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Abstract

Consider a number of moving points, where each point is attached to a joint of the

human body and projected onto an image plane. Johannson showed that humans

can effortlessly detect and recognize the presence of other humans from such dis-

plays. This is true even when some of the body points are missing (e.g. because of

occlusion) and unrelated clutter points are added to the display. We are interested in

replicating this ability in a machine. To this end, we present a labeling and detection

scheme in a probabilistic framework. Our method is based on representing the joint

probability density of positions and velocities of body points with a graphical model,

and using Loopy Belief Propagation to calculate a likely interpretation of the scene.

Furthermore, we introduce a global variable representing the body’s centroid. Exper-

iments on one motion-captured sequence suggest that our scheme improves on the

accuracy of a previous approach based on triangulated graphical models, especially

when very few parts are visible. The improvement is due both to the more general

graph structure we use and, more significantly, to the introduction of the centroid

variable.
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Chapter 1

Introduction

This thesis presents an approach to the task of detecting the presence of a human

being and labeling its body parts. This is a basic step in trying to solve the broader

problem of automatically recognizing people’s actions and behaviors.

Human motion analysis is a very important and hard problem in computer vision.

When observing social interactions that take place in the surrounding environment,

humans are, in general, the most important component. The interest is further justi-

fied by the number of application for which understanding people’s actions and inten-

tions is a central step. Among them, for instance, is monitoring people in airports or

museums for security reasons. Detection of pedestrians is attractive to the automotive

industry for safety and autonomous navigation systems. Even the daily interaction

with computers and appliances could be greatly improved by a more user-friendly

interface (in a sense, a more passive one, where it’s the machine to autonomously

infer what we expect it to do).

Motion provides a large amount of information about humans and is very useful for

human social interactions. The goal of human motion analysis system is to extract

information about human motion from video sequences, in an attempt to produce

a concise description of the scene. The first question to be addressed should be

whether or not there are humans in the scene. In case of positive answer, we would

be interested in knowing both their location and which action they are doing.

Our visual system naturally perceives and analyzes human motion. Replicating

this ability in machines is one of the most challenging and ambitious goals of ma-
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Figure 1.1: People and Actions : we show an image of people running and superim-
posed some features with an arrow depicting their velocity. The set of positions and
velocities constitutes the basic input for our algorithm.

chine vision. Johannson’s experiments [4] show that humans find the instantaneous

information on the position and velocity of a few features (such as the joints of the

body, for instance) a sufficient cue to detect human presence and understand the gist

of their activity. This still holds true even when clutter features are present in the

scene, or some body parts features are occluded (see figure 1.1 for an example of

features).

A side task that we will not discuss here, is that of identifying features in video

sequences and computing their velocity across frames by tracking their position in

time. It is a fairly well-understood problem for which reasonably good solutions are

available from the literature (see [5], for instance).

In our work we will therefore assume that a number of features that are associated

to the body have been detected and their velocity has been computed. We will allow

some of such features to be missing and admit that some are not at all associated to
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the body but rather originated from the background. Given such input (which we

call Generalized Johannson display) we investigate ways of detecting the presence of

a human in the scene and the labeling of the point features as body parts or clutter.

1.1 Graphical Models

The approach presented here is a generalization of [3] where the pattern of point

positions and velocities associated to human motion was modelled with a triangu-

lated graphical model for which a simple inference schema in the form of a dynamic

programming algorithm was developed.

Given the probabilistic nature of our work, graphical models are a natural way for

describing interaction among random quantities and an excellent conceptual represen-

tation to guide the implementation of inference schemas. In their most general form,

graphical models can be thought of as a machine that can answer queries regarding

the values of a set of random variables. The beauty stands in the fact that this ma-

chinery is built combining information locally, and propagating it in agreement with

the theory of probabilities in order to reach global consistency.

This is the very basic idea that justifies our point of view in relation to the

problem of detection and labeling. We describe a human being (the “global entity”)

as a collection of parts (the “local entities”) and their mutual relationships. Starting

out in a bottom-up fashion, we detect features and produce a local description of

the information they convey about the human presence. The propagation of such

information across local entities, while enforcing global consistency, is what ultimately

provides the most likely interpretation of the scene.

1.2 Overview

The contribution of our work is twofold. We explore the benefits of representing

more general and complex dependencies among the local entities in the model, at

the price of an increased computational complexity. This is achieved by removing
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the decomposability constraint and hence allowing a higher degree of connectivity

in the graphical model. Furthermore, we develop an EM-like approximate Belief

Propagation schema that allows for the simultaneous determination (in a maximum

likelihood sense) of both local and global quantities. The novelty stands in the co-

presence of (discrete) local variables as well as (continuous) global ones. While the

discrete labels carry information that is primarily of local interest, global variables

such as translation of the body, or its scale and orientation, are quantities that are

common to the person as a whole. We recall how in [3] translation invariance is

obtained at the level of individual cliques by computing relative positions locally. A

major drop in performance can be observed with high levels of occlusion, due to the

impossibility of computing such relative quantities. To circumvent this problem, we

represent the location of the body as a single hidden global variable that is never

observed but always present.

In Chapter 2 we will introduce the Labeling problem in generalized Johannson

displays. In Chapter 3 and 3.1 we derive the probabilistic model and the learning

of parameters and structure from data. The Expectation Maximization (EM) and

Loopy Belief Propagation (LBP) based inference algorithm is detailed in Chapter 4,

while in Chapter 5 and 6 we present the experimental results and conclusions.
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Chapter 2

The Labeling Problem in the
generalized Johannson displays

We start by introducing a few notational conventions that we will use throughout

this thesis. We then formally introduce the detection and labeling problem for the

generalized Johannson display.

2.1 Notations

In what follows, we will use bold-face letters x for random vectors, and italic letters

x for their sample values.

A probability density function (or probability mass function, in the discrete case),

defined over the variables x, is denoted by fx(x) where the subscript remind us of

which variables are in the domain of the function, while the argument is a place-holder

for the actual sample value of those variables.

When q(x) is a deterministic function of a random quantity we write its expecta-

tion as Efx [q(x)] where the subscript denotes the distribution with respect to which

we are taking the expectation.

An ordered set I = [i1 . . . iK ] used as a vector’s subscript has the intuitive meaning

of the sub-vector whose entries are the elements that have indices in the set I in that

order, i.e. yI = [yi1 . . .yiK ]. When the ordered set is enclosed in squared brackets

with a subscript [I]s and it is applied to a dimension of a matrix V = [vij], it selects

the s-dimensional members of the matrix along that dimension, i.e. V[1,2]4[1,2]4 is the
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8× 8 matrix obtained by selecting the first two 4-dimensional rows and columns.

According to the graphical models conventions, we will represent a probability

density function fx(x) as a Bayesian Network B = (G, Ψ), i.e. a directed acyclic

graph G = (V, E) with nodes V = [x] and oriented edges E, and a set of positive

potentials (or densities, when normalized) Ψi(x[Ci]) each defined on some subset xCi

of the variables.

Each node i ∈ V represents a random variable xi in the domain of f . xi and

its parents x[πi] in the graph are called a family. Potentials are in general (but not

necessarily) defined as Ψi(x[i,πi]) = fxi|xπi
(xi|xπi

). If that is the case, then each

potential is associated to one family in G and vice versa. The original probability

distribution f can then be written as

fx(x) =
1

Z

N∏
i=1

Ψi(xCi
) =

N∏
i=1

fxi|xπi
(xi|xπi

) (2.1)

where Z is a normalization constant (which in this case equals 1 due to the po-

tentials being the normalized conditionals).

2.2 Problem Definition

Similarly to a Johannson’s setup, we identify a set of M relevant body parts, which for

instance can be thought of as being in correspondence with the main joints and/or

limbs of the body, although in general they need not carry any physical meaning.

We identify each part i with a continuous random variable xi ∈ R4, representing its

position and velocity.

Given a display on which a set of points (referred to as a detection or observation)

have been marked, our goal is to find the most probable assignment of parts to

detections, allowing for some parts to go undetected and for some detections to be

assigned to a “generic” part which we think of as the background.

Each detection is denoted by yi ∈ R4 and (like the parts) is endowed with four

values, i.e. yi = [yi,a, yi,b, yi,va , yi,vb
]T corresponding to its horizontal and vertical
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positions and velocities. We model each single observation as a 4× 1 random vector

yi. For each display we call y = [yT
1 . . . yT

N ]T the 4N × 1 vector of all observations.

As mentioned above, in general N ≥ M and some or all of the M parts might not be

present in a given display.
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Figure 2.1: Sample display from sequence W2 : To illustrate the labeling process we
show a generalized Johannson display with N = 27 detections (light-shaded dots).
Superimposed (dark squares and sticks) is the labeling result that assigns 12 of the
M = 14 parts found in the display to 12 detections and declares 2 parts to be missing.
For instance, we can easily see that δ1 = 1 and λ7 = 25 (i.e., body part number 1 has
been detected and the number 7 has been assigned to detection number 25), while
δ12 = 0 (i.e., part number 12 was missing on this frame). We do not show which
background part in the model is assigned to which detection in the display as it is of
very little interest.

To account for missing parts we introduce a binary random variable δi, i ∈
{1 . . .M} for each of the parts. δi indicates whether or not the ith part has been

detected.

For i ∈ {1 . . . M}, a discrete random variable λi taking values on {1 . . . N} is used

to specify the correspondence of a body part i to a particular detection λi. Since this
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makes sense only if the body part is detected, we assume by convention that λi = 0 if

δi = 0. A pair h = [λ, δ] is called a labeling hypothesis (see Figure 2.1 for an example

of labeled display).

In the rest of this thesis we will illustrate how a maximum likelihood estimate of

h can be obtained, and we will show experimental results on detecting and labeling

human body parts in presence of clutter and occlusions.
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Chapter 3

Probabilistic Model

For a given display, let y = [yT
1 . . . yT

N ]T be the 4N × 1 vector of all observations.

Any particular labeling hypothesis determines a partition of its set of indices into

foreground (F) and background (B) detections, i.e. [1 . . . N ]T = F ∪ B, where F =

[λi : δi = 1, i = 1 . . .M ]T and B = [1 . . . N ]T \ F . We say that m = |F| parts have

been detected and M −m are missing. Based on the partition induced on λ by δ,

we can define two vectors λf = λF and λb = λB, identifying the detections that

were assigned to the foreground and those assigned to the background respectively.

Finally, the set of detections y remains partitioned into the vectors yλf and yλb of

the foreground and background detections respectively.

The foreground and background detections are assumed to be (conditionally) in-

dependent (given h) meaning that their joint distribution factorizes as follows

fy|λδ(y|λδ) = fy
λf |λδ(yλf |λδ) · fy

λb |λδ(yλb|λδ).

We model the foreground density fy
λf |λδ(yλf |λδ) as a gaussian, while the back-

ground one fy
λb |λδ(yλb|λδ) is assumed to be uniform UN−m(A), with A determining

the area of the position and velocity hyperplane for each of the N −m background

parts. The independence assumption is justified by the fact that influences of the

body on the positions and velocities of the background-originated detections are (in

principle) negligible. However, people do not appear against any background and in

any possible location. We are more likely to find people in some settings than others
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so that some consistency in the background could potentially be observed. There-

fore, our assumption of independence, although reasonable, is not completely correct.

Similarly, the assumption of uniform distribution for the background detections may

be violated due to a particular background or implementation of the detector. Fi-

nally, modelling the collection of body parts as a gaussian is a further simplifying

assumption. In what follows we will just ignore these aspects.

When all M parts are observed (δ = [1 . . . 1]T ) we have that fyλ[1:M ]1
|λδ(yλ[1:M ]1

|λδ)

is N (µ, Σ). In general, if m ≤ M is the number of body parts that are present in a

display, then N (µf , Σf ) is the marginalized (over the M −m missing parts) version

N (µf , Σf ) of the complete model N (µ, Σ).

In what follows, our goal is to find a maximum likelihood hypothesis estimate

ĥ = [λ̂, δ̂] such that

[λ̂, δ̂] = arg max
λδ

{fyλ|λδ(yλ|λδ)}. (3.1)

3.1 Learning the Model’s Parameters and Struc-

ture

In the following sections we will assume some familiarity with the connections between

probability density functions and graphical models. Let us initially assume that the

moving human being we want to detect is centrally positioned in the frame. We

will then enhance the model in order to accommodate for horizontal and vertical

translations.

Let us start by noticing how computing an optimal labeling hypothesis is in general

equivalent to solving an very high dimensional combinatorial problem. In fact, if N

is the number of detections and M is the number of parts in the model, we are after

a maximum likelihood estimate of a mapping from M of the N detections into the M

parts. Unfortunately there are
(

N
M

)
such mappings, which prevents us from carrying

out an exhaustive search. On the other hand, if each part could be assigned to a
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detection independently of all the others, we would be facing a much simpler problem

for which a brute force approach would suffice.

In general, there exists a trade off between the computational complexity of de-

termining a solution, and the accuracy of the data description by the model. One of

the purposes of this work is to automatically identify an optimal compromise.

3.2 Conditional Independencies and Computational

Complexity

It turns out that given a finite number of realizations of a set of random variables,

no independencies are in general observed even when the variables themselves are

independent by construction. However, as the sample we are considering grows in

size, it is reasonable to expect that a noticeable weaker level of dependency will be

observed whenever the underlying variables are indeed independent.

In our work, we will assume that conditional independencies hold among positions

and velocities of some set of body parts. As we already noted, this can greatly simplify

(in fact render computationally feasible) the problem of determining the optimal

labeling.

This idea has been explored in the literature. In [3] each of the body parts is

assumed to be conditionally independent of all the others, given its parents-set of at

most two other parts. As anticipated in the introduction, an additional constraint

of decomposability is imposed on the structure of the graphical model that depicts

such independencies. Furthermore, the connectivity among variables in the graph is

manually determined according to the authors’ experience and intuition.

As a first generalization, we will not require that the resulting graph be decompos-

able, so that all pairs of variables can be selected as parents-set for any part. Such a

model provides in principle a more accurate description of the data, as well as allowing

longer range connection among variables. Additionally (and more importantly), we

implement a greedy schema that automatically determines what are the conditional
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independencies observable in the training data. At the same computational cost, this

has the benefit of increasing the accuracy in the description of the data by the model,

in that it sets a bias in the learning process to ignore those dependencies that are

weaker (therefore discarding “less information”).

3.3 Bayesian Information Criterion for Structure

Learning

In the learning process we want to estimate the parameters of fy
λf |λδ(yλf |λδ), where

the labeling of the training set is known, N = M and δ = [1 . . . 1]T (i.e., no clutter

is present and all parts are visible). Additionally we would like to determine the

best connectivity or structure among the variables (see Figure 3.1, for instance) so to

minimize the computational complexity and simultaneously maximize the likelihood

of the data in the model.

The problem of learning the optimal structure from data is known to be NP-Hard

[11], however heuristics exists that do perform well in practice. In order to make the

trade off between complexity and likelihood explicit, we adopt what is known as the

Bayesian Information Criterion (BIC) score (see also [8]).

We recall that the BIC score is consistent, i.e., if the data we are using for learning

were actually i.i.d. samples drawn from a probability distribution among the ones we

admit, the corresponding graph would achieve the highest possible score. Moreover,

since the probability distribution factorizes family-wise due to the conditional inde-

pendencies among its variables, the score decomposes additively. Let G be a graph

representing the conditional independencies in a gaussian model N (µ, Σ), and let us

denote by πi the set of parents for node i. The BIC score is a function J : G −→ R

defined as

J(G) =
M∑
i=1

J(i, πi) (3.2)

with

J(i, πi) =
N

2
log

|Σ[i,πi][i,πi]|
|Σii||Σπiπi

| +
dπi

di

2
log N. (3.3)



13

and where di is the dimension of the i-th gaussian and dπi
=

∑
j∈πi

dj.

Being an exhaustive search among graphs infeasible, we attempt to determine

the highest scoring graph by mean of a greedy hill-climbing algorithm, with random

restarts. Starting from a random structure, the algorithm prunes the space of directed

acyclic graphs by locally optimal changes of the structure. At each step an elementary

operation among adding, removing or inverting an edge is performed, so that the

resulting graph has the highest increase of score. Every time we update the graph,

we enforce a maximum number of two parents for each vertex (fan-in). As mentioned

in the introduction, this causes the maximum size of each family to be three and

therefore puts a cubic upper bound on the order of complexity during inference. To

prevent getting stuck in local maxima, we randomly restart a number of times once

we cannot get any score improvements, and then we pick the graph achieving the

highest score overall. As a final step, we obtain the full model by retaining the best

structure found, together with the associated maximum likelihood parameters.

Removing the decomposability constraint on the graph structure has a major con-

sequence in that exact belief propagation methods that pass through the construc-

tion of a junction tree are not applicable. When the junction property is satisfied,

the maximum-weight spanning tree algorithm allows an efficient (linear time) con-

struction of the junction tree as the one with the most populated separators between

cliques. Here, we propose instead a construction of the junction graph that (greedily)

attempts to minimize the complexity of the induced subgraph associated with each

variable. The aim is to minimize the number of cycles in the final junction graph,

hoping that it improves the chances of the Belief Propagation algorithm to converge

to the globally optimal labeling hypothesis.
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Figure 3.1: Graphical Models. Light shaded vertices represent variables associated
to different body parts, edges indicate conditional (in)dependencies, following the
standard Graphical Models conventions. [Left] Hand made decomposable graph from
[3], used for comparison. [Right] Model learned from data (sequence W1, see chapter
5), with max fan-in constraint of 2.
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Chapter 4

Detection and Labeling with
Expectation Maximization (EM)
and Loopy Belief Propagation
(LBP)

As we mentioned in the introduction, the coexistence of continuous and discrete vari-

ables in the same graphical model has been proven to make the problem of inference

intractable. In this chapter we will see how we can combine Belief Propagation with

an Expectation-Maximization type of algorithm to simultaneously solve for the max-

imum likelihood labeling and location of the person.

4.1 Expectation Maximization

In order to solve the maximization problem (3.1) one could simply take advantage of

the conditional independencies among variables and apply standard Belief Propaga-

tion techniques to compute the maximizing hypothesis. In most practical situation,

however, we require our system to be invariant with respect to translations in po-

sition, that is, we would like to detect the presence of a human being regardless of

the actual location in which it appears. Our approach in dealing with this issue is

to use relative positions for the first two coordinates (position) of the observations.

The following sections will cover the details of the revised probabilistic model and

estimation procedure.
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4.1.1 Translation Invariant Probabilistic Model

So far the reference system’s origin for the parts’ position was implicitly zero. We

introduce a new parameter γ = [γa,γb]
T to represent such reference system’s origin,

which we now allow to be different than zero. One can think of it as a continuous

quantity which we model as a non-informative Gaussian. We define a new set of

centered observations

ȳi = yi − JT
4 γ (4.1)

with

J4 =


 1 0 0 0

0 1 0 0


 (4.2)

so that our model becomes

fȳλ|γh(ȳ|γh) = fȳ
λf |γλδ(ȳλf |γλδ) · fȳ

λb |λδ(ȳλb|λδ).

where, in the second member, the first factor is now N (µ̄f , Σ̄f ) while the second factor

becomes UN−m(Ā). We will now turn to the description of an EM-based estimation

procedure for γ, while obtaining (as a by-product) the maximizing hypothesis h we

are after.

4.1.2 E-Step

We start by assuming that the hypothesis h is unobservable and we therefore treat it

as a hidden variable. In doing so, we have no access to the so called complete-data

log-likelihood, which we instead replace with its expected value

L̂c(f̃ , γ) = Ef̃h|ȳ [log fȳλh|γ(ȳλh|γ)], (4.3)

where the expectation is taken with respect to a generic distribution f̃h|ȳ(h|ȳ). It is

known that the E-step maximizing solution is
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f̃
(k)
h|ȳ(h|ȳ) = fh|ȳγ(h|ȳγ(k−1))

∝ fȳλ|γh(ȳλ|γ(k−1)h).

Since we will not be able to compute such distribution for all the labelings h,

we will make a so-called hard assignment, i.e., we will approximate fȳλ|γh(ȳλ|γ(k−1)h)

with 1(h− h(k)), where

h(k) = arg max
h

{fȳλ|γh(ȳλ|γ(k−1)h)}.

Given the current estimate γ(k−1) of γ, the hypothesis h(k) can be determined

by maximizing the (discrete) potential function Ψ(h) = log fȳ
λf |γh(ȳλf |γ(k−1)h) ·

fy
λb |h(yλb|h) with a Max-Sum Loopy Belief Propagation (LBP) on the associated

junction graph. Thanks to the conditional independencies among the variables, Ψ(h)

decomposes into a number of factors. Each factor’s potential function is initialized

to the family’s conditional probability mass function (pmf). For a root node, we

multiply its marginal pmf into one of its children’s potential.

If LBP converges and the determined h(k) maximizes the expected log-likelihood

L̂c(f̃
(k), γ(k−1)), then we are guaranteed (otherwise there is just reasonable1 hope)

that EM will converge to the sought-after ML estimate of γ.

4.1.3 M-Step

In the M-Step we maximize (4.3) with respect to γ, holding h = h(k), i.e. we compute

γ(k+1) = arg max
γ

{log fȳλ|γh(ȳλ(k)|γh(k))} (4.4)

1Experimentally it is observed that when LBP converges, the determined maximum is either
global or, although local, the potential’s value is very close to its global optimum. If the potential
is increased (not necessarily maximized) by LBP, that suffices for EM to converge



18

The maximizing γ can be obtained from

0 = ∇γ [(y
λf (k) − µ̄f − Jγ(k+1))T (Σ̄f )−1(y

λf (k) − µ̄f − Jγ(k+1))] (4.5)

where

J = [ J4 J4 · · · J4︸ ︷︷ ︸
]T

m

. (4.6)

The solution involves the inversion of the matrix Σ̄f as a whole which we have

observed to be a numerically instable operation, given the minimal variance in the

vertical component of the motion we have examined. We therefore approximate the

solution with the following

γ(k+1) = J4

M∑

δ
(k)
i =1

[
αi(yλ

(k)
i
− µ̄i)

]
(4.7)

where the αi’s are defined as,

αi =
det(Σ̄)

det(Σ̄[i]4[i]4)
. (4.8)

Although not optimal, the (4.8) attempts to produce a smooth estimate by giving

a higher weight (in the average (4.7)) to those observations assigned to parts with

low variance.

4.2 Detection Criteria

Let σ be a (discrete) indicator random variable for the event that the Johansson’s

display represents a scene with a human body. So far, in our discussion we have

implicitly assumed that σ = 1. In the following section we will describe a method

for determining whether a human body is actually present (detection). We start by

defining the likelihood ratio
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R(y) =
fσ|y(1|y)

fσ|y(0|y)
. (4.9)

Whenever R(y) > 1 we claim that a human body is present. By Bayes rule, R(y)

can be rewritten as

R(y) =
fy|σ(y|1)

fy|σ(y|0)
· fσ(1)

fσ(0)
=

fy|σ(y|1)

fy|σ(y|0)
·Rp (4.10)

where

Rp =
P [σ = 1]

P [σ = 0]
(4.11)

is the contribution to R(y) due to the prior on σ, i.e., it’s an indication of how likely

it is for a human to be present in a scene before we actually look at it.

In order to compute the R(y) we marginalize over the labeling hypothesis h, i.e.,

fy|σ(y|σ) =
∑

λ,δ

[
fy|λδσ(y|λδσ)fλ|δσ(λ|δσ)fδ|σ(δ|σ)

]
.

When σ = 0, the only admissible hypotheses must have δ = 0T (no body parts are

present) which translates into fδ|σ(δ|σ) = P [δ|σ = 0] = 1k(δ−0T ). Also, fλ|δσ(λ|δ0) =

N−N as no labeling is more likely than any other before we have seen the detections.

All N detections are labeled by λ as background and their conditional density is

UN(Ā). Therefore, we have

fy|σ(y|0) =
1

ĀN

1

NN
. (4.12)

When σ = 1, we have

fδ|σ(δ|1) = P [δ|σ = 1] =
M∏
i=1

qδi
i (1− qi)

1−δi (4.13)

as we assume that any body part of index i appears in a given display with some

fixed probability qi, independently of all other parts. Similarly to the case of δ = 0,
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we have fλ|δσ(λ|δ1) = N−N and therefore we can write

fy|σ(y|1) =
∑

λ,δ

[
fy|λδσ(y|λδ1)

1

NN
fδ|σ(δ|1)

]
. (4.14)

We conclude that

R(y) = Rp

fy|σ(y|1)

fy|σ(y|0)
= RpĀ

N
∑

λ,δ

[
fy|λδσ(y|λδ1)fδ|σ(δ|1)

]

In most practical situation the marginalization above is intractable. Additionally,

the use of Gaussian models often requires working with log-probabilities for numerical

accuracy. To circumvent these issues, in our implementation of Loopy Belief Propaga-

tion, we have assumed that the ML labeling ĥ is predominant over all other labeling,

so that in the estimate of σ we can approximate marginalization with maximization

Therefore, we can write

R(y) ≈ Rp

fy|λδσ(y|λ̂δ̂1)fδ|σ(δ̂|1)

Ā−N

where λ̂, δ̂ is the maximizing hypothesis when σ = 1.
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Chapter 5

Experimental Results

In our experiment we use two sequences W1 and W2 of about 7,000 frames each,

representing a human subject walking back and forth along a straight line. The

sequences were acquired and labeled with a motion capture system that recorded the

positions of a set of markers attached to the main joints of the body (see Figure 5.1

for a graphical illustration of the data sets used).

Figure 5.1: Sample frames from sequence W2: To illustrate the data set used in our
experiments we took sequence W2 (a motion capture recording of a person walking)
seen at 45◦ with respect to the direction of motion. Each dot represent the (x, y)
positions of the 14 body parts appearing in frames 1001, 1006, 1011, 1016, 1021 and
1026. Although not present in the dataset, a few lines are drawn between some of
the body parts for ease of interpretation of the display.

From each pair of consecutive frames a Johannson display is produced contain-

ing positions and velocities (difference in positions between the two frames) of the
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parts. W1 is used to learn the probabilistic model’s parameter and structure. A 700

frames random sample from W2 is then used to test our algorithm. Occlusions are

synthetically generated by removing randomly chosen parts from the display. Clut-

ter detections are obtained by sampling. The position is sampled from a uniform

distribution over the size of the display, while the velocity’s modulus and angle are

obtained by sampling uniform distributions over the range of velocities observed in

the whole training sequence over all parts, and over the unit circle respectively.

We evaluate the performance of our technique and compare it with the hand-

made, decomposable graphical model of [3]. There, translation invariance is achieved

by using relative positions within each clique. We refer to it as to the local version of

translation invariance (as opposed to the global version we propose).

We first explore the benefits of just relaxing the decomposability constraint, still

implementing the translation invariance locally. The lower two dashed curves of

Figures 5.2 and 5.3 already show a noticeable improvement, especially when fewer

body parts are visible. However, the biggest increase in performance is brought by

global translation invariance as it is evident from the upper two curves of the same

figures.

As for the dynamical programming algorithm of [3], the Loopy Belief Propagation

algorithm runs in O(MN3), however 4 or 5 more iterations are needed (on average) for

it to converge. Furthermore, to avoid local maxima, we restart the algorithm at most

10 times using a randomly generated schedule to pass the messages. Finally, when

global invariance is used, we re-initialize γ up to 10 times. Each time we randomly

pick a value within a different region of the display. On average, about 5 restarts for

γ, 5 different scheduling and 3 iterations of EM suffice to achieve a labeling with a

likelihood comparable with the one of the ground truth labeling.
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Figure 5.2: Labeling Performance. On each display from the sequence W2, we ran-
domly occlude between 3 and 10 parts and superimpose 30 randomly positioned
clutter points. For any given number of visible parts, the four curves represent the
percentage of correctly labeled parts out of the total labels in all 700 displays of W2.
Each curve reflects a combination of either Local or Global translation invariance and
Decomposable or Loopy graph.
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Figure 5.3: Detection Performance. On each display from the sequence W2, we
randomly occlude between 3 and 10 parts and superimpose 30 randomly positioned
clutter points. For any given number of visible parts, the four curves represent the
probability of detecting a person when the display shows one, for a fixed Pfalse−alarm =
10%. Here, the probability of false-alarm is that of stating that a person is present
when only 30 points of clutters are presented. The number of visible points varies
between 4, 7 and 11.
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Chapter 6

Discussion, Conclusions and Future
Work

The generalization of the decomposable graphical model to loopy here introduced,

produced a gain in performance compared to [3]. Further improvement would be ex-

pected when allowing larger cliques in the junction graph, at a considerable compu-

tational cost. A more sensible improvement was obtained by adding a global variable

modeling the centroid of the figure.

Taking [3] as a reference, there is about a 10x increase in computational cost when

we either allow a loopy graph or account for translations with the centroid. When

both enhancement are present the cost increase is between 100x and 1,000x.

We believe that the combination of these two techniques points in the right di-

rection. The local translation invariance model required the computation of relative

positions within the same clique. These could not be computed in the majority of

cliques when a large number of body parts were occluded, even with the more ac-

curate loopy graphical model. Moreover, the introduction of the centroid variable is

also valuable in light of a possible extension of the algorithm to multi-frame tracking.

We should also note that the structure learning technique is sub-optimal due to

the greediness of the algorithm. In addition, the model parameters and structure

are estimated under the hypothesis of no occlusion or clutter. An algorithm that

considers these two phenomena in the learning phase could likely achieve better results

in realistic situations, when clutter and occlusion are significant.
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Finally, the step towards using displays directly obtained from gray-level image

sequences remains a challenge that will be the goal of future work.
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