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On the Distribution of Dark Matter in Clusters of Galaxies
by
David J. Sand

In Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Abstract

The goal of this thesis is to provide constraints on the dark matter density profile
in galaxy clusters by developing and combining different techniques. The work
is motivated by the fact that a precise measurement of the logarithmic slope of
the dark matter on small scales provides a powerful test of the Cold Dark Matter
paradigm for structure formation, where numerical simulations suggest a density

L or steeper in the innermost regions.

profile ppas o< r™

We have obtained deep spectroscopy of gravitational arcs and the dominant
brightest cluster galaxy in six carefully chosen galaxy clusters. Three of the clusters
have both radial and tangential gravitational arcs while the other three display only
tangential arcs. We analyze the stellar velocity dispersion for the brightest cluster
galaxies in conjunction with axially symmetric lens models to jointly constrain the
dark and baryonic mass profiles jointly. For the radial arc systems we find the inner
dark matter density profile is consistent with ppas oc v, with (8) = 0.52J_r8:8§
(68% CL). Likewise, an upper limit on 3 for the tangential arc sample is found
to be 3 <0.57 (99% CL). We study a variety of possible systematic uncertainties,
including the consequences of our one-dimensional mass model, fixed dark matter
scale radius, and simple velocity dispersion analysis, and conclude that at most
these systematics each contribute a AF ~ 0.2 systematic into our final conclusions.

These results suggest the relationship between dark and baryonic matter in cluster

cores is more complex than anticipated from dark matter only simulations.
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Recognizing the power of our technique, we have performed a systematic search
of the Hubble Space Telescope Wide Field and Planetary Camera 2 data archive
for further examples of systems containing tangential and radial gravitational arcs.
We carefully examined 128 galaxy cluster cores and found 104 tangential arcs and
12 candidate radial arcs, each of whose length to width ratio exceeds 7. Twenty-
four additional radial arc candidates were identified with smaller length to width
ratios. In order to confirm the nature of these radial arc candidates, we obtained
Keck spectroscopy of 17 candidate radial arcs, suggesting that the contamination
rate from non-lensed objects is ~30-50%. With this catalog of gravitational arcs,
we use the number ratio of radial to tangential arcs as a statistical measure of the
inner logarithmic dark matter slope, G, in galaxy cluster cores. This abundance
ratio is fairly constant across various cluster subsamples partitioned according to
X-ray luminosity and optical survey depth. Using two-component mass models
for cluster cores, we show that the arc statistics in our survey are consistent with
8 < 1.6, depending on various assumptions, the most important of which is the
stellar mass associated with the brightest cluster galaxy.

Finally, in order to refine and confirm the analysis technique presented for the
six galaxy clusters with gravitational arcs and brightest cluster galaxy dynamics,
and to address several comments on our earlier work, we present a more elaborate
two dimensional lens model of the cluster MS2137 using a newly upgraded gravita-
tional lensing code. We combine these two-dimensional lens model constraints with
the velocity dispersion data of the brightest cluster galaxy to constrain the dark
and baryonic mass profiles jointly. We find the inner dark matter density profile to
be consistent with a distribution with logarithmic inner slope (3) = 0.2579-35 (68%
CL) in agreement with the axially symmetric model presented earlier for MS2137
(B) = 0.57J_r8j(1,é) with simpler assumptions. However, we do find a significant
degeneracy remains between the scale radius, rs., and inner logarithmic slope, (3,
which might be resolved with further lensing data at larger radii. Notwithstanding
this limitation, we conclude that our technique of combining gravitational lensing

with stellar dynamics offers a reliable probe of the dark matter distribution in clus-
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ters and that, most likely, a discrepancy remains between numerical predictions in

the CDM paradigm and our observations.
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Chapter 1

Introduction

One of the great challenges of astrophysics is to understand how galaxies and
galaxy clusters formed and evolved. It is clear that dark matter plays a dominant
role in cosmology and the galaxy formation process (Davis et al., 1985; Percival
et al., 2001; Spergel et al., 2003; Croft et al., 2002; Bahcall et al., 2003), making
the nature of dark matter and its relationship to baryons key to our understanding
of structure formation. The goal of this thesis is to provide new constraints on the
dark matter (DM) density profile in galaxy clusters by developing and combining
different techniques. Why is it important to measure the DM density profile of
galaxy clusters? It is the goal of this introduction to address this question.

This chapter is intended to give a brief overview of the current observational
and theoretical status of DM from the astronomical perspective. Readers inter-
ested in the unknown identity of the dark matter particle and the intensive efforts
underway to uncover it are directed to the recent review by Gaitskell (2004). In
§ 1.1 T will discuss the basic observations and analyses which led to the current
view that some form of dark matter is required to make sense of observational
results. Dark matter plays a central role in our understanding of how structure
formed in the universe and the latest dark matter simulations make specific pre-
dictions about the DM density profile and the amount of substructure in halos
ranging in size from dwarf galaxies all the way up to galaxy clusters. It is these

simulations which motivated this thesis and they will be discussed in § 1.2. To put



these simulations in context, I briefly discuss the latest results on the DM halos of
dwarf and normal galaxies in § 1.3. Most observational work on dark matter halos
has been done at the dwarf galaxy scale and has already presented challenges to
the currently favored Cold Dark Matter (CDM) paradigm. Finally, we will discuss
the current observational methods for measuring the dark matter density profile
in galaxy clusters and the latest observational results (§ 1.4) which will inform
the discussion presented in the following chapters of this thesis. This chapter will

conclude with a paragraph discussing the structure of this thesis.

1.1 Observational Evidence for Dark Matter

The probable necessity for dark matter dates to the mid-1930’s following obser-
vations of the kinematics of galaxies in the Coma Cluster (Zwicky, 1937). The
results of Zwicky’s observations were verified in other local galaxy clusters, such
as Virgo (e.g. Smith 1936). Equally important, observations of the rotation curves
of disk galaxies also called for some other form of matter besides the luminous
matter (e.g. Rubin et al. 1980). In this section I will briefly present these two
historical observations and the arguments traditionally used that have pointed to
the necessity for dark matter.

It is thought that massive objects such as galaxies and clusters of galaxies are
gravitationally bound systems in equilibrium. There are two lines of evidence that
suggest this. First, the distribution of galaxies in clusters is often characterized
by an increase in the space density of galaxies towards the cluster center with the
density decreasing steadily outwards to that of the background, approximating the
profile of an isothermal gas sphere, which is expected for a system in hydrostatic
equilibrium. Another argument suggesting that clusters are in a gravitationally
bound equilibrium follows by comparing the crossing time of a typical cluster

galaxy with the age of the universe. The crossing time is

ter ~ R/<'U> (11)



where R is the size scale of the cluster and (v) is the velocity dispersion of the
consituent galaxies in the cluster. For example, a galaxy cluster with radius ~1
Mpc and velocity dispersion 103km /s has a crossing time of ~1 Gigayear. Since
the age of the universe is greater than ~10 Gigayears, it is safe to assume that
typical galaxy clusters are gravitationally bound objects, because if they were not,
the system would have flown apart by now. If the cluster is in gravitationally

bound equilibrium then it must obey the virial theorem, which simply states
T =1/2|U] (1.2)

where T is the total kinetic energy and |U| is the total potential energy. Translating
this into more usable terms for an observational astrophysicist (including the need
to take into account the fact that normally velocities can be measured only along
the line of sight), we get the following relation for the mass of an object that is in
virial equilibrium:

M =5(v)R/G (1.3)

where (vﬁ} is the line of sight velocity dispersion. Therefore, by measuring the
velocity dispersion of galaxies within a cluster out to high radii, one can accurately
estimate the mass of the galaxy cluster. As was mentioned previously, this was
first done by Zwicky (1937) for the Coma cluster and Smith (1936) for the Virgo
cluster. Both Zwicky and Smith’s results were quite surprising. For example, if
we assume some plausible values for the Coma cluster, that it has a radius of 3
Mpc and velocity dispersion of 1000 km /s, along with the fact that the cluster has
an optical luminosity of 5 x 10'2 L, then we would conclude that it has an optical
mass-to-light ratio of over 600! Typical M/L for elliptical and SO galaxies in the
local universe are ~10-15, leading to the direct conclusion that there is much more
matter present in clusters than is visible in optical light. Even after taking into
account other forms of baryonic matter (e.g. the hot intracluster medium) and
the shortcomings of this order of magnitude calculation, the discrepancy between

the observed, luminous mass in clusters and that inferred through gravitational



interactions is great.

A further observation that leads to the conclusion that some form of dark
matter is necessary comes from the rotation curves of disk galaxies. By measuring
the rotational velocity of stars (or, if one wants to go even further out, of gas) about
the galaxy’s center as a function of radius, an estimate of the mass distribution
can be made. Up until the 1950’s and 1960’s, the rotation curves of galaxies did
not extend out to radii well beyond those of the stars, and had characteristics that
were roughly compatible with a constant M /L, indicating that no dark matter was
necessary. It was pointed out by Roberts (1975) that these early rotation curves
were inadequate to probe the outer mass distribution of spiral galaxies. However,
hints began to appear that suggested there was more mass in spirals than met the
eye. In an extended optical rotation curve of M31 out to 24 kpc, Rubin & Ford
(1970) noted that the total mass continued to quickly increase despite the steep
falloff in stellar brightness at high radii. As observations improved, it became
apparent that nearly all rotation curves increase at low radii, reach a peak, and
then flatten out to the limits of the observations (Figure 1.1), which when using
the 21cm line as a kinematic tracer, can extend far beyond the edge of the visible
stellar disk (for an early realization of this, see Rogstad & Shostak 1972). Excellent
quality rotation curves of hundreds of spiral galaxies all indicate (unless the galaxy
is significantly disturbed) that they are flat out to the limits of the observations
(e.g. Bosma 1978; Rubin et al. 1980, 1985).

Fairly simply, one can see what the physical implications of flat rotation curves
are on the distribution of mass in galaxies. Using Gauss’ theorem and Newton’s
law of gravity, along with making the assumption that the galaxy we are dealing

with is spherically symmetric (unrealistic, but fine for this illustration), we find

M(<r)=v2,r/G (1.4)

2

.+ 1s the rotation

where M (< r) is the mass enclosed within a given radius, r, and v

speed of the galaxy at a given radius. If the rotation curve is flat as a function of
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Figure 1.1: Left: Neutral hydrogen contours overplotted on an optical image of
the spiral galaxy NGC 3198. Right: The measured rotation curve of NGC 3198
from neutral hydrogen. Note the rapid rise followed by a peak which flattens out
to the limits of the observations. The shape of this rotation curve is typical for

spiral galaxies. This figure is from van Albada et al. (1985).

radius, then M (< r) o« r and the mass increases linearly with radius, unlike the
light distribution of disk galaxies, which fall off exponentially (Freeman, 1970).
This implies that the M/L ratio of disk galaxies must increase with increasing
radius, a finding that cannot be reconciled with the data unless some form of dark
matter is invoked.

The high velocity dispersion in galaxy clusters and the flat rotation curves
of spiral galaxies are just two of the many observational facts which lead to the
conclusion that dark matter is necessary. By the late 1970’s, it was quite clear
that there were significant quantities of dark matter in spiral galaxies and clusters
of galaxies, with some hints that dark matter was also present in elliptical galaxies
(for a review at the time, see Faber & Gallagher 1979). Dark matter is now
completely incorporated into modern thought on how galaxies and clusters form
and evolve (e.g. Blumenthal et al. 1984). One of the best tools for studying this
in more detail is through numerical simulations, which will be discussed in the

following section.



1.2 Predictions from Simulations of Structure Forma-
tion

The current standard picture for how structures such as galaxies and clusters of
galaxies formed combines an inflationary Universe with the hierarchical growth of
small fluctuations in the initial cosmic mass distribution. This picture includes
not only baryonic matter but also some kind of non-baryonic dark matter (in
addition to some dark energy). Focusing on the topic of this thesis, dark matter,
it should be noted that this dominant mass component in the universe remains
unkown. Throughout the years, numerous properties of the dark matter particle
and its consquences for structure formation have been explored, including warm
dark matter (e.g. Hogan & Dalcanton 2000), scalar field dark matter (e.g. Peebles
2000), and self-interacting dark matter (e.g. Spergel & Steinhardt 2000). However,
both because it accurately reproduces the large scale structure of the universe and
because it is the dark matter candidate most in line with expectations from particle
physics theory, the Cold Dark Matter (CDM) model (first coined by Peebles 1982)
dominates current astrophysical theories.

Cold Dark Matter is collisionless, both with itself and with normal baryons,
and nonrelativistic (hence ’cold’). Cold dark matter generally forms halos which
are triaxial, have dense cores and have significant amounts of gravitationally bound
substructure. The Cold Dark Matter paradigm is extremely successful at explain-
ing the universe on large scales (> a few Mpc; Spergel et al. 2003; Croft et al.
2002; Bahcall et al. 2003). This is not to say that the Cold Dark Matter paradigm
does not have its weaknesses, but it is the current dark matter candidate with the
fewest by far. Alternatives to the standard CDM paradigm are possible that agree
with large scale structure observations but have different properties on scales less
than a megaparsec or so and are occasionally invoked when a set of observations
appears to disagree with CDM. For example, the so-called self-interacting dark
matter candidate (Spergel & Steinhardt, 2000) has a non-negligible cross section

with itself and so on small scales would tend to produce halos which are rounder



and have less dense cores. However, the self-interacting dark matter scenario may
be ruled out by the ellipticity of dark matter halos inferred through strong lensing
(Miralda-Escudé, 2002) and estimates of the self-interaction cross section obtained
through cluster-cluster mergers (Markevitch et al., 2004). We will focus in the rest
of this section on Cold Dark Matter (CDM) and the findings of numerical simula-
tions given a CDM dominated universe on relatively small scales, such as that of
galaxies and galaxy clusters (less than a few Mpc). It is on these scales that the
dark matter is strongly nonlinear and slight differences in inherent properties can
have large consequences for the central regions of halos.

The standard tool for predicting the properties of a universe dominated by
CDM is the numerical simulation. These simulations are traditionally straightfor-
ward since gravity is the only physics involved for dark matter. The limitation is
always CPU power in order to get the force resolution necessary to study the very
inner regions of dark matter halos. Early high-resolution simulations of cold dark
matter halos were performed by Frenk et al. (1988); Dubinski & Carlberg (1991);
Warren et al. (1992) whose work studied the structural properties of the halos,
including their core radii, density profiles, and distribution of shapes. However,
these studies were limited by the number of particles and their dynamic range, due
mostly to the limits of computation power at the time.

The series of papers that has given rise to the current era of detailed study
and comparison of CDM halos in simulations with observations were performed
by Navarro et al. (1996, 1997). In this work, Navarro et al. studied many DM
halos with varying mass at relatively low resolution, suggesting that dark matter
halos ranging in size from dwarf galaxies all the way up to galaxy clusters have a

universal density profile, which looks like

- ,Oc(sc
per) = Gl )t ()P

(1.5)

where p. is the critical density of the universe, J. is the scale of the dark mat-

ter halo, and r,. is some scale radius. Within the scale radius, the DM density
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Figure 1.2: Left Panel- An illustration of the form of the generalized-NFW density
profile with different inner slopes. An observationally derived value of 5 somewhere
in between 1.0 and 1.5 would indicate agreement between numerical simulations
and observations, while any other value would indicate a need to revise the current
form of the Cold Dark Matter paradigm. Right Panel-A dark matter only, high
resolution simulation of a galaxy cluster with approximately the mass of the Coma
cluster, obtained from the web site of the University of Washington numerical

computing web site.

asymptotes to p o< r~!, while external to 7., p o< 3. The Navarro-Frenk-White
(NFW) dark matter density form has become one of the basic predictions of the
CDM paradigm, despite the fact that more recent work has slightly amended their
results. This landmark work has led to an avalanche of theoretical, numerical, and
observational papers which seek to refine, understand, and test this basic result.
As CPU power and numerical methods have progressed, larger and larger num-
bers of particles have been used to simulate dark matter halos. The convergence
of the simulations has been tested and better understood. Soon after the NF'W
results, Moore et al. (1998) used higher resolution simulations and suggested that
the inner DM slope asymptoted to p oc 713, slightly steeper than the original
NFW. Moore’s work was followed by many others, all with improved resolution,

but with relatively few overall halos. The consensus appeared to be that the DM



density profile asymptoted somewhere between p oc r 1% and p oc 771 (Fukushige
& Makino, 1997; Ghigna et al., 2000; Jing & Suto, 2000; Moore et al., 1999b). This
variation in inner slope has led to the use of a more generalized form of the NF'W
profile

pele

) = P+ o

This density profile asymptotes to p o< r—# well within 7, and p o r=3 well

outside of it. The generalized NFW DM density profile parameterization is used
throughout this thesis to compare the inner slope seen in simulations with that
observed in galaxy clusters (see Figure 1.2). An observationally derived value
of 3 somewhere between 1.0 and 1.5 would indicate agreement between numerical
simulations and observations, while any other value would indicate a need to revise
the current form of the Cold Dark Matter paradigm.

The very latest generation of CDM-only simulations have over one million
particles per DM halo in order to resolve the density profile to within 1% of the
virial radius. These simulations seem to indicate that the inner slope does not
asymptote to a particular value but becomes progressively shallower at smaller
radii, with the logarithmic derivative being between -1 and -1.5, as seen in lower
resolution simulations. In addition, enough of these high-resolution halos are being
simulated that the scatter in density profiles can be determined across mass scales
(Fukushige et al., 2004; Navarro et al., 2004; Reed et al., 2003; Tasitsiomi et al.,
2004). This may be the ultimate limit of DM only simulations. Even given that a
suite of these simulations takes several months of dedicated supercomputer time,
to probe the DM halo further requires an equally good knowledge of the baryonic
matter and its effect on the overall density profile. The future of CDM simulations
must include an accurate representation of the baryonic matter as well. Without
it and the physics that baryons contribute, it will be impossible to accurately
compare the very inner density profiles of observed and simulated halos.

Along these lines, hydrodynamic simulations of galaxy clusters that include

baryonic physics in conjunction with dark matter are rapidly advancing, taking
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into account radiative cooling, star formation, and supernova feedback processes
(Borgani et al., 2004; Nagai & Kravtsov, 2005; Kravtsov et al., 2005), although
problems still remain in producing the basic properties of galaxy clusters (e.g. Bor-
gani et al. 2004). More current simulations try to gauge the effect baryons have on
dark matter profiles. Since baryons tend to cool and collapse, their very presence
in the center of dark matter halos should serve to steepen the density profile and
possibly even make the generalized NFW form invalid (Gnedin et al., 2004). The
effects that cooled baryons have on the ultimate distribution of the central por-
tions of dark matter halos are one of the most exciting avenues of current numerical
simulation work.

It should be noted that there are other predictions for dark matter halos which
arise from CDM numerical simulations besides the universal density profile. For
instance, there are specific predictions on the number of satellite dark halos sur-
rounding and interacting with a parent halo. Known as the substructure problem,
it has been noted that the number of dwarf galaxies surrounding normal galaxies
such as our own are far too few in number to be compatible with the number
seen in numerical simulations (Moore et al., 1999a). However, due to the difficulty
of forming stars in low mass dark matter halos, this is still a subject of vigorous

debate both observationally and theoretically.

1.3 The Dark Matter Density Profile on the Dwarf and

Normal Galaxy Scale

The mass regime in which the dark matter density profile has been studied most
extensively is at the dwarf galaxy scale. Dwarf galaxy mass distributions can be
inferred by measuring the rotation of either the gas with H I or using the stellar Ha
emission line. The reason that dwarf galaxies are considered promising candidates
for testing the dark matter density profile predictions from simulations is that
they are thought to be dark matter dominated into the very central regions of the

galaxy, with the baryonic mass seen in stars being a minority component. This
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leads to two advantageous consequences: 1) The mass of stars and gas contribute
little to the actual observed rotation curve and are instead a direct manifestation
of the inner dark matter halo and 2) the cooling and collapse of baryons during
disk formation will not alter the underlying dark matter structure significantly
since the total mass in baryons is small.

Initial HI observations of dwarf galaxies yielded rotation curves which were
well described by dark matter halos with a core rather than a cusp (e.g. de Blok &
McGaugh 1997 and references within), leading to an apparent crisis for the CDM
model (e.g. Flores & Primack 1994; Moore 1994). However, the flat-cored DM
results utilizing HI synthesis observations have been called into question due to
the effect of beam smearing. Both due to intrinsically mediocre angular resolution
and the need to bin the data to get higher signal to noise, the typical effective
beam size used for HI observations is tens of arcseconds across, which is too large
to accurately probe the very inner regions of these dark matter halos. Indeed, this
limited spatial resolution in the inner regions of the halo seems to systematically
bias results towards flatter inner DM slopes (van den Bosch & Swaters, 2001).

More recent work has focused on long-slit H« emission line observations. These
observations can be of relatively high resolution depending on the ground-based
site and their effects can be modeled relatively easily in the analysis, making
Ha rotation curves a superior dark matter density probe. Again, initial results
indicated that dwarf galaxies have rotation curves which are consistent with flat-
core dark matter halos, although some could be described with a cuspy profile (de
Blok et al., 2001; Borriello & Salucci, 2001; de Blok & Bosma, 2002; de Blok et al.,
2003). And again, these results have been called into question after additional,
more thorough analyses have been performed. For example, Swaters et al. (2003)
have taken into account several observational and geometric systematic effects
associated with the modeling of observations such as noncircular motions, galaxy
inclination, slit width, seeing and slit alignment errors and have concluded that
dark matter slopes as steep as that seen by NFW can not be ruled out by the
current set of data. Additionally, Rhee et al. (2004) and Hayashi et al. (2004b)
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have performed simulated observations of simulated dark matter halos and have
also concluded that many rotation curves that appear to be caused by flat cored
dark matter halos actually originate from cuspy halos which are triaxial or have
some other dynamical complication. These issues remain a matter of some debate
(de Blok, 2005).

Much work has gone into the dark matter profile at the normal galaxy scale
as well. Unlike with dwarf galaxies, however, baryons play an important role in
the inner regions of the halos, making it necessary to disentangle luminous and
dark matter with multiple mass tracers and possibly to take into account the
gravitational effects that the baryonic halo may have on the dark matter halo.
Degeneracies inevitably remain.

For elliptical galaxies, one can use gravitational lensing or dynamics (or both)
to probe the mass profile. For local galaxies dynamics can be used, and while
dark matter often appears to be necessary, it is difficult to ascertain its properties
given the influence of baryons and the uncertainties surrounding stellar orbits
(e.g. Rix et al. 1997; Gerhard et al. 2001). At higher redshift, it is possible to
combine lensing and dynamics. For example, the Lensing and Dynamics Survey
has sought to understand the relative properties of dark and luminous matter in
ellipticals as a function of redshift using both strong gravitational lensing and the
velocity dispersion profile of the central lens galaxy (Treu & Koopmans, 2004;
Koopmans & Treu, 2002, 2003; Treu & Koopmans, 2002, 2003). They can place
strong constraints on the density profile of the dark matter alone only if the orbits
of the stars are understood (7 is between 0.9 and 1.5, in accordance with the CDM
paradigm, if the stellar orbits are isotropic, where the inner DM density goes like
p o< r~7). They have robustly determined the total (as opposed to just dark or
luminous) mass density profile in their sample of 5 ellipticals with both lensing
and velocity dispersion data to be slightly shallower than isothermal, along with
an root mean square scatter of v ~ 0.3. A fair comparison with the CDM paradigm
must wait until star formation is robustly incorporated into numerical modeling.

The same conclusion can be drawn for normal spiral galaxies, which are also
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dominated by a baryonic component at small radii. For these systems, the rotation
curve evidence is inconclusive about the slope of the dark matter halo, with the
major degeneracy being between the stellar disk M/L and the dark halo profile.
In two separate studies, Jimenez et al. (2003) and Barnes et al. (2004) could
not distinguish between or could not find good fits for different models of the dark
matter in their high resolution rotation curves of disk galaxies. Dutton et al. (2005)
have presented a thorough discussion of the pitfalls and degeneracies involved in
trying to infer the inner dark matter slope from rotation curves of disk galaxies.
The differing and controversial results at the dwarf and normal galaxy scale
highlight the fact that the predictions of CDM must be tested at multiple mass
scales. It is apparent that the debate on the inner slope of dwarf and normal
galaxy halos will be contentious for some time and that it will be fruitful to look

at the inner slope question at the galaxy cluster scale as well.

1.4 Measuring the Dark Matter Density Profile in Clus-

ters

As we have seen, the Cold Dark Matter paradigm for structure formation has faced
some hurdles on the dwarf to normal galaxy scale. But what about on the scale
of galaxy clusters? Numerical simulations predict that the “universal” DM profile
applies to clusters as well, meaning that the CDM paradigm will not be fully
investigated until the DM density profile in clusters is well characterized. While
in systems such as the local group there appear (without taking into account the
inefficiency of star formation in such low mass objects) to be far fewer satellite
galaxies then are expected from CDM simulations, the same is not true in clusters
of galaxies. In clusters, the number of satellite galaxies seems to be in agreement
with simulations (Moore et al., 1999a). However, the jury is still out on the slope
of the inner dark matter density profile in clusters, which is the focus of this thesis.

One of the great advantages of working at the galaxy cluster scale is that there

are several density measurement techniques that can trace the DM distribution
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from small scales (brightest cluster galaxy dynamics; Kelson et al. (2002)) to in-
termediate scales (strong gravitational lensing; e.g. Broadhurst et al. (2005a) and
out to the virial radius (weak lensing; e.g. Kneib et al. (2003)). It is also possi-
ble to use both X-ray analyses of the intracluster medium (ICM; e.g. Arabadjis
et al. (2004)) and the velocity dispersion profile of the cluster galaxies themselves
(e.g. Lokas & Mamon (2003)). This lends itself to using multiple techniques simul-
taneously and to direct comparisons between methods so that systematics can be
understood and corrected for. I will spend the remainder of the chapter describing
the three main mass measurement techniques utilized at the galaxy cluster scale:
gravitational lensing, galaxy and stellar dynamics, and X-ray measurements of the
intracluster medium (ICM) assuming hydrostatic equilibrium. Each of these tech-
niques has its strengths and weaknesses which I will touch on in these subsections

and throughout this thesis.

1.4.1 Gravitational Lensing

The great strength of using gravitational lensing to probe the mass density profile
of clusters is that lensing can measure mass without regard to the dynamical state
of the cluster. This strength, however, is also its weakness. Since lensing cannot
distinguish between light and dark mass components, another mass tracer is needed
to disentangle luminous from dark matter.

Here we present some basics of strong gravitational lensing. For a more in
depth discussion, the reader is referred to Schneider et al. (1992); Blandford &
Narayan (1992); Narayan & Bartelmann (1996), which were also used as sources
in what follows. Also, a more detailed account of multiple image modeling and
interpretation is presented in Chapter 5.

In a gravitational lensing system, light from a distant object (the “source”) is
deflected by the gravitational potential of an intervening object (the “lens”) on
its way to the observer. In some situations, the gravitational potential of the lens
causes deflections which produce more than one image of the same background

source (a multiply imaged system). It is these situations which define the strong
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lensing regime and what will be dealt with in this thesis. Throughout this dis-
cussion, the reader is referred to Figure 1.4.1 for a schematic of a typical strong
gravitationally lensed system.

Looking at Figure 1.4.1, and keeping in mind that the angles we are dealing

with are small, it is easy to determine the reduced deflection angle

Dysé& = Dgad (1.7)
and from that the “lens equation”:

B =6—-a() (1.8)

It must be kept in mind that the distances Dy, Dy, and D; are angular diameter
distances and that in general D, does not equal Dgs+ Dgy. The distribution of mass
in the lens determines the deflection angle &. The simplest mass distribution to
consider is that of a point mass, which has a deflection angle (according to general
relativity) of

4GM

G="gg (1.9)

where G is Newton’s gravitational constant, c is the speed of light, and M is the
mass of the point mass. The real world presents us with more complex mass
distributions, however, with different masses and distances to the light ray. In
most astrophysical situations (all considered in this thesis) the region over which
the light rays are being bent is much smaller than the distances between the
observer and lens and between lens and source. Given this, the mass distribution
of the lens can be projected along the line of sight and approximated as a single

—

“lens plane.” We can then write the surface mass density, X(§), as

£(6) = [ plé.2)dz (1.10)

where p(g, z) is the three-dimensional mass density of the lens and the integral is

along the line of sight. Therefore to extend the deflection angle for a point mass
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(Equation 1.9) to that of a smooth surface mass distribution, we can integrate over

the entire lensing plane to get

A [4GS(E)E-E) 5
9=/ ag-gp

o3

(1.11)

which effectively is the sum of the deflections due to many point masses.

A special situation arises when the background source and the lens are collinear,
that is, #=0. In this instance, for elliptical or circular lens, the background source
is lensed into a ring known as an Einstein Ring. The radius of the Einstein ring,
along with the redshift of the source and lens, provides a robust measure of the
mass enclosed within the ring. As an example, if we again take the point mass
lens (Equation 1.9), and combine with the lens equation (Equation 1.8), with =0,
then we get the following relationship between the mass enclosed and the angle

subtended by the ring
2 i DgDgs
F4G ™ D

Mg =0 (1.12)

for circularly symmetric lenses this is a generic result, the Einstein ring always
measures the mass enclosed, and this is nearly true for the elliptical case as well.
The Einstein radius, 0, also provides a good length scale for gravitational lensing.
For multiple imaging systems (those that aren’t necessarily lensed into Einstein
rings) the typical separation between images is ~ 20p. The mean surface mass
density within the Einstein ring is called the critical density where

2 Dy
Zcr = T A
4rG DdDds

(1.13)

and is a common scaling factor in lensing analyses.

The modeling of strongly gravitationally lensed systems can provide key infor-
mation on the potential and mass distribution of the lens. The angular position
and radius of background source images is highly dependent on the surface mass
distribution of the lens (see Equation 1.11), which is usually represented as a pa-

rameterized mass model with ellipticity, position angle, and a radial profile. The
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Figure 1.3: A schematic illustrating gravitational lensing. This figure has been
reproduced from Narayan & Bartelmann (1996) and is a schematic of a typical

strong gravitational lens system. See text for a discussion.

parameters of these lens models can be varied, and the expected image positions
can be found by solving the lens equation. By comparing the expected image po-
sitions for the model with the observations, constraints on the parameterized lens
model can be found. We will discuss the modeling of lenses and the constraints
that they can provide in Chapter 5.

Lensing has long been recognized as a tool for probing the mass density profile
of clusters. For example, even in the early 1990’s, it was recognized that cluster
MS2137 (which will be studied in several chapters of this thesis) would place tight
constraints on the mass profile (Fort et al., 1992; Mellier et al., 1993). Remarkable
lenses such as Abell 2218 also provided constraints on the mass profile due to the
sheer number of gravitational arcs seen (Kneib et al., 1996). One of the earliest

attempts to compare the NF'W dark matter profile with that of actual lensing data
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in a cluster was performed by Tyson et al. (1998), where they found the slope to be
shallower than that predicted, although that result turned out to be controversial
(Broadhurst et al., 2000).

New results on the lensing front have been very exciting with quantitatively
better data and methods being continuously developed. Perhaps the most exciting
recent strong lensing results have come out of the Advanced Camera for Surveys
Guaranteed Time Observations team and their deep imaging of the galaxy cluster
Abell 1689 where over 100 multiple images have been identified (Broadhurst et al.
2005b; see Figure 1.4.1). No thorough analysis of the inner dark matter slope
has been made for this cluster yet, with the existing analysis focusing only on the
NFW profile, although such an analysis would be very interesting. A particular
area of growth has been combining strong and weak lensing analyses. Three recent
studies stand out in particular; that done for the clusters Cl0024 (Kneib et al.,
2003), MS2137 (Gavazzi et al., 2003) and Abell 1689 (Broadhurst et al., 2005a).
The combination of weak and strong lensing is particularly powerful since it can
probe the density profile from ~10 kpc scales out to ~1 Mpc, allowing both the
inner and outer density profile to be probed and any degeneracy between the two
(due to projection effects) to be partially mitigated. Quite interestingly, the Kneib
et al. (2003) analysis of C10024 attempted to constrain the outer slope of the dark
matter density profile, finding that it must fall off more steeply than p o r=2, in
accordance with CDM simulations. A further discussion of these techniques and

the new ACS data will be presented in Chapter 6.

1.4.2 X-ray measurements of the ICM

The gas clouds from which galaxy clusters formed were heated by the energy
of the initial gravitational collapse of the system. For massive systems such as
galaxy clusters, these halos of hot gas are visible in the form of diffuse X-ray
emission. All massive galaxy clusters are intense X-ray emitters, and this emission
is identified as bremsstrahlung of the hot intracluster gas (the temperature of the

gas is between approximately 10 and 100 million K). Discovered by the UHURU
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Figure 1.4: Left—-The ACS composite image of the galaxy cluster Abell 1689. Over
100 images of background sources are identified in the image. Right—A map of the
distortion and magnification induced by the best-fitting lens model of the cluster

Abell 1689 calculated from the positions of the 106 multiple images.

X-ray Observatory, detailed, spatially extended measurements of nearby clusters
with the EINSTEIN X-ray satellite could be made beginning in the late 70’s. With
the advent of the Chandra and XMM-Newton X-ray observatories, the study of
the density profile in galaxy clusters with X-ray measurements is now routine
and provides tight constraints on the mass profile, assuming that the necessary
simplifications are valid.

In order to illustrate the utility of using X-ray data to constrain the mass
density profile in galaxy clusters, I repeat the calculation presented by Fabricant
et al. (1980) for M87 using EINSTEIN X-ray data. In a pioneering work, they
showed that the emission of the gas provides a powerful probe of the cluster’s
gravitational potential. Two crucial assumptions are necessary for this formalism
to work, each of which is certainly not true at some level. First, it has nearly always
been assumed that the cluster is spherically symmetric. Second, the cluster must
be in hydrostatic equilibrium; the pressure of the gas, dark matter and galaxies in

the cluster must balance against the gravitational attraction of the cluster wishing
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to contract the system. It is still a matter of debate within the literature how
grievous these assumptions are and whether they truly keep one from inferring the
density profile of the cluster. Any number of situations would make the assumption
of hydrostatic equilibrium invalid, most obviously if the cluster were undergoing a
major cluster-cluster merger or if the central AGN of the BCG were a significant
heat source in the inner regions of the cluster.

If we take p as the pressure of the gas and p as its density (which can vary

with position in the cluster), the equation for hydrostatic equilibrium reads,

dp  GM(<r)p

= - (1.14)

where G is Newton’s gravitational constant and M (< r) is the mass enclosed

within the sphere of radius r. Using the Ideal Gas Law,

_ pkpT
wmpy

(1.15)

where my is the mass of the hydrogen atom and p is the mean molecular weight
(normally taken to be p=0.6 for a fully ionised gas), and differentiating by r, we

have

kgTr? [d(logp) N d(logT)

M(<r) = _GumH dr dr

(1.16)

Thus, if one had measurements of the gas density and temperature as a function
of radius, then one could determine the mass distribution of the cluster. Typi-
cally, the X-ray image is split up into a series of circular, concentric annuli, with
the spectrum of each annulus compared to a plasma model to infer the gas den-
sity and temperature. Attempts are often made to deproject the data using an
“onion peeling” technique (Buote, 2000). Then, parameterized models are fit to
the gas density and temperature profile so that the derivatives in Equation 1.16
are tractable. In this way, an enclosed mass profile is calculated and compared to

expectations from CDM (see Figure 1.4.2 for an illustration). It must be noted
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that this technique is really only sensitive to the total mass enclosed within a
given radius and is unable to disentangle luminous from dark matter on its own.
Normally this concern is dismissed because it is believed that galaxy clusters are
dark matter dominated, however there is some indication that in the very central
regions of galaxy clusters the brightest cluster galaxy may be a significant contrib-
utor to the total mass. Therefore, conclusions about the dark matter slope based
on an X-ray analysis alone may need further verification.

The study of galaxy clusters in the X-ray has made great strides with the ad-
vent of the Chandra and XMM-Newton X-ray telescopes. With superb sensitivity
and angular resolution (the resolution of the Chandra Observatory is roughly one
arcsecond, comparable to ground-based optical images), along with spatially re-
solved spectra, these telescopes have uncovered a wealth of interesting phenomena
in cluster cores. In particular, new high resolution observations that the hot gas in
cluster cores is often highly disturbed, exhibiting filaments and holes possibly re-
lated to an AGN in the central galaxy, calls into question the standard assumption
of hydrostatic equilibrium necessary to perform the mass density analysis described
above. Indeed, it is also observed that a high fraction of galaxy clusters appear to
be undergoing significant mergers, again calling into question the assumption of
hydrostatic equilibrium.

Nonetheless, much X-ray work has been done with the mass density of clusters,
with an array of results on the inner slope of the DM halo. Studies have found
values of the logarithmic slope, 3, of the DM halo ranging from 3 ~ 0.6 (Ettori
et al., 2002) through ~1.2 (Lewis et al., 2003) to ~1.9 (Arabadjis et al., 2002).
This can either mean that the DM density profile in clusters exhibits a wide range
of inner slope, some of which are in conflict with CDM simulations, or that the
assumption of hydrostatic equilibrium is not valid. One promising avenue which
perhaps can avoid questions about the hydrostatic equilibrium of clusters has been
undertaken by David Buote’s group at the University of California Irvine. Their
group is studying clusters which not only appear relaxed on 100 kpc - 1 Mpc scales,

but which also do not harbor a central AGN in their central galaxy. Using this
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tactic, they seek to avoid clusters which seem to obviously not be in hydrostatic
equilibrium. In the work presented so far, for the clusters Abell 2029 and Abell
2589, they have found that the total matter density profile in these systems has a
inner logarithmic slope of 3 between 1.0 and 1.5, in accordance with CDM simula-
tions. However, on the scales on which they are probing the mass distribution, the
mass of the central BCG is also crucial, and their failure to model and subtract
out its mass may lead to an overestimate of the steepness of the inner DM slope

(see Figure 1.4.2).

1.4.3 Dynamics

The final method useful for probing the density profile in galaxy clusters is through
the velocity dispersion profile of the cluster galaxies themselves within the cluster
potential or, on smaller scales, simply using the velocity dispersion profile of the
stars in the central BCG. Perhaps the best studied cluster is the Coma cluster. The
classic work of Kent & Gunn (1982) initially assembled ~300 galaxy radial veloci-
ties. Later, Merritt (1987) illustrated that if a realistic amount of freedom is built
into the models (if mass did not follow light, for example), then there is a strong
degeneracy between the dark matter distribution and the velocity anisotropy of
the system. In fact, it is this degeneracy which continues to limit the ability of
galaxy dynamics alone to constrain the dark matter profile in clusters.

The basic calculations for inferring the mass density profile are similar whether
one is looking at just the stars in the central BCG or are using the cluster galaxies
themselves as tracers of the potential. The assumption of spherical symmetry is
nearly always made because it greatly simplifies the computation of the line-of-
sight velocity dispersion. The model velocity dispersion is computed starting from

the spherical Jeans Equation (Binney & Tremaine, 1987):

dp*(v;i):f(r) n 204(7’)/)*:7“)03(7”) _ _GMenc:;”)P*(T) (1.17)

where G is Newton’s gravitational constant, Mep.(r) is the three-dimensional mass
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enclosed, and o, is the radial velocity dispersion. The anisotropy parameter «(r)

is defined as

2 2
o5(r) T
— = 1.1
o(r) — r2+4r2 (1.18)

alr)=1

where oy is the tangential component of the velocity dispersion. The final definition
introduces the Opsikov-Merritt (Osipkov 1979; Merritt 1985a,b) parameterization
of anisotropy that is often used in dynamical models. With this parameterization

of the anisotropy, you can derive the radial velocity dispersion (Binney, 1980)
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with I(R) being the surface brightness profile either of the galaxy distribution in
the cluster or of the BCG, depending on the measurement made. The projected
velocity dispersion, oy, is the quantity measured at the telescope either by compar-
ing the BCG absorption spectrum to broadened stellar templates or by measuring
the galaxy velocity dispersion in different radial bins, depending on the program.
Different observational effects may be taken into account in the analysis, with some
discussion presented in Chapter 3.

Since it is difficult to compile the necessary radial velocities in one cluster, it
is common to “stack” the results from many similar clusters. An NFW profile has
been found to be consistent with the total mass distribution through this stacking
technique, whether using the CNOC1 data set (van der Marel et al., 2000) or the
ENACS survey (Biviano & Katgert, 2003), for example. No attempt was made to
disentangle luminous from dark matter in these studies.

One study which did attempt to distinguish between luminous and dark matter
by measuring the extended velocity dispersion profile of the BCG in Abell 2199

(and using archival radial velocities for the galaxies in the cluster) was performed
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by Kelson et al. (2002). The Kelson et al. observations are the current state of the
art in measuring the extended kinematics of massive galaxies. Kelson et al. con-
cluded that the BCG halo is dominated by dark matter outside of 20 kpc, making
it necessary to model both the luminous and dark distributions simultaneously.
When the model was applied, it was found that halos with an inner logarithmic
slope as high as 3 ~ 1.5 were ruled out by the data, and those corresponding to
an NFW profile (3 ~ 1.0) would not work unless the stellar contribution of the
BCG was unusually low (see Fig. 1.4.3). While this analysis stands out for its
thoroughness, the authors did make the simplifying assumption that the stellar
and galaxy orbits were isotropic. It is not clear that if anisotropy were introduced

if the same results would be had.

1.5 Goals of this Thesis & Thesis Overview

When I set out on this thesis project, its basic goals were:

1. Measure the inner dark matter density logarithmic slope, 3, on < 100 kpc
scales in several galaxy clusters by disentangling luminous from dark matter using
a combination of methods as discussed above.

2. Test the NFW hypothesis that the dark matter density is steeper than

1 on these scales.

PDM X T

3. Make a preliminary measurement of the scatter in inner dark halo density
profiles in order to verify if the profiles are universal.

This was an amibitious task. In the following I demonstrate a technique that
constrains the inner dark matter density slope on these scales, with interesting
results (see Chapter 5). But until this technique is performed on a larger sample
of data, a comment on the scatter will have to wait.

This chapter was meant as a brief introduction to dark matter halos, both
their theoretical and numerical incarnations and what is seen in actual observa-

tions. This thesis describes several different observational studies of the inner dark

matter density profile in galaxy clusters as a test of the CDM paradigm for struc-
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ture formation. Chapter 2 presents a combined analysis of the velocity dispersion
profile of the brightest cluster galaxy and lensing in the galaxy cluster MS2137
in order to constrain the dark matter density profile in the cluster. Chapter 3
expands this type of analysis to a sample of galaxy clusters; three of which have
both tangential and radial arcs and three which have only tangential arcs. Chap-
ter 4 presents a systematic search of the HST/WFPC2 archive for gravitational
arcs and use the number ratio of radial to tangential arcs to constrain the typical
dark matter density profile in the galaxy cluster sample. In Chapter 5 a reanalysis
of the combined lensing and dynamical constraints of the galaxy cluster MS2137
is presented. The major thrust of this reanalysis is incorporating elliptical lens
models developed in the LENSTOOL software package into the mass modeling
process, in order to more realistically model the mass components. Finally, Chap-
ter 6 summarizes the material covered in this thesis and presents what can be done
in the future to improve on current observations and modeling to better constrain
not only the dark matter density profile in galaxy clusters but the total (dark plus
baryonic) density profile from the very inner regions of the cluster out to the virial

radius.
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Figure 1.5: This four-part figure illustrates the basic observables and results typ-
Top Left-Chandra ACIS
image of Abell 2029. Top Right-Radial gas density profile of Abell 2029 (large

ical for X-ray analyses of cluster mass distributions.

circles) fit to several standard parameterizations. This parameterized fit is then
fed into equation 1.16, along with the temperature profile to calculate the enclosed
mass profile. Bottom Left—The radial temperature profile of Abell 2029, again fit
to a standard paramaterization to facilitate the hydrostatic equilibrium analysis.
Bottom Right— Total enclosed cluster mass profile. The open circles are the data
points and the lines are fits to the data, with the NFW profile being a very good fit.
The upside down triangles show the contribution from the cluster gas mass. Note
that the bright yellow band shows the possible contribution from the cluster BCG,
illustrating the need for an additional technique to account for and disentangle
this important mass component in order to understand the dark matter density

profile. This figure has been reproduced from Lewis et al. (2002, 2003).
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Figure 1.6: Left— An image of the BCG in Abell 2199 with the long slit position
used by Kelson et al. (2002). Right— The observed velocity dispersion profile of
the BCG in Abell 2199 along with cluster member kinematics. Dark matter halos

that are as steep as an NF'W profile are ruled out by the data.



28



29

Chapter 2

The Dark Matter Density Profile of the
Lensing Cluster MS2137-23: A Test of the
Cold Dark Matter Paradigm®

DaviD J. SAND?, TOMMASO TREU & RICHARD S. ELLIS

Department of Astronomy, 105-24 California Institute of Technology, Pasadena, CA 91125,
USA

Abstract

We present new spectroscopic observations of the gravitational arcs and the bright-
est cluster galaxy (BCG) in the cluster MS2137-23 (z = 0.313) obtained with
the Echelle Spectrograph and Imager on the Keck II telescope, and find that
the tangential and radial arcs arise from sources at almost identical redshifts
(z = 1.501,1.502). combine The measured stellar velocity dispersion profile of
the BCG was combined with a lensing analysis to constrain the distribution of
dark and stellar matter in the central 100 kpc of the cluster. Our data indicate a
remarkably flat inner slope for the dark matter profile, pg oc =2, with 8 < 0.9 at
99% CL. Steep inner slopes obtained in cold dark matter cosmological simulations

— such as Navarro Frenk & White (8 = 1) or Moore (1.5) universal dark matter

*This chapter has been published previously as Sand et al. (2002)
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profiles — are ruled out at better than 99% CL. As baryon collapse is likely to
have steepened the dark matter profile from its original form, our data provides a

powerful test of the cold dark matter paradigm at the cluster mass scale.

2.1 Introduction

A fundamental result arising from cold dark matter (CDM) numerical simulations
is that the density profiles of DM halos are universal in form across a wide range of
mass scales from dwarf galaxies to clusters of galaxies (Navarro, Frenk, & White,
1997). Internal to some scale radius rs., the dark matter profile assumes a power
law form pg o< #~B. While there is some dispute amongst the simulators about the
precise value of 3 with values ranging from 1.0 to 1.5, (Moore et al., 1998; Ghigna
et al., 2000; Power et al., 2003), a clear measurement of 3 in a range of objects
would offer a powerful test of the CDM paradigm.

The largest observational effort in this respect to date has been via dynamical
studies of low surface brightness (LSB) and dwarf galaxies, suggesting softer (3 <
1) DM cores than expected on the basis of the numerical simulations (e.g. de Blok
& Bosma 2002; Salucci & Burkert 2000), although the issue remains somewhat
controversial (e.g. van den Bosch & Swaters 2001). Similar tests have recently
been extended to regular spiral (Jimenez et al., 2003) and elliptical galaxies (Treu
& Koopmans, 2002). Some observational constraints are available at the scale
of massive clusters, from lensing (e.g. Tyson et al. 1998; Williams et al. 1999;
Smith et al. 2001), X-ray analysis (e.g. Lewis et al. 2003), and dynamics of c¢D
galaxies (Kelson et al., 2002). Since massive clusters probe a totally different
scale and physical conditions than galaxies, it is crucial to understand their mass
distribution to test the universality of the DM profiles.

In this paper we present the first application of a new method to determine
the luminous and dark mass distribution in the inner regions of massive clusters
with giant arcs around a central BCG. The method combines lensing analysis

with stellar kinematical measurements of the BCG. The two ingredients provide
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complementary information on the relevant scales (~ 100 kpc), allowing us to
disentangle the luminous and dark components of the total mass distribution.

We have chosen the cluster MS2137-23 as a first application of our method since
it is an approximately round system, has an isolated BCG and a very well-studied
arc system. Fort et al. (1992) first pointed out the potential significance of the
radial and tangential gravitational arcs as a means of constraining the mass dis-
tribution on ~100 kpc scales, and mass models have been developed subsequently
(Mellier et al., 1993; Hammer et al., 1997, hereafter M93, H97). The redshifts of
the radial and tangential arcs were predicted to lie in the range 1< z <2 (M93). A
key issue in the earlier work is whether the radial arc is, in fact, a lensed feature.
M93 and Miralda-Escude (1995, hereafter ME95) also point out the importance of
determining the stellar velocity dispersion profile of the BCG to weigh the stellar
contribution to the mass.

Following the earlier suggestions, we present new observations of the cluster
MS2137-23 with the Keck II telescope. We provide spectroscopic confirmation
of the arcs and measure a velocity dispersion profile for the central BCG. The
spectroscopic data are used together with archival HST images to constrain the
luminous and DM distribution of the cluster. In the following, r is the radial
coordinate in 3-D space, while R is the radial coordinate in 2-D projected space.
We adopt Hp=65 km s~ !, Mpc™!, Q,, = 0.3, and Q4 = 0.7 for the cosmological

parameters.

2.2 Observations

2.2.1 Keck Spectroscopy

We observed MS2137-23 using the Echelle Spectrograph and Imager (ESI; Sheinis
et al. 2002) on the W. M. Keck-II telescope for a total integration time of 4900s
(2x1800s + 1300s) on 21 July, 2001. The seeing was 0”6 and the 1725 x 20"
slit was oriented North-South to include the BCG, radial arc, and tangential arc

(Figure 1). The spectroscopic goals were two-fold: a determination of the redshift
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of the arcs and a measurement of the internal kinematics of the central galaxy.
An IRAF package was developed for the specific task of removing echelle distor-
tions while preserving the 2-D shape of the spectrum essential for the latter goal
(EASI2D, Sand et al. 2004). The instrumental resolution of ESI was measured
from unblended sky lines to be 3047 km s~1.

The velocity dispersion profile of the BCG (Figure 2) was measured using
spectral templates based on several G-K giants observed with a (/3 slit. These were
smoothed to match the instrumental resolution of the 1725 slit and redshifted to
that of the BCG (2=0.313). Analysis was restricted to a region around the G band
by virtue of the high signal /noise and minimal effect of sky line residuals, using the
Gauss-Hermite pixel-fitting software (van der Marel, 1994). The error bars shown
in Figure 2 represent a combination of uncertainties arising from Poisson noise
and systematics, the latter determined from the scatter observed using different
templates and continuum fits.

The high spectral resolution of ESI proved crucial in clinching the redshifts of
the arcs, as the emission lines are located in a crowded region of OH sky back-
ground. The two top panels in Figure 2.2 show the relevant portion of the ESI
spectra for the tangential and radial arcs, with the observed emission lines identi-
fied as the [OII] doublet at z = 1.501 and z = 1.502 respectively. The [OII] doublet
is clearly resolved for the tangential arc and it is reasonable to suppose that the
missing component for the radial arc is obscured by sky emission. No other lines
are detected on either spectra, down to the blue cutoff of ESI at ~ 3900A. This
makes it unlikely that the single line observed for the radial arc is any of the com-
mon lines such as Ha, HE, [OII1]4959, 5007, CIV1549, Hell1640, or C[III]1909
because bluer lines would be detected assuming typical flux ratios. The identifica-
tion of the line with Ly« at z = 6.66 is also unlikely given that the arc is detected
in the HST F702W image (Figure 2.1). Detailed modeling of MS2137-23 based on
the image configurations predicted that the sources for the arcs would be at nearly

the same redshift (M93, H97).
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2.2.2 Hubble Space Telescope Imaging

HST WFPC2 images of MS2137-23 (GO 5402, PI: Gioia), comprising 10 F702W
exposures with a total integration time of 22.2ks, were used to measure the surface
photometry of the BCG and to locate arc positions. The exposures were reduced
in a standard way, using the IRAF package DRIZZLE (Fruchter & Hook, 2002).
The circularized surface brightness profile (in agreement with H97) was ob-
tained using the IRAF task ELLIPSE and a fit performed as described in Treu et al.
(2001), taking into account the HST point-spread function. The best fitting RY/4
parameters are summarized in Table 1. To convert from F702W magnitudes to
V magnitudes a k-color correction was calculated using the same method as Treu
et al. (1999). Rest frame photometric quantities were corrected for Galactic ex-

tinction using Aproow = 2.435E(B-V)=0.122 (Schlegel et al., 1998).

2.3 Luminous and Dark Matter Distribution

We now combine the observed spectroscopic and photometric data to constrain the
matter distribution in the central region of MS2137-23. First we introduce a simple
two-component spherical mass model comprising the stellar mass of the BCG and
a DM halo (Sec. 3.1). We then constrain the free parameters of the model using

the position of the critical lines (3.2) and the velocity dispersion profile (3.3).

2.3.1 Mass Model

For the luminous component we used a Jaffe (1983)

B Mryry
 Anr2(ry 47r)2

pL(r) (2.1)
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Figure 2.1: HST F702W image of MS2137-23. The rectangular box shows the
dimensions (1725 x 20”) and position of the ESI slit used to make the observations.
The BCG, the radial and tangential arc are clearly visible at the bottom, center,

and upper end of the slit.
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Figure 2.2: Spectroscopic results: (Top) Strong emission lines detected in the
spectra of the tangential and radial arcs. These are identified as [OII|3726,3729
at z = 1.501 and z = 1.502 respectively (marked). It is argued that the missing
3729 line in the radial arc is obscured by sky emission. (Bottom) Stellar velocity
dispersion profile of the brightest cluster galaxy (points with error bars). The
superimposed histogram shows the profile of the best fitting Jaffe + generalized
NFEFW mass model (see Sec. 3 for details), taking into account the effects of seeing

(076), slit width, and radial binning.
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mass density profile of total mass My, which reproduces well' the observed surface
brightness profile (with R, = 0.76r ;). The DM halo is modeled as,
pede

M) = Pt >

representing a generalization of the CDM-motivated halos, with an inner slope 3
(NFW and M98 correspond to 3 = 1, 1.5 respectively; p. is the critical density).
We assume that the BCG lies at the center of the overall potential.

For a given stellar mass-to-light ratio M, /Ly, both My, and r; can be deduced
from the surface photometry leaving 4 free parameters in our mass model: 1)
M, /Ly; 2) the inner slope of the DM profile 3; 3) the DM deunsity scale d.; and
4) the DM scale radius 7.

2.3.2 Gravitational Lensing

Given our two-component spherical model, we adopted a simple lensing analysis
using only the positions and redshifts of the radial and tangential arcs (Bartelmann,
1996).

The locations of the radial and tangential arcs can be estimated by calculat-
ing the position of the corresponding radial and tangential critical curves of the
projected mass distribution. The Jacobian matrix of the lens mapping has two
eigenvalues, A\, = 1 — %% and \; = 1 — %, where x = R/rs. and m is a dimen-
sionless function proportional to the mass inside projected dimensionless radius x
(see, e. g., Bartelmann 1996; Schneider et al. 1992). Tangential and radial critical
curves occur when A\; = 0 and A, = 0, respectively. In practice, the position of the
tangential arc constrains the total enclosed mass, while the position of the radial
arc constrains its derivative. A proper account of ellipticity is essential for detailed

lens modeling where the shape, magnification, and morphology of multiple lensed

images is being reproduced. ME95, however, considered several different simple

! As a check of the results, we also considered a Hernquist (1990) luminous mass distribution.
The results on 3 (see below) are virtually unchanged, while slightly larger values of M/L for the

stellar component are obtained.
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mass models where only the position of the radial and tangential critical lines were
being measured and found that the position of the two was affected very little by
the introduction of ellipticity. Therefore, we conclude that a spherical model is
appropriate for our analysis.

For every set of free parameters {M. /Ly, 3, 0., rsc }, we can compute the
predicted position of the arcs, find the likelihood assuming gaussian distributions,
and constrain the acceptable mass models. The largest radius at which the mass is
probed is that corresponding to the location of the tangential arc (75.8 kpc). Now
rsc is expected to be much greater than 100 kpc in CDM clusters (Bullock et al.,
2001). In this case, the location of the critical lines depends only marginally on
rsc and the combined luminous and dark density profile has only 3 free parameters
(we fix rsc = 400 kpc in the following). Figure 3 shows the likelihood contours
(68%, 95%, and 99%) in B vs. M, /Ly space, obtained using the likelihood ratio
statistic after marginalization with respect to d.. Note that with lensing alone we

can rule out with greater than 95% confidence a M98 DM density profile (G=1.5).

2.3.3 Lensing 4+ Dynamics

The full power of our analysis is only realized when we combine the earlier con-
straints with those made by measuring the spatially-resolved stellar velocity dis-
persion profile of the BCG. Given our two-component mass model (Section 3.1),
we solved the spherical Jeans equation (e.g. Binney & Tremaine 1987) assuming
an isotropic velocity ellipsoid for the luminous component.?

The assumption of isotropy in the region probed (within 30 % of R.) is justi-
fied both on theoretical and observational grounds. Numerical simulations (e. g.
van Albada 1982) and observations (e.g. Gerhard et al. 2001; Koopmans & Treu
2002) appear to rule out significant tangential anisotropy and permit some ra-

dial anisotropy only at large radii. Strong radial anisotropy in the very central

2Spherical dynamical models have been shown to reproduce accurately the kinematics of

slightly elongated galaxies like the BCG (e.g. Kronawitter et al. 2000).
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Figure 2.3: Likelihood contours (68%, 95%, and 99%) obtained for the mass mod-
eling of MS2137-23 with a Jaffe luminous distribution plus a generalized NFW
DM distribution. (Top): Contours obtained from the position of the radial and
tangential arcs alone. Note that a M98 (8 = 1.5) profile is excluded at the 95%
level. (Bottom): Contours obtained including the measured velocity dispersion
profile. Note the improved constraints on the mass parameters and that NF'W

profiles are clearly ruled out at the 99% level.
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regions can also be ruled out based on the grounds of stability (e. g. Merritt &
Aguilar 1985; Stiavelli & Sparke 1991) and consistency requirements (Ciotti, 1999).
However, as a check, we ran Osipkov-Merritt (Merritt, 1985b,a) models with the
anisotropy radius set equal to progressively lower radii. Moving the anisotropy
radius towards zero pushes the likelihood contours towards lower values of 3.

For each set of parameters in the lens model, we computed the likelihood given
the velocity dispersion profile, taking into account the effects of seeing, radial bin-
ning, and finite slit width. The total likelihood was computed by multiplying the
velocity dispersion likelihood by the likelihood obtained with the lensing analysis.
The bottom panel in Figure 3 shows the final results of the combined analysis.
With 99% confidence, M, /Ly lies between 2.3 and 3.7 (broadly consistent with
local values after passive evolution), with the inner DM slope () lying between
0.05 and 0.8, flatter than that expected from CDM simulations. The best-fitting
parameters are M, /Ly = 3.1, # = 0.35, and §,. = 24000.

To check our results, we changed R, by 10% with a negligible effect on the like-
lihood contours. Similarly, the contours are virtually unchanged by offsets of 05
in the position of the tangential arc and by changing the seeing by 30%. Changing
the position of the radial critical line by 20”5 shifts the likelihood contours by
40.1 in the @ direction.

Systematic offsets of the velocity dispersion profile due to template mismatch
and poor continuum fitting introduces correlation between the kinematic points
that are not considered in the likelihood ratio analysis. To investigate this, we have
repeated the analysis with the velocity dispersion profile shifted by the estimated
systematic error (~ 15 km s~!). A lower overall velocity dispersion profiles shifts
our likelihood contours towards lower 3 (8 < 0.65 99 % CL) and viceversa (5 < 0.9
99 %CL). Our hard 99% CL upper limit is 5 < 0.9.
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2.4 Summary and Discussion

We have secured spectroscopic redshifts for the radial and tangential arcs in the
cluster MS 2137-23 and determined the velocity dispersion profile of the BCG
to a physical radius of ~8 kpc. We have combined these measurements with
the lensing geometry in order to construct a self-consistent model of the mass
distribution in the cluster core. Using a spherically symmetric luminous and DM
mass distribution, we rule out the presence of a DM halo with an inner slope
B > 0.9 at greater than 99% confidence, including systematics. M98 and NFW-
type halos with 8 > 1.0 are inconsistent with the mass distribution in the core of
MS2137-23.

Since the infall of baryons associated with the BCG are likely to steepen the DM
halo (Blumenthal et al., 1986; Mao et al., 1998), our measured profile may imply
the original DM profile was even flatter. A full modeling of this process is beyond
the scope of this letter, but this strengthens our conclusion that the inner regions of
the DM halo of MS2137-23 cannot be described by CDM-motivated universal halos.
A potential concern is that our models have only two mass components, but X-ray
emitting gas could be a non-negligible third massive component. Using ROSAT
observations of MS2137-23 (Ettori & Fabian, 1999) we estimate that removing the
X-ray component will steepen the resulting DM halo slope by less than ~ 0.1 and
therefore does not change the result dramatically.

Finally, individual halo shapes can depart from the ensemble average behavior.
Therefore it is necessary to apply such a test to a sample of clusters. Our simple
method is applicable to all approximately round clusters with a massive galaxy at
their center, provided that they have at least a giant tangential arc (radial arcs
further enhance the sensitivity but are not required). We are in the process of
collecting data for a dozen clusters with the aim of performing such a statistical
test.

We are grateful to A. Benson, J.-P. Kneib, and L. Koopmans for insightful

discussions and comments on this project, and to P. Shopbell for numerous com-
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Table 2.1: Relevant spectro-photometric quantities

Redshift (BCG)

Radial critical line
Tangential critical line
(1-b/a).

F702W (mag)

SB. rroow (mag/arcsec?)
Re,Froow

My (mag)

SB. v (mag/arcsec?)

Re,V (kpC)

0.313 £0.001
475 + (03
15735 £+ 0”20
0.17+0.01
16.48 £+ 0.07
23.58 £0.34
5702 £+ 0”50
—24.38 £ 0.09
22.76 £ 0.34
24.80 £ 1.68
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Chapter 3

The Dark Matter Distribution in the Central
Regions of Galaxy Clusters: Implications for

CDM

Davib J. SAND?, TOMMASO TREU, GRAHAM P. SMITH & RICHARD S. ELLIS

California Institute of Technology, Astronomy, mailcode 105-24, Pasadena, CA 91125

Abstract

We have undertaken a spectroscopic survey of gravitational arcs in a carefully
chosen sample of six clusters, each containing a dominant brightest cluster galaxy.
These systems are used to study the relative distributions of dark and baryonic
material in the central regions. Three clusters present both radial and tangential
arcs and provide particularly strong constraints on the mass profiles, whereas the
other three display only tangential arcs and act as a control set. Following Sand
et al. (2002), we analyze stellar velocity dispersion data for the brightest cluster
galaxies in conjunction with the arc redshifts and lens models to constrain the dark
and baryonic mass profiles jointly. For the systems containing radial arcs, we find
that the inner dark matter density profile is consistent with a 3-D distribution,

ppar < 8 with logarithmic slope (8) = 0.5275-02 (68% CL). Similarly, we find

*This chapter has been published previously as Sand et al. (2004)
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that the tangential arc sample gives an upper limit, 5 <0.57 (99% CL). Taking
the 6 clusters together, the mean dark matter distribution is inconsistent with the
standard Navarro et al. (1997) value, =1.0, at >99 % confidence. In addition,
we find considerable cosmic scatter in the 8 (A ~0.3) values of the radial arc
sample. We find no evidence that systems with radial arcs preferentially yield
flatter dark matter profiles as might be expected if they were a biased subset.
We discuss the validity of our 1-D mass reconstruction method and verify its
conclusions by comparing with results of a more rigorous ray-tracing code that
does not assume axial symmetry. Our results extend and considerably strengthen
the earlier conclusions presented by Sand et al. (2002) and suggest the relationship
between dark and visible matter in the cores of clusters is much more complex than

anticipated from recent simulations.

3.1 Introduction

The Cold Dark Matter (CDM) paradigm has been extremely successful in explain-
ing observations of the universe on large scales at various epochs, from that of the
cosmic microwave background through high redshift studies of the Lya forest to
the distribution of galaxies and clusters in local surveys (e.g. Percival et al. 2001;
Spergel et al. 2003; Croft et al. 2002; Bahcall et al. 2003). A primary tool for
making the necessary predictions is that of N-body simulations, which are now
able to resolve structures on highly non-linear scales so that the properties of dark
matter (DM) halos can be predicted on ~kpc scales.

A central prediction arising from CDM simulations is that the density profile
of DM halos is universal in form across a wide range of mass scales, from dwarf
galaxies to clusters of galaxies (e.g. Navarro et al. 1997; hereafter NFW97). Within
a scale radius, 7., the DM density aymptotes to p oc r—# while external to 7,
p o< 3. The value of the logarithmic inner slope, 3, is still a matter of debate.
However, in nearly all studies, 3 ranges between 1 (NFW97) and 1.5 (Moore et al.
1998; Ghigna et al. 2000; hereafter referred to as the “Moore” slope for conve-
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nience). Recent work by Power et al. (2003) and Fukushige & Makino (2003) has
suggested that with proper account of the timestep, force accuracy and particle
number, the inner slope does not converge to a power law, as predicted from lower
resolution simulations, but instead becomes progressively shallow at smaller radii.
Power et al. found $=1.2 at their innermost reliable location. Further work in this
area will allow for even more precise predictions of the form of DM halos.

An observational verification of the NFW97 (or Moore) form, via a convincing
measurement of G and its scatter over various mass scales, has proved controversial
despite the motivation that it offers a powerful test of the CDM paradigm. A major
observational hurdle is the importance of convincingly separating the baryonic and
non-baryonic components. Indeed, observations may guide the interpretation of
the numerical simulations, both because the inclusion of baryons into simulations is
difficult (e.g. Frenk 2002) and because it is expensive computationally to simulate
a sufficient number of halos (with proper convergence) to characterize the expected
scatter in halo shapes.

Most of the observational effort has been directed via dynamical studies of low
surface brightness and dwarf galaxies, as these are thought to be DM dominated
at all radii. However, analyses of the various datasets have given conflicting values
of 8 and many of the assumptions used have been questioned (see discussion by
Simon et al. 2003 and Swaters et al. 2003). Some studies have provided evidence
for cores of roughly constant density (e.g. de Blok et al. 2001; de Blok & Bosma
2002; Simon et al. 2003) whereas others find their data are consistent with f=1
(e.g. van den Bosch & Swaters 2001; Swaters et al. 2003). Steep inner profiles with
B ~1.5 seem to be ruled out.

In order to test the simulations convincingly, observations should not be con-
fined to mass scales probed by dwarf galaxies. Accordingly, several attempts have
been made to constrain the DM profiles of more massive systems. Observations
of spiral and early-type galaxies tend to favor inner slopes that are shallower than
predicted by CDM simulations (Treu & Koopmans, 2002; Koopmans & Treu, 2003;
Borriello & Salucci, 2001; Borriello et al., 2003; Jimenez et al., 2003), although the
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dominance of stellar mass at small scales makes it difficult to achieve an accurate
measurement of the dark halo component.

More effort has been devoted to galaxy cluster mass scales. Most common
has been the use of X-ray observations of the hot intracluster medium under the
assumption of hydrostatic equilibrium. Whether hydrostatic equilibrium is main-
tained in the inner regions, where there are often irregularities and “cooling flows”,
remains an important question (see Arabadjis et al. 2002). Within the context of
the hydrostatic equilibrium assumption, many studies have considered only a lim-
ited range of DM profiles, comparing, for example, NFW (or Moore) fits with
those of a non-singular isothermal sphere (e.g. Schmidt et al. 2001; Allen et al.
2002; Pratt & Arnaud 2002). In general, X-ray analyses have led to wide ranging
results, with 8 ranging from ~0.6 (Ettori et al., 2002) through ~1.2 (Lewis et al.,
2003) to ~1.9 (Arabadjis et al., 2002). However, when using X-ray data alone,
it is difficult to account for the stellar mass of a central brightest cluster galaxy
(BCG), which leads to complications in interpreting the shape of the DM density
profile at small radii (Lewis et al., 2003). In fact, although the stellar component
is small in terms of the total mass of the system, it can dominate the mass density
at small radii and mimic a cuspy DM halo if it is not taken into proper account.

Gravitational lensing offers a particularly promising probe of the total mass
profile. Projected mass maps of the inner regions of clusters constrained by
strongly lensed features of known redshift have been compared with CDM pre-
dictions (Tyson et al. 1998; Smith et al. 2001; hereafter S01). By using weak
lensing and stacking a sample of clusters, Dahle et al. (2003) found an inner DM
slope roughly in agreement with CDM predictions (albeit with large uncertainties).
Recently, a combined strong and weak lensing analysis of Cl0024 has confirmed
the prediction of CDM numerical simulations that the DM density profile falls off
like p oc 773 at large radii, strongly ruling out a density profile that falls off like an
isothermal mass distribution (Kneib et al., 2003). A combined strong and weak
lensing analysis has also been used to constrain the inner DM slope in the cluster

MS2137-23 (Gavazzi et al. 2003; hereafter G03), although the precise value of the
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slope depends on the assumed stellar mass-to-light ratio of the BCG.

As with the X-ray studies, gravitational lensing alone is unable to separate the
baryonic (luminous) and non-baryonic (dark) components. Given the observational
evidence that BCGs often lie at the bottom of the cluster potential in regular,
non-interacting systems (e.g. S01, G03, Jones et al. 1979), the dynamics of the
stellar component offers a valuable route to resolving this problem. In practice,
the stellar kinematics of the BCG provides an additional measure of the total mass
at small radii. In work by Dressler (1979), the velocity dispersion profile of the
BCG in Abell 2029 was found to rise significantly at large radii and this was taken
as evidence that the cluster DM halo was being probed. More recently, Kelson
et al. (2002) have measured an extended velocity dispersion profile in the BCG
in Abell 2199, for which they concluded that the best-fitting DM density profile
for the cluster was shallower than NFW. Miralda-Escude (1995) first suggested
that a combination of lensing and stellar velocity dispersion measurements could
separate the luminous and dark components in the inner regions of clusters (see
also Natarajan & Kneib 1996 for a lensing + dynamics analysis of Abell 2218).
This article highlighted the system MS2137-23 which, at the time, was unique in
containing both radial and tangential gravitational arcs.

In an earlier paper (Sand et al. 2002; hereafter STE02) we combined a simple
axisymmetric lensing model of MS2137-23 with stellar velocity dispersion mea-
surements of the BCG to place strong constraints on the inner slope of the DM
density profile. The resulting § value was markedly inconsistent with § > 1 and
we demonstrated carefully how the combination of lensing and dynamics offers
superior constraints to those provided by either method alone.

The goal of this paper is to extend the results of STE02 to a larger sample of
six galaxy clusters. In addition to MS2137-23, we consider two additional systems
containing both radial and tangential gravitational arcs. The three other clusters
contain only a tangential arc and analysis of this subsample offers a valuable control
from which we expect to deduce whether selecting the rarer systems with radial

arcs might bias our conclusions towards flatter inner slopes. As a further test on the
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robustness of our results, we check our lensing model by dropping the assumption
of radial symmetry.

A plan of the paper follows. In §2 we discuss how the sample of clusters was
chosen. In §3 we discuss the archival Hubble Space Telescope and additional in-
frared imaging observations and how we derived the location of the critical lines
and the surface photometry of the BCGs. In §4 we present spectroscopic mea-
surements made with the Keck telescope which delivered the redshifts of the grav-
itational arcs and the stellar velocity dispersion profile of the BCGs. We discuss
our analysis of the DM density profiles in the context of the assumed mass model
for both the radial+tangential and tangential-only arc subsamples in §5. In §6 we
present a thorough discussion of possible systematic uncertainties associated with
our method. In §7 and §8 we discuss and summarize our results, respectively.

Throughout this paper, we adopt 7 as the radial coordinate in 3-D space and R
as the radial coordinate in 2-D projected space. We assume Hy=65 km s~ *Mpc~1,

Q= 0.3, and Q,=0.7.

3.2 Sample Selection

The aim of this project is to combine constraints from the velocity dispersion profile
of a BCG with those from gravitational lensing to measure the slope of the inner
DM density profile in galaxy clusters, as described in STE02. Two important
simplifying assumptions inherent to our method are that the BCG lies at the
bottom of the cluster potential and that the BCG is a purely pressure supported
system, whose dynamics can be described by the Jeans equation. For this reason,
a suitable galaxy cluster for this project must have a dominant, relatively isolated
central galaxy (coincident with the cluster’s center of mass) with nearby strong
lensing features and no indications of significant substructure or a significantly
elongated potential. Radial gravitational arcs — albeit uncommon — are particularly
valuable since they constrain directly the derivative of the total enclosed mass (e.g.

STE02).
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In order to find a sample of suitable targets, we undertook an exhaustive
search of the Hubble Space Telescope (HST) Wide Field and Planetary Camera 2
(WFPC2) archive for radial gravitational arcs in galaxy clusters. In summary, all
galaxy cluster pointings in the redshift range 0.1 < z < 1.0 were retrieved from the
HST archive, amounting to ~150 different clusters in all. This is the first search
of its kind and has yielded ~15 candidate radial arc systems. Dozens of smaller
lensed features have been uncovered as well, due to the high angular resolution of
HST.

We performed spectroscopic follow-up at the Keck Telescope of many candidate
lensing systems, with emphasis on systems with both radial and tangential arcs.
Spectroscopic confirmation is particularly important for radial arc candidates. In
fact, since radial arcs normally occur in the very inner regions of galaxy clusters,
they can easily be confused with optical filaments associated with cluster cooling
flows. Indeed, several radial features proved to be contaminant optical filaments
at the cluster redshift. A description of the search, the complete catalog, and
spectroscopic identifications will be described in a follow-up paper (Sand et al.
2004, in preparation).

In this paper we focus on a sample of six spectroscopically confirmed lensing
clusters, for which we have also obtained a stellar velocity dispersion profile of
the BCG (Table 1). The sample includes three galaxy clusters with radial and
tangential arcs and three clusters with just tangential arcs, one of which does not

have HST imaging (MACS 1206; Ebeling et al. 2004, in preparation).

3.3 Imaging Data and Analysis

This section describes the two measurements that are to be made from the imaging
data to determine the cluster mass distribution: the surface brightness profile of the
BCG and the positions of the lensing critical lines as inferred from the location of
symmetry breaks in the giant arcs. In addition, two of the six BCGs in our sample

(RXJ 1133 and Abell 383) have obvious dust lanes. K-band images of the cluster
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centers were used to correct for the dust lanes and obtain the unreddened surface
brightness profile of the BCG as described in §3.2. Table 1 is an observation log
of all the optical/NIR observations.

Table 3.1: Optical/NIR Imaging Log

Cluster Zelus Date Telescope/ Filter  Exposure
Instrument time (ks)
MS2137-23  0.313 May 28-31,1995 HST/WFPC2 F702W 22.2
Abell 383 0.189 Jan 25,2000 HST/WFPC2 F702W 7.5
Dec 17, 2002 Keck/NIRC K, 1.0
Abell 963 0.206 May 7, 2000 HST/WFPC2 F702W 7.8
RXJ 1133 0.394*  Feb 20,2001  HST/WFPC2 F606W 1.0
Dec 17, 2002 Keck/NIRC K, 0.8
MACS 1206 0.440*  April 13, 2002 Keck/ESI I 0.3
Abell 1201 0.169 April 7, 2001 HST/WFPC2 F606W 0.8

Imaging Observation Log of the clusters in our sample. *New spectroscopic mea-

surement

3.3.1 Optical Data

Archival HST imaging is available for five of the six clusters. A gunn I-band
image in good seeing conditions (0’7 FWHM) was obtained for the final cluster,
MACS1206, using the Echelle Spectrograph and Imager (ESI; Sheinis et al. 2002)
at the Keck-II Telescope. Figure 1 shows the inner regions of the six clusters
and their accompanying gravitational arcs. Superimposed on the images are the
spectroscopic slit positions that will be described in §4.

Because our sample results from an extensive HST archive search, no spe-
cific observing strategy is common to all clusters. The HST observing strategies
fall into two categories: 1) multiple-orbit observations separated by integer pixel

dithers (MS 2137-23, Abell 383, and Abell 963) and 2) single orbit SNAP obser-
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Figure 3.1: Images of the six clusters in this study. The top row features the
clusters with both radial and tangential arcs. The postage stamp insets show
zoomed in BCG subtracted images so that the radial arcs can be clearly seen. The
bottom row contains those clusters with tangential arcs only. The overlaid “slits”
correspond to the actual slit positions and sizes that were observed. See Table 3.4
for the spectroscopic observation log. North is up and East is to the left in all

images.
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vations comprising two CR-SPLIT, undithered exposures (Abell 1201, RXJ 1133).
Accordingly, two different data reduction procedures were employed.

The clusters with dithered exposures were pipeline processed with the DITHER
package (Fruchter & Hook, 2002) in IRAF to remove cosmic rays, correct for the
undersampling of the point spread function, and to shift and combine the frames.
The effective resolution for the images (F606W and F702W) was ~ 0715. The
undithered targets were processed by first applying the IRAF task WARMPIX using
the table data supplied by the WFPC2 website for the dates of the observations.
The images were then combined with the task CRREJ to remove cosmic ray hits. A
small number of residual cosmic rays were removed with the IRAF task LACOSMIC
(van Dokkum, 2001).

The single, gunn I band exposure of MACS 1206 was reduced in a standard
way with cosmic ray removal being performed by the IRAF task LACOSMIC (van
Dokkum, 2001). Photometric calibration, good to 0.03 mag, was obtained from
two photometric standard star fields (Landolt, 1992).

Table 3.2: BCG Photometric Properties

Cluster Filter Re M SBe K-color (1—-10b/a)e
(arcsec/kpc) (mag) (mag arcsec™2)  Correction

MACS 1206 gunn I 2.08 £0.17 17.48 £0.07 22.46 +0.23 0.81+£0.03 0.35+0.05
A% 12.754+1.04 —23.93+0.08 21.57 +0.23

MS 2137-23  F702W 5.02 £ 0.50 16.48 £ 0.07 23.58 +0.34 0.49+0.03 0.1740.01
A% 24.80 +1.68 —24.38 +0.09 22.76 +0.34

RXJ 1133 F606W 5.18 £0.12 18.00 £ 0.06 24.96 +0.33 0.41+£0.03 0.18 +£0.05
B 29.73+0.69 —23.44+0.07 23.89 £ 0.33

Abell 383 F702W  13.75 £ 0.60 14.67 £ 0.06 22.95+0.25 0.60 £0.04 0.19+0.03
\% 46.75£2.04 —24.78 £0.07 22.72+0.25

Abell 1201 F606W  15.01 £ 0.10 15.44 £ 0.08 24.81 +0.21 0.10 £0.05 0.32+0.02
A% 46.68 £0.31  —24.23 £ 0.09 24.18 £ 0.21

Abell 963 F702W  11.04 +0.14 15.08 £ 0.05 23.67 £0.27 0.59+0.03 0.36 +0.02

continued on next page
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Table 3.2 — continued from previous page

Cluster  Filter Re M SBe K-color (1—-0b/a)e

(arcsec/kpc) (mag) (mag arcsec™2)  Correction

\% 40.19 £0.51  —24.38 £0.06 23.39 £ 0.27

Photometric properties derived from our 2D surface brightness profile fitting. The
first line for each cluster is in the observed filter while the second is in a rest filter.

The K-color correction and ellipticity at the effective radius are listed as well.

3.3.2 Near—Infrared Data

Dust features in BCGs are common (see e.g. Laine et al. 2003), but hinder attempts
at measuring structural parameters. To correct for internal dust extinction in
Abell 383 and RXJ 1133, we observed the two BCGs with NIRC on the Keck I
Telescope in the K band (see Table 1). The data were reduced in a standard
manner using IRAF tasks to dark subtract, linearize, flat—field, align and combine
the individual frames. The flat—fields were created from a rolling median of the
adjacent science frames. The point—spread—function of both final reduced frames
has FWHM ~ 0.6".

A dust correction is obtained as described in Treu et al. (2001) and Koopmans
& Treu (2003). Briefly, we first assume that dust has a neglible effect at large radii
and that any intrinsic BCG color gradient is small. Then we smooth the HST
image to the resolution of the K-band image and compute an extinction map in

the observer frame:

Enstx(x,y) = past(x,y) — px(z,y) — past i (00) (3.1)

where pgsr(x,y) and pg(x,y) are the surface brightness in a given pixel and
pHST,K(00) is the color at large BCG radii. Adopting the Galactic extinction
law of Cardelli et al. (1989) we find the following relations between the absorp-
tion coefficients in the individual bands and the color excess (Equation 1). For
Abell 383, Aproow = 1.199Ep700w,x and Ax = 0.199FEF70ow k. For RXJ1133,

AF6O6W =1. 164EF606W,K and AK =0. 164EF606W,K .
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The correction removes any visible trace of the dust lane. However, it reveals
that the BCG in Abell 383 has a very close, compact companion. For the purpose
of surface photometry analysis, the close companion is easily dealt with by fitting
it simultaneously to the BCG. The companion is ~ 0’7 from the center of the BCG
and is ~5.5 mag fainter with R, ~ (/5. The spectrum of the companion and the
BCG cannot be distinguished in the ESI spectrum so no relative velocity can be
measured. Assuming that the relative masses of the two galaxies is proportional
to their flux ratio, the companion galaxy should not effect our later dynamical

analysis.

3.3.3 Surface Brightness Fitting

Total magnitudes and effective radii (R.) were measured from our (dust corrected)
optical images by fitting two dimensional 7'/4 surface brightness profiles as de-
scribed in STEO02 using the software developed by Treu et al. (1999, 2001). For
the purpose of the fitting, r'/4 models were convolved with artificial Point Spread
Functions (PSFs). Tiny Tim PSFs were used for the HST images, while gaussian
PSFs were adopted for the ground based images. Note that uncertainties in the
artificial PSF have negligible impact on the determination of the effective radii
which are always much larger than the PSF HWHM (c.f. Treu et al. 2001. Fig-
ure 2 shows the measured surface brightness profile along with the best fitting
r1/4fit (PSF convolved).

Observed magnitudes were corrected for galactic extinction using the E(B—V)
values and extinction coefficients calculated by Schlegel et al. (1998). Finally,
observed magnitudes were transformed to rest frame absolute magnitudes through
the standard filter that best matches the observed bandpass through a K-color
correction as in STE02 and Treu et al. (1999, 2001). Typical error estimates on
the transformation are of order 0.05 mag. All BCG photometric results (both rest

and observed frame) are listed in Table 2.
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Figure 3.2: Surface brightness profile of the BCGs. The solid lines are the measured
surface brightness profiles while the other curves are various parameterizations of
the data based on a r1/4fit, convolved with the PSF of the observation. The
uncertainty of the profile is given at several representative points. As can be

1/4 at low

seen, the Jaffe and Hernquist profile generally bracket the best-fitting r
radii. See §6.3 for a discussion of the effects our chosen luminous mass component

parameterization has on our results.
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3.3.4 Critical line determination

Crucial to the simple lensing method that we describe in § 4.4.1 is the location
of the lensing critical line (either radial or tangential). Formally, the critical lines
of a lens model are those regions where the magnification of the images diverge,
although this does not occur in practice due to the extended size of the source.
In addition to being strongly magnified, objects near the radial critical line will
be distorted strongly in the direction radial to contours of constant density, while
objects near the tangential critical line will be distorted tangentially. Typically,
giant bright arcs are the result of multiple highly magnified merging images. Two
merging images with opposite parity often bracket a critical line.

In this work, the critical line position was chosen by visual inspection, either
in between two merging images or near strongly distorted arcs. No prior lensing
analysis was performed, although for those systems that have published lens models
this extra information was taken into account. The critical line positions including
conservative estimates of the uncertainties are listed in Table 3.3. Note that the
radial critical line uncertainties are larger due to contamination by the bright
BCGs and the radial nature of these arcs. In contrast, the tangential critical line

uncertainties are within a factor of ~2-3 of the seeing disk.

3.4 Spectroscopic Data and Analysis

All spectroscopic measurements — yielding arc redshifts and/or a BCG velocity
dispersion— were made with either the Low Resolution Imager and Spectrograph
(LRIS) on Keck I (Oke et al., 1995) or ESI on Keck II (Sheinis et al., 2002).

Table 3.4 summarizes the spectroscopic observations for each cluster.
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Table 3.3: Gravitational Arc Properties

Cluster Ryad Rian Zradial Ztan
(arcsec) (arcsec)
MACS 1206 - 21.3+04 - 1.035%

MS 2137-23  45+0.3 15.35+0.20 1.502° 1.501°
RXJ 1133 32405 10.9+0.3 1.544° 1.544°
Abell 383 1.90+0.6 15.7+0.4  1.010® 1.009%
Abell 1201 - 2.2+0.3 - 0.451¢
Abell 963 - 11.940.2 - 0.77¢

Geometric properties of the gravitational arcs and BCGs, along with the distance
scale for each cluster based on the adopted cosmology. The BCG ellipticity at
approximately the effective radius, R., and the positions of the gravitational arcs
with respect to the BCG center are listed.*New spectroscopic measurement ?Sand

et al. 2002 “Edge et al. 2003 %Ellis et al. 1991

3.4.1 Data Reduction

The LRIS data were reduced in a standard way with bias-subtraction, flat-fielding
and cosmic ray rejection. Wavelength calibration was performed using calibration
arc lamps and unblended sky lines. The instrumental resolution for the 600/5000
grism (blue arm, 560 dichroic) used for the velocity dispersion measurement of
Abell 963 was measured to be 175 km s~! from unblended night sky lines. For the
ESI observations, a set of IRAF tasks (EASI2D) were developed for the specific
goal of removing echelle distortions while preserving the two-dimensional shape
of the spectrum. The instrumental resolution of the reduced 2D spectra for the
1725 x 20" slit was measured to be 32 km s ~! from unblended night sky lines
and the spatial scale ranges from 0.12 to 0.17 arcsec/pixel from the bluest to the
reddest order.

EASI2D consists of the following steps: 1) Bad column interpolation, debiasing,

and an initial flat-fielding are performed on the entire two dimensional spectrum.
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2) The curved echelle orders are mapped using multi-hole exposures (spaced a
constant 2.68 arcseconds apart (Goodrich & Radovan, private communication))
and multiple stellar exposures at prescribed positions along the slit. 3) Each order
is rectified using the IRAF task TRANSFORM (conserving counts). Arc lamps and
twilight sky flats are rectified along with science frames for further calibrations.
4) Sky flats are used to correct for the non-uniform sensitivity (slit function) in
the spatial direction of the individual echelle orders. 5) After rectification, each
exposure of each order is separated and cosmic ray cleaned using LACOSMIC. 6)
After rectification, each order is separated and wavelength calibrated individually.
7) Sky subtraction is performed on each order interactively with a low order poly-
nomial fit along the spatial direction to blank regions of the slit. Alternatively, sky
subtraction can be achieved by subtracting appropriately scaled dithered science
exposures from each other. This second method is preferable beyond ~ 7000A
where sky emission lines are strongest. 8) If needed, one dimensional spectra
can be extracted from the two-dimensional spectra of each order and combined
on a single spectrum. This step was typically undertaken only for the kinematic

template star spectra (see § 3.4.2).

Table 3.4: Spectroscopic Observation Log

Cluster Date Target Instrument  Exposure Seeing Pos. Angle Slit
time (ks) (“ (degrees) size (“)
MS2137-23 July 21,2001 Arcs/BCG ESI 5.9 0.6 0 1.25
Abell 383 Dec 12, 2002 Rad. Arc/BCG ESI 5.4 0.7 28 1.25
Oct 19, 2001 Tan. Arc LRIS 3.8 0.7 30 1.0
RXJ 1133 Apr 11-12, 2002 BCG/Rad. Arc ESI 12.6 0.6-0.7 -24 1.25
Apr 11, 2002 Tan Arc ESI 3.6 0.7 10 1.25
MACS 1206 Apr 13, 2002 BCG ESI 9.0 0.75 98 1.25
Apr 13, 2002 Tangential arc ESI 3.6 0.75 273 1.25
Abell 1201 Apr 12, 2002 BCG/tan arc ESI 3.6 0.6 -32 1.25

continued on next page
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Table 3.4 — continued from previous page

Cluster Date Target Instrument  Exposure Seeing Pos. Angle Slit
time (ks) (9 (degrees) size (%)

Abell 1201  Apr 12, 2002 BCG/tan arc ESI 3.6 0.6 -25 1.25

Abell 963 Mar 28, 2001 BCG LRIS 4.8 0.7 -15.5 1.5

Summary of the spectroscopic observations.

3.4.2 Redshift Measurements and Stellar Kinematics

Table 1 (BCGs), Table 3.3 (gravitational arcs), and Figure 4.3 detail all redshift
measurements made. Many of these measurements were dependent on the high
spectral resolution of ESI, as many emission lines were buried in the OH sky
background. All arc redshift identifications are based on the detection of the
[OI1]3726,3729 doublet in emission. Note that for the purpose of this work we
are only using the “northern” arc of Abell 963 (Ellis et al., 1991). Abell 383 has
also been studied extensively by S01 (see also Smith et al. 2005), who obtained a
spectroscopic redshift for the tangential arc in this cluster. We add to S01’s study
by measuring spectroscopic redshifts for both the radial arc and a different portion
of the tangential arc. These new data provide more stringent constraints on the
gravitational potential of this cluster (§6.1).

We now describe the measurement of the line of sight velocity dispersion pro-
file of the BCGs. The 2D spectra were summed into spatial bins corresponding
approximately to the seeing during the observation, thus ensuring that each ve-
locity dispersion measurement is approximately independent, and increasing the
signal-to-noise ratio per spatial bin. In Abell 383, an entire side of the spectrum
was avoided due to the interloping galaxy (§3.2) and the presence of the dust lane.
Also, we avoided the side of the BCG in RXJ 1133 effected by the dust lane. Two
slightly different position angles were used for Abell 1201.

Following well established procedures (Franx, 1993; van Dokkum & Franx,
1996; Treu et al., 1999, 2001; Kelson et al., 2000; Gebhardt et al., 2003; van
Dokkum & Ellis, 2003), the velocity dispersion for each spatial bin is measured
by comparing stellar templates (appropriately redshifted and smoothed to the in-
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strumental resolution of the galactic spectra) broadened by Gaussian line profiles
with the galactic spectrum. The fit is performed using the Gauss-Hermite Pixel
Fitting Software (van der Marel, 1994) in pixel space to allow for easy masking
of emission lines and regions of high night sky residuals. All velocity dispersion
measurements were taken from spectral regions around the G band absorption
feature. Also measured with the Gauss-Hermite Pixel Fitting Software was the
relative velocity profile of each BCG. There is no evidence of rotation (within the
uncertainties) in any of the BCGs. As a result, we assume in our analysis that the
systems are completely pressure supported.

For each BCG, the velocity dispersion profile was measured using all of the
available stellar templates with a variety of continuum fits. The stellar template
that yielded the lowest y? was adopted as the best fit. Table 5 contains the
tabulated velocity dispersion measurements obtained. Listed uncertainties are the
sum in quadrature of a random component (taken from the output of the Gauss-
Hermite Pixel Fitting Software) and a systematic component due to template
mismatch (the rms of the velocity dispersion obtained from all templates).

In order to measure accurate velocity dispersions, spectra with sufficient S/N
are required. In general, the minimum S/N needed depends both on the instru-
mental resolution and the velocity dispersion to be measured. A higher S/N is
needed as the velocity dispersion becomes comparable to and less than that of the
instrumental resolution (e.g. Treu et al. 2001; Jorgensen et al. 1995). Since the
typical central velocity dispersion of a BCG is o ~ 300-400 km s~!(e.g. Fisher
et al. 1995) compared to the 32 (175) km s~ resolution of the 1725 (1750) ESI
(LRIS) slit, the velocity dispersion measurement should be reliable down to low
S/N. In order to verify this numerically for the case of the ESI configuration, high
S/N template spectra were broadened by Gaussian line profiles to known velocity
dispersions (¢ =50, 100, 150, 200, 250, 300, 350 km s~!) and Poisson noise was
added (S/N= 5, 7, 10, 12, 15, 20) for 100 different realizations. The velocity dis-
persion of these broadened, noisy spectra was then recovered using an area around

the G band absorption feature with the Gauss Hermite Pixel Fitting software with
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Figure 3.3: New gravitational arc redshift measurements. All new redshift mea-
surements of gravitational arcs in this work were identified by strong [O II] in
emission. Both the radial arc in Abell 383 and the tangential arc in Abell 1201
have strong continuum due to the nearby presence of the BCG. See Table 3.3 for

a list of all gravitational arc redshift measurements used in this study.
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both the same template (KOIII) and a template with a different spectral type
(GIIII template used on a broadened KOIII spectrum). Using the KOIII template
on the broadened KOIII spectrum recovers the expected velocity dispersion with
formal uncertainties less then 10% down to S/N of 5 (the exception being the 50

!measurement with S/N=5, which had an average formal uncertainty of 8

km s~
km s~!). Using the GIIII template on the KOIII broadened spectrum did lead to
systematic offsets from the input velocity dispersion of up to 6.5%, comparable
to the formal uncertainty in the measurement. Thus, we will take into account

possible uncertainties with regard to template mismatch in the data both in our

final uncertainties and when deriving mass profiles.

Table 3.5: Velocity Dispersion Profiles

Cluster Spatial Binning (arcsec) o (km s™1)
MACS 1206 -0.30 - 0.30 257+ 39
0.30 - 1.37 245 £ 50
-0.30 - -1.37 259 £ 52
RXJ 1133 0.0 - 0.61 333 £ 30
0.61 - 1.22 306 £ 41
1.22 - 1.98 337 £ 67
Abell 1201 -0.35 - 0.35 231 +£13
PA=-32 -1.06 - -0.35 257+ 21
0.35 - 1.06 232 £ 18
1.06 - 1.76 224 £+ 28
Abell 1201 -0.28 - 0.28 238 £ 16

continued on next page
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Table 3.5 — continued from previous page

Cluster Spatial Binning (arcsec) o (km s™1)
PA=-25 -0.99 - -0.28 252 + 20
0.28 - 0.99 223 £15
0.99 - 1.69 207 + 20
Abell 383 -0.49 - 0.07 319 £ 26
-1.06 - -0.49 228 £ 25
-1.62 - -1.06 246 £ 32
Abell 963 -0.32 - 0.32 299 + 22
-0.97 - -0.32 298 + 29
-1.61 - -0.97 271+ 31
0.32 - 0.97 282 + 26
0.97 - 1.61 253 + 26

Velocity Dispersion Profiles. Tabulated velocity dispersion profiles of the BCGs, not
including MS 2137-23, which was presented in STE02. All slit widths are 1725 except for

Abell 963, which is 1”/50. All spatial values are with respect to the center of the BCG.

3.5 Analysis and Results

We now combine the observed photometric and spectroscopic properties of the
BCG and giant arcs to constrain the luminous and DM distribution in the central
region of the clusters. In particular, the goal of this analysis is to determine the
range of inner DM density slopes permissible and to compare these to predictions
from numerical CDM simulations. The key to this method is to combine the con-
straints on the mass from the velocity dispersion profile with that from lensing
to get a better overall measurement than can be made with each individual tech-
nique. The method used is identical to that employed by STE(02, with improved
numerical accuracy. There is no change in our basic conclusions on MS2137-23

from that work.
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3.5.1 Mass Model and Overview of the Fitting Procedure

We adopt a spherically symmetric two component mass model comprising the BCG
and cluster DM halo. We assume that the BCG is coincident with the bottom of
the cluster potential. To describe the luminous BCG component we used a Jaffe

(1983) mass density profile

MLTJ

e 2
anr2(ry +1r)2’ (3:2)

pr(r)

with total mass My, and R, = 0.76r;. A Jaffe profile accurately reproduces the
actual surface brightness profiles of the BCGs in our sample and has the extra
advantage of giving analytic solutions to the surface brightness profile and line of
sight velocity dispersion. We assume that a single mass-to-light ratio accurately
describes the stellar component of the mass. For a given stellar M, /L both M}, and
rj can be deduced from the observed surface photometry. We also investigated the
effects on the inner DM slope by changing the luminous mass density profile to a
Hernquist profile (Hernquist, 1990) in §3.6.3 as a check for robustness of our results.
Note that the PSF convolved Hernquist and Jaffe luminous matter distributions
bracket the observed data in all of our clusters (see § 6.3 for a discussion).
The cluster DM halo is modeled as
Pcde

palr) = (r/7se)B 1+ (r/rse)]> 7 (33)

which is a generalization of the numerically simulated CDM halos, with p. being
the critical density and 6, a scaling factor. This density profile asymptotes to 7~
at 7 < s and 72 at r > rg.. For values of 8 = 1, 1.5, the DM density profile is
identical to that found by NF'W and nearly identical to that of M98, respectively.
Thus using this general form for the DM halo allows for direct comparison to
numerical results.

Considering the observations made, there are four free parameters in our mass

model: (1) the stellar mass-to-light ratio, M, /L, (2) the inner slope of the DM
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Figure 3.4: Likelihood contours (68%, 95% and 99%) obtained for the radial arc
sample (top row) and the tangential arc sample (bottom row) with a Jaffe lumi-
nous distribution plus a generalized NFW DM distribution. These contours were
obtained after both the lensing and dynamical analysis and marginalization with

respect to d..



66

profile 3, (3) the DM density scale d., and (4) the DM scale radius rs.. In gen-
eral, rs. is much larger (greater than 100 kpc) than our most distant mass probe,
tangential gravitational arcs (Bullock et al., 2001; Tasitsiomi et al., 2004). Given
this, the location of the critical lines then only depend slightly on 7., since it is
the projected mass that is important. In our modeling we set ;=400 kpc, leaving
only three free parameters. The value of r;. was chosen as a typical value seen
in galaxy cluster numerical simulations for a typical cluster with virial radius of
~2 Mpc (see discussion in § 6.3). Much larger values of 7. seem to be ruled out
on observational grounds as well (Gavazzi et al., 2003; Kneib et al., 2003). In
§6.3 we show that allowing 7. to vary within reasonable bounds as proscribed by
CDM simulations has a small effect on our 8 measurement, but that the effect is
comparable to our other systematics.

We discuss in detail the analysis of both the lensing and velocity dispersion data
in the Appendix. We briefly describe the method here. By comparing the observed
position (and its uncertainty) of gravitational arcs with the predicted position of
the arcs (given a set of free parameters { M, /L,3, é.}) a likelihood function can be
calculated over the appropriate parameter space. Similarly, the observed velocity
dispersion profile (which depends on the mass enclosed at a given radius and the
relative contribution from luminous and dark matter) for a BCG in a cluster can
be compared with that expected for a given set of free parameters (taking into
account the seeing and spatial binning of the observations) and another likelihood
function can be calculated. The total likelihood for a given set of free parameters is
simply the product of the lensing likelihood and the stellar kinematics likelihood.
In the next two subsections we discuss how we use these likelihood functions to

place confidence limits on the inner DM density slope (.

3.5.2 Radial Arc Results

The three clusters in our sample with radial and tangential arcs (hereafter known
as the radial arc sample) allow for strong constraints to be placed on the DM

density profile. The tangential arc provides a measurement of the projected mass
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Figure 3.5: Probability distribution function of the DM inner density slope, 3, for
the three radial arc clusters. Note the wide scatter in preferred values of § from
cluster to cluster, AG ~0.3. The joint distribution was obtained by multiplying

the individual PDFs and normalizing.
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enclosed at a given radius and the radial arc gives a measurement of the derivative
of the projected mass enclosed at its radius.

Assuming that all underlying distributions are normal, we can use a x? min-
imization technique to obtain confidence contours on our parameter estimates.
This involves simply taking the x? difference at any point in parameter space with
respect to the minimum x?. Confidence contours in the M, /L-3 plane allow one to
visualize acceptable (3 values as a function of the mass of the BCG. After marginal-
ization with respect to d., the 68, 95, and 99% confidence contours in the M, /L-3
plane were placed at a Ax?=2.30, 6.17, and 9.21 respectively. Figure 3 (top row)
shows the contours obtained for our radial arc sample.

To constrain the inner slope § alone, we further marginalized with respect to
M, /L. The resulting probability distribution function (PDF) for § for all three
clusters is shown in Figure 3.5. We adopt the peak of the distribution as best
estimate of the parameters. Confidence intervals are obtained by integrating the
PDF above a threshold such that the total area under the curve is 68% (95%)
of the total. Doing this, we found S=0.57"00% (752%) for MS2137-23, 0.3870:5¢
(F31%) for Abell 383, and 0.99701% (¥5:2%) for RXJ 1133.

Note immediately that the intervals for the individual clusters do not overlap
at the 68% level. We therefore conclude that there is significant intrinsic scatter in
the inner slopes of the DM halos. To assess the scatter in 3 values that we find in
the radial arc sample, we calculate the standard deviation without account of the
corresponding PDF and find A3 ~0.3. The scatter and its possible consequences
will be discussed in § 3.7.2.

Having noted the existence of significant intrinsic scatter, we can determine
the average inner slope of DM by looking at the joint radial PDF, obtained as the
product of the three individual distributions (shown in Figure 3.5 as a solid line;
note that this measure is analogous to the weighted average). We find that the
average inner slope and related uncertainty are 8 = 0.527092 (*91}). Assuming
that our sample of clusters is representative of the entire cluster population, this

means the average slope is inconsistent at > 99% CL with both the NFW and
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Moore profile.

3.5.3 Tangential Arc Results

Before discussing the radial arc results any further we consider the issue of sample
selection bias in more detail. Are radial arc clusters a representative subsample
of relaxed clusters as far as DM inner slopes are concerned? It is well known that
total density distributions that are steeper than p o 7~2 do not produce radial arcs.
Thus, if there is a wide range in the distribution of inner slopes, by selecting radial
arc systems we might be rejecting the more cuspy systems. This bias (hereafter
the radial arc selection bias) might be exacerbated by the fact that the radial arcs
in our sample are buried in the BCG, a steep density profile in its own right. We
investigate how robust our results on § are with respect to our choice of luminous
density profile in § 3.6.3.

A clean and powerful way to address this issue is to obtain a control sample of
tangential arc-only systems (hereafter the tangential arc sample). This will enable
us to determine if the radial arc systems appear to be outliers in the general cluster
population. At the same time this tangential arc sample will provide an additional
— albeit less precise — measurement of the DM inner slope.

The bottom row in Figure 3 and 3.6 display the results for the tangential arc
sample. This was subject to the same analysis as for the radial arc sample with the
exception that we adopted a prior to ensure that the DM profile is monotonically
declining with radius (8 > 0). Note that the results always go toward $=0 for
the tangential arc sample, at variance with the results for the radial arc sample.
In fact, the shapes of the confidence contours in the M, /L-3 plane are markedly
different from the analogous contours for the radial arc sample (see § 3.5.4). We
calculated upper limit confidence levels on (3, since the shape of the probability
distribution function lends itself to this type of interpretation. The 68% (95 and
99%) upper limits are 8 =0.29 (0.62,0.82), 0.40 (0.67, 0.77), and 0.43 (0.80, 0.97)
for Abell 1201, MACS 1206, and Abell 963 respectively. The joint tangential arc
distribution has 68, 95, and 99% confidence upper limits of 3=0.20, 0.43, and 0.57
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Figure 3.6: Probability distribution function of the DM inner density slope, 3, for
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respectively.

Is the radial arc sample probing an outlier population of galaxy clusters due to
the fact that radial arcs cannot form in systems with density distributions steeper
than p o< 72?7 In the following we assume that the joint distribution for each
sample is a fair representation of the underlying distribution, despite the sample
size. As can be seen from Figure 3.6, the radial arc sample does not have a
shallower DM density profile than the tangential arc sample, as would be expected
if there was a radial arc bias. To compare the two samples, we convolved the radial
and tangential arc sample probability distribution functions in order to compute
the probability distribution function for the variable G, — 3;, where the subscripts
represent the radial and tangential arc sample values of 3. Due to the one-sided
nature of the tangential arc probability distribution function, it is appropriate
to use upper limits to quantify the confidence region of the variable G, — G;. The
value of 3, — 3 is less than 0.45 and 0.57 with 68 and 95% confidence, respectively.
The probability that 8, — (; is less than 0 (as would be expected if there was a
radial arc bias) is ~ 2%. There is no indication of radial arc bias, and the radial
and tangential arc samples are reasonably consistent given the small number of

systems.

3.5.4 Summary of Results

We have presented new measurements of the inner slope (3) of DM halos in clusters
of galaxies, considering a sample of three radial arc systems and a sample of three
tangential arc systems in carefully chosen relatively relaxed clusters.

The main results from the radial arc systems are: (i) the average () = 0.52 +
0.05 is much smaller than that suggested by numerical DM only simulations (either
NFW or Moore); (ii) our precision allows us to determine a first measurement of
the intrinsic scatter in 3, which we estimate to be AB ~0.3; and (iii) individual
clusters can be as cuspy as NFW (RXJ1133). The results from the tangential arc
sample confirm and reinforce our findings: (i) the upper limit to the average slope

is 4=0.57 (99% CL), again much smaller than numerical simulations (NFW or
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Figure 3.7: The measured velocity dispersion profile for each BCG (hatched boxes)
along with the best-fitting velocity dispersion profile calculated from the combined
lensing + dynamics analysis (solid curves). Note that the solid curves are not
exactly equivalent to those derived from the analysis since they were not binned
in accordance with the slit width, spatial binning of the measurement or smeared
due to the effects of seeing. The plot of MS2137-23 (top left) illustrates the power
of including the velocity dispersion profile of the BCG into our analysis. In this
panel we have also shown a velocity dispersion profile from a mass model that is
compatible with the lensing analysis of that cluster, but does not fit the velocity

dispersion profile (5=1.30).
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Moore); (ii) although with larger uncertainties, the results from the tangential arc
sample are statistically consistent with those from the radial arc sample, confirming
that our results are not affected by a radial arc selection bias.

Before moving on to discuss in detail the comparison with numerical simu-
lations and consider the broader implications of these results (§3.7), we need to
address two further issues. First, we would like to discuss in greater detail our
method, understanding at least qualitatively some of its features. This will hope-
fully provide an element of physical intuition in addition to the statistical anlysis.
Secondly, we need to make sure that systematic uncertainties are not dominating
our error budget, which so far includes only random uncertainties. The first point
is the subject of the remainder of this section. Section 4.4.3 is devoted to a careful
analysis of all known systematics and related uncertainties on (.

The joint fitting of the lensing and velocity dispersion data greatly enhances
our ability to distinguish between DM profiles (see STE02). The top left panel of
Figure 7 illustrates why that is the case. The hatched boxes represent the velocity
dispersion measurement for MS2137-23 and their 1-o uncertainties. The solid
black curve shows the best fitting velocity dispersion profile model obtained with
our combined lensing and velocity dispersion analysis. The dashed curve shows a
velocity dispersion profile for a set of free parameters that agrees extremely well
(Ax? < 1; f=1.30) with the gravitational lensing measurements alone, but does
not match the measured velocity dispersion profile of the BCG. This special case
(where the M, /L=0 indicates that the luminous component is a massless tracer
of the potential) clearly shows that mass models with too steep an inner profile
cannot both match the velocity dispersion profile measurement and reproduce the
positions of the gravitational arcs. The remaining panels in Figure 6 plot both the
observed and best-fitting velocity dispersion profile for each of the six clusters.

Our best-fitting mass models produce density profiles that are remarkably sim-
ilar in their makeup (Figure 7). On <10 kpc scales, the matter distribution is
dominated by the luminous, BCG component, with the DM component dominat-

ing at larger radii. Dubinski (1998) has found a similar result by numerically
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simulating the formation of a BCG in the presence of a cuspy DM halo. As can be
seen from Figure 7, the velocity dispersion measurement of the BCG allows us to
probe the matter distribution where luminous matter is important, while the grav-
itational arcs probe regions where DM dominates. The measurement techniques
complement each other.

It is appropriate to assess the goodness-of-fit of our best-fitting models. While
Ax? is distributed as a x? distribution with three degrees of freedom (representing
the three free parameters in our model), the best-fitting model (with x2,,) is
distributed as a x? distribution with N — 3 degrees of freedom, where N is the
number of data points and three again represents the number of free parameters
(see e.g. Press et al. 1988). The total best-fitting x? for each cluster is: Abell 383,
x?%/dof=8.3/2; MS2137-23, x2/dof=8.9/7; RXJ 1133, x?/dof=1.0/2; Abell 1201,
x2/dof=6.6/6; Abell 963, x?/dof=2.9/3; and MACS 1206, x?/dof=1.4/1. Of the
total, the contribution from the gravitational lensing portion of the x? is never
more than 0.2, meaning that the bulk is due to the velocity dispersion profile
(see Figure 6 for the best-fitting velocity dispersion profiles). The one cluster
with a relatively high x? is Abell 383. However, given the simplicity of our mass
model, this relatively high x? should not be alarming. In section 6 we explore in
detail possible systematic effects in our current analysis, any of which could be
responsible for a less than perfect fit to the data. Since all of these systematic
checks indicate that AB <0.2, we are confident in the robustness of our results.

What causes the difference in the confidence contour shapes in the M, /L-(
plane between the radial arc sample and the tangential arc sample? Both samples
do not allow a steep DM inner density profiles because of their inability to match
the observed BCG velocity dispersion profile described in the previous paragraph.
However, it seems as if the radial arc sample is capable of pinpointing the DM
inner density slope, while the tangential arc sample can give just an upper limit.
Due to the functional form of the radial eigenvalue (see Equation A5), radial arcs
cannot form in total density profiles steeper than p o< 2. For our mass model, as

M, /L increases and # becomes small, the above criteria for radial arc formation
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Figure 3.8: Best-fitting total density profile for the entire sample. The positions

of the gravitational arcs and the range over which we were able to measure the

velocity dispersion profile are noted. Within < 10 kpc the total density distribution
is dominated by the BCG.

is not met unless the radial arc position is pushed out radially (where DM will

have a larger contribution and thus soften out the effects of the cuspy luminous

distribution) to a point where it is incompatible with its observed position. It is

for this reason that low values of § are not allowed in the radial arc analysis and

the DM inner density slope can be pinpointed.

The summary of the results presented in this subsection are at odds with

predictions of CDM simulations and have claimed to measure the intrinsic scatter

in the inner DM slope, 5. In order for such results to be taken seriously, it is

imperative that our method is tested thoroughly with respect to our simplifying

assumptions. It is our goal in the next section to systematically test all of our

assumptions before we discuss the implications of our results for CDM.
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3.6 Systematics

During the course of our analysis, many simplifying assumptions were made. As
an exploratory study aiming to obtain tight constraints on the DM density profile,
we strived to simplify our model and its inputs while still extracting the correct
inner density profile. However, it is possible that these simplifications are giving
systematically different values of the DM inner density slope than a more complex
modeling. To judge the robustness of our method we have performed a battery
of tests. First, in § 6.1, we explore the fact that we neglected both ellipticity
and substructure in our lensing treatment. Second, in § 6.2, we look at possible
complications in our analysis of the BCG dynamics (e.g. orbital anisotropy and
template mismatch). Finally, in § 6.3 we report on tests run to check our results
depending on changes in our luminous mass model and due to possible uncertainties
in our measurements. Abell 383 has the tightest constraints in our sample (see
§ 5.2) and by using it to illustrate our test results (in § 6.2 and § 6.3) we demonstrate

the impact our assumptions have on our determination of 3.

3.6.1 Impact of Cluster Substructure and Ellipticity

Our cluster sample has been selected to comprise relaxed systems with no obvious
signatures of strong ellipticity and/or bi-modality in their underlying mass dis-
tributions. Nevertheless, previous analyses of two of the clusters (Abell 383 and
MS 2137-23) reveals that they are not perfectly circular in projection (e.g. S01;
Miralda-Escudé 2002). Our simple lensing method deliberately does not attempt
to fit the detailed positions of all the multiply-imaged features of the clusters, con-
centrating instead on the positions of relevant critical lines, estimated from visual
inspection of symmetry breaks in the observed multiple-images. In this section
we exploit sophisticated two—dimensional lens models to investigate whether the
simplifying assumptions in our one—dimensional models introduce any systematic
bias into our results. Qualitatively, the key differences between the models dis-

cussed in this section and those upon which our main analysis is based is that in
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this section we include the ellipticity and substructure (arising from bright cluster
ellipticals) of the clusters in the models and fit the models to all of the observed
multiple-image systems.

We use the LENSTOOL ray—tracing software to construct a detailed model of
each of the clusters in the radial arc sample. The details of this method are ex-
plained elsewhere, and we refer the interested reader to the relevant articles (Kneib,
1993; Kneib et al., 1996; Smith et al., 2005). Briefly, we use the observed positions,
redshifts, shapes and orientations of the observed multiple-image systems to con-
strain a model of the total surface mass density in each cluster core. We stress that
we do not attempt to decompose the best—fit total matter distributions into their
respective dark and luminous components. Each model therefore consists of the
minimum number of analytic matter components (each one parametrized as a trun-
cated pseudo—isothermal elliptical mass-distribution — /citealtKassiola93,Kneib96)
required to fit the observables. In practice, each model contains a central dominant
cluster—scale mass component that is centered on each BCG, plus an additional
central mass component for the BCG, and a small number (< 4) of smaller mass
components to account for contributions from likely cluster members that lie ad-
jacent to the observed multiple-image systems. We briefly describe each model:

MS 2137-23 — This cluster has been extensively modeled by several authors
(Mellier et al., 1993; Hammer et al., 1997; Gavazzi et al., 2003). We adopt STE(02’s
spectroscopic redshifts for the dominant tangential and radial arcs as constraints
on our LENSTOOL model. A four component model is able to produce an acceptable
fit to these constraints (x?/dof ~ 1). These components comprise the cluster-scale
potential, the BCG and two galaxies lying 3” North-West of the BCG, adjacent
to the radial arc (Figure 1). This model predicts a central fifth image of the
galaxy that appears as the giant tangential arc that is in broad agreement with
that predicted by G03’s model. However, when subtracting a model of the BCG
from the HST frame, we are unable to confirm G03’s claimed detection of the fifth
image. We therefore do not include this image as a constraint on the model. The

ellipticity of the best-fit fiducial model is € = (a? — b?)/(a® + b%) = 0.18.
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Fig. 1 of SO1 and identify several of the lensing and cluster galaxy components

used to construct the model.
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Abell 383 — S01 constructed a detailed lens model of this cluster based on their
spectroscopic redshift of the brightest component (B0a) of the tangential arc (see
also Smith et al. 2001). We build on this analysis to add the spectroscopic redshifts
of Bla/b and the radial arc into S01’s model. These new spectroscopic redshifts
constrain the volume of parameter space occupied by the family of acceptable
models. The best—fit model lies within the family of models identified by S01 as
providing an acceptable fit to the data. Figure 8 illustrates the resulting lensing
model for this cluster, showing the derived tangential critical curves for z = 1, 3.
The detailed multiple-image interpretation of this cluster is described by Smith
et al. (2005).

RXJ 1133 — We identify the tangential and radial arcs as comprising two im-
ages each of the background source. The compact high surface-brightness feature
in the radial arc has a profile shape and FWHM similar to a point source. The
origin of this point source is unclear since it does not appear in the other lensed
images. It is likely a foreground star, or possibly a transient event in the lensed
galaxy that only manifests itself in the radial arc due to time delays. To obtain an
acceptable fit to the lensing constraints, we use a five component model: cluster—
scale potential, BCG, two dwarf galaxies adjacent to the fifth image, and the
moderately bright likely cluster member 7" away from the BCG directly opposite
these two dwarfs. The ellipticity of the best—fit fiducial model is € = 0.19.

After obtaining the best—fit fiducial lens model for each cluster, we system-
atically explored the parameter space of each model to determine the family of
acceptable models (Ax? < 1.0). We then compare this family of models with
the family of acceptable models with Ax? < 1.0 (projected from 3D to 2D) from
the analysis presented in §5.2 (this is equivalent to the 68% confidence interval
for one parameter). Fundamentally, the lensing constraints contain information
about the enclosed mass at the position of the tangential arcs and the deriva-
tive of the projected mass enclosed at the position (i.e. symmetry break between
the two components) of the radial arc. We extract azimuthally averaged pro-

jected density profiles from these two sets of models for each cluster and compare
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M (< Ryiangential) and d(M/R)/dR(R;adial), taking due account of the uncertainties
in the determinations of Riangential and Rragial-

We plot the results of this comparison in Figure 9. The difference in M (<
Riangential) between the two methods is never more that 8% of that of the LENSTOOL
result. Note that the 1D method presented in this work is robust in its measure-
ment of 8 when the position of the tangential critical line is shifted +075 (see
§6.3). A shift in the tangential critical line position is equivalent to changing
M (< Ryiangential), and so we defer to that subsection for a discussion of how a
mismeasurement of M (< Rtangential) effects our conclusions on the DM density
profile.

We concentrate here on the radial arc comparison, focusing on the discrepancy
identified in MS2137-23 (the most discrepant in the sample). In the following
we will assume that any correction necessary in the method is solely a correction
that must be made to the DM component. This is certainly a very conservative
estimate since the luminous BCG mass component contributes significantly on
the scales of the radial gravitational arcs. For simplicity, we assume that we are
dealing with power-law surface density profiles, 3(R) o« RY. This implies that
M(< R) < R"? and p(r) oc ¥7~1. In MS2137-23, v =-0.29 and -0.50 for the
method in this work and the LENSTOOL results respectively, at the position of the
radial critical line. A systematic mismeasurement of Ay =0.2 will cause a similar
sized mismeasurement in the value of §: AB =0.2. This is roughly twice the size
of the random error component (3 = 0.57J_r8:(1)51;) quoted in §5.2 for MS2137-23.
Note that the correction implied from the LENSTOOL analysis is in the direction
of lower ( values, even further away from predictions made by CDM numerical
simulations. We conclude that any systematic effect due to the axisymmetric lens
modeling in this work can affect our § measurement by of order the random error
components we have calculated.

To aid comparison of our empirical measurements with future observational
and theoretical studies, we list here the values of v, assuming that ¥(R) « R7.

Using the 1-D approach presented in this work, v(R,q4iar) = —0.29 £+ 0.03 for
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Figure 3.10: Comparison between the 1D models and the 2D check performed with
the LENSTOOL software package. We use = to parameterize the logarithmic slope of
the surface density profile. At the radial critical line, v should be identical for the
two methods. (Top panel) The difference in the logarithmic slope between the two
methods versus the 1D logarithmic slope. The most discrepant cluster, MS2137-
23, would at most effect the DM halo by AS ~0.2 in a direction further away
from that predicted by simulations. (Bottom panel) Ratio of the mass enclosed at
the tangential critical line, M (< R = Ryangential), for the two methods versus the
mass enclosed for the 1D method. There are no deviations greater than ~8%. The
uncertainties in a given data point are approximately the same size as the points

themselves.
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MS2137-23, —0.43 =+ 0.05 for RXJ1133, and —0.36 £ 0.03 for Abell 383. With the
2D LENSTOOL analysis v (Ryqdiar) = —0.50 £ 0.01 for MS2137-23, —0.33 £+ 0.10 for
RXJ1133, and —0.43 &+ 0.02 for Abell 383.

3.6.2 Velocity Dispersion Measurements & Modeling

In §4.3 we presented the velocity dispersion measurements such that the final un-
certainty tabulated in Table 5 is the addition in quadrature of a random component
(taken from the output of the Gauss-Hermite Pixel Fitting Software) and a system-
atic component associated with template mismatch. Template mismatch is due to
the fact that we used a single stellar spectral type to determine the kinematics of
the BCGs. We quantified the effect of template mismatch in §4.3 by taking the
rms deviation among the different stellar templates used to represent a possible
systematic offset. While we incorporated this uncertainty into our mass modeling
analysis, it is nonetheless necessary to understand how robust our results are to
systematic offsets of the velocity dispersion profile. For each BCG we shifted the
measured velocity dispersion profile up and down by the systematic uncertainty
(typically ~15-20 km s™1) and reran our analysis to determine the impact on our
results. Because the typical shift in the M, /L-3 plane is about AS ~ £0.15, and
we conclude that template mismatch can not greatly alter our final results.

In our dynamical modeling of the BCGs we assumed isotropic orbits (see Ap-
pendix A.2) for the constituent stellar tracers. This assumption is justified on
several grounds. From an observational point of view, Kronawitter et al. (2000)
found that in their sample of galaxies the best-fitting models were nearly isotropic
with typical @ ~ 0.3 (« is the anisotropy parameter, see Appendix Equation A8) at
R./2, fallin to o = 0 at larger radii. There was little indication of any tangential
(a < 0) anisotropy in that study. Gerhard et al. (2001) obtain complementary
results from an extended sample. Similar conclusions have been obtained theoret-
ically (e.g. van Albada 1982), with strong radial anisotropy leading to instability
(Merritt & Aguilar, 1985; Stiavelli & Sparke, 1991).

Nonetheless, it is still instructive to rerun the analysis with anisotropy, espe-
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Figure 3.11: The 68%, 95% and 99% confidence contours of Abell 383 along with
the 95% confidence contours for the orbital anisotropy tests in § 6.2 that were
most discrepant with our original results. No test causes a shift in the § direction

greater than AG ~0.2.
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cially radial anisotropy. Using an anisotropy radius, r, (implementing the Osipkov-
Merritt parametrization, Equation A8), equal to 0.5r;, approximately at the point
where observations have indicated that orbits are somewhat radially anisotropic,
we have investigated the effects on our confidence contours. Note that with this
parametrization, stellar orbits become more and more radially anisotropic with in-
creasing radius. The confidence contours in the M, /L-3 plane move towards lower
acceptable values of 8 (A ~ —0.20 for r, = 0.57;; see Figure 11), increasing the
disagreement with predictions of N-body simulations. We conclude that modest
radial anisotropy will only strengthen our claim that the observed DM profiles are
shallower than predicted theoretically.

Likewise, we have introduced a constant tangential anisotropy of a = —0.5.
Observationally, tangential anisotropy in the inner regions of giant ellipticals is
very rare (e.g. Kronawitter et al. 2000; Gerhard et al. 2001). As expected, the
results indicate a slight steepening of the DM halos (A3 ~+40.20; see Figure 11).
Given the extreme case presented here, we conclude that our results are robust to
slight tangential anisotropy in the BCG.

In the present work we have used Gaussian line profiles to represent the line-of-
sight velocity dispersions of the BCGs. This approach provides a good low-order fit
to galactic spectra, but in the outer parts of galaxies deviations from Gaussian can
be of order ~10%, leading to systematic mismeasurements of rotation velocities and
velocity dispersions of the same order (van der Marel & Franx, 1993). Higher order
velocity moments are routinely measured for nearby galaxies giving information on
their orbital structure (e.g. Kronawitter et al. 2000; Gerhard et al. 2001; Carter
et al. 1999). In the inner regions of galaxies, these studies have indicated that
deviations from a Gaussian line profile are small, especially on the scales probed
in this work (<0.5R,.). However, to make these measurements, high signal-to-noise
is needed, making it hard to measure these parameters at even modest redshift
due to cosmological surface brightness dimming. For this reason, we were unable
to measure deviations from Gaussian line profiles in even the central regions of the

BCGs. Any systematic introduced due to the Gaussian line profiles used must be
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small on the scales we are probing. Earlier in this section, we have shown that
our results are robust to orbital anisotropies (which would lead to deviations from
Gaussian line profiles). Miralda-Escudé (1995) suggested that in the rapidly rising
portion of the velocity dispersion profile expected from BCGs at large radii (e.g.
Figure 6) that deviations from Gaussian line profiles should be expected, even in
systems with isotropic orbits. At the moment, this can only be verified in nearby
BCGs where higher-order moments could be measured to high radii, beyond the

scales probed in this work.

3.6.3 Other Assumptions and Measurement Uncertainties

We have subjected our data to several additional tests. We changed the lumi-
nous mass model to a Hernquist profile, systematically altered the seeing by 30%,
adjusted R, of the BCG by 10%, modified the scale radius of the DM halo, r,,
and shifted the radial and tangential critical lines. All tests were performed by
changing one parameter at a time. We report the results of these tests below.

(1) We replaced the Jaffe luminous density profile with a Hernquist profile to see
how robust our constraints on 3 are with respect to our choice of the Jaffe density
profile for the BCG. We have chosen the Jaffe and Hernquist profiles because they
give analytic solutions to the surface brightness profile and line of sight velocity
dispersion. As can be seen from Figure 2, the Jaffe and Hernquist profile bracket
the data at low radii (< 1”). The Hernquist luminous mass density profile goes
like p o< 7~ at small radii. A Jaffe density profile is slightly more cuspy than an
r1/4 profile, while a Hernquist profile is slightly less cuspy. We obtained confidence
contours in rough agreement with the original mass model. However, a Hernquist
profile give a much larger best-fitting x? (Ax? ~ 10 with respect to the best-
fitting Jaffe luminous density profile results). Since we are bracketing the true
surface brightness profile with our Jaffe and Hernquist parameterizations and we
get roughly equivalent results on 3, we are confident that our choice of the Jaffe
luminous distribution is not biasing our results towards shallow DM halo profiles.

(2) We argued in § 5.1 that our final results are not very sensitive to the scale
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radius, rg., that we assume for the DM density profile, although there should be
some dependence due to projection effects. Since it is the goal of this work to
test the predictions of CDM, it is important that a range of rs. compatible with
numerical simulations are checked to make sure that this possible systematic is not
large. Using the parameterization of the concentration parameter, c,;., adopted
by Bullock et al. (2001) for a ~ 1015M® halo with R,;, ~ 2 Mpc, we expect rg.
to lie between 240 and 550 kpc (68% CL). Recently, Tasitsiomi et al. (2004) have
simulated fourteen cluster-sized DM halos having cuspy profiles with mean rg. of
4504300 kpc. These values seem reasonable observationally as well. For example,
G03’s best fitting NFW profile for MS2137-23 using weak lensing had rs. = 67J_r§’20
kpc. As a test, we briefly considered r,. as a fourth free parameter, taking a
flat prior on rs. between 100-800 kpc, in accordance with the range of rs. found
by Tasitsiomi et al. (2004). After marginalization with respect to the other free
parameters, this analysis caused a shift of A ~ 0.15 towards steeper values of
0, giving us confidence that for reasonable values of r,. our constraints on 3 are
robust.

(3) Since the seeing is one of the measured inputs in the velocity dispersion
portion of the analysis (see Equation A1l in the Appendix), we changed the seeing
value by +30% to determine how robust our conclusions are to mismeasurements in
the seeing. We found shifts of AS ~0.05 and thus concluded that even significant
mismeasurements in the seeing do not effect our final results.

(4) Additionally, we perturbed the positions of the effective radius of the BCG
surface photometry fits by =210%. As mentioned earlier, mismeasurements in the
luminous mass distribution could possibly alter the shape of the inferred DM halo.
However, changing R, had a negligible effect on the measured confidence contours.

(5) Finally, although the visual measurement of the critical lines agrees to
within 1-o with those obtained from the 2D averaged results of the LENSTOOL
analysis, we still tested to see how sound our results are to perturbations in the
critical line positions. In our tests, both radial and tangential critical lines were

perturbed by 40”5 from their reported positions. We found that changing the
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tangential critical lines by this amount had a negligible effect, while adjusting the
position of the radial critical lines produced shifts on order G $0.1. We conclude
that our results are not extremely dependent on the exact location of the critical

lines.

3.6.4 Summary of Systematics

In this section, we have performed a wide variety of tests to our model and mass
measurement technique, with no test indicating that our method is incomplete or
lacking. The main conclusions of these tests of the systematics can be summarized
as follows:

(1) In § 3.6.1, we explored the consequences of our axisymmetric gravitational
lens models by comparing our results with the sophisticated 2D ray-tracing soft-
ware, LENSTOOL. A comparison suggests that at most our constraints on the inner
DM density logarithmic slope are shifted by ASG ~0.2.

(2) In § 3.6.2, we checked the robustness of our method in the face of possible
systematics associated with the dynamics of the BCGs. Stellar template mismatch
and orbital anisotropies can at most shift § by ~0.2.

(3) In § 3.6.3, we performed a battery of tests to check our luminous mass model
and our sensitivity to the observations. The most serious effect is associated with
our assumed value of rs. For reasonable values of this parameter, the inner DM
density logarithmic slope is shifted by Ag ~0.15.

Figure 3.11 plots the results for those tests performed in § 3.6.2 and § 3.6.3

that produce the largest changes in our estimation of .

3.7 Discussion

3.7.1 Comparison with Simulations

The results of N-body simulations indicate that we should expect DM inner density
profiles of between 8 = 1 and 1.5, even with the current refinements in modern

N-body work that pay special attention to issues of convergence (e.g. Power et al.
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2003; Fukushige & Makino 2003). We have found a range of acceptable values of
the inner logarithmic slope, with (3) = 0.52f8:8§, for our radial arc sample and
B <0.57 (at >99% confidence) for all three clusters in our tangential arc sample.
We detect scatter in our radial arc sample, which we will discuss in § 7.2.

What, therefore, can account for the apparent discrepancy between observa-
tions and simulations? There are two questions that must be addressed. First, do
the scales probed in the observations correspond to those resolved in the simula-
tions? Second, what effect do baryons have in our comparison?

In this work, we are only able to probe the mass distribution out to the distance
of the tangential gravitational arc, which for our sample is <100 kpc. The original
work by NFW97 had a gravitational softening radius of ~20 kpc (for their largest
mass, galaxy cluster sized halos), although it is not clear that they achieved proper
convergence down to this radius. Subsequent higher resolution work (e.g. Ghigna
et al. 2000; Klypin et al. 2001) focused on the issue of convergence and reported
that their results for the DM density profile were reliable down to scales of ~50
kpc at the cluster scale, and both groups found # ~1.5. Even more recently,
Power et al. (2003) and Fukushige & Makino (2003) have performed extremely
high resolution simulations, with density profile results reliable down to ~5 kpc
(~0.002 Ry;). Note that all of these works used different criteria for convergence.
It seems safe to say that modern N-body simulations are becoming reliable down
to the ~10 kpc scale for galaxy clusters, which is comparable to the scales being
probed in this study. It is also comparable to R, in a typical giant BCG, and so
it is clear that baryons should play a more central role in further investigations.

It must be emphasized that these simulations include only collisionless CDM
particles. It is unclear how baryonic matter, especially in regions where it may
dominate the total matter density, may affect the DM distribution. Several possible
scenarios have been presented in the literature, and the following discussion is
not exhaustive. One possible situation, known as adiabatic contraction, is that
as baryons sink dissipatively into the bottom of the total matter potential they

are likely to steepen the underlying DM distribution simply through gravitational
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processes (Blumenthal et al., 1986). This situation would only exacerbate the
difference between our observed shallow slopes and those expected from N-body
simulations. It has also been suggested by Loeb & Peebles (2003) that if stars form
at high redshift (z >6) before large structures form that they can be treated in a
similar manner as the underlying DM particles. This scenario would suggest that
instead of separating dark and luminous components of the matter distribution
for comparison with simulations we should compare the total mass distribution
observed with the DM distribution found in N-body simulations. However, Loeb
& Peebles (2003) admit that this scenario is not strongly motivated and that some
dissipative process must still take place within the baryonic material. Recently,
Dekel et al. (2003) have suggested that DM halos must be as cuspy as NFW due to
the merger process, unless satellite halos are disrupted at large radii, possibly due
to baryonic feedback. One final scenario describes a situation in which baryonic
material is initially concentrated in small clumps of mass (>0.01% of the total
mass) with dynamical friction causing the final DM halo shape to flatten due to
these clumps (El-Zant et al., 2004, 2001). The issue of baryons must be looked
into further. It is possible that the DM “core” problem cannot be resolved until
baryonic material can be properly incorporated into the numerical experiments.
We have gone to great lengths in this paper to disentangle the luminous BCG
component from the overall cluster DM in our mass model so that we could com-
pare directly our results with those of N-body simulations. Albeit with consider-
able scatter, the average DM density profile is too shallow, especially if adiabatic
contraction accurately describes the interaction between dark and baryonic mat-
ter. Does this indicate that something may be wrong with the ACDM paradigm of
structure formation? Dark matter only simulations do not appear to be sufficient,
especially as they begin to probe down to scales where complicated gaseous physics
play a significant role. While work has been done to model the formation of cDs
and BCGs (see e.g. Dubinski 1998; Nipoti et al. 2003), these have mainly focused
on the accretion of galaxies to form cD-like objects, and have not been concerned

with the resulting effect on the DM halo.
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3.7.2 1Is the DM Slope Universal?

This is a question that begs to be asked after looking at Figure 4. We detect an
intrinsic scatter in @ values of AS ~0.3 in the radial arc sample. Unfortunately,
the tangential arc sample can give only an upper limit on 8, and thus does not
provide any further measure of the scatter.

The most recent and highest resolution N-body simulations of eight galaxy
clusters performed by Fukushige & Makino (2003) did show some signs of run-to-
run inner slope variations, and although they claimed that this argued against a
“universal” inner DM profile, they did not quantify the scatter. Several claims
have been made that the DM density profile is dependent on the DM halo mass
(e.g. Ricotti 2003; Jing & Suto 2002), however, these studies have focused on the
difference in slopes between different mass scales (e.g. individual galaxies versus
clusters of galaxies) while the clusters in this study are all roughly the same mass.
It is plausible that the formation history of any given cluster sized halo can cause
a natural cosmic scatter in 3 (e.g. Nusser & Sheth 1999). Ultimately, numerical
simulations should be able to reproduce not only the observed mean slope of the

DM density profile in galaxy clusters, but also its measured scatter.

3.8 Summary

We have performed a joint gravitational lensing and dynamical analysis in the
inner regions of six galaxy clusters in order to constrain the inner DM density
slope (6. By studying the velocity dispersion profile of the BCG, we were able to
disentangle luminous and DM components of the total matter distribution in these
clusters on scales < 100 kpc. The main results of the paper can be summarized as
follows:

1) The average inner slope of the 3 systems with both radial and tangential
arcs is (8) = 0.52f8:8§. The 3 clusters with only tangential arcs provide an upper
limit of 8 < 0.57 (99%CL). The measured slopes are thus inconsistent at high
confidence level (> 99%CL) with the cusps (8 = 1—1.5) predicted by dark matter
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only cosmological numerical simulations.

2) The agreement of the results from the radial arc sample and the tangential
sample shows that the shallow slopes found for MS2137-23 (Sand et al., 2002) and
the other radial arc systems are not the result of a selection effect.

3) Our precise measurements allow us to give a first estimate of the intrinsic
scatter of the inner density DM slope (A(3~0.3) of clusters of galaxies. The analysis
of a larger sample of systems to better characterize the intrinsic scatter of the inner
slope would provide a further observational test for future numerical simulations.

4) Our method is robust with respect to known systematic effects, including
those related to the choice of the mass model, the description of orbital anisotropy
in the dynamical models, and the simplifying assumptions inherent to our axisym-
metric lensing analysis. A comprehensive and detailed analyis of these effects shows
that the related systematic uncertainties on 3 are smaller than 0.2. Therefore, even
for the system with the smallest random uncertainties (Abell 383) systematic errors
do not dominate the error budget.

In conclusion, our results are in marked disagreement with the predictions of
dark matter only cosmological simulations. The inclusion of baryons in the models
via a simple adiabatic contraction mechanism would further steepen the theoretical
dark matter halo, making the disagreement even more pronounced. Therefore, a
more sophisticated treatment of baryons in the simulations appears necessary if

one wants to reconcile the CDM paradigm with the present observations.

3.9 Appendix:Analysis Technique

3.9.1 Lensing

Given our simple, spherically symmetric two-component mass model, we adopted
a simple lensing analysis using only the positions and redshifts of the gravitational
arcs in our sample. Our method is a generalization of that used by Bartelmann
(1996).

Since the extent of the galaxy cluster (lens) is much less than the distance
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from the observer to the lens and the lens to the source, we make the thin-screen
approximation in our gravitational lensing calculations. The total surface mass
density is the sum of the luminous and DM components: ¥, = Xpysr + Y. The

surface mass density of our chosen DM halo profile, ¥ p/(R), is

/2
Ypm(R) = 2pcrscécxl_ﬁ/ dfsinf(sin @ + z)° 3 (3.4)
0

where x = R/r,. (Wyithe et al., 2001). The surface mass density of the luminous
component is X1, = I[(R)M, /L, where I(R) is given in Jaffe’s (1983) original paper.
Using standard gravitational lensing nomenclature (see, e.g., Schneider et al.

1992) we describe Y4y in terms of the critical surface mass density X,

_ Etot (R)

R 3.5
K(R) = =2 (35)
where
2 D,
cr — 3.6
4G DlDls ( )

and D;, D, and Dy are the angular diameter distance to the lens, between the
lens and source and to the source, respectively. Another convenient quantity when
describing the mapping from the source plane to the lens plane is dimensionless

and proportional to the mass inside projected radius x

m(z) =2 /0 ’ dyr(y)y (3.7)

With these definitions, the two eigenvalues of the Jacobian mapping between

the source and image plane read:

im(:v)’)\tzl__

r=1-
A dr =« x

(3.8)

The root of these two equations describes the radial and tangential critical
curves of the lens. Since the magnification of the source is equal to the inverse
of the determinant of the Jacobian, the radial and tangential critical curves are

where the magnification of the source formally diverges. While this does not
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happen in practice (due to the spatial extent of the source), it guarantees that
when an image of a source lies near a critical line it is strongly distorted (in the
radial direction in the case of radial arcs and tangentially for the case of tangential
arcs). Merging lensed images merge across critical lines, providing a simple way
of approximating their position by visual inspection. Thus highly distorted image
pairs are an excellent way of approximating the position of the critical line for a
lens. For the simple, axisymmetric lens model explored in this work, both the radial
and tangential critical lines are circular with the radial critical curve always lying
inside that of the tangential critical curve. Our sample of clusters (approximately
round clusters with little visible substructure) was chosen specifically with this
concern in mind (tests of our lens model are described in § 3.6.1). However, this is
not always the case. Therefore, extreme caution must be exercised when applying
our simple lens model to other samples of clusters.

Given our mass model (§5.1), the measured redshifts of the arcs and clusters,
and a set of free parameters { M, /L,3, 0.}, we can compute the predicted position of
the arcs (assuming they lie very close to their associated critical line) by finding the
root of the appropriate eigenvalue from Equation 4.5. By comparing the predicted
position of the arcs with the actual position taken from the images, we can calculate

the likelihood function,

M,/L,5.,5)1
A; }

P(M. /L, 6, B) x eap{—L 5, [ L= (3.9)

assuming that our underlying distributions are normal. Here, y is the distance of
the arc from the center of the cluster potential (as measured from the center of
the BCG), A; is our assigned uncertainty to the position of the critical line, and

the sum in the exponential is over all the critical line arcs with known redshift.

3.9.2 Dynamics

In addition to the gravitational arc redshifts, we have also measured extended

velocity dispersion profiles for all of the BCGs in our sample. This is used as an
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additional constraint on our mass model, using a joint likelihood analysis.
We compute the model velocity dispersion starting from the spherical Jeans

Equation (Binney & Tremaine, 1987):

dp-(r)o?(r) | 20(r)p.(r)o}(r) _ _ GMene(r)ps(r). (3.10)

dr r r2

where G is Newton’s gravitational constant, M(r) is the three-dimensional mass
enclosed, o, is the radial velocity dispersion. The anisotropy parameter a(r) is

defined as,
Lo (3.11)

=1
R )

where oy is the tangential component of the velocity dispersion. The final definition
introduces the Opsikov-Merritt (Merritt, 1985b,a) parameterization of anistropy
that we mainly use in our dynamical models. By default, we use isotropic orbits
(i.e 7, = 00) that appear to be a realistic description of the inner regions of early-
type galaxies. However, in §6.2 we explore the consequences of anisotropic velocity
dispersion tensors on DM density profiles we measure, by considering r, > 0 models
and models with constant tangential anisotropy (a < 0).

Using our parameterization of the anisotropy, we can readily derive the radial

velocity dispersion (Binney, 1980)

_G S dr' pu(r') Mepe(r') Tg:;lz

2
12
70 7+ 17)p.0) (12
and the projected velocity dispersion
2(R) _ 2 /OO dT'/ 1 _ R2 p*(rl)o-z(rl)r/ (3 13)
op\t) = (M./L)I(R) Jr r2 4172 | (72— R2)1/2 :

with I(R) being the surface brightness profile (modeled as a Jaffe profile with
parameters derived from surface photometry).
Before comparing the model with the observations, it is necessary to take two

further steps. First, we must account for the atmospheric seeing, which blurs
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spectroscopic measurements in the spatial direction. This can be modeled as:

2 o JdR'P(R—R)I(R)o2(R)
7 (B) = T R R PR~ R

(3.14)

where we assume a Gaussian point-spread function, P(R-R’) (see discussion in
Binney & Merrifield 1998; Eqnuations 4.6-4.8). Second, we must account for the
non negligible slit width and spatial binning used. This was calculated numerically

such that,

_ Ja dA(R)oE (R)

a0 [ dAT(R)

(3.15)

where A is the area of the slit used for a given measurement and I;(R) is the seeing
corrected intensity at a given projected radius.

With an understanding of the observational setup and seeing conditions one
can calculate the expected velocity dispersion for a given set of free parameters,
{M,/L,3, 6.}. Analogous to the likelihood technique employed in the lensing
appendix subsection, one can construct a likelihood for the velocity dispersion
profile of the BCGs by comparing the expected velocity dispersion for a given set

of free parameters with the measured velocity dispersion,

- &Z(M*/La 5caﬁ) 2
A;

P(M./L,5.,6) o eap{~ 55 | 7 } (3.16)

Here, o is the velocity dispersion in a given bin and A; is the uncertainty in the
measurement.

With both the lensing and velocity dispersion likelihoods calculated, it is now
possible to find constraints on the inner dark matter density slope, 3. Since the two
techniques are independent, the total likelihood for a given set of free parameters

is just the product of the lensing and velocity dispersion likelihoods.
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Chapter 4

A Systematic Search for
Gravitationally-Lensed Arcs in the Hubble
Space Telescope WFPC2 Archive

Davib J. SAND, TOMMASO TREU, RICHARD S. ELLIS AND GRAHAM P. SMITH

California Institute of Technology, Astronomy, mailcode 105-24, Pasadena, CA 91125

Abstract

We present the results of a systematic search for gravitationally-lensed arcs in clus-
ters of galaxies located in the Hubble Space Telescope Wide Field and Planetary
Camera 2 data archive. By carefully examining the images of 128 clusters, we have
located 12 candidate radial arcs and 104 tangential arcs, each of whose length to
width ratio exceeds 7. In addition, 24 other radial arc candidates were identified
with a length to width ratio of less than 7. Keck spectroscopy of 17 candidate
radial arcs suggests that contamination of the radial arc sample from non-lensed
objects is ~30-50%. With our catalog, we explore the practicality of using the
number ratio of radial to tangential arcs as a statistical measure of the slope 3 of
the dark matter distribution in cluster cores (where ppys o =7 at small radii).

Despite the heterogeneous nature of the cluster sample, we demonstrate that this

*This chapter has been published previously as Sand et al. (2005)
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abundance ratio is fairly constant across various cluster subsamples partitioned
according to X-ray luminosity and optical survey depth. We develop the necessary
formalism to interpret this ratio in the context of two-component mass models for
cluster cores. Although the arc statistics in our survey are consistent with a range
of density profiles — § <1.6 depending on various assumptions, we show that one
of the prime limiting factors is the distribution of stellar masses for the brightest
cluster galaxies. We discuss the prospects for improving the observational con-
straints and thereby provide a reliable statistical constraint on cluster dark matter

profiles on <100 kpc scales.

4.1 Introduction

The imaging cameras on Hubble Space Telescope (HST') provide a valuable re-
source for studies of gravitational lensing. For example, the improved image quality
compared to ground-based telescopes has enabled the morphological recognition
of tangential arcs (e.g. Smail et al. 1996; Kneib et al. 1996; Gioia et al. 1998).
The analysis of such arcs has led to detailed mass models of great utility both in
determining dark and baryonic mass distributions (e.g. Kneib et al. 2003; Gavazzi
et al. 2003; Smith et al. 2005) and in the study of highly magnified distant galax-
ies (e.g. Franx et al. 1997; Seitz et al. 1998; Pettini et al. 2000; Smith et al. 2002;
Swinbank et al. 2003; Ellis et al. 2001; Kneib et al. 2004; Santos et al. 2004).

HST images have also been invaluable in studying radial gravitationally-lensed
arcs (e.g. Gioia et al. 1998; Smith et al. 2001; Sand et al. 2002, 2004). These arcs
are often embedded in the envelope of the central luminous cluster galaxy and
thus a high angular resolution is essential to uncover their presence. Radial arcs
straddle the inner critical line whose location has long been known to provide a
valuable constraint on the form of the mass profile on <100 kpc scales (e.g. Fort
et al. 1992; Miralda-Escude 1993, 1995; Bartelmann 1996; Williams et al. 1999;
Meneghetti et al. 2001).

A long-standing field of inquiry has been the comparison of theoretical pre-
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dictions and ground-based observations of the abundance of arcs for example as a
constraint on cosmology. Bartelmann et al. (1998) originally found that the num-
ber of strongly-lensed arcs greatly exceeds that expected from ACDM simulations,
preferring instead an open CDM cosmology. Various systematic effects have been
proposed to explain the apparent excess, including cluster substructure (e.g. Flores
et al. 2000; Torri et al. 2004), the influence of the brightest cluster galaxy (BCG;
Meneghetti et al. 2003a), and uncertainties in the background redshift distribution
of lensed sources (Dalal et al., 2004; Wambsganss et al., 2004). Many of these ef-
fects can be calibrated through high resolution simulations of galaxy clusters and
accurate background redshift distributions based on photometric redshift surveys.
Indeed, several recent articles reconcile the expected number of gravitational arcs
in a ACDM universe with observations (Dalal et al., 2004; Wambsganss et al., 2004;
Oguri et al., 2005), and attention is now focusing on how to use such observations
to constrain dark energy models (e.g. Meneghetti et al. 2004; Dalal et al. 2005).

It is also possible to use arc statistics to constrain the central density profiles of
clusters (e.g. Wyithe et al. 2001), thereby testing the prediction that CDM halos
have profiles steeper than p oc 7710 (e.g. Navarro et al. 1997; Moore et al. 1998;
Power et al. 2003; Fukushige et al. 2004; Tasitsiomi et al. 2004; Diemand et al.
2004). These analyses are subject to uncertainties and systematics similar to those
discussed above.

To date, several ground-based optical surveys have been used for statistical
studies of gravitational arcs (e.g. Le Fevre et al. 1994; Luppino et al. 1999; Zaritsky
& Gonzalez 2003; Gladders et al. 2003). Despite different cluster selection and
redshift criteria, these surveys have measured roughly comparable giant tangential
gravitational arc incidences which have guided theoretical understanding of the
processes responsible for strong lensing on the galaxy cluster scale. Given typical
ground based seeing, however, these are of marginal utility in searches for radially-
elongated thin, faint arcs buried in the halos of bright cluster galaxies.

The primary goal of this paper is to compile a list of the gravitationally lensed

arcs found in the HST/WFPC2 archive and to explore the feasibility of using the
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number ratio of radial to tangential arcs as a means of constraining the inner
density profiles in cluster cores. Molikawa & Hattori (2001) have shown that the
abundance ratio of radial to tangential arcs is sensitive to the mean density profile
of the cluster sample. Oguri et al. (2001) studied the predicted ratio of radial to
tangential arcs as a function of not only the inner dark matter density slope, but
the concentration parameter, ¢, of the halos as well. Oguri (2002; hereafter 002;
see also Keeton 2001) has suggested that the various systematics that effect the
cross section for lensing are significantly reduced when considering the number
ratio of radial to tangential arcs rather than their absolute number. To constrain
the dark matter density profile, we adopt the methodology presented by 002,
extending their technique to include a second mass component arising from the
central cluster galaxy. Our analysis is intended to complement studies of the DM
density profile in clusters performed on individual systems (e.g. Kneib et al. 2003;
Smith et al. 2001; Gavazzi et al. 2003; Sand et al. 2002, 2004; Buote & Lewis 2004;
Lokas & Mamon 2003; Kelson et al. 2002) and through other statistical techniques
(e.g. van der Marel et al. 2000; Dahle et al. 2003; Mahdavi & Geller 2004).

A plan of the paper follows. In §2 we discuss the archival sample of clusters,
how representative sub-samples can be defined for later analyses, and describe our
reduction procedure. In §3 we describe the procedures we adopted for identifying
lensed arcs and how they are characterized by their length-to-width ratio. We also
present new follow-up spectroscopy for several candidate radial arcs as a means
of estimating the likely contamination by other sources (e.g. foreground galaxies).
In §4 we present our methodology for calculating the expected radial to tangential
arc number ratio and discuss the various assumptions and their limitations. In
85 we derive constraints on the inner DM density slope and discuss our results.
In §6 we summarize and discuss future prospects for improving the constraints.
An Appendix describes and presents the cluster catalog, arc catalog, and finding
charts for the newly-located radial arcs.

Throughout this paper, we adopt 7 as the radial coordinate in 3-D space and R

as the radial coordinate in 2-D projected space. We assume Hy=65 km s~ *Mpc~1,
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Q. = 0.3, and Q4=0.7.

4.2 Cluster Selection

The Hubble Space Telescope data archive is now sufficiently extensive to provide
the basis for a search for gravitational arcs in galaxy clusters. In this work, we
restricted our search to images taken with the Wide Field Planetary Camera 2
(WFPC2). Exploitation of the archival set of images taken with the more recently-
installed and superior Advanced Camera for Surveys (ACS) is left for a future
study.

As the overarching goal is to identify all tangentially and radially-elongated
gravitational arcs, regardless of any preordained intrinsic property of the galaxy
cluster, fairly liberal criteria were used for selecting observations from the archive.
Only clusters of known redshift with 0.1 < z < 0.8 were considered. We stipulated
that images of the cluster had to be available in one or more of the following broad
band filters: F450W, F555W, F606W, F675W, F702W, and F814W. Procedurally,
an abstract search was done on the HST archive and proposals containing the
words “galaxy” and “cluster” or “group” were flagged. This initial list of abstracts
was pared by inspection, so that only data for those proposals directed at galaxy
clusters or groups were requested. All of the data from this edited abstract list was
requested if they satisfied the camera, filter, and redshift requirements. This search
technique ensured only programs deliberately targetting clusters were examined.

The resulting cluster catalog is listed in Table 4.3, in the Appendix. The total
sample includes 128 galaxy clusters. A histogram of the redshift distribution is

shown in Figure 4.1.

4.2.1 Uniform Cluster Subsamples

The resulting cluster sample is heterogenous with factors such as exposure time,
redshift, richness/mass/X-ray luminosity, and filter choice, all affecting the sen-

sitivity to gravitational arcs. Although this may not seriously affect our goal of
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Figure 4.1: Histogram illustrating the number of clusters in the sample as a func-

tion of redshift.
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measuring the abundance ratio of radial to tangential arcs and constraining the in-
ner slope of the DM density profile (see O02; the arc ratio is relatively robust with
respect to cluster mass and observational selection effects), it is helpful to consider
the possibility of partitioning the large sample into more complete subsets for later
use. Membership of each cluster in the various sub-samples introduced below is
indicated in Table 4.3.

X-ray selected sub-samples will be beneficial given the correlation between
cluster mass and X-ray luminosity. We define two in particular that have been
discussed in the literature and which link directly to specific HST programs.

1.Smith sample: This sample follows the work of Smith et al. (2001,2002a,2002b,2003,2005)
and includes 10 clusters. Clusters in this sample are X-ray luminous (Lx > 8 x 10**
ergs s~ 1; 0.1-2.4 keV; Ebeling et al. 1996) and lie in the redshift range 0.17 < z <
0.25.

2.EMSS sample: Another X-ray sub-sample can be drawn from the EMSS
cluster survey (0.3-3.5 keV; limiting sensitivity of 5x 10714 ergs cm? s71; 7). Of the
93 clusters identified by Henry et al. twelve have been imaged with HST/WFPC2.
Two previous gravitational arc searches were conducted with a subsample of this
kind using ground-based images (Le Fevre et al., 1994; Luppino et al., 1999).

3. Edge sample: This refers to a sample of clusters whose imaging was con-
ducted to a uniform depth (although the clusters are not all the same redshift).
Such a sample should, broadly speaking, pick out all lensed features to a certain
surface brightness threshold. Two large SNAPSHOT programs are prominent in
this respect: PID 8301 and 8719 (PI: Edge) which image together 44 z >0.1 clus-
ters in the F606W filter with exposure times between 0.6 and 1.0 ks. According to
the HST proposals, this program sought to understand the morphological proper-
ties of central cluster galaxies. Clusters were selected from the Brightest Cluster
Sample (BCS — Ebeling et al. 1998) for which optical spectra of the central cluster
galaxies are available (Crawford et al., 1999). The primary sample was selected
from those BCS clusters hosting a BCG with optical line emission. A secondary

control sample of BCS clusters that do not host an optical line emitting BCG



104

was also selected to span the same range in redshift and X—ray luminosity as the
primary sample (Edge, private communication). Optical line emission from BCGs
is one of the least ambiguous indicators of clusters for which the central cooling
timescale is less than the Hubble time (Crawford et al., 1999). These ”cooling
flow” clusters are also typically classified as relaxed clusters (e.g. Smith et al.
2005). The clusters in the control sample were also selected to appear relaxed
at optical and X-ray wavelengths. While there are undoubtedly some exceptions

(e.g. Edge et al. 2003), the "Edge sample” is likely dominated by relaxed clusters.

4.2.2 WFPC2 Data Reduction

Although our cluster sample is drawn from the HST/WFPC2 archive, the various
goals of each original program means the observing strategy varied from case to
case. Fortunately, there are only two basic approaches to taking the observations.
The first includes those CRSPLIT or SNAPSHOT observations in which two or
more non-dithered exposures were taken. The second refers to the case where two
or more dithered (either with integer or half-integer pixel offsets) exposures were
taken either to enhance the sampling of the WFPC2 point spread function or for
better cosmic ray removal (or both). A standard data reduction script was written
for each of these cases and is described here briefly.

In the SNAPSHOT case, cosmic ray rejection was first performed on each
individual exposure using the IRAF task LACOSMIC (van Dokkum, 2001). The
cleaned images were then combined with the task CRREJ, which also served to
remove residual cosmic ray hits. Background counts subtracted from each of the
WEFPC2 chips were noted and used in later photometric calculations. The WFPC2
chips were combined using the IRAF task WMOSAIC.

For the multiple dithered exposures, the data were reduced using the IRAF
package DRIZZLE (Fruchter & Hook, 2002) with a fixed parameter set. In par-
ticular, the final pixel size (represented by the DRIZZLE.SCALE parameter) was set
to 0.5 resulting in a pixel size half that of the original image. The drizzled “drop”

size (represented by the DRIZZLE.PIXFRAC parameter) was set to 0.8 regardless of
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Figure 4.2: An example of galaxy subtraction performed to secure photometry and
length to width ratio for the arcs in Abell 383. Although the galaxy subtraction
process leaves tangentially-oriented residuals, these are easily distinguished from
true arc candidates by visual inspection. Radial arc candidates will not generally

be confused with these residuals.
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the observational program. The final images of the WFPC2 chips were combined
using the IRAF task GPREP. The sky background determined for each WFPC2
chip was again noted for later photometric use.

To aid in locating radial arcs, which are often buried in the halo of the BCG,
we also examined images after subtracting the (assumed symmetrical) light of the
most luminous galaxies (usually but not always just the central member). In order
to do this, we employed the IRAF task ELLIPSE allowing both the position angle
and ellipticity of the fitted isophotes to vary as a function of semi-major axis. We
discuss in §3.1, §3.2, and §3.3 how the galaxy subtraction and residuals might affect

arc identification, photometry, and derived length to width ratios, respectively.

4.3 The Arc Sample

In this section we discuss how the sample of tangential and radial arcs were iden-
tified in a consistent manner from the reduced data. The resulting catalog is

presented in Table 4.4 in the Appendix.

4.3.1 Arc Identification

Each mosaiced image was visually examined for lensed features by one of the
authors (DJS), both in its original and bright galaxy-subtracted incarnations. A
candidate gravitational arc was designated according to one of two categories:
tangential or radial arc. The distinction between tangential and radial arcs is
determined by the arc orientation with respect to the cluster center (assumed to
be roughly coincident with the dominant BCG) and is rarely ambiguous, even in
bi- or multi-modal clusters. Twenty-five of the HST clusters were also examined
by one other author (TT). Within this subsample, DJS found 2 radial and 37
tangential arcs with a L/W >7 (see §4.4.1 for justification of this L/W criterion),
while TT found 2 radial and 41 tangential arcs, resulting in arc number ratios of
0.05470-0%" and 0.04970-0% | respectively. Thirty-six of the tangential arcs and both

of the radial arcs were in common between the two samples. Given the consistency
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between these measurements, we conclude that our results are not sensitive to the
person doing the identification.

A serious concern given our motivation to measure the ratio of the radial to
tangential arcs, is the likelihood that radial arcs are harder to locate in the noisier
region underneath the envelope of the brightest cluster galaxy. Taking the ten
cluster Smith sample (see § 4.2.1) as an example, we find the rms background
noise to be 1.5 to 3 times higher in the central regions after galaxy subtraction
than in the periphery of the WFPC2 fields appropriate for the identification of
tangential arcs. To investigate the bias this might cause in the preferential loss
of radial arcs at a given image surface brightness, we re-examined the selection of
tangential arcs after artificially increasing the background noise by a factor 3. Of
the 38 tangential arcs (with L/W >7) observed in the Smith sample (see Table 4.2),
32 were still identifiable as arcs after the background noise was increased. This
implies that ~20% more radial arcs would be found if they were looked for at an
identical surface brightness limit as the tangential arc population. On its own, this
systematic effect does not affect our conclusions on the mean dark matter density
profile in this cluster sample, as will be shown in § 4.5.

When searching for radial arcs, our strategy of examining images after central
galaxy subtraction is best suited for the case of a single, dominant central galaxy.
However, eight clusters in our sample contain multiple bright galaxies in their core
for which our central galaxy subtraction technique is less effective. The conser-
vative results presented in § 4.5 do not change within the uncertainties if these
clusters are excluded from our study. The photometric properties and length-to-
width ratio (L/W) of arcs found in these clusters are also less certain than those

found in clusters dominated by a single central galaxy (see Table 4.4 for details).

4.3.2 Arc Photometry

Photometric magnitudes were measured for all candidate arcs. This is a complex
task for two reasons. First, arcs are by definition often highly distorted, making

them poorly-suited to automatic source identification codes such as SEXTRACTOR
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(Bertin & Arnouts, 1996). Second, contamination from bright, nearby galaxies can
affect the result, particularly for the radial arcs buried in galaxy halos.

Our procedure was as follows. Polygonal apertures were determined for each
arc using the IRAF task POLYMARK. Additionally, all possible galaxy interlopers
were digitally subtracted with ELLIPSE (in addition to the BCG; see § 4.2.2), as
illustrated for Abell 383 in Figure 4.2. In order to measure the photometric uncer-
tainties, a master “sky” frame was made by summing the initial sky subtraction of
the image (see § 4.2.2) and the subtracted contaminating galaxies. Identical aper-
tures were applied to both the “sky” frame and the object frames to determine
the magnitude and associated uncertainty for each arc.

The subtraction of flux from cluster galaxies adjacent to an arc is not a perfect
process. The subtraction of these galaxies leaves residuals which typically appear
as thin (< 2—3 pixels), tangentially oriented features (see Figure 4.2). Fortunately,
upon close inspection these are readily distinguished from true gravitational arcs.
Other residuals arise from nearby WFPC2 chip boundaries, tidal features in the
cluster, double nuclei in BCGs, dust-lanes, and spiral arms. Those arc candidates
whose photometry appears to have been compromised due to such residuals are
flagged in Table 4.4 in the Appendix. Both the photometry and measured L/W
for these flagged objects are more uncertain than the formal uncertainty listed in

the table.

4.3.3 Arc Length-to-Width Ratio

The arc length-to-width ratio (L/W) is often used for characterizing how strongly
a source has been lensed. Limiting our arc sample according to some L/W cri-
terion provides a means for undertaking comparisons with earlier work and with
theoretical predictions (e.g. Bartelmann & Weiss 1994).

In practice, we measured L/W ratios at three different signal to noise per pixel
thresholds: 2.0,1.5 and 1.0. The mean and rms of these three measurements is given
in Table 4.4. All L/W measurements were done on the polygonal apertures used

for photometry, limiting the possibility of contamination from nearby sources, and
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also limiting the chances of a very spurious L /W measurement. In the case where a
cluster has multi-band data, the final L/W ratio is the mean found across the bands
and the uncertainty includes measures in all bands. Arc lengths are measured by
first finding the intensity weighted centroid of the arc within the same polygonal
aperture that was used to obtain photometry. From there, the pixel furthest from
the arc centroid above the threshold S/N is calculated. Finally, the pixel (above
the S/N threshold) furthest from this pixel is found. The final arc length is the
sum of the two line segments connecting these three points. The width is simply
the ratio of the contiguous area above the S/N threshold to the length. If the arc
width was found to be <0”3 (the typical WFPC2 PSF is ~0”15), then the feature
was determined to be unresolved in that direction. In this case, the measured L/W
is a lower limit (with the width set to (3) as noted in Table 4.4. As discussed
in the arc photometry subsection, there are several arcs whose L/W measurement
was possibly compromised due to residuals from the galaxy subtraction technique,
and these arcs have been flagged in Table 4.4.

Because this is the first systematic search for radial arcs, all candidates are
presented in Table 4.4 with an accompanying finding chart in Figure 4.9, regardless
of their L/W. For the tangential arcs, only those with L/W > 7 are presented,
unless there is a spectroscopically-confirmed redshift in the literature (even though

these arcs were not used in our final analysis, § 4.5).

4.3.4 Spectroscopic Follow-Up

To gauge possible contamination of the radial arc candidate list by non-lensed
sources, we have undertaken a limited Keck spectroscopic campaign as part of our
quest to obtain deep spectroscopy of lensed systems for detailed individual study
(Sand et al., 2002, 2004). Possible sources of contamination in the arc candidate list
include optical jets and cooling flow features associated with the central cluster
galaxy and foreground edge-on disk galaxies. A summary of the spectroscopic
results are given in Table 4.1. In this table we also present a compilation of

spectroscopic redshifts for several tangential arcs (those which have not yet been
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published). The new arc spectra are shown in Figure 4.3.

Table 4.1: New Spectroscopic Observations

Cluster Date Target Instrument  Exposure  Redshift Notes
time (ks)
Abell 2259 July 27, 2001 Tan Arc ESI 7.2 1.477 Arc Al
MS 1455 July 27, 2001 Rad Arc Cand ESI 4.5 - Not lensed
Abell 370 Oct 19, 2001 Rad Arc LRIS 7.2 - No detection
Abell 1835 April 11, 2002 Rad Arc ESI 1.8 - No detection
Abell 963 Nov 22, 2003 Tan Arc LRIS 7.2 1.958 Arc H1
GC0848+44 Feb 22, 2004 Rad Arc LRIS 3.0 - Faint Cont.
Abell 773 Feb 22, 2004 Tan Arc LRIS 5.4 1.114 Arc F11
GC 1444 July 19, 2004 Rad Arc ESI 7.2 1.151 Arc A1
3c435a July 19, 2004 Rad Arc Cand ESI 5.4 - Not lensed
Abell 2667 July 19, 2004 Rad Arc Cand ESI 3.6 - Not lensed
Abell 2667 July 19, 2004 Tan Arc ESI 3.6 1.034 Arc Al
AC 118 July 19,20, 2004 2 Rad Arc ESI 4.6/7.2 - Faint Cont.
MS 0440 Dec 12, 2004 Rad Arc LRIS 5.4 - No detection; arc A17
IRAS 0910 Dec 12, 2004 Rad Arc LRIS 0.6 - Not lensed
3c220 Dec 12, 2004 Rad Arc LRIS 2.4 - Not lensed
R0451 Dec 13, 2004 Tan Arc LRIS 3.6 2.007 Arc A1
RCS0224 Dec 13, 2004 Rad Arc LRIS 5.4 1.050 Arc R1

Discussing the radial arc candidates in more detail:

o GC 1444 € RCS 0224: These are the new radial arc redshifts presented in

this work, based on single emission lines assumed to be O[II]. Both radial

arc candidates have continuum blueward of the emission line making its

interpretation as Lya unlikely.

o Abell 870, Abell 773, GC0848, Abell 1835, MS0440 and AC118: The spectra

of these radial arc candidates were inconclusive. The spectrum was either

faint and featureless or not detected at all. Note that spectra were taken for

two radial arc candidates in AC118 (Al and A2). The spectral coverage of

all observations was continuous between ~4000 and 10,000 A.

o MS 1455, 3¢4835a, 3¢220, IRAS 0910 € A2667: These radial arc candidates

are sources at the cluster redshift. The spectra exhibit numerous emission
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lines including: [OII], Hy, HB, [OIII] 4959 and 5007, [O I] 6300 and 6363,
[NII] 6548, He, [N II] 6583, and [SII] 6716 and 6731. These features each

have velocity structures that can span hundreds of kilometers per second.

In addition to the spectroscopy presented in Sand et al. (2002, 2004), we have
now attempted spectroscopic verification for 17 candidate radial arcs. Five spectra
are consistent with the lensing hypothesis (Abell 383, MS2137, GC1444, RCS0224
(arc R1) and RXJ1133), seven are inconclusive (Abell 370, Abell 773, GC0848,
Abell 1835, MS0440 and two arcs in AC118), and five turn out to be spectroscopi-
cally coincident with the cluster redshift (MS1455, 3c435a, 3¢220, IRAS 0910 and
A2667).

Although not all radial candidates selected for Keck spectroscopy have
L/W >T7, it is fair to assume this sample is representative of the archive catalog
list, since targets were selected on availability at the telescope (e.g. RA & DEC)
and not towards arcs with any specific quality. A key issue, however, in deriving
a contamination fraction is the question of the identity of those candidate radial
arcs whose nature we were unable to confirm. Most likely these are either optical
synchrotron jets associated with the BCG (which would have featureless spectra)
or 1< z <2 lensed systems with a weak absorption line spectrum. Based on our
current spectroscopy, we estimate that at least ~30% of the radial arc candidates
are likely to be non-lensed features. If we assume that half of the inconclusive
spectra are also contaminants, then the fraction would increase to ~50%. The
basic conclusions of this paper regarding the mean inner DM density slope are not
sensitive to even a ~50% decrease in the total number of radial arcs.

New redshifts were obtained for five tangential arc systems and are summarized
in Table 4.1. One comment is warranted concerning the redshift of the southern
arc in Abell 963. After considerable effort, an absorption line redshift (2=1.958)
was finally obtained for this low surface brightness feature (H1 in Smith et al. 2005)
using the blue arm of LRIS on Keck I. Another portion of the southern arc (H2)
seems to have a similar spectrum but of lower S/N. The redshift and brightness

of arc Al in R0451 are interesting. At z = 2.007 and F'6061/ = 20.24 + 0.03, this
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object is of similar brightness as the highly magnified Lyman break galaxy cB58.

4.3.5 Arc Statistics: A Summary

To summarize, using the archive of HST/WFPC2 galaxy clusters, we have vi-
sually identified candidate gravitationally lensed features, performed appropriate
photometry, and measured the L/W ratios. The arc catalog is presented in the Ap-
pendix as Table 4.4, along with published redshifts where available (or if presented
in this work).

As this is the first systematic search for radial arcs, we list all such fea-
tures found in Table 4.4 and provide finding charts in Figure 4.9. The charts
present the original HST image and a galaxy-subtracted version. In the case of
the tangential arcs, since our subsequent analysis (§4 and §5) will focus only on
those with L/W >7, we only list those which either have a measured redshift or
L/W >7. Candidate arcs demonstrated spectroscopically to be foreground non-
lensed sources are not included. However, where the spectroscopy is inconclusive,
the candidates are retained. Offsets from the brightest cluster galaxy are provided
in Table 4.4 to aid in their identification.

As discussed in §4, our statistical analysis will be based on both radial and
tangential arcs with L/WW >7. In the total cluster sample we have found 12
radial arc candidates and 104 tangential arc candidates out of a total sample of
128 galaxy clusters. In Table 4.2 we summarize the arc statistics for both the
total sample and those subsamples introduced in §2.1. The 68% confidence range
for the radial to tangential number ratio was computed using binomial statistics,
appropriate for small number event ratios (Gehrels, 1986). It is reassuring that the
total sample and subsamples give similar results for this ratio, since this implies
that the heterogeneous selection of clusters inherent in our analysis of the archival

data is unlikely to be a dominant uncertainty.
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Figure 4.3: New gravitational arc redshift measurements. The new radial arc
redshifts are in GC1444 and R0451. A smoothed version of the arc spectrums in
Abell 963 and R0451 are also pesented so that the weak absorption features can

be more readily discerned.
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Table 4.2: Summary of Giant Arcs with L/W > 7

Cluster No. of Tangential Radial Ratio R/T 68% Confidence Range

Sample Clusters

Edge 44 15 4 0.27 0.13-0.53
Smith 10 38 1 0.03 0.005-0.09
EMSS 12 13 2 0.15 0.05-0.40
Total 128 104 12 0.12 0.08-0.16

4.4 Deriving Mass Distributions from Arc Statistics

In this section we discuss our methodology for calculating the expected number
ratio of radial to tangential arcs, which is based on the precepts developed by
002 (84.1). We will include the effect of the finite source size of the radial arc
sources into our calculation, confirming that this is a significant contributor to the
radial arc cross section which ultimately affects the deduced inner DM slope. We
introduce our mass model in §4.2 and show further that the effects of a central
BCG are also significant. In §4.3 we summarize those systematics that have been
studied in previous analyses. Finally, in §4.4 we show how we use the arc cross
sections to deduce the number ratio of radial to tangential arcs. Utilizing the tools

presented in this section, we will place constraints on the inner DM profile in §5.

4.4.1 Methodology

We follow the prescription presented by Q02 for calculating the expected number
ratio of radial to tangential arcs. The lens equation is given by (e.g. Schneider

et al. 1992)

m(z)

y=z—ax) =z — (4.1)

X

where y and x are scaled radii in the source and lens plane, respectively. Through-

out this work, we choose the generalized-NFW scale radius, rs., as our scaling



115

radius, meaning that x = R/rs. and y = nD;/(rs.Ds). The deflection angle, a, is
determined by the mass distribution of the lens where the quantity m(z) is defined

by

mi@) =2 [ dyx(y)y (4.2)

The quantity m(z) is proportional to the mass inside projected radius z, and k(z)

is the surface mass density scaled by the critical surface mass density, .,

k(R) = M (4.3)
ZCT
where
2 D,
cr — 4.4
4G DlDls ( )

and D;, D;s, and Dy are the angular diameter distance to the lens, between the
lens and source and to the source, respectively.
With these definitions, the two eigenvalues of the Jacobian mapping between

the source and image plane can be written as

Ar=1-—
dx

D=1 (4.5)

The root of these two equations describes the radial and tangential critical curves
of the lens. Since the magnification of the source is equal to the inverse of the
determinant of the Jacobian, the radial and tangential critical curves define regions
where the magnification of the source formally diverges. For a simple spherical lens,
an infinitesimal source at z in the image plane is stretched by a factor pu; = 1/ in
the tangential direction and p, = 1/, in the radial direction. For an infinitesimal
source, the cross section for either a radial or tangential arc is then simply the area

in the source plane where

> € (4.6)
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Figure 4.4: An illustration of how the tangential arc cross section is found with a
1.0 x 105 M, NFW (8 = 1.0) profile at z=0.3 with a background at z=1.0. The x
and y positions corresponding to a tangentially oriented axis ratio (L/W) greater
than 7. The value of y_ or y, with the largest absolute value is used in Eqn. 4.8

for calculating the cross-section.
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(=)
Tle) = ‘NT(£)

> € (4.7)

with € being the minimum arc axis ratio to be considered. 002 demonstrates that
only for € > 7 is the ratio of radial to tangential arcs relatively robust with respect
to systematic uncertainties such as source and lens ellipticity (see § 4.4.3). Even
then, the finite source size of radial arcs must be taken into account. Throughout
this work we will only consider situations in which € > 7, corresponding to L/W >
7.

As in 002, we first take the source size to be small for typical tangential arcs
and so use Equation 4.7 directly (see e.g. Hattori, Watanabe, & Yamashita 1997 for
justification and Figure 5; left panel of O02). Then the cross section for tangential

arcs is

), (4.8)

rscDg 2
Otan = T D (max(‘yt,+’7 ‘yty_
L

where y; + and y;_ correspond to the position on either side of the tangential
caustic which satisfies Equation 4.7. Figure 4.4 illustrates the situation.

We now consider the effect of the finite source size for the radial arc sources.
Useful diagrams for illustrating the relevant geometry are provided in Figures 1
and 2 of 002, and we will adopt the nomenclature and procedure of that work. We
assume that the sources are circular with a finite radius, and consider situations
where the source touches, crosses, or lies within the radial caustic. Figure 4.5
illustrates the dramatic effect that the finite source size can have on the radial arc
cross section.

To allow for this important effect, we require the true (unlensed) size distribu-
tion of a representative sample of z ~1-1.5 galaxies typical of those being lensed
by our clusters. Fortunately, a z ~1.4 size distribution has been presented by
Ferguson et al. (2004) based on the GOODS survey (see Figure 2; top panel, of
that work), and we will adopt this for the remainder of our analysis. Galaxy sizes

in this redshift bin were found to have half-light radii (which we will take as the
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Figure 4.5: The radial arc cross section as a function of source size. Shown are
models with 1.0 x 10" M in DM with profile slopes 3=1.5 and various reasonable
BCG masses included. The lens redshift is at z = 0.2 and the background redshift
isat z = 1.4. See § 4.4.2 for a description of the mass models used. Given the
strong radial arc cross section dependence, we adopt the z~1.4 size distribution of

Ferguson et al. (2004) taken from the GOODS fields.
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radius of our sources) between ~(//2 and ~1”1 with the peak of the distribution
at ~0”7. We shall show later that the arc number ratio is relatively insensitive
to source redshift, making this redshift bin choice unimportant (although it does

roughly correspond to that observed for typical arcs in our sample).

4.4.2 Mass Models

For the density profiles of our clusters we will adopt a simple, spherically symmetric
two-component mass model. The simplicity of this model is justified by 002,
who showed that the number ratio is a relatively robust quantity with respect to
ellipticities in the cluster mass distribution (see § 4.4.3).

The adopted model comprises the DM halo of the galaxy cluster (as represented
by the gNFW profile) and a luminous baryonic component, representing the central
cluster galaxy. Previous work on constraining the inner DM slope 3 through the
number ratio of arcs neglected the possibly important contribution of the BCG
luminous component or concluded that the effects are small (Molikawa & Hattori,
2001). Given that most of the radial arcs found in our sample are buried in the
halos of a bright, centrally located galaxy (or a compact group of galaxies), it
seems appropriate to revisit this assumption. For example, it has been shown
numerically and theoretically (Meneghetti et al., 2003a) that the central cluster
galaxy can increase the cross section for radial gravitational arcs significantly,

especially if the underlying DM halo slope is shallow.

Dark Component
The cluster DM halo is modeled as

. pe(2)0c
P) = P L+ ()7

which represents a generalization of the numerically-simulated CDM halos, where

(4.9)

pe s the critical density and é. is a scaling factor. This density profile asymptotes

to p x r=8 at r < ry and p X r~3 at r > ry. For values of 3 = 1,1.5, the
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Figure 4.6: The radial to tangential cross section ratio as a function of background
source redshift while varying the concentration parameter of the DM halo by +1-0
as prescribed by Bullock et al. (2001). Shown are models with 1.0 x 10® M, in
DM with §=1.5 at a lens redshift z = 0.2. The assumed radial arc source size
distribution is that found by Ferguson et al. Note that the cross section ratio is

relatively constant as a function of background source redshift.
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DM density profile is identical to that found by NFW and nearly identical to
that of Moore et al. (1998), respectively. Using this general form for the DM halo
allows for comparison to earlier numerical results, although the latest generation of
DM halo simulations indicates that the DM profile may not converge to a simple
asymptotic slope (e.g. Power et al. 2003; Tasitsiomi et al. 2004). Basic lensing
relations for the gNFW form have been presented elsewhere (e.g. Wyithe et al.
2001).

The profile of the DM halo is characterized further by the concentration pa-
rameter, ¢y;.. In this work we follow O02 and Oguri et al. (2001) in determining
the critical parameters of the mean DM halo for a given mass. Following Bullock
et al. (2001) in characterizing the median and scatter in concentration parameters

for a given mass, we use

Cyir = Tvir’ (410)
T'sc
Cyir = (2 - ,8)6_2, (411)
where
8 Mm’r )—0.13
= : 412
2 1+ Ziens (1014h_1M® ( )

where the factor of (2 — 3) generalizes the situation to 5 # 1 (Keeton & Madau,
2001). From this relation, it is possible to calculate both 7. and d. for a typical
halo of a given mass and inner DM density slope.

As Bullock et al. and others have found, there is significant scatter around
the median value of the concentration parameter. Taking Equation 4.12 and using
the Bullock et al. 1-0 dispersion around the median value of the concentration

parameter

A(loge_3) = 0.18 (4.13)

we have investigated the effect of a varying value of ¢, (Figure 4.6). As can
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Figure 4.7: The radial to tangential arc cross section ratio as a function of back-
ground source redshift while varying the BCG mass and inner slope of the DM
profile. The assumed radial arc source size distribution is that found by Ferguson
et al. which we assumed stays constant throughout the relevant source redshift
range. Shown are models with 1.0 x 10® My in DM at a lens redshift z = 0.2.
Note that the $=1.0 and #=1.5 models with a 103M, BCG have expected arc

number ratios within a factor of few of each other.
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be seen, the arc cross section ratio can vary by an order of magnitude between
low and high concentration halos of the same mass and inner slope. For this
reason, the dispersion in halo concentrations will be taken into account when we
present our results in §5. It is important to note that the cross section ratio across

concentrations is relatively constant as a function of source redshift (see § 4.4.4).

Luminous Component

Nearly all of the radial arc candidates discovered in our HST search were either
buried in the halo of a central BCG or that of a compact multi-galaxy core. It thus
seems reasonable to include a luminous baryonic mass component in our model.

We used a Hernquist (1990) mass density profile

Mirg

" 2mr(rg + 1) (4.14)

pu(r)

with total mass M and R. = 1.8153ry. The Hernquist luminous density dis-
tribution is found to be a good representation of actual BCGs (see e.g. Sand
et al. 2004). Throughout this work we choose R.=25 kpc which is a typical BCG
effective radius (e.g. Gonzalez et al. 2005).

Figure 4.7 illustrates the significant effect that adding a massive central galaxy
can have on the arc ratio. A major degeneracy can be seen. The expected cross
section ratio is similar for both a $=1.0 and $=1.5 DM halo if a 10'3M, BCG
is inserted. Note again that the arc cross section ratio is a relatively constant
function of the background redshift for a given mass model. We also experimented
with different values for the BCG effective radius (15< R, <45 kpc) and found
that the resulting number ratio varies by a factor of ~5. Clearly the more precise
the information on the mass of the BCG, the more useful will be the constraints

on the DM profile.



124

4.4.3 Summary of Systematic Effects

Here we summarize the model assumptions which affect our subsequent analysis.
The most thorough earlier investigation was by O02. Oguri considered the effect
of finite source size, lens ellipticity, and mass dependence of the cluster lens.

The finite source size greatly affects the radial arc cross-section and 002 intro-
duced an analytic formalism to correct for this. This analytic formalism reproduces
well the expectation from numerical simulations and is used throughout this work.
The tangential arc cross section, on the other hand, changes relatively little as a
function of finite source size, particularly for the L/W >7 condition considered
here (e.g. 002; Figure 5). Accordingly, no correction was made.

Lens ellipticity primarily changes the absolute number of arcs (see also Bartel-
mann et al. 1998). For a minimum axis ratio of L/W =7, the arc ratio changes
only by a factor of order unity. Likewise, while changing the mass of the galaxy
cluster has large consequences for the absolute number of arcs expected, the effect
on the ratio of radial to tangential arcs for our minimum axial ratio is also small.

It is for these reasons that the arc ratio is an attractive statistic. No prior
knowledge of the cluster mass is necessary and relatively heterogeneous samples
(such as the current HST sample) may be used to find the average density profile.

Keeton (2001) studied the effect of source ellipticity on the number ratio of
arcs. The basic conclusion of this work was that the ratio of radial to tangential
arcs decreases with increasing source ellipticity. The size of the effect is a factor
of order unity. For the purposes of the present paper where we are applying the
arc number ratio test on the first observational sample of radial arcs, we will not

consider the effects of source ellipticity.

4.4.4 The Arc Number Ratio

Thus far we have presented predictions in terms of the ratio of arc cross sec-
tions. We now take the final step towards a comparison with the observations by

determining the number ratio. To do this, for a given mass, inner DM slope, con-
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Figure 4.8: Constraints on the inner DM profile, 3, as a function of the BCG mass
(or BCG mass fraction, f,, see text for details). The narrow and wider hashed
horizontal bars represent respectively 68% confidence limits on the observed arc
number ratio for the total sample and the range in such limits for the individual
cluster sub-samples. The other band represents the range of theoretical predictions
if the concentration parameter is changed by +1 — o for our fiducial cluster model.
The left two panels span the BCG mass range found in the detailed analysis of
Sand et al. (2004). Virtually no constraint on 3 is found if the typical BCG mass
is higher than 5 x 1012Mg, (f. = 0.005).

centration parameter, and redshift, it is necessary to integrate the product of the
cross section and the number density of galaxies over some range in background
(source) redshift.

Since the arc cross section ratio is largely independent of source redshift (see
Figures 4.6 and 4.7), the expected number ratio of radial to tangential arcs should
be well-represented by the ratio of their cross sections, for a given halo model.
Moreover, the ratio is also fairly insensitive to the mass of the underlying galaxy
cluster. Therefore, with a single reasonable fiducial model of fixed mass, lens
redshift,and source redshift we can obtain constraints on the DM inner slope for
the average galaxy cluster in our sample.

It is not clear whether magnification bias will be significant in our survey.
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Our visually-based search method is not likely to be flux-limited; it is largely the
persistence of a relatively high contiguous surface brightness signal that is noticed
by a human searcher. As lensing conserves surface brightness, our arc search should
not be unduly affected by magnification bias. Miralda-Escude (1993) discusses the
possible magnification bias in arc searches and notes these may be significant in
data affected by ground-based seeing. Given the improved point spread function
of HST, it seems safe to conclude that our search for resolved arcs is effectively

surface brightness limited.

4.5 Results

In this section we compare the observed arc number ratio with theoretical predic-
tions based on the methodology presented in § 4.4 and derive the first statistical
constraints on the inner slope § of the DM distribution. We discuss the remaining

sources of observational error and review the prospects for reducing their effect.

4.5.1 Constraints on the Inner DM Slope and the Role of the
BCG

Taking the formalism presented in §4.4, we now calculate the expected number
ratio of radial to tangential arcs as a function of the DM inner slope, 3, for a
two-component mass model. We assume a fiducial model representing the typical
galaxy cluster in our sample with Mpy;=1x 1015M® at 27ens=0.2 and a background
at Zsource=1.4. As discussed, we used the background size distribution from Fer-
guson et al. in order to calculate the radial arc cross section. We re-evaluate the
concentration parameter c,;., according to Equations 4.11 and 4.12 at each value
of 3.

We present our constraints on the inner DM slope, (3, in Figure 4.8. The
two horizontal hatched bands represent two estimates of the uncertainty in our
measured radial to tangential arc number ratio. The inner, tightly hatched band

represents the 68% confidence limit on the ratio across the total, heterogenous,
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archival sample. The outer horizontal band represents the maximum range of
the 68% confidence regions amongst the cluster subsamples presented in § 4.2.1
(see Table 4.2). Although this enlarged region may not take into account possible
systematics associated with identifying arcs in each sub-sample, it probably gives
a reasonably cautious upper limit on the uncertainties in the number ratio. The
other, diagonally oriented band (with horizontal hatches) in each panel shows the
predicted values of the number ratio for our fiducial cluster, taking into account the
expected 1-o dispersion of the concentration parameter according to Equation 4.13,
given different BCG masses.

The various panels in Figure 4.8 represent different assumed values for the
mean stellar mass of the BCG, recognizing that this is a key variable. The left
two panels span the range of stellar masses (5x 10 < Mg < 2x10'?) derived by
quantitative dynamical and photometric analysis in the sample studied by Sand
et al. (2004). The two right-most panels represent more extreme stellar masses,
the third (5x10'2 M) being within the likely range, and the fourth (1x1013Mg)
somewhat extreme. Also noted in the panels of Figure 4.8 is the BCG to DM mass
fraction, f., which is an alternative way to parameterize the importance of the
BCG for calculating the arc number ratio.

Depending on the mean BCG stellar mass, very different conclusions can be
drawn about the DM profile. If the Sand et al. (2004) sample is representative
of the archive sample discussed here, the constraints on the inner DM slope are
reasonably tight with 1.2 < 8 < 1.6 for the total sample (and 0.7 < 8 < 1.7
for the range spanned by the individual subsamples). In this case, it would be
reasonable to conclude the sample is consistent with both NFW and the Moore
profiles given the uncertainties. However, if typical BCG masses are as high as
5x10'2M, we can only constrain the dark matter density profile to have 8 <1.3
(1.6 for the subsamples). If the mean BCG mass were as as high as 1013 M,,;, then
no acceptable solutions would be found unless the true ratio of radial to tangential
arcs was at the upper end of the range of observed values.

Even if precise stellar masses for each BCG were available, it is important to
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probe the sensitivity to the cluster properties. We thus explored the effect on
B of changing the fiducial cluster model, namely one with Mpy;=1x10° M at
Zlens=0.2. In fact, reducing the cluster mass to MDM:5><1014M® or changing the
redshift to zj¢,s=0.5 produces only a marginal change in the acceptable values of 3,
illustrating again that the arc number ratio is a robust tool if the BCG parameters

can be constrained.

4.5.2 Additional Uncertainties and Sample Selection Effects

Of the uncertainties discussed earlier, those relating to the identification and char-
acterization of the radial arcs through galaxy subtraction would lead to an under-
estimate of their true number (and hence the radial to tangential number ratio),
while contamination from non-lensed radially oriented objects would work in the
opposite direction. Remarkably, the total number of radial arcs would need to
change by nearly an order of magnitude for our conclusions on 3 to be significantly
altered. This, we believe, is highly unlikely given the tests we have performed.

For the tangential arcs, contamination may arise from chance alignment of
elongated foreground objects or tidal debris associated with galaxies merging with
the BCG. Spectroscopic identification of a large sample of arcs would be necessary
to understand this contamination rate in detail. However, none of the tangential
arcs identified in HST imaging and targeted in our Keck spectoscopic program
have turned out to be spurious. It seems safe to conclude that the contamination
rate is very low. As mentioned in § 4.3.1, the tangential arcs found independently
by two of the authors disagreed only at the ~10% level, providing an estimate of
the noise associated with visual identifications.

A further uncertainty related to our mass modeling technique is that arising
from cluster substructure. In common with previous studies, the modeling frame-
work presented in §4.4 assumes that clusters comprise a single central DM halo
spatially coincident with the BCG. However, Smith et al. (2005) show that 70%
of X-ray luminous cores in their sample (Table 3) are unrelaxed with ~20-60% of

the mass in structures not spatially coincident with the BCG.
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We explore the implications of possible substructure using the Smith sample.
Interestingly, the radial to tangential arc ratio in the Smith sample is lower than for
the other cluster samples which may arise from the substructure issues noted above.
To improve the statistics, we also considered the larger Edge sample which was
selected to be dominated by relaxed systems (Edge, private communication, see
§ 4.2.1). Contrasting the Edge (predominantly relaxed) and Smith (predominantly
unrelaxed) samples, we find the ratio rgpgr= 0.27153% and rsarrr= 0.031505s,
differing at the ~2—c level.

Conceivably, rgarrrm is depressed relative to rgpgr by the substructure
present in the Smith clusters. This idea is supported by numerical simulations
(Jing, 2001) which show that DM halos in equilibrium (relaxed) have higher typical
concentrations than DM halos out of equilibrium (unrelaxed). If true, this would
naturally explain the different arc ratios seen in the Smith and Edge samples, since
higher concentration halos yield higher arc number ratios (see Figure 4.6). In this
respect, the scatter between the subsamples, as indicated in Figure 4.8, may be a
reasonable measure of the effects of substructure.

This can also be understood in terms of lensing cross-sections (see similar
argument in Molikawa & Hattori 2001). Introducing irregularities (substructure)
into a cluster mass distribution generally increases the shear, 7. Because the
tangential critical line forms where 1 —x—+ = 0, increasing « pushes the tangential
arcs towards regions with lower x, i.e. further from the center of the cluster, and
thus the cross-section to tangential arc formation increases. The effect works in
the opposite sense for radial arcs, which form where 1 — k + v = 0. Additional
shear shifts radial arcs toward regions with higher k, i.e. closer to the center of
the cluster and thus reduces the cross-section to radial arc formation. Therefore,
clusters with significant substructure are expected to display a lower arc number
ratio than clusters that are more axisymmetric with little substructure.

It will be important to quantify this effect more rigorously in future experi-
ments that combine BCG mass estimates with arc number ratio measurements. A

key aspect of such work would be to study a large, well-defined sample of clus-
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ters (of order ~100) for which both homogeneous HST data and reliable cluster

substructure diagnostics are available.

4.6 Summary and Prospects

In this work we have undertaken a systematic search for gravitational arcs in
the HST/WFPC2 cluster archive. Because we digitally subtracted bright cluster
galaxies, this is the first arc survey which is sensitive to radial gravitational arcs.
Using this unique data set, we have attempted to place constraints on the inner
DM density slope, 3, for this sample of clusters.

The main results of the paper can be summarized as follows:

1. A careful search of the 128 galaxy clusters reveals 12 radial and 104 tangen-
tial arc candidates with a length-width ratio L/W >T7.

2. Taking the entire sample of galaxy clusters, we have constructed 3 smaller
subsamples: two based on X-ray properties and one with a roughly uniform optical
imaging depth. The arc number ratio is roughly consistent across all three samples
and confirms the hypothesis that the radial to tangential arc number ratio is a
relatively robust statistic with respect to intrinsic cluster properties.

3. Employing an analysis similar to that of O02, but with the important
addition of a BCG mass component, we have found that the observed arc number
ratio is consistent with a wide range of DM inner slopes (8 < 1.6), depending on
the assumed BCG mass.

The archive sample presented in this paper has illustrated a potentially power-
ful method of constraining the profile of dark matter in clusters. Although statis-
tical in nature, as with all gravitational lensing techniques, some assumptions are
necessary. We have argued that the ratio of the abundance of radial and tangen-
tial arcs minimizes many of these leaving the mass of the baryon-dominated BCG,
cluster substructure and sample uniformity as the key issues. All of these are,
in principle, tractable problems given sufficient data. We thus remain optimistic

that a valuable constraint on the distribution of DM slopes can be derived via the
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methods described in this paper given adequate observational effort.

4.7 Appendix

4.7.1 The Cluster Catalog

Here we present our HST/WFPC2 cluster catalog used to identify gravitational
arcs. The criteria for being included in the sample are detailed in § 4.2. For each
cluster entry, the redshift, RA & DEC, exposure time, filter, and X-ray luminosity
are listed. If the cluster is associated with one of the three cluster subsamples
present in § 4.2.1, it is noted as well. A cluster is flagged if it has an associated
arc which is presented in Table 4.4. The cluster RA & DEC are taken from the

HST world coordinate system directly at approximately the position of the BCG.

4.7.2 The Arc Catalog

Here we present the gravitational arc catalog derived from Table 4.3. For each arc,
the redshift (if available), magnitude, filter, length to width ratio, and offset from
the BCG are presented. Also noted is whether or not the arc is radial or tangential.
For the tangential arcs, only those with a L/W >7 are listed, unless they have a
spectroscopic redshift. For the radial arcs, all candidates are listed without regard
to their L/W value. Note that only those arcs with a L/W >7 are included in
the analysis presented in § 4.5. If possible, the arc nomenclature from previous
work has been adopted. Otherwise, an arc is labeled with the prefix A’ followed
by a sequential number. Those arcs whose photometry and measured L/W have
possibly been affected by poor galaxy subtraction are flagged (see discussion in

§4.3.2 and 4.3.3).

4.7.3 Radial Arc Finding Charts

Here we present finding charts for all clusters with candidate radial arcs, whether
or not the arc has a L/W >7. For each chart, the left panel is of the original

image, while the right panel is the BCG-subtracted image from which the radial
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arc was identified, along with a label corresponding to that presented in Table 4.4.
Note that for C10024 and A1689, no bright galaxies were removed in the finding
chart. Two finding charts are presented for MS0451 since one of the radial arcs
(A6) is associated with a bright elliptical away from the cluster center. No finding
charts were made of tangential arc candidates, although offsets from the BCG are
listed in Table 4.4. North is up and east is always towards the left hand side of

the page.
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Figure 4.9: Radial arc finding charts
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Table 4.3: WFPC2 Cluster Catalog

Cluster PID Zelus « 1) Exp. Filter Cluster
(J2000.0) (J2000.0) time (ks) Sample

A1t 8719 0.166 00 12 33.9 -16 28 06.9 0.8 606 1

Aciist 5701 0.308 00 14 20.6 -30 24 01.5 6.5 702

MS0016 5378 0.541 0018 33.6 41626 16.0 12.6/16.8 555/814 3

C10024 7% 5453  0.39 00 26 35.5  +17 09 50.7 23.4/19.8 450/814

Apst 8249 0.255 0037 06.8  +09 09 23.4 7.5 702 2

3cl6 6675 0.405 0037 45.4  +13 20 09.8 7.1 702

GC0054% 5378 0.560 00 56 56.9 -274029.6  12.6/16.8 555/814

PKS0101 6675 0.390 01 0424.1 40239 43.4 7.5 702

A209% 8249 0.206 01 31 52.6 -13 36 40.8 7.8 702 2

A267F 8249 0.230 0152419 +01 00 25.9 7.5 702 2

A291°F 8301 0.196 2 01 39.90 -02 11 39.7 0.8 606 1

GC0210 8131 0.270 02 10 26.0 -39 29 42.9 7.8 702

5c6.124% 6675 0.448 0216 40.9  +32 50 47.1 10.4 702

RCS0224%% 9135  0.77 0224 30.82  -00 02 27.8 13.2/6.6  606/814

GC0231 6000 0.607 0231427 400 48 41.0 15.3 606

A370t% 6003 0.375 02 39 53.1 -01 34 54.8 5.6 675

A383t1 8249 0.189 0248 03.3 -03 31 444 7.5 702 2

GC030518 5991  0.42 03 05 18.1 41728 24.9 2.1/2.4 606/814 3

GC03053% 5991  0.43 305 31.6 +17 10 03.1 2.1/2.4 606/814 3

GC0303 5378 0.420 0306 19.0 417 18 49.6 12.6 702

Cl0o317 7293 0.583 0320 00.8 415 31 50.1 2.6/2.5 555/814

GC0329 8131  0.45 0329 02.8 402 56 23.3 10.4 702

GC0337 7374 0.59 03 37 45.1 -25 22 35.8 11.0 702

GC0341 8131  0.44 03 41 59.1 -44 59 58.3 11.2 702

GC0412 5378  0.51 04 12 52.1 -65 50 48.5  12.6/14.7 555/814

RX J0439% 8719 0.245 0439 00.5  +07 16 09.5 04.1 606 1

M S0440't7 5402 0.190 04 43 09.7 402 10 19.5 22.2 702 3

RX J0451% 8719 0.430 0451 54.6  +00 06 19.3 1.0 606 1
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Cluster PID  z.us a J Exp. Filter Cluster
(J2000.0) (J2000.0) time (ks) Sample

M S0451t% 5987 0.55 04 54106 -03 00 50.7 10.4 702 3

GC0720 7374 0.268 072017.8 47132134 4.8 702

GC072056 8131 0.230 07 2053.8 +7108 59.3 5.2 702

A586 8301 0.170 07 3220.3 +31 38 00.1 0.8 606 1

PK 507451 7337 0.103 0747 31.3 -19 17 40.0 2.1/1.8 555/814

GC0818 8325 0.260 08 18 57.3  +56 54 24.5 7.2 702

GC0819 8325 0.226 0819 18.3 +70 55 04.6 6.9 702

RXJ0821 8301 0.109 08 2102.3 +07 51 47.3 0.6 606 1

A646 8301 0.127 0822 09.6 +47 05 52.5 0.6 606 1

4c + 551 8719 0.242 0834549 +553421.3 1.0 606 1

GC0841+64 7374 0.342 0841 07.6 +64 22 25.7 7.2 702

GC0841 8325 0.235 0841 44.1 +70 46 53.2 6.9 702

A697* 8301 0.282 084257.6 +362159.1 1.0 606 1

GC0848F 7374 0.570 08 48 48.0 +44 56 16.7 12.0 702

GC0848N'* 7374 0.543 08 48 49.3 444 55 48.2 12.0 702

GC0849 8325 0.240 0849 10.8 +37 31 08.1 7.8 702

72089 8301 0.235 09 00 36.8 +20 53 39.6 1.0 606 1

3c215 5988 0.411 09 06 31.8  +16 46 11.7 7.8/5.0 555/814

RXJ0911 8705 0.77 0911 26.5 40550 14.5 12.5/12.5 606/814

TRAS0910 6443 0.442 09 13455 +40 56 27.9 4.34 814

A773% 8249 0.217 0917535 +51441.0 7.2 702 2

AT95 8301 0.136 09 24 05.3 +14 10 21.0 0.6 606 1

3¢220% 6778 0.620 09 3240.1 +790628.9 11.4/11.5 555/814

GC0939 5378 0.407 09 43 03.0 +46 56 33.3 4.0/6.3 555/814

GC0943 6581 0.70 09 43 42.7 +48 05 03.1 20.2 702

A868* 8203 0.153 09 4526.4 -08 39 06.6 4.4 606

72701 8301 0.215 09 5249.1 +51 53 05.2 1.0 606 1

GC0952 6478  0.377 09 52 56.0 +43 55 28.8 7.0 555/814

GC0957 5979 0.390 100120.9 +555350.9 32.2/2.3 555/814

A963% 8249 0.206 1017 03.7 +39 02 49.2 7.8 702 2

A980 8719 0.158 1022284 +50 06 19.9 0.8 606 1
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Cluster PID Zelus a § Exp. Filter Cluster
(J2000.0) (J2000.0) time (ks) Sample
Z3146% 8301 0.291 1023 39.6 +04 11 10.8 1.0 606 1
A990 8301 0.142 1023 39.9 +49 08 37.9 0.6 606 1
Z3179% 8301 0.143 1025580 +124107.5 0.6 606 1
A1033 8301 0.126 10 31 44.3  +35 02 29.0 0.6 606 1
A1068 8301 0.139 10 40 44.4 +39 57 10.9 0.6 606 1
A10841 8301 0.133 1044 32.9  -07 04 08.0 0.6 606 1
5c210 5988 0.478 1052 36.1 +484001.2 10.8/5.3 555/814
A1201F 8719 0.151 1112545 +13 26 08.0 0.8 606 1
A1204 8301 0.171 1113205 +17 35 41.0 0.8 606 1
73916 8301 0.204 111421.8 +582319.8 1.0 606 1
A1246 8301 0.190 1123588 +21 28 46.2 0.8 606 1
RXJ113311 8719 0.394 1133 13.2 +50 08 40.8 1.0 606 1
MS1137% 6668/5987 0.782 11 40 22.3 466 08 14.1  13.8/14.4 606/814 3
A1366 8719 0.116 1144 36.9 +67 24 20.4 0.6 606 1
A1423 8719 0.213 115717.3 +33 36 40.1 1.0 606 1
GC1205 8131 0.35 120551.3 444 29 08.9 7.8 702
75247 8719 0.229 123417.6 09 45 58.6 1.0 606 1
GC1256 8131 0.232 1256 02.3 +25 56 36.7 4.4 702
5c12.251 6675 0.312 13 0551.7 +36 39 27.3 5.0 702
A16821% 8719 0.221 13 06 45.8  +46 33 30.4 1.0 606 1
3c281 5988 0.600 1307 54.0 40642 14.5  9.6/7.6  606/814
GC1309 8325 0.290 1309 56.2 +322213.0 7.8 702
A1689% 6004 0.183 1311294 -012028.7 44.2/6.0 555/814
GHO1322 6278 0.755 1324 47.2 43059 00.1 15.8/15.8 606/814
GC1322 5234 0571 1324489 3011393  80/16.0 606/814
GC1335 8131 0.382 1334 57.6 +37 50 29.9 7.8 702
A1763% 8249 0.223 13 3520.2 +41 00 04.6 7.8 702 2
GC1347 8131 0.470 13 48 00.9  +07 52 23.7 10.4 702
MS1358% 5989 0.33 135950.5 462 31 06.8 3.6 606,814 3
A1835H 8249 0.253 14 01 02.1  +02 52 42.3 7.5 702 2
GC1409 5378 0.460 1411 20.5 +52 12 09.6 12.6 702
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Cluster PID Zelus a § Exp. Filter Cluster
(J2000.0) (J2000.0) time (ks) Sample

A1902 8719 0.160 14 21 40.4  +37 17 30.5 0.8 606 1

A1914% 8301 0.170 14 25 56.7  +37 48 58.08 0.8 606 1

GC1444t 8325 0.298 14 44 06.8  +63 44 59.6 7.5 702

GC1446 5707 0.37 144931.2  +26 08 36.8 4.4 702

A1978 8719 0.147 1451 09.4  +14 36 43.7 0.8 606 1

M S1455% 8301 0.258 14 57 15.1  +22 20 34.9 1.0 606 1,3

A2009 8301 0.153 150019.5 +212210.7 0.8 606 1

MS1512F  6832/6003 0.372 1514 22.4 43636 21.0  10.4/5.8/19.8  555/675/814 3

A2125 7279 0.247 1541020 466 16 26.2 2.6/2.6 606,814

A2146 8301 0.234 1556 13.9 466 20 52.5 1.0 606 1

GC1601 5378 0.539 16 03 13.0  +42 45 50.7 16.8 702

RXJ1621.4 8719 0.465 1621 24.8  +38 10 09.0 1.0 606 1

MS16211% 6825 0.426 16 23 35.2  +26 34 28.2 4.6/4.6 555,814 3

A22041 8301 0.151 16 32 46.9  +05 34 33.1 0.8 606 1

GC1633 7374 0.239 1633 42.1 457 14 13.9 4.8 702

A2218% 5701/7343 0.176 16 35 49.3 466 12 43.5 8.4/6.5 606,702 2

A2219% 6488 0.225 16 40 19.8  +46 42 41.9 14.4 702 2

GC1648 8131 0.377 16 48 42.5 460 19 09.7 7.8 702

GC1701 8325 0.220 17 01 47.7  +64 21 00.5 7.5 702

GC1702 8325 0.224 170213.9  +64 19 54.2 7.5 702

A2254 8301 0.178 1717459  +19 40 49.1 0.8 606 1

78197 8301 0.114 1718121  +56 39 56.0 0.6 606 1

A2259% 8719 0.164 17209.7 42740 07.4 0.8 606 1

A22611 8301 0.224 1722272 43207 57.5 1.0 606 1

A229411 8301 0.178 1724126  +85 53 11.6 0.8 606 1

RXJ1750 8301 0.171 1750 16.9  +35 04 58.7 0.8 606 1

MS2053F  5991/6745  0.58 2056 21.4  -04 37 50.9 3.3/2.4/3.2  606/702/814 3

AC103 5701 0.311 2057 01.1  -64 39 47.2 6.5 702

3c435a 6675 0.471 2129055  -+07 33 00.2 12.8 702

RXJ2129 8301 0.235 2129 40.0 400 05 20.7 1.0 606 1

MS21378T 5991/5402  0.313 2140 14.9  -23 39 39.5 2.4/2.6/22.2  606/814/702 3
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Cluster PID Zelus a § Exp. Filter Cluster
(J2000.0) (J2000.0) time (ks) Sample

A2390% 5352 0.228 2153369 41741434 8.4/10.5 555/814

GC2157 6581 0.70 21 57 50.6  +03 48 47.3 18.8 702

A2409 8719 0.147 2200 52.6 420 58 09.7 0.8 606 1

Cl12244% 5352 0.330 22 47 12.2 -02 05 38.6 8.4/12.6 555/814

AC114tt 7201/5935  0.312 2258 48.3  -34 48 07.2 15.6/16.6 702/702

4c27.51 6675 0.319 2325004 42803114 5.2 702

A26671 8882 0.2264 23 5139.4 -26 0503.8 12.0/4.0/4.0 450/606/814

tCluster has a radial arc candidate {Cluster has a tangential arc candidate with L/W >7



Table 4.4: Arc List

Cluster Arc Label Zare ref. Mag Filter L/W A N” A E” Type
All Al 22.2440.11 606 3.5+0.2 -0.7 -1.7 R
AC118 Al 24.2940.19 702 9.4+1.2 2.0 -3.9 R
A2 24.55+0.27 702 12.14+1.4 -5.4 0.5 R
A3 24.331+0.21 702 10.4£0.9  -17.5 22.5 R
CL0024 At 1.675 1 21.304+0.02,20.32+0.02  450/814 4.440.2 -4.1 32.9 T
Bt 1.675 1 22.1940.02,21.614+0.03  450/814 3.7+0.7 -17.7 29.4 T
C 1.675 1 21.084+0.01,19.944+0.01  450/814 5.240.2 -29.0 19.8 T
D 1.675 1 22.134+0.03,21.354+0.03  450/814 4.6+0.1 11.9 -17.8 T
Et 1.675 1 23.24+0.03,20.984+0.01  450/814 2.640.1 -0.7 -3.9 R
Al 22.25+0.03,22.1840.05  450/814  11.39+2.4 22.5 -30.0 T
A2 23.4740.06,23.244+0.11  450/814 12.2+1.2 -47.3 -21.3 T
A3 23.631+0.06,22.17+0.04  450/814 8.6+0.5 -52.1 6.8 T
Aaqt 24.434+0.07,22.194+0.02  450/814 2.34+0.1 -0.9 6.4 R
A5 24.28+0.08,22.38+0.03  450/814 7.54+0.9 -2.7 60.9 T
A68 COabt 1.60 2 20.94+£0.04 702 9.6+0.7 2.3 7.7 T
COc 1.60 2 23.99+0.19 702 8.3+0.4 -15.9  -11.7 T
C4 2.625 3 22.82+0.07 702 6.240.6 -18.6 12.1 T
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Cluster Arc Label Zare z ref. Mag Filter L/W A N” A E” Type
C6/C20 21.7740.05 702 14.1+1.4 27.4 -32.3 T
C8 0.861 4 22.73+0.04 702 4.0+0.2 30.3 -46.6 T
c9 . . 23.78+0.14 702 7.240.4 37.4 -38.7 T
c12f 1.265 4 21.09+0.02 702 4.840.1 56.6 -28.8 T
C18 22.75+0.05 702 13.6+2.5 5.5 24.2 T
GC0054 Al 24.18+0.07;23.47+0.07  555/814 7.440.1 -3.2 14.1 T
A209 D1 21.6040.02 702 8.0+0.3 15.1 -16.4 T
A267 EO 23.90+0.17 702 8.7+0.9 23.3 12.6 T
A291 Al 23.1440.15 606 3.8+0.4 -1.2 0.2 R
5¢6.124 A1t 23.27+0.05 702 8.3+£0.4 1.40 1.5 T
RCS0224 C 4.879 12 24.22+40.24,22.114+0.06  606/814 15.61+3.7 -8.9 -12.4 T
R1 1.055 7 24.25+0.10,23.09+0.06  606,/814 5.34+0.9 -9.5 5.5 R
Alf 24.2640.10,24.944+0.4 606,/814 5.3+1.8 -1.5 -0.8 R
A2t 22.94+0.05,22.154+0.04  606/814 9.6+0.4 -6.1 7.9 T
A3 . 24.50+0.2,22.56+0.06  606/814 8.6+1.2 -14.5 -6.3 T
A370 Aot 0.724 25 18.9240.01 675 13.6£0.6 -47.3 3.7 T
Al 22.9140.13 675 32.4+12.2 18.0 -14.7 T
A2 23.134+0.13 675 19.6+4.9 21.8 -4.9 T

continued on next page

44!



Table 4.4 — continued from previous page

Cluster Arc Label Zare z ref. Mag Filter L/W A N” A E” Type
B2 0.806 26 22.93+0.06 675 4.7+0.1 -17.0 -3.9 T
B3 0.806 26 22.99+0.06 675 4.440.3 -17.9 -9.1 T
R1/R2t 22.224+0.05 675 7.0£0.4  -31.2 0.4 R
A383 B0a/Blabc/B4abc 1.01 5,6 20.224+0.02 702 16.3£0.9 -104 -12.0 T
BOb/Bld1L 1.01 5 22.69+0.11 702 20.2+3.3 2.6 1.8 R
BZab/B2c/B3a1L 22.10+0.05 702 17.44+1.5 -22.5 -4.3 T
B5 23.43£0.24 702 16.4+1.9 -15.6 8.7 T
B6 23.10+0.10 702 9.1+1.2 -6.4 13.9 T
B7 24.36+0.18 702 8.6+0.5 4.3 -18.7 T
B11 24.33+0.20 702 7.54+0.4 7.1 22.9 T
GC03053 Al 21.93+0.09,21.03+0.08  606/814 20.9+1.2 17.03  -6.39 T
GC0337 A1t . 23.65+0.08 702 9.3+0.7 -7.1 6.7 T
MS0440 A1t 0.5317 7 21.314+0.01 702 2.240.1 -7.3 18.9 T
A3t 22.5140.01 702 10.2+0.4 10.1 -20.4 T
A1e6t 20.67+0.01 702 2.940.1 4.8 4.7 R
Alrt 20.26+0.01 702 3.240.1 5.9 0.7 R
RXJ0451 Al 2.007 7 20.24+0.03 606 19.7£3.7  -3.8 38.0 T
A2 22.82+0.13 606 10.3+1.7 21.6 -18.6 T
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Cluster Arc Label Zare z ref. Mag Filter L/W A N” A E” Type
MS0451 Al 2.91 13 22.33£0.04 702 7.61+0.3 -4.2 31.5 T
A3t 24.48+0.20 702 9.2+1.4 -6.5 11.3 T
A4 22.48+0.03 702 7.240.2 11.9 -18.0 T
Ast 25.21+0.32 702 11.44+2.8 -1.7 1.7 R
A6 23.66+0.08 702 4.6+0.4 44.2 81.9 R
PKS0745 A 0.433 14 20.73+0.02;18.964+0.01  555/814  4.31+0.1 5.8 -18.3 T
4c+55 Al 21.04+£0.07 606 8.9+2.1 -13.0 -7.1 T
A697 Al 22.79+0.23 606 8.3+1.9 -20.6 -9.0 T
GCO0848N A/B/C 3.356 15 22.7140.04 702 8.8+0.7 2.0 -5.8 T
GC0848 Al 25.20+0.20 702 4.7+0.6 -0.3 -0.9 R
ATT3 Fof 0.650 22.14+0.05 702 15.5+0.9 -19.8  -16.3 T
F3t 0.398 4 21.21+£0.02 702 9.0£0.2 -17.7  -44.6 T
Faf 23.82+0.13 702 10.6+0.8 -30.2  -49.6 T
F9 21.58+0.03 702 9.8+0.3 -17.7 49.9 T
F11 1.114 22.86+0.06 702 9.5+0.5 13.0 48.1 T
F13 0.398 4 21.5240.03 702 6.6+0.4 -8.1 59.5 T
F16 23.76+0.09 702 4.6+0.3 -4.6 -8.4 R
F18 0.487 4 23.39+0.11 702 10.0£0.8 -10.4 53.2 T
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Cluster Arc Label Zare z ref. Mag Filter L/W A N” A E” Type
3c220 Al 1.49 16 22.30+0.04;21.364+0.03  555/814  10.1+0.1 8.6 0.4 T
A868 Al 22.28+0.05 606 16.8+£2.1 10.3 17.1 T
A2 24.58+0.23 606 8.5+0.8 9.9 26.6 T
A963 HO 0.771 8 22.25+0.06 702 15.3£1.7  12.2 -0.3 T
H1/H2/H3  1.958* 7 21.73£0.06 702 30.2+4.0 -17.9 -1.5 T
H5 23.2640.09 702 11.1+1.1 21.7 -4.8 T
Al 25.0340.30 702 8.0+1.1 15.1 14.7 T
73146 Al 23.55+0.30 606 11.0£3.1  -10.6 25.4 T
73179 Al 24.72+1.20 606 > 20.0 7.0 2.0 T
A1084 Al 23.81+0.58 606 20.3+6.2 0.5 -7.6 R
A1201 Al 0.451 9 20.35+0.03 606 7.84+0.7 1.8 -2.2 T
RXJ1133 Al 1.544 5 20.5440.03 606 12.4£2.0 -0.7 10.7 T
A2 1.544 5 21.56+0.05 606 7.0£0.7 3.3 -1.2 R
MS1137 Al 24.28+0.10,23.58+0.10  606/814  8.24+0.9 1.6 15.6 T
A2 24.48+0.14,24.414+0.28  606/814 > 12.4 17.9 4.8 T
A3 24.3740.12,26.83+1.79  606/814 > 7.7 -13.1 6.5 T
A1682 Al 25.17+1.15 606 8.3+3.5 3.3 -14 R
A2 22.284+0.11 606 25.3+5.7 3.8 -47.9 T
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Cluster Arc Label Zare 7z ref. Mag Filter L/W A N” A E” Type
A1689 At 23.40£0.02,21.9840.04  555/814  3.24+0.1 5.9 -14.3 R
16.21 23.52+0.03,22.124+0.05  555/814  3.6+0.1 -0.5 -9.8 R
25.11 24.184+0.05,22.51+0.07  555/814  4.4+0.2 -7.0 -14.8 R
5.1/5.21 22.49+0.02,21.0840.03  555/814  5.5+0.1 -18.7 -5.2 R
A2t 23.81+0.03,22.47+0.06  555/814  3.14+0.1 -21.0 0.8 R
Agt 23.04+0.03,22.47+0.06  555/814  6.940.1 9.6 9.8 R
19.11 23.04+0.01,22.2740.05 555/814  7.5+1.5 4.3 324 T
12.1 1.83 24.10+0.06,24.20+0.40  555/814  8.6+2.8 37.0 11.8 T
A3 24.10+0.05,24.02+0.32  555/814  10.0+3.8  45.9 -11.3 T
A4 23.09+0.02,22.844+0.13  555/814 15.3+£3.5  44.8 -12.3 T
13.1/13.2/13.3 23.53+0.08,22.55+0.21  555/814 30.6+£3.5  61.0 53.5 T
A5 24.25+0.09,22.72+0.13  555/814  7.6+1.9  -17.4 33.3 T
8.1/8.2/19.3/19.4 21.67+0.02,20.46+0.05 555/814 30.1£1.9 -31.5 36.7 T
1.1/2.1 3.05 22.35+0.02,21.514+0.06  555/814  13.8+1.9 31.7 -45.1 T
21.2f1 -,23.85+0.34 555/814 > 12.5 -16.6 18.9 R
29.2% 25.974+0.39,- 555/814 13.9+1.0  53.5 8.1 T
A6“ 24.64+0.08,- 555/814  12.14+0.7  41.0 31.9 T
A1763 J1 24.87+0.28 702 8.7+1.5 -5.9 14.1 T
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Cluster Arc Label Zare z ref. Mag Filter L/W A N” A E” Type
MS1358 B/Ci 4.92 17 22.1940.11 606,/814 14.941.6 -18.6 -11.7 T
A1835 Kof 24.10+0.13 702 6.1+0.3 7.2 -1.1 R
K2 23.45+0.11 702 7.7+0.7 -0.8 20.9 T
K3t 21.71+0.07 702 12.0£1.2  -20.8 23.3 T
A1914 Al 23.3540.20 606 > 14.3 -25.4 -11.8 T
GC1444 Al 1.151 7 23.8840.11 702 4.4%+0.5 1.2 0.8 R
MS1455 Al 21.66+0.08 606 15.6+6.6 8.9 17.9 T
MS1512 cBs58t 2.72 18 20.62+0.01;20.404+0.02;19.93+£0.01  555/675/814  4.140.2 4.6 -2.3 T
MS1621 A1t 25.1940.52;25.424+0.23 555/814 > 4.1 -1.5 -0.1 R
A2t 21.2140.03;22.101+0.04 555/814 8.91+0.1 34 3.5 T
A2204 Al 22.36+0.10 606 5.940.4 7.9 2.7 R
A2 22.56+0.09 606 6.0+0.4 34 -0.3 R
A2218 MObcd 0.702 23 21.0140.01,20.16+0.01 606/702 11.0+0.7 -16.6 12.7 T
M4* 1.034 23 20.25+0.02 606/702 15.3+£1.0 -53.2 35.9 T
M1lab 2.515 24 21.3340.02,20.824+0.02 606,/702 6.5+0.7 22.4 0.9 T
M3ab 23.03+0.08,22.944+0.10 606,/702 18.3+0.3 17.0 -17.6 T
730* 22.02+0.05 702 17.240.2  -59.2 45.6 T
323 21.38+0.02,20.56+0.01 606,/702 7.7£1.6 -14.3 24.2 T
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Cluster Arc Label Zare z ref. Mag Filter L/W A N” A E” Type
382 23.75%+0.16,25.474+1.00 606/702 16.2+2.0  35.1 2.7 T
Al 23.43+0.07,23.274+0.08 606,/702 7.2+40.9  -38.6 9.1 T
H2/H3* 23.194+0.12 702 22.9+3.0 -32.3 31.3 T
H1/273 21.73+0.01,21.8940.03 606,/702 8.9+1.5 -20.0 40.2 T
A2219 Po 1.070 3 21.58+0.02 702 10.0+£0.6  -13.9 10.6 T
P2ab 2.730 3 22.38+0.05 702 26.9+3.0 17.3 -16.9 T
P2c 2.730 3 22.60+0.03 702 6.010.2 -3.8 -26.7 T
P13 23.94+0.11 702 9.0+0.7 4.6 -30.8 T
A1t 23.89+0.08 702 5.3+0.5 -19.2 31.1 R
A2259 Al 1.477 7 21.70+0.08 606 17.8+4.8 -0.7 10.7 T
A2261 A1t 22.8240.20 606 25.548.1 -6.6 -26.3 T
A2t 21.7640.04 606 7.7£0.9 8.4 23.5 T
A2294 Al 24.69£0.81 606 >13.1 2.3 6.7 R
A2 24.09+0.70 606 > 29.0 -19.9 -24.9 T
MS2053 AB 3.146 29 21.67+0.03;21.274+0.05;20.90+£0.05  606/702/814 11.6+0.7  14.6 -3.8 T
MS2137  A01/A02 1.501 10 21.76+0.06;21.914+0.04;21.54+£0.12  606/702/814  13.6+£5.7 154 1.5 T
AR 1.502 10 23.68+0.16;23.58+0.07;23.20+£0.24  606/702/814  9.24+2.7 5.4 -0.2 R
A2390 A/C 1.033/0.913 22 21.51+0.03,19.940.02 555/814 10.74+0.5 17.7 -33.7 T

continued on next page
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Table 4.4 — continued from previous page

Cluster Arc Label Zare z ref. Mag Filter L/W A N” A E” Type
H3a 4.04 22 24.15+0.14,22.4440.06 555/814 7.940.4 19.3 -45.1 T
H3b 4.04 22 24.46+0.12,22.88+0.06 555/814 4.1+0.1 9.4 -49.7 T
Hb5a 4.05 27 24.28+0.11,23.534+0.11 555/814 5.0+0.7 3.6 -20.4 T
H5b 4.05 27 24.2140.11,22.824+0.06 555/814 5.940.9 -9.4 -24.6 T
Al . . 24.78+0.22,23.27+0.11 555/814 10.44+0.9 -6.3 5.8 T
A2t . . -,20.761+0.04 555/814 19.14+2.1 -13.5 6.1 T
A3 . . 22.5940.10,22.994+0.11 555/814 8.1+0.5 -33.2 9.2 T
CL2244 A1t 2.237 11 20.62+0.02,20.00+0.02 555/814 10.8+0.1 1.3 -8.3 T
A4 . . 23.7440.13,24.724+0.59 555/814 10.4£1.9 -1.9 33.2 T
AC114 A4/A5 . . 22.59+0.04 702 6.9+0.4 -2.9 -0.3 R
Sit 1.867 21 21.9740.02 702 2.5+0.1 12.7 2.0 T
Sat 1.867 21 21.9140.02 702 3.14+0.1 12.7 2.0 T
C1 2.854 19 24.17£0.10 702 5.610.2 29.0 5.6 T
T1 . . 24.68+0.36 702 29.0+4.7  -24.7 2.5 T
T2 . . 24.08+0.13 702 14.2£1.5  -33.1 15.5 T
T3 . . 22.48+0.05 702 7.7+0.6 -40.0 16.1 T
A2667 Al 1.034 7 19.67+0.01,19.33+£0.01,18.26+0.01  450/606/814  14.6+2.4  13.4 6.1 T
A2 . . 23.07£0.06,23.59+0.16,23.50+£0.37  450/606/814  18.1+8.9 7.2 14.7 T

TPhotometry and L/W may be affected by poor galaxy subtraction or chip boundary fUnable to detect feature or get reliable photometry in one of the observed
bands *Redshift is only for feature H1 *Due to different imaging orientations, this arc only appear in the F702W image ®There is a flatfielding problem with this
portion of the chip for this image. While this arc is clearly detected in the F814W band, no attempt was made to correct the flatfielding problem and so no arc
magnitude was recoverable. The L/W for this arc was determined solely from the F555W band. (1) Broadhurst et al. 2000; (2) Smith et al. 2002; (3) Smith et al.
2004; (4) Richard et al. in prep; (5) Sand et al. 2004; (6) Smith et al. 2001; (7) This work; (8) Ellis et al. 1991; (9) Edge et al. 2003; (10) Sand et al. 2002; (11)
Mellier et al. 1991; (12) Gladders, Yee, & Ellingson 2002; (13) Borys et al. 2004; (14) Allen et al. 1996; (15) Holden et al. 2001; (16) PID 6778 abstract; (17) Franx
et al. 1997; (18) Yee et al. 1996; (19) Campusano et al. 2001; (20) Smail et al. 1995; (21) Lemoine-Busserolle et al. 2003; (22) Frye & Broadhurst 1998; (23) Pello

671



et al. 1992; (24) Ebbels et al. 1998; (25) Soucail et al. 1988; (26) Bezecourt et al. 1999; (27) Pello et al. 1999; (29) Tran et al. 2004
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Chapter 5

Constraints on the DM Halo in MS2137
Using the BCG Velocity Dispersion Profile

and a 2D Lensing Analysis

DaviD J. SAND, GRAHAM P. SMmITH, TOMMASO TREU, RICHARD S. ELLIS, &

JEAN-PAUL KNEIB

California Institute of Technology, Astronomy, mailcode 105-24, Pasadena, CA 91125

Abstract

We utilize existing imaging and spectroscopic data for the galaxy cluster MS2137
to study the relative distributions of dark and baryonic material in the cluster’s
central regions. Following Sand et al., we combine an analysis of the stellar velocity
dispersion data for the brightest cluster galaxy in conjunction with the arc redshifts
and lens models to constrain the dark and baryonic mass profiles jointly. The
vital new ingredient in this work is that the mass models include 2D pseudo-
elliptical generalized NF'W profiles for constraining the inner DM slope and the
lens modeling takes into account both ellipticity and substructure introduced by
cluster galaxies and the full multiple image information provided by the HST
imaging. In addition to this, we relax the assumption of Sand et al. that the dark

matter scale radius is 400 kpc, and instead place a prior on this parameter based
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on CDM simulations. We find a relatively low value of the ellipticity of the dark
matter potential of MS2137, ~ 0.10 (~ 0.2 in the surface density), and that the
inner dark matter density profile is consistent with a distribution, ppy o 5,
with logarithmic inner slope (8) = 0.2570% (68% CL). Comparing this result
with the 1D lensing + dynamics analysis presented by Sand and collaborators
((8) = 0.57733%), we find the results to agree at the 1 —o level. Moreover, contrary
to recent theoretical speculation, the offset between the peaks of the probability
distribution for the 2D and 1D modeling analysis are of the approximate magnitude
and in the direction indicated in the systematic error analysis performed by Sand
and collaborators. We conclude that a significant discrepancy remains between the
numerical predictions of the CDM paradigm and observations of galaxy clusters. In
an Appendix, we present the lensing formalism for implementing a pseudo-elliptical

generalized NFW profile into our lensing code.

5.1 Introduction

One of the basic predictions of the CDM paradigm as revealed through dark matter
only numerical simulations is the ’cuspy’ nature of dark matter halos ranging in
mass from dwarf galaxy to galaxy clusters (e.g. Navarro et al. 1997; Moore et al.
1998). From these simulations, dark matter halos are expected to have density
profiles of the form p oc 7~# where 3 lies between 1.0 and 1.5. While there is debate
as to the exact form of the dark matter profile (e.g. Navarro et al. 2004; Power et al.
2003), how universal it is (e.g. Diemand et al. 2004), and what effect baryons may
have upon it (e.g. Gnedin et al. 2004; Sellwood & McGaugh 2005), this consequence
of the CDM paradigm nonetheless makes for an important observational test.
While the bulk of the observational work on dark matter density profiles has
been done on dwarf galaxy scales (e.g. Simon et al. 2005, & references therein),
there is a considerable amount of interest has been taken in the dark matter profile
of galaxy clusters (e.g. Tyson et al. 1998; Sand et al. 2002, 2004; Gavazzi et al.
2003; Smith et al. 2001; Broadhurst et al. 2005a; Buote & Lewis 2004; Lewis et al.
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2002; Kelson et al. 2002; Arabadjis et al. 2004). This is partially because there is
more than one tool at the galaxy cluster scale for studying the DM density profile.
Strong and weak gravitational lensing, X-ray measures of the surface brightness
and temperature profile of the intracluster medium (assuming hydrostatic equilib-
rium) and dynamical measures have each been used to constrain density profiles
in clusters. Each technique has its own strengths and weaknesses, and this has
led us to conclude that multiple density profile measurement techniques must be
mastered and understood so that the systematics of each can be controlled and
consistent measurements made. In recent years good progress has been made in
combining and comparing these constraints in order to constrain the structure of
DM halos and the inherent systematics associated with each mass measurement
technique (e.g. Sand et al. 2004; Gavazzi et al. 2003; Gavazzi 2005; Lokas & Ma-
mon 2003). Howver, important issues remain in reconciling different measurement
techniques with each other, particularly since real galaxy clusters can not be easily
characterized with simple models (e.g. Gavazzi 2005; Oguri et al. 2005).

The focus of this chapter is on refining the strategy of Sand et al. (2004;
see also Chapter3; hereafter S04), which sought to combine constraints from the
velocity dispersion profile of a central brightest cluster galaxy (BCG) with a strong
lensing analysis in six galaxy clusters. Three of the clusters in the S04 sample had
both radial and tangential gravitational arcs, while the other three contained only
tangential arcs. S04 found that by combining the dynamical constraints on the
BCG with a simple strong lensing model they could disentangle luminous from
dark matter and constrain the inner DM logarithmic slope, §, finding a mean
value () = 0.52J_r8:8§, although individual halos could be compatible with an
NFW profile.

It was pointed out by S04 that many systematic effects could affect the results
found on the inner DM logarithmic slope, #. These include cluster substructure
and ellipticity, orbital assumptions and template mismatch in the velocity disper-
sion analysis, and fixing the generalized NFW scale radius, r4., to a single value.

S04 concluded that at most any one of these effects would introduce a systematic
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of AB ~ 0.2. Other authors have pointed out that the assumption of spherical
symmetry for their lensing mass model may lead to significantly higher uncertain-
ties than that predicted by S04 (Bartelmann & Meneghetti, 2004). In particular,
it has been argued that this spherical symmetry assumption systematically biases
their constraints of the DM inner slope towards shallower values.

The goal of this paper is to revisit the analysis of the cluster MS2137 as pre-
sented by S04 with 2D strong gravitational lens models using a modified version
of the LENSTOOL software package (Kneib 1993; see Appendix). We have imple-
mented a pseudo-elliptical generalized-NFW mass parameterization into the code

representing a generalization of the profiles seen in CDM simulations

_ pede
pa(r) = (r/rse)P(1 + (r/rse))3—P (5.1)

where the asymptotic inner slope, 3, is predicted to be between 1.0 and 1.5. With
this improved approach we wish to address the concerns presented by Bartelmann
& Meneghetti (2004); Dalal & Keeton (2003) by parameterizing the ellipticity of
the DM halo and subhalos in our mass model and including all of the multiple
imaging constraints available for MS2137.

A plan of the chapter follows. In § 5.2 we briefly describe our implementa-
tion of the generalized NFW profile into LENSTOOL followed by an explanation of
the methodology used to model the cluster and constrain its dark matter density
profile. In § 5.3 we describe how we cut down on the number of free parameters
in our lens model by extracting positional, surface brightness, and geometric in-
formation from luminous galaxies in our HST imaging of MS2137. These include
the ellipticity and position angle of perturbing galaxies and the BCG, along with
other structural properties. In § 5.4 we present our strong lensing interpretation
for MS2137 and the results of our combined lensing and dynamical analysis. In
§ 5.5 we discuss further systematic effects. Finally, in § 5.6 we summarize and
discuss prospects for future work. Throughout this chapter, we adopt r as the

radial coordinate in 3-D space and R as the radial coordinate in 2-D projected
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space. When necessary, we assume Hy=65 km s~ 'Mpc™!, ©,,=0.3, and Q,=0.7.

5.2 Methodology

The goal of this chapter is to use the full 2D information provided by the deep
HST imaging in the strong lensing cluster MS2137 along with the BCG velocity
dispersion profile in order to disentangle luminous from dark matter and constrain
the inner DM density slope of the cluster. The two-dimensional data available
includes the full multiple image constraints from the tangential and radial gravi-
tational arc systems and the projected ellipticity of the BCG and any perturbing
galaxies. We also include for the possible ellipticity in the cluster dark matter
halo. To achieve this goal, we have modified the LENSTOOL software package
in order to include a pseudo-elliptical generalized NFW parameterization for our
mass modeling of the cluster dark matter halo. In this section, we briefly intro-
duce our new implementation of LENSTOOL and then describe our method for
constraining the DM halo by combining the 2D lensing of LENSTOOL with the

BCG velocity dispersion analysis.

5.2.1 A Generalized NFW Implementation in LENSTOOL

Our implementation of the pseudo-elliptical parameterization is identical to that of
Golse & Kneib (2002), with the exception that we have generalized their approach
beyond that of just an NFW profile to arbitrary inner logarithmic slopes. By
introducing ellipticity into the potential rather than the surface mass density we
make the lensing calculations more tractable given that the deflection angle is
just the gradient of the scaled lensing potential. Using the following coordinate

substitution of x by x,
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Tie = yJarzy
Toe = \/azxo

Te = \/:v%e—l—azgﬁ = \/&11‘%—1—&2%‘%

©e = arctan(xa/x1)

where a; and a9 are two parameters defining the ellipticity we can calculate the

elliptical deflection angle:

O = a(z¢)/a1 cos ¢
a.@=| 5o (5.3)
= a(ze)\/azsin ¢,
8372

The above expression holds for any definition of a; and as which we choose to be:

a1:1—€
(5.4)
a2:1+€

While this choice of a; and as do not correspond directly to the ellipticity of the
potential (see Meneghetti et al. 2003b, who use a different parameterization), it
does lead to simple expressions for standard lensing quantities, such as the surface
mass density and shear. We present these relations in the Appendix.

Our treatment of the ellipticity has its limitations. Once the surface mass
distribution of the potential is computed, it appears boxier than elliptical models.
At high radii along the minor axis the surface mass density can even go negative,
which is clearly unphysical. We present a full quantitative investigation of the
range of e for which the generalized NFW mass model is an adequate description
of an underlying elliptical mass distribution in the Appendix. To summarize,
after performing two tests of the adequacy of using ellipticity in the potential
we conclude that this treatment is perfectly satisfactory (deviations from true
ellipticity in the surface mass distribution < 10% and a positive surface mass
density is retained out to ~ 10 rs.) for € < 0.25 or ey, < 0.4 in the surface mass
distribution.

Unlike the NFW profile, the surface mass density and deflection angle of the
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generalized NFW profile cannot be calculated analytically. This greatly slows
any lensing computation, especially when we need to calculate x? values over
large parameter hypercubes. To limit the computing time necessary, we created
a look-up table for all of the necessary integrals from which we interpolate when

performing our lensing calculations.

5.2.2 The Mass Model and Lens Modeling Method

We use the newly updated LENSTOOL ray-tracing code (Kneib 1993) to construct
models of MS2137’s cluster mass distribution. Here we briefly explain the lens
modeling process in general terms.

In general, a lens model will have both cluster and galaxy scale mass compo-
nents. The cluster scale mass component represents the DM associated with the
cluster as a whole. It is this component, and its associated inner density profile,
which we wish to probe in this work, in particular using the pseudo-elliptical gen-
eralized NFW mass parameterization described in the previous subsection. The

cluster DM halo is modeled as

pe(2)dc
(7“/7”80)5 1+ (T/TSC)]g_ﬁ

pa(r) = (5.5)

which is a generalization of the numerically simulated CDM halos, with p. being
the critical density and . a scaling factor. In our parameterization, the DM halo
also has a position angle (f) and ellipticity (e) associated with it.

Galaxy scale components are necessary to account for perturbations to the clus-
ter potential that seem plausible based on the HST imaging and are demanded
by the lens model. These components are described by pseudo-isothermal ellipti-
cal mass distributions (PIEMD) in this work. Each PIEMD mass component is
parametrized by its position (x., y.), ellipticity (€), position angle (6), core radius
(reore), cut-off radius (r¢yt) and central velocity dispersion (¢,). The projected

mass density, > is given by:
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z:(ag,y)zg—"2 Teut (( ! = ) (5.6)

2G Teut — Toore \(Teore? +p2)12 (rew® +p%)1/2
where p?=[(z— z.)/(1+€)]?+[(y— vc)/(1—¢€)]? and the ellipticity of the lens is
defined as e=(a—b)/(a+b) (this quantity should not be confused with the quite
different ellipticity definition used for the pseudo-elliptical generalized NFW pro-
file). In order to relate Equation 5.6 to the observed luminosity of the galaxy, we
take ¥ = (M/L)I, where M /L is the mass to light ratio and I is the intensity, and

find the following relation

M/L =7 04*rey /(GL) (5.7)

The M /L of the central BCG will be used as a free parameter in our mass modeling
analysis.

For typical galaxy scale components, we fix the galaxy position through exam-
ination of the HST imaging, and use the IRAF task ELLIPSE to find and fix the
galaxy ellipticity and position angle. Both the core and cutoff radius are measured
from the 1-dimensional surface brightness profile of the perturbing galaxy. The
one perturbing galaxy used in the analysis of MS2137 can be seen in Fig. 5.2.

A special case is the BCG, which we assume to be coincident with the center
of the cluster DM halo in our analysis, whose mass parameterization is assumed to
comprise only the stellar mass, given that we wish to distinguish between stellar
and dark matter in our final cluster analysis in the inner core. Also, we intend to
use the stellar kinematics of the BCG as a further constraint on the mass profile in
the central regions of the cluster. To do this, we would like to utilize the Jaffe stellar
density parameterization for the BCG presented in Sand et al. (2002, 2004) since it
has analytic solutions to the spherical Jeans equation while the PIEMD model used
for the lensing does not. Via this method, we can appropriately use the PIEMD
model for the lensing portion of the analysis and then the Jaffe parameterization
for the BCG dynamics portion of the analysis, since their surface mass distribution

at that point will be essentially identical.
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A y2-estimator is used to quantify the level of agreement between the strong
lensing interpretation taken from the HST imaging data and the predictions of a
given trial lens model. The value is calculated in the image plane and is based on

the image positions only:

N _ 2 _ 2
X;z)os: Z (:L'model :BHST) ;’(ymodel yHST) (58)
=1 Tpos

Where 0,05 is the positional error associated with a multiply imaged knot, which
we take to be /2 throughout this work. At the beginning of the modeling process
there is some iterative work done in order to pin down the acceptable values of
perturbing galaxies and to clarify the lensing interpretation.

Once the lensing interpretation is finalized and the perturbing galaxy param-
eters are fixed, we constrain the remaining free parameters, including the inner
dark matter slope by calculating X;2)os over a hypercube grid which encompasses
the full range of acceptable models. This allows for easy marginalization of nui-

sance parameters and the calculation of confidence regions.

5.2.3 Incorporating the Dynamical Constraints

As was done in S04, we further constrain the dark halo inner slope by using the
observed velocity dispersion profile of the BCG. The interested reader is referred
to Chapter 3. We calculate this portion of the x? by comparing the expected ve-
locity dispersion profile of the BCG given a mass model with the observed velocity
dispersion profile, taking into account the effects of seeing and the long slit shape
used for the observations. We ignore the ellipticity in the BCG and dark matter
halo here as its effect on the velocity dispersion profile will be negligible.

We lead the reader step by step through the analysis in the following sections.
First, in § 5.3 we describe how we measure the parameters of the perturbing galaxy
and BCG from the HST imaging data in order to cut down on the number of free
parameters in our model. Then, in § 5.4.1, we present the multiple image interpre-

tation of MS2137. We systematically compare our results with those obtained in
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Sand et al. 2004 in § 5.4.2 by adopting all of their assumptions, relaxing only the
assumption of spherical symmetry in the mass model. We then go on and adopt
a CDM motivated prior for the range in scale radius, rs., and repeat our analysis

in § 5.4.3.

5.3 Observational Results

Observational results for the cluster MS2137 have been presented in particular
Chapters 2 & 3 where the HST data reduction, BCG surface brightness fitting,
redshift measurements of the giant arcs and the spectroscopic measurement of the
velocity dispersion profile of the BCG are discussed. In this section we focus on
two aspects of our new analysis. First, we review measuring the relevant PIEMD
parameters for the perturbing galaxy and the BCG. We also describe how we
convert between the PIEMD model of the BCG for the strong lensing analysis to

a Jaffe model in order to simplify our dynamical modeling.

5.3.1 Cluster galaxy geometry and fitting

In order to minimize the number of free parameters in our mass model, we utilized
the HST imaging to measure the luminous components which we included in our
modeling. As we will see in § 5.4.1, there is only one perturbing galaxy and the
BCG for which we must extract as much information as possible.

In order to fix the position angle and ellipticity of both the perturber and BCG
components we use output from the IRAF task ELLIPSE at roughly the effective
radius and fix the measured parameters in our lensing analysis. We also fix the
perturbing galaxy’s position, core radius (reore) and cutoff radius (reyt) to that
which matches its light distribution. See Table 5.1. This leaves only the PIEMD
parameter velocity dispersion (0,) which must be adjusted to match the multiple
imaging constraints.

The situation for the BCG is slightly more complicated. As in S04, we would
like to be able to use the Jaffe density profile fit to represent the BCG component
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of the mass model for the velocity dispersion portion of the analysis since this
function provides an analytic solution to the spherical Jeans equation. However,
the only parametrized model available in LENSTOOL is the PIEMD model. To
bridge this gap we use the IRAF task ELLIPSE to measure the position angle and
ellipticity of the BCG. We then take the Jaffe surface brightness fit presented by
S02 and fit a corresponding PIEMD model. In order to match the PIEMD model
to the Jaffe profile found by S04 (and taken from the 2D RY* surface brightness
fit) a by-eye comparison was made between the 1D profiles. The PIEMD model
is used to represent the BCG in the lensing analysis while the corresponding Jaffe
profile is used in the dynamical analysis. Figure 5.1 shows a comparison between

the PIEMD and Jaffe profiles and Table 5.1 lists their corresponding parameters.

Table 5.1: Fixed Parameters in MS2137-23 Lens Model

Parameters Te Ye b/a 0 Teore o0 Teut
(arcsec) (arcsec) (deg) (kpc) (kms~!) (kpc)
Cluster-scale DM halo 0.0 0.0 - 5.0 - - -
BCG jaffe 0.0 0.0 083 17.75 5x107° - 22.23
Galaxy Perturber 16.2 -5.46 0.66 159.9 0.05 173.0 4.8

The position angle, 6 is measured from North towards East. The DM halo is
parameterized with the pseudo-gNFW profile. All other mass components are

parameterized by a PIEMD model.

5.4 Results

In this section we present our results on the DM inner slope. First, we present the
multiple image interpretation of MS2137 and discuss the final set of free parameters
that we adopt in our mass model. With this information in hand we compare our
results directly to those of S04 by adopting a generalized NFW scale radius of
400 kpc to directly determine the effect of including ellipticity into our analysis.

Following this, we adopt a more suitable prior range for the scale radius, rg.,
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Figure 5.1: Surface Brightness Fits and PIEMD models. The observed surface
brightness profile of the BCG is shown with the unconvolved Jaffe profile fit. The
surface brightness model of the PIEMD model is meant to represent this Jaffe

luminous distribution in the strong lensing portions of the analysis.

between 50 and 200 kpc, which fits the data best.

5.4.1 MS2137 Multiple Image Interpretation and Final Free Pa-

rameter Set

The strong lensing properties of MS2137 have been studied extensively by many
workers (e.g. Mellier et al. 1993; Miralda-Escude 1995; Hammer et al. 1997;
Gavazzi et al. 2003; Gavazzi 2005). The most detailed strong lensing model has
been presented by G03, who used 26 multiply-imaged knots from two different
background sources to constrain the lensing properties of MS2137. Our strong
lensing model is more conservative than that of G03, in the sense that it is based
only on those multiple images in which we are confident based on spectroscopy,
surface brightness expectations from gravitational lensing theory and interim lens
modeling results. It is not likely that this slight difference in interpretation greatly
effects the mass model constraints in MS2137.

We interpret the tangential and radial arcs in MS2137 to come from two sep-
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arate background galaxies at z = 1.501 and z = 1.502, respectively (see S02 for
spectroscopy). Our multiple image interpretation is detailed in Figure 5.2 and
Table 5.2. There are two separate features (features 1 and 3) on the tangential arc
source galaxy which we have confidently identified to be multiply imaged four and
three times respectively. We have not been able to confidently locate the fourth
image of feature 3 and so do not include it as a constraint. Two images of the
radial arc source galaxy were identified. We could not confidently locate the mirror
image of feature 2a nearer the center of the BCG, most likely due to residuals in
the BCG subtracting process. For this reason, no constraint was used.

Much was learned about the mass model of MS2137 during the process of
understanding the multiple image interpretation. With some experimentation, it
was clear that the perturbing galaxy (see Fig. 5.2) did not have a strong effect
on the lensing x? (and thus on our ultimate conclusions on the inner dark matter
density slope). After using the HST imaging, the galaxy perturber only had one
more PIEMD free parameter to be characterized, o,. When this parameter was
allowed to vary, the best-fitting x? value always occurred near 0,=173 km/s. We
kept this value of o, in the perturbing galaxy fixed throughout the remainder of
the analysis, leaving the perturber completely characterized.

One of the primary goals this study seeks to answer is the effect introducing
ellipticity can have on the inner slope of the dark matter density profile. There-
fore, in our initial modeling and iterations to determine the lensing interpretation
of MS2137, we experimented with different cluster dark matter ellipticities and
position angles. While some variation in the ellipticity is permitted by our lens-
ing interpretation, we detected a robust offset between the position angle of the
BCG and that of the dark matter halo of ~13 degrees, in agreement with previous
strong lensing studies of MS2137-23 (Gavazzi et al., 2003). Changing the dark
matter position angle slightly had no effect on the resulting best-fitting inner dark
matter halo slope and for this reason, we fixed the dark matter position angle to
5.0 degrees throughout. We keep the ellipticity of the dark matter halo as a free

parameter, however, in order to constrain its allowed range.
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Figure 5.2: Multiple image interpretation of the cluster MS2137. The exact
positions used are shown in Table 5.2. Three sets of multiple images are identified,
one with the radial arc system (2a & 2b) and two with the tangential arc system
(labcd & 3abc). The perturbing galaxy is the elliptical SO next to the lensed
feature 1b.
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This leaves four or five free parameters in the final mass model (depending
on whether we decide to keep the scale radius fixed (§ 5.4.2) or allow it to vary
(8§ 5.4.3)): the inner dark matter slope, 3, the dark matter halo ellipticity, €, d., the
dark matter scale, 7., the dark matter scale radius and the M /L of the BCG. As
discussed in § 5.2.2, by computing the x? over a hypercube of values encompassing
the acceptable range of the above free parameters we can marginalize nuisance

parameters and obtain constraints on the quantities of interest in this work.

Table 5.2: Multiple Image Interpretation

Cluster  Multiple Image T Ye
ID (arcsec) (arcsec)

MS2137 la 6.92 -13.40
1b 12.40 -7.94
lc 0.07 19.31
1d -11.57 -7.49
2a 3.96 -5.51
2b -8.01 22.10
3a 5.16 -14.68
3b 0.11 18.91
3c -12.30 -6.74

Multiple Image Interpretation. Uncertainties on all positions are 0”2 for the

lensing analysis. All image positions are with respect to the BCG center.

5.4.2 Comparison with Sand et al. (2004)

In this section we would like to directly compare the 1D lensing+dynamics analysis
of S04 with the 2D multiple image strong lensing+dynamics analysis presented
here. To do this, we fix the dark matter scale radius, r,., to 400 kpc, as was done
by S04. In this way, we directly mimic the analysis of S04 with the exception of
the multiple image interpretation presented in § 5.4.1 and the ellipticity and PA
of both the BCG and cluster DM halo. This allows us to see directly how these



166

enhancements to our lensing model affect our conclusions on the DM inner slope.

The results of our analysis are presented in Fig. 5.3 with a direct comparison
to the analogous results of S04. As can be seen, when comparing the lensing-only
results, the current results and those of S04 are largely consistent. The range in
BCG M/L ratio are identical. However, there is no tail of acceptable lens models
to low values of the DM inner slope, 3, as was seen in S04. It turns out that
models with shallow inner dark matter slopes can match the critical line position
of the tangential and radial arcs but cannot at the same time match the angular
structure of the lensed images, that is, the full multiple image constraints.

Turning to the constraints on the DM halo derived from the combined lensing
and dynamics, we see that the final derived inner dark matter slope using the two
methods is different. The current two-dimensional analysis favors much steeper
slopes, with a best-fitting value of 5 ~1.2 as opposed to the 8 ~0.6 value found
by S04. The range of allowed ellipticity in the potential of the dark matter halo
are € ~ 0.08 — 0.12 which corresponds to a range of ellipticity in the surface mass
distribution between ~0.15 and 0.22.

At face value, it seems as if the analysis of S04 was too simplistic and did
not capture the true inner slope of the dark matter density profile as claimed by
Bartelmann & Meneghetti (2004); Dalal & Keeton (2003). However, it should be
noted that the total best-fitting x? for this two-dimensional 7,=400 kpc scenario
is not so satisfactory, xy? =25.30 for 16 degrees of freedom (twenty constraints
from the lensing interpretation with the velocity dispersion profile and four free
parameters). A worse x2 would be had only ~5% of the time if this model were
correct. Is it possible that fixing the scale radius to 75.=400 kpc results in us
not finding the best-fitting mass model? In order to check this idea further, we
now explore a range of scale radii, taking expectations from CDM simulations and

previous strong lensing analyses (e.g. Gavazzi et al. 2003) as a prior.
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Figure 5.3: Fixed scale radius = 400 kpc scenario. Left—Direct comparison between
the lensing only likelihood contours (68%,95%, and 99%) found in Sand et al. 2004
and this work. Note that the allowed range in M/L ratio is identical to that in
S04, but that the addition of ellipticity into the lens model, along with the more

detailed multiple image interpretation leads to tighter contours.

5.4.3 Wide Scale Radius Prior

An array of CDM simulations have provided information not only on the inner
dark matter density profile, but on the expected value of the scale radius, r,., and
its intrinsic scatter at the galaxy cluster scale (e.g. Bullock et al. 2001; Tasitsiomi
et al. 2004; Diemand et al. 2004). For example, Bullock et al. (2001) found that
dark matter halos the size of small galaxy clusters have scale radii between 240
and 550 kpc (68% CL). Tasitsiomi et al. (2004), using higher resolution simulations
with fewer dark matter halos found rs. of 4504300 kpc. In addition, a previous
strong lensing analysis of MS2137-23 by Gavazzi et al. (2003) has provided some
hints as to the approximate value of the scale radius in this system. Gavazzi et
al. found a best fitting scale radius of ~130 kpc (and hints that the scale radius
may be as low as ~70 kpc from their weak lensing data) for their analysis of
MS2137, and although they used a slightly different parameterization of the BCG
and included weak lensing data into their analysis, we took this information along
with the results from CDM simulations into account and decided on a uniform

scale radius prior between 50 and 200 kpc.



168

With this prior on the scale radius, we ran a similar analysis to that per-
formed in the r;,,=400 kpc case, with the scale radius as an additional parameter
to marginalize over. The results are presented in Figure 5.4. Once we let the
scale radius vary within this range we get quite different results then for the fixed
rsc=400 kpc case. In fact, the overall constraints on 3 obtained are in agree-
ment with those of S04. The trend is toward slightly smaller M /L ratios in the
BCG, but still in the range of M /L between 1.5 and 2, which is expected from
the evolution of the fundamental plane (right panel;Figure 5.4) . Adopting the
peak of the 1D probability distribution as the best estimate of the inner slope, we
get 6=0.25792 (68% CL). The upper limit on 8 at the 95% confidence limit is
0.91. We conclude that a significant discrepancy remains between the dark matter
halo observed in MS2137 and those seen in numerical simulations exists. When
compared with the best fit value obtained by S04 ((8) = 0.5770:3%), we find the
results to be in reasonable agreement, although the allowed range in 3 in the cur-
rent analysis is signficantly wider reflecting the uncertainty in the scale radius.
Moreover, the offset between the peaks of the probability distribution for the 2D
and 1D modeling analyses are of the approximate magnitude (A3 ~0.2) and in the
direction indicated by S04, suggesting that the original systematic error analysis
they performed was roughly correct.

Given we have modified the method adopted by S04 in two ways - a two-
dimensional lensing analysis and a less restricted scale radius - a key question is
the following: How good a fit does the our mass model provide to the data? Im-
portantly, the best-fitting model is significantly better than that for the r;,=400
kpc model; x? =22.30 for 15 degrees of freedom (one less degree of freedom since
we have one extra free parameter). Statistically, models which correctly repre-
sented the underlying cluster density profile would get a worse x2 10% of the time,
indicating a reasonable fit to the data. We are also able to constrain the elliptic-
ity in the dark matter halo potential quite strongly (right panel, Fig 5.4). As in
the r;=400 kpc case, we found a € value centered around 0.1, translating into an

ellipticity in the surface density profile of ~0.2.
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Figure 5.4: Uniform prior on scale radius, 50-200 kpc. Constraints on @ when a
larger prior on scale radius is taken. Right—A histogram illustrating the range of
ellipticity (in the potential) which correspond to mass profiles within 3-o of the
best fitting mass profile. The ellipticity in the potential is tightly clustered around

€=0.1, which corresponds to a surface mass density ellipticity of ~0.2.

From this analysis, what can we conclude about the earlier criticism presented
by Bartelmann & Meneghetti (2004); Dalal & Keeton (2003), which declared that
the neglect of two-dimensional effects in the lens model of S04 caused a systematic
bias towards shallower dark matter density profiles? There are a couple of factors
which reconciled our analysis with the original work of S04. First, we have allowed
a range of scale radii as opposed to the fixed scale radius of 400 kpc used in S04.
If we stick with the assumption of S04 and use a fixed scale radius, we recover
dark matter density slopes which are steep and compatible with CDM simulations
and not in agreement with S04. However, once we allow the scale radius to vary,
shallower inner density slopes are found with a lower overall reduced x? value
indicating that the fits are superior. Just as importantly, the cluster MS2137 is
not very elliptical, having a surface mass density ellipticity of ~0.2. This result is
not an accident since S04’s sample of clusters were chosen to be roughly circular
exactly to avoid the complications of ellipticity. There is theoretical evidence that
the correct dark matter density profile can be inferred using axially symmetric
models in roughly circular clusters like MS2137 (Meneghetti et al. in preparation),

as was seen in the observational work presented here.
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5.5 Remaining Systematics

In this work we have addressed the major systematic uncertainty in the joint strong
lensing and BCG dynamics analysis of S04. We have implemented a 2D gravi-
tational lensing code which allows us to take into account ellipticity and cluster
substructure. However, other systematic uncertainties still remain, including those
having to do with template mismatch and orbital assumptions in the dynamical
analysis, as discussed thoroughly in S04.

Several simplifications in the lens model still remain. For example, we restrict
the dark matter halo and BCG to be exactly coincident in order to properly run our
joint analysis. While this assumption appears to be quite good in MS2137 (some
exploratory lens models were run in which the BCG and dark matter halo were
allowed to have a small offset; all good models seemed to be offset by no more than
<0.5 arcseconds). Real CDM halos are triaxial in nature, while our lens modeling
did not properly take this into account. Though this does not likely effect our
constraints on the the inner slope, it could have a relatively large effect on our
constraints on the scale radius (see e.g. Oguri et al. 2005; Gavazzi 2005). It would
also be interesting to see if there was a systematic uncertainty associated with the
multiple lensing interpretation. The multiple lensing interpretation presented in
this work is quite different from that presented by Gavazzi et al. (2003) for the
same system. In the future, it should be straightforward to run the same analysis
discussed in this chapter with the Gavazzi strong lensing constraints and compare

them with the results presented here.

5.6 Summary & Future Work

In this final chapter, we have implemented an upgraded version of the gravitational
lensing code LENSTOOL, which uses a pseudo-elliptical generalized NFW profile to
account for ellipticity and substructure in the mass model of the galaxy cluster
MS2137. Together with velocity dispersion profile measurements of the BCG, this

has led to strong constraints on the inner dark matter density slope. Our final
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parameter estimate on the inner logarithmic slope is () = 0.25J_r8j)’“;’ (68% CL),

in disagreement with expectations of the CDM paradigm. Our work also showed
that the general conclusions of S04 were correct, that the DM inner slope was
shallow. This is most likely because the cluster is not strongly elliptical (with the
ellipticity in the surface density being ~ 0.2), which was one of the original criteria
for selection by S04.

There are several future avenues to explore with this cluster. The degeneracy
between scale radius and inner dark matter density slope may be broken, since
it is a result of projection effects, if an additional mass probe was had a large
radius, such as weak lensing. Given that there is published weak lensing data for
MS2137, we will incorporate this additional constraint on the mass profile in the
near future. Also, the cluster MS2137 has deep Chandra data (~ 100 ks) with
which a comparison hydrostatic equilibrium mass analysis can be performed. A
comparison between the two mass profile results could lend insight into the state
of the intracluster gas. Alternatively, using the deep Chandra data to constrain
the hot gas contribution to the total cluster mass budget and disentangling that
from the mass profile in the current analysis would isolate the dark matter halo

even further, leading us one step closer to the true dark matter density profile.

5.7 Appendix: Lensing Formalism & the Pseudo-
Elliptical gNFW Implementation

Here we discuss the implementation of the pseudo-elliptical generalized NFW pro-
file into the LENSTOOL software package. The interested reader is referred to
Kneib (1993); Smith et al. (2005) for further details about the LENSTOOL soft-
ware.

The following is a brief overview of basic gravitational lensing formalism (see
e.g. Schneider et al. 1992; Narayan & Bartelmann 1996). We will often use dimen-
sionless radial coordinates, = ﬁ/rsc = 5/956 (where 05, = ry./D;). Given the

thin lens approximation and a three-dimensional Newtonian gravitational poten-
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tial, ®(R, z), then
~ 2Dy,
d & (D0, z)dz (5.9)

0) =
SO( ) C2D1D3 oo
From this quantity, the deflection angle &,

is the scaled, projected potential.

convergence k, and shear v can be computed:
a(0) = V(0) (5.10)
- 1.0% 0%
(=5 + =5 A1
®) = 555 * 5a7) (5.11)
2
07 2 (5.12)

s 1.0% oo
70 =1 ~ a8z " (Go,00

We now take the case of an axially symmetric lens and connect that with our

pseudo-elliptical implementation. The density profile for a generalized NF'W profile

looks like,
05C
P (5.13)

7/7se)P (L4 (r/rse))3=F’

ppom(T) = (
with an inner slope 8 (NFW and M98 correspond to 8 = 1, 1.5 respectively; p. is

the critical density). The surface mass density then becomes
(5.14)

w/2
Ypm(R) = 2pcrsc(5€x1_ﬁ/ df sin O (sin 6 + 3:)5_3,
0

and the mean surface density inside x is
(5.15)

1 T
EDM(QT) = ﬁ/waEDM(x)dx
0

For arbitrary values of 3, the above integrals must be computed numerically. There

are also straightforward expressions for the deflection angle «, convergence x, and

shear v (Miralda-Escude, 1991)
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a(z) = 0 3@3 (5.16)
(z) = é(—xt) (5.17)
) = =) (5.15)

With these relations set, we will now introduce an ellipticity, €, into the lens

potential, (). Consider the following elliptical coordinate system:

Tie = yJarzy
Toe = /azx2

Te = \/1‘%54‘43%5 = \/alzn%—l—ag‘r%

©e = arctan(xg/x1)

(5.19)

where a1 and a9 are two parameters defining the ellipticity. We can calculate the

elliptical deflection angle, given that ¢.(x) = p(z):

Ope = a(z¢)+/a1 cos ¢
A (%) = g? (5.20)
< = a(ze)y/az sin ¢,
8372

This expression holds for any value of a; and as and for our purposes we use:

a1 =1—¢
(5.21)
as=1+¢€
This definition of a; and as lead to simple expressions for the deflection angle and

k, unlike other choices in the literature (Meneghetti et al., 2003b), and is related
to the standard ellipticity in the potential (1-b/a) by

1—¢
=1- . .22
‘o \/1+6 (5:22)

If we combine several of the above relations we have:
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o 1 [PPpe P , ,
Ke(T) = 0 ( 922 + 5z )~ K(Ze) + € cos 2p, y(T) (5.23)

Similarly, the shear 7.(Z) can be written as:

’y?(a‘:’) = ’yz(fe) + 2ecos 20 (Ze)R(Ze)

+  E(KH(Z.) — cos® 2072 (Ze)). (5.24)

Finally, the projected mass density X.(Z) is simply determined from equations

(5.23) and (5.18):
Ye(T) = X(Ze) + €cos 20 (X(Ze) — B(Fe)). (5.25)

To get a feel for the relation between e and the ellipticity in the surface mass

density, €x;, we plot several values in Fig. 5.6.

5.7.1 Limitations of Pseudo-Elliptical Treatment

In this section we quantitatively investigate the range of € for which the general-
ized NFW pseudo-elliptical mass model (which is elliptical in the potential) is an
adequate description of an elliptical mass distribution. In Figure 5.5 the extent to
which our implementation does not produce surface density profiles with true el-
liptical surface density isocontours is illustrated. As the parameter € increases the
surface density isocontours become more boxy and peanut shaped. However, at
relatively low €, the isocontours are very nearly elliptical. To what degree can we
consider our treatment of ellipticity an accurate method for representing elliptical
surface density distributions?

One way is by directly measuring the degree of boxiness, where we measure
the distance, dr between a surface density contour and a real ellipse with the same
major and minor axis radii (as was done in Golse & Kneib 2002; see Fig. 5.7). We

plot ér/r as a function of € for several values of the inner slope, 3, and a variety
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Figure 5.5: Illustration of projected density isocontours for our pseudo-elliptical
generalized NFW parameterization with r/r;,,=10.0 and $=1.0. Note that as €

gets larger, the projected density contours become more dumb-bell shaped.
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projected density contour
,,,,, ellipse

Figure 5.7: Illustration of the method used to compare a projected density contour
using our pseudo-elliptical methodology and a real ellipse. dr/r characterizes the

deviation. See Figure 5.8. This figure is reproduced from Golse & Kneib (2002).

of r/rs. in Fig. 5.8. If we desire our pseudo-elliptical implementation to be within
10% of a true elliptical surface density distribution for the range of r/ry. < 10,
then values of € < 0.25 are appropriate.

One very unphysical consequence of introducing ellipticity into the potential is
that the surface mass density can become negative, especially near the minor axis
where cos(2¢.) = —1. In Figure 5.9 we plot the distance along the minor axis at
which Y. becomes negative for several inner slopes. If we wish to restrict ourselves
to values of € where the surface density does not go negative at less than r/r.,
then again we find that we must deal with values of € less than approximately 0.25.

Based on the above two tests, we conclude that one can safely use values of
€ < 0.25 when trying to represent elliptical surface mass distributions in a lens
model. Based on Fig 5.6, this means that we can accurately model galaxy clusters
with ellipticity in the surface density with ey < 0.45 (taking, roughly, the r/rs.=3
values) which is well within the acceptable values for the cluster MS2137.
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Figure 5.8: dr/r as a function of € for a variety of pseudo-elliptical generalized NFW

models with different inner slopes, 8. This simply characterizes the deviation of

the projected density from an ellipsoidal model for various r/rs.. Write sentence

about range in € we think is acceptable.
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Chapter 6

Future Work

The quest to measure precisely the dark matter density profile in galaxy clusters
has advanced rapidly during the course of my graduate school career. Prior to
2002, most observational approaches utilized X-ray observations of the intraclus-
ter medium, or the kinematics of cluster galaxies. Neither method separated the
important baryonic contribution on small scales, as has been possible by simulta-
neously using the effects of gravitational lensing. The early only lensing work that
specifically targeted the NFW profile was that of Tyson et al. (1998). However, in
the realm of both X-ray observations and cluster galaxy kinematics great strides
have recently been made. In particular, the deep spectroscopic study of the BCG
in Abell 2199 (Kelson et al., 2002) has demonstrated that the velocity dispersion
profile of the BCG rises in response to the dominant dark cluster halo and that an
NFW halo cannot explain the results. Buote’s group at the University of California
Irvine has taken special care to select galaxy clusters that appear to have regular
isophotes without cooling flows so that simple hydrostatic equilibrium analyses are
more valid. These results strongly indicate that within the assumption of hydro-
static equilibrium the clusters they studied have steep inner cusps in accordance
with CDM simulations, although with the caveat that they may not fully take into
account the contribution of the BCG into their analysis (Lewis et al., 2003; Buote
& Lewis, 2004).

But perhaps the most striking recent advance has been the analysis of the,
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deep, multi-color ACS imaging of Abell 1689 (Broadhurst et al., 2005a). These
observations have yielded a significant increase in the number of strong lensing
constraints with over 100 multiple images uncovered! Not only does this striking
data allow for improved traditional analyses, but they also have encouraged bolder
modeling. Diego et al. (2004) have succesfully implemented a parameter free model
for the strong lensing data in A1689 recovering the surface density profile found
by (Broadhurst et al., 2005a). Moreover, Oguri et al. (2005) have attempted to fit
triaxial models to the data. These pioneering analyses clearly indicate a promising
future role for strong lensing observations.

In addition, progress has been made by combining data sets. One example of
this has been presented in this thesis: using strong lensing constraints simulta-
neously with those from the velocity dispersion profile of the BCG. As discussed
throughout this thesis, using the velocity dispersion profile of the BCG allowed
us to disentangle luminous from dark matter in the very core of the cluster. Be-
yond this sort of analysis, combining strong and weak gravitational lensing has
been particularly powerful in securing mass constraints from ~10 kpc to ~ Mpc
scales, which has led to interesting new constraints. Three analyses are particu-
larly signficant: the clusters C10024 (Kneib et al., 2003), Abell 1689 (Broadhurst
et al., 2005a) and MS2137 (Gavazzi et al., 2003). Common to all three clusters is
a high inferred concentration parameter, ¢, the ratio of virial radius to NF'W scale
radius. Both Gavazzi (2005) and Oguri et al. (2005) have suggested that these
results are due to the neglect of triaxiality in the modeling process, which can bias
the mass and parameters determined for a system (see Fig 6.1). The combination
of a strong+weak lensing analysis allows the mass to be probed from ~100 kpc
to ~Mpc scales, partially eliminating certain degeneracies which are inherent to
strong-lensing only analyses (e.g. the 3 — ry. degeneracy seen in Chapter 5) due to
projection effects.

Prior to considering the role of future investigations it is pertinent to ask: What
is the question we are trying to answer? Is the goal simply to test the predictions

of CDM on galaxy cluster scales? Or should the goal be empirical: to measure and
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Figure 6.1: Constraints on the mass and halo concentration (the ratio of the
virial radius to the NFW scale radius) when fitting a spherical NFW model to an
inherently triaxial system. Constraint contours represent fits made on a triaxial
halo while projecting along the principal axes. The square box shows the input
values of the triaxial halo. This plot suggests that the triaxiality of real halos may
need to be taken into account if the true parameters of the halo are to be inferred.

This figure is reproduced from Oguri et al. (2005).
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decompose the density profile in galaxy clusters, from 10 kpc to 1 Mpc in terms
of its constituents. This thesis has demonstrated that the tools to do this are at
our disposal and I will outline in this final section the general path I think can be

taken to achieve them.

6.1 What Theorists Can Do

Here I suggest ways in which numerical workers could better facilitate comparisons
between simulated dark matter halos (and more sophisticated simulations that
include baryonic physics) and observations.

First, numerical simulators should make some effort to project their data into
two dimensions for better comparison with observational results. Real galaxy clus-
ters are three-dimensional objects with roughly triaxial structure, which is borne
out in simulations (Jing & Suto, 2002). This naturally leads to characterizations
of halos in three dimensional units, such as mass densities, scale radii or axial
ratios. For instance, the original NF'W density profile is just that, a spherically
averaged three dimensional mass density profile. However, most observations can
only infer surface mass density profiles and the projection from three dimensions
to two during the modeling process can lead to ambiguous results and degeneracies
(such as the afforementioned 8 — rs. degeneracy or mismeasurement of common
parameters in triaxial halos, Figure 6.1). By projecting their results along mul-
tiple sight lines and illustrating what range of two-dimensional parameters that
observers can expect to see, simulators could easily resolve these ambiguities. This
of course is not to imply that three-dimensional results are not interesting and that
observers should not be looking for signatures of triaxiality, just that simulators
could address some of the apparent conflicts with CDM by making their results
easily comparable to observations.

An understanding of which observations should be made and how to model
them can progress by simulating observations of simulated cluster dark matter

halos. This idea is beginning to be recognized in the community which measures
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the dark matter density profile in dwarf galaxies. For instance, Hayashi et al.
(2004a) have taken triaxial, hydrodynamic simulations of disks embedded in CDM
halos and performed mock long slit observations. They find that 25% of the time
they measure rotation curves that would be interpreted as arising from a flat-
cored dark matter halo even though the original profiles are NFW-like. Also, Rhee
et al. (2004) have “observed” realistic simulations of dwarf galaxies and have found
that slight morphological and dynamical perturbations caused by the presence of
a small bulge or bar can cause typical long-slit observations to infer a flat-cored
dark matter halo. Even though these studies have shown that current rotation
curve observations which imply that dark matter halos have flat cores do not
necessarily rule out cuspy models, they have not suggested any particular method
for overcoming these obstacles to actually measuring the inner dark matter slope
in dwarf galaxies.

One study at the galaxy cluster scale has sought to understand systematics in-
volved in measuring cluster masses with weak gravitational lensing measurements
by performing mock observations on simulated clusters (Clowe et al., 2004). The
authors concluded that massive substructure and cluster asphericities do not pre-
vent one from inferring reliable cluster masses and concentrations from simple,
spherically averaged weak shear measurements, within the observational uncer-
tainties. One could imagine other experiments involving mock observations of
simulated clusters which seek to elucidate the best method for measuring the dark
matter density profile in clusters. Simply by simulating clusters and ray-tracing
through background sources to produce gravitational arcs and then performing
standard strong lensing analyses on these “observations” important questions can
be addressed, e.g. How many strong lensing arcs are needed before one can accu-
rately estimate the cluster density profile? How complex does the lens model have
to be to recover the actual underlying simulated cluster profile? Can we disentan-
gle luminous from dark matter by combining different measurement techniques?
Such work could point the way to what clusters should be observed and with what

techniques in order to best determine their dark matter density profile. In fact,
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a paper in preparation is doing something very similar by taking simulations of
galaxy clusters and “observing” gravitational arcs and mock velocity dispersion
profiles of the BCGs (mimicking the observations presented in this thesis) and
determining which modeling techniques accurately recover the inner dark matter
density slope in these systems (Meneghetti et al. in preparation). Indeed it seems

that much progress could be made if observers and theorists cooperated more.

6.2 What Observers Can Do

The ultimate goal of the observer should not just be measuring the inner density
slope of cluster dark matter profiles. It should also be a complete characterization
of the three massive components of clusters (dark matter, hot intracluster gas,
and stellar matter) from kiloparsec scales out to the virial radius. The galaxy
cluster scale is ideal for measuring the radial distribution of the prominent clus-
ter mass components, since there are several observational techniques which both
complement each other and can serve to disentangle luminous from dark matter in
clusters: gravitational lensing, galaxy dynamics, and the X-ray emitting intraclus-
ter hot gas in hydrostatic equilibrium. Each of these observational probes permits
a cross-disciplinary approach which combines and compares techniques.

Each observational technique has its strengths and weaknesses. Gravitational
lensing is a direct probe of the mass without regard to its state or type. When
weak and strong lensing are combined, the mass profile can be probed from ~ 10
kpc scales out to ~ 1 Mpc. However, this advantage has a weakness, because lens-
ing alone cannot distinguish between luminous and dark matter. Without another
mass probe, it is difficult to disentangle the two with lensing alone. X-ray analyses
of the intracluster medium are also excellent at probing the cluster density profile
from kpc to Mpc scales, especially with the Chandra and XMM satellites in orbit.
However, these observations are always plagued by the necessary assumption of hy-
drostatic equilibrium and its inability to account for the massive BCG in the center

of the cluster. Without having to assume hydrostatic equilibrium, it is possible to
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Figure 6.2: A comparison between the weak-lensing and X-ray mass estimates
(assuming hydrostatic equilibrium) in Abell 2390. The results are in remarkable
agreement given the apparently unrelaxed state of the cluster as seen in the X-ray
and optical. Any discrepancy between the two measurements could indicate that
the cluster is not truly in hydrostatic equilibrium and has other significant forms

of pressure support.

probe the gas density profile (which makes up ~20% of the total cluster mass) of
a cluster. Used in combination with other techniques the gas density profile infor-
mation from X-ray data can be used to disentangle that massive component from
the rest of the mass model. Relative kinematics of constituent cluster galaxies can
be used to probe the cluster potential by solving the spherical Jeans equation and
thus measuring the total mass enclosed within concentric annuli. This dynamical
approach can also account for and disentangle the mass associated with the clus-
ter galaxies themselves, once again separating luminous from dark matter. The
weakness inherent in using galaxy dynamics as a probe of the cluster potential
is the need to make unwarranted assumptions about the orbital properties of the
cluster galaxies, particularly noting the the degeneracy between the mass profile
shape and orbital anisotropy in the results of any modeling.

An observational approach which combined and compared the above three

techniques would be a powerful tool. Jointly analyzing lensing+X-ray-+galaxy
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dynamics for a given cluster could, in principle, simultaneously account for each
of the constituent mass components and probe the total density profile from ~kpc
to ~Mpc scales. Of course, if any of the underlying assumptions inherent to
each method are not actually correct then this would come out by comparing the
methods. By comparing the mass profiles derived from the X-ray and lensing
methodologies, it will be possible to probe directly deviations from hydrostatic
equilibrium, and by extension, deviations from pure thermal pressure support of
the cluster gas. A non-thermal pressure term could come from magnetic pressure,
turbulence or bulk motions and is expected during cluster mergers or other low-
level interactions (e.g. Markevitch et al. 2001). A direct comparison between X-ray
and weak+strong lensing mass estimates has only been performed once, in Abell
2390 (Allen et al. 2001; Figure 6.2). A similar analysis performed on a sample
of clusters would lend insight into the state of the hot intracluster gas and the
density profile of clusters. Similarly, by comparing lensing and galaxy dynamics
mass profiles one would be sensitive to departures from orbital isotropy in the
galaxy orbits, breaking the traditional mass profile-orbital anisotropy degeneracy
(see Figure 6.3). It is expected that at the center of the cluster the galaxy orbits
are close to isotropic (e.g. Huss et al. 1999) but at larger radii, and among different
galaxy populations (spirals vs. ellipticals) galaxy orbits should become anisotropic
(e.g. Ghigna et al. 1998).

The combination of these three types of data sets on a well chosen sample
of galaxy clusters would empirically establish the relationship between the major
galaxy cluster mass components across three decades in radius and could elucidate
the dynamical state of typical systems. The basis for such a data set is already in
hand as a result of the search for gravitationally lensed arcs in the HST/WFPC2
archive presented in Chapter 4. In fact, out of that sample of clusters with strong
gravitational lensing, I have identified ~10 clusters with sufficient Chandra archival
data for complementary study. While a difficult observational goal, such an anal-
ysis would serve as a template from which modern numerical simulations could be

compared and perhaps hint at the nature of dark matter itself.
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Figure 6.3: An illustration of the mass profile-orbital anisotropy degeneracy. Left:
An example of the type of cluster galaxy velocity dispersion data obtainable, in
this case for the Coma cluster. The various curves show fits to a generalization of
the NFW profile with inner slope ppas o r—?. Note that virtually any slope can
be fit to the velocity dispersion data on its own, due to the mass-orbital anisotropy
degeneracy. Right: The actual constraints obtained on the inner DM slope and
orbital anisotropy in the Coma cluster (Lokas & Mamon 2003). Although shallow

DM slopes are preferred, no strong constraints can be obtained.
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