
Distributed Receding Horizon Control of

Multiagent Systems

Thesis by

William B. Dunbar

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2004

(Defended April 6, 2004)

ii

c© 2004

William B. Dunbar

All Rights Reserved

iii

Acknowledgements

I would like to thank my advisor and committee chair, Prof. Richard Murray, for his

guidance, funding and enthusiasm for research. Thanks to Prof. Jerry Marsden for

inviting me to come to Caltech, for being on my committee and for being the patriarch

of the CDS department. Prof. Jeff Shamma was a great help in completing the work

in this dissertation, and I thank him for his friendship and being on my committee.

Also, thanks to Prof. Jason Hickey for reading group discussions and being on my

committee.

Thanks very much to the other graduate students, postdocs and visiting professors

in the CDS department who have helped me to mature as a researcher. In particular:

Dr. Mark Milam, for demanding quality and providing CDS with NTG; Prof. Nicolas

Petit, for also demanding quality and inviting me to Ecole des Mines; Dr. Reza

Olfati Saber, for teaching me aspects of his research and for our collaborations. I

especially thank the crew of my past office mates, fellow system administrators, and

the department staff for making the administrative life of every CDS student easy.

I would not be here if it wasn’t for my family, and I would not be able to stay if

it weren’t for my beautiful wife, Rebekah. This work is dedicated to my wife and the

glorious memories I have of Mike Finch.

iv

Abstract

Multiagent systems arise in several domains of engineering. Examples include arrays

of mobile sensor networks for aggregate imagery, autonomous highways, and forma-

tions of unmanned aerial vehicles. In these contexts, agents are governed by vehicle

dynamics and often constraints, and the control objective is achieved by cooperation.

Cooperation refers to the agreement of the agents to 1) have a common objective

with neighboring agents, with the objective typically decided offline, and 2) share

information online to realize the objective. To be viable, the control approach for

multiagent systems should be distributed, for autonomy of the individual agents and

for scalability and improved tractability over centralized approaches.

Optimization-based techniques are suited to multiagent problems, in that such

techniques can admit very general objectives. Receding horizon control is an optimization-

based approach that is applicable when dynamics and constraints on the system are

present. Several researchers have recently explored the use of receding horizon control

to achieve multi-vehicle objectives. In most cases, the common objective is formu-

lated, and the resulting control law implemented, in a centralized way.

This dissertation provides a distributed implementation of receding horizon control

with guaranteed convergence and performance comparable to a centralized implemen-

tation. To begin with, agents are presumed to be individually governed by hetero-

geneous dynamics, modelled by a nonlinear ordinary differential equation. Coupling

between agents occurs in a generic quadratic cost function of a single optimal control

problem. The distributed implementation is generated by decomposition of the single

optimal control problem into local problems, and the inclusion of local compatibility

constraints in each local problem. The coordination requirements are globally syn-

v

chronous timing and local information exchanges between neighboring agents. For

sufficiently fast update times, the distributed implementation is proven to be asymp-

totically stabilizing. Extensions for handling inter-agent coupling constraints and

partially synchronous timing are also explored. The venue of multi-vehicle formation

stabilization demonstrates the efficacy of the implementation in numerical experi-

ments. Given the generality of the receding horizon control mechanism, there is

great potential for the implementation presented here in dynamic and constrained

distributed systems.

vi

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Literature Review . 3

1.1.1 Receding Horizon Control . 3

1.1.2 Multi-Vehicle Coordinated Control 8

1.1.3 Decentralized Optimal Control and Distributed Optimization . 9

1.2 Dissertation Outline . 11

2 Receding Horizon Control 14

2.1 Introduction . 14

2.2 Receding Horizon Control . 14

2.3 Implementation Issues . 18

2.3.1 Computational Delay . 18

2.3.2 Robustness to Uncertainty . 19

2.3.3 Relaxing Optimality . 20

2.4 Summary . 21

3 Receding Horizon Control of a Flight Control Experiment 22

3.1 Introduction . 22

3.2 Flight Control Experiment . 23

3.2.1 Hardware . 24

vii

3.2.2 Software . 25

3.2.3 Model of the Ducted Fan . 25

3.3 Application of Receding Horizon Control 26

3.3.1 Receding Horizon Control Formulation 26

3.3.2 Timing Setup . 29

3.4 LQR Controller Design . 31

3.5 Results . 31

3.5.1 Comparison of Response for Different Horizon Times 32

3.5.2 LQR vs. Receding Horizon Control 34

3.6 Summary . 35

4 Distributed Receding Horizon Control 36

4.1 Introduction . 36

4.2 Outline of the Chapter . 37

4.3 Structure of Centralized Problem . 38

4.4 Distributed Optimal Control Problems 44

4.5 Distributed Implementation Algorithm 53

4.6 Stability Analysis . 55

4.7 Summary . 76

5 Analysis of Distributed Receding Horizon Control 77

5.1 Introduction . 77

5.2 Interpretation of the Distributed Receding Horizon Control Law . . . 77

5.2.1 Comparison with Centralized Implementations 78

5.2.2 Effect of Compatibility Constraint on Closed-Loop Performance 82

5.2.3 Distributed Implementation Solves a Modified Centralized Prob-

lem . 84

5.3 Alternative Formulations . 86

5.3.1 Dual-Mode Distributed Receding Horizon Control 86

5.3.2 Alternative Exchanged Inter-Agent Information 96

5.3.3 Alternative Compatibility Constraint 97

viii

5.4 Extensions of the Theory . 100

5.4.1 A General Coupling Cost Function 100

5.4.2 Inter-Agent Coupling Constraints 104

5.4.3 Locally Synchronous Timing 108

5.5 Summary . 111

6 Receding Horizon Control of Multi-Vehicle Formations 113

6.1 Introduction . 113

6.2 Formation Stabilization Objective . 114

6.3 Optimal Control Problems . 120

6.3.1 Centralized Receding Horizon Control 120

6.3.2 Distributed Receding Horizon Control 121

6.4 Numerical Experiments . 122

6.4.1 Centralized Implementation 125

6.4.2 Distributed Implementation 126

6.5 Alternative Description of Formations 136

6.6 Summary . 143

7 Extensions 145

7.1 Introduction . 145

7.2 Relevant Areas of Research . 145

7.2.1 Parallel and Distributed Optimization 145

7.2.2 Optimal Control and Neighboring Extremals 146

7.2.3 Multiagent Systems in Computer Science 148

7.2.4 Other Areas . 149

7.3 Potential Future Applications . 150

7.3.1 Mobile Sensor Networks . 150

7.3.2 Control of Networks . 151

7.4 Summary . 152

ix

8 Conclusions 154

8.1 Summary of Main Results . 154

8.2 Summary of Future Research . 157

A Basic Lemmas 159

Bibliography 162

x

List of Figures

3.1 Caltech ducted fan experiment: (a) full view, (b) close-up view. 22

3.2 Ducted fan experimental setup. 24

3.3 Planar model of the ducted fan. 25

3.4 Ducted fan experimental setup with receding horizon and inner-loop

controller. 28

3.5 Receding horizon input trajectories, showing implementation after delay

due to computation. 30

3.6 Moving one second average of computation time for receding horizon

control implementation with different horizon times. 32

3.7 Response of receding horizon control laws to 6-meter offset in horizontal

position x for different horizon times. 33

3.8 Position tracking for receding horizon control law with a 6-second horizon. 33

3.9 Response of LQR and receding horizon control to 6-meter offset in hor-

izontal position x. 34

6.1 Seven-vehicle formation: vector structure on the left, and resulting for-

mation on the right. 116

6.2 Fingertip formation response in position space using centralized receding

horizon control. 125

6.3 Centralized receding horizon control law time history for vehicle 3. . . 127

6.4 Fingertip formation response using distributed receding horizon control

without compatibility constraints (κ = +∞). 128

6.5 Distributed receding horizon control law time history for vehicle 3, with-

out compatibility constraints (κ = +∞). 128

xi

6.6 Fingertip formation response using distributed receding horizon control

and position compatibility constraints. 129

6.7 Distributed receding horizon control law time history for vehicle 3, using

position compatibility constraints. 130

6.8 Fingertip formation response using distributed receding horizon control

and control compatibility constraints. 132

6.9 Distributed receding horizon control law time history for vehicle 3, using

control compatibility constraints. 132

6.10 Fingertip formation response using distributed receding horizon control,

assuming neighbors continue along straight line paths at each update

and without enforcing any compatibility constraints (κ = +∞). 134

6.11 Distributed receding horizon control law time history of vehicle 3 for

update periods: (a) δ = 0.5, (b) δ = 0.1. 135

6.12 Comparison of tracking performance of centralized (CRHC) and two dis-

tributed (DRHC) implementations of receding horizon control. DRHC

1 denotes the distributed implementation corresponding to the theory,

with control compatibility constraints, and DRHC 2 denotes the imple-

mentation with no compatibility constraints and neighbors are assumed

to apply zero control. 136

6.13 Trajectories of a six-vehicle formation: (a) the evolution and the path

of the formation, (b) snapshots of the evolution of the formation (note:

the two cones at the sides of each vehicle show the magnitudes of the

control inputs). 141

6.14 Control inputs applied by each vehicle for the purpose of tracking in

formation: (a) controls of vehicles 1 through 3, (b) controls of vehicles

4 through 6. 142

1

Chapter 1

Introduction

Multiagent system is a phrase used here to describe a general class of systems com-

prised of autonomous agents that cooperate to meet a system level objective. Cooper-

ation refers to the agreement of the agents to 1) have a common objective with other

agents, with the objective typically decided offline, and 2) share information online

to realize the objective. Agents are autonomous in that they are individually capable

of sensing their environment and possibly other agents, communicating with other

agents, and computing and implementing control actions to meet their portion of the

objective. An inherent property of multiagent systems is that they are distributed,

by which we mean that each agent must act autonomously based on local information

exchanges with neighboring agents.

Examples of multiagent systems arise in several domains of engineering. Examples

of immediate relevance to this dissertation include arrays of mobile sensor networks

for aggregate imagery, autonomous highways, and formations of unmanned aerial

vehicles. In these contexts, agents are governed by vehicle dynamics and often con-

straints. Constraints can arise in the individual agents, e.g., bounded control inputs

for each vehicle. Constraints that couple agents can also be inherent to the system or

specified as part of the objective, e.g., collision avoidance constraints between neigh-

boring cars on an automated freeway. By design, such engineered multiagent systems

should require little central coordination, as the communication issues in distributed

environments often preclude such coordination. Moreover, a distributed control so-

lution enables autonomy of the individual agents and offers scalability and improved

2

tractability over centralized approaches.

Optimization-based techniques for control are well suited to multiagent problems

in that such techniques can admit very general cooperative objectives. To be practi-

cally implementable in these systems, however, agents must be able to accommodate

the computational requirements associated with optimization-based techniques. Re-

ceding horizon control in particular is an optimization-based approach that is appli-

cable when dynamics and constraints on the system are present, making it relevant

for the multi-vehicle examples discussed above. Moreover, recent experiments re-

viewed in this dissertation have shown successful real-time receding horizon control

of a thrust-vectored flight vehicle.

Several researchers have recently explored the use of receding horizon control to

achieve multi-vehicle objectives. In most cases, the common objective is formulated,

and the resulting control law implemented, in a centralized way. This dissertation

provides a distributed implementation of receding horizon control with guaranteed

convergence and performance comparable to a centralized implementation.

To begin with, agents are presumed to have decoupled dynamics, modelled by non-

linear ordinary differential equations. Coupling between agents occurs in a generic

quadratic cost function of a single optimal control problem. The distributed imple-

mentation is first generated by decomposition of the single optimal control problem

into local optimal control problems. A local compatibility constraint is then incor-

porated in each local optimal control problem. The coordination requirements are

globally synchronous timing and local information exchanges between neighboring

agents. For sufficiently fast update times, the distributed implementation is proven

to be asymptotically stabilizing. Extensions for handling coupling constraints and

partially synchronous timing are also explored. The venue of multi-vehicle formation

stabilization is used for conducting numerical experiments, which demonstrate com-

parable performance between centralized and distributed implementations. Other

potential multiagent applications, in which agents are not necessarily vehicles, are

discussed in the final portion of this dissertation.

3

1.1 Literature Review

This section provides a review of relevant literature on receding horizon control,

multi-vehicle coordination problems, decentralized optimal control and distributed

optimization.

1.1.1 Receding Horizon Control

In receding horizon control, the current control action is determined by solving online,

at each sampling instant, a finite horizon optimal control problem. Each optimization

yields an optimal control trajectory, also called an optimal control plan, and the first

portion of the plan is applied to the system until the next sampling instant. The

sampling period is typically much smaller than the horizon time, i.e., the planning

period. The resample and replan action provides feedback to mitigate uncertainty in

the system. A typical source of uncertainty is the mismatch between the model of

the system, used for planning, and the actual system dynamics. “Receding horizon”

gets its name from the fact that the planning horizon, which is typically fixed, recedes

ahead in time with each update. Receding horizon control is also known as model

predictive control, particularly in the chemical process control community. “Model

predictive” gets its name from the use of the model to predict the system behavior

over the planning horizon at each update.

As receding horizon control does not mandate that the control law be pre-computed,

it is particularly useful when offline computation of such a law is difficult or impos-

sible. Receding horizon control is not a new approach, and has traditionally been

applied to systems where the dynamics are slow enough to permit a sampling rate

amenable to optimal control computations between samples, e.g., chemical process

plants. These systems are usually governed by strict constraints on states, inputs

and/or combinations of both. With the advent of cheap and ubiquitous computa-

tional power, it has become possible to apply receding horizon control to systems

governed by faster dynamics that warrant this type of solution.

There are two main advantages of receding horizon control:

4

Generality – the ability to include generic models, linear and nonlinear, and

constraints in the optimal control problem. In fact, receding horizon control is

the only method in control that can handle generic state and control constraints;

Reconfigurability – the ability to redefine cost functions and constraints as

needed to reflect changes in the system and/or the environment.

Receding horizon control is also easy to describe and understand, relative to other

control approaches. However, a list of disadvantages can also be identified:

Computational Demand – the requirement that an optimization algorithm

must run and terminate at every update of the controller is for obvious reasons

prohibitive;

Theoretical Conservatism – proofs of stability of receding horizon control

are complicated by the implicit nature of the closed-loop system. As a conse-

quence, conditions that provide theoretical results are usually sufficient and not

necessary.

Based on the consideration above, one should be judicious in determining if receding

horizon control is appropriate for a given system. For example, if constraints are not

a dominating factor, and other control approaches are available, the computational

demand of receding horizon control is often a reasonable deterrent from its application.

Regarding multiagent systems, it is the generality of the receding horizon approach

that motivated this dissertation. The cooperative objective of multiagent systems can

be hard to mold into the framework of many other control approaches, even when

constraints are not a dominating factor.

Since the results in this dissertation are largely theoretical, a review of theoretical

results in receding horizon control is now given. The thorough survey paper by Mayne

et al. [46] on receding horizon control of nonlinear and constrained systems is an

excellent starting point for any research in this area. Therein, attention is restricted

to literature in which dynamics are modelled by differential equations, leaving out a

5

large part of the process control literature where impulse and step response models

are used.

The history of receding horizon control machinery is quite the opposite of other

control design tools. Prior to any theoretical foundation, applications (specifically in

process control) made this machinery a multi-million dollar industry. A review of such

applications is given by Qin and Badgwell in [61]. As it was designed and developed

by practitioners, early versions did not automatically ensure stability, thus requiring

tuning. Not until the 1990s did researchers begin to give considerable attention to

proving stability.

Receding horizon control of constrained systems is nonlinear, warranting the tools

of Lyapunov stability theory. The control objective is typically to steer the state to

the origin, i.e., stabilization, where the origin is assumed to be an equilibrium point

of the system. The optimal cost function, also known as the value function, is almost

universally used as a Lyapunov function for stability analysis in current literature.

There are several variants of the open-loop optimal control problem employed. These

include enforcing a terminal equality constraint, a terminal inequality constraint,

using a terminal cost function alone, and more recently the combination of a terminal

inequality constraint and terminal cost function. Enforcing a terminal inequality

constraint is equivalent to requiring that the state arrive in a set, i.e., the terminal

constraint set, by the end of the planning horizon. The terminal constraint set is

a neighborhood of the origin, usually in the interior of any other sets that define

additional constraints on the state. Closed-loop stability is generally guaranteed by

enforcing properties on the terminal cost and terminal constraint set.

The first result proving stability of receding horizon control with a terminal equal-

ity constraint was by Chen and Shaw [9], a paper written in 1982 for nonlinear con-

tinuous time-invariant systems. Another original work by Keerthi and Gilbert [38]

in 1988 employed a terminal equality constraint on the state for time-varying, con-

strained, nonlinear, discrete-time systems. A continuous time version is detailed in

Mayne and Michalska [45]. As this type of constraint is too computationally taxing

and increases the chance of numerical infeasibility, researchers looked for relaxations

6

that would still guarantee stability.

The version of receding horizon control utilizing a terminal inequality constraint

provides some relaxation. In this case, the terminal cost is zero and the terminal set is

a subset of the state constraint set containing the origin. A local stabilizing controller

is assumed to exist and is employed inside the terminal set. The idea is to steer the

state to the terminal set in finite time via receding horizon and then switch to the

stabilizing controller. This is sometimes referred to as dual-mode receding horizon

control. Michalska and Mayne [49] proposed this method for constrained, continuous,

nonlinear systems using a variable horizon time. It was found later in multiple studies

that there is good reason to incorporate a terminal cost. Specifically, it is generally

possible to set the terminal cost to be exactly or approximately equal to the infinite

horizon value function in a suitable neighborhood of the origin. In the exact case,

the advantages of an infinite horizon (stability and robustness) are achieved in the

neighborhood. However, except for unconstrained cases, terminal cost alone has not

proven to be sufficient to guarantee stability. This motivated work to incorporate

the combination of terminal cost (for performance) and terminal constraint set (for

stability).

Most recent receding horizon controllers use a terminal cost and enforce a termi-

nal constraint set. These designs generally fall within one of two categories; either

the constraint is enforced directly in the optimization or it is implicitly enforced by

appropriate choice of terminal cost and horizon time [32]. The former category is

advocated in this dissertation, drawing largely on the results by Chen and Allgöwer

[11], who address receding horizon control of nonlinear and constrained continuous

time systems.

This dissertation also examines issues that arise when applying receding horizon

control real-time to systems with dynamics of considerable speed, namely the Caltech

ducted fan flight control experiment. As stated, development and application of

receding horizon control originated in process control industries where plants being

controlled are sufficiently slow to permit its implementation. This was motivated by

the fact that the economic operating point of a typical process lies at the intersection

7

of constraints. Applications of receding horizon control to systems other than process

control problems have begun to emerge over recent years, e.g., [73] and [67].

Recent work on distributed receding horizon control include Jia and Krogh [33],

Motee and Sayyar-Rodsaru [54] and Acar [1]. In all of these papers, the cost is

quadratic and separable, while the dynamics are discrete-time, linear, time-invariant

and coupled. Further, state and input constraints are not included, aside from a

stability constraint in [33] that permits state information exchanged between the

agents to be delayed by one update period. In another work, Jia and Krogh [34]

solve a min-max problem for each agent, where again coupling comes in the dynamics

and the neighboring agent states are treated as bounded disturbances. Stability is

obtained by contracting each agents state constraint set at each sample period, until

the objective set is reached. As such, stability does not depend on information updates

with neighboring agents, although such updates may improve performance. More

recently, Keviczky et al [39] have formulated a distributed model predictive scheme

where each agent optimizes locally for itself and every neighbor at each update. By

this formulation, feasibility becomes difficult to ensure, and no proof of stability is

provided. The authors also consider a hierarchical scheme, similar to that in [47],

where the scheme depends on a particular interconnection graph structure (e.g., no

cycles are permitted).

The results of this dissertation will be of use to the receding horizon control

community, particularly those interested in distributed applications. The distributed

implementation with guaranteed convergence presented here is the first of its kind,

particularly in the ability to handle generic nonlinear dynamics and constraints. The

implementation and stability analysis are leveraged by the cooperation between the

subsystems. A critical assumption on the structure of the overall system is that the

subsystems are dynamically decoupled. As part of our future research, the extension

to handle coupled subsystem dynamics will be explored.

8

1.1.2 Multi-Vehicle Coordinated Control

Multi-vehicle coordination problems are new and challenging, with isolated problems

having been addressed in various fields of engineering. Probably the field that contains

the most recent research related to the multi-vehicle coordination problem is robotics.

An example is the application of hybrid control to formations of robots [20]. In this

paper, nonholonomic kinematic robots are regulated to precise relative locations in a

leader(s)/follower setting, possibly in the presence of obstacles. Other recent studies

that involve coordinating multiple robots include [70], [36], [65], [69], [22]. All of

these studies have in common the fact that the robots exhibit kinematic rather than

kinetic behavior. Consequently, control and decision algorithms need not consider

the real-time update constraint necessary to stabilize vehicles that have inertia.

Space systems design and engineering is another area that also addresses this type

of problem. Specifically, clusters of microsatellites when coordinated into an appro-

priate formation may perform high-resolution, synthetic aperture imaging. The goal

is to exceed the image resolution that is possible with current single (larger) satellites.

Strict constraints on fuel efficiency and maneuverability, i.e., low-thrust capability, of

each microsatellite must be accounted for in the control objectives for the problem

to be practically meaningful. There are various approaches to solving variants of

the microsatellite formation and reconfiguration problem (see [37, 47] and references

therein). In [53], the nonlinear trajectory generation (NTG) software package used in

this dissertation is applied to the microsatellite formation flying problem. This paper

utilizes differential flatness of the dynamics to directly generate optimal trajectories

that account for projected area (imaging) constraints and minimize fuel consump-

tion. The study also includes the dynamical perturbation due to the oblateness of

the earth, i.e., the J2 effect. Issues related to the real-time implementation of this

method are also mentioned.

The problem of autonomous intelligent cruise control in automated traffic systems

has received much attention. Studies typically consider a platoon of one degree-of-

freedom, simplified car models, with controllers that rely upon decision logic and role

9

relations [31]. In air traffic control, the problem of resolution of conflicts involving

many aircraft naturally arises. An approach to solving a generalized version of this

problem by a combination of convex programming and randomized searches is given

in [23]. Collision avoidance is clearly an important issue in multi-vehicle control.

Graph theory methods have proven to be useful for determining properties of

a leader/follower architecture in formation flying of multiple spacecraft [47]. The

tools of graph theory have also bared relevance in determining stability properties of

vehicle formations in [19]. Specifically, Fax and Murray show that the effects of the

interconnection topology (i.e., which vehicles are sensed by other vehicles) on vehicle

formation stability can be cast into a local Nyquist-like criterion via the Laplacian

matrix of a corresponding graph. The authors also investigate transmission of sensed

information and its affect on stability in terms of the graph theoretic developments.

The multi-vehicle formation stabilization problem explored in this dissertation is

used as a venue for the theory. Two alternative approaches for defining a formation

are given. Ultimately, the distributed receding horizon control approach developed

here will be applied to the Caltech Multi-Vehicle Wireless Testbed [13], where the in-

dividual vehicles have hovercraft dynamics and communicate using wireless ethernet.

1.1.3 Decentralized Optimal Control and Distributed Opti-

mization

Decentralized control is a large subject in the controls community. The large-scale

nature of certain systems, particularly power systems and chemical processing sys-

tems, motivated controls engineers to attempt to exploit a decentralized structure

from traditional control approaches.

For optimal decentralized control, the problem has been thought of as an optimal

control problem subject to decentralized information structure constraints, i.e., each

local feedback has access only to the local state, for which complete information

is available. For coupled LTV stochastic dynamics and decoupled quadratic cost,

Savastuk and Siljak give an optimal decentralized control presuming this decentralized

10

information structure and using the method of Lagrange [66].

In other formulations, optimal decentralized controllers have been sought where

state information for each subsystem and neighboring subsystems is presumed to be

available, by measurement or via communication. This objective is more consistent

with cooperative control objectives. It is easy to show that for dynamically decoupled

LTI systems with a single quadratic coupling cost on the states in an optimal control

problem, the LQR feedback preserves the interconnection structure imposed by the

coupling cost. It has also been shown that for stochastic optimal control of a linear

system, the structure of information interdependence can determine whether optimal

decentralized controls are linear [29] or nonlinear [74]. More recently, Rotkowitz

and Lall [64] formulate a decentralized linear control synthesis problem as one of

minimizing the closed-loop norm of a feedback system subject to constraints on the

(linear) controller structure. When such constraints satisfy a quadratic invariance

property, the problem becomes a convex optimization problem. In the work in this

dissertation, information dependence can be arbitrary, provided it does not change in

time and that the dependence is mutual between agents that are coupled. It is in fact

straightforward to admit “directed” information flow between agents, and this will

be part of our ongoing research. Up to this extension, the results of this dissertation

hold for arbitrary information structure as in [64]. The main contribution of this

dissertation relative to other approaches is that the subsystems may be governed by

heterogeneous nonlinear dynamics, provided again that the subsystem dynamics are

decoupled.

Parallel and distributed computation research is of greater relevance to this disser-

tation than the decentralized control results to date. Motivations for parallel and dis-

tributed computation include the need for speed of computations in solving complex

problems, e.g., partial differential equations, and the need for scalability of compu-

tations in solving large-scale interconnected problems, e.g., queueing systems [3]. In

parallelization, a single node decomposes the problem, assigns portions to sub-node

processors (often assumed to be homogeneous), and subsequently assembles the solu-

tion after an iterative procedure. Communication and synchronization are issues that

11

parallel and distributed numerical methods must address, issues that do not arise in

their serial counterparts. In all cases, parallelization seeks to solve the centralized

problem in a distributed way. When the computations are solving optimization prob-

lems, the book by Bertsekas and Tsitsiklis [3] has an excellent generalization for

parallelization based on both algorithm structure and problem structure. As we are

more interested in problem structure here, we reference that work now. The pri-

mary tool in their work is duality theory. If the dual of an optimization problem can

be formulated, it is often more suitable for parallel computation than the original

problem. Decomposition methods are tools for breaking up large-scale problems into

smaller subproblems [27], and are a good approach when parallel computing systems

are available.

In contrast to parallelization methods, the work here does not attempt to solve

the original centralized optimization problem, at any receding horizon update. The

original centralized problem is used solely to induce distributed problems. While

the distributed solution is not the centralized solution of the original problem, it

does correspond to the centralized solution of a modified problem. Additionally, the

distributed implementation is much more conducive to distributed environments than

parallelization, in that the communication requirements are substantially reduced. In

particular, at each receding horizon update, agents exchange information used to

initialize their distributed optimization problems. Other than this exchange, the

agents do not communicate; specifically, they do not communicate while solving their

local optimization problems. While the centralized solution of the original problem

is not recovered, numerical experiments show that the distributed implementation

performs comparably (in terms of closed-loop system performance) to the centralized

implementation of the original problem.

1.2 Dissertation Outline

The dissertation begins in Chapter 2 with a review of a receding horizon control law

presented in [11] that admits a general nonlinear model, constraints and quadratic

12

cost function. Sufficient conditions for asymptotic stability are stated and issues

regarding implementation and relaxations of the assumptions are briefly explored.

To date, the predominant number of successful examples of receding horizon control

in practice arise in the process control field, where the time scales of the dynamics

are sufficiently slow to permit the required online optimization calculations.

A motivation for this dissertation is the application of receding horizon control

to multi-vehicle systems. Consequently, it is important to examine the real-time is-

sues that arise when the time scales of system dynamics are much faster than in the

applications of process control. Fortunately, the scale of the optimization problem

for individual vehicles systems is much smaller than that of process control systems.

Additionally, recent computational tools developed at Caltech [52] have made it pos-

sible to solve optimal control problems with ample efficiency for real-time trajectory

generation and receding horizon control of vehicles. In particular, the successful ini-

tial experimental demonstration of receding horizon control of an unmanned flight

vehicle is presented in Chapter 3.

Returning to multi-vehicle systems, the generality of receding horizon control

makes it easy to formulate a meaningful single optimal control problem for a cen-

tralized receding horizon implementation. However, unless the system is restricted

to a moderate number of vehicles, the scale of the optimization problem begins to

approach that of process control problems. As a result, real-time centralized imple-

mentations of many vehicle systems is not possible due to the time scales of vehicle

dynamics. This issue motivated the distributed implementation presented in Chap-

ter 4, which is the primary contribution of this dissertation. The implementation is

shown to accommodate generic, decoupled nonlinear dynamics and constraints, with

coupling in a quadratic cost function. The dynamics need not be vehicle dynamics

and examples where the cost function is no longer quadratic are also addressed in a

later chapter.

The distributed implementation is generated first by decomposition of the single

optimal control problem into local optimal control problems. A local compatibility

constraint is then incorporated in each local optimal control problem. Roughly speak-

13

ing, the constraint ensures that no agent will diverge too far from the behavior that

neighbors expect of it. Under stated assumptions, the distributed implementation is

proven to be asymptotically stabilizing for sufficiently fast update times.

The distributed implementation and sufficient conditions for stability presented

in Chapter 4 are then analyzed in detail in Chapter 5. First, the implementation

is interpreted in Section 5.2, giving both qualitative and quantitative comparisons

with centralized implementations. In Section 5.3, alternative ways of formulating the

distributed implementation, while still preserving closed-loop stability, are explored.

This section includes a dual-mode version of the distributed receding horizon control

law. Finally, in Section 5.4, specific extensions of the theory, e.g., to handle partially

synchronous timing situations, are discussed in detail.

In Chapter 6, the venue of multi-vehicle formation stabilization is used for con-

ducting numerical experiments. The experiments demonstrate comparable perfor-

mance between centralized and distributed implementations. Consistent with the

theory in Chapter 4, the coupling of the vehicles occurs in a quadratic integrated

cost function. An alternative approach for accommodating a formation stabilization

objective, where the cost is no longer quadratic, is presented at the end of Chapter

6. General extensions of the work in this dissertation, including connections with

other relevant fields and potential applications, are discussed in Chapter 7. Finally,

Chapter 8 summarizes the main results and future areas of research suggested by this

dissertation.

14

Chapter 2

Receding Horizon Control

2.1 Introduction

In receding horizon control, the current control action is determined by solving online,

at each sampling instant, a finite horizon optimal control problem. Each optimization

yields an open-loop optimal control trajectory and the first portion of the trajectory

is applied to the system until the next sampling instant, when the current state is

measured and the optimal control problem re-solved. Application of only a fraction

of the open-loop control, followed by resampling and recomputing, results in closed-

loop control. In this chapter, we review the receding horizon control law based on the

problem formulation and results in the dissertation of Chen [10], which is summarized

in [11]. Practical issues that arise from the implementation of receding horizon control

are also discussed at the end of this chapter.

2.2 Receding Horizon Control

The dynamics of the system to be controlled are described by an ordinary differential

equation as

ż(t) = f(z(t), u(t)), t ≥ 0, z(0) given, (2.1)

15

with state z(t) ∈ R
n and control u(t) ∈ R

m. The control objective is to drive the

state to the equilibrium point zc. In addition, the state and control are required to

be in the constraint sets

u(t) ∈ U , z(t) ∈ Z, t ≥ 0.

An admissible control is any piecewise, right-continuous function u(·) : [0, T] → U ,

for any T ≥ 0, such that given an initial state z(0) ∈ Z, the control generates the

state trajectory curve

z(t; z(0)) = z(0) +

∫ t

0

f(z(τ ; z(0)), u(τ)) dτ,

with z(t; z(0)) ∈ Z for all t ∈ [0, T].

Assumption 2.1 The following holds:

(i) the function f : R
n × R

m → R
n is twice-continuously differentiable, satisfies

0 = f(zc, 0) and f linearized around (zc, 0) is stabilizable;

(ii) the system (2.1) has a unique, absolutely continuous solution z(·; z(0)) for any

initial condition z(0) ∈ Z and any admissible control;

(iii) the set U ⊂ R
m is compact, convex and contains the origin in its interior, and

the set Z ⊆ R
n is convex, connected and contains zc in its interior;

(iv) full state measurement is available and computational time is negligible com-

pared to the evolution of the closed-loop dynamics.

At any time t, given the current state z(t) and fixed horizon time T , the open-loop

optimal control problem is

Problem 2.1 Find

J∗(z(t), T) = min
u(·)

J(z(t), u(·), T),

16

with

J(z(t), u(·), T) =

∫ t+T

t

‖z(τ ; z(t))− zc‖2Q + ‖u(τ)‖2R dτ + ||z(t+ T ; z(t))− zc‖2P ,

subject to

ż(s) = f(z(s), u(s))

u(s) ∈ U

z(s; z(t)) ∈ Z





s ∈ [t, t+ T],

z(t+ T ; z(t)) ∈ Ω(α), (2.2)

where

Ω(α) := {z ∈ R
n : ‖z − zc‖2P ≤ α, α ≥ 0}.

The equation (2.2) is called the terminal constraint, as it is a constraint enforced only

at the terminal or end time. Let the first optimal control problem be initialized at

some time t0 ∈ R and let δ denote the receding horizon update period. The closed-loop

system, for which stability is to be guaranteed, is

ż(τ) = f(z(τ), u∗(τ)), τ ≥ t0, (2.3)

where the receding horizon control law is

u∗(τ) = u∗(τ ; z(t)), τ ∈ [t, t+ δ), 0 < δ ≤ T,

and u∗(s; z(t)), s ∈ [t, t+ T], is the optimal open-loop solution (assumed to exist) to

Problem 2.1 with initial state z(t). The receding horizon control law is defined for all

t ≥ t0 by applying the open-loop optimal solution until each new initial state update

z(t) ← z(t + δ) is available. The notation above shows the implicit dependence of

the optimal open-loop control u∗(·; z(t)) on the initial state z(t) through the optimal

17

control problem. The optimal open-loop state trajectory is denoted z∗(τ ; z(t)). Since

Problem 2.1 is time-invariant, we can set t = 0 and solve the optimal control problem

at each initial state update over the time interval [0, T].

Proof of asymptotic stability of the closed-loop dynamics under the receding hori-

zon control implementation can be established by taking the optimal cost function

J∗(·) as a Lyapunov function.

Definition 2.1 A feasible control is any admissible control such that all state con-

straints in Problem 2.1 are satisfied and the optimal cost function is bounded. Let Z

denote the set of states for which there exists a feasible control.

The linearization of the system (2.1) at (z, u) = (zc, 0) is denoted

ż(t) = Az(t) +Bu(t), A =
∂f

∂z
(zc, 0), B =

∂f

∂u
(zc, 0).

By assuming stabilizability, a linear feedback u = K(z − zc) can be found such that

A+BK has all eigenvalues in the open left-half complex plane.

Assumption 2.2 The following conditions are satisfied:

(i) the largest constant α > 0 in the terminal constraint (2.2) is chosen such that

Ω(α) ⊆ Z is invariant for the closed-loop nonlinear system ż = f(z,K(z− zc)),

and such that for all z ∈ Ω(α), the stabilizing feedback u = K(z − zc) ∈ U . In

addition, given Q > 0 and R > 0, the matrices K and P = P T > 0 satisfy

(A+BK)TP + P (A+BK) = −(Q+KTRK); (2.4)

(ii) the optimal solution to Problem 2.1 exists and is numerically obtainable for all

z ∈ Z.

We must be sure that there exists an α > 0 such that condition (i) above holds.

Fortunately, the next result guarantees that such an α does exist.

18

Lemma 2.1 [11, Lemma 1] If the linearization of the system (2.1) at (z, u) = (zc, 0)

is stabilizable, then there exists a constant α ∈ (0,∞) such that condition (i) in

Assumption 2.2 holds.

The size of the terminal region is determined by either the constraints or the effects

of the nonlinearities in the model.

Theorem 2.1 [11, Theorem 1] Under Assumptions 2.1 and 2.2, for any δ ∈ (0, T],

zc is an asymptotically stable equilibrium point of the closed-loop system (2.3) with

region of attraction Z, an open and connected set.

The stability result in [11] only requires that Problem 2.1 be feasible at initialization,

rather than requiring the optimal solution at each update. Also, δ is required to

be sufficiently small since the authors consider quantization errors in the numerical

implementation of the receding horizon control law.

2.3 Implementation Issues

The receding horizon control law above is conceptual, in that some of the assumptions

are valid only conceptually, and not usually valid in practice. In this section, we

remark on the degree of validity of such assumptions when implementing receding

horizon control in practice. We note first that many theoretical receding horizon

control algorithms in the literature are stated in discrete time form, to be consistent

with the implemented version in digital computers.

2.3.1 Computational Delay

Process control is by far the industry with the greatest number of implementations of

receding horizon control laws. The name model predictive control is more appropriate

in process control applications, and the reason is related to the way in which the con-

troller is implemented. Specifically, given the current state z(t) and optimal control

u∗(τ ; z(t)) to be implemented over the interval [t, t+ δ], the model is used to predict

19

where the state will be at time t + δ before the interval expires. Given the predicted

state, a new optimal control trajectory is generated, and once time t+ δ occurs, the

new control is implemented. The prediction thus permits a margin of computational

time in solving Problem 2.1. In the absence of uncertainty, the stability proofs still

follow as before, since the predicted state and actual state coincide.

Most theoretical results presume zero computational delay, but we make note of a

few that do not make this assumption. Michalska and Mayne [49] give an algorithm

for receding horizon control that at any time implements a feasible control, and

a more optimal control can be implemented if it is made available in time by the

computations. An interesting paper that considers nontrivial computation times in

receding horizon control implementation on a flight control experiment, the same

experiment in fact that is described in the next chapter, is [51]. The authors sketch

the theoretical implications of non-trivial computational delay in a continuous time

setting. Another paper that accounts for computational delay is [79], where stability

is achieved using a contractive constraint, and the same “prediction + computation”

approach used in process control is employed.

2.3.2 Robustness to Uncertainty

The survey paper [46] reviews several studies on the robustness properties of receding

horizon control. There are two basic approaches to address robustness. For robustness

with respect to exogenous disturbances, most authors formulate a min-max optimiza-

tion, as in [44]. For robustness with respect to model uncertainty, [49] and [79] take

a similar approach. Namely, presuming a Lipschitz bound on the difference between

the model of the system and the actual system, both results guarantee convergence

to a compact set containing the objective state. We note that this type of robustness

analysis is applicable to different variants of receding horizon control, as both reced-

ing horizon control laws in [49] and [79] are based on different stability constraints in

the optimal control problem.

More recently, the authors in [26] have shown that certain receding horizon con-

20

trol algorithms in the literature exhibit zero robustness, meaning that in particular

examples, asymptotic stability is lost by including arbitrarily small disturbances. It

is well-known that if a Lyapunov function is used to prove asymptotic stability of

a closed-loop system, then the feedback exhibits inherent robustness properties [40],

particularly in the form of multiplicative uncertainty on the input. The work in [26]

characterizes the loss of robustness by examining when the Lyapunov candidate losses

continuously differentiability over the domain, hence losing the inherent robustness

properties of a true Lyapunov function. Regarding the conditions on the constraint

sets in Assumption 2.1, we note that convexity of both U and Z is relevant in guar-

anteeing that the closed-loop system will have nominal robustness properties [26].

2.3.3 Relaxing Optimality

We briefly state here sufficient conditions which guarantee that the optimal solution

exists, referring to section 4.3 of [10] (and references therein) for details. The condi-

tions are stated for a general integrated cost, rather than requiring the integrated cost

to be quadratic. Assuming that the feasible control set is nonempty, the integrated

cost is a function in L1[t, t+ T], and the conditions in Assumptions 2.1 and 2.2 hold,

a sufficient condition for the existence of an optimal solution is that f be affine in u

and the integrated cost be a convex function of u on U (Corollary 4.1 in [10]).

Of course, existence of the optimal control is one issue; computing this control

in practice is another. Fundamentally, the distinction has to do with the difference

between conceptual algorithms and implementable algorithms in optimization and

optimal control [60], a subject beyond the scope of this dissertation. Intuitively, any

algorithm that terminates in finite time can at best produce only a good approxi-

mate solution to an infinite dimensional problem. Approximations aside, receding

horizon control algorithms that require intensive computations at every update have

an obvious practical disadvantage. For this reason, several receding horizon control

algorithms in the literature relax the optimality requirement by permitting the use of

previously available feasible control. For example, the stability results in [11] require

21

only that there exist a feasible control at initialization. In the absence of uncertainty,

concatenating the remainder of this control with the terminal controller K defined

in Assumption 2.2 results in subsequent feasibility. While stability results still hold,

we note that optimality1 requires optimal trajectories, so the performance of the fea-

sible control is only as good as the initial control. Moreover, if any uncertainty is

present, the feasibility argument breaks down. Other studies that include results with

relaxation of the optimality requirement include [49, 32].

2.4 Summary

Under stated assumptions, an asymptotically stabilizing receding horizon control law

has been defined, based on the formulation and results by Chen and Allgöwer in [11].

While the solution of each optimal control problem results in an open-loop control,

employing only the first portion of the control before resampling and recomputing pro-

vides a closed-loop control. We have not discussed the important issue of handling

only partial state feedback, nor have we discussed the myriad of numerical algorithms

available for solving optimal control problems. The purpose of the chapter was solely

to introduce notation and the structure of a receding horizon control law that is prov-

ably asymptotically stabilizing. In the next chapter, the details of an experimental

implementation of receding horizon control are provided. The implementation gives

additional insight into the practical issues associated with real-time receding hori-

zon control and, more importantly, demonstrates the success of the receding horizon

philosophy and the numerical algorithm employed.

1By optimality here, we simply mean the optimal cost, not the resulting closed-loop feedback. As
pointed out in the excellent paper by David Mayne [44], receding horizon control is not an optimal
feedback in the sense that, from any initial condition, dynamic programming provides an optimal
feedback. In fact, the dynamic programming solution is typically the open-loop solution when a
terminal constraint is enforced, a result of the principle of optimality.

22

Chapter 3

Receding Horizon Control of a

Flight Control Experiment

3.1 Introduction

This chapter is concerned with the application of receding horizon control to a high-

performance flight control experiment shown in Figure 3.1. As stated, receding hori-

(a) (b)

Figure 3.1: Caltech ducted fan experiment: (a) full view, (b) close-up view.

zon control is traditionally applied to system with dynamics slow enough to permit

computations between samples. It is also one of few suitable methods in applica-

tions that can impose constraints on the states and or inputs, as the constraints are

23

directly enforced in the online optimal control problem. With the advent of faster

modern computers, it has become possible to extend receding horizon control to sys-

tems governed by faster dynamics that warrant this type of solution. An example of

such a system is the Caltech ducted fan, a thrust-vectored flight control experiment

where actuation and spatial constraints are present. Real-time receding horizon con-

trol on this experiment is achieved but using the NTG software package developed at

Caltech [52]. Timing issues that arise from real-time receding horizon control com-

putations are here elucidated for this system. A method for applying the generated

optimal trajectories while accounting for nontrivial computational time is detailed

and implemented. Experimental tests compare various receding horizon control pa-

rameterizations and show the success of this methodology for real-time control of the

ducted fan. Specifically, the method is compared to a static hover LQR controller

and a gain-scheduled LQR controller for stabilization of a step disturbance. Results

show that the receding horizon control controllers have a bigger region of attraction

than the static hover LQR controller and perform comparably to the gain-scheduled

LQR controller.1

More recent work on the application of receding horizon control to the Caltech

ducted fan has been conducted by Milam et al. [51]. Therein, a full nonlinear and

aerodynamic model of the ducted fan is used in the optimal control problem. For

the results in this chapter, a simpler nonlinear model that does not account for aero-

dynamics is used. Additionally, several timing approaches are explored in [51] to

mitigate the effects of nontrivial computational delay on the closed-loop performance.

3.2 Flight Control Experiment

The Caltech ducted fan is an experimental testbed designed for research and devel-

opment of nonlinear flight guidance and control techniques for Uninhabited Combat

Aerial Vehicles (UCAVs). The fan is a scaled model of the longitudinal axis of a flight

vehicle and flight test results validate that the dynamics replicate qualities of actual

1The contents of this chapter are summarized in the conference paper [15].

24

flight vehicles [50].

3.2.1 Hardware

The ducted fan has three degrees of freedom: the boom holding the ducted fan is al-

lowed to operate on a cylinder, 2 m high and 4.7 m in diameter, permitting horizontal

and vertical displacements. Also, the wing/fan assembly at the end of the boom is al-

lowed to rotate about its center of mass. Optical encoders mounted on the ducted fan,

gearing wheel, and the base of the stand measure the three degrees of freedom. The

fan is controlled by commanding a current to the electric motor for fan thrust and by

commanding RC servos to control the thrust vectoring mechanism. The sensors are

read and control commands sent by a dSPACE multi-processor system. The dSPACE

system is comprised of a D/A card, a digital IO card, two Texas Instruments C40

signal processors, two Compaq Alpha processors (500 and 600 MHz), and a ISA bus

to interface with a PC. A schematic of the experimental setup is shown in Figure 3.2

Reference state information is sent to the dSPACE system by keyboard commands.

amplifier

θ

f2

f1

y

x

dfan

optical
encoder

reference

Controller in dSPACE

Figure 3.2: Ducted fan experimental setup.

25

3.2.2 Software

The dSPACE system provides a real-time interface to the 4 processors and I/O card

to the hardware. The NTG code resides on the 500 MHz alpha processor. A detailed

description of NTG as a real-time trajectory generation package for constrained me-

chanical systems is given in [52]. The package is based on finding trajectory curves

in a lower dimensional space and parameterizing these curves by B-splines. Sequen-

tial quadratic programming (SQP) is used to solve for the B-spline coefficients that

optimize the performance objective, while respecting dynamics and constraints. The

package NPSOL [25] is used to solve the SQP problem.

3.2.3 Model of the Ducted Fan

The full nonlinear model of the fan including aerodynamic and gyroscopic effects is

detailed in [50]. For the implementation of the receding horizon approach outlined in

this chapter, the planar model of the fan is utilized. A schematic of the planar model

is shown in Figure 3.3. The ordinary differential equation that models the planar

θ

f2

f1

y

x

net thrust

Figure 3.3: Planar model of the ducted fan.

26

ducted fan is

mẍ = f2 cos θ − f1 sin θ

mÿ = f2 sin θ + f1 cos θ −mg
Jθ̈ = rf2.

(3.1)

The parameters are the mass m, moment of inertia J , g is the acceleration due to

gravity, and r is the distance from force f2 to the center of mass, i.e., the origin of

the x-y frame.

The configuration variables x and y represent, respectively, horizontal and verti-

cal inertial translations of the fan while θ is the rotation of the fan about the boom

axis. These variables are measured via the optical encoders, and the derivatives are

computed with a FIR filter. The inputs f1 and f2 are the body-fixed axial and trans-

verse thrust components, respectively. Consistent with the notation in the previous

chapter, we denote the state and input vectors z = (x, y, θ, ẋ, ẏ, θ̇) and u = (f1, f2)

and represent the dynamics in equation (3.1) as ż = f(z, u) in the optimal control

problem defined below.

3.3 Application of Receding Horizon Control

This section outlines the receding horizon control law and a timing method for up-

dating real-time trajectories while accounting for non-negligible computational time.

3.3.1 Receding Horizon Control Formulation

The receding horizon control formulation is restated here for reference. At any time

t, the current optimal control u∗(τ ; z(t)), τ ∈ [t, t + T], for current state z(t) is the

27

solution to the following problem

min
u(·)

∫ t+T

t

‖z(τ ; z(t))− zc‖2Q + ‖u(τ)− uc‖2R dτ + ‖z(t+ T ; z(t))− zc‖2P0
, (3.2)

s.t.

ż(s) = f(z(s), u(s))

u(s) ∈ U

z(s; z(t)) ∈ Z





s ∈ [t, t+ T]. (3.3)

No terminal constraint is enforced in the experiments that follow. While the stability

results in Chapter 2 required a terminal constraint, we note that Jadbabaie et al.

[32] prove stability in the absence of a terminal constraint, provided the other state

and control constraints are absent. For the ducted fan problem, the system dynamics

corresponds to equation (3.1) and the equilibrium point of interest is hover, with

state and control vectors zc = (0, 0, 0, 0, 0, 0) and uc = (mg, 0), and mg is 7.3 N. Note

that the cost on the control input in equation (3.2) is modified to reflect that the

equilibrium control is not zero.

Regarding the state constraint set, the vertical space in the lab is limited, which

translates to the bounds on the vertical position (in meters) y ∈ [−1, 1]. For the tests

considered in this chapter, the fan does not hit the boundaries of this constraint, and

it is not included in the optimization problem and Z = R
6. The control constraint

set is defined as

U =
{
u = (f1, f2) ∈ R

2
∣∣∣ f1 ∈ [0, Fmax], f2 ∈ [−Fmax/2, Fmax/2]

}
,

where Fmax = 11 N. In addition to the stated constraints, the control inputs are

initially constrained to be within 0.25 N of the previously computed optimal inputs,

at the appropriate instant of time. This amount of time will be detailed in the next

section that describes how the timing of the receding horizon control process is done.

With respect to the cost in equation (3.2), the weighting matrices are defined as

Q = diag(4, 15, 4, 1, 3, 0.3), R = diag(0.5, 0.5), P0 = γP,

28

where γ = 0.075 and P is the unique stable solution to the algebraic Riccati equation

corresponding to the linearized dynamics of equation (3.1) at hover and the weights

Q and R. We note that when the receding horizon control law is implemented without

any terminal cost and/or the input constraints in the experiment, instability resulted.

Also, an inner-loop PD controller on θ, θ̇ is implemented to stabilize to the open-loop

receding horizon control states θ∗, θ̇∗. The θ dynamics are the fastest for this system

and although most receding horizon control laws were found to be nominally stable

without this inner-loop controller, small disturbances could lead to instability, hence

the use of the PD inner-loop. A schematic of the experimental setup with the details

of the controller in dSPACE is shown in Figure 3.4. The controller is the receding

θ
.

θ,

θ
.

θ, **
Σ

FIR

zref

amplifier

θ

f2

f1

y

x

dfan

optical
encoder

x,y,θ
RHCu*

z

dSPACE

force 2
curent PD

Figure 3.4: Ducted fan experimental setup with receding horizon and inner-loop
controller.

horizon controller, implemented with a timing scheme defined in the next section,

plus the PD controller. The resultant commanded forces are converted to currents

for commanding the motor and RC servos. The reference state zref is used to explore

the response of the closed-loop system to step changes in the value of the objective

state. Specifically, we set zc = zref = (a, 0, 0, 0, 0, 0), where a is a constant desired

value for the horizontal position.

29

The optimal control problem is setup in NTG code by parameterizing the three

position states (x, y, θ), each with 8 B-spline coefficients. Over the receding horizon

time intervals, 11 and 16 breakpoints were used with horizon lengths of 1.0, 1.5, 2.0

and 3.0 seconds. Breakpoints specify the locations in time where the differential equa-

tions and any constraints must be satisfied, up to some tolerance. The value of Fmax

for the input constraints is made conservative to avoid prolonged input saturation on

the real hardware. The logic for this is that if the inputs are saturated on the real

hardware, no actuation is left for the inner-loop theta controller and the system can

go unstable. The value used in the optimization is Fmax = 9 N.

3.3.2 Timing Setup

Computation time is non-negligible and must be considered when implementing the

optimal trajectories. The computation time varies with each optimization as the cur-

rent state of the ducted fan changes. The following notation facilitates the description

of how the timing is setup:

i : integer counter of receding horizon control computations,

ti : value of current time when receding horizon control computation i started,

δc(i) : computation time required for ith computation (ti+1 = ti + δc(i)),

u∗(i)(t) : optimal control from computation i, t ∈ [ti, ti + T].

A natural choice for updating the optimal trajectories for stabilization is to do so

as fast as possible. This is achieved here by constantly re-solving the optimization.

When computation i is done, computation i + 1 is immediately started, so ti+1 =

ti+δc(i). Figure 3.5 gives a graphical picture of the timing setup as the optimal control

trajectories u∗(·) are updated. As shown in the figure, any computation i for u∗(i)(·)
occurs for t ∈ [ti, ti+1] and the resulting trajectory is applied for t ∈ [ti+1, ti+2]. At

t = ti+1 computation i+1 is started for trajectory u∗(i+1)(·), which is applied as soon

as it is available (t = ti+2). For the experimental runs detailed in the results, δc(i) is

typically in the range of [0.05, 0.25] seconds, meaning 4 to 20 receding horizon control

30

ti+2

time

Input

computation
(i)

computation
(i+1)

Legend

computed applied unused

δc(i) δc(i+1)

 *u (i-1) T

ti+1 ti

 *u (i) T

 *u (i+1) T
X

X X X

X X

X
X

X

Figure 3.5: Receding horizon input trajectories, showing implementation after delay
due to computation.

computations per second. Each optimization i requires the current measured state of

the ducted fan and the value of the previous optimal input trajectories u∗(i−1) at time

t = ti. This corresponds to, respectively, 6 initial conditions for state vector z and 2

initial constraints on the input vector u. Figure 3.5 shows that the optimal trajectories

are advanced by their computation time prior to application to the system. A dashed

line corresponds to the initial portion of an optimal trajectory and is not applied

since it is not available until that computation is complete. The figure also reveals

the possible discontinuity between successive applied optimal input trajectories, with

a larger discontinuity more likely for longer computation times. The initial input

constraint is an effort to reduce such discontinuities, although some discontinuity is

unavoidable by this method. Also note that the same discontinuity is present for the

corresponding open-loop optimal state trajectory, again with a likelihood for greater

discontinuity for longer computation times. In this description, initialization is not

an issue because we assume the receding horizon control computations are already

running prior to any test runs. This is true of the experimental runs detailed in the

results.

31

3.4 LQR Controller Design

For comparison, the receding horizon control approach is compared to two LQR

designs. One is a simple static LQR controller, designed with the planar ducted fan

model equation (3.1) linearized around hover zc and with the same weights Q and R

used in equation (3.2).

The second design is a gain-scheduled LQR. Using the full aero/gyro model of

the ducted fan, equilibrium forces and angle of attack for forward flight at constant

altitude y and forward velocity ẋ are identified. In this case θ is the angle of attack,

and it is possible to linearize the full model around the forward flight equilibrium

values for ẋ and θ, where the value for all other states is zero. The gain-scheduling

weights chosen are

Q = diag(1, 1, 15, 30, 4, 0.3), R = diag(0.5, 0.5),

corresponding to the quadratic penalty on the state and input vectors, respectively.

In comparison to the previous weighting matrices, the relaxed weights on (x, ẋ) and

increased weights on (y, ẏ) were chosen specifically to improve stability in the presence

of the x disturbance investigated in the results. The LQR gains were scheduled on θ,

while scheduling on ẋ is also possible.

3.5 Results

The experimental results show the response of the fan with each controller to a 6

meter horizontal offset, which is effectively engaging a step-response to a change in

the initial condition for x. The following subsections detail the effects of different

receding horizon control parameterizations, namely as the horizon changes, and the

responses with the different controllers to the induced offset.

32

3.5.1 Comparison of Response for Different Horizon Times

The first comparison is between different receding horizon control laws, where time

horizon is varied to be 1.5, 2.0, 3.0, 4.0 or 6.0 seconds. Each receding horizon control

law uses 16 breakpoints. Figure 3.6 shows a comparison of the average computation

time as time proceeds. For each second after the offset was initiated, the data corre-

0 5 10 15 20
0

0.1

0.2

0.3

0.4
Average run time for previous second of computation

seconds after initiation

av
er

ag
e

ru
n

tim
e

(s
ec

on
ds

)
T = 1.5
T = 2.0
T = 3.0
T = 4.0
T = 6.0

Figure 3.6: Moving one second average of computation time for receding horizon
control implementation with different horizon times.

sponds to the average run time over the previous second of computation. There is a

clear trend towards shorter average computation times as the time horizon T is made

longer. There is also an initial transient increase in average computation time that

is greater for shorter horizon times. In fact, the 6 second horizon controller exhibits

a relatively constant average computation time. One explanation for this trend is

that, for this particular test, a 6 second horizon is closer to what the system can

actually do. After 1.5 seconds, the fan is still far from the desired hover position and

the terminal cost is large, likely far from its region of attraction. Figure 3.7 shows

the measured x response for these different controllers, exhibiting a rise time of 8-9

seconds independent of the controller. So a horizon time closer to the rise time results

in a more feasible optimization in this case.

As noted in Section 3.3.2, smaller computation time naturally leads to better

tracking performance as shown in Figure 3.8. The figure shows the tracking of θ for the

33

−5 0 5 10 15 20 25
−1

0

1

2

3

4

5

6
MPC response to 6m offset in x for various horizons

time (sec)

x
(m

)

 step ref
+ T = 1.5
o T = 2.0
* T = 3.0
x T = 4.0
 . T = 6.0

Figure 3.7: Response of receding horizon control laws to 6-meter offset in horizontal
position x for different horizon times.

0 5 10 15 20
0.5

1

1.5

2

MPC θ tracking: T = 1.5 top, T = 6.0 bottom

θ
(r

ad
)

x θ
o θ*

T

0 5 10 15 20
0.5

1

1.5

2

θ
(r

ad
)

time (sec)

x θ
o θ*

T

Figure 3.8: Position tracking for receding horizon control law with a 6-second horizon.

6 and 1.5 second horizon controllers, respectively. The dotted lines (o) represent the

computed open-loop optimal trajectories θ∗ and the solid lines (x) are the measured

θ. Discontinuity in θ∗ for T = 1.5 sec reaches 0.25 radians (t = 2.5 sec) while for

T = 6.0 all states are as smooth as θ∗ shown.

34

3.5.2 LQR vs. Receding Horizon Control

Position responses due to the horizontal offset for the static hover LQR controller,

the gain-scheduled LQR controller and two receding horizon control laws are shown

in Figure 3.9. The receding horizon control 6.0 second horizon response is the same

as in the previous section. The 1.0 second horizon controller uses 11 breakpoints

instead of 16, thereby reducing the computational demand. The LQR hover controller

0 5 10 15 20

0

2

4

6

LQR and MPC responses to 6 m offset in x
x

(m
)

0 5 10 15 20
−0.5

0

0.5

1

z
(m

)

0 5 10 15 20
−1

0

1

2

θ
(r

ad
)

time (sec)

* MPC T = 6.0
x MPC T = 1.0
o hover LQR
+ gain sched

Figure 3.9: Response of LQR and receding horizon control to 6-meter offset in hori-
zontal position x.

could not stabilize the fan for an offset in x bigger than 4 meters. The unstable

response to the 6 meter offset is shown in the figure as y exceeds the constraint set

of [−1, 1]. In this case, the fan crashed and then redirected to the desired position.

All other controllers were stabilizing, with remarkable similarity between the gain-

scheduled LQR and receding horizon control 1 second horizon controllers. For the

receding horizon control laws, only the response of the fan is shown and not the open-

35

loop optimal trajectories that were being tracked. In reference to Figure 3.6, the

average computation profile for the 1 second horizon receding horizon control with

11 breakpoints looks like the 3 second horizon controller with 16 breakpoints. By

reducing the number of breakpoints, and hence the computational demand, tracking

is improved. The fan is thus stabilized along a path much different than the longer

horizon path (observe the different θ responses). Clearly, there is a highly coupled

interaction between horizon length and the number of breakpoints.

3.6 Summary

The Caltech ducted fan has been successfully realized as an experimental testbed for

real-time receding horizon control implementation. The real-time trajectory gener-

ation package NTG made it possible to run receding horizon control laws at speeds

necessary for closed-loop stabilization of a system with considerable dynamics and

strict input constraints. Specifically, the thrust vectoring mechanism dynamics are

modelled as a second order filter with frequency 4 Hz and the 6 second horizon re-

ceding horizon control ran faster than 10 Hz, a factor of 2.5 times greater than the

actuator dynamics. Results show the success of different receding horizon control

laws for stabilizing a step offset in x. A timing setup based on “compute as fast as

possible” accounts for non-negligible computation time as it affects the application

of the repeatedly updated optimal trajectories. The region of attraction of receding

horizon control laws is shown to be larger than that of the static hover LQR con-

troller. Moreover, the performance of some receding horizon control laws is close to

that of the gain-scheduled LQR controller.

Extensions of this work could include a parametric study to better understand the

nontrivial coupled relationship between the horizon length and number of breakpoints.

More recent experimental efforts made it possible to remove the inner-loop controller

on the θ dynamics [51]. Also, it seems worthwhile to explore the effect of applying a

higher density of breakpoints over the time interval for which the optimal trajectories

are applied.

36

Chapter 4

Distributed Receding Horizon

Control

4.1 Introduction

Chapter 2 presented a receding horizon control law with sufficient conditions that

guarantee closed-loop stabilization. Such receding horizon control laws have tra-

ditionally been applied to systems governed by dynamics that are sufficiently slow

enough to permit the online optimal control computations. However, the work pre-

sented in Chapter 3 demonstrated that receding horizon control is a viable approach

for stabilization of faster vehicle dynamics, specifically those of an indoor flight con-

trol experiment. The NTG software package is what made such a demonstration

possible, by solving the optimal control problems with ample efficiency.

As discussed in the introductory Chapter 1, we are interested in the application

of receding horizon control to multiagent systems. While the conditions in Chapter 2

guarantee stabilization, the control law requires centralized computations and infor-

mation. Specifically, the centralized computation at every receding horizon update

requires the initial condition of every agent.

A centralized implementation of receding horizon control to a multiagent system

has several disadvantages. For one, multiagent systems usually operate in distributed

environments, mandating that the control law require little, if any, central coordina-

tion. Also, the control approach should be distributed to enable autonomy among the

37

individual agents. Lastly, the computational and communication cost of implementing

a centralized receding horizon control law may be too expensive in many multiagent

applications. Thus, we are interested in generating a distributed implementation of

receding horizon control. Not only should the distributed implementation enable au-

tonomy of the individual agents, but it should also improve the tractability of the

corresponding centralized implementation.

The contribution of this chapter is to define such a distributed implementation.

By this implementation, each agent is autonomous, in the sense that each computes

a control for itself. Also, the only centralized coordination is that the control updates

occur globally synchronously. Relaxation of the synchronous timing requirement is

explored in the next chapter. Aside from synchronous timing, all communication

exchanges between agents are purely local. An outline of the chapter is now presented

to aid in comprehension of the main ideas behind the distributed implementation.

4.2 Outline of the Chapter

The contribution of this chapter is to take the centralized receding horizon control

law presented in Chapter 2 and generate a distributed implementation. A distinctive

feature of the distributed implementation presented here is that it is designed for

analysis, i.e., the distributed computations and information exchanges are specifically

designed to enable the closed-loop stability analysis.

In Section 4.3, the assumed structure of the centralized problem is presented.

Specifically, the overall system dynamics are assumed to be comprised of dynamically

decoupled subsystems, an assumption appropriate for many multiagent systems, e.g.,

multi-vehicle formations. The coupling of the individual agents is assumed to occur

in a quadratic integrated cost function in the centralized optimal control problem.

The theory admits more general coupling cost functions, but the presentation here

is facilitated by this choice and a more general cost is presented in the next chapter.

The coupling cost is decomposed to define the distributed integrated costs, one for

each agent.

38

Section 4.4 presents the distributed optimal control problems, one for each agent.

Each such problem incorporates the dynamics of the individual agent and the dis-

tributed integrated cost. As with the centralized formulation, the distributed terminal

cost functions and terminal constraints are designed to ensure stability. In this case,

the stability analysis is facilitated by designing the terminal cost functions and ter-

minal constraints to be decoupled. Each optimal control problem is then augmented

with an additional compatibility constraint. Loosely speaking, the constraint ensures

that no agent will diverge too far from the behavior that others expect of it. The

compatibility constraint is a central element to the stability analysis. The information

exchanged between coupled agents is also defined in this section.

Section 4.6 presents the closed-loop stability analysis. Each distributed optimal

control problem has a common horizon time and update period. The main result

of this section is that the common update period determines how close the closed-

loop system can get to meeting the overall stabilization objective. The smaller the

update period, the closer the closed-loop system gets to the desired equilibrium. Only

in the limit that the update period shrinks to zero can convergence to the desired

equilibrium be guaranteed.

The chapter is concluded with a summary of the results. In the next chapters,

the distributed receding horizon control law is analyzed and applied in simulation

experiments.

4.3 Structure of Centralized Problem

The notation in Chapter 2 describes the centralized system dynamics as

ż(t) = f(z(t), u(t)), (4.1)

with state z(t) ∈ R
nNa and control u(t) ∈ R

mNa , where the dimension of the state

and control is redefined here. The dimension notation is useful in assuming that the

centralized system decouples into Na subsystems as z = (z1, ..., zNa
), u = (u1, ...uNa

),

39

and f = (f1, ..., fNa
), with

żi(t) = fi(zi(t), ui(t)), for each i = 1, ..., Na.

Henceforth, each subsystem is referred to as an agent, and zi(t) ∈ R
n and ui(t) ∈ R

m

are the state and control of agent i, respectively. The results that follow do not

require that the dimension of the state (or control) of each agent be the same; this

is assumed solely for notational ease. The control objective is to stabilize the agents

to the equilibrium point zc, which we partition as zc = (zc
1, ..., z

c
Na

). We assume

each agent i is subject to decoupled state and input constraints zi(t) ∈ Z ⊆ R
n and

ui(t) ∈ U ⊂ R
m. Coupling constraints between neighboring states will be explored in

Section 5.4. Assumptions on the dynamics and constraints are not stated until the

next section.

Remark 4.1 We shall use the norm ‖x‖ to denote the Euclidean norm of any vector

x ∈ R
n. In cases where x is a curve, we abuse the notation ‖x‖ to mean ‖x(t)‖ at

some instant of time t.

The assumed structure of the single cost function that couples agents is now

described. In Section 5.4.1, a general cost function that couples the states of agents is

defined, where the costs on the control of every agents are assumed to be decoupled.

There, the coupling cost on the states need not be quadratic or convex. For the

presentation in this chapter, we elect to examine the case where the coupling cost

on the states is quadratic. One reason is that this choice is consistent with the

centralized cost in the optimal control problem of Chapter 2, the problem for which

we are generating a distributed implementation in the first place. Other reasons are

that a quadratic cost facilitates the analysis that follows and is exactly the cost that

arises in the multi-vehicle formation stabilization example explored in Chapter 6.

The centralized integrated cost on the control inputs is assumed to decompose as

‖u‖2R =
Na∑

i=1

‖ui‖2Ri
,

40

with R = diag(R1, ..., RNa
) and each Ri ∈ R

m×m is positive definite. The coupling

between agents is assumed to occur in the cost function on the state. Specifically, the

integrated cost on the state has the general form

‖z − zc‖2Q = ‖G(z − zc)‖2 ,

where Q = GTG > 0 is symmetric. The matrix G ∈ R
nM×nNa is partitioned into

n× n block matrices as G = [Gi,j] i=1,...,M, j=1,...,Na
, with Gi,j ∈ R

n×n. The dimension

M must satisfy M ≥ Na so that rank(Q) = nNa, and therefore Q is positive definite.

We now state an assumption on the blocks of G to simplify the analysis that follows.

Assumption 4.1 Each n× n block of G satisfies rank(Gi,j) ∈ {n, 0}. That is, each

block is either full rank or the n× n null matrix.

Now, for each agent i, we want to identify the coupling in the cost above between

zi and the states of other agents. If a block row [Gj,1 · · ·Gj,Na
] of G has Gj,i 6= 0

and Gj,k 6= 0 for some k 6= i, then agents k and i are clearly coupled. Moreover, by

Assumption 4.1, Gj,i and Gj,k have rank n in that block row, so every component of

the vector zi is coupled to at least one component of zj. To generalize, the nonzero

block entries in any block row identifies the coupling of full state vectors between

agents. Agents that are coupled in the cost function this way are referred to as

neighbors. For any agent i = 1, ..., Na, we can identify the set of neighbors of i as

Ni =
{
j ∈ {1, ..., Na} \ {i} : ∃k ∈ {1, ..., Na} s.t. Gk,i 6= 0 and Gk,j 6= 0

}
.

Note that the neighbor relationship between agents is mutual by this definition, i.e.,

i ∈ Nj if and only if j ∈ Ni.

Remark 4.2 Assumption 4.1 is not necessary for the results of this chapter to

hold. The assumption merely facilitates the decomposition of the general, quadratic

centralized cost above into distributed costs. Without the assumption, it is possible

that only components of neighboring agents states are coupled, and the generalization

becomes more complicated in that case. Note that in the multi-vehicle formation

41

stabilization example of Chapter 6, neighboring agents do not have full state coupling,

and the decomposition is straightforward. Also, one of the centralized costs in that

chapter is not even quadratic. So, it is understood that while the results are applicable

to a larger class of cost functions, we make assumptions here to mitigate notational

complexity that can only get in the way of the underlying concepts.

Ultimately, the goal is to decompose the centralized quadratic cost above into a sum

of quadratic costs, one for each agent. The resulting quadratic cost for each agent

should depend only upon that agents state and the state of neighboring agents. To

that end, we first construct a matrix Qi for each i = 1, ..., Na as follows:

1. For j = 1, ...,M , take each block row [Gj,1 · · ·Gj,Na
] of G that has Gj,i 6= 0.

Append these block rows into a new matrix Wi, with dim(Wi) = nMi × nNa,

and partition Wi into n× n block matrices as Wi = [Wi,j] i=1,...,Mi, j=1,...,Na
.

2. For j = 1, ..., Na, remove every block column [W1,j ; · · · ;WMi,j] in Wi that is

identically zero. Denote the reduced matrix Vi, with dim(Vi) = nMi×nNi, and

partition Vi into n× n block matrices as Vi = [Vi,j] i=1,...,Mi, j=1,...,Ni
. Note that

Ni = |Ni|+ 1.

3. If i 6= 1, redefine Vi by replacing the 1st block column [V1,1; · · · ;VMi,1] with the

ith block column [V1,i; · · · ;VMi,i], and vice versa.

4. For k = 1, ...,Mi, rescale each block row [Vk,1 · · ·Vk,Ni
] of Vi by dividing by the

scalar number of block matrices Vk,j, j = 1, ..., Ni, that are non-zero. Denote

the resulting matrix Gi ∈ R
nMi×nNi and define Qi = GT

i Gi ∈ R
nNi×nNi .

Remark 4.3 From Assumption 4.1, rank(Gi) = n (min{Mi, Ni}), so if Mi ≥ Ni

then Qi is positive definite.

Let z−i = (zj1 , ..., zj|Ni|
) denote the vector of states of the neighbors of i, i.e., jk ∈

Ni, k = 1, ..., |Ni|, where the ordering of the states is consistent with the ordering of

42

coupling in Gi. Also, denote zc
−i = (zc

j1
, ..., zc

j|Ni|
). We can now write

‖z − zc‖2Q = (z − zc)TGTG(z − zc) =
Na∑

i=1

Lz
i (zi, z−i) (4.2)

where Lz
i (zi, z−i) =

∥∥∥∥∥∥


 zi − zc

i

z−i − zc
−i



∥∥∥∥∥∥

2

Qi

.

Note that Q 6= diag(Q1, ..., QNa
), and in fact these matrices are not even the same

dimension. Step 3 in the construction of Gi is done so that Gi multiplies the vector

(zi − zc
i , z−i − zc

−i) in the definition for Lz
i . The scaling in step 4 is done to preserve

the summation in equation (4.2). In words, if a block row of G couples four agents,

for example, and each agent accounts for this coupling block row in the construction

of their respective Gi matrices, then the row must be multiplied by 1
4

to preserve the

summation. We can now define the distributed integrated cost that will be included

in the local optimal control problem of each agent.

Definition 4.1 For each agent i = 1, ..., Na, the distributed integrated cost is

Li(zi, z−i, ui) = γ
(
Lz

i (zi, z−i) + ‖ui‖2Ri

)
,

where Lz
i is given in equation (4.2) and the constant γ common to each cost is chosen

such that γ ∈ (1,∞).

From the definition it follows that

Na∑

i=1

Li(zi, z−i, ui) = γ
(
‖z − zc‖2Q + ‖u‖2R

)
. (4.3)

Remark 4.4 From the definition above, every distributed integrated cost has a

common multiplying factor equal to γ, a constant chosen to be larger than one. The

purpose of the constant γ > 1 is that it provides a stability margin for distributed

receding horizon control. What we mean by stability margin will be made clear by

Lemma 4.4, a result used in the stability analysis of Section 4.6.

43

To clarify the construction of the distributed integrated costs, an example of gener-

ating each Lz
i is now given.

Example 4.1 Consider Na = 3, zi ∈ R
2 for each agent, let I denote the 2×2 identity

matrix and let zc = 0. Assume a centralized cost with the corresponding G matrix

G =




I 0 0

−I I 0

0 −I I


 .

The sets of neighbors for each agent are thus N1 = {2}, N2 = {1, 3} and N3 = {2}.
Proceeding with the construction for G1, we have

W1 =


 I 0 0

−I I 0


 → V1 =


 I 0

−I I


 → G1 =


 I 0

−I/2 I/2


 .

Proceeding with the construction for G2, we have

W2 =


 −I I 0

0 −I I


 → V2 =


 I −I 0

−I 0 I


 → G2 =

1

2
V2.

Similarly, we obtain G3 = [I/2 −I/2]. To confirm that the decomposition preserves

the quadratic summation in equation (4.2), observe that

‖z − zc‖2Q = ‖z1‖2 + ‖z2 − z1‖2 + ‖z3 − z2‖2.

Also,

Lz
1(z1, z−1) = ‖z1‖2 +

1

2
‖z2 − z1‖2

Lz
2(z2, z−2) =

1

2

(
‖z2 − z1‖2 + ‖z3 − z2‖2

)

Lz
3(z3, z−3) =

1

2
‖z3 − z2‖2.

Clearly, the summation is preserved. This concludes the example.

44

Remark 4.5 By construction, the weighting matrices Qi in equation (4.2) are

unique, given Q. However, there are an infinite number of weighting matrices that

preserve the summation, specifically by changing the scaling in step 4 of constructing

each Gi. The stability results that follow do not depend on equal scaling of terms

between neighboring agents, as is done in the construction of Qi above. What is

required is that the distributed integrated costs sum up to be the centralized cost,

multiplied by a factor (γ) greater than one. The weighting will of course affect the

performance of the closed-loop system, so making the scaling lop-sided would result

in one agent reacting more to the term than the corresponding neighbors.

The optimal control problems assigned to each agent for a distributed receding horizon

implementation are defined in the next section.

4.4 Distributed Optimal Control Problems

Given the decoupled system dynamics (4.1), decoupled constraints and coupled cost

function defined in the previous section, we here define the distributed optimal control

problems to be implemented in a distributed receding horizon fashion. Assumptions

used to prove stability in the next section are also stated.

Let the set ZN denote the N -times Cartesian product Z × · · · ×Z, so z(t) ∈ ZNa

and u(t) ∈ UNa , for all time t ∈ R. As in Chapter 2, an admissible control for any

agent i = 1, ..., Na is any piecewise, right-continuous function ui(·) : [0, T] → U , for

any T ≥ 0, such that given an initial state zi(0) ∈ Z, the control generates the state

trajectory zi(t; zi(0)) ∈ Z for all t ∈ [0, T].

Assumption 4.2 The following holds:

(i) for all i = 1, ..., Na, the function fi : R
n × R

m → R
n is twice-continuously dif-

ferentiable, satisfies 0 = fi(z
c
i , 0) and fi linearized around (zc

i , 0) is stabilizable;

(ii) the system (4.1) has a unique, absolutely continuous solution for any initial

condition z(0) ∈ ZNa and any admissible control;

45

(iii) the set U ⊂ R
m is compact, convex and contains the origin in its interior,

and the set Z ⊆ R
n is convex, connected and contains zc

i in its interior for all

i = 1, ..., Na;

(iv) for each i = 1, ..., Na, full state measurement zi(t) is available, the model żj =

fj(zi, uj) for each neighbor j ∈ Ni is known, and computational time of the

optimal control problem is negligible compared to the evolution of the closed-

loop dynamics.

Let umax be the positive scalar

umax =
{

max ‖v(t)‖
∣∣∣ v(t) ∈ U is any admissible control, for any t ∈ R

}
,

known to exist by the Maximum-Minimum Theorem [43] since U is compact.

Definition 4.2 The control objective is to cooperatively asymptotically stabilize all

agents to zc = (zc
1, ..., z

c
Na

) ∈ ZNa .

The cooperation is achieved by the minimization of the distributed integrated cost

functions given in Definition 4.1, as incorporated in the optimal control problems

defined below.

In the following, we assume that all optimal control problems, one for each agent,

will be solved at common instants time, i.e., globally synchronously. The common

receding horizon update times are denoted tk = t0 + δk, where k ∈ N = {0, 1, 2, ...}.
Due to the coupling in the cost function with neighbors, then, each agent is required

to assume some state trajectory for each neighbor over the current optimization hori-

zon, since the actual state trajectory for that neighbor is not available at present. To

address the need for assumed state trajectories, prior to an update, each agent com-

putes its own assumed control trajectory, transmits the trajectory to neighbors and

similarly receives assumed control trajectories from neighbors. Given the model and

current state for each neighbor, each agent can then compute the required assumed

state trajectories. To ensure compatibility between the assumed and actual state tra-

jectories, in the distributed optimal control problem of each agent, the optimized state

46

trajectory is compared to the assumed state trajectory of the corresponding agent in

a constraint. Before defining the optimal and assumed trajectories mathematically,

we introduce some notation.

Definition 4.3 Over any interval of time [tk, tk + T], k ∈ N, in the optimal control

problem for each agent i = 1, ..., Na, associated with the initial state zi(tk) we denote:

applied control ui(·; zi(tk)) the control being optimized and applied to the

system over the subinterval [tk, tk + δ];

assumed control ûi(·; zi(tk)) the control which every neighbor j ∈ Ni assumes

i is employing over the interval.

The state trajectories corresponding to the applied and assumed controls are denoted

zi(·; zi(tk)) and ẑi(·; zi(tk)), respectively. For each agent i, given the current state

zj(tk) and assumed control ûj(s; zj(tk)), s ∈ [tk, tk + T], of every neighbor j ∈ Ni,

the assumed state trajectory ẑj(s; zj(tk)), s ∈ [tk, tk + T], is computed using the

dynamic model żj = fj(zj, uj) for that agent. An important point is that the initial

condition of every assumed state trajectory is equal to the actual initial state value

of the corresponding agent, i.e.,

ẑi(tk; zi(tk)) = zi(tk; zi(tk)) = zi(tk)

for every i = 1, ..., Na. To be consistent with the notation z−i, let ẑ−i(·; z−i(tk)) and

û−i(·; z−i(tk)) be the vector of assumed neighbor states and controls, respectively, of

agent i. With consistent initial conditions then, ẑ−i(tk; z−i(tk)) = z−i(tk).

The distributed optimal control problems are now defined. Common to each

problem, we are given the constant γ ∈ (1,∞) from Definition 4.1, update period

δ ∈ (0, T) and fixed horizon time T . Conditions will be placed on the update period

δ in the next section to guarantee stability of the closed-loop system. The collection

of distributed open-loop optimal control problems is

Problem 4.1 For every agent i = 1, ..., Na and at any update time tk, k ∈ N, given

47

zi(tk), z−i(tk), and ûi(s; zi(tk)) and û−i(s; z−i(tk)) for all s ∈ [tk, tk + T], find

J∗
i (zi(tk), z−i(tk), T) = min

ui(·)
Ji(zi(tk), z−i(tk), ui(·; zi(tk)), T),

where Ji(zi(tk), z−i(tk), ui(·; zi(tk)), T) is equal to

∫ tk+T

tk

Li(zi(τ ; zi(tk)), ẑ−i(τ ; z−i(tk)), ui(τ ; zi(tk))) dτ + γ‖zi(tk + T ; zi(tk))− zc
i ‖2Pi

,

subject to

żi(s; zi(tk)) = fi(zi(s; zi(tk)), ui(s; zi(tk)))

˙̂zj(s; zj(tk)) = fj(ẑj(s; zj(tk)), ûj(s; zj(tk))), ∀j ∈ Ni

ui(s; zi(tk)) ∈ U

zi(s; zi(tk)) ∈ Z

‖zi(s; zi(tk))− ẑi(s; zi(tk))‖ ≤ δ2κ





s ∈ [tk, tk + T],

zi(tk + T ; zi(tk)) ∈ Ωi(εi), (4.4)

for a given positive constant κ ∈ (0,∞), Pi = P T
i > 0 and where

Ωi(εi) :=
{
z ∈ R

n : ‖z − zc
i ‖2Pi
≤ εi, εi ≥ 0

}
.

As part of the optimal control problem, the optimized state for i is constrained to be

at most a distance of δ2κ from the assumed state. We refer to this constraint as the

compatibility constraint. Naturally, the constraint is a means of enforcing a degree of

consistency between what an agent is actually doing and what neighbors believe that

agent is doing.

Remark 4.6 Instead of communicating assumed controls, neighboring agents could

compute and transmit the corresponding assumed state, since that is what each dis-

tributed optimal control problem depends upon. That would remove the need for the

differential equation of each neighbor, simplifying each local optimization problem.

48

We shall discuss this further in Section 5.3.

The terminal cost functions and terminal constraints are completely decoupled, which

facilitates the proof of stability. While the coupled centralized integrated cost has

been accounted for by the decomposition in the previous section, the centralized

terminal cost and constraint sets are not incorporated in the distributed optimal

problems, although both in general involve inter-agent state coupling as well. This

highlights the fact that the centralized problem is not begin solved here. Instead, we

are formulating an alternative solution to the problem, with a distributed computation

and communication structure.

The optimal solution to each distributed optimal control problem, assumed to

exist, is denoted

u∗di(τ ; zi(tk)), τ ∈ [tk, tk + T].

The closed-loop system, for which stability is to be guaranteed, is

ż(τ) = f(z(τ), u∗dist(τ)), τ ≥ t0, (4.5)

where the applied distributed receding horizon control law is

u∗dist(τ ; z(tk)) = (u∗d1(τ ; z1(tk)), ..., u
∗
dNa

(τ ; zNa
(tk))), τ ∈ [tk, tk + δ),

for 0 < δ < T and k ∈ N. As before, the receding horizon control law is updated

when each new initial state update z(tk) ← z(tk+1) is available. The optimal state

for agent i is denoted z∗di(τ ; zi(tk)), for all τ ∈ [tk, tk + T]. The concatenated vector

of the distributed optimal states is denoted

z∗dist(τ ; z(tk)) = (z∗d1(τ ; z1(tk)), ..., z
∗
dNa

(τ ; zNa
(tk))),

for all τ ∈ [tk, tk + T]. Although we denote the optimal control for agent i as

u∗di(τ ; zi(tk)), it is understood that this control is implicitly dependent on the ini-

49

tial state zi(tk) and the initial states of the neighbors z−i(tk).

Before stating the computation of the assumed control ûi(s; zi(tk)) for each agent

i, a decoupled terminal controller associated with each terminal cost and constraint

set needs to be defined. For the moment, we define not only the terminal controllers,

but give the needed assumptions on the controllers as well as the other parameters in

Problem 4.1, akin to Assumption 2.2 stated for the centralized implementation. The

linearization of the subsystem i in equation (4.1) at (zi, ui) = (zc
i , 0) is denoted

żi(t) = Aizi(t) +Biui(t), Ai =
∂fi

∂zi

(zc
i , 0), Bi =

∂fi

∂ui

(zc
i , 0).

By assuming stabilizability, a linear feedback ui = Ki(zi− zc
i) can be found such that

Ai +BiKi has all eigenvalues in the open left-half complex plane.

Assumption 4.3 The following conditions are satisfied for every i = 1, ..., Na:

(i) the largest positive constant εi > 0 is chosen such that Ωi(εi) ⊆ Z is invariant

for the closed-loop nonlinear system żi = fi(zi, Ki(zi − zc
i)), and such that for

all zi ∈ Ωi(εi), the stabilizing feedback is feasible, i.e., ui = Ki(zi − zc
i) ∈ U . In

addition, given Ri > 0, the matrices Ki and Pi = P T
i > 0 satisfy

(Ai +BiKi)
TPi + Pi(Ai +BiKi) = −(Qi +KT

i RiKi),

with Qi ∈ R
n×n chosen such that Q̂ = diag(Q1, ..., QNa

) satisfies Q̂ ≥ Q, where

Q is the weighting for the centralized integrated cost;

(ii) at any receding horizon update time, the collection of open-loop optimal control

problems in Problem 4.1 is solved globally synchronously;

(iii) communication of control trajectories between neighboring agents is lossless.

The receding horizon control law is employed for all time after the initialization and

the decoupled linear feedbacks Ki are not employed, even after agent i enters Ωi(εi).

The value for εi simply determines the size of the set over which the conditions in

Assumption 4.3 are satisfied. Existence of each εi ∈ (0,∞) is guaranteed by Lemma

50

2.1, as in the centralized case. It may be desired that an agent switch from the

receding horizon controller to the decoupled linear feedbacks once inside the terminal

constraint set, known as dual-mode receding horizon control in the literature [49].

Generally, εi could be chosen to satisfy the conditions in Assumption 4.3 and the

additional condition

Ωi(εi)
⋂

Ωj(εj) = ∅, for all i, j = 1, ..., Na, i 6= j,

so that once inside Ωi(εi), any agent i is closer to its objective state than any other

agents objective state. In that case, the agents employ the decoupled feedbacks only

if they are close enough to their objective state and far enough from any other agents

objective state.

Remark 4.7 Due to condition (ii) above, the distributed receding horizon control

laws are not technically decentralized, since a globally synchronous implementation

requires centralized clock keeping [3]. A locally synchronous, and consequently de-

centralized, version will be discussed in Section 5.4.

Although not employed, the decoupled linear feedbacks Ki can asymptotically stabi-

lize each agent to its objective state once the agent enters the decoupled terminal con-

straint set (4.4). One choice for each Qi that would satisfy Q̂ ≥ Q is Qi = λmax(Q)I(n),

where λmax(Q) is the maximum eigenvalue of the symmetric matrix Q. Define

K̂ = diag(K1, ..., KNa
), P̂ = diag(P1, ..., PNa

),

A = diag(A1, ..., ANa
), B = diag(B1, ..., BNa

).

As a consequence of assumption (i) above, P̂ is positive definite and symmetric, and

satisfies

(
A+BK̂

)T

P̂ + P̂
(
A+BK̂

)
= −

(
Q̂+ K̂TRK̂

)
≤ −

(
Q+ K̂TRK̂

)
. (4.6)

For the centralized implementation of Chapter 2, it is straightforward to show

51

that if the optimization problem is feasible at initialization, then all subsequent re-

ceding horizon optimization calculations have a feasible solution, in the absence of

explicit uncertainty. The feasible trajectory at each update is simply the remainder

of the trajectory from the previous update, concatenated with the trajectory result-

ing from the feedback defined inside the terminal constraint set. For the distributed

implementation here, initial feasibility likewise ensures subsequent feasibility, a fact

proven in the next section. A natural question is the following: how do we initialize

the distributed receding horizon control implementation?

Compared to the centralized implementation, initialization of the distributed im-

plementation is more complicated. In the centralized implementation, initialization

requires that a feasible solution to the optimization problem be found. In the dis-

tributed implementation, initialization requires that each distributed optimization

problem have an assumed control for every neighbor, prior to solving for an ini-

tially feasible solution in each distributed problem. Thus, we are interested in choos-

ing an assumed control for every agent, to be used at the initialization phase of

the distributed implementation. The time at which initialization occurs is denoted

t−1 = t0 − δ. The assumed control for each agent at initialization is based on the

following assumption.

Assumption 4.4 Given an initial state z(t−1), the control ui(τ ; zi(t−1)) = 0 for all

τ ∈ [t−1, t−1 + T] is an admissible control for every agent i = 1, ..., Na.

The assumption requires that zero control be admissible from the initial state z(t−1).

By definition, the admissible control must be such that the decoupled state con-

straints remain feasible over the specified time domain. It is not required that zero

control respect any of the other constraints in Problem 4.1, namely, the terminal and

compatibility constraints on the state. Given the assumed control for every agent,

the initialization phase for the distributed implementation can now be defined.

Definition 4.4 (Initialization) At time t−1, solve Problem 4.1 with initial state

z(t−1), setting ûi(τ ; zi(t−1)) = 0 for all τ ∈ [t−1, t−1 + T] and every i = 1, ..., Na, and

also setting κ = +∞. The resulting optimal trajectories are denoted u∗
di(τ ; zi(t−1))

52

and z∗di(τ ; zi(t−1)), τ ∈ [t−1, t−1 + T], for every i = 1, ..., Na. The optimal control

u∗dist(τ ; z(t−1)) is applied for τ ∈ [t−1, t0).

At initialization, the compatibility constraints are not necessary. Consequently, the

constraints are effectively removed by setting κ to a large number in every distributed

optimization problem. The reason that the constraints are not necessary at initial-

ization is that, while the stability analysis presented in the next section depends

critically on the compatibility constraints, the closed-loop system behavior is exam-

ined for time t ≥ t0. Thus, the initialization phase generates optimal controls that

are assumed to drive the state to z(t0), at which time the compatibility constraints

are enforced in each distributed optimal control problem, for all subsequent receding

horizon updates.

Now that initialization has been defined, the assumed control for each agent can

be defined for all receding horizon updates after initialization.

Definition 4.5 (Assumed Control) For each agent i = 1, ..., Na and for any k ∈ N,

the assumed control ûi(·; zi(tk)) : [tk, tk + T]→ U is defined as follows:

if z(tk) = zc, then ûi(τ ; zi(tk)) = 0, τ ∈ [tk, tk + T]. Otherwise,

ûi(τ ; zi(tk)) =





u∗di(τ ; zi(tk−1)), τ ∈ [tk, tk−1 + T)

Ki

(
zK

i (τ − tk−1 − T ; zK
i (0))− zc

i

)
, τ ∈ [tk−1 + T, tk + T]

,

where zK
i (0) = z∗di(tk−1 + T ; zi(tk−1)), and zK

i (s; zK
i (0)) is the closed-loop solution to

żK
i (s) = (Ai +BiKi)(z

K
i (s)− zc

i), s ≥ 0, given zK
i (0).

Denote the assumed control vector as

û(·; z(t)) = (û1(·; z1(t)), ..., ûNa
(·; zNa

(t))).

Practically, the assumed control for any agent i associate with initial state zi(tk) is

generated and transmitted to neighbors in the time window [tk−1, tk), i.e., prior to

53

time tk. To state Definition 4.5 in words, in Problem 4.1, every agent is assuming all

neighbors will continue along their previous optimal path, finishing with the decoupled

linear control laws defined in Assumption 4.3, unless the control objective is met

(z(tk) = zc) at any update time after initialization. In the latter case, neighbors are

assumed to do nothing, i.e., apply zero control.

Remark 4.8 The test of whether z(tk) = zc in generating the assumed control

is a centralized test. The reason for the test is its use in the proof of Proposition

4.1 in Section 4.6. We note that the asymptotic stability result in the next section

guarantees that only in the limit as tk →∞ do we have z(tk)→ zc. Practically then,

one could assume z(tk) 6= zc, which is true for any finite k when z(t−1) 6= zc, and

ignore the test completely. Also, if dual-mode receding horizon control is used, the

test can be removed, since Proposition 4.1 is not used to prove asymptotic stability

in that case. A dual-mode version will be provided in Section 5.3.1.

Now that the distributed optimal control problems and the initialization procedure

for the distributed implementation have been defined, the implementation algorithm

can be stated.

4.5 Distributed Implementation Algorithm

The distributed optimal control problems are posed in Problem 4.1, with the initial-

ization procedure given in Definition 4.4 and the assumed control given in Definition

4.5. We can now succinctly state the computations and information exchanges that

define up the distributed receding horizon control law.

Definition 4.6 (Distributed Implementation Algorithm) At time t−1, each agent fol-

lows the initialization procedure given in Definition 4.4. Over every receding horizon

update interval [tk−1, tk), k ∈ N, each agent i = 1, ..., Na:

1. implements the current optimal control trajectory u∗
di(τ ; zi(tk−1)), τ ∈ [tk−1, tk),

2. computes ûi(·; zi(tk)) : [tk, tk + T]→ U , and

54

3. transmits ûi(·; zi(tk)) to every neighbor and receives ûj(·; zj(tk)) from every

neighbor j ∈ Ni.

At every receding horizon update time tk, k ∈ N, each agent i = 1, ..., Na:

1. senses its own current state zi(tk) and senses or receives the current state zj(tk)

of each neighbor j ∈ Ni,

2. computes the assumed state trajectories ẑi(·; zi(tk)) and ẑj(·; zj(tk)), j ∈ Ni,

3. computes the optimal control trajectory u∗di(τ ; zi(tk)), τ ∈ [tk, tk + T].

Implicit in the algorithm is that the assumed control and state trajectories for each

agent i are consistent in every optimization problem in which they occur, i.e., in the

optimal control problem for agent i and for each neighbor j ∈ Ni. The reason is that i

is communicating the same assumed control to every neighbor and every neighbor has

the same model for the dynamics of i, by Assumption 4.2. Notice that the commu-

nication of control trajectories between neighboring agents is not required to happen

instantaneously, but over each receding horizon update time interval. Although the

algorithm above implies computation of assumed states and optimal controls can

happen instantaneously, at each time tk, a predictive version can also be stated to

account for non-trivial computation times, as discussed in Section 2.3.1.

Now that the distributed implementation has been stated, we observe the following

about the distributed optimal value function J ∗
i (zi(tk), z−i(tk), T) for any i = 1, ..., Na.

If J∗
i (zi(t−1), z−i(t−1), T) = 0 at initialization for any agent i, then it can be shown (see

proof of Proposition 4.1) that zi(t−1) = zc
i and zj(t−1) = zc

j , for each neighbor j ∈ Ni,

i.e., the local objective has been met. However, even if J ∗
i (zi(t−1), z−i(t−1), T) = 0

holds, it may not remain zero for all later time tk, k = 1, 2, An example is where i

and all neighbors j ∈ Ni are initialized meeting their objective, but some l ∈ Nj has

not met its objective. Thus, in the subsequent optimizations, j will react to l, followed

by i reacting to j, since the coupling cost terms become nontrivial. Consequently, we

cannot guarantee that each distributed optimal value function J ∗
i (zi(tk), z−i(tk), T)

will decrease with each distributed receding horizon update. Instead, we show in the

55

next section that the sum of the distributed optimal value functions is a Lyapunov

function that does decrease at each update, enabling a proof that the distributed

receding horizon control laws collectively meet the control objective.

4.6 Stability Analysis

We now proceed with analyzing the stability of the closed-loop system (4.5). At any

time tk, k ∈ N, the sum of the optimal distributed value functions is denoted as

J∗
Σ(z(tk), T) =

Na∑

i=1

J∗
i (zi(tk), z−i(tk), T).

For stability of the distributed receding horizon control laws, we investigate J ∗
Σ(z(tk), T)

as a Lyapunov function.

Definition 4.7 Problem 4.1 is feasible at time tk if for every i = 1, ..., Na, there

exists a control ui(·; zi(tk)) : [tk, tk +T]→ U such that all the constraints are satisfied

and the value function Ji(zi(tk), z−i(tk), ui(·), T) is bounded. Let ZΣ ⊂ ZNa denote

the set of initial states for which Problem 4.1 is feasible at initialization, as specified

in Definition 4.4.

It is now shown that zc ∈ ZΣ is an equilibrium point of the closed-loop system (4.5).

For z(t−1) = zc, the feasible and optimal solution to Problem 4.1 is u∗
dist(τ ; z

c) = 0,

for all τ ∈ [t−1, t−1 + T]. Since f(zc, 0) = 0, subsequent receding horizon updates at

any time tk, k ∈ N, produce z(tk) = zc and u∗dist(τ ; z(tk)) = 0, for all τ ∈ [tk, tk + T].

Thus, zc is an equilibrium point of the closed-loop system (4.5).

By definition, if the state z(t−1) is in the set ZΣ, there is a feasible solution to

Problem 4.1 at initialization. The next result says that, in that case, there is in fact

a feasible solution to Problem 4.1 at every subsequent receding horizon update time

tk, k ∈ N. In other words, feasibility an initialization implies subsequent feasibility, a

property known also to hold for the centralized implementation. Thus, z(t−1) ∈ ZΣ

implies z(tk) ∈ ZΣ, for all k ∈ N. The result in fact says something stronger, namely,

56

that ZΣ is a positively invariant set, i.e, the closed-loop state trajectory remains in

ZΣ for all time t ≥ t−1.

To state the invariance result, we must modify the definition of the assumed and

applied controls after initialization. Aside from the statement below, the applied

control is always the optimal control, over the application window [tk, tk+1), and the

assumed control is given in Definition 4.5. Instead, for any time τ ∈ [tk, tk+1) and any

k ∈ N, set the applied control to be the assumed control as ui(τ ; zi(tk)) = ûi(τ ; zi(tk)),

where ûi(τ ; zi(tk)) is redefined by replacing u∗di(τ ; zi(tk−1)) with ui(τ ; zi(tk−1)) in Def-

inition 4.5. By definition, this simply means that each agent applies the entire open-

loop optimal control found at initialization, concatenated with the decoupled feedback

controls defined in Assumption 4.3. Since the assumed and applied controls are iden-

tical, the compatibility constraint is trivially satisfied in each distributed optimization

problem, as are all other constraints. We can now state the invariance result.

Lemma 4.1 Under Assumptions 4.2–4.4, the set ZΣ is a positively invariant set

with respect to the closed-loop system by redefining the applied and assumed controls

as described above. Thus, feasibility at initialization implies subsequent feasibility.

The proof follows immediately from Definitions 4.4 and 4.5. Note that the assumed

control ûi is exactly the feasible control trajectory used in Lemma 2 of [11] to show

initial feasibility implies subsequent feasibility of the online optimization problem in

the centralized case. Also, it is easy to see that if z(tk) ∈ ZΣ, z(τ) ∈ ZΣ for all

τ ∈ [tk, tk + T], with the applied and assumed controls redefined as described above.

Now, we will be exploring the closed-loop behavior for initial states that start

in ZΣ, with the applied control equal to the optimal control, over each application

window [tk, tk+1), and the assumed control given by Definition 4.5. For the purposes

of numerical computation and for theoretical reasons that follow, it is required that

the closed-loop state trajectory, initialized from any z(t−1) ∈ ZΣ, remain bounded.

This condition and an optimality condition are stated here as an assumption.

Assumption 4.5 The following conditions are satisfied for any k ∈ N:

57

(i) there exists a ρmax ∈ (0,∞) such that for any i = 1, ..., Na,

‖z∗di(τ ; tk)− zc
i ‖ ≤ ρmax, ∀τ ∈ [tk, tk + T]; (4.7)

(ii) the optimal solution to Problem 4.1 exists and is numerically obtainable for any

z(tk) ∈ ZΣ.

Given the assumptions above, we have the following result.

Lemma 4.2 Under Assumptions 4.2–4.5, ZΣ is a positively invariant set with respect

to the closed-loop system (4.5). Thus, if z(t−1) ∈ ZΣ, z∗
dist

(τ) ∈ ZΣ for all τ ≥ t−1.

Proof: It is shown by contradiction that each applied piece of any open-loop tra-

jectory (which exists by assumption) that starts in ZΣ, stays in ZΣ. Suppose the

open-loop initialization trajectory starting from z(t−1) ∈ ZΣ has left ZΣ at some

time t′ ∈ (t−1, t0], i.e., z∗dist(t
′; z(t−1)) /∈ ZΣ. A feasible control from that point is to

simply continue along the remainder of z∗dist(τ ; z(t−1)), τ ∈ [t′, t−1 + T), and apply

the decoupled feedback controllers for time τ ∈ [t−1 + T, t′ + T], which implies that

z∗dist(t
′; z(t−1)) ∈ ZΣ. By contradiction, then, the open-loop optimal trajectory start-

ing from z(t−1) ∈ ZΣ cannot leave ZΣ at any time in the interval [t−1, t0]. Since this

holds for any open-loop optimal trajectory over the applied interval [tk, tk+1], for any

k ∈ N, the closed-loop trajectory satisfies z∗dist(τ) ∈ ZΣ for all τ ≥ t−1, if z(t−1) ∈ ZΣ.

�

Lemma 4.1 says that ZΣ is a positively invariant set, but required redefining the ap-

plied and assumed controls. In contrast, the result above says that ZΣ is a positively

invariant set, keeping the applied and assumed controls as defined in terms of the

optimal control, but naturally requires the additional assumption that the optimal

solution to Problem 4.1 is attained at every receding horizon update.

The next result says that the net objective of the distributed receding horizon

control laws is consistent with the control objective.

Proposition 4.1 Under Assumptions 4.2–4.5, for a given fixed horizon time T > 0

and at any time tk, k ∈ N,

58

1. J∗
Σ(z(tk), T) ≥ 0 for any z(tk) ∈ ZΣ, and

2. J∗
Σ(z(tk), T) = 0 if and only if z(tk) = zc.

In addition, if the optimal control solution u∗
dist

(·; z(t)) to Problem 4.1 is continuous

in z(t) at z(t) = zc, then

3. J∗
Σ(z(tk), T) is continuous at z(tk) = zc.

Proof: The proposition and proof are similar to Lemma A.1 in [10].

1. The non-negativity of J∗
Σ(z(tk), T) follows directly from Li(zi, ẑ−i, ui) ≥ 0 and

Pi > 0, for all i = 1, ..., Na.

2. (⇒) J∗
Σ(z(t), T) = 0 implies that for each i = 1, ..., Na,

γ‖z∗di(tk + T ; zi(tk))− zc
i ‖2Pi

= 0 and

∫ tk+T

tk

Li(z
∗
di(τ ; zi(tk)), ẑ−i(τ ; ẑ−i(tk)), u

∗
di(τ ; zi(tk))) dτ = 0.

Since the integrand is piecewise continuous in τ on [tk, tk + T] and nonnegative, we

have that

Li(z
∗
di(τ ; zi(tk)), ẑ−i(τ ; ẑ−i(tk)), u

∗
di(τ ; zi(tk))) = 0, ∀τ ∈ [tk, tk + T],

and for every i = 1, ..., Na. From Definition 4.1, this implies u∗di(τ ; zi(tk)) = 0, for all

τ ∈ [tk, tk +T]. Since every Pi is positive definite and γ is positive, z∗di(tk +T ; zi(tk)) =

zc
i for every i. Since the dynamics ż(t) = f(z(t), u(t)) are time-invariant and have a

unique solution, the reverse time dynamics with initial condition z(tk + T) = zc and

control u(s) = 0, s ∈ [tk + T, tk], yield the solution z(s) = zc for all s ∈ [tk + T, tk].

Consequently, z∗dist(τ ; z(tk)) = zc for all τ ∈ [tk, tk + T]. We must also guarantee

that the resulting distributed optimal control and state are feasible. The constraints

z∗di(τ ; zi(tk)) ∈ Z and u∗di(τ ; zi(tk)) ∈ U are trivial, since zc
i and 0 are in the interior

of Z and U , respectively, by Assumption 4.2. Also, zc
i ∈ Ωi(εi) so the terminal

constraint is satisfied. Finally, since z(tk) = zc, by Definition 4.5, ûi(τ ; zi(tk)) = 0 for

59

all τ ∈ [tk, tk + T] and every i, yielding ẑi(τ ; zi(tk)) = zc
i for all τ ∈ [tk, tk + T] and

every i, so the compatibility constraint is also satisfied.

2. (⇐) Given z(tk) = zc, by Definition 4.5 we have that for each i = 1, ..., Na,

ûi(τ ; zi(tk)) = 0 for all τ ∈ [tk, tk + T]. Consequently, ẑi(τ ; zi(tk)) = zc
i for all

τ ∈ [tk, tk + T] and every i. For any agent i, the local cost function becomes

∫ tk+T

tk

Li(z
∗
di(τ ; zi(tk)), z

c
−i, u

∗
di(τ ; zi(tk))) dτ + γ‖zi(tk + T ; zi(tk))− zc

i ‖2Pi
,

Given zi(tk) = zc
i , the feasible and optimal solution for any i is u∗di(τ ; zi(tk)) = 0 and

z∗di(τ ; zi(tk)) = zc
i for all τ ∈ [tk, tk + T]. Consequently, J∗

i (zi(tk), z−i(tk), T) = 0 for

every i = 1, ..., Na and so J∗
Σ(z(tk), T) = 0.

3. To show continuity of J∗
Σ(z(tk), T) at z(tk) = zc, recall first that u∗dist(·; z(tk)) is

continuous in z(tk) at z(t) = zc, for any fixed horizon time T , by assumption. Since

f is C2, z∗dist(·; z(tk)) exists and is continuous in initial state z(tk) at z(tk) = zc, by

simple extension of Theorem 2.5 in [40], utilizing the Gronwall-Bellman inequality.

Now, the assumed control is generated by concatenating the optimal control from any

z(tk) with fixed horizon T − δ, by principle of optimality, with the linear feedback

specified in Assumption 4.3. Consequently, the full assumed control curve û(·; z(tk))
is continuous in z(tk) at z(tk) = zc, as is the resulting state trajectory ẑ(·; z(tk)).
Since every distributed integrated and terminal cost is continuous, we have continu-

ity of J∗
Σ(z(tk), T) at z(tk) = zc. �

The continuity assumption used to prove item 3 is typical in the early literature,

although it is difficult in general to determine if the condition holds. If the receding

horizon control law is continuously updated (δ = 0), as in [48], it is necessary in fact

for the optimal control to depend continuously on the associated initial condition for

all state values in the closed-loop state domain, so that the closed-loop dynamics are

continuous. In the centralized case, sufficient conditions that guarantee continuous

differentiability of u∗cent(τ ; ·) : Z → U , i.e., over the domain Z, are stated in [45].

60

If dual-mode receding horizon control is employed, only item 1 in the proposition

is necessary. This removes the need for the continuity condition on the optimal

control. The condition if z(tk) = zc then û(τ ; z(tk)) = 0 in Definition 4.5 can also be

removed, as it was used in showing item 2, i.e., the equivalence of J ∗
Σ(z(tk), T) = 0 and

z(tk) = zc. So, for a dual-mode implementation, the assumed controls are defined

as the remainder of the previous optimal control plus the decoupled feedback for

all states in ZΣ. Section 5.3.1 will define a dual-mode distributed receding horizon

control implementation.

Our objective now is to show that the distributed receding horizon control law

achieves the control objective for sufficiently small δ. We begin with three lemmas

that are used to bound the Lyapunov function candidate J ∗
Σ(z(tk), T). The first

lemma gives a bounding result on the decrease in J ∗
Σ(·, T) from one update to the

next.

Lemma 4.3 Under Assumptions 4.2–4.5, for a given fixed horizon time T > 0, and

for the positive constant ξ defined by

ξ = 2γκρmaxλmax(Q)T
Na∑

i=1

Ni(Ni − 1),

the function J∗
Σ(·, T) satisfies

J∗
Σ(z(tk+1), T)− J∗

Σ(z(tk), T) ≤ −
∫ tk+δ

tk

Na∑

i=1

Lz
i (z

∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk)))dτ + δ2ξ,

for any δ ∈ (0, T] and for any z(tk) ∈ ZΣ, k ∈ N.

Proof: The sum of the optimal distributed value functions for a given z(tk) ∈ ZΣ is

J∗
Σ(z(tk), T) =

∫ tk+T

tk

Na∑

i=1

Li(z
∗
di(τ ; zi(tk)),ẑ−i(τ ; z−i(tk)), u

∗
di(τ ; zi(tk))) dτ

+ γ‖z∗dist(tk + T ; z(tk))− zc‖2
P̂
.

61

Applying the optimal control for some δ ∈ (0, T] seconds, we are now at time tk+1 =

tk + δ, with new state update z(tk+1). A feasible control for the optimal control

problem of each agent over the new time interval τ ∈ [tk+1, tk+1+T] is ui(·; zi(tk+1)) =

ûi(·; zi(tk+1)), given in Definition 4.5. Thus, we have for any i = 1, ..., Na,

J∗
i (zi(tk+1), z−i(tk+1), T)

=

∫ tk+1+T

tk+1

Li(z
∗
di(τ ; zi(tk+1)), ẑ−i(τ ; z−i(tk+1)), u

∗
di(τ ; zi(tk+1))) dτ

+ γ‖z∗di(tk+1 + T ; zi(tk+1))− zc
i ‖2Pi

≤
∫ tk+1+T

tk+1

Li(ẑi(τ ; zi(tk+1)), ẑ−i(τ ; z−i(tk+1)), ûi(τ ; zi(tk+1))) dτ

+ γ‖ẑi(tk+1 + T ; zi(tk+1))− zc
i ‖2Pi

.

Summing over i, we can upper bound J∗
Σ(z(tk+1), T), and comparing to J∗

Σ(z(tk), T)

we have

J∗
Σ(z(tk+1), T)− J∗

Σ(z(tk), T)

+

∫ tk+δ

tk

Na∑

i=1

Li(z
∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk)), u

∗
di(τ ; zi(tk)))dτ

≤
∫ tk+T

tk+1

Na∑

i=1

Li(ẑi(τ ; zi(tk+1)), ẑ−i(τ ; z−i(tk+1)), ûi(τ ; zi(tk+1))) dτ

−
∫ tk+T

tk+1

Na∑

i=1

Li(z
∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk)), u

∗
di(τ ; zi(tk))) dτ

+

∫ tk+1+T

tk+T

Na∑

i=1

Li(ẑi(τ ; zi(tk+1)), ẑ−i(τ ; z−i(tk+1)), ûi(τ ; zi(tk+1))) dτ

+ γ
Na∑

i=1

‖ẑi(tk+1 + T ; zi(tk+1))− zc
i ‖2Pi
− γ‖z∗dist(tk + T ; z(tk))− zc‖2

P̂
.

Using the notation ẑ(·; z) = (ẑ1(·; z1), ..., ẑNa
(·; zNa

)), we observe that

Na∑

i=1

‖ẑi(tk+1 + T ; zi(tk+1))− zc
i ‖2Pi

= ‖ẑ(tk+1 + T ; z(tk+1))− zc‖2
P̂
,

62

and also that ẑ(tk + T ; z(tk+1)) = z∗dist(tk + T ; z(tk)). From the definition for each

ûi(τ ; zi(tk+1)) with τ ∈ [tk + T, tk+1 + T] and using the notation in equation (4.6), we

also have

Na∑

i=1

Li(ẑi(τ ; zi(tk+1)), ẑ−i(τ ; z−i(tk+1)), ûi(τ ; zi(tk+1))) = γ‖ẑ(τ ; z(tk+1))− zc‖2
Q̃
,

where Q̃ = Q + K̂TRK̂. Finally, from the properties of the feedback in Assumption

4.3 and the notation in equation (4.6), we have

‖ẑ(tk+1 + T ; z(tk+1))− zc‖2
P̂
− ‖ẑ(tk + T ; z(tk+1))− zc‖2

P̂

= −
∫ tk+1+T

tk+T

‖ẑ(τ ; z(tk+1))− zc‖2Q′dτ,

where Q′ = Q̂+ K̂TRK̂ and Q′ ≥ Q̃. Thus, we can write

∫ tk+1+T

tk+T

Na∑

i=1

Li(ẑi(τ ; zi(tk+1)), ẑ−i(τ ; z−i(tk+1)), ûi(τ ; zi(tk+1))) dτ

+ γ
Na∑

i=1

‖ẑi(tk+1 + T ; zi(tk+1))− zc
i ‖2Pi
− γ‖z∗dist(tk + T ; z(tk))− zc‖2

P̂

= −γ
∫ tk+1+T

tk+T

‖ẑ(τ ; z(tk+1))− zc‖2
Q′−Q̃

dτ ≤ 0.

Now, we have

J∗
Σ(z(tk+1), T)− J∗

Σ(z(tk), T)

+

∫ tk+δ

tk

Na∑

i=1

Li(z
∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk)), u

∗
di(τ ; zi(tk)))dτ

≤
∫ tk+T

tk+1

Na∑

i=1

Li(ẑi(τ ; zi(tk+1)), ẑ−i(τ ; z−i(tk+1)), ûi(τ ; zi(tk+1))) dτ

−
∫ tk+T

tk+1

Na∑

i=1

Li(z
∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk)), u

∗
di(τ ; zi(tk))) dτ.

63

By definition, each ẑi(τ ; zi(tk+1)) = z∗di(τ ; zi(tk)) and ûi(τ ; zi(tk+1)) = u∗di(τ ; zi(tk)),

over the interval τ ∈ [tk+1, tk + T]. Consequently, we have from Definition 4.1

∫ tk+T

tk+1

Na∑

i=1

Li(ẑi(τ ; zi(tk+1)), ẑ−i(τ ; z−i(tk+1)), ûi(τ ; zi(tk+1))) dτ

−
∫ tk+T

tk+1

Na∑

i=1

Li(z
∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk)), u

∗
di(τ ; zi(tk))) dτ

= γ
Na∑

i=1

∫ tk+T

tk+1

∥∥∥∥∥∥


 z∗di(τ ; zi(tk))− zc

i

z∗−di(τ ; zi(tk))− zc
−i



∥∥∥∥∥∥

2

Qi

−

∥∥∥∥∥∥


 z∗di(τ ; zi(tk))− zc

i

ẑ−i(τ ; zi(tk))− zc
−i



∥∥∥∥∥∥

2

Qi

dτ,

where z∗−di(τ ; zi(tk)) is the vector of optimal state trajectories for the neighbors of i,

consistent with the ordering of z−i. For the remainder of the proof, we are interested

in finding an upper bound for the expression above. To reduce the expression, we

first partition each symmetric matrix Qi ∈ R
nNi×nNi as

Qi =


 Qi,1 Qi,2

Q
T

i,2 Qi,3


 , Qi,1 ∈ R

n×n, Qi,2 ∈ R
n×n|Ni|, Qi,3 ∈ R

n|Ni|×n|Ni|,

where |Ni| = Ni − 1. For the moment, also denote

xi(τ) = z∗di(τ ; zi(tk))− zc
i ,

y−i(τ) = z∗−di(τ ; zi(tk))− zc
−i,

w−i(τ) = ẑ−i(τ ; zi(tk))− zc
−i .

Now, we can write the integrand above as

2xi(τ)
TQi,2(y−i(τ)− w−i(τ)) + (y−i(τ)− w−i(τ))

TQi,3(y−i(τ) + w−i(τ)).

From Assumption 4.5, ‖xi‖ ≤ ρmax. For any vector v = (v1, v2), ‖v‖ ≤ ‖v1‖ + ‖v2‖.
Thus, we have the bound ‖y−i(τ) − w−i(τ)‖ ≤ δ2κ|Ni|, for any i = 1, ..., Na. Also,

for any two vectors x and y in R
n, we have that xTy = ‖x‖ ‖y‖ cos(θ), where θ is the

angle between the vectors. Consequently, −‖x‖ ‖y‖ ≤ xTy ≤ ‖x‖ ‖y‖. Making use

64

of these bounding arguments, we have that

2xi(τ)
TQi,2

(
y−i(τ)− w−i(τ)

)
≤ 2

(
λmax(Q

T

i,2Qi,2)
)1/2

‖xi(τ)‖ ‖y−i(τ)− w−i(τ)‖

≤ 2δ2κρmax|Ni|
(
λmax(Q

T

i,2Qi,2)
)1/2

,

and

(
y−i(τ)− w−i(τ)

)T

Qi,3

(
y−i(τ) + w−i(τ)

)

≤ λmax(Qi,3)‖y−i(τ) + w−i(τ)‖ ‖y−i(τ)− w−i(τ)‖

≤ δ2κ|Ni|λmax(Qi,3) (‖y−i(τ)‖+ ‖w−i(τ)‖)

≤ 2δ2κρmax|Ni|2λmax(Qi,3).

From Lemma A.1, λmax(Qi) ≥ λmax(Qi,3) and λmax(Qi) ≥ (λmax(Q
T

i,2Qi,2))
1/2. Com-

bining the terms, the integral expression is bounded as

γ

Na∑

i=1

∫ tk+T

tk+1

∥∥∥∥∥∥


 z∗di(τ ; zi(tk))− zc

i

z∗−di(τ ; zi(tk))− zc
−i



∥∥∥∥∥∥

2

Qi

−

∥∥∥∥∥∥


 z∗di(τ ; zi(tk))− zc

i

ẑ−i(τ ; zi(tk))− zc
−i



∥∥∥∥∥∥

2

Qi

dτ,

≤ γ
Na∑

i=1

∫ tk+T

tk+1

2δ2κρmax|Ni|λmax(Qi)(1 + |Ni|) dτ

≤ 2γδ2κρmaxT

Na∑

i=1

[
Ni · |Ni| · λmax(Qi)

]
,

where the last inequality follows by using the bound T − δ ≤ T . From Lemma A.2,

λmax(Q) ≥ λmax(Qi) for every i = 1, ..., Na. Finally, the original expression can be

bounded as

J∗
Σ(z(tk+1), T)−J∗

Σ(z(tk), T)

≤ −
∫ tk+δ

tk

Na∑

i=1

Li(z
∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk)), u

∗
di(τ ; zi(tk))) dτ + δ2ξ

≤ −
∫ tk+δ

tk

Na∑

i=1

Lz
i (z

∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk))) dτ + δ2ξ,

65

where

ξ = 2γκρmaxλmax(Q)T
Na∑

i=1

Ni(Ni − 1).

This completes the proof. �

Ultimately, we want to show that J ∗
Σ(·, T) decreases from one update to the next

along the actual closed-loop trajectories. The next two lemmas show that, for suffi-

ciently small δ, the bounding expression above can be bounded by a negative definite

function of the closed-loop trajectories. Recall first that every distributed integrated

cost defined in Definition 4.1 has a common multiplying factor equal to γ, a constant

larger than one. The purpose of this constant, and the reason that it is chosen to

be larger than one, is demonstrated in the next two lemmas. Specifically, γ provides

a stability margin in that it enables the bounding expression in Lemma 4.3 to be

bounded from above by a negative definite function of the closed-loop trajectories, as

stated in the following lemma.

Lemma 4.4 Under Assumptions 4.2–4.5, for any z(tk) ∈ ZΣ, k ∈ N, such that at

least one agent i satisfies zi(tk) 6= zc
i , and for any positive constant ξ, there exists a

δ(z(tk)) > 0 such that

−
∫ tk+δ

tk

Na∑

i=1

Lz
i (z

∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk)))dτ + δ2ξ

≤ −
∫ tk+δ

tk

‖z∗
dist

(τ ; z(tk))− zc‖2Qdτ,

for any δ ∈ (0, δ(z(tk))]. If z(tk) = zc, then the equation above holds with δ(z(tk)) = 0.

Proof: At time τ = tk, z
∗
di(tk; zi(tk)) = zi(tk) and ẑ−i(τ ; z−i(tk)) = z−i(tk), and so

Na∑

i=1

Lz
i (z

∗
di(tk; zi(tk)), ẑ−i(tk; z−i(tk))) =

Na∑

i=1

Lz
i (zi(tk), z−i(tk)) = γ‖z(tk)− zc‖2Q,

66

where the last equality is from Definition 4.1. Since Q > 0, γ > 1, and at least one

agent i satisfies zi(tk) 6= zc
i , we have that z(tk) 6= zc and

Na∑

i=1

Lz
i

(
z∗di(tk; zi(tk)), ẑ−i(tk; z−i(tk))

)
> ‖z(tk)− zc‖2Q > 0.

Equivalently, we have

Na∑

i=1

Lz
i

(
z∗di(tk; zi(tk)), ẑ−i(tk; z−i(tk))

)
> ‖z∗dist(tk; z(tk))− zc‖2Q. (4.8)

Under the assumptions, z∗di(τ ; zi(tk)) and ẑ−i(τ ; z−i(tk)) are absolutely continuous in

τ , for any i = 1, ..., Na. Any quadratic function of z∗di and ẑ−i, including each Lz
i ,

is therefore absolutely continuous in τ . Thus, for any given ξ > 0, we can choose a

δ(z(tk)) > 0 such that for any τ ∈ [tk, tk + δ(z(tk))),

Na∑

i=1

Lz
i (z

∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk))) > 2(τ − tk)ξ + ‖z∗dist(τ ; z(tk))− zc‖2Q,

and equality holds when τ = tk + δ(z(tk)). That is, tk + δ(z(tk)) is the first time

at which the two sides of the inequality are equal. Choosing such a δ(z(tk)) > 0

is possible even if each Lz
i is a decreasing function of τ and ‖z∗dist(τ ; z(tk)) − zc‖2Q

is an increasing function of τ , because of the initial margin in equation (4.8) and

also because the functions have bounded rate. The latter statement follows from the

functions being quadratic, therefore the gradients are linear, and from the assumed

bounds on the state and control trajectories. Moreover, by integrating both sides in

τ over the interval [tk, tk + δ(z(tk))], the inequality still holds1. Thus, for any given

1Practically, a larger value of δ(z(tk)) can be obtained, since we are interested in comparing the
integral equations, rather than comparing the expressions over all values of τ ∈ [tk, tk + δ(z(tk))].

67

ξ > 0, there exists a δ(z(tk)) > 0 such that

∫ tk+δ(z(tk))

tk

Na∑

i=1

Lz
i (z

∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk))) dτ

=

∫ tk+δ(z(tk))

tk

2(τ − tk)ξ + ‖z∗dist(τ ; z(tk))− zc‖2Q dτ

= δ(z(tk))
2ξ +

∫ tk+δ(z(tk))

tk

‖z∗dist(τ ; z(tk))− zc‖2Q dτ. (4.9)

Finally, we have

∫ tk+δ

tk

Na∑

i=1

Lz
i (z

∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk))) dτ

≥ δ2ξ +

∫ tk+δ

tk

‖z∗dist(τ ; z(tk))− zc‖2Q dτ,

for any δ > 0 no bigger than δ(z(tk)), i.e., for any δ ∈ (0, δ(z(tk))]. If z(tk) = zc,

then both integrands are identically zero (see proof of Proposition 4.1). As a result,

we immediately require δ(z(tk)) = 0 for the inequality to hold. Reversing the sign in

the equation above gives the stated result. �

Choosing the constant γ larger than one makes the initial margin in equation (4.8)

and ultimately the integral bounding expression in equation (4.9) possible. In this

way, choosing γ larger than one provides a stability margin, as the lemma above will

be used in the proof of the main stability result, Theorem 4.1.

Remark 4.9 For a given value of γ > 1, as ‖z(tk)−zc‖ decreases, so does the initial

margin in equation (4.8). Consequently, as the states z(tk) approach the objective

state zc, the value of δ(z(tk)) that satisfies the integral equality in equation (4.9)

decreases to zero, i.e., z(tk) → zc implies δ(z(tk)) → 0. This corresponds to an

increasingly strict compatibility constraint as ‖z(tk)− zc‖ decreases. It also requires

that communication of assumed control trajectories must happen at an increasing

rate, and with infinite bandwidth, in the limit that z(tk) → zc. The reason is that

the assumed control trajectories must be communicated between update times, as

68

specified in the distributed implementation algorithm in Definition 4.6. Later, we

will construct an update time that is fixed and sufficiently small to guarantee that

all agents have reached their terminal constraint sets via the distributed receding

horizon control, making it safe to henceforth apply the decoupled linear feedbacks

(dual-mode). The sufficiently small value for the update period then serves as an

upper bound on how small δ must be for dual-mode distributed receding horizon

control.

The lemma above provides a test on the update period that later is used to guarantee

distributed receding horizon control stability. It would more be useful to have an

analytic expression for the test. Such an expression is difficult to obtain, since the

trajectories in the integrals in equation (4.9) are implicity defined and therefore hard

to analyze. However, by making an assumption that approximates and simplifies the

functions in the integrals, we are able to obtain an analytic bound on the update

period.

Assumption 4.6 The following holds:

(i) the interval of integration [tk, tk + δ] for the expressions in equation (4.9) is

sufficiently small that first-order Taylor series approximations of the integrands

is a valid approximation for any z(tk) ∈ ZΣ. Specifically, we take

Na∑

i=1

Lz
i (z

∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk)))

≈ γ‖z(tk)− zc‖2Q

+ (τ − tk)
Na∑

i=1

{
∇zi

Lz
i (zi(tk), z−i(tk))

Tfi(zi(tk), u
∗
di(tk; zi(tk)))

+ Σj∈Ni
∇zj

Lz
i (zi(tk), z−i(tk))

Tfj(zj(tk), ûj(tk; zj(tk)))
}
,

69

and

‖z∗dist(τ ; z(tk))− zc‖2Q ≈ ‖z(tk)− zc‖2Q
+ (τ − tk)2(z(tk)− zc)TQf(z(tk), u

∗
dist(tk; z(tk))),

and ignore terms that are O((τ − tk)2) and higher-order;

(ii) for every i = 1, ..., Na, there exists a Lipschitz constant Ki ∈ (0,∞) such that

‖fi(zi, ui)− fi(z
′
i, u

′
i)‖ ≤ Ki

(
‖zi − z′i‖ + ‖ui − u′i‖

)
,

for any z = (z1, ..., zNa
) ∈ ZΣ and z′ = (z′1, ..., z

′
Na

) ∈ ZΣ and any ui, u
′
i ∈ U .

Finally, we define K = maxiKi.

Part (ii) of the assumption is a local Lipschitz requirement, since it is presumed to

hold only over the domain ZΣ. The Lipschitz bound K is used in a parametric upper

bound on the update period that is now defined.

Lemma 4.5 Under Assumptions 4.2–4.6, for any z(tk) ∈ ZΣ, k ∈ N, the margin in

Lemma 4.4 is attained with

δ(z(tk)) =
(γ − 1)‖z(tk)− zc‖2Q

ξ + (γ + 1)Kρmax(ρmax + umax)λmax(Q)
∑Na

i=1N
2
i

,

given the state and control bounds R and Umax, respectively.

Proof: From equation (4.9), for a given z(tk), we want to choose a δ such that

∫ tk+δ

tk

Na∑

i=1

Lz
i (z

∗
di(τ ; zi(tk)), ẑ−i(τ ; z−i(tk)))− ‖z∗dist(τ ; z(tk))− zc‖2Q dτ − δ2ξ ≥ 0,

with equality when δ = δ(z(tk)). Substitution of the Taylor series expression from

Assumption 4.6 into the integrals results in

δ (ξ − C) ≤ (γ − 1)‖z(tk)− zc‖2Q, (4.10)

70

where C combines the first-order terms in the expansions after integration, given as

C =
Na∑

i=1

1

2

[
(γ − 1)∇zi

Lz
i (zi(tk), z−i(tk))

Tfi(zi(tk), u
∗
di(tk; zi(tk)))

+ Σj∈Ni
∇zj

Lz
i (zi(tk), z−i(tk))

T

{
γfj(zj(tk), ûj(tk; zj(tk)))− fj(zj(tk), u

∗
dj(tk; zj(tk)))

}]
.

Since C is the sum of an inner-product of different vectors, it could be positive or

negative. In equation (4.10), (γ−1) > 0 is given and ξ > 0 is given and we are looking

for the largest δ such that the inequality holds over the entire domain ZΣ. Note that

if C ≥ ξ, the inequality holds for any positive δ. In the worst case, the constant C

will be a negative number, removing more of the margin for δ. Thus, substituting a

negative lower bound for C ensures a sufficient inequality condition on δ. To identify

a lower bound for C, we first partition each symmetric matrix Qi ∈ R
nNi×nNi as

Qi =


 Qi,1 Qi,2

Q
T

i,2 Qi,3


 , Qi,1 ∈ R

n×n, Qi,2 ∈ R
n×n|Ni|, Qi,3 ∈ R

n|Ni|×n|Ni|,

just as in the proof of Lemma 4.3. Now, the gradient functions are written

∇zi
Lz

i (zi(tk), z−i(tk))
T = 2(zi(tk)− zc

i)
TQi,1 + 2(z−i(tk)− zc

−i)
TQ

T

i,2, and

∇z−i
Lz

i (zi(tk), z−i(tk))
T = 2(zi(tk)− zc

i)
TQi,2 + 2(z−i(tk)− zc

−i)
TQi,3,

where ∇zj
Lz

i , j ∈ Ni, are the components of ∇z−i
Lz

i . Using the inner-product prop-

erty that xTy ≥ −‖x‖ ‖y‖ for any vectors x and y, we have that for any i,

1

2
∇zi

Lz
i (zi(tk), z−i(tk))

Tfi(zi(tk), u
∗
di(tk; zi(tk))) ≥

−
[
‖zi(tk)− zc

i ‖λmax(Qi,1) + ‖z−i(tk)− zc
−i‖λ1/2

max(Q
T

i,2Qi,2)
]
‖fi(zi(tk), u

∗
di(tk; zi(tk)))‖.

71

From Lemma A.1, the Lipschitz bound on any fi and the bounding arguments used

in the proof of Lemma 4.3, we have that

1

2
∇zi

Lz
i (zi(tk), z−i(tk))

Tfi(zi(tk), u
∗
di(tk; zi(tk))) ≥ −NiKρmax(ρmax + umax)λmax(Qi).

By the same tools and using the triangle inequality, we can also bound the other

inner-product terms as

1

2
Σj∈Ni

∇zj
Lz

i (zi(tk), z−i(tk))
T
{
γfj(zj(tk), ûj(tk; zj(tk)))− fj(zj(tk), u

∗
dj(tk; zj(tk)))

}

≥ −
[
ρmaxλ

1/2
max(Q

T

i,2Qi,2) + ρmax|Ni|λmax(Qi,3)
]
×

[
γ
∑

j∈Ni

‖fj(zj(tk), ûj(tk; zj(tk)))‖+ ‖fj(zj(tk), u
∗
dj(tk; zj(tk)))‖

]

≥ −Niρmaxλmax(Qi) [(γ + 1)K|Ni|(ρmax + umax)] .

Collecting terms and using Lemma A.2, we have

C ≥ −Kρmax(ρmax + umax)λmax(Q)
Na∑

i=1

[(γ − 1)Ni + (γ + 1)Ni|Ni|]

≥ −(γ + 1)Kρmax(ρmax + umax)λmax(Q)
Na∑

i=1

N2
i .

So, in the worst case, we have that δ must satisfy

δ

[
ξ + (γ + 1)Kρmax(ρmax + umax)λmax(Q)

Na∑

i=1

N2
i

]
≤ (γ − 1)‖z(tk)− zc‖2Q,

or, equivalently,

δ ≤ (γ − 1)‖z(tk)− zc‖2Q
ξ + (γ + 1)Kρmax(ρmax + umax)λmax(Q)

∑Na

i=1N
2
i

.

The inequality becomes an equality when δ = δ(z(tk)), completing the proof. �

72

Consistent with the observation in Remark 4.9, we see that δ(z(tk)) → 0 as

z(tk)→ zc. For an analytic test on the update period δ, we can combine the equation

for δ(z(tk)) in Lemma 4.5 and ξ in Lemma 4.3, which results in

δ(z(tk)) =
(γ − 1)‖z(tk)− zc‖2Q[

2γκT
∑Na

i=1Ni(Ni − 1) + (γ + 1)K(ρmax + umax)
∑Na

i=1N
2
i

]
ρmaxλmax(Q)

.

(4.11)

To simplify the expression, we redefine δ(z(tk)) to be

δ(z(tk)) =
(γ − 1)‖z(tk)− zc‖2Q

[2κT + K(ρmax + umax)] (γ + 1)ρmaxλmax(Q)
∑Na

i=1N
2
i

. (4.12)

The bound in equation (4.12) is tighter than the bound in equation (4.11), since

γ > γ − 1 and
∑Na

i=1N
2
i >

∑Na

i=1Ni(Ni − 1). Thus, if δ ≤ δ(z(tk)) using the bound in

equation (4.12), then δ also satisfies δ ≤ δ(z(tk)) using the bound in equation (4.11),

and so the results of the previous lemmas can be applied using the bound in equation

(4.12). Henceforth, we shall use the bound in equation (4.12).

Remark 4.10 The upper bound on the update period in equation (4.12) has some

interesting features. The bound is independent of γ when γ � 1 and shrinks to zero

as γ → 1. The latter condition makes sense in light of the previous discussions that γ

must be chosen larger than one to provide the stability margin defined by the integral

equation in Lemma 4.4. Also, the larger the assumed bounds on the state and control

(ρmax and umax), and the larger the horizon time T , the smaller the required update

time. With regard to the compatibility constraint, the update must also be faster

for larger values of κ. Given the conservative nature of the proofs, it is not wise to

infer too much from the bound in equation (4.12), but it is reassuring to observe such

intuitive affects.

We also note that since δ(z(tk)) depends on ‖z(tk)− zc‖2Q, a centralized computa-

tion is required to generate equation (4.12) at each receding horizon update. Other-

wise, a distributed consensus algorithm, as given in [59] for example, must be run in

parallel to determine ‖z(tk)−zc‖2Q, or a suitable lower bound on it. In the dual-mode

73

version defined in Section 5.3.1, no such centralized computation is required online,

since a fixed bound on the update period is computed offline and applied for every

receding horizon update.

The first main theorem of the dissertation is now given.

Theorem 4.1 For a given fixed horizon time T > 0, assume that the optimal control

solution u∗
dist

(·; z(t)) to Problem 4.1 is continuous at z(t) = zc and that Assumptions

4.2–4.6 hold. For any state z(t−1) ∈ ZΣ at initialization, if the update time δ satisfies

δ ∈ (0, δ(z(tk))], k ∈ N, where δ(z(tk)) is defined in equation (4.12), then zc is an

asymptotically stable equilibrium point of the closed-loop system (4.5) with region of

attraction ZΣ, an open and connected set.

Proof: The assumption that the optimal control solution u∗
dist(·; z(t)) to Problem 4.1

is continuous in z(t) at z(t) = zc is used to qualify part 3 of Proposition 4.1, which is

employed below.

If z(tk) = zc, then ûi(τ ; zi(tk)) = 0 for all τ ∈ [tk, tk + T] and every i = 1, ..., Na,

and the optimal solution to Problem 4.1 is u∗dist(τ ; zi(tk)) = 0 for all τ ∈ [tk, tk + T].

This is shown in the proof of Proposition 4.1. Since f(zc, 0) = 0, it is proven that zc

is an equilibrium point of the closed-loop system (4.5).

We observe that J∗
Σ(z(tk), T) has the following properties

• J∗
Σ(zc, T) = 0 and J∗

Σ(z(tk), T) > 0 for z(tk) 6= zc,

• J∗
Σ(z(tk), T) is continuous at z(tk) = zc,

• along the trajectory z∗dist(τ) of the closed-loop system starting from z(t0), where

z(t0) = z∗dist(t0; z(t−1)) for any initial state z(t−1) ∈ ZΣ,

J∗
Σ(z(t′), T)− J∗

Σ(z(t), T) ≤ −
∫ t′

t

‖z∗dist(τ)− zc‖2Q dτ, (4.13)

for any times t, t′ with t0 ≤ t < t′ ≤ ∞.

74

The first two properties follow from Proposition 4.1. The last property is derived as

follows. Combining Lemma 4.3 and Lemma 4.4, we have at any k ∈ N

J∗
Σ(z(s), T)− J∗

Σ(z(tk), T) ≤ −
∫ s

tk

‖z∗dist(τ ; z(tk))− zc‖2Q dτ, for any s ∈ [tk, tk+1].

Applying this recursively gives the result for any t ≥ t0 and any t′ ∈ (t,∞].

The remainder of the proof follows precisely the steps in the proof of Theorem 1

in [11], and the steps are restated here for completeness. The equilibrium zc is first

proven to be asymptotic stable, and then we show that ZΣ is a region of attraction

for the closed-loop system.

Given ε > 0, choose r ∈ (0, ε] such that the closed ball

B(zc, r) = {z ∈ R
nNa | ‖z − zc‖ ≤ r}

is a small neighborhood of zc. For the remainder of the proof, we denote V (z) ,

J∗
Σ(z, T). Since V (z) is continuous at z = zc and V (z) > 0 for all z 6= zc, there exists

a β ∈ (0,∞) such that

β < min
‖z−zc‖=r

V (z).

Define the level set of V (z)

Wβ , {z ∈ B(zc, r) | V (z) ≤ β},

which is a subset contained in the interior of B(zc, r), a fact that is easy to show by

contradiction. By the monotonicity of V (z(t)),

V (z(t)) ≤ V (z(t0)) ≤ β, ∀t ≥ t0,

so Wβ is a positively invariant set for the closed-loop system. Since V (z) is continuous

at z = zc and V (zc) = 0, there exists a constant η ∈ (0, r) such that

‖z(t0)− zc‖ < η ⇒ V (z(t0)) < β ⇒ V (z(t)) < β ⇒ ‖z(t)− zc‖ < ε.

75

Thus, zc is a stable equilibrium point of the system (4.5).

Asymptotic stability is now proven using equation (4.13). For consistency in

notation, let z(τ) = z∗dist(τ). By induction,

V (z(t0))− V (z(∞)) ≥
∫ ∞

t0

‖z(τ)− zc‖2Q dτ ⇒ β ≥
∫ ∞

t0

‖z(τ)− zc‖2Q,

since β ≥ V (z(t0)) and 0 ≥ −V (z(∞)). Therefore, the infinite integral above exists

and is bounded. Let ε1 < ε be such that z(t) belongs to the compact set {‖z(t)−zc‖ ≤
ε1} for all t ∈ [t0,∞), known to exist from the strict inequality bound by ε shown

above. Since u∗dist(t) is in the compact set UNa for all t ∈ [t0,∞) and f is continuous

in z and u, we have that f(z(t), u∗dist(t)) is bounded for all t ∈ [t0,∞). From [40],

z(t) is uniformly continuous in t on [t0,∞). Since ‖z − zc‖2Q is uniformly continuous

in z on the compact set {‖z − zc‖ ≤ ε1}, we now have that ‖z(t)− zc‖2Q is uniformly

continuous in t on [t0,∞). Since Q > 0, Barbalat’s Lemma [40] guarantees that

‖z(t)− zc‖ → 0 as t→∞.

Thus, zc is an asymptotically stable equilibrium point of the system (4.5), with region

of attraction Wβ.

Now, for any z(t0) ∈ ZΣ, there exists a finite time T ′ such that z(T ′) ∈Wβ, which

can be shown by contradiction as follows. Suppose z(t) /∈ Wβ for all t ≥ t0. From

equation (4.13), for all t ≥ t0,

V (z(t+ δ))− V (z(t)) ≤ −
∫ t+δ

t

‖z(τ)− zc‖2Q dτ

≤ −δ · inf
{
‖z − zc‖2Q | z /∈ Wβ

}
≤ −δ · γ,

where γ > 0 since V (z) > 0 and Q > 0. By induction, V (z(t)) → −∞ as t → ∞;

however, this contradicts V (z(t)) ≥ 0. Therefore, any trajectory starting in ZΣ enters

Wβ in finite time. Finally, ZΣ is a region of attraction for the closed-loop system (4.5)

since it is a positively invariant set by Lemma 4.2. Moreover, for any z(t) ∈ ZΣ, by

76

absolute continuity of z(t′) in t′ ≥ t0, we can always choose a small neighborhood of

z(t) in which the optimization problem is still feasible. Therefore, ZΣ is open and

connected. �

From equation (4.12), we observe that δ(z(tk)) → 0 as z(tk) → zc. As a con-

sequence, the compatibility constraint gets tighter, and the communication between

neighboring agents must happen with increasing bandwidth, as the agents collectively

approach the control objective. To mitigate these problems, a dual-mode version of

the distributed receding horizon control law is formulated in the next chapter. In

the dual-mode implementation, the closed-loop system will be equation (4.5) until all

agents are in the interior of their terminal constraint sets, at which point each control

is synchronously redefined to be the decoupled linear feedback defined in Assumption

4.3.

4.7 Summary

In this chapter, a distributed implementation of receding horizon control is formu-

lated. The implementation is based first on a single finite horizon optimal control

problem with a specific structure. In particular, a generic quadratic integrated cost

function couples the states of a set of dynamically decoupled subsystems. The de-

coupled dynamics may be nonlinear and heterogeneous. Given this structure, the

problem is decomposed into a set of distributed optimal control problems. The im-

plementation requires the addition of a compatibility constraint in each distributed

optimal control problem. The constraint, a central element in the stability analysis,

ensures that actual and assumed responses of each agent are not too far from one

another. Asymptotic stability is proven in the absence of explicit uncertainty and for

sufficiently fast receding horizon updates. In the next chapter, the distributed imple-

mentation is analyzed in detail. Additionally, relaxations of some of the assumptions

required in this chapter are explored.

77

Chapter 5

Analysis of Distributed Receding

Horizon Control

5.1 Introduction

This chapter analyzes the distributed receding horizon control implementation pre-

sented in Chapter 4 in three different ways. First, the implementation is interpreted

in Section 5.2, giving both qualitative and quantitative comparisons with centralized

implementations. In Section 5.3, alternative ways of formulating the distributed im-

plementation, that still preserve closed-loop stabilization, are explored. Finally, in

Section 5.4, extensions of the theory are discussed in detail, providing an outline of

some of the future work to be investigated. A more general discussion of extensions

of the theory, in terms of its relevance in other disciplines and potential applications,

is given later in Chapter 7.

5.2 Interpretation of the Distributed Receding Hori-

zon Control Law

This section is focused on interpreting the distributed receding horizon control law

presented in Chapter 4 in three ways. First, a qualitative comparison, specifically

of the cost of computation and communication, between centralized and distributed

implementations, is given in Section 5.2.1. Next, the effect of the compatibility con-

78

straint on closed-loop performance is explored in Section 5.2.2. Finally, while the

distributed implementation does not recover the centralized solution of the original

optimal control Problem 2.1 at any receding horizon update, it does correspond to

the solution of a different single optimal control problem, defined in Section 5.2.3.

5.2.1 Comparison with Centralized Implementations

In this section, we give a general comparison, of the computational cost and the cost

of communication, between centralized and distributed implementations of receding

horizon control. While a more quantitative comparison could be made by defining

precise complexity bounds, we leave such details for a future work. The purpose of

this section is not to give quantitative details of comparison, but to give a qualitative

comparison between the two implementations.

For centralized receding horizon control, we mention two possible implementa-

tions. In one version, every agent solves a copy of the centralized problem. In the

absence of explicit uncertainty, every agent gets the same answer, and so stability fol-

lows immediately if the conditions in Chapter 2 are satisfied. The computational cost

is that there are Na copies of the centralized problem, and the size of the centralized

problem itself also depends the number of agents Na. The cost of communication is

that, at every receding horizon update, every agent must receive the initial condition

for all agents. So, even if the agents are sparsely coupled (e.g., each agent is coupled

to at most two other agents), all agents must have access to all other agents current

state in this implementation, independent of whether or not the agents are neighbors.

This implementation is not scalable, in terms of the cost of computation or commu-

nication. It is not computationally scalable because the centralized computational

problem size depends on Na, and therefore the problem is harder for a larger number

of agents. The cost of communication is also not scalable for the same reason.

Another version of the centralized implementation is to assign one agent to solve

the centralized problem at each update. That agent must receive the initial state for

all agents at each update, as in the previous implementation given above. Further,

79

that agent must disseminate the resulting receding horizon control law to every agent.

The individual agents are no longer autonomous in this implementation, since agents

are no longer generating their own control locally. The computational cost for the

computing agent is the same as the corresponding cost for any agent in the centralized

implementation mentioned above. The implementation is, therefore, not computa-

tionally scalable. Additionally, the communication cost now involves not only the

collection of the current state of all agents at the single computing node, but the

transmission of the applied control trajectories to all other agents at every update.

The latter portion of the communication cost is usually more expensive than just cur-

rent state information, depending on how the trajectories are parameterized in the

numerical method for solving the optimization problem. Therefore, the communica-

tion cost in this implementation is not scalable and much more expensive in general

than the corresponding cost of the centralized implementation mentioned above.

Now, we consider the cost of computation and communication for the distributed

implementation given in Chapter 4. In terms of computational cost, each agent

solves a local optimization problem at each update, computing only the optimal

control for itself. Since each agent is computing a control for itself, locally, the

implementation is a control approach that enables autonomy of the individual agents.

Moreover, since each agent is computing a control for only itself, the implementation

is computationally scalable. Specifically, the size of each local optimization problem

is independent of the total number of agents Na. In the local optimization problem

for any agent i, a differential equation is integrated for each neighbor j ∈ Ni. The

computational cost of integrating these differential equations is in general negligible

compared to the cost of solving for the optimal control of agent i. Therefore, the

computational cost for each agent is also independent of |Ni|. The computational

scalability of the distributed implementation is the main advantage over a centralized

implementation.

The cost of communication for the distributed implementation is also scalable.

Recall that, at every update time, each agent must communicate initial states only

with neighbors. Also, between every subsequent pair of updates, each agent must

80

transmit and receive assumed control trajectories, again only with neighbors. Since

this communication is solely between neighboring agents, the associated communi-

cation cost is independent of the total number of agents Na, but dependent on the

size of each neighborhood |Ni| for each agent i. Therefore, the distributed imple-

mentation has a total communication cost that is independent of the total number of

agents Na, and is scalable in that sense, but dependent on the number of neighbors

|Ni| for every agent i. Note that the communication cost associated with globally

synchronous timing is not accounted for here.

In comparison to the cost of communication for the centralized implementations,

an advantage of the distributed implementation is that no single agent needs to com-

municate with all other agents, except in the case that an agent i is coupled to all

other agents (|Ni| = Na − 1). Still, the distributed implementation does involve the

communication of assumed control trajectories. By construction (see Definition 4.5),

it is easy to see that the cost of communicating an assumed control trajectory is equiv-

alent to that of an optimal control trajectory. Recall that only the applied portion

of the optimal control trajectories are communicated to all agents in the centralized

implementation with a single computing node. Also, the centralized implementation

with all agents solving the centralized problem does not require the transmission of

any control trajectories. If the cost of communicating assumed control trajectories

is excessive, there may be cases where the communication cost of either centralized

implementation is comparable or less than than of the distributed implementation.

For example, the cost of communicating the global current state to all agents may be

less than communicating states and control trajectories locally, i.e., within neighbor-

hoods. However, if one assumes that agents can communicate only with neighboring

agents, either centralized implementation requires multi-hop communication, while

the distributed implementation is single-hop. This implies that the distributed im-

plementation has an increasing advantage as the networking environment becomes in-

creasingly distributed and asynchronous, although the analysis in such environments

is still to be done. Moreover, given the significant computational savings that the

distributed implementation provides over the centralized implementations, moderate

81

gain in communication cost is likely not a sufficient justification for the centralized

implementation.

Remark 5.1 The inter-agent communication requirements of the distributed imple-

mentation are clearly more intensive than that of other, more traditional, decentral-

ized feedback control [14]. The tradeoff is that the power of an optimization-based

approach is available, namely, the ability to address performance in the presence of

generic constraints and nonlinearities. If the trajectories are known to be sufficiently

smooth, and polynomial-based approximations are valid, the communication require-

ments need not be substantially worse than that of standard decentralized schemes.

The numerical method applied for the simulation results of the next chapter does

indeed use polynomial parameterizations for the computed trajectories.

In comparison to the centralized receding horizon control implementation, there are

two other important issues elucidated here. Since there are no compatibility con-

straints in the centralized implementation, the effect of these constraints needs to be

determined. For example, the constraints obviously have immediate implications on

the difficulty of the optimization problem. However, since the scale of the central-

ized and distributed problems are so different, it is difficult at this point to make a

computational “degree of difficulty” comparison. As an alternative, it is appropriate

to examine the implications of the compatibility constraints on closed-loop perfor-

mance, and to make comparisons based on these implications. This is done in the

next section, and also in Chapter 6 via numerical experiments.

Another way of comparing the solution to the centralized problem (Problem 2.1)

and the solution to the distributed problems (Problem 4.1) is to realize that the

distributed solution actually solves a modified centralized problem! In that way, the

two centralized problems can be compared to one another. The centralized problem,

to which the distributed implementation is the solution, is formulated in Section 5.2.3.

82

5.2.2 Effect of Compatibility Constraint on Closed-Loop Per-

formance

In Chapter 4, a compatibility constraint is introduced in every distributed optimal

control problem. The constraint is included to mitigate the effect of the discrep-

ancy between what agents plan to do and what their neighbors assume they plan

to do. A natural question is “what effect do these constraints have on closed-loop

performance?” The theory of Chapter 4 says that, for the agents to converge to the

objective state, the update period δ, and consequently the bound on the compatibility

constraint δ2κ, must shrink to zero.

Suppose we choose a fixed small update period, such that the bound δ2κ is also

small. One might expect the transient closed-loop response to be sluggish, since the

state is not permitted to vary too much from the previous response, from one update

to the next. Despite the sluggish transient response, the agents would still eventually

come close to converging to the objective state, according to the theory. On the other

hand, if the compatibility constraint is relaxed by choosing a larger update time,

one might expect the opposite trend, i.e., less sluggish transient response but poor

convergence. This is in fact not the case, as the simulation experiments in the next

chapter show good convergence even in the absence of the compatibility constraints.

Still, sluggish response can result from a sufficiently small bound in each compatibility

constraint, an effect that we now qualitatively demonstrate.

Let NRH ∈ N be some number of receding horizon updates after time t0 such that

NRH · δ ≈ T . The state compatibility constraint for every agent i = 1, ..., Na is

‖zi(t; zi(tk))− ẑi(t; zi(tk))‖ ≤ δ2κ, t ∈ [tk, tk + T].

At the optimum, the computed zi(t; zi(tk)) becomes z∗di(t; zi(tk)), and the constraint

implies

‖z∗di(t; zi(tk))− ẑi(t; zi(tk))‖ ≤ δ2κ, t ∈ [tk, tk + T].

From Definition 4.5, the constraint also implies that, over the subinterval of time

83

[tk, tk−1 + T],

‖z∗di(t; zi(tk))− z∗di(t; zi(tk−1))‖ ≤ δ2κ, t ∈ [tk, tk−1 + T], k = 1, 2,

For k = 1 and at time t = tNRH
, where tNRH

:= t0 + NRH · δ ≈ t0 + T , we therefore

have that

‖z∗di(tNRH
; zi(t1))− z∗di(tNRH

; zi(t0))‖ ≤ δ2κ.

For k = 2 and at time t = tNRH
, we also have that

‖z∗di(tNRH
; zi(t2))− z∗di(tNRH

; zi(t1))‖ ≤ δ2κ.

Applying this recursively up to k = NRH, each at time t = tNRH
, and summing up

both sides of the inequalities gives

NRH∑

k=1

‖z∗di(tNRH
; zi(tk))− z∗di(tNRH

; zi(tk−1))‖ ≤ NRH · δ2κ ≈ Tδκ.

Finally, from the triangle inequality, we have that

‖zi(tNRH
)− z∗di(tNRH

; zi(t0))‖ ≤ Tδκ,

where we use the fact that z∗di(tNRH
; zi(tNRH

)) = zi(tNRH
).

The analysis above shows that the current state, after NRH iterations, deviates

from the original optimal state, at the appropriate point in time, by at most Tδκ.

Thus, the deviation of the current state from the original optimal state at time tNRH

is bounded and proportional to the update period δ. Therefore, when the update

period is small enough to satisfy the theoretical conditions for asymptotic stability,

the compatibility constraints imply the closed-loop trajectory must remain relatively

close to the trajectory computed at initialization! This is not a desirable property as

it implies that the transient response will only be as good as the initial response. In

the absence of the compatibility constraints, more optimal responses than continuing

84

along, or close to, the initial response could be chosen as time proceeds. In this

sense, the compatibility constraint does imply that the transient response will be

more sluggish, particularly for smaller update times.

More generally, the compatibility constraint also takes away from the power of the

receding horizon philosophy, namely, the ability to recompute a new optimal action

based on current conditions, at every receding horizon update. Still, larger values for

the update period than required by the theory achieve good convergence, as observed

in the numerical experiments of Chapter 6. The experiments also indicate that, even

if the compatibility constraints are removed, the distributed implementation is more

sluggish, albeit only slightly, than the centralized implementations. The reason is

that, at each update, agents rely on information that is suboptimal, namely, agents

assume their neighbors will keep doing what was previously optimal. Since agents

are relying on “old intensions” for their neighbors, the overall closed-loop response is

inherently more sluggish than the centralized implementation, even without enforcing

the compatibility constraints.

5.2.3 Distributed Implementation Solves a Modified Central-

ized Problem

In contrast to the parallelization techniques discussed in Section 1.1.3, the distributed

implementation does not recover the centralized solution of the original optimal con-

trol Problem 2.1. In fact, the original optimal control problem required no additional

compatibility constraints, while the distributed optimal control problems do require

these constraints in theory. Still, it is possible to define a single modified optimal

control problem for which the centralized solution is exactly the distributed solution.

Denote û = (û1, ..., ûNa
) where each component is given by Definition 4.5. Collect-

ing the distributed optimal control problems, we have the following modified problem.

Problem 5.1 At any update time tk, k ∈ N, given z(tk) and û(s; z(tk)) for all

85

s ∈ [tk, tk + T], find

J∗
Σ(z(tk), T) = min

u(·)
JΣ(z(tk), u(·), T),

where JΣ(z(tk), u(·), T) is equal to

∫ tk+T

tk

γ

(
Na∑

i=1

Lz
i (zi(τ ; zi(tk)), ẑ−i(τ ; z−i(tk))) + ‖u(τ ; z(tk))‖2R

)
dτ

+ γ‖z(tk + T ; z(tk))− zc‖2
P̂
,

subject to

ż(s; z(tk)) = f(z(s; z(tk)), u(s; z(tk)))

˙̂z(s; z(tk)) = f(ẑ(s; z(tk)), û(s; z(tk))),

u(s; z(tk)) ∈ UNa

z(s; z(tk)) ∈ ZNa

maxi {‖zi(s; zi(tk))− ẑi(s; zi(tk))‖} ≤ δ2κ





s ∈ [tk, tk + T],

z(tk + T ; z(tk)) ∈ Ω(ε) := Ω1(ε1)× · · · × ΩNa
(εNa

).

By construction, the assumed trajectories also satisfy the constraints û(s; z(tk)) ∈
UNa and ẑ(s; z(tk)) ∈ ZNa . Since the compatibility constraint in Problem 4.1 uses the

Euclidean norm, we require that the maximum distance between actual and assumed

state trajectories, for all agents, be bounded by δ2κ. This is achieved by using the

maxi function in the problem above. If each compatibility constraint in Problem 4.1

used the ‖ · ‖∞ norm instead, i.e., the component-wise maximum, then the compati-

bility constraint above would simply be replaced by ‖z(s)− ẑ(s)‖∞ ≤ δ2κ. Note that

the optimal value function J∗
Σ(z(tk), T) for the problem above is exactly the same

function used in the stability analysis in the previous sections.

Thus, the distributed receding horizon control law is also the centralized receding

horizon control law for the problem above. It might be speculated that one could use

86

alternative choices for û and still preserve this problems distributed structure and the

stability analysis of the previous sections. However, it was exactly the choice defined

in Definition 4.5 for û that enabled the stability result. Specifically, the choice enabled

the comparison between the net cost of previously optimal plans and the net cost of

currently optimal plans. It is precisely this comparison that leverages most stability

proofs of receding horizon control, including [11, 32, 49]. In general, therefore, other

choices for û will not preserve this improvement property in comparing the net cost

from one update to the next.

5.3 Alternative Formulations

In this section, alternative formulations of the distributed receding horizon control

implementation presented in Chapter 4 are explored. First, a dual-mode version of

the distributed receding horizon control law is given in Section 5.3.1. This version

alleviates the problem of requiring the update period δ to shrink to zero, a property

required in the main stability result Theorem 4.1 that guarantees convergence to

the objective state. The dual-mode version permits a fixed, positive upper bound

on the update period, whereby the agents can converge to a compact neighborhood

of the objective state and henceforth apply decoupled feedback controllers. After

the dual-mode version is formulated, exchanging assumed state information between

neighbors, as opposed to assumed control information, is discussed. Finally, in Section

5.3.3, the implications of replacing each state compatibility constraints with a control

compatibility constraint is explored.

5.3.1 Dual-Mode Distributed Receding Horizon Control

To construct the dual-mode version, we will make use of the monotonicity of J ∗
Σ(z(tk), T)

for guaranteeing invariance properties of the distributed receding horizon control law.

In particular, under the conditions of Theorem 4.1, J ∗
Σ(z(tk), T) monotonically de-

creases until z(tk) = zc. Therefore, the concatenated state z(tk) is contracting, in

some norm-sense, at each receding horizon update. The control switch must there-

87

fore rely on a test on the entire state z(tk) to guarantee all agents are in their terminal

constraint sets. A sufficient test is to determine if z(tk) ∈ Ω̂(εmin), where

Ω̂(εmin) :=
{
z ∈ R

2nNa : ‖z − zc‖2
P̂
≤ εmin, εmin = min

i
εi

}
.

If this holds, then

‖z(tk)− zc‖2
P̂

=
Na∑

i=1

‖zi(tk)− zc
i ‖2Pi
≤ εmin =⇒ ‖zi(tk)− zc

i ‖2Pi
≤ εmin, ∀ i = 1, ..., Na,

guaranteeing all agents are in their terminal constraint sets. Under stated assump-

tions, we will show that ‖z(tk) − zc‖2W is contracting with each update, where the

positive definite, symmetric weighting W will be defined more precisely below. Since

the contraction is happening with a different norm-weighting than P̂ , we require a

sufficient test on the W -weighted quadratic term to guarantee that z(tk) ∈ Ω̂(εmin)

holds. Recall that λmax(Q0) is the maximum eigenvalue of any square matrix Q0, and

let λmin(Q0) denote the minimum eigenvalue of Q0. Observe that if

‖z(tk)− zc‖2W ≤
λmin(W)εmin

λmax(P̂)
, (5.1)

then we have

λmin(W)‖z(tk)− zc‖2 ≤ λmin(W)εmin

λmax(P̂)
=⇒ ‖z(tk)− zc‖2

P̂
≤ εmin.

The test on the W -weighted quadratic term is more conservative than testing for

z(tk) ∈ Ω̂(εmin) directly. However, since the W -weighted term is shown to strictly

decrease for the closed-loop system, we are guaranteed invariance, i.e., once equation

(5.1) is true, it remains true for all future time. Positive invariance is required as it

will take some time for the agents to agree, in a distributed way, that they are in the

set Ω̂(εmin).

It is required that δ be no larger than a value, denoted δmax, that guarantees

monotonic decrease of the value function J ∗
Σ(z(tk), T) so that equation (5.1) holds

88

after some finite time. Now, we assume some quadratic bounds on the function J ∗
Σ and

show convergence of a sequence such that equation (5.1), and hence z(tk) ∈ Ω̂(εmin),

is guaranteed to hold after some finite number of iterations, from any feasible state

at initialization.

Assumption 5.1 For any z ∈ ZΣ, there exists positive constants k1, k2 ∈ R, k2 > k1,

and positive definite, symmetric matrix W ∈ R
nNa×nNa such that

k1‖z − zc‖2W ≤ J∗
Σ(z, T) ≤ k2‖z − zc‖2W ,

where

k2 > δmaxλmin(Q)/λmax(W),

k2 − k1 ≤ δmaxλmin(Q)/(2λmax(W)),

and δmax is defined as

δmax =
(γ − 1)c

[2κT + K(ρmax + umax)] (γ + 1)ρmaxλmax(Q)
∑Na

i=1N
2
a

,

and

c ,

∑Na

i=1N
2
i

N2
a

(
λmin(W)

λmax(W)

)
λmin(Q)εmin

2λmax(P̂)
.

Additionally, we assume that K(ρmax + umax) ≥ 2κT .

The requirement that k2 > δmaxλmin(Q)/λmax(W) is not too restrictive, since the

right-hand side is a small number in general. The requirement that k2 − k1 ≤
δmaxλmin(Q)/(2λmax(W)) means k2 is close to k1. Equivalently, this means that

J∗
Σ(z, T) basically exhibits quadratic growth, with a W -weighted norm. In the anal-

ysis that follows, it is not required to know the values of k2 and k1, so they do not

need to be estimated. Since δmax is to be computed and used in practice, it will be

required to estimate the ratio λmin(W)/λmax(W). More simply, if a reasonable lower

89

bound on this ratio can be computed, the bound can be used to define c, although

this results in more conservatism. Aside from computing the ratio, or a lower bound

on it, the weighting matrix W does not need to be computed.

The ratio
∑
N2

i /N
2
a in c is solely an artifact of the bounding argument used in

proving the lemma below. The final condition in the assumption, i.e., K(ρmax +

umax) ≥ 2κT , is stated to simplify the analysis below and is not restrictive. The

following lemma guarantees that, with the bounding assumptions above, setting δ =

δmax results in a desirable invariance property for the closed-loop system.

Lemma 5.1 Under Assumptions 4.2–5.1, for a given fixed horizon time T > 0 and

for any state z(t−1) ∈ ZΣ at initialization, if the update period δ = δmax, then for the

closed-loop system (4.5) there exists a finite integer l ∈ N at which z(tl) ∈ Ω̂(εmin)

and z(tk) ∈ Ω̂(εmin) for all k ≥ l.

Proof: As in the proof of Theorem 4.1, combining Lemma 4.3 and Lemma 4.4, the

monotonicity condition on J∗
Σ(z(tk), T), for any k ∈ N, is

J∗
Σ(z(tk+1), T)− J∗

Σ(z(tk), T) ≤ −
∫ tk+δ

tk

‖z∗dist(τ ; z(tk))− zc‖2Q dτ,

when δ ∈ (0, δ(z(tk))], with δ(z(tk)) defined in equation (4.12). The upper bound

δmax on δ must have the structure of equation (4.12) for the monotonicity equation

above to be valid. From the Taylor series approximation in Assumption 4.6, we have

∫ tk+δ

tk

‖z∗dist(τ ; z(tk))− zc‖2Q dτ

≈ δ‖z(tk)− zc‖2Q + δ2(z(tk)− zc)TQf(z(tk), u
∗
dist(tk; z(tk))).

From the assumed bounds, we can bound the second term as

−(z(tk)− zc)TQf(z(tk), u
∗
dist(tk; z(tk)))

≤ λmax(Q)‖z(tk)− zc‖ ‖f(z(tk), u
∗
dist(tk; z(tk)))‖

≤ λmax(Q)(Naρmax)KNa(ρmax + umax).

90

Substitution into the monotonicity equation gives

J∗
Σ(z(tk+1), T)− J∗

Σ(z(tk), T)

≤ −δ‖z(tk)− zc‖2Q + δ2ρmax(ρmax + umax)KN 2
aλmax(Q)

≤ −δ λmin(Q)

λmax(W)
‖z(tk)− zc‖2W + δ2ρmax(ρmax + umax)KN 2

aλmax(Q).

Using the bounds on J∗
Σ(z(tk), T) from Assumption 5.1 we have

k1‖z(tk+1)− zc‖2W

≤
[
k2 − δ

λmin(Q)

λmax(W)

]
‖z(tk)− zc‖2W + δ2ρmax(ρmax + umax)KN 2

aλmax(Q).

Denoting yk = ‖z(tk)− zc‖2W ∈ [0,∞), and setting δ = δmax, we rewrite this as

yk+1 ≤ ρyk + φ, where ρ =
k2 − δmaxλmin(Q)/λmax(W)

k1

,

and φ = δ2
maxρmax(ρmax + umax)KN 2

aλmax(Q)/k1.

From Assumption 5.1, k2 > δmaxλmin(Q)/λmax(W) and

k2 − k1 ≤ δmaxλmin(Q)/(λmax(W)2) < δmaxλmin(Q)/λmax(W),

which implies 0 < ρ < 1. Considering the sequence yk+1, which is bounded for each

k ∈ N, by ρyk + φ, we observe that

y∞ = lim
k→∞

yk+1 ≤ lim
k→∞

[
ρky0 + φ

(
k−1∑

i=0

ρi

)]
=

φ

1− ρ.

Also, we can bound the ratio φ/(1− ρ) as

φ

1− ρ =
δ2
maxρmax(ρmax + umax)KN 2

aλmax(Q)

k1 + δmaxλmin(Q)/λmax(W)− k2

≤ 2δmaxρmax(ρmax + umax)KN 2
aλmax(W)λmax(Q)/λmin(Q),

91

where the inequality uses the assumed upper bound on k2 − k1. Substitution for

δmax gives an expression that can further be bounded as follows. First, observe that

(γ − 1) < (γ + 1) for any γ > 1. Also, assuming K(ρmax + umax) ≥ 2κT implies that

K(ρmax + umax)

2κT + K(ρmax + umax)
≤ 2.

Now, we can bound the sequence limit as

φ

1− ρ ≤
cN2

aλmax(W)

λmin(Q)
∑Na

i=1N
2
i

=
λmin(W)εmin

2λmax(P̂)
,

where the last equality follows from the definition of c. Therefore, denoting y∞ =

‖z(t∞)− zc‖2W , we have

‖z(t∞)− zc‖2W ≤ λmin(W)εmin

2λmax(P̂)
=⇒ ‖z(t∞)− zc‖2

P̂
≤ εmin

2
,

and so z(t∞) is in the interior of Ω̂(εmin). Moreover, for any yk = ϑ+φ/(1−ρ), where

ϑ ∈ (0,∞), the sequence bound yk+1 ≤ ρyk + φ guarantees strict monotonic decrease

of the sequence. The reason is ρyk + φ − yk = −(1 − ρ)yk + φ = −(1 − ρ)ϑ, and so

yk+1 ≤ yk − (1 − ρ)ϑ. In particular, once yk ≤ 2φ/(1 − ρ), we are guaranteed that

z(tk) ∈ Ω̂(εmin) holds, since the factor of 2 simply removes the 1/2 in the implication

above.

Now, there is a finite integer l ∈ N for which yl ≤ 2φ/(1 − ρ). If this were not

the case, yk+1 ≤ yk − (1 − ρ)ϑ would hold for all k ∈ N, which implies yk → −∞
as k → ∞. However, this contradicts the fact that yk ≥ 0 for all k ∈ N. Therefore,

there exists a finite integer l ∈ N for which yl ≤ 2φ/(1− ρ). Also, since the sequence

is required to continue to decrease up to at most the limit bound on φ/(1 − ρ), we

have positive invariance as well. This concludes the proof. �

Remark 5.2 If the update period δ is less than δmax, then the analysis above still

holds, provided the bound on the difference k2 − k1 in Assumption 5.1 is tightened

92

by replacing δmax by δ.

For the control switch to occur synchronously between the agents, we require a dis-

tributed means of determining when equation (5.1) holds. Since Lemma 5.1 guaran-

tees monotonic decrease in the W -norm sense, we shall cast the test in terms of the

W -norm. Although this incurs more conservatism, it implies that the agents will not

come to agreement unless they have all reached the state for which all subsequent

receding horizon updates render Ω̂(εmin) a positively invariant set of the closed-loop

system.

Distributed Consensus Algorithm for Synchronous Control Switching [59].

The algorithm defined here is a distributed means of determining when equation

(5.1) holds. By distributed, we mean each agent communicates only with neighboring

agents. For the algorithm to converge, a minimum number of information exchanges

is required. We elect to have a separate sample rate for this algorithm. Over the time

interval [tk, tk+1), we assume neighboring agents will communicate Ns times, using

notation

τk,l = tk + δ(l/Ns), l = 0, 1, ..., Ns − 1,

to denote the times at which neighbors exchange information.

To define the dynamics of the switch mechanism, we introduce some notation.

At any algorithm update time τk,l and for any agent i, let xi(τk,l) ∈ R
+ be a non-

negative scalar value. Also, denote ε0 = εmin/λmax(P̂) and ψ = λmax(W)/λmin(W),

where W is the weighting matrix defined in Assumption 5.1. As with the definition of

c in Assumption 5.1, a reasonable upper bound for this ratio, or equivalently a lower

bound on λmin(W)/λmax(W), could be used in the place of ψ below. The algorithm

is as follows. For every agent i = 1, ..., Na:

1. At any time τk,0 = tk, set

xi(τk,0) = Naψ‖zi(tk)− zc
i ‖2,

transmit xi(τk,0) and receive xj(τk,0) from each neighbor j ∈ Ni.

93

2. For each time τk,l, l = 1, 2, ..., Ns − 1,

(a) set

xi(τk,l) = xi(τk,l−1) +
ζ

Ns

∑

j∈Ni

(xj(τk,l−1)− xi(τk,l−1)) ,

where ζ > 0, and

(b) transmit xi(τk,l) and receive xj(τk,l) from each neighbor j ∈ Ni.

3. Define xi(τk,Ns
) according to the equation in 2(a) above. If

xi(τk,Ns
) ≤ ε0 − ε,

where ε is a specified tolerance satisfying 0 < ε � ε0, then switch at time tk+1

and exit the algorithm. Otherwise, return to 1. End of algorithm.

Under the conditions stated in a lemma below, namely if Ns is sufficiently large, then

|xi(τk,Ns
)− Ave(x(tk))| ≤ ε, ∀i = 1, ..., Na,

where

Ave(x(tk)) =
1

Na

Na∑

i=1

xi(tk) = ψ

Na∑

i=1

‖zi(tk)− zc
i ‖2 = ψ‖z(tk)− zc‖2.

From this, we have

ψ‖z(tk)− zc‖2 − ε ≤ xi(τk,Ns
) ≤ ψ‖z(tk)− zc‖2 + ε.

Therefore, the test in part 3 of the algorithm guarantees that

‖z(tk)− zc‖2W ≤ λmin(W)ε0

and equation (5.1) holds.

94

Lemma 5.2 For a specified tolerance ε, satisfying 0 < ε� ε0, the distributed consen-

sus algorithm for synchronous control switching converges in Ns iterations provided

that

• Ns > ζdm, where dm is the maximum node degree of the graph G, and

• denoting λ = 1 − (ζ/Ns)λ2(L), where L is the Laplacian of the graph G and

λ2(L) is the second largest eigenvalue of L,

Ns ≥
log ε− log d0

log λ
, d0 =

[
Na∑

i=1

(xi(τk,0)− Ave(x(tk)))
2

]1/2

,

where d0 denotes a measure of initial disagreement.

It is proven in [59] that the eigenvalue λ2(L) bounds the rate of convergence of the

average consensus algorithm in continuous time. Converting to discrete time, the

convergence bound becomes λ defined above, and the first condition in the lemma

implies 0 < λ < 1. The lemma says that if Ns is sufficiently large, every agent will

meet the tolerance specified in the algorithm. Therefore, the test in step 3 of the

algorithm implies the agents agree to synchronously switch to the linear feedback

controllers only if equation (5.1) holds, i.e., if all agents are in the interior of their

terminal constraint sets. Note that if d0 ≤ ε, consensus has been reached from the

initial values for each xi, and the algorithm would terminate in one iteration. The

results of the lemma presumes that initially d0 > ε, as is the case in practice. With

0 < λ < 1 and d0 > ε, the second condition on Ns provides a lower bound that is

positive.

Remark 5.3 Since Ns will be large in general, the communication requirements

between receding horizon updates will be demanding for the algorithm to converge.

To alleviate this, observe that from the invariance property stated in Lemma 5.1,

we know that once equation (5.1) holds, it will continue to hold. As such, it is

possible to communicate once every receding horizon update. This is done by defining

τkNs,l = tkNs
+δl, so step 1 is entered every δNs seconds. The tradeoff of course is that

95

the algorithm will take considerably more time to converge. A sample rate between

these two extremes could be used, one that is appropriate for the given bandwidth

limitations.

We now define the dual-mode distributed receding horizon controller.

Definition 5.1 (Dual-mode distributed receding horizon controller)

Data: Initial state z(t−1) ∈ ZΣ, horizon time T > 0, update time δ = δmax.

Initialization: At time t−1, follow the procedure given in Definition 4.4, yeiding

a control for time t ∈ [t−1, t0).

Controller :

1. For time t ∈ [t0, t1), employ the distributed receding horizon control law

u∗dist(t; z(t0)).

2. At any time tk, k ∈ N:

(a) If the distributed consensus algorithm has converged (step 3), employ

the decoupled linear feedbacks defined in Assumption 4.3 for all time

t ≥ tk. Else:

(b) Employ the distributed receding horizon control law u∗
dist(t; z(tk)) for

time t ∈ [tk, tk+1).

Lemma 5.1 guarantees that, under the assumptions, the inequality in equation (5.1)

will hold after a finite number l ∈ N of receding horizon updates. Under the condition

of Lemma 5.2, the agents will agree to switch at time tl+1 to the decoupled linear

feedback controllers. Since equation (5.1) holds, the agents are known to be in a set

for which these feedbacks are asymptotically stabilizing. Therefore, the dual-mode

distributed receding horizon controller results in asymptotic stability with region of

attraction ZΣ. Formally, we now state this as the second main theorem.

Theorem 5.1 Under Assumptions 4.2–5.1 and under the conditions of Lemma 5.2,

for a given fixed horizon time T > 0 and for any state z(t−1) ∈ ZΣ at initialization,

96

if the update period δ = δmax, then zc is an asymptotically stable equilibrium point

of the closed-loop system resulting from the dual-mode distributed receding horizon

controller, and ZΣ is a region of attraction.

Remark 5.4 The distributed receding horizon control law of Theorem 4.1 requires

that all agents have the following information available: the horizon time T , the

update period δ, and all parameters in the computation for δ(z(tk)) in equation (4.12),

which includes the centralized computation of ‖z(tk)− zc‖2Q at each receding horizon

update. The dual-mode distributed receding horizon control law of Theorem 5.1

requires that all agents have the following information available: the horizon time T ,

all parameters in the computation for δmax in Assumption 5.1, and the parameters for

the distributed consensus algorithm, satisfying the conditions in Lemma 5.2. Clearly,

both controllers require some centralized information; however, the dual-mode version

does not require any online centralized computations. We note that for the controller

of Theorem 4.1, another consensus algorithm could be incorporated for distributed

computation of ‖z(tk)− zc‖2Q at each receding horizon update.

5.3.2 Alternative Exchanged Inter-Agent Information

The distributed optimal control problems here require only the assumed state trajec-

tories from each neighbor. As such, neighboring agents could instead exchange as-

sumed state trajectories, rather than assumed control trajectories. The result would

be that agents would then not have to integrate the equations of motion for each

neighboring agent, and also not require a separate transmission to obtain the ini-

tial condition for each neighboring agent. The result is simplification in the optimal

control computations; however, if n > m, the communication cost is greater when ex-

changing assumed state trajectories. To generalize, the tradeoff between exchanging

control or state trajectory information, in terms of both communication and compu-

tation requirements, should dictate how the needed assumed information should be

attained.

97

If there is uncertainty in the models that agents have of one another, the choice

of exchanged information also has implications on robustness. For example, suppose

each agent uses a high fidelity model of itself and low fidelity models of its neighbors

in each local optimization problem. In that case, the assumed information about

a neighbor will be less accurate if the low fidelity model of that neighbor is used

to generate the needed trajectories than if the high fidelity trajectories are directly

communicated between neighbors. Now, the tradeoff is between the combination of

computational cost, communication bandwidth and accuracy of assumed information.

As a final remark, we note that the computations required to integrate the model of

every neighbor, to generate the needed assumed trajectories, are negligible compared

to the computation required to find the optimal control for each agent.

5.3.3 Alternative Compatibility Constraint

We now discuss some implications of replacing each state compatibility constraint

with a control compatibility constraint, as done in previous work [17, 18]. The state

compatibility constraint is

‖zi(t; zi(tk))− ẑi(t; zi(tk))‖ ≤ δ2κ, t ∈ [tk, tk + T],

whereas the control compatibility constraint would be

‖ui(t; zi(tk))− ûi(t; zi(tk))‖ ≤ δ2κ, t ∈ [tk, tk + T].

It is the proof of Lemma 4.3 that requires a bound on the norm of the difference

between the assumed state trajectories and the actual state trajectories. Given the

control constraint, and by application of Gronwall-Bellman inequality, the difference

98

can be bounded as

‖zi(t; zi(tk))− ẑi(t; zi(tk))‖

≤
∫ t

tk

‖fi(zi(τ ; zi(tk)), ui(τ ; zi(tk)))− fi(ẑi(τ ; zi(tk)), ûi(τ ; zi(tk)))‖ dτ

≤
∫ t

tk

K (‖zi(τ ; zi(tk))− ẑi(τ ; zi(tk))‖+ ‖ui(τ ; zi(tk))− ûi(τ ; zi(tk))‖) dτ

≤ Kδ2κ(t− tk) +

∫ t

tk

K‖zi(τ ; zi(tk))− ẑi(τ ; zi(tk))‖ dτ

≤ Kδ2κ

{
(t− tk) +K

∫ t

tk

(τ − tk) exp[K(t− τ)] dτ

}

= δ2κ {exp[K(t− tk)]− 1} .

The resulting constant ξ is then redefined to be

ξ = 2γκρmaxλmax(Q)T

{
exp[KT]− (TK + 1)

K

} Na∑

i=1

Ni(Ni − 1).

With the control compatibility constraint, ξ clearly grows faster with horizon time T ,

with the same growth relation to the other parameters as before. The upper bound

on the update period δ, defined as δmax or δ(z(tk)) in equation (4.12), is proportional

to 1/(ξ + c), where c is a constant. Therefore, for a given κ and δ that satisfies the

theoretical bounds, the compatibility constraint bound δ2κ could be larger by using

the state constraint, rather than the control constraint, when T is large.

From the analysis above, the control compatibility constraint implies

‖zi(t; zi(tk))− ẑi(t; zi(tk))‖ ≤ δ2κ {exp[K(t− tk)]− 1} ,

while the state compatibility constraint is

‖zi(t; zi(tk))− ẑi(t; zi(tk))‖ ≤ δ2κ,

for all time t ∈ [tk, tk + T]. Observe that exp[K(t − tk)] − 1 > 1 is equivalent to

99

t− tk > ln(2)/K. Therefore, the control constraint is more conservative than the state

constraint when t ∈ [tk, tk + ln(2)/K), in that the computed state is required to be

closer to the assumed state over that time interval. The interval [tk, tk + ln(2)/K) is

part of the actual closed-loop system, since each optimized trajectory is implemented

for t ∈ [tk, tk + δ). The impact that this has on the evolution of the closed-loop

system will be discussed below. Now, the control constraint is less conservative than

the state constraint when t ∈ (tk + ln(2)/K, tk + T]. It is likely that T � ln(2)/K, in

which case we observe that the state compatibility constraint requires a tighter bound

on the state deviation, than does the control compatibility constraint, over most of

the time interval. A controllability interpretation of the equations above is that: 1)

the state compatibility constraints imply a fixed limit on controllability, while 2) the

control compatibility constraints imply that controllability is initially zero and grows

exponentially with time.

Now, consider the impact of the two compatibility constraints on the evolution of

the closed-loop system. In Section 5.2.2, the effect of the state compatibility constraint

on the closed-loop state response is explored. From that section, we defined NRH ∈ N

as the number of receding horizon updates after time t0 such that NRH · δ ≈ T . At

time t = tNRH
, where tNRH

:= t0 +NRH · δ ≈ t0 +T , the state compatibility constraint

implies that

‖zi(tNRH
)− z∗di(tNRH

; zi(t0))‖ ≤ Tδκ.

In comparison, the control compatibility constraint results in

‖zi(tNRH
)− z∗di(tNRH

; zi(t0))‖ ≤ Tδκ {exp[δK]− 1} .

Now, the current state at time tNRH
deviates from the original optimal state by at most

Tδκ {exp[δK]− 1}. If δ < ln(2)/K, then the control compatibility constraint requires

the closed-loop state trajectory to remain closer to the initialized trajectory than

does the state compatibility constraint. With the new version for ξ above, resulting

from the control constraint, it turns out that δ < α/K, with α ∈ (0, 1) in general,

implying δ < ln(2)/K indeed holds. Therefore, obeying the sufficient conditions in the

100

theory implies that the receding horizon controller will resemble the initial open-loop

solution more when using the control compatibility constraint.

As a final comment for this section, the choice of compatibility constraint should

ultimately be dictated by the degree of difficulty each imposes on the optimization

algorithm. The state version, for example, must compete with the terminal con-

straint on the state, as well as the other state constraints, implicit (dynamics) and

explicit. The control version, in our formulation, has to be explicitly conducive only

with the control bounds, and implicity with constraints on the state through the

dynamics. This suggests that the control version may be preferable for numerical

reasons. Numerical experiments in the next chapter show that for coupling in the

cost function, both compatibility constraints perform comparably, numerically and

in terms of closed-loop performance. In the next section, coupling constraints are

discussed. It turns out that for inter-agent coupling state constraints, only the state

compatibility constraint makes sense in general, to maintain feasibility and stability

of the closed-loop system.

5.4 Extensions of the Theory

In this section, we discuss extensions to the theory presented in Chapter 4. First,

minimal conditions on the coupling integrated cost function are stated such that the

decomposition exists and such that the theoretical properties of Chapter 4 are pre-

served. The conditions are minimal in the sense that we presume as little as possible

about the form of the coupling cost function. Next, the possibility of coupling con-

straints between neighboring agents is considered. Finally, an implementation with

locally synchronous timing requirements is described. A discussion on connections

with other fields and future application areas is postponed until Chapter 7.

5.4.1 A General Coupling Cost Function

In the theory of the previous sections, neighboring agents are coupled by terms in the

integrated cost function. While the generalization of the form of the integrated cost

101

in Section 4.3 is restricted to quadratic, more general forms of the cost function are

possible. For example, a non-quadratic coupling cost that is relevant for multi-vehicle

formation stabilization and for which the decomposition is straightforward is given

at the end of Chapter 6. In this section, we explore a generalization of the coupling

integrated cost.

We begin with a single optimal control problem, for which there is defined an

integrated cost function L : R
nNa×R

mNa → R that is twice continuously differentiable

and satisfies

L(z, u) ≥ 0, ∀(z, u) ∈ R
nNa × R

mNa , and L(z, u) = 0 if and only if (z, u) = (zc, 0).

As before, we are interested in stabilizing the dynamics to the equilibrium point zc

with 0 = f(zc, 0).

By definition, a function l(x, y) is additively separable (or just separable) in x

and y if there exists functions lx and ly such that l(x, y) = lx(x) + ly(y). A necessary

condition for separability of a cost that is twice continuously differentiable is that

∂2l(x,y)
∂x∂y

= 0 for all x and y. For simplicity, we assume that the single cost on the

control is additively separable, using the notation

L(z, u) = Lz(z) +
Na∑

i=1

Lu
i (ui).

Consequently, we are interested in generic conditions for decomposing a general state

dependent cost Lz. First, we can define what it means for any two agents to be coupled

in the state dependent cost. To simplify things, we make the following assumption.

Assumption 5.2 The cost Lz(z) is the sum of separable and nonseparable terms,

each of which is nonnegative.

Definition 5.2 Agents i1, ..., iM ∈ {1, ..., Na}, 2 ≤ M ≤ Na, are coupled if there

exists a nonnegative term in the cost Lz(z) that depends on at least one compo-

nent of every vector zi1 , ..., ziM and the term is not additively separable in any such

components.

102

The definition rules out looking at the zero function as coupling any subset of agents,

since zero is additively separable. Consistent with previous notation, let Ni be the

set of neighbors of agent i, where each neighbor is coupled to i in the cost function

Lz(z) in the sense of Definition 5.2. From the definition, it is clear that i ∈ Nj if and

only if j ∈ Ni, for any i, j ∈ {1, ..., Na}. As before, let z−i = (zj1 , ..., zj|Ni|
) be the

concatenated vector of states of the neighbors of i, and denote Ni := |Ni| + 1. We

make another assumption without loss of generality.

Assumption 5.3 Every agent is coupled to at least one other agent, i.e., for every

agent i ∈ {1, ..., Na}, Ni ≥ 2.

By definition, every agent i ∈ {1, ..., Na} is coupled to agents j1, ..., j|Ni| ∈ Ni by

nonseparable terms in Lz(z) and is coupled to no agents in the set {1, ..., Na} \ Ni.

Proposition 5.1 There exists a nontrivial cost function Lz
i : R

nNi → R for every

agent i ∈ {1, ..., Na} such that

Lz(z) =
Na∑

i=1

Lz
i (zi, z−i) and Lz

i (zi, z
c
−i) = 0 ⇒ zi = zc

i .

Proof: For any agent i coupled to agents j1, ..., jMi
∈ Ni, for some Mi with 1 ≤

Mi ≤ |Ni|, denote the nonseparable coupling term as gi which exists and is nontrivial

by Definition 5.2 and the assumption above. Further, there may be terms in Lz that

are additively separable and depend only on components of zi for any agent i. Now,

define each Lz
i as the sum of every separable term in Lz that depends solely on zi (if

such terms exist) and every nonseparable coupling term in Lz that depends on zi and

neighbors of i, normalizing each such term by the total number of agents coupled in

the term (e.g., gi/(Mi + 1) for the general coupling term gi). By construction, the

sum of the Lz
i functions recovers the cost Lz.

Now, Lz
i (zi, z

c
−i) = 0 always has at least the solution zi = zc

i . This follows since

the Lz
i functions sum to give Lz and Lz(zc) = 0. It remains to show that this is the

unique solution. Let z̄i be the vector of states of all agents that are not i and not in

Ni, i.e., not neighbors of i. Next, define the function L̄z
i (z−i, z̄i) := Lz(z)−Lz

i (zi, z−i),

103

i.e., L̄z
i is all terms in Lz excluding those in Lz

i . Clearly, L̄z
i does not depend on zi. By

assumption, we have Lz(zi, z
c
−i) = 0, which holds for any z̄i. Setting the state of every

agent in z̄i to its equilibrium value, and denoting the resultant vector z̄c
i , we know

that Lz(zc) = Lz
i (z

c
i , z

c
−i) + L̄z

i (z
c
−i, z̄

c
i) = 0 and therefore L̄z

i (z
c
−i, z̄

c
i) = 0. So, setting

z̄i = z̄c
i and z−i = zc

−i, we have by assumption that Lz
i (zi, z

c
−i)+ L̄z

i (z
c
−i, z̄

c
i) = 0, which

implies that

L(zc
1, ..., z

c
i−1, zi, z

c
i+1, ..., z

c
Na

) = 0.

Since L(z) = 0 if and only if z = zc, we have that Lz
i (zi, z

c
−i) = 0 implies zi = zc

i . �

Proposition 5.1 is an existence statement, and the proof constructs a specific function

Lz
i for each i. By construction, each such function is unique. A different choice for

the weighting of each nonseparable coupling term, i.e., one other than normalizing

by the number of agents coupled in the term, can be chosen, provided the weighting

preserves the summation in the proposition. It is also noted that the second part of

Proposition 5.1 can be considered a detectability condition.

The decomposition can now be performed in terms of the unique cost functions

Lz
i constructed in the proof of Proposition 5.1. The decomposition is stated as a

definition, similar to Definition 4.1.

Definition 5.3 The distributed integrated cost function for each agent i ∈ {1, ..., Na}
is defined as

L(zi, z−i, ui) = γ [Lz
i (zi, z−i) + Lu

i (ui)] ,

where γ ∈ (1,∞).

From Proposition 5.1 and the definition above, L(zi, z
c
−i, ui) = 0 if and only if zi = zc

i

and ui = 0.

Remark 5.5 It may be that an agent i is coupled to all other agents {1, ..., Na}\{i}.
In that case, the communication cost may be prohibitive and multi-hop information

exchanges may be required. When accounting for delays and information loss due

to communication, however, the multi-hop situation will not in general perform as

well as when every agent has a direct link to every neighbor. The effects of real-time

104

communication delays and loss, in single and multi-hop situations, will be part of the

ongoing research in this area.

In many multiagent systems, coupling between agents also occurs in constraints. In

the next section, we explore the implications of coupling state constraints on the

distributed receding horizon control implementation.

5.4.2 Inter-Agent Coupling Constraints

We now discuss an approach for handling constraints that couple states of neighbors.

Assume that Z ⊆ R
nNa is the centralized state constraint set. The set Z should first

be broken up into constraint sets Zi, one for each agent. For the moment, let z̄i =

(z1, ..., zi−1, zi+1, ..., zNa
), i.e., z̄i ∈ R

n(Na−1) is the vector z excluding the subvector

zi. Assume that Z is defined by a set of inequalities, which for any i = 1, ..., Na can

be broken up into two sets of inequalities: those that depend on components of zi,

and those that do not. The two sets are identified by the constraint vector functions

gi(zi, z−i) ≤ 0 and ḡi(z̄i) ≤ 0, where the “≤” is here meant to hold for each component

of the constraint vectors. As such, we have

Z =
{
z ∈ R

nNa : gi(zi, z−i) ≤ 0 and ḡi(z̄i) ≤ 0, for any i = 1, ..., Na

}
.

Finally, we have the definition for each Zi as

Zi =
{
(zi, z−i) ∈ R

nNi : gi(zi, z−i) ≤ 0
}
.

Remark 5.6 By assumption, there are no constraints in Z that couple the states

of agents that are not neighbors, i.e., that are not already coupled in the integrated

cost function. This assumption is not required for the results to remain valid. It is

acceptable for the “neighbor” relationship to be defined through coupling constraints,

rather than through coupling in the cost function.

Inter-agent coupling state constraints are possible by using the state compatibility

constraint in each local optimal control problem and when the following assumption

105

holds.

Assumption 5.4 For every i = 1, ..., Na, given Zi and the associated constraint

vector function gi(zi, z−i) ∈ R
ni , there exists a constant vector ci = (ci1, ..., c

i
ni

) ∈ R
ni

such that the set

Ẑi = {(zi, z−i) ∈ Zi : gi(zi, z−i) ≤ −ci}

is not empty and

(zi(t; zi(tk), ẑ−i(t; z−i(tk))) ∈ Ẑi =⇒ (zi(t; zi(tk), z−i(t; z−i(tk))) ∈ Zi,

for all t ∈ [tk, tk + T].

The conditions above presume it is possible to make the constraints more conservative

such that enforcing them locally, with assumed state trajectories for neighbors, results

in constraint satisfaction with the actual state trajectories. The added conservatism,

in reducing the upper bound on every gi function, is required to mitigate the deviation

between actual and assumed state trajectories, which still occurs but is bounded

by each compatibility constraint. An example is now provided to clarify what the

constant ci can look like.

Example 5.1 For second-order vehicle dynamics, each state is partitioned as zi =

(qi, q̇i), and every vehicle has a collision avoidance constraint with every neighboring

vehicle, in the form

ρmin ≤ ‖qi(t; zi(tk))− qj(t; zj(tk))‖, for each j ∈ Ni, ∀t ∈ [tk, tk + T],

where ρmin is the minimum separation distance. Now, define ci = (ci1, ..., c
i
|Ni|

) with

every cij = κδ2. In the ith local optimal control problem, for any i, the collision

avoidance constraints are incorporated as

ρmin − ‖qi(t; zi(tk))− q̂j(t; zj(tk))‖ ≤ −cij, for each j ∈ Ni, ∀t ∈ [tk, tk + T].

106

The result is that, for each neighbor j ∈ Ni,

ρmin + κδ2 ≤ ‖qi(t; zi(tk))− q̂j(t; zj(tk))‖

≤ ‖qi(t; zi(tk))− qj(t; zj(tk))‖+ ‖q̂j(t; zj(tk))− qj(t; zj(tk))‖

≤ ‖qi(t; zi(tk))− qj(t; zj(tk))‖+ κδ2,

which implies that the actual trajectories respect the original collision avoidance

constraint. Note that the result still holds for any ci
j ≥ κδ2, provided the assumption

on the vector ci still holds. This concludes the example.

By assuming that the constraints can be made more conservative by incorporating the

negative constant vector ci, we are not able to handle equality constraints. However,

such constraints can sometimes be eliminated by a change of variables, or, if the

components cij are small (as they would be in the example above since δ is required

to be small), acceptable relaxations on equality constraints can be achieved.

In the simulation results of the next chapter, inter-agent coupling comes only in the

integrated cost function, and good closed-loop performance is observed with and with-

out enforcing the compatibility constraint. When coupling constraints are present,

however, compatibility constraints are required to ensure feasibility, at initialization

and all subsequent receding horizon updates. This is an important observation, since

feasibility must surely be addressed prior to stability or performance. To elucidate

this point, we look at another example.

Example 5.2 1 Consider the following two agent, centralized optimal control prob-

1Thanks to Eric Klavins for inspiring this example.

107

lem

min
u1(·), u2(·)

∫ T

0

‖q1(τ)‖2 + ‖q2(τ)− d‖2 dτ

q̇1(t) = u1(t), q1(0) = d,

q̇2(t) = u2(t), q2(0) = 0,

‖q1(t)− q2(t)‖ ≥ ρmin

q1(T) = 0, q2(T) = d,

were qi(t) ∈ R
2 for i = 1, 2, d = (1, 0) ∈ R

2, T = 3 and ρmin < 1. The objective is for

the agents to switch positions in time T while not colliding. The distributed optimal

control problem for agent 1 is

min
u1(·)

∫ T

0

‖q1(τ)‖2 dτ

q̇1(t) = u1(t), q1(0) = d,

‖q1(t)− q̂2(t)‖ ≥ ρmin + c1

q1(T) = 0,

for positive constant c1 and with the problem similarly defined for agent 2. We assume

in the following that ρmin + ci < 1 for both i = 1 and 2. An initially feasible control

for the agents is given by

u1(t; q1(0)) =





(0,−1), t ∈ [0, 1)

(−1, 0), t ∈ [1, 2)

(0, 1), t ∈ [2, T]

, u2(t; q2(0)) =





(0, 1), t ∈ [0, 1)

(1, 0), t ∈ [1, 2)

(0,−1), t ∈ [2, T]

.

By this control, the agents travel in straight lines, safely avoiding collision and with

a minimum separation distance of 2, which occurs at time T/2. Now, with t−1 =

0, define ûi(t; qi(t−1)) = ui(t; qi(0)), for both i = 1 and 2. The optimization at

108

initialization without the state compatibility constraint results in

u∗d1(t; q1(t−1)) = −1/T, and u∗d2(t; q2(t−1)) = 1/T,

for all t ∈ [t−1, t−1 + T]. That is, each agent assumes the neighbor will apply the

initially feasible control, making it safe (feasible) to apply the simpler control of going

in a straight line to the desired location. The resulting actual trajectories, however,

are infeasible! Consequently, after application of the first portion of the control, at

the next update time t0 = δ, the agents cannot use the new assumed control as a

feasible control, as it would result in collision constraint violation. If instead, each

local optimal control problem incorporated the additional compatibility constraint

‖qi(t; qi(tk))− q̂i(t; qi(tk))‖ ≤ δ2κ, t ∈ [tk, tk + T], ∀k = −1, 0, 1, 2, ...,

where δ2κ ≤ ci, the optimal solution of each problem can be used to generate the next

assumed control per Definition 4.5, at every receding horizon update, with guaranteed

feasibility. This concludes the example.

5.4.3 Locally Synchronous Timing

In this section, we explore means of removing the requirement that the local optimal

control problems be solved globally synchronously. Instead, over any interval [tk, tk+1),

the ith optimal control problem is assumed to be solved at time τk,i ∈ [tk, tk+1). To

facilitate the analysis, we assume that each agent solves with a fixed update interval

δ as before, so τk+1,i = τk,i + δ, for every i = 1, ..., Na and all k ∈ N.

In the absence of uncertainty and ignoring the effects of computation and commu-

nication delays, a locally synchronous version is not too difficult to construct. First,

the assumed control trajectories are redefined to include all of the optimal control

plus the terminal controller, as follows.

Definition 5.4 (Assumed Control) For each agent i = 1, ..., Na and for any k ∈
N, the assumed control associated with update time τk,i is denoted ûi(·; zi(τk,i)) :

109

[τk,i, τk+1,i + T]→ U , defined as follows:

ûi(τ ; zi(τk,i)) =





u∗di(τ ; zi(τk,i)), τ ∈ [τk,i, τk,i + T)

Ki

(
zK

i (τ − τk,i − T ; zK
i (0))− zc

i

)
, τ ∈ [τk,i + T, τk+1,i + T]

,

where zK
i (0) = z∗di(τk,i + T ; zi(τk,i)), and zK

i (s; zK
i (0)) is the closed-loop solution to

żK
i (s) = (Ai +BiKi)(z

K
i (s)− zc

i), s ≥ 0, given zK
i (0).

The corresponding assumed state trajectory is denoted ẑi(τ ; zi(τk,i)), for all τ ∈
[τk,i, τk+1,i + T]. The state compatibility constraint in the ith local optimal control

problem is kept the same, which in terms of the new notation becomes

‖zi(τ ; zi(τk,i)− ẑi(τ + δ; zi(τk−1,i))‖ ≤ δ2κ, τ ∈ [τk,i, τk,i + T]. (5.2)

The locally synchronous implementation logic is now defined.

Definition 5.5 (Distributed Locally Synchronous Algorithm) For each agent i =

1, ..., Na, at every receding horizon update time τk,i, k ∈ N, the agent:

1. senses its own current state zi(τk,i) and senses or receives the current state

zj(τk,i) of each neighbor j ∈ Ni,

2. computes the assumed state trajectory ẑj(τ ; zj(τk,i)), τ ∈ [τk,i, τk,i +T], for each

neighbor j ∈ Ni, using the available assumed control as follows:

if τk,j ≤ τk,i, use ûj(τ ; zj(τk,j)), τ ∈ [τk,i, τk,i + T]

if τk,j > τk,i, use ûj(τ ; zj(τk−1,j)), τ ∈ [τk,i, τk,i + T],

3. computes the optimal control trajectory u∗di(τ ; zi(τk,i)), τ ∈ [τk,i, τk,i + T],

4. computes the assumed control and state trajectory ûi(τ ; zi(τk,i)) and ẑi(τ ; zi(τk,i)),

τ ∈ [τk,i, τk+1,i + T], and

5. transmits ûi(·; zi(tk)) to every neighbor j ∈ Ni.

110

Between receding horizon update times [τk,i, τk+1,i), for every k ∈ N, each agent

i = 1, ..., Na:

1. implements the current optimal control u∗di(τ ; zi(τk,i)), τ ∈ [τk,i, τk+1,i), and

2. receives assumed controls from each neighbor j ∈ Ni at time τk,j, if τk,j > τk,i,

or at time τk+1,i otherwise.

The implicit assumptions that are required to implement the algorithm above are the

following:

• computation and communication delays are negligible;

• each agent can receive current state information for every neighbor at the every

associated update time.

The timing is locally synchronous in that each agent need only know when the latest

assumed control trajectory is received from every neighbor, relative to the next update

time. Given the assumed trajectory and the time is was received, the agents can

generate the appropriate assumed state information for neighbors, according to step

2 in the algorithm procedure at each update time.

Now, the update windows of any two agents overlap each other. Consequently,

agents have an assumed trajectory for each neighbor that matches the actual trajectory

over the overlap time period. More precisely, take agent i updating at time τk,i, with

assumed control from neighbor j ∈ Ni received at time τk,j < τk,i. Over the interval

[τk,i, τk+1,j], agent i has the actual state trajectory for agent j. For the remainder of

the time interval, i.e., [τk+1,j , τk,i + T], agent i has the assumed state trajectory for

neighbor j, which deviates at most by δ2κ from the actual state trajectory, according

to equation (5.2). Thus, the bounding argument in the stability analysis should follow

along the same lines as before. The details of the analysis are left for future work.

111

5.5 Summary

In this chapter, the distributed receding horizon control implementation is quali-

tatively and quantitatively compared to a centralized implementation. The main

tradeoff is that, while the distributed implementation provides substantial scalable

savings in computation over the centralized implementation, the addition of the com-

patibility constraints results in a more sluggish closed-loop response. Alternative

ways of formulating the distributed implementation, while still preserving closed-loop

stabilization, are explored in this chapter as well.

Extensions of the theory for handling inter-agent coupling state constraints is also

discussed. When the constraints can be made more conservative in the local optimal

control problems, to account for discrepancy between assumed and actual trajectories,

the state compatibility constraints can guarantee that initial feasibility implies sub-

sequent feasibility of the actual closed-loop trajectories. The initialization phase of

the distributed implementation, however, now requires a better guess for the assumed

controls, namely, one that is known to be feasible for the coupling constraints. Still,

this requirement is no stronger than that imposed on the centralized implementation;

if the centralized problem has an initial feasible solution, subsequent feasibility can

be ensured. If an initially feasible solution to the centralized problem is available, it

could be used to define the assumed controls at initialization in the distributed case.

Finally, a distributed implementation with locally synchronous timing require-

ments is explored. Practically, this is the most likely situation in the general dis-

tributed problem. The algorithm stated for this case relied on negligible computation

and communication delays. In the extreme, an asynchronous algorithm that ac-

counted for computation and communication delays could be developed. There are

receding horizon control formulations that have explored the effects of computational

delay (see Section 2.3.1). However, the effect of communication delays over networks

on control algorithms, optimization-based or not, poses many interesting challenges

that are beginning to be explored only in recent years.

In the next chapter, formations of vehicles are stabilized using the centralized

112

and distributed receding horizon control. The simulations reveal that for a fixed,

small value for the update period δ, convergence is obtained with good accuracy

for both implementations. Moreover, the closed-loop performance of the distributed

implementation is comparable to that of the centralized implementation.

113

Chapter 6

Receding Horizon Control of

Multi-Vehicle Formations

6.1 Introduction

Cooperative receding horizon control of multiple autonomous vehicles is considered

in this chapter. The objective of the vehicles is to achieve a specific formation, one

that associates a precise location for every vehicle. Here, cooperation has an offline

phase and an online phase, for both centralized and distributed implementations of

receding horizon control. For both implementations, vehicles are assigned roles in the

formation offline. The roles are defined by coupling terms in the cost function of a

centralized optimal control problem. For a distributed implementation of receding

horizon control, decomposition into local optimal control problems, as well as the

inclusion of compatibility constraints, is also done offline. The online phase requires

dynamic coordination of vehicles, i.e., exchanging information to realize the control

objective. For the centralized implementation, one vehicle must solve the problem at

each update, requiring the collection of current state information of every vehicle and

the dissemination of the control laws to every vehicle. Alternatively, every vehicle

could solve a copy of the centralized problem, in which case every vehicle must attain

the current state of all vehicles at each update. For the distributed implementation,

coordination only happens between vehicles that are coupled in the local optimal

control problems, i.e., vehicles that are neighbors. The specific coordination involves

114

sharing assumed control trajectories, as prescribed by the distributed implementation

algorithm in Chapter 4.

An outline of this chapter is as follows. The formation stabilization objective

is first defined, which in turn yields the cost function and the centralized optimal

control problem. Next, the distributed optimal control problems are defined for the

distributed implementation. Numerical experiments are then provided to compare the

centralized and distributed implementations. Additionally, simulations with a naive

attempt to relax the communication requirements of the distributed implementation,

via sharing less information, are examined. An alternative formulation to the multi-

vehicle formation problem is discussed and the chapter is concluded with summarizing

remarks.

6.2 Formation Stabilization Objective

In this section, we present the system dynamics and constraints and define the con-

trol objective. To facilitate analysis, we consider only linear dynamics. For ease of

reference, we also restate the relevant definitions and assumptions necessary for the

theoretical results on centralized and distributed receding horizon control given in

Chapter 2 and Chapter 4, respectively.

We wish to stabilize a group of vehicles toward a common objective in a cooper-

ative way using receding horizon control. Each vehicle is assumed to have dynamics,

described by an ordinary differential equation, completely decoupled from all other

vehicles. Specifically, for i = 1, ..., Na vehicles, the state and control of vehicle i are

zi(t) = (qi(t), q̇i(t)) ∈ R
2n and ui(t) ∈ R

n, respectively, and the dynamics are given

by

żi(t) = Aizi(t) +Biui(t), t ≥ 0, zi(0) given

where Ai =


 0 I(n)

0 0


 , Bi =


 0

I(n)


 .

115

The matrix I(n) is the identity matrix of dimension n. Each vehicle i is also subject

to the input constraints ui(t) ∈ U . The set UN is the N -times Cartesian product

U × · · · × U . Concatenating the states and inputs into vectors as q = (q1, ..., qNa
),

q̇ = (q̇1, ..., q̇Na
), z = (z1, ..., zNa

) and u = (u1, ..., uNa
) ∈ UNa , the dynamics are

equivalently

ż(t) = Az(t) +Bu(t), t ≥ 0, z(0) given, (6.1)

where A = diag(A1, ..., ANa
), B = diag(B1, ..., BNa

). Define the invertible map U :

R
2nNa → R

2nNa as 
 q

q̇


 = Uz.

Note that U is a unitary matrix, so UTU = I.

Definition 6.1 The control objective is to cooperatively asymptotically stabilize all

vehicles to zc = (zc
1, ..., z

c
Na

), an equilibrium point of equation (6.1), with equilibrium

control equal to zero.

The cooperation is achieved by the minimization of the cost function defined below.

The control objective for each vehicle i is thus to stabilize to zc
i while cooperating

with neighboring vehicles. The position values at zc are denoted qc = (qc
1, ..., q

c
Na

),

and the equilibrium velocity is clearly zero.

Assumption 6.1 The following holds:

(i) U ⊂ R
n is compact, convex and contains the origin in its interior;

(ii) each vehicle i can measure the full state zi, there is no uncertainty, and computa-

tional time is negligible compared to the evolution of the closed-loop dynamics.

In the absence of constraints, linear quadratic optimal control could be used to meet

the cooperative control objective.

The multiple vehicle formation is here defined by a set of relative vectors that

connect the desired locations of the vehicles. The desired formation can in turn be

116

viewed as a graph, as in [19, 62]. For example, consider a desired formation of ve-

hicles in Figure 6.1, where the position components of qi are denoted (xi, yi) ∈ R
2.

The left figure shows the vector structure associated with the formation. The num-

d
q

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

y

x

2

3

���
���
���
���
���

���
���
���
���
���

5

�����
�����
�����
�����

�����
�����
�����
�����6

�����
�����
�����
�����

���
���
���
���

	�	�	
	�	�	
	�	�	
	�	�	

�

�

�

�

.

4

1

7

y

x

d
q

���
���
���
���

���
���
���
���

�

�

�

�

���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

1

6

5

3

2

7

4

Figure 6.1: Seven-vehicle formation: vector structure on the left, and resulting for-
mation on the right.

bers correspond to vehicle identity and a line segment between two numbers is a two

dimensional relative vector. The dot in the center of the figure is the center of geom-

etry of vehicles 1, 2 and 3. Given a desired location for this center of geometry, and

the relative vectors between vehicles as shown, this formation designates a globally

unique location for each of the vehicles. To generalize, a formation of Na vehicles is

uniquely defined given Na− 1 relative vectors, such that each vehicle is at one end of

at least one vector, and 1 vector (denoted qd) designating a desired center of geometry

location for a subset of the vehicles. The vehicles used to relate to qd are called the

core vehicles, consistent with the definition in [56]. The figure on the right shows the

associated vehicle formation, where the core vehicles are denoted by white triangles,

and all other vehicles are denoted by black triangles. The tracking objective is being

achieved for some formation path, defined by R 3 t 7→ (qd(t), q̇d(t)) ∈ R
4.

We now generalize the description of the formation as a graph. The vector for-

mation graph is defined as G = (V , E), where V = {1, 2, ..., Na} is the set of vehicles

and E ⊂ V × V is the set of relative vectors between vehicles, where an edge in the

graph is an ordered pair (i, j) ∈ E for every relative vector between vehicles i, j ∈ V .

117

All graphs considered are undirected, so (i, j) ∈ E ⇒ (j, i) ∈ E . Two vehicles i and j

are called neighbors if (i, j) ∈ E . The set of neighbors of vehicle i is denoted Ni ⊂ V .

In addition, although any two core vehicles may not have a relative vector between

them in the formation, we consider all core vehicles to be neighbors of one another,

as they are all coupled through the tracking objective.

Let E0 denote an orientation of the set E , where E0 ⊂ E contains one and only one

of the two permutations of (i, j), for all (i, j) ∈ E . Also, without loss of generality, we

take the core vehicles to be 1, 2 and 3, which is the case in Figure 6.1. To reiterate,

although it may be that (2, 3) /∈ E , as in the case of the example in Figure 6.1, vehicle

3 ∈ N2 and 2 ∈ N3 since 2 and 3 are core vehicles and thus coupled through the

tracking objective.

Assumption 6.2 The undirected vector formation graph G is connected.

If the formation graph is not connected, there exists a vehicle whose desired location

is not uniquely specified by the graph, in addition, the cost function that we define

would additively separate into more that one coupled cost function. For a connected

graph and resulting cost function defined below, the centralized receding horizon

control law involves a single coupled optimal control problem that will be given in

the next section. The connectivity assumption clearly holds for the example in Figure

6.1.

Remark 6.1 When the minimal number of relative vectors is used to define the

formation, |E0| = Na − 1. It may be that more vectors are added to the formation

description, provided they are consistent with the existing vectors, as described below.

Generally, we shall denote |E0| = M , M ≥ Na − 1. In graph theory, assuming the

graph is connected implies M ≥ Na − 1 [5].

Let e1, ..., eM denote an ordering of the elements of E0. Also, the tail of the edge ei,

denoted t(ei), is the first element in the corresponding ordered pair and the head of

the vector h(ei) is the second element. In the case of Figure 6.1, let

E0 = {e1, e2, e3, e4, e5, e6} = {(1, 2), (1, 3), (1, 6), (1, 7), (3, 4), (5, 6)}.

118

For example, we have t(e3) = 1 and h(e3) = 6.

Definition 6.2 The desired relative vector between any two neighbors i and j is

denoted dij ∈ R
n, where it is understood that qc

i +dij = qc
j . All desired relative vectors

are constant vectors, in length and orientation, and satisfy the following consistency

conditions:

• For all (i, j) ∈ E , dij = −dji.

• When M > Na − 1, if (i, j), (j, l) and (i, l) are in E , then dij + djl = dil.

Definition 6.3 Given an admissible oriented formation graph G = (V , E0) and a

formation path, the formation vector F = (f1, ..., fM+1) ∈ R
n(M+1) has components

fl ∈ R
n defined as

fl = qi − qj + dij, where i = t(el), j = h(el), ∀l = 1, ...,M,

fM+1 = q
Σ
− qd, q

Σ
=

1

3
(q1 + q2 + q3).

For a stabilization objective, q̇d(t) = 0, ∀t ∈ R, and to be compatible with the control

objective, qd = (qc
1 + qc

2 + qc
3)/3. Clearly, the vehicles are in formation when F ≡ 0.

Write the linear mapping from q to F as:

F = Gq + d̂, GT =
[
C(n) V

]
. (6.2)

The vector d̂ = (..., dij, ...,−qd) has the ordering of the vectors dij consistent with the

definition of F . The matrix V T = [V1 . . . VNa
] ∈ R

n×nNa has elements Vi ∈ R
n×n

defined as

Vi =





1
3
I(n), if i = 1, 2, 3

0, otherwise,
.

The matrix C(n) ∈ R
n(Na×M) is related to the incidence matrix C ∈ R

Na×M , where

the elements of C = [cij] are defined in terms of the elements of the oriented edge set

119

E0 as

cij =





+1, vertex i = t(ej)

−1, vertex i = h(ej)

0, otherwise

.

The matrix C(n) is defined by replacing each element of C with that element multiplied

by I(n). The incidence matrix for the example in Figure 6.1 is

C =




1 1 1 1 0 0

−1 0 0 0 0 0

0 −1 0 0 1 0

0 0 0 0 −1 0

0 0 0 0 0 1

0 0 −1 0 0 −1

0 0 0 −1 0 0




.

In defining the cost function for the optimal control problem, the following propo-

sition is useful.

Proposition 6.1 The matrix G in equation (6.2) has full column rank, equal to

dim(q) = nNa.

Proof: Since the vector formation graph is connected, the incidence matrix C has

rank (Na − 1) [5]. Scaling the entries of C with the identity matrix I(n) implies the

rank of C(n) is equal to n(Na − 1). The matrix V in equation (6.2) has full column

rank equal to n, and each column vector is linearly independent from the column

vectors in C(n). Thus, G has rank nNa, which is the column dimension of the matrix.

�

From the definition of the formation vector, we know that Gqc = −d̂ and so

‖F‖2 = (G(q − qc))TG(q − qc) = ‖q − qc‖2GT G.

In the following we penalize ‖F‖2 and ‖q̇‖2 in the centralized cost function. To define

120

the objective in terms of the state z, we have that


 G(q − qc)

q̇


 = ĜU(z − zc), where Ĝ =


 G 0

0 I(nNa)


 .

As a result, we have

‖F‖2 + ‖q̇‖2 = ‖z − zc‖2
ĜT Ĝ

.

In the next section, the optimal control problem associated with the multiple vehicle

formation stabilization objective is defined for centralized and distributed receding

horizon control.

6.3 Optimal Control Problems

In this section, we define the receding horizon control law that achieves the cooperative

control objective, using both centralized and distributed implementations.

6.3.1 Centralized Receding Horizon Control

The centralized integrated cost function of interest is

L(z, u) =
∑

(i,j)∈ E0

ω‖qi − qj + dij‖2 + ω‖q
Σ
− qd‖2 + ν‖q̇‖2 + µ‖u‖2,

with positive weighting constants ω, ν and µ. We refer to the term ω‖q
Σ
− qd‖2 as

the tracking cost, although we are concerned with stabilization.

Remark 6.2 For collision avoidance, an appropriate cost function between any two

vehicles is defined in [56]. Alternatively, to guarantee avoidance, collision avoidance

can be cast as a constraint, as in [63]. We do not incorporate any type of collision

avoidance in this chapter, although coupling constraints between neighboring vehicles

could be accommodated as discussed in Section 5.4.

121

From the previous section, we also have that

L(z, u) = ‖z − zc‖2Q + µ‖u‖2, Q =


 ωGTG 0

0 νI(nNa)


 . (6.3)

From Proposition 6.1, Q is positive definite and clearly symmetric. The centralized

optimal control problem, receding horizon control law, and sufficient conditions for

stabilization are stated in Chapter 2.

6.3.2 Distributed Receding Horizon Control

In this section, the distributed receding horizon control law is stated for the multi-

vehicle formation objective. In the centralized integrated cost, the non-separable

terms ‖qi−qj +dij‖2, for all (i, j) ∈ E0, as well as the tracking term ‖q
Σ
−qd‖2, couple

the states of neighboring vehicles. Recall that the set of neighbors of each vehicle i is

denoted Ni, also referenced by the subscript −i, where z−i denote the vector of states

of the neighbors of i. Also, let q−i = (qj1 , ..., qj|Ni|
) and u−i = (uj1 , ..., uj|Ni|

), where

the ordering is consistent with z−i.

Definition 6.4 The distributed integrated cost in the optimal control problem for

any vehicle i = 1, ..., Na is defined as

Li(zi, z−i, ui) = Lz
i (zi, z−i) + γµ‖ui‖2,

where Lz
i (zi, z−i) = γ

[
∑

j∈Ni

{ω
2
‖qi − qj + dij‖2

}
+ ν‖q̇i‖2 + Ld(i)

]
,

γ > 1, Ld(i) =





ω
3
‖q

Σ
− qd‖2, i = 1, 2, 3

0, otherwise.

Thus,
∑Na

i=1 Li(zi, z−i, ui) = γL(z, u) = γ
[
‖z − zc‖2Q + µ‖u‖2

]
.

From the definition, the distributed integrated cost for any vehicle i includes one-half

of each relative vector penalty coupling i with each neighbor j ∈ Ni, the velocity and

control penalties for i, and, if i is one of the three core vehicles (1, 2 or 3), one-third

122

of the tracking penalty. In addition, all terms are multiplied by a common factor γ,

a constant greater than one. In the proof of stability, the key structure is that the

sum of the distributed integrated costs equals the centralized cost multiplied by γ.

Remark 6.3 The stability results of Chapter 4 do not depend on equal weighting

of terms between neighboring vehicles. What is required is that the distributed inte-

grated costs sum up to be the centralized cost, multiplied by a factor (γ) greater than

one. The weighting will of course affect the performance of the closed-loop system,

so making the weights lop-sided would result in one vehicle reacting more to the term

than the corresponding neighbor. Note that in the limit that one vehicle takes the

entire term, while the other ignores the term, we have a leader-follower effect.

Given the distributed integrated cost as defined above, the distributed optimal control

problems and the distributed implementation algorithm are as stated in Chapter 4.

The initialization procedure used in the simulations is given by Definition 4.4, where

initially each vehicle assumes that neighbors apply zero control and the compatibility

constraint is removed by setting κ to a large number.

6.4 Numerical Experiments

A simulation of a four-vehicle formation is presented in this section. While the scale of

the problem is small, the simulation serves primarily to compare the centralized and

distributed implementations. The use of the control compatibility constraint, in place

of the state compatibility constraint (see Section 5.3.3 for description and discussion)

is also explored. Additionally, in an attempt to alleviate the communication demands

in the distributed implementation of transmitting assumed control trajectories, we

explore the performance when each vehicle assumes that neighbors apply zero control

at every update, in which case neighbors need only share initial conditions.

The dimension of the position vector for all vehicles is two (n = 2). The control

constraint set is defined as

U =
{
(u1, u2) ∈ R

2 : −1 ≤ uj ≤ 1, j = 1, 2
}
.

123

The objective is a “fingertip formation” that tracks the reference trajectory (qref(t), q̇ref(t)) ∈
R

4, defined as

qref(t) =





(t, 0), t ∈ [0, 10)

(10, 10− t), t ∈ [10,∞)
, (6.4)

where t0 = 0 in the notation of the previous sections. The acceleration q̈ref(t) is zero

for all time except at t = 10 seconds. The expression “finger-tip formation” describes

the relative location of the four vehicles. Specifically, one vehicle is in front, with

two others behind and forming an isosceles triangle with the vehicle in front. The

fourth and final vehicle is behind one of the two trailing vehicles, forming a line with

both the front vehicle and the vehicle trailing the front vehicle. The reference to

“finger-tip” is made because the formation resembles the relative location of finger

tips of a hand that is flat with fingers held together. The front vehicle resembles the

tip of the middle finger, and so on.

To be consistent with the cooperative stabilization objective, we rewrite the system

dynamics in error form. In particular, the error system for any vehicle i has state

(qe,i, q̇e,i) , (qi − qref, q̇i − q̇ref) and dynamics q̈e,i = ui. The jump in the reference

velocity at time t = 10 serves to examine how well the error dynamics are stabilized

for two different legs of the reference trajectory. Equivalently, the problem is to

stabilize the error dynamics from an initial condition at time 0, and then again from

the current state at time 10.

To eliminate any offset between the center of geometry of the formation and the

reference trajectory, we set the formation path to qd(t) = (0, 0) for all t ≥ 0. The

vector formation graph is defined by vertices V = {1, 2, 3, 4} and relative vectors

E = {(1, 2), (1, 3), (2, 4)}. As in the generalization of Section 6.2, the core vehicles

associated with the tracking cost are {1, 2, 3}. The relative vectors are defined for the

124

two legs of the reference trajectory as

d12 = d24 =





(−2, 1), t ∈ [0, 10)

(1, 2), t ∈ [10,∞)
, d13 =





(−2,−1), t ∈ [0, 10)

(−1, 2), t ∈ [10,∞)
.

The common rotation in the vectors at time t = 10 is match the heading of the

fingertip formation with the heading of the reference trajectory. The initial conditions

for each vehicle are given as q1(0) = (−1, 2), q2(0) = (−4, 0), q3(0) = (−2, 0) and

q4(0) = (−7,−1), with q̇i(0) = (0, 0) for each vehicle i ∈ V . In both centralized

and distributed receding horizon implementations, a horizon time of T = 5.0 seconds

is used. Unless stated otherwise, the update period is δ = 0.5 seconds. Also, the

following weighting parameter values are consistent in both implementations: ω = 2.0,

ν = 1.0 and µ = 2.0. As stated, collision avoidance is not incorporated in the optimal

control problems, either by cost or constraint. In all simulation results presented, no

collisions were observed to occur.

To solve the optimal control problems numerically, we employ the Nonlinear Tra-

jectory Generation (NTG) software developed at Caltech. A detailed description of

NTG as a real-time trajectory generation package for constrained mechanical sys-

tems is given in [52]. The package is based on finding trajectory curves in a lower

dimensional space and parameterizing these curves by B-splines. Sequential quadratic

programming (SQP) is used to solve for the B-spline coefficients that optimize the per-

formance objective, while respecting dynamics and constraints. The package NPSOL

[25] is used to solve the SQP problem. In the all simulations that follow, the two

position variables for each vehicle are parameterized as output curves in NTG. In

particular, every optimal control problem is discretized by 21 breakpoints over two

intervals (3 knot points), and the curves are represented as 5th order piecewise poly-

nomials that are twice continuously differentiable at the knot points. Note that the

update time in receding horizon implementations should occur at a breakpoint to

guarantee that the constraints are satisfied at the new initial condition of each up-

date. This is the case here, as 21 breakpoints over 5 seconds occur every 0.25 seconds,

125

with the update occurring 0.5 seconds into each 5 second trajectory.

6.4.1 Centralized Implementation

For the centralized receding horizon control law, parameter values in the optimal

control problem must be chosen to guarantee that Assumption 2.2 is true. For the

weights chosen above, K is defined as the linear quadratic regulator and P the corre-

sponding stable solution to the algebraic Riccati equation. Choosing α = 0.4 implies

that the assumption (i) is true. To prove this, define y = z − zc and observe that

yTPy ≤ α ⇔ λmax(P)yTPy ≤ λmax(P)α ⇒ yTP 2y ≤ λmax(P)α

⇒ yTPBBTPy ≤ λmax(P)α ⇔ yTKTKy ≤ λmax(P)α

µ2
.

Choosing α ≤ µ2/λmax(P) ≈ 0.4 guarantees that ‖Ky‖2 ≤ 1. Finally, the latter

condition guarantees that K(z − zc) ∈ UNa for all z ∈ Ω(α), since each component

of Ky will be between -1 and 1 for all time. The centralized receding horizon control

of the fingertip formation is shown in Figure 6.2. The four closed-loop position

−5 0 5 10

−10

−8

−6

−4

−2

0

2

4

X motion (m)

Y
 m

ot
io

n
(m

)

Position Space

1
2
3
4

Figure 6.2: Fingertip formation response in position space using centralized receding
horizon control.

126

trajectories of the vehicles are shown in the figure, with each vehicle depicted by

a triangle. The heading of any triangle shows the direction of the corresponding

velocity vector. The symbols along each trajectory mark the points at which the

receding horizon updates occur. The legend identifies a symbol with a vehicle number

for each trajectory. The triangles show the position and heading of each vehicle at

snapshots of time, specifically at 0.0, 6.0, 12.0 and 18.0 seconds.

Also shown at these instants of time are the reference trajectory position qref(t),

identified by the black square, and the average position of the core vehicles q
Σ
(t),

identified by the yellow square. The tracking part of the cooperative objective is

achieved when q
Σ
(t) = qref(t), i.e., when the two squares are perfectly overlapping.

At time 6.0, the vehicles are close to the desired formation, and the squares are nearly

overlapped, indicating that the tracking objective is being reached. After 8.0 seconds,

the formation objective has been met to a numerical precision of 0.01, which is the

value of the the optimal cost function at that time. At time 12.0, the snapshot shows

the formation reconfiguring to the change in heading of the reference trajectory which

occurred at time 10.0. At time 18.0, the objective has again been met and the optimal

cost function has a numerical value of less that 0.01.

The receding horizon control law time history for vehicle 3 is shown in Figure

6.3. At receding horizon updates, the control is not required to initially match the

last control value applied. Consequently, the resulting closed-loop control will be

discontinuous in general. The figure shows greater discontinuity during the transient

phase of the closed-loop response, with the largest discontinuity occurring at time 0.0

and at time 10.0, when the reference trajectory changed heading.

6.4.2 Distributed Implementation

For the distributed receding horizon implementation, the initial state at time 0.0 is

used for initialization, as described in Definition 4.4. In terms of the notation, we

thus have t−1 = 0.0. Regarding the conditions in Assumption 4.3, we first choose

Qi = λmax(Q)I(4), where λmax(Q) ≈ 6.85. As in the centralized case, Ki is defined as

127

0 2 4 6 8 10 12 14 16 18

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (sec)

C
on

tr
ol

 (m
/s

ec
2)

Receding Horizon Control of Agent 3

Figure 6.3: Centralized receding horizon control law time history for vehicle 3.

the linear quadratic regulator and Pi the corresponding stable solution to the algebraic

Riccati equation. Following the steps above, we can show that αi = 0.33 guarantees

that the conditions in the Assumption 4.3 will hold. Finally, we set γ = 2 in the

cost functions of the distributed optimal control problems. The distributed receding

horizon controller is applied for all time and switching to the decoupled feedbacks is

not employed.

Before employing the distributed receding horizon control law defined in Section

6.3.2, we investigate the performance of the closed-loop system with κ = +∞. That

is, we have exactly the distributed implementation except that the compatibility

constraint is not enforced. The closed-loop fingertip formation response is shown in

Figure 6.4 and the receding horizon control law time history for vehicle 3 is shown in

Figure 6.5. As before, the triangles in Figure 6.4 show the position and heading of

each vehicle at the time snapshots of 0.0, 6.0, 12.0 and 18.0 seconds. The performance

is very close to that of the centralized implementation. At snapshot time 6.0, the

formation is slightly lagging the reference, compared to the centralized version. At

time 18.0, the formation objective is close to being met, and for slightly more time

128

−5 0 5 10 15

−10

−8

−6

−4

−2

0

2

4

X motion (m)

Y
 m

ot
io

n
(m

)

Position Space

1
2
3
4

Figure 6.4: Fingertip formation response using distributed receding horizon control
without compatibility constraints (κ = +∞).

0 2 4 6 8 10 12 14 16 18

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (sec)

C
on

tr
ol

 (m
/s

ec
2)

Receding Horizon Control of Agent 3

Figure 6.5: Distributed receding horizon control law time history for vehicle 3, without
compatibility constraints (κ = +∞).

the same precision as the centralized implementation is achieved. In comparing the

control time histories for vehicle 3, the centralized controller response is for the most

129

part smoother than the distributed controller response.

Based on the results above, it seems that when the dependence on the assumed

information about neighbors comes in the cost function, there is good performance

without enforcing compatibility between assumed and actual trajectories. On the

other hand, when there are coupling constraints, the need for compatibility cannot be

ignored, even in trivial cases (see Section 5.4 on inter-agent coupling state constraints).

Now, we consider the performance of the distributed receding horizon control law

defined in Section 6.3.2. After initialization, κ = 2 and the compatibility constraint

becomes

‖qi(s; zi(tk))− q̂i(s; zi(tk))‖ ≤ δ2κ = 0.5, s ∈ [tk, tk + T], i = 1, ..., Na.

Although the norm in each compatibility constraint is defined to be the Euclidean

2-norm, we implement the∞-norm, since it is a linear constraint and therefore easier

for the optimization algorithm. The closed-loop fingertip formation response is shown

in Figure 6.6 and the receding horizon control law time history for vehicle 3 is shown

in Figure 6.7. From Figure 6.6, the performance is nearly identical to the distributed

−5 0 5 10 15

−10

−8

−6

−4

−2

0

2

4

X motion (m)

Y
 m

ot
io

n
(m

)

Position Space

1
2
3
4

Figure 6.6: Fingertip formation response using distributed receding horizon control
and position compatibility constraints.

130

0 2 4 6 8 10 12 14 16 18

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (sec)

C
on

tr
ol

 (m
/s

ec
2)

Receding Horizon Control of Agent 3

Figure 6.7: Distributed receding horizon control law time history for vehicle 3, using
position compatibility constraints.

implementation with κ = +∞, until time 10.0 seconds. At time 10.0 seconds, when

the reference changes heading, serious difficulties occur. The reason is simple: the

distributed optimization problems are no longer feasible at that time, and for several

subsequent update times. The infeasibility arises since the terminal constraints are

redefined, in the error dynamics, relative to the new location and heading of the

reference, while the compatibility constraints will not allow the positions to deviate

enough to reach the new terminal constraint sets.

As obvious fix to this problem, which arises only because of the change in the

reference heading at time 10.0 seconds, is to set κ = +∞ (or a large number, in

practice) at time 10.0 seconds and then κ = 2.0 again for all later times. The

resulting response looks exactly like the results with κ = +∞ for all update times,

i.e., the formation response in Figure 6.4 and the control law history for vehicle 3 in

Figure 6.5.

Now, since the responses are identical by reinitializing κ in this way, it can be in-

ferred that the position compatibility constraint is never active with κ = 2.0. Smaller

131

values of κ could be chosen to explore the effect of an active position compatibility

constraint on the transient responses, i.e., the response after initialization and after

the change in heading of the reference. Instead of exploring smaller values of κ with

position compatibility constraints, we explore replacing these constraints in every

local optimal control problem with the control compatibility constraint

‖ui(s; zi(tk))− ûi(s; zi(tk))‖ ≤ δ2κ = 0.5, s ∈ [tk, tk + T], i = 1, ..., Na.

From Section 5.3.3, the resulting deviation between each optimized and assumed state

trajectory is given by

‖zi(s; zi(tk))− ẑi(s; zi(tk))‖ ≤ δ2κ {exp[K(s− tk)]− 1} = 0.5 {exp[s− tk]− 1} ,
(6.5)

where K = 1 is the Lipschitz bound for each subsystem in equation (6.1). The bound

is initially zero and grows exponentially with time, so it is likely that the control

compatibility constraint becomes active during the first part of each update interval,

particularly during the initial transient phases (just after time 0.0 seconds and time

10.0 seconds) of the closed-loop response. An interpretation of equation (6.5) is that

controllability is initially zero and grows exponentially with time. The closed-loop

fingertip formation response is shown in Figure 6.8 and the receding horizon control

law time history for vehicle 3 is shown in Figure 6.9. The closed-loop trajectories

in Figure 6.8 look much like the other distributed implementations, with a slight

overshoot by vehicles 1 and 3 observable at the snapshot time of 12.0 seconds. The

overshoot can be attributed to the loss of controllability in the initial portion of

optimization window. Specifically, each agent must initially stick close to the previous

plan, which during this phase relied on the reference trajectory proceeding with the

original heading. The closed-loop control time history of vehicle 3 in Figure 6.9

shows the compatibility constraints becoming active for a few update periods after

the change in reference heading at time 10.0 seconds.

Here, κ = 2.0 for all updates after initialization, and the feasibility problem at time

132

−5 0 5 10 15

−10

−8

−6

−4

−2

0

2

4

X motion (m)

Y
 m

ot
io

n
(m

)

Position Space

1
2
3
4

Figure 6.8: Fingertip formation response using distributed receding horizon control
and control compatibility constraints.

0 2 4 6 8 10 12 14 16 18

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (sec)

C
on

tr
ol

 (m
/s

ec
2)

Receding Horizon Control of Agent 3

Figure 6.9: Distributed receding horizon control law time history for vehicle 3, using
control compatibility constraints.

10.0 seconds is now no longer observed numerically. The reason is that, from equation

(6.5), the optimized state is allowed to diverge more from the assumed state when

133

using the control compatibility constraint as time proceeds within each optimization

window. Since the original conflict was with the terminal constraints, enforced at the

end time in each window, we now observe no feasibility problem for the particular

parameter values here (T, δ, κ). It is possible that for a different set of parameters,

infeasibility could of course still occur even with the control compatibility constraint.

As a byproduct of the control compatibility constraint, it is also observed that the

allowable size of discontinuity in the closed-loop control at receding horizon update

times is reduced. In particular, for the other centralized and distributed implementa-

tions, the control can jump by as much as 2, i.e., from -1 to 1 or vice versa. However,

in the distributed implementation with the control compatibility constraint, since we

used the ∞-norm, each component of the control can jump by 0.5 at most. The

control in Figure 6.9 shows a few places where such maximal discontinuities occur,

specifically just after time 10.0 seconds.

To alleviate the communication demands in the distributed implementations of

transmitting assumed control trajectories, we now explore the performance when

each vehicle assumes that neighbors apply zero control at every update, in which

case neighbors need only share initial conditions. No compatibility constraint is en-

forced in this case (κ = +∞). This was explored in simulations in a previous paper

[16]. In other words, neighbors are assumed to continue along straight line paths over

any optimization horizon. The resulting closed-loop fingertip formation response is

shown in Figure 6.10. The receding horizon control law time history for vehicle 3 is

shown in Figure 6.11. The response is characterized by overshoot. Although the core

vehicles have perfect knowledge about the reference position and velocity trajectory,

the overshoot is caused by the vehicles believing that neighbors will continue along

vectors tangent the path over the entire optimization horizon at every update. The

figure shows the position and heading triangles at the same snapshots of time as be-

fore, plus one additional snapshot at time 24.0 seconds. As time grows, the formation

is observed to get closer to meeting the formation objective, but only after a long

time. Moreover, the formation never meets the objective to acceptable precision.

Interestingly, for this given weights in the cost function, the closed-loop perfor-

134

−5 0 5 10 15
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

X motion (m)

Y
 m

ot
io

n
(m

)

Position Space

1
2
3
4

Figure 6.10: Fingertip formation response using distributed receding horizon control,
assuming neighbors continue along straight line paths at each update and without
enforcing any compatibility constraints (κ = +∞).

mance is observed to stay the same even if the update period is decreased. In par-

ticular, if δ is reduced to 0.25 or 0.1, the response is nearly the same. For example,

the receding horizon control law time history for vehicle 3 with δ = 0.1 is also shown

in Figure 6.11. As in the previous paper [16], other parameters were observed to

improve the performance in this case. Specifically, increasing the damping weighting

ν reduces the overshoot effect, although the response of the formation becomes more

sluggish. If the horizon time T is shortened, overall performance improves, as the

assumption becomes more valid. The reason is that a straight line approximation

(first-order hold) is generally a valid approximation locally, and shrinking T means

the assumption should hold over a more local domain, relative to larger values of

T . However, theoretical results indicate that smaller T results in a smaller region of

attraction for the closed-loop system.

In the formulation in [39], where each vehicle optimizes for itself as well as for

neighboring vehicles, a similar effect is observed. There, vehicles assume that neigh-

135

(a)
0 5 10 15 20 25

−1

−0.5

0

0.5

1

time (sec)

C
on

tr
ol

 (m
/s

ec
2)

Receding Horizon Control of Agent 3

(b)
0 5 10 15 20

−1

−0.5

0

0.5

1

time (sec)

C
on

tr
ol

 (m
/s

ec
2)

Receding Horizon Control of Agent 3

Figure 6.11: Distributed receding horizon control law time history of vehicle 3 for
update periods: (a) δ = 0.5, (b) δ = 0.1.

bors will react solely with regard to the local cost function and constraints. Appar-

ently, such a self-interested philosophy is not too bad if vehicles are not looking too far

into the future, since initial conditions are consistent in all distributed optimization

problems at each update. The sensitivity to horizon time, as observed above when

neighbors are assumed to continue along straight-line paths, and as observed in the

formulation in [39], is not present in the distributed implementations that rely on as-

sumed information and that incorporate compatibility constraints between assumed

and actual information.

To compare controllers, the tracking cost with the actual closed-loop trajectories,

i.e.,

‖(q∗1(s) + q∗3(s) + q∗3(s))/3− qref(s)‖, s ≥ 0,

is plotted in Figure 6.12 for the centralized and distributed implementations. The

distributed implementation from the theory (DRHC 1) is shown to have a slightly

longer settling time compared to the centralized implementation. Also, the overshoot

in assuming neighbors continue along straight line paths (DRHC 2) is apparent, par-

ticularly between 8 and 10 seconds, before the reference changes heading.

Regarding the communication requirements of transmitting assumed controls to

neighboring vehicles, in the NTG formulation corresponding to the simulations above,

14 B-spline coefficients specified the two-dimensional assumed control trajectories of

136

0 2 4 6 8 10 12 14 16 18

0

0.5

1

1.5

2

2.5

3

3.5

time (sec)

m

Tracking Deviation

CRHC
DRHC 1
DRHC 2

Figure 6.12: Comparison of tracking performance of centralized (CRHC) and two
distributed (DRHC) implementations of receding horizon control. DRHC 1 denotes
the distributed implementation corresponding to the theory, with control compati-
bility constraints, and DRHC 2 denotes the implementation with no compatibility
constraints and neighbors are assumed to apply zero control.

each vehicle. In comparison, when vehicles assume neighbors continue along straight

lines, 4 numbers much be communicated at each update, representing the initial

condition of the state at the update time. Thus, such representations of trajectories

in the optimization problem can aid in keeping the communication requirements closer

to that of other decentralized schemes [14].

6.5 Alternative Description of Formations

We briefly describe an alternative formulation of multi-vehicle formation stabilization,

where instead of basing the formation description on relative vectors, it is based

on deviations from desired distances. In [57], the notion of formation graphs and

their importance in unique representations of multi-vehicle formations is introduced.

These graphs are used to obtain bounded and distributed control laws for formation

137

stabilization of vehicles with linear, double-integrator dynamics. In [58], the notion

of formations of multiple agents/vehicles and minimal requirements, in terms of the

number of edges, for uniquely specifying a formation is formalized. This is done based

on the tools from combinatorial graph rigidity and the specification of foldability [57]

is added to the definition of a formation graph. These concepts were used to define

a cost function for centralized receding horizon control in [56]. The cost function is

restated here to give a flavor for this type of formation description.

As before, an undirected graph is denoted by G = (V , E) where V is the set of

vertices, each denoted vi ∈ V , and E ⊂ V × V is the set of edges of the graph.

Each edge is denoted by eij = (vi, vj) ∈ E or ij ∈ E for simplicity of notation where

i, j ∈ I = {1, . . . , n}. An orientation of the edges of the graph, Eo ⊂ E , is the set of

edges of the graph which contains one and only one of the two permutations of ij ∈ E
(ij or ji) for all the edges ij ∈ E .

A triangulated graph is a graph G = (V , E ,F) with the set of faces F ⊂ V×V ×V
with elements fijk = (vi, vj, vk) or simply ijk (i, j, k ∈ I) satisfying the following

consistency condition:

fijk = (vi, vj, vk) ∈ F → (vi, vj) ∈ E , (vj, vk) ∈ E , (vk, vi) ∈ E ,∀fijk ∈ F .

Similarly, an orientation of the faces of a triangulated graph G is a set of faces Fo ⊂ F

that contains one out of the six permutations of each face ijk ∈ F . Define the dual

graph D(G) of a triangulated graph G as a graph with |Fo| number of nodes, one

corresponding to each (oriented) face of G. There is an edge between two distinct

faces f1, f2 ∈ Fo if and only if f1 and f2 share a common edge e ∈ E . A triangulated

formation graph is a quintuple

G = (V , E ,D,F ,A),

with a connected dual graph D(G). Let qi = (xi, yi)
T ∈ R

2 denote the position of the

node vi. Here, D is the set of distances ‖qi − qj‖ and F is the set of triangular faces

138

with the corresponding set of areas A = {aijk} defined by

aijk = det




xi yi 1

xj yj 1

xk yk 1


 = (qk − qi)TS(qj − qi), (6.6)

where

S =


 0 −1

1 0


 .

Delaunay triangulation of a set of points is used to obtain the triangulated graphs.

The edge and face orientation of the triangulated graph G is now fixed such that for

all the faces aijk ≥ 0, i.e., if for the face ijk ∈ Fo ⊂ F , aijk < 0 then replace the

triplet (vi, vj, vk) ∈ Fo by (vj, vi, vk) to change the sign of the determinant in equation

(6.6). The following edge and face deviation variables (also known as shape variable

[58]) associated with the edges and faces of the triangulated graph G are defined,

respectively, as

ηij = ‖qj − qi‖ − dij, ∀ij ∈ Eo

δijk = qik ⊗ qij := (qk − qi)TS(qj − qi)− aijk, ∀ijk ∈ Fo,

where qrs := qs − qr and the tensor product ⊗ is defined by α ⊗ β := αTSβ for

α, β ∈ R
2.

Let pi = q̇i denote the velocity of each node vi ∈ V . Then, the edge and face

deviation rate variables (also known as shape velocities [58]) associated with the set

of edges and faces of the graph G are defined, respectively, as follows:

νij := η̇ij =
(pj − pi)

T · (qj − qi)
‖qj − qi‖

= nT
ij · (pj − pi), ∀ij ∈ Eo

ξijk := δ̇ijk = (pk − pi)
TS(qj − qi) + (qk − qi)TS(pj − pi), ∀ijk ∈ Fo,

where nij = qij/‖qij‖ for qi 6= qj. Using the notation prs = ps − pr and α⊥ := Sα

139

(thus α⊗ β = αT · β⊥), we can simplify the expression for the shape velocities as

νij := nT
ij · pij, ∀ij ∈ Eo

ξijk := pik ⊗ qij + qik ⊗ pij = pT
ik · q⊥ij − pT

ij · q⊥ik, ∀ijk ∈ Fo.

The integrated cost for the problem of tracking in formation is constructed by combin-

ing costs, one for each task: formation stabilization, collision avoidance, and tracking.

The formation cost is restated here, while the other two costs can be found in [56].

Let σ(x) : R → R be a continuous and locally Lipschitz function satisfying the

following properties: i) σ(0) = 0, ii) (x−y)(σ(x)−σ(y)) > 0,∀x 6= y. Then, based on

ii), xσ(x) > 0 and φ(x) =
∫ x

0
σ(s)ds is a positive definite and convex function which

we refer to as a cost function. As an example, consider

σ(x) =
x√
x2 + 1

→ φ(x) =
√
x2 + 1− 1

The potential-based cost VG(q) and the kinetic-based cost TG(q, p) associated with the

formation graph G = (V , E ,D,F ,A) are defined as

VG(q) :=
∑

ij∈Eo
φ1(ηij) +

∑
ijk∈Fo

φ2(δijk),

TG(q, p) :=
∑

ij∈Eo
φ3(νij) +

∑
ijk∈Fo

φ4(ξijk),

where φi(x) =
∫ x

0
σi(s)ds, i = 1, 2, 3, 4 and the σi’s satisfy conditions i) and ii). For

the special case where all the σi’s are equal to the identity function, φi(x) = x2/2

and both VG, TG are quadratic functions of the shape variables and velocities. The

formation Hamiltonian [57] given by

HG(q, p) = TG(q, p) + VG(q)

is the formation cost induced by the cost graph (G,Φf). In the single optimal control

problem, the integrated cost is defined as the sum of the formation cost above plus

a tracking cost and collision avoidance cost, defined in [56]. The terminal cost is

defined as the integrated cost minus the collision avoidance cost, and the dynamics

140

and constraints of the vehicles are defined below.

In the paper [56], simulations are explored with each vehicle as a hovercraft mo-

bile robot. The vehicle dynamics correspond to those of the Caltech Multi-Vehicle

Wireless Testbed (MVWT) [13]. The hovercraft dynamics are given by

q̇i = pi

mṗi =


 cos(θi)

sin(θi)


 (u1

i + u2
i)− k1 · pi

θ̇i = ωi

I0ω̇i = r0(u
1
i − u2

i)− k2 · ωi

where 0 ≤ k1/m, k2/I0 � 1 and m, I0, r0 > 0 are physical parameters of the vehicle

dynamics. In addition, the control inputs of each vehicle are positive and bounded

as 0 ≤ u1
i , u

2
i ,≤ umax. In other words, the control ui = (u1

i , u
2
i) belongs to a compact

set U as

ui ∈ U = [0 umax]× [0 umax] (6.7)

The system dynamics are underactuated with 3 degrees of freedom and 2 control

inputs.

The simulation results for tracking in formation for a group of six hovercraft are

reported here. The receding horizon controller is centralized with a horizon time of 6

seconds and an update time of 1 second. Figure 6.13 (a) shows a 6-vehicle formation

tracking a reference moving with constant velocity and heading. The vehicles are

multi-colored and the reference vehicle is clear (white). The trajectories of each

vehicle are denoted by lines with “x” marks for each receding horizon update.

The vehicles are initially lined up with a velocity of 1 in the horizontal direction,

equal to the reference velocity. Note that without the collision avoidance cost term,

vehicles 4 and 3 collide around 2.5 seconds. Figure 6.13 (b) shows snapshots of the

evolution of the formation for the first 5 seconds of tracking. Figures 6.14 (a) and (b)

show the control inputs for vehicles 1 through 3 and vehicles 4 through 6, respectively.

It can be observed that vehicle 6 in particular performs a rather aggressive maneuver,

141

−4 −2 0 2 4 6 8 10 12
−1

0

1

2

3

x (m)

y
(m

)

Formation History

1245 36 1
2

3

4

6

5

(a)

−4 −2 0
−1

0
1
2
3

x (m)

y
(m

)

time = 0

−2 0 2
−1

0
1
2
3

x (m)

y
(m

)

time = 1

−2 0 2
−1

0

1

2

3

x (m)

y
(m

)

time = 2

0 5
−1

0

1

2

3

x (m)

y
(m

)

time = 3

2 4 6
−1

0

1

2

3

x (m)

y
(m

)

time = 4

4 6
−1

0

1

2

3
time = 5

x (m)

y
(m

)

(b)

Figure 6.13: Trajectories of a six-vehicle formation: (a) the evolution and the path of
the formation, (b) snapshots of the evolution of the formation (note: the two cones
at the sides of each vehicle show the magnitudes of the control inputs).

as the control goes to the constraint bounds for nearly 1 second. After 10 seconds,

all vehicles reach a steady-state behavior.

In comparison, we observe first that while the relative vector description generates

a cost function that is quadratic (convex) in the vehicle states, the relative distance

and area description here induces a cost that is non-convex in the vehicle states. For

numerical reasons, then, the relative vector description may be preferable. However, a

nice property of the relative distance penalties is that they each incorporate a degree

of (local) collision avoidance, in the sense that the cost increases when the vehicles

142

0 2 4 6 8 10
0

2

4

6
Input Histories

u11

u12

0 2 4 6 8 10
0

2

4

6
u21

u22

0 2 4 6 8 10
0

2

4

6

time

u31

u32

(a)

0 2 4 6 8 10
0

2

4

6
Input Histories

u41

u42

0 2 4 6 8 10
0

2

4

6
u51

u52

0 2 4 6 8 10
0

2

4

6

time

u61

u62

(b)

Figure 6.14: Control inputs applied by each vehicle for the purpose of tracking in
formation: (a) controls of vehicles 1 through 3, (b) controls of vehicles 4 through 6.

get too close from any direction. The relative vector penalties, on the other hand,

do not incorporate repulsive type forces and by minimizing this cost alone, there are

simple scenarios where vehicles are encouraged to pass through one another to reach

143

the desired relative location.

As for the decomposition, the same procedure used in the first part of the chapter

still applies: each local integrated cost is defined by a portion of each edge and area

term, as well as a potion of each corresponding rate term, in which the state of

that agent occurs. Design of the terminal costs and constraints can still be based

on the linearization techniques presented in Chapter 4. Alternatively, the decoupled

terminal costs could be based on appropriate control Lyapunov function (CLF) that

accounts for the nonlinear dynamics and input constraints, and a level set of the

CLF could in turn define each decoupled terminal constraint set. Ultimately, the

distributed implementation for receding horizon control will be applied to the MVWT

experiment, where the vehicles have the hovercraft dynamics given above.

6.6 Summary

In this chapter, numerical experiments for stabilization of a multi-vehicle fingertip

formation were used to compare centralized and distributed implementations of re-

ceding horizon control. With the theoretical conditions given in Chapter 4 as a

guide, performance of the distributed implementation is close to that of the central-

ized implementation. In particular, comparable performance is achieved by relying

on assumed information about neighbors and for a fixed small update period, with-

out enforcing compatibility constraints. A reason for the success without enforcing

the compatibility constraints is the inherent compatibility observed between current

optimal trajectories and the (remainder of the) previous optimal trajectories. Specif-

ically, it is often observed in many applications that there is little change from one

update to the next in these trajectories during transient response. On the other

hand, when coupling occurs in constraints instead of coupling only in the cost func-

tion as in the simulations, compatibility constraints are crucial to ensure feasibility,

as demonstrated in Section 5.4.

The scale of the simulation example here is small, as it is not intended to demon-

strate the improvement in computational tractability over the centralized problem.

144

Rather, we are interested in comparing performance, viewing the centralized response

as a benchmark. It is observed that if the trajectories are known to be sufficiently

smooth, and polynomial-based approximations are valid, the communication require-

ments need not be substantially worse than that of standard decentralized schemes.

Finally, we should also emphasize that the multi-vehicle formation stabilization prob-

lem is simply a venue. In the next chapter, connections between the theory of Chapter

4 and other fields, as well as other potential venues for the theory, are identified for

future research.

145

Chapter 7

Extensions

7.1 Introduction

The ultimate utility of the theory developed in this dissertation relies upon two things:

1) identifying connections with related existing approaches, particularly those that

enjoy success in applications, and 2) determining if relevant engineering problems

could benefit by application of the theory or suggest appropriate modifications to

the theory. To that end, this chapter motivates potential connections between the

theory presented here and other relevant approaches, some of which are outside of

control theory. Additionally, potential applications in other domains of engineering

are mentioned. This chapter, while not complete, provides a road map for future

research opportunities.

7.2 Relevant Areas of Research

In this section, several existing areas of research relevant to distributed optimization-

based control are discussed.

7.2.1 Parallel and Distributed Optimization

The work of Bertsekas and Tsitsiklis in [3] is the benchmark for characterizing nu-

merical algorithms that are suited for large-scale parallelization, motivated by the

search for solutions to large-scale numerical problems, e.g., optimization problems.

146

The characterization is in the form of quantifying the effects of communication over-

head and delay under different timing structures, i.e., when timing is synchronous

or asynchronous. The distributed receding horizon control algorithm, and at a lower

level, the algorithms used the solve each optimization problem, should be character-

ized in the same way. This would provide a means of quantitative comparisons with

the centralized implementation, in terms of computation and communication based

performance and not just the closed-loop performance explored in the simulation

studies. Also, it may be that the principles underlying the relaxation methods can

guide in improving the communication overhead of the distributed implementation

as it is now.

7.2.2 Optimal Control and Neighboring Extremals

For a finite horizon optimal control problem of type Bolza1, suppose that uopt(t) is a

control that satisfies all of the first-order necessary conditions. In this problem, the

only constraints are the dynamics and a terminal equality constraint on the state.

The neighboring extremal paths, as explored in Chapter 6 of [35], are determined by

linearizing the first-order equations around the extremal path, considering small per-

turbations in initial condition and terminal constraint function. The resulting equa-

tions that give the neighboring extremals correspond to a linear-quadratic problem,

for which there are efficient numerical techniques, and occasionally analytic solutions.

The purpose of finding the perturbation feedback control upert(t), i.e., the control in

the vicinity of a nominal path, is that the problem of finding the nonlinear opti-

mal feedback law by dynamic programming is usually computationally intractable.

Instead, one can apply uopt(t) + upert(t), which is the sum of the nominal control

(pre-computed) and a continuous linear feedback law (cheap to compute), providing

a feedback for the original nonlinear system in a neighborhood of the extremal path.

In comparison to the neighboring extremal approach, receding horizon control in-

volves resolving the same optimal control problem at each update, with a planning

1Refer to the problem defined in Section 2.5 of [35].

147

horizon that is a fixed amount of time. An obvious connection between the two

approaches is the following: at each receding horizon control update, formulate the

linear-quadratic problem by linearizing around the current feasible path, generated

by taking the remainder of the previous optimal and concatenating with the terminal

control law path. While an optimal control problem is still being solved at each up-

date, inline with the receding horizon control philosophy, the linear-quadratic version

alleviates the computational problems of the general nonlinear problem. However, it

is likely difficult to extend the neighboring extremal approach when path constraints

on the states and controls are present.

Recent work on connecting neighboring extremals and receding horizon control

includes the companion papers by Strizzi et al. [68] and Yan et al. [77]. The authors

formulate the computational problem associated with a two degree-of-freedom control

approach, where the outer-loop involves trajectory generation for a general nonlinear

system [68], and the inner-loop solves the neighboring optimal control problem [77],

using the trajectory provided by the outer-loop as the nominal path.

In the distributed implementation of Chapter 4, each local optimal control problem

can be solved given initial conditions and assumed controls, for the corresponding

agent and neighboring agents. It is assumed that there is no explicit uncertainty in

the problem. However, while there is no mismatch in the initial conditions of the

assumed and actual state trajectories, there is “uncertainty” in each local optimal

control problem in the discrepancy that arises between the assumed and actual state

trajectories of neighbors over time, all the way to the decoupled terminal constraint

sets. The purpose of the compatibility constraint is to mitigate this uncertainty. From

the compatibility constraint, actual trajectories remain close to assumed trajectories.

It would be interesting to explore whether the perturbation analysis, used to define

the neighboring extremal path problems, could be used to analyze the perturbation

effect that neighbors have on agents as the receding horizon control gets updated. It

would be particularly useful if the analysis could identify reduced-order versions of

the computation and communication requirements between neighboring agents. For

example, linearized models around updated nominal paths could be used to generate

148

the needed assumed trajectories of any neighbor.

7.2.3 Multiagent Systems in Computer Science

There is a large body of literature based in the computer science and artificial in-

telligence communities on intelligent agents and multiagent systems. Wooldridge

describes an agent as “a computer system that is situated in some environment, and

that is capable of autonomous action in this environment in order to meet its de-

sign objective” [75]. The first example of an agent cited is “any control system,”

using the thermostat as an instance of a control system. Some tools involved in

defining properties of agents and, eventually, desired features of agents (including

intelligence) include first-order logic, which is used to define abstract architectures,

and game-theoretic algorithms to enable decision making. Generally, an agent senses

input information and performs output actions in response, and non-determinism in

the environment is assumed to incorporate the feature that agents can at best par-

tially influence their environment. Agents are given a set of possible actions available

to them with pre-conditions, or predicates, that determine when a particular action

could be applied.

Researchers in the multiagent systems community are interested in modelling

multiagent interactions, using logic and game theory, as well as designing algorithms

for reaching consensus or agreement. Aspects of communication between concurrent

systems is also of importance, including language design and synchronization. An

intuitive argument is that any two processes need to be synchronized if there is pos-

sibility of destructive interference. An obvious example of such a possibility is in

the initialization of collision-free trajectories between agents, as discussed in Section

5.4. A description of how agents work together involves dynamic coordination and

cooperation [75].

A generic description also in [75] most related to the work in this dissertation

is titled cooperative distributed problem solving (CDPS). Cooperations is necessary

in multiagent systems of this type, where no single agent has sufficient resources or

149

information to solve the overall system-level problem. A difficulty arises in that the

agents most cooperate amidst self-interest, i.e., the agents have personal goals in

conjunction with the overall objective. Coherence and coordination are metrics used

to measure the success of CDPS. As with the distributed receding horizon control

law developed here, CDPS is distinguished from parallel problem solving. A recent

paper by Ygge and Akkermans [80] explored a multiagent system approach for climate

control in a large building, comparing it to other relevant approaches. Another book

worthy of exploration for connection with receding horizon control, and distributed

implementation, is by Liu [42].

As the multiagent system community has established itself as an important area

of computer science, there is much to be learned by seeking connections with the work

presented in this dissertation.

7.2.4 Other Areas

A tool arising in Markov decision problems that bears relevance to receding hori-

zon control is rollout algorithms. For combinatorial optimization problems, dynamic

programming can provide an optimal policy, although the computational demands

are usually too large in practice. Therefore, heuristics are employed to solve these

problems. Rollout algorithms are a way of improving the performance of such heuris-

tics, by sequentially calling them as subroutines and by satisfying an improvement

property [4]. A connection between receding horizon control and rollout policies was

recently initiated in the work of Chang [7, 8].

Another area of research relevant to receding horizon control is cooperative dy-

namic games [21]. For distributed problems, the theory behind such games with

multiple players may also be related. There appears at first site to also be a connec-

tion between the compatibility constraints used in the theory of Chapter 4 and the

incentive compatibility constraints defined in the book “The Analytics of Uncertainty

and Information” by Hirshleifer and Riley [28]. The constraint in [28] is to ensure

that an agent, acting on behalf of but unobservable to a principle, has incentives

150

consistent with that of the principle.

7.3 Potential Future Applications

In this section, potential applications of the distributed receding horizon control ap-

proach developed in this dissertation are discussed. Since all such applications involve

communication networks, we could divide them into two problem categories: 1) con-

trol over networks, and 2) control of networks. By control over networks, we mean

that the controller is designed with some objective in mind, subject to the networking

issues (topology, routing, protocols, etc.). An interesting research question posed in a

recent panel report on future directions in control, dynamics, and systems [55] is the

following: “Can one develop a theory and practice for control systems that operate

in a distributed, asynchronous, packet-based environment?” Practically, that is the

situation in any distributed control environment.

Control of networks, on the other hand, involves controlling some aspect of the

network itself, e.g., protocols for minimizing congestion or round-trip time. In this

section, examples are given that involve control over networks, while control of net-

works is also briefly explored. There may be engineering systems in the future where

the local control mechanisms and the communication protocols that enable them are

jointly synthesized, thus combining the categories. The generality of the receding

horizon control mechanism allows us to postulate such combined synthesis2.

7.3.1 Mobile Sensor Networks

To motivate distributed computations, Bertsekas and Tsitsiklis give a vision of in-

formation acquisition, information extraction and control applications within geo-

graphically distributed systems [3]. An example is sensor networks, for distributed

acquisition and cooperative processing of information. Although the motivation was

2In a simple one-dimensional multi-vehicle example, Yan and Bitmead explored the interaction
between the control performance of receding horizon control and the information quality of different
information flow architectures [78].

151

a side note in a book primarily dedicated to parallelization of problems, is clearly now

becoming an active and growing area of research. When the sensors become mobile,

e.g., mobile robots capable of localized sensing, the potential for applications soars. A

solid recent work by Cortés et al. [12] provides motivation and review of recent litera-

ture in this area. The authors address designing control and coordination algorithms

for optimal coverage in an asynchronous distributed network, while collision avoid-

ance and nonisotropy of sensors is not considered. To be practically implementable,

algorithms for coverage problems must address all of these issues collectively, which

is a tall order indeed.

If each local optimization problem can be solved efficiently, the distributed imple-

mentation presented here is particularly useful for mobile sensor network problems,

in its generality and ability to handle reconfigurations. To address the nonconvexity

of collision avoidance, an initialization procedure should be designed to operate on

top of each optimization problem.

7.3.2 Control of Networks

The basic problems in control of networks include routing the flow of packets through

the network, caching and updating data at multiple locations, controlling congestion

across network links, and managing power levels for wireless networks [55]. Conges-

tions control of the Internet has an optimization interpretation, viewed specifically

as a asynchronous distributed primal-dual algorithm. Specific protocols, e.g., TCP

Reno, correspond to particular utility functions in the optimization problem. In mul-

tiagent systems, it is more likely that information exchanges happen over an ad hoc

wireless network, in which transmission power control becomes an additional issue.

A connection between receding horizon control and rollout policies in mentioned

above. Recent work has explored the use of rollout policy for congestion control [76].

A drawback is that the rollout policy requires centralized implementation. Baglietto

et al. [2] consider the problem of distributed dynamic routing in a network and

apply a receding horizon approach. In order to obtain a distributed solution to the

152

centralized problem, stochastic approximation is used to make the gradient algorithm

computations tractable, and heuristics are used for step-size selection in the hopes of

convergence. It would not be too difficult to formulate a discrete-time version of the

distributed implementation in this dissertation and compare to the results in [2].

7.4 Summary

There are many theoretical extensions and application opportunities for distributed

receding horizon control. A characterization of the computation and communication

overhead should be quantified. The characterization would aid in comparisons with

other approaches and in determining for which applications the implementation is

viable. After all, demonstrations in such applications will ultimately determine the

true utility of the approach.

This chapter sought to identify problems that may benefit from a distributed

receding horizon control approach, without considering the more detailed questions

related to implementation. There are several problem domains not mentioned above

that have large-scale interconnected structure and make use of receding horizon con-

trol. One example is a study that employs model predictive control for short term

performance maximization and long term degradation minimization in power plants

[24]. Another paper that explores the use of model predictive control in power sys-

tems is [41]. Given the large-scale, interconnected, constrained and dynamic nature

of power systems, distributed implementations of predictive control may be a useful

approach, provided the computation and communication requirements can be accom-

modated. Recently, researchers in supply chain systems have also explored the use

of receding horizon control [71, 72, 6]. Individual supply chains are often large-scale

and distributed, with (internal) cooperative objectives, although supply chains are

competitive with one another in general market situations.

Of course, the success in applications of the theory presented here depends crit-

ically on the algorithms available to solve the optimization problem, which in turn

depends upon the details of the specific problem in question. There is also obvious

153

dependence on the communication network properties. While implementation issues

were discussed briefly in Chapter 2 and experimentally addressed in Chapter 3, there

is clearly much to be done, in theory and in practice.

154

Chapter 8

Conclusions

8.1 Summary of Main Results

We began this dissertation with a review of a receding horizon control law that ad-

mits a general nonlinear model, constraints and quadratic cost function. Sufficient

conditions for asymptotic stability are stated and issues regarding implementation

and relaxations of the assumptions are briefly explored. To date, the predominant

number of successful examples of receding horizon control in practice arise in the

process control field, where the time scales of the dynamics are sufficiently slow to

permit the required online optimization calculations.

A motivation for this dissertation is the application of receding horizon control

to multi-vehicle systems. Consequently, it is important to examine the real-time

issues that arise when the time scales of system dynamics are much faster than in the

applications of process control. Fortunately, the scale of the optimization problem

for individual vehicles systems is much smaller than that of process control systems.

Recent computational tools developed at Caltech have also made it possible to solve

optimal control problems with ample efficiency for real-time trajectory generation

and receding horizon control of vehicles. In particular, successful initial experimental

demonstration of receding horizon control of an unmanned flight vehicle, the Caltech

ducted fan, is reported in Chapter 3.

Returning to multi-vehicle systems, the generality of receding horizon control

makes it easy to formulate a meaningful single optimal control problem for a cen-

155

tralized receding horizon implementation. However, unless the system is restricted

to a moderate number of vehicles, the scale of the optimization problem begins to

approach that of process control problems. As a result, real-time centralized imple-

mentations of many vehicle systems is not possible due to the time scales of vehicle

dynamics. This issue motivated the distributed implementation presented in Chapter

4, which is the primary contribution of this dissertation. In an attempt to incorpo-

rate generality, we refer to the governing system as a multiagent system, where the

individual agents have dynamics that may be nonlinear and heterogeneous. Agent

dynamics need not be vehicle dynamics; however, the agent dynamics are presumed

to be decoupled from one another and modelled as ordinary differential equations.

Also, the coupling cost function is posed in a generic, quadratic form.

The distributed implementation is generated first by decomposition of the single

optimal control problem into local optimal control problems. A local compatibility

constraint is then incorporated in each local optimal control problem. The coordina-

tion requirements are globally synchronous timing and local information exchanges

between neighboring agents. For sufficiently fast update times, the distributed im-

plementation is proven to be asymptotically stabilizing.

The distributed receding horizon control law is then analyzed in detail in Chapter

5. The implementation is qualitatively compared, in terms of the cost of computation

and communication, to two centralized implementations of receding horizon control.

While the distributed implementation has a considerable advantage over centralized

implementations by being computationally scalable, a tradeoff is that the compatibil-

ity constraints result in a more sluggish transient response, as shown quantitatively

in that chapter. Also, while the theory of Chapter 4 requires the update period to

shrink to zero as the collective objective of the agents is approached, a dual-mode

version of the implementation is presented in Chapter 5 to permit the use of a fixed,

small update period while still guaranteeing convergence. Extensions for admitting

more general coupling cost functions, for handling coupling constraints and partially

synchronous timing are also explored.

In Chapter 6, the venue of multi-vehicle formation stabilization is used for conduct-

156

ing numerical experiments. The experiments demonstrate comparable performance

between centralized and distributed implementations. The numerical experiments

also indicated that the compatibility constraints need not be enforced to achieve good

convergence. In other words, for good convergence, it is sufficient to exchange the

assumed information that is based on the previous optimal trajectories; an intuitive

reason for this it that receding horizon trajectories are often observed to (eventually)

change little from one update to the next. The result depended on the fact that

coupling occurred in the cost function, and not in constraints. In the case of coupling

constraints, compatibility constraints are critical for maintaining feasibility from one

receding horizon update to the next. This is shown by simple example in Chapter 5.

Regarding application and theory of the distributed implementation, we can make

the following generalizations about what is easy, and what is hard:

Easy: the accommodation of heterogeneous decoupled dynamics and constraints;

Easy: the accommodation of cooperative objectives, in the form of a generic

coupled cost function (the coupling cost need not be quadratic, as explored in

Section 5.4.1);

Easy: the decomposition of the single optimal control problem into distributed

optimal control problems;

Easy: the reconfigurability in local optimal control problems, i.e., the ability

to change constraints and costs on-the-fly, provided they happen uniformly1;

Easy: solving the distributed optimization problems, relative to the scale of

the centralized problem, particularly for a large number of agents;

Easy: the ability to respect a communications topology, as agents are required

to communicate only with neighboring agents;

1Uniform reconfigurations could be performed using the same distributed consensus algorithm
approach applied for synchronous control switching in the dual-mode implementation.

157

Hard: the computational requirements, relative to standard control techniques

(this is the case for any implementation of receding horizon control, centralized

or distributed);

Hard: the communication requirements, relative to standard decentralized con-

trol techniques, i.e., in the distributed receding horizon control implementation,

current state information and control trajectories must be exchanged;

Hard: the compatibility constraint in each local optimization problem, which

must be enforced in particular when coupling constraints are present, compli-

cates each local computational problem;

Hard: theoretical results that do not depend on synchronization or lossless

delay-free communication (this is hard for any control approach).

Finally, potential connections with relevant fields and problem domains were briefly

reviewed.

8.2 Summary of Future Research

There are a growing number of problems in engineering that are applying receding

horizon control, because of the utility of the predictive mechanism and the ability to

incorporate generic constraints and performance objectives. Examples, as cited above,

include power systems, supply chain systems, and routing and congestion problems

in networks. There are also a growing number of engineering systems that have

distributed and interconnected structure, where dynamics and constraints cannot be

ignored. In such systems, the challenge of extending the theory and practice of control

systems for operation in a distributed, asynchronous, packet-based environment is a

very challenging one.

The great potential for receding horizon control is that very general problem de-

scriptions can be addressed, and the control mechanism itself is quite simple to explain

and understand. For the distributed and interconnected class of problems mentioned

158

above, the contribution of this dissertation bears relevance. The distributed receding

horizon control law has guaranteed convergence properties for a very general class of

problems. Moreover, the conditions for stability, while conservative, provide a guide

for implementations, shown to be successful in numerical experiments. For future

research, it will be important to characterize the cost of implementation, in terms of

computation and communication overhead. Practically, extensions for addressing the

asynchrony of timing and information must also be developed.

The current information technology revolution will ultimately require convergence

of tools from communication, control and computing. By its generality, a distributed

receding horizon mechanism, that can utilize efficient computational devices and ac-

commodate asynchrony, may be the best hope as a single unifying tool for control

and information management in distributed and networked environments.

159

Appendix A

Basic Lemmas

From the proof of Lemma 4.3, recall the symmetric positive semi-definite matrix

Qi ∈ R
nNi×nNi , partitioned as

Qi =


 Qi,1 Qi,2

Q
T

i,2 Qi,3


 , Qi,1 ∈ R

n×n, Qi,2 ∈ R
n×n|Ni|, Qi,3 ∈ R

n|Ni|×n|Ni|,

where Ni = |Ni| + 1. The lemma below holds for any i, and so we use the notation

Q = Qi, Qa = Qi,1, Qb = Qi,2 and Qc = Qi,3, with

Q = Q
T

=


 Qa Qb

QT
b Qc


 ≥ 0.

Recall that λmax(M) denotes the maximum eigenvalue of any square matrix M . In

the proof of Lemma 4.3, the following lemma is utilized1.

Lemma A.1 1. λmax(Q) ≥ λmax(Qc) and λmax(Q) ≥ λmax(Qa),

2. λmax(Q) ≥ λ
1/2
max(QT

b Qb).

Proof: Since Q ≥ 0, we have that Qa ≥ 0 and Qc ≥ 0. In addition, Qa and Qc are

symmetric, since Q is symmetric. From the Rayleigh-Ritz Theorem [30],

λmax(Q) = max
zT z=1

zTQz.

1Thanks to Steve Waydo for his help in proving these lemmas.

160

1. For eigenvalue λmax(Qc) ∈ [0,∞), let y ∈ R
n|Ni| be the associated non-zero

eigenvector. The eigenvalue is known to be real and nonnegative since Qc is symmetric

and nonnegative. Defining zy = (0, y/‖y‖) ∈ R
nNi , we have

λmax(Q) ≥ zT
y Qzy =

yTQcy

yTy
= λmax(Qc),

which proves the first part of item 1. The proof that λmax(Q) ≥ λmax(Qa) follows by

the same reasoning.

2. Computing the symmetric nonnegative matrix Q
T
Q, we have

Q
T
Q =


 Q2

a +QbQ
T
b QaQb +QbQc

QT
b Qa +QcQ

T
b QT

b Qb +Q2
c


 .

By the same reasoning as in the proof of item 1 we have

λ2
max(Q) = λmax(Q

T
Q) ≥ λmax(Q

T
b Qb +Q2

c) ≥ λmax(Q
T
b Qb),

where the last inequality follows since Q2
c is nonnegative, concluding the proof. �

The following lemma is also used in the proof of Lemma 4.3.

Lemma A.2 For every i = 1, ..., Na, λmax(Q) ≥ λmax(Qi), where Q is the weighting

of the centralized integrated cost and Qi is the weighting in each distributed integrated

cost.

Proof: Recall that

‖z − zc‖2Q =
Na∑

i=1

∥∥∥∥∥∥


 zi − zc

i

z−i − zc
−i



∥∥∥∥∥∥

2

Qi

.

161

Leaving out all nonnegative terms in the summation except for the ith term, we have

for any z ∈ R
nNa ,

‖z − zc‖2Q ≥

∥∥∥∥∥∥


 zi − zc

i

z−i − zc
−i



∥∥∥∥∥∥

2

Qi

.

For eigenvalue λmax(Qi) ∈ [0,∞), let y ∈ R
nNi be the associated non-zero eigenvector,

partitioned as y = (yi, yj1 , ..., yj|Ni|
). Defining the vector zy = (zy

1 , ..., z
y
Na

) ∈ R
nNa with

subvector components

zy
i = yi/‖y‖, zy

j =





yj/‖y‖, j ∈ Ni

0, j ∈ {1, ..., Na} \ ({i}⋃Ni)
,

we have that zy is a unit vector. From the Rayleigh-Ritz Theorem, λmax(Q) ≥
(zy − zc)TQ(zy − zc). From this inequality and the one above, it is clear that

λmax(Q) ≥ λmax(Qi), for any i = 1, ..., Na, completing the proof. �

162

Bibliography

[1] L. Acar. Boundaries of the receding horizon control for interconnected systems.

Journal of Optimization Theory and Applications, 84(2), 1995.

[2] M. Baglietto, T. Parisini, and R. Zoppoli. Neural approximations and team

theory for dynamic routing: A receding horizon approach. In Proceedings of the

IEEE Conference on Decision and Control, Phoenix, AZ, 1999.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Nu-

merical Methods. Athena Scientific, 1997.

[4] D. P. Bertsekas, J. N. Tsitsiklis, and C. Wu. Rollout algorithms for combinatorial

optimization. Journal of Heuristics, 3:245–262, 1997.

[5] B. Bollobás. Modern Graph Theory. Graduate Texts in Mathematics, Springer-

Verlag, 1998.

[6] M. W. Braun, D. E. Rivera, W. M. Carlyle, and K. G. Kempf. A model predic-

tive control framework for robust management of multi-product, multi-echelon

demand networks. In 15th IFAC World Congress, Barcelona, Spain, 2002.

[7] H. S. Chang. On-Line Sampling-Based Control for Network Queueing Problems.

PhD thesis, Purdue University, 2001.

[8] H. S. Chang and S. I. Marcus. Two-person zero-sum Markov games: Receding

horizon approach. IEEE Transactions on Automatic Control, 48(11):1951–1961,

2003.

163

[9] C. C. Chen and L. Shaw. On receding horizon feedback control. Automatica,

18:349–352, 1982.

[10] H. Chen. Stability and Robustness Considerations in Nonlinear MPC. PhD

thesis, University of Stuttgart, 1997.

[11] H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive

scheme with guaranteed stability. Automatica, 14(10):1205–1217, 1998.

[12] J. Cortés, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile

sensing networks. Accepted in IEEE Transactions on Robotics and Automation,

2003.

[13] L. Cremean, W. B. Dunbar, D. van Gogh, J. Meltzer, R. M. Murray, E. Klavins,

and J. Hickey. The Caltech multi-vehicle wireless testbed. In Proceedings of the

Conference on Decision and Control, Las Vegas, NV, 2002.

[14] R. D’Andrea and G. E. Dullerud. Distributed control design for spatially inter-

connected systems. IEEE Transactions on Automatic Control, 48(9):1478–1495,

2003.

[15] W. B. Dunbar, M. B. Milam, R. Franz, and R. M. Murray. Model predictive

control of a thrust-vectored flight control experiment. In Proceedings of the IFAC

World Congress, Barcelona, Spain, 2002.

[16] W. B. Dunbar and R. M. Murray. Model predictive control of coordinated multi-

vehicle formations. In Proceedings of the IEEE Conference on Decision and

Control, Las Vegas, NV, 2002.

[17] W. B. Dunbar and R. M. Murray. Distributed receding horizon control with

application to multi-vehicle formation stabilization. Technical Report 04-001,

Control and Dynamical Systems, California Institute of Technology, 2004. Sub-

mitted to Automatica, January, 2004.

164

[18] W. B. Dunbar and R. M. Murray. Receding horizon control of multi-vehicle

formations: A distributed implementation. In Submitted to the IEEE Conference

on Decision and Control, Bahamas, 2004.

[19] J. A. Fax and R. M. Murray. Information flow and cooperative control of vehicle

formations. Submitted to IEEE Transactions on Automatic Control, April 2004.

[20] R. Fierro, A. K. Das, V. Kumar, and J. P. Ostrowski. Hybrid control of for-

mations of robots. In Proceedings of the 2001 IEEE International conference on

Robotics and Automation, May 2001.

[21] J. A. Filar and L. A. Petrosjan. Dynamic cooperative games. International Game

Theory Review, 2(1):47–65, 2000.

[22] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. Collaborative multi-robot local-

ization. Advances in Artificial Intelligence, 1701:255–266, 1999.

[23] E. Frazzoli, Z.-H. Mao, J.-H. Oh, and E. Feron. Resolution of conflicts involving

many aircraft via semidefinite programming. Journal of Guidance, Control and

Dynamics, 24(1):79–86, 2001.

[24] E. Gallestey, A. Stothert, M. Antoine, and S. Morton. Model predictive control

and the optimization of power plant load while considering lifetime consumption.

IEEE Transactions on Power Systems, 17(1):186–191, 2002.

[25] P. Gill, W. Murray, M. Saunders, and M. Wright. User’s guide for NPSOL 5.0: A

fortran package for nonlinear programming. Systems Optimization Laboratory,

Stanford University, Stanford, CA 94305, 1998.

[26] G. Grimm, M. J. Messina, S. E. Tuna, and A. R. Teel. Example of zero robustness

in constrained model predictive control. In Proceedings of the IEEE Conference

on Decision and Control, Maui, HI, 2003.

[27] D. M. Himmelblau, editor. Decomposition of Large-scale Problems. North-

Holland Pub. Co., 1972.

165

[28] J. Hirshleifer and J. G. Riley. The Analytics of Uncertainty and Information.

Cambridge University Press, 1992.

[29] Y-C. Ho and K. C. Chu. Team decision theory and information structures in

optimal control problems - part I. IEEE Transactions on Automatic Control,

17(1):15–22, 1972.

[30] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,

1985.

[31] S. Huang and W. Ran. Autonomous intelligent vehicle and its performance in

automated traffic systems. International Journal of Control, 72(18):1665–1688,

1999.

[32] A. Jadbabaie, J. Yu, and J. Hauser. Unconstrained receding horizon control

of nonlinear systems. IEEE Transactions on Automatic Control, 46(5):776–783,

2001.

[33] D. Jia and B. H. Krogh. Distributed model predictive control. In Proceedings of

the American Control Conference, 2001.

[34] D. Jia and B. H. Krogh. Min-max feedback model predictive control for dis-

tributed control with communication. In Proceedings of the American Control

Conference, 2002.

[35] A. E. Bryson Jr. and Y. Ho. Applied Optimal Control. Taylor and Francis, 1975.

Revised Printing.

[36] T. Kaga and T. Fukuda. Group behaviour control on dynamically reconfigurable

robotic system. International Journal of Systems Science, 32(3):353–363, 2001.

[37] W. Kang, A. Sparks, and S. Banda. Coordinated control of multisatellite systems.

Journal of Guidance, Control and Dynamics, 24(2):360–368, 2001.

[38] S. S. Keerthi and E. G. Gilbert. Optimal, infinite horizon feedback laws for a

general class of constrained discrete time systems: Stability and moving-horizon

166

approximations. Journal of Optmization Theory and Application, 57:256–293,

1988.

[39] T. Keviczky, F. Borrelli, and G. J. Balas. Model predictive contorl for decoupled

systems: A study of decentralized schemes. In Submitted to the American Control

Conference, Boston, MA, 2004.

[40] H. K. Khalil. Nonlinear Systems, Second Edition. Prentice Hall, 1996.

[41] M. Larsson and D. Karlsson. Coordinated systems protection scheme against

voltage collapse using heuristic search and predictive control. IEEE Transactions

on Power Systems, 18(3):1001–1006, 2003.

[42] J. Liu. Autonomous Agents and Multi-Agent Systems. World Scientific, 2001.

[43] J. E. Marsden and M. J. Hoffman. Elementary Classical Analysis. W. H. Freeman

and Company, 1993. Second Edition.

[44] D. Q. Mayne. Control of constrained dynamic systems. European Journal of

Control, 7(2-3):87–99, 2001.

[45] D. Q. Mayne and H. Michalska. Receding horizon control of nonlinear systems.

IEEE Transactions on Automatic Control, 35:814–824, 1990.

[46] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Contrained

model predictive control: Stability and optimality. Automatica, 36:789–814,

2000.

[47] M. Mesbahi and F. Y. Hadaegh. Formation flying control of multiple spacecraft

via graphs, matrix inequalities, and switching. Journal of Guidance, Control and

Dynamics, 24(2):369–377, 2001.

[48] H. Michalska and D. Q. Mayne. Receding horizon control of nonlinear systems

without differentiability of the optimal value function. Systems and Controls

Letters, 16:123–130, 1991.

167

[49] H. Michalska and D. Q. Mayne. Robust receding horizon control of contrained

nonlinear systems. IEEE Transactions on Automatic Control, 38:1623–1632,

1993.

[50] M. Milam and R. M. Murray. A testbed for nonlinear flight control techniques:

the Caltech ducted fan. In 1999 Conference on Control Applications, August

1999.

[51] M. B. Milam, R. Franz, J. Hauser, and R. M. Murray. Receding horizon control

of a vectored thrust flight experiment. Submitted to IEE Proceedings on Control

Theory and Applications, 2003.

[52] M. B. Milam, K. Mushambi, and R. M. Murray. A new computational approach

to real-time trajectory generation for constrained mechanical systems. In Pro-

ceedings of the Conference on Decision and Control, 2000.

[53] M. B. Milam, N. Petit, and R. M. Murray. Constrained trajectory generation

for microsatellite formation flying. In AIAA Guidance, Navigation and Control

Conference, 2001.

[54] N. Motee and B. Sayyar-Rodsari. Optimal partitioning in distributed model

predictive control. In Proceedings of the American Control Conference, 2003.

[55] R. M. Murray, editor. Control in an Information Rich World. SIAM, 2003.

[56] R. Olfati-Saber, W. B. Dunbar, and R. M. Murray. Cooperative control of

multi-vehicle systems using cost graphs and optimization. In Proceedings of the

American Control Conference, Denver, CO, 2003.

[57] R. Olfati-Saber and R. M. Murray. Distibuted cooperative control of multiple

vehicle formations using structural potential functions. In Proceedings of the 15th

IFAC World Congress, Barcelona, Spain, 2002.

168

[58] R. Olfati-Saber and R. M. Murray. Graph rigidity and distributed formation

stabilization of multi-vehicle systems. In Proceedings of the IEEE Conference on

Decision and Control, Las Vegas, Nevada, 2002.

[59] R. Olfati Saber and R. M. Murray. Consensus problems in networks of agents

with switching topology and time-delays. Accepted in IEEE Transactions on

Automatic Control, 2004.

[60] E. Polak. Optimization: Algorithms and Consistent Approximations. Springer,

New York, 1997.

[61] S. J. Qin and T. A. Badgwell. An overview of industrial model predictive control

technology. In J. C. Kantor, C. E. Garcia, and B. Carnahan, editors, Fifth

International Conference on Chemical Process Control, pages 232–256. CACHE,

AIChE, 1997.

[62] W. Ren and R.W. Beard. A decentralized scheme for spacecraft formation flying

via the virtual structure approach. Journal of Guidance, Control and Dynamics,

To Appear. Revised Submission: June, 2003.

[63] A. G. Richards, J. P. How, T. Schouwenaars, and E. Feron. Spacecraft trajectory

planning with avoidance constraints using mixed-integer linear programming.

AIAA Journal of Guidance Control and Dynamics, 25(4):755–764, 2002.

[64] M. Rotkowitz and S. Lall. Decentralized control information structures preserved

under feedback. In Proceedings of the IEEE Conference on Decision and Control,

Las Vegas, NV, 2002.

[65] A. K. Sanyal, A. Verma, and J. L. Junkins. Adaptation and cooperation in

control of multiple robot manipulators. Journal of the Astronautical Sciences,

48(2-3):305–336, 2000.

[66] S. V. Savastuk and D. D. Siljak. Optimal decentralized control. In American

Control Conference, Baltimore, MD, 1994.

169

[67] R. C. Scott and L. E. Pado. Active control of wind-tunnel model aeroelastic

response using neural networks. Journal of Guidance Control and Dynamics,

23(6):1100–1108, 2000.

[68] J. Strizzi, F. Fahroo, and I. M. Ross. Towards real-time computation of optimal

controls for nonlinear systems. In Proceedings of the AIAA Guidance, Navigation

and Control Conference, Monterey, CA, 2002.

[69] A. Tews and G. Wyeth. Maps: a system for multi-agent coordination. Advanced

Robotics, 14(1):37–50, 2000.

[70] S. Thrun. A probabilistic on-line mapping algorithm for teams of mobile robots.

International Journal of Robotics Research, 20(5):335–363, 2001.

[71] W. Wang, D. E. Rivera, and K. G. Kempf. Centralized model predictive con-

trol strategies for inventory management in semiconductor manufacturing supply

chains. In American Control Conference, Denver, CO, 2003.

[72] W. Wang, J. Ryu, D. E. Rivera, K. G. Kempf, and K. D. Smith. A model

predictive control approach for managing semiconductor manufacturing supply

chains under uncertainty. In Annual AIChE Meeting, San Francisco, CA, 2003.

[73] X. G. Wang and C. K. H. Kim. Improved control of pneumatic lumber-handling

systems. IEEE Transactions on Control Systems Technology, 9(3):458–472, 2001.

[74] H. S. Witsenhausen. A counterexample in stochastic optimum control. SIAM

Journal of Control, 6(1):131–147, 1968.

[75] M. Wooldridge. An Introduction to Multi-Agent Systems. John Wiley & Sons,

Ltd., 2002.

[76] G. Wu, E. K. P. Chong, and R. L. Givan. Congestion control using policy rollout.

In Proceedings of the IEEE Conference on Decision and Control, Maui, HI, 2003.

170

[77] H. Yan, F. Fahroo, and I. M. Ross. Real-time computation of neighboring optimal

control laws. In Proceedings of the AIAA Guidance, Navigation and Control

Conference, Monterey, CA, 2002.

[78] J. Yan and R. R. Bitmead. Coordinated control and information architectures.

In Proceedings of the IEEE Conference on Decision and Control, Maui, HI, 2003.

[79] T. H. Yang and E. Polak. Moving horizon control of nonlinear systems with

input saturation, disturbances and plant uncertainty. International Journal of

Control, 58(4):875–903, 1993.

[80] F. Ygge and H. Akkermans. Making a case for multi-agent systems. Technical

report, University of Karlskrona/Ronneby, 1997.

