider the parameters ρ and α, for which one has

3

4
− ρ =

3

4

∣∣gV
LR

∣∣2 +
3

2

∣∣gT
LR

∣∣2 +
3

4
Re

(
gS

LRgT ∗
LR

)
+ (L ↔ R) (2.34)

α = 8 Re
{
gV

RL

(
gS ∗

LR + 6gT ∗
LR

)
+ (L ↔ R)

}
. (2.35)

From Table 2.1, we observe that the magnitudes of the gV
LR,RL contributions to ρ

and α are expected to be several orders of magnitude below the current experimental

sensitivities, based on neutrino mass naturalness considerations. In contrast, the con-

tributions to gS,T
LR,RL that arise from O(6)

F, 112D and O(6)
F, 221D are only directly constrained
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by µ-decay experiments and not neutrino mass. Thus, we may use the current ex-

perimental results for ρ to bound the operator coefficients C6
F,112D and C6

F,221D and

subsequently employ the results—together with the mν bounds on the gV
LR,RL—to

derive expectations for the magnitude of α. For simplicity, we consider only the con-

tributions from C6
F, 112D to ρ, and using the current experimental uncertainty in this

parameter, we find
∣∣C6

F,112D

∣∣
( v

Λ

)2

∼< 0.1 . (2.36)

In the parameter α, this coefficient interferes with C6
Ṽ , 1D

:

α = −6
( v

Λ

)4

Re
(
C6

Ṽ , 1D
C6 ∗

F,112D + · · ·
)

, (2.37)

where the “+ · · · ” indicates contributions from the other coefficients that we will

assume to be zero for purposes of this discussion. From Eq. (2.36) and the mν limits

on C6
Ṽ , 1D

we obtain

|α| ∼< 2 × 10−4
( v

Λ

)2
(

m1D
ν

1 eV

)
. (2.38)

For Λ = v, this expectation for |α| is more than two orders of magnitude below the

present experimental sensitivity and will fall rapidly as Λ increases from v. A similar

line of reasoning can be used to obtain expectations for the parameter α′ in terms of

mν and the CP-violating phases that may enter the effective operator coefficients.

2.5 Conclusions

The existence of the small, non-zero masses of neutrinos have provided our first direct

evidence for physics beyond the minimal Standard Model, and the incorporation of

mν into SM extensions is a key element of beyond-the-SM model building. At the

same time, the existence of non-vanishing neutrino mass—together with its scale—

have important consequences for the properties of neutrinos and their interactions

that can be delineated in a model-independent manner [69, 70, 68, 88]. In this pa-

per, we have analyzed those implications for the decay of muons, using the effective
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field theory approach of [69] and concentrating on the case of Dirac neutrinos. We

have derived model-independent naturalness expectations for the contributions to the

Michel parameters from various n = 6 operators that also contribute to the neutrino

mass matrix via radiative corrections.

Our work has been motivated by the ideas in [68], but our conclusions differ

in important respects. In particular, we find—after properly taking into account

SU(2)L×U(1)Y gauge invariance and mixing between n = 6 µ-decay and neutrino

mass operators —that the dominant constraints on the contributions from gV
RL,LR to

the Michel parameters occur at one-loop order, rather than through two-loop effects

as in [68]. Consequently, the naturalness bounds we derive on these contributions

are two orders of magnitude stronger than those of [68]. Based on one-loop matching

considerations that cannot be analyzed in the context of dimensional regularization,

we also obtain expectations for contributions from various four-fermion operators to

effective scalar and tensor interactions that are substantially smaller than the two-

loop mixing constraints appearing in that earlier work. We emphasize that these

expectations can only be relaxed in the presence of fine-tuning or model-dependent

suppression of the matching conditions at the scale Λ.

In addition, we carefully study the flavor structure of the operators that can con-

tribute to µ-decay and find that there exist four-fermion µ-decay operators that do

not contribute to the neutrino mass matrix through radiative corrections. Since these

operators contribute to the effective scalar and tensor couplings gS,T
LR,RL of Eq. (2.1),

no model-independent neutrino mass naturalness bounds exist for these couplings,

contrary to the conclusions of [68]. In contrast, all operators that generate the gV
LR,RL

terms contribute to mAD
ν , so these effective couplings do have neutrino-mass natural-

ness bounds. From a model-building perspective it might seem reasonable to expect

the coefficients of the unconstrained four-fermion operator coefficients to have the

same magnitude as those that are constrained by mν , but is important for precise

muon-decay experiments to test this expectation.

While we have focused on the implications of Dirac mass terms, a similar analysis

for the Majorana neutrinos is clearly called for. Indeed, in the case of neutrino
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magnetic moments, the requirement of flavor non-diagonality for Majorana magnetic

moments can lead to substantially weaker naturalness bounds than for Dirac moments

[69, 70, 71]. While we do not anticipate similar differences between the Majorana and

Dirac case for operators that contribute to µ-decay, a detailed comparison will be left

to a separate work [39].
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Chapter 3

Fermionic Effective Operators and

Higgs Production at a Linear

Collider

Having used the scale of neutrino mass to obtain interesting bounds on the chirality-

changing terms in the muon decay Lagrangian in Chapter 2, we move on to the second

of our two model-independent analyses: constraining the contributions of fermionic

dimension-six operators to Higgs production at a future e+e− linear collider. As in

the previous analysis, we include operators which contain right-handed Dirac neutri-

nos, νR; we find four such operators, three of which were relavant to the analysis of

Chapter 2. However, for this analysis, we additionally consider all other linearly inde-

pendent dimension-six operators which contain fermions and which could contribute

to the Higgs production cross-section. We derive constraints on the contributions that

each of these operators could make to Higgs production using the scale of neutrino

mass, limits on neutrino magnetic moments, and electroweak precision observables

(EWPO). We find three operators which, although constrained by EWPO, could still

have observable effects on the Higgs production cross-section; operators which contain

νRs contribute negligibly to the cross-section. The content of this chapter is largely

taken from [53].
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3.1 Introduction

Uncovering the mechanism of electroweak symmetry-breaking (EWSB) will be a cen-

tral goal of future experiments at the Large Hadron Collider (LHC) and the planned

International Linear Collider (ILC) [44]. Although no direct evidence for the Stan-

dard Model Higgs boson exists and it is possible—as in many models of EWSB—that

there exist additional scalar degrees of freedom, precision electroweak data favors at

least one light scalar particle with properties akin to those of the SM Higgs boson. If

it is discovered at the LHC, then measuring its properties will be an important part

of the LHC and ILC program. If only a single Higgs scalar (H) is seen at the LHC,

it is quite possible that its interactions will differ from those of the SM Higgs due

to heavier degrees of freedom that are not directly accessible at the next generation

of colliders. In this case, deviations of Higgs boson properties from SM expectations

could provide indirect clues about the nature of physics above the TeV scale. This

possibility has recently been analyzed in a model-independent way by the authors

of [51], who considered the prospective effects of dimension (n) six, purely (scalar)

bosonic operators on H production at the ILC, and in [52], where the the potential

impact of n = 6 bosonic operators on H production at the LHC were analyzed. In

both cases, substantial deviations from SM expectations appear to be possible. For

recent related work, see [89].

Here, we consider the possible impact of n = 6 operators containing fermions on

Higgs production at a 500 GeV or 1 TeV linear collider, following the spirit of [51] and

[52]. Such operators can be generated when heavy degrees of freedom, associated with

a scale Λ lying well above the EWSB scale (given by the Higgs vacuum expectation

value, v ≈ 246 GeV), are integrated out of the larger theory in which the SM is

ultimately embedded. In this case, physics at low scales is described by an effective

Lagrangian

Leff =
∑

n≥4, j

Cj
n

Λn−4
On,j , (3.1)

where the On,j are operators built entirely from SM fields (and possibly right-handed
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neutrino fields) and where the index j runs over all independent operators of a given

dimension. The operators with n = 4 are just those of the SM (including a Dirac

neutrino mass term), while the coefficients Cj
n of the higher dimension operators are

determined by the details of physics above the scale Λ. The effective theory described

by Eq. (3.1) will be valid so long as Λ >>
√

s.

One may analyze the possible effects of n > 4 operators by making rather gentle

assumptions about the magnitude of the operator coefficients. In the case of the

n = 6 operators of interest here, we find it useful to consider the ratio of the Cj
6/Λ2

to the Fermi constant, GF = 1/
√

2v2, that characterizes the strength of n = 6

effective operators in the SM. Assuming that the n = 6 operators arise from one-loop

amplitudes containing particles of mass Λ, one would expect |Cj
6/GFΛ2| . v2/16π2Λ2

or |Cj
6v

2/Λ2| . 10−2 for v ∼ Λ. Taking |Cj
6v

2/Λ2| ∼ 10−2, thus, gives a conservative

benchmark for the magnitude of the operator coefficients1. In analyzing the general

features n = 6 operator contributions to Higgs production in e+e− annihilation, we

will generally adopt this benchmark, bearing in mind that if the new physics involves

strong dynamics, the Cj
6 could be considerably larger2. Doing so will allow us to

determine which operators may have the largest possible effects.

After identifying the potentially most significant operators, we derive constraints

on the Cj
6v

2/Λ2 from electroweak precision observables (EWPO) and other consid-

erations. It is well known that EWPO imply stringent bounds on operators that

interfere with the SM amplitudes for e+e− → f f̄ , and these bounds correspond to

Λ & 10 TeV or more for Cj
6 = 1 [91, 92]. Below, we update the limits obtained in [91]

and [92] on the operators with the largest prospective effects on Higgs production in

e+e− annihilation. However, operators that contain right-handed neutrino fields do

not interfere with the SM amplitudes for e+e− → f f̄ , and their coefficients are not all

constrained by EWPO. For such operators, we turn to other considerations, such as

low-energy studies of weak decays and neutrino mass “naturalness” considerations.

From our study of the n = 6 operators containing both scalar and fermion fields,

1Since our effective theory is valid only when Λ >>
√

s > v, one would expect it to be applicable
only when the |Cj

6v2/Λ2| are much smaller than 10−2 unless the Cj
6 are not loop suppressed.

2This possibility was considered more broadly in [51]. See also the discussion in [90]
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we arrive the following highlights:

(i) In contrast to the situation with purely bosonic n = 6 operators, we show that

the effects of n = 6 operators containing fermions are generally required to be

smaller, due in large part to existing precision electroweak data that agrees with

SM predictions and that constrains many of the relevant operators [91, 92]. As

noted above, the latter constraints are particularly strong on operators that

interfere with SM amplitudes for e+e− → Z0 → f f̄ . However, we find that

substantial deviations from SM Higgs production cross-sections are possible in

some cases. In particular, n = 6 operators that contribute to the e+e− → HZ0

channel can generate large corrections to the SM Higgsstrahlung (HZ) cross-

section at the energies considered here. The HZ cross-section can be separated

from the gauge boson fusion process through appropriate choice of final states

or study of the missing mass spectrum in e+e− → Hνeν̄e. Thus, a dedicated

study of HZ would provide the most sensitive probe of operators considered

here.

(ii) Although operators containing right-handed neutrino fields have not been em-

phasized in earlier effective operator studies of collider physics [91, 92], the

observation of neutrino oscillations and the implication of non-vanishing neu-

trino mass motivate us to include RH neutrinos3. Direct experimental limits

on operators containing RH neutrino fields leave room for appreciable effects

in Higgs production in the missing energy (6E) channel, e+e− → H + νν̄. It is

possible, however, to argue for more stringent limits on these effects by invoking

neutrino mass “naturalness” considerations [69, 38]. Below, we argue that if the

only particles lighter than the SM Higgs boson are other SM particles, then the

observation of large deviations from SM expectations for Higgs production with

missing energy without corresponding deviations in the Hqq̄ and H`¯̀ channels

would imply fine tuning in order to be consistent with the small scale of neutrino

mass.
3In doing so, we consider only Dirac neutrinos, deferring the case of Majorana neutrinos to a

future study.
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(iii) With the possible exception of operators which would give magnetic moments to

the quarks, operators containing both Higgs and quark fields, which contribute

directly only to the e+e− → Hq̄q channel, yield small contributions since their

contributions are kinematically suppressed relative to SM HZ for the energies

of interest here and since their operator coefficients are strongly constrained by

Z0 pole precision observables (except for top quarks). While we do not directly

constrain the coefficients of the quark magnetic moment operators, we find for

reasonable values of these coefficients that their contributions to e+e− → Hq̄q

would also be small.

(iv) The possible effects of n = 6 bosonic-fermionic operators are quite distinctive

from those associated with purely bosonic operators. Effects of the latter are

rather generic to a variety of Higgs production channels in e+e− annihilation,

as they enter primarily through modifications of the Higgs self-couplings and

Higgs coupling to gauge bosons [51] and do not change the topology or analytic

properties of the Higgs production amplitudes. Moreover, these modified cou-

plings can enter strongly in both the HZ and gauge boson fusion cross-sections

and can, in principle, substantially modify the e+e− → Hq̄q, H + 6E, and H`+`−

channels. In contrast, the impact of the n = 6 operators considered here is quite

channel specific, with the largest effects arising in processes dominated by SM

HZ. Moreover, the analytic structure and kinematic dependence of the ampli-

tudes generated by the n = 6 Higgs-fermion operators is distinct from that of

the SM HZ and gauge boson fusion amplitudes, a feature not associated with

the purely scalar operators. Thus, a comprehensive program of Higgs produc-

tion studies would provide an interesting way to disentangle the possible effects

of purely bosonic and Higgs-fermion operators in Higgs production at a linear

collider.

In the remainder of this chapter, we provide details of the analysis leading to these

observations. In Section 3.2 we briefly review Higgs production in the SM. While

the latter is well known, we include a short discussion here to provide a backdrop for
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discussion of possible deviations from SM expectations, as the impact of the operators

we consider depends strongly on both the production mechanism and energy as well

as on the mass of the H . Section 3.3 contains a discussion of the n = 6 operator

basis. The heart of our study lies in Sections 3.4 and 3.5 that contain, respectively,

an analysis of prospective deviations from SM Higgs production due to the operators

of Section 3.3 and an evaluation of bounds on the corresponding operator coefficients

obtained from various phenomenological considerations. In arriving at the latter, we

follow a somewhat different procedure than used by the authors of [91], though the

numerical differences are small. Section 3.6 contains a discussion of our results and

their implications.

Before proceeding, we make a few additional comments about our analysis.

(a) For simplicity we have considered the case of a linear collider with unpolarized

beams, although the ILC will likely have one or both beams partially polarized

(see [93] and references therein).

(b) We do not discuss changes in the Higgs production cross-section caused solely

by modifications of the fermion-gauge boson vertices in the SM Higgs produc-

tion amplitudes. Effects of this type do not entail any change in the analytic

structure or kinematic-dependence of the SM amplitudes, and the constraints

implied by precision electroweak data and neutrino mass preclude the introduc-

tion of any significant deviations from SM Higgs production cross-sections due

to changes in these couplings.

(c) In principle, one should also consider modifications of the SM Higgs-gauge boson

couplings due to contributions from n = 6 fermionic operators to the µ-decay

amplitude. The HWW coupling depends on both the SU(2)L gauge coupling,

g2, and MW , while the HZZ coupling depends on g2, MZ , and cos θW , where

θW is the weak mixing angle. The W boson mass, weak mixing angle, and

g2 are derived quantities that depend on the Fermi constant obtained from

muon decay, corrected for µ-decay dependent radiative corrections and possible

new physics contributions to the muon decay amplitude. Thus, any n = 6
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operators that contribute to the µ-decay amplitude will affect the HWW and

HZZ couplings. In practice, the constraints implied by precision electroweak

data are too strong to allow for observable effects in Higgs production cross-

sections due to changes in the Higgs-gauge boson couplings generated by n = 6

fermionic operator contributions to µ-decay.

(d) We concentrate on single Higgs production for simplicity, though the extension

to HH production is straightforward.

(e) In this work, we do not consider operators that contain top quark fields. We

direct the interested reader to [94].

3.2 Higgs Production in the Standard Model

In the Standard Model, the Higgs boson can be produced in e+e− collisions primarily

by three mechanisms [95]. In the Higgsstrahlung process (HZ), the H is produced

with an accompanying Z0 boson, which then decays to a fermion-antifermion pair.

In the WW-fusion (WWF) and ZZ-fusion (ZZF) processes, the H is produced with

an accompanying νeν̄e and e+e− pair, respectively. The cross-sections for these three

processes are shown in Fig. 3.1 for
√

s = 500 GeV and 1 TeV for a range of Higgs

masses. At
√

s = 1 TeV, the WW-fusion diagram dominates, while at
√

s = 500 GeV,

WW-fusion and Higgsstrahlung can be comparable. At lower energies (not shown

here), Higgsstrahlung dominates. The ZZ-fusion cross-section is smaller than the

WWF cross-section by about an order of magnitude at all energies. Thus, for
√

s = 1

TeV, the Higgs is primarily produced in conjunction with missing energy. At lower
√

s where HZ is important, however, one must consider final states corresponding to

all possible Z decay products: qq̄ (70%), missing energy (20%), and charged leptons

`+`− (10%).

In general, consideration of specific final state topologies associated with Higgs

production and decay, as well as Z0-decay, can be used to select the production

mechanism. For 114 GeV ≤ mH . 130 GeV, the Standard Model Higgs decays
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primarily to bb̄; for higher Higgs masses, the main decay channel is W+W−. Thus,

a final state with two b-jets and missing energy would arise either from WWF (high
√

s), HZ (low
√

s with Z0 → νν̄ and H → bb̄), or a combination (intermediate
√

s),

and the corresponding event topologies at a linear collider have been studied [96] for

light values of mH . The analysis of [96] concluded that obtaining measurement of

σWWF with ∼ 10% precision or better would be feasible at a 500 GeV linear collider.

When H production is accompanied by a charged lepton-antilepton pair (e+e− or

µ+µ− in the case of HZ, and e+e− in the case of ZZF), the Higgs production cross-

section and mass can be measured independently of its decay channel (including

non-SM decays) [97]. The mass can be reconstructed from the recoil mass of the `+`−

system. The study of [97] considered the HZ process at
√

s = 350 and 500 GeV for 120

GeV ≤ mH ≤ 160 GeV and found that a measurement of the combined He+e− and

Hµ+µ− HZ cross-section with ∼ 3% precision could be achieved. Additionally, studies

have also been performed for the case of HZ where Z → qq̄ [98, 99]. In what follows,

we assume that each of these event topologies can be identified experimentally, and

we study the corresponding impact of n = 6 operators assuming only SM decays of

the H . We show that for some operators, deviations from the SM Higgs production

cross-sections could be larger than the experimental error “benchmarks” indicated

above.

3.3 Operator Basis

The basis of n = 6 operators containing the Standard Model fields has been enu-

merated in previous works [100, 101, 91, 92, 52, 69, 38]. Here, we include only those

containing 1) the SM Higgs doublet φ with hypercharge Y = 1 and 2) SM fermion

and/or RH neutrino fields. It is useful to distinguish three classes of such operators:

(A) mass operators; (B) operators containing only fields that transform non-trivially

under SM gauge symmetries (i.e., do not contain νR fields); and (C) operators con-

taining right-handed neutrinos that are not mass operators.
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Figure 3.1: SM contributions to the Higgs production cross-section
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Class A. We begin with the mass operators , of which there are two:

O`
M, AB ≡ (L̄Aφ`B

R)(φ+φ) + h.c.

Oν
M, AB ≡ (L̄Aφ̃νB

R )(φ+φ) + h.c. ,

where LA and `A are left-handed lepton doublet and singlet fields, respectively, and A,

B are generation indices. (Mass operators for quark fields are analogous.) Operators

containing a contracted pair of Pauli matrices, such as L̄τaφ`R(φ†τaφ) can be related

to the two operators above via a Fierz transformation. The O`
M, AB and Oν

M, AB can

(b)(a)

f̄

f

H

ē

e

H

ν̄

H

ē

e

H

ν

Figure 3.2: Contribution of Class A operators (a) O`
M, AB and (b) Oν

M, AB to Higgs
production

contribute to Higgs production via the diagrams shown in Fig. 3.2. In the absence of

fine-tuning with the n = 4 Standard Model mass operators, their coefficients C`
M and

Cν
M are tightly constrained by the ` and ν mass, respectively:

∣∣C`
M,ee

∣∣
Λ2

.
2
√

2me

v2∣∣Cν
M,AB

∣∣
Λ2

.
2
√

2mν,AB

v2
,

where mν,AB is an element of the neutrino mass matrix before diagonalization. In

addition to this (large) suppression, the interference of these diagrams with the SM

Higgs production diagrams is additionally mass-suppressed due to the fermion chirali-

ties. Thus, the contributions of these two operators to Higgs production are negligible,
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and we will not consider them further.

Class B. These operators contain only fields that are not SM singlets (i.e., no νR):

OV R,AB ≡ i(f̄A
R γµfB

R )(φ+Dµφ) + h.c.

OV L,AB ≡ i(F̄ AγµF B)(φ+Dµφ) + h.c.

OV Lτ,AB ≡ i(F̄ AγµτaF B)(φ+τaDµφ) + h.c.

Oq

Ṽ , AB
≡ i(d̄A

RγµuB
R)(φ+Dµφ̃) + h.c.

Of
W,AB ≡ g2(F̄

Aσµντaφ)fB
R W a

µν + h.c.

Of
B,AB ≡ g1(F̄

Aσµνφ)fB
R Bµν + h.c. ,

where F A indicates either the left-handed lepton (L) or quark (Q) doublet for gen-

eration A and fA indicates the RH fields for quarks or charged leptons of generation

A. We have included the “R” subscript on the latter for clarity. The fields uA
R and dA

R

denote the up- and down-type RH quarks of generation A. The operator Oq

Ṽ , AB
does

not contribute to Higgs production in e+e− annihilation since it contains no neutral

current component, so we will not discuss it further.

Class C. Lastly, we consider operators containing νR that are not mass-suppressed

and that contribute only to the missing energy channel:

OV ν, AB ≡ i(ν̄A
RγµνB

R )(φ+Dµφ) + h.c.

OṼ , AB ≡ i(¯̀ARγµνB
R )(φ+Dµφ̃) + h.c.

OW, AB ≡ g2(L̄
Aσµντaφ̃)νB

R W a
µν + h.c.

OB, AB ≡ g1(L̄
Aσµν φ̃)νB

R Bµν + h.c.

For OṼ , AB, OW, AB, and OB, AB, we follow the notation of [69] and [38]. Due to the

presence of the νR field, interference of tree-level diagrams containing these operators
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with the Standard Model Higgs production amplitudes is suppressed by the neutrino

mass. Hence, we do not consider these interference effects here and compute only the

contributions that are quadratic in their coefficients. As a result, their contributions

can be appreciable only if the corresponding Cj
6 are not loop suppressed.

3.4 Contributions to Higgs Production

3.4.1 General Considerations

Before considering in detail the corrections to various production channels, we make a

few general observations regarding the operators and amplitudes that one may expect

to be largest. To that end, we show in Figure 3.3 the H production amplitudes

generated by the operators of Class B, and in Figure 3.4 those generated by Class

C operators. The amplitudes in Figs. 3.3a, b and 3.4a correspond to taking the

SM HZ amplitude and contracting one of the two Z0 propagators to a point. In SM

HZ, the initial Z0 is far off shell for the energies considered here, while the final Z0

propagator is resonant. Thus, we expect the contributions associated with Figs. 3.3b

and 3.4a to be highly suppressed relative to the SM cross-section since they contain

no resonating Z0 propagator. In contrast, the amplitude of Fig. 3.3a contains a

nearly on-shell Z0 propagator but no off-shell Z0 propagator. Consequently, it can

be kinematically enhanced relative to the SM HZ amplitude and can generate an

appreciable contribution to H production, even in the presence of strong constraints

on the corresponding operator coefficient (see Section 3.5).

The corrections generated by the amplitudes of Figs. 3.3c, d and 3.4b, c contribute

to the HlAl̄B (where at least one of A and B = e) and missing energy channels. For

large
√

s, the H + 6E channel is dominated by WWF wherein both W bosons are

off shell. Thus, the amplitudes of Figs. 3.3c, d and 3.4b, c experience no kinematic

suppression relative to the SM cross-section4. Even in the intermediate energy regime,

4This situation contrasts with that of Fig. 3.3b, which corresponds to shrinking the resonating
Z0 propagator in HZ to a point, thus leading to a kinematic suppression relative to the SM HZ
amplitude.
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where WWF and HZ yield comparable contributions, the effects of Figs. 3.3c, d and

3.4b, c can, in principle, be appreciable. We reiterate, however, that for the operators

containing νR fields, the amplitudes of Fig. 3.4 do not interfere appreciably with

the SM amplitudes, and their contributions can only be large when the operator

coefficients are not loop-suppressed.

We now turn to a detailed discussion of various operator effects.

(a)

f̄ē

e f

(b)

¯̀, ν̄ē

e

H
`, ν

H

(d)(c)

e

ē
¯̀, ν̄

e, νe

H

e

ē

H

ē, ν̄e

`, ν

Figure 3.3: Contribution of Class B operators to Higgs production

3.4.2 Class B Operators

Here, we discuss in detail the possible effects of operators in Class B, which contain

only fields that transform non-trivially under SM symmetries.

OV R,AB

The contributions from operator OV R,AB depends on its flavor indices A, B. For

A = B = e, OV R,ee contributes to all Higgs production channels via the diagram in



53

(a)

ν̄ē
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ē ν̄

ν

(c)

H

Figure 3.4: Contribution of Class C operators to Higgs production
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Fig. 3.3a and additionally to the He+e− channel via the diagrams in 3.3b–d. In all

cases, the exchanged gauge boson is a Z0. As noted above, the analytic structure of

the amplitude for Fig. 3.3a differs from that of the SM HZ amplitude only by the

absence of the off-shell Z0 propagator. The ratio of its interference with the SM HZ

amplitude to the SM HZ cross-section is, thus, given by

σ3(a)−HZ int

σHZ
= −Cv2

Λ2

(s − M2
Z)

M2
Z

sin2 θW

2(sin4 θW − 1
2
sin2 θW + 1

8
)

, (3.2)

where we have omitted the label on the operator coefficient for simplicity. For

Cv2/Λ2 = 10−2, this ratio is ∼ −0.54 and ∼ −2.2 for
√

s = 500 GeV and 1 TeV,

respectively. The effect of σ3(a)−HZ int relative to σHZ can be large for the values of
√

s studied here since in the SM HZ amplitude the initial Z0 is far off shell with

MZ � √
s; thus, the SM HZ amplitude contains a kinematic suppression of roughly

Λ2/s that does not enter the amplitude of Fig. 3.3a.

For any of the final states of Hff̄ with f = µ, τ , νµ, ντ , or q, Eq. (3.2) gives the

ratio of the contribution of OV R,ee to the SM cross-section. For the Hνeν̄e final state,

the SM also receives a contribution from the WWF process5. Interference between

WWF—which involves only a LH (RH) initial state electron (positron)—-and diagram

3.3a containing OV R,ee requires a Yukawa coupling on each of the initial-state fermion

lines, and is thus strongly suppressed. For the He+e− production channel, we must

include the interference of all of the diagrams shown in Fig. 3.3 with both SM HZ

and ZZF.

We have computed the contribution of OV R,ee arising from interference with the

SM amplitudes6 to the total H production cross-section using the calchep package

[102, 103]. Results are shown in Fig. 3.5, where we give the ratio σint/σSM as a function

of the Higgs mass for different final state topologies, where σint is the contribution

to the cross-section of the interference between all of the diagrams in Fig. 3.3 and

5Since the neutrinos in the missing energy channel are not detected, one may discuss the relative
magnitudes of non-SM contributions using the neutrino flavor basis.

6Here, we neglect the contributions that are not due to interference with the SM; we will defer
discussion of the non-interference terms to Section 3.6.
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all of the relevant SM diagrams. We observe that for the Hff̄ channels with f = µ,

τ , νµ, ντ , or q, the ratio is independent of mH , as implied by Eq. (3.2). In contrast,

for the He+e− and H + 6E channels, the ratio varies with mH due to the additional

contributions from the SM WWF and ZZF processes, as well as other diagrams in

Fig 3.3. We also note that the effect of OV R,ee can be large compared with the SM

HZ cross-section. Thus, one could in principle discern the effects of this operator by

analyzing events that cannot be produced by the WWF process, such as a dilepton

pair and two b-jets, or two b-jets and two other jets. In contrast, the relative effect of

OV R,ee on the He+e− and H + 6E channels is considerably smaller, due to the much

larger SM ZZF and WWF contributions in these cases.

In contrast to the situation with OV R,ee, the operator OV R,AA, A = µ, τ, q con-

tributes only through diagram 3.3b. This diagram interferes only with the HZ am-

plitude and contributes only to the Hµ+µ−, Hτ+τ−, and Hqq̄ channels. The contri-

bution of OV R,µµ to the Hµ+µ− channel—relative to the SM cross-section—is shown

in Fig. 3.6 as a function of mH . The results for OV R,ττ are identical; those for

OV R,qq(q 6= t) differ from Fig. 3.6 only due to the difference between the Zqq and

Z`+`− SM couplings. As indicated in Fig. 3.6, the contribution from OV R,µµ to the

Hµ+µ− channel is ∼< 10−3 of the SM cross-section, and we do not show the corre-

spondingly small correction from OV R,qq to the Hqq̄ channel.

Comparing the contributions of OV R,ee and OV R,µµ to the Hµ+µ− channel in

Figs. 3.5 and 3.6, we can see that the effects of diagram 3.3b are strongly suppressed

relative to those of diagram 3.3a. As noted above, this suppression is to be expected,

since in the amplitude of Fig. 3.3b the Z0 is always off-shell (MZ � √
s), whereas

for the values of
√

s of interest here, on-shell production of both the H and Z0 can

occur for the amplitude of Fig. 3.3a. As the same arguments will hold for OV L,AB

and OV Lτ , we will not consider the case of A = B = µ, τ for those operators below.

OV L,ee

As with OV R,ee, the operator OV L,ee contributes to Higgs production via the di-
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Figure 3.5: Ratio of contribution of OV R,ee to SM Higgs production cross-section for
(top)

√
s = 500 GeV and (bottom) 1 TeV for CV R,eev

2/Λ2 = 10−2. For
√

s = 1 TeV,
the line for the Hqq̄, Hµ+µ−, and Hτ+τ− channels is not shown; it has the value of
−2.2, independent of Higgs mass.
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Figure 3.6: Ratio of contribution of OV R,µµ to SM Higgs production cross-section for
(top)

√
s = 500 GeV and (bottom) 1 TeV for CV R,µµv2/Λ2 = 10−2. Curves for OV R,ττ

are identical.
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agrams in Fig. 3.3a–d. In all four diagrams, the gauge boson exchanged is always

a Z0. Diagram 3.3a contributes to all channels, in analogy with OV R,ee above. This

contribution of the interference of this diagram with HZ obeys

σ3(a)−HZint

σHZ

=
Cv2

Λ2

(s − M2
Z)

M2
Z

(1
2
− sin2 θW )

2(sin4 θW − 1
2
sin2 θW + 1

8
)

. (3.3)

This expression gives the ratio of the contribution of OV L,ee-SM HZ interference to

the SM cross-section for the final states of Hff̄ for f = µ, τ , νµ,τ , and q. However, in

contrast to the situation with OV R,ee, the insertion of this operator diagram 3.3a will

also interfere with WWF without electron mass insertions (as well as with HZ and

ZZF). Additionally, OV L,ee contributes to the He+e− channel through diagrams 3.3b–

d, all of which interfere with HZ and ZZF, and to the Hνeν̄e through diagram 3.3b

(although this latter contribution is strongly kinematically suppressed for the reasons

discussed above). These contributions are summarized in Fig. 3.7 for Cv2/Λ2 = 10−2

as a function of mH . As before, the relative effect on the Hff̄ cross-section is mH-

independent for f = µ, τ , νµ,τ , and q, whereas for the He+e− and H + 6E channels,

the relative importance decreases with mH , owing to the increasing ZZF and WWF

contributions.

As in the case of OV R,AA, the contribution from OV L,AA for A = µ, τ , or q arises

only from Fig. 3.3b. Since the corresponding effects are highly suppressed, we do not

discuss this case further.

OV Lτ,ee

As in the previous cases, OV Lτ,ee contributes to the Higgs production cross-section

through all of the diagrams in Fig. 3.3. However, unlike the operators OV R,ee and

OV L,ee, OV Lτ,ee also contains a charge-changing component. Thus, the gauge boson

in diagrams 3.3c and d can be either a Z0 or a W±, so the insertion of OV Lτ,ee in

these diagrams contributes to both the He+e− and H + 6E channels.

Inserting OV Lτ,ee in diagram 3.3a generates the same contribution to all decay

channels in the same manner as OV L,ee, yielding the same contribution to the HZ
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Figure 3.7: Ratio of contribution of OV L,ee to SM Higgs production cross-section for
(top)

√
s = 500 GeV and (bottom)

√
s = 1 TeV for CV L,eev

2/Λ2 = 10−2. For
√

s = 1
TeV, the line for the Hqq̄, Hµ+µ−, and Hτ+τ− channels is not shown; it has the
value of 2.6, independent of Higgs mass.
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cross-section as for OV Lτ,ee (see, e.g., Eq. (3.3)). The insertion of OV Lτ,ee in diagram

3.3a also interferes with ZZF and WWF in the He+e− and Hνeν̄e channels, respec-

tively. Additionally, OV Lτ,ee contributes to these channels via diagrams 3.3b–d. The

contributions of OV Lτ,ee to the Higgs production cross-section are are shown in Fig.

3.8 for Cv2/Λ2 = 10−2.

As in the case of OV R,AA, the contribution from OV Lτ,AA for A = µ, τ , or q arises

only from Fig. 3.3b. Since the corresponding effects are highly suppressed, we do not

discuss this case further.

Of
W,AB and Of

B,AB

The operators Of
W and Of

B contribute to the magnetic and electric dipole moments

of the charged leptons. Stringent limits on the electric dipole moments and non-SM

contributions to the magnetic moments exist for the cases A = B = e and A = B = µ

[1]. Limits on the branching fractions µ → eγ, τ → eγ, and τ → µγ tightly constrain

the cases where A and B are lepton fields and A 6= B [1]. Thus, here we will only

consider the possibilities A = B = τ and A, B = qAqB.

Of
W,ττ and Of

B,ττ will contribute only to the Hτ+τ− final state; production occurs

only through diagram 3.3b. Due to the derivative on the gauge boson field in each of

these operators, the kinematic suppression of this diagram is not as severe as in the

previous cases of OV R,AB, OV L,AB, and OV Lτ,AB.

We have calculated the contributions of Of
W,ττ and Os

B,ττ to the Hτ+τ− cross-

section for Cjv2/Λ2 = 10−2, neglecting the Yukawa-suppressed contribution to the

cross-section due to the interference of diagram 3.3b with the SM HZ process. We

find that the contribution to the cross-section is generally less than 0.1% for
√

s = 500

GeV, and less than 2% for
√

s = 1 TeV. We also find that the interference of diagram

3.3b with other (tiny) SM processes which contain a Higgs insertion on one of the τ

lines could give comparable contributions to the Hτ+τ− cross-section.

For the case where A and B are light quark fields (u, d, and s), interference with

the SM diagrams can be neglected as these contributions are Yukawa-suppressed.

There is a contribution to the HqAq̄B cross-section that is NC = 3 times larger
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Figure 3.8: Ratio of contribution of OV Lτ,ee to SM Higgs production cross-section for
(top)

√
s = 500 GeV and (bottom) 1 TeV for CV Lτ,eev

2/Λ2 = 10−2. For
√

s = 1 TeV,
the line for the Hqq̄, Hµ+µ−, and Hτ+τ− channels is not shown; it has the value of
2.6, independent of Higgs mass.
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than the A = B = τ noninterference cross section discussed above and is, thus,

negligible. In the case where A = B = b or c, interference with the SM diagrams

can give additional contributions with magnitude comparable to the non-intereference

contributions.

Current limits [1] on the τ magnetic moment allow values for Cf
B,ττv

2/Λ2 and

Cf
W,ττv

2/Λ2 of order unity. Somewhat improved limits, but still significantly weaker

than Cf
B,W,ττv

2/Λ2 = 10−2 can be obtained from Γ(Z → τ+τ−). Similarly weak lim-

its on the quark magnetic moment operators can be obtained from Γ(Z → qAq̄B).

However, we will take 10−2 as an estimate of the upper bound for Cf
B,Wv2/Λ2. Nev-

ertheless, we do not rule out the possibility that the coefficients of these operators

could be considerably larger due to strong dynamics above the scale Λ.

3.4.3 Class C Operators

All of the Class C operators contribute only to the missing energy channel since they

contain νR fields. The Higgs production diagrams for these operators are shown in

Fig. 3.4. For each operator, the interference of any amplitude in Fig. 3.4 with relevant

SM amplitude is mν-suppressed, so we do not include the interference contributions

here. The resulting corrections to the SM Higgs production cross-sections are, thus,

quadratic in the operator coefficients.

Since the final state neutrino-antineutrino pair is not observed, we do not require

their flavors to be the same. As discussed above, the contribution from diagram 3.4a

is kinematically suppressed due to the off-shell Z0 boson, so we expect that only those

operators contributing through diagrams 3.4b and c will be able to generate substan-

tial contributions. The comparison between the contribution from these operators to

the H + 6E channel is given in Fig. 3.9 for Cv2/Λ2 = 10−2.

For Cv2/Λ2 = 10−2 as assumed above, the correction induced by the Class C oper-

ators is generally less than 10−3 of the SM cross-section. However, if these operators

are generated by strong dynamics or tree-level gauge interactions, their relative ef-

fects could be substantially larger. In this respect, the operator OṼ ,AB is particularly
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interesting, as an operator of this type could arise in models with mixing between

LH and RH gauge bosons. Moreover, it is not as strongly constrained by precision

electroweak data as the Class B operators, since it does not interfere with the SM

amplitudes that contain only LH neutrino fields. In Section 3.5 we discuss the various

phenomenological and theoretical constraints on OṼ ,AB, including those implied by

the scale of neutrino mass and naturalness considerations.

OV ν,AB

The operator OV ν,AB contributes to the missing energy channel only via the di-

agram in Fig. 3.4a where the exchanged gauge boson is a Z0 and the final state

contains a right-handed neutrino and a left-handed antineutrino. Thus, the contri-

bution of this operator is strongly kinematically suppressed, as reflected in Fig. 3.9.

OṼ ,AB

The gauge boson in OṼ ,AB is always a W±, and this operator contributes to the

missing energy channel via the diagrams in Figs. 3.4b and c. The final state contains

one right-handed neutrino and one right-handed antineutrino, in the case of 3.4b, or a

left-handed neutrino and antineutrino in the case of 3.4c. As this operator contributes

through diagrams 3.4b and c whose effect on the production cross-section is not

kinematically suppressed relative to WWF, the relative importance of its contribution

is larger than that of OV ν,AB.

OW,AB and OB,AB

The neutrino dipole operators OW,AB and OB,AB contribute to Higgs production

via diagram 3.4a wherein the exchanged gauge boson is either a Z0 or a γ and the

final state contains a neutrino and an antineutrino that are either both right-handed

or both left-handed. The insertion of OW,AB in diagrams 3.4b and c only contain the

W± boson; they contribute to the same final states does OṼ ,AB . Note that since

OB,AB contributes only through 3.4a, its contribution will be suppressed relative to

that of OW,AB. Again, this feature can be seen from Fig. 3.9.
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OνR,AB

O~  V,eB

OB,AB

OW,AB

OνR,AB

O~  V,eB

OB,AB

OW,AB

Figure 3.9: Contributions of operators containing νR to Higgs missing energy final
state for

√
s = 500 GeV. Results are as a fraction of the total Standard Model

Hνν̄ cross-section, summed over the three flavors. Curves are drawn for the case
Cjv2/Λ2 = 10−2.
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Table 3.1: Cross-sections for flavor-nonconserving processes e+e− → He±l∓, l = µ, τ
for Cv2/Λ2 = 10−2. Both charge combinations are included. Results are in units of
10−6 pb. √

s = 500 GeV
√

s = 1 TeV
mH/GeV 100 250 400 100 300 500
OV R,e` 3.4 0.72 0.024 28. 14. 4.2

OV L,e`, OV Lτ,e` 3.2 0.67 0.023 27. 13. 4.1

3.4.4 Flavor Nonconserving Operators

Now, we consider the case A 6= B for those operators having the potentially largest

effects in the flavor conserving channels: OV R,AB, OV L,AB, and OV Lτ,AB. Here, we

have two distinct cases, A or B = e, and both A, B 6= e. The latter case can only

contribute through diagram 3.3b, whose effect is kinematically suppressed. Hence,

we ignore this case. For all three of these flavor nonconserving operators, Higgs

production can occur through diagrams 3.3b, and c or d, giving a final state containing

e±µ∓ or e±τ∓. Although diagrams 3.3b (in the case of OV L,AB or OV Lτ,AB) and c,

and d (for OV Lτ,AB only) could also contribute to the missing energy final state, given

the small number of events involved (to be seen in Section 3.5), we consider only the

final states with charged leptons, due to their unique flavor-nonconserving signature.

Results for the case Cv2/Λ2 = 10−2 are shown in Table 3.1 in units of ab−1. For a

linear collider with 1 ab−1 of data, these numbers can be interpreted as numbers of

events.

3.5 Limits on Operator Coefficients

Precision electroweak data constrains the magnitude of many of the Cj
6v

2/Λ2 to be

considerably smaller than the 10−2 reference value used in Section 3.4. Constraints

on a subset of the Class B operator coefficients have been obtained using data from

LEP Z0-pole data [91] and from a wider array of precision electroweak observables

that includes studies at LEP2 and low-energy experiments [92]. Both analyses relied

on the assumption of U(3)5 symmetry and [92] performed fits to EWPO including

the effects of more than one operator simultaneously.
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Here, we update these earlier analyses in a way that focuses on the Class B and

Class C operators with the potentially largest effects in Higgs production. For the

Class B case, these operators are OV R, ee, OV L, ee, and OV Lτ, ee. For the Class C

operators, the direct experimental limits on the coefficient of OṼ , AB are weaker than

our reference value of 10−2. Since the effect of this operator is quadratic in the

corresponding coefficient, any significant increase in its value could lead to a several

percent effect in the missing energy channel. We discuss the direct experimental and

indirect constraints on these operators below.

In order to obtain constraints on OV R, ee, OV L, ee, and OV Lτ, ee, we have performed

a fit to EWPO using the GAPP routine [104]. The precision observables included in

this fit include the data collected from Z0 pole studies at LEP and SLD and a variety

of low-energy precision observables, including cesium atomic parity violation [105],

parity-violating Møller scattering [106], elastic neutrino-electron scattering [107], and

deep inelastic neutrino-nucleus scattering [108] (for a complete list of EWPO used,

see [1]). We have used the value 171.4 ± 2.1 GeV given in [109] for Mt.

For each operator, we derive bounds on the corresponding Cj
6v

2/Λ2 by including

both the direct contributions to a given observable as well as indirect effects that

enter through modifications of the SM input parameters. The OV Lτ, ee, for example,

contains both neutral and charged current components. The neutral current compo-

nent modifies the coupling of LH electrons to the Z0 and enters all e+e− annihilation

observables, as well as those involving low-energy parity violating processes. The

charged-current component contributes to the amplitude for muon decay. Inclusion

of the latter contribution modifies the value of the Fermi constant, Gµ, extracted from

the experimental muon lifetime and used to normalize all electroweak amplitudes in

the SM. It also indirectly affects the value of sin2 θ̂W (MZ) that is a derived quantity

in the SM given Gµ, α, and MZ as inputs.

Our procedure differs from that followed by [91] and [92] in a few respects. First,

we do not assume a U(3)5 symmetry that relates operators involving different fermion

generations. For example, OV R, ee and OV R, µµ are treated as distinct. Although it is

quite reasonable to assume that flavor-dependent effects from physics above the scale
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Table 3.2: Bounds on coefficents Cj
6 of the n = 6 leptonic operators obtained from

a fit to the electroweak precision observables (EWPO). The first column lists the
operator. The second column gives the result for Cj

6v
2/Λ2 obtained from the fit to all

EWPO using the GAPP routine [104]. The third column gives the 95% C.L. range
on Cj

6v
2/Λ2, while the last column gives the corresponding fit values for the Higgs

mass, mH .
Operator Cj

6v
2/Λ2 95% C.L. range mH

OV R,ee −0.00037 ± 0.00041 −0.0012,→ 0.00044 72+35
−24 GeV

OV L,ee 0.00053 ± 0.00035 −0.00015 → 0.0012 95+38
−28 GeV

OV Lτ,ee 0.00039 ± 0.00039 −0.00036 → 0.0011 90+36
−26 GeV

Λ are determined by Yukawa interactions (as in models with minimal flavor violation)

and are, thus, suppressed, we will not make that assumption here. Second, the fits

performed in [91] and [92] allowed for the simultaneous contribution from multiple

effective operators and were correspondingly performed for a fixed value of mH . Here,

we instead include the effect of only one operator and allow the value of mH to remain

a fit parameter.

The results for the three most important Class B operators are given in Table 3.2,

where we show the 1σ results and 95% C.L. ranges for the Cj
6v

2/Λ2 in the second and

third columns, respectively. In the last column, we give the fit results for mH ; for

comparison, an SM fit, with the Cj
6 set to 0, gives mH = 84 + 33 − 24 GeV. We find

that inclusion of the operator containing eR fields tends to lower the best fit value

for mH , although it still falls within 2σ of the direct search lower bound, mH = 114.4

GeV. In contrast, the two operators containing first generation lepton doublet fields

increases the best fit value for mH . We also observe that the constraints given in

Table 3.2 are somewhat weaker than those obtained in [92], presumably because we

have not invoked a U(3)5 symmetry and have allowed the value of mH to vary7. The

results of our fit—together with the analysis of Section 3.4—thus indicate the largest

possible effects that one might anticipate for Class B operators.

We have also checked that EWPO do not allow the |Cj
6v

2/Λ2| to be larger than

10−2 for the other flavor-conserving Class B operators by considering the Z0 pole

7In the notation of [92], the operators OV R, ee, OV L, ee, and OV Lτ, ee correspond to Ohe, Os
h`,

and Ot
h` when a U(3)5 symmetry is assumed.
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observables alone and comparing SM predictions for a range of mH with the results

obtained from LEP and SLD. To this end, we obtain the SM predictions using ZFIT-

TER [110], [111], which requires input values for MZ , Mt, mH , αs(MZ), and ∆α
(5)
had.

We take the following for our ZFITTER inputs:

MZ = 91.1876 ± 0.0021 GeV [1]

Mt = 171.4 ± 2.1 GeV [109]

mH = 200 ± 100 GeV (3.4)

αs(MZ) = 0.1176 ± 0.002 [1]

∆α
(5)
had(αs(MZ) = 0.1176) = 0.02772 ± 0.0002

where the value for ∆α
(5)
had is a linear interpolation of points given in [112]. The range

on mH is chosen to be (possibly artificially) large to accomodate any possibility that

the current upper bounds on mH could be evaded with the addition of the operators

O6,j . The authors of [91] find, for a particular Higgs mass, ranges of the operator

coefficients for which χ2 − χ2
min < 3.85, where χ2

min is the χ2 of the SM fit with

the operator coefficients set to zero. They find values of the coefficients of OV R and

OV Lτ which satisfy this criterion for values of mH as high as 300 GeV. Even when

we include the error for this broad range of Higgs mass, we still find limits on the

operator coefficients that are tighter than our reference value of 10−2.

These yield the following predictions for the SM observables:

Γ(Z → inv) = 501.399 + 0.216 − 0.201 MeV

Γ(Z → e+e−) = 83.932 + 0.053 − 0.044 MeV

Γ(Z → µ+µ−) = 83.932 + 0.053 − 0.044 MeV

Γ(Z → τ+τ−) = 83.742 + 0.053 − 0.044 MeV.

The errors on these values were obtained by separately computing the errors due to

the uncertainties on the input parameters given in Eqs. (3.4) and adding them in
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quadrature. The asymmetry in the errors is due to the dependence of the results on

ln mH .

These predictions are to be compared with the experimental values for the Z

widths and branching fractions [1]:

Γ(Z → inv) = 499.0 ± 1.5 MeV

Γ(Z → e+e−) = 83.91 ± 0.12 MeV

Γ(Z → µ+µ−) = 83.99 ± 0.18 MeV

Γ(Z → τ+τ−) = 84.08 ± 0.22 MeV

BR(Z → e±µ∓) = < 1.7 × 10−6 at 95% CL

BR(Z → e±τ∓) = < 9.8 × 10−6 at 95% CL.

The largest source of theoretical error in the SM predictions, as well as the asym-

metry in the theoretical error, arises from the range taken for mH . However, the

experimental error dominates over the theoretical error for all of the above observ-

ables. The resulting bounds on the Cv2/Λ2 for the Class B operators are given in

Table 3.3. We do not include bounds on the OV R,ee, OV L,ee, and OV Lτ,ee operators in

this table because the GAPP fit provides significantly tighter limits than using the Z

partial widths alone.

From the limits on the branching fractions of the Z to e±µ∓ and e±τ∓, we can

deduce limits on the coefficients for OV R,AB, OV L,AB, and OV Lτ,AB, where A 6= B and

A or B = e. We obtain

∣∣∣∣
Ceµv

2

Λ2

∣∣∣∣ < 0.0071

∣∣∣∣
Ceτv

2

Λ2

∣∣∣∣ < 0.017 (3.5)

at 95% CL for all three operators. As these coefficients enter into the cross-sections

for these processes quadratically, we can see from Table 3.1 that these limits allow,

for example, as many as ∼ 80 He±τ∓ events for a Higgs in the low-mass region at
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Table 3.3: 95% CL intervals on the coefficents Cj
6 of the 6D leptonic operators,

multiplied by v2/Λ2. In the case of OνR,AB, the limit is instead on
∑

A,B

∣∣CAB
νR

∣∣2 v4/Λ4.

Operator Min(Cjv2

Λ2 ) Max(Cjv2

Λ2 )
OV R,µµ −0.0027 0.0020
OV R,ττ −0.0050 0.0007
OV R,eµ −0.0071 0.0071
OV R,eτ −0.017 0.017
OV L,µµ −0.0017 0.0023
OV L,ττ −0.0006 0.0043
OV L,eµ −0.0071 0.0071
OV L,eτ −0.017 0.017
OV Lτ,µµ −0.0039 0.0054
OV Lτ,ττ −0.0006 0.0043
OV Lτ,eµ −0.0071 0.0071
OV Lτ,eτ −0.017 0.017
OνR,AB < .0068

a linear collider with
√

s = 1 TeV. It will be interesting to explore the feasibility of

observing these events at a linear collider.

Some, but not all, of the Class C operators are also constrained by EWPO. To

constrain CV ν,AB, we consider the contribution of OV ν,AB to the invisible width of the

Z boson, Γinv. Although the measured value of Γinv disagrees slightly with the SM

prediction (the experimental value is 1.6σ below the SM expectation), OV ν,AB cannot

explain this small discrepancy, as it does not interfere with the SM process and can

only increase the cross-section for Z → νν̄. We calculate the limit on this operator

using the procedure for obtaining one-sided confidence level intervals given in [113].

For the remaining operators, all of which contain νR, we consider first direct

experimental constraints. For example, the operator OṼ ,eB also contributes to the

Michel spectrum for the decay of polarized muons. From the recent global analysis

of muon decay measurements reported in [67] we obtain

∣∣CṼ , eBv2/Λ2
∣∣ ≤ 0.208 (3.6)

at 90 % C.L. In contrast to the situation with the Class B operators and OV ν,AB, the
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direct constraints on OṼ ,eB are considerably weaker than our benchmark 10−2 value

for Cj
6v

2/Λ2. Considerably more stringent expectations can be obtained by observing

that OṼ ,eB contributes to the n = 6 neutrino mass operator Oν
M, AB through radiative

corrections. A complete renormalization group analysis of the mixing between these

operators was carried out in [38]. In order to avoid “unnatural” fine tuning, the

radiative contributions to the neutrino mass matrix element mAB
ν due to OV ν,AB

cannot be substantially larger than the scale of neutrino mass itself. Using an upper

bound of 1 eV for this scale we obtain the following naturalness bound on CṼ ,eBv2/Λ2

∣∣∣∣∣
CṼ ,eBv2

Λ2
ln

v

Λ

∣∣∣∣∣ < (0.5 − 3) × 10−3 (3.7)

where the range on CṼ ,eB corresponds to 114 GeV < mH < 185 GeV. The latter af-

fects the renormalization group analysis since the entries in the anomalous dimension

matrix depend on the Higgs boson quartic self coupling, λ = m2
H/2v2.

The coefficients of the magnetic moment operators are bounded by upper limits on

neutrino magnetic moments that range from 10−10 to 10−12 Bohr magnetons [82, 83,

84, 85, 86, 87]. Taking the upper limit of these bounds implies that |CW,ABv2/Λ2| and

|CB,ABv2/Λ2| are no larger than ∼ 10−5. Neutrino mass naturalness considerations

imply bounds that are roughly four orders of magnitude more stringent than those

obtained directly from magnetic moment limits. Either way, the effects of these

operators on Higgs production will be unobservable.

3.6 Discussion and Conclusions

The bounds we obtain on the operator coefficients generally satisfy |Cv2/Λ2| < 10−2,

implying smaller corrections to the Higgs production cross-sections than those given

in Figs. 3.5-3.9, for which we have used Cv2/Λ2 = 10−2. Nevertheless, comparing the

bounds on |Cv2/Λ2| for OV R,ee, OV L,ee, and OV Lτ,ee with the results in Figs. 3.5, 3.7,

and 3.8, we see that the interference with the SM HZ process can be substantial in

the Hff̄ channel with f = µ, τ , or q, with corrections of more than 5% (20%) allowed
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for
√

s = 500 GeV (1 TeV). The relative impact of these operators on the He+e−

and H + 6E channels is considerably smaller, since the SM cross-section receives large

WWF and ZZF contributions. Additionally, we have checked the non-interference

contributions of these operators and find that, for |Cv2/Λ2| = 10−3 (toward the upper

end of the 95% CL range) the non-interference terms can contribute an additional 3%

to the Hff̄ cross-section for
√

s = 1 TeV. The contributions of the non-interference

terms to the Hff̄ channel at
√

s = 500 GeV and to the H + 6E and He+e− channels

at either
√

s are all < 1%.

Conversely, despite the less stringent limits on their coefficients, the operators

OV R,AA, OV L,AA, and OV Lτ,AA for A = µ, τ , or q cannot generate significant correc-

tions to the HAĀ production cross-section, due to the kinematic suppression of the

corresponding interference amplitude relative to SM HZ.

In the case of the Class C operators, which contribute only to the H + 6E channel,

the magnitude of possible corrections is generally smaller than 10−3 of the SM cross-

section, assuming Cv2/Λ2 = 10−2. Amplitudes containing these operators do not

interfere with SM amplitudes as they contain RH neutrino states, so the quadratic

dependence of their contribution to the cross-section on the operator coefficients can

lead to considerable suppression. From our analysis of the limits in Section 3.5, we

conclude that for OV νR,AB, whose coefficient is constrained by the invisible width of

the Z0, the possible effect is negligible. A similar conclusion applies to OW and OB,

which are constrained by limits on neutrino magnetic moments. For the operator

OṼ ,eB, the constraint on the coefficient implied from the µ-decay Michel spectrum

is more than an order of magnitude weaker than assumed in obtaining Fig. 3.9,

and would allow the corresponding correction to the missing energy channel to be of

order 10% or more (recall that the dependence on the coefficient is quadratic). On

the other hand, the bound obtained from neutrino mass naturalness considerations is

substantially smaller than |Cv2/Λ2| = 10−2, suggesting an unobservable contribution

from this operator to the H + 6E cross-section. Thus, the observation of a deviation

in this channel without similar deviations in the Hqq̄ and H`¯̀ channels—though

unlikely—would imply the presence of fine tuning in order to avoid unacceptably
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large radiative contributions to neutrino mass.

Summarizing the situation more broadly, we find that there exists considerably

less room for effects on Higgs production from higher dimension operators containing

fermions than from purely bosonic operators. Constraints from EWPO generally

imply |Cv2/Λ2| << 10−2. The impact of this suppression can be overcome only in

channels that are dominated by SM HZ due to the absence of an off-shell Z0-boson

propagator in amplitudes containing any of the operators OV R,ee, OV L,ee, and OV Lτ,ee.

In contrast, purely bosonic operators, such as ∂µ(φ†φ)∂µ(φ†φ), can lead to potentially

significant deviations in a variety of channels simultaneously, since (a) they affect

the couplings of the Higgs to gauge bosons and (b) the constraints from EWPO are

weak [51]. A comprehensive study of Higgs production in a variety of channels at a

linear collider would allow one to disentangle possible effects from different classes of

effective operators, thereby providing new clues about physics at high scales8.

8Studies of polarization observables or angular distributions may also allow one to distinguish
the effects of different effective operators, along the lines suggested in [114]. We thank V. Barger
for bringing this possibility to our attention.
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Chapter 4

Gravitational Perturbations of a

Six-Dimensional Self-Tuning Model

In this chapter, we switch gears from model-independent analyses to studying a spe-

cific model of extra dimensions, originally proposed in [54], which is an interesting

approach to understanding the cosmological constant problem. This model has two

extra dimensions, compactified into a sphere, as well as a bulk magnetic field Fij and

a bulk cosmological constant Λ, which must be fine-tuned against each other in order

that a four-dimensional observer would see a cosmological constant of zero. When

two branes, each with tension f 4, are added to the model (one at each pole), a new

flat-space solution can be found where the 2-sphere has a deficit angle which depends

on f 4; however, the relation between Fij and Λ is unchanged. This led to the hope

that this model could be self-tuning: that, once Fij and Λ were fine-tuned against

one another, the cosmological constant seen by a four-dimensional observer would be

zero, regardless of any changes that might occur in the brane tension.

This possibility raises an interesting question, however; it might be expected that

the model’s ability to self-tune by adjusting the deficit angle would correspond to a

massless scalar mode in the perturbed Einstein’s Equations. As lunar laser-ranging

measurements [115, 60] and measurements of the frequency shift of radio signals to

and from the Cassini spacecraft [61] very tightly constrain scalar-tensor theories of

gravity, the existence of a scalar mode would make this model very strongly disfavored.

Our analysis, described in this chapter, was to look for such modes. Surprisingly,
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as will be shown below, no such scalar modes were found. While we were thus unable

to rule out this model, we concluded that perhaps the hoped-for self-tuning property

of this model did not, in fact, exist.

The content of this chapter, with small modifications, is taken from [62].

4.1 Introduction

There has been much speculation on the possibility that the Standard Model fields are

confined on a four-dimensional brane in a higher-dimensional universe [55, 56, 57, 58,

59]. The usual cosmological constant problem is reformulated in these theories, since

in general the cosmological constant in the four dimensional effective theory receives

contributions from both bulk physics and from brane physics. The cosmological

problem in these models is balancing the bulk terms against the vacuum energy on

the brane to produce the very small value seen in nature.

A general class of five-dimensional models [116, 117] were introduced to partially

resolve this problem. Instead of canceling bulk terms against brane terms, these

models have the interesting feature that flat space solutions always exist for arbitrary

values of the tension on the brane. This is a big improvement, since for these class of

models there is a hope that the cosmological constant problem could be immune to

phase transitions on the brane, although this has not been demonstrated.

It has been recognized that six-dimensional brane world models might be more

promising for the cosmological constant problem, due to the co-dimension-two nature

of the geometry [118, 119, 120, 121, 122, 123]. As might be expected by locality, a

three brane with arbitrary tension in six-dimensional flat space does not cause the

space to inflate, but just introduces a conical singularity. But as such a model does

not lead to four-dimensional Einstein gravity, one must compactify the transverse

space.

An interesting co-dimension-two spherical compactification was originally consid-

ered by Sundrum [121, 122], and modified by Carroll and Guica [54] and also by

Navarro [124]. In their model, a fine-tuning of bulk parameters is required to obtain
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a small four-dimensional cosmological constant. What is intriguing though, is that

this fine tuning is independent of the tension on the brane. With non-vanishing brane

tension the bulk geometry is still locally a sphere, but globally it has a conical deficit

angle. Pictorially, a “banana peel” has been removed.

A generic difficulty with the five-dimensional models was that self-tuning required

a curvature singularity in the bulk [125, 126]. Resolving the singularity by introducing

another brane in the bulk reintroduces a fine-tuning of the brane tensions [127].

Naively the six–dimensional model may be an improvement on the five-dimensional

self-tuning models, since here the curvature singularities are conical and perhaps less

severe. Still, this may be too much. [128] finds that in geometries with conical

singularities it is inconsistent to add anything other than tension to the brane. Since

we would like to also have stars and dogs on the brane, this is clearly problematic. It

is unclear though whether this is an artifact of treating the brane as infinitely thin1,

and it would be interesting to see whether higher dimension operators on the brane

could overcome this obstacle2.

In this chapter we will not dispel this concern. Rather, we address an independent

issue, which is whether this six-dimensional model leads to a scalar-tensor theory of

gravity at low energies. Given the presupposition of a self-tuning mechanism, one

might expect such a mode is necessary, for example, to self-tune a change in the

brane tension that is much smaller than the compactification scale.

As is well known, gravitational couplings of a scalar admixture to gravity are

strongly constrained by measurements [115, 60] of the Nordtvedt effect [131, 132,

133]. Other phenomenological constraints could be obtained from cosmology, for here

parameters in the four-dimensional effective theory depend on the brane tension,

which probably had a cosmological history [134].

Our main result is that while we do find massless scalars allowed by the bulk

equations of motion, these are all eliminated by the boundary conditions. Our analysis

can also be extended to exclude light scalars whose mass vanishes in the limit that

1Finite thickness co-dimension–2 models have been discussed in [129, 130].
2[128] did find that adding the Gauss-Bonnet operator in the bulk could lead to Einstein gravity

with arbitrary sources.
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the tension goes to zero. To linear order in perturbation theory then, this model

does not have any phenomenological difficulties of this sort. Our results support the

conclusions of [135], but we improve on their work since here we are able to obtain

all of our results analytically, without having to resort to a numerical analysis.

If this model does have a self-tuning mechanism, then the absence of any massless

scalars does raise a puzzle though, for there is no light scalar to adjust a change in

the brane tension. If this model does in fact have a self-tuning mechanism, then

our results surprisingly suggest that by default, it is the collective motion of many

massive Kaluza-Klein states that is responsible for canceling a change in the tension.

But there is another reason to doubt whether their model has a self-tuning mech-

anism. For here the deficit angle is an integration parameter that may be chosen to

satisfy the boundary conditions after assuming a four-dimensional flat space ansatz.

However, one might be worried that this feature may not be sufficient in order realize

the self-tuning. We elaborate on this in Section 4.

The content of this chapter is as follows. In Section 2, we briefly review the key

features of the model. In Section 3.1, we determine Einstein’s equations to linear

order and discuss the appropriate gauge fixing. Here there is a subtlety due to a

brane bending mode, and we discuss how we gauge fix this mode. Then we present

our solutions for the most general massless scalar modes that could couple to matter

on the brane. In Section 3.2 we discuss the boundary conditions. After imposing

these conditions, none of our zero modes survive. Section 4 reconsiders the self-tuning

feature of this model. Section 5 contains some concluding remarks.

A few notes on notation are in order. We will use GAB to denote the full 6D

metric, Greek indices for the non-compact four dimensions, and Roman letters for

components of tensors in the internal directions.
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4.2 The Unperturbed Model

The authors of [54] and [124] consider a six-dimensional model with two dimensions

compact. The bulk geometry has the topology of a sphere with metric

ds2 = r2gijdxidxj = r2[dθ2 + β2 sin2 θdα2] (4.1)

and α has period 2π.

The field content in the bulk is six-dimensional gravity together with a U(1) gauge

field. The field strength for the gauge field is non-vanishing on the sphere,

Fij =
√

G(2)εijB , (4.2)

with εθφ ≡ 1. The corresponding flux

Φ =

∫
d2x

√
G(2)εijFij (4.3)

is conserved.

There is also a bulk cosmological constant Λ. Obtaining a static solution requires

Λ = B2/2 (4.4)

which is the usual cosmological constant problem. The radius of the sphere is

r = (κB)−1 (4.5)

where κ2 is the six-dimensional Newton’s constant. What is intriguing about this

model is that if we add a brane at the north and south poles (θ = θi), each with

tension f 4, corresponding to a stress tensor

Tµν = −gµν
f 4

2π

√
g(4)

√
G(6)

∑

i

δ(θ − θi) , (4.6)
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a new static solution is obtained without any additional fine tuning. The new geom-

etry is still locally a sphere, but now there is a deficit angle

γ = κ2f 4 (4.7)

corresponding to a local change in curvature at the locations of the branes,

Rij = gij + gij
γ

β

∑

i

δ(θ − θi)

2π sin θ
. (4.8)

In terms of the parameters above,

β = 1 − γ

2π
. (4.9)

It is transparent that the geometry is locally still a sphere, since we may rescale α so

that

ds2 = r2[dθ2 + sin2 θdφ2] (4.10)

but now 0 ≤ φ ≤ 2πβ. This coordinate system is a physically convenient choice for

the linear perturbation analysis, since all the effect of the tension and deficit angle is

put into the boundary.

With a non-vanishing tension, the area of the sphere is smaller due to the deficit

angle. As a result, the magnetic flux depends on the tension. If a quantization

condition is imposed on the flux, then the self-tuning feature of this model would no

longer work, for then the cancellation of bulk parameters needed to obtain a static

solution would depend on the tension [136, 137, 138].

To avoid this conclusion we will assume that there is no quantization condition.

This requires us to assume that there are no electric sources for the bulk U(1) gauge

field3. Since the Standard Model fields are not charged under this gauge group, this

is not necessarily a phenomenological problem.

3This assumption does not affect the stability analysis.
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4.3 Linear Analysis

4.3.1 Gauge Fixing and Perturbed Equations

A general perturbation of the background metric (4.10) is given by

ds2 = (ηµν + hµν)dxµdxν + 2hµθdxµdθ + 2hµφdxµdφ

+(1 + hθθ)dθ2 + 2hθφdθdφ + sin2 θ(1 + h̃φφ)dφ2 . (4.11)

Here we work in units with r = 1. For non-zero tension there are curvature singu-

larities at θ = 0 and π. Then 0 ≤ φ ≤ 2πβ. When the tension vanishes, there are

coordinate singularities at these points.

A convenient gauge choice would be Gaussian Normal-like gauge conditions in the

bulk. These are

hθµ = hθθ = ∂µhµφ = 0 , (4.12)

providing six conditions.

There is an important subtlety in choosing this gauge though, which we now

discuss. In the end we will choose a gauge that is very similar to this one.

To set hnew
θθ = 0 one chooses a gauge parameter

εθ(x, θ) = −1

2

∫ θ

0

dθ′hold
θθ (x, θ′) . (4.13)

The problem with this gauge transformation is with the location of the boundaries.

In the gauge with hθθ = 0, the brane at the north pole is located at θ = 0, but the

brane at the south pole is now located at θ = π + εθ(x, π), or

θ = π − F (x)π/2 (4.14)

in general (F is defined by these two equations). Imposing boundary conditions at

the location of the south pole brane is technically too subtle in this gauge.

Since F represents a perturbation that cannot be gauged away, it is more conve-
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nient to put it in the metric rather than the location of the boundary. This is done

by choosing a slightly different gauge parameter,

εθ(x, θ) = −1

2

∫ θ

0

dθ′hold
θθ (x, θ′) + θF (x)/2 (4.15)

which keeps the branes located at 0 and π. The price we pay is that we cannot

completely gauge hθθ away, for in this gauge hnew
θθ = F (x).

We use the U(1) gauge invariance to set

∂µaµ = 0 . (4.16)

This together with

hθµ = ∂µhµφ = 0 (4.17)

and

hθθ(θ, x) = F (x) (4.18)

represent our gauge conditions.

We search for massless scalar perturbations only, since only these lead to possibly

dangerous long-distance deviations from Einstein gravity.

In addition, we focus on scalar perturbations that are independent of the angular

coordinate φ. The reason is that only φ-independent scalar perturbations couple to

matter on the brane, either through kinetic mixing with the graviton or because of a

non-vanishing wavefunction at the brane locations. Perturbations with non-trivial φ

dependence only “see” the brane tension through a change in their periodicity, and

will therefore still vanish at the location of the branes.

All this gauge fixing leaves seven scalar perturbations,

ds2 =

(
ηµν + ∂µ∂νλ +

1

4
ηµνh(4)

)
dxµdxν

+(1 + F )dθ2 + 2hθφdθdφ + sin2 θ(1 + h̃φφ)dφ2 (4.19)

and A = aθdθ + aφdφ with field strengths fAB = ∂AaB − ∂BaA.
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Next, Einstein’s equations

EAB = κ2TAB (4.20)

in units with r0 = 1 are obtained. Focusing on φ-independent perturbations, the

linearized Einstein equations in the bulk and in the gauges (4.16)–(4.18) are given by

(µν) : 0 = −1

2
(� + ∂2

θ + cot θ∂θ)
(
hµν − ηµνh(4)

)
− 1

2
ηµν∂

ρ∂σhρσ

+
1

2
ηµν(�h̃φφ + �F + F − h̃φφ) +

1

2
(∂µ∂ρh

ρ
ν + (ν ↔ µ))

+
1

2
ηµν

(
∂2

θ h̃φφ + 2 cot θ∂θh̃φφ

)
(4.21)

−1

2
∂µ∂νh(4) −

1

2
∂µ∂ν h̃φφ − 1

2
∂µ∂νF + ηµν

κ2B

sin θ
∂θaφ

(θµ) : 0 = ∂θ∂
ρhρµ

+ ∂µ

(
cot θ(F − h̃φφ) − ∂θh(4) − ∂θh̃φφ − 2κ2B

aφ

sin θ

)
(4.22)

(φµ) : 0 = −
(
� + ∂2

θ − cot θ∂θ

)
hφµ

+∂µ

(
∂θhθφ + cot θhθφ + 2κ2B sin θaθ

)

− 2κ2B sin θ∂θaµ (4.23)

(θθ) : 0 = �h(4) − ∂µ∂νhµν + �h̃φφ + cot θ∂θh(4) + F + h̃φφ

−2κ2B
∂θaφ

sin θ
(4.24)

(θθ − φφ) : 0 = ∂2
θh(4) − cot θ∂θh(4) + �F − �h̃φφ (4.25)

(θφ) : 0 = −�hθφ . (4.26)

The linearized U(1) gauge equations in these gauges are

(µ) : 0 =

(
�(4) +

∂2

∂θ2
+ cot θ

∂

∂θ

)
aµ − ∂µ(∇ · a) − B

sin θ
∂θhµφ (4.27)

(θ) : 0 = �(4)aθ (4.28)

(φ) : 0 = sin θ∂θ

(
1

sin θ
∂θaφ

)
+ �aφ − B

2
sin θ(∂θh̃φφ − ∂θh(4)) (4.29)

with ∇·a = ∂θaθ+cot θaθ in the Lorentz gauge and acting on φ independent perturba-
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tions, and � = ∂µ∂µ. For massive states, (4.27) together with the gauge choices (4.16)

and (4.17) imply ∇ · a = 0. These equations in the bulk must be supplemented with

boundary conditions imposed at the locations of the conical singularities. Boundary

conditions are discussed in the next section.

We emphasize that the equations obtained above are valid for arbitrary brane

tension. Due to the choice of parameterization of the background given by (4.10), the

effect of the brane tension appears only in the boundary conditions, and for solutions

with non-trivial φ dependence (which we are not looking at here), in 2πβ periodicity

conditions.

As may be anticipated by considering the four-dimensional effective potential [121,

122, 139], the radion in this model is massive. It is given by the mode

hθθ = h̃φφ = −h(4)

4
= F (x) , (4.30)

with all other fields vanishing. It has a mass m2 = 1/r2
0. This result agrees with

previous computations [135].

In the remainder of this chapter we focus on massless modes only.

For the zero modes there is, in addition, the usual residual gauge invariances

Ω where �Ω = 0. Here we have a residual U(1) gauge invariance Λ, and residual

diffeomorphism invariances εφ and εµ only, since εθ is fixed by our gauge choice. We

use Λ and εφ to set the zero modes of of aµ and hφµ to be purely transverse, and εµ

to set the vector components of the four-dimensional zero mode graviton to zero.

In total there are naively 10 equations for 7 variables. But fortunately not all

of these equations are independent. Eq. (4.29) and the trace of (4.22) are derivable

from other equations. Eqs. (4.26) and (4.28) are trivial acting on the zero modes we

are focusing on. This leaves six non-trivial equations for seven scalar perturbations

(but recall that F is pure gauge in the bulk).

Inspecting the equations further, aθ and hθφ decouple from the other perturba-
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tions. Their wavefunctions are fixed by (4.23) and (4.27) to be

aθ =
c0(x)

sin θ
, hθφ = 2κ2Bc0(x) cot θ . (4.31)

Next we proceed to solving the other equations. Eq. (4.25) can be solved imme-

diately to give

h(4) = c1(x) − c2(x) cos θ . (4.32)

Next use (4.24) to solve for h̃φφ and substitute this into (4.22) to obtain

∂2aφ

∂θ2
+ aφ = − c2(x)

8κ2B

(
7 − 11 cos2 θ

)
+

F (x)

κ2B
cos θ . (4.33)

This will have two homogeneous solutions and one inhomogeneous solution. Since

the sources are independent, we may think of this as four solutions in total. Finally,

(4.22) with µ 6= ν determines λ in terms of the previous solutions.

The most general solutions to these equations are given by

h̃φφ = c3(x) +
5

6
c2(x) cos θ + 2κ2Bc4(x) cot θ + θ cot θF (x)

aφ = − c3(x)

2κ2B
cos θ +

c2(x)

24κ2B
(1 − 11 cos2 θ) + c4(x) sin θ

+
F (x)

2κ2B
θ sin θ

hθθ = F (x) (4.34)

together with (4.32).

To summarize, for an arbitrary tension we have found the the most general

φ−independent massless scalar perturbation solution to the U(1) and Einstein field

equations. Imposing boundary conditions on these solutions is discussed in the next

section.
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4.3.2 Boundary Conditions

For non-zero tension the locations of the branes are special points on the sphere with

curvature singularities. To obtain the boundary conditions for the perturbations at

these points we need to inspect the field equations and match the singularities.

It is useful to rewrite the internal metric, including perturbations, as

ds2
int = r2

0 (1 + hθθ)
[
dθ2 + β2 sin2 θ(1 + h̃φφ − hθθ)dα2

]
, (4.35)

where in a change of notation, r0 = (κB)−1 denotes the unperturbed radius. To linear

order in the perturbations this is equivalent to our previous parameterization. Here

we are also only focusing on hθθ and h̃φφ, since hθφ decouples and does not couple

to brane matter. For long-wavelength perturbations this describes a new background

with effective radius

r2 = r2
0(1 + hθθ) (4.36)

and effective deficit angle

β̃2 = β2(1 + h̃φφ − hθθ) . (4.37)

To obtain first-order terms in the equations of motion with explicit delta-function

singularities, which correspond to perturbations without derivatives, we may use (4.8),

using (4.9) and substituting for the effective radius (4.36) and effective deficit angle

(4.37).

This implies that to linear order there are no singular contributions to the (i, j)

Einstein equations. There is however, a singular contribution to the (µ, ν) equation,
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given by

Eµν |sing. =
∑

i

gµν
1

β̃r2

[
β̃ − 1

] δ(θ − θi)

sin θ

= κ2Tµν |sing.

= −κ2f 4
∑

i

gµν

√
g(4)

2π
√

G(6)
δ(θ − θi)

= −κ2f 4
∑

i

gµν
1

β̃r2

δ(θ − θi)

2π sin θ
. (4.38)

Before concluding that these singularities must match, we must check that pertur-

bations involving derivatives cannot contribute additional singularities. To see that

they cannot, use the (µθ) equation to solve for h̃φφ and substitute it into the (µ = ν)

equation. One finds all the terms cancel identically, except for the singularities ap-

pearing in (4.38). Inspecting (4.38), we see that to satisfy the equations of motion

requires

[β̃ − 1]| = −κ2

2π
f 4 (4.39)

or

[h̃φφ − hθθ]| = 0 (4.40)

at the location of either brane. This is just the statement that without a change in

the tension, a perturbation in the metric cannot change the deficit angle.

To obtain other boundary conditions we must inspect the other field equations.

The (θθ − φφ) metric equation does not contain any curvature singularities. Re-

quiring that the solution is finite gives the boundary condition

∂θh(4)| = 0 . (4.41)

Finally, to obtain the boundary condition for aθ, consider spreading the brane out

into a ring located at θ ∼ ε. Later we will send ε → 0. Inside the ring we have no

deficit angle, so all fields are regular at the pole, and therefore aθ → 0. The ring does

not affect the aµ gauge equation of motion, so ∇·a = 0 is the aθ equation both inside
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and outside the ring. The only solution inside the ring, consistent with this equation

and the boundary condition at the pole, is aθ = 0. By continuity at the location of

the ring, the boundary condition outside the ring is then

aθ| = 0 . (4.42)

Eqs. (4.40), (4.41) and (4.42) are our boundary conditions when the tension is non-

vanishing.

For vanishing tension, there are stronger constraints than these from requiring

that the north and south poles not be special points. This means that our solutions

in polar coordinates should have sensible (C) values when expressed in a Cartesian

basis local to the poles. This implies that near a pole,

hµφ ∼ fµφ ∼ h̃φφ − hθθ ∼ θ2 . (4.43)

Inspecting the four solutions above, we first note that the normal mode c0(x)

and c4(x) are too singular to satisfy the boundary conditions. However the linear

combination

c3(x) = −5

6
c2(x) (4.44)

and the normal mode F (x) both independently satisfy the boundary conditions at

θ = 0. Thus there are two independent solutions that satisfy the boundary conditions

at θ = 0.

But neither solution satisfies the boundary conditions at θ = π. As θ → π, a

general combination of these two solutions behaves as

h̃φφ − hθθ → −5

3
c2(x) − F (x) − π

sin θ
F (x) . (4.45)

The boundary condition implies that the left side should vanish at the boundary, so

both c2 = F=0. Thus there are no solutions that satisfy the boundary conditions at

both θ = 0 and θ = π.
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This conclusion is true for arbitrary tension. It is straightforward to repeat the

analysis for vanishing tension. The only difference is that the boundary conditions

are stronger, because of the constraint of regularity. No zero modes therefore exist in

this limit either. Thus any light mode with mass that vanishes as the tension is sent

to zero is also excluded by our analysis.

4.4 Fine-tuning or Self-tuning?

We return to an issue briefly issue raised in the introduction of this chapter. One

might think that the relation (4.7) between the deficit angle and the brane tension

does not represent a fine-tuning, since the deficit angle is an integration parameter,

not a parameter of the Lagrangian. But a simple four-dimensional counter-example

illustrates that the issue is not as straightforward [140].

Consider a four-dimensional theory with a bare cosmological constant Λ0 and a

four-form field strength with value

Fµνρσ = cεµνρσ (4.46)

which satisfies the field equations of motion and where c is an integration parameter

[141, 142]. The source for gravity in this theory is

Λ = Λ0 + c2 . (4.47)

The integration parameter may be chosen to be c2 = −Λ0, giving a flat space solution.

But obviously this is not the only solution, as there is a family of de-Sitter and anti-

de-Sitter solutions.

In analogy with this four-form example, does setting the deficit angle—an inte-

gration parameter— of the six-dimensional model to be equal to the tension involve

a fine-tuning? For recall that it has not been demonstrated that the deficit angle is

forced by the equations of motion to be equal to the tension—that only followed from

the equations of motion after assuming a flat-space ansatz. For maximally symmetric
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space-times, [135] has found that once the bulk cosmological constant is finetuned

against the magnetic flux, then de-Sitter or anti-de Sitter solutions along the brane

directions are forbidden, and the deficit angle is equal to the tension.

But that still does not completely address the issue. In other words, it isn’t

clear that a change in the tension is canceled by a change in the deficit angle. If other

cosmological solutions exist, for the same tension but other values of the deficit angle,

then (4.7) is a fine-tuning, and this model would then be less appealing.

What might these solutions look like?4 A dynamical change in the tension could

lead to a solution that is not maximally symmetric, but instead interpolates between

an inflating or generally time-dependent solution near the brane, to a static geometry

far from the brane. Far from the brane, the deficit angle would be (approximately)

equal to its unperturbed value.

4.5 Conclusions

We have performed a linear perturbation analysis of the model presented in [54] and

[124] to search for phenomenologically dangerous massless or approximately massless

scalars. After imposing the boundary conditions, we have found that there are no

such modes.

If this model does have a self-tuning mechanism, then our results do raise a puzzle.

Namely, below the compactification scale the only light modes are the four dimen-

sional graviton, the Standard Model fields, a gravi-vector boson from the residual

isometry of the bulk, and a U(1) gauge boson. The latter two do not couple to the

tension on the brane and so we can forget about them. The puzzle is that one might

have expected that the self-tuning of a small enough change in the brane tension could

be understood in the four-dimensional effective theory—but this does not seem likely,

since our results show that this model lacks any additional light degree of freedom.

If this is the case here, then in order for this model to be compatible with the

observed size or bound on the cosmological constant, we would need 1/r ∼ 10−3 eV

4The authors thank Maxim Perelstein for discussions on this point.
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[123]. There is an additional puzzle here, if the model does self-tune: from the higher

dimensional perspective, it appears that it is the full quantum mechanical tension on

the brane that is canceled, not just the high-energy contribution. If this were true,

then there would not be a constraint on the size of the internal space arising from

vacuum fluctuations of brane localised matter.

Our results suggest that if there is self-tuning, then it must be due to modes no

lighter than the compactification scale. A consistent story would then be that the

massive states only partially cancel a dynamical change in the tension, down to an

amount set by the compactification scale.

Finally, demonstrating that these models do or do not self-tune might be difficult:

one would need to find or demonstrate the absence of non-maximally symmetric

solutions with an approximately static deficit angle and geometry far from the brane,

but with a cosmological geometry near the brane. That is, to follow the cosmological

evolution of this system through a phase transition.
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