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Abstract

In this thesis, I examine both applied and theoretical issues in network source coding.

The applied results focus on the construction of locally rate-distortion-optimal vector

quantizers for networks. I extend an existing vector quantizer design algorithm for arbitrary

network topologies [1] to allow for the use of side information at the decoder and for the

presence of channel errors. I show how to implement the algorithm and use it to design

codes for several different systems. The implementation treats both fixed-rate and variable-

rate quantizer design and includes a discussion of convergence and complexity. Experimental

results for several different systems demonstrate in practice some of the potential performance

benefits (in terms of rate, distortion, and functionality) of incorporating a network’s topology

into the design of its data compression system.

The theoretical work covers several topics. Firstly, for a system with some side informa-

tion known at both the encoder and the decoder, and some known only at the decoder, I

derive the rate-distortion function and evaluate it for binary symmetric and Gaussian sources.

I then apply the results for binary sources in evaluating the binary symmetric rate-distortion

function for a system where the presence of side information at the decoder is unreliable.

Previously, only upper and lower bounds were known for that problem. Secondly, I address

vi



vii

with an example the question of whether feedback from a decoder to an encoder ever en-

larges the achievable rate region for lossless network source coding of memoryless sources.

Thirdly, I show how cutset methods can yield quick and simple rate-distortion converses

for any source coding network. Finally, I present rate-distortion results for two different

broadcast source coding systems.
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Chapter 1

Introduction

The amount of data transferred over electronic communication networks has increased dra-

matically in the last three decades. As a result, the motivation for developing efficient source

codes for network data compression has never been higher. Yet, despite the growing number

of network applications, there are very few source codes in common use that take advantage

of the topology of the network in which they operate. Indeed, the vast majority of data

compression codes are developed without any consideration whatsoever of the structure of

the network; the network is treated as a collection of independent point-to-point links, and a

separate code is designed for each link. This “independent” approach to source code design

for networks does not achieve the goal of using the network links in the most efficient man-

ner. Although point-to-point codes remove the redundancy in each individual source, they

are unable to remove the redundancy between different sources, and are therefore inefficient

when applied to statistically dependent sources.

Redundancy between data sources is observed in a growing number of network applica-

tions. Video conferencing, sensor networks, and distributed computing all generate multiple,

1



2 CHAPTER 1. INTRODUCTION

highly correlated data streams. These applications require a global, “network” approach to

code design, one that exploits inter-source dependencies. This observation begs the question

of why such an approach is rarely taken in practice. One reason is an incomplete understand-

ing of the magnitude of the potential benefits; rate-distortion results are known for only a

few simple networks. Another, perhaps more important reason is a lack of understanding

of how to convert existing theory into good practical codes. Indeed, even the definition of

“goodness” in networks is not immediately clear. Several factors must be balanced: rates,

distortions, design complexity, run-time encoding and decoding complexity, and robustness

to changes or failures in the network.

The first part of this thesis investigates the global, “network” approach to source code

design using vector quantization (VQ). An algorithm for VQ design for arbitrary networks

is outlined in [1], Chapter 2 extends this algorithm and presents the details of its implemen-

tation along with experimental results, thereby yielding the first practical data compression

codes designed for a general network setting. The definition of goodness adopted in this

design is rate-distortion performance; I extend the necessary conditions for rate-distortion

optimality of network encoders and decoders from [1] to allow for the presence of both side

information and channel errors, and use them as the basis of an iterative design algorithm

functionally equivalent to the generalized-Lloyd algorithm. I show that convergence of the

algorithm to a local optimum is guaranteed for some systems; for others, approximations

required for practical implementation remove this guarantee, although I do observe conver-

gence in all of my experimental work. When necessary, I show how to modify the algorithm

to ensure convergence for all systems; however, the modification trades away some rate-

distortion performance to gain this guarantee of convergence. The design equations treat
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both fixed- and variable-rate quantizer design and take into account the presence of channel

errors. However, the implementation of variable-rate design is currently limited due to the

lack of lossless entropy codes for general networks. The range of systems for which optimal

variable-rate quantizers can be designed will expand as the field of lossless network source

coding develops. I design VQs for several different systems and evaluate their performance

compared to both an independent coding approach and to rate-distortion bounds. The ex-

perimental results demonstrate that, for networks with correlated sources, incorporating the

network’s topology into the design of its data compression system yields significant increases

in performance with respect to an independent coding approach. This work also appears

in [7, 8, 9].

Development of more efficient practical codes is supported by a more thorough under-

standing of source coding theory, which is the focus of the second part of this thesis. Table 1.1

summarizes our current knowledge of source coding theory for the basic network classes il-

lustrated in Figure 1.1. In this table, a citation in one of the table cells indicates that we

know the region of achievable rates (for lossless coding) or the rate-distortion function (for

lossy coding). Partial knowledge of the rate-distortion function via an achievability (ach) or

converse (con) result is as indicated. An ‘x’ denotes that the area remains largely open. The

various systems mentioned are introduced briefly below.

• Point-to-point [10]: A point-to-point network, shown in Figure 1.1(a), is the simplest

communication network. A single encoder transmits information to a single decoder.

• Side information1 (SI) [11, 12, 13]: A SI network, shown in Figure 1.1(b), is a

1My use of the term “side information system” refers specifically to the system with side information
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point-to-point communication network in which side information is available at the

decoder. In the context of lossy coding, I refer to this system also as the Wyner-Ziv

(WZ) system.

• Multiple Access (MA) [11]: In an MA network, shown in Figure 1.1(c), two or

more senders transmit information to a single receiver.

• Multi-Resolution (MR) [14, 15]: MR codes, shown in Figure 1.1(d) generate an

embedded source description for two or more receivers. Receiver i receives only the

first fraction fi of the description, where f1 < f2 < . . . .

• Multiple Description (MD) [16, 17, 18]: An MD code can be used for point-to-

point communication over multiple, unreliable communication channels (or over a lossy,

packet-based channel in which lost packets cannot be retransmitted). Each channel’s

source description may be lost, and the decoder reproduces the source by combining all

received descriptions. In Figure 1.1(e), we model a two-channel system and represent

the different decoding scenarios with three separate decoders.

• Broadcast (BC) [19, 20]: In a BC network, shown in Figure 1.1(f), a single sender

describes a collection of sources to two or more receivers. A different message can be

transmitted to each possible subset of the receivers.

The relationships between the various systems are shown in Figure 1.2. Point-to-point net-

works are special cases of both MA and BC networks. SI networks are considered as special

available only at the decoder. When side information is available to both encoder and decoder, I use the

term “conditional side information system”.
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General Networks

MABC

Point−to−point

General Networks

BC

MR

Point−to−point

MD

General Networks

Point−to−point

MA

SI

Figure 1.2: The relationship between the systems.

Network Lossless theory Lossy theory

Point-to-point Shannon [10] Shannon [10]

Side-information Slepian & Wolf [11] Wyner & Ziv [12, 13]

Multiple Access Slepian & Wolf [11] Tung & Berger Ach/Con:[21, 22]

Multi-Resolution N/A Rimoldi [23]

Multiple Description N/A Various Ach:[18, 24, 25] Con:[26]

2-receiver Broadcast Gray & Wyner [19] Gray & Wyner [19]

M -receiver Broadcast x x

General network Han & Kobayashi Ach/Con:[27] x

Table 1.1: Progress chart for network source coding.
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cases of MA networks for which one source (the side information) has no rate constraint.

MR and MD networks are both special cases of the M -receiver BC network.

Consider now the specific example of an environmental remote sensing network with sev-

eral sensors, each of which takes measurements and transmits them to a central base station,

which also makes its own measurements. In encoding its transmission to the base station,

each sensor can consider the measurements taken by the base station as side information

available to the base station’s decoder. If the system uses multi-hop transmissions, then

measurements relayed by a sensor act as side information available both to that sensor’s

encoder and the base station’s decoder. Motivated by this framework, I begin the second

part of the thesis in Chapter 4 by deriving rate-distortion results for two systems using side

information. First, for the system shown in Figure 1.3(a) with some side information known

at both the encoder and the decoder, and some known only at the decoder, I derive the

rate-distortion function and evaluate it for binary symmetric and Gaussian sources. I then

apply the results for the binary source to a second network, shown in Figure 1.3(b), which

models point-to-point communication when the presence of side information at the decoder

is unreliable [2, 3]. I demonstrate how to evaluate the binary rate-distortion function for

that network, closing the gap between previous bounds [2, 28] on its value. The form of the

binary rate-distortion function for this second system exhibits an interesting behavior akin

to successive refinement, but with side information available to the refining decoder. This

work also appears in [29, 30]

Chapter 5 covers three further topics in network source coding theory. The first is a

question arising out of a difference between lossless and lossy MA source coding. In lossy

coding, the Wyner-Ziv result [12, 13] demonstrates that, in general, a higher rate is required
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Figure 1.3: (a) The mixed side information system considered in Chapter 4. (b) The sys-
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when an encoder does not have access to all of the messages or side informations available to

the decoder. However, the Slepian-Wolf result [11] implies that this result does not carry over

to the lossless case. This begs the question of whether feedback from a decoder to an encoder

can ever reduce the rate total rate required in lossless coding. I answer this question by means

of a detailed example which shows that, as the alphabet size of the sources grows without

bound, feedback of a limited rate can reduce by an arbitrary amount the total rate required

by the encoders. The second topic is the development of simple rate-distortion converses

for networks. Network converses are often difficult to find, but I show that a method based

on cutsets yields simple converses for any lossy source coding network. This approach has

the advantage of easy applicability but the drawback that the converses are, in many cases,

fairly loose. Finally, motivated by the lack of results in general broadcast coding, I look

at the rate tradeoff between the three encoders in the three-source three-receiver lossless

network of Figure 1.3(c) and apply the outcome to the derivation of an achievability result

for three-receiver lossy broadcast source coding. I also derive a rate-distortion result for a

tree-structured broadcast coding system.

A summary and discussion of the main contributions concludes the thesis in Chapter 6.

Throughout the thesis, I adopt the notation and definitions from [31] for the basic in-

formation theoretic quantities (entropies, mutual informations, etc.). Since the focus is

on source coding, all communication channels are assumed to be noiseless unless specified

otherwise. The practical work considers strictly stationary information sources; the theoret-

ical work assumes further that the sources are also independent and identically distributed

(i.i.d.).



Chapter 2

Background

This chapter defines typical sequences, summarizes several existing results in network rate-

distortion theory, and summarizes past work in VQ coding. For the rate-distortion results,

I present the definition of the achievable rate-distortion region in detail only for the point-

to-point network; a similar definition applies for each of the other networks.

2.1 Jointly Typical Sequences

The rate-distortion proofs in this thesis make use of strongly jointly typical sequences as

defined below.

Let {Xk}K
k=1, with Xk ∈ Xk ∀k, denote a finite collection of discrete random variables

with some fixed joint distribution p(x1, x2, . . . , xK). Let S denote an ordered subset of the

indices {1, 2, . . . , K} and let XS = (Xk : k ∈ S). Denote n independent samples of XS ∈ XS

by Xn
S = (XS,1, . . . , XS,n). For any S and any a(S) ∈ X (S), let

N(aS |xn
S) =

n
∑

i=1

1xS,i=aS
,

10
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where xS,i is the ith element of xn
S and 1E is the indicator function for event E.

Definition The set A
∗(n)
ε of ε-strongly typical n-sequences is the set of all sequences

(xn
1 , x

n
2 , . . . , xn

K) satisfying for all S ⊆ {X1, X2, . . . , XK} the following two conditions:

1. For all aS ∈ XS with p(aS) > 0,

∣

∣

∣

∣

1

n
N(aS|xn

S) − p(aS)

∣

∣

∣

∣

<
ε

|XS|
.

2. For all aS ∈ XS with p(aS) = 0, N(aS|xn
S) = 0.

The following two lemmas describe useful properties of the strongly typical set.

Lemma 1 [31, Lemma 13.6.1] Let XS,1, . . . , XS,n be drawn i.i.d. with distribution p(xS).

Then

Pr(A∗(n)
ε ) → 1 as n → ∞.

Lemma 2 [31, Lemma 13.6.2] Let Y1, . . . , Yn be drawn i.i.d. with distribution p(y). For

xn ∈ A
∗(n)
ε , the probability that (xn, Y n) ∈ A

∗(n)
ε is bounded by

2−n(I(X;Y )+ε1) ≤ Pr((xn, Y n) ∈ A∗(n)
ε ) ≤ 2−n(I(X;Y )−ε1),

where ε1 → 0 as ε → 0 and n → ∞.

2.2 Existing Rate-Distortion Results

2.2.1 The Point-to-Point Network

Let X ∈ X be an independent and identically distributed (i.i.d.) source taking values in

source alphabet X and distributed according to p(x). Let X̂ be a reproduction alphabet,
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and let d : X × X̂ → [0,∞) be a measure of the distortion between symbols from the two

alphabets.

A (2nR, n, ∆n) point-to-point rate-distortion code for source X under distortion measure

d is defined by encoder and decoder functions (αn, βn) such that

αn : X n → {1, 2, . . . , 2nR}

βn : {1, 2, . . . , 2nR} → X̂ n

∆n =
1

n

n
∑

i=1

Ed(Xi, X̂i),

where X̂i is the ith component of X̂n = βn(αn(Xn)) and the expectation is with respect to

the source distribution. A rate-distortion pair (R, D) is achievable if there exists a sequence

of (2nR, n, ∆n) rate-distortion codes (αn, βn) with limn→∞ ∆n ≤ D. The rate-distortion

region is defined as

R = {(R, D) : (R, D) is achievable},

where the overbar denotes set closure. The rate-distortion function is defined as

RX(D) = inf
D
{R : (R, D) ∈ R}.

The following theorem gives an information-theoretic characterization of the rate-distortion

function.

Theorem 1 [10, Section 28]

RX(D) = inf
X̂∈MX(D)

I(X; X̂),

where MX(D) is the closure of the set of all random variables X̂ described by a test channel

p(x̂|x) such that Ed(X, X̂) ≤ D.
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The infimum above has been evaluated for a variety of sources, including binary and Gaussian

sources (see, for example, [31]). For i.i.d. sources, it can be evaluated numerically via a

globally-optimal iterative descent algorithm [32, 33].

2.2.2 The Conditional Rate-Distortion Network

When side information Y ∈ Y is available to both encoder and decoder, as in Figure 2.1(a),

the rate-distortion function is called the conditional rate-distortion function and is given by

the following theorem.

Theorem 2 [4, Pg. 8]

RX|Y (D) = inf
X̂∈MX|Y (D)

I(X; X̂|Y ),

where MX|Y (D) is the closure of the set of all random variables X̂ described by a test channel

p(x̂|x, y) such that Ed(X, X̂) ≤ D.

The infimum above has been evaluated for jointly Gaussian sources [13].

2.2.3 The Wyner-Ziv Network

When side information Z ∈ Z is available to only the decoder and not to the encoder, as

in Figure 1.1(b), the rate-distortion function is called the Wyner-Ziv (WZ) rate-distortion

function. The following theorem gives its form for both discrete and continuous sources,

but for continuous sources the achievability part of the theorem is proven only for distortion

measures satisfying the following two conditions:

1. For all x̂ ∈ X̂ , Ed(X, x̂) < ∞.
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Figure 2.1: (a) The conditional rate-distortion network [4]. (b) The network of Berger and

Yeung [5]. (c) The network of Kaspi and Berger [6].

2. For all random variables X̂ such that 0 < Ed(X, X̂) < ∞ and all ε > 0, there

exists a finite subset {x̂1, . . . , x̂N} ⊆ X̂ , and a quantizer fQ : X̂ → {X̂i} such that

Ed(X, fQ(X̂)) ≤ (1 + ε)Ed(X, X̂).

Condition 2 is a smoothness constraint used in generalizing the WZ rate-distortion proof

from discrete to continuous alphabets [13]. Wyner notes that it is not especially restrictive,

showing that when X = X̂ = IR it holds for all r-th power distortion measures, d(x, x̂) =

|x − x̂|r with r > 0.

Theorem 3 [12, Theorem 1], [13, Theorems 2.1,2.2]

RX|{Z}(D) = inf
W∈MX|{Z}(D)

I(X; W |Z)

= min
W∈MX|{Z}(D)

I(X; W ) − I(W ; Z),
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where MX|{Z}(D) is the closure of the set of all random variables W such that W →

X → Z forms a Markov chain and there exists a function f : W × Z → X̂ for which

Ed(X, f(W, Z)) ≤ D.

The set notation around the Z in the descriptor RX|{Z}(D) denotes that the side information

is available only at the decoder. Roughly speaking, the Markov chain condition in the state-

ment of Theorem 3 reflects the restriction that the description chosen by the encoder must be

based on X alone since the encoder does not have direct access to Z. The WZ rate-distortion

function has been evaluated for both binary symmetric [12] and jointly Gaussian [13] sources.

2.2.4 The Multiple-Access Network

In the two-user MA network of Figure 1.1(c), dependent sources X1 and X2 are described

by two separate encoders to a single decoder. Encoder 1 uses rate R1 and encoder 2 uses

rate R2. The decoder makes reproductions X̂1 and X̂2 satisfying the distortion constraints

Ed(Xi, X̂i) ≤ Di, i = 1, 2.

Let RMA(D1, D2) be the closure of the set of all achievable rate vectors for distortions

(D1, D2). A complete single-letter characterization of RMA(D1, D2) is not available, but

achievability and converse results exist. Berger and Tung [34, 21, 22] give the following

results. Define Rach(D1, D2) to be the closure of the set of all rate pairs (R1, R2) for which

there exist auxiliary random variables W1 and W2 such that

1.

R1 ≥ I(X1, X2; W1|W2)

R2 ≥ I(X1, X2; W2|W1)

R1 + R2 ≥ I(X1, X2; W1, W2),
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2. There exist functions f1(W1, W2) and f2(W1, W2) satisfying

Ed(Xi, fi(W1, W2)) ≤ Di, i = 1, 2.

3. W1 → X1 → X2 → W2 forms a Markov chain.

Define Rcon(D1, D2) similarly, but replace the Markov requirement in condition 1 with the

requirements that W1 → X1 → X2 and X1 → X2 → W2 form Markov chains.

Theorem 4 [21, Theorem 4.1,5.1], [22, Theorem 6.1,6.2]

Rach(D1, D2) ⊆ RMA(D1, D2) ⊆ Rcon(D1, D2)

Berger and Tung provide the M -user extension of the above and evaluate the two-user region

for joint Gaussian sources in [34, 21]. Oohama derives further results for joint Gaussian

sources in [35, 36].

Berger and Yeung give a matching achievability and converse for the case D1 = 0 in [37].

In that case, let R∗(D2) be the closure of the set of all rate pairs (R1, R2) for which there

exists an auxiliary random variables W2 such that

1.

R1 ≥ H(X1|W2)

R2 ≥ I(X2; W2|X)

R1 + R2 ≥ H(X) + I(X2; W2|X).

2. A function f2(X, W2) exists satisfying Ed(X2, f2(X, W2)) ≤ D2.

3. X1 → X2 → W2 forms a Markov chain.

4. |W2| ≤ |X2| + 2.
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Theorem 5 [37, Theorem 1]

RMA(0, D2) = R∗(D2)

The above region is determined almost completely for jointly symmetric binary sources [37].

Kaspi and Berger [6] look at how inter-encoder communication affects the rate-distortion

region by adding a common link of rate R0 from encoder 1 to encoder 2 and the decoder, as

shown in Figure 2.1(b). Their result is the following. Let RKB(D1, D2) be the closure of the

set of all achievable rate triples for distortions (D1, D2). Let Rach be the closure of the set

of all rate triples for which there exist auxiliary random variables U1, U2, and W such that

1.

R0 ≥ I(X2; W |X1)

R1 ≥ I(X1; U1|U2, W )

R2 ≥ I(X2; U2|U1, W )

R0 + R1 + R2 ≥ I(X1, X2; U1, U2, W ).

2. There exist functions f1(U1, U2, W ) and f2(U1, U2, W ) satisfying Ed(Xi, fi(U1, U2, W )) ≤

Di, i = 1, 2.

3. U1 → (X1, W ) → (X2, W ) → U2 and X1 → X2 → W form Markov chains.

4. |U| ≤ |X1||X2| + 6|X1| + 5, |U2| ≤ |X2|2 + 6|X2| + 5, |W| ≤ |X2| + 6.

Theorem 6 [6, Theorems 2.1 - 2.5]

Rach(D1, D2) ⊆ RKB(D1, D2),

with equality in the following (not necessarily exhaustive) cases:

(1) D1 = 0. (2) D2 = 0. (3) R2 = 0. (4) R0 > H(X2|X1).
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2.2.5 Multiple Access with Encoder Breakdown

Consider the case when D1 = 0, but there exists a chance that the encoder for X1 may break

down. This can be modeled by the system of Figure 2.1(c) using two decoders. Decoder 1

corresponds to the case when the encoder of X1 does not break down; decoder corresponds

to the case when it does. Here X1 is described at rate R1 to decoder 1 and X2 is described

at common rate R2 to both decoders. X1 must be reproduced losslessly at decoder 1 and

X2 must be reproduced to distortion D21 at decoder 1 and distortion D22 at decoder 2.

Berger and Yeung [5] give the following characterization of the rate-distortion region. Let

RMAEB(D21, D22) be the closure of the set of all achievable rate vectors for distortions

(D21, D22). Let R∗(D21, D22) be the closure of the set of all rate pairs (R1, R2) for which

there exist auxiliary random variables U and V such that

1.
R1 ≥ H(X1|U)

R2 ≥ I(X2; U) + I(X2; V |X1, U).

2. There exist functions X̂21 = f1(X1, U, V ) and X̂22 = f2(U) satisfying

Ed(X2, f1(X, U, V )) ≤ D21

Ed(X2, f2(U)) ≤ D22.

3. X1 → X2 → (U, V ) forms a Markov chain.

4. |U| ≤ |X2| + 3, |V| ≤ |X2| + 3.

Theorem 7 [5, Theorem 1]

RMAEB(D21, D22) = R∗(D21, D22)

When D21 = 0, Berger and Yeung evaluate this region for jointly symmetric binary sources [5].
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2.2.6 The Multi-Resolution Network

Figure 1.1(d) shows two-receiver MR coding. A single source X is described to two decoders.

Both decoders receive a common description at rate R1, and decoder 2 receives an additional

private description at rate R2. Decoders 1 and 2 make reproductions X̂1 and X̂2 at distortions

D1 and D2 ≤ D1, respectively. The rate-distortion region is given by Rimoldi [23]. Let

RMR(D1, D2) be the closure of the set of all achievable rate vectors for distortions (D1, D2),

and let R∗(D1, D2) be the closure of the set of all rates for which there exist X̂1 and X̂2 such

that

R1 ≥ I(X; X̂1)

R2 ≥ I(X; X̂2|X̂1)

Ed(X, X̂1) ≤ D1

Ed(X, X̂2) ≤ D2.

Theorem 8 [23, Theorem 1]

RMR(D1, D2) = R∗(D1, D2).

An M -receiver result is also given in [23]. The rate distortion region has been evaluated for

several sources; for more details see the discussion on successive refinement in Section 2.2.10.

2.2.7 The Multiple Description Network

Figure 1.1(e) shows two-user MD coding. A single source is described on two different

channels at rates R1 and R2, respectively. Decoder 1 receives only the channel 1 descrip-

tion and makes reproduction X̂1; decoder 2 receives only the channel 2 description and
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makes reproduction X̂2; decoder 12 receives both descriptions and makes reproduction X̂12.

Let RMD(D1, D2, D12) be the closure of the set of all achievable rate vectors for distor-

tions (D1, D2, D12). An exact single letter characterization of RMD(D1, D2, D12) remains

unknown, but achievability and converse results exist. El Gamal and Cover [18] give the

following achievability result. Let Rach(D1, D2, D12) be the closure of the set of all rates

(R1, R2) for which there exist X̂1, X̂2, and X̂12 such that

R1 ≥ I(X; X̂1)

R2 ≥ I(X; X̂2)

R1 + R2 ≥ I(X; X̂12, X̂1, X̂2) + I(X̂1; X̂2)

Ed(X, X̂t) ≤ Dt, t ∈ {1, 2, 12}.

Theorem 9 [18, Theorem 1]

Rach(D1, D2, D12) ⊆ RMD(D1, D2, D12).

Ahlswede shows that this achievability result is tight for the special case of multiple descrip-

tion coding in which R1 +R2 = RX(D12) [38], and Ozarow shows that it is tight for Gaussian

sources [17]. However, Zhang and Berger show it to be loose in general [24]. They provide

both a counterexample to its tightness and the following new achievable region. Redefine

Rach(D1, D2, D12) to be the closure of the set of all rates (R1, R2) for which there exist aux-

iliary random variables X̂0, X̂1, X̂2 such that

1.

Ri ≥ I(X; X̂0, X̂i), i = 1, 2

R1 + R2 ≥ 2I(X; X̂0) + I(X̂1; X̂2|X̂0) + I(X; X̂1, X̂2|X̂0).
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2. There exist functions fi(X̂0, X̂i), i = 1, 2, and f12(X̂0, X̂1, X̂2) satisfying

Ed(X, fi(X̂0, X̂i)) ≤ Di, i = 1, 2

Ed(X, f12(X̂0, X̂1, X̂2)) ≤ D12.

Theorem 10 [24, Theorem 1]

Rach(D1, D2, D12) ⊆ RMD(D1, D2, D12),

A generalization of this result to M descriptions is given in [25].

The following converse for MD is provided by Sher and Feder [26]. Let Rc(D1, D2, D12)

be the closure of the set of all rates (R1, R2) for which there exist X̂1, X̂2, and X̂12 such that

R1 ≥ I(X; X̂1)

R2 ≥ I(X; X̂2)

R1 + R2 ≥ I(X; X̂12|X̂1, X̂2) + I(X; X̂1) + I(X; X̂2)

Ed(X, X̂t) ≤ Dt, t ∈ {1, 2, 12}.

Theorem 11 [26, Theorem 1]

RMD(D1, D2, D12) ⊆ Rc(D1, D2, D12).

2.2.8 The Network with Unreliable Side Information

Consider a Wyner-Ziv system in which the presence of side information at the decoder is

unreliable. The network of Figure 1.3(b) models such a system using two decoders. Decoder

1 corresponds to the case when the side information is available; decoder 2 corresponds to

the case when it is absent. This network is studied by both Heegard and Berger [2] and
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Kaspi [3]. They give different but equivalent characterizations of the rate-distortion region;

I state here Heegard and Berger’s result. Let RUSI(D1, D2) be the closure of the set of all

achievable rate vectors for distortions (D1, D2), and let R∗(D1, D2) be the closure of the set

of all rates R for which there exist auxiliary random variables U and V such that

1.

R ≥ I(X; U) + I(X; V |U, Z).

2. There exist functions f1(U, V, Z) and f2(U) satisfying

Ed(X, f1(U, V, Z)) ≤ D1

Ed(X, f2(U)) ≤ D2.

3. X → Z → (U, V ) forms a Markov chain.

4. |U| ≤ |X | + 2 and |V| ≤ (|X | + 1)2.

Theorem 12 [2, Theorem 1]

RUSI(D1, D2) = R∗(D1, D2)

Both papers give additional results. Kaspi gives the rate-distortion region when the side

information is also available to the encoder. Heegard and Berger generalize their achievability

result to the case of several decoders, each with different side information. They also evaluate

their region for jointly Gaussian sources and provide an upper bound for binary symmetric

sources. That upper bound is tightened by Kerpez [28], who also provides a loose lower

bound. I close the gap between these bounds in Chapter 4.
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2.2.9 The Two-Receiver Broadcast Network

Figure 1.1(f) shows a two-receiver BC network. Source X1 must be described to decoder 1,

and source X2 must be described to decoder 2. There are three channels for the descriptions;

a common channel to both decoders of rate R12, and two private channels, one to each of the

two decoders, of rates R1 and R2, respectively. The rate-distortion region is given by Gray

and Wyner [19]. Let RBC(D1, D2) be the closure of the set of all achievable rate vectors for

distortions (D1, D2), and let R∗(D1, D2) be the closure of the set of all rate pairs (R1, R2)

for which an auxiliary random variable W exists satisfying

R12 ≥ I(X1, X2; W )

R1 ≥ RX1|W (D1)

R2 ≥ RX2|W (D2).

Theorem 13 [19, Theorem 8]

RBC(D1, D2) = R∗(D1, D2)

I generalize the achievability result to the three receiver case in Chapter 5. I also derive tight

results for a special case of M -receiver broadcast coding.

2.2.10 Rate Loss and Successive Refinement

Zamir [39] defines the rate loss L(D) for WZ coding as the difference between the WZ and

the conditional rate-distortion functions; thus L(D) = RX|{Z}(D) − RX|Z(D). The rate loss

describes the difference in achievable rate when the side information is available to just the
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decoder compared to when it is available to both the encoder and the decoder. It is always

non-negative.

In [39], Zamir shows that for a continuous source and the r-th power distortion measure,

the rate loss is bounded by a constant which depends on the source alphabet and the dis-

tortion measure, but not on the source distribution. For example, for continuous alphabet

sources and squared-error distortion, L(D) ≤ 1
2

for all D. This bound shows that the penalty

paid for Y not being available at the encoder cannot be arbitrarily large.

The concept of rate loss can be applied to other coding scenarios such as MR coding [40].

For MR codes, rate loss is found to be zero for successively refinable sources, defined below.

Definition [14] [15, Definitions 1 and 2] A source X is said to be successively refinable under

a distortion measure if, for that source and distortion measure, successive refinement from

distortion D1 to distortion D2 is achievable for every D1 ≥ D2. Successive refinement from

distortion D1 to D2 ≤ D1 is said to be achievable if there exists a sequence of encoding and

decoding functions

αn
1 : X n → {1, . . . , 2nR1}

αn
1 : X n → {1, . . . , 2n(R2−R1)}

βn
1 : {1, . . . , 2nR1} → X̂ n

βn
2 : {1, . . . , 2nR1} × {1, . . . , 2n(R2−R1)} → X̂ n

such that for X̂n
1 = βn

1 (αn
1 (Xn)) and X̂n

2 = βn
2 (αn

1 (Xn), αn
2 (Xn)),

lim sup
n→∞

Ed(Xn, X̂n
1 ) ≤ DX(R1)

lim sup
n→∞

Ed(Xn, X̂n
2 ) ≤ DX(R2),
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where DX(R) is the distortion-rate function for the source.

Examples of successively refinable sources include Gaussian sources under squared-error

distortion, arbitrary discrete distributions under Hamming distortion, and Laplacian sources

under absolute error [15]. An example of a problem that is not successively refinable is that

of the Gerrish source [41, 15] (which has |X | = 3 and p(x) = ( 1−p

2
, p, 1−p

2
)), although the

maximal excess rate R2 − RX(D2) when R1 = RX(D1) is very small [42].

Rate loss results for MR codes [40, 43] bound the difference in total rate
∑k

i=1 Ri used to

achieve distortion Di in resolution i and the corresponding rate RX(Di) for an optimal point-

to-point code. They give source-independent bounds similar to those of Zamir for the WZ

system and show that only a small penalty is paid in using a single multi-resolution source

description in place of a family of optimal point-to-point (single-resolution) descriptions.

2.3 Vector Quantization

Past work on VQ design typically takes one of two approaches. Either the codebook is

first initialized in some way and then trained using an iterative descent algorithm (“uncon-

strained” design), or a lattice or other structure is imposed on the codebook (“constrained”

design). The work in this thesis considers unconstrained VQ design. Prior work in this area

is summarized below.

Globally optimal scalar quantizer (SQ) design can be done in polynomial-time for both

fixed-rate coding [44, 45, 46, 47] and variable-rate coding [48]. However, globally optimal

VQ design is NP-hard even for fixed-rate VQ and only two codewords [49]. It is convenient,

therefore, to consider locally optimal design via iterative descent techniques. An iterative
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descent algorithm to design locally rate-distortion-optimal fixed-rate VQs for the simplest

network, the point-to-point network, appears in [50], and its extension to variable-rate cod-

ing via the inclusion of an entropy constraint appears in [51]. Fixed-rate VQ design for

transmission over a noisy channel is considered in [52, 53].

The approaches of [50] and [51] have been generalized for application to MR, MD, and

BC networks. Examples of MR coding include tree-structured VQ [54, 55], locally optimal

fixed-rate MRSQ [56], variable-rate MRSQ [57], and locally optimal variable-rate MRSQ

and MRVQ [58, 59]. Examples of MD coding include locally optimal two-description fixed-

rate MDVQ [60], locally optimal two-description fixed-rate [61] and entropy-constrained

MDSQ [62].

There are significantly fewer VQ design algorithms for MA systems. Two schemes for

two-user MA coding appear in [63], but they differ from the previous works mentioned in

that they are not optimized explicitly for rate-distortion performance.

Building on a part of this thesis first published in [7], fixed and variable-rate BC coding

is covered in [20, 64]. That work is further generalized in [1], which presents an algorithm

for VQ design in a general network with multiple encoders and multiple decoders.

Subsequent to the publication of the VQ design algorithm from this thesis [8, 9], an

algorithm has been developed that achieves globally near-optimal VQ design for many of

the systems studied here [65]. That algorithm relies directly on the optimal encoder and

decoder definitions first described in [1] and generalized in Chapter 3 to allow for the use of

side information at the decoders and for the presence of channel errors.



Chapter 3

Network Vector Quantizer Design

3.1 Introduction

Good code design algorithms are a necessary precursor to widespread use of network data

compression algorithms. This chapter treats VQ design for networks. The choice of VQs

(which include SQs as a special case) is motivated by their practicality, generality, and close

relationship to theory.

As mentioned in Chapter 1, practical coding for networks can be approached in one of two

ways. In the independent approach, a separate code is designed for each communication link.

In the network approach, the network topology is taken into account. In this chapter I focus

solely on the network approach and develop an iterative algorithm for the design of network

VQs (NVQs) for any network topology. The resulting algorithm generates locally, but not

necessarily globally, rate-distortion-optimal NVQs for some systems. For other systems,

approximations required for practical implementation remove this guarantee, although I do

observe convergence in all of my experimental work.

27
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My contribution to VQ design comprises two parts. In the first, I solve the problem of

VQ design for M -channel multiple description coding [7]. That work is generalized by Zhao

and Effros for BC coding in [20, 64], and, building on [7, 20, 64], Effros presents a design

algorithm for general network VQ in [1]. In the second part, I extend the design equations

in [1] to allow both for the use of side information at the decoders and for the presence of

channel errors. Then, I demonstrate in detail how to implement the algorithm, and I discuss

its convergence and complexity. Finally, I present experimental results for several types of

network VQs, demonstrating their rate-distortion improvements over independent VQs and

comparing their performance to rate-distortion bounds. Since the framework of [1] and its

extension presented here subsume that of my first work [7], I present everything in the newer

framework.

Following the entropy-constrained coding tradition (see, for example, [51, 59, 66, 67]),

I describe lossy code design as quantization followed by entropy coding. The only loss of

generality associated with the entropy-constrained approach is the restriction to solutions

lying on the lower convex hull of achievable entropies and distortions. I here focus exclusively

on the quantizer design,1 considering entropy codes only insofar as their index description

rates affect quantizer optimization.

While the entropy codes of [51, 59] are lossless codes, entropy coding for many network

systems requires the use of codes with asymptotically negligible (but non-zero) error prob-

1The topic of entropy code design for network systems is a rich field deserving separate attention; see, for

example, [19, 64, 68, 69, 70, 71, 72, 73, 74].
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abilities [68, 74, 75], called near-lossless codes.2 The use of near-lossless entropy codes is

assumed where necessary. As in [51, 59, 66, 67], I approximate entropy code performance

using the asymptotically optimal values – reporting rates as entropies and assuming zero

error probability. This approach is consistent with past work. It is also convenient since

tight bounds on the non-asymptotic performance are not currently available and the current

high level of interest in entropy coding for network systems promises rapid changes in this

important area. The extension of my approach to include entropy code optimization and

account for true (possibly non-zero) error probabilities in the iterative design is trivial, and

I give the optimization equations in their most general form to allow for this extension.

Although my algorithm allows fixed- and variable-rate quantizer design for arbitrary

networks, potential optimality in variable-rate design is currently limited to a select group

of systems. It requires the availability of either optimal theoretical entropy constraints or

optimal practical entropy codes. Optimal entropy constraints are available for MR, MD, WZ,

and two-user MA systems. Also, some points on the boundary of the achievable region for

two-user BC coding are achievable using practical codes [64]. For multi-user MA systems, the

achievable rate region is known but optimal theoretical entropy constraints are not easily

derived, nor have optimal practical near-lossless codes been created. For multi-receiver

BC and general networks (e.g., the general three-node network of Figure 3.2), even the

asymptotically optimal near-lossless rates are unknown. For such networks, I must design

variable-rate quantizers using rates that are known to be achievable in place of the unknown

optimal rates. The resulting quantizers are necessarily suboptimal.

2For instance, achieving the Slepian-Wolf rate bounds in a multiple access system requires the use of

near-lossless codes. Lossless codes cannot achieve the bounds for all sources.
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Scalability and complexity are important considerations for any network algorithm. The

scalability of my NVQ implementation depends on the interconnectivity of the network. For

an M -node network in which the in-degree of each node is constant as M grows, design com-

plexity increases linearly in M , and code design for large networks is feasible. If, however, the

in-degree of each node increases with M , then the design complexity increases exponentially

in M and my approach is useful for small networks only. Once design is complete, the run-

time complexity of my algorithm need not be prohibitive for any size of network. Optimal

decoding can be implemented easily using table lookup. Optimal encoding is more compli-

cated, but if encoding complexity is critical, then it can be greatly reduced by approximating

each encoder with a hierarchical structure of tables following the approach of [76].

The chapter is organized as follows. I develop a framework for network description in

Section 3.2. The optimal design equations for an NVQ are presented in Section 3.3, and

their implementation discussed in Section 3.4. Section 3.5 presents experimental results for

specific network design examples, and I draw conclusions in Section 3.6.

3.2 Network Description

This section develops a framework for describing network components and defines the mean-

ing of optimality for network source codes. Due to the complexity of a general network, this

discussion requires a significant amount of notation; I simplify where possible.

Consider a dimension-n code for an M -node network. In the most general case, every

node communicates with every other node, and a message may be intended for any subset

of nodes. Let Xn
t,S ∈ X n

t,S denote the source to be described by node t to the nodes in set
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S ⊆ M = {1, . . . , M}. For example, Xn
1,{2,3} is the source described by node 1 to nodes 2

and 3. If S contains only one index, I write Xn
t,{r} = Xn

t,r. Let X̂n
t,S,r ∈ X̂ n

t,S,r denote the

reproduction of source Xn
t,S at node r ∈ S. Thus X̂n

1,{2,3},2 is node 2’s reproduction of source

Xn
1,{2,3}. Reproductions X̂n

1,{2,3},2 and X̂n
1,{2,3},3 can differ since nodes 2 and 3 jointly decode

the description of Xn
1,{2,3} with different source descriptions. The source and reproduction

alphabets can be continuous or discrete, and typically X̂ n
t,S,r = X n

t,S.

For each node t ∈ M, let S(t) denote a collection of sets such that for each S ∈ S(t),

there exists a source to be described by node t to precisely the members of S ⊆ M. Then

Xn
t,∗ = (Xn

t,S)S∈S(t) gives the collection of sources described by node t. Similarly, for each

r ∈ M, let T (r) = {(t, S) ∈ S : r ∈ S} be the set of source descriptions received by

node r, where S = {(t, S) : t ∈ M, S ∈ S(t)} is the set of sources in the network. Then

X̂n
∗,r = (X̂n

t,S,r)(t,S)∈T (r) gives the collection of reconstructions at node r. Finally, let T =

{(t, S, r) : r ∈ M, (t, S) ∈ T (r)} denote the set of all transmitter-message-receiver triples.

For each node r ∈ M, denote the side information available at node r by Zn
r ∈ Zn

r .

Alphabet Zr can be continuous or discrete.

Figure 3.1 recasts some of the network examples of Chapter 1 into this notation.

Figure 3.2 shows the example of a general three-node network. Each node transmits a

total of three different source descriptions. Node 1, for instance, encodes a source intended

for node 2 only, a source intended for node 3 only, and a source intended for both. These

are denoted by Xn
1,2, Xn

1,3, and Xn
1,{2,3}, respectively, giving Xn

1,∗ = (Xn
1,2, X

n
1,3, X

n
1,{2,3}). Each

node in the network receives and decodes four source descriptions. The collection of repro-

ductions at node 1 is X̂n
∗,1 = (X̂n

2,1,1, X̂
n
2,{1,3},1, X̂

n
3,1,1, X̂

n
3,{1,2},1); their descriptions are jointly

decoded with the help of side information Zn
1 . The total number of reproductions is greater



32 CHAPTER 3. NETWORK VECTOR QUANTIZER DESIGN

- -- Enc Dec

Node 2Node 1

X1,2 X̂1,2,2

(a)

Dec

Enc

Dec

-

-

Q
Q

Q
Q

Q
QQs

-

-

PPPPPPq

������1

PPPPPPPq

�������1 -

-

-

- --

6

-

(b)

Enc

Enc

Node 4

Node 3

Dec

Node 1

Enc

Node 2

(c)

(d)

Node 2

Node 1

Node 3

Enc

Node 2

Dec

Node 1

Z1

X1,2, X1,3

X1,{2,3}

X̂1,2,2, X̂1,{2,3},2

X̂1,3,3, X̂1,{2,3},3

X2,1

X3,1 X̂2,1,1, X̂3,1,1, X̂4,1,1

X4,1

X2,1 X̂2,1,1

�
�

�
�

�
��3

Enc
-

-
-

-

-

-

-

-

Dec

Node 3Node 4

Node 2

Node 1

Dec

Dec

Xn

4,{1,3}

= Xn

4,{2,3}

X̂n

4,{1,3},3

= X̂n

4,{2,3},3

X̂n

4,{1,3},1

X̂n

4,{2,3},2

(e)

Figure 3.1: (a) A point-to-point code. (b) A two-receiver BC code. (c) A two-user MA code.

(d) A WZ code with side information Z1. (e) A two-channel MD code. The notation is Xt,S

for a source and X̂t,S,r for a reproduction; here t is the transmitter, S the set of receivers,

and r the reproducer.
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Figure 3.2: A general three-node network.

than the number of sources since some sources are reproduced at more than one node.

A network encoder comprises two parts: a quantizer encoder, followed by an entropy en-

coder. A network decoder comprises two complementary parts: an entropy decoder followed

by a quantizer decoder. For variable-rate NVQ design, the network’s entropy coders may be

lossless or near-lossless, and following [51] and practical implementations employing arith-

metic codes, I allow the entropy coders to operate at a higher dimension than the quantizers.

For the case of fixed-rate NVQ design, the entropy coders are simply lossless codes operating

at a fixed rate.

For any vector Xn
t,∗ of source n-vectors, the quantizer encoder at node t, given by αt :

X n
t,∗ → It,∗, maps Xn

t,∗ to a collection of indices it,∗ in the index set It,∗. In theory, It,∗ may

be finite or countably infinite; in practice a finite It,∗ is assumed. Here it,∗ = (it,S)S∈S(t),

and for each S ∈ S(t), it,S ∈ It,S. The collection of indices it,∗ is mapped by the fixed-

or variable-rate entropy encoder at node t to a concatenated string of binary descriptions

ct,∗ ∈ Ct,∗. The channel conveys each individual description ct,S to precisely the receivers
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r ∈ S.

For any r ∈ M, the entropy decoder at node r receives the codewords c∗,r and side

information Zn
r and outputs index reconstructions î∗,r ∈ I∗,r. Except in a few special cases

(e.g., when a coding error occurs), these are identical to the corresponding transmitted

indices. Denote the quantizer decoder at node r by βr : I∗,r × Zn
r → X̂ n

∗,r. It maps indices

î∗,r ∈ I∗,r and side information Zn
r to a collection of reproduction vectors X̂n

∗,r such that

X̂n
t,S,r ∈ X̂ n

t,S,r for each (t, S) ∈ T (r). Let βn
t,S,r (̂i∗,r, Z

n
r ) denote the reproduction of Xn

t,S

made by receiver r. Then βr (̂i∗,r, Z
n
r ) = X̂n

∗,r implies that βt,S,r (̂i∗,r, Z
n
r ) = X̂n

t,S,r for each

(t, S) ∈ T (r). Note βt,S,r depends on î∗,r rather than simply ît,S since î∗,r is jointly decoded.

Associate two mappings with each entropy code. The first, `t : It,∗ → [0,∞), is the rate

used to describe it,∗. In practice, `t(it,∗) is the length of the entropy code’s corresponding

codewords ct,∗; for entropy-constrained design, `t(it,∗) is a function of the entropy bound [51].

The rate used to describe a particular it,S is given by `t,S : It,∗ → [0,∞); it depends on all

of the indices from node t because the mapping is done jointly.

The second mapping, given by fr : I∗,r×Zn
r → I∗,r, maps indices i∗,r transmitted to node

r, together with side information Zn
r , to the indices î∗,r received after entropy decoding. Let

αt,S(xn
t,∗) denote the component of αt that produces codeword it,S. Then î∗,r = fr(i∗,r, z

n
r ),

where i∗,r =
(

αt′,S′(Xn
t′,∗)
)

(t′,S′)∈T (r)
. Typically, fr(i∗,r, z

n
r ) = i∗,r. Exceptions are caused by

coding errors and a few special cases discussed in Section 3.4.

I restrict the joint encoding of the entropy codes to ensure unique decodability. Every

entropy decoder must be able to uniquely decode each of its codewords using only the

other codewords and the side information available to it. For example, in the MD system

of Figure 3.1(e), the entropy encoder at node 4 encodes indices i4,{1,3} and i4,{2,3} so that
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they can be individually decoded at nodes 1 and 2. This requires that the coding be done

independently. However, the restriction is not so severe that all entropy codings in all systems

need be done independently. In the system of Figure 3.1(b), for example, a conditional

entropy code for i1,2 given i1,{2,3,4} can be used since the two indices are jointly decoded

at node 1. The restriction that the entropy codes be uniquely decodable does not imply

that the encoders are one-to-one mappings; different source symbols may be given the same

description if the decoder has other information (side information or messages from other

sources) that allows it to distinguish them.

The performance of a network source code Qn = ({αt}t∈M, {βr}r∈M, {`t}t∈M, {fr}r∈M) is

measured in rate and distortion. In particular, for each (t, S, r) ∈ T , let dt,S,r : Xt,S×X̂t,S,r →

[0,∞) be a nonnegative distortion measure between the alphabets Xt,S and X̂t,S,r. Let the

distortion between vectors of symbols be additive, so that for any n > 1,

dn
t,S,r(x

n
t,S, x̂n

t,S,r) =

n
∑

k=1

dt,S,r(xt,S(k), x̂t,S,r(k)).

Here xt,S(k) and x̂t,S,r(k) denote the kth symbols in vectors xn
t,S and x̂n

t,S,r, respectively.3

Although not required for the validity of the results here, for simplicity of notation I assume

that the distortion measures are identical and omit the subscripts. I also omit the superscript

since it is clear from the arguments whether d is operating on a scalar or a vector.

Denote by Qfr,n and Qvr,n the classes of n-dimensional fixed- and variable-rate NVQs,

respectively. Let xn
∗,∗ = (xn

1,∗, x
n
2,∗, . . . , x

n
M,∗) denote a particular value for the collection of

random source vectors Xn
∗,∗ = (Xn

1,∗, X
n
2,∗, . . . , X

n
M,∗). Similarly, let zn

∗ = (zn
1 , zn

2 , . . . , zn
M) de-

note a particular value for the side information Zn
∗ = (Zn

1 , Zn
2 , . . . , Zn

M). The (instantaneous)

3This notation for the kth element differs from that introduced in Chapter 2 so as to avoid too many

subscripts. It will be used in this chapter only.



36 CHAPTER 3. NETWORK VECTOR QUANTIZER DESIGN

rate and distortion vectors associated with coding source vector xn
∗,∗ with code Qn ∈ Q(fr|vr),n

given side information zn
∗ are, respectively,4

r(xn
∗,∗, Q

n) =
(

rt,S(xn
t,∗, Q

n)
)

(t,S)∈S
=
(

`t,S(αt(x
n
t,∗))

)

(t,S)∈S

d(xn
∗,∗, z

n
∗ , Qn) =

(

d(xn
t,S, x̂n

t,S,r)
)

(t,S,r)∈T
=
(

d
(

xn
t,S , βt,S,r(̂i∗,r, z

n
r )
))

(t,S,r)∈T
.

Assume that the source and side information vectors together form a strictly stationary5

ergodic random process with source distribution P . Let E denote the expectation with

respect to P . The expected rate and distortion in describing n symbols from P with code

Qn are R(P, Qn) = (Rt,S(P, Qn))(t,S)∈S and D(P, Qn) = (Dt,S,r(P, Qn))(t,S,r)∈T , where

Rt,S(P, Qn) = Ert,S

(

Xn
t,∗, Q

n
)

= E`t,S

(

αt(X
n
t,∗)
)

Dt,S,r(P, Qn) = Ed
(

Xn
t,S, X̂n

t,S,r

)

= Ed
(

Xn
t,S, βt,S,r(Î∗,r, Z

n
r )
)

.

By [1, Lemmas 1,2,3] and the associated discussion, optimal NVQ performance is achieved

by minimizing the weighted operational rate-distortion functional

j(fr|vr),n(P, a,b) = inf
Qn∈Q(fr|vr),n

∑

(t,S)∈S

1

n

[

at,SRt,S(P, Qn) +
∑

r∈S

bt,S,rDt,S,r(P, Qn)

]

.(3.1)

The weighted operational rate-distortion functionals may be viewed as Lagrangians for mini-

mizing a weighted sum of distortions subject to a collection of constraints on the correspond-

ing rates. They can also be viewed as Lagrangians for minimizing a weighted sum of rates

subject to a collection of constraints on the corresponding distortions. The weights a and b

embody the code designer’s priorities on the rates and distortions. They are constrained to

4The superscript (fr|vr) implies that the given result applies in parallel for fixed- and variable-rate.
5The condition of strict stationarity could be replaced by a condition of asymptotic mean stationarity in

the results that follow. Strict stationarity is used for simplicity.
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be non-negative, so that higher rates and distortions yield a higher Lagrangian cost. Code

design depends on the relative values of these weights, and hence without loss of generality

I set

∑

(t,S)∈S

[

at,S +
∑

r∈S

bt,S,r

]

= 1.

In practice, a and b cannot easily be chosen to guarantee specific rates or distortions:

they reflect trade-offs over the entire network. In a typical code design scenario, the goal is

to minimize a weighted sum of distortions subject to the constraint R(P, Qn) = R∗. In this

case, I set b according to the distortion weights and adopt a gradient descent approach to

find appropriate values for a. Denote by Qn(a,b) the quantizer produced by the algorithm

(described in the following section) when the Lagrangian constants are (a,b). The gradient

descent minimizes the absolute rate difference χ(a) = |R(P, Qn(a,b)) − R∗|2 as a function

of a.

I call a fixed- or variable-rate network source code Qn optimal if it achieves a point on

jfr,n(P, a,b) or jvr,n(P, a,b). Section 3.3 considers locally optimal NVQ design.

3.3 Locally Optimal NVQ Design

The goal in NVQ design is to find a code Qn that optimizes the weighted cost in (3.1). Fol-

lowing the strategy of [50] and [51], I consider below the necessary conditions for optimality

of {αt} and {βr} when the other system components are fixed. Using these conditions, I de-

sign NVQs through an iterative descent technique functionally equivalent to the generalized

Lloyd algorithm. Throughout the discussion, I compare the NVQ conditions with those for

the point-to-point system of Figure 3.1(a) to highlight the changes involved in moving from
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independent to network design.

The Lagrangian cost for a given code Qn is

jn(P, a,b, Qn) =
∑

(t,S)∈S

1

n

[

at,SRt,S(P, Qn) +
∑

r∈S

bt,S,rDt,S,r(P, Qn)

]

. (3.2)

An algorithm to design a code minimizing this cost is as follows [1].

Initialize the system components {αt}, {βr}, lengths {`t}, and mappings {fr}.

Repeat

Optimize each αt and βr in turn, holding every other component fixed.

Update the coding rates {`t} and mappings {fr}, holding all {αt} and {βr} fixed.

Until the code’s cost function jn converges.

Provided that each optimization reduces the cost functional jn, which is bounded below

by zero, the algorithm will converge. In practice, I make approximations to simplify the

optimizations and cannot always guarantee a reduction of the cost function (see Section 3.4

for more details). However, except when close to a minimum, I do observe a consistent

reduction in jn in my experiments.

Decoder optimization is simple, even in the most general case. However, encoder opti-

mization is not. Messages produced by an encoder are jointly decoded with messages from

other encoders and with side information. However, each encoder knows neither the input to

the other encoders nor the side information exactly, so it must operate based on the expected

behavior of these other quantities. The expectation complicates the design process.

Now consider the component optimizations in detail, beginning with the decoders.
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Optimal Decoders

Choose some R ∈ M, and consider necessary conditions for the optimality of βR when all

encoders {αt}t∈M, all other decoders {βr}r∈M∩{R}c , all length functions {`t}t∈M, and all

mappings {fr}r∈M are fixed. The optimal decoder β?
R = (β?

t,S,R)(t,S)∈T (R) for index vector

î∗,R = (̂it,S)(t,S)∈T (R) and side information zn
R satisfies

β?
t,S,R(̂i∗,R, zn

R) =

arg min
x̂n∈X̂n

t,S,R

E
[

d(Xn
t,S, x̂n)

∣

∣Zn
R = zn

R, fR

(

(

αt′,S′(Xn
t′,∗)
)

(t′,S′)∈T (R)
, zn

R

)

= î∗,R

]

. (3.3)

The expectation is with respect to the source distribution P .

The optimal decoder for the point-to-point system, shown in Figure 3.1(a), satisfies

β?
t,R,R(̂it,R) = arg min

x̂n∈X̂n
t,R,R

E
[

d(Xn
t,R, x̂n)

∣

∣ fR(αt,R(Xn
t,R)) = ît,R

]

, (3.4)

where I have relabeled node 1 as t and node 2 as R. In the point-to-point case, the optimal

reproduction for ît,R is the vector x̂n ∈ X̂ n
t,R,R that minimizes the expected distortion in the

Voronoi cell indexed by ît,R. This Voronoi cell contains all source vectors Xn
t,R such that

fR(αt,R(Xn
t,R)) = ît,R. In the network case, the equation takes the same form, but with the

Voronoi cell now indexed by a collection of indices î∗,R and the side information zn
R.

In general, the optimal network decoder depends on the full distribution P rather than

merely the distribution of the message under consideration. This dependence arises from the

joint nature of the decoding process.

The optimal decoder can be extended to allow for channel coding errors6. The distribution

of channel coding errors is assumed to be independent of the sources or side information given

6Incorporating the stochastic effects of channel coding errors into quantizer design allows control of the

sensitivity of the source code to channel errors. It also allows for quantizer design in the case of a joint
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the transmitted indices. I describe the effect of channel errors on the indices received by

decoder r by the random mapping Gr : I∗,r → I∗,r. Indices i∗,r transmitted by the encoders

are transformed into Gr(i∗,r) by the channel, and decoded as î∗,r = f(Gr(i∗,r), z
n
r ) by the

entropy code. The optimal decoder becomes

β?
t,S,R(̂i∗,R, zn

R) = arg min
x̂n∈X̂n

t,S,R

E
[

d(Xn
t,S, x̂n)

∣

∣Zn
R = zn

R, f(GR(I∗,R), zn
R) = î∗,R

]

= arg min
x̂n∈X̂n

t,S,R

∑

i∗,R∈I∗,R

(

E
[

d(Xn
t,S, x̂n)

∣

∣Zn
R = zn

R, I∗,r = i∗,R
]

·

Pr(I∗,R = i∗,R|Zn
R = zn

R, f(GR(I∗,R), zn
R) = î∗,R)

)

.

Optimal Encoders

Now choose some T ∈ M and consider necessary conditions for the optimality of αT when

{αt}t∈M∩{T}c , {βr}r∈M, {`t}t∈M, {fr}r∈M are fixed. The optimal encoder α?
T satisfies

α?
T (xn

T,∗) = arg min
iT,∗∈IT,∗





∑

S∈S(T )

aT,S`T,S(iT,∗) +

∑

r∈S′:S′∈S(T )

∑

(t,S)∈T (r)

bt,S,rE
[

d(Xn
t,S , βt,S,r(fr(I∗,r, Z

n
r ), Zn

r ))
∣

∣Xn
T,∗ = xn

T,∗, IT,∗ = iT,∗

]



 . (3.5)

Compare this to the equation for optimizing the encoder of the point-to-point system

α?
T (xn

T,r) = arg min
iT,r∈IT,r

[

aT,r`T,r(iT,r) + bT,r,rd
(

Xn
T,r, βT,r,r (f(iT,r))

)]

. (3.6)

In the point-to-point case (3.6), the encoder’s choice of index iT,r affects only one repro-

duction X̂T,r,r at only one node r. In the network case (3.5), the indices chosen by encoder

source-channel code. Since the source-channel separation theorem does not hold for network coding (see for

example [31, pp. 448-9]), joint source-channel codes are required for optimal performance in some networks.
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α?
T have a much more widespread impact. As expected, the indices αT (xn

T,∗) affect the re-

productions for Xn
T,∗, but they also affect some reproductions for Xn

t,∗ (t 6= T ) because each

decoder βr jointly maps its set of received indices to the corresponding vector of reproduc-

tions. Thus iT,∗ affects all reproductions at any node r to which T transmits a message. The

minimization considers the weighted distortion over all of these reproductions.

The other major difference between the point-to-point and network equations is the

expectation in the distortion term. The encoder in the point-to-point case knows X̂T,r,r

exactly for any possible choice of iT,r. This is not true in the network case. For example,

suppose encoder αT transmits to node r. It does not know any of the indices received

by r from other nodes, nor the side information available to r. These unknowns are jointly

decoded with the message(s) from αT to produce the reproductions at r, and hence αT cannot

completely determine the reproductions knowing only its own choice of indices. Encoder

αT must take a conditional expectation over the unknown quantities, conditioned on all

of the information it does know, to determine its best choice of indices. In (3.5), the use

of capitalization for I∗,r = (It′,S′)(t′ ,S′)∈T (r) denotes the fact that for any t′ 6= T , it′,S′ is

unknown to αT and must be treated as a random variable. The expectation is taken over

the conditional distribution on Xn
t,S, I∗,r, and the side information Zn

r given Xn
T,∗ = xn

T,∗

and IT,∗ = iT,∗. For any t′ 6= T , the distribution on It′,S′ is governed by the corresponding

(fixed) encoder αt′ together with the conditional distributions on the inputs to that encoder.

Evaluating the conditional expectations in the equation for αT is the primary difficulty in

implementing the design algorithm, as discussed in Section 3.4.

The optimal encoder can be extended to allow for channel coding errors. Representing
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their effects by a random mapping Gr as before, the optimal encoder becomes

α?
T (xn

T,∗) = arg min
iT,∗∈IT,∗





∑

S∈S(T )

aT,S`T,S(iT,∗) +
∑

r∈S′:S′∈S(T )

∑

(t,S)∈T (r)

bt,S,rE
[

d(Xn
t,S, βt,S,r(fr(Gr(I∗,r), Z

n
r ), Zn

r ))
∣

∣Xn
T,∗ = xn

T,∗, IT,∗ = iT,∗

]



 .

The expectation here is over both the source and the channel error distributions.

Entropy Coding Rates

I now consider how the state of the art in lossless and near-lossless coding affects entropy-

constrained design. Networks fall into three categories in this regard.

First are systems for which there exist practical codes achieving arbitrarily close to the

entropy bounds and for which we also know the theoretically optimal codeword lengths. For

example, in point-to-point coding (Figure 3.1(a)), the entropy bound R1,2 ≥ H(I1,2) can be

approximated using either Huffman or arithmetic coding. In addition, the codeword lengths

given by `1(i1,2) = − log2 p(i1,2) yield an expected rate equal to H(I1,2) and satisfy Kraft’s

inequality. For systems in this category (including MR, MD, and 2-receiver BC systems), I

follow [51] and design entropy-constrained NVQs using the theoretically optimal lengths.

Second are systems for which we cannot assign theoretical optimal codeword lengths, but

we can still design practical lossless codes with rates close to the entropy bounds. This cate-

gory includes WZ and 2A systems. Slepian and Wolf [11] give the achievable rate region for

near-lossless coding in a two-access (2A) system (the generalization to M -encoder MA sys-

tems appears in [77]). However, these bounds alone are insufficient to determine the optimal

codeword lengths. Generalizations of the point-to-point solution can yield lengths achieving
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points such as (R2,1, R3,1) = (H(I2,1), H(I3,1|I2,1)) on the boundary of the achievable rate

region. However, there is no 2A-equivalent of Kraft’s inequality with which to prove that

there could exist uniquely decodable codes with those lengths. I turn to practical codes,

such as the 2A code in [78], and use their codeword lengths in entropy-constrained design.

Third are systems for which we cannot assign theoretically optimal codeword lengths and

lack techniques for designing optimal codes. For example, in lossless M -receiver BC coding,

even the optimal performance is unknown when M > 2. However, we can assign theoretical

lengths and even design practical codes to achieve rates unobtainable by an independent

approach. For systems in this category (including the three-node network of Figure 3.2),

I use the best known achievable rates, practical or theoretical, in the entropy constraint.

Improved entropy constraints for these systems will likely become available as the field of

lossless network coding develops.

Assuming that the near-lossless entropy codes achieve their asymptotic error probability

of zero and that the distortion measure cannot be infinite, then there is no need to consider

the increase in distortion resulting from entropy coding errors. For practical codes, which

have a small but non-zero probability of error, the distortion increase should be taken into

account in the near-lossless code optimization. The distortion caused by an error can be

calculated using the training set and the fixed encoders and decoders. The near-lossless

design algorithm presented in [78] minimizes a weighted sum of rate and probability of error,

but it can easily be altered to weight each error by the expected distortion it generates as

opposed to simply the error probability. This then ensures that the entropy code optimization

is conducted with the same priorities as the quantizer design and will never result in an

increased Lagrangian cost.
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Figure 3.3: The 2AWZ network.

Network Scalability

Scalability is a key issue for some network source coding applications. If a code is trained

for a particular network, but that network is then altered by adding or deleting a node, how

much code redesign is required to accommodate the change?

Starting with the WZ system of Figure 3.1(d), consider adding a third node that describes

a new source X3,1 to the decoder at node 1. This creates a 2A system with side information

at the decoder (a 2AWZ system), as depicted in Figure 3.3. There are at least two options

for updating the code. In the first, the encoder at node 2 stays the same, the decoder retains

its previous codebook for jointly decoding (̂i2,1, Z1), and a new conditional codebook for

decoding î3,1, conditioned on (̂i2,1, Z1), is trained. This greedy approach keeps the previous

system intact and simply adds new components. However, the correlation between X3,1

and X2,1 is exploited only in the decoding of X3,1 and not X2,1. Optimally exploiting the

correlation so as to minimize the Lagrangian cost (3.2) requires a second, global approach, in

which the original WZ codebook is extended to jointly decode all three inputs (î2,1, î3,1, Z1).

For this, the whole system must be retrained.

Now consider deleting node 2 from the 2-access system of Figure 3.3, so that the decoder

no longer receives î2,1. A new decoder can be formed from the existing one by simply
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averaging over the various codewords for different values of î2,1, for each fixed (̂i3,1, Z1).

Provided that the existing decoder cells are convex with respect to î2,1, this is a good strategy.

Otherwise, global retraining is necessary.

These cases exemplify canonical network alterations: a new code can be formed with little

cost by making local, greedily-designed component additions or subtractions, but aiming for

optimal performance requires retraining the entire network at a greater cost.

3.4 Implementation

This section considers the implementation of the design algorithm. I focus on practical

evaluation of the terms in the optimality conditions (3.3,3.5) from the previous section. I

also discuss the use of side information at the decoders.

In practice, I optimize my codes with respect to a training data set. A key assumption

I make is that the empirical joint distribution of the training set is close to the true joint

source distribution.

Several experimental results in Section 3.5 assume that the entropy codes achieve their

asymptotic bound of error probability zero. This does not imply that fr(i∗,r, z
n
r ) = i∗,r.

Non-identity mappings must be used to deal with empty cells that arise during training. In

designing a point-to-point VQ, there may be training iterations in which no training vectors

are mapped to a particular Voronoi cell because its codeword is not the nearest neighbor of

any of the training vectors. In entropy-constrained VQ (ECVQ), such cells are removed from

consideration by associating with their index an infinite rate. Thus, an encoder designed to

minimize aD + bR for some b > 0 never uses that index. The same empty cell phenomenon
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occurs in network coding. However, in an MA system, a decoder cell is jointly indexed by

two or more encoder indices. Rates are not associated with individual cells, but with each

separate index. Even if index pair (i, j) corresponds to an empty cell, this does not mean

that either i or j individually should be assigned infinite rate (describing index i requires

infinite rate only if all cells (i, ·) become empty). Since we cannot in general remove cells

from consideration by altering their rate, and since the encoders work independently, it is

possible that an empty cell may inadvertently be indexed. This must be avoided, since to

save rate we usually do not require that the entropy code preserve the indices of empty cells.

In practice, we begin by assuming that no cells are empty, and as cells do become empty we

merge each of them with a full neighboring cell (when side information zn is present, we can

choose a different merging for each zn). The cell merging is incorporated into the entropy

code to allow a saving in rate. Any reference to an empty cell is redirected to the non-empty

neighbor, and this redirection is made known to the encoders through the mappings {fr}.

As in ECVQ, no cells that become empty are ever filled again; training vectors mapped to an

empty cell indexed by (i2, i3) are always redirected to the appropriate non-empty neighbor

fr(i2, i3, z
n). Thus, fr(i2, i3, z

n) fills two roles: handling both empty cells (in a “once empty

always empty” manner) and near-lossless coding errors.

The terms in the optimality condition for a network decoder (3.3) are no more difficult

to evaluate than those for the point-to-point decoder (3.4). For the point-to-point decoder,

optimization trains each codeword using the set of training vectors falling into that code-

word’s Voronoi cell. For example, when the distortion measure is squared-error, evaluating

the expectation in (3.4) places each codeword at the mean value of its associated training

vectors. Network decoder optimization (3.3) requires no change in approach.
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The difficulties in NVQ design arise in the optimization of the network encoders. In

point-to-point VQ, encoder optimization is implemented through a nearest neighbor search:

the encoder chooses the index iT,r that minimizes the Lagrangian in (3.6). In NVQ design,

I again search over all possible encoder indices, but computing the Lagrangian in (3.5) may

require the evaluation of a conditional expectation. I divide network encoders into two

types, one for which the conditional expectation is necessary and one for which it is not.

Each encoder’s type is determined by the nature of the decoders it transmits to. Call any

decoder that uses side information, or that receives messages from two or more encoders, a

joint decoder. Call all other decoders individual decoders.

A Type I encoder transmits messages only to individual decoders. Type I encoders know

exactly the reproductions associated with each possible index choice, and hence no condi-

tional expectation is necessary. Optimization of Type I encoders is done via a straightforward

modified nearest-neighbor search in the same way as point-to-point encoder optimization.

A Type II encoder transmits to one or more joint decoders. Since it lacks some of the

information used by the joint decoders, a Type II encoder cannot determine the decoders’ re-

productions. Its optimization therefore requires a conditional expectation over the unknown

messages or side information at each joint decoder. The discussion that follows illustrates

the implementation of Type II encoders using two examples. The first is a 2A system with

side information at the decoder (the 2AWZ system). The second is a three-node network,

which adds the additional complication of having Type II encoders that transmit to more

than one joint decoder.

In addition to the implementation of Type II encoders, the 2AWZ example addresses the

use of side information at a network decoder and the initialization of the components of a



48 CHAPTER 3. NETWORK VECTOR QUANTIZER DESIGN

network system. The discussion generalizes from 2AWZ to arbitrary networks.

3.4.1 Two-User Multiple Access with Side Information (2AWZ)

This section discusses Type II encoder implementation, the use of side information, and

initialization methods for the 2AWZ network shown in Figure 3.3. The two encoders α2 :

X n
2,1 → I2,1 and α3 : X n

3,1 → I3,1 operate on sources Xn
2,1 and Xn

3,1 respectively to produce

indices i2,1 and i3,1. The decoder β1 : I2,1 × I3,1 × Z1
n → X̂ n

2,1,1 × X̂ n
3,1,1 jointly decodes

the corresponding received indices (̂i2,1,1, î3,1,1) = f1(i2,1, i3,1, z
n
1 ) using side information zn

1 .

The decoder reproductions are denoted individually as β2,1,1(̂i2,1,1, î3,1,1, z
n
1 ) = x̂n

2,1,1 and

β3,1,1(̂i2,1,1, î3,1,1, z
n
1 ) = x̂n

3,1,1. I assume that (Xn
2,1, Xn

3,1, Z
n
1 ) are dependent random variables,

and, for notational convenience, I use Zn
1 and Zn interchangeably.

For now, assume that Zn is discrete and that |Zn| is small, so that the total number

of possible decoder codewords, |I2,1||I3,1||Zn|, is significantly smaller than the size of the

training set. Later, I discuss how to work with a large or continuous Zn.

Encoder Implementation

Considering α2 and rewriting the expectations from (3.5) in terms of sums over the sets I3,1

and Zn gives

α?
2(x

n
2,1) = arg min

i2,1



a2,1 |`2(i2,1)| +
∑

i3,1

∑

zn



b2,1,1d
(

xn
2,1, β2,1,1 (f1(i2,1, i3,1, z

n), zn)
)

+ b3,1,1E
[

d(Xn
3,1, β3,1,1(f1(i2,1, i3,1, z

n), zn))
∣

∣Xn
2,1 = xn

2,1, α3(X
n
3,1) = i3,1, Z

n = zn
]





· Pr
(

α3(X
n
3,1) = i3,1, Z

n = zn
∣

∣Xn
2,1 = xn

2,1

)



 . (3.7)
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An analytical model for the source distribution is generally unavailable, so I estimate

Pr(α3(X
n
3,1) = i3,1, Z

n = zn|xn
2,1) and the expectation over Xn

3,1 using the training data.

Since the alphabet X n
2,1 is in general very large (e.g., |X 4

2,1| = 2564 for an 8-bit greyscale

image and VQ dimension 4), the number of conditional probability terms to be estimated

is very large. Given a limited training set size, estimation techniques of possible interest

include algorithms using kernels, histograms, and combinations of the two [79]. I here

use histograms due to their low computational complexity. I partition X n
2,1 into a finite

number of bins and estimate conditional distributions over I3,1 × Zn for each bin. Denote

by δ2 : X n
2,1 → K2,1 = {1, . . . , |K2,1|} the function that maps a sample xn

2,1 to the index k2,1

of its corresponding histogram bin.

Denote by Γ = {(xn
2,1, x

n
3,1, z

n)} the list7 of training vectors, and define

Γ(k2,1, i3,1, z
n) = {(x′n

2,1, x
′n
3,1, z

′n) ∈ Γ : δ2(x
′n
2,1) = k2,1, α3(x

′n
3,1) = i3,1, z

′n = zn}

Γ(k2,1) = {(x′n
2,1, x

′n
3,1, z

′n) ∈ Γ : δ2(x
′n
2,1) = k2,1}.

I estimate Pr(α3(X
n
3,1) = i3,1, Z

n = zn|xn
2,1) in (3.7) by replacing the condition on xn

2,1 with

a condition on δ2(x
n
2,1), giving

Pr(α3(X
n
3,1) = i3,1, Z

n = zn|xn
2,1) ≈ Pr(α3(X

n
3,1) = i3,1, Z

n = zn|δ2(x
n
2,1)) =

∣

∣Γ(δ2(x
n
2,1), i3,1, z

n)
∣

∣

∣

∣

∣Γ(δ2(xn
2,1))

∣

∣

∣

,

which I evaluate from the training data using the current (fixed) α3. The expectation over

Xn
3,1 is evaluated using the known mappings (from the previous optimization8) for all of the

training vectors.

7Γ is defined as a list rather than a set, because any training vector that appears multiple times in Γ

should be counted multiple times in any list size or sum calculation.
8All components except α2 are held fixed from the previous optimization.



50 CHAPTER 3. NETWORK VECTOR QUANTIZER DESIGN

Convergence

In the above discussion, I make approximations that allow a significant reduction in the

number of conditional distributions to be estimated. These approximations represent a

deviation from the optimal encoder as specified by the design equations, and, as a result,

convergence of the algorithm is no longer guaranteed (although it is observed in practice for

training sets considered). I now show that by altering our cost function, convergence can be

guaranteed at the cost of some performance degradation.

Let K2,1 = δ2(X
n
2,1) and K3,1 = δ3(X

n
3,1). Suppose Xn

2,1 → K2,1 → K3,1 → Xn
3,1, and

(Xn
2,1, X

n
3,1) → (K2,1, K3,1) → Zn form Markov chains. Then the approximation of condition-

ing on k2,1 = δ2(x
n
2,1) and k3,1 = δ3(x

n
3,1) becomes exact, and I can implement the optimal

encoder exactly. These Markov properties do not hold in general, but by building a proba-

bility model in which they are forced to hold, I get a design algorithm that is guaranteed to

converge. For any source distribution P (xn
2,1, x

n
3,1, z

n, k2,1, k3,1), there exists a corresponding

distribution P̂ (xn
2,1, x

n
3,1, z

n, k2,1, k3,1) that satisfies the Markov properties, where

P̂ (xn
2,1, x

n
3,1, z

n, k2,1, k3,1) = P (xn
2,1)P (k2,1|xn

2,1)P (k3,1|k2,1)P (xn
3,1|k3,1)P (zn|k2,1, k3,1).

Define a new cost function ĵn(P̂ , a,b, Qn) that differs from jn(P, a,b, Qn) in (3.2) in that

expectations are taken with respect to P̂ rather than P .9 Thus ĵn gives the expected system

performance with respect to P̂ , where P̂ has the properties we desire. Both the optimal

encoders and the optimal decoder for ĵn can be implemented exactly (in a computationally

9In (3.2), expectations are taken over a distribution of the form P (xn
2,1, x

n
3,1, z

n). This can easily be

extended to the form P (xn
2,1, x

n
3,1, z

n, k2,1, k3,1), since k2,1 and k3,1 are deterministic functions of xn
2,1 and

xn
3,1.
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x2,1\x3,1 x3,1 ≤ 0 x3,1 > 0

x2,1 > 0 (2 − η)P (x2,1)P (x3,1) ηP (x2,1)P (x3,1)

x2,1 ≤ 0 ηP (x2,1)P (x3,1) (2 − η)P (x2,1)P (x3,1)

Table 3.1: Application of the Markov constraint to a pair of Gaussian sources.

feasible manner), and hence convergence is guaranteed. However, the code is now optimized

with respect to P̂ rather than the true distribution P , and it does not perform as well

in practice as a code designed with the non-convergent algorithm on P , as shown by the

experimental results in Sections 3.5.1 and 3.5.2.

I give two examples to build intuition of how enforcement of the Markov property alters

the joint distribution. For simplicity, I omit the side information.

Let vector (X2,1, X3,1) be Gaussian with mean 0, variance 1, and correlation ρ, i.e.,

P (x2,1, x3,1) =
1

2π(1 − ρ2)
exp

(

−x2
2,1 + 2ρx2,1x3,1 + x2

3,1

2(1 − ρ2)

)

,

giving marginals P (x2,1) = (1/
√

2π)exp(−x2
2,1/2) and P (x3,1) = (1/

√
2π)exp(−x2

3,1/2). Con-

sider scalar quantization (n = 1) and allocate one bit to each of k2,1 and k3,1. Choose

δ2(x) = δ3(x) = 1(x > 0) and η = 4
∫∞

0

∫∞

0
P (x2,1, x3,1)dx2,1dx3,1, where 1(·) is the indicator

function. Then P̂ for the four possible values of (k2,1, k3,1) is given by Table 3.1. It is a

weighted product of the marginals of P . The weights, which reflect the correlation, are such

that the integral over each quadrant is the same for P̂ and P . For independent sources,

ρ = 0, η = 1, and hence P = P̂ . For highly correlated sources with ρ ≈ 1, η ≈ 2 and P̂

smears the positive correlation over the first and third quadrants. The second and fourth

quadrants have little or no probability mass, consistent with the original distribution.

In general, P̂ is a weighted product of the marginals of P in which the weighting can
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(a) (b) (c) (d)

Figure 3.4: A discrete Markov constraint example. (a) The distribution P , uniform over an

ellipse. (b,c,d) P̂ for |K2,1| = |K3,1| = K when: (b) K = 21, (c) K = 23, (d) K = 25.

be different for different values of (K2,1, K3,1). As |K2,1| and |K3,1| grow, P̂ more closely

resembles P . Figure 3.4 illustrates this point for a discrete distribution on a square grid

with |X2,1| = |X3,1| = 27 (n = 1 as before). The original uniform distribution (Figure 3.4(a))

is approximated to greater accuracy (Figure 3.4(b)-(d)) by increasing |K2,1| and |K3,1|.

For my experiments I use 8-bit greyscale images at dimension 4, with |X 4
2,1| = |X 4

3,1| = 232,

and |K2,1| = |K3,1| ≈ 29. Thus P̂ will only coarsely model the source correlation, but this

appears to be sufficient for the sources and rates used in the experiments.

Initialization

The first step in implementing generalized Lloyd design is to initialize the system encoders

and decoders. Since iterative descent design can at best give only a locally optimal solution,

initialization can have a significant impact on final performance10 When theory suggests a

10A variety of annealing techniques have been applied to traditional VQ design (e.g., [80, 81]) in an

attempt to address the local optimality problem. These techniques can be generalized to NVQ design.

While several authors have conjectured that these techniques yield global optima, this conjecture remains

unproven. Recent work on both point-to-point a restricted class of network VQ problems demonstrates the

existence of polynomial-time approximation algorithms that guarantee fixed-rate codes with performance
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useful structure for a codebook, this can be made use of in initialization. Here I outline two

initialization methods. One is based on point-to-point coding methods and is suitable for

weakly correlated sources and side information; the other is based on a binning structure

(mirroring the binning structure used to prove the Slepian-Wolf theorem for lossless coding)

as described in [71, 82] and is suitable for strongly correlated sources and side information.

For both approaches I initialize the entropy codes with the codeword lengths used for fixed-

rate coding, and with identity mappings {fr}. Consequently, I equate î∗,r with i∗,r in the

following discussion on quantizer initialization.

In the point-to-point method, I design a codebook with cells convex with respect to each

of i2,1 and i3,1. I begin by designing a point-to-point VQ for each of Xn
2,1 and Xn

3,1. The

network encoders α2 and α3 are initialized as the corresponding point-to-point encoders. If

there were no side information, I could construct the joint decoder by simply taking the cross

product of the two point-to-point codebooks. With side information, |Zn| initial codewords

must be specified for each (i2,1, i3,1) pair. Using the point-to-point encoders, partition the

training set into lists Γ(i2,1, i3,1, z
n), where

Γ(i2,1, i3,1, z
n) = {(x′n

2,1, x
′n
3,1, z

′n) ∈ Γ : α2(x
′n
2,1) = i2,1, α3(x

′n
3,1) = i3,1, z

′n = zn}.

Initialize the decoder β1 by setting each β2,1,1(i2,1, i3,1, z
n) and β3,1,1(i2,1, i3,1, z

n) to be the

centroids (with respect to the appropriate distortion measures) of the codewords from the

list Γ(i2,1, i3,1, z
n).

For sources highly correlated with the side information at the decoders, I use a binning

structure. The resulting codebook has cells that are non-convex for a given i2,1 and i3,1:

within a factor (1 + ε) of the optimal (see [65] and the references therein). The NVQ results given there

postdate this work.
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non-contiguous regions of one source alphabet can be quantized to the same index, and the

decoder relies on the other source and the side information to distinguish the correct region.

The set of non-contiguous regions assigned to a particular index is called a coset. For the WZ

system, in which source xn
3,1 does not appear, I create a binning structure with 2rc ≤ |Zn|

cosets starting with a quantizer that maps each zn into one of 2rc different values and a

lattice-based codebook for source xn
2,1 at rate R2,1. Translate the lattice by small amounts

(less than or equal to half the distance between adjacent lattice points) in 2rc different

directions; the images of a lattice point under the different translations are allocated to

different cosets. Each individual coset consists of a translated copy of the original lattice11.

For an MA code, the base lattice is formed from a cross product of lattices for each of the

individual sources.

While the design algorithm can produce optimized VQs with a binning structure, I have

not observed it to do so experimentally if a binning structure was not used in initialization.

Detailed Side Information

The previous discussion assumes |Zn| is small. When |Zn| is large or Z is continuous, the

number of decoder codewords required prohibits a practical implementation as above. I solve

this problem by coarsely quantizing the side information before it is given to the decoder.

The quantized side information is denoted by an index kZ ∈ KZ = {1, 2, . . . , |KZ|}, and I

redefine β1 so that β1 : I2,1 × I3,1 × KZ → X̂ n
2,1,1 × X̂ n

3,1,1 instead of β1 : I2,1 × I3,1 × Zn →

11An alternative to obtaining the cosets by translation is to encode the source using the original lattice,

then partition the training vectors mapped to a particular lattice point into 2rc sets using their quantized

zn values and initialize as described in the low correlation method.
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X̂ n
2,1,1×X̂ n

3,1,1. I allow a different quantization of Zn for each pair of received indices (̂i2,1, î3,1),

and denote by δZ : I2,1 × I3,1 × Zn → KZ the quantizer encoder that determines kZ given

received index pair (̂i2,1, î3,1) and side information zn. The quantizer codewords are denoted

{φZ (̂i2,1, î3,1, kZ)}KZ

kZ=1, and are initialized by clustering on the list of training vectors

Γ(i2,1, i3,1) = {(x′n
2,1, x

′n
3,1, z

′n) : α2(x
′n
2,1) = i2,1, α3(x

′n
3,1) = i3,1, z

′n ∈ Zn}.

I create |KZ| clusters from this list, number the clusters from 1 to KZ , and set the decoder

codewords β2,1,1(̂i2,1, î3,1, kZ) and β3,1,1(̂i2,1, î3,1, kZ) as the centroids of the appropriate cluster.

Quantizing the side information is a practical rather than an optimal strategy. However,

assuming that the joint source-side information distribution is reasonably smooth, then pro-

vided the quantization is of a significantly higher rate than that used for the source messages,

essentially all of the correlation between the source messages and side information is cap-

tured. The experimental results of Section 3.5.1 suggest that on practical data sets, |KZ|

(and hence the number of decoder codewords) can be kept small while paying little or no

penalty in rate-distortion performance.

3.4.2 A General Three-Node Network

This section uses the example of a general three-node network to discuss the implementation

of a Type II encoder that transmits to more than one other node.

Consider the implementation of the design conditions for encoder 2 for the three-node

network shown in Figure 3.2. Encoder 2 participates in two 2AWZ subsystems: it cooperates

with encoder 3 to send information to decoder 1 and with encoder 1 to send information to

decoder 3. Since the indices chosen by encoder 2 affect reproductions at both nodes 1 and 3,



56 CHAPTER 3. NETWORK VECTOR QUANTIZER DESIGN

Dec Enc

2AWZ system at node 3(a)

Dec

Node 3Enc

Node 2

Enc

Node 1

(b)

(c)

Dec

Node 1Enc

Node 2

Enc

Node 3

2AWZ system at node 1

Enc

Dec

DecEnc

Zn
1 X̂n

∗,1

Xn
1,∗

i1,2, i1,{2,3} i1,3, i1,{2,3}

Zn
2

X̂n
∗,2

Xn
2,∗ Xn

3,∗

Zn
3

X̂n
∗,3

i3,2, i3,{1,2}

i3,1, i3,{1,2}

i2,3, i2,{1,3}

i2,1, i2,{1,3}

Xn
2,1, X

n
2,{1,3}

Xn
3,1, X

n
3,{1,2}

i2,1, i2,{1,3}

i3,1, i3,{1,2}

X̂n
2,1,1, X̂

n
2,{1,3},1

X̂n
3,1,1, X̂

n
3,{1,2},1

Zn
1

Xn
2,3, X

n
2,{1,3}

Xn
1,3, X

n
1,{2,3}

i2,3, i2,{1,3}

i1,3, i1,{2,3}

X̂n
2,3,3, X̂

n
2,{1,3},3

X̂n
1,3,3, X̂

n
1,{2,3},3

Zn
3

���������PPPPPPPPPi PPPPPPPPP���������1

-

-

-

-

-
-

6

6

�

XXXXXXXXz

��������:

��������:

����

����
HHHj

XXXXXXXXz

Z
Z

Z
Z

Z
Z

Z
ZZ~S

S
S

S
S

S
S

SSo

-

A
AU �

��

6
�

�
�

�
�

�
�

��= 

















�

HHHj

Figure 3.5: Optimal encoding at node 2. (a) The estimated performance for a given index

set i2,∗ can be found by summing the performance in two linked 2AWZ subsystems. (b),(c)

The two subsystems.



3.5. EXPERIMENTAL RESULTS 57

as shown in Figure 3.5, the distortion terms for both decoders must be evaluated in a single

minimization. From the design equations, α?
2 is given by

α?
2(x

n
2,∗) = arg min

i2,∗∈I2,∗





∑

S∈S(2)

a2,S`2,S(i2,∗)

+
∑

(t,S)∈T (1)

bt,S,1E
[

d(Xn
t,S, βt,S,1(Î∗,1, Z

n
1 ))
∣

∣

∣
Xn

2,∗ = xn
2,∗, I2,∗ = i2,∗

]

+
∑

(t,S)∈T (3)

bt,S,3E
[

d(Xn
t,S, βt,S,3(Î∗,3, Z

n
3 ))
∣

∣

∣
Xn

2,∗ = xn
2,∗, I2,∗ = i2,∗

]



 , (3.8)

where

S(2) = {{1, 3}, 1, 3},

T (1) = {(2, {1, 3}), (2, 1), (3, {1, 2}), (3, 1)},

T (3) = {(1, {2, 3}), (1, 3), (2, {1, 3}), (2, 3)}.

Î∗,1 = f1

(

(αt′,S′(Xn
t′,∗)(t′,S′)∈T (1), Z

n
1

)

Î∗,3 = f3

(

(αt′,S′(Xn
t′,∗)(t′,S′)∈T (3), Z

n
3

)

.

All terms in (3.8) are of similar form to those for the 2AWZ system, and the same

approximation methods can be used to evaluate the conditional expectations. In general,

any Type II encoder sending to more than one other node can be designed using the same

approach for sending to only one other node; there are just more distortion and rate terms

to evaluate.

3.5 Experimental Results

In this section I build NVQs for different network systems and present experimental results.

I discuss three systems in detail: the 2AWZ and general three-node networks described in
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Section 3.4, and the MD network introduced in Section 3.1. A closely related discussion of

broadcast VQ can be found in [9].

For each of the three systems I give a brief introduction, a discussion of entropy code-

word length selection for entropy-constrained coding, and experimental results. The ex-

periments compare the performance of NVQs to that of independent VQs and to available

rate-distortion bounds. Additionally, I examine the scalability of network codes using an

MD network and a ring network as examples. All experiments use the squared-error (MSE)

distortion measure.

3.5.1 The 2AWZ Network

The previous section treats this system in detail, and I therefore skip its introduction.

There are currently no practical codes for the 2AWZ system, nor provably optimal the-

oretical codeword lengths. However, there are practical codes for the 2A system [78]. I

perform both 2AWZ and 2A experiments, the former at fixed-rate only, the later at both

fixed- and variable-rate. The variable-rate 2A design uses the near-lossless codes from [78],

and the non-zero contribution from coding errors is included in the reported distortion.

I conduct four experiments. The first studies the use and impact of side information

in a WZ system, removing one of the users of the 2AWZ system for simplicity of result

presentation. The second compares network to independent coding performance on the full

2AWZ system. The third compares fixed- and variable rate coding performance on the 2A

system. The fourth investigates the benefit of initializing the decoder to have a binning

structure, again using a WZ system for result simplicity.
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Figure 3.6: (a) WZVQ performance as a function of side information rate log2(|KZ |)/n for

jointly Gaussian source and side information (ρ = 0.375). (b) Various coding performances

for the 2AWZ system on satellite data.

For the first (WZ) experiment, I generate i.i.d. jointly Gaussian data with correlation

ρ = 0.375 between the source and the side information. I quantize the side information as

discussed in Section 3.4. I use fixed-rate codes of rate 1 bit per sample (bps) and vary the

vector dimension n and the number |KZ | of values used to quantize the side information. For

good practical code performance I want |KZ| high to make full use of the correlation between

the message and the side information. However, I must limit |KZ| to limit the number of

decoder codewords and hence the design complexity. I compare the performance of WZVQs

and independent VQs to two rate-distortion bounds; one is the WZ R-D bound, the other

is the point-to-point R-D bound (which uses no side information).

The distortion for the different codes is shown in Figure 3.6(a). The R-D bounds are

independent of |KZ| and are plotted for comparative purposes; they show the optimal the-

oretically achievable performance for any vector dimension n, and, in the WZ R-D case,
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arbitrarily high |KZ|. The results show that the use of side information in the WZ codes

improves performance by approximately 0.4 dB and bridges 20% of the gap in distortion

between independent coding and the WZ R-D bound at dimension 4 and correlation 0.375.

The gain is even higher at dimension 1. For both dimensions it is of comparable size to the

difference in the two R-D bounds, suggesting that the WZ codes are making efficient use of

the side information. The results also show that almost all of the benefit of side information

is captured with a low value of |KZ|, validating quantization of the side information as a

method for reducing design complexity.

For the second experiment, I train and test various fixed-rate codes for the full 2AWZ

system. I use satellite weather images for the data set12. All codes use vector dimension 4,

rate 0.75 bps, and Lagrangian weights a2,1 = a3,1 = 0, b2,1,1 + b3,1,1 = 1. I use |KZ| = 16

different values to quantize the side information.

Figure 3.6(b) shows a plot of distortions D2,1,1 and D3,1,1 for the various coding techniques.

For any choice of Lagrangian weights, independent code design yields the same code and

hence contributes a single point to the graph. For network code design, the Lagrangian

weights trade off the importance of the two reproductions and yield different codes. I display

the performance of network codes both with (2AWZVQ) and without (2AVQ) the use of

side information. For the 2AWZVQ codes, I include results obtained using the convergent

as well as the non-convergent algorithm. I also show the performance achieved by using two

separately decoded WZVQs, one for each source. The 2AWZVQs show a gain of at least

1.17dB in each reproduction over the independent VQs. This gain arises from both the joint

decoding of messages and the use of side information; the distortions achieved by the 2AVQs

12This data set is described in detail in Appendix A.
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Figure 3.7: (a) Comparison of fixed- and variable-rate coding performances for the 2A sys-

tem. (b) WZ code performance as a function of source and side information correlation and

the number of cosets used in decoder initialization.

and by the WZVQs suggest that both contributions are significant. The results obtained by

the convergent and non-convergent algorithms are similar on this data set.

The third experiment compares the performance of fixed- and variable-rate codes for the

2A system. I again use satellite weather images for the data and vector dimension 4. I set

the Lagrangian weights b2,1,1 = b3,1,1 = 1 and a2,1 = a3,1 = a, where a is varied to produce

codes targeting different points on the convex hull of the achievable rate-distortion region.

For variable-rate design I use the codeword lengths and mappings of real near-lossless 2A

codes. Figure 3.7(a) shows the sum D2,1,1 + D3,1,1 of the two distortions as a function of

the total rate R2,1 + R3,1 for several fixed- and variable-rate codes. The variable-rate codes

consistently outperform their fixed-rate counterparts by 1.2 dB.

The fourth experiment uses WZ codes to investigate the benefits of initializing with a

binning structure when the source and side information are highly correlated. The source



62 CHAPTER 3. NETWORK VECTOR QUANTIZER DESIGN

and side information are i.i.d. jointly Gaussian, with mean 0, variance 1, and correlation

ρ. I use fixed-rate codes of dimension 1, |KZ | = 64 different values to quantize the side

information, and initialize the decoder with 2rc cosets, rc ∈ {0, 1, 2, 3}. Figure 3.7 shows the

performance obtained by different codes as a function of ρ. For low correlations, such as

ρ = 0.5, a binning structure significantly hampers performance, and the training optimization

removes the binning structure as best it can. The final performance is similar to that of the

code with no binning. For high correlation, performance is significantly improved using a

binning-structured decoder. The desired number of cosets increases with the correlation.

3.5.2 A General Three-Node Network

Section 3.4 includes a detailed introduction of general three-node networks. Optimal entropy

codes and coding bounds are currently unavailable for the general three-node network. I

perform all of the experiments using fixed-rate codes.

I conduct two experiments for the general three-node network. The first shows the

efficiency of NVQs as a function of inter-source correlation; the second compares the trade-

off in performance at each node as a function of the Lagrangian weights controlling the

optimization. All experiments show fixed-rate coding results at vector dimension 4 and rate

0.5 bps for each of the nine sources. The side information used by the decoder at each node

consists of the three sources to be encoded at that node and is quantized to |KZ | = 16 levels.

The performance gain of NVQs over independent VQs is a function of inter-source cor-

relation. Figure 3.8(a) shows a plot of the Lagrangian cost (3.2) in dB as a function of

correlation for i.i.d. jointly Gaussian sources. For each sample, the correlation between any
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Figure 3.8: Efficiency of network source coding vs. independent coding. (a) Overall per-

formance as a function of correlation. (b),(c) Weighted sum distortion at each node as a

function of the Lagrangian parameters (shown from two different angles).

two sources has a constant value ρ. Equal weighting is given to each reproduction. As the

correlation between sources increases, the performance gain of NVQs over independent VQs

increases significantly, exceeding 2 dB for ρ ≥ 0.6. Also, unlike the 2AWZ experiments,

for this system and data set the alterations required to ensure convergent design do impair

performance.

Figures 3.8(b,c) show the weighted sum of the distortions at each of the three nodes using

the satellite data set. Varying the Lagrangian weights {bt,S,r} traces out the surface shown

from two different angles in the figures. (I constrain the Lagrangian weights to keep all

weights corresponding to reproductions at the same node equal.) The surface corresponding

to the NVQs lies approximately 1 dB closer to the origin than that of independently VQs,

indicating an average of 1 dB improvement over the set of source reproductions at each node.
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3.5.3 A Multiple Description System

An MD system transmitting descriptions over K unreliable channels can give rise to 2K −

1 non-trivial sets of received descriptions. Figure 3.1(e) casts the system into a network

model by treating the decoder for each of the 2K − 1 non-trivial sets as a separate node in

the network. I label the encoder with index M = 2K and each decoder with the integer

representation of a binary vector e = (e1, . . . , eK), where ek = 1 if channel k is operational

and 0 otherwise. The K channel descriptions now correspond to K network messages;

network message k is received by all decoders that have ek = 1. Although some decoders

receive two or more descriptions, each outputs only one reproduction since all descriptions are

of the same original source. The system contains only one encoder and no side information,

so the encoder is of Type I and can be implemented without approximations.

Since the K descriptions must be individually decodable (for each description there is

some decoder that receives that and only that description) the optimal coding bound for

description k is the entropy H(Ik) of the index used for message k. This bound can be

approximated in practice by entropy codes (e.g., arithmetic codes), and I associate with

each index ik the optimal average length, − log2 Pr(Ik = ik).

Given the probability of each e ∈ {0, 1}K, the expected distortion of our code is minimized

by setting the weight on each reproduction’s distortion to be the probability of receiving

exactly the set of descriptions used to make that reproduction. I then adjust the relative

sizes of the weights on the description rates to achieve our desired code rates.

Two experiments demonstrate the performance of MD codes. In the first, I use the

satellite weather data set to train and test fixed-rate MDVQs. Each code uses a different
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Figure 3.9: (a) MDVQ performance on the satellite data as a function of the number of

descriptions per vector and the channel failure probability. (b) Fixed-rate and entropy-

constrained MDVQ performance on Gaussian data compared to the D-R bound.

number of descriptions to encode each four-dimensional data vector, but all have the same

total encoded bit-rate of 6 bits per vector. The MDVQs considered use: one six-bit de-

scription, two three-bit descriptions, three two-bit descriptions, and six one-bit descriptions,

respectively. For each code, I transmit different descriptions of the same vector on different

channels, and I assume that the different channels all have equal failure rates. Figure 3.9(a)

shows the expected reproduction distortion as a function of channel failure probability and

the number of descriptions used. Moving from a single description (as in traditional coding)

to two descriptions greatly slows the degradation in performance as a function of channel

failure probability. Using more than two descriptions yields even better performance.

The second experiment compares fixed-rate and entropy-constrained two-description, 4-

dimensional MDVQ performance to the distortion-rate bound using i.i.d. Gaussian data. I

choose a rate of 1 bps per description and design codes for different probabilities of channel
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failure. Each code is characterized by the distortions it achieves at the three decoders.

However, for all of the codes designed in this experiment I found the distortion at node 2 to

be almost constant, so Figure 3.9(b) simply plots the distortion at node 3 against that at

node 1. I also plot the distortion-rate bound for the code rate used in the experiment. The

bound depends on node 2’s distortion, which varied very slightly over the results; the two

lines defining the bound correspond to the smallest and largest values of node 2’s observed

distortion. The results demonstrate the reduction in distortion achieved by variable-rate

compared to fixed-rate coding. This reduction varies from 0.5 dB for low channel failure

probability to 1.3 dB for high channel failure probability.

3.5.4 Network Scalability

The complexity of network code design depends on the following factors.

The number of codewords Assigning every codeword a weight equal to the number

of encoders that access that codeword, design complexity is linear in the sum weight of all

network codewords. A node’s in-degree is the number of codewords transmitting to that

node. Network design is linear in the number of nodes M when the in-degree of each node

is kept constant and exponential in M when in-degree grows linearly with M .

The size of the training set Code design complexity is linear in the size of the

training set, which must be large enough to ensure that each encoder’s histogram estimation

of the data’s joint distribution is accurate. The number of histogram bins required by an

encoder transmitting to node r is linear in the number of codewords at node r, hence the

number of training vectors needed is linear in the number of codewords at each node. In
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Figure 3.10: (a) The network messages and side informations of a six-node ring network. (b)

Design time for a ring network.

addition, the size of each training set vector is linear in the number of network sources. If

the in-degree of each node is constant as M increases, the required training set size will

increase linearly, but if the in-degree of each node increases with M , the training set size

must increase exponentially.

Fixed- vs. variable-rate design Training complexity is roughly the same for both

fixed- and variable-rate design. However, if the network rates must meet specific constraints,

then the Lagrangian parameters in variable-rate design must be optimized appropriately.

Using a conjugate gradient approach, this increases design complexity approximately by

a factor equal to the number of Lagrangian parameters. Symmetry in a network can be

exploited to constrain the parameter optimization.

Figure 3.10(a) shows a ring network in which each node communicates with its two

neighbors. This is an example of a network in which the in-degree of each node remains

constant as M increases; the design time therefore increases linearly with M as evidenced by

the experimental design times shown in Figure 3.10(b). The design times are for fixed-rate
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Network Codewords per decoder Total weight of codewords

MA 22M M22M

M -receiver limited BC 16 16M

M -receiver full BC 22M
M22M

M -node ring 256 512M

General M -node 2(M−1)2M−1+4 M(M − 1)2(M−1)2M−1+4

Table 3.2: Total number of codewords for various systems.

quantizer design on a 1GHz Intel Xeon processor at vector dimension 4, with 4 bits per

message and 4 bit side information quantization. Table 3.2 below indicates approximate

design complexity for several networks by counting the total weight of network codewords.

I assume a vector dimension of 4, with 2 bits per network message and 4 bits for side

information quantization. Two types of BC network are considered: a limited one in which

there is private information for each individual receiver, but only one common information

(for all receivers), and a full one in which every subset of receivers will receive a different

common information. The table shows that my design algorithm is not suitable for large

MA, fully-connected BC, and fully-connected general networks. However, almost no real

networks will be so connected as to have nodes that transmit a separate message to every

possible subset of other nodes. Practical networks would be much more likely to follow a

model such as the limited BC or the M -node ring, for which the design complexity scales

linearly with M and for which my algorithm is appropriate. The exponential increase in

design complexity for MA networks is a concern; suboptimal design techniques would need

to be adopted for large M , such as dividing the nodes into fixed-sized groups and jointly
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decoding each group separately.

Once a network has been designed, encoding and decoding complexity can be made very

low if desired. Approximating the optimal encoders using hierarchical coding allows both

encoding and decoding to be done via table lookup [76].

3.6 Summary

I extend the algorithm presented in [1] to design locally optimal vector quantizers for gen-

eral networks. The extensions allow the use of side information at the decoders and allow

for design in the presence of channel errors. Both fixed- and variable-rate VQ design are

considered. For some network systems, variable-rate VQ design is complicated either by the

fact that the theoretically optimal codeword lengths for the entropy code are unknown, or

by the absence of good techniques for designing practical codes to approximate the optimal

performance. In these cases I optimize relative to the best available bounds on the entropy

code’s codeword lengths.

I also provide a much-needed discussion of how to implementation the algorithm in prac-

tice, a topic considered only sparingly in [1]. I show that the primary difficulty in implemen-

tation is the evaluation of conditional expectations required to design the optimal encoders

for a network with joint decoders. I provide approximations to reduce the computational

complexity of evaluating the expectations and also to reliably estimate the joint statistics

of the training data. Making these approximations removes the guarantee of convergence in

iterative code design. In practice, however, I do observe convergence, which suggests that

the approximations are reasonable. When required, I show how to ensure convergence at
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some cost in rate-distortion performance.

My NVQ experiments demonstrate the performance improvements that network-based

design yields over independent design. When applied to a satellite weather data set, 2AWZ

and three-node network codes both show distortion improvements of more than 1 dB over in-

dependent coding. This increase results from the ability of network-designed codes to exploit

the redundancy between the different sources in the network; point-to-point design treats

every source as independent and thus does not take advantage of this type of redundancy.

For networks where sources are highly correlated, such as sensor networks, network-based

coding can be significantly more efficient.



Chapter 4

Rate-Distortion with Mixed Side

Information

4.1 Introduction

Side information is often available to improve the rate-distortion performance of data com-

pression codes. For example, consider an environmental remote sensing network with several

sensors, each of which takes measurements and transmits them to a central base station,

which also makes its own measurements. In encoding its transmission to the base station,

each sensor can consider the measurements taken by the base station as side information

available to the base station’s decoder. If the system uses multi-hop transmissions, then

measurements relayed by a sensor act as side information available both to that sensor’s

encoder and the base station’s decoder.

Figure 4.1(a) shows the conditional rate-distortion system in which side information is

available at both the encoder and decoder. Figure 4.1(b) shows the Wyner-Ziv system [12,

71
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13], in which side information is available only at the decoder. Combining the two types of

side information into one system yields the system shown in Figure 4.1(c), which I call the

mixed side information (MSI) system.

The multi-hop sensor network considered above provides a simple example in which both

types of side information are present. Another example comes from the system of Heegard

and Berger [2] and shown in Figure 4.1(d), in which the presence of side information at

the decoder is unreliable. The system requires two decoders, one for the case when side

information is present (decoder 1) and the other for when it is absent (decoder 2). We can

approach coding for this system using a two-part source description. The first part is decoded

without side information and ensures a minimum reproduction fidelity at both decoders. The

second part requires side information Z for its decoding and serves as refinement information

at decoder 1. It is not useful to decoder 2. Once the first part is chosen, it can be viewed as

side information, known to both the encoder and decoder, for the coding of the second part.

Thus the coding of the second part is a mixed side information problem1.

In this chapter, I consider rate-distortion theory for the MSI system, since solution of

examples like the MSI system is a prerequisite of the solution of more general problems. A

simple observation allows the derivation of the MSI rate-distortion function directly from

the Wyner-Ziv system. I use that result to generalize Zamir’s rate loss result and Wyner’s

Gaussian example from the Wyner-Ziv system. I then solve a new binary example that

expands significantly on the corresponding example for the Wyner-Ziv system and apply the

1The work in this chapter was initially motivated by a desire to close the gap in the bounds on the

binary-source rate-distortion example proposed by Heegard and Berger in [2] and considered further in [28].

In this chapter I provide a solution that does indeed close that gap.
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Figure 4.1: (a) The conditional rate-distortion system. (b) The Wyner-Ziv system. (c) The

MSI system. (d) Heegard and Berger’s system.

result to solve the corresponding and more complicated binary example in the Heegard and

Berger system.

4.2 R(D) for the Mixed Side Information System

This section defines notation, derives the rate-distortion function for the MSI system, and

bounds the system’s rate loss.

Let X, Y , and Z be a triple of random variables with alphabets X , Y, and Z, respectively,

and with joint distribution p(x, y, z). I assume I(X; Y, Z) < ∞. Let X̂ be a reconstruction

alphabet and let d : X × X̂ → [0,∞) be a distortion measure. An (n, M, D) code for the

MSI system consists of an encoder αn and decoder βn,

αn : X n × Yn → {1, 2, . . . , M}

βn : {1, 2, . . . , M} × Yn ×Zn → X̂ n,
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such that E 1
n
d(Xk, X̂k) ≤ D, where X̂n = βn(αn(Xn, Y n), Y n, Zn). A rate R is said to

be D-admissible if for every ε > 0 there exists for some n an (n, M, D + ε) code with

n−1 log M ≤ R + ε.

The MSI rate-distortion function is defined as

RX|Y {Z}(p, D) = inf{R : R is D-admissible}.

The set notation in the subscript denotes side information available only at the decoder.

Following this pattern, the conditional rate-distortion function is RX|Y (p, D) and the Wyner

Ziv rate-distortion function is RX|{Z}(p, D).

As in [13], I impose the following two conditions on d:

1. For all x̂ ∈ X̂ , Ed(X, x̂) < ∞.

2. For all random variables X̂ such that 0 < Ed(X, X̂) < ∞, and all ε > 0, there

exists a finite subset {x̂1, . . . , x̂N} ⊆ X̂ , and a quantizer fQ : X̂ → {X̂i} such that

Ed(X, fQ(X̂)) ≤ (1 + ε)Ed(X, X̂).

Condition 2 is a smoothness constraint used in generalizing the Wyner-Ziv rate-distortion

proof from discrete to continuous alphabets [13]. Wyner notes that it is not especially

restrictive, showing that when X = IR it holds for all r-th power distortion measures,

d(x, x̂) = |x − x̂|r with r > 0.

Theorem 14 below gives an information-theoretic characterization of RX|Y {Z}(p, D).

Theorem 14 :

RX|Y {Z}(p, D) = inf
W∈MX|Y {Z}(p,D)

I(X; W |Y, Z)

= inf
W∈MX|Y {Z}(p,D)

[I(X; W |Y ) − I(W ; Z|Y )] , (4.1)
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where MX|Y {Z}(p, D) is the set of all random variables W described by a test channel

µ(w|x, y) with the property W → (X, Y ) → Z and for which there exists an f : W×Y×Z →

X̂ such that

∫ ∫ ∫ ∫

p(x, y, z)µ(w|x, y)d(x, f(w, y, z))dwdxdydz ≤ D.

If the alphabets X , Y, and Z are finite, then the infimum becomes a minimum and it suffices

to consider in that minimum only those W with |W| ≤ |X ||Y|+ 1.

The theorem is proved first for finite-alphabet sources and then modified to apply to

discrete and continuous sources.

Proof of Theorem 14 For any pair of finite-alphabet random variables A ∈ A and B ∈ B

with a joint distribution p(a, b) such that I(A; B) < ∞, and any distortion measure d′

satisfying conditions 1 and 2, the Wyner-Ziv rate-distortion function RA|{B}(p, D) is given

by [13] as:

RA|{B}(p, D) = inf
W∈MA|{B}(p,D)

[I(A; W ) − I(W ; B)] (4.2)

= inf
W∈MA|{B}(p,D)

I(A; W |B), (4.3)

where MA|{B}(p, D) is the set of all random variables W described by a test channel µ(w|a)

with the property W → A → B, and for which there exists an f : W × B → Â such that

∫ ∫ ∫

p(a, b)µ(w|a)d′(a, f(w, b))dwdadb ≤ D.

Choose A = (X, Y ) and B = (Y, Z), and let d′ have the form d′(A, Â) = d(X, X̂), where

d satisfies conditions 1 and 2 so that d′ also does. With these substitutions, RA|{B}(p, D) is

the rate-distortion function for a system in which Y is both a source and a side information,
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i.e., Y is known to both the encoder and the decoder. Under the distortion measure d′,

which measures only the distortion of X and ignores that of Y , the system is equivalent to

the MSI system of Figure 4.1(c) with distortion measure d. Thus

RX|Y {Z}(p, D) = inf
W∈MA|{B}(p,D)

I(A; W |B)

= inf
W∈MA|{B}(p,D)

I(X, Y ; W |Y, Z)

= inf
W∈MA|{B}(p,D)

I(X; W |Y, Z), (4.4)

where MA|{B}(p, D) is the set of all random variables W described by a test channel µ(w|a) =

µ(w|x, y) with the property W → A → B (which is equivalent to W → (X, Y ) → Z), and

for which there exists an f(w, b) = f(w, y, z) such that

∫ ∫ ∫

p(a, b)µ(w|a)d′(a, f(w, a, b))dwdadb ≤ D,

which is equivalent to

∫ ∫ ∫ ∫

p(x, y, z)µ(w|x, y)d(x, f(w, y, z))dwdxdydz ≤ D.

Observe that MA|{B}(p, D) = MX|Y {Z}(p, D), and hence (4.4) can be written

RX|Y {Z}(p, D) = inf
W∈MX|Y {Z}(p,D)

I(X; W |Y, Z).

For finite-alphabet sources, the infimum in (4.3) becomes a minimum [12]; propagating

this result through the argument above shows that it also applies to the MSI rate-distortion

function. The bound on the cardinality of the auxiliary random variable W is derived using

the support lemma of Ahlswede and Körner [83, Lemma 3]. The support lemma implies

that W needs at least |X ||Y| − 1 letters to preserve p(x, y|w), plus two more to preserve

I(X; W |Y, Z) and Ed(X, f(W, Z)), giving a total of |X ||Y|+ 1.
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For discrete and continuous sources, the above proof must be modified. Application of

the Wyner-Ziv result as above requires I(A; B) < ∞, but for A = (X, Y ) and B = (Y, Z)

we have I(A; B) = I(X, Y ; Y, Z) > I(Y ; Y ), which may not be finite if Y does not have a

finite alphabet. However, the requirement I(A; B) < ∞ is used by Wyner to establish his

converse; the achievability is still applicable. Thus, I use the same approach as above to

prove achievability, and prove the converse directly as shown below, requiring now only that

I(X; Y, Z) < ∞.

Consider any MSI rate-distortion code (αn, βn). Let the ith reproduced symbol be de-

noted by βn
i : {1, . . . , 2nR}×Yn×Zn → X̂ . Let T = αn(Xn, Y n) denote the encoded version

of Xn when the side information available to both encoder and decoder is Y n. Let Xi denote

the ith component of X, X i−1 denote (X1, . . . , Xi−1), and Xn
i+1 denote (Xi+1, . . . , Xn). Then

nR
(a)

≥ H(T )

≥ H(T |Y n, Zn)

≥ I(Xn; T |Y n, Zn)

(b)
= I(Xn; T, Y n, Zn) − I(Xn; Y n, Zn)

(c)
=

n
∑

i=1

[

I(Xi; T, Y n, Zn|X i−1
1 ) − I(Xi; Yi, Zi)

]

=
n
∑

i=1

[

I(Xi; T, Y n, Zn, X i−1
1 ) − I(Xi; X

i−1
1 ) − I(Xi; Yi, Zi)

]

(d)
=

n
∑

i=1

[

I(Xi; T, Y n, Zn, X i−1
1 ) − I(Xi; Yi, Zi)

]

≥
n
∑

i=1

[I(Xi; T, Y n, Zn) − I(Xi; Yi, Zi)]

(e)
=

n
∑

i=1

[I(Xi; Wi, Yi, Zi) − I(Xi; Yi, Zi)]
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=

n
∑

i=1

[I(Wi; Xi|Yi, Zi)]

=
n
∑

i=1

[I(Wi; Xi, Zi|Yi) − I(Wi; Zi|Yi)]

=

n
∑

i=1

[I(Wi; Xi|Yi) + I(Wi; Zi|Xi, Yi) − I(Wi; Zi|Yi)]

=
n
∑

i=1

[I(Wi; Xi|Yi) − I(Wi; Zi|Yi)]

(f)

≥
n
∑

i=1

RX|Y {Z}(p, Ed(Xi, β
n
i (Wi, Yi, Zi)))

(g)

≥ nRX|Y {Z}

(

p, E
1

n

n
∑

i=1

d(Xi, β
n
i (Wi, Yi, Zi))

)

≥ nRX|Y {Z}(p, D),

where the labeled steps are justified by the following.

(a) T can take at most 2nR distinct values.

(b) The mutual informations here are well-defined due to the assumption I(X; Y, Z) < ∞,

which implies I(Xn; Y n, Zn) < ∞.

(c) (X, Y, Z) is i.i.d. and hence I(Xn; Y n, Zn) =
∑n

i=1 I(Xi; Yi, Zi)

(d) X is i.i.d. and hence I(Xi; X
i−1
1 ) = 0.

(e) By define Wi = (T, Y i−1
1 , Y n

i+1, Z
i−1
1 , Zn

i+1). Since (X, Y, Z) are i.i.d. and T = f(Xi, Yi),

Wi does not contain any information about Zi that is not already in (Xi, Yi) and Wi →

(Xi, Yi) → Zi forms a Markov chain.

(f) By (4.1) and the fact that, since (X, Y, Z) is i.i.d., p = p(xi, yi, zi) is independent of i.

Also, since βn
i is a function of (T, Y n, Zn), it can also be written as a function of (Wi, Yi, Zi).

(g) From the convexity of RXi|Yi{Zi}(Ed(Xi, β
n
i (Wi, Yi, Zi))) (this can be shown using the

techniques of [31, Lemma 14.9.1]) 2
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The following theorem decomposes the rate-distortion function over different values of

the side information Y . The proof parallels Gray’s proof [4] for the discrete conditional

rate-distortion function and is omitted.

Theorem 15 Let RX|y{Z}(p, D) denote the rate-distortion function for the MSI system when

Y = y is constant. Then

RX|Y {Z}(p, D) = inf
{Dy}∈D(p,D)

∫

y

RX|y{Z}(p, Dy)p(y)dy,

where

D(p, D) =

{

{Dy, y ∈ Y} :

∫

y

Dyp(y)dy ≤ D

}

.

The minimum on the right hand side is achieved when the Dy are chosen so that the rate-

distortion functions RX|y{Z}(p, Dy), y ∈ Y, all have the same slope at their respective distor-

tions Dy.

Theorem 15 makes rigorous the intuition that we can code distinctly for each value of y and

that the distortion at different y values should differ so that all rate-distortion curves operate

at points of equal slope.

Zamir [39] defines the rate loss for the Wyner-Ziv system as the difference between

the Wyner-Ziv and the conditional rate-distortion functions, LX|{Z}(p, D) = RX|{Z}(p, D)−

RX|Z(p, D). Extending this definition, define the rate loss for the MSI system as the difference

between the MSI and conditional rate-distortion functions

LX|Y {Z}(p, D)
4
= RX|Y {Z}(p, D) − RX|Y Z(p, D).

The rate loss bound derived by Zamir for the Wyner-Ziv system [39] applies unchanged to

the mixed side information system via an argument parallel to that in [39]. For a continuous
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source and the r-th power distortion measure, the bound is a constant, independent of

the source distribution. For example, for continuous alphabet sources and squared-error

distortion, L(p, D) ≤ 1
2

for all (p, D). This rate loss bound shows that the penalty paid for

Y not being available at the encoder cannot be arbitrarily large. It also provides a way to

bound RX|Y {Z} when its direct computation is difficult but that of RX|Y Z is straightforward.

4.3 Joint Gaussian Sources

Wyner showed in [13] that for a Gaussian source and the squared-error distortion measure,

the rate-distortion function RX|{Z}(p, D) for the Wyner-Ziv system is equal to the conditional

rate-distortion function RX|Z(p, D); the rate-distortion function is the same whether the side

information is available at the encoder or not. I generalize this result for the MSI system.

Once again, no penalty in rate need be paid even though some side information is not

available at the encoder.

The conditional rate-distortion function RX|Y Z(p, D) is defined as

RX|Y Z(p, D) = inf
X̂∈MX|Y Z(p,D)

I(X; X̂|Y, Z),

where MX|Y Z(p, D) is the set of random variables X̂ described by a test channel µ(x̂|x, y, z)

such that Ed(X, X̂) ≤ D. Returning to the MSI system, let W ∈ MX|Y {Z}(p, D), let f be

the decoding function such that Ed(X, f(W, Y, Z)) ≤ D, and let X̂ = f(W, Y, Z). The data

processing inequality and the observation that W ∈ MX|Y {Z}(p, D) and X̂ = f(W, Y, Z)

together imply X̂ ∈ MX|Y Z(p, D). Thus

I(X; W |Y, Z) ≥ I(X; X̂|Y, Z) ≥ RX|Y Z(p, D).
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Minimizing with respect to W ∈ MX|Y {Z}(p, D), we obtain

RX|Y {Z}(p, D) ≥ RX|Y Z(p, D),

with equality if and only if the X̂ achieving the minimum in the definition of RX|Y Z(p, D)

can be related to the W and f achieving the minimum in the definition of RX|Y {Z}(p, D) via

X̂ = f(W, Y, Z) with I(X; W |Y, Z) = I(X; X̂|Y, Z). This requires I(X; W |X̂, Y, Z) = 0.

Now consider a zero-mean, jointly Gaussian random variable (X, Y, Z) with EX 2 = σ2
X .

Denote by K the covariance matrix of (X, Y, Z), and let L = (lij) = K−1. Given Y and Z,

X is Gaussian with conditional mean and variance given by

E[X|Y, Z] = − l12
l11

Y − l13
l11

Z, V ar[X|Y, Z] =
1

l11
.

For this source, I show that RX|Y Z(p, D) and RX|Y {Z}(p, D) are given by

RX|Y Z(p, D) = RX|Y {Z}(p, D) =















1
2
log 1

l11D
, 0 < D < 1

l11

0, D ≥ 1
l11

.

Figure 4.2(a) shows a random variable that achieves I(X; X̂|Y, Z) = 1
2
log 1/(l11D). The test

channel of Figure 4.2(a) is consistent with an application of Theorem 15; for each y ∈ Y , it

is the same channel used by Wyner [13]. The conditional variance is the same for all y ∈ Y,

suggesting that Dy = D for all y; this does indeed yield the optimal result. Redrawing

Figure 4.2(a) as shown in Figure 4.2(b), we have

X̂ = f(W, Y, Z) = W − (1 − a)

(

l12
l11

Y +
l13
l11

Z

)

,

where W = a(X + N) implies W → (X, Y ) → Z. Together, X̂, Y , and Z allow calculation

of W . Thus I(X; W |X̂, Y, Z) = 0, which permits RX|Y {Z}(p, D) = RX|Y Z(p, D).
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Figure 4.2: A distribution achieving RX|Y Z(p, D). Here a = 1 − Dl11 and N is Gaussian

noise, independent of (X, Y, Z), with mean zero and variance D/(1 − Dl11).
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Figure 4.3: Joint distribution of (X, Y, Z) for binary MSI example.

4.4 Joint Binary Sources

Let X, Y , and Z be binary sources, and let Y and Z be related to X via binary symmetric

channels, as shown in Figure 4.3. All three variables have marginals of ( 1
2
, 1

2
), and the

crossover probabilities of the channels are p0 < 1
2

and q0 < 1
2

as shown. Denote by p(x, y, z)

the joint distribution, and adopt the Hamming distortion measure.

For this problem, Theorem 15 gives

RX|Y {Z}(D) =
1

2
RX|Y =0{Z}(D0) +

1

2
RX|Y =1{Z}(D1)

for some D0 and D1 such that 1
2
D0 + 1

2
D1 = D. By symmetry, D1 = D2 = D, and

RX|Y =0{Z}(D1) = RX|Y =1{Z}(D2). Thus RX|Y {Z}(D) = RX|Y =0{Z}(D) = RX|{Z}(q, D), where

q(x, z) = p(x, z|y = 0). From here on, I concentrate on finding RX|{Z}(q, D). The problem is
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Figure 4.4: Joint distribution of (W, X, Z) for |W| ≤ 3.

now similar to the binary symmetric example solved in [12], except that the marginals on X

and Z are now skewed: the marginal on X is (1−p0, p0), and that on Z is (1−p0 ?q0, p0 ?q0),

where a ? b
4
= a(1 − b) + b(1 − a).

By the cardinality bound on the auxiliary random variable [12], the minimum in the

definition of RX|{Z}(q, D) need consider only those W with |W| ≤ 3. The general form of

such a W is shown in Figure 4.4. From that figure, we have

I(X; W ) − I(W ; Z) = H(X) − H(X|W ) − H(Z) + H(Z|W )

= H(X) − H(Z) +

2
∑

i=0

Pr(W = w) [H(Z|W = w) − H(X|W = w)]

= H(p0) − H(p0 ? q0) +

2
∑

w=0

rw [H(aw ? q0) − H(aw)] ,

= −G(p0) +

2
∑

w=0

rwG(aw), (4.5)

where G(u)
4
= H(u ? q0) − H(u). The parameters (a0, a1, a2, r0, r1, r2) obey the constraints

0 ≤ aw ≤ 1, rw ≥ 0 for all w ∈ {0, 1, 2}, and also

r0 + r1 + r2 = 1

r0a0 + r1a1 + r2a2 = p0. (4.6)
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Let F = {f : W ×Z → {0, 1} : |W| = 3, |Z| = 2}. Then

RX|{Z}(q, D) = min
f∈F

RX|{Z}(q, D, f), (4.7)

where

RX|{Z}(q, D, f) = min
W∈MX|{Z}(q,D,f)

[

−G(p0) +
2
∑

w=0

rwG(aw)

]

, (4.8)

and MX|{Z}(p, D, f) is the set of all random variables W with |W| = 3 described by a test

channel µ(w|x) with the property W → X → Z and for which

2
∑

w=0

1
∑

x=0

1
∑

z=0

q(x, z)µ(w|x)d(x, f(w, z)) ≤ D.

To compute the rate-distortion function, I consider each possible decoder f ∈ F in turn, and

evaluate the minimization over W ∈ MX|{Z}(p, D, f) for each.

For a particular f and W , the expected distortion of the system is given by

Ed(X, f(W, Z)) =

2
∑

w=0

1
∑

z=0

q(w, z)E [d(X, f(W, Z))|W = w, Z = z]

=

2
∑

w=0

1
∑

z=0

rwq(z|w) Pr(X 6= f(w, z)).

For each symbol, there are four possible choices for the decoding rule f(w, ·). These are shown

in Table 4.1, together with rwq(z|w) Pr(X 6= f(w, z)), their corresponding contribution to

the expected distortion. Since q0 < 1
2
, we have rwq0 < rw(1− q0), implying that any decoder

with f(w, 0) = 1 and f(w, 1) = 0 for some w can never be optimal; for any such decoder the

expected distortion is always lowered by setting f(w, 0) = 0 and f(w, 1) = 1. Therefore, we

need not further consider decoders with f(w, 0) = 1 and f(w, 1) = 0 for any w. For all other

decoders, Table 4.1 gives the distortion constraint as a function of rw and aw. Table 4.2

gives an example; the corresponding distortion constraint is r0a0 + r1a1 + r2q0 ≤ D.
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f(w, 0) f(w, 1) rwq(z|w) Pr(X 6= f(w, z))

0 0 rwaw

0 1 rwq0

1 0 rw(1 − q0)

1 1 rw(1 − aw)

Table 4.1: Possible decoding functions for each symbol, together with their expected distor-

tion contribution.

w f(w, 0) f(w, 1)

0 0 0

1 0 0

2 0 1

Table 4.2: A possible decoding function f when |W| = 3.
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Lemma 3 below shows that for any f , the distortion constraint is tight at all points of

interest on the RX|{Z}(q, D, f) curve. Thus, I can restrict my attention to test channels that

meet the distortion constraint with equality.

Lemma 3 Consider a finite-alphabet Wyner-Ziv system with source X, side information

Z, and decoding function f . Let Dmax
4
= min{D : RX|{Z}(q, D, f) = 0}. Then for all

D ≤ Dmax, the minimum over all test channels µ(w|x) ∈ MX|{Z}(q, D, f) in the defini-

tion of RX|{Z}(q, D, f) can be replaced by a minimum over the subset of test channels in

MX|{Z}(q, D, f) for which

∑

w∈W

∑

x∈X

∑

z∈Z

q(x, z)µ(w|x)d(x, f(w, z)) = D.

Proof of Lemma 3 For any D1 and D2 such that D1 ≤ D2,

MX|{Z}(q, D1, f) ⊆ MX|{Z}(q, D2, f).

Combining this with a timesharing argument, we have that RX|{Z}(q, D, f) is convex in D

and that RX|{Z}(q, D, f) is strictly decreasing for all D such that RX|{Z}(q, D, f) > 0. Thus,

for any 0 < D ≤ Dmax and any ε > 0, RX|{Z}(q, D, f) < RX|{Z}(q, D − ε, f), i.e.,

min
µ(w|x)∈MX|{Z}(q,D,f)

I(X; W |Z) < min
µ(w|x)∈MX|{Z}(q,D−ε,f)

I(X; W |Z).

Since MX|{Z}(q, D − ε, f) ⊆ MX|{Z}(q, D, f), the W attaining the minimum on the left

hand side must be in MX|{Z}(q, D, f)−MX|{Z}(q, D− ε, f), and such a W must achieve an

expected distortion D(W ) satisfying D − ε < D(W ) ≤ D. The result then follows from ε

arbitrary. 2
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To compute the rate-distortion function, consider each decoding function f in turn. For

the f from Table 4.2, the problem is to minimize

g(a0, a1, a2, r0, r1, r2)
4
= r0G(a0) + r1G(a1) + r2G(a2) (4.9)

over all (a0, a1, a2, r0, r1, r2) that satisfy

r0 + r1 + r2 − 1 = 0 (4.10)

r0a0 + r1a1 + r2a2 − p0 = 0 (4.11)

r0a0 + r1a1 + r2q0 = D (4.12)

rw ≥ 0, i ∈ {0, 1, 2} (4.13)

0 ≤ aw ≤ 1, i ∈ {0, 1, 2}. (4.14)

Since G is convex [12], the function g(r0, r1, r2, a0, a1, a2) is convex in each of its parameters.

Thus, there can be only one local extreme value, and, if it exists, it is the global minimum.

The three equality constraints (4.10,4.11,4.12) allow a reduction of the number of unsolved

parameters from six to three. I reduce the search space further using insights obtained by

applying Lagrange multipliers to the optimization; details are provided in Appendix B. The

resulting numerical solution for RX|{Z}(q, D, f) leaves at most one free parameter, as in the

solution of the binary example given by Wyner and Ziv. After finding RX|{Z}(q, D, f) for

each f , RX|{Z}(q, D) is given by (4.7).

Figure 4.5 summarizes the form of the optimal solution for various values of p0 and q0

when D = 0.1. The results for other values of D are qualitatively the same, but the region

for which R = 0 grows as D grows.

When both p0 and q0 are close to D = 0.1, only two symbols are required. Symbol one
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conveys, “set X̂ = 0,” and symbol two, “set X̂ using the best estimate obtained from the

side information.” Symbol two costs little rate to describe and gives an expected distortion

Ed(X, X̂) = min(p0, q0) > D. Symbol one complements symbol two by allowing us to

occasionally describe the (skewed) source at a higher quality. As both p0 and q0 increase,

the distortion constraint becomes tighter, and we soon require a third symbol, “set X̂ = 1.”

When both p0 and q0 are large, symbol two drops out of use since a reproduction based on

the side information has high expected distortion.

Wyner and Ziv’s solution for a symmetric marginal on X is a special case of the three-

symbol solution in which r0 = r2.

4.5 Heegard and Berger’s System

In [2], Heegard and Berger pose a binary rate-distortion problem for the system of Fig-

ure 4.1(d). Choosing X and Z to be symmetric binary sources, they relate the two via

a binary symmetric channel of crossover probability q0 and derive an upper bound on the

rate-distortion function. They conjecture that this bound is tight. In [28], Kerpez shows

that their bound is loose and provides new upper and lower bounds. In this section, I use

the insights gained from the MSI system to show how to compute directly the rate-distortion

function for this example, closing the gap between the existing bounds.

The rate-distortion function for the Heegard and Berger (HB) system is

RHB(D1, D2) = min
(U,V )∈MHB(D1,D2)

[I(X; U) + I(X; V |U, Z)] ,

where MHB(D1, D2) is the set of auxiliary random variables (U, V ) such that (U, V ) → X →

Z and there exist reproduction functions X̂1 = f1(U, V, Z) and X̂2 = f2(U) such that X̂1
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Figure 4.5: The value (top) and the form (bottom) of the optimal solution for different values

of p0 and q0 when D = 0.1.
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and X̂2 satisfy Ed(X, X̂1) ≤ D1 and Ed(X, X̂2) ≤ D2, respectively [2]. An alternative form

is given by Kaspi in [3].

The condition (U, V ) → X → Z can be rewritten using the following lemma.

Lemma 4 The condition (U, V ) → X → Z is equivalent to the two conditions U → X → Z

and V → (U, X) → Z.

Proof of Lemma 4 First, I prove the forward part. Assume that (U, V ) → X → Z. Then

p(u|x, z) =

∫

p(u, v|x, z)dv =

∫

p(u, v|x)dv = p(u|x).

Thus U → X → Z. Using this result,

p(v|u, x, z)p(u|x) = p(v|u, x, z)p(u|x, z)

= p(u, v|x, z)

= p(u, v|x)

= p(v|u, x)p(u|x),

and hence V → (U, X) → Z.

For the converse, assume U → X → Z and V → (U, X) → Z. Then

p(u, v|x, z) = p(v|u, x, z)p(u|x, z) = p(v|u, x)p(u|x) = p(u, v|x).

Thus (U, V ) → X → Z. 2

For any U , there exists a V and f1 such that Ed(X, f1(U, V, Z)) ≤ D1 (for instance,

V = X and f1(U, V, Z) = V ). I can therefore rewrite RHB(D1, D2) with the help of Lemma 4

as

RHB(D1, D2) = min
U∈MU

HB
(D2)

[

I(X; U) + min
V ∈MV

HB
(U,D1)

I(X; V |U, Z)

]

,
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where

MU
HB(D2) = {U : U → X → Z, ∃f2 s.t. Ed(X, f2(U)) ≤ D2}

MV
HB(U, D1) = {V : V → (U, X) → Z, ∃f1 s.t. Ed(X, f1(U, V, Z)) ≤ D1}.

Noting the equivalence of MV
HB(U, D1) and MX|U{Z}(p(u, x, z), D1),

RHB(D1, D2) = min
U∈MU

HB
(D2)

[

I(X; U) + RX|U{Z}(p(u, x, z), D1)
]

.

For the binary example this yields

RHB(D1, D2) = min
U∈MU

HB
(D2)

∑

u∈U

p(u)
[

1 − H(X|U = u) + RX|U=u{Z}(p(u, x, z), D1)
]

.

The variable U must achieve the distortion constraint at decoder 2. As shown in [2], its

alphabet is bounded according to |U| ≤ |X | + 2 = 4. We can therefore represent U by its

marginal probabilities ru and transition probabilities au = Pr(X = 1|U = u), u ∈ {0, 1, 2, 3}.

These parameters must satisfy

r0 + r1 + r2 + r3 = 1 (4.15)

r0a0 + r1a1 + r2a2 + r3a3 =
1

2
(4.16)

0 ≤ ru, u ∈ {0, 1, 2, 3} (4.17)

0 ≤ au ≤ 1, u ∈ {0, 1, 2, 3}. (4.18)

For each u, the distribution p(u, x, z) is entirely characterized by that symbol’s transition

probability au and the side information crossover probability q0. In what follows, I write

RX|U=u{Z}(p(u, x, z), D1) in the form R(au, q0, D1) to make explicit its functional dependence

on these parameters. It is the binary MSI rate-distortion function determined in the previous

section when p0 = au.
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Assume that R(au, q0, D1) is differentiable2 with respect to au, and define K(au)
4
=

R(au, q0, D1) − H(au). Finding the optimal U is equivalent to finding the

(a0, a1, a2, a3, r0, r1, r2, r3) that minimize

1 + r0K(a0) + r1K(a1) + r2K(a2) + r3K(a3), (4.19)

subject to the constraints (4.15)-(4.18) together with a distortion constraint for decoder 2.

Appendix D outlines how to evaluate this minimization and hence determine RHB(D1, D2)

using a search over only two parameters, matching the complexity required to evaluate the

existing bounds by Heegard and Berger and Kerpez.

Evaluating RHB(D1, D2), I find a significant region of (q0, D1, D2)-space for which the

bounds of Heegard and Berger and Kerpez are loose; an example is shown in Figure 4.6.

The rate-distortion function is at some points as much as 0.056 bits per symbol below the

minimum of the two prior upper bounds, and at others up to 0.2143 bits per symbol above

Kerpez’s lower bound3.

There is one locally minimal solution to the minimization that is always present in the

case when none of the inequality constraints is active. That minimum requires two symbols

and occurs when a0 = D2, a1 = 1 − D2, r0 = 1
2
, and r1 = 1

2
, i.e., when U is related to X via

a binary symmetric channel with crossover probability D2. In practice, I find that this is the

optimal solution for all q0, D1, and D2 tested, and I conjecture that it is a unique optimal

2I show in Appendix C that although R(au, q0, D1) is not differentiable everywhere with respect to au, I

can alter it by an insignificant amount so as to smooth it and make it so.
3Contrary to a conjecture by Kerpez, his solution is not everywhere better than Heegard and Berger’s. I

thank Sidharth Jaggi for verifying a counterexample that at (q0, D1, D2) = (0.1, 0.05, 0.25), Kerpez’s bound

RHB ≤ 0.4116 is looser than Heegard and Berger’s bound RHB ≤ 0.3970.
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solution. However, since K(au) is not convex (because R(au, q0, D1) is not a convex function

of au), I cannot easily prove the uniqueness of this solution. I can conclude that it at least

provides an extremely tight upper bound which can be computed with a search over only

one parameter rather than two.

A binary symmetric U achieves the rate-distortion function in the absence of decoder

1 (i.e., U achieves RX(D2)). The corresponding V achieves RX|U{Z}(p, D1). This situation

parallels successive refinement, except that the refinement description now works in coop-

eration with side information. Interestingly, Heegard and Berger’s Gaussian example in [2]

exhibits the same pattern. There, too, the variable U is chosen as it would be to achieve

RX(D2), and V is chosen to provide the necessary refinement. Since both binary and Gaus-

sian sources are successively refinable, this suggests that a two-step approach (choose U so

as to achieve RX(D2), then choose V so as to achieve RX|U{Z}(p, D1)) might achieve the

Heegard and Berger rate-distortion function for all successively refinable sources for which

RX(D2) is achieved by a U generated from the addition of appropriate i.i.d. noise to X.

For general sources, the two-step approach bounds the HB rate-distortion function from

above in terms of the traditional and MSI rate-distortion functions. The MSI rate-distortion

function is in turn bounded in relation to the conditional rate-distortion function by the rate

loss results of Section 4.2.

4.6 Summary

I derive rate-distortion results for a system with some side information known at both the

encoder and decoder and some known only at the decoder. Both the rate-distortion func-
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Figure 4.6: Numerical results for Heegard and Berger’s system, q0 = 0.1, D1 = 0.05.

tion and the rate loss are direct generalizations of existing results for the conditional rate-

distortion and Wyner-Ziv systems. Two rate-distortion examples are studied in depth. The

Gaussian example generalizes easily from the Wyner-Ziv case; the binary example is consid-

erably more complicated, but I present an easily computable solution. I use this to help us

solve a more difficult binary rate-distortion problem for the system of Heegard and Berger

(HB). Comparison of the new binary HB solution and the existing Gaussian HB solution

show that they both use a separable, two-step approach to construct auxiliary random vari-

ables. That a two-step approach is optimal suggests the existence of a new type of successive

refinement for which the second part of the description is decoded together with side infor-

mation. It also suggests a two-step approach might yield good results for practical coding.

The results in this chapter yield insight into the use of side information in general net-

works. However, continuing further along the same lines is likely to yield slow progress.

Thus, I now change tack and in the next chapter look directly at three different source

coding problems for larger networks.



Chapter 5

Network Source Coding Results

This chapter treats three different topics in large network source coding theory. First, I ask

and answer the question of whether feedback from a decoder to an encoder can enlarge a set

of achievable rates in lossless source coding. Next, I show how to use cutsets to derive simple

source coding converses for any network. Finally, I present two new results in broadcast

source coding.

5.1 Feedback in Lossless Coding

Consider lossless source coding for a bipartite graph like the example in Figure 5.1. Encoder

j, j = 1, 2, . . . , J , sees a source Xj of which it creates a description. This description is made

available to some subset of the decoders via noiseless communication channels. Decoder

βk, k = 1, 2, . . . , K, which has access to side information Zk, reproduces some subset of

the sources described to it. For instance, in the example of Figure 5.1, decoder 1 receives

descriptions of X1 and X3 and reproduces both of them; decoder 2 receives descriptions of

95
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X2

X3
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Figure 5.1: A bipartite graph considered for the feedback problem.

X2 and X3 but reproduces only X2. Since the coding is lossless, the achievable rate region

is the set of rate vectors R = (Rj)j∈{1,...,J} that allow the reproductions to be made with

an arbitrarily low probability of error. This section considers whether feedback from the

decoders to the encoders can enlarge the achievable rate region.

For point-to-point networks, it is straightforward to show that feedback does not enlarge

the achievable region for either lossless or lossy coding. The information known by the

decoder is always a subset of that known by the encoder, and hence there is no information

that the decoder can feed back to the encoder that the encoder does not already know. The

following theorem, proved in Appendix E, makes this notion concrete for lossy coding. It

generalizes the corresponding lossless result [84].

Theorem 16 For an i.i.d. source X, RFB(D) = R(D), where RFB(D) is the rate-distortion

function when feedback is permitted from the decoder to the encoder.

For the same reason as for the point-to-point case, feedback does not enlarge the rate-

distortion region for the the M -receiver BC network: none of the decoders can feed back to
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the encoder any information that it does not already know.

The same argument does not apply to WZ or MA systems. For lossy coding, feedback

is known to help in the WZ system. There exist sources for which the WZ rate-distortion

function is strictly greater than the corresponding conditional rate-distortion function [12]; if

the side information at the decoder of the WZ system is fed back to the encoder in its entirety,

then the achievable rate-distortion region expands to that of the corresponding conditional

rate-distortion system. Since WZ is a special case of MA, it follows that feedback also helps

in lossy MA coding. However, in contrast to lossy MA coding, the Slepian-Wolf result [11]

implies that lossless MA networks derive no advantage from feedback. This is shown in the

case of two-user MA coding in the following theorem, proved in Appendix E. The M -user

extension follows from a straightforward generalization.

Theorem 17 For the two-user multiple access system with i.i.d. sources, the achievable rate

region for the case when feedback is permitted from the decoder to each of the encoders is the

same as the achievable rate region for the case when no feedback is permitted.

For general lossless networks, the exact achievable region without feedback is known

in the special case when every decoder reproduces every source described to it [85]. For

instance, in the example of Figure 5.1, decoder 2 receives descriptions of X2 and X3 but

reproduces only X2; to apply the results of [85], decoder 2 would need to reproduce both X2

and X3. For such networks, a generalized form of the Slepian-Wolf result holds, and, once

again, feedback from the decoders to the encoders does not lower the total rate required.

Since several classes of lossless coding systems derive no rate advantage from feedback,

it seems plausible that no lossless source coding network ever does. Theorem 18, however,
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shows that feedback can increase the achievable rate region of a lossless source code. It is

proved by example in the following section.

Theorem 18 There exist lossless coding systems in which feedback of finite rate from one

of the decoders to one of the encoders is sufficient to reduce the total rate required by the

encoders. This reduction in rate can be arbitrarily large as the sizes of the source alphabets

increase without bound.

5.1.1 The Feedback Example

Consider the system shown in Figure 5.2. Sources X and Y are described by encoders αX

and αY at rates RX and RY , respectively. The decoder builds a reproduction X̂ of X from

the two descriptions and the side information Z. The probability of error of an n-dimensional

code (αn
X , αn

Y , βn) is

P (n)
e = Pr(βn(αn

X(Xn), αn
Y (Y n), Zn) 6= Xn).

A pair of rates (RX , RY ) is achievable if for any ε > 0 there exists a sequence of codes with

rates (RX + ε, RY + ε) such that P
(n)
e → 0 as n → ∞. The achievable rate region R is the

closure of the set of all achievable rates. Since Y need not be reproduced at the decoder,

the system is not a special case of Slepian and Wolf’s setup [11]. Rather, it is an example of

source coding with side information as considered by Sgarro [86], but with additional side

information Z present at the decoder.

Suppose now that feedback of rate RFB is allowed from βn to αn
Y . For the example

below it suffices to permit feedback of the form gn(Zn), where g is any measurable function

of Zn, and to allow αn
Y to be a function of both Y n and the feedback gn(Zn). Denote
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Figure 5.2: The lossless coding system used in the proof of Theorem 18.

the corresponding achievable rate region by RFB . Using an example reminiscent of [87,

Example 8], I show the existence of sources (X, Y, Z) such that feedback from βn to αn
Y

of rate RFB = 1 + δ, where δ > 0 is arbitrarily small, lowers the minimum rate RY when

RX = 0.

Let X be distributed uniformly on X = {1, . . . , M}, i.e.,

p(x) =















1
M

, x ∈ {1, . . . , M}

0, otherwise.

The distribution p(y, z|x) is specified in the following way. Let θ be a random variable drawn

i.i.d. uniformly on {0, 1}. When θ = 0, Y is distributed uniformly on {1, . . . , M} and Z = X.

When θ = 1, Y = X and Z = M + 1.

From the above definitions, we can recover X from Y and Z via the function

f(y, z) =















y, Z = M + 1

z, otherwise.

(5.1)

Thus, X can be reproduced by the decoder even when RX = 0. However, the rate RY

required when RX = 0 differs depending on whether or not feedback is present from the

decoder to the encoder of Y .

Theorem 18 follows from the following two lemmas, proved below.
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Lemma 5 When feedback of rate RFB is permitted from βn to αn
Y , rates (RX , RY , RFB) =

(0, 1
2
log M, 1) are achievable for the given sources.

Lemma 6 When feedback is not permitted, if (RX , RY ) = (0, RY ) is achievable for the given

sources, then RY ≥ log M .

Proof of Theorem 18 Combining the two lemmas shows that when RX = 0, the rate

RY required when feedback is absent is at least twice the rate needed when feedback of rate

1 is allowed between decoder and encoder. The rate difference is 1
2
log M , which increases

without bound as the alphabet size M increases. The required feedback rate remains fixed

at RFB = 1 for any M . 2

Proof of Lemma 5 Define the feedback gn(Zn) according to gn(Zn) = (g1(Z1), . . . , gn(Zn)),

where gi(Zi) = 1{Zi=M+1} = θi. The decoder describes θn to αn
Y using rate RFB = H(θi) = 1,

and αn
Y describes to the decoder those samples of Y corresponding to time slots when θi = 1,

using H(Y ) = log M bits per instance. Thus RY = log M

n
E[
∑n

i=1 θi] = 1
2
log M . The decoder

reconstructs Xn by setting X̂i = Yi when Zi = M+1 and X̂i = Zi otherwise. This establishes

the achievability of rates (RX , RY , RFB) = (0, 1
2
log M, 1). 2

Proof of Lemma 6 Lemma 6 is established by considering X̂ = f(Y, Z) as a function of

Y and Z to be calculated by the decoder and applying a functional source coding result.

From [87, Theorem 1], the minimum rate RY when RX = 0 is given by

RY = HG(Y |Z),

where G is the characteristic graph of Y , Z, and f . By definition, the vertex set of G is the

support set of Y , and two distinct vertices y and y′ are connected if there is a z such that
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Pr(Y = y, Z = z) > 0, Pr(Y = y′, Z = z) > 0, and f(y, z) 6= f(y′, z). When z = M + 1,

then for any y 6= y′, Pr(Y = y, Z = M + 1) = Pr(Y = y′, Z = M + 1) = 1
M

> 0 and

f(y, M + 1) 6= f(y′, M + 1). Thus, the characteristic graph is fully connected, yielding

HG(Y |Z) = H(Y |Z). For the current problem, H(Y |Z) = H(Y ) = log M . Therefore,

recovering X with arbitrarily low probability of error when RX = 0 requires RY ≥ log M . 2

The example above essentially forms a functional coding problem out of a more standard

lossless coding problem. As such, it illustrates that ordinary lossless coding problems in gen-

eral networks can share all of the characteristics of functional coding problems, including rate

reductions from feedback. Central to the example is the existence of the “helper source” [85]

Y ; although the decoder receives a description of Y , it is not required to reproduce Y .

The constraint RX = 0 in the above problem reduces the problem to a very specialized

case. It is reasonable to ask whether we can observe the same behavior when RX > 0. The

answer is yes; an example is obtained simply by replacing the source X ′ = (X, V ), where V

is the result of a fair coin toss that is independent of Y and Z. This imposes the requirement

RX′ ≥ 1 so as to allow for the description of the coin toss, but leaves the achievable rate for

Y unchanged.

5.2 Source Coding Converses Via Cutsets

Finding the exact limits of source code performance is very difficult in all but the simplest

of networks. Indeed, the limits of code performance are still unknown even for some three-

node networks. However, insight can sometimes be obtained by bounding the achievable rate

regions rather than finding them exactly. For instance, determining how the set of achievable
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rates scales with network size does not require exact knowledge of the rate region; it suffices

to have bounds on both sides that scale in a similar fashion. Also, achieving a performance

close to optimal is often enough for practical applications.

A cutset is a partition of the set of network nodes into two or more subsets. A converse

for a network is obtained by bounding the rate flowing from one subset to the other for

every possible cutset partition of the nodes. For channel coding, a converse result bound-

ing the achievable rate region for a general network is developed using a cutset approach

in [31, Theorem 14.10.1], but no parallel result exists for source coding. This section uses

cutsets to derive network source coding converses. The cutset approach has the advantage of

easy applicability to even the most complex networks, but the drawback that the converses

obtained are often quite loose.

I show for two- and three-partition cutsets how to bound network source coding rates, and

I demonstrate the resulting converses using a two-access network and a three-node network.

Further generalizations using more than three subsets are possible but are not considered

here.

5.2.1 Cutset Theorems

Figure 5.3 shows a general network of M nodes. Consider a cutset that partitions the

network nodes into two sets, A and B = Ac, and denote by RA→B the total description rate

flowing from nodes in A to nodes in B. The set of sources known by nodes in A is XA,

the set of sources known by nodes in B is XB, and the side information known by nodes

in B is ZB. The set of sources being described by nodes in A to nodes in B is XA→B;
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Figure 5.3: A general network. The line is an example of a cutset boundary separating the

M nodes of the network into two sets, A and B.

the remaining sources in A are XA6→B, giving XA = (XA→B, XA6→B). Similar definitions

apply to give XB = (XB→A, XB 6→A). For simplicity, assume that A and B share no sources

or side information in common, although the results can easily be restated to cover that

contingency. Assume also that the distortion measure satisfies the two conditions (that there

exists an escape symbol with finite expected distortion and that the distortion measure is

fairly smooth) imposed in Section 2.2.3.

The theorem below bounds the rate flowing from A to B using an MSI rate-distortion

function as defined in Chapter 4. However, since there are multiple components of XA→B

(each source transmitted from A to B is a separate component), each of which may have a

separate distortion constraint, Theorem 14 must be extended to the case of several jointly

encoded sources. This requires only minor modifications; if we jointly encode a compound

source X = (X1, . . . , XM) with distortion constraints (D1, . . . , DM) on each of the indi-

vidual sources the rate-distortion function takes the same information-theoretic form, but

we must introduce a different reproduction function f for each source. Thus, the set

MX|Y {Z}(p, (D1, . . . , DM)) becomes the set of all W such that for each i = 1, . . . , M there
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exists a reproduction function fi(w, y, z) meeting distortion constraint Di.

Since each component of XA→B may be reproduced at more than one node in B (a source

may be described to, say, three nodes in B, each with a different distortion constraint), there

may be multiple distortion constraints for the same component. However, it is convenient

to work with a single distortion constraint for each source. Define the vector DA→B to be a

collection of distortion constraints, one per component of XA→B, where for each component

we choose the weakest constraint imposed by the nodes in B that reproduced that component.

Theorem 19 Choose any A ⊆ {1, 2, . . . , M} and B = Ac, and assume I(XA→B; XB, ZB) <

∞. Then any code achieving distortions DA→B has rates RA→B satisfying

RA→B ≥ RXA→B |XB→A{XB 6→AZB}(DA→B). (5.2)

Proof of Theorem 19 Fix A and B = Ac. Perform the following steps, each of which is

guaranteed not to increase the minimum rate flowing from A to B.

1. Replace all nodes in A by a single node that has full knowledge of all of the sources

known by or described in part to nodes in A. This set of sources is (XA, XB→A).

2. Replace all nodes in B by a single node that has access to the set of all received

messages, sources, and side information known by any node in B.

These two steps are equivalent to allowing unlimited communication between the nodes in A

and from B to A while assuming that that communication requires no expenditure in rate.

They reduces the network to the system in Figure 5.4, for which the rate-distortion function

is RXA→B |XB→A{XB 6→A,ZB}(DA→B). Hence

RA→B ≥ RXA→B |XB→A{XB 6→A,ZB}(DA→B).
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Figure 5.4: The simplified network for the cutset bounds.

2

Remark 1 One of the assumptions of Theorem 19 is that the encoders in A have perfect

knowledge of the sources XB→A. This assumption involves two approximations. In general,

the encoders receive a description of those sources only to some non-zero distortion. Also,

the encoders cannot make full use of those descriptions unless they are prepared to delay

coding their own data until the descriptions are fully received.

Remark 2 For lossless coding, the Slepian-Wolf result implies that feedback from B to A

need not be taken into account (as shown in the previous section) and thus neither of the

approximations identified in Remark 1 are relevant in lossless coding. In this case, (5.2) can

be rewritten simply as RA→B ≥ H(XA→B|XB, ZB).

The two-subset partitions considered in Theorem 19 allow easy derivations of simple

converse conditions. However, they do not typically yield bounds on the rates of common

sources, nor do they make explicit the tradeoff between the rates of common and private

sources. Capturing these features requires partitioning the nodes into three or more subsets.

I concentrate here on the case of three subsets; bounds obtained for more than three are in

general too difficult to compute.
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Figure 5.5: The system used for the three-set extension of the cutset approach.

Partitions with two subsets reduced our network to the system shown in Figure 5.4.

With three sets, there are several systems we could reduce it to; the one I detail here is the

two-receiver broadcast system with side information shown in Figure 5.5. Let

• U denote the collection of sources (XA→(B,C), XA→B) transmitted by nodes in A to

nodes in B.

• V denote the collection of sources (XA→(B,C), XA→C) transmitted by nodes in A to

nodes in C.

• Y denote the collection of sources X(B→A)∪(C→A) that are known by either B or C and

are fed back to A either in part or in entirety.

• Z denote the collection of sources X(B 6→A)∪(C 6→A) that are known by either B or C but

are not fed back to A.

• DU = (DA→(B,C), DA→B), where for each individual source its weakest distortion con-

straint imposed by any node in B is assumed in the definition of these compound

distortion measures. Similarly, let DV = (DA→(B,C), DA→C).
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The following theorem, proved in Appendix E, gives the converse result.

Theorem 20 Let (A, B, C) be any partition of the network nodes into three sets for which

the nodes in B do not share information with the nodes in C about the sources transmitted

to them from A. Let (U, V, Y, Z) as defined above be drawn i.i.d. with joint distribution

p(u, v, y, z), and let M be the set of all auxiliary random variables W jointly distributed with

(U, V, Y, Z) such that W → (U, V, Y ) → Z forms a Markov chain. Let

R(W, DU , DV ) = {(RA→(B,C), RA→B, RA→C) : RA→(B,C) ≥ I(U, V ; W |Y, Z)

RA→B ≥ RU |Y {Z}(DU)

RA→C ≥ RV |Y {Z}(DV )}.

The set R∗(DU , DV ) of achievable (RA→(B,C), RA→B,RA→C) for distortions (DU , DV ) satisfies

R∗(DU , DV ) ⊆
⋃

W∈M

R(W, DU , DV ).

5.2.2 Cutset Examples

Consider the two-user MA network of Figure 5.6(a). Theorem 19 gives

R2,1 ≥ inf
W∈M2→{1,3}(D2,1,1)

I(X2,1; W2,1|X3,1), R3,1 ≥ inf
W∈M3→{1,2}(D3,1,1)

I(X3,1; W3,1|X2,1)

R2,1 + R3,1 ≥ RX2,1,X3,1(D2,1,1, D3,1,1),

where RX2,1 ,X3,1(D2,1,1, D3,1,1) is the rate-distortion function for source pair (X2,1, X3,1). In

the lossless case, the bounds simplify to the Slepian-Wolf bounds and are tight. In the lossy

case, the bounds are similar to those by Berger and Tung [34, 21], but are not as tight since

they do not require that the auxiliary random variables achieving the first two bounds be
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Figure 5.6: (a) A two-user MA network. (b) A three-node network.

the same as those used in achieving the rate-distortion function in the third. They also

replace I(X2,1; W2,1|W3,1) with the smaller term I(X2,1; W2,1|X3,1) in the first bound and the

symmetric replacement is made in the second bound.

Figure 5.6(b) shows a three-node network with two sources encoded at each node. Assume

that each node has both a common channel and private channel to the other two nodes.

Theorem 20 gives the following converse result for the rate leaving node 1. Let M be the set of

all finite-alphabet random variables W such that W → (X1,2, X1,3, X2,1, X3,1) → (X2,3, X3,2)

forms a Markov chain.

R(W, D1,2,2, D1,3,3) = {(R1,{2,3}, R1,2, R1,3) : R1,{2,3} ≥ I(X1,2, X1,3; W |X2,1, X3,1, X2,3, X3,2),

R1,2 > RX1,2|X2,1,X3,1{X2,3 ,X3,2}(D1,2,2),

R1,3 > RX1,3|X2,1,X3,1{X2,3 ,X3,2}(D1,3,3)}.
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Then if the rate triple (R1,{2,3}, R1,2,R1,3) is achievable for distortions (D1,2,2, D1,3,3), it must

lie within the region

R∗(D1,2,2, D1,3,3) =
⋃

W∈M

R(W ).

Similar results are obtained for the rates leaving nodes 2 and 3.

5.3 Broadcast Source Coding

The general broadcast networks defined in Chapter 3 allow a different message to be passed

to every subset of the receivers. In practice, such a general framework is impractical because

the number of subsets grows exponentially with the number of receivers. More commonly,

only some of the subsets are considered, as in the limited broadcast network introduced in

Section 3.5, where only one common information is permitted. In this section, I derive tight

rate-distortion results for a new practical network model: a tree-based broadcast network. I

also look at three-receiver broadcast coding, applying techniques from multiple-description

coding and Slepian-Wolf coding to derive an achievability result.

For simplicity, the results below are stated with only one source intended for each re-

ceiver. To accommodate common sources intended to be reconstructed at several nodes,

each individual source can simply be defined as a compound source containing one or more

common sources. For example, in a two receiver case with sources X1 and X2, a common

source X12 is accommodated by setting X1 = (X12, X
′
1) and X2 = (X12, X

′
2) and redefining

the distortion measures appropriately.
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Figure 5.7: A k-ary broadcast tree.

5.3.1 Broadcast Coding for Tree Networks

Consider a wireless transmitter broadcasting to many receivers in various directions and at

various distances. In any particular direction, the information received by nodes further

away is a subset of the information received by closer nodes.

Figure 5.7 models this situation using a k-ary tree to describe the information dependen-

cies. The receivers are the leaves of the tree. Each node in the tree is labeled according to

the description of its path from the encoder. For each 0 ≤ ` ≤ L, B` = {0, 1, . . . , k − 1}`

denotes the set of paths from the encoder to the nodes at depth ` (the root is considered

to be at depth 0 and is described by path b = ∅). The set of all paths of length less

than or equal to k is Bk = ∪k
`=0B`, and the set of all paths is B = BL. For any node b,

let anc(b) = {b′ : b′ is a proper prefix of b} be the set of all ancestors of b. Similarly, let

dec(b) = {b′ : b is a prefix of b′} be the set of all descendants of b, including b itself. Thus
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dec(b) is the subtree anchored by b. The entire tree can be considered as the subtree dec(∅)

of the encoder.

The degraded broadcast channel is modeled as several separate channels as follows. For

each subtree dec(b), b ∈ B, assume that there exists a common channel at rate Rb to all

of the members of that subtree. When b describes a leaf, that subtree contains only one

receiver, and the channel is a private channel to receiver b.

There are kL sources {Xb}b∈BL
, where source Xb is intended for the receiver at leaf b.

That receiver makes a reconstruction X̂b of source Xb that satisfies distortion constraint

Ed(Xb, X̂b) ≤ Db. The sources are i.i.d. with joint distribution p({xb}b∈BL
), and the set of

all sources is denoted X = (Xb)b∈BL
.

For each b ∈ B, let Tb ∈ Tb denote the index transmitted on the channel to subtree dec(b).

An encoder and decoders for the system are then defined as

αn :
∏

b∈BL

{X n
b } →

∏

b∈BL

{Tb}

βn
b :

∏

a∈{{b} ∪ anc(b)}

Ta → X̂ n
b ∀b ∈ BL.

Given distortion measures db : Xm × X̂m → [0,∞), m = 1, . . . , M , the distortions of a code

are given by

∆b =
1

n

n
∑

i=1

db(Xb,i, X̂b,i),

where X̂n
b = βn

b (αn(Xn)).

A set of rates R = (Rb)b∈B is achievable for distortions D = (Db)b∈BL
if for any ε, δ > 0

there exists an n ≥ 1 and a code (αn, {βn
b }b∈BL

) with rates not exceeding R + (ε, . . . , ε) and

distortions not exceeding D + (δ, . . . , δ). The set of all achievable R for fixed D is denoted

R(D).
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To describe the rate-distortion region, for each b ∈ BL−1 associate an auxiliary random

variable Wb with the channel to the nodes in subtree dec(b). Let Wanc(b) denote the set

{Wb′}b′∈anc(b), and let R∗(D) be the closure of the set of all rates R for which there exists a

set of random variables {Wb}b∈BL−1 satisfying the following conditions.

1. For each b ∈ BL−1, Rb ≥ I(X; Wb|Wanc(b)).

2. For each b ∈ BL, Rb ≥ RXb|Wanc(b)
(Db).

Theorem 21 R(D) = R∗(D)

Proof of Theorem 21 The theorem is proved in two parts, the converse then the achiev-

ability.

To establish the converse, consider an arbitrary code (αn, {βn
b }b∈BL

) of some dimension

n with distortions satisfying ∆b ≤ Db for b ∈ BL. I show that R ∈ R∗(D) by constructing a

corresponding set of auxiliary random variables {Wb}b∈BL−1.

Let {Tb}b∈B = αn(Xn) be the messages produced by the encoder. I bound each of the

common rates Rb, b ∈ BL−1, as follows

nRb ≥ H(Tb)

(a)

≥ H(Tb|Tanc(b))

≥ I(Tb;X
n|Tanc(b))

= H(Xn|Tanc(b)) − H(Xn|Tb, Tanc(b))

=

n
∑

i=1

[

H(Xi|Xi−1, Tanc(b)) − H(Xi|Xi−1, Tb, Tanc(b))
]

(b)
=

n
∑

i=1

[

H(Xi|Wanc(b),i) − H(Xi|Wb,i, Wanc(b),i)
]
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=

n
∑

i=1

I(Xi; Wb,i|Wanc(b),i)

(c)
=

n
∑

i=1

I(Xi; Wb,i|Wanc(b),i, Q = i)

= nI(XQ; Wb,Q|Wanc(b),Q, Q)

(d)
= nI(XQ; Wb,Q, Q|Wanc(b),Q, Q)

(e)
= nI(X; Wb|Wanc(b)),

where the labeled steps are justified by the following.

(a) By defining Tanc(b) = {Tb′}b′∈anc(b).

(b) By defining Wb,i = (Xi−1, Tb) for every b ∈ BL−1 and Wanc(b),i = {Wb′,i}b′∈anc(b).

(c) By introducing a timesharing variable Q, independent of all of the other random variables,

uniformly distributed on 1, . . . , n.

(d) XQ and Q are independent (the distribution of X is i.i.d. and does not depend on Q).

(e) By defining Wb = (Wb,Q, Q) for every b ∈ BL−1 and from X being i.i.d.

I bound each of the private rates {Rb}b∈BL
as follows

nRb

(a)

≥ H(X̂n
b |Tanc(b))

≥ I(Xn; X̂n
b |Tanc(b))

=
n
∑

i=1

I(Xi; X̂
n
b |Xi−1, Tanc(b))

≥
n
∑

i=1

I(Xi; X̂b,i|Xi−1, Tanc(b))

≥
n
∑

i=1

I(Xb,i; X̂b,i|Xi−1, Tanc(b))

=
n
∑

i=1

I(Xb,i; X̂b,i|Wanc(b),i)
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=

n
∑

i=1

I(Xb,i; X̂b,i|Wanc(b),i, Q = i)

= nI(Xb,Q; X̂b,Q|Wanc(b),Q, Q)

(b)

≥ nRXb,Q|Wanc(b),QQ(∆b)

= nRXb|Wanc(b)
(∆b)

(c)

≥ nRXb|Wanc(b)
(Db),

where the labeled steps are justified by the following.

(a) There are at most 2nRb values of X̂n
b in the range of βn

b for any given Tanc(b).

(b) From the definition of the conditional rate-distortion function. The average distortion

incurred under distribution p(XQ, Wanc(b),Q) is

Ed(Xb,Q, X̂b,Q) = E[Ed(Xb,Q, X̂b,Q)|Q]

=
1

n

n
∑

i=1

d(Xb,i, X̂b,i)

= ∆b.

(c) RXb|Wanc(b)
(·) is a decreasing function.

Thus, R ∈ R∗(D), and the converse is established. I proceed with the achievability

result.

Let p({Xb}b∈BL
, {Wb}b∈BL−1) be given. For each b ∈ BL, fix p(x̂b|xb, wanc(b)) to be the

distribution that achieves the minimum in the definition of RXb|Wanc(b)
(Db). I show that for

these distributions there exists a sequence of codes with asymptotic distortions D and rates

R such that R ∈ R∗(D).

For each b ∈ B, let jb ∈ {1, . . . , 2nRb} be the index to be transmitted over the channel

to the receivers in subtree dec(b). I create the codebook in the following way. Beginning
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from b = ∅ and working in a breadth-first fashion through all b ∈ BL−1, for each b and

each janc(b) = {jb′}b′∈anc(b), draw 2nRb sequences W n
b (janc(b), jb) uniformly with replacement

from A
∗(n)
ε (Wb|W n

anc(b)(janc(b))). Next, for each b ∈ BL and each janc(b), draw 2nRb sequences

X̂b(janc(b), jb) uniformly with replacement from A
∗(n)
ε (X̂b|W n

anc(b)(janc(b))).

The encoder and decoders operate as follows. The encoder receives Xn and chooses an

index set {jb}b∈B such that for every b ∈ BL,

(Xn, W n
anc(b)(janc(b)), X̂

n
b (janc(b), jb)) ∈ A∗(n)

ε .

If there does not exist such an index set, the encoder declares an error. If there exists more

than one such set, the encoder chooses among them randomly. In the absence of an error, the

encoder transmits each index jb on the channel to the receivers in subtree dec(b). Decoder

b receives indices (janc(b), jb) and declares a reproduction X̂n
b (janc(b), jb).

The following is an exhaustive list of error events for the code.

1. E0 = {Xn 6∈ A
∗(n)
ε }.

2. For each b ∈ BL−1, Eb = Ec
0 ∩ {6 ∃jb : (Xn, W n

anc(b)(janc(b)), Wb(jb)) ∈ A
∗(n)
ε }.

3. For each b ∈ BL,

Eb,1 = (E0 ∪ (∪b′∈BL−1Eb′))
c ∩ {6 ∃jb : (Xn, W n

anc(b)(janc(b)), X̂
n
b (janc(b), jb)) ∈ A∗(n)

ε }.

4. For each b ∈ BL,

Eb,2 = (E0 ∪ (∪b′∈BL−1Eb′) ∪ (∪b′∈BL
Eb′,1))

c ∩ { 1

n
d(Xn

b , X̂n
b (janc(b), jb)) ≥ Db + δ}.

By the union bound, P n
e → 0 if the error probabilities of all of these events go to zero as

n → ∞. Below, I examine each error event individually.
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1. By Lemma 1, Pr{E0} → 0 as n → ∞.

2. By arguments parallel to the achievability of the rate-distortion function [31, Pg. 355-

356], for any b ∈ BL−1, Pr{Eb} → 0 as n → ∞ provided Rb > I(X, Wb|Wanc(b))+ (|b|+

3)ε.

3. Again, by arguments parallel to the achievability of the rate-distortion function, for

any b ∈ BL−1, Pr{Eb,1} → 0 as n → ∞ provided Rb > I(Xb, X̂b|Wanc(b)) + (L + 3)ε.

4. By definition, occurrence of event Eb,2 implies that (Xn
b , X̂n

b (janc(b), jb)) ∈ A
∗(n)
ε . I

bound the distortion of the code using the properties of strong joint typicality

1

n
d(Xn

b , X̂n
b (janc(b), jb)) =

1

n

∑

xb∈Xb,x̂b∈X̂b

d(xb, x̂b)N(xb, x̂b|Xn
b , X̂n

b (janc(b), jb))

≤ 1

n

∑

xb∈Xb,x̂b∈X̂b

d(xb, x̂b)

(

np(xb, x̂b) +
nε

|Xb||X̂b|

)

≤
∑

xb∈Xb,x̂b∈X̂b

d(xb, x̂b)p(xb, x̂b) + εdmax

∑

xb∈Xb,x̂b∈X̂b

1

|Xb||X̂b|

= Ed(Xb, X̂b) + εdmax

≤ Db + εdmax,

where I have assumed

dmax
4
= max

b
max
xb,x̂b

d(xb, x̂b) < ∞.

Thus, for any b ∈ BL, Pr{Eb,2} → 0 as n → ∞.

I have shown that the probability of error of the sequence of codes goes to zero as n → ∞

provided

For all b ∈ BL−1, Rb > I(X, Wb|Wanc(b)) + (|b| + 3)ε,
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For all b ∈ BL, Rb > I(X, Wb|Wanc(b)) + (L + 3)ε

= RXb|Wanc(b)
(Db) + (L + 3)ε.

Since ε > 0 is arbitrary, it follows that there exists a sequence of codes with asymptotic rates

R ∈ R∗(D). 2

5.3.2 Three-receiver Broadcast Coding

This section derives non-matching achievability and converse results for a three-receiver

broadcast network.

The most general three-receiver broadcast network includes a different channel to each

subset of the receivers. There is a common channel to all three receivers, a distinct common

channel to each different pair of receivers, and a private channel to each receiver, giving

seven channels in total. While results for two-receiver broadcast coding [19] show how to

construct codes for the private channels and the common channel to all receivers, they do

not show how to construct good codes for the common channels to pairs of receivers. For

these channels, the descriptions must be chosen to work well with each other in a pairwise

fashion. For instance, the description W12 sent to receivers 1 and 2 is decoded with W13

at node 1 and with W23 at node 2, and it must complement well both of those other two

descriptions.

Prior theoretical work on broadcast coding includes work by Zhao and Effros [20, 64]

that considers lossless broadcast source coding.

For simplicity, I here focus on coding for the three pairwise channels and set the rate for

the other channels to zero. This makes the problem one of creating three descriptions such
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Figure 5.8: A broadcast system with three receivers.

that each different pair will be decoded at one of the decoders.

System Definition

Figure 5.8 shows the broadcast system with common information for each pair of receivers.

For the channel to decoders 1 and 2, define a corresponding message index T12 ∈ {1, . . . , 2nR12}.

Define T13 and T23 similarly for the other two channels. The encoder and decoders for the

system are defined as

αn : X n
1 × X n

2 × X n
3 → {1, . . . , 2nR12} × {1, . . . , 2nR13} × {1, . . . , 2nR23}

βn
1 : {1, . . . , 2nR12} × {1, . . . , 2nR13} → X̂ n

1

βn
2 : {1, . . . , 2nR12} × {1, . . . , 2nR23} → X̂ n

2

βn
3 : {1, . . . , 2nR13} × {1, . . . , 2nR23} → X̂ n

3 .

The distortions of the code are given by

∆j =
1

n

n
∑

i=1

d(Xj,i, X̂j,i) j = 1, 2, 3.

Rates R = (R12, R13, R23) are achievable for distortions D = (D1, D2, D3) if, for any ε, δ > 0,

there exists a code of some dimension having rates not exceeding R+(ε, . . . , ε) and distortions

not exceeding D + (δ, . . . , δ). The set of all achievable R for fixed D is denoted R(D).
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Results

Let X = (X1, X2, X3) and let Rcon(D) be the convex closure of the set of all rate triples such

that there exist auxiliary random variables (W12, W13, W23) satisfying

1.

R12 ≥ I(X; W12) − min{I(W12; W13), I(W12; W23)}

R13 ≥ I(X; W13) − min{I(W12; W13), I(W13; W23)}

R23 ≥ I(X; W23) − min{I(W12; W23), I(W13; W23)}

R12 + R13 ≥ I(X; W12, W13)

R12 + R23 ≥ I(X; W12, W23)

R13 + R23 ≥ I(X; W13, W23)

R12 + R13 + R23 ≥ I(X; W12, W13, W23).

2. There exist functions f1, f2, f3 satisfying

Ed(X1, f1(W12, W13)) ≤ D1, Ed(X2, f2(W12, W23)) ≤ D2, Ed(X3, f3(W13, W23)) ≤ D3.

The following theorem, proved in Appendix E, is the converse result.

Theorem 22 R(D) ⊆ Rcon(D).

Now let Rach(D) be the convex closure of the set of all rate triples such that there exist

auxiliary random variables (W12, W13, W23) satisfying

1.

R12 > I(X; W12) − min{I(W12; W13), I(W12; W23)}

R13 > I(X; W13) − min{I(W12; W13), I(W13; W23)}

R23 > I(X; W23) − min{I(W12; W23), I(W13; W23)}
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R12 + R13 > I(X; W12, W13) + I(W12; W13)

−min{I(W12; W13), I(W12; W23) + I(W13; W23)}

R12 + R23 > I(X; W12, W23) + I(W12; W23)

−min{I(W12; W23), I(W12; W13) + I(W13; W23)}

R13 + R23 > I(X; W13, W23) + I(W13; W23)

−min{I(W13; W23), I(W12; W13) + I(W12; W23)}

R13 + R13 + R23 > H(W12) + H(W13) + H(W23) − H(W12, W13, W23|X) − φ,

where

φ = max
(n12,n13,n23)∈N

(n12 + n13 + n23)

N = {(n12, n13, n23) : n12 ≥ 0, n13 ≥ 0, n23 ≥ 0,

n12 + n13 ≤ I(W12; W13), n12 + n23 ≤ I(W12; W23), n13 + n23 ≤ I(W13; W23)}.

2. There exist functions f1, f2, f3 satisfying

Ed(X1, f1(W12, W13)) ≤ D1, Ed(X2, f2(W12, W23)) ≤ D2, Ed(X3, f3(W13, W23)) ≤ D3.

The following theorem, proved in Appendix E, is the achievability result.

Theorem 23 Rach(D) ⊆ R(D).

The maximization to obtain φ in the definition of the achievability result is evaluated later

in this section.

Remark 1 For the case R13 = 0, the achievability result simplifies to that of [24, Thm

EGC*], which is known to be loose in general but tight for Gaussian sources. Thus, the

achievability result above is also loose in general, but may be tight for Gaussian sources.
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Remark 2 For the case in which the auxiliary random variables are symmetric, with

identical entropies and with I(W12; W13) = I(W12; W23) = I(W13; W23) (as we might expect

if the rates are identical and the original sources themselves are symmetric), the converse

bounds simplify to

R12 = R13 = R23 > I(X; W12) − I(W12; W13)

R12 + R13 = R12 + R23 = R13 + R23 > I(X; W12, W13)

R13 + R13 + R23 > H(W12, W13, W23) − I(W12, W13, W23|X).

The achievability bounds simplify to

R12 = R13 = R23 > I(X; W12) − I(W12; W13)

R12 + R13 = R12 + R23 = R13 + R23 > I(X; W12, W13)

R13 + R13 + R23 > 3H(W12) −
3

2
I(W12; W13) − H(W12, W13, W23|X).

These match in all but total rate.

Outline of Achievability Result

To construct the achievability result, I borrow techniques from both multiple description

and Slepian-Wolf coding. Adopting the basic approach of multiple-description achievability

results [24, Theorems EGC*, EGC, 1], I introduce an auxiliary random variable for each

of the three descriptions, and construct a codebook by drawing sequences from the indi-

vidual typical sets. Correct operation of the decoders requires that there exists a triple of

sequences such that each pair is jointly typical. Rather than determining this number ex-

plicitly, I instead choose enough indices to ensure the existence of a triple for which all three
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sequences are jointly typical with X (a stronger condition than required), and then remove

the redundancy using Slepian-Wolf coding.

Let the three descriptions for the problem be identified with the random variables W =

(W12, W13, W23). The following lemma gives the number of indices required to ensure that a

jointly typical triple of sequences exists.

Lemma 7 [25, Pg 2112-2113] Using p(x, w12, w13, w23), draw 2nR12 sequences W n
12(k12) uni-

formly with replacement from A
∗(n)
ε (W12). Similarly, draw 2nR13 sequences W n

13(k13) with re-

placement from A
∗(n)
ε (W13), and 2nR23 sequences W n

23(k23) with replacement from A
∗(n)
ε (W23).

Suppose Xn ∈ A
∗(n)
ε is given. For any δ > 0,

Pr{∃k = (k12, k13, k23) : (Xn,Wn(k)) ∈ A∗(n)
ε } > 1 − δ

provided that

R12 > I(X; W12)

R13 > I(X; W13)

R23 > I(X; W23)

R12 + R13 > I(X; W12, W13) + I(W12; W13)

R12 + R23 > I(X; W12, W23) + I(W12; W23)

R13 + R23 > I(X; W13, W23) + I(W13; W23)

R13 + R13 + R23 > H(W12) + H(W13) + H(W23) − H(W12, W13, W23|X).

The following section determines how much redundancy can be eliminated by Slepian-

Wolf coding in a three-receiver system, giving the solution to the maximization to obtain φ

in the statement of the achievability result.
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Three-receiver Slepian-Wolf Coding

Consider the three-encoder, three-decoder system of Figure 5.9. Encoders 12, 23, and 13

describe sources W12, W23, and W13 at rates R1, R2, and R3, respectively. Decoder 1 re-

produces W12 and W13, decoder 2 reproduces W12 and W23, and decoder 3 reproduces W13

and W23. The achievable rate region R for this problem is given by applying a theorem of

Csiszár and Körner [85].

Theorem 24 [85, Theorem 1] The achievable rate region for the system of Figure 5.9 is

given by

R12 > max{H(W12|W13), H(W12|W23)}

R13 > max{H(W13|W12), H(W13|W23)}

R23 > max{H(W23|W12), H(W23|W13)}

R12 + R13 > H(W12, W13)

R12 + R23 > H(W12, W23)

R13 + R23 > H(W13, W23).

The following theorem, proved in Appendix E, explicitly determines the minimum achievable

total rate Rmin = min(R12 ,R13,R23)∈R{R12 + R13 + R23}.

Theorem 25 Assume, without loss of generality, that I(W12; W13) ≤ I(W13; W23). Then

Rmin =















































I(W12; W13) + I(W12; W23), 0 ≤ I(W12; W23) ≤ I(W13; W23) − I(W12; W13)

I(W12;W13)+I(W12;W23)+I(W13 ;W23)
2

, I(W13; W23) − I(W12; W13)

≤ I(W12; W23) ≤ I(W12; W13) + I(W13; W23)

I(W12; W13) + I(W13; W23), I(W12; W23) ≥ I(W12; W13) + I(W13; W23).
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Figure 5.9: A three-encoder, three-decoder lossless coding system.

5.4 Summary

This chapter looks at three specific topics in source coding for general networks.

First, the role of feedback in lossless network source coding is examined. Although many

common network systems (e.g., broadcast and multiple access) do not benefit from feedback

in the lossless case, I show that there exist some systems for which a limited amount of

feedback can enlarge the achievable rate-distortion region by an arbitrary amount.

Second, I present a method to develop converse results bounding the source coding rates

in a general network. The approach uses cutsets to partition the network nodes into two

sets. It is easy to apply but often yields converses that are quite loose or do not describe

the tradeoff between common and private rates. More flexible bounds are obtained by

partitioning the network nodes into three or more sets; I present results for a broadcast-like

three-set partitioning. Further generalizations to more than three sets are unlikely to be of

practical use due to the increasing numbers of auxiliary random variables required for the

converse’s description. These make its evaluation difficult.

Finally, I look at lossy broadcast coding. I present a non-matching achievability and

converse result for a general three-receiver broadcast system. Although the general model

for even three receivers proves difficult to analyze, I argue that practical systems do not
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resemble the general case in that they send common information only to subsets of receivers

that are related, rather than to every possible subset of receivers. Modeling relations between

receivers using a tree-structure, I derive matching converse and achievability results for a

broadcast network of arbitrary size.



Chapter 6

Conclusions

In this thesis, I examine applied and theoretical issues in network source coding with the

aim of designing good network compression systems.

The applied work considers the design of rate-distortion-optimal vector quantizers for

general network topologies. I extend the vector quantization design algorithm of [1] to allow

for the presence of side information at the decoders and the possibility of channel errors. I

then show in detail how to implement the algorithm and thus design vector quantizers for

any network. The design considers both fixed- and variable-rate coding, although the appli-

cability of variable-rate network quantizers is limited by our knowledge of lossless network

coding. For all but the simplest of lossless coding networks either the optimal achievable

rates are unknown, we do not know how to convert the optimal rates into optimal entropy

constraints for NVQ design, or we do not have practical entropy codes that approximate the

optimal achievable rates.

Experimental results obtained using the algorithm demonstrate that incorporating net-

work topology into code design can yield significant rate-distortion benefits when the network
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sources are correlated. On a satellite weather data set, network codes show improvements

of more than 1 dB over codes designed independently for each source. For highly correlated

Gaussian sources (ρ ≥ 0.6), improvements of more than 2 dB are possible. These results

prove that network source coding is important for applications involving highly correlated

sources.

Reducing the complexity of network code design is likely to be a crucial factor in in-

creasing its viability for practical applications. A step in the this direction has already been

taken in [65], which uses Chapter 3’s extension of the optimality conditions from [1] in a new,

low-complexity vector quantization design algorithm. Future work in practical network code

design should also consider codes other than VQs; hopefully, the lessons learned here from

VQ design will prove useful in adapting other compression techniques (such as wavelet-based

coding) from point-to-point systems to networks.

I also investigate several theoretical topics with the aim of extracting insights into the

structure and the optimal performance of network data compression codes. Motivated by

the availability of side information in applications such as sensor networks, I derive the rate-

distortion function for a network with some side information available only at the decoder,

and some available to both encoder and decoder. I evaluate this rate-distortion function

for the special case of Gaussian and binary sources. Using this result, I solve a similar

binary example for the system in which the presence of side information at the decoder is

unreliable [2], closing the gap between existing bounds on the solution for that example.

The rate-distortion function for the second system involves two auxiliary random variables.

Examination of the form of the optimal auxiliary random variables yields insight into the

structure of the solution. Both the binary and Gaussian cases exhibit a property akin to
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successive refinement, but with side information present at the refinement decoder. Also, in

both cases, a two-part coding strategy is optimal, suggesting that the same might be true

for all successively refinable sources. I conjecture that a two-part coding strategy is likely to

be efficient even for more general sources; rate-loss results for multi-resolution codes show

that all sources are nearly successively refinable.

Since most lossless coding systems studied do not benefit from feedback, I ask and answer

the question of whether feedback from a decoder to an encoder can enlarge the achievable

rate region in lossless coding. A simple example shows that it can and also demonstrates that

a limited amount of feedback can yield an arbitrarily large decrease in the rate required by

one of the encoders as the alphabet sizes of the sources increase without bound. Although

the example considers an extreme case, it illustrates that source coding feedback may be

important to consider in network compression system design. Further work in this area

might test the magnitude of the benefit available from feedback using real-world examples.

Rate-distortion regions for general networks are often difficult to derive and to evaluate

for particular sources. I demonstrate how to use cutsets to derive simple network converses

by bounding the information rates flowing between different subsets of a network. The

resulting converses are easy to evaluate, but are often quite loose.

Finally, I develop two rate-distortion results for broadcast source coding. Adopting a

degraded broadcast model, I look at source coding for a broadcast tree network, and derive

its rate-distortion region. I also combine multiple-description and Slepian-Wolf coding tech-

niques to derive an achievability and a converse result for three-receiver broadcast source

coding.

Rate-distortion results give the greatest insight into practical code design when the opti-
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mal forms of the auxiliary random variables are determined. I detail the form of the auxiliary

random variable for the mixed side information system in Chapter 4. However, as shown

in that chapter, finding the optimal form is not easy even for simple networks and simple

sources. Thus, it seems unlikely that significant progress toward better code design will be

accomplished by systematically pursuing precise rate-distortion results for larger and more

complicated networks. However, many of today’s potential applications do involve large

networks. To design practical systems for these applications, we need to begin considering

how to apply what we already know to larger networks, even if we do not achieve the theo-

retically optimal performance by doing so. We might also relax our definition of theoretical

optimality to mean simply “scales optimally in the number of network nodes” rather than

optimal down to the last bit. The techniques described in this thesis give a few initial steps

toward pursuing practically and theoretically viable new angles on rate-distortion theory for

large networks.



Appendix A

The Satellite Weather Image Data Set

The satellite weather data set used Chapter 3 was obtained courtesy of NASA and the

University of Hawaii. It contains collections of images from three geosynchronous weather

satellites. Each satellite records 8-bit greyscale images in frequency bands ranging from

infrared to the visible spectrum. For each satellite, I use images from three bands. Each

image is cropped to 512 × 512 pixels. Table A.1 shows the assignment of satellite images

to data sources for the WZ, 2AWZ, 2A, three-node, MD, and BC system experiments.

Figure A.1 shows sample images. The training and testing sets are non-overlapping and

consist of eight and four images per source, respectively.

130



131

Satellite Name Frequency Band WZ 2AWZ 2A Three-Node MD BC

GMS-5 Visible X1,{2,3}

GMS-5 Infrared 1 X1,2

GMS-5 Infrared 2 X1,3

GOES-8 Visible Z1 Z1 Z1 X2,{1,3} X X1,{2,3}

GOES-8 Infrared 2 X2,1 X2,1 X2,1 X2,3 X1,2

GOES-8 Infrared 5 X3,1 X2,1 X1,3

GOES-10 Visible X3,{1,2}

GOES-10 Infrared 2 X3,1

GOES-10 Infrared 5 X3,2

Table A.1: Data source assignments for the NVQ experiments

Figure A.1: Sample images from the GOES-8 weather satellite. From left to right: visible

spectrum, infrared 2, infrared 5.



Appendix B

The Binary MSI Example

In this appendix I apply Lagrange multipliers to the minimization required to determine

RX|{Z}(q, D, f). I use the function f described by Table 4.2 to illustrate our method. For

this f , I seek to minimize (4.9) subject to the conditions in (4.10)-(4.14). There are six

inequality constraints; the application of Lagrange multipliers will depend on the subset

that is active. Assume first that none of the constraints is active. I use the objective

function and the equality constraints to form the Lagrangian

J(a0, a1, a2, r0, r1, r2) = r0G(a0) + r1G(a1) + r2G(a2) + λ1(r0 + r1 + r2 − 1)

+ λ2(r0a0 + r1a1 + r2a2 − p0) + λ3(r0a0 + r1a1 + r2q0 − D),

and obtain the first-order optimality conditions by differentiating J(a0, a1, a2, r0, r1, r2):

∂

∂r0
: G(a0) = λ1 + a0λ2 + λ3

∂

∂r1

: G(a1) = λ1 + a1λ2 + λ3

∂

∂r2
: G(a2) = λ1 + a2λ2 + q0λ3
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∂

∂a0

: G′(a0) = λ2 + λ3

∂

∂a1
: G′(a1) = λ2 + λ3

∂

∂a2
: G′(a2) = λ2. (B.1)

These first-order conditions relate (a0, a1, a2, λ1, λ2, λ3); the equality constraints then give

(r0, r1, r2) in terms of (a0, a1, a2). For this example, the first order conditions governing a0

and a1 are identical. There is a unique optimal value for the minimization, so it must be

achieved when a0 = a1. This is a pattern that is followed for all f : when the decoding rules for

two symbols i and j are equal, i.e., when f(i, z) = f(j, z) ∀z ∈ {0, 1}, then ai = aj. Symbols

i and j can therefore be combined to form a single symbol with transition probability ai and

marginal probability ri+rj. The solution then has at most two symbols and four parameters,

three of which can be fixed by the equality constraints. This reduces the optimization to a

search over one free parameter as desired.

The solution for other decoding functions f is found using a similar approach, and the

symmetry of the problem reduces the number of decoding functions that need be considered.

From Table 4.1 and the resulting discussion, there are at most three decoding rules f(w, ·)

that need be considered for each symbol. The problem is symmetric in the three symbols,

hence it is only the number of symbols using each decoding rule that is important in com-

puting a solution. When all three symbols have the same decoding rule, then the optimal

transition probabilities are the same for each and the three symbols can be combined into

one. This one-symbol solution has no free parameters. When two symbols have the same

decoding rule, the optimal solution uses two symbols and has only one free parameter. Fi-

nally, when all three symbols have different decoding rules, the first order conditions have a
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solution that we give in terms of a0 as

(a1, a2, λ1, λ2, λ3) =

(

1

2
, (1 − a0),−q0G

′(a0), 0, G
′(a0)

)

,

where a0 itself is the solution to G(a0) = (a0 − q0)G
′(a0). I solve for a0 numerically and

obtain r0, r1, and r2 from the equality constraints.

Considering now the case when some of the inequality constraints are made active (i.e.,

are made into equality constraints), observe the following:

1. Assume the constraint (4.13) on rw, w ∈ {0, 1, 2} is active; that is, rw = 0. Then

symbol W = w is never used and the optimization need consider only solutions with

at most two symbols.

2. If all three of the constraints in (4.14) are active, then all parameters are uniquely

determined. If two are active, we have only one free parameter.

From the above, either (1) we require only one or two symbols, (2) two or more of the aw

are constrained, or (3) none of the constraints on the rw and at most one of the constraints

on the aw are active. Since cases (1) and (2) both leave at most one free parameter, I can

easily compute the optimal solution for each. The non-trivial solutions arising from case (3)

are listed below.

The first is when a0 = 0 and the distortion constraint is D = r1q0 + r2(1 − a2). The

first-order conditions yield

G(a1) = H(q0) + (a1 + q)G′(a1) − q0G
′(a2). (B.2)

I search over a2 and use (B.2) to find a1 given a2.
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The second is when a0 = 1 and the distortion constraint is D = r1a1 + r2q0. I search over

a2 and obtain a1 numerically from

G(a1) = H(q0) − G′(a2) + a1G
′(a1).

The above analysis reduces the search for the optimal W to three solution classes:

1. Solutions with only one or two symbols

2. Solutions with a1 = 1
2
, a2 = 1 − a0, and a0 found numerically

3. Solutions where exactly one of the boundary constraints on aw is active.

Numerical experiments suggest that the best solutions from class 3 never outperform the

best solutions from classes 1 and 2.
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Differentiability of K(au)

To apply the first order optimality conditions in the Heegard and Berger problem, I need to

ensure that K(au) = R(au, q0, D1)−H(au) is differentiable with respect to au for 0 < au < 1.

Here, R(au, q0, D1) is the binary MSI rate-distortion function, determined in Section 4.4,

when p0 = au. Since H(au) is differentiable with respect to au for 0 < au < 1, it remains to

ensure that R(au, q0, D1) is also differentiable for 0 < au < 1.

As shown in Lemma 8 below, R(au, q0, D1) is a continuous function of au, differentiable at

all but a finite number of points. In an arbitrarily small neighborhood around each of these

points, the function can be smoothed to make it differentiable; this can be done without

changing the functional value by more than an arbitrarily small amount ε > 0. I substitute

the smoothed (and differentiable) form of R(au, q0, D1) for the original in the definition of

K(au). By doing so, I alter the function I am minimizing in the Heegard and Berger problem

by at most ε; the effect on the derived rate-distortion result of assuming differentiability of

K(au) is thus negligible.
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Lemma 8 R(p0, q0, D1) is a continuous function of p0, differentiable at all but a finite num-

ber of points.

Proof of Lemma 8 R(p0, q0, D1) is given by (4.8) as

R(p0, q0, D1) = min
f∈F

min
µ(w|x)∈M(p0,q0,D1,f)

(

−G(p0) +

2
∑

w=0

rwG(aw)

)

= −G(p0) + min
µ(w|x)∈MX|{Z}(p0,q0,D1,f)

(

2
∑

w=0

rwG(aw)

)

,

where MX|{Z}(p0, q0, D1, f) is the set of all test channels describing an auxiliary random

variable W with |W| ≤ 3 such that W → X → Z and Ed(X, f(W, Z)) ≤ D1. Differen-

tiability of G(p0) is shown in [12]; we concentrate on showing that the remaining term is

differentiable.

For any p0, the minimum over all test channels in the definition of R(p0, q0, D1, f) can be

obtained by a test channel with |W| = 3. That no more than three symbols are needed is

established in [12], and for any solution with fewer than three symbols, there always exists

a corresponding three-symbol solution that yields the same minimum value. (For instance,

if the two-symbol solution (a0, a1, r0, r1) is optimal, then so is the three-symbol solution

(a′
0, a

′
1, a

′
2, r

′
0, r

′
1, r

′
2) = (a0, a1, a1, r0,

r1

2
, r1

2
).) For each f , partition M(p0, q0, D1, f) into a set

of interior test channels (all aw ∈ (0, 1)) and sets of different types of boundary test channels

(having one or more aw ∈ {0, 1}). For each of these sets, a set of first-order conditions

similar to those in (B.1) is derived. For all sets, I obtain the same result as we did for the

conditions in (B.1): the first-order conditions uniquely determine the values of a0, a1, and

a2. These values are independent of p0. The value of p0 affects only how r0, r1, and r2 are

determined as functions of a0, a1, and a2 by applying the equality constraints. Moreover,
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the functions specifying r0, r1, and r2 are always linear functions of p0, because the equality

constraint (4.6) is a linear function of p0. Since the objective function
∑2

w=0 rwG(aw) in the

minimization is also a linear function of (r0, r1, r2), this implies that for any of the sets, the

minimal value of the objective function changes as a linear function of p0.

To find minf∈F minµ(w|x)∈MX|{Z}(p0,q0,D1,f)

(
∑2

w=0 rwG(aw)
)

as a function of p0, take the

minimum of the solutions yielded by the different sets for each f , followed by the minimum

over all f . There are a finite number of functions to consider in the minima, and each is

linear in p0. The desired result follows from the observation that the minimum of a finite

number M of linear functions is continuous and is differentiable at all but at most M − 1

points. 2



Appendix D

The Binary HB Example

This appendix outlines the results of applying Lagrange multipliers to the minimization of

(4.19) subject to the conditions in (4.15)-(4.18) and a distortion constraint.

There are only two possible decoding rules for each symbol: f(u) = 0 or f(u) = 1. When

f(u) = 0, then that symbol contributes an expected distortion of ruau; when f(u) = 1 it

contributes an expected distortion of ru(1 − au).

Consider first the case in which none of the inequality constraints is active. The applica-

tion of Lagrange multipliers yields that au = c1,f for all u such that au ≤ 1−au, and au = c2,f

otherwise. Since symbols with identical transition probabilities can be combined, then for

any f the optimal U requires only two symbols. The two-symbol solution has four param-

eters, (a0, a1, r0, r1). Three can be determined from the equality constraints, leaving one to

search over. The evaluation of R(au, q0, D1) also involves a search over one free parameter

(as shown in the previous section), so that evaluating the optimal U requires a search over

two parameters.

Now consider the case when one or more of the inequality constraints are active. The
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inequality constraints on ru are of little interest since setting any particular ru to zero sim-

ply reduces the number of symbols by one. In applying the inequality constraints on the

transition probabilities au, first note that if ai = aj = 0, or ai = aj = 1 then symbols i and

j can be combined into a single symbol. Therefore, there are only three cases of boundary

solutions: one or more of the transition probabilities is zero, one or more is one, or some are

zero and some are one. In all cases the boundary solution can be computed with a search

over at most two parameters. I list below the three cases that require numerical solution of

one or more parameters.

1. When a0 = 0 and D = a1r1 +(1−a2)r2, then obtain a1 and a2 numerically in sequence

from

K(a1) = a1K
′(a1)

K(a2) = (a2 −
1

2
)K ′(a2) +

1

2
K ′(a1).

2. When a0 = 1 and D = a1r1 +(1−a2)r2, then obtain a1 and a2 numerically in sequence

from

K(a2) = (a2 − 1)K ′(a2)

K(a1) = (a1 −
1

2
)K ′(a1) −

1

2
K ′(a2).

3. When a0 = 0, a1 = 1, and D = r1 +a2r2 +(1−a3)r3, then obtain a2 and a3 numerically

from

K(a2) = a2K
′(a2)

K(a3) = (a3 − 1)K ′(a3).
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Thus, when one or more of the inequality constraints is active, the solution can still be

evaluated by searching over a total of two parameters.



Appendix E

Proofs of Lemmas and Theorems

Theorem 16 For an i.i.d. source X, R(D) = RFB(D), where RFB(D) is the rate-distortion

function when feedback is permitted from the decoder to the encoder.

Proof of Theorem 16 Since feedback cannot increase the required rate R(D) ≥ RFB(D),

and it suffices to show that RFB(D) ≥ R(D).

Consider a general feedback system for the problem, defined as follows. Encoder α

receives a source vector Xn = (X1, X2, . . . , Xn). It transmits to the decoder its first symbol

X̂1, an arbitrary function of Xn. The decoder β transmits back Y1, a function of X̂1 and

possibly some noise Z1. Here Z1 must be independent of Xn since we have assumed that

there is no side information available to the decoder. Upon receipt of Y1, α then transmits

X̂2, a function of Xn and Y1, to β, and β transmits back Y2, a function of (X̂1, X̂2, Z1, Z2).

In the ith round, X̂i is a function of Xn and Y i−1, and Yi is a function of (X̂ i, Zi).

Under this feedback scheme, consider a code (α, β) of some dimension n that uses feedback
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and achieves distortion

1

n

n
∑

i=1

d(Xi, X̂i) = D.

Then

nR ≥ H(X̂n)

≥ H(X̂n) − H(X̂n|Xn, Y n, Zn)

(a)
= H(X̂n) − H(X̂n|Xn, Zn)

= I(X̂n; Xn, Zn)

≥ I(X̂n; Xn)

= H(Xn) − H(Xn|X̂n)

=

n
∑

i=1

H(Xi) −
n
∑

i=1

H(Xi|X i−1, X̂n)

≥
n
∑

i=1

H(Xi) −
n
∑

i=1

H(Xi|X̂i)

=

n
∑

i=1

I(Xi; X̂i)

(b)

≥
n
∑

i=1

R(Ed(Xi, X̂i))

= n

n
∑

i=1

1

n
R(Ed(Xi, X̂i))

(c)

≥ nR(
1

n

n
∑

i=1

Ed(Xi, X̂i))

= nR(D),

where the labeled steps are justified by the following.

(a) Y n is a function of Xn and Zn.

(b) By the definition of the rate-distortion function without feedback.
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(c) By the convexity of the rate-distortion function without feedback.

Thus, any code that achieves distortion D with feedback has rate R > R(D), implying

RFB(D) ≥ R(D) as required. 2

Theorem 17 For the two-user multiple access system with i.i.d. sources, the achievable rate

region for the case when feedback is permitted from the decoder to each of the encoders is the

same as the achievable rate region for the case when no feedback is permitted.

Proof of Theorem 17 Let the sources be X1 and X2, let the encoders of X1 and X2 be α1

and α2, respectively, and let the decoder be β. Let the rate of α1 be R1 and the rate of α2

be R2. The rate region without feedback is given by the result of Slepian and Wolf [11]

R1 ≥ H(X1|X2)

R2 ≥ H(X2|X1)

R1 + R2 ≥ H(X1, X2).

Achievability of these rates with feedback is immediate; I show below the converse. Consider

an n-dimensional code (αn
1 , α

n
2 , βn) that uses feedback. Denote by T1 and T2 the messages

produced by α1 and α2 respectively. Decoder βn must recover Xn
1 and Xn

2 with arbitrarily low

probability of error. Assume the most comprehensive feedback possible to α1: the decoder

feeds back Xn
2 in its entirety to αn

1 , so that T1 = α1(X
n
1 , Xn

2 ). The rate required by encoder

1 is bounded according to

R1 ≥ H(T1)

≥ H(T1|Xn
2 )

≥ I(Xn
1 ; T1|Xn

2 ) + H(T1|Xn
1 , Xn

2 )
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(a)
= I(Xn

1 ; T1|Xn
2 )

= H(Xn
1 |Xn

2 ) − H(Xn
1 |T1, X

n
2 )

(b)
= H(Xn

1 |Xn
2 ) − H(Xn

1 |T1, T2, X
n
2 )

(c)

≥ H(Xn
1 |Xn

2 ) − nεn

(d)
= H(X1|X2) − nεn,

where εn → 0 as n → ∞ and the labeled steps are justified by the following.

(a) T1 is a function of Xn
1 and Xn

2 .

(b) T2 is a function of Xn
2 (and possibly part of T1 via feedback from βn to α2).

(c) By Fano’s inequality.

(d) (X1, X2) are i.i.d.

By a symmetric argument, R2 ≥ H(X2|X1). It remains to show the bound on R1 + R2.

To establish that, observe that separate encoding with feedback can never be more efficient

than joint coding with feedback. Joining the two encoders reduces the system to a point-to-

point system of rate R with encoder αn that observes Xn
1 and Xn

2 . Theorem 16 proves that

feedback does not help in such a system, and by Shannon [10], the rate required for the joint

system without feedback is R ≥ H(X1, X2). Thus, the separated encoders with feedback

must use rate at least R1 + R2 ≥ R ≥ H(X1, X2). 2

Theorem 20 Let (A, B, C) be any partition of the network nodes into three sets for which

the nodes in B do not share information with the nodes in C about the sources transmitted

to them from A. Let (U, V, Y, Z) be drawn i.i.d. with joint distribution p(u, v, y, z), and let

M be the set of all auxiliary random variables W jointly distributed with (U, V, Y, Z) such
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that W → (U, V, Y ) → Z forms a Markov chain. Let

R(W, DU , DV ) = {(RA→(B,C), RA→B, RA→C) : RA→(B,C) ≥ I(U, V ; W |Y, Z)

RA→B ≥ RU |Y {Z}(DU)

RA→C ≥ RV |Y {Z}(DV )}.

The set R∗(DU , DV ) of achievable (RA→(B,C), RA→B,RA→C) for distortions (DU , DV ) satisfies

R∗(DU , DV ) ⊆
⋃

W∈M

R(W, DU , DV ).

The proof of Theorem 20 uses the lemma below, which follows from the definition of the

MSI rate-distortion function.

Lemma 9 Let U, V, Y, Z be i.i.d. sources. Let d′((u, v), (û, v̂)) = d(u, û) be a distortion

measure satisfying the two conditions for the MSI rate-distortion function. Then

R′
UV |Y {Z}(D) ≤ RU |Y {Z}(D),

where R′
UV |Y {Z}(D) and RU |Y {Z}(D) are the MSI rate-distortion functions measured with

respect to distortion measures d′ and d respectively.

Proof of Theorem 20 The following steps reduce the network to the system in Figure 5.5.

At each step, the minimal rates required to flow from A to B and C are guaranteed not to

increase.

• Combine all of the nodes in A to a single node knowing (U, V, Y )

• Combine all of the nodes in B to a single node knowing (Y, Z).

• Combine all of the nodes in C to a single node knowing (Y, Z).
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It remains to show that the bounds apply to the system of Figure 5.5. For simplicity, rewrite

RA→(B,C) = RUV , RA→B = RU , and RA→C = RV .

Given a code (α, β1, β2) of some dimension n, let (TUV , TU , TV ) = α(Un, V n, Y n) be the

messages produced by the encoder, and let (RUV , RU , RV ) be the average rates used by the

code. Let the ith character of the reproductions be denoted Ûi = βBi(TUV , TU , Y n, Zn) and

V̂i = βCi(TUV , TV , Y n, Zn), and let the average distortions be denoted

δU =
1

n

n
∑

i=1

d(Ui, βBi(TUV , TU , Y n, Zn) ≤ DU

δV =
1

n

n
∑

i=1

d(Vi, βCi(TUV , TU , Y n, Zn) ≤ DV .

I show that there exists a random variable W satisfying the conditions of the theorem

such that (RUV , RU , RV ) ∈ R∗(DU , DV ).

I bound RUV as

nRUV

(a)

≥ H(TUV )

≥ H(TUV |Y n, Zn)

≥ I(TUV ; Un, V n|Y n, Zn)

= H(Un, V n|Y n, Zn) − H(Un, V n|TUV , Y n, Zn)

(b)
=

n
∑

i=1

[

H(Ui, Vi|Yi, Zi) − H(Ui, Vi|U i−1, V i−1, TUV , Y n, Zn)
]

(c)
=

n
∑

i=1

[H(Ui, Vi|Yi, Zi) − H(Ui, Vi|Wi, Yi, Zi)]

=
n
∑

i=1

I(Ui, Vi; Wi|Yi, Zi)

(d)
=

n
∑

i=1

I(Ui, Vi; Wi|Yi, Zi, Q = i)

= nI(UQ, VQ; WQ|YQ, ZQ, Q)
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(e)
= nI(UQ, VQ; WQ, Q|YQ, ZQ)

(f)
= nI(U, V ; W |Y, Z),

where the labeled steps are justified by the following.

(a) TUV ∈ {1, . . . , 2nRUV }.

(b) (Ui, Vi, Yi, Zi) are jointly i.i.d.

(c) By defining Wi = (U i−1, V i−1, Y i−1, Y n
i+1, Z

i−1, Zn
i+1, TUV ).

(d) By introducing a timesharing variable Q uniformly distributed on 1, . . . , n.

(e) (U, V, Y, Z) are i.i.d. and hence H(UQ, VQ|YQ, ZQ, Q) = H(UQ, VQ|YQ, ZQ).

(f) By defining W = (WQ, Q), U = UQ, V = VQ, Y = YQ, and Z = ZQ. Note that this choice

of U, V, Y, Z still leaves these variables with the same distribution as those in the statement

of the theorem since Pr(UQ = u, VQ = v, YQ = y, ZQ = z) = p(u, v, y, z) for any Q.

I bound RU according to

nRU

(a)

≥ H(TU)

≥ H(TU |TUV , Y n, Zn)

≥ I(Un, V n; TU |TUV , Y n, Zn)

=

n
∑

i=1

I(Ui, Vi; TU |U i−1, V i−1, TUV , Y n, Zn)

=
n
∑

i=1

[

H(Ui, Vi|U i−1, V i−1, TUV , Y n, Zn) − H(Ui, Vi|U i−1, V i−1, TU , TUV , Y n, Zn)
]

(b)
=

n
∑

i=1

[H(Ui, Vi|Wi, Yi, Zi) − H(Ui, Vi|W ′
i , Wi, Yi, Zi)]

=

n
∑

i=1

I(Ui, Vi; W
′
i |Wi, Yi, Zi)

=
n
∑

i=1

I(Ui, Vi; W
′
i |Wi, Yi, Zi, Q = i)
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= nI(UQ, VQ; W ′
Q|WQ, YQ, ZQ, Q)

(c)

≥ nRUQ,VQ|QWQYQ{ZQ}(DU)

(d)

≥ nR′
UV |WY {Z}(DU)

(e)

≥ nRU |WY {Z}(DU),

where the labeled steps are justified by the following.

(a) TU ∈ {1, . . . , 2nRU}.

(b) By defining W ′
i = TU . Note that since Zi depends only on (Ui, Vi, Yi) and is conditionally

independent of TU given (Ui, Vi, Yi), W ′
i → (Ui, Vi, Yi) → Zi forms a Markov chain.

(c) By the definition of the MSI rate-distortion function with distortion measure d′((u, v), (û, v̂)) =

du(u, û). The average distortion incurred at B under distribution p(UQ, VQ, WQ, YQ, ZQ) is

Ed′((u, v), (û, v̂)) = Ed(u, û)

= E[Ed(u, û)|Q]

=
1

n

n
∑

i=1

d(ui, βBi(TUV , TU , Y n, Zn))

= DU .

(d) RUV |WY {Z}(·) is a decreasing function.

(e) By Lemma 9.

A symmetric argument gives RV ≥ RV |WY {Z}(DV ). Thus, I have shown the existence of

a random variable W such that

RUV ≥ I(U, V ; W |Y, Z)

RU ≥ RU |WY {Z}(DU)

RV ≥ RV |WY {Z}(DV ).
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2

Theorem 22 R(D) ⊆ Rcon(D).

Proof of Theorem 22 Given a code (α, β1, β2, β3) of some dimension n with rates R and

distortions satisfying ∆i ≤ Di for i = 1, 2, 3, I show that there exist auxiliary random

variables (W12, W13, W23) such that R ∈ Rcon(D).

Let (T12, T13, T23) = α(Xn
1 , Xn

2 , Xn
3 ) be the messages produced by the encoder. I bound

R12 as follows.

nR12 ≥ H(T12)

≥ H(T12|T13)

≥ I(T12;X
n|T13)

= H(Xn|T13) − H(Xn|T12, T13)

=
n
∑

i=1

[

H(Xi|Xi−1, T13) − H(Xi|Xi−1, T12, T13)
]

(a)
=

n
∑

i=1

[H(Xi|W13,i) − H(Xi|W12,i, W13,i)]

(b)
= n

n
∑

i=1

I(Xi; W12,i|W13,i, Q = i)

= nI(XQ; W12,Q|W13,Q, Q)

= nI(XQ; W12,Q, Q|W13,Q, Q)

(c)
= nI(X; W12|W13)

= n [I(X, W13; W12) − I(W12; W13)]

≥ n [I(X; W12) − I(W12; W13)] ,

where the labeled steps are justified by the following.
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(a) By defining W12,i = (Xi−1, T12) and W13,i = (Xi−1, T13).

(b) By introducing a timesharing variable Q uniformly distributed on 1, . . . , n.

(c) By defining W12 = (W12,Q, Q) and W13 = (W13,Q, Q), and from X being i.i.d.

Repeating the above steps but conditioning on T23 instead of T13 yields R12 ≥ I(X; W12) −

I(W12; W23). Hence

R12 ≥ I(X; W12) − min{I(W12; W13), I(W12; W23)}.

A symmetric result applies for R13 and R23.

Each pair of rates can be bounded in the following way.

n(R12 + R13) ≥ H(T12, T13)

≥ I(T12, T13;X
n)

= H(Xn) − H(Xn|T12, T13)

=

n
∑

i=1

[

H(Xi) − H(Xi|Xi−1, T12, T13)
]

=
n
∑

i=1

[H(Xi) − H(Xi|W12,i, W13,i)]

= n

n
∑

i=1

I(Xi; W12,i, W13,i|Q = i)

= nI(XQ; W12,Q, W13,Q|Q)

= nI(XQ; W12,Q, Q, W13,Q, Q)

= nI(X; W12, W13).

The same approach can be used on the triple of rates to yield

R12 + R13 + R23 > I(X; W12, W13, W23).

Finally, since each auxiliary random variable contains its corresponding index (e.g., W12
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contains T12), the decoding functions can be recast as functions of the auxiliary random

variables as required. 2

Theorem 23 Ra(D) ⊆ R(D).

Proof of Theorem 23 Draw 2nR′
12 sequences W n

12(k12), k12 ∈ {1, . . . , 2nR′
12}, uniformly

with replacement over A
∗(n)
ε (W12). Similarly draw 2nR′

13 sequences W n
13(k13) uniformly with

replacement over A
∗(n)
ε (W13), and draw 2nR′

23 sequences W n
23(k23) uniformly with replacement

over A
∗(n)
ε (W23).

Create three random binning functions. Assign each k12 to one of 2nR12 bins via function

g12(k12), each k13 to one of 2nR13 bins via g13(k13), and each k23 to one of 2nR23 bins via

g23(k23).

The encoder receives Xn. It chooses an index triple (k12, k13, k23) such that

(Xn, W n
12(k12), W

n
13(k13), W

n
23(k23)) ∈ A∗(n)

ε .

If there is more than one such triple, it chooses one at random from the set of such triples. If

there is no such triple, it declares an error. In the absence of an error, the encoder transmits

index set

(i12, i13, i23) = (g12(k12), g13(k13), g23(k23))

to the decoders.

Decoder 1 receives indices (i12, i13) and maps them to the unique pair (k12, k13) such

that g12(k12) = i12, g13(k13) = i13, and (W n
12(k12), W

n
13(k13)) ∈ A

∗(n)
ε . If there is no such

unique pair, it declares an error. In the absence of an error, it declares a reproduction
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f12(W
n
12(k12), W

n
13(k13)), where f12 is the function from the definition of Ra. Decoders 2 and

3 work similarly.

There are various error events at the encoder:

1. Xn 6∈ A
∗(n)
ε . By Lemma 1, the probability of this event is small for n sufficiently large.

2. Xn ∈ A
∗(n)
ε , but

6 ∃(k12, k13, k23) such that (Xn, W n
12(k12), W

n
13(k13), W

n
23(k23)) ∈ A∗(n)

ε .

By Lemma 7, the probability of this is small provided that

R12 > I(X; W12)

R13 > I(X; W13)

R23 > I(X; W23)

R12 + R13 > I(X; W12, W13) + I(W12; W13)

R12 + R23 > I(X; W12, W23) + I(W12; W23)

R13 + R23 > I(X; W13, W23) + I(W13; W23)

R12 + R13 + R23 > H(W12) + H(W13) + H(W23) − H(W12, W13, W23|X).

There are also error events at the decoders. For decoder 1:

1. There exists a k′
12 6= k12 such that g(k′

12) = g(k12) = i12 and (W n
12(k

′
12), W

n
13(k13)) ∈

A
∗(n)
ε . Since, by Lemma 2, the probability that a randomly chosen W n

12 is jointly typical

with W n
13(k13) is less than 2−n(I(W12;W13)−3ε),

Pr(∃k′
12 : g12(k

′
12) = i12, (W

n
12(k

′
12), W

n
13(k13)) ∈ A∗(n)

ε ) ≤ 2n(R′
12−R12)2−n(I(W12;W13)−3ε).
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This can be made arbitrarily small provided n is sufficiently large and R′
12 − R12 <

I(W12; W13) − 3ε. To prevent the same type of error for k13 we require R′
13 − R13 <

I(W12; W13)− 3ε. Finally, to avoid the case in which there exists a pair (k′
12, k

′
13) with

k′
12 6= k12, k′

13 6= k13, but (W n
12(k

′
12), W

n
13(k

′
13)) ∈ A

∗(n)
ε ), we require R′

12 − R12 + R′
13 −

R13 < I(W12; W13) − 3ε.

2. The code does not meet the distortion requirement, i.e.,

Ed(Xn
1 , f(W n

12(k12), W
n
13(k13))) ≥ D1 + ε.

The probability of this event is small since in the absence of the other error events,

(Xn
1 , W n

12(k12), W
n
13(k13)) ∈ A∗(n)

ε .

By the same argument as [21, Pg. 48], this ensures that their distortion is smaller than

D1 + ε.

Combining all of the above rate constraints, the probability of error can be made arbitrarily

small provided n is sufficiently large, and

R12 > I(X; W12) − min{I(W12; W13), I(W12; W23)}

R13 > I(X; W13) − min{I(W12; W13), I(W13; W23)}

R23 > I(X; W23) − min{I(W12; W23), I(W13; W23)}

R12 + R13 > I(X; W12, W13) + I(W12; W13)

−min{I(W12; W13), I(W12; W23) + I(W13; W23)}

R12 + R23 > I(X; W12, W23) + I(W12; W23)

−min{I(W12; W23), I(W12; W13) + I(W13; W23)}
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R13 + R23 > I(X; W13, W23) + I(W13; W23)

−min{I(W13; W23), I(W12; W13) + I(W12; W23)}

R13 + R13 + R23 > H(W12) + H(W13) + H(W23) − H(W12, W13, W23|X) − φ,

where

φ = max
(n12,n13,n23)∈N

(n12 + n13 + n23)

N = {(n12, n13, n23) : n12 ≥ 0, n13 ≥ 0, n23 ≥ 0,

n12 + n13 ≤ I(W12; W13), n12 + n23 ≤ I(W12; W23), n13 + n23 ≤ I(W13; W23)}.

2

Theorem 25 Assume, without loss of generality, that I(W12; W13) ≤ I(W13; W23). Then

Rmin =















































I(W12; W13) + I(W12; W23), 0 ≤ I(W12; W23) ≤ I(W13; W23) − I(W12; W13)

I(W12;W13)+I(W12;W23)+I(W13 ;W23)
2

, I(W13; W23) − I(W12; W13)

≤ I(W12; W23) ≤ I(W13; W23) + I(W12; W13)

I(W12; W13) + I(W13; W23), I(W12; W23) ≥ I(W12; W13) + I(W13; W23).

Proof of Theorem 25 The proof is in two parts. I first characterize Rmin as the solution

to a maximization problem and then solve the maximization problem.

The bounds of Theorem 24 can be rewritten as

R12 > H(W12) − min{I(W12; W13), I(W12; W23)}

R23 > H(W13) − min{I(W12; W13), I(W13; W23)}

R13 > H(W23) − min{I(W12; W23), I(W13; W23)}

R12 + R13 > H(W12) + H(W23) − I(W12; W23)
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R12 + R23 > H(W12) + H(W13) − I(W12; W13)

R23 + R13 > H(W13) + H(W23) − I(W13; W23). (E.1)

For any admissible (R12, R23, R13), let n12 = H(W12) − R12, n13 = H(W13) − R23, and

n23 = H(W23) − R13, so that

R12 = H(W12) − n12 R23 = H(W13) − n13 R13 = H(W23) − n23.

Since (R12, R13, R23) > (H(W12), H(W13), H(W23)) is clearly achievable (by independent

coding), we are interested in the case when n12, n13, and n23 are all non-negative. Under

this condition, bounds (E.1) above are, line by line, equivalent to

n12 ≤ min{I(W12; W13), I(W12; W23)}

n13 ≤ min{I(W12; W13), I(W13; W23)}

n23 ≤ min{I(W12; W23), I(W13; W23)}

n12 + n23 ≤ I(W12; W23)

n12 + n13 ≤ I(W12; W13)

n13 + n23 ≤ I(W13; W23).

The last three of these make the first three redundant. Thus, (H(W12) − n12, H(W13) −

n13, H(W23) − n23) ∈ R if and only if (n12, n13, n23) ∈ N , where

N = {(n12, n13, n23) : n12 ≥ 0, n13 ≥ 0, n23 ≥ 0,

n12 + n13 ≤ I(W12; W13), n12 + n23 ≤ I(W12; W23), n13 + n23 ≤ I(W13; W23)}.

From the definition of Rmin,

Rmin
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= min
(R12 ,R23,R13)∈R

{R12 + R23 + R13}

= min
(H(W12)−n12,H(W13)−n13 ,H(W23)−n23)∈R

{(H(W12) − n12 + H(W13) − n13 + H(W23) − n23)}

= min
(n12,n13,n23)∈N

{(H(W12) − n12 + H(W13) − n13 + H(W23) − n23)}

= H(W12) + H(W13) + H(W23) − max
(n12,n13,n23)∈N

{(n12 + n13 + n23)}.

This is the maximization problem that must be solved.

Now, for convenience, write I12,13 = I(W12; W13), I12,23 = I(W12; W23), and I13,23 =

I(W13; W23). Set N is defined by three inequality constraints, each of which describes a

plane in (n12, n13, n23)-space. The region defined by the inequalities is a polygon in the

positive quadrant with faces corresponding to the given planes; the solution to the maxi-

mization is represented by the point in the polygon that has the greatest taxicab distance

dtaxi(n12, n13, n23) = n12 + n13 + n23 from the origin. Call this point G.

Figure E.1 depicts the polygon formed by the two planes n12+n13 = I12,13 and n13+n23 =

I13,23. The third plane, not shown, is oriented vertically and is defined by n12 + n23 = I12,23.

The intersection of this third plane with the polygon shown in Figure E.1(a) determines the

solution of the maximization.

For I12,23 = 0, the third plane intersects the line n12 = n23 = 0, and the solution is

G = D = (0, I12,13, 0). As I12,23 grows, the third plane moves out from the n13 axis as shown

in Figure E.1(b), and solution point G = (0, I12,13, I12,23) moves out along line DE. When

I12,23 = I13,23 − I12,13, G reaches E. A further increase in I12,23 results in a polygon of the

form shown in Figure E.1(c), and solution point G moves out along the line EF from E

towards F . When I12,23 = I13,23 + I12,23, G reaches F . Further increases in I12,23 have no

effect on G.
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13n

I13,23

I12,13
n12

n23
n23

n12
I12,13

13n

I13,23

12,23I

n23

n12

13n

I13,23

I12,13

12,23I

12,23I

(b) (c)(a)

E

F

D

F

D

G

G
E

F

D
E

G

Figure E.1: A graphical representation of the minimization. (a) The polygon defined by the

two planes n12 + n13 = I12,13 and n13 + n23 = I13,23. (b) The polygon defined by all three

planes when 0 ≤ I12,23 ≤ I13,23 − I12,13. (c) The polygon defined by all three planes when

I13,23 − I12,13 ≤ I12,23 ≤ I12,13 + I13,23.

Thus, for 0 ≤ I12,23 ≤ I13,23 − I12,13, the optimal solution is G = (0, I12,13, I12,23), which is

a taxicab distance of dtaxi(G) = I12,13 + I12,23 from the origin.

For I13,23 − I12,13 ≤ I12,23 ≤ I12,13 + I13,23, G is the intersection of the line EF and the

plane n12 + n23 = I12,23. Since E = (0, I12,13, I13,23 − I12,13) and F = (I12,13, 0, I13,23), line EF

is the set of points

λE + (1 − λ)F = ((1 − λ)I12,13, λI12,13, I13,23 − λI12,13) ∀λ ∈ IR. (E.2)

The intersection occurs at the value of λ satisfying

(1 − λ)I12,13 + I13,23 − λI12,13 = I12,23,

which yields

λ =
I13,23 + I12,13 − I12,23

2I12,13

.
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Substituting back into (E.2) gives G = (
I12,23+I12,13−I13,23

2
,

I12,13+I13,23−I12,23

2
,

I13,23+I12,23−I12,13

2
),

which is a taxicab distance of dtaxi(G) =
I12,13+I13,23+I12,23

2
from the origin.

Finally, for any I12,23 ≥ I12,13 + I13,23, the optimal solution is G = F , which is a taxicab

distance of dtaxi(G) = I12,13 + I13,23 from the origin.

Thus,

max
(n12,n13,n23)∈N

{n12 + n13 + n23} =















































I(W12; W13) + I(W12; W23) if 0 ≤ I(W12; W23) ≤ I(W13; W23) − I(W12; W13)

I(W12;W13)+I(W12;W23)+I(W13 ;W23)
2

if I(W13; W23) − I(W12; W13)

≤ I(W12; W23) ≤ I(W12; W13) + I(W13; W23)

I(W12; W13) + I(W13; W23) if I(W12; W23) ≥ I(W12; W13) + I(W13; W23).

2
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