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Abstract

Helmholtz established the field of hydrodynamic stability with his pioneering work

in 1868. From then on, hydrodynamic stability became an important tool in un-

derstanding various fundamental fluid flow phenomena in engineering (mechanical,

aeronautics, chemical, materials, civil, etc.) and science (astrophysics, geophysics,

biophysics, etc.), and turbulence in particular. However, there are many discrepan-

cies between classical hydrodynamic stability theory and experiments. In this thesis,

the limitations of traditional hydrodynamic stability theory are shown and a frame-

work for robust flow stability theory is formulated. A host of new techniques like

gramians, singular values, operator norms, etc. are introduced to understand the role

of various kinds of uncertainty. An interesting feature of this framework is the close

interplay between theory and computations. It is shown that a subset of Navier-

Stokes equations are globally, non-nonlinearly stable for all Reynolds number. Yet,

invoking this new theory, it is shown that these equations produce structures (vor-

tices and streaks) as seen in the experiments. The experiments are done in zero

pressure gradient transiting boundary layer on a flat plate in free surface tunnel.

Digital particle image velocimetry, and MEMS based laser Doppler velocimeter and

shear stress sensors have been used to make quantitative measurements of the flow.

Various theoretical and computational predictions are in excellent agreement with

the experimental data. A closely related topic of modeling, simulation and complex-

ity reduction of large mechanics problems with multiple spatial and temporal scales

is also studied. A nice method that rigorously quantifies the important scales and

automatically gives models of the problem to various levels of accuracy is introduced.

Computations done using spectral methods are presented.
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Chapter 1 Introduction

1.1 Importance of Turbulence in the 21st Century!

Turbulent flows have been observed for nearly 500 years, starting with [41]. Quanti-

tative experimental measurements of turbulence have been made for more than 100

years, starting with [98] and computations of turbulence have been made for nearly 40

years. Some progress has been made in understanding turbulence in various discon-

nected directions, like identifying different routes to turbulence in different flows [84].

This has raised many new questions apart from the many unanswered old questions.

Even now a complete coherent understanding of turbulence is not achieved. Turbu-

lence is the single multi-scale problem in mechanics that defers our understanding

using either theoretical, computational or experimental tools. All the three lines of

investigations have their own inherent limitations. Progress on the theoretical side

is limited because of the complexity of the equations and the underlying nonlinear

function spaces. On the simulation side, we are limited by the R3 computational

cost requirements due to wide spatial and temporal scale separation. Here R is the

Reynolds number. Progress on the experimental side is also very limited, due to the

intrusive and local nature of the diagnostic techniques. Only recently we have started

developing non-intrusive and global measurement techniques, and we have a long way

to go, before we can resolve all the important scales in the turbulence experiments.

Apart from its own scientific importance, turbulence is also central to some of

the most important technologies and problems of the 21st century. For example,

turbulence plays a key role in the next generation high speed aircraft and space

launching vehicles. Some of the problems that need attention in these areas are: low

and high speed aerodynamic design of vehicles, multi-phase turbulent combustion and

heat transfer in aero engines, active control of turbulence, effect of the atmospheric

turbulence on the structure and viceversa, etc.
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Some of the key problems facing the world right now, like dwindling energy (oil and

fossil fuels) reserves and increasing pollution, are also closely related to turbulence.

The only way out of these inevitable problems is using renewable energy sources like

wind turbines, solar energy, etc., or improving dramatically the efficiency of energy

generation and utilizing systems like gas turbines that are based on fossil fuels. Our

ability to understand and control the spread of pollutants in air and water will also

benefit enormously from studying the turbulent dispersion phenomenon. In all the

above cases the efficiency of the operating point of the system is a strong function of

turbulent environment in which they operate.

Turbulence also plays a key role in chemical engineering phenomena like mixing,

separation of colloids, etc. Many of the phenomena in: astrophysics like galactic

and stellar dynamics, etc.; atmospheric sciences like sediment transport, weather

prediction, etc; mechanical engineering like internal combustion, oil transport by

pipes, etc. are also connected to turbulence in different forms.

In essence, our understanding of turbulence is very limited and new understanding

gained can dramatically improve the existing technologies and may even lead to new

technologies.

1.2 Stability and Turbulence: Relation and Issues

There are two possible ways of understanding turbulence: We can investigate tran-

sition from a laminar to turbulent flow or a turbulent to laminar flow. One can

physically think of the former route as the flow losing stability and ultimately land-

ing on an attractor [104, 84, 30]. The traditional approach in understanding this

former scenario is hydrodynamic stability based on eigenvalues. In this approach,

one linearizes the Navier-Stokes equations about a given base flow and studies the

spectrum of the linearized operator for different Reynolds number. The flow is said

to be unstable at a certain critical Reynolds number when an eigenvalue first shows

up in the open right half plane. See the classic references [46], [29], [69] for details

and references. Understanding the latter transition is of course much harder than
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the former, as none of the turbulent mean profiles we know satisfy the Navier-Stokes

equations exactly. Furthermore, the linearization of the equations about a base state

where the perturbations are large is not valid. The foundations of formulating hy-

drodynamic stability problem was formulated some 125 years ago by Helmoltz [119]

and Lord Rayleigh [95]. This way of formulating hydrodynamic stability has received

widespread acceptance due to the spectacular theoretical prediction of T-S waves in

Blasius boundary layer transition by Tollmien and Schlichting [108], and subsequent

painstaking experimental verification of the T-S waves by Schubauer and Skramstad

[110] after 20 years.

There has been a lot of mismatch between hydrodynamic stability theory predic-

tions and experiments in channel flows (Pouiselle, Couette, boundary layer and pipe

flows, etc.) with respect to critical Reynolds number at which the flow transits to tur-

bulent state. For example, in Couette flow transition is observed in experiments any

where above Reynolds number of 350, even though the flow is stable for all Reynolds

number according to linear infinite-dimensional proof [102]. It has been observed

experimentally that in open flows, transition can be postponed indefinitely if one

minimizes the disturbances in the external environment [38]. In fact, the experimen-

tal verification of T-S waves took 20 years after the theoretical prediction precisely

for this reason [110]. They constructed a special low disturbance wind tunnel so as to

observe T-S waves. In these flows one sees streamwise vortices [25], [75], [76], [101],

[87], [115], [7] and not T-S waves in the natural environment. Normal mode stability

analysis, on the other hand, reveals that vortices are not the eigenfunctions of the

respective linearized equations. It has been known for a long time, that the bound-

ary layer streamwise vortices are the primary turbulence producing and sustaining

mechanisms away from the wall.

The above experiments clearly indicate that transition is a strong function of the

external disturbance environment. This led Morkovin to coin the word receptivity

analysis in the 1970s. In receptivity analysis, one studies the influence of wall rough-

ness, inlet distortions, leading edge curvature, free-stream turbulence and acoustic

disturbances on the onset of transition by solving the initial value problem. In this
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analysis, there is neither a clear modeling of the disturbance nor a clean formulation

of the mathematical stability problem in the presence of disturbances.

That perturbations can grow transiently and decay at later times has been recog-

nized a long time back by Orr in his seminal 1907 paper [93]. For some reason, interest

in this line of thought is lost very soon in fluid mechanics. Occasionally a paper is

published here and there about transient growth of perturbations in different forms,

like resonant modes [68] or algebraic growth [48], [31], [67], [78]. Only recently has

transient growth received widespread attention in fluids community with the works

of [19], [52], [116], [96], etc. A recent review is given in [56].

Some ascribe the vortices in the wall bounded flows to nonlinear mechanisms

[89], some call them pseudomodes based on pseudospectra [97], and others [24] call

them optimally growing modes based on the worst-case initial conditions. One can

show that pseudospectra are related to unstructured singular value and hence leads to

conservative estimates. Most of the perturbations in the flow have a specific structure

and one should think of modeling them as a structured set. It was found [51] that

huge variance is sustained under white noise forcing of linear Navier-Stokes equations.

It was showed analytically that the energy of three-dimensional streamwise constant

disturbances achieves R3 amplification under white noise forcing by taking the trace of

the covariance operator, which is obtained by solving the operator Lyapunov equation

[8].

There is no experimental evidence of Ruelle-Takens [104] route to transition to

turbulence in channel flows. Recently [40], [114] questioned the importance of strange

attractor in open flows like pipes and channels. Their conclusion was that there might

be no attractor in open flows, unlike Rayleigh-Benard convection [23] where there is

evidence. It is not clear as to why some flows have an attractor and others don’t.

Recently there has been some numerical evidence of bifurcating finite amplitude states

in Couette flow [89] in the form of rolls. However, these rolls were proved to be

unstable [33] in a related problem (Rayleigh-Benard convection in the presence of

plane Couette flow). Furthermore, as of now, there is no experimental verification of

these states and they don’t agree with the existing experimental observations. This
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aspect will be discussed later.

A close observation of turbulence reveals some universal features common to

second-order phase transition, directed percolation processes and lattices of coupled

mappings, etc. For example, there is a similarity in the functional form of PDFs

between power consumption measured in a turbulent flow and magnetization at the

critical point of the ferromagnet. Both have exponential tails, power laws, etc. [22].

The suggestion of directed percolation [30] accounting for space-time intermittency

well defined threshold, scaling in the critical region, opening of the observation angle,

etc. in the study of distributions of lengths of laminar and turbulent domains are also

interesting. As of now, there is not a single story which explains all these observed

features in a coherent fashion.

1.3 Objectives of the Present Study

The primary objective of the present study is to investigate the reasons for the dis-

agreement between stability theory and experiments in general and transition to

turbulence in wall bounded flows in particular. Once the limitations of the theory

have been found, the next goal is to formulate a general stability theory that avoids

the old deficiencies, and unifies different concepts and formulations existing in the

literature. We also would like to address, in precise terms, many of the questions

not addressed in the traditional hydrodynamic stability theory literature, like: What

does eigenvalues tell about the stability of the problem? How can we incorporate the

structure of the external disturbance environment on the flow phenomena of interest?

What is the relevance of predictions of idealized mathematical models to real life

experiments?

We will also address the question of, what are the important modes in any given

fluid flow problem? Related questions like, how should we characterize these modes

and complexity of the flow mathematically; can we get simplified models for com-

plicated phenomena governed by partial differential equations; can we quantify the

error in the approximation, will also be studied.
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A systematic experimental study will be undertaken to understand the role of

external environment on the boundary layer transition. Particular attention will

be paid towards understanding the physical mechanisms involved in the laminar-

turbulent transition. A big problem from the experimental point of view is the lack

of accurate, non-intrusive and global measurement techniques. This has resulted in

poor quality of data in the last 50 years. We will avoid this problem by using state

of the art non-intrusive global laser diagnostic techniques. We will also compare the

theoretical predictions with the experiments in forced boundary layer.

1.4 Organization

The present chapter gave an introduction to the importance of turbulence in the

coming years and some of the unresolved issues in its study. In Chapter 2 of the thesis

the role of various uncertainties in the hydrodynamic stability is discussed and various

new stability notions are defined to understand each of these uncertainties. Chapter

3 of the thesis discusses some results on global stability of 2D/3C equations and

their exact solution using Semi-group theory. Input-output stability using induced

norms is presented in Chapter 4. A new complexity reduction method is presented in

Chapter 5, and computational details are presented in Chapter 6. Chapters 7 gives

introduction and aims of the forced boundary layer experiment. In Chapter 8, the

details of the experimental apparatus are presented and the results are presented in

Chapter 9. Chapter 10 and Chapter 11 deal with the conclusions of this work and

future directions for this work, respectively.
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Chapter 2 Robust Flow Stability

In this chapter we address the role of various factors on the stability or instability of

the flow. The linearized Navier-Stokes operators are non-normal in most of the flow

problems that we are interested in. We will show that non-normality of the underlying

operator is just one aspect of the many unresolved questions in flow stability analysis.

We will mathematically show and later physically argue that the model flow equa-

tions are uncertain, in the sense that we do not have complete knowledge of various

parameters, disturbances, boundary conditions, inflow conditions, etc. occurring in

the experiments. In particular, we show that this lack of information or uncertainty

is closely related to the stability problem, and this makes the stability problem more

interesting and challenging from the mathematical point of view. Because of the non-

normality of the operators and the uncertainties in the model, we will show that a

wide range of other stability notions need to be invoked. It will be shown that in this

scenario eigenvalues carry little information and are always misleading representatives

of stability. Even though the linearization is asymptotically stable, the existence of

large transients (H2 norm), large frequency singular value plots (H∞ norm) and small

stability margins with respect to unmodeled dynamics are all features which are more

important in the prediction of the response of Navier-Stokes equations. We call this

stability analysis addressing the stability of the unperturbed flow model with respect

to all the uncertainties “Robust Flow Stability”.

First we present a detail study on uncertainties involved in flow modeling and then

show how stability is related to this. We then present various stability definitions

and theorems characterizing the stability notions. The relationship between classical

hydrodynamic stability and robust flow stability will also be addressed towards the

end of the chapter.
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2.1 Uncertainties in Continuum Mechanics

Modeling errors are unavoidable in any realistic mathematical description of a com-

plex phenomena. These errors arise sometimes because of our limitations or lack of

understanding of higher-order effects, and other times due to the simplification of

the complicated model for mathematical and computational tractability. As a result,

there is no unique model that is truly valid in all the regimes. All the models, from

the most sophisticated to the most simple one, are approximations of the reality to

different levels of accuracy. The validity of the model then depends on the level of

detail one is interested in describing the physical system 1.

In the context of fluid flow, though the Navier-Stokes equations can be taken as

a good approximation to the reality at macroscales, there are still modeling errors

involved. Some of the not so important uncertainties are quantum and relativistic

space-time effects in low speed fluid flow. On the other hand, important modeling

uncertainty arises from the lack of exact knowledge of initial conditions; boundary

conditions; inflow conditions; parameters like viscosity and mean flow; disturbances

in the experiment that need to be fed into the Navier-Stokes equations to be able

to make any prediction. Even if all these are available by some means, the finite-

dimensional nature of the computations, etc., cause a whole set of other modeling

errors.

With this introduction, we study next in detail the various kinds of uncertainty

that are present in a continuum phenomena in general and transition to turbulence in

particular. We will characterize the various uncertainty mathematically and describe

how they occur physically later. We will do this initially in the general setting as this

way of doing stability has applications in many other areas of continuum physics.

1We will broadly use the term uncertainty to refer to various modeling errors between the true
reality and the approximate model.
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2.1.1 Quantifying Uncertainty Mathematically

Let us assume that

˙̃x(t) = Ãx̃(t) + B̃w̃(t) + D̃ũ(t) + f̃(x̃) (2.1)

y(t) = C̃x̃(t) + Ẽṽ(t)

b̃(x̃) = 0

x̃(0) = x̃0, x̃ ∈ C∞, y ∈ Cm

is the accurate infinite-dimensional mathematical description of the physical phenom-

ena in its full complexity. Here w̃ is the exact disturbance occurring in the experiment,

ũ is the control, Ã is the linear operator, f̃ is the non-linearity, y is some measurement

we make on the phenomenon, ṽ is the noise in the measurement, x̃ is the state vector,

b̃ is the true boundary condition and x̃0 is the true initial condition. We avoid showing

the explicit dimension of each variable for notational simplification. If one has the

exact PDE description of the phenomenon, one can arrive at such a representation

by using some form of projection technique like, Galerkin, spectral, finite difference,

etc.

Say we approximated the above governing equations by a simplified set of equations

ẋ(t) = Ax(t) (2.2)

y(t) = Cx(t)

b = 0

x(0) = ∆i, x ∈ Cn, y ∈ Cm.

Here A is an approximation of Ã, C is an approximation C̃ and similarly for other

variables. This kind of approximation can be due to various reasons like, mathemat-

ical tractability or lack of precise knowledge of parameters in the experiment, etc. as

discussed in the introduction. We are interested in characterizing all the model errors

that are involved in going from the exact model (2.1) to the approximate model (2.2).
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To do this, let us partition (2.1) as following

 ˙̃x1

˙̃x2

 =

 Ã11 Ã12

Ã21 Ã22

 x̃1

x̃2

 +

 B̃1

B̃2

 w̃ + D̃ũ +

 f̃1(x̃1, x̃2)

f̃2(x̃1, x̃2)

 (2.3)

y =
[

C̃1 C̃2

]  x̃1

x̃2

 + Ẽṽ (2.4)

x̃1 ∈ Cn, x̃2 ∈ C∞−n (2.5)

with x̃1 having the same column dimension as x in (2.2). Expanding the equation for

x̃1 we get

˙̃x1 =
[
A + (Ã11 − A)

]
x̃1 +

[
B + (B̃1 − B)

]
[w + (w̃ − w)] +

Ã12x̃2 + D̃ũ + f̃1 (2.6)

y(t) =
[
C + (C̃1 − C)

]
x̃1 + C̃2x̃2 + Ẽṽ. (2.7)

Rearranging the above equation results in

˙̃x1 = Ax̃1 +
[
Bw + (Ã11 − A)x̃1 + (B̃1 − B)w̃ + B(w̃ − w)+

Ã12x̃2 + D̃ũ + f̃1

]
(2.8)

y(t) = Cx̃1 +
[
(C̃1 − C)x̃1 + C̃2x̃2 + Ẽṽ

]
(2.9)

b +
[
b̃ − b

]
= 0 (2.10)

x̃1(0) = x̃10 . (2.11)

In the above equation we have added and subtracted operators like A, B and C

which occur in (2.2) . We did this in order to be able to track the neglected terms in

the approximation. Let us for the time being assume that there is no control involved
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and set ũ = 0. Define vectors

(Ã11 − A)x̃1 + (B̃1 − B) = ∆p (2.12)

Bw + B(w̃ − w) = ∆d

Ã12x̃2 = ∆l

f̃1 = ∆n (2.13)

(C̃1 − C)x̃1 = ∆po

C̃2x̃2 = ∆lo

b̃ − b = ∆b

x̃10 = ∆i

with the subscript denoting some uncertainties which we will describe in the next

section. For the time being, one can think of that as just a notation. Redefining

x = x̃1, we get

ẋ = Ax + ∆p + ∆d + ∆l + ∆n (2.14)

y = Cx + ∆po + ∆lo

b + ∆b = 0

x(0) = ∆i.

Now let us compare (2.14) with (2.2). We see that in going from the exact de-

scription (2.1) to approximate description (2.2) we have neglected a collection of 7

terms. Each of this term is a specific uncertainty in the approximate equations. We

describe each of these terms next.

2.1.2 Physics of Uncertainty Types

The analysis of the previous section, equation (2.12), indicated that broadly speaking

there are 8 types of uncertainties present in the approximate model (2.2). They are

defined as following:
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1. Parametric uncertainty (∆p): This error occurs because of the lack of precise

knowledge of the parameters in the experiment. These parameters can be de-

terministic or stochastic. Because of this lack of knowledge, we model them

only approximately and this results in error. For example, consider transition

to turbulence in Couette flow. Then Ã is the true base flow in the experiment,

while A is the linearized Navier-Stokes equations about Couette flow. These

two are not the same because of the inevitable experimental errors involved.

2. Linear mode uncertainty (∆l): This error occurs because of finite-dimensional

approximation of an infinite-dimensional operator and the vector of linear terms

neglected in the process. For example, x̃2 ∈ C∞−n in the previous section can

be thought of as the neglected linear terms in any kind of computation.

3. Non-linear mode uncertainty (∆n): This error occurs due to the coupling of

neglected and retained non-linear terms in a finite-dimensional approximation

of an infinite-dimensional operator. For example, f̃1 in the previous section can

be thought of as the neglected nonlinear triad terms in any kind of computation.

4. Disturbance uncertainty (∆d): This error occurs because of the lack of precise

knowledge of the disturbances occurring in the real experiment. Especially,

there is no way we can get the high frequencies and large wave numbers of

the disturbances right. Some examples of this would be Coriolis force, non-

Newtonian effects due to impurities, noise, acoustic forcing, etc.

5. Boundary condition uncertainty (∆b): This error occurs due to the lack of

precise knowledge of the boundary conditions in the experiment or our inability

to model them accurately. A possible scenario for this would be test section

walls having some roughness.

6. Initial condition uncertainty (∆i): This error occurs due to the lack of precise

knowledge of the initial conditions in the experiment.

We have the analogous errors in the output. They are denoted with an extra subscript

“o”.
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Some of the other uncertainties that are not discussed above, but are relevant to

hydrodynamic stability of transition to turbulence in wall bounded flows, are turbu-

lent shear layers and boundary layers coming from the separated boundary layer in

the contraction that interact with the flow in the test section leading to uncertain

inflow conditions and initial conditions; tunnel oscillations leading to disturbance un-

certainty; temperature fluctuations along the tunnel test section resulting in change

of kinematic viscosity and hence Reynolds number; compressibility effects; thermo-

dynamic fluctuations and others.

Some of the physical systems are not sensitive to modeling errors. Laminar flow

is a nice example. Many phenomena in solid mechanics too are also insensitive to

external environment. Unlike them, we will show that transition to turbulence is a

very sensitive phenomenon, and one has to systematically study various effects of

these structured uncertainty (all the 8 kinds of uncertainty) on the stability of fluid

flow equations, to be able to predict the response of the real flow. This is what we

will be doing in the rest of this chapter.

2.2 Norms, Spaces and Operators

In this section we will discuss the notation, norms and spaces that we will be using.

Throughout this work we will study the projection of the Navier-Stokes equations onto

a finite-dimensional linear vector space. In this work, we view the fluid as a system

with certain disturbances as input, certain measurements as output and governed by

the equations

ẋ(t) = Ax(t) + Bw(t), x(0) = x0 (2.15)

y(t) = Cx(t),

where x(.) : R 7→ X is the state of the system, x0 ∈ X is the initial condition,

w(.) : R 7→ W is the disturbance and y(.) : R 7→ Y is the output. A ∈ L(X; X), B ∈
L(W ; X), and C ∈ L(X; Y ) are the spaces of bounded linear operators. The spaces
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X, W and Y are the state space, disturbance space and output space, respectively,

and they are assumed to be linear finite-dimensional vector spaces. In this work

X = Cn, W = Cm and Y = Ck, and A,B and C have appropriate dimensions.

We will assume that the operator A is Hurwitz as we need to solve some Lyapunov

equations. Taking the Laplace transforms with zero initial conditions of (2.15) we get

the frequency domain characterization of the system

ŷ(s) = C(sI − A)−1Bû(s) ≡ G(s)û(s), (2.16)

where G(s) is called the transfer function of the system. In time domain, the solution

(with zero initial conditions) can be written as a convolution between impulse response

function and input. That is

y(t) = g ∗ w =

∫ t

0

g(t − σ)w(σ)dσ, (2.17)

where G(s) is the Laplace transform of g(t) = CeAtB. The norm of the matrix will

be denoted by ‖ ‖ with the appropriate subscript. We denote conjugate transpose

by “*”. The bold symbols represent the spaces. E stand for ensemble average and

I stands for identity matrix of appropriate dimensions. We will assume that the

random process is stationary.

The norms that we will be using again and again in this section are the H2 norm

and the H∞ norm. These are the respective norms on the Hardy spaces (these are

Banach spaces) H2 and H∞. The space H2 consists of square integrable functions on

the imaginary axis with analytic continuations into the right half plane. The space

H∞ consists of bounded functions with analytic continuation into the right half plane.

The H2 and H∞ norms are defined as

‖G‖H2 ≡
√

1

2π

∫ ∞

−∞
Trace[G∗(jω)G(jω)]dω, (2.18)

‖G‖H∞ ≡ sup
ω∈R

σ̄[G(jω)], (2.19)
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where j =
√−1 and σ̄[M ] denotes the maximum singular value of the operator M.

The autocorrelation of function w(t) is defined by

Rw(τ) = Ew(t + τ)w∗(t) (2.20)

and we will assume that it exists. Taking the Fourier transform of this autocorrelation

we get spectral density function Sw(jω) as

Sw(jω) =

∫ ∞

−∞
Rw(τ) exp (−jωτ)dτ (2.21)

Rw(jτ) =
1

2π

∫ ∞

−∞
Sw(jω) exp (jωτ)dω. (2.22)

It is also assumed that the Fourier transform and the inverse Fourier transform exist.

The power semi-norm (as the positive definiteness property of the norm does not

hold) is defined as

‖w(t)‖P =
√

E‖w(t)‖2
2 (2.23)

and we will assume that it is bounded. It is easy to check that the power semi-norm

can also be written as

‖w(t)‖P =
√

Trace[Rw(0)] =

√
1

2π

∫ ∞

−∞
Trace[Sw(jω)]dω. (2.24)

The spectral semi-norm is defined as

‖w(t)‖2
S = ‖Sw(jω)‖H∞ . (2.25)

We will also assume that this norm is bounded. One has to note that disturbances

that have bounded power need not have bounded spectrum and viceversa. We shall

denote the space of all bounded power norm functions by P and the space of all

bounded spectral norm functions by S.

The space of Lebesgue integrable functions will be denoted by L with the appro-
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priate subscript. L2 denotes the Hilbert space of functions with the norm

‖w(t)‖L2 ≡
√∫ ∞

0

‖w(t)‖2
2dt. (2.26)

L∞ denotes the Banach space of functions that have bounded

‖w(t)‖L∞ ≡ sup
t≥0

‖w(t)‖2 (2.27)

norm. Lp denotes the Banach function space in the following norm

‖w(t)‖Lp ≡ (

∫ ∞

0

‖w(t)‖p
2dt)1/p. (2.28)

An inner product is denoted by < . , . >Z , with Z denoting the appropriate inner

product space. The adjoint of the operator T ∈ L(Y, Z) is denoted by T ∗ and is

defined as

< y, Tz >Y =< T ∗y, z >Y , ∀ x ∈ X, y ∈ Y, (2.29)

where Y and Z are the Hilbert spaces.

Let Y and Z denote Banach spaces. The induced norm of operator T ∈ L(Y, Z)

is denoted by

‖T‖Y →Z = sup
y∈Y, y 6=0

‖Ty‖Z

‖y‖Y

. (2.30)

The matrix norm induced by the vector norm is defined as

‖T‖p→p = sup
y∈Cm, y 6=0

‖Ty‖p

‖y‖p

, ∀p. (2.31)

For p = 1, 2 and ∞ cases, we can write the above matrix induced norms as

‖T‖1→1 = max
1≤j≤n

n∑
i=1

|tij|, ‖T‖2→2 =
√

σ̄(T ), (2.32)

‖T‖∞→∞ = max
1≤i≤m

m∑
j=1

|tij|, (2.33)



17

where σ̄(T ) =
√

λmax(T ∗T ) =
√

λmax(TT ∗). For notational simplification we will

denote ‖T‖2→2 or any induced norm when the spaces are clear from the context by

‖T‖ sometimes. If nothing is mentioned ‖x‖ denotes Eucledian 2 norm of the vector

x. One can define a more general matrix induced norm as

‖T‖p→q = sup
y∈Cm, y 6=0

‖Ty‖q

‖y‖p

, ∀p, q. (2.34)

We denote P > 0 to indicate that P is a positive definite matrix. I.e., P ∈ Hn×n

(Hn×n is the linear vector space of Hermitian matrices) and x∗Px > 0 for all x 6= 0.

In the same spirit P ≥ 0 implies positive semidefinite. Negative definite and negative

semidefinite can be similarly defined. A matrix that is neither of the above is called

indefinite. By P > Q we mean P −Q > 0. Nn×n is called the vector space of normal

matrices.

Linear matrix inequality in the variable x is represented by an inequality of the

form F (x) < H; with x ∈ X, F : X → Hn×n a linear map from a vector space X to

the vector space Hn×n and H ∈ Hn×n.

The discrete time analogue of equation (2.15) is denoted by

x(n + 1) = Ax(n) + Bw(n), x(0) = x0 (2.35)

y(n) = Cx(n).

We can define the norms for these discrete time systems as done before for continuous

time systems by replacing Lp with lp.

2.3 Stability of Uncertain Models

One might be wondering as to what the connection is between the various kinds of

uncertainty described in section 2.1 and stability. We will make that relation clear

now. Loosely speaking stability refers to the behavior of the flow or its mathematical

representation in the presence of exogenous perturbations or uncertainty. In stability
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theory we are interested in understanding the behavior of not just one solution, but the

whole family of solutions emanating from the neighborhood of nominal model. This

way of thinking about stability generalizes the classical notion of stability, wherein,

we consider ε balls around the neighborhood of fixed point for initial conditions. In

section 2.1 we have shown that there are 6 (assuming there is no measurement un-

certainty) different kinds of modeling uncertainties present in any finite-dimensional

description of an infinite-dimensional phenomena. Therefore, one has to study stabil-

ity of the model with respect to each of these perturbations to understand the stability

of the system as a whole. Most of the times, we do not have precise knowledge of

all the model uncertainty, but we have some kind of approximate knowledge. The

approach we take is that we cover the nominal model with a set of perturbations, in

which one of the perturbation is the exact perturbation occurring in the experiment.

Depending on the amount of information available about the uncertainty, that can

be incorporated into the perturbation set. If no information is available about the

perturbation, our estimates are going to be conservative.

Let us consider a simple example illustrating the above methodology. Say we are

trying to understand the linear stability of a base flow in an experiment which has

3 percent uncertainty in the base flow. Linearizing the equations about the nominal

base flow we get

ẋ(t) = Ax, A ∈ Cn×n. (2.36)

Next we model the 3 percent uncertainty in the base flow by the set

∆ =
{
∆ : ∆ ∈ Cn×n, ‖∆‖ ≤ 0.03

}
. (2.37)

The true experimental configuration is one among the family of models

ẋ(t) = (A + ∆)x, ∆ ∈ ∆. (2.38)

As a result, the question of stability of the flow in the experiment is not related to
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spec(A), but that of

spec(A + ∆), ∆ ∈ ∆. (2.39)

It is not hard to see that both notions give the same result if there is no uncertainty

in the experiment.

Some of the questions that come to mind immediately are: What do we mean by

behavior? Which attribute of the flow should one pick? How should we measure the

behavior of the flow? There is not a unique answer for any of the above questions.

Different people might be interested in different behavior of the flow and they might

even think of measuring the same behavior in different ways. So, stability is defini-

tion specific. The flow can be stable in one notion and unstable in another notion.

This fact is very important, especially for non-linear systems and infinite-dimensional

systems. Furthermore, there is no single stability notion which tells about the ef-

fect of all the uncertainties on the nominal model. As a result, we often resort to

studying each uncertainty in isolation or a group of uncertainties together. Some of

these uncertainties are deterministic and others are stochastic by nature. One has

to explicitly take this deterministic-stochastic nature of disturbances into account

in the hydrodynamic stability theory, by writing a deterministic-stochastic evolution

equation for the dynamics and studying their stability properties.

Tremendous progress has been done in the last 100 years in the mathematics

community, especially by Russian mathematicians, in understanding the stability

of solutions of ordinary differential equations starting with the works of Lyapunov.

This has triggered a spur of activity in the controls community in the 1970s and

led to the development of the robust control specialty. This mixed endeavor of pure

mathematicians and control theorists has produced a vast number of definitions for

stability, in both the deterministic and stochastic cases, in precise functional analysis

terms. Each definition has its own advantages and disadvantages. This resulted in a

good theory of stability for particular systems under specific strong assumptions [59],

[58], [10], [74], [103], [125], [4], [83], [127]. A complete theory of stability under general

set of assumptions for the equations and modeling uncertainty is still elusive. The
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fluid mechanics community, for some reason, is not aware of these developments. An

issue from the engineering point of view is that most of the above works quickly run

into analysis technicalities and may be hard to understand for a person not trained

in functional analysis. The author believes that understanding stability from a more

rigorous setting is the only way we can have a complete understanding of fluid flow

stability theory and its relevance to real life experiments.

In this section, we discuss the various notions of stability and instability and

how they are related to the dynamics of fluid flow under wide variety of uncertain

conditions. Part of this section is based on the references listed above. We begin

by giving precise definitions of stability for autonomous nonlinear flow systems. The

definitions will be simplified later to the case of LTI flow systems.

2.3.1 Various Stability Definitions

We first begin by defining stability concepts that address how the uncertain initial

conditions effect the behavior of flow system. Let us therefore, consider the non-linear

vector differential equations of the flow governed by

ẋ = f(x), x(0) = ∆i, x ∈ Rn. (2.40)

We start by giving the celebrated definition of Lyapunov.

Definition 2.1 (Lyapunov stable) Let 0 be the equilibrium point of the dynamical

system given by (2.40). The equilibrium point 0 is said to be stable if, ∀ ε > 0,

∃ δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε ∀t ≥ 0. (2.41)

Physically this definition says that the flow is Lyapunov stable if the solutions starting

from all the initial conditions in ball with radius δ(ε), stay in the ball with with radius

ε in ‖ ‖ norm. Note that, this definition does not tell anything about the convergence

of solutions to the equilibrium point. This is given by the next definition.
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Definition 2.2 (Asymptotically stable) The equilibrium point 0 of (2.40) is said

to be asymptotically stable if, ∃ δ > 0 such that

‖x(0)‖ < δ ⇒ lim
t→∞

‖x(t)‖ = 0. (2.42)

If δ < ∞, we call it locally asymptotically stable and if δ = ∞, we call it globally

asymptotically stable.

Note that neither Lyapunov stability imply asymptotic stability nor asymptotic sta-

bility imply Lyapunov stability. Let us go one step further now and define a stability

definition that depends on the rate at which the solutions converge as t → ∞.

Definition 2.3 (Exponentially stable) The equilibrium point 0 of (2.40) is said

to be exponentially stable if, ∃ α > 0, β > 0 and δ > 0 such that

‖x(t)‖ ≤ α‖x(0)‖e−βt, ∀ ‖x(0)‖ ≤ δ ∀ t ≥ 0. (2.43)

If δ < ∞, we call it locally exponentially stable and if δ = ∞, we call it globally

exponentially stable.

Exponential stability is the strongest of the three definitions above. Further more,

exponential stability implies asymptotic stability and not viceversa.

Next we define the definition of Lagrange stability.

Definition 2.4 (Lagrange stable) The equilibrium point 0 of (2.40) is said to be

Lagrange stable if, for each δ > 0 ∃ ε > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε ∀ t ≥ 0. (2.44)

For linear systems, Lyapunov stability and Lagrange stability are equivalent, but

for nonlinear systems, they are not the same.

Exponential stability requires that the perturbed solutions tend to 0 exponentially

in time. We can relax this strong condition to a little bit weaker condition as follows.
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Definition 2.5 (Monotone stable) The equilibrium point 0 of (2.40) is said to be

monotone stable if, ∃ δ > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t2)‖ < ‖x(t1)‖ ∀ t2 > t1 > 0. (2.45)

If δ < ∞, we call it locally monotone stable and if δ = ∞, we call it globally monotone

stable. It is called monotone unstable if it is not monotone stable.

The present author has not seen this definition in the literature, to the best of his

knowledge.

Definition 2.6 (Set stability) Consider the system (2.40) and let S ⊂ Rn. We

call this set S stable if x(0) ∈ S implies x(t) ∈ S, ∀ t ≥ 0.

This was defined for linear systems in [11] and this kind of stability is important

in feedback control in convex sets and pricing in economics. This has interesting con-

nections with nonnegative matrices. We have generalized that definition to nonlinear

systems here.

In many situations we are interested in behavior of the flow in finite time, since,

all the experiments are done for finite amount of time. This motivates the definition

of finite time stability.

Definition 2.7 (Finite-time stability) Let 0 be the equilibrium point of (2.40).

The equilibrium point is said to be finite-time T stable if, ∀ ε > 0, ∃ δ(ε) > 0 such

that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε ∀ 0 ≤ t ≤ T. (2.46)

one can similarly define finite time asymptotically stable (local and global), finite

time exponentially stable, finite time Lagrange stable, finite time monotone stable,

etc.

Till now we have considered stability definitions that tell about the behavior of

fluid under uncertain initial conditions x(0) = ∆i only. In the next definition, we

define a stability notion under uncertainty in ∆n and ∆l.
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Definition 2.8 (Perturbed stability) Consider the system of fluid equations of

the form ẋ = f(x). The equilibrium point 0 of ẋ = f(x) is called perturbed type E

stable under set ∆ additional perturbations, if, 0 is a type E equilibrium point of

ẋ = f(x) (2.47)

and also, a type E equilibrium point of

ẋ = f(x) + ∆(x), ∆ : Rn → Rn (2.48)

for all ∆(x) in set ∆.

Finally, we consider stability definitions that discuss the behavior of fluid under

uncertain disturbance environment, i.e., under ∆d. Before we do that, we need to

interpret the fluid dynamic model as an input-output system. In this, we think of the

Navier-Stokes equations or the fluid flow as a map from the disturbance space to the

output space. Thinking in this fashion unifies many things and has many advantages

as we will see later. This notion was first defined in the context of control systems

theory in the 1960s [105].

The mathematical representation of the input-output model is given by

y = Hw. (2.49)

Here w(.) : R 7→ W is the input, y(.) : R 7→ Y is the output, H : W 7→ Y is a operator

(nonlinear or linear or time varying) that maps the inputs in terms of outputs. In

the case of fluid flow it is the Navier-Stokes equations written in some suitable form.

W and Y are some function spaces (say Lp for some p). Since our plan is to study

instabilities in fluids, we need to consider growing perturbations as t → ∞. Hence,

we extend the usual Lp spaces to include unstable functions. The extended space Le
p
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is defined as

Le
p = {g : gT ∈ Lp,∀ T ≥ 0} (2.50)

gT (t) = g(t) 0 ≤ t ≤ T (2.51)

0 t > T.

This is a linear space and the subscript T denotes the truncation operator. The

superscript “e” in Xe denotes that Xe is an extended space of X.

Definition 2.9 (Input-output stable) Consider the model

y = Hw, H : W e → Y e. (2.52)

This model is said to be (W,Y ) input-output stable if there exist a constant β2 ≥ 0

and a monotonically increasing continuous function β1 : [0,∞) → [0,∞) such that

β1(0) = 0 and

‖(Hw)T‖Y ≤ β1(‖wT‖W ) + β2, ∀ w ∈ W e, T ∈ [0,∞) (2.53)

Definition 2.10 (Finite-gain stable) The model (2.52) is said to be (W,Y ) finite-

gain stable if there exist constants β3 ≥ 0 and β2 ≥ 0 such that

‖(Hw)T‖Y ≤ β3‖wT‖W + β2, ∀ w ∈ W e, T ∈ [0,∞) (2.54)

Let us consider a simple example to show that input-output stability and finite-

gain stability are not equivalent. Let Hw = w2, then H is input-output stable but

not finite-gain stable. It follows from the definition that finite gain stability implies

input-output stability but the opposite is not true. When Y e = Le
∞ and Ze = Le

∞,

we call the stability as bounded-input bounded-output (BIBO) stability 2.

2One can define input-state stability along similar lines
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2.3.2 Lyapunov Stability Theorems

In this section we present several theorems that characterize the stability definitions

described in the previous section, in terms of the structure of the governing operators.

We will do this using the classical results of Lyapunov. Positive definite functions are

one of the central pillars in this Lyapunov stability theory and they are first defined.

Definition 2.11 (Positive definite function) Let D ⊂ Rn, 0 ∈ D and V : D →
R. V is said to be positive definite if

V (0) = 0 (2.55)

V (x) > 0, ∀ x ∈ D − {0} (2.56)

If > is replaced by ≥ we call the function positive semidefinite. V is called negative

definite and negative semidefinite is -V is positive definite and positive semidefinite,

respectively.

Positive definite functions can be thought of as the conserved quantities (energy and

enstrophy in 2D for fluids) of the system. However, this is a restrictive interpretation

and one can construct positive definite functions which have nothing to do with the

conserved quantities of the flow.

Theorem 2.1 (Lyapunov) Let 0 be the equilibrium point of the flow system given

by (2.40), D ⊂ Rn, 0 ∈ D and V be a positive definite continuously differentiable

function from D → R such that

V̇ (x) ≤ 0 ∀ x ∈ D (2.57)

Then the equilibrium point 0 is stable. Where V̇ is the derivative of V along the vector

field f (or the Lie derivative of V along f). If

V̇ (x) < 0 ∀ x ∈ D − {0} (2.58)
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then the equilibrium point is locally asymptotically stable.

The above theorem guarantees only local asymptotic stability. The following

theorem guarantees global asymptotic stability under one more extra assumption.

Theorem 2.2 (Barbashin-Krasovskii) Let 0 be the equilibrium point of the flow

system (2.40) and V be a positive definite continuously differentiable function from

Rn → R such that

V̇ (x) < 0 ∀ x ∈ Rn − {0} (2.59)

‖x‖ → ∞ ⇒ V (x) → ∞ (2.60)

Then the equilibrium point is globally asymptotically stable.

Both the theorems above give only the sufficient conditions for respective stability

and not the necessary conditions. I.e., if the above conditions of the theorems are

met, then the system is stable, but not viceversa. One can construct examples where

the system is stable and none of the above theorems apply. A simple example is a

simple pendulum moving under gravity with friction. We will be using the Lyapunov

and Barbashin-Krasovskii theorems to prove some results in the next section and in

Chapter 4.

Theorem 2.3 (LaSalle) Consider the system (2.40) and assume that

1. Ω ⊂ D is a compact set such that x(0) ∈ Ω ⇒ x(t) ∈ Ω ∀ t ≥ 0

2. V : D → R be a continuously differentiable function and V̇ (x) ≤ 0 ∀ x ∈ Ω

3. E be the set
{

x : x ∈ Ω, V̇ (x) = 0
}

4. M be the largest invariant set in E.

I.e., M = {x : x(0) ∈ M ⊂ Ω,⇒ x(t) ∈ M ∀ t ∈ R}

Then every solution with initial conditions in Ω tend to M as t → ∞.
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One can use LaSalle theorem to get conditions for asymptotic stability of (2.40) under

less stringent conditions than the Lyapunov and Barbashin-Krasovskii theorems. For

example LaSalle theorem: relaxes the negative definite condition of V̇ in the Lyapunov

theorem; gives estimates of the domain of attraction of (2.40); works in the presence

of a set of equilibrium points than isolated equilibrium points.

Next we present a theorem about Lagrange stability.

Theorem 2.4 (Yoshizawa) Let 0 be the equilibrium point of the dynamical system

given by 2.40 and assume that

1. V: D∗ → R. D∗ = {x ∈ Rn : ‖x‖ > r} for some r > 0

2. V(x) is a continuously differentiable function on D∗

3. V (0) = 0

4. V (x) > 0 ∀ x ∈ D∗

5. ‖x‖ → ∞ ⇒ V (x) → ∞ I.e., V(x) is radially unbounded.

6. V̇ ≤ 0 ∀ x ∈ D∗

Then the equilibrium point is Lagrange stable.

The proof of the above theorems can be found in [103]. There are also some

converse theorems, which give the inverse conditions of the above theorems. We will

not pursue them here.

2.3.3 Stability of LTI Model under Uncertain Initial Condi-

tions

Understanding the stability of the linear flow model is the first step in any hydro-

dynamic stability calculation. In this section, we address the stability of linear flow

model under uncertainty in the initial conditions and give some theorems that char-

acterize the stability of these models. Hopefully, this will shed light on the stability
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of nonlinear models and stability of linear model under various kinds of uncertainty.

The basic tools we will be using in this endeavor are the Lyapunov and Barbashin-

Krasovskii theorems and linear matrix inequalities (LMIs).

Consider the linear time invariant flow model

ẋ(t) = Ax(t), x ∈ Rn, x(0) = x0. (2.61)

In the context of fluid flows one can arrive at equations in this form by linearizing the

Navier-Stokes equations about some base flow and throwing away the higher-order

terms in the equations. This equation has 0 as an isolated equilibrium point, if and

only if, A has zero null space; or a set of connected equilibrium points, if and only if,

A has non zero null space. In none of the cases this equation has multiple isolated

equilibrium points.

Theorem 2.5 Consider the linear flow system given by (2.61). The equilibrium point

0 is stable if and only if all the eigenvalues of A are in the closed left half plane and

every eigenvalue on the imaginary axis has an associated Jordan block of order one.

The equilibrium point 0 is globally asymptotically stable if only if all the eigenvalues

of A lie in the open left half plane.

Proof : The solution of (2.61) is given by

x(t) = eAtx(0) (2.62)

= T−1eJtT =
r∑

i=1

mi∑
k=1

tk−1eλitRik, (2.63)

where T is a similarity transformation (not necessarily unitary) that converts A to the

Jordan canonical form J = diag [J1, J2, ..., Jr]. Ji is the Jordan block corresponding

to eigenvalue λi and mi is the multiplicity of λi. From equation (2.63) it is clear that

if all the eigenvalues are in the left half plane, the solution is bounded and tends to 0

as t → ∞. This happens as the decaying exponential term dominates any other term

that is polynomial in t or sinusoid in t. When there are eigenvalues on the imaginary
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axis, they give rise to unbounded terms of the form tk−1 sin(λit). This term can be

bounded as t tends to infinity only if k = 1, hence we need Jordan block of order 1

for eigenvalues of the imaginary axis.

Remarks: Note that the above theorem does not prohibit solutions to grow and

decay as t → ∞. As we will see later, this is the key attribute of non-normal operators.

Lemma 2.1 Consider the linear flow system given by (2.61). Then, all the eigen-

values of A are in the open left half plane if and only if 0 is a globally exponentially

stable equilibrium point.

Proof : This follows from the proof of Theorem 2.5 by taking one special scenario into

account. As said previously and will be seen later, even when all the eigenvalues have

negative real parts, there can be huge transient growth of solutions for intermediate

times. We need to be able to bound this as

‖x(t)‖ ≤ αδe−βt (2.64)

in terms of some α and β for exponential stability. This can be done by picking β > 0

to be the real part of the eigenvalue with maximum real part and picking a α > 0 big

enough such that

‖x(tmax)‖ ≤ α‖x(0)‖e−βtmax , (2.65)

where tmax is the time at which the maximum of ‖x(t)‖ occurs. Note that when

there is an eigenvalue on the imaginary axis there exist no β > 0 such that (2.64) is

satisfied.

The above theorem and lemma says that for linear flow models, asymptotic sta-

bility and exponential stability are equivalent, however, for nonlinear models that are

completely different.

Let us give another characterization of asymptotic stability in terms if the Lya-

punov equation. This new characterization of stability will prove to be useful later in

Chapter 4.
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Theorem 2.6 Consider the linear system given by (2.61). The equilibrium point is

globally asymptotically stable, i.e., all the eigenvalues have negative real part, if and

only if for any Q > 0 there exists a unique P > 0 that satisfies the Lyapunov equation

PA + A∗P + Q = 0. (2.66)

Proof: We consider first the “only if” direction. Consider the quadratic Lyapunov

function V (x) = x∗Px. The Lie derivative of V along A is given by

V̇ (x) = x∗Pẋ + ẋ∗Px = x∗(PA + A∗P )x = −x∗Qx (2.67)

It then follows from Theorem 2.2 that the equilibrium point 0 is globally asymptoti-

cally stable.

Now we consider the “if” direction. Assume A to be a Hurwitz matrix (all eigen-

values in the open left half plane) and Q > 0. Define the matrix P as

P =

∫ ∞

0

eA∗tQeAtdt. (2.68)

Since A is Hurwitz the integral exists. By definition P is also symmetric, we need to

show that x∗Px > 0 for all x. We will prove this by contradiction. Suppose there

exist a vector x such that x∗Px = 0, it then follows that

∫ ∞

0

x∗eA∗tQeAtxdt = 0 (2.69)

Since Q is positive definite and A is Hurwitz it follows that

eAtx = 0 ∀ t ≥ 0 ⇒ x = 0. (2.70)

Hence P is positive definite and the result follows. One can also show that P is also

unique, we will not pursue that here.
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Theorem 2.6 gives a different method for calculating the stability of (2.61) without

calculating the eigenvalues of A. Pick an arbitrary Q > 0 and solve the Lyapunov

equation for P. If P > 0 then the equilibrium point is globally asymptotically stable.

If P ≤ 0 then the equilibrium point is not asymptotically stable. So, the question of

stability is reduced to the existence of a pair of matrices (P, Q). The reverse method

of checking stability, i.e., picking P > 0 and then solving the Lyapunov equation for

Q, may be not a good idea. As this can result in Q <=> 0 and if it results in Q ≤ 0

we cannot say anything about the stability of A.

The above theorems can also be casted as an LMI as following.

Theorem 2.7 Consider the linear vector flow equations given by (2.61). The follow-

ing statements are equivalent:

1. The equilibrium point is globally asymptotically stable.

2. There exists a P > 0 that satisfies the linear matrix inequality

PA + A∗P < 0. (2.71)

3. There exists a M > 0 that satisfies the linear matrix inequality

MA∗ + AM < 0. (2.72)

Proof: (1) implies (2) follows from Theorem 2.6 by taking Q to the right-hand side

of equation (2.66).

Let is now show that (2) implies (1). Let P > 0 be such that

PA + A∗P < 0 (2.73)

and λ, u be the eigenvalue and corresponding non zero eigenvector of A, respectively.
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Then

u∗PAu + u∗A∗Pu < 0 (2.74)

u∗Pλu + u∗λ∗Pu < 0 (2.75)

(λ + λ∗)u∗Pu < 0. (2.76)

Hence we have (λ + λ∗) < 0.

(2) implies (3). Pre multiplying equation (2.71) with P−1 > 0 and post multiplying

by P−1 > 0 we get

AP−1 + P−1A∗ < 0. (2.77)

The result follows by taking M = P−1.

The rest of the directions follow similarly.

Theorem 2.8 Consider the linear system given by (2.61). The following statements

are equivalent:

1. The equilibrium point is stable.

2. There exists a P > 0 that satisfies the linear matrix inequality

PA + A∗P ≤ 0. (2.78)

3. There exists a M > 0 that satisfies the linear matrix inequality

MA∗ + AM ≤ 0. (2.79)

Proof: The proof is along the same lines as the theorem before.

We give next a theorem characterizing set stability without proof.

Theorem 2.9 Consider the system ẋ = Ax. This is set Rn
+ stable if and only if

Aij < 0 for all i 6= j.
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2.3.4 Normal versus Non-normal Operators

Matrices can be classified into disjoint sets of normal and non-normal matrices. A

matrix is called normal if AA∗ = A∗A and it is called non-normal if it is not normal.

Understanding normal operators is easy compared to non-normal operators. In this

section we study some of the important properties of non-normal operators as they

relate to the hydrodynamic stability problem.

When the operator A is Hermitian or Normal, there exist a unitary matrix P such

that P−1AP = D, where D is a diagonal matrix. Another way of stating this is that

there exists a orthonormal eigen basis in which A is diagonal. In this scenario, if A

is Hurwitz, energy (‖x(t)‖2
2) monotonically decreases. Also, there is no exchange of

energy between eigenfunctions. To see this, let x(t) be a vector in original basis and

y(t) be the same vector in eigen basis. Then

x = Py (2.80)

E(t) = ‖x(t)‖2
2 = (Py)∗Py = y∗(P ∗P )y = ‖y(t)‖2

2 (2.81)

implying that energy is just the linear sum of energies of the eigenmodes.

Interesting things occur when A is non-normal.First, there exists no unitary matrix

P such that P−1AP = D, where D is a diagonal matrix. Then the following two cases

are possible:

1. There exists a non-singular, but non-unitary P such that P−1AP is a diagonal

matrix.

2. There exist no matrix P such that P−1AP is a diagonal matrix.

Case 1 occurs when A is a non-defective matrix (algebraic multiplicity of an eigenvalue

exceeds its geometric multiplicity). Further, case 2 occurs when A is a defective matrix

and leads to Jordan canonical forms. In both the cases, even though A is Hurwitz,

there are situations when energy can transiently grow and then decay as t → ∞. By

situations, we are referring here to the initial conditions. In case 1 this occurs because



34

of nonorthogonal eigenfunctions leading to

E(t) = ‖x(t)‖2
2 = y∗(P ∗P )y = ‖y(t)‖2

2 + y∗(P ∗P − I)y. (2.82)

The last coupling term results in exchange of energy between eigenmodes and hence

to a net transient energy growth, though the energy in all the modes is continuously

decaying. At a first glance this might look paradoxical on physical grounds. How

can total energy increase, when energy in each eigenmode is decaying? This paradox

occurs because of our assumption that total energy of the system is just the linear sum

of energies of each eigenmode. As in this case, this is not true (y∗(P ∗P − I)y 6= 0)

and energy is actually a non-linear sum of energies of each eigenmode. In case 2

transient growth occurs because of terms like tne−at with a > 0, n > 0 in the Jordan

form.

The above results are stated in the form of a theorem below about monotone

stability.

Theorem 2.10 Consider the linear system given by (2.61). The equilibrium point 0

is monotone stable if and only if A is Hurwitz and Normal.

Next we state a theorem from linear algebra that shows the relation between

eigenvalues and singular values.

Lemma 2.2 For any normal matrix A

σmin(A) = |λmin(A)| ≤ |λmax(A)| = σmax(A). (2.83)

When A is non-normal

σmin(A) ≤ |λmin(A)| ≤ |λmax(A)| ≤ σmax(A). (2.84)

Proof: Follows from the Schur decomposition of A.

The above theorem states that the separation between eigenvalues and singular

values is huge for non-normal operators and hence predictions based on eigenvalues
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can be bad. In fact, we will see in Chapter 4 that the huge transients in the presence

of external disturbances are not characterized by the eigenvalues of the linearized

operator A.

2.3.5 Stability of LTI Model under LTV Uncertainty

We consider here the stability of linear systems perturbed by linear time varying

perturbations of some specified structure. First, we will make precise what we mean

by linear perturbations of the linear operator A. Most of the results in this section

will be proved without resorting to Lyapunov functions.

Consider the linear flow model

ẋ = (A + ∆(t))x (2.85)

with A a constant linear operator and ∆ is an linear operator that is time varying.

We can arrive at these equations by considering the parametric uncertainty problem

described before and taking

∆p = (Ã11 − A)x = ∆x (2.86)

∆ ∈ Cn×n. (2.87)

We want to understand under what conditions on ∆, can the stability of the unper-

turbed system

ẋ = Ax (2.88)

imply stability of perturbed system (2.85). Understanding this is important as it

tells the nature of perturbations that can be allowed in an experimental base flow. In

any stability experiment, the base flow is never exactly the solution of laminar flow

equations as we want. There is always some experimental error up to 2 − 5 percent

depending on how careful the experimentalist is. One can model this uncertainty in

the basic flow using ∆(t) as in equation (2.38).
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This is given by the following theorem in the case when ∆ is bounded in L1 norm.

The proof of the theorem needs the Gronwall inequality from Appendix 2.

Theorem 2.11 Consider the perturbed linear flow model

ẋ = (A + ∆(t))x. (2.89)

Assume that ∆ ∈ ∆ with

∆ =

{
∆ : ∆ ∈ Cn×n,

∫ ∞

0

‖∆‖dt < ∞
}

. (2.90)

If the unperturbed model

ẋ = Ax (2.91)

is stable, so is the perturbed model for all ∆ ∈ ∆.

Proof: The solution of (2.89) with x(0) = x0 is

x(t) = eAtx0 +

∫ t

0

eA(t−τ)∆(τ)x(τ)dτ. (2.92)

Using the triangle inequality and properties of the induced norms we get

‖x(t)‖ ≤ ‖eAt‖ ‖x0‖ +

∫ t

0

‖eA(t−τ)‖ ‖∆(τ)‖ ‖x(τ)‖ dτ. (2.93)

Since the unperturbed model is stable, by Theorem (2.5) there exist a constant a such

that

sup
t≥0

‖eAt‖ ≤ a. (2.94)

Therefore, for ‖x0‖ ≤ b

‖x(t)‖ ≤ ab + a

∫ t

0

‖∆(τ)‖ ‖x(τ)‖ dτ. (2.95)

Using the Gronwall lemma in Appendix 2 and the assumption that
∫ ∞

0
‖∆‖dt < ∞
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we get

‖x(t)‖ ≤ ab e[
∫ t
0 a‖∆(τ)‖dτ] ∀ t ≥ 0 (2.96)

is bounded and hence the perturbed system is stable.

One can relax the stronger condition that ∆(t) is bounded in L1 norm to a bound

in L∞ norm like ‖∆(t)‖ ≤ c1, ∀ t ≥ t0 and prove a more general theorem than the

previous one as following.

Theorem 2.12 Consider the perturbed linear flow model (2.89). Assume that ∆ ∈ ∆

with

∆ =

{
∆ : ∆ ∈ Cn×n, sup

t≥t0

‖∆(t)‖ ≤ c1(A)

}
(2.97)

for some arbitrary t0 > 0 and c1 a constant that depends on A. Then, if the un-

perturbed system (2.91) is asymptotically stable, so is the perturbed system for all

∆ ∈ ∆.

Proof: The proof is similar to the previous theorem. We point out that c1 is a

function of the eigenvalues of A only if A is a normal matrix, and if A is a non-

normal matrix c1 is a function of eigenvalues of A and the transients. Eigenvalues tell

about the asymptotic decay of the solutions for finite-dimensional linear systems like

(2.91), they do not tell about the finite time transients of the solutions. The later

comes from the Jordan block structure of A.

The above theorems say that the equilibrium point 0 of (2.91) is a perturbed

stable equilibrium with respect to additional perturbations (2.89) of the class

∆ =

{
∆ : ∆ ∈ Cn×n,

∫ ∞

0

‖∆‖dt < ∞
}

(2.98)

and a perturbed asymptotically stable equilibrium with respect to additional pertur-

bations (2.89) of the class

∆ =

{
∆ : ∆ ∈ Cn×n, sup

t≥t0

‖∆(t)‖ ≤ c1(A)

}
. (2.99)

A slightly different version of the previous theorem can be stated as following. If



38

‖∆(t)‖ ≤ γ, ∀ t > 0, then the perturbed model (2.89) is robustly asymptotically

stable if ‖(sI−A)−1‖H∞ ≤ γ−1. This is a version of the famous small gain theorem in

the controls literature. The proof involves using the Lyapunov function of the nominal

system and the bound on perturbation to come up with a Lyapunov function for the

perturbed model [127].

2.3.6 Domain of Validity of Linearization and Non-linear Un-

certainty

Some of the questions that are poorly understood in hydrodynamic stability are:

What does the stability of linear flow equations tell about the stability of nonlinear

flow equations that they come from? What is the domain of attraction of the nonlinear

flow equations? Can we say anything about the stability of linear model perturbed

by nonlinear uncertainty using the information on unperturbed linear model? These

questions are addressed in this section. The key idea is using the Lyapunov function

of the unperturbed linear model to prove the stability regions for the nonlinear model

or perturbed model.

Consider the vector nonlinear flow model given by (2.40). Let 0 be the equilibrium

point of (2.40), 0 ⊂ D ⊂ Rn and f : D → Rn be a C1 function. We can write

f(x) = Ax + g(x) (2.100)

A =
∂f

∂x
(0) (2.101)

g(x) =

[
∂f

∂x
(z) − ∂f

∂x
(0)

]
x (2.102)

using the mean value theorem of calculus. Here z is a point on the line segment

between x and 0.

First we address the relation between the stability of linear model and the stability

of the nonlinear model that it came from. This is stated in the following theorem.
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Theorem 2.13 Let 0 be the equilibrium point of the nonlinear system

ẋ = f(x) = Ax + g(x). (2.103)

Assume 0 ⊂ D ⊂ Rn, f : D → Rn be a C1 function and ‖g(x)‖/‖x‖ → 0 as

‖x‖ → 0. If all the eigenvalues of A are in the open left half plane then, the

equilibrium point 0 is locally asymptotically stable and stable. Furthermore, if there

exist at least one eigenvalue in the open right half plane, then 0 is unstable.

Proof: We shall just prove the local asymptotic stability result, since this is the most

important one. The rest of the theorem can be proved similarly. Consider A to be

Hurwitz, then Theorem 2.6 tells that there exist P > 0 and Q > 0 that satisfy the

Lyapunov equation. Then defining the Lyapunov function as V (x) = x∗Px we get

V̇ (x) = x∗Pf(x) + f ∗(x)Px (2.104)

= −x∗Qx + 2x∗Pg(x). (2.105)

By construction the first term is negative definite. The second term is the problematic

term. We need to some how bound this second term, to show that the sum of the

first and second terms is negative definite. The second assumption of the theorem

implies that given arbitrary γ > 0, there exists κ > 0 such that

‖g(x)‖ < γ‖x‖, ∀ ‖x‖ < κ. (2.106)

Using this result we get

V̇ (x) = −x∗Qx + 2x∗Pg(x) (2.107)

< −x∗Qx + 2γ‖x‖2‖P‖, ∀ ‖x‖ < κ (2.108)

< − (‖x‖2λmin(Q) − 2γ‖x‖2‖P‖ ∀ ‖x‖ < κ
)
, ∀ ‖x‖ < κ (2.109)

The right-hand side is negative definite as long as γ < λmin(Q)/2‖P‖. By Theorem
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(2.1) we conclude that 0 is locally asymptotically stable.

The proof of the above theorem and the statement of the above theorem has many

interesting features. Using the Lyapunov function of the linear equations we were able

to infer conclusions about the stability of the nonlinear system. Some disadvantages

of the above theorem are as following. We were able to infer only the local asymptotic

stability of the nonlinear system. Furthermore, this theorem does not say anything

about the case when there is an eigenvalue on the imaginary axis. In this case,

linearization cannot say anything about the stability of nonlinear equations, one has

to use center manifold theory and normal form theory to understand stability. This

theorem also tells that if the linear model is unstable the nonlinear model is also

unstable. One can also calculate the domain of attraction of (2.103) using the above

results. This is given by

‖x‖ < κ (2.110)

such that ‖g(x)‖ <
λmin(Q)

2‖P‖ ‖x‖, ∀ ‖x‖ < κ. (2.111)

Note that this is strong function of A through P and Q, and the nonlinearity g(x).

One can interpret the above results in a different way too. Say we are given a

linear model ẋ = Ax. Under what conditions on the nonlinear perturbation g(x), is

the stability of the perturbed system

ẋ = Ax + g(x) (2.112)

same as that of the unperturbed system. The above theorem tells that the equilibrium

point 0 is a perturbed locally asymptotically stable equilibrium under the class of

additional perturbations of the form

∆ =

{
g(x) :

‖g(x)‖
‖x‖ → 0, ‖x‖ → 0

}
. (2.113)
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2.3.7 Classical Hydrodynamic Stability as a Subset of Ro-

bust Flow Stability

Classical hydrodynamic stability, along the lines of [46], studies only the point or

sometimes continuous spectrum of the linearized Navier-Stokes equations. Further-

more, it does not address the reason why we should study eigenvalues and what in-

formation they carry. The relationship between the eigenvalues and the uncertainties

is also never discussed in classical stability. Below, we briefly describe how classical

flow stability theory can be considered as a subset of robust flow stability.

In the beginning of this chapter we have showed explicitly that there are six

different kinds of modeling errors involved in the stability of unsteady fluid flow. After

that we showed that understanding each of these six uncertainties is very important

in predicting the overall stability of fluid flow. Let us consider for the time being just

the uncertainty in the initial conditions ∆i and neglect all the other uncertainties.

We then have

ẋ = Ax, x0 = ∆i. (2.114)

The solution of this equation is given by matrix exponential in finite dimensions and

by semi-group in infinite dimensions as

x(t) = eAt∆i. (2.115)

This immediately tells that if spec(A) is in the open RHP, then any uncertainty in

the initial condition is going to amplify and ultimately blow as t → ∞. On the other

hand, if spec(A) is in the open LHP, then any uncertainty in the initial condition is

going to decay ultimately and the trajectory will converge to the equilibrium point.

The above discussion tells that eigenvalues of the linear operator A, address only the

uncertainty in the initial conditions ∆i and not the other uncertainty that are present

in the model. Not only that, eigenvalues carry information only about the asymptotic

(t → ∞) behavior of flow. They do not tell much about the finite time transients of

the flow which are also equally important.
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We conclude by saying that this new framework of robust flow stability, can be

naturally thought of as a generalization of the classical flow stability in the presence

of various other uncertainties. This framework unifies many different things and

gives a consistent overall picture of the stability of fluid flow which is lacking in fluid

mechanics.

2.3.8 Other Stability Notions

There are other interesting stability notions like absolute or sector stability, circle

criterion, passivity, positivity, structures singular value (SSV), dissipativity, small-

signal input-output stability, small-signal finite-gain stability, stability in probability

measure (weakly stable in probability, weakly asymptotically stable in probability,

strongly stable in probability, strongly asymptotically stable in probability), etc.,

which we do not consider here due to space and time limitations.

2.4 Summary

In this chapter we have shown mathematically and physically the relevance of var-

ious uncertainties in understanding the stability of fluid flow. Since the underlying

operators are non-normal, a close study of all these uncertainties is more important

than usual. We have developed a framework of robust flow stability that addresses

each of these uncertainties systematically. We have characterized the stability of the

linear models in the presence of uncertain initial conditions and uncertain pertur-

bations in the equations. This new theory shed more light on the classical stability

theory results and stability experiments. We hope that this way of doing a stability

analysis with respect to all the perturbations closes the gap that is existing between

the stability theory predictions and the experimental observations.
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Chapter 3 Streamwise Constant

Navier-Stokes Equations

In this chapter we present the model equations that we will be working with in the

next three chapters. These model equations are the streamwise constant Navier-

Stokes equations. They are referred to as 2D/3C equations from now on as they

depend on two spatial dimensions and three components of velocity. We show that

this is the simplest PDE model that can be derived from Navier-Stokes equations that

has all the important features unlike cooked up ODE models [5]. Some of the nice

features, growth bounds [15], stability characteristics of the 2D/3C equations and the

relation with HOT complexity theory are also discussed in this chapter.

3.1 2D/3C Model

The two-dimensional/three-component (2D/3C) model represents the variation of all

three velocity fields (as well as the pressure) in a two-dimensional cross-sectional

slice of a channel. It models the dynamics of streamwise constant perturbations. To

derive this model, we take the original NS equations and set all partial derivatives with

respect to the streamwise direction (x in our geometry) to zero. The NS equations

then represent the dynamics of the flow fields u, v, w and p as functions of two spatial

variables (y, z)

∂u

∂t
+ v

∂u

∂y
+ w

∂u

∂z
=

1

R
∆u (3.1)

∂v

∂t
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1

R
∆v (3.2)

∂w

∂t
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1

R
∆w (3.3)

∂v

∂y
+

∂w

∂z
= 0, (3.4)
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where (3.1,3.3) are the momentum equations, R is the Reynolds number, and (3.4)

is the continuity equation. Note that all fields are functions of three variables, e.g.

u(y, z, t). We impose no-slip boundary conditions in a normalized plane Couette flow

geometry, that is

u(+1, z, t) = 1, u(−1, z, t) = − 1, (3.5)

v(±1, z, t) = w(±1, z, t) = 0, (3.6)

meaning that the channel walls are at y = ±1, while the spanwise direction is infinite,

i.e., −∞ < z < ∞.

For stability and dynamical analysis, it is convenient to recast these equations

into the so-called evolution form, where the non-dynamical constraint (3.4) is auto-

matically guaranteed. This is accomplished by defining a “cross-sectional” stream

function ψ that generates v and w by

v ≡ ∂ψ

∂z
≡ ψz, w ≡ − ∂ψ

∂y
≡ − ψy. (3.7)

Equations (3.1,3.2) can now be rewritten as

∂u

∂t
= −∂ψ

∂z

∂u

∂y
+

∂ψ

∂y

∂u

∂z
+

1

R
∆u (3.8)

∂∆ψ

∂t
= −∂ψ

∂z

∂∆ψ

∂y
+

∂ψ

∂y

∂∆ψ

∂z
+

1

R
∆2ψ, (3.9)

and (3.4) is automatically satisfied if v and w are computed from ψ using (3.7). It

is interesting to see that the structure of Psi equation (3.9), looks similar to Orr-

Sommerfeld equations (in spanwise direction) before linearization. The boundary

conditions become

u(±1, z, t) = ± 1 (3.10)

∂ψ

∂z
(±1, z, t) =

∂ψ

∂y
(±1, z, t) = 0. (3.11)
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3.2 Global Stability of 2D/3C Equations

In this section we will show that the 2D/3C equations are globally, non-linearly stable

for all Reynolds number (R). We further show that the time scales like R and energy

scales like R2. To see this we perform a very convenient re-scaling of the equations to

obtain a canonical form independent of R. Multiplying (3.8) by R and (3.9) by R2,

and scaling time with R−1 and ψ with R yields

∂u

∂τ
= −∂Ψ

∂z

∂u

∂y
+

∂Ψ

∂y

∂u

∂z
+ ∆u, (3.12)

∂∆Ψ

∂τ
= −∂Ψ

∂z

∂∆Ψ

∂y
+

∂Ψ

∂y

∂∆Ψ

∂z
+ ∆2Ψ, (3.13)

where

τ := t/R, Ψ := Rψ, (3.14)

and the boundary conditions on Ψ are the same as on ψ.

We now show that the dynamical system (3.12,3.13) is globally (i.e., non-linearly)

asymptotically stable about plane Couette flow. This will immediately imply that

the dynamical system (3.8,3.9) is globally stable about Couette flow for all Reynolds

numbers R. We begin first with the Ψ equation (3.13), and define the kinetic energy

of the fields (v, w) in terms of the stream function Ψ

EΨ(τ) :=
1

2

∫ ∞

∞

∫ 1

−1

[
v2 + w2

]
dy dz

=
1

2

∫ ∞

∞

∫ 1

−1

[(
∂Ψ

∂z

)2

+

(
∂Ψ

∂y

)2
]

dy dz = −1

2
〈Ψ, ∆Ψ〉L2(y,z), (3.15)

where

〈g(y, z, t), h(y, z, t)〉L2(y,z) ≡
∫ ∞

∞

∫ 1

−1

f g dy dz. (3.16)
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Differentiating with respect to normalized time we have

ĖΨ(τ) = −1

2

∂

∂τ
〈Ψ, ∆Ψ〉L2(y,z) (3.17)

= −〈Ψτ , ∆Ψ〉L2(y,z) = −〈∆Ψτ , Ψ〉L2(y,z). (3.18)

Substituting (3.13) into the above equation results in

ĖΨ(τ) = −〈−Ψz∆Ψy + Ψy∆Ψz, Ψ〉L2(y,z) − 〈∆2Ψ, Ψ〉L2(y,z). (3.19)

Next we show that the first term is identically equal to zero as following

〈−Ψz∆Ψy + Ψy∆Ψz, Ψ〉L2(y,z) = −〈Ψz∆Ψy, Ψ〉L2(y,z) + 〈Ψy∆Ψz, Ψ〉L2(y,z)

= −〈∆Ψy, ΨzΨ〉L2(y,z) + 〈∆Ψz, ΨyΨ〉L2(y,z)

= 〈∆Ψ, (ΨzΨ)y〉L2(y,z) + 〈∆Ψ, (ΨyΨ)z〉L2(y,z)

= 〈∆Ψ,−(ΨzΨ)y + (ΨyΨ)z〉L2(y,z)

= 0. (3.20)

The above arguments suggest that the quadratic form EΨ is a Lyapunov function for

the system (3.13), i.e.,

ĖΨ(τ) = −〈∆Ψ, ∆Ψ〉L2(y,z) (3.21)

= −
∫ ∫ [

(Ψzz)
2 + 2 (Ψzy)

2 + (Ψyy)
2] dy dz

< 0, (3.22)

and hence eqn (3.12) is globally asymptotically stable about Ψ = 0. Note that Ψ = 0

in the Couette flow solution.

Now to show asymptotic stability of (3.13), we take into account the explicit one

way coupling in the equations. Writing u = Ū + ũ, where Ū = y is the plane Couette
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flow solution, equation (3.13) becomes

∂ũ

∂τ
= −∂Ψ

∂z

∂ũ

∂y
+

∂Ψ

∂y

∂ũ

∂z
+ ∆ũ − ∂Ū

∂y

∂Ψ

∂z
, (3.23)

ũ(y = ±1, z, τ) = 0. (3.24)

Now we define the kinetic energy of ũ

Eũ(τ) :=
1

2

∫ ∞

−∞

∫ 1

−1

ũ2 dy dz ≡ 1

2
〈ũ, ũ〉L2(y,z). (3.25)

The derivative of Eũ along the flow is

Ėũ(τ) = 〈ũτ , ũ〉L2(y,z) (3.26)

= 〈−Ψzũy + Ψyũz, ũ〉L2(y,z) + 〈∆ũ − ŪΨz, ũ〉L2(y,z). (3.27)

Consider the first term in the above equation

〈−Ψzũy + Ψyũz, ũ〉L2(y,z) = 〈−Ψzũy, ũ〉L2(y,z) + 〈Ψyũz, ũ〉L2(y,z) (3.28)

= 〈−ũy, Ψzũ〉L2(y,z) + 〈ũz, Ψyũ〉L2(y,z) (3.29)

= 〈−ũ, (Ψzũ)y〉L2(y,z) + 〈ũ, (Ψyũ)z〉L2(y,z) (3.30)

= 〈ũ,−Ψzũy + Ψyũz〉L2(y,z) (3.31)

= −〈−Ψzũy + Ψyũz, ũ〉L2(y,z). (3.32)

The fact that the quantity on RHS is the negative of LHS implies that the quantity

is zero. We therefore have

Ėũ(τ) = < ∆ũ, ũ >L2(y,z) − < Ψz, ũ >L2(y,z) (3.33)

= −
∫ ∫ [

ũ2
z + ũ2

y + Ψzũ
]

dy dz. (3.34)

Eũ does not decay monotonically and it will increase over intermediate times, but we

will show below that it asymptotically decays to zero. Using the previous equation
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we get

Ėũ(τ) ≤ λmax(∆)‖ũ‖2
L2(y,z) + ‖Ψz‖L2(y,z)‖ũ‖L2(y,z), (3.35)

where λmax is the maximum eigenvalue of the negative definite operator ∆ and hence

λmax(∆) < 0. This in turn implies that whenever ũ is such that

‖ũ‖L2(y,z) ≥ −‖Ψz‖L2(y,z)

λmax

(3.36)

then Eũ has a negative derivative along the flow. Since ‖Ψz‖L2(y,z) is asymptotically

decaying there is a time T after which the above inequality holds.

The previous analysis implies that both EΨ and Eũ decay asymptotically to zero.

EΨ decays monotonically to zero, but Eũ may increase in a transient manner before

it asymptotically decays to zero. The final conclusion is that the total kinetic energy

EΨ +Eũ of the deviation from plane Couette flow decays asymptotically to zero from

any initial condition of (3.12,3.13). Note that EΨ + Eũ is not a Lyapunov function

for this system since it does not decay monotonically.

That the 2D/3C model is globally stable at all Reynolds numbers partially ex-

plains the difficulties that researchers have encountered in trying to discover bifur-

cation transition routes to turbulence in 3D plane Couette flow. Our second result

that total perturbation energy growth scales like R3 in the non-linear 2D/3C model

further suggests that bifurcation transitions may not be required. While we have thus

obtained striking and encouraging confirmation in our nonlinear 2D/3C model of the

observations made using the linearized 3D/3C CLNS model [8], much more work is

needed to complete a global nonlinear 3D/3C picture of transition and turbulence.

An obvious next step is to understand how the large transient 2D/3C solutions evolve

when perturbed away from their streamwise constant solutions within the full 3D/3C

NS equations.
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3.3 Energy Scaling of 2D/3C Equations

To study transient response to initial conditions, consider the Total Transient Energy

Growth ET defined by

ET =

∫ ∞

0

Eψ(t) + Eũ(t) dt, (3.37)

where we define ũ(y, z, t) = u(y, z, t)−Ū (the perturbation dependent on R) and Eψ(t)

and Eũ(t). Clearly, ET is a functional on the initial states of the system (3.8-3.9),

i.e., ET (ψ(0), u(0)), and it describes an integral measure of the perturbation trajec-

tory excursion given an initial condition perturbation. The following are immediate

consequences of (3.14)

Eũ(0) = Eũ(0) (3.38)∫ ∞

0

Eũ(t)dt = R

∫ ∞

0

Eũ(τ)dτ, (3.39)

Eψ(0) =
1

R2
EΨ(0) (3.40)∫ ∞

0

Eψ(t)dt =
1

R

∫ ∞

0

EΨ(τ)dτ. (3.41)

Furthermore, since the energy relations between Ψ and ũ are captured by (??), we

have that ∫ ∞

0

Eũ(τ)dτ = kc

∫ ∞

0

EΨ(τ)dτ, (3.42)

where kc is the square of the gain of the linear mapping between Ψ and ũ in (3.23).

This gain is non-zero due to the presence of nominal shear Ūy 6= 0. Using the definition

of ET and the relations above, we compute

ET = R
∫ ∞

0
Eũ(τ)dτ + 1

R

∫ ∞
0

EΨ(τ)dτ

=
(
kcR + 1

R

) ∫ ∞
0

EΨ(τ)dτ.
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To compare this with the initial state’s energy, we assume that ũ(0) = 0, and compute

ET
Eψ(0)

=
ET

(EΨ(0)/R2)
= R2 ET

EΨ(0)

=
(
kcR

3 + R
) ∫ ∞

0
EΨ(τ)dτ

EΨ(0)
,

and note that the last fraction is independent of R since it involves Ψ(τ), which

represents the dynamics evaluated at R = 1. In particular, this last computation

shows that the ratio between ET and initial state energy scales like R3. This happens

for initial states for which ψ(0) 6= 0, but ũ(0) = 0. Note that the R3 term is due to

the subsequent growth in the energy of the ũ term, while the corresponding growth

in the ψ term scales like R. More importantly, R3 growth occurs when kc 6= 0,

which is the gain of the system (3.23) that represents the coupling from normal and

spanwise velocity perturbations to streamwise velocity perturbations. It occurs due

to the presence of the background shear Ūy. Roughly speaking, the R3 growth is a

combination of time dilation by R, and magnitude growth of ũ2 ∝ R2.

We summarize our results in the following theorem, for which the above argument

is the sketch of a proof.

Theorem 3.1 Consider the 2D/3C model (3.8-3.9)

1. Plane Couette flow Ū = y is globally asymptotically stable for all Reynolds

numbers R.

2. For initial conditions (ũ(0) = 0, ψ(0) 6= 0)

ET = k
(
kcR

3 + R
)

Eψ(0) (3.43)

for some k which is independent of R.
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3.4 Exact Solution of Linear 2D/3C Equations

Linearizing (3.12, 3.13) about the Couette base flow U(y) = y, we get

∂

∂τ

 Ψ

ũ

 =

 ∆−1∆2 0

−∂Ū
∂y

∂
∂z

∆

 Ψ

ũ

 (3.44)

ũ(±1, z, t) =
∂Ψ

∂z
(±1, z, t) =

∂Ψ

∂y
(±1, z, t) = 0. (3.45)

Note that the above equations are simple and are coupled in one way. I.e., the

dynamics of Ψ are coupled to u but not viceversa. The term ∂Ū/∂y in the above

equations is the crucial term that causes all the non-normal effects. We will later show

that these equations capture lot of important dynamics occurring in the Couette flow

problem. In this section we present an exact solution to these linear 2D/3C equations.

First let us consider the Ψ equation. Taking the Fourier transform of Ψ equation

in the homogeneous z direction gives

∂Ψ̄

∂τ
= AΨ̄ (3.46)

Ψ̄(y, τ = 0) = Ψ̄0(y) (3.47)

∂Ψ̄(y = ±1, τ)

∂y
= Ψ̄(y = ±1, τ) = 0, (3.48)

where,

∆ =
∂2

∂y2
− α2 (3.49)

Af = ∆−1∆2f, (3.50)

α is the Fourier transform variable in the z direction and Ψ̄ is the Fourier transform of

Ψ. For notation simplification we will suppress the explicit dependence of equations

on α and other variables. We assume that A generates a strongly continuous semi
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group T (τ) with

Dom(A) = {f : f ∈ H4[−1, 1] and
∂f(±1)

∂y
= f(±1) = 0}, (3.51)

where, Hn is the Sobolev space of order n. It can be shown that A is self adjoint and

has discrete spectrum in the above Hilbert space. We therefore have from semi-group

theory that

Af =
∞∑

n=1

λn < f, φn >L2[−1,1] φn (3.52)

T (τ)Ψ̄ =
∞∑

n=1

eλnτ < Ψ̄, φn >L2[−1,1] φn. (3.53)

Here, λn and φn are the eigenvalues and orthonormal eigenfunctions of the operator

A, respectively

Aφn = λnφn (3.54)

∂φn(±1, τ)

∂y
= φn(±1, τ) = 0. (3.55)

The eigenfunctions and eigenvalues of the Orr-Sommerfeld operator A are [43] given

by

α tan(γn) = γn tanh(α) n : odd (3.56)

φn(y) = ansin(γny) + bn sinh(αy) (3.57)

α cot(γn) = −γn coth(α) n : even (3.58)

φn(y) = ancos(γny) + bn cosh(αy) (3.59)

with γn =
√

λ2
n − α2. an and bn are normalization co-efficients. Putting the above

results together we have

Ψ̄(y, τ, α) =
∞∑

n=1

eλnτ < Ψ̄0, φn >L2[−1,1] φn (3.60)
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as the solution of the Ψ̄ equation. The solution in the physical space z can be obtained

by taking the inverse Fourier transform of Ψ̄.

Next we calculate the exact solution of ũ equation. We start by taking Fourier

transform of the ũ equation with respect to z. This gives

∂ū

∂τ
= Bū + Cḡ(y, τ) (3.61)

ū(y, τ = 0) = ū0(y) (3.62)

ū(y = ±1, τ) = 0, (3.63)

where

Bh ≡ ∆h (3.64)

C ≡ I (3.65)

ḡ ≡ −iαΨ̄. (3.66)

and ū is the Fourier transform of ũ. It can be shown that B generates a strongly

continuous semi-group S(τ) with

Dom(B) = {h : h ∈ H2[−1, 1] and h(±1) = 0}. (3.67)

We know that the Laplacian operator (B) is self adjoint and has discrete spectrum.

The eigenvalues (σn) and the eigenfunctions (ζn) are given by

σn = −(
n2π2

4
+ α2) n ≥ 1 (3.68)

ζn(y) = sin{nπ

2
(y + 1)}. (3.69)

We therefore have the following exact solution

ū(τ) = S(τ)ū0(y) +

∫ τ

0

S(τ − s)ḡ(s) ds, (3.70)



54

where

B h =
∞∑

n=1

σn < h, ζn >L2[−1,1] ζn (3.71)

S(τ)ū =
∞∑

n=1

eσnτ < ū, ζn >L2[−1,1] ζn. (3.72)

Taking the inverse Fourier transform of ū(y, α, t) with respect to z, we get back

û(y, z, τ) in the physical space.

Theorem 3.2 There exist an analytical solution to the 2D/3C equations linearized

about Couette flow (3.44).

3.5 Highly Optimized Tolerant Route to Turbu-

lence

The globally stable but extremely sensitive high R flows studied here perfectly illus-

trate the “robust, yet fragile” characteristic of Highly Optimized Tolerance (HOT),

which arises in general when deliberate robust design aims for a specific level of toler-

ance to uncertainty. In [44, 27], the role of design in producing high yield percolation

lattices was studied. Random lattices have low yield which is maximized at criticality,

whereas highly designed HOT lattices can have high yields, but are hyper-sensitive to

design flaws and modeling assumptions. In flows, an important design is streamlining

for low drag. Plane Couette flow is merely an extreme example of a very streamlined

flow geometry, and many of the conclusions herein should apply to pipes, wings, and

other streamlined scenarios. For example, the optimization in a pipe could be based

on maximum mass flow rate for a given pressure drop. An airfoil shape is designed to

trade off maximum lift versus minimum drag within a range of speeds. Both designs

can be thought of as moving from a generic state of randomly twisted and bumpy

pipes and bluff bodies to a more structured HOT state of smooth, straight pipes and

airfoils.
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This streamlining eliminates bifurcation transitions caused by instability to un-

certainty in initial conditions, allowing highly sheared flows to remain laminar to high

Reynolds number, just as critical phase transitions are eliminated in designed lattices.

The resulting flows, however, become extremely sensitive to new perturbations which

were previously irrelevant, again exactly as for percolation lattices. For flows, these

newly acquired sensitivities are huge amplifications of very small perturbations like

wall roughness, vibrations and other disturbances and unmodeled dynamics. These

“robust, yet fragile” features are characteristic of HOT systems, which universally

have high performance and high throughput, but potentially extreme sensitivities to

design flaws and unmodeled or rare perturbations. This work supports the results in

[44, 27, 28] that strongly suggest that such HOT tradeoffs are inevitable consequences

of high performance robust design, and are the central drivers in the complexity of

engineering and biological systems. However, this emphasis on necessity and robust-

ness is new and largely unexplored, particularly in the area of fluids, and this work

is merely the first initial step in a new approach to design and control of unsteady

flows.
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Chapter 4 Input-Output Stability

A theoretical understanding of the properties of Navier-Stokes equations in the pres-

ence of uncertainty is very important in predicting the behavior of real fluid flow in

the nature and lab as discussed in Chapter 2. In this chapter we study in more detail

the Input-Output formalism developed in Chapter 2 and address the behavior of flow

in the presence of disturbance uncertainty ∆d. We apply the theory to the model flow

problem of transition to turbulence in plane Couette flow. One of the aims of this

chapter is to explain the abundant streamwise vortices and streaks observed in the

near wall transiting and turbulent flows at high Reynolds number and later compare

the theoretical results with the experiments we have done.

The 2D/3C Navier-Stokes equations linearized about the Couette flow and written

in an input-output formalism are

∂ψ

∂t
=

1

R
∆−1∆2ψ − ∆−1∂f2

∂z
+ ∆−1∂f3

∂y
(4.1)

∂u

∂t
= −∂Ū

∂y

∂ψ

∂z
+

1

R
∆u + f1.

y =


u

v

w

 =


0 I

∂
∂z

0

− ∂
∂y

0


 ψ

u

 ,

where f1,−f2 and −f3 are the body forcing in the Navier-Stokes equations. The

above equations are further subject to the no slip boundary conditions on the solid

walls, which we do not list here. In the input-output formalism, we view the flow

as a map from the disturbance w = [f1 f2 f3]
t to the output y = [u v w]t. The

above equations are obtained after adding the disturbance uncertainty ∆d = w to the

nominal Navier-Stokes equations.
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4.1 Relation between Input-Output Stability and

Point Spectrum

The first question that comes to mind in thinking fluid flow in an input-output for-

malism is, what is the relation between input-output stability and point spectrum of

A. We address this question first. To keep things simple, we consider first the case

of single-input single-output (SISO) flow models and later the case of multi-input

multi-output (MIMO) models.

Theorem 4.1 Let H be a linear SISO flow model

y(t) = (Hw)(t) = h(t) ∗ w(t) =

∫ t

0

h(t − τ)w(τ)dτ (4.2)

with h(t) a impulse response operator. Then, H is (Lp, Lp) finite-gain stable for p ∈
[0,∞] if h(t) ∈ L1.

Proof: First let us consider the case of w(t) ∈ Le
∞. It follows that

|y(t)| =

∫ t

0

h(t − τ)w(τ)dτ (4.3)

≤ sup
0≤τ≤T

|w(τ)|
∫ t

0

|h(t − τ)|dτ ∀ T ∈ [0,∞) (4.4)

and hence

‖yT (t)‖L∞ ≤ ‖wT (t)‖L∞‖hT (t)‖L1 , ∀ T ∈ [0,∞) . (4.5)

Now if ‖hT (t)‖L1 is uniformly bounded in T we get (L∞, L∞) finite-gain stability. For

this to happen we should have h(t) ∈ L1.

The case w(t) ∈ Le
1 can be proved along the same lines.
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Next we consider the case of w(t) ∈ Le
p for p ∈ (1,∞). Using the Holder inequality

with (p, q) as the conjugate variables, we get

|y(t)| ≤
∫ t

0

|h(t − τ)|1/q|h(t − τ)|1/p|w(τ)|dτ (4.6)

≤ (

∫ t

0

|h(t − τ)|dτ)1/q(

∫ t

0

|h(t − τ)| |w(τ)|pdτ)1/p (4.7)

≤ (‖hT‖L1)
1/q(

∫ t

0

|h(t − τ)| |w(τ)|pdτ)1/p, ∀ T ∈ [t,∞) . (4.8)

Integrating the previous inequality we get after some manipulations

(‖yT‖Lp)
p ≤ (‖hT‖L1)

p/q

∫ T

0

∫ t

0

|h(t − τ)| |w(τ)|pdτdt (4.9)

≤ (‖hT‖L1)
p(‖wT‖Lp)

p. (4.10)

Hence, when h(t) ∈ L1, H is (Lp, Lp) finite-gain stable for p ∈ (1,∞).

We remark that the h(t) ∈ L1 is equivalent to saying that G(s) is a proper

transfer function with all the poles in the open left half plane or h(t) is a bounded-

input bounded-output (BIBO) impulse response operator. BIBO impulse response

operators come from state space realizations with Hurwitz A. This is made clear in

the next theorem.

Theorem 4.2 Consider the MIMO flow system (2.15) which can also be written as

y(t) = (Hw)(t) = CeAtx0 +

∫ t

0

CeA(t−τ)Bu(τ)dτ. (4.11)

Then H is (Lp, Lp) finite-gain stable for p ∈ [0,∞] if A is Hurwitz.

Proof: The triangle inequality gives

‖y(t)‖ ≤ ‖CeAt‖ ‖x0‖ +

∫ t

0

‖CeA(t−τ)B‖ ‖w(τ)‖dτ. (4.12)

Since A be Hurwitz, there exist a > 0 and b > 0 such that

‖CeAt‖ ≤ ae−bt, ∀ t > 0. (4.13)
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Substituting (4.12) in (4.13) we get

‖y(t)‖ ≤ ae−bt‖x0‖ +

∫ t

0

ae−b(t−τ)‖B‖ ‖w(τ)‖dτ. (4.14)

Consider now w ∈ Le
∞, then

‖yT‖L∞ ≤ a‖x0‖ +
a

b
‖B‖ ‖wT‖L∞ , ∀ T ∈ [0,∞) . (4.15)

Therefore H is (L∞, L∞) finite-gain stable with β3 = ‖B‖a/b and β2 = a‖x0‖.
Consider now w ∈ Le

p with 1 ≤ p < ∞. We have from (4.14)

‖yT‖Lp ≤ a‖x0‖(ap)−1/p +
a

b
‖B‖ ‖wT‖Lp ∀ T ∈ [0,∞) (4.16)

using the inequality ‖yT‖Lp ≤ ‖hT‖L1 ‖wT‖Lp . Hence H is (Lp, Lp) finite-gain stable

with β3 = ‖B‖a/b and β2 = a‖x0‖(ap)−1/p.

One can reformulate the above result in other ways [118].

Theorem 4.3 The 2D/3C equations linearized about Couette flow (4.1) are (Lp, Lp)

finite-gain stable for p ∈ [0,∞].

Proof: Since nonlinear 2D/3C equations are globally asymptotically stable about

Couette flow, the linear equations are also asymptotically stable. Hence, A is Hurwitz

and therefore from Theorem 4.2 we have the result.

Note that finite-gain stability implies input-output stability and hence the lin-

ear 2D/3C equations are also input-output stable. We therefore have the following

corollary.

Corollary 4.1 The linear 2D/3C equations (4.1) are (Lp, Lp) input-output stable for

p ∈ [0,∞].

Now that we have proved 2D/3C linear equations are finite-gain stable, the next

natural question we would like to address is, what this finite-gain is. We would like

to be able to calculate the gain or bound it at least. This will be done in the next few
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sections by considering various input-output spaces. We will measure the size of the

disturbance in some norm appropriate to the input space and the size of the output

in some norm appropriate to the output space. We will first analytically compute

these norms and then later solve them computationally.

4.2 Stochastic Input-Output Stability Gains

In this section we study the worst-case behavior of linear 2D/3C equations under a

class of disturbances which have certain spectral qualities [17]. Understanding this

worst-case behavior of fluid under a given set of disturbances is very important in

many design calculations. The following cases: colored noise to variance, spectral

norm to spectral norm, spectral norm to power norm and power norm to power norm

will be considered here.

4.2.1 Colored Noise to Variance

Here we calculate the variance sustained by linear equations under excitation by

colored noise.

Theorem 4.4 Consider the linear system (2.15). Assume that A is Hurwitz. Then,

the variance of the output under colored noise excitation by the disturbance is finite

and is given by

E‖y(t)‖2
2 =

1

2π

∫ ∞

−∞
Trace [G∗(jω)G(jω)Sw(jω)]dω. (4.17)

Proof: We will assume that w(t) ∈ S, otherwise Sw(jω) blows up. It can be proved

after some lengthy algebra that

Sy(jω) = G(jω)Sw(jω)G∗(jω). (4.18)
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From the definition of Eucledian 2 norm we have

E‖y(t)‖2 =
√

Trace[Ry(0)]. (4.19)

Using (2.24) the above equation becomes

E‖y(t)‖2 =

√
1

2π

∫ ∞

−∞
Trace[Sy(jω)]dω. (4.20)

Substituting for Sy(jω) from (4.18) gives

E‖y(t)‖2 =

√
1

2π

∫ ∞

−∞
Trace [G(jω)Sw(jω)G∗(jω)]dω. (4.21)

Finally, using the property that Trace(FG) = Trace(GF ) we get the required answer.

One can think of (4.21) as the weighted H2 norm using the spectral factorization

Sw(jω) = W (jω)W ∗(jω). Where W (jω) is the weight at the frequency ω. Under

white noise forcing Sw(jω) = I we get back the result as in [8]. It is easy to see that

white noise has unbounded power as the P norm is not bounded, but it has bounded

spectrum.

4.2.2 Spectral Norm to Spectral Norm

Next we calculate the worst-case amplification of a spectrum bounded disturbance

by taking the input and output space to be S. The result is stated in the following

theorem.

Theorem 4.5 Consider the linear system (2.15). Assume that A is Hurwitz. Then,

the spectrum to spectrum induced norm or gain is given by

ISS = sup
w∈S

‖y(t)‖S

‖w(t)‖S

= ‖G‖H∞ . (4.22)
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Proof: By definition and (4.18) we have

‖y(t)‖S =
√
‖ G(jω)Sw(jω)G∗(jω) ‖H∞ . (4.23)

It follows from the sub-multiplicativity of H∞ norm (i.e., ‖ST‖H∞ ≤ ‖S‖H∞ ‖T‖H∞)

‖y(t)‖S ≤
√

‖G(jω)‖H∞‖Sw(jω)‖H∞‖G∗(jω)‖H∞ . (4.24)

Using the fact that the H∞ norm of G and G∗ are the same we get

‖y(t)‖S ≤ ‖G(jω)‖H∞‖w(t)‖S. (4.25)

Now to show that the above bound is the least upper bound, consider Sw(jω) = I,

then

‖y(t)‖S =
√
‖G(jω)G∗(jω)‖H∞ = ‖G(jω)‖H∞ . (4.26)

Hence the bound is actually the least upper bound. Figure 4.1 shows the variation of

singular values of the transfer function G(s) of the linear 2D/3C model as function of

frequency and spanwise wavenumber α. The figure indicates that the H∞ is very large

even at a moderate Reynolds number like 1000. Furthermore, there is a distinctive

wavenumber at which the induced gain peaks.

4.2.3 Spectrum Norm to Power Norm

Here we calculate the spectrum to power induced norm. The input and output spaces

are S and P, respectively.

Theorem 4.6 Consider the linear system (2.15). Assume that A is Hurwitz. Then,

the spectrum to power induced norm or gain is given by

ISP = sup
w∈S

‖y(t)‖P

‖w(t) ‖S

= ‖G‖H2 . (4.27)
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Figure 4.1: Maximum singular values of G(jω, α) at R = 1000. H∞ norm is the
projection of the surface on the (x,z) plane.

Proof: Using the definition and (4.21) we have

‖y(t)‖P ≤
√
‖Sw(jω)‖H∞ × .√

1

2π

∫ ∞

−∞
Trace[G∗(jω)G(jω)]dω = (4.28)

From the definition of H2 norm it follows that

‖y(t)‖P ≤
√
‖Sw(jω)‖H∞‖G‖H2 . (4.29)

When Sw(jω) = I then the upper bound is achieved as

‖y(t)‖P = ‖G‖H2 . (4.30)
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Figure 4.2: Square of H2 norm variation with α at R = 1000. M1 refers to the
norm calculation using Trace(CXcC

∗) and M2 refers to the norm calculation using
Trace(B∗YoB).

In figure 4.2 the variation of H2 norm with spanwise wavenumber is shown. The

plot shows the norm calculated using two different methods that will be discussed in

the computational chapter later. Note again the huge norm and the distinctive peak

in wavenumber.

Figure 4.3 shows the error in the H2 norm calculation using two methods. The

plot indicates that the error between the two methods is less than 10−6.

4.2.4 Power Norm to Power Norm

Here we will assume that the input space is P and output space is P and calculate

the power to power induced norm.

Theorem 4.7 Consider the linear system (2.15). Assume that A is Hurwitz. Then,
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the power to power induced norm is given by

IPP = sup
w∈P

‖y(t)‖P

‖w(t) ‖P

= ‖G‖H∞ . (4.31)

Proof: This follows from

‖y(t)‖P =

√
1

2π

∫ ∞

−∞
Trace[G∗(jω)S(jω)G(jω)]dω (4.32)

≤ ‖G‖H∞

√
1

2π

∫ ∞

−∞
Trace[S(jω)]dω ≤ ‖G‖H∞‖w‖P . (4.33)

Proving that this is the least upper bound it little involved and is done below.

Say for some w = a ∈ R

‖G‖H∞ = σ̄[G(ja)]. (4.34)
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Let us pick the disturbance which has the following frequency domain characteristics

with T (ja) = v1(ja) and

Sw(jω) = T (jω)π[δ(ω − a) + δ(ω − a)]T ∗(jω) (4.35)

T (jω) =


a1

b1−jω
b1+jω
...

am
bm−jω
bm+jω

 , (4.36)

where G(ja)v1(ja) = σ̄u1(ja) in singular value decomposition (SVD). v1 is the first

column of V and u1 is first column of U in

G = UΣV ∗. (4.37)

U and V are unitary matrices of appropriate dimension. One can check that ‖w‖P = 1

and ‖y‖P = ‖G‖H∞ after some manipulations using the properties of SVD. Therefore

the bound is achieved. The disturbance w(t) can be constructed explicitly by noting

the similarity between equations (4.18) and (4.35). The middle term in eqn (4.35) is

spectral density of sin(at) and hence w(t) can be obtained by passing sin(at) through

the system with transfer function T (s). Figure 4.1 shows that the peak in the H∞

norm is achieved at ω = 0 and α = 1.5. The first input singular vector v1 at these

parameters is plotted in figure 4.4 as a function of wall-normal distance. The first

output singular vector u1 at the same parameters is plotted in figure 4.5.

4.2.5 Discussion of Computational Results

In this section we introduced various stochastic measures like, colored noise to vari-

ance, spectrum to spectrum, power to power, spectrum to power. We have theoret-

ically show that these gains are either the H2 norm or the H∞ norm of the trans-

fer function using the frequency domain characterizations of the disturbances. The

structure of the worst-case disturbances is also calculated. Computations done on the

linear 2D/3C model indicate that H2 and H∞ norms are huge even at low Reynolds



67

f

y

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Re(f 1)
Re(f 2)
Re(f 3),Im(f 1),Im(f 2)
Im(f 3)

Figure 4.4: First input singular vectors of G(jω, α) at R = 1000, α = 1.5 and ω = 0.

number and indicate the extreme sensitivity of transition phenomenon to external

disturbances.

4.3 Deterministic Input-Output Stability Gains

In this section we will consider the dynamics of 2D/3C equations under external time

varying deterministic disturbances [16] belonging to some infinite-dimensional linear

space. Many of the disturbances occurring in the experiment are time-varying and

this is a natural framework to study the effect of such disturbances on the flow.

4.3.1 Impulse Norm to Energy Norm

Here we calculate the behavior of 2D/3C equations under an impulsive disturbance.

We are interested in calculating the maximum possible energy amplification that can

occur in these equations. One can show that hitting the model with an impulse is

equivalent to starting the model with an initial condition x0 = Bw0 and w(t) =
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Figure 4.5: First output singular vectors of G(jω, α) at R = 1000, α = 1.5 and ω = 0.

0, t ≥ 0. This analysis basically reveals the structure of the worst case impulsive

disturbances or initial conditions that gives rise to maximum energy growth.

Theorem 4.8 Consider the linear system (2.15). Assume that A is Hurwitz. Then,

the impulse to energy induced norm is finite and is given by

IIE = sup
w(t)=w0δ(t)

‖y‖L2

‖w0‖2

=
√
‖B∗Y0B‖2→2, (4.38)

where δ is the Dirac delta function and Y0 is the observability gramian, which is a

solution of

YoA + A∗Yo + C∗C = 0. (4.39)

Proof: The solution to equation (2.15) is given by

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)Bw(τ)dτ, (4.40)
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where Φ(t, t0) is the state transition matrix and is the solution of the following set of

equations

Φ̇(t, t0) = A(t)Φ(t, t0) (4.41)

Φ(t0, t0) = I. (4.42)

Since in our case A is time invariant, we can solve the above equation exactly. The

solution is

Φ(t, t0) = eA(t−t0). (4.43)

Therefore (4.40) now becomes

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bw(τ)dτ. (4.44)

Now substituting x(t0) = 0, t0 = 0 and w(t) = w0δ(t) into the above equation we get

x(t) = eAtBw0 (4.45)

and hence

y(t) = CeAtBw0. (4.46)

Now

‖y‖2
L2

=

∫ ∞

0

w∗
0B ∗ eA∗tC∗CeAtBw0dt (4.47)

= w∗
0B

∗(

∫ ∞

0

eA∗tC∗CeAt)Bw0

= w∗
0B

∗YoBw0,

where Y0 the observability gramian and is defined as

Y0 ≡
∫ ∞

0

eA∗tC∗CeAtdt. (4.48)
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It can be shown that Y0 is the solution of the following Lyapunov equation

YoA + A∗Yo + C∗C = 0. (4.49)

Note that for Yo to exist we need the system to be asymptotically stable. From

(4.38, 4.78 ) it follows that

IIE = sup
‖w0‖≤1

√
w∗

0B
∗YoBw0 =

√
‖B∗YoB‖2→2. (4.50)

The worst-case disturbance w0 is given by the singular vector corresponding to the

maximum singular value of B∗YoB. Observe that since B∗YoB is Hermitian its eigen-

values and singular values, and eigenvectors and singular vectors coincide.

The above impulse to energy induced norm can also be stated as an linear matrix

inequality as following.

Corollary 4.2 Consider the linear system (2.15). Assume that A is Hurwitz. Then,

IIE < ∞ and is given by

IIE = inf
R

{‖B∗RB‖ : RA + A∗R + C∗C < 0} . (4.51)

Proof: This follows directly from the previous theorem.

Impulse to energy singular values are plotted in figure 4.6 at R = 1000 and α = 1.

The figure indicates that at any given resolution N (the number of collocation points

in the y direction) the bottom one third of the singular values are incorrect. This is

due to the limitations of the SVD and EVD algorithms.

Figure 4.7 shows the variation of square of first singular value σ2
1 of B∗YoB with

respect to α. Figure 4.8, 4.9 shows the variation of square of second and third singular

values of σ1 of B∗YoB with respect to α, respectively. The curves for N = 64 and

N = 128 are indistinguishable and hence the results are assumed to have converged.

The plots indicate that there is a characteristic peak around the non-dimensional

wavenumber of: 1.4 for σ1, 2.2 for σ2, 3.2 for σ3. Note also that the peak is also
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Figure 4.6: Singular values of B∗YoB at R = 1000 and α = 1

spreading as we go towards the lower singular values. The maximum of the singular

values is also abruptly decreasing as we go towards the lower singular values (70,000,

2500, 300). This indicates that certain disturbances are very much amplified than

the rest. This raises many important questions question like: why is there such a

trend in these 2D/3C equations, does this trend also occur in the three-dimensional

equations, etc. These question will not be addressed in this thesis, as they will be a

research topic of their own.

Figure 4.10 shows the plot of Re(f1) corresponding to the first eigenfunction of

B∗YoB at the parameters R = 1000 and α = 1.4. α = 1.4 corresponds to the

wavenumber where the maximum in the first eigenvalue occurs. Figure 4.11 presents

the plot of Re(f2) and figure 4.12 presents the plot of Im(f3) corresponding to the

first eigenfunction of B∗YoB at R = 1000 and α = 1.4. The figures indicate that f1

is an order of magnitude smaller than f2 and f3. On the other hand f2 and f3 are

comparable to each other. The eigenfunctions have clearly lot of structure in them.
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Next we plot the structure of the input disturbances corresponding to the third

eigenvalue at R = 1000 and α = 1.4. They are given in figures 4.13, 4.14 and 4.15.

These figures indicate that the magnitude of f1, f2 and f3 are now comparable, unlike

the case of first eigenfunction.

In figures 4.16, 4.17, 4.18 are plotted the eigenfunctions corresponding to the

seventh eigenvalue. Again f1, f2 and f3 are of comparable sizes. Note that the

disturbances are having a wiggly structure as we move down the spectrum.

Next we would like to understand how the structure of the disturbances changes

with α. It is not obvious from just physical grounds what this will be. Hence, we

plot the first eigenfunction at r = 1000 and α = 0.2 in figures 4.19, 4.20 and 4.21.

Comparing these eigenfunctions with the eigenfunction in figures 4.10, 4.11 and 4.12

at r = 1000 and α = 1.4, we see that the shape of imaginary part of f3 is almost the

same in α = 1.4 and α = 0.2 cases. On the other hand, the structure of real part of

f2 at α = 0.2 is 0.15 times that of α = 1.4 case and the structure of real part of f1 at

α = 0.2 is 5 times that of α = 1.4 case. We conclude from this that the structure of

worst-case disturbances is very much different at α = 1.4 and α = 0.2 cases.
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Since it would be interesting to see how the worst-case disturbances look like in

the vorticity equations, they are plotted in 4.22, 4.23 and 4.24. The figures indicate

that the worst-case disturbances are streamwise vortical disturbances.

4.3.2 Energy Norm to Peak Norm

In this section we calculate the L2 to L∞ gain and the structure of the worst distur-

bances that give the upper bound.

Theorem 4.9 Consider the linear system (2.15) with A Hurwitz. Then, the energy

to peak induced norm defined as

IEP = sup
w∈L2

‖y(t)‖L∞

‖w(t)‖L2

(4.52)

is finite and is given by

IEP = inf
S

{√
‖CSC∗‖ : AS + SA∗ + BB∗ < 0

}
. (4.53)
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Figure 4.10: Impulse to energy singular vector Re(vf1

1 ) at R = 1000 and α = 1.4.

Proof: Let S > 0 be a 1 positive definite solution of

AS + SA∗ + BB∗ < 0. (4.54)

(4.54) can be written as an LMI in S−1 as

U ≡
 A∗S−1 + S−1A S−1B

B∗S−1 −I

 < 0 (4.55)

using the Schur complement formula. This implies that

d

dt
V (x(t)) ≤ w∗(t)w(t) ∀ x,w (4.56)

V (x) = x∗S−1x. (4.57)

Integrating this equation from 0 to T, with x0 = 0, we get

V (x(T )) = x∗(T )S−1x(T ) <

∫ T

0

w∗(t)w(t)dt ≤ 1 ∀ T, ‖w‖2
L2

≤ 1. (4.58)

1Note that AS + SA∗ + BB∗ < 0 has infinite number of solutions S
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and α = 1.4.
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Figure 4.12: Impulse to energy sin-
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1 ) at R = 1000
and α = 1.4.

This can be written as the following inequality using the Schur complement formula 1 x∗(T )

x(T ) S

 > 0. (4.59)

Equation (4.59) implies that

 1 0

0 C

 1 x∗(T )

x(T ) S

 1 0

0 C∗

 =

 1 y∗(T )

y(T ) CSC∗

 ≥ 0. (4.60)

Applying the Schur complement formula again and using the properties of the induced

norm we get

y(T )y∗(T ) ≤ CSC∗ ≤ ‖CSC∗‖∞I. (4.61)

This can be shown to give

y∗(T )y(T ) ≤ ‖CSC∗‖ ∀ T, ‖w‖2
L2

≤ 1 (4.62)
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Figure 4.13: Impulse to energy singular vector Re(vf1

3 ) at R = 1000 and α = 1.4.

after some manipulations. Taking the infimum over all possible S we get the required

sup
‖w‖L2

=1

‖y‖L∞ = IEP ≤ inf
S

{√
‖CSC∗‖ : AS + SA∗ + BB∗ < 0

}
. (4.63)

Next we will prove that the above bound is tight, by constructing a specific dis-

turbance that satisfies the upper bound. Let

wT (t) ≡
 λ

−1/2
T B∗eA∗(T−t)C∗uT 0 ≤ t ≤ T

0 T < t
(4.64)

CXT C∗uT = λT uT , XcT ≡
∫ T

0

eAtBB∗eA∗tdt, (4.65)

where XcT is the finite time controllability gramian and uT is the unit eigenvector.

This disturbance has the property that ‖wT‖L2 = 1 for all T > 0. Using the solution

of (2.15) with w = wT we get

‖yT (T )‖2
2 = λT . (4.66)

Taking the limit t → ∞ we get

lim
t→∞

‖yT (T )‖2 = ‖CXcC
∗‖. (4.67)
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Figure 4.15: Impulse to energy sin-
gular vector Im(vf3

3 ) at R = 1000
and α = 1.4.

It follows from the following corollary that the upper bound is achieved.

Corollary 4.3 Consider the linear system (2.15). Assume that A is Hurwitz. Then,

IEP < ∞ and is given by

IEP =
√

‖CXcC∗‖. (4.68)

Xc is the controllability gramian and is the solution of

AXc + XcA
∗ + BB∗ = 0. (4.69)

Note that the worst-case disturbance in the above theorem is a strong function of

the linear operator A, input operator B and output operator C. Appendix ?? gives

another prrof of L2 to L∞ induced norm.

Figure 4.25 compares the singular values of CXcC
∗ at R = 1000 and α = 1 with

128, 256 and 512 collocation points in the wall-normal direction. From the figure it

is clear that the large singular values have converged in our computation.

Figures 4.26 and 4.27 show the variation of first and second eigenvalues of CXcC
∗

as a function of α at R = 1000. Observe that the first eigenvalue is nothing but IEP .

Like in the case of impulse to energy gain, IEP peaks around a spanwise wavenumber

of α = 1.4 and the second eigenvalue peaks at α = 2.2. The peak magnitude of the
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Figure 4.16: Impulse to energy singular vector Re(vf1

7 ) at R = 1000 and α = 1.4.

square of IEP is 70,000 and that of σ2
2(CXcC

∗) is 2,500.

Next we study the variation of energy to peak induced norm with respect to R.

From figure 4.28 it is clear that IEP varies like R1/2 at low Reynolds numbers and

figure 4.29 indicates that IEP varies like R3/2 at high Reynolds numbers. This brings

out many important points. Foremost, the small gains at small Reynolds number

indicate the insensitivity of the low Reynolds number flows. As a result, we can

get away with not doing a full uncertainty analysis. On the other hand, in the

high Reynolds number range, the gains are huge, indicating the huge sensitivity to

disturbances and uncertainty. We therefore need a complete robustness analysis of

the nominal flow equations with respect to various uncertainty.

Figures 4.30, 4.31 and 4.32 show the worst-case vorticity body forcing in stream-

wise, spanwise and wall-normal directions in the (y, z) plane. The vorticity body

forcing in the streamwise direction is denoted by g1, spanwise direction is denoted by

g2 and wall-normal direction is denoted by g3. The plots indicate that the maximum

in g1 is two orders of magnitude smaller than the peak in g2 and g3. On the other

hand the maximum of g2 and g3 are of the same magnitude. This implies that the

worst-case disturbances for the energy to peak gain are the one with less stream-

wise vorticity than spanwise and wall-normal vorticity. These findings have profound
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Figure 4.18: Impulse to energy sin-
gular vector Im(vf3

7 ) at R = 1000
and α = 1.4.

implications in designing good stability experiments.

Figures 4.33, 4.34 and 4.35 shows the eigenfunctions corresponding to the sec-

ond maximum eigenvalue. Note that Re(vf1

2 ) is two orders of magnitude bigger than

Re(vf2

2 ) and Im(vf3

2 ), indicating that the streamwise forcing is the most important

one. Comparing these conclusions with those of energy to peak induced norm, we see

that the structure of the worst-case disturbances are different in both cases. Previ-

ously, we mentioned that different stability notions lead to different conclusions and

this is a clear example of that.

4.3.3 Area Norm to Energy Norm

One can construct the solution to (2.15) from its Greens function g(t) = eAtBH(t),

where H(t) is the Heaviside function. The solution is given by

y(t) =

∫ ∞

−∞
g(t − τ)w(τ)dτ ≡ (Cgw)(t), (4.70)

where Cg is the convolution operator associated with g(t) and is defined as above.

One can think of convolution operator as a map Cg : w(t) 7→ y(t) = Cgw(t). In this

section we calculate the L1 → ÃL2 induced norm of this map.
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1 ) at R = 1000 and α = 0.2.

Theorem 4.10 Consider the linear system (2.15) with A Hurwitz. Then, the area

to peak induced norm defined as

IAP = sup
w∈L1

‖y(t)‖L2

‖w(t)‖L1

(4.71)

is finite and is given by

IAP =
√
‖B∗Y0B‖. (4.72)

Proof: Using (4.70) we have

‖y(t)‖L2 = ‖
∫ ∞

−∞
g(t − τ)w(τ)dτ‖L2 . (4.73)

Applying the Minkowski inequality we get

‖y(t)‖L2 ≤
∫ ∞

−∞
‖g(t − τ)w(τ)‖L2dτ. (4.74)

From the definition of L2 norm it follows that

‖y(t)‖L2 ≤
∫ ∞

−∞
[

∫ ∞

−∞
w∗(τ)g∗, (t − τ)g(t − τ)w(τ)dt]

1
2 dτ, (4.75)
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and α = 0.2.
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Figure 4.21: Impulse to energy sin-
gular vector Im(vf3

1 ) at R = 1000
and α = 0.2.

where ∗ is conjugate transpose. Making a change of variable and substituting the

Greens function results

∫ ∞

−∞
w∗(τ)g∗(t − τ)g(t − τ)w(τ)dt = w∗(τ)[

∫ ∞

−∞
g∗(u)g(u)du]w(τ)

= w∗(τ)[

∫ ∞

0

B∗eA∗uC∗CeAuBdu]w(τ). (4.76)

Defining Xo =
∫ ∞

0
eA∗uC∗CeAudu and substituting this, we get

‖y(t)‖L2 ≤
∫ ∞

−∞
[w∗(τ)(B∗YoB)w(τ)]

1
2 dτ ≤ ‖B∗YoB‖1/2

∫ ∞

−∞
‖w(τ)‖2dτ (4.77)

and therefore

‖Cg‖L1→L2 =
‖y(t)‖L2

‖w(t)‖L1

≤ ‖B∗YoB‖1/2. (4.78)

Now we shown that the above bound can be achieved. Let wo be the normal-

ized singular vector corresponding to the maximum singular value of B∗XoB, i.e.,

B∗XoBw0 = σ1wo. Now define a sequence of functions parameterized by ε such that

wε(t) = woδ
ε(t), ‖w(t)‖L1 = 1 and δε(t) → δ(t) as ε → 0. Taking the limit carefully,

we have yε(t) → y(t) = g(t)wo. Therefore ‖Cg‖L1→L2 = ‖B∗Y0B‖1/2.
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Figure 4.22: Impulse to energy singular vector Im(vg1

1 ) at R = 1000 and α = 1.4.

This gain and the worst-case disturbances in this case are exactly same as the

impulse to energy norm discussed previously. We refer the reader to Section 4.3.1 for

computational results on gain and structure of worst case disturbances.

4.3.4 Energy Norm to Energy Norm

The energy to energy norm is defined as

IEE = sup
w∈L2

‖y(t)‖L2

‖w(t)‖L2

. (4.79)

In this section we calculate this induced norm.

Theorem 4.11 Consider the linear system (2.15). Assume that A is Hurwitz. Then,

IEE < ∞ and is given by

IEE = ‖G(s)‖H∞ (4.80)

Proof: Let ŷ(jω) be the time Fourier transform of y(t) and similarly for w(t). Then

we have

ŷ(jω) = G(jω)ŵ(jω) (4.81)
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Figure 4.23: Impulse to energy sin-
gular vector Im(vg2

1 ) at R = 1000
and α = 1.4.
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Figure 4.24: Impulse to energy sin-
gular vector Re(vg3

1 ) at R = 1000
and α = 1.4.

for x0 = 0. Therefore, using the Parseval’s inequality we have

‖y(t)‖2
L2

=
1

2π

∫ ∞

−∞
ŵ∗(jω)G∗(jω)G(jω)ŵ(jω)dω (4.82)

≤ (sup
ω∈R

σ̄ [G(jω)])2 1

2π

∫ ∞

−∞
ŵ∗(jω)ŵ(jω)dω (4.83)

= ‖G‖2
H∞‖w‖2

L2
. (4.84)

Taking the square root we get that ‖G‖H∞ is an upper bound for IEE.

Now we shall show that ‖G‖H∞ is actually a least upper bound. Let

G(jω0) = U(jω0)Σ(jω0)V
∗(jω0) (4.85)

be the SVD of G(jω0), where w0 is the frequency where the maximum of σ̄ [G(jω)]

is attained. Let v1(jω0) be the right first unit singular vector and write this as

v1(jω0) =


a1e

jθ1

...

amejθm

 . (4.86)
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Figure 4.25: Singular values of CXcC
∗ at R = 1000 and α = 1.

Pick bi such that

tan θi =
−2biω0

b2
i + ω2

0

. (4.87)

Construct the disturbance ŵ as

ŵσ(s) =


a1

b1−s
b1+s
...

am
bm−s
bm+s

 a
[
e−(ω−ω0)2σ/4 + e−(ω+ω0)2σ/4

]
, (4.88)

where

a =

(
1

1 + e−ω0σ/2

)1/2

(
πσ

2
)1/4. (4.89)

This disturbance has the property that ‖wσ(t)‖L2 = 1 and as σ → ∞

a
[
e−(ω−ω0)2σ/4 + e−(ω+ω0)2σ/4

]
→ π [δ(ω − ω0) + δ(ω + ω0)] . (4.90)
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Figure 4.26: Energy to peak singu-
lar value σ2

1 versus α at R = 1000.
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Figure 4.27: Energy to peak singu-
lar value σ2

2 versus α at R = 1000.

Using the above relations we get

‖yσ(t)‖2
L2

=
1

2π

∫ ∞

−∞
ŵ∗

σ(jω)G∗(jω)G(jω)ŵσ(jω)dω (4.91)

→ ‖G‖2
H∞ , σ → ∞. (4.92)

4.3.5 Peak Norm to Peak Norm

The peak to peak norm is defined as following:

IPP = sup
w∈L∞

‖y(t)‖L∞

‖w(t)‖L∞
. (4.93)

Define the L1 norm of MIMO impulse response function g(t) = gij(t) as

‖g(t)‖L1 =

∫ ∞

0

‖g(t)‖2→2dt, (4.94)

where

‖g(t)‖2→2 = σ̄ [g(t)] . (4.95)

Theorem 4.12 Consider the linear system (2.15). Assume that g(t) ∈ L1. Then

IPP ≤ ‖g(t)‖L1 . (4.96)
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Proof: We have

‖y(t)‖2 = ‖
∫ t

0

g(τ)w(t − τ)dτ‖2 (4.97)

≤
∫ t

0

‖g(τ)w(t − τ)‖2dτ ≤ ‖w(t)‖L∞

∫ t

0

‖g(τ)‖dτ (4.98)

Note that g(τ) is an operator, and hence by ‖g(τ)‖ we mean the induced operator

norm i.e., ‖g(τ)‖ = ‖g(t)‖2→2 = σ̄[g(τ)]. Taking supremum with respect to t on both

sides we get

IPP ≤
∫ ∞

0

‖g(τ)‖2→2dτ. (4.99)

One can be show that the upper bound is tight for SISO systems by considering

the following disturbance

w(t − τ) = sgn [g(τ)] , ∀τ, (4.100)
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Figure 4.29: Energy to peak induced norm variation with R, at large R and α = 1.4.

where sgn means sign of and sgn [h] = 1 if h ≥ 0, and sgn [h] = 0 if h < 0. Then

‖w‖L∞ = 1 and

y(t) =

∫ t

0

g(τ)w(t − τ)dτ =

∫ t

0

|g(τ)|dτ. (4.101)

Therefore

‖y(t)‖L∞ =

∫ ∞

0

|g(τ)|dτ = ‖g(t)‖L1 . (4.102)

4.3.6 Past Input to Future Output: Hankel Norm

The past input to future output operator is defined as (for a Hurwitz A)

y(t) = Γw(t) =

∫ 0

−∞
CeA(t−τ)Bw(τ)dτ, ∀t ≥ 0 (4.103)

Γ : L2 (−∞, 0] → L2 [0,∞) (4.104)

for a Hurwitz A. This map is called the Hankel operator because of it’s connections

with the Hankel matrices. This situation can be physically realized by banging the

system with disturbances from t = −∞ to t = 0 and letting the system evolve from
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Figure 4.30: Energy to peak norm singular vector vg1

1 at R = 1000 and α = 1.4.

t = 0 to t = ∞. We define the past norm to future norm as

IPF = sup
w∈L2(−∞,0]

‖y(t)‖L2[0,∞)

‖w(t)‖L2(−∞,0]

. (4.105)

In this section we calculate the induced norm of Hankel map.

Theorem 4.13 Consider the linear system (2.15). Assume that A is Hurwitz. Then

IPF = ‖Γ‖L2(−∞,0]→L2(0,∞] =
√

λmax(XcYo). (4.106)

Proof: After some manipulations it can be shown that the Hankel map can be written

as

Γ = OoOc, (4.107)



89

Figure 4.31: Energy to peak norm singular vector vg2

1 at R = 1000 and α = 1.4.

where Oo is the observability operator and Oc is the controllability operator defined

in the next chapter. Using this and the Lemma 4.1 below, we have

‖Γ‖ =
√

ρ(Γ∗Γ) =
√

ρ(O∗
cO

∗
oOoOc). (4.108)

Now let σ2 6= 0 be an eigenvalue of O∗
cO

∗
oOoOc and w 6= 0 be the corresponding

eigenvector. We have then

O∗
cO

∗
oOoOcw = σ2w. (4.109)

Now multiply the above equation on LHS with Oc. We get

XcYox = σ2x, Ocw ≡ x. (4.110)

Noting that x 6= 0 we get that σ2 6= 0 is also an eigenvalue of XcYo. We can similarly

show that, if β2 is an eigenvalue of XcYo, it is also an eigenvalue of O∗
cO

∗
oOoOc. Hence

the result follows.
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Figure 4.32: Energy to peak norm singular vector vg3

1 at R = 1000 and α = 1.4.

The worst-case input disturbances in this case can be shown to be

v1(t) = O∗
c (σ

−1
1 Xov1) ∈ L2 (−∞, 0] (4.111)

XcXoφi = σ2
i φi, i = 1, .., n (4.112)

and the worst-case output corresponding to this input is

u1(t) = Ooφ1 ∈ L2 [0,∞) . (4.113)

This indicates that the worst-case gain and disturbance is a function of the controlla-

bility gramian and operator, and observability gramian and operator. These gramians

and operators in turn depend on A, B, and C.

Lemma 4.1 Let U and V be Hilbert spaces, and T ∈ L(U, V ). Then

‖T‖U→V =
√

ρ(T ∗T ), (4.114)

where ρ is the spectral radius and T ∗ is the adjoint of T .
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Figure 4.33: Energy to peak singu-
lar vector Re(vf1

2 ) at R = 1000 and
α = 1.4.
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Figure 4.34: Energy to peak singu-
lar vector Re(vf2

2 ) at R = 1000 and
α = 1.4.

Figure 4.36 shows the variation of Hankel norm as a function of α. This norm also

peaks at a spanwise wavenumber of α = 1.25. The maximum magnitude of Hankel

norm at R = 1000 is around 4,000.

Figures 4.37, 4.38 and4.39 show the first φ1, second φ2 and fifth φ5 eigenfunctions

that were discussed before. In these plots h1 = ψ̂(y, α, 0) and h2 = û(y, α, 0). For

these cases Re(h1) and Im(h2) are zero.

4.3.7 Fourier Space: 2 Norm to 2 Norm

In many experimental situations, there is a periodic disturbance entering the test do-

main. For example, shear layers or vortical disturbances coming from the contraction

into the test section, acoustic disturbances from the external environment, charac-

teristic tunnel oscillations, etc. Hence, in this section we will consider the effect of

time-periodic disturbances on the 2D/3C equations.

Below we compute the induced 2 norm of the Fourier modes of the input and

output. We assume that w(t) ∈ L1 so that the Fourier transform exists. Taking the

Fourier transforms of input w(t) and output y(t) we get ŵ(jω) and ŷ(jω), respectively.

Lemma 4.2 Consider the linear system (2.15). Assume that A is Hurwitz. Then in
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Figure 4.35: Energy to peak singular vector Im(vf3

2 ) at R = 1000 and α = 1.4.

steady state or x0 = 0

σm ≤ ‖ŷ(jω)‖2

‖ŵ(jω)‖2

≤ σ1, (4.115)

where σm ≤ .... ≤ σ1 are the singular values G(jω).

Proof: This result is a subset of Theorem (4.11). From the properties of Fourier

transforms we have

ŷ(jω) = G(jω)ŵ(jω). (4.116)

The result then follows using the properties of matrix norm induced by vector 2 norm.

The worst-case disturbance ŵ(jω) corresponds to the singular vector v1 corresponding

to the singular value σ1.

Figure 4.40 shows the maximum singular value of the transfer function as a func-

tion of time-frequency. Note the huge steady state amplifications that are possible

over the low frequency range. The figure also indicates that the flow insensitive to

very high frequencies in time.

4.3.8 Discussion of Computational Results

We discuss now briefly the results of IVP simulations of linear 2D/3C equations.

Figure (5.2) shows the variation of energy E(t) with time. The initial conditions
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Figure 4.36: Hankel norm ‖Γ‖ versus α at R = 1000.

are chosen arbitrarily for these simulations. Because of the global stability of the

equations, the energy grows for intermediate times and decays for large times. It has

also been observed that there is no difference in the energy growth in simulations

started with non zero initial conditions in ψ and u, and zero initial conditions in

u and non zero initial conditions in ψ. This indicates that capturing the spanwise

dependence is the crucial factor for transient growth. This conclusion is in contrary

with Squires theorem, which essentially tells that for critical Reynolds number in

transition to turbulence 2D streamwise equations are sufficient. Furthermore, we

see that the energy in streamwise vortices (v, w components of velocity) decreases

monotonically with time. But the coupling term in the operator A causes a large

growth in energy in the streaks (u component of velocity). This energy decays at a

much smaller time scale than the energy in the vortices. These results indicate that

what is seen in the experiments (will be discussed later) are streaks and not vortices.

Many papers seem to misinterpret them as vortices.

The computations of deterministic finite-gains indicate that 2D/3C model has dis-

tinctive peak in spanwise wavenumber (αcr) for all the deterministic induced norms
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considered. It is seen through simulations that αcr is independent of R. Furthermore,

all these induced norms are very large at high Reynolds number, indicating the ex-

treme sensitivity of the Navier-Stokes equations to external excitation and unmodeled

dynamics. This further emphasis out point that to understand transition and tur-

bulence in plane Couette flow, it is necessary to include an explicit robust stability

analysis with respect to all the uncertainty.

4.4 Remarks

In our opinion, the 2D/3C equations are the simplest model that can be derived

from NS equations, which captures all the essential features of the full 3D/3C Navier-

Stokes equations. The results in this chapter indicate that 2D/3C equations are very

high gain and low rank (at least for most of the large scale details) operator and very

sensitive to uncertainties. Since this high gain is the property of linear operator, most

of the observed features may be explained by linear models (by suitably modeling the

other effects) and nonlinearity might essentially changes the fine scales features. We
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Figure 4.39: Fifth eigenfunction of
XcYo at R = 1000, α = 1.25.

speculate that a similar thing might be happening in the full 3D/3C Couette flow

model. However, to conclusively say this, we clearly need further studies of 3D/3C

linear and non-linear equations. This will be pursued later.

We conjecture that the peak in spanwise wavenumber observed in all the induced

norms correspond to the streamwise vortices seen in boundary layer and other channel

flow experiments, and numerical simulations. A comparison of these predictions with

the experiments will be made in the last chapter.

In essence, we have showed that the globally nonlinearly stable 2D/3C model

forms vortices and streaks. This brings out many important points. Consider forma-

tion of streaks in the experiments for example. It is not necessarily an instability as in

the case here. This motivates us to argue that one can have transition to turbulence

without any instability. The only requirement is that there is a source of disturbance

continuously kicking the trajectory away from the fixed point (laminar profile) in

a random way. The linear scaling of time with Reynolds number and norms with

R2 have serious consequences, especially for high Reynolds number flows where the

transients are so long that the complicated flow pattern one sees may not be due to

a turbulence attractor, but due to the large settling time and wandering of the tra-



96

ω

σ 1(
G

)

10-4 10-3 10-2 10-1 100 101 102 103 10410-4

10-3

10-2

10-1

100

101

102

103

α = 1.3
α = 0.5

Figure 4.40: Maximum singular value of G(jω) versus ω at R = 1000 and α = 1.3, 0.5.

jectory in a large, complicated and twisted state space. This view is consistent with

many experimental observations over the years like, huge transients or intermittency

(puffs, slugs) in pipe flows [34], turbulent spots in boundary layers, etc. Further-

more, this also explains the observed variation of transition Reynolds number from

2,000 to 50,000 in the boundary layer flow. The sensitivity of the flow is increasing

with Reynolds number and as a result it becomes increasingly hard to control all the

disturbances in the experiment as we climb up the Reynolds number. So, when the

external disturbance environment is large in an experiment, the flow becomes turbu-

lent at not so high Reynolds numbers and when the external disturbance environment

is low, the flow becomes turbulent at very high Reynolds number. In all the exper-

iments where transition occurred at R = 50, 000 or above, the experimentalist took

extra care in controlling the external environment. This might also be the possible

explanation for the diversity of flow patterns observed in the experiments, because in

no two experiments is the disturbance environment or initial conditions or boundary

conditions same.
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Another important point that comes to mind is about developing finite horizon

notions of stability. We showed in Chapter 2 how this can be done. As we saw in

2D/3C equations nothing is happening as t → ∞, all the interesting dynamics are

happening in finite time. The vortices and streaks are formed and dissipated in finite

time.

A last point we mention is that there is lot more information in the linear equations

then just eigenvalues and if right tools are used, this information can be extracted

and used to improve our understanding.

This extreme sensitivity of transition to various uncertainty, due to the large

amplification without instability, needs a complete new approach to stability and

control of fluids. Many of the traditional transition prediction criteria are based on

normal modes and did not lead to any good control strategy in real life applications.
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Chapter 5 Complexity Reduction

Of fundamental importance in any numerical computation of fluid dynamics problems

is the optimal, low-dimensional representation of an essentially infinite-dimensional

dynamical system phenomena. The governing equations of fluid mechanics, Navier-

Stokes equations, are a set of coupled partial differential equations. Central to any

numerical simulation is the problem of representing these partial differential equations

by finite set of ordinary differential equations. This process is achieved through some

projection technique. Numerical simulations of this extremely large number of finite-

dimensional equations —of the order of few thousands— are very expensive, both

from computational time and memory. Hence, it is of considerable interest to project

the dynamics of this large number of ordinary differential equations onto a proper

low-dimensional subspace of few ordinary differential equations.

This low-dimensional representation of a physical phenomena is also important

from another point of view. It is of great interest to see what the important modes

in any physical phenomena are. This might lead to the better understanding of the

underlying dynamics and physics involved.

The traditional methods used for reducing the dimensions of fluid mechanics

problems are Karhunen-Loeve decomposition or Principal orthogonal decomposition

(POD) [71, 81] and Singular perturbation technique. POD was introduced by Lumley

[82, 64] into turbulence. The essential idea in POD is the projection of the dynam-

ics of the system onto few basis functions which have the optimal energy in the L2

sense. Singular perturbation is an time scale separation technique, which projects the

dynamics onto a slow manifold by truncating the fast manifold dynamics.

Even though for some applications the most energetic modes are the important

modes, it need not be the case always [18]. The most important thing in any problem

is, what is driving the system (input), and what is it that one is interested in (output).

We will argue that capturing this input-output behavour is very important. In this
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paper we introduce a new complexity reduction technique into fluids, which takes into

account the underlying input-output properties of fluids. This is based on ideas used

to design control systems [88]. This method has considerable advantages like rigorous

error bounds and transparent physics. The physics becomes more clear through the

use of the new concepts like controllability and observability. The error is quantified

in terms of the H∞ norm of the difference of the unreduced and reduced transfer

functions.

5.1 Basic Idea of Complexity Reduction

Given a large system of equations (2.15) with the transfer function G(s). We would

like to approximate the input-output characteristics of this large dynamical system

with another transfer function Gr(s) which has less complexity r << n. The complex-

ity is measured here in terms of the state space dimensions r and n of original (2.15)

and truncated fluid (5.1) equations. The state space representation of the truncated

fluid is given by

ẋr(t) = Arxr(t) + Brw(t) (5.1)

y(t) = Crxr(t)

xr(0) = xr0 ,

where Gr(s) = Cr(sI − A)−1Br is the transfer function of the truncated fluid. Xr =

Cr, W = Cm, Y = Ck, Ar ∈ Cr×r, Br ∈ Cr×m and Cr ∈ Ck×r. The error ‖G − Gr‖
made in the approximation will be measured in terms of the H∞ norm.

The basic idea behind this method is deleting the weakly controllable and weakly

observable modes of the flow, after the controllability and the observability gramians

of the flow are aligned through a similarity transformation. In the next subsections, we

discuss the details of controllability and observability operators and their respective

gramians.
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5.2 Controllability Operator and Gramian

Given input-output representation (2.15) of the unsteady flow phenomena. There are

only certain places the fluid can flow or reach in the state space with a given input

structure. These states are called the reachable states or controllable states. The

states that cannot be reached with a given input structure are called unreachable or

uncontrollable states. Understanding these reachable subspaces is important because,

then, one can truncate the unreachable subspaces as the system can never go there.

Below we give a rigorous characterization of the reachable and un reachable states

of the fluid (2.15). Taking C = 0 in (2.15) and prescribing the initial conditions at

t = −∞, we get

ẋ(t) = Ax(t) + Bw(t) (5.2)

x(−∞) = 0.

With a given input structure w(t), we want to see what all are the possible states

x(0) that can be reached. It follows from (5.2) that, x(0) is given by

x(0) =

∫ 0

−∞
e−AτBw(τ)dτ ≡ Ocw(t), (5.3)

where Oc is called the controllability map

Oc : L2(−∞, 0] → Cn (5.4)

w(t) 7→ x0 (5.5)

and it is a map from past input to state of the flow at t = 0. Next we would like to

address the question: what all are the states x(0), that are accessible with given input,

such that, w(t) ∈ L2(−∞, 0] and ‖w(t)‖L2 ≤ 1. That is, we want to characterize the

set

R0 = (x(0) = Ocw(t) : w(t) ∈ L2(−∞, 0], ‖w(t)‖L2 ≤ 1) . (5.6)
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It can be shown that [88, 127, 18]

R0 =
(
X

1
2
c z : z ∈ Cn and ‖z‖2 ≤ 1

)
, (5.7)

where Xc is called the controllability gramian. It is defined by

Xc =

∫ 0

−∞
e−AτBB∗e−A∗τdτ. (5.8)

It is not hard to see that the relationship between controllability gramian Xc and the

controllability operator is given by

Xc = OcO
∗
c , (5.9)

where O∗
c is the adjoint controllability operator defined as

O∗
c : Cn → L2(−∞, 0] (5.10)

r0 7→ B∗e−A∗tr0. (5.11)

The boundary of R0 is given by

Ec =
(
X

1
2
c z : z ∈ Cn and ‖z‖2 = 1

)
. (5.12)

We call this the controllability ellipsoid as ‖X
1
2
c z‖2 = z∗Xcz and Xc is a positive

definite matrix. The above set is made up of states {x(0)}, that can be reached with

‖w(t)‖L2 = 1.

Let λ1 ≥ λ2.. ≥ λn ≥ 0 be the eigenvalues and χ1 ≥ χ2.. ≥ ....χn be the orthonor-

mal eigenvectors of X
1
2
c . The orthonormal eigenvectors of the controllability ellipsoid

form the principal axis of the ellipsoid and they form an orthonormal basis of the

flow state space. The eigenvalues essentially tell that, the maximum distance we can

move in a certain direction χr is λr with an ‖w(t)‖L2 ≤ 1 input. Hence, λr > λs

means that χr is more easily reachable than χs or χr is more controllable than χs.
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In conclusion, controllability gramian carries the information about the set of the

reachable or controllable states.

5.3 Observability Operator and Gramian

In many cases we are interested only in certain characteristics or output of the flow.

Once the output is chosen, it can be influenced only by certain states of the flow. The

rest of the states which do not have much influence on the output can be deleted with

very small error on output characteristics. In this section we put the above physical

picture in abstract terms. Taking w(t) = 0 in (2.15), we get

ẋ(t) = Ax(t) (5.13)

y(t) = Cx(t)

x(0) = x0.

Let’s say, we have no knowledge of the initial condition of the fluid. We would like

to ask, if it is possible, to observe the output for a finite time interval [0, T ], and

then estimate the initial condition and hence the entire future state trajectory. The

solution of (5.13) is

y(t) = CeAtx0 ≡ Oox0 (5.14)

Now, the initial condition can only be defined without ambiguity if the equation

y = Oox0 has unique solution. This is possible if and only if ker Oo = 0. For a

system with ker Oo 6= 0, there are certain states which are not observable from the

output y. That is, there are certain states which have no influence on what the output

is. Hence we call ker Oo the unobservable subspace. The space orthogonal to this is

called the observable subspace.

As in the previous case, we define the controllability operator and gramian, and

show their relations to observable and unobservable modes. The observability oper-
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ator is defined as map from initial conditions to output

Oo : Cn → L2[0,∞] (5.15)

x0 7→ Ocx0.

The total energy in the output is given by

‖y(t)‖2
L2

= < Ooxo, Ooxo > = < xo, O
∗
oOoxo >, (5.16)

O∗
o : L2[0,∞ →]Cn is the adjoint observability operator and is given by

O∗
ov(t) =

∫ ∞

0

eA∗σC∗v(σ)dσ. (5.17)

Energy equation (5.16) can be written as

‖y(t)‖2
L2

= x∗
0Yox0 (5.18)

Yo = O∗
oOo =

∫ ∞

0

eA∗σC∗CeAσdσ, (5.19)

where, Yo is called the observability gramian. Equation (5.19) says that, if we started

with initial conditions such that ‖x0‖2 ≤ 1, then, the energy of the respective output

‖y(t)‖L2 scales with the eigenvalues of Yo. Hence, the observability gramian tells how

observable a given initial condition or state is. To see this more clearly, we define

observability ellipsoid as the set

Eo =
(
Y

1
2

o x0 : x0 ∈ Cn and ‖x0‖2 = 1
)

(5.20)

This is natural since ‖y(t)‖L2 = x∗
0Yox0. Let µ1 ≥ µ2.. ≥ µn ≥ 0 be the eigenvalues

and φ1 ≥ φ2.. ≥ ....φn be the orthonormal eigenvectors of Y
1
2

o . Now the orthonormal

eigenvectors of the controllability ellipsoid form the principal axis of the ellipsoid and

they form an orthonormal basis of the system state space. The eigenvalues essentially

tell, the maximum energy one can get by starting in a certain initial condition φr such
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that ‖φr‖2 = 1 is µ2
r. Hence, µr > µs means that φr is more easily observable than φs.

In conclusion, observaability gramian carries the information about the observable

states.

5.4 Hankel Operator

In the previous sections, we divided the input-output representation into input rep-

resentation with no output and output representation with no input, and tried to

understand each of their characteristics. In this subsection, we would like to under-

stand the whole system (2.15) from both the controllability and observability point

of view and understand how important a given state is in the input-output character-

istics of the flow. The answer, obviously, lies in the composition of maps from past

input to initial conditions (Oc) and initial conditions to the future output (Oo)

OoOc : L2(−∞, 0] → Cn → L2[0,∞). (5.21)

This new operator is called Hankel opearator H = OoOc. This can be viewed as

a map from the past input to the future output. Hence, Hankel operator carries

information about both the controllability and observability operator and modes.

The singular values of the Hankel operator are called the Hankel singular values. The

relative importance of a state in the input-output behavior of the flow is given by

the corresponding Hankel singular value. Therefore, a steep falling of Hankel singular

values implies that, only few states are important in the input-output behavior of

flow.

We will show later that, for Navier-Stokes equations linearized about Couette flow,

the Hankel singular values drop very steeply.
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5.5 Balanced Truncation

As we have seen before, the eigenvalues of the controllability gramian (X
1
2
c ) tell about

the relative importance of the controllable modes and eigenvalues of the observability

gramian (Y
1
2

o ) tell about the relative importance of the observable modes. In many

situations it is possible that, the most controllable modes need not be the most

observable modes and viceversa Therefore, it is not a good idea to delete the weekly

controllable modes as they might be the most observable modes and viceversa. This

problem can be avoided, if by some means, we can align the controllability and

observability ellipsoids perfectly. Then, the weakly controllable modes are also weakly

observable modes. It’s not at all obvious if such a transformation exists. It has been

shown in [88] that such a transformation (T) exists and is given by

T−1 = X
1
2
c UΣ− 1

2 (5.22)

X̄c = TXcT
∗ = Ȳo = (T ∗)−1YoT

−1 = Σ, (5.23)

where, U and Σ are given by the singular value decomposition X
1
2
c YoX

− 1
2

c = UΣ2U∗.

It is now safe to truncate the weak states in this new co-ordinate system.

The error made in the approximation is given by [50]

‖G(s) − Gr(s)‖H∞ ≤ 2(σt
1 + ... + σt

r), (5.24)

where, σt
p are the distinct Hankel singular values corresponding to the truncated

states.

5.6 Numerical Results: Full and Reduced Model

The results are presented for computations done at R=1000 and α = 1. Figure 5.1

shows the plot of Hankel singular values for N=512, N=256, N=128 and N=64 on

a log-log plot, where N is the number of collocation points in the y direction. The

dimensions of n, m, and k are n=2N-2, m=2N-2 and k=3N-3, respectively. One can
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see from the plot that there is a steep falling of Hankel singular values. Hence, only

few of the states are important in the input-output properties of the fluid. The plot

is also indicating that the right-most singular values are sensitive to truncation error

and they move a lot on increasing the resolution. The Hankel singular values on the

left are very stable and accurate. Figure 5.2 shows the variation of energy, E(t), with

respect to time for N=256 and N=128. The initial conditions for these simulations

are chosen to be zero and the input is chosen to be u(t) = u0δ(t), where δ is the

Dirac delta function. It can be seen from the plot that the energy has converged

at this resolution. In the next two plots are plotted the energy verses time of full

and truncated models. Figure 5.3 shows the plot of energy verses time of full model

(N=256) and truncated models with 2.5% and 1.7% modes retained. The agreement

is pretty good. In Figure 5.4 are plotted the energy verses time of full model (N=256)

and truncated model with 0.8% and 0.4% modes retained. The plot indicates that

the agreement is still good between the full model and the truncated model with 0.8%

modes retained. There is only a slight discrepancy in the plots near the peak of the

energy. The truncated model with 0.4% modes retained, though captures the peak

approximately, is performing badly at most of the other times.

5.7 Summary

In this chapter, we introduced a novel technique for getting simple models of un-

steady fluid phenomena. The main idea behind this method is deleting the weakly

controllable and weakly observable states of the flow after the controllability and the

observability gramians of the fluid are aligned through a similarity transformation.

Computations done on Couette flow using spectral methods indicate that the method

is performing very well, even for partial differential equations.
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Figure 5.1: Hankel singular values at R = 1000 and α = 1, and different resolutions.
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Figure 5.2: Energy growth with time at R = 1000 and α = 1.
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Figure 5.3: Energy growth of full and truncated model (Ret: 2.5% and Ret: 1.7%).
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Figure 5.4: Energy growth of full and truncated model (Ret: 0.8% and Ret: 0.4%).
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Chapter 6 Computations

6.1 The Linearized Equations

Computations are done on the 2D/3C equations linearized about Couette flow Ū =

1+y
2

, by using a finite-dimensional approximation of infinite-dimensional equations

using spectral methods [26]. The infinite-dimensional operator A is given by the

following set of equations written in the form ẋ = Ax + Bw with w = [f1 f2 f3]
t

∂ψ

∂t
=

1

R
∆−1∆2ψ − ∆−1∂f2

∂z
+ ∆−1∂f3

∂y
(6.1)

∂u

∂t
= −∂Ū

∂y

∂ψ

∂z
+

1

R
∆u + f1. (6.2)

Here f1,−f2 and −f3 are the body forcings in the Navier-Stokes equations. The above

linear 2D/3C equations are subject to the no slip boundary conditions on the solid

walls

∂ψ

∂y
(±1, z, t) =

∂ψ

∂z
(±1, z, t) = 0 (6.3)

u(±1, z, t) = 0.

C is chosen such that the Eucledian 2 norm of y is energy after discretization up to a

scaling factor. The infinite-dimensional analogue of the discrete C operator is given

by 
u

v

w

 =


0 I

∂
∂z

0

− ∂
∂y

0


 Ψ

u

 ∼ y = Cx. (6.4)
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6.2 Spatial Discretization

In this section we briefly discuss the discretization of the previous equations using

Chebyshev collocation in the wall-normal direction with Chebyshev-Gauss-Lobatto

points and Lagrange derivatives, and Fourier modes in the spanwise direction.

Taking the Fourier transforms of equations (6.1, 6.2) in the z direction we get

∂ψ̂

∂t
=

1

R
(D2 − α2)−1(D2 − α2)2ψ̂ − (D2 − α2)−1iαf̂2 + (D2 − α2)−1Df̂3 (6.5)

∂û

∂t
= −iα

2
ψ̂ +

1

R
(D2 − α2)u + f̂1, (6.6)

where D = ∂/∂y. The boundary conditions become

ψ̂(±1, t) = Dψ(±1, t) = 0 (6.7)

û(±1, t) = 0.

In collocation spectral method one satisfies the equations exactly at a discrete set

of grid points

yj = cos
πj

N
, j = 0, 1, ...., N. (6.8)

Since y is the non homogeneous direction, we cluster the grid points near the boundary

to increase accuracy and avoid Runge phenomenon. The grid points we used here

are Chebyshev-Gauss-Lobatto points. Said in a different way, the test functions are

given by the delta functions

φj(y) = δ(y − yj) (6.9)

yj = cos
πj

N
, j = 0, 1, ...., N. (6.10)

The interpolating polynomials are chosen to be Lagrange polynomials ηk(y) of degree
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N. These are given by

ηk(y) = ΠN
i=1,i6=k

y − yi

yk − yi

. (6.11)

ψ̂ and û can be expanded in the form 1

ψ̂N(y, t) =
N∑

k=0

ψ̂(yk, t)ηk(y) (6.12)

ûN(y, t) =
N∑

k=0

û(yk, t)ηk(y).

The differential with respect to y, can now be calculated by differentiating (6.12) with

respect to y. This gives

DN ψ̂N(yi, t) =
N∑

j=0

(DN)ijψ̂(yj, t), i = 0, 1...N (6.13)

DN ûN(yi, t) =
N∑

j=0

(DN)ijû(yj, t), i = 0, 1...N.

The discrete D operator, denoted by DN and is given by [55]

(DN)ij =
ci(−1)i+j

cj(xi − xj)
, i 6= j, i, j = 0, 1, .., N (6.14)

(DN)jj =
−yj

2(1 − x2
j)

, j = 1, .., N − 1 (6.15)

(DN)00 =
2N2 + 1

6
(6.16)

(DN)NN = −2N2 + 1

6
(6.17)

with

c0 = cN = 2 (6.18)

ci = 1, i = 1, .., N − 1. (6.19)

1Let gN (x) be a polynomial of degree ≤ N with gN (±1) = 0, gN (xj) = gj , j = 1, ..., N − 1.
Then gN (x) is given by gN (x) =

∑N
j=0 gj ηj(x)
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To simplify the notation denote

ψ̂(yk, t) = ψ̂k(t), k = 0, 1, ..N (6.20)

û(yk, t) = ûk(t), k = 0, 1, ..N. (6.21)

In order to discretize equation (6.6) we need a discrete approximation of the

operator D2. Following the same procedure as above, we see that the spectral ap-

proximation of D2 is given by (DN)2. Equation (6.6) after discretization becomes

˙̂uk(t) = −iα

2
ψ̂k(t) +

1

R
( (DN)2 − α2IN+1)ik ûi(t) + f̂1p (6.22)

k = 0, 1, ..., N. (6.23)

Now we need to carefully satisfy the discrete boundary conditions

ûN(−1) = û0 = ûN(1) = ûN = 0 (6.24)

ψ̂N(−1) = ψ̂0 = ψ̂N(1) = ψ̂N = 0 (6.25)

Dψ̂N(−1) = Dψ̂N(1) = 0. (6.26)

(6.24, 6.25) can be satisfied by imposing û0 = ûN = ψ̂0 = ψ̂N = 0 in the above

equation. Hence, equation (6.28) can be simplified to

˙̂uk(t) = −iα

2
ψ̂k(t) +

1

R
( (D̄N)2 − α2IN−1)ik ûi(t) + f̂1p (6.27)

k = 1, ..., N − 1, (6.28)

where D̄N is the matrix DN with the first row and column, and last row and column

deleted. IN is an N × N identity matrix. There are N − 1 unknowns ûk(t), k =

1, ...N−1 and N−1 equations, and these can be solved coupled with the ψ̂ equations.
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In matrix form the û equation can be written as

d¯̂u

dt
= A2

¯̂
ψ + A3

¯̂u +
¯̂
f1 (6.29)

A2 = −iα

2
IN−1 (6.30)

A3 =
1

R
( (D̄N)2 − α2IN−1), (6.31)

where

¯̂u [ û1...ûN−1 ]t (6.32)

¯̂
ψ = [ ψ̂1....ψ̂N−1 ]t (6.33)

¯̂
f1 = [ f̂11...f̂1N−1 ]t. (6.34)

The ψ̂ equation with boundary conditions (6.25, 6.26) needs special attention.

Because satisfying boundary condition is slightly complicated, as the interpolants

don’t satisfy the boundary conditions. We will suitably modify the interpolants, so

as to satisfy all the boundary conditions (6.25, 6.26) as in [66], [65].

If fN+2(x) be a polynomial of degree ≤ N + 2 with fN+2(±1) = (fN+2)′(±1) =

0, fN+2(xj) = fj, j = 1, ..., N − 1. Then it can be shown that fN+2(x) is given by

fN+2(x) =
N∑

j=0

fj
1 − x2

1 − x2
j

ηj(x), (6.35)

where ηj(x) are Lagrange polynomials of degree N .

It has been noted in [66], [86] that spectral tau discretization gave spurious eigen-

values for many problems. To avoid this, we use the pseudo-spectral approximation

for (6.5). Here we discretize the second order operator (D2) using a polynomial of

degree N with the boundary conditions g(±1) = 0 and fourth order operator (D4)

using a polynomial of degree N + 2 with boundary conditions f(±1) = f ′(±1) = 0.

It can be easily seen from the previous discussion that fN+2(x) with the boundary
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conditions fN+2(±1) = (fN+2)′(±1) = 0 can be written as

fN+2(x) =
1 − x2

1 − x2
j

fN(x) (6.36)

fN(±1) = 0. (6.37)

Hence, the fourth order differential operator can be obtained by differentiating (6.36)

four times to give

D4fN+2(x) =
1

1 − x2
j

((1 − x2)fN
xxxx(x) − 8xfN

xxx(x) − 12fN
xx(x)). (6.38)

Evaluating this at the grid points xj, we get

D4fN+2(xj) =
1

1 − x2
j

((1 − x2
j)f

N
xxxx(xj) − 8xjf

N
xx(xj) − 12fN

xx(xj)). (6.39)

Now fN
xx(xj) and fN

xxxx(xj) can be discretized as before:

fN
xx(xj) = (DN)2fN(xj) =

N∑
j=0

(DN)2
ijf

N(xj), i = 0, 1...N (6.40)

fN
xxx(xj) = (DN)4fN(xj) =

N∑
j=0

(DN)3
ijf

N(xj), i = 0, 1...N (6.41)

fN
xxxx(xj) = (DN)4fN(xj) =

N∑
j=0

(DN)4
ijf

N(xj), i = 0, 1...N. (6.42)

The boundary conditions (6.37) are enforced by putting the respective quantities to

zero, i.e., removing the first and last row, and first and last column. Hence we have

D4fN+2(xj) = (T (1 − x2
j)(D̄

N)4 − T (8xj)(D̄
N)3 − 12(D̄N)2)T (

1

1 − x2
j

)fN
j

T (xj) = diag(xj). (6.43)
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Using the above facts equation (6.5) can be discretized to give

˙̂
ψk(t) = ((D̄N)2 − α2IN−1)

−1 × 1

R
[

(T (1 − y2
j )(D̄

N)4 − T (8yj)(D̄
N)3 − 12(D̄N)2)T (

1

1 − y2
j

)+

(−2α2 (D̄N)2 + α4IN−1) ] ψ̂j(t) + ((D̄N)2 − α2IN−1)
−1(−iαIN−1

¯̂
f2 + D̄N ¯̂

f3) (6.44)

k = 1, ..., N − 1. (6.45)

In matrix form this can be written as

d
¯̂
ψ

dt
= A1

¯̂
ψ + B1

¯̂
f2 + B2

¯̂
f3 (6.46)

A1 = ((D̄N)2 − α2IN−1)
−1 × 1

R
[

(T (1 − y2
j )(D̄

N)4 − T (8yj)(D̄
N)3 − 12(D̄N)2)T (

1

1 − y2
j

) + (−2α2 (D̄N)2 + α4IN−1) ]

¯̂
ψ = [ ψ̂1....ψ̂N−1 ]t (6.47)

B1 = ((D̄N)2 − α2IN−1)
−1(−iαIN−1) (6.48)

B2 = ((D̄N)2 − α2IN−1)
−1D̄N . (6.49)

Equations (6.46, 6.29) can be written together as

ẋ = Ax + Bw (6.50)

A =

 A1 0

A2 A3

 , B =

 0 B1 B2

IN−1 0 0

 (6.51)

x =

 ¯̂
ψ

¯̂u

 , w =


¯̂
f1

¯̂
f2

¯̂
f3

 . (6.52)

Next we consider the spectral approximation of kinetic energy. The normalized
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kinetic energy per mode is defined as

E(t, α) =
1

2V

∫ 1

−1

dy

∫ 2π
α

0

(u2 + v2 + w2) dz (6.53)

V =
8π

α
. (6.54)

Using the following properties

v =
∂ψ

∂z
, w = −∂ψ

∂y
(6.55)

u =
ûeiαz + û∗e−iαz

2
(6.56)

v =
v̂eiαz + v̂∗e−iαz

2
(6.57)

w =
ŵeiαz + ŵ∗e−iαz

2
(6.58)

the above equation after some algebra can be written as

E(t, α) =
1

8

∫ 1

−1

[ûû∗ + α2ψ̂ψ̂∗ +
∂ψ̂

∂y

∂ψ̂∗

∂y
] dy. (6.59)

Here ∗ is conjugation. It can be shown that the following equality is exact for

Chebechev collocation points

∫ 1

−1

f(y)∗g(y)w(y)dy =
N∑

k=0

fkgkw
k (6.60)

f(yk) ≡ fk, g(yk) ≡ gk, w(yk) ≡ wk (6.61)

w(y) =
1√

1 − y2
(6.62)

wk =
π

N
, k = 1, ..., N − 1 (6.63)

w0 = wN =
π

2N
. (6.64)



117

Now using (6.60), kinetic energy (6.59) can be written as

E(t, α) =
1

8

∫ 1

−1

[ûû∗ + α2ψ̂ψ̂∗ +
∂ψ̂

∂y

∂ψ̂∗

∂y
]
w(y)

w(y)
dy = (6.65)

1

8

N∑
k=0

[
û∗

kûk + α2ψ̂∗
kψ̂k + (DN ψ̂)∗k(D

N ψ̂)k

wk

]wk. (6.66)

Using the no slip boundary conditions we have

E(t, α) =
1π

8N

N−1∑
k=1

[
û∗

kûk + α2ψ̂∗
kψ̂k + (DN ψ̂)∗k(D

N ψ̂)k

wk

]. (6.67)

The discrete operator C is chosen such that the Eucledian 2 norm of y is E(t, α) up

to a scaling factor.

6.3 H2, H∞, Hankel and Other Norm Calculation

Many of the induced norms discussed in Chapter 4 boil down to computing the H2

and H∞ norms of the transfer function G(s). The H2 norm is computed using its time

domain characterization by solving operator Lyapunov equations for controllability

and observability gramians. The following theorem outlines the method.

Theorem 6.1 Let the system (2.15) be asymptotically stable. Then the H2 norm of

G(s) is

‖G‖H2 =
√

Trace(CXcC∗) =
√

Trace(B∗YoB). (6.68)

Xc is the controllability gramian and Yo is the observability gramian, and they are

solutions of the following Lyapunov equations

AXc + XcA
∗ + BB∗ = 0 (6.69)

YoA + A∗Yo + C∗C = 0. (6.70)
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Proof: Plancherels inequality gives

‖G‖2
H2

=

∫ ∞

−∞
Trace [G∗(jω)G(jω)] dω (6.71)

=

∫ ∞

−∞
Trace [g∗(t)g(t)] dt. (6.72)

Using g(t) = CeAtBH(t) in the above equation we get

‖G‖2
H2

=

∫ ∞

0

Trace
[
B∗eA∗tC∗CeAtB

]
dt (6.73)

= Trace

[
B∗

(∫ ∞

0

eA∗tC∗CeAtdt

)
B

]
(6.74)

= Trace(B∗YoB). (6.75)

One can similarly prove the ‖G‖H2 = Trace(CXcC
∗) by using the fact that

Trace [g∗(t)g(t)] = Trace [g(t)g∗(t)] . (6.76)

One can cast the calculation of H2 norm as an LMI too.

Next we discuss the computation of H∞ norm. Solving H∞ norm exactly is very

hard and no algorithm exist at present. Therefore, we compute this using an iteration

procedure (by giving some error tolerance) using the following theorem and checked

using SVD of transfer function G.

Theorem 6.2 Let A be Hurwitz and γ > 0. Then the following statements are

equivalent.

1. ‖G‖H∞ < γ (6.77)

2. There exists a symmetric matrix P > 0 such that
PA + A∗P PB C∗

B∗P −γI 0

C 0 −γI

 < 0 (6.78)
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3. Let R ≡ γ2I > 0. Then, there exist a P > 0 such that

PA + A∗P + (PB)R−1(PB)∗ + C∗C < 0 (6.79)

4. Let R ≡ γ2I > 0 and H defined as

H ≡
 A BR−1B∗

−C∗C −A

 (6.80)

has no eigenvalues on the imaginary axis.

Proof: The results follow using the Schur complement formula and constructing the

Lyapunov functions. Full details are given in [45].

Hankel norm is calculated using Theorem 4.13.

6.4 Numerical Methods

SVD and EVD are implemented using LAPACK routines. Controllability and ob-

servability gramians are computed by solving the Lyapunov equations and not using

their definite integral characterization. The Lyapunov equation is solved using the

complex Schur decomposition of A into triangular matrix and then converting back.

All the computations are done using single processor (Pentium 3) Dell workstation

running on Red Hat Linux OS.

6.5 Connections with Semidefinite Programming

Many of the notions used in this thesis have interesting connections with semidefinite

programming and convex optimization problems. In this section we will briefly explore

them. The advantage of this connection is that any semidefinite problem can be solved

in polynomial-time and very efficiently. Semidefinite programming also unifies many

optimization problems like linear programming, quadratic programming, etc. One
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can use ellipsoid algorithm or interior-point methods [92] to solve these semidefinite

programming problems.

A semidefinite program is an optimization problem with an LMI constraint on the

solution space. This constraint is nonlinear and non smooth, but convex. Semidefinite

program is defined as following. Consider

minimize : c(x) (6.81)

subject to : F (x) ≤ Q, x ∈ X, (6.82)

where c(x) is a linear functional on the vector space X. One can easily check that

this is an convex optimization problem as the feasible set and objective function are

both convex.

Finally we show that how the H∞ norm calculation can be casted as an SDP

problem. From Theorem 6.2 we can write that the H∞ norm is the solution γ of

minimize : γ (6.83)

subject to :


PA + A∗P PB C∗

B∗P −γI 0

C 0 −γI

 < 0, P > 0. (6.84)

For more details we refer the reader to [20].
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Chapter 7 Forced Boundary Layer

Experiments

7.1 Introduction

Very little is understood even today about the comprehensive mechanisms leading

to turbulence in shear flows. Past research effort in understanding transition to

turbulence has identified T-S waves [110]; streamwise structures [75, 76]; turbulent

spots [49], [42], [25]; Λ structures [107]; oblique waves [100] and relaminarization

[91] in high Reynolds number flows. Many competing factors like plate roughness,

acoustics, plate and tunnel vibrations, compressibility, heat transfer to wall, non-

Newtonian effects, thermodynamic fluctuations, leading edge and plate curvature,

free-stream turbulence, pressure gradient and body force like Coriolis force, play a

key role in the laminar-turbulent transition. There are many books on the subject

[9], [115], [63], [35], etc. and as a result, detailed historical review of all aspects of

transiting and turbulent flows will not be given here. In this investigation we do a

detailed experimental study of the effect of free-stream turbulence on the laminar-

turbulent transition on a flat plate boundary layer. The scenario of boundary layer

forced by free-stream turbulence occurs in many practical applications like: air flow

over aircraft wings under unsteady free-stream conditions, flow in gas turbines, wind

turbines, etc. These problems are closely related to the issue of dwindling energy (oil

and fossil fuels) reserves and increasing pollution in the world. The only way out of

these inevitable problem is using renewable energy sources (wind turbines, etc.) or

improving dramatically the efficiency of energy generation and utilizing systems (gas

turbines) based on fossil fuels. In either of these scenarios understanding turbulence

is central. In the flow over aeroplane wings and wind turbines, the unsteadiness in

the free-stream can be due to atmospheric turbulence. This unsteadiness in the free-
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stream can dramatically change the transition characteristics of the boundary layer

leading to an increased skin friction co-efficient, aeroelastic flutter, etc. Increased skin

friction, in turn, leads to increase in drag and hence more energy spending. In the

gas turbines, the unsteadiness in the free-stream can be due to the wakes generated

by the rotor blades. This time, transition not only alters the skin-friction co-efficient,

but also the heat transfer co-efficient. The performance of the engine is strongly

dependent on the skin-friction and heat transfer co-efficients. In the above problems

there is a significant pressure gradient in the external flow due to the curvature of the

wing and turbine blades, this in turn can have significant effect on the flow. Further,

in the turbomachinery case there is severe anisotropicity in the external turbulence

due to the periodic nature of the flow in the wake of the rotor blade. It is hoped that

an understanding gained in laminar-turbulent transition in the flat plate problem

will lead to improved designs of energy generation and utilizing systems, and a better

understanding of turbulence in general.

The three-dimensional nature of boundary layer instabilities is studied using vibra-

tion ribbon technique and hot-wire method in [75]. They concluded that “It has been

definitely established that longitudinal vortices are associated with nonlinear three-

dimensional wave motions.” Suder et al. [112] investigated bypass transition mecha-

nisms in the presence of free-stream disturbances in the range of Tu ≡ urms

U∞ = 0.3–5%

and Rθ = 310–2133. Some of their conclusions are: the peak urms

U∞ is 3–3.5% in the

boundary layer and on reaching this critical value there is turbulent bursting inde-

pendent of the transition mechanism; the velocity fluctuations for T-S waves occurred

at low frequencies (0–500 Hz) and the bypass transition occurred at high frequencies

(0–10 kHz); the streamwise convective velocity of the bursting near the wall is 0.7 Ue,

where Ue is the velocity at the edge of the boundary layer; the frequency distribution

of the free-stream disturbances is important and not the magnitude of the free-stream

disturbances. It is not clear as to what the last conclusion means, as one would expect

a critical amplitude above which bursting occurs. Conventionally and conditionally

sampled measurements are done by [61], in a slightly heated boundary layer near the

leading edge, to distinguish the interface between the vortical motions generated by
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sheared boundary layer and turbulence grid. Their results indicated that the mean

and the standard deviation of the intermittency profile is strongly effected, and the

free-stream length scale dictate the mean position of transition initiation point. They

also observed that the dissipation length scale is unaffected by free-stream turbu-

lence. [80] hot-wire measurements in boundary layer with wake-induced unsteadiness

found that the passing wakes in the free-stream caused the boundary layer to be-

come turbulent immediately under the free-stream wakes and remain laminar when

the wakes were not present. [72] studying the pre-transitional boundary layer in the

presence of free-stream turbulence (Tu = 0.07% at frequencies above 0.3 Hz) ob-

served intrinsically three-dimensional motion in the boundary layer and appearance

of turbulence spots. The spanwise correlation co-efficient, with no time delay, had

a minimum at approximately boundary layer thickness. Studies on the propagation

speed of the structures were not successful. [73] studies concluded that packets of T-S

waves are induced by weak free-stream turbulence. These packets also gain strength

and increase in peak amplitude as they propagate, and they evolve into turbulence

spots. [85] provides some evidence for transient growth in pipe flow experiments.

[113] made hot-wire measurements and dye visualization studies of streamwise vor-

tices near the wall, generated by Gortler instability and [7] made measurements in

boundary layer with artificial streamwise vortices generated by roughness elements

placed on the plate. [12] studied boundary layer transition in the presence of strong

pressure gradients and free-stream turbulence and found turbulent spots with the

following characteristics: low frequency near wall fluctuations - approximately 1/5 of

that of the most amplified T-S disturbances; maximum u occurred in the region of

0.3–0.4 wall-normal distance normalized by boundary layer thickness. The study of

[47] in the presence of high levels of free-stream turbulence (Tu = 0.3–25%) indicates

that there is an increase in the skin friction co-efficient, boundary layer thickness and

momentum thickness, as turbulence level is increased. The penetration distance of

free-stream disturbance is found to be a function of only Reynolds number and not

of turbulence level. Also, the longitudinal scales of turbulence decreased as the wall

is approached with the spectral content in the low frequencies. Some other results
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can be found in [122], [106], [100], [70], [62] and [77]. Empirical correlations between

the free-stream turbulence and transition are presented in [120], [60], [1] and [117].

A computational study of non-parallel stability of flat plate boundary layer has been

done in [53].PIV study of the outer region of a turbulent boundary layer has been

done in [3].

Free-stream turbulence is generated in our experiment by placing square grids in

the tunnel. Particular attention has been paid to the quality of the turbulence char-

acteristics (isotropicity, homogeneity, etc.). Here we review some of the past work

done on turbulence generation using grids. There has been intense work on experi-

mental grid turbulence in the 40s to 60s because of the theoretical developments in

homogeneous and isotropic from Batchelor [9] and his students at Cambridge Univer-

sity. There are many interactions that are occurring in this simple looking problem.

On one side, the turbulence generated by the tunnel motor interacts with the grids.

On the other side, there is turbulence generated by the tunnel walls, and the vortex

shedding and small jets emanating from the grids. These effects combine in turn

with the shear-generated turbulence —due to the decaying spatial and time vary-

ing mean flow— and generate a myriad of complicated phenomena. Grid generated

turbulence has been first investigated by [111] in 1934. This is followed by [37], [6],

[39], [57], [79], [21] and many other papers, wherein, the turbulence structure gener-

ated by different grids are studied. [57] investigating turbulence generated by biplane

grid found that the initially anisotropic turbulence becomes almost isotropic after

20 mesh widths b. [79] claims that turbulence is isotropic and homogeneous only

after 40b. The urms decay in the isotropic region is found to be a power law of the

form U2

u2
rms

= a(x−xo

b
)n, where U is the mean streamwise velocity, urms is the RMS

velocity of the streamwise velocity perturbation, x is the streamwise location from

the grid and xo is the virtual origin. There is some disagreement between the values

of the constants between various experiments, as can be expected, due to the huge

parameter space involved in quantifying all the characteristics of the grid and flow.

[57] found the constants are n = 1, a = 25.2 and xo = 6b. While, [37] obtained

n = 1.32 and xo = 0, [79] obtained xo = 10b and [61] obtained n = 1.25. [6], [99]
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gives a power law of the form Tu ≡ urms

U
= (urmso

U
c
xo

)−
5
7 (x

c
)−

5
7 , where c is the bar

width and the subscript “o” denotes some reference location. This law is supposed to

be valid for large Reynolds number, based on urms and the longitudinal integral scale

of turbulence Lx. They further found that the best fit is at a prefactor of 1.12–1.13.

The Taylor micro-scale λ and the integral scale Λ, are found to decay according to

λx

c
= ( 4.12

R0.5
c

)(x
c
)0.5, λy

c
= ( 2.91

R0.5
c

)(x
c
)0.5, Λx

c
= 0.2(x

c
)0.5 and Λy

c
= 0.1(x

c
)0.5. Note that,

for isotropic and homogeneous flow, λx = 1.41λx and Λx = 2Λy. [6] found some

instability in the flow downstream of low porosity (χ, defined as the ratio of open to

total area of the screens) screens. They argue that this is due to the local variations

in wire diameter and width, leading to velocity and pressure fluctuations, that make

the flow jets coming out of different open areas coalesce or diverge. [21] recommends

using screens of porosities more than 0.57 to avoid this instability. We followed this

suggestion in selecting the grids for our experiment.

7.2 Motivations

The above studies, though, shed some light on the physics of transition under grid

generated turbulence. The studies are very inconclusive and a unifying picture con-

necting all the observations is still lacking. The main problem associated with the

above experimental studies is the lack of good measurement technique and hence

leading to poor quality of data. Most of the measurements have been done with

point and intrusive measurement techniques like hot-wires anemometer, hot-films,

Pitot tubes, etc. It is extremely hard, or humanly impossible, to interpret three-

dimensional dynamic events with point and static measurements. One-dimensional

spectra and correlations derived from point measurements are very hard to interpret

and in many cases may even be misleading. Instantaneous data and correlations from

global techniques are more useful and may reveal new information. Furthermore,

there has been little effort to connect the state of the turbulence in the fluid and

the external disturbance conditions. For example, experimental parameters like the

grid dimensions and shape, turbulence level and errors in measurement techniques
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are poorly quantified. Part of the reasons for these approximations and deficiencies

in the experimental measurements are the very difficult experimental conditions like:

limited measurement access, huge parameter space, extremely time and energy con-

suming setups, and the cost involved. Since the characteristics of turbulence depend

on many factors, the conclusions drawn from these investigations should be dealt

with care, till we have a global measurement technique and quantify the external

disturbance parameter space completely.

7.3 Objectives

The objectives of the experiments are twofold. The primary objective is to get accu-

rate and quantitative global experimental data to get a good fundamental understand-

ing of the mechanisms of transition to turbulence on a flat plate in high disturbance

environment. The secondary objective of the experiment is to compare the data with

the predictions of generalized hydrodynamic stability theory, and also generate exper-

imental data base for comparisons with direct numerical simulation and large eddy

simulations. Furthermore, we hope that the present experimental study will critically

evaluate existing theoretical models of transition and provide a good model.

To avoid the problems discussed previously, our investigation uses state of the art,

non-intrusive and global measurement techniques like digital particle image velocime-

try, shear stress sensors and laser Doppler velocimetry. To the best of the author’s

knowledge this is the first global DPIV experimental study of forced boundary layer

laminar-turbulent transition.

In this study we pay particular attention to streamwise vortices origin, convection

velocity and destruction; streamwise vortices scaling with distance in the streamwise

and wall-normal direction; Reynolds number and free-stream turbulence dependence;

transient energy growth due to the non-normality of the underlying operator. Contri-

bution of large scales to the flow dynamics will be quantified using DPIV. We would

also clearly quantify the strength and character of free-stream disturbances in ana-

lyzing the onset of transition to turbulence using laser Doppler velocimetry (LDV).
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The effect of free-stream turbulence on the wall shear stress will also be studied using

MEMS based flush-mounted shear stress sensors (SSSs).
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Chapter 8 Experimental Systems

In this chapter the experimental facilities, data acquisition systems and the signal

processing involved in the experiment are discussed briefly. Experimental results and

discussion are presented in the next chapter.

8.1 Test Facility

8.1.1 Free Surface Water Tunnel

Free surface water tunnel in the Graduate Aeronautical Laboratories of the California

Institute of Technology has been used to to carry out the experiments. A schematic

of the tunnel is shown in figure 8.1.1. The test section of this tunnel is 2 m long, 1

m wide and 0.56 m deep. This is a recirculating shear layer facility with two streams

that can be controlled independently. The test section is separated into two halves by

placing a long dividing plate. One half of the test section is used for this experiment.

Each stream is independently driven by a 20 hp end suction centrifugal type pump.

Variable-speed controllers were used to set the flow rate between 2 and 20 m3/min.

With the test section filled up to 56 cm by deionized water, the free-stream velocity

can be varied (with no spurious oscillations) from 0.1–0.55 m/s. The test section

is made of Lucite, with optical access from the bottom, top and sides of the test

section. We have avoided the refraction problems, due to disturbance waves on the

free surface, by using the bottom side of the tunnel for optical access. At the end of

the test section, two sets of vanes deflect the flow on each side of the tunnel through

a set of honey-combs in the downstream settling chamber. The flow then enters the

respective pump. The output of the pump is fed into a 280 half-angle diffuser. In

order to avoid separation in the diffusers, a perforated plate is installed in each diffuser

to enhance mixing and get a smooth attached flow. Each stream then enters into a
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straight settling chamber, which contains more flow managing devices, including a

perforated plate, a honey comb and three turbulence reducing screens. The honey

combs, screens and walls of the tunnel are routinely filled with particles and they have

been thoroughly cleaned before the start of experiments. The streams after passing

through a 6 : 1 contraction enter the test section. The tunnel is equipped with a

filtering and cleaning systems. The particle filters have been replaced with new ones.

Figure 8.1: Water tunnel schematic

8.1.2 Flat Plate

The boundary layer is generated by placing a flat plate horizontally in the test section.

The bottom section of the plate has been used as the working side. Lot of time and

effort has been spent in designing the plate. The plate is made up of one single piece

of long Plexiglass and a trailing edge flap, instead of many small sections, to avoid

smoothness problems at the joints. But now, machining the plate became difficult.

The main section plate of the plate is 2.5 cm in thickness, 45 cm in width and 111

cm in length. The trailing edge flap is 10 cm in length, 45 cm in width and 2.5 cm

in thickness at the leading edge of the flap and smoothly tends to zero towards the

trailing edge of the flap. The flap is mounted to the plate using a swing bracket



130

and can be rotated freely. The flap is fixed at the required position using a lock

mechanism. A schematic of the plate is shown in figure 8.2. Trailing edge flap is used

to control the plates forward stagnation point. Adverse pressure gradient is caused if

the stagnation point is on the top side of plates leading edge. In this investigation,

the flap is adjusted, till we obtain a nice mean velocity profile that matches with the

Blasius zero pressure gradient velocity profile. An optimum configuration is found to

be the one, where the flap is almost horizontal. The leading edge of the plate is a

1 : 8 ellipse, with a 10 cm half major axis in the streamwise direction. Based on [109]

and [36] this is a reasonably good design, and there is no separation at the junction

of the elliptical region and the flat region of the plate, where the local maximum of

the Falkner-Skan pressure parameter occurs. Computations done using panel method

and the Thwaites method by [109], with this leading edge, found that the boundary

layer thickness is approximately 10% more than the Blasius exact solution. The plate

is fitted with a LDV at 60 cm from the leading edge and two shear stress sensors at

85 cm and 35 cm from the leading edge respectively. Both the LDV and the SSSs

are flush mounted to the plates working section. The leading edge of the plate is

located 65 cm from the entrance of the test section and plates bottom is located 25

cm from the tunnels bottom wall. 4 bars attach the plate to the railing on the top

of the tunnel. Leveler (LS Starrett Company) with an accuracy of 0.0005 in / 1 ft

and free surface of the tunnel are used to align the plate horizontally. The domain of

observation of LDV, SSS and DPIV is approximately half way from the side walls, so

as to avoid the boundary layers from the bottom and the side walls of the tunnel. A

schematic showing the co-ordinate axis, gravity vector and sensor location is shown

in figure 8.3

8.1.3 Grids

The free-stream turbulence is generated by a combination of grids placed upstream of

the test section. Apart from the screens, perforated plate and honey-combs installed

in the flow conditioning section of the tunnel, two other square grids (χ=84.6%,
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Figure 8.2: Schematic of flat plate

b=1 in, c=0.08 in; χ=73.6%, b= 0.33 in, c=0.047 in) have been constructed to be

installed in the contraction of the tunnel. The grids are made from 304 stainless

steel cylindrical wires. The last grid is placed at least 30 mesh widths away from the

leading edge of the flat plate, so that the free-stream turbulence is homogeneous and

isotropic before it reaches the plate. Using a combination of these grids and the free-

stream velocity, turbulence levels, Tu, up to 9% can be generated in the free-stream

at the LDV location. In this work, the free-stream turbulence is always measured

at the LDV location, i.e., 60 cm from the leading edge of the plate. Therefore, the

spatial location of free-stream turbulence measurement station will be suppressed,

unless, otherwise stated. We found no correlation between the scales of the grid and

the scales in the boundary layer. This indicates that the structures are generic to the

boudnary layer and not imposed externally.
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Figure 8.3: Coordinate axis and gravity vector

8.1.4 Calibration: Free-stream Velocity, Turbulence Level

and Wall Location

The water tunnel speed controllers settings were calibrated by Dr. Maheo, who used

the tunnel before the present investigator. Two-component backscattering LDV (Dan-

tec 2D FiberFlow) measurements indicated that the free-stream velocity, U, obeys ap-

proximately linear relation with the frequency, f, of the speed controller. The probe

volume for these measurements is 25.4 cm from the tunnels middle plate, 28 cm from

the top free surface and 30 cm from the end of contraction. A linear fit to the data

points gave

U1 = −0.45523 + 1.4115 f1

U2 = −0.47429 + 1.4641 f2,

where the subscript denotes appropriate side of the tunnel. The mean flow velocity

non-uniformity is found to be less than 3% across the test section.

The free-stream turbulence is measured using hot-films (TSI 1210-20 Pt) at 25.4
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cm from the tunnels middle plate, 28 cm from the top free surface and 30 cm from the

end of contraction. The output of hot-film is passed through constant temperature

anemometer (TSI IFA 100) and then band filtered to frequencies between 1 Hz to

200 Hz to eliminate low frequency probe vibrations and high frequency noise. An

analog to digital (A/D) card (Mac Adios II) then digitized the filtered signal. Post

processing software is then used to get the velocity statistics.

With the screens, honeycomb and perforated plate cleaned thoroughly, the free-

stream turbulence Tu % is less than 0.1 % in the velocity range 0.1–0.6 m/s. It is

noticed that free-stream turbulence level is a strong function of the cleanliness of the

honey-combs and the screens.

The wall reference location is calibrated using the LDV laser beams separation

on plate and double checked with the value obtained from extrapolating the velocity

near the wall. Figure (8.4) shows the separation of the laser beams v.s. distance

away from the plate. In the former case, LDV vertical location is adjusted till the

crossing point of the beams coincide with the bottom wall of the flat plate. Figure 8.4

indicates that the error involved in this calibration is of the order 5 µm. To make

sure that this is right, the wall location is also calculated by extrapolating the mean

streamwise velocity data near the wall to no slip velocity. The agreement between

both the methods is very good.

8.2 Data Acquisition Systems

In this section the data acquisition systems used in acquiring quantitative data are

described in brief. All the systems are completely digital and non-intrusive, and the

entire data acquisition and processing sequence is automated. Figure 8.5 shows the

experimental setup.

8.2.1 Laser Doppler Velocimetry

Laser Doppler Velocimetry (LDV) measurements are used to get the streamwise mean

and fluctuating velocity profiles in the wall-normal direction. Figure 8.6 gives the
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Figure 8.4: Laser beams separation on plate versus LDV location

details of the LDV experimental setup. The LDV is mounted on a motorized stage

(National Aperture MC-3B) and placed inside a water tight enclosure that is flush

mounted to the plate. The stage has an embedded closed loop micro controller (PID)

and is remotely controlled from a motion control processor (LM628). With this, the

LDV can be moved in the vertical direction upto 2.5 cm with an accuracy of 1 µm.

The enclosure has an optical window at the bottom for transmitting the LDV laser

beams and the reflected light. The LDV burst signal is detected by an Avalanche

Photo-Diode in the LDV controller box. The signal is then bandpass filtered and

amplified through a tunable Korn Hite filter. The filter is connected to the computer

via a interface card (NI PCI-GPIB). A high speed A/D card (NI PCI 5102) is used to

digitize the analog signal and the processing software based on FFTs is used to detect

the Doppler frequency. Only those signals with good signal to noise ratio are used for

the velocity statistics. The LDV probe volume is approximately 30× 60× 200 µm3
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Figure 8.5: Experimental setup

and the fringe spacing is 1.272 µm. The frequency range of LDV sensor is 0 to 10

mHz and the wave length of the laser used is 660 nm. 3–5 µm TiO2 particles are

used as seeding particles. Special care is paid in handling TiO2 (T1081, Spectrum)

particles, since they are known to cause severe respiratory problems. Cross sectional

view of the LDV enclosure, with the details of the stage and the LDV is shown in

figure 8.7.

8.2.2 Shear Stress Sensors

Shear stress sensors (SSS) are used to measure the local skin friction coefficient at

two streamwise locations. The shear stress sensors measure surface stress using the

fact that the velocity increases linearly with the distance from the wall in the viscous

sub-layer region of the turbulent boundary layer. It can be show that if we have a

set of divergent fringes, the local gradient of the velocity is the product of Doppler
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frequency and fringe divergence (fixed number depending upon the design). This

concept was first proposed by [90]. The simplicity of the idea is overshadowed by

the complex optical set up. Recent advances in micro opto-electronic technology has

allowed a new novel apparatus to be developed at Caltech in our micro optics lab [54].

This sensor is now commercially available from VioSense. These new sensors do not

require calibration unlike traditional shear stress sensors, and hence, save lot of time

and energy. The probe volume of shear stress sensors is 30 × 30 × 15 µm3 and the

wave length of the laser used is 660 nm. The centroid of the probe volume is located

at 140 µm from the wall. At Rx = 375000 this corresponds to approximately 2.5 wall

units and at Rx = 75000 this corresponds to approximately 1 wall unit. The fringe

divergence for the sensors are 0.0662 and 0.0579. The electronics and processing

software for shear stress sensors are almost same as the LDV. We were unable to get

enough signal to noise ratio from the shear stress sensor at the front of the plate and

hence the data from this sensor is ignored. The data from the SSS located at the

rear-end of the plate is very good. Figure (8.8) shows the cross sectional view of one

of the shear stress sensor.
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Figure 8.7: LDV cross-section view

8.2.3 Digital Particle Image Velocimetry

Digital particle image velocimetry (DPIV) is used to get quantitative and instanta-

neous u and w components of the velocity vectors on (x, z) planes, at different Y

locations in the boundary layer and the free-stream. From the velocity field, one can

then calculate derived quantities like vorticity, strain, stream-lines, etc., that can be

used to understand the dynamics of the unsteady and spatially varying flow.

An overview of particle imaging velocimetry technique is given in [123], [2], [121]

and [94]. The basic principle of DPIV and details of the DPIV setup used in this

experiment are given below in brief. Small tracer particles with certain characteristics

are added to the flow. The particles are small enough to be able to follow the flow

accurately without changing its properties and large enough to scatter enough light

to be captured by the sensor. Silver coated hollow glass spheres (SH 230S33, Potters

Industries Inc.) of average diameter 40 µm and density ρ = 0.5 g/cc have been

used in this investigation. A planar ((x, z) plane) domain of interest in the flow is

illuminated twice —with a specific separation in time— by lasers (Nd:YAG, New

Wave Research, 200 mJ, 15 Hz, λ=532 nm) sheet. The laser beam diameter is 5 mm
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Figure 8.8: Shear stress sensor cross-section view

and pulse width is 3–5 ns. The thickness of the final laser sheet is 1–2 mm and is

generated using a combination of 3 lenses. The light from the laser is first passed

through a combination of two biconvex lenses to adjust the thickness of the beam.

The laser beam is then passed through a cylindrical lens to produce a diverging sheet.

AR14 coating for 532 nm has been used for the lenses. The location and the angle

of the sheet is then adjusted by using mirrors. A high resolution progressive scan

digital camera (UNIQ UP 1030, 30 Hz, 1024×1024 pixels, 10 bit) and combination

of lenses (Nikon) capture the light scattered from the particles. A frame-grabber

(BitFlow Roadrunner) is used to record the images onto a sequence of frames in the

real time disc (rtd) file of the computer. The files are then transferred to tapes, to

free the memory for later measurements. DPIV software developed in our lab is then

used to cross-correlate the images, to get the local particle displacement and calculate

the velocity field. For this purpose, each frame is divided into small regions called

interrogation windows (32×32 pixels). The velocity vector in each of these windows is

obtained by cross-correlating (implemented by FFT’s) the interrogation windows in

r consecutively illuminated frames. The step size used is 16 pixels giving an overlap

of 50%. The spatial resolution size in DPIV is set by this step size and is 1mm (16

pixels) for this set up. This is an order of magnitude larger than the Kolmogrov scale
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at the largest Reynolds number in these experiments, if the flow is fully turbulent at

that Reynolds number. The field of view of the camera is 7 cm by 7 cm region and

is shown in figure 8.9. The temporal resolution is limited by the frequency of the

laser, which is 15 Hz (0.067 seconds). The seeding density is adjusted till there are at

least 8 particles in each interrogation window to get good statistical correlation. The

separation of the pulses is chosen in such a way that, the particles move approximately

one third of the interrogation window size. The camera is run in the master mode

and hence generates the timing signal for all the other data acquisition instruments.

A break out box has been constructed to convert the 30 Hz camera signal into a 15 Hz

laser signal. A timing program controls the sequence of operations involved in DPIV.

The size of each image is approximately 1 MB. For each flow setting 4000 images

are acquired, totaling few tera bytes of data as a whole. With the above described

settings, each image pair yields more than 3600 vectors each. An outlier correction

of 3 was used. The average number of outliers in each image pair are less than 2%.

16.5 cm

64 cm

Z

X

Plate working side

DPIV domain (7 cm by 7 cm)

Figure 8.9: Location of the DPIV imaging domain

Studying turbulence using DPIV is very challenging because of the multi-scale

nature of turbulence. The wide R−3/4 separation of the spatial and temporal scales

makes it hard for any experimental technique, to resolve all the scales accurately.

DPIV is not an exception, though a huge improvement from the standard point
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measurement techniques. Hence, there is tremendous scope for improvements in

DPIV. A dilemma that one faces in using DPIV is as to what one should do with these

huge data sets from DPIV. There is an utmost need to develop computational and

mathematical infrastructure to analyze, extract and quantify important structures

and dynamics in these huge data sets. One should also be careful with standard

time averaging of velocity, vorticity and pressure fields in a time-varying flow (though

the BC and equations have certain symmetries, there can be symmetry breaking and

symmetry increasing bifurcations that can cause problems) 1 as the results may not

converge. Furthermore, vast amount of information can be lost, as the averaging

operator is not an isomorphism in many cases.

8.2.4 Experimental Issues

Non-intrusive laser diagnostic techniques like DPIV, LDV and SSSs though give ac-

curate data, are complicated techniques and making each of them work is a messy

job. As a result, we had to overcome many experimental issues. Some of them are

listed here:

• All these techniques need the right seeding density. In the laminar flows one

can easily get the right seeding density. However, in transitional flows getting

the right particle seeding density and then maintaining it is hard. The particles

usually get stuck to the tunnel walls, screens and even trapped in certain regions

of the flow based on the flow topology. The data acquisition time is hence limited

to few minutes.

• Getting the right amount of scattered light to the CCD was also an issue. This

scattered light is a function of many parameters. This problem was particularly

hard, due to the lack of synchronization between the lasers power setting. The

lenses also blew up many times, in the process of getting the right illumination.

Every time a lens blows up, the entire optical setup has to be redone and also

DPIV image calibration has to be redone.

1This problem has not been addressed at all in the experimental literature
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• All these techniques involve many hardware and software sub-systems that are

either built in-house or purchased from different manufacturers. As a result,

making them work collectively can be a serious issue.

• Since the interrogation area is at the bottom of the plate, access is very limited.

The only way we were able to access the plates bottom is by submerging oneself

completely in the contraction of the tunnel.

• Since the tunnel is a huge water tunnel, emptying and filling the tunnel took

up to 15 hours each time.

• Making the LDV container water proof has been very time consuming. The

water entered the container and short circuited the electronics of stage and

LDV. This has been replaced three times. Note that every time we remove the

stage from the container, the entire setup has to be redone.
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Chapter 9 Experimental Results

In this chapter we present the experimental results obtained and a detailed discussion

about the results. Flow visualizations results are presented first, followed by mean

and fluctuation velocity variation normal to the plate. Shear stress variations, veloc-

ity fields, vorticity fields, various correlations and streamwise structure scalings are

presented in the following sections after that.

9.1 Flow Visualization

Flow visualization studies have been done to get a physical picture of the flow dy-

namics. For these studies, the flow is uniformly added with silver coated hollow glass

spheres. A laser sheet is shined in the (x, z) plane and the images are captured by

a camera. It is found that one of the crucial factor in getting good visualization

pictures is the seeding density. The seeding density has been adjusted by trial and

error. Figure 9.1 shows an instantaneous snapshot of the flow pattern observed in

many realizations. Though, the water tunnel is seeded uniformly with glass spheres,

the sphere’s get trapped in certain regions of the vortical structures in the boundary

layer and form a distinctive pattern that is a map of the underlying structures in the

flow. It is natural for the spheres to spend more time in the low speed regions of the

flow and hence, the bright elongated lines that are seen in the flow visualization pic-

tures are the low speed regions of the flow. This fact is also later confirmed from the

DPIV velocity field data. The spanwise dimensions of these bright lines are very small

compared to their streamwise dimensions. These are called streaks by [76] in their

studies of boundary layer using Hydrogen bubble technique. Some people attribute

these low speed regions in the flow to the streamwise vortices in the boundary layer.

In the sense that, these are regions between the streamwise vortices. Our theory and

computations indicate that the time scale of streamwise vortices is small compared
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Figure 9.1: Instantaneous snapshot of the flow visualization using glass spheres at
DPIV location in the (x, z) plane. Flow is from top to bottom, field of view is 7 cm
by 7 cm and Rx = 375000. The laser sheet is located at y = 0.9 mm. See text for
more details.

to the streamwise velocity. Hence, the streamwise velocity modes survive for a much

longer time than the streamwise vortices and as a result, what we are seeing in the

flow visualization is a direct imprint of the streaks. One of the mechanisms in the

creation of streaks is through the streamwise vortices by non-normal coupling. There

can be other mechanisms which can also create the streaks. An interesting fact is

that, these patterns are very repeatable. This can be seen by comparing figure 9.1 and

figure 9.2, which are separated by a time period of 1 s. It is hard to distinguish one

picture from another looking by our eyes. Though the exact location of the streaks

may not be repeatable, the spacing of the streaks is repeatable from realization to

realization and different turbulence levels in the free-stream . These elongated lines

are very bright at high Reynolds number and faint at low Reynolds number. Further,

these elongated lines are bright when the laser sheet is located near, not very near,

the wall than away from the wall. These two are very important observations and

imply that the underlying structures are energetic at high Reynolds number and weak
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Figure 9.2: Another instantaneous snapshot of the flow visualization taken 1 s after
the previous snapshot. See figure 9.1 for details.

at low Reynolds number, and their creation mechanism may be close to the wall. As

these structures move away from the wall, via convection and diffusion, they interact

with each other and free-stream turbulence in a destructive way and their coherence

is lost. The lack of streaks very near the wall can be explained by the fact that all

the perturbations should decay as the wall is approached. Figure 9.1 and figure 9.2

indicate that the downstream evolution of these structures is very robust and does

not seem to undergo any oscillations. However, we caution that pictures can be mis-

leading with no quantitative data. The spanwise dimension of these structures also

seems to be independent of the Reynolds number Rx. Since, counting the number

of streaks from pictures like figure 9.1 involve lot of bias, a study of the dimensions

and scalings of these structures is done with the quantitative velocity field data from

DPIV and will be discussed in later sections.
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Table 9.1: Parametric range explored in the experiments.

Case Rx Rδ Rδ∗ Rθ H T% Cf

C1a 375000 9750 1294 925 1.40 6.4 3.20 × 10−3

C1b 375000 8563 1156 806 1.40 6.0 2.80 × 10−3

C1c 375000 8563 1169 818 1.40 5.2 2.72 × 10−3

C2a 202500 4624 732 450 1.46 7.7 3.30 × 10−3

C2b 202500 4961 756 519 1.45 7.2 2.50 × 10−3

C2c 202500 3578 621 408 1.52 6.8 2.20 × 10−3

C3a 75000 1512 289 166 1.73 9.2 3.60 × 10−3

C3b 75000 1525 290 170 1.71 8.6 3.20 × 10−3

C3c 75000 1525 285 163 1.74 7.9 2.80 × 10−3

9.2 Boundary Layer Characteristics

9.2.1 Parametric Range Explored

Table 9.1 presents the parametric range explored in the experiments. Three differ-

ent Reynolds (approximately 1200, 700 and 300 based on δ∗) are explored in the

experiments. These Reynolds numbers are chosen in such a way that Case C1 cor-

responds to the Reynolds number way above the critical Reynolds number for T-S

waves (Rδ∗ = 520), Case C2 is little bit above the T-S waves critical Reynolds number

and Case C3 is way below the T-S waves critical Reynolds number. At each Reynolds

number three different free-stream turbulence levels are studied. Furthermore, at each

of these cases, DPIV measurements have been made at three locations corresponding

to y = 30 mm, y = 1.8 mm and y = 0.9 mm. This corresponds to 9 different cases for

LDV, 18 different cases for SSS and 27 different cases for DPIV. Since the parametric

space is vast, all the cases will not be presented. Especially for DPIV data, we present

only the data corresponding to the highest and lowest Reynolds number cases.
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9.2.2 Mean and Fluctuation Velocities in the Normal Direc-

tion

Mean and root mean square (RMS) streamwise velocity perturbations have been

measured at the L location (x = 0.65 m) at various free-stream turbulence levels and

Reynolds numbers to quantify the boundary layer characteristics. In this section, we

present the details of the above measurements and discuss the important observations.
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Figure 9.3: Normal profiles of mean streamwise velocity at the location L and Rx =
375000. T denotes the free-stream turbulence level in percentage at the station L.
Laminar Blasius profile is also shown for reference.

Figure 9.3 shows the variation of non dimensional mean streamwise velocities in

the wall normal direction at turbulence levels of 6.4%, 6.0% and 5.2%, and Rx =

375000. The velocity profile at the ambient free-stream turbulence level of 0.1 %

agrees perfectly with the Blasius profile (also shown in the figure) and hence not

plotted for clarity. The wall-normal scale here is η = y
√

( Ue

2νx
). Figure 9.4 shows

the variation of mean streamwise velocities at turbulence levels of 7.7%, 7.2% and

6.8%, and Rx = 202500. Figure 9.5 shows the variation of mean streamwise velocities
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Figure 9.4: Normal profiles of mean streamwise velocity at the location L and Rx =
202500. Laminar Blasius profile is also shown for reference.

at turbulence levels of 9.2%, 8.6% and 7.9%, and Rx = 75000. The boundary layer

structure in all the above cases with significant free-stream turbulence is different

from the Blasius boundary layer characteristics. The mean stream velocity profile in

all the cases is thicker at the wall and deficit near the free-stream compared to the

Blasius velocity profile. This deviation seems to decrease as the Reynolds number is

decreased, comparing figure 9.3 and figure 9.5. The thickness of the boundary layer

is substantially more than the Blasius boundary layer thickness in the Rx = 375000

and Rx = 202500 cases. In the Rx = 75000 case, the boundary layer thickness is

same as in the Blasius boundary layer. It is interesting to see that even though in

the Rx = 75000 case the free-stream turbulence is higher than the Rx = 375000 and

Rx = 202500 cases the boundary layer seems to be closer to Blasius than the later

cases. This suggests that one needs larger disturbances at lower Reynolds number

than higher Reynolds number to get the same amount of deviations in the velocity

profile from the Blasius case. However, notice that the displacement thickness is

different in the Rx = 75000 case and the laminar Blasius boundary layer.

Figures 9.6, 9.7 and 9.8 show the variation of RMS (normalized with the local
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Figure 9.5: Normal profiles of mean streamwise velocity at the location L and Rx =
75000.

mean velocity) with the non-dimensional wall-normal distance. TL does not go to

zero quickly as we approach the wall, since it is defined as urms/U and both urms

and U tend to zero at different rates as we approach the wall. Though figures 9.6,

9.7 and 9.8 seems to indicate that TL is decreasing very near the wall, it is not clear

if it will asymptote to zero or a non zero constant. Further data very close to the

wall is needed to unambiguously know what the trend is. TL seems to increase from

the free-stream turbulence value, reaching a maximum of about 38% near the wall

and seems to decrease thereafter towards the wall in all the cases. From the point

of view of TL variation in the boundary layer, at different free-stream turbulence

levels and Reynolds numbers, the only noticeable effect is the asymptotic level in the

free-stream.

Figures 9.9, 9.10 and 9.11 show the variation of RMS velocity (normalized with

the free-stream velocity) with the non-dimensional wall-normal distance. T tend to

increase from the free-stream turbulence value and reaches a maximum of about: 14%

in the Rx = 375000 and Rx = 202500 cases, and 17% in the Rx = 75000 case near the

wall. T asymptotically tends to zero thereafter towards the wall. This maximum is
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Figure 9.6: Normal profiles of RMS streamwise velocity at the location L and Rx =
375000. RMS velocity normalized by the local mean velocity is denoted by TL.

slightly higher than the 11% maximum one sees in a turbulent boundary layer [108]

under low free-stream turbulence levels. This can be explained by the fact that the

fluctuations are truly random in the fully turbulent case and zero in the laminar case,

only in the borderline case of transiting boundary layer, the fluctuations are neither

deterministic nor completely random and hence undergo wide oscillations 1. There

seems to be some scatter in the data points. This is attributed to the nature of the

transition to turbulence problem under high levels of free-stream turbulence.

Figures 9.12, 9.13 and 9.14 show the variation of RMS velocity very near the wall

for η ≤ 1.5. The trend in the plots is similar to the fully turbulent boundary layer

case [108] under low free-stream turbulence.

In the previous plots we compared the boundary layer measurements with the

laminar Blasius boundary layer. Analogously, one can think of comparing the bound-

ary layer with the fully turbulent boundary layer in the wall units . This is done in the

next few plots. In order to be able to do this, one need the frictional velocity at the

1The same is true in the border of transition between quantum and classical phenomena. One
can develop good theories in either of the limiting scenarios, but not in the intermediate domain.
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Figure 9.7: Normal profiles of RMS streamwise velocity at the location L and Rx =
202500.

location L. This was estimated by doing a least squares linear fit to the data points

that will be in the sublayer, if the flow is fully turbulent at the respective Reynolds

numbers. This has been the only alternative, since the Clauser plot technique [32]

works only in the fully turbulent case and the approximate momentum integral re-

lation [108] needs dθ/dx which is not available here. The skin friction is measured

at the S1 and S2 locations and not at the location L. The direct slope estimation

method we used is the perfect choice as long as one has enough data points very close

to the wall. Since the Reynolds numbers we are investigating are not extremely high,

we always had at least 4 (Rx = 375000) to 7 (Rx = 202500 and Rx = 7500) points in

the effective sublayer. Figures 9.15 and 9.16 show the variation of mean streamwise

velocity in the universal wall coordinates at Rx = 375000 and Rx = 202500, and

various free-stream turbulence levels. The Blasius velocity profile at the respective

Reynolds number and the fully turbulent mean velocity profile of Spadling are also

shown there. As expected all the data points fall somewhere in between the two

extreme cases. Figures 9.15 and 9.16 indicate that the boundary layer is closer to

the turbulent profile than the Blasius profile. However, one has to be careful with



151

0

4

8

12

16

20

24

28

32

36

40

0 2 4 6 8 10 12

T
L

T = 9.2

T = 8.6

T = 7.9

Figure 9.8: Normal profiles of RMS streamwise velocity at the location L and Rx =
75000.

the not so precise definition of closeness we used. This can be made more precise

by defining a suitable norm. However, we will not pursue this in this work. Figures

9.15 and 9.16 indicate that the profile shifts towards fully turbulent side as the free-

stream turbulence is increased. The velocity distribution in the region y+ < 8 seem

to be unaffected by the turbulence level. These observations are in agreement with

the physical intuition that the external free-stream turbulence can only penetrate to

certain extent towards the wall. This penetration distance may be a strong function

of R, T and boundary conditions.

Figure 9.17 shows a typical variation of the mean velocity in the effective sublayer

at different turbulence levels. For comparison, the Blasius streamwise velocity profile

and the fully turbulent streamwise velocity profile of Prandtl are also shown.

Figures 9.18 and 9.19 show the variation of normalized RMS velocity in the wall

co-ordinates. As indicated before, the RMS of the velocity perturbations reaches a

maximum of about 14% at approximately y+ = 20 and decays to zero, thereafter,

towards the wall.

Figure 9.20 shows the variation of RMS velocity normalized by uτ and denoted
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Figure 9.9: Normal profiles of RMS streamwise velocity at the location L and Rx =
375000. RMS velocity is normalized by the free-stream velocity and is denoted by T.

by T+, versus y+. The peak of T+ is about 3.2.

Figures 9.21 and 9.22 compares T versus η courves at three different Reynolds

numbers. The plots indicate that the RMS of streamwise fluctuations are strong

function of free-stream turbulence level. In fact, the RMS fluctuations for Rx =

375000 case are lower than the Rx = 202500 and Rx = 75000 cases, since the former

has higher free-stream turbulence level than the latter two.

9.2.3 Variation of Shear Stress and Various Thicknesses

In this section we briefly discuss the variation of shear stress, boundary layer thick-

ness, displacement thickness, momentum thickness, and their ratios with free-stream

turbulence level and Reynolds number. All these quantities are a strong function of

whether the flow is laminar or turbulent. A detailed study of these quantities might

shed some light on the transiting boundary layer characteristics and the governing

mechanisms.

Figure 9.23 shows the variation of skin friction co-efficient Cf with the Reynolds
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Figure 9.10: Normal profiles of RMS streamwise velocity at the location L and Rx =
202500.

number Rx and the free-stream turbulence level T. The skin friction in the Blasius

boundary layer and the fully turbulent profiles of Prandtl and Kestin [108] are also

shown. All the present data points fall inbetween the Blasius Cf curve and the

turbulent Cf curves. The 9 data points that are close to the Blasius Cf curve are from

the shear stress sensors. The 9 points that are closest to the turbulent Cf curve are

from the LDV measurements. The agreement between both the LDV and SSSs seems

to be good other than the data points at the lowest Reynolds number, where there is

a substantial disagreement. The reason for this is not clear. In each of the cases as

the free stream turbulence level is increased, Cf tends to move towards the turbulent

value as expected. Since it is rarely possible to have complete control over the free-

stream turbulence level, it is hard to fix the free-stream turbulence level and see how

Cf varies as Rx is increased. We can still see the trend by observing the data we have

closely. Comparing the data points T = 6.4 (×) and T = 6.8 (−) we see that as the

Reynolds number is increased at a fixed free-stream turbulence level (approximately),

Cf increases. Similar trend is seen from the data points T = 7.7 (−) and T = 7.9

(N). The above observations indicate that Cf is a strong function of the Reynolds
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Figure 9.11: Normal profiles of RMS streamwise velocity at the location L and Rx =
75000.

number and the free-stream turbulence level. They also indicate that the sensitivity

of the boundary layer to external disturbances is increased as the Reynolds number is

increased. Hence, one cannot talk of transition to turbulence without referring to the

state of the external environment, at least in the high Reynolds number case where

the sensitivity to external disturbances is huge.

Figures 9.24, 9.25 and 9.26 show the variation of Reynolds numbers based on

boundary layer thickness, displacement thickness and momentum thickness, respec-

tively with the Reynolds number based on the streamwise location. Plotted in the

figure are also the variation of boundary layer thickness in Blasius and Prandtl pro-

files. All the data points of this investigation fall in between the laminar case and

the fully turbulent case as it should be.

Figure 9.27 shows the variation of boundary layer thickness with the Reynolds

number and free stream turbulence level. The boundary layer thickness seems to be

insensitive to the free-stream turbulence level at low Reynolds number and undergo

wide variations at high Reynolds numbers as a function of free-stream turbulence level.

Figure 9.28 shows the variation of ratio of displacement thickness and boundary layer
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Figure 9.12: Normal profiles of RMS streamwise velocity near wall, at the location L
and Rx = 375000.

thickness with the Reynolds number and free-stream turbulence level. The results

seems to indicate that θ/δ is insensitive to free-stream turbulence level and depends

only on Rx. More data points are needed to unambiguously know the trend. Figure

9.29 shows the variation of shape factor with the Reynolds number and free-stream

turbulence level. Note that the shape factor for the Blasius boundary layer is 2.6

and for the fully turbulent boundary layer is 1.2. H seems to be independent of T

and depend only on Rx. H is decreasing as Rx is increased indicating that the high

Reynolds number cases are closer to fully turbulent profiles than the low Reynolds

number cases. But this conclusion has to be taken with caution as just one parameter,

like H here, does not clearly indicate the state of the entire flow which is governed by

infinite set of ODEs.
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Figure 9.13: Normal profiles of RMS streamwise velocity near wall, at the location L
and Rx = 202500.
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Figure 9.14: Normal profiles of RMS streamwise velocity near wall, at the location L
and Rx = 75000.
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Figure 9.15: Mean streamwise velocity profiles in the normal direction, in terms of
wall units, at the location L and Rx = 375000.
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Figure 9.21: Variation of turbulence level in the boundary layer at different Reynolds
number.
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Figure 9.24: Variation of boundary layer thickness along the plate.
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9.3 Velocity Field Dynamics

9.3.1 Instantaneous

Figure 9.30 shows the (u,w) velocity vector field in the (x, z) plane at y = 1.8 mm

(this corresponds to a y/δ∗ = 0.87 if normalized by δ∗ at the location L 2). The

magnitude of the velocity
√

u2 + w2 is shown in contour plot and the direction is

shown as vector field. Also shown in this figure is the zoom up of two structures.

The smallest scale resolved in the experiment is 1 mm. One can see many interesting

features of the flow from this plot. There is a clear indication of local regions of the

flow moving at high speeds (shown in red color) and low speeds (shown in blue color)

than the ambient fluid (shown in green color). The zoom up plots indicate that it

is hard to see the structures in the direction vector field plotted in the lab frame of

reference. The structures are convected downstream at some velocity and hence a

better picture of these structures can be obtained by plotting the direction vector

field in a frame translating with the convection velocity of the structures. Figure 9.31
2We point out that δ∗ is growing in the downstream direction and hence this scaling is approxi-

mate only.
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shows the same velocity vector field frame as in figure 9.30, but now, the direction

vector is plotted in a Galilean frame translating along the free-stream direction with

a velocity of 30 cm/s instead. 30 cm/s is the convection velocity of these structures

and hence the structures can be seen much better now. To get a better picture of

the structures in the vector field, in figure 9.32 is plotted the vector field, with the

length of the arrow corresponding to the magnitude of the velocity at that point.

Also shown there is a zoom up of a structure in the field. As can be seen from the

figure, the structures can be much better recognized now. It is hard to recognize

the structures in any other frame, other than the frame that is translating with the

convection velocity of the structures. This can be seen from figure 9.33, wherein

the vector field is plotted in a frame translating in the free-stream direction with a

velocity of 40 cm/s and the structures are not recognizable. The direction vector field

in figure 9.34 gives a clean picture of the underlying structures in the flow. In figure

9.35 are plotted some of the structures that are found in the velocity field. Some

of these structures resemble well known circular vortices, others resemble flow over

doublet and jets of high velocity. These structures can further give rise to various

secondary instabilities like Kelvin-Helmholtz instabilities, etc.

Figure 9.36 shows the variation of streamwise velocity in the z direction at three

different streamwise locations (x = −1 cm, x = −3 cm and x = −5 cm). The

plot clearly indicates that there is a distinct spanwise structure in the flow. The

fluctuation in the velocity is of the order 15 cm/s, i.e., approximately 40% of the local

mean velocity. Further more, there is very little correlation between the the velocity

profiles at the three streamwise locations, indicating that the underlying structure is

varying in the streamwise location at a scale much smaller than 2 cm. The contour

plots, on the other hand, are misleading and indicating that the streamwise structures

are much longer than 2 cm. Figure 9.37 shows the variation of spanwise velocity in

the z direction at three different streamwise locations (x = −1 cm, x = −4 cm

and x = −6 cm). The fluctuations in spanwise velocity are of the order of 4 cm/s

and hence are much smaller than the streamwise velocity. We can also see that the

spanwise velocity profile also has the distinct spanwise oscillation like the streamwise
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velocity.

The variation are streamwise velocity, spanwise velocity and normal vorticity in

the streamwise direction is presented in figure 9.38 at three different spanwise loca-

tions. The fluctuations in u and ω2 are again much higher than w. The fluctuations

in ω2 are of the order of 60 s−1, u are of the order of 10 cm/s and w are of the order

of 5 cm/s. The plot also indicates that there is characteristic scale in the streamwise

direction of approximately 1 cm.

9.3.2 Time Evolution

In this section we discuss in detail the time evolution of the velocity fields and the

underlying structures. Figure 9.39 shows the distribution of the magnitude of velocity

in the (x, z) plane at Rx = 375000 in four consecutive frames. Figure 9.40 shows the

evolution of the direction of velocity field in a frame translating along the free-stream

direction with a velocity of 30 cm/s. Both the above figures clearly indicate the nature

of the structures in the flow and their evolution as they are convected downstream.

Tracking the structures in consecutive frames we see that the structures are convected

with approximately the local mean flow velocity. Not all the structures convect down-

stream so nicely, as in the four frames showed above. The above frames are selectively

picked after searching few hundred frames. The structures shape evolve based on the

interaction with other structures, the boundary layer mean flow and the wall. We

have also tracked a single structure and saw how its shape evolves. All the struc-

tures are of elongated shape resembling streamwise vortices or streaks. None of the

structures resemble a turbulent spot in the frames that have been detailedly studied.

The reason for this is not exactly known. One of the possible reason might be that,

to create a turbulent spot one needs a strong local disturbance, like a delta function

in space and time and such a disturbance is not available in the present experiment.

Many of the investigators who previously studied turbulent spots generated the spots

by local forcing using a jet or a needle or a falling water drop.

In figure 9.41 the variation of streamwise and spanwise velocity with spanwise
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coordinate and time is plotted. The figure indicates that there is little correlation

between the local maximum or local minimum in two consecutive frames separated by

0.066 s. This indicates that the underlying max-min structure is random or rapidly

time varying. Time averaging of such a phenomena can lead to loss of lot of informa-

tion and we will discuss this aspect in the later part of the thesis. The variation of

u and w with streamwise coordinate and time are plotted in figure 9.42. Comparing

this with the previous figure indicates that the streamwise scales are bigger than the

spanwise scales. Further more, in this figure there is little correlation among the local

maximum or local minimum between two consecutive frames, as in figure 9.41.

9.4 Dynamics of Derived Quantities

From the velocity field data of DPIV we calculated various derived quantities like

vorticity, strain, streamlines, etc. In this section we briefly discuss some of the salient

features of these quantities.

9.4.1 Normal Vorticity: Instantaneous

Normal vorticity is calculated from the (u,w) components of the velocity by an in-

tegral formulation using the information from neighboring eight grid points. The

next plot, figure 9.43, shows a typical vorticity contour plot and its comparison with

the velocity field at the same time. The vorticity field has wide fluctuations from

+40 s−1 to −40 s−1. The three black circles in the figure, compare three structures

in the velocity domain with the same three structures in the vorticity domain. It is

interesting to note that the structures are much thicker, in the spanwise direction,

in the velocity domain than in the vorticity domain. In fact, the structure in the

velocity domain corresponds to a positive and negative structure in normal vorticity.

This can be very easily seen through the definition of normal vorticity

ω2 =
∂u

∂z
− ∂w

∂x
. (9.1)
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Since w << u and streamwise scale is bigger than the spanwise scale, the second

term is small in comparison with the first and can be neglected. Now, consider a

local region of high velocity separated by low velocity in the spanwise direction. The

term ∂u/∂z is maximum at the boundary on either sides. On the right boundary

this term is positive and on the left boundary this term is negative as seen in the

plot. To get a more detailed picture, the variation of normal vorticity in the spanwise

direction is plotted in figure 9.44 at three different streamwise stations. Though there

is some resemblance between the profiles that are close to each other, this resemblance

is becoming weak as we move farther away. In figure 9.45 the variation of normal

vorticity is compared with uw component of the Reynolds stress term.

9.4.2 Normal Vorticity: Time Evolution

Figure 9.46 shows the time evolution of vorticity field in the (x, z) plane in four

simultaneous frames. Paying close attention one can track the evolution of vortical

structures in these frames. Time evolution of the normal vorticity at x = −2 cm and

z = 3 cm is shown in figure 9.47. Normal vorticity is increasing as we go downstream.

This may be due to the fact that the boundary layer thickness is increasing as we go

downstream and hence when x is non-dimensionalized with δ, the domain on which

the DPIV data is acquired becomes inclined towards the wall as we go downstream.
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Figure 9.30: Instantaneous velocity vector field and zoom up of two structures in the lab frame at Rx = 375000 and T = 6.4%.
See text for more details.
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Figure 9.32: Instantaneous velocity field at Rx = 375000 and T = 6.4% in a Galilean frame translating in the free-stream
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Figure 9.33: Instantaneous picture showing the the velocity field at Rx = 375000 and
T = 6.4% on the (x, z) plane in a reference frame translating at 40 cm/s in the -x
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Figure 9.34: Instantaneous picture showing the direction of the velocity field at Rx = 375000 and T = 6.4% on the (x, z) plane
in a reference frame translating at 30 cm/s in the -x direction.
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Figure 9.39: Time evolution of the magnitude of velocity in the (x, z) plane at Rx =
375000 and T = 6.4% in four consecutive frames. The frames are separated by a time
of 0.066 s and are ordered from left to right and then top to bottom.
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Figure 9.42: Time evolution of the streamwise and spanwise velocity components at
the location z = 3 cm. Rx = 375000, T = 6.4% and t2 = t1+0.066 s, t3 = t2+0.066 s
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Figure 9.43: Instantaneous distribution of vorticity field and its comparison with the velocity field; Rx = 375000 and T = 6.4%.
Left figure: velocity field; right figure: vorticity field.
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Figure 9.46: Time evolution of the normal vorticity on the xz plane at Rx = 375000
and T = 6.4% in four consecutive frames separated by 0.066 s. Time is evolving from
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9.4.3 Strains and Streamlines

Strains and streamlines have been calculated to gain more insight into the dynamics of

the structures. The shear strain is calculated by using a discrete approximation to the

derivative and the normal strain is calculated using the incompressibility condition.

Figure 9.48 shows the distribution of e13 and e22 components of the strain tensor. The

contour plot of e22 has very interesting structure. The velocity, vorticity and shear

strain e13 have an elongated shape in the streamwise direction, on the other hand,

the normal strain e22 has an almost circular shape. The reason for this is not known.

Figure 9.49 shows the instantaneous pattern of streamlines and stream markers

calculated from the velocity vector field data. The stream markers are released from

x = 0 and plotted after successive time steps. The stream markers calculated from the

instantaneous velocity field also indicate the low and high speed regions of the flow

in the spanwise direction. The streamlines are straight indicating that the structures

are convected downstream in an almost straight line.

9.5 Time Averaged Mean and RMS Statistics

Time averaging has been a very popular technique used to get mean and RMS statis-

tics in turbulence. As discussed previously, the underlying boundary layer structures

are created random (or a complicated function varying) in space and time. It is not

clear if time averaging will capture much of the physics of the underlying phenomena.

In this section we investigate this important question.

Figure 9.50 shows the mean velocity field obtained after doing a time averaging

of 2000 individual realizations. Te contour plot indicates that the velocity magnitude

is varying from 34 cm/s at x = 0 cm to 31 cm/s at x = −7 cm. That is, there

is a 10% decrease in velocity in going 7 cm downstream. This happens because the

boundary layer is growing as we go downstream, as a result the non-dimensional

(by boundary layer thickness) distance of the sheet from the wall is decreasing as

we go downstream. It is interesting to see that DPIV has been able to capture this



186

variation in the velocity. Comparing figure 9.50 with the instantaneous velocity field

data shown previously, we see that much of structure is lost in the velocity field.

Though there is some distinct spanwise variation (made up of peaks and valleys) in

the velocity field in figure 9.50, the elongated shape of the structures is completely

lost in the mean field. Figure 9.51 shows the RMS field of u and w in a contour plot.

The RMS of u is of the order 3.5 cm/s and the RMS of w is of the order 1.4 cm/s.

Again the shape of the underlying structure is lost.

Mean and RMS of the normal vorticty field is plotted in figure 9.52. The mean

is an order of magnitude smaller than the RMS. This is in agreement with the zero

normal vorticity of the unperturbed Blasius boundary layer flow.

From the above figures it is evident that time averaging can lead to loss of lot

of valuable information that is available in the individual realizations. As a result,

one has to be careful in drawing conclusions from time averaged fields in especially

transiting and turbulent flows. Because of this, we will not be using time averaging for

calculating the statistics and instead use spatial averaging in the spanwise direction.

9.6 Streamwise Structures: Size and Velocity Scal-

ings

From the results in the previous sections it is clear that there is a distinct structure

in the boundary layer with a characteristic streamwise and spanwise dimensions. In

this section, we investigate the dimensions of these structures using statistical tools.

Let the auto-correlations in u and w be defined as

Ruu(r1, r3, τ ; x, y) = E [u(x, y, z, t)u(x + r1, y, z + r3, t + τ)] (9.2)

Rww(r1, r3, τ ; x, y) = E [w(x, y, z, t)w(x + r1, y, z + r3, t + τ)] , (9.3)

where E denotes spatial averaging in spanwise coordinate. The Fourier transform of
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the auto-correlation function is the spectral density function

Suu(k1, k3, ω; k4, y) = F [Ruu(r1, r3, τ ; x, y)] (9.4)

Sww(k1, k3, ω; k4, y) = F [Rww(r1, r3, τ ; x, y)] . (9.5)

9.6.1 Auto-correlations and Spectral Densities

The two-dimensional auto-correlation Ruu(r1, r3) is plotted in figure 9.53 at y =

1.8 mm, x = 0 cm, τ = 0 and some arbitrary time t. The above auto-correlation has

an interesting wiggly shape revealing the characteristics of the underlying structure.

To gain more insight, in figure 9.54 are plotted the one dimensional slices of the

previous figure at three different r1 locations. Also plotted in this figure is the auto-

correlation Rww at three different r1 locations. The auto-correlation peaks at r3 = 0

and decays to 0 at r3 → ∞ with a characteristic oscillation. This auto-correlation is

of the form

e−a|r3| cos(2πbr3). (9.6)

A close inspection reveals that the scales in streamwise velocity are slightly smaller

than the scales in spanwise velocity. Time averaged 1D auto-correlations obtained by

many investigators using hot-wire probes do not have this nice oscillating pattern.

The spectral density functions are shown in figures 9.55 and 9.56 in log plot and

linear plot, respectively. They peak at the respective wavelength of autocorrelation

functions as they should be. The peak can be more distinctively seen in the linear

plot of figure 9.56.

9.6.2 Probability Density Functions

The structures in the spanwise direction can grow in the streamwise direction. As a

result, it may be worth while to plot the dimension of these structures at a specific

streamwise location. Figure 9.57 shows the maximum to maximum and minimum to

minimum streamwise velocity spacings in the spanwise direction at Rδ∗ = 1294 and

T = 6.4%. All the data for these plots are obtained from x = −2 cm location but



188

from different frames. After comparing with lot of known PDFs it is found that the

above PDF resembles the Gamma PDF. For comparison, the fitted Gamma PDF to

the experimental points is also shown in the figure. The Gamma PDF is defined as

p(r; a, b) =
1

baΓ(a)
ra−1e−r/b, (9.7)

where Γ(a) is the Gamma function. The PDF has a distinctive peak indicating a

robust underlying structure. The mean of maximum to maximum spacing is 0.81 cm

and the standard deviation is 0.33 cm; the mean of minimum to minimum spacing is

0.79 cm and the standard deviation is 0.30 cm.

In figure 9.58 are plotted the maximum to maximum and minimum to minimum

streamwise velocity spacings in the spanwise direction at Rδ∗ = 289 and T = 9.2%.

This is at the lowest Reynolds number we investigated in the experiments. It is

interesting to observe that even at this low Reynolds number, the PDF has a distinct

peak indicating the existence of streamwise structures in the flow as the correlations

indicated. Note however that the free-stream turbulence level is now more than the

Rδ∗ = 1294 case. From this we can conclude that we need more external disturbances

at low Reynolds number than at high Reynolds numbers for producing the structures

and that the sensitivity of the boundary layer is increasing as R → ∞. This has been

observed in many experiments in the past [35]. In this case: the mean of maximum

to maximum spacing is 0.70 cm and the standard deviation is 0.34 cm; the mean

of minimum to minimum spacing is 0.74 cm and the standard deviation is 0.33 cm.

Comparing these statistics with the Rδ∗ = 1294 case, we see that the spanwise scale

of the structures are comparable.

9.7 Comparison of Theory and Experiments

In this section, we compare the spanwise dimensions of the structures from the ex-

periments and robust flow stability calculations. To be able to do this, we make an

ansatz that the peak in the spanwise wavenumber in computations is independent of
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Table 9.2: Comparison of available data from hot-wires and present DPIV data.

Exp. Rδ∗ Lz/δ

Kendall 637 3.6

825 5.0

Westin et al. 890 2.2

1260 2.0

Klebanoff et al. 1760 5.7

Present 1294 0.52 ± 0.21

289 0.58 ± 0.28

the shear flow. We further assume that the structures in the experiments and compu-

tations scale with the respective length scale in the problem. The ansatz is justified

on the following grounds. We have seen in the 2D/3C equations that the cause for

huge amplification of disturbances is the non-normality of the operator, which arises

through the shear in the base flow. All that we need for this to happen is that there

is some non-zero shear.

The worst-case disturbances are strong functions of the operators A,B,C and

the spanwise wavenumber α. Since such a specific optimal disturbance may not be

available in the experiment, we assume that at least one of the top four worst-case

disturbance singular vectors are available in the experiment. This results in non-

dimensional critical wave-numbers from 1.2 to 4. α = 1.2 corresponds to the first

singular value and α = 4.0 corresponds to the fourth singular value. Furthermore, we

assume that a wavennumber in the range ±40% of the above critical wave-numbers

is available in the experiement. Converting these scalings into the boundary layer

case gives spanwise Lz/δ in the range 0.56 to 4.36 for the stability calculations. Here

Lz is the max-max spacing in the streamwise velocity. The above predictions agree

with the spanwise dimensions of the structures in experiments and listed in Table

9.2. We point out that a more detailed comparison requires more information about
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the structure of the disturbances in the experiment which is not available from the

available experimental data and our data.

9.8 Summary

A detailed study has been conducted to understand the dynamics of laminar-turbulent

transition in a forced boundary layer on a flat plate using global and non-intrusive

measurement techniques and flow visualization. Various flow quantities like velocity,

shear stress, vorticity and strain have been measured.

The results indicate that various transition parameters like shape factor, skin fric-

tion coefficient, mean profile, etc., are strong function of the external turbulence level.

The mean profile, shape factor, etc., are in the intermediate range between the lam-

inar values and fully turbulent values. But as the turbulence level is increased, they

moved towards the turbulent side of the spectrum as we expect. The study indicated

that it is impossible to pick a single measure quantifying the state of transition. Var-

ious measures like shape factor, skin friction, mean profile, etc., varied in different

ways as turbulence level is increased. This can be explained by the fact that the state

of the flow is governed by infinite-dimensional equations.

Neither T-S waves nor turbulent spots were found in the parametric range ex-

plored. It is not clear why no turbulent spots have been found. Most of the previous

investigators measuring with hot-wire probes indicated their presence. It is possible

that this might be an artifact of the point and intrusive measurement techniques used

by all the previous investigators. In all the cases, from the lowest Reynolds number

(Rθ = 163) to the highest Reynolds number (Rθ = 925) explored, the flow is em-

bedded with characteristic structures convecting downstream. These structures are

made up of local regions of intense streamwise velocity compared to the neighboring

regions in spanwise and streamwise directions. A real time study of the structures

in the flow shed more light on their dynamics and evolution. It was found that the

structures are convected at approximately the local mean velocity in all the cases and

they are formed in an almost random fashion in space and time. Furthermore, their
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dynamics and evolution were also indistinguishable in all the cases. Space-time auto-

correlation functions and probability density functions revealed that the wavelength

of the spanwise and streamwise structures in the boundary layer are independent of

the Reynolds number in the parametric range explored. The dimensions of the struc-

tures is in reasonable agreement with the predictions of our robust stability theory.

Further detailed comparisons with the boundary layer computations are necessary

for a complete understanding. It is interesting to see that streamwise structures are

found even at such low Reynolds numbers as Rδ∗ of 289. This is far below the T-S

stability theory prediction of Rδ∗ = 520. This clearly brings out the point that we

emphasized before that the stability theory should explicitly take the external distur-

bance environment into account. Furthermore, transition to turbulence should not be

just viewed as instabilities internal to the flow, but rather as disturbances driving the

system far from the laminar attractor. The spanwise PDF of the structures was found

to be similar to Gamma PDF. The exact reason for this is unknown at this stage.

It was also found that one needs larger perturbations at smaller Reynolds number

than at higher Reynolds number to produce these structures in the boundary layer.

This indicates the increased sensitivity of the boundary layer at large R as our theory

predicts. The spanwise velocity perturbations are found to be much smaller than the

streamwise velocity perturbations in the experiments as in the computations.

It was also found that each instantaneous realization has lot of structure, but the

time averaged field has very little structure. This indicates that the time averaging

of fields is not such a good idea. This can be explained from the quantitative DPIV

data, wherein, we notice peak-valley structure in the velocity field in the spanwise

and streamwise directions. These peaks and valleys are extremely time varying and

it is hard to distinguish the movement of peaks and valleys even at a time resolution

of 0.066 s. This clear lack of regular repeatable pattern in time is the cause for

the poor performance of time averaging. On the other hand, it was found that

spanwise averaging gave much better results. The auto-correlations obtained in this

fashion has a distinctive oscillating pattern revealing the underlying structure in the

flow. Time averaged auto-correlation obtained by many previous investigators has
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no such oscillating pattern. To our knowledge, this is the first time such a clean

auto-correlation has been obtained in a transiting boundary layer.
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Figure 9.48: Instantaneous distribution of e22 and e13 components of strain tensor at Rx = 375000 and T = 6.4%.



194Z

X

1 2 3 4 5 6 7 8

-6

-5

-4

-3

-2

-1

40.3062
37.9353
35.5644
33.1935
30.8226
28.4517
26.0808
23.7099

Z

X

1 2 3 4 5 6 7 8

-6

-5

-4

-3

-2

-1

40.3062
37.9353
35.5644
33.1935
30.8226
28.4517
26.0808
23.7099

Figure 9.49: Instantaneous streamlines and stream markers at Rx = 375000 and T = 6.4%. Left figure shows stream markers
and right figure shows streamlines.



195

z

x

1 2 3 4 5 6 7

-6

-5

-4

-3

-2

-1

34.2651
33.9048
33.5444
33.1841
32.8238
32.4635
32.1032
31.7429
31.3825
31.0222

x

U W

-6-5-4-3-2-1
-34.5

-34

-33.5

-33

-32.5

-32

-0.4

-0.2

0

0.2

u, z = 3
u, z = 5
w, z = 3
w, z = 5

z

U W

1 2 3 4 5 6
-34

-33.5

-33

-32.5

-32

-0.6

-0.4

-0.2

0

0.2

u, x = -2
u, x = -5
w, x = -2
w, x = -5

Figure 9.50: Mean velocity field at Rx = 375000 and T = 6.4%.



196z

x

1 2 3 4 5 6 7 8

-6

-5

-4

-3

-2

-1

4.90187
4.44611
3.99034
3.53458
3.07882
2.62305
2.16729
1.71153
1.25576
0.8

(a)

z

x

1 2 3 4 5 6 7 8

-6

-5

-4

-3

-2

-1

4.90187
4.44611
3.99034
3.53458
3.07882
2.62305
2.16729
1.71153
1.25576
0.8

(b)

Figure 9.51: RMS velocity field at Rx = 375000 and T = 6.4%. Left figure: RMS of u; right figure: RMS of w.
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streamwise velocity in the spanwise direction at Rδ∗ = 1294 and T = 6.4%. Gamma
PDF is also shown in the plot.
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Chapter 10 Conclusions

The discrepancies between the stability theory and experiments, and the reasons for

the limitations of hydrodynamic stability are addressed. It was shown that there are

eight different kinds of uncertainty involved in any tractable representation of flow

stability problem. Classical hydrodynamic stability theory addresses only the uncer-

tainty in the initial conditions via the point spectrum of the linearized equations. It

is further shown that addressing these other seven kinds of uncertainty is also impor-

tant especially for uncertain and non-normal operators like Navier-Stokes equations.

A framework of robust flow stability theory that addresses each of these uncertainty

systematically has been constructed. This involved defining many new stability con-

cepts and characterizing them using the structure of the operators and perturbations.

We hope that this way of doing stability analysis with respect to all the perturbations

in the model and the experiment closes the wide gap existing between the stability

theory predictions and the experimental findings.

It was shown that the non-linear, streamwise constant Navier-Stokes equations

are globally, asymptotically stable about Couette flow for all Reynolds number. A

transformation is constructed that eliminates the Reynolds number from these equa-

tions and leaves the boundary conditions invariant. It is also shown that there exist

initial conditions for which energy grows like R3, for large Reynolds number and like

R, for small Reynolds number. The linear 2D/3C equations are proved to be (Lp, Lp)

finite-gain stable and input-output stable for all p ∈ [0,∞].

An exhaustive study of input-output stability and gain analysis has been made

on the linear 2D/3C equations. This study revealed that all the deterministic and

stochastic finite-gains peak at a distinctive spanwise wavenumber, indicating the pres-

ence of a robust structure in the flow. It is also seen through computations that the

critical wave-number is independent of R for large R. Furthermore, all these induced

norms are very large at high Reynolds number and small at low Reynolds number,
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indicating the extreme sensitivity of the Navier-Stokes equations to external excita-

tion and unmodeled dynamics. This further emphasis out point that to understand

transition and turbulence, it is necessary to include an explicit robust uncertainty

analysis with respect to all the uncertainty.

Of fundamental importance in any numerical computation of fluid dynamics prob-

lems is the optimal, low-dimensional representation of an essentially infinite-dimensional,

dynamic flow phenomena. A novel technique for getting simple reduced models of

unsteady fluid phenomena has been introduced. The main idea behind this method is

deleting the weakly controllable and weakly observable states of the flow after the con-

trollability and the observability gramians of the fluid are aligned through a similarity

transformation. The error in the approximation is given in terms of the neglected

Hankel singular values. Computations done on Couette flow using spectral meth-

ods indicated that the method is performing very well, even for partial differential

equations.

Detailed DPIV, LDV and SSSs measurements have been made to understand the

dynamics and physics of transition to turbulence in a boundary layer forced by dis-

turbances in the external free-stream. To our knowledge, this was the first time such

a non-intrusive and global study, using DPIV, has been attempted on this problem.

The four dimensional space-time auto-correlation functions and probability density

functions revealed that there is a distinctive spanwise and streamwise structure in

the boundary layer even at small Reynolds number like Rδ∗ of 289. The wavelength

of these structures is found to be independent of Reynolds number in the parametric

range explored. In addition, the PDF of the structures looks like a Gamma PDF. The

exact reason for this is unknown at this stage. It was found that one needs larger per-

turbations at smaller Reynolds number than at higher Reynolds number to produce

these structures in the boundary layer. This indicated the increased sensitivity of the

boundary layer at large R. A real time study of the structures in the flow shed more

light on their dynamics and evolution. It was found that the structures are convected

at approximately the local mean velocity. Relevant stability theory predictions are

also in good agreement with the experimental data.
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Finally, this approach of robust flow stability brings many diverse areas like: fluid

mechanics, convex programming, LMIs, SDP, operator theory, real analysis, IQCs,

stochastic processes, robust and non-linear control together for the first time. This

wide inter-connections and the scope for exchange of ideas from one field into another

makes this a very exciting and fertile area to work. The topics that are discussed in

this thesis are just the tiny tip of an iceberg.
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Chapter 11 Future Work

The present comparison between the theory and experiments is not fully complete,

since the stability theory has been formulated on Couette flow and the experiments

are done in a boundary layer. Though this is not a bad idea to start by comparing

these two flows which have many things in common, the next natural step would be

to do a detailed robust stability study of boundary layer and compare the predictions

with the experiments. In this way we will able to compare various other things like

singular vectors, etc. In addition, it might be interesting to do an experiment wherein

one forces the boundary layer with the worst-case disturbances from the stability cal-

culation and study the response of flow. Comparison should also be made between

the 2D/3C and 3D/3C, linear and non-linear model stability and DNS. One can do a

worst-case analysis of non-linear model using Pontryagin maximum principle [13], cal-

culus of variations, etc. Also, we need to construct more explicit and detailed models

of uncertainty in the experiment using tools from system identification theory. This

will give more rigorous stability estimates than the worst-case conservative estimates

that have been obtained here.

A more natural way is to study stability, gains and complexity reduction of discrete

set of equations as most of the computations are done discrete in time. The previous

continuous-time definitions can be extended to discrete-time, time varying cases too.

There are other interesting stability notions like absolute or sector stability, circle

criterion, passivity, positivity, dissipativity, small-signal input-output stability, small-

signal finite-gain stability, structured singular value (SSV), stability in probability

measure (weakly stable in probability, weakly asymptotically stable in probability,

strongly stable in probability, strongly asymptotically stable in probability), etc.,

which are relevant to flow stability but have not been addressed in this thesis. The

problem of gain analysis in the presence of model uncertainty set (like uncertainty in

the base flow, etc.) [45] and other gains [124] can also be formulated.
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In the complexity reduction method presented in this thesis, we truncated the

weakly observable and controllable modes. A different approach would be to put

the time derivative of these weak states to zero, analogous to singular perturbation

technique. This is called balanced residualiation in the controls literature. Other

norm based reductions are Hankel norm reduction, etc will also be tried. It might be

interesting to generalize the above complexity reduction ideas to non-linear and truly

multi-scale problems wherein one wants to characterize the important scales at each

time step and get simplified models at each time step to a prescribed accuracy in an

iterative fashion.

This new framework of stability theory has wide range of applications in other

areas of fluid flow like: compressible flows, time-varying base flows, combustion and

flames, shock dynamics, inter-facial flows and vortex dynamics which have many

scientific and engineering applications. Our study also indicates that we need a com-

pletely different approach to active control [14] of unsteady fluid flow that is not just

based on eigenvalues and nominal models.

Though we have started work in the above directions, that work is not presented

in this thesis. A more exhaustive study along these lines will be pursued in the coming

years.



207

Appendix A Nomenclature

Roman letters

A Linearized Navier-Stokes operator

B Disturbance operator

C Output operator

Cn Complex n dimensional vector space

Cn×n Complex n × n dimensional vector space

Cf Skin friction coefficient

D Differentiation with respect to y

DN Discrete approximation of D

eij Strain tensor

E Expectation

E(t) Perturbation energy

F Fourier transform

g Impulse response operator

G Transfer function operator

H Shape factor

H(t) Heaviside function

H2, H∞ Hardy norms

inf Infimum

I Identity matrix

Im Imaginary part of

Lp Lebesgue function space in time or space (with p ∈ [0,∞])

lp Little Lp space (with p ∈ [0,∞])

L(Y, Z) Space of linear, bounded operators from X into Y

N Number of collocation points in the y direction
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Oo Observability operator

Oc Controllability operator

p Pressure

R Reynolds number in Couette flow

Rn Real n dimensional vector space

Rn×n Real n × n dimensional vector space

Re Real part of

Rx Reynolds number based on x in the boundary layer

Rδ Reynolds number based on boundary layer thickness

Rδ∗ Reynolds number based on displacement thickness

Rθ Reynolds number based on momentum thickness

Rw Auto-correlation of w

R > 0 R is a positive definite operator

R > S R and S are Hermitian and R − S > 0

sup Supremum

t Time

Sw Spectral density of w

sgn Sign of

S Spectrum norm

P Power norm

Trace Trace operator

T Turbulence level normalized by U∞

TL Turbulence level normalized by local mean U

T+ Turbulence level in wall units

x(t) State vector

Xc Controllability gramian

Xe Extended space of space X

X,Y, Z Global spatial coordinates at plate LE

x, y, z Local spatial coordinates at DPIV imaging region

y+ y in wall units
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y(t) Output vector

Yo Observability gramian

U, V,W Mean velocities

Ue Free-stream velocity

U+ U in wall units

V Lyapunov function

u, v, w Fluctuation velocities

urms RMS velocity of u

uτ Frictional velocity on the wall

u Control input

w(t) Disturbance vector

∆ Uncertainty space

Greek letters

∆ Uncertainty operator or Laplacian operator

λi Eigenvalues ordered in decreasing order (with i = 1, 2, 3.. )

σi Singular values ordered in decreasing order (with i = 1, 2, 3.. )

σ̄ Maximum singular value

λmax Maximum eigenvalue

α Spanwise wavenumber

Γ Hankel operator

ψ Cross sectional stream function

δ(t) Dirac delta function

ω Time frequency

ω2 Normal vorticity

δ Boundary layer thickness

δ∗ Displacement thickness

θ Momentum thickness

µ Kinematic viscosity

η Blasius non-dimensional y
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Other symbols

‖ ‖ Norm

| | Modulus

<,> Inner product or duality pairing

∗ Adjoint or conjugate transpose

=⇒ Implies

≡ Identically equal

t Transpose

ˆ Fourier or Laplace transform

∗ Convolution operator

∀ For all

∈ Belongs to

→ Tends to

<< Much less than

>> Much greater than

⊂ Subset

∃ There exists

Σ Summation
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Appendix B Acronyms

LMI Linear matrix inequality

LMIP Linear matrix inequality problem

DPIV Digital particle image velocimetry

LDV Laser Doppler velocimetry

SSS Shear stress sensor

RMS Root mean square

SISO Single-input single-output

MIMO Multi-input multi-output

LTI Linear time-invariant

LTV Linear time-varying

BIBO Bounded-input bounded-output

RHP Right half plane

LHP Left half plane

SVD Singular value decomposition

EVD Eigenvalue decomposition

SDP Semidefinite programming

SSV Structured singular value

LFT Linear fractional transformation

ODE Ordinary differential equation

PDE Partial differential equation

iff if and only if

IQC Integral quadratic constraint
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Appendix C Gronwall Inequality

Lemma C.1 (Gronwall) Assume that λ : [a, b] → R be C0 and µ : [a, b] → R be

C0 and nonnegative. If h : [a, b] → R is a C0 map that such that

h(t) ≤ λ(t) +

∫ t

a

µ(s)h(s)ds, a ≤ t ≤ b. (C.1)

Then

h(t) ≤ λ(t) +

∫ t

a

λ(s)µ(s)h(s)e[
∫ t

a µ(r)dr]ds, a ≤ t ≤ b. (C.2)

If λ is a constant, then

h(t) ≤ λe[
∫ t

a µ(r)dr], a ≤ t ≤ b. (C.3)

If λ and µ are both constants, then

h(t) ≤ λe[µ(t−a)], a ≤ t ≤ b. (C.4)

The proof of this is given in any good text in analysis.
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Appendix D Another Proof of L2 to L∞

Induced Norm

In this appendix we give another proof of L2 to L∞ induced norm in Theorem 4.9.

The basic idea is using the duality pairing argument [124]. First we note that the

dual of L1 is L∞ and the dual of L2 is L2. We shall denote the dual by superscript †.

From the definition of dual [126] and equation (4.70) we have the following relations

Cg : L1 → L2, w 7→ Cgw; C†
g : L†

2 = L2 → L†
1 = L∞, z 7→ C†

gz (D.1)

< z,Cgw >=< C†
gz, w >, ‖Cg‖L1→L2 = ‖C†

g‖L2→L∞ , (D.2)

where <,> denote duality pairing in the appropriate space. Using the above equalities

and (4.70)

< z,Cgw >=

∫ ∞

−∞
z∗(t)Cgw(t)dt =

∫ ∞

−∞
z∗(t)[

∫ ∞

−∞
g(t − τ)w(τ)dτ ]dt. (D.3)

One can exchange the first and second integrals by Fubinis theorem giving

< z,Cgw >=

∫ ∞

−∞
[

∫ ∞

−∞
g∗(t − τ)z(t)dt]∗w(τ)dτ, =< C†

gz, w > (D.4)

therefore

(C†
gz)(t) =

∫ ∞

−∞
g∗(−(t − τ))z(τ)dτ. (D.5)

It follows that C†
g = Cg∗ , where Cg∗ is the convolution operator associated with

g∗(−t). Hence, given a map Cg : L2 → L∞, w 7→ Cgw, it follows that this is dual

map of Cg∗ : L1 → L2, w 7→ Cg∗w. Defining Xc =
∫ ∞
0

eAuBB∗eA∗udu it follows from
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(4.76,4.78,D.2) that

‖Cg∗‖L1→L2 = ‖CXcC
∗‖ = ‖Cg‖L2→L∞ =

‖y(t)‖L∞

‖w(t)‖L2

. (D.6)
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