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Abstract

We present results from observations of the Cosmic Microwave Background (CMB) with the Cosmic

Background Imager (CBI), a sensitive 13-element interferometer located high in the Chilean Andes.

We also discuss methods of analyzing the data from the CBI, including an improved way of measuring

the true power spectrum using maximum likelihood estiamtion. This improved method leads to a

saving of a factor of two in memory usage, and an increase in speed of order the number of points

in the spectrum. The initial results are discussed, in which the fall-off in power at ell > 1000 (the

“damping tail”) was first observed. We also present the results from the first year of observations

with the CBI, and discuss cosmological intepretations both alone and in concert with the results

from other experiments. These provide tight constraints on cosmological parameters, including

a Hubble constant of 69 +/- 4 km/s/Mpc, an age of the universe of 13.7 +/- 0.2 billion years,

and a denisty of dark energy of 0.70 +/- 0.05 of the critical density of the universe. Finally, we

discuss an alternate method of data compression, with great flexibility in what information is kept,

while being computationally tractable. We then apply this method to the CBI data to constrain

the potential emission from foreground contaminants contributing to the observed CMB radiation.

We find that the data is consistent with zero foreground, with a maximum allowed foreground

contribution between about 8% and 12% of the total signal (at an ell of 600 and frequency of 30

GHz), depending on the spectral index of foreground emission.
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Chapter 1

Introduction

About forty years ago, Arno Penzias and Robert Wilson discovered that the sky was filled with a

highly uniform glow with an antenna temperature at 4 GHz of about 3 degrees (Penzias & Wil-

son, 1965). The radiation was immediately interpreted by Dicke et al. (1965) to be the thermal

radiation from the formation of the universe that they themselves were searching for, now called

the Cosmic Microwave Background (CMB). They recognized its cosmic importance, even using the

CMB temperature and cosmic helium abundance to calculate the current physical baryon density

ΩBh
2 to within an order of magnitude, using the techniques of Big Bang Nucleosynthesis (BBNS).

The CMB was measured to be an almost perfect black-body (Mather et al., 1994) and perhaps the

smoothest astronomical field known, uniform throughout the sky to a part in a thousand. Despite

its smoothness, observations of minute fluctuations in the CMB have become one of the most impor-

tant sources of information about the large-scale properties of the cosmos. This thesis will discuss

observations of CMB anisotropies using the Cosmic Background Imager (CBI), a special purpose

radio interferometer.

I will describe CBI observations, techniques used to analyze the data, and the results obtained.

In Chapter 2, I describe the framework of Maximum Likelihood Estimation used to extract a power

spectrum once the expected behavior of the data is calculated, including a new way of converging

to the best-fitting power spectrum that can decrease the computational work by a factor of a few

dozen. In Chapter 3, I describe the commissioning data taken by the CBI, the analysis techniques

used, the resulting power spectrum, and the significance of that power spectrum. In Chapter 4, I
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describe the first-year observations of the CBI, the analysis of those data (which was much more

sophisticated than that of Chapter 3), and the ensuing power spectrum. In Chapter 5, I describe

a new, fast technique for measuring the power spectrum that has considerable flexibility in the

choice of information retained while approaching the theoretical minimum number of estimators

required to compress the data set almost losslessly. This compression is important because CMB

analysis strains available computing resources. This technique has been coded into a program called

CBISPEC, which I then use to place limits on galactic foregrounds possibly present in the CBI

observations. This is a task for which CBISPEC is well suited, but which is impossible with our

other analysis tools. In Appendix A, I carry out a derivation of statistical noise properties used in

Chapter 4. Finally, in Appendix B I briefly summarize work conducted with Patricia Udomprasert

in applying optimal CMB weighting to CBI observations of galaxy clusters. This has the potential

to substantially increase the accuracy with which the CBI can characterize cluster structure from a

given dataset.

1.1 Origin of the Microwave Background

The CMB is understood today to be the remnant radiation from the big bang. The universe started

as an extremely hot, dense plasma that expanded and cooled. This expansion and cooling has

continued from the earliest fraction of a second after the big bang through the current day. When

the universe was very young, the thermal radiation was locked in place relative to the baryons

through Thomson scattering. There was some diffusion on small scales (Silk, 1968), but otherwise

the photon density behaved like the plasma density. Finally, about 400,000 years after the big bang,

protons and electrons combined to form neutral hydrogen atoms, a process called recombination. The

photons could then free-stream, and they have been (mostly) unaltered since this epoch, aside from

the overall cooling of the CMB due to the expansion of the universe. The spot where photons last

scattered off of electrons is called the surface of last scattering. Because recombination happened

quickly (δz/z < 0.1 (see, e.g., White, 2001), we have in the CMB essentially a snapshot of the

conditions of the universe at an age of 400,000 years. This is only about 3× 10−5 of its current age,
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or about the age of a day-old baby relative to a 90-year-old. At this early time, the universe was

almost perfectly uniform. But it can’t have been completely uniform, or else there would have been

no seeds from which the structure we see today could have formed. For decades, people searched for

anisotropies in the CMB without success. The first and by far the largest anisotropy measured was

a dipole moment due to the Earth’s motion, most notably in Fixsen et al. (1994) (see Lineweaver,

1997, for dipole history), but the primordial fluctuations were not detected until the COBE satellite

(Smoot et al., 1992) measured fluctuations on 10◦ scales in 1992. Since then, the study of the CMB

has been one of the most active fields in astronomy, with a whole host of experiments measuring

the anisotropies with higher sensitivity and on smaller scales from ground-based, balloon-born, and

satellite experiments.

The reason that measuring CMB anisotropies is of such interest is because the angular power

spectrum of the anisotropies contains a wealth of detailed information about the properties and

evolutionary history of the universe. The power spectrum is so useful because the fluctuations

are both calculable and small. Once the earliest spectrum has been set (such as during inflation),

the evolution of the fluctuations does not depend on exotic and uncertain physics. Because the

fluctuations are small they remain in the linear regime, and so the messy non-linear physics that

dominates the universe today (star formation, gas dynamics, supernovae, AGN’s etc.) doesn’t affect

the expected spectrum. Care must be taken calculating the spectrum, especially the radiative

transfer in the transition region between optically thick and optically thin. Though the calculations

are complicated, they are not uncertain, and a number of packages that calculate the spectrum are

in good agreement (Bond & Efstathiou, 1984, 1987; Vittorio & Silk, 1984, 1992; Fukugita et al.,

1990; Hu et al., 1995; Lewis et al., 2000, many others). We use versions of the fast code CMBFAST

(Seljak & Zaldarriaga, 1996) for all the model spectra used in this thesis.

1.2 Power Spectrum Basics

The primary goal of microwave background experiments is to measure the angular power spectrum

of CMB fluctuations. There is potentially confusing terminology (most notably the fact that Cℓ and
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Cℓ are different quantities), so the notation used in the remainder of this work is defined here, and

power spectrum concepts specific to the CMB are outlined.

Generally, power spectra are thought of in Fourier space, as being the expected variance of

modes of a given wavelength. The fact that the sky is a sphere, rather than an infinite plane,

requires modifications to the standard Fourier picture. For the particular case of the surface of

a sphere, the temperature everywhere on the sky is expressed as the sum of spherical harmonics,

rather than the sine and cosine waves of Fourier transforms:

∆T

T
=
∑

ℓ

ℓ
∑

m=−ℓ

aℓmΦℓm (θ, φ) (1.1)

Here the Φℓm are the spherical harmonics, and the aℓm are their amplitudes. With the Φℓm, ℓ more

or less corresponds to the wavelength of the mode, and m is akin to its orientation. Since we expect

the microwave background to have no preferred orientation on the sky, the aℓm should be statistically

independent of m, depending only on ℓ. Furthermore, we expect the CMB to be a Gaussian random

field if the fluctuations arise during the era of inflation (White, Scott, & Silk, 1994), though other

sources of structure formation, e.g. topological defects, will give rise to non-Gaussianity. This means

that the aℓm are independent of each other and have a Gaussian probability distribution with mean

zero. Under these assumptions, all of the information contained in the CMB is contained in a set

of coefficients Cℓ such that

〈

a2ℓm
〉

= Cℓ (1.2)

This is not usually the quantity quoted, however. To see the problem, picture a power spectrum

where Cℓ is constant and compare the variance on small scales to that on large scales. If we pick

a patch size of interest, then it will feel power from some fractional width in ℓ, so a small patch at

higher ℓ will feel more discrete values of ℓ than a large patch at lower ℓ. In addition, each ℓ feels

2ℓ+ 1 individual Φℓm, and so the total number of aℓm that contribute to the variance of a patch is

proportional to ℓ2. So, a flat power spectrum in Cℓ will have sharply rising temperature fluctuations

on smaller scales. Another way of thinking about it is that a spectrum flat in Cℓ is a pure white-noise



5

spectrum with every mode statistically equivalent, so large-scale fluctuations average over more noise

and hence will have smaller amplitudes than small-scale fluctuations. In order to make the numbers

in the power spectrum more physically meaningful, the quantity Cℓ is often used, with the definition

(Bond, 1996)

Cℓ ≡
ℓ(ℓ+ 1)Cℓ
2π

(1.3)

A flat spectrum in Cℓ will then have scale-invariant temperature fluctuations, equal on all lengths.

Usually, Cℓ is scaled by the CMB temperature T0 and plotted in µK2. This corresponds to the actual

temperature variance on the sky of fluctuations with wavenumber ℓ. In general, the remainder of

this work will refer to Cℓ and not Cℓ.

1.3 Cosmological Effects on the Power Spectrum

The initial fluctuations are believed to have arisen from quantum uncertainty during the epoch

of inflation, and hence to have a nearly scale-invariant spectrum, though the details depend on

which particular flavor of inflation one uses (see, e.g., Lyth & Riotto, 1999, for a review). Since

the creation of the fluctuations, there are two broad classes of effects that determine the present

day power spectrum—those processes that happened before recombination and those that happened

after. The post-recombination effects include scattering off the reionized electrons in the modern

universe (seen in Kogut et al., 2003), anisotropies introduced because of the time-varying potential

along the flight path of a photon called the integrated Sachs-Wolfe effect, an overall size scaling

in ℓ of the power spectrum set by the angular diameter distance to the surface of last scattering,

and heating of CMB photons on small scales due to Compton scattering off hot gas in clusters,

called the Sunyaev-Zeldovich effect. Before recombination, the photons were locked in place with

the baryons, and so they carry the information about the state of the baryons at 400,000 years. The

baryon/photon fluid underwent acoustic oscillations as overdense regions collapsed due to gravity,

then expanded from pressure, while the dark matter continued to collapse. Because the fluctuations

all started in phase at the big bang, the sound speed was uniform throughout the universe, and we see
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a short period of time at the surface of last scattering, the phase of fluctuations at the surface of last

scattering is only dependent on their wavelengths. So we expect to see the power rising as we go to

smaller scales up until the length where the fluctuations are at their maximal compression (at ℓ ∼ 200

for a flat universe). As we move to smaller scales, the power will drop as the scale length moves

towards modes that have completed their first compression and are expanding back to a density null

(but a peak in the velocity). Then we will see modes that have compressed, re-expanded, and hit

the point of maximal expansion, for another peak in the power spectrum. And so on down to ever

smaller scales that have completed more and more oscillations by the surface of last scattering. So,

we expect to see peaks and dips in the angular power spectrum of the CMB. The details are very

sensitive to the exact conditions of the universe, though. Dark matter has no pressure, and so rather

than oscillate it will continue to collapse, and try to pull the photon-baryon fluid with it through

gravity. On small scales, photons will diffuse out of the fluctuations, reducing power exponentially

in a process called Silk damping (Silk, 1968). On larger scales, photons are gravitationally redshifted

by climbing out of the potential wells of the perturbations, called the (non-integrated) Sachs-Wolfe

effect (Sachs & Wolfe, 1967). The effect is 1/3 that expected solely due to gravitational redshifting

because time dilation at the surface of last scattering partially cancels the gravitational redshift,

since it causes the photons to appear to come from a younger, hotter universe (c.f. Peacock, 1999).

As the fluid collapses, the more baryons there are driving the infall, the more pressure the photons

have to exert before they can turn the collapse around, leading to an increase in power in the odd

numbered (compression) peaks. Power on small scales is also reduced because of the finite thickness

of the surface of last scattering. Instead of seeing a single fluctuation, as is the case for large-scale

modes, a single point on the sky will have contributions from the number of small modes that can

fit into the finite recombination thickness. Consequently, the average temperature anisotropy drops

from purely geometric effects on small scales (in addition to the reduction from Silk damping). This

can be used to test, e.g., non-standard recombination theories (for instance, if the fine-structure

constant α varies with time). Because the amplitude at the surface of last scattering is proportional

to the initial amplitude of the fluctuations, we also expect to be able to see the imprint of the
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primordial fluctuations in the microwave background. It is precisely because the evolution of the

fluctuations is sensitive to so many fundamental parameters that detailed observations of the CMB

fluctuations can determine many fundamental parameters.

I have found a few simple rules helpful when trying to understand the behavior of the power

spectrum that will be illustrated in Figures 1.1 through 1.6, which plot sample power spectra. All

spectra were calculated using CMBFAST. The unit of density used in cosmology is Ω, which is the

fractional density of a component relative to the critical density required to make the universe flat.

For matter densities, this is not the important density. Rather, the important density is the physical

density at the surface of last scattering, which (absent the creation or destruction of particles) is

the same as the physical density today, scaled by the relative volumes of the universe, (1 + z)3.

Because the critical density depends on the Hubble constant like H−20 , a fixed physical density will

be proportional to H20Ω. In keeping with astronomical tradition, the Hubble constant will be listed

as 100hkm/s/Mpc. So, the physical density of the component of the universe x will be given as

Ωxh
2, which is sometimes also written in the literature as ωx. For these figures, unless explicitly

varied, the baryon physical density ΩBh
2, the cold dark matter density Ωcdmh

2, and the total matter

density Ωmh
2 ≡ ΩBh2 +Ωcdmh2 will be kept fixed, unless explicitly varied. The other cosmological

parameters that specify the models are the spatial curvature of the universe Ωk, the scalar power-law

index of the primordial fluctuations ns, the cosmological constant ΩΛ, and the optical depth due to

reionization τc. The Hubble constant is implicitly defined through the relation Ωk +ΩΛ +Ωm = 1.

The fiducial model in the plots is Ωk = 0 (flat universe), h = 69, ΩBh
2 = 0.023, Ωmh

2=0.143,

ΩΛ = 0.699, ns = 1.0, and τc = 0, with one parameter varied in each set. When Ωk, ΩBh
2, Ωmh

2,

and h were varied, ΩΛ was varied to maintain Ωk + ΩΛ + Ωm = 1. Rather than the traditional

normalization to COBE-DMR at low-ℓ, I normalize the plots to the value at the first peak. This is

often more illustrative than the traditional normalization, for instance, in the Cℓ as a function of h

plot.

There is a distinction between the power spectrum at the surface of last scattering and the

power spectrum we observe today, because of effects along the line of sight. If a signal originates
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at a given redshift, it cannot be coherent on scales larger than the horizon size at that redshift,

so we expect the signature of events between the surface of last scattering and the present day to

be primarily concentrated at low-ℓ, while the fluctuations intrinsic to the surface of last scattering

to appear predominantly at high-ℓ. One such effect is from the reionization of the universe by

stars at a comparatively recent redshift. When reionization happens, CMB photons will scatter

off the newly free electrons. Since the scattering happens through large angles, it essentially leads

to an average scattered component equal to the mean CMB temperature as seen by the scattering

electron. That scattering will average out over scales smaller than the electron’s horizon size, but

not over larger scales. Since the electron density after reionization will fall like (1 + z)
3
, most of the

scattering will happen near the redshift of reionization, so the effect on the spectrum will be roughly

to reduce the amplitude on scales smaller than the horizon by exp(−τ) while leaving the larger scales

mostly untouched. This is indeed the case, as can be seen in Figure 1.3. Another important large-ℓ

secondary anisotropy is the integrated Sachs-Wolfe effect, which is the heating or cooling of photons

as they travel through a changing gravitational potential. If a potential weakens as a photon travels

through it (e.g., from a matter overdensity expanding with the Hubble flow), then the blueshift as

the photons falls into the potential well will be larger than the redshift as the photon climbs out.

This is the one place that the cosmological constant Λ can effect the CMB spectrum (other than

an its effect on Ωk, which doesn’t change the shape of the spectrum), since larger values of Λ in

a flat universe mean that the expansion is Λ-dominated earlier, and so the integrated Sachs-Wolfe

contribution to the spectrum is larger in amplitude and happens on smaller scales. This effect is

clearly seen in Figure 1.4, which keeps Ωk and the physical matter densities ΩBh
2 and Ωmh

2 fixed

while trading between h and Λ. As h increases, ΩB and Ωm decrease to keep the physical densities

fixed, leading to a higher value of Λ to keep the universe flat. This shows up at very low-ℓ (about

ℓ = 10) as increased power, with the spectrum otherwise unchanged.
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Figure 1.1 Dependence of Cℓ on Ωk, the flatness of the universe while keeping the physical matter
density fixed. The curvature of the universe doesn’t affect the physical structure at the surface
of last scattering, since the universe was highly matter+radiation dominated then. It can only
affect the angular diameter distance DA to the surface of last scattering, so the acoustic peaks are
shifted to larger ℓ as the universe become less dense, without changing the structure of the peaks.
Conveniently, DA is sensitive predominantly to the overall spatial curvature of the universe, and
only weakly sensitive to which individual constituents dominate. This is why the position of the
first peak, which is really a direct measure of DA, is so useful as a measure of the flatness of the
universe. The low-ℓ structure is from the integrated Sachs-Wolfe effect as density perturbations
along the line of sight in the intervening stretches of the universe evolve.



10

10
0

10
1

10
2

10
3

10
4

0

500

1000

1500

2000

2500

3000

3500

4000

l

l(l
+

1)
C

l/2
π 

(µ
k2 )

Dependence of C
l
 on n

s

n
s
=0.8

n
s
=1

n
s
=1.2

Figure 1.2 Dependence of Cℓ on ns, the power law index of the primordial fluctuations. Inflationary
theories predict a value slightly less than one. Measurement over very broad ℓ ranges increases the
sensitivity to ns. There has been a recent suggestion (Spergel et al., 2003) that the initial spectrum
may have been more complicated than a simple power law.

1.4 Microwave Background Observations

The first detection of anisotropy in the CMB was that of the Differential Microwave Radiometer

(DRM) on COBE (Smoot et al., 1992), which measured the power spectrum on scales of ∼ 10◦. Ever

since, there has been a flurry of activity in the field. The first generation of post-COBE experiments

(e.g. Bond et al. (2000) for a list) concentrated on measuring the first acoustic peak, which for a flat

universe is on angular scales of about a degree, or ℓ ∼ 200. Many experiments dectected anisotropies,

but no single experiment succeeded in convincingly detecting a peak internally, though TOCO (Miller

et al., 1999) came tantalizingly close. The combined set of experiments suggested the presence of

a peak, but the heterogeneous nature of the data and the comparatively large errors of any single

data set made the peak in the ensemble set somewhat questionable. The field changed dramatically

with the first unambiguous detection of an acoustic peak by BOOMERANG (de Bernardis et al.,

2000), followed shortly by MAXIMA (Hanany et al., 2000). The peak was just where it had been
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Figure 1.3 Dependence of Cℓ on τc, the optical depth in the local universe to the surface of last
scattering. The assumption is that the universe reionized quickly at a given redshift and has remained
largely ionized ever since. The CMB gets averaged out on scales smaller than apparent horizon size
at recombination, but is largely untouched on larger scales. So, reionization picks out a special ℓ,
and fluctuations smaller than that ℓ are suppressed relative to fluctuations larger than that ℓ. Since
the plot is normalized so that the models are equal to each other at their peaks, this shows up as an
amplification of power at small ℓ at τc increases. The higher τc is, the earlier the universe must have
reionized to reach that optical depth, so the break in the spectrum will happen at larger ℓ (smaller
scales) for higher values of τc, in addition to the relatively greater suppression at high ℓ.
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Figure 1.4 Dependence of Cℓ on H0, the Hubble constant. This is an example of a degeneracy in
the microwave background. If we keep the physical densities of matter components ΩBh

2 and Ωmh
2

fixed as we vary H0, then the physical densities at recombination will also remain unchanged. This
plot keeps ΩBh

2 and Ωmh
2 fixed, changing Λ to keep the universe flat for different values of H0.

The slight horizontal shifting for the different models is due to the degree to which DA is sensitive
to the constituents of the universe rather than just to its flatness. It is precisely this degeneracy
between H0 and DA that makes the CMB, by itself, unable to measure Λ. There is a difference
at low-ℓ because the Sachs-Wolfe effect is changed by the different expansion history, but it can be
mimicked by other factors such as τc. The intrinsic cosmic variance on such large scales ℓ ∼ 10 also
makes precision determinations of Λ solely through the CMB difficult.
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Figure 1.5 Dependence of Cℓ on Ωmh2. Same as Figure 1.1, only varying the dark matter content
while keeping the universe flat and h fixed.
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second peak amplitude drops and the third peak rises as ΩBh

2 increases. Also note that power is
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2 because photons diffuse faster with fewer baryons to
hold them in place, washing out power on small scales.
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predicted to be if the universe were flat. In addition to measuring the first peak, BOOMERANG

and MAXIMA probed smaller angular scales as well, beginning to unlock the information contained

in the spectrum at higher ℓ. The BOOMERANG and MAXIMA spectra were joined in short order

by spectra from CBI (Padin et al., 2001a; Mason et al., 2003; Pearson et al., 2003), DASI (Halverson

et al., 2002), VSA (Scott et al., 2003; Grainge et al., 2003), ARCHEOPS (Benôıt et al., 2003),

and ACBAR (Runyan et al., 2003), as well as improved spectra from BOOMERANG (Netterfield

et al., 2002; Ruhl et al., 2002) and MAXIMA (Lee et al., 2001). Of note are the first detection

of the damping tail by CBI (Padin et al., 2001a), the first detection of the polarization signal of

the CMB by DASI (Kovac et al., 2002), and a possible first detection of secondary anisotropy from

the Sunyaev-Zeldovich effect by the CBI (Mason et al., 2003; Bond et al., 2002b), later joined

on the same angular scales by BIMA (Dawson et al., 2002) and ACBAR. This second generation

of ground-based or balloon-born experiments has been characterized by high signal-to-noise ratio

(SNR) measurements of the CMB spectrum over large ranges of angular scales. This permits single

experiments to trace out important structures in the power spectrum. In addition, the different

power spectra are in good agreement (see, e.g., Sievers et al., 2003), which gives one confidence in

them. This second generation is being brought to completion by the WMAP satellite and its all-sky

power spectrum (Hinshaw et al., 2003), which is very good to ℓ ∼ 600 and cosmic-variance limited

to ℓ ∼ 350. It is worth stressing that where WMAP is cosmic variance limited, it has used all the

information present in the full sky. No future experiment will be able to substantially improve the

total-intensity spectrum through the first peak.

There will be two main thrusts in future microwave background observations. The first is to do

an ever better job of measuring the power spectrum on smaller scales. There will be an improvement

through the second and third peak region of the spectrum as WMAP continues observing. Upcoming

experiments, such as Planck, the Atacama Cosmology Telescope, and the South Pole Telescope, will

also improve the spectrum out to higher ℓ, with the hope of eventually finding galaxy clusters because

of their imprint on the CMB through the Sunyaev-Zeldovich effect (see, e.g., Komatsu & Seljak,

2002; Bond et al., 2002b, for current estimates of the effect). The other thrust is to measure the
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polarization of the microwave background. DASI (Kovac et al., 2002) first measured the polarization

power spectrum, though the spectrum is too noisy to have cosmologically useful information. Shortly

thereafter, WMAP measured the cross-correlation spectrum of the polarization and total-intensity

anisotropies on large scales (Kogut et al., 2003). This large-angle spectrum contains information

about the optical depth to the surface of last scattering. The optical depth comes from free electrons

after hydrogen has been ionized by the first sources of light in the universe. Because the scattering

from electrons is polarized, and the radiation scattered is the CMB as seen by the scattering electrons,

τc introduces a correlation between the total intensity and the polarization of the CMB. It is this

that allowed WMAP to break the degeneracies in total intensity to measure τc and find that the

universe reionized at z = 20± 10. Future measurements will refine this number.

1.5 Interferometers

I give here a brief description of interferometers, along with some of the terminology used throughout

this thesis. For more quantitative details as to the response of interferometers, especially with regards

to CMB observations, see Chapter 3. Radio frequency interferometers are an important part of

microwave background research. The CBI, along with DASI and the VSA, are radio interferometers.

The remaining second-generation ground/balloon based CMB experiments use bolometers to map

the total intensity of the CMB in maps. An interferometer consists of an array of collection devices

(usually parabolic dishes, but sometimes feed horns as is the case with DASI and VSA), with a

receiver at the focus of each dish sensitive to the incoming electric field. The receiver amplifies

the electric field, then usually the signal is mixed down to lower frequencies and perhaps split into

channels. The receiver outputs are then fed into the correlator which multiplies the signals from

each pair of receivers and integrates the product. The fundamental measurement produced by an

interferometer is this integrated signal product, called a visibility. Because incoming electric fields

have amplitudes and phases, the visibilities need amplitudes and phases as well, which makes them

complex, so each visibility really has two independent pieces of information. The baseline is the pair

of antennas that were combined to give the visibility. The baseline is usually referred to either using
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the antenna pair, or more commonly, using the separation vector of the dishes either in physical

distance or in wavelengths. The vector position of the baseline in wavelength is known as the UV

position of the visibility, and the total set of UV points observed by an interferometer is called the

UV coverage. The areas in the UV plane covered by observations sets the total range of scales to

which the interferometer is sensitive. The noise, usually dominated by thermal noise in the receivers,

is independent for different visibilities. There can be correlated noise between different visibilities,

but in a well-designed instrument it should be very small, with the receiver cross-talk in the range

of -110 to -130 dB for the CBI’s most closely-spaced dishes (Padin et al., 2000).

The response of a visibility to the signal on the sky depends both on the separation of the

dishes and the details of the collecting element. Perhaps the easiest way to visualize the output

of an interferometer is to run the signal backwards and think of the receiver as a transmitter.

For the case of a single dish, there will be a single-aperture diffraction pattern on the sky that

is the Fourier transform of the collecting aperture. The power pattern on the sky is called the

primary beam and is the Fourier transform of the square of the electric field response of the dish.

It typically has a large response in the center, with ripples extending out to large angles falling in

amplitude. The surrounding ripples are called sidelobes. Sidelobes are undesirable because they

make the interferometer respond to (usually unknown and possibly changing) sources far away from

the position on the sky where the dish is pointed, called the pointing center. Consequently, there

is often some sort of taper applied to the dish to make the sidelobes fall off more quickly, at the

expense of a slight broadening of the main part of the beam and a reduction in sensitivity. In

the CBI dishes, we use a Gaussian taper since the reduction in sidelobes is so important. For the

case of a two-element baseline, a phase modulation gets applied to the primary beam because the

radiation from the two receivers alternately goes in and out of phase, with the wavevector k of the

visibility on the sky equal to the vector separation of the baseline in wavelengths, which is the UV

coordinate of the baseline. Note that each element is sensitive to the electric field, so the product

of two baselines will be sensitive to the square of the electric field, which is precisely the single dish

power pattern, if the two primary beams are the same. So, running the radiation from the sky to



17

the receivers again, a visibility will be equal to the integral of primary beam times a plane wave

on the sky times the sky signal. In Fourier space, the multiplication becomes a convolution, and

we have that the visibility is equal to the Fourier transform of the sky convolved with the Fourier

transform of the primary beam, sampled at the UV coordinate of the baseline (see Chapter 3 for

quantitative details of the response). It is precisely this property that makes interferometers well

suited for CMB observations: on small scales, the power spectrum Cℓ is equivalent to the Fourier

space power spectrum, which is exactly what an interferometer measures, modulo the smearing by

the primary beam. Unlike the bolometer experiments where each pixel sample the entire range of ℓ

up to the pixel size, interferometer data are localized in ℓ. Other advantages of interferometers are

ease of measurement of the primary beam (notoriously difficult for balloon-born bolometers), stable

calibration, and well-behaved noise properties since the visibilities have independent noises.

1.6 The Cosmic Background Imager

The Cosmic Background Imager (Padin et al., 2002) is a special purpose interferometer located in

the Atacama desert of northern Chile. The site is both high and dry, making it an excellent place

for centimeter-wavelength observations (though a non-negligible fraction of the time has been lost

due to weather. See Figure 1.7). The CBI has 13 low-noise HEMT receivers, with a total system

temperature of about 30 Kelvin, co-mounted on a 5.5 m rotating deck. The receivers accept a single

circular polarization. During the observations described here, 12 receivers were set to measure left

circular polarization, with the thirteenth receiver set to right circular polarization, in order to retain

some polarization sensitivity. The polarization results are described elsewhere (Cartwright, 2002).

The signals are downconverted and split into 10 1GHz channels between 1 and 2 GHz that are then

combined using a high-speed analog correlator (Padin et al., 2001b). Rather than be locked into

a single observing pattern, the dishes can be moved around the telescope mount in order to give

the CBI maximum flexibility in its UV coverage. Each of the 10 channels per baseline is recorded

separately, and since the fractional bandwidth is wide (R∼3), each baseline covers a fractional width

in UV space of about 30%. We also rotate the deck during observations to fill out the UV plane
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Figure 1.7 The CBI site, which is also the future ALMA site, has been touted by many others as
one of the driest, highest places in the world. The author is on the right.
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tangentially without having to wait for the Earth to do the rotation for us. As a consequence, we

have very dense UV coverage (see Figure 3.1 for a sample of the CBI UV coverage). The deck can

be tilted to an angle of 42.75 degrees above the horizon, limiting the CBI observations to roughly

−70 < δ < +24, and limiting the length of time a single source can be tracked to < 6.5 hours,

depending on the declination.

Prior to shipping the CBI to Chile, we assembled and tested it on the Caltech campus in

Pasadena. The initial construction period was from early 1998 to August 1999. I worked on the CBI

at that time, assembling and testing the receivers (see Figure 1.8). The construction was completed

sufficiently for first light in Pasadena in January 1999, using three receivers. During the testing in

Pasadena, we found that the CBI worked well, but that ground spillover in the sidelobes of the small

dishes was substantial (see Section 3.2 for further discussion). After several months of testing, we

disassembled the CBI and shipped it to Chile in August of 1999. Once there, it was transported to

the site and reassembled, with first light on-site in December 1999. The first science observations

of the microwave background were taken January 12 of 2000, and, apart from maintenance, repairs,

and upgrades, the CBI has been taking data ever since (weather permitting). The first two years

were devoted to total intensity measurements of the power spectrum, with the CBI switching in the

fall of 2002 to predominantly polarization observations.
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Figure 1.8 The author building the CBI receivers.
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Chapter 2

Maximum Likelihood

Our task is to measure Cℓ as accurately as we can. The conceptually simplest case is that of an all-sky

map with no noise or contaminating signals, such as point sources or diffuse galactic foregrounds. In

that case we could simply decompose the sky into its constituent modes and measure their variances.

A real experiment is complicated by partial sky coverage (which can introduce apparent correlations

between the aℓm), noise, point sources, galactic foregrounds, etc. But at its heart, CMB analysis is

still nothing more complicated than measuring the variance of a data set.

2.1 Uncorrelated Likelihood

We can better understand how to measure the power spectrum by starting with the simple case of

a single Gaussian random variable and then adding more and more complexity to the problem. For

a single Gaussian random variable x with zero mean and variance V = σ2, the PDF is

PDF (x) =
exp(− x22V )√
2πV

(2.1)

This is the probability density that we would get a certain value for x given the underlying variance.

This can also be thought of as the likelihood that we would have gotten the observed data point x if

the underlying variance were V . This interpretation gives rise to the method of Maximum Likelihood

estimation of the variance. Our estimated value of V is that which would have yielded the observed

data set with the highest probability. As an aside, note that in Bayesian terms we are setting
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P (V |x) = P (x|V ). This is equivalent to the standard Bayesian expression P (V |x) = P (x|V )P (V )

with a uniform prior on V , i.e., all values of V are equally probable by assumption. While not

important for maximum likelihood estimation, this does show how in principle we could include

prior knowledge of likely power spectrum or cosmological parameter values.

For the case of a single value, the maximum likelihood estimator for the variance is set by

maximizing the likelihood with respect to V . We usually work with the log of the likelihood rather

than the likelihood itself, as the log likelihood is mathematically simpler to use.

log (L) = −1
2

x2

V
− 1
2
log 2πV (2.2)

The derivative is

d log (L)
dV

=
1

2

x2

V 2
− 1

2V
(2.3)

If we set that equal to zero and solve for V , we find the standard result V = x2 – our estimate

of the variance is equal to the actual variance of the data point. The extension to many indepen-

dent, identically distributed data points is straightforward. Because they are independent, the joint

likelihood is merely the product of the individual likelihoods. In log likelihood space, the joint log

likelihood is the sum of the individual likelihoods. We typically ignore the additive constants to the

log likelihood since they don’t affect the position of the peak or the shape of the likelihood surface

around that peak. The log likelihood is then

log (L) = −1
2

n
∑

i=1

(

x2i
V
− log(V )

)

(2.4)

We can again maximize with respect to V to get

d log (L)
dV

=
1

2V 2

n
∑

i=1

(x2i − V ) = 0 (2.5)

Again, this has a familiar solution V =
∑

x2i /n =
−

x2i , our estimate of the variance is just the average

variance of the data set. We can also rewrite the derivative as follows by pulling out a factor of V
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from inside the sum

d log (L)
dV

=
1

2V

n
∑

i=1

(

x2i
V
− 1
)

= 0 (2.6)

Note that the definition χ2i is x
2
i /V , hence the maximum of the likelihood is the point where the

average value of χ2 is equal to one.

Real data usually have many contributions to their variance (signal, noise...), of which we may

only be interested in fitting for a single one. Also, each data point can have a different expected

response under a certain model. If we have a simple experiment that takes uncorrelated noisy data,

then the expected variance of a data point is Vi = qSi+Ni, where Ni is the (Gaussian) variance due

to noise of the ith data point, q is an overall amplitude we wish to measure, and Si is the response of

the ith data point to a unit amplitude q. In principle, we could have a more sophisticated dependence

on the parameter q which would complicate derivatives, but in practice that is a sufficiently flexible

model for the CMB variance. In this case, we wish to maximize the likelihood as we vary q

log (L) =
∑

−1
2

x2i
qSi +Ni

− 1
2
log(qSi +Ni) (2.7)

d log (L)
dq

=
∑ 1

2

x2i
(qSi +Ni)2

Si −
1

2(qSi +Ni)
Si = 0 (2.8)

This has a solution where

∑ qSi
qSi +Ni

(

x2i
qSi +Ni

− 1
)

= 0 (2.9)

(with an extra factor of q multiplied on both sides). We are still setting the average value of χ2

equal to one, but this time subject to a set of weights. Note that the total signal variance (or square

of the signal amplitude) is qSi, so the i
th weight is Signal

Signal+Noise . So, the condition at the maximum

is

∑ qS

qS +N

(

χ2 − 1
)

= 0 (2.10)

Note that as we change our model (by changing q), in addition to χ2 changing, the weights also

change. This is why maximum likelihood is non-linear. The weight is (Signal/Noise) for small
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signals and asymptotically approaches one for signals much larger than the noise. This means that

once we have reasonably well determined a data point, a better measurement of that point does not

significantly improve our estimate of q — we are better served by measuring more data points. This

is known as the cosmic variance limit, and is the reason why CMB experiments try to cover as much

sky as possible (more xi’s). The extension to many signal components is straightforward—maximum

likelihood continues to try to set the weighted values of χ2 equal to one.

2.2 Correlated Power Spectrum

Experimental data are typically correlated, and so the simple techniques of the preceding section are

not directly applicable to real life situations. Fortunately, they can be extended to correlated data.

First, note that the log likelihood for uncorrelated data can be written as a set of matrix operations

log (L) = −1
2
xTΛ−1x− 1

2
log(|Λ|) (2.11)

with Λ the diagonal matrix whose elements Λii are simply the variances of the xi. (A quick work on

notation: In general in this thesis, bold quantities are vectors, capitalized Roman letters are matri-

ces (or single elements of matrices if subscripted), and other quantities are italicized in equations.)

Noting that the determinant of a diagonal matrix is the product of the diagonal elements, and the

inverse of a diagonal matrix is the same matrix with the elements along the diagonal inverted, the in-

dividual multiplications, divisions, etc., we carry out are identical for both the standard uncorrelated

data representation and the matrix representation of the likelihood. We can then use machinery of

matrix mathematics to transform the case of uncorrelated data into a realistic, correlated problem.

To proceed, introduce an orthogonal matrix V (distinct from the uncorrelated variable variance V ,

to which we no longer refer). An orthogonal matrix has the propery that the ith column dotted with

the jth column is δi,j – in other words, its transpose is its inverse. It is also true in general that

the determinant of the product of two matrices is the product of their individual determinants, and

that the determinant of the transpose is the same as the determinant of the original matrix. So, we
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have

|VTV| = |I| = 1 −→ |V|2 = 1 (2.12)

We can transform the uncorrelated likelihood using this matrix V while leaving the likelihood un-

changed.

log (L) = −1
2
xTΛ−1x− 1

2
log(|Λ|) = −1

2
xTVVTΛ−1VVTx− 1

2
log(|VTΛV|) (2.13)

The likelihood is identically unchanged because inserting VVT is simply multiplying by unity, and

the determinant is multiplied by |V|2, which we have already shown to be one as well. We can now

group terms using the definitions ∆ ≡ VTx and C ≡ VTΛV. The likelihood then becomes

log (L) = −1
2
∆TC−1∆− 1

2
log(|C|) (2.14)

This is the standard expression for the likelihood of a theory under a particular data set that starts

off most microwave background analysis papers. The meaning of V and Λ are now clear: they are

the matrix of eigenvectors and their corresponding eigenvalues of the matrix C. Unfortunately, in

general we cannot work in the diagonal space because as we change the theory, both the eigenvectors

and eigenvalues change, and so a fixed transform does not remain diagonal. We need one more result

before this becomes practically useful, namely, how do we compute C?

First, let us find the covariance of two data points. Using the definition of ∆, we have

∆i =
∑

Vi,jxj (2.15)

and the expectation of the product of two ∆i’s is

〈∆i∆j〉 =
〈

∑

Vi,kxk
∑

Vj,lxl

〉

(2.16)
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Since the xi are independent, any term with k not equal to l has an expected value of zero. Also

note that
〈

x2i
〉

= Λi, leaving

〈∆i∆j〉 =
∑

Vi,kVj,kΛk (2.17)

Now, what are the components of the transformed matrix C? Multiplying V on the left by Λ

multiplies the rows of V by the corresponding element of Λ

Vi,k → Λk (2.18)

We get the final answer for the element of C by multiplying by the inital VT . The i, jth element

of the product of two matrices is the ith row of the first times the jth column of the second. Since

the first matrix is the transpose of V, the ith row of VT is the ith column of V. So, we have the

following expression for the elements of C

Ci,j =
∑

Vi,kVj,kΛk (2.19)

But this is exactly the expectation value from Equation 2.17! So, in order to calculate the

likelihood of a theory, we need only calculate the expected covariance of pairs of data points under

that theory, and then calculate the likelihood using Equation 2.14. It is because the matrix C is

made up of the data covariances that is is known as the covariance matrix. Because∆i∆j =∆j∆i,

the covariance matrix is symmetric. The problem of measuring the power spectrum then falls into

two fairly distinct parts: The first is calculating C for our data set ∆ for different theories, the

second is how to efficiently find the theory that maximizes the likelihood, as well as characterizing

the likelihood surface around that peak. Because typical data sets can have upwards of hundreds

of thousands of data points, and calculating the likelihood is an order n3 operation, considerable

care is required in both parts to make the problem computationally feasible. For instance, the CBI

extended mosaics have ∼800,000 distinct real and imaginary data points. A 2 GHz processor would
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then take of order (8×105)3/2×109 ∼ 10 years to invert the matrix, and would require ∼ 5 terabytes

of memory to store it! Clearly, great care must be taken when creating C to make it as small as

possible, and then one must work with it as efficiently as possible.

2.3 Likelihood Gradient

It is now time to find the Maximum Likelihood spectrum. One often sees the likelihood that a given

spectrum would give rise to an observed complex data set written as (e.g. White et al., 1999)

L(Cℓ) =
1

πn|C| exp
(

−∆†C−1∆
)

(2.20)

The missing factors of two relative to Equation 2.14 are because each visibility is really two inde-

pendent points, one real and one imaginary, combined. The rest of this section will use the form of

Equation 2.14 with the understanding that all complex measurements have been split into two real

data.

Our task is to vary Cℓ, which changes the covariance matrix C, until we have reached the maxi-

mum of the likelihood. We restrict ourselves to models of the form

C =
∑

B

qBWB +N (2.21)

where N is our generalized noise matrix (it could have contributions from thermal noise, correlated

noise between visibilities, galactic foregrounds, point sources, ground pickup etc. ), the qB are the

band powers describing the CMB power spectrum, and the WB describe the response of the data

to those band powers, equivalent to dC
dqB
. We will sometimes refer to the WB as window matrices

(since they are the matrices consisting of the visibility window functions, discussed in Section 3.3 and

elsewhere). By restricting ourselves to this form, we can again use the technique of Section 2.2 where

we calculate the gradient in the case of uncorrelated data and then transform it to the correlated

case. In the next two sections I discuss how to efficiently reach the peak of the likelihood. Provided
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the multidimensional search method used is relatively efficient, simply varying the qB is not a bad

way of reaching the peak, and in fact is what we use in Chapter 3. Because to measure the likelihood

we need only factor C into the triangular matrix L such that LLT = C (a Cholesky factorization.

See below for how to obtain the likelihood), a single calculation of the likelihood can be very much

faster than iterations of more sophisticated methods that converge in fewer steps. For instance,

using the LAPACK linear algebra library (Anderson et al., 1999) on a Pentium IV, factoring C is

about six times faster than inverting it. To see how to get the likelihood from factoring, note that

what we really need is C−1∆ and log |C|. To get the determinant, we need merely multiply the

diagonal elements of L, and to get C−1∆, we solve the system of equations Cy = ∆ which is done

in O
(

n2
)

time once C is factored.

We can do better than that, though, especially if we are fitting many bins. If we could characterize

the likelihood surface around a point, in addition to being able to converge to the maximum more

quickly (through, for instance, Newton-Raphson iteration), we could also directly estimate quantities

of interest such as errors. Many authors have advocated calculating or approximating the gradient

and curvature of the likelihood (Bond et al., 1998; Borrill, 1999e.g. ), then using Newton-Raphson

iteration to find the zero of the gradient. In order to do this, we need to be able to calculate gradients

and curvatures of the likelihood. I show here the calculation of the gradient, with the curvature

discussed in Section 2.4.

Recall the formula for the derivative of the likelihood of uncorrelated data under these assump-

tions, Equation 2.8. First let us analyze the second term, originating from the log of the determinant

of C

−
∑ 1

2(qSi +Ni)
Si (2.22)

The denominator is the total variance Λ−1i (inverse since it’s in the denominator), while the coefficient

is the change in Λi with respect to the parameter in question q. So, we would like a matrix operation

that will multiply those two sets of numbers and sum them. Fortunately there is such an operation—

the trace of a matrix. The trace is the sum of the diagonal elements of a matrix, and has the nice
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property that it is the sum of the eigenvalues, and hence is unchanged when we rotate the matrix.

So, we can write the term as follows

−
∑ 1

2(qSi +Ni)
Si = −

1

2

∑ Λi,q
Λi
= −1
2
Tr
(

Λ,qΛ
−1
)

(2.23)

where Λ,q is the derivative of Λ with respect to the band power q. We can now rotate from Λ to C

since the trace is unaffected, giving the general expression

−1
2
Tr
(

C,qC
−1
)

(2.24)

The first term, which is the χ2 of the data

∑ 1

2

x2i
(qSi +Ni)2

Si (2.25)

is rather more interesting since there are two ways it can be transformed into matrix notation, both

of which are useful. It is reasonably straightforward to process it in the diagonal case and then

rotate, but is not trivial because some care must be taken when rotating multiple matrices that

do not have the same eigenvectors. Instead, I will proceed directly from the matrix description

− 12∆
TC−1∆. We will need the derivative of the inverse of a matrix, which is as follows

d

dq

(

C−1C
)

=
dC−1

dq
C+ C−1

dC

dq
= 0 (2.26)

where it is equal to zero because the initial product is the identity matrix (by definition of the

inverse), whose derivative is clearly zero. We can then solve for the derivative of the inverse

d

dq

(

C−1
)

= −C−1dC
dq
C−1 (2.27)
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We can use this to calculate the derivative (Bond et al., 1998)

d

dq

(

∆TC−1∆
)

= −∆TC−1C,qC−1∆ = −∆TC−1WqC−1∆ (2.28)

where the final step is because of the parameterization of the spectrum, Equation 2.21. This form has

appeared in the literature before (Oh et al., 1999; Borrill, 1999). Since the data vector is constant,

it has no derivative.

The other expression for the derivative comes from noting that we can rewrite the first term in

the likelihood Tr
(

∆∆TC−1
)

. An element by element comparison with the standard formula shows

that the operations are identical. We can then take the derivative using Equation 2.27, yielding

d

dq
T r
(

∆∆TC−1
)

= −Tr
(

∆∆TC−1C,qC
−1
)

(2.29)

Combining these with Equation 2.24 and evaluating the C,q gives the final numerically equivalent

expressions for the gradient of the likelihood

d log (L)
dq

=
1

2
∆TC−1WqC

−1∆− 1
2
Tr
(

WqC
−1
)

(2.30)

d log (L)
dq

=
1

2
Tr
(

−∆∆TC−1WqC−1 +WqC−1
)

(2.31)

We are now in a position to see the different utilities of the two expressions. The first is important

because it is fast to calculate, once we have the inverse. The χ2 term requires only matrix times

vector operations, which are fast. The determinant term looks like it should require an n3 operation,

but because we take the trace, we need only calculated the diagonal elements of the product, which is

an n2 operation. In fact, the trace of a product can be performed very quickly indeed for symmetric

matrices. The jjth element of AB =
∑

iAijBji, and the trace is the sum of that over i. If the

matrices are symmetric, Bij = Bji, and the trace is simply
∑

i

∑

j AijBij . If the matrices are

stored, as is usually the case, in a contiguous stretch of memory, then we are simply taking the dot

product of an n2 long vector. This is an extremely efficient way of accessing computer memory for
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the trace, especially on multiprocessor machines (Sievers, 2004, in prep).

The usefulness of the second expression becomes clear if we introduce an extra factor of CC−1

into the determinant term, giving

d log (L)
dq

=
1

2
Tr
((

∆∆T − C
)

C−1WqC
−1
)

(2.32)

We can see that we reach the maximum of the likelihood, where the gradient is zero, at the point

where the matrix formed by the data ∆∆T “most closely” matches the covariance matrix C. In

addition, we can see how the gradient will respond to the addition of an expected signal, which

usually requires a matrix to describe rather than a vector. This is the key to understanding the

contribution to the power spectrum from other signals, discussed in Section 2.5. Unfortunately,

calculating the gradient using this expression is computationally expensive, requiring nbin matrix-

matrix multiplications. We can get one matrix multiplication for free because of the trace, but we

have to pay for the others. Since we need the derivative for each bin, this requires a factor of order

the number of bins more work to calculate the gradient using this formula rather than Equation

2.30. When the number of bins becomes large (for the CBI, we have typically around 20), this factor

can be the difference between being able to run on a typical desktop machine and having to run

on a supercomputer, or the difference between being able to run on a supercomputer and not being

able to extract a power spectrum at all.

2.4 Likelihood Curvature

We could use the gradient to get to the likelihood maximum, but it would be nice to have a curvature

matrix as well, so we know how far to follow the gradient. We can converge very quickly indeed

using Newton-Raphson iteration

q → q −F−1 d log (L)
dq

(2.33)
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where F is the second derivative matrix, defined below in Equation 2.34. This is the fundamental

algorithm we use to find the set of qB that give the best fitting spectrum, and once we have F and

d log(L)
dq for a model, we can update the qB to get a better fitting model. Fortunately, it turns out

that we can get an approximate curvature matrix, which will also work in Newton’s method, for only

marginally more computational effort than the exact gradient. Let us differentiate both Equations

2.30 and 2.32. Recall that we have by definition restricted ourselves to the class of covariance

matrices expressable by Equation 2.21,

C =
∑

B

qBWB +N

This means that the only contributions to derivatives come from differentiating C itself, and all other

factors are constant. We can differentiate (2.30) to get two equivalent expressions for the curvature

matrix

d2 log (L)
dqBdqB′

≡ F = −∆TC−1WBC−1WB′C−1∆+
1

2
Tr
(

WBC
−1WB′C

−1
)

(2.34)

F = −Tr
((

∆∆T − C
)

C−1WBC
−1WB′C

−1
)

− 1
2
Tr
(

WBC
−1WB′C

−1
)

(2.35)

We now have some choices we can make as to how to proceed from here. An early suggestion in

Bond et al. (e.g. 1998) was to note that at the maximum of the likelihood the first term in (2.35) is

approximately zero, and so we can approximate the curvature matrix by

F ≃ F ≡ 1
2
Tr
(

WBC
−1WB′C

−1
)

(2.36)

This approximation F to the curvature matrix is called the Fisher matrix. It is the expected cur-

vature averaged over many data sets if the current model were true. Calculating the Fisher matrix

requires us to both create and store CBC
−1 for every band, which is requires nbin matrix-matrix

multiplications. The program MADCAP (Borrill, 1999), used in de Bernardis et al. (2000), uses

Equation 2.34 to calculate the exact curvature F rather than the Fisher matrix. The first term in
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Equation 2.34 is quick to calculate, as it is simply a series of matrix times vector operations. Let us

label this term 2D. The second term is again the Fisher matrix, only with the opposite sign. So, F

takes about as much effort to calculate as F. So, we have two ways of writing the curvature, one of

which is approximate

d2 log (L)
dqBdqB′

= 2D − F ≃ F (2.37)

So it must be true that D ≃ F, and we have then the key result that

F ≃ D (2.38)

This is a new way of measuring the curvature (Sievers, 2004, in prep.) that greatly increases

the speed of measuring the spectrum and halves the memory requirements. Why does this do

so? Because, with a single inversion of the covariance matrix we can use this equation, along with

Equation 2.30 to calculate both the exact gradient and approximate curvature of the likelihood

surface! This increases the execution speed by a factor of the number of bins, which for modern

experiments is often a few dozen. It is also a more accurate description of the curvature than the

Fisher matrix, which has been used successfully for years (including in Mason et al. (2003) and

Pearson et al. (2003)). To see this note that

F = 2D − F = D + (D − F) = F + 2(D − F) (2.39)

So the correction we need to apply to F in order to get F is twice as large as that required by

D. This means the algorithm converges to the maximum of the likelihood in fewer iterations. To

calculate F one needs to store the set of matrix products C−1WB. This doubles the storage/memory

requirements. Because these products are never calculated using D, they don’t need to be stored.

Practically speaking, using D means that one can do the analysis in Pearson et al. (2003) on a desktop

PC in thirty minutes that took several hours to do using F on a 32 CPU Alpha supercomputer

(GS320 with 733 MHz alpha CPUs). While this method had not yet been developed at the time of
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our first-year papers, it has since been adopted into our analysis pipeline and will be used for all

upcoming spectrum measurements. Also note that we could continue to differentiate D to be able to

approximate the likelihood over successively larger areas. Since, when we are far from the maximum,

the error in the step is predominantly due to the third derivative rather than the difference between

D and F , we may be able to converge in fewer steps, though I have yet to investigate this in detail.

Incidentally, the errors in the band powers are easy to estimate when we have an (approximate)

curvature matrix. To reasonably high accuracy for most experiments, the error on qB is simply that

of the Gaussian approximation to the likelihood surface, F−1BB (see, e.g., Press et al., 1992). There

are also higher accuracy approximations available for more detailed work (Bond et al., 2000), and

one can always map out the likelihood surface by direct evaluation, but for the CBI these give very

similar results to the errors (for further discussion, see Sievers et al., 2003).

2.5 Band Power Window Functions

It is very useful to understand how the power spectrum responds to a change in the expected signal.

This is used to estimate both the band power spectrum from a real spectrum and the shift in the

band power spectrum due to other non-CMB signals. The situation in which these are most familiar

is that of the response of the power spectrum parameterized in bins to that of a real power spectrum,

known as the band power window functions. This is distinct from the response of observed data to

a power spectrum, known as the visibility window functions, as dicussed by Knox (1999) who shows

how to calculate the window functions for an experiment with a single bin. The generalization to

the window functions when there are many bins is given here. We have parameterized the power

spectrum as a set of bins with a uniform power level in each bin. We could just as easily have picked

a shape other than flat—the important point is that the shape of the bin is not allowed to change.

Needless to say this is not how a real model power spectrum behaves, so in order to test cosmological

models we need to know how to transform from a model power spectrum to a binned one. In other

words we would like to have the set of coefficients such that
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〈qB〉 =
∑

ℓ

φBℓCℓ (2.40)

where Cℓ is the true power spectrum and φBℓ are the window functions describing the response

of qB to the true power spectrum. Unfortunately no such set of coefficients exists valid for all Cℓ

because maximum likelihood is a non-linear method—the shift in the power spectrum from adding

twice a signal is not exactly twice the shift from adding the original signal. We can, however, come

up with such a set of coefficients if we restrict ourselves to the region around the maximum where

the curvature is well described by F . In order to do this we need the new expected gradient of the

likelihood when we add in the new signal. If Wℓ is the expected covariance from our new signal,

then on average we have

∆∆T →Wℓ +∆∆T (2.41)

We can then use Equation 2.32 to estimate the new derivative

d log (L)
dqB

=
1

2
Tr
((

Wℓ +∆∆
T − C

)

C−1WBC
−1
)

(2.42)

If we are at the maximum, then the ∆∆T −C part of the gradient is equal to zero, and we are left

with the expected gradient due to the new signal

d log (L)
dqB

=
1

2
Tr
(

WℓC
−1WBC

−1
)

(2.43)

The expected shift in the band powers can then be calculated by doing a Newton-Raphson iteration

〈dqB〉 =
1

2
F−1BB′Tr

(

WℓC
−1WB′C

−1
)

dCℓ (2.44)

Now we have used no properties unique to the CMB to understand the response of the qB to Wℓ.

This means that we could substitute any expected signal and see how the qB responds. For instance,

we can calculate the expected contribution to the power spectrum from a population of faint radio
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point sources that are statistically isotropic. If the covariance describing the point sources is Siso,

then their effect on the power spectrum is

〈dqB〉 =
1

2
F−1BB′Tr

(

WℓC
−1SisoC

−1
)

(2.45)

We can also estimate our sensitivity to a fractional uncertainty of ǫ in our measured noise

〈dqB〉 =
1

2
F−1BB′Tr

(

WℓC
−1NC−1

)

ǫ (2.46)

We use this algorithm in Mason et al. (2003) and Pearson et al. (2003) to measure the response of

the CBI power spectrum to Cℓ as well as to errors in noise and source corrections.

It is worth a discussion of computational issues involved in measuring the filters, as they can

easily far exceed the total computational effort required to measure the power spectrum itself. The

best way to proceed depends on if one desires just a few filters (i.e. noise and source filters) or

very many (for finely sampled window functions). If we desire many filters, then the fastest course

of action is to calculate and store the set of matrices C−1WBC
−1, and form the gradient vector

by taking the trace of each of them multiplied by Wℓ. This requires an expensive initial step of

order 2nBn
3, which can easily be an order of magnitude more work than measuring the power

spectrum. However each additional filter requires only an n2 operation, so it is the most efficient

way to calculate lots of filters. We can speed matters up considerably if we only require a few (< nB)

filters. First, note that the trace remains unchanged if we write it as

C−1SC−1WB (2.47)

for some matrix S whose filter we desire. This is clearly true if

Tr (A) = Tr
(

B−1AB
)

(2.48)
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It is indeed generally true (see any linear algebra text), but I shall prove it for the specific case of

symmetric matrices. If we decompose B into its eigenvalues and eigenvectors, we have

Tr
(

VΛ−1VTAVΛVT
)

(2.49)

VTAV is just a rotation of A, and doesn’t affect the trace, since a rotation doesn’t change the

eigenvalues. Similarly, the outer pair of V and VT is also a rotation and doesn’t affect the trace.

So, if we rewrite the rotated A as A∗, then the trace is now

Tr
(

Λ−1A∗Λ
)

(2.50)

We can carry out this multiplication element by element to get the ijth element of the product is

A∗i,j
Λi
Λj
. This will in general change all elements except those for which i = j - in other words, the

matrix changes except for the elements along the diagonal. Clearly, this leaves the trace unchanged.

Now to get the filter from Equation 2.47, we need to calculate C−1SC−1, but then can take the trace

of the set of nB products quickly with only order n
2 operations. So we have a choice between doing

2 matrix multiplications per filter, or 2nB matrix multiplications to get arbitrarily many filters.
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Chapter 3

First CBI Results

We first used a simplified version of the formalism of Section 2 to analyze the first few months of

CBI data, released in Padin et al. (2001a).

3.1 Early Observations

The data for Padin et al. (2001a), the CBI comissioning run, were taken between January and

April of 2000 at the Llano de Chajnantor. The CBI was configured in a ring configuration (see

Figure 3.1), designed to give good maintenance access to each receiver. The ring configuration also

had reasonably uniform UV coverage (see Figure 3.2 for the distribution of the baseline lengths).

Because very little was known about foreground radio emission at sub-degree scales and centimeter

wavelengths at the time, we chose our initial fields with care. The target fields were selected to be low

in IRAS 100 µm emission to avoid dust and possible anomalous galactic foregrounds (Leitch et al.,

1997), low in synchrotron emission (Haslam et al., 1981, 1982), and low in NVSS radio point sources

(Condon et al., 1998). The were also chosen to be far enough north (δ ∼ −3◦) to be observable by

the OVRO 40 meter telescope so we could simultaneously monitor point sources with it. We measure

all sources brighter than 6 mJy at 1.4 GHz with the 40 meter, reliably detecting those brighter than

8 mJy at 30 GHz, which we then subtract from our data. Because of ground spillover (see Section

3.2 for a more detailed discussion), the fundamental CBI observations are the differences of pairs of 8

minute observations of fields separated by 8 minutes in RA, with data taken every 8.4 seconds. The

noise is calculated by measuring the scatter of the 8.4 second samples that go into each 8-minute
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Figure 3.1 Antenna configuration for the commissioning run of the CBI. The dishes were placed
in a ring around the outside for easy access. The ring configuration also provided a fairly uniform
distribution of baseline lengths in the UV plane.

Figure 3.2 Distribution of baseline lengths during the commissioning run. The ring provided a fairly
uniform distribution in baseline lengths. Since the CBI rotates the deck, a uniform distribution in
length also leads to reasonably uniform sampling in the UV plane.
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Figure 3.3 The 08 hour deep field. Left hand panel is the dirty map of the differenced data, center
panel is the beam, right hand panel is the image cleaned to 1σ in the noise. The clean map has
the signal in the center, as expected for on-sky sources in the primary beam, as opposed to ground,
moon, weather, or instrumental artifacts. The cleaned map is not used for the analysis, as the beam
effects are automatically included in the Maximum Likelihood pipeline.

scan. The sun is too bright in the CBI sidelobes to allow daytime observations, and the moon is

too bright for observations within 60 degrees. Because the austral summer of 2000 was one of the

wettest periods on record in the Atacama, we lost 50% of the nights to weather. This left us with a

total of 58.5 hours on each of our 08 hour fields and 16.15 hours on each of our 14 hour fields. See

Figures 3.3 and 3.4 for maps of the two fields.

3.2 Ground Spillover

Because the CBI has relatively small dishes (∼ 100λ at 30 GHz), ground spillover was an issue. The

signal from the ground comes principally from the horizon (where 3 K sky meets 300 K ground)

moving through the fringes of the far sidelobes as the telescope tracks the sky. The 1 m baselines were

the most corrupted by the ground, since they average over the fewest fringes, and had instantaneous

ground signals typically of a few Jy on the short baselines. This is to be compared to the expected

maximum of ∼50 mJy from the CMB. Since the ground will be, on average, uncorrelated with the

CMB, it will eventually average out with enough observations, but the cost is extremely high. The
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Figure 3.4 The 14 hour deep field. Same as Figure 3.3 for the 14 hour deep field.

noise in a set of observations over a period of time is

Ntot =
Ni√
n

(3.1)

where Ntot is the total, final noise, Ni is the instantaneous noise, and n is the total number of

independent observations. If the noise is correlated over time, the total number of observations is

n =
t

τc
(3.2)

where t is the total observing time and τc is the length of time over which the noise is correlated.

For thermal noise, the correlation time is 1B where B is the bandwidth, and the instantaneous noise

is just the temperature. This gives the familiar formula

∆T =
T√
Bt

(3.3)
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The figure of merit for a noise source then is

T√
B

(3.4)

This number can be compared between different sources, and the one which has the highest value

is the dominant source of noise. Note that the noise temperature T can be in units other than

K, such as Jy. If we observe on scales much longer than the inverse bandwidth, as is the case for

thermal noise, then this is just the noise in a second of observation. For the CBI thermal noise, this

is about 6.5 Jy-s1/2. On the short baselines, the ground spillover is comparable to the thermal noise

at the CBI’s data sampling rate of 8.4s (Figure 3.8). But the correlation time for the ground can be

much longer than that—we frequently see phase ramps from the ground lasting many minutes, even

hours, with a consequent effective bandwith of millihertz (see Figures 3.5 and 3.6). The ground noise

then pretty easily reaches an effective system noise level of ∼ 2Jy/
√
10−3 ∼ 60 Jy. So the ground

noise can be many times more important than the system noise, and since the observation time

goes as noise squared, uncorrected ground signals can slow the data-taking by orders of magnitude.

In addition, the exact statistics of ground noise are difficult to estimate reliably since they depend

on the physical orientation of the telescope, the orientation of the baseline, the hour angle of the

observed field, snow on the ground, the (possibly changing) correlation time of the ground signal,

and so on. Since maximum likelihood effectively subtracts off the noise, any misestimate of the noise

will shift the power spectrum, which would make any CBI result difficult to interpret.

A better way to combat the ground, rather than trying to beat it down by brute force, is to

observe pairs of fields at the same declination and separated by a fixed difference in RA (in our

case 8 minutes of time), rather than single fields. We observed the lead field for < 8 minutes,

then slewed back to the trailing field and observed it for the same length of time, beginning 8

minutes after starting the observation of the lead field. In this way, the CBI moves through the

same physical angles with respect to the ground for both the lead and trail observations. Since the

pairs of observations observe the ground in identical ways, the ground signal should be identical in
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Figure 3.5 Phase of visibilities for a typical 1-meter baseline. There are two field here, the blue dots
are the lead (c0844-0310) field, and the red dots are the trail (c0852-0310) field. The trail points
have been shifted in time by 8 minutes (the length of a scan) so they lie on top of points in the
lead taken with the same ground. As is clear in the plot, the phases are not random, which means
they are set by the ground (thermal noise introduces no phase correlation and the sky signal is
much weaker than the noise). If one extends the phase ramps to the next pair of 8-minute scans,
one can see that the phase introduced by ground spillover remains intact for over an hour. While
this particular set of data is somewhat more dominated by ground than is average, it is not at all
atypical, and only slightly weaker phase ramps are the norm rather than the exception.
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Figure 3.6 Same as Figure 3.5, but with a constant phase ramp of 1200 degrees/hour subtracted off.
The purpose of this plot is to show the length of time over which the phases can remain coherent
and predictable. In this case, the structure is intact for over an hour!

the two observations, modulo intrinsic changes in the ground signal on 8-minute scales.

Fortunately, the ground signal is quite stable both in theory and practice. The two most obvious

sources of ground signal remaining in the differenced data are the signal from any changes in the

ground signal over 8 minutes, and pointing errors causing the subtraction of slightly different ground

signals. The signal strength expected to leak through the differencing from a changing ground should

be something like the total ground signal times the fractional change in ground temperature over

the course of 8 minutes. Typically, the air temperature will change by ∼ 10 degrees over the course

of an entire night, usually no more than a couple of degrees in an hour. So the ground probably

isn’t changing much faster than a few tenths of a degree in 8 minutes, for a fractional change in

temperature of about one part per thousand. The effective ground noise in differenced observations

should then be tens of mJy-s1/2, rather than tens of Jy-s1/2. This is highly sub-dominant to the

thermal noise, and so doesn’t present a problem. Pointing errors will also introduce errors in the

ground subtraction, but again we expect them to be small. The CBI has a pointing accuracy of a
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few arcseconds, and is especially reliable at returning to the same point from after a short track,

which is the requirement for good ground subtraction (we don’t care what ground we observe, as

long as it’s the same ground for the lead and trail fields). Near the equator, where our fields are,

this is an error of a few arcsecond divided by 15, or a few tenths of a second of time. Because the

ground changes on a time scale of about a few minutes (see Figure 3.6, and note that the phase

change is 1200 degrees/hour, or a radian every three minutes), the fractional leakage of the ground

signal from pointing errors should be something like the effective time uncertainty from the pointing

error divided by the time it takes the ground to change (which is a different, shorter number than

the coherence time of the ground since the ground can change coherently over a phase angle much

greater than 2π). So, the ground noise leaked due to pointing errors should be something of order

a few tenths of a second divided by a minute of the original ground signal, or a factor of a few

hundred down from the original ground signal. This again is highly subdominant to the thermal

noise. In practice, we also see no evidence of ground contamination in the differenced data sets (see

Figures 3.7 and 3.8). To check in greater detail, we split the differenced data into various epochs

and subtracted them, creating doubly differenced data sets, with zero expected signal. The noise

level in the doubly differenced data sets is consistent with the expected thermal noise, indicating

that there isn’t a significant source of noise on long timescales leaking through, and that our noise

measurements are accurate, once the statistics are done correctly (see Section 4.1).

While critical for rejecting the ground signal, the cost of the differencing is a factor of two in

time. The variance of the differenced visibility is twice the variance of the individual visibilities

(assuming they are widely enough separated so that their microwave background signals are mostly

uncorrelated, which is the case), and the variance from the noise of the difference is the sum of the

noises of the individual measurements. So, the expected variance doubles, and the noise variance

doubles as well. This leaves the total signal-to-noise ratio unchanged, but required two data points

instead of just one, hence the factor of two in time cost. The differencing also has the nice benefit that

it rejects any instrumental signal that varies on timescales much slower than 8 minutes, including

DC signals such as correlator offset. It is in fact possible to lose a smaller fraction of the data by
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Figure 3.7 Same data as Figure 3.5, showing the phase distribution of the differenced (ground-free)
data. The phase distribution is far more uniform. More sensitive statistical tests do not reveal any
coherence introduced by the ground remaining in differenced data.

observing field triplets, quadruplets, quintuplets, or more, instead of pairs of fields. Each set of

observations loses one mode to the ground, leaving n − 1 good measurements of the CMB, for a

total efficiency relative to undifferenced data of 1− 1n where n is the total number of fields observed

with the same ground. Initially, we wanted to go as deep as possible over a small area in order to

get a result quickly as well as to try to uncover any systematics, so we used the simple pair-wise

differencing. Now that we have experience with the performance of the CBI and find it very stable,

we are in fact using strips of fields for polarization observations, with n = 6, for an efficiency increase

of about 60%.

3.3 Analysis

There were several simplifying factors in the analysis of the Padin et al. (2001a) data. By far, the

most significant was that the observations were all of a single field, which makes C much easier

to calculate. We also approximated the primary beam with a Gaussian (see Figure 3.9 for the
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Figure 3.8 Same data as Figure 3.5, showing the amplitude distribution of differenced and undiffer-
enced data. The differenced data have had a scaling of

√

1/2 applied to them, since their variance
has been doubled by the differencing. For these data, the undifferenced data have a variance > 70%
higher than would be expected from the variance of the differenced data. This excess variance is the
relative strength of the ground vs. thermal noise on the 8.5 second sampling rate and is removed by
differencing.
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Figure 3.9 The CBI fitted beam. The dishes are modelled by a Gaussian taper in the illumination
pattern with unknown width a. There is also a hole in the center of the illumination pattern
due to blockage from the secondary. The beam on the sky is the Fourier transform of the dish
autocorrelation pattern, which is equivalent to the square of the Fourier transform of the dish
illumination. The beam is fit by varying the taper width a and minimizing χ2 for a bright source,
in this case TauA.

fit of the CBI beam to data by Timothy Pearson, and Figure 3.10 for the comparison of the fit

beam to the Gaussian approximation) and ignored the very slight correlations introduced by our

differencing scheme. Also, because of the small size of the data set, we could perform a maximum

likelihood power spectrum extraction directly on the visibilities without having to shrink the size of

the data set first. Because of this the biggest step in measuring the power spectrum is calculating

the window matrices WB . I shall outline our procedure below, starting from the initial response of

interferometers.

3.3.1 Interferometer Response to a Random Temperature Field

The output visibility V (u) of an interferometer is equal to the sky brightness integrated over the

field of view, with an intensity modulation from the primary beam and a phase factor from the

baseline separation u
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fit beam as in Figure 3.9, and the Gaussian has a FWHM of 45.1’. The fit is very good, and the
Gaussian is much easier to work with computationally.

V (u) =

∫ ∫

Bν(T (x))A(x) exp(2πix · u)d2x (3.5)

A is the square of the response of a receiver to the electric field (the primary beam), and x is position

on the sky relative to the pointing center. The Planck function evaluated at the observing frequency

ν is Bν(T ) for a radiation field of temperature T . It is convenient to convert the temperature map

into a dimensionless function (δT/T ) and pull the rest of the Planck function out in front of the

integral, discarding the DC term, to which the interferometer is not sensitive.

Bν(T (x)) =
dBν
dT
|
TCMB

TCMB
δT

TCMB
(3.6)

The function dBνdT is as follows (e.g. White et al., 1999)

dBν
dT
=
2kB
c2

(

kBT

h

)2
x4ex

(ex − 1)2
(3.7)
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Figure 3.11 Plot showing correction factor multiplied to Rayleigh-Jeans law to get differential Black
Body, dBνdT . Note the small scale on the x-axis. Even at moderate frequencies, the true blackbody
intensity is very close to that of the Rayleigh-Jeans law.

where x ≡ hν/kBTCMB (unrelated to the vector on the sky x in Equation 3.5). Pull out a factor of

x2, and what is left is a Rayleigh-Jeans law with a correction factor, the Planck g function:

dBν
dT
=
2kB
c2
ν2g (ν) (3.8)

where

g (ν) ≡ x2ex

(ex − 1)2
(3.9)

The correction to the Rayleigh-Jeans law for the CBI is fairly small. The frequency coverage of the

CBI is 26-36 GHz, so for TCMB = 2.73K, x ranges between 0.46 and 0.63 and g is between 0.983

and 0.967 (see Figure 3.11). For clarity in writing, we shall adopt the definition of fT in Myers et al.

(2003)

fT (ν) ≡
2kBTCMB
c2

g (ν) (3.10)

Because the CMB is a Gaussian random field, in the limit of small sky coverage it is a sum of
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independent Fourier modes with random phases. Therefore we need to understand the response of

the interferometer to a plane wave on the sky, which is most conveniently done by taking the Fourier

transform of (3.5). The visibility from the mode with wave vector w is then

V =
dBν
dT
TCMB

δ
∼

T

TCMB
(w)

∼

A (u−w) = fT (ν) ν2
δ
∼

T

TCMB
(w)

∼

A (u−w) (3.11)

where
∼

A is the Fourier transform of the primary beam and δ
∼

T are the temperature fluctuations in

Fourier space. And the total response of the interferometer to the sky is this function integrated

over w:

V = fT (ν) ν
2

∫ ∫

δ
∼

T

TCMB
(w)

∼

A (u−w) d2w (3.12)

To calculate the WB in Equation 2.21, we need to be able to calculate the correlation between

pairs of visibilities. The response of a pair of interferometers to a single Fourier mode on the sky is

just their individual responses to a mode integrated over modes:

〈V ∗1 V2〉 = fT (ν1) fT (ν2) ν21ν22T 2CMB

(

δ
∼

T

TCMB
(w)

)2
∼

A
∗

(u1 −w)
∼

A (u2 −w) (3.13)

We take the complex conjugate to make the product strictly real and independent of the phase of

the wave on the sky. This can be integrated over wave space to get the expected response of an

interferometer pair to a set of temperature fluctuations.

〈V ∗1 V2〉 = fT (ν1) fT (ν2) ν21ν22T 2CMB
∫ ∫

(

δ
∼

T

TCMB
(w)

)2
∼

A
∗

(u1 −w)
∼

A (u2 −w)d2w (3.14)

Now, the expected value of δ
∼

T
T is merely the power spectrum of fluctuations.

〈

δ
∼

T (w)

TCMB

〉2

= S(w) (3.15)

We have replaced w by w since the power spectrum should be independent of angle and only depend

on the wavelength of the modes in question. We also need the relation between the Fourier spectrum
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S(w) and the angular power spectrum valid for the small-angle approximation, given by White et al.

(1999):

w2S(w) ≃ ℓ(ℓ+ 1)Cℓ
(2π)2

(3.16)

where w = ℓ/2π. Since the CBI observes at high ℓ, the difference between ℓ and ℓ+ 1 is negligible.

We can then rewrite

S(w) ≃ Cℓ |2πw=ℓ (3.17)

and

〈V ∗i Vj〉 = fT (ν1) fT (ν2) ν21ν22T 2CMB
∫ ∫

S(w)
∼

A
∗

1 (u1 −w)
∼

A2 (u2 −w) d2w (3.18)

3.3.2 Visibility Window Functions

Since we expect that the CMB fluctuations will be angle-independent, we can do the angular part

of the integral separately from the integral in d|w|.

〈V ∗1 V2〉 = fT (ν1) fT (ν2) ν21ν22T 2CMB
∫

wS(w)dw

∫

∼

A
∗

1 (u1 −w)
∼

A2 (u2 −w)dθ (3.19)

The angular integral is called the visibility window function Wij(w), or simply the window function

(not to be confused with the band power window functions of Section 2.5). The window functions

contain essentially all of the telescope-specific information. We must now work out the window

functions for CBI. Their calculation is greatly simplified if, as was the case for Padin et al. (2001a),

the data all have the same pointing center. We also approximated the CBI beam with a 45.1’ FWHM

Gaussian at 30 GHz (see Figure 3.10 again). We normalize the telescope response to unity in the

beam center in physical space, so the beam Fourier transform is

∼

A (u) =
1

2πσ2p
exp

(

− u
2

2σ2p

)

(3.20)
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where σp is the Gaussian σ of the primary beam Fourier transform. After much algebra we can do

the window function integral

Wij (w) =

∫

∼

A
∗

1 (u1 −w)
∼

A2 (u2 −w)dθ =
1

4π2σ2p,1σ
2
p,2

∫

exp− (u1 −w)
2

2σ2p,1
exp− (u2 −w)

2

2σ2p,2
dθ

(3.21)

to get

Wij(w) =
1

4π2σ2p1σ
2
p2

exp(−Aw2 −B)2πI0(Cw) (3.22)

The Bessel function I0 comes about from
∫

exp(cw cos(θ))dθ = 2πI0(cw). The coefficients are

A =
1

2σ2p1
+
1

2σ2p2
(3.23)

B =
u21
2σ2p1

+
u22
2σ2p2

(3.24)

C2 =
u21
σ4p1
+
u22
σ4p2
+
2u1u2
σ2p1σ

2
p2

cos(θ1,2) (3.25)

where θ1,2 is the angle between baseline 1 and baseline 2. An accurate approximation to I0 valid

over the range in which we are interested (baseline lengths of a meter or longer) is

∫

exp(a cos(θ)) = 2πI0 ≃ exp(a)
(

2π

a

)1/2(

1 +
1

8a

)

(3.26)

So, the final window function for a Gaussian beam and a single-pointing exposure is

Wij(w) =
1

4π2σ2p1σ
2
p2

√

2π

Cw
exp

(

−Aw2 −B + Cw
)

(

1 +
1

8Cw

)

(3.27)

It is illustrative to work out the window function for the case of a single baseline compared with

itself. In that case, the coefficients are

A = σ−2p , B =

(

u

σp

)2

, C =
2u

σ2p
(3.28)
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and

Wii (w) =
1

4π2σ3p

√

π

uw
exp

(

(w − u)2
σ2p

)

(

1 +
σ2p
16uw

)

(3.29)

This is a very reasonable expression—basically, a two-element interferometer is sensitive to modes

on the sky that have the same wavelength as the separation of the elements, and the sensitivity

from this peak falls off like the primary beam Fourier transform. The factor of two is gone in the

denominator because the covariance element is a visibility squared, rather than a simple visibility

(square a Gaussian, and the two disappears). The primary beam scaling in the coefficient is at first

a bit unusual because we expect the total variance to be proportional to the total area of the beam,

which is σ−2p . However, we must integrate Wij across the power spectrum, so we pick up an extra

factor of σp, for a total scaling that is proportional to σ
−2
p , as expected. We can insert Equation

3.27 into Equation 3.19 to get the total covariance expected for visibilities from a single field:

〈V ∗1 V2〉 = fT (ν1) fT (ν2)ν21ν22T 2CMB
∫

wS(w)dwW1,2(w, V1, V2) (3.30)

using the formula for Wij from Equations 3.22 or 3.27. We are now in position to choose a param-

eterization of the power spectrum, which specifies S(w). Then by integrating Equation 3.30 across

the bins in w, we have the window matrices used to find the maximum likelihood power spectrum.

3.4 Complex Visibilities

There is one slight adjustment that needs to be made to go from the complex visibility formulation

of the preceeding section to separate real and imaginary estimators (see also Myers et al., 2003).

Consider the fundamental definition of the covariance of two visibilities:

Cij = 〈V ∗i Vj〉 = 〈Vi,rVj,r〉+ 〈Vi,iVj,i〉+ i〈Vi,rVj,i〉 − i〈Vi,iVj,r〉 (3.31)

We can also rotate one of the visibilities through 180◦, which leaves the real part of the visibility

unchanged, but flips the sign of the imaginary part. That is, it turns a visibility into its conjugate.
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In that case:

Ci∗j = 〈ViVj〉 = 〈Vi,rVj,r〉 − 〈Vi,iVj,i〉+ i〈Vi,rVj,i〉+ i〈Vi,iVj,r〉 (3.32)

This is a set of four relations, since each of the two equations must hold for both its real and

imaginary parts. The set of relations can be solved for the covariances between the real and imaginary

parts of the visibilities as follows:

〈Vi,rVj,r〉 =
1

2
(Cij,r +Ci∗j,r) (3.33)

〈Vi,iVj,i〉 =
1

2
(Cij,r − Ci∗j,r) (3.34)

〈Vi,rVj,i〉 =
1

2
(Cij,i +Ci∗j,i) (3.35)

〈Vi,iVj,r〉 =
1

2
(−Cij,i +Ci∗j,i) (3.36)

If baseline i and baseline j are close to each other in UV space, then Ci∗j will be small since the

conjugate is on the other side of the UV plane. In this case, the real-real covariance is the same as

the imaginary-imaginary covariance, and the real and imaginary parts are equivalent. However, if

both Ci∗j and Cij are non-zero, then the symmetry is broken and the real part and the imaginary

part of the visibility are no longer statistically equivalent, and hence should be treated separately.

For that reason, we do treat the problem as one of dimension 2n real estimators rather than n

complex estimators and use Equations 3.33 through 3.36 to calculate the window matrices.

3.5 Power Spectrum

We measured a power spectrum using the commissioning data described in Section 3.1, the co-

variances from Section 3.3, point source subtractions from the OVRO 40 meter, and a statistical

correction for the signal from sources unmeasured by OVRO calculated by Brian Mason. The anal-

ysis was done using a package written by the author. Because the point source formalism we used

at this time did not involve projecting out sources of unknown intensity, a substantial source signal
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Figure 3.12 Power spectrum plotted in Padin et al. (2001a). The model spectrum is a standard
ΛCDM model, with h = 0.75, ΩBh

2 = 0.019, Ωm = 0.2, and Ωk = 0. The dashed lines are
approximate band power window functions showing the region in ℓ to which the two points are
senstive. Unlike other CBI results, the Padin et al. (2001a) results were presented in µK, rather
than µK2. The points have been offset in ℓ for clarity, but actually are sensitive to the same range in
ℓ. There is a clear detection of power at ℓ ∼ 600 in the range expected for flat ΛCDM cosmologies,
unlike the first BOOMERANG results in de Bernardis et al. (2000) where the power was < 40µK.

remained in the power spectrum at ℓ ≥ 2000. As a result, the first power spectrum from the CBI

consisted of only two points. The amplitude in a bin centered on ℓ = 603 was 58.7+7.7−6.3 µK, and the

amplitude in a bin centered on ℓ = 1190 was 29.7+4.8−4.2 µK. We had not yet switched to using Cℓ,

hence quoting the values in µK instead of µK2, where the bin values are 3445 µK2 and 882 µK2.

The spectrum is plotted in Figure 3.12, along with approximate band power window functions and

a model spectrum from a typical flat ΛCDM cosmology.

3.6 Interpretation and Importance of Spectrum

While the first CBI power spectrum had only two points, they were two very important points.

A fundamental prediction of all theories in which the microwave background arises cosmologically

at the surface of last scattering is Silk damping (Silk, 1968), the exponential decline in the power
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spectrum at large ℓ from photon diffusion. The region of the decline is called the “damping tail”

and is unavoidable if the microwave background anisotropies are of primordial origin. The lack of a

damping tail would have been a powerful blow against the canonical model of the universe. The two

points in Section 3.5 marked the first time the damping tail was measured and were a confirmation

of a major prediction of standard cosmology (see White, 2001, for further discussion).

The Padin et al. (2001a) spectrum appeared at an important time, only a few months after the

first BOOMERANG (de Bernardis et al., 2000) and MAXIMA (Hanany et al., 2000) spectra were

made public. While the principal result of the two experiments was the first precision determination

that the universe was geometrically flat, BOOMERANG, and to a lesser extent MAXIMA, had also

fueled intense interest because of the apparent lack of signal in the region past the first acoustic

peak at ℓ ≃ 600, where the second peak had been expected. The ratio of the second peak height

to the first peak is most sensitive to the physical baryon density in the universe, ΩBh
2. If real, the

most conservative intepretation of the missing second peak would have been that there was a fairly

profound misunderstanding of the cosmic baryon content from big bang nucleosynthesis calculations

and deuterium line measurements in the Ly-α forest (Tegmark & Zaldarriaga, 2000), and that ΩBh
2

was about 50% higher than previously believed. The measurement by the CBI at ℓ ∼ 600 was

nearly a factor of two higher in Cℓ than that of BOOMERANG, more in line with the level expected

from prior baryon estimates, though a bit high. This was a strong indication that once the CMB

experiments converged, the second peak would likely be about at the level expected, which indeed

has turned out to be the case. Now, all the major CMB experiments are consistent with each other,

and the ΩBh
2 measured from the CMB (e.g. 0.023±0.003 for combined CMB experiments in Sievers

et al., 2003) is in good agreement with that measured using other methods, most notably that of

Big Bang Nucleosynthesis (Olive et al., 2000; Burles et al., 1999; Tytler et al., 2000). The resolution

to the apparent conflict was that the BOOMERANG beam was larger than expected, washing out

power on small scales, MAXIMA was consistent with current estimates, and the CBI data happened

to have slightly higher than expected power due to cosmic variance and the small sample of only

two fields.
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The CBI was also able to do some cosmology with the commissioning data although, because of

the small area surveyed, it was perforce somewhat limited. The data set was small enough that we

were able to do direct likelihood calculations on a grid of models generated using CMBFAST rather

than having to do cosmology using the power spectrum. To do this, rather than integrate a flat

spectrum model across a band, we integrate Cℓ(ℓ = 2πw)Wij(w) to get the total covariance expected

from the CMB. The CBI was able, using only the COBE spectrum as additional information, to rule

out intermediate density (Ωtot ∼ 0.5 − 0.6) cosmologies at the 90% confidence level. The CBI was

able to do this using effectively only two points because of the sharp drop between them. The only

places standard power spectra have such large drops is either on the tail end of the first peak, or in

the damping tail. If the drop after the first peak is at ℓ ∼ 600, then Ωtot ∼ 0.3, while if the drop is

due to damping after the third peak, then Ωtot ∼ 1.0. With the additional bit of information that

there was a first peak at lower ℓ, but without any details as to that peak position or amplitude, the

CBI was able to rule out Ωtot < 0.7. Not surprisingly, the CBI also measured a low value for ΩBh
2

because of its high value at ℓ ∼ 600, with a best fit value of ΩBh2=0.009, though the constraint

was weak, and the likelihood had only dropped by a factor of 2 at ΩBh
2=0.019, and a factor of 3 at

ΩBh
2=0.03.
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Chapter 4

First-Year Observations and

Results

The first-year observations and analysis were a major advance over the commissioning data of

Chapter 3. In addition to more data on the first two fields, another deep field was added, as

well as three larger-area ∼ 2◦ × 2◦ mosaics. The mosaics provide increased ℓ resolution, revealing

the shape of the power spectrum in much more detail than is possible with deep fields. The spectrum

extraction pipeline was considerably more sophisticated than that of Padin et al. (2001a) as well.

The window matrices were calculated using a method based on gridding visibilities written by Steve

Myers called CBIGRIDR (Myers et al., 2003). The final spectrum extraction from the window

matrices and gridded data was done using MLIKELY, written by Carlo Contaldi, and was based

on the slow Equation 2.36, though we have since adopted the fast methods of Chapter 2. My

main contribution to the first-year papers was extracting the power spectrum from the mosaics

using CBIGRIDR/MLIKELY. This included major work on understanding systematic effects in the

mosaic spectra and how to correct for them. This chapter describes my contributions to the first-

year data analysis and results. In Section 4.1 I describe my calculation of a statistical correction to

the estimated noise. The bias comes about when combining data points whose variances have been

estimated by scatter internal to the data points. Uncorrected, the noise bias has a major impact on

the high-ℓ power spectrum. In Section 4.2 I discuss improvements to the CBIGRIDR/MLIKELY

pipeline that substantially increased the speed. Those speed increases allowed us to push out to

higher-ℓ with the mosaic spectrum. In Section 4.3 I describe how we deal with sources in the mosaics,



60

and some unexpected effects from the sources I discovered in the process of doing the mosaic analysis.

In Section 4.5 I describe the data that went into the first-year CBI papers. Finally, in Section 4.6,

I describe the final power spectrum from the first-year mosaics and cosmological results from the

spectrum.

4.1 Noise Statistics

It is critically important to have a good estimate of the noise in microwave background experiments,

especially when the signal is noise-limited and not cosmic variance-limited. Since the noise is in

effect subtracted from the data variance, any error in the noise directly biases the power spectrum,

and not just the error estimate of the power spectrum. The CBI estimates noise from the scatter

of 8.4 second differenced samples during the 8-minute scans. This is an unbiased estimate of the

noise in the 8-minute scan. However, if several 8-minute scans are combined, using their measured

noises to optimally combine them, the noise estimate becomes biased to an extent that can quite

significantly affect the power spectrum at high ℓ if the noise statistics are not correctly treated. I

compare the theoretical expectation of the bias to more accurate numerical integrals and Monte

Carlo simulations of the data. We use these simulations to determine a final value by which we scale

the CBI scatter-based noise estimates in order to get a final, unbiased estimate of the noise. The

first-order analytic expression is derived in Appendix A. It is 1 + 4
ν if there are ν measurements in

each of the 8-minute scans. For the CBI, ν is of order 100 since there are approximately 50 samples

per scan, and each sample has both a real and imaginary measurement.

4.1.1 Fast Fourier Transform Integrals

It rapidly becomes exceedingly difficult to get better (higher than first-order) analytic expressions,

so numerical methods for evaluating the correction factor under a wide range of circumstances are

important (if for no other reason than to check on the analytic expressions). A general brute-force

approach to the problem is not very useful because we have many different independent variables

(each of the wi), and so another technique is required if we want to examine the combination of
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more than just a few (3-4) 8-minute scans. Fortunately, FFT’s are the magic bullet we need. This

is because the distribution of the sum of two random variables is the convolution of their individual

distribution functions. So, all we have to do is take the FFT of a distribution, and raise it to the

power of however many samples we want to combine. The two quantities we need to understand are

〈

(

w1
w1 +

∑

i>1 wi

)2
〉

(4.1)

and
〈

(

∑

wi

)−2
〉

(4.2)

For the first term, we can convolve all of the wi for i > 1 to get a new variable, say q. Then the

desired quantity is
〈

(

w1
w1 + q

)2
〉

(4.3)

So, we have reduced the problem to a two-dimensional integral, which is quite feasible computation-

ally. The other term becomes even simpler—all the wi can be combined, to get a one-dimensional

integral. The main subtlety is that since the FFT implicitly assumes periodic boundary conditions,

the length of region of real-space to be transformed must be large enough so that only one period

of the function contributes. Since each wi is peaked around one, the convolution of n of them will

be peaked around n, and the real-space coverage of the distribution that gets transformed must be

substantially larger than n. Once one does that, then the answers are quite good. For instance, I

checked the expectation value of the first term for ν = 50 and two scans. The theoretical value is

1 + 1
ν+1 = 1.019607843 and the value I get from the FFT integral is 1.019607855.

We expect the first-order calculations to be close for the CBI. The CBI typically has of order

50 points per scan, with both real and imaginary points used in estimating the noise, for a total of

100 degrees of freedom in the PDF. Figure 4.1 shows the correction factor calculated using FFT’s

to convolve the PDF of single weights. If the correction factor required to scale the variance is

expressed as 1+ x
d.o.f. , then Figure 4.1 show x for varying numbers of scans, with 100 d.o.f. per scan
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Figure 4.1 Plot of numerical estimates of the correction factor that needs to be applied to scatter-
based estimates of the variance. If multiple scans whose noises are estimated from internal scatter
are combined with optimal weighting, then there is a systematic underestimate of the true variance
of the final, averaged data point. The values plotted are x where the correction factor to be applied
to the variance is of the form 1 + x

d.o.f. where d.o.f. is the number of samples in the scan minus
the degrees of freedom we may have removed in subtracting off means. First-order calculations
predict x = 2 for 2 scans, and x = 4 for infinitely many scans. The first-order calculations can have
substantial corrections to x if there are few d.o.f., but with the CBI’s typical value of 100 d.o.f.,
the first-order prediction is close. Note that few scans are needed to approach the limiting value
of the correction. All data points going into the scans have identical variances and are Gaussian
distributed.

and each individual point an identically distributed Gaussian. The first-order predictions are 2 for

2 scans and 4 for infinitely many scans. The FFT values are 1.95 for 2 scans, and 4.21 for 100 scans.

At 10 scans, the correction factor is 3.8, or about 90% of its limiting value, so the correction factor

approaches its limiting value with relatively few scans. Because of roundoff issues in the FFT’s, it is

difficult to push the numerical integrals to much higher accuracy or to many more scans combined.

4.1.2 Noise Correction Using Monte Carlo

We use Monte Carlo simulations of the noise to estimate the final noise correction factor. There

are multiple factors that can break the assumptions in the theoretical calculations that are better
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treated by Monte Carlo. Not all scans necessarily have the same number of points, due to outlier

tossing or un-matched lead/trail points. Also, the noise on baselines at the same UV point from

different receivers will be different, as each receiver has its own system temperature. These effects

are difficult to treat theoretically but can be simulated without undue effort. I calculated the final

noise correction factor from a set of 50 simulations created using the program MOCKCBI, written

by Tim Pearson. MOCKCBI takes a set of visibilities and a map, then replaces the visibilities by

the value they would have from the map, and adds Gaussian noise. By forcing MOCKCBI to use

the undifferenced estimates of the noise rather than the scatter-based weights of the differenced

data, the final combined data points will have the proper noise behavior. The data set can then be

combined and χ2 calculated. To avoid confusion caused by the presence of CMB signals, the maps

were simulated with the CMB set to zero. Once simulated, the data were run through the standard

pipeline to combine them into scans, and then combine the scans with scatter-based weights into

final UV values for each antenna pair. I then calculated the χ2 values for antenna pairs at identical

UV points to estimate the final noise correction. Using the 20 hour deep field as a visibility template,

the final noise correction value is 1.057± 0.002. The answer has been skewed somewhat by a minor

bug in our pipeline program that mis-estimated the degrees of freedom by 1, leading to an error

in the noise estimate of about 1%. So, the true value of the noise correction is probably more like

1.047, which is in excellent agreement with the predicted first-order theoretical value of 1.04, and

the Fourier integral value of 1.042. The difference is likely due to the fact that some scans have

fewer than 100 d.o.f., which will skew the correction to a larger value. The noise correction value

that should be used is in actuality probably a bit higher. The reason is that individual UV points

are not independent, but rather are correlated because of the primary beam. As such, maximum

likelihood is combining, with weights, several different UV points to create independent estimators

of the CMB. Those independent estimators will have contributions from many more scans than a

single UV point in the final data set, which will have approximately 50 nights’ worth of data at

each point (since that’s how many nights went into the 20 hour deep field). It is for this reason

that the result from the Fourier integral calculations that the excess noise converges to its final
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value in relatively few scans is critically important. Because of that, the true final value can be only

marginally different from the Monte Carlo value for individual UV points.

4.2 GRIDR/MLIKELY Speedups

One would naively think that high-ℓ data wouldn’t affect the low-ℓ power spectrum. This would

be the case if there were no undesirable radio point sources in our observations. In the presence

of sources, though, the high-ℓ data becomes extremely useful, and can be critical if there are very

many sources (area per source on the sky comparable to the area of the synthesized beam). One

of my major contributions to the CBI papers was optimizing the CBIGRIDR/MLIKELY pipeline

to be fast enough to be able to use all the CBI data and to be able to investigate various spectrum

properties. This section discusses some of the pipeline improvements. Their utility in testing the

spectrum and improving response to sources are discussed in Section 4.3.

The most important speedup was the adoption of a hybrid gridding lattice in CBIGRIDR. The

way CBIGRIDR works is to linearly combine (“grid”) visibilities to create estimators of the sky

intensity at a set of points ui in the UV plane. Because the underlying sky intensities in the UV

plane are uncorrelated (since they are equivalent to estimates of individual aℓm), the variance window

functions for the gridded estimators are simple to calculate. During the gridding process, CBIGRIDR

keeps track of the noise correlations introduced by the gridding to create the noise correlation matrix

for the gridded estimators. There is no a priori requirement in CBIGRIDR about where to locate

the estimators in the UV plane, but it should be on the scale of the effective beam in UV space.

Since the UV beam is set by the sky coverage, the size scale in UV space is the Fourier transform

of the half-power point of mosaic map on the sky. The expected behavior is that as the spacing of

the estimators shrinks, the spectrum will become more accurate until the spacing reaches a critical

level, roughly the Nyquist sampling interval, at which point a further decrease in estimator spacing

won’t change the spectrum. It is important to get the spacing right, since a too-large spacing loses

information, and a too-small spacing increases execution time substantially. If we oversample by a

factor of two, it’s a factor of four in estimators (two in each dimension of the UV plane), and a factor
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Figure 4.2 Comparison between spectra using a fine mesh in CBIGRIDR and a hybrid mesh with
coarser sampling at ℓ > 800. The two spectra have been offset in ℓ for greater clarity. The artificially
low error bar on the first point for the fine mesh spectrum is due to the fact that we initially
regularized the first bin, since the CBI rapidly loses sensitivity for ℓ much smaller than about 500.
In this case, we regularized to the value from the unregularized spectrum, so the only effect is the
small error bar.

of 43 = 64 in run time, so penalty for oversampling is stiff indeed. In investigating the behavior of

the output spectrum as the gridding was changed, I found that the high-ℓ spectrum converged at

a coarser sampling than the low-ℓ spectrum, by about a factor of two, with the sensitivity change

happening at ℓ ≃ 800. This is presumably because the SNR on low-ℓ estimators is very high, and

so the correlations are more important than at high-ℓ, and one needs to trace out the structure in

the mosaic FT in more detail. However, we have not investigated the reasons behind the differing

sensitivity in detail. Once I uncovered this effect, we changed CBIGRIDR to a hybrid lattice

scheme, where estimators were placed on a split mesh, with a fine mesh at ℓ < 800, and a coarse

mesh, sampled half as often, for ℓ > 800. The spectrum produced from the hybrid grid scheme was

virtually identical to that from the uniform, finely-sampled grid. A comparison of the two spectra is

shown in Figure 4.2. The speedup from the hybrid mesh happens both in CBIGRIDR, because each

visibility is gridded onto fewer estimators, and in the linear algebra part of the pipeline, MLIKELY,
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since fewer estimators means smaller matrices. The speedup is a bit less than the canonical 4 in

CBIGRIDR (14 as many estimators) and 64 in MLIKELY (
1
4

3
) because of the fine gridding, but it

is close to these values. The number of estimators in a coarse grid to ℓ = 1600 is the same number

as that in a fine grid to ℓ = 800. So, as long as the upper-ℓ cutoff is noticeably greater than 1600,

then the number of estimators is dominated by the coarse mesh, and the speedup is large. Before we

used the hybrid mesh, we were only using CBI mosaic data to ℓ = 2600 because at that point it took

over a day on a 32-CPU supercomputer ( Compaq GS320 with 733 MHz alpha CPUs with 64GB of

RAM) to get a spectrum, and to get to the CBI upper limit of ℓ = 3500 would have taken a factor of

(3500/2600)6 = 6 times as long. In addition to the computational burden, the memory requirements

for the larger matrices would have pushed us over the 64 GB available on the computer. While we

could perhaps have extracted a single spectrum (though even that was not clear), we would never

have been able to test it. In contrast, with the hybrid mesh, it took approximately eight to ten

hours to both grid and measure a spectrum to ℓ = 3500.

I also made a couple of minor modifications to MLIKELY that helped quite a bit, especially

when measuring several similar spectra from the same set of gridded estimators. The first was to

add an option to start the spectrum fitting with an arbitrary, user-enterable spectrum instead of a

constant value. This made the spectrum converge in fewer iterations if one had a good guess (as was

the case for the investigation of source parameters in Section 4.3). Also, I found that MLIKELY

seemed consistently to underpredict the shift in the spectrum to get to the maximum when iterating

by a factor of a bit less than 2. By allowing the user to set a parameter by which MLIKELY scaled

its step in the spectrum, I was able to get it to converge in fewer iterations. These two changes

meant that MLIKELY converged to 1% of the error bars typically in 2-4 iterations (depending on

the quality of the initial spectrum guess), whereas previously, it had been more like 12-14 iterations.

4.3 Source Effects in CBI Data

There is no correlation between low-ℓ and high-ℓ when observing the CMB with an interferometer.

The response of a baseline to structure in the UV plane is the autoconvolution of the dish illumination
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patterns measured in wavelengths, centered at the UV coordinate of the baseline. As such, a baseline

has intrinsically zero response to regions in the UV plane more than twice the dish diameter (in

wavelengths) away from the baseline UV position, independent of the shape of the primary beam.

So, it is impossible for a 100 cm baseline to observe any CMB in common with a 400 or 500 cm

baseline when using the CBI’s 90 cm dishes. This suggests that if we are interested in the power

spectrum at ℓ ∼ 600, then there is no point including data from ℓ ∼ 3000, since that data cannot

contain CMB information in common with any baseline that observed around 600. Consequently,

there is no reason in principle to include high-ℓ data where the CMB is not detected, since there is

no information contained in the data. In fact, the price paid in running time for keeping high-ℓ data

is very large. For a reasonably evenly sampled experiment, if we keep data up to ℓmax, the number

of independent patches in the UV plane n ∝ ℓ2max, and execution time is ∝ n3, for a total scaling

of ℓ6max. While not immediately obvious, the presence of sources makes this argument invalid, and

consequently it became important to push to as high an ℓ as possible when measuring the first-year

power spectrum, even though the power spectrum at the highest ℓ’s was thoroughly noise-dominated.

In this section, I discuss how radio point sources affect the CBI spectrum and why using all of the

CBI data, even that at high-ℓ, improves the low-ℓ power spectrum.

4.3.1 Source Effects on Low-ℓ-Spectrum

Radio point sources are a major contaminant of CMB data, especially at high-ℓ (larger than about

1800 at 30 GHz) where their power can become comparable to or larger than that of the CMB. The

best way to deal with them is, of course, to know their fluxes and subtract them off. In practice, there

are too many sources to measure them all. There are of order 56 sources per square degree brighter

than 2.5 mJy at 1.4 GHz (in NVSS Condon et al., 1998), or about a source every 8 arcminutes. We

measure those brighter than 6 mJy at 1.4 GHz with the OVRO 40 meter telescope as in Section

3.1, and subtract those with measured flux greater than 8 mJy at 30 GHz. This leaves substantial

uncertainties in the residual flux from the point sources that is difficult to estimate (since the

statistics of faint sources at 30 GHz are poorly known) that can add significant amounts of power to
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the CBI spectrum at high-ℓ. Because the flux is unknown, and therefore unsubtractable, we instruct

the analysis pipeline to set the uncertainty of the source flux to an extremely large number, thereby

ignoring any flux it may have during the spectrum extraction. This process is called projecting out

sources. To see how to downweight the sources, consider a source of unknown amplitude described

by a visiblity vector∆. If we then add q∆T∆ to the noise matrix, where q is some large parameter,

maximum likelihood sets the noise at the source location to be extremely large, and the spectrum

is insensitive to the true flux from the source (Bond et al., 1998). Because there is no way to know

what the CMB is doing underneath the source, maximum likelihood loses the information about

the CMB at that point as well. To project a source, we need only know its location, and not its

flux (since the point of projection is to make flux from the source have no impact on the spectrum).

Projection of sources has been successfully in the past by others (e.g. Halverson et al., 2002). The

parameter q is called the projection amplitude, and is typically a very large number (we currently

use 105), but not so large as to cause numerical instabilities in the matrix operations.

Fortunately it appears that there is not a population of sources too faint to appear in NVSS

(hence with unknown positions) with enough flux to significantly affect the CBI power spectrum, as

neither the CBI nor BIMA (Dawson et al., 2002) see any sources at 30 GHz down to a few mJy that

aren’t present in NVSS. BIMA especially would be sensitive to such a population since they have

larger dishes. We would like to project out all of the NVSS sources since we don’t know which of

them are problematic. If we restrict ourselves to, say, the 100 cm baselines, then the beam size is

about 15 arcminutes, and so there are roughly four sources per beam. If the sources are projected

out, then almost all the data is lost due to the projection. As we go to higher ℓ, the situation

must improve at some level since there are more independent beams in the UV plane, but the total

number of modes lost to sources is fixed, since the number of sources is fixed and each one deletes

a single mode. The question remains, though, what is maximum likelihood actually doing when it

projects out sources, and what are the effects expected in the spectrum?
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4.3.2 Two Visibility Experiment

To gain insight into the general behavior of sources in maximum likelihood, let us consider a simple

experiment. There is a single source at the center of the observed field, and two interferometer

baselines. One baseline is short and observes the microwave background, and the other is sufficiently

long so that there is a negligible contribution to it from the CMB. The noise in the two baselines is

the same, and they are both equally sensitive to the source. If the assumed source amplitude in the

visibilities is defined to be
√
a, then the vector of visibilities is (

√
a
√
a), and the source matrix is

the outer product of the visibility vector. Let us also assume that the expected CMB signal on the

short baseline is equal to the noise. Under these assumptions, the noise matrix, the source matrix,

and the CMB window matrix are (listing the short visibility first):

N =





1 0

0 1



 Source =





a a

a a



 CMB =





1 0

0 0



 (4.4)

To project out the source, we let a → ∞. In the simple case we have just discussed, we can

analytically examine the behavior of maximum likelihood as we change a. If a = 0, then there

is no source, and the problem is diagonal. There is only one measurement of the CMB contained

in the short visibility, and it has an SNR of one. If a is non-zero, then the effective noise matrix

(noise+source) is not diagonal, but we can do a rotation that will make it diagonal. The effective

noise matrix is

Neff =





1 + a a

a 1 + a



 (4.5)

which has eigenvectors

v1 =





√
0.5

√
0.5



 v2 =





−
√
0.5

√
0.5



 (4.6)

and eigenvalues

λ1 = 2a+ 1 λ2 = 1 (4.7)
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If we use these to rotate into the space in which the effective noise is diagonal, we have

Noiseeff,rot =





2a+ 1 0

0 1



 CMBeff =





1/2 −1/2

−1/2 1/2



 (4.8)

We can now take the limit as a→∞ to see that the effective noise in the first (sum) mode goes to

infinity, while the effective noise in the second (difference) mode remains constant at one. But the

price paid is that the second mode has an expected power of 12 , whereas the short baseline visibility

originally had a power of 1. So what maximum likelihood has done is to create an estimator

intrinsically free from source contamination though the new estimator is noisier. Because the noise

on both baselines has been combined to get the source-free estimator, it is important to measure

both visibilities as well as possible. In fact, if one is free to allocate a fixed amount of time between

the two visibilities, the optimal SNR is when the time is split evenly (see Figure 4.3).

The source has also coupled visibilities on different scales, which will lead to increased correlations

between bins, in much the same way that knocking holes in a map will broaden its Fourier transform.

One could add CMB into the long baseline visibility, and then the output source-free mode would

have contributions from both the low-ℓ and high-ℓ CMB. In this simple case, it would also be correct

to think of maximum likelihood using the long baseline to measure the flux from the source and

subtract it. This works because the long baseline is sensitive to only the flux from the source and so

is a pure measurement of the source brightness. In the general case, though, there is no such pure

measurement, and so there is no estimate of the source flux to subtract. So, it is more correct to

think of the process as creating source-free modes rather than subtracting off sources.

4.3.3 Sources in a Single Field

It is also important to study the effects of sources in more realistic situations. Rather than Monte

Carlo a set of simulations, it is possible to use window matrices to calculate the expected response.

To do this, I created a set of baselines in a single pointing covering a range in ℓ with uniform

sampling and noise per area in the UV plane, with 5 point sources projected out, one at the pointing
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Figure 4.3 Relative efficiency of a two visibility experiment with one long baseline and one short
baseline. The short baseline is sensitive to both the CMB and a foreground point source, while the
long baseline is sensitive only to the source. The two baselines are equally sensitive to the source.
If the source amplitude is unknown, then the optimal distribution of observing time is an even
split between the short and long baselines. This is true even though the long baseline contains no
information about the CMB.



72

center and one each at ± 15 arcminutes in RA and Dec. A single window matrix was used, with a

flat band power out to ℓ = 780, in order to investigate the behavior of low-ℓ bands due to sources.

There are two numbers of interest: one is the total signal available in the data set, and the other

is the fraction lost due to sources. Figure 4.4 show the behavior of these quantities as the ℓ cutoff

of the data is changed. The total signal available is just the sum of the eigenvalues in the window

matrix after a matrix transformation that takes the noise matrix into the identity matrix. This is

equivalent to S/N when cosmic variance is unimportant, as is the case in low-S/N experiments (such

as polarization). One can include cosmic variance, but it is more model dependent, depending in

detail on the assumed S/N per area in the UV plane, though the general effect is to reduce the

fraction of data lost to sources. The blue crosses in Figure 4.4 show how this total available signal

varies with ℓ range. As expected, the available signal rapidly converges to its limiting value once

the data range gets much past the upper ℓ limit of the window matrix. The same quantity can be

calculated in the presence of sources by diagonalizing the noise+source matrix and scaling so that

the noise+source elements are all one. The red asterisks show the amount by which the available

signal falls short of the no-source available signal. Unlike the no-source case, the available signal

continues to rise as the ℓ cutoff is increased since the high-ℓ data continue to help characterize the

sources and source-free modes. In this case, a mere 5 sources are sufficient to cost half the data in

a single pointing if only the data in the ℓ range of interest are used. In contrast, if the data out to

ℓ = 400 are used, then the price paid because of sources is only 5%. Since there are typically dozens

of NVSS sources per field, broad ℓ coverage is critical.

4.4 Source Effects in the First-Year Mosaics

With the speedups in the pipeline from Section 4.2 I was able to extract the power spectrum out to

high-ℓ. We had originally planned to use the source projection parameters that had been derived

and extensively tested from the deep fields by Brian Mason. The method that he found worked for

the deep fields was to measure all sources bright than 6 mJy in NVSS with the OVRO 40m using

a 30 GHz, four-channel receiver. Those sources measured brighter than 4σ (about 8 mJy) at 30
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Figure 4.4 Expected behavior of total signal available and signal lost due to sources as the ℓ range
of the data is varied.



74

GHz were subtracted from the data set. The statistics of the NVSS sources detected by OVRO were

used to estimate a best spectral index to extrapolate the flux from 1.4 to 30 GHz for the undetected

and faint NVSS sources. The source projection matrix we used was the sum of the outer products

of the flux from each source gridded onto the estimators, using the extrapolated source brightness

for the unmeasured sources. It was this matrix, multiplied by a projection factor, that was added

to the noise matrix to remove the sources with known position (there is also a contribution from

sources too faint to appear in NVSS, calculated the same way as the source signal in Chapter 3.

This contribution is small - see Section 4.6.) For the deep fields, a source projection factor of 100

was sufficient to remove source effects, with the spectrum insensitive to variation in the projection

coefficient at values higher than that. Because the mosaic had been much slower to run (∼ 1-2

days on the 32 CPU Dec Alpha machine), we had anticipated setting the mosaic source projection

parameters using the deep field source parameters, rather than spend the CPU time to investigate

the sources in the mosaics separately. After the improvements to the pipeline, it was fast enough

to investigate the effects of different source parameters. In doing so, I found that a substantial

source signal remained in the mosaics. We had originally found power at high-ℓ in the mosaics

(ℓ above ∼1600) of about 1000 µK2 that would have been very difficult to explain cosmologically,

and was about a factor of 2 larger than that in the deep fields in Mason et al. (2003). See Figure

4.5 for the power spectrum. In investigating the mosaic spectrum, I discovered that the spectrum

calculated using the deep-field projection level of 100 had not reached the limiting regime at which

point sources were truly projected out. While initially surprising (we were after all projecting out

similar source populations), the behavior is actually sensible. The reason is that projection works

by downweighting the importance of the mode that contains the source information. The weight is,

from Chapter 2, S
S+N (again, these are defined in terms of variance and not σ). At high-ℓ, we are

thermal-noise limited, which means what the weight is roughly SN . Projecting a source with a fixed

amplitude adds a fixed amount to N , dropping the weight of the mode. For the deep fields, the noise

per beam at high-ℓ was quite a bit smaller than for the mosaics, typically 1 mJy versus > 4 mJy. A

mode with a source at 5 mJy projected out in the deeps will have a weight relative to the weights
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Figure 4.5 Original mosaic power spectrum using deep-field source projection parameters. The high
power level at ℓ > 1600 is due to the inapplicability of deep-field source projection parameters to
the mosaic power spectrum.
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of other similar modes of 1mJy2 + 25mJy2 against 1mJy2. So, it will be downweighted by a large

factor relative to the other data (in this case about 25). The same source projected at the same level

in the mosaics will, however, have a relative downweighting of 16+25mJy2 against 16mJy2, or only

a bit less than 50%. So, the source will not really have been projected out of the mosaic spectrum

even though it is gone from the deep spectrum. See Figure 4.6 to see how the spectrum changes as

the source projection level is varied between 4 and 104. We finally adopted a projection level of 105,

the largest value that was comfortably numerically stable. It is, in general, a good idea to use the

largest projection value possible. The reason is that modes enter into maximum likelihood like

S

S +N

(

χ2 − 1
)

(4.9)

(from Equation 2.9). As the projection level increases, the weight drops, but so does χ2, thereby

introducing a bias. The projection required is higher for low-ℓ modes since they have a much higher

signal, so a high projection level is required to move past their bias regime. It is for this reason that

we use a large value for the projection.

To get an idea of the effects discussed in Section 4.3 see Figure 4.7. It is a plot of the spectrum

produced with the original, low source level and two data cutoffs, one at ℓ = 2600 and one at

ℓ = 3500. The cutoff at ℓ = 3500 contains essentially all the CBI data. The error bars are slightly

larger in the low-cutoff spectrum (most easily seen in the bins centered at 900 and 1900), though

not substantially so with a source projection amplitude of 100. This is because most faint sources

(which constitute most of the sources) are not projected out at low-ℓ when the projection amplitude

is 100. The difference between the ℓ = 2600 and ℓ = 3500 cutoff errorbars would be substantially

larger using a higher projection amplitude. We have never done the direct comparison, though,

since by the time we realized the projection level needed to be higher, the high projection, ℓ = 2600

spectrum would have required a complete re-run of the entire spectrum pipeline. The CPU time

was more productively used doing more tests of the ℓ = 3500 spectrum, so we never produced the

high projection, ℓ = 2600 spectrum.
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Figure 4.6 Mosaic power spectrum as a function of various source projection levels. Note how the
higher projection levels are systematically lower that the projection at 4 times the predicted source
amplitude. The lower power level indicates that a substantail fraction of the high-ℓ flux at low levels
is due to flux from sources that has not been fully projected out. The dip to low power levels as the
projection amplitude is increased followed by a slight rise is typical maximum likelihood behavior,
and the reason why as high a projection level as is numerically stable is desired. The final level we
used was 105.
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Figure 4.7 Comparison of mosaic power spectra with the data running to ℓ = 2600 (blue points)
and ℓ = 3500 (red points). The increased error bars with the lower ℓ cutoff can be seen most easily
in the bins centered at ℓ = 900 and ℓ = 1900. These early runs were done with a projection level
of 100, much lower than our final adopted value. The difference between the 2600 and 3500 cutoff
would be substantially more striking with the higher projection levels.
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4.5 First-Year Data

The first-year data falls into two sets of observations: a set of three deep fields (which includes the

deep field data in Padin et al., 2001a), and a set of mosaic data. The mosaic data consist of three

mosaics centered at 02h50− 03◦, 14h50− 03◦, and 20h50− 03◦. Each mosaic covers roughly 2◦× 4◦,

with the differencing for ground subtraction in the long direction, for an effective coverage of 2◦×2◦.

The individual mosaic pointings are summarized in Pearson et al. (2003). The deep field data are

three pairs of differenced fields with the lead fields centered at 08h44′− 03◦10′, 14h42′− 03◦50′, and

20h48′ − 03◦30′. The 14 hour and 20 hour deep fields are located inside the 14 hour and 20 hour

mosaics, so there is some slight correlation between the mosaic and deep field results. The correlation

is not strong, though, since only a couple of nights of the deep data in the 14 hour and 20 hour

mosaics was included, and both the 08 hour deep and 02 hour mosaic are entirely independent. The

deep data are summarized in Mason et al. (2003). The same observational constraints (night-time,

> 60◦ from the moon, etc.), calibration, and differencing schemes discussed in Chapter 3 were used.

Source subtraction was again carried out using source measurements from the OVRO 40 meter

telescope. Maps of the three mosaics, both source-subtracted and unsubtracted are in Figures 4.8

through 4.10.

4.6 First-Year Results

4.6.1 Power Spectrum

The final first-year power spectrum results are in Table 4.1, and are plotted in Figure 4.11.
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Figure 4.8 Map of the 02 hour mosaic. The left half shows the image before source subtraction,
the right half shows the same image with the sources measured by the OVRO 40 meter subtracted.
Especially on large scales, the large majority of the structure in the source-subtracted image is CMB
and not noise.

Figure 4.9 Same as Figure 4.8 for the 14 hour mosaic.
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Figure 4.10 Same as Figure 4.8 for the 20 hour mosaic.

Table 4.1. Band Powers and Uncertainties (from Pearson et al. (2003))

ℓ range ℓeff Band Power l(l + 1)Cl/(2π) (µK
2)

Even Binning

0–400 304 2790 ± 771
400–600 496 2437 ± 449
600–800 696 1857 ± 336
800–1000 896 1965 ± 348
1000–1200 1100 1056 ± 266
1200–1400 1300 685 ± 259
1400–1600 1502 893 ± 330
1600–1800 1702 231 ± 288
1800–2000 1899 −250± 270
2000–2200 2099 538 ± 406
2200–2400 2296 −578± 463
2400–2600 2497 1168 ± 747
2600–2800 2697 178 ± 860
2800–3000 2899 1357 ± 1113

Odd Binning

0–300 200 5243 ± 2171
300–500 407 1998 ± 475
500–700 605 2067 ± 375
700–900 801 2528 ± 396
900–1100 1002 861 ± 242
1100–1300 1197 1256 ± 284
1300–1500 1395 467 ± 265
1500–1700 1597 714 ± 324
1700–1900 1797 40 ± 278
1900–2100 1997 −319± 298
2100–2300 2201 402 ± 462
2300–2500 2401 163 ± 606
2500–2700 2600 520 ± 794
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Table 4.1—Continued

ℓ range ℓeff Band Power l(l + 1)Cl/(2π) (µK
2)

2700–2900 2800 770 ± 980

Figure 4.11 Final first-year power spectrum, binning is ∆ℓ = 200. Red and blue points are two
different binnings for the same data. Adjacent same-colored points are from the same spectrum and
are weakly correlated (∼ 20%). Adjacent different-colored points are not independent and we expect
their correlations to be very high.

The spectrum was calculated with sources detected by OVRO subtracted, a source projection

factor of 105, and an isotropic faint source contribution of 0.08 Jy2 per steradian, or 25 mJy2 per

square degree. There are two completely separate power spectra extracted from the same data using

two different binnings, the “even” and “odd” binnings in Table 4.1. On the plot, the “even” binning

is the blue points, and the “odd” binning is the red points. Points from within a single binning

are basically independent, with correlations < 20%. Adjacent points from different binnings (e.g. a

red point compared to the nearest blue points) are not independent and have unknown correlations,

as they were produced in different pipeline runs. Similarly, when using the CBI’s power spectra to
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Figure 4.12 The CBI mosaic band power window functions. The upper panel shows the “even”
binning and the lower the “odd” binning. The expected value in a CBI bin is

∫

CℓWB(ℓ)/ℓ, so the
window functions can transform a power spectrum into the experimental space of the CBI power
spectrum.

compute cosmological parameters, one should use either the even or the odd binning, but not both.

The band power window functions, that describe the sensitivity of the CBI bands to the CMB power

at a given ℓ, are in Figure 4.12. They can be used to transform a model Cℓ spectrum into expected

CBI band powers, subject to the caveats of Section 2.5.

The CBI spectrum is in very good agreement with that of other experiments. Figure 4.13 shows

the same spectrum along with a reference model from a fit to BOOMERANG data. This model

does not depend at all on CBI data, and in fact only depends on BOOMERANG data out to

ℓ = 1000. Figure 4.14 shows the CBI’s spectrum plotted along with the actual spectra from DASI,
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Figure 4.13 Same as Figure 4.11, with a fit to BOOMERANG plotted for reference. The noise
spectrum is also plotted, that is the amount of power contributed by noise. If one were to change
the estimated noise by a fraction ǫ, the CMB spectrum would shift by ǫ times the noise spectrum.
The green triangles are the amount that the isotropic, faint-source correction has shifted the power
spectrum. The data follow the curve remarkably well, even though the curve is a fit to an entirely
unrelated data set that only extends to ℓ ∼ 1000. The reference model has parameters Ω = 1,
Ωcdmh

2 = 0.12, ΩBh
2 = 0.02, ns = 0.975, and τc = 0.1.

BOOMERANG, and MAXIMA. Again, the agreement is excellent between all experiments. The

figure also shows by how much the CBI extended the ℓ range over which the CMB power spectrum

is measured, as well as the contribution from sources too faint to appear in NVSS.

We also measured the CBI mosaic power spectrum using the same binning as the CBI deep

fields, and found that the agreement was good, with χ2 = 5.77 for 5 degrees of freedom. Of note is

the power level at high-ℓ (> 2000) in the deep fields that is higher by > 3σ than that predicted by

standard cosmologies. We believe this may be the first detection through the CMB power spectrum

(rather than pointed observations of clusters) of secondary anisotropy due to the SZ effect (Bond

et al., 2002b). Another intriguing suggestion is that of Oh et al. (2003) where the SZ effect due
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Figure 4.14 CBI spectrum, along with the BOOMERANG, DASI, and MAXIMA spectra. The
agreement between all experiments is striking. Also note how much the CBI extends the range over
which the CMB power spectrum is measured. From Pearson et al. (2003)

to winds from supernovae in Population III stars is shown to be comparable to the high-ℓ power.

The most obvious potential low-z source for this signal is radio point sources, but it is difficult to

create even a baroque source population capable of creating such a high power level. The power

level is equivalent to a single source of 10 mJy in each field, but since the noise is low (< 1mJy),

the flux would have to be split amongst several fainter sources (< 4mJy to be below the confusion

limit of the CBI) per field that do not appear in NVSS. However, such a population would appear

in Dawson et al. (2002), which consists of higher spatial resolution observations also at 30 GHz

with the larger BIMA dishes, as either a population of resolved sources at a few mJy not in NVSS

or a large collection of unresolved faint sources. They do not see a new population of resolved

sources at a few mJy, and an unresolved population would lead to a much higher power level in

their data (at ℓ ∼ 7000) than in the CBI high-ℓ data (at ℓ ∼ 2500− 3000), rather than the slightly

lower value observed. So, the excess power is highly unlikely to be from point sources. The CBI

high-ℓ measurement also marked the first time that the CMB had been detected on length scales
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Figure 4.15 Mosaic and deep field spectra, with the mosaic using the same binning as the deep. This
makes comparisons between the two sets of spectra straightforward. The agreement between the
two is good, with χ2 = 5.57 for 5 degrees of freedom.

equivalent to masses as low as 1014M⊙ – the size of virialized clusters in the local universe. The

high-ℓ fluctuations are the seeds from which today’s galaxy clusters form.

Finally, to see how the CBI spectrum compares to the recently released WMAP (Hinshaw et al.,

2003) and ACBAR (Runyan et al., 2003) spectra, see Figure 4.16. This shows, as a teaser, the

2000+2001 mosaic spectrum from the CBI, which represent a substantial improvement over the first-

year data. The results from the 2000+2001 have not been released yet, so this work restricts itself

to the 2000 data (although the full 2000+2001 data set is used in the spectral index measurements

of Chapter 5). Worth mentioning is that because the SZ signal is weaker at the higher frequencies

at which ACBAR observes, if the CBI high-ℓ power were due to the SZ effect, one would expected

it to be a factor of a few lower in the ACBAR spectrum, consistent with what they observe.
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Figure 4.16 Comparison of CBI 2000+2001 data (light blue) with WMAP (dark blue) and ACBAR
(red). This is only a single binning of the CBI data. Again, the agreement between different
experiments is very good.

4.6.2 Cosmology with the CBI Spectrum

One of the fundamental uses of CMB observations is to measure cosmological parameters both

reliably and accurately. We used the CBI spectra to measure parameters both in isolation (using

COBE-DMR as a very low-ℓ anchor) and in combination with other experiments. The formalism and

results are discussed in detail in Sievers et al. (2003). The basic idea is to approximate the likelihood

surface around the peak using an offset lognormal approximation (Bond et al., 2000) to the surface.

Predicted bin values can be taken from a model cosmological spectrum Cℓ and turned into predicted

values using the band power window functions. The offset lognormal can then be used to give a

likelihood that the model in question would have yielded the observed spectrum. We repeat this

procedure for a grid of models to create a likelihood surface for cosmological parameters. The surface

can then be projected along various dimensions to give the likelihood of a desired parameter, e.g.

Ωk, ns, etc. The grid of model spectra is described in Table 4.2. In addition, the overall spectrum

amplitude C10 is treated as a continuous parameter than can be integrated, rather than requiring

a discrete sum on a model grid. We also use various combinations of prior information to try and

break some of the parameter degeneracies in the CMB spectrum described in the introduction, such
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Table 4.2. Parameter Grid for Likelihood Analysis. From Sievers et al. (2003)

Parameter Grid:

Ωk 0.9 0.7 0.5 0.3 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15
-0.2 -0.3 -0.5

ωcdm 0.03 0.06 0.08 0.10 0.12 0.14 0.17 0.22 0.27 0.33 0.40 0.55 0.8
ωb 0.003125 0.00625 0.0125 0.0175 0.020 0.0225 0.025 0.030 0.035 0.04 0.05 0.075

0.10 0.15 0.2
ΩΛ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
ns 1.5 1.45 1.4 1.35 1.3 1.25 1.2 1.175 1.15 1.125 1.1

1.075 1.05 1.025 1.0 0.975 0.95 0.925 0.9 0.875 0.85 0.825
0.8 0.775 0.75 0.725 0.7 0.65 0.6 0.55 0.5

τc 0 0.025 0.05 0.075 0.1 0.15 0.2 0.3 0.4 0.5 0.7

as the HST H0 key project, or constraints from large-scale structure measurement. Then the priors

can be used to calculate the a priori likelihood that a particular model could have given rise to the

priors. This likelihood is then multiplied by the likelihood from the power spectrum (in practice

their log likelihoods are summed), to give a total likelihood that reflects both the knowledge from

the CMB and the knowledge from the priors. The priors used in calculating cosmological parameters

using the CBI spectrum are as follows:

1. wk-h - very general constraints designed to be noncontroversial. The Hubble constant is set to

0.45 < h < 0.9, the age of the universe is restricted to T0 > 10 Gyr, and Ωm > 0.1.

2. flat - since CMB data (including the CBI) strongly suggest the universe is close to geometrically

flat, a prior with Ωk = 1 seems reasonable.

3. LSS - a broad constraint on large-scale structure and matter clustering. It takes the form of a

constraint on σ8Ω
0.56
m = 0.47+0.02−0.02

+0.11
−0.08 where the two sets of errors are convolved together, with the

first error bar Gaussian and the second uniform. There is also a constraint on the effective shape

parameter Γeff = 0.21
+0.03
−0.03

+0.08
−0.08. More information on the LSS prior can be found in Bond et al.

(2002b).

4. SN - constraint in the Ωm−ΩΛ plane from Type Ia supernovae (see Perlmutter et al., 1999; Riess

et al., 1998).

5. HST-h - measurement of the Hubble contant from the HST key project of 72 ± 8, as found in

Freedman et al. (2001).

The CBI provided useful cosmological constraints. The cosmological parameters derived from
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Table 4.3. Cosmic Parameters for Various Priors Using CBIo140+DMR. From Sievers et al.
(2003)

Priors Ωtot ns Ωbh
2 Ωcdmh

2 ΩΛ Ωm Ωb h Age τc

wk-h 1.000.110.12 1.080.110.10 0.0230.0160.010 0.160.080.07 0.430.250.28 0.590.220.22 0.0830.0530.053 0.580.110.11 13.92.22.2 < 0.66
wk-h+LSS 1.050.080.08 1.070.130.10 0.0290.0150.012 0.100.040.03 0.670.100.13 0.390.120.12 0.0950.0550.055 0.600.120.12 15.42.12.1 < 0.66
wk-h+SN 1.030.080.08 1.110.110.11 0.0280.0160.012 0.100.050.04 0.710.080.09 0.330.080.08 0.0760.0460.046 0.650.120.12 14.72.42.4 < 0.67
wk-h+LSS+SN 1.040.080.08 1.110.110.10 0.0290.0160.012 0.100.040.03 0.720.070.07 0.320.080.08 0.0820.0470.047 0.640.110.11 15.02.22.2 < 0.67

flat+wk-h (1.00) 1.070.110.10 0.0230.0100.008 0.150.060.04 0.470.250.27 0.540.240.24 0.0680.0280.028 0.600.120.12 14.01.41.4 < 0.65
flat+wk-h+LSS (1.00) 1.050.150.09 0.0240.0110.009 0.110.020.02 0.670.100.13 0.340.120.12 0.0570.0200.020 0.660.110.11 14.21.31.3 < 0.62
flat+wk-h+SN (1.00) 1.100.120.11 0.0250.0110.009 0.110.030.02 0.700.070.07 0.300.070.07 0.0520.0170.017 0.700.090.09 13.81.41.4 < 0.65
flat+wk-h+LSS+SN (1.00) 1.080.110.09 0.0250.0110.009 0.110.030.02 0.710.060.06 0.290.060.06 0.0530.0160.016 0.690.090.09 13.91.31.3 < 0.63

flat+HST-h (1.00) 1.090.120.10 0.0260.0100.009 0.130.070.04 0.650.120.20 0.380.180.18 0.0580.0220.022 0.680.080.08 13.31.31.3 < 0.65
flat+HST-h+LSS (1.00) 1.090.130.10 0.0260.0100.009 0.110.030.02 0.710.070.08 0.290.080.08 0.0540.0190.019 0.700.080.08 13.81.11.1 < 0.64
flat+HST-h+SN (1.00) 1.100.120.11 0.0260.0100.009 0.120.030.03 0.710.060.06 0.290.070.07 0.0520.0170.017 0.710.070.07 13.61.21.2 < 0.65
flat+HST-h+LSS+SN (1.00) 1.080.110.09 0.0260.0100.009 0.110.020.02 0.710.060.05 0.290.060.06 0.0540.0170.017 0.700.070.07 13.71.11.1 < 0.63

.Estimates of the 6 external cosmological parameters that characterize our fiducial minimal-inflation model set as progressively more
restrictive prior probabilities are imposed. (τC is put at the end because it is relatively poorly constrained, even with the priors.) Central
values and 1σ limits for the 6 parameters are found from the 16%, 50% and 84% integrals of the marginalized likelihood. For the other
“derived” parameters listed, the values are means and variances of the variables calculated over the full probability distribution. wk-h
requires 0.45 < h < 0.90, Age > 10 Gyr, and Ωm > 0.1. The sequence shows what happens when LSS, SN and LSS+SN priors are imposed.
While the first four rows allow Ωtot to be free, the next four have Ωtot pegged to unity, a number strongly suggested by the CMB data. The
final 4 rows show the “strong-h” prior, a Gaussian centered on h = 0.71 with dispersion ±0.076, obtained for the Hubble key project. When
the 1σ errors are large it is usual that there is a poor detection, and sometimes there can be multiple peaks in the 1-D projected likelihood.

the CBI+DMR(required anchor in the ℓ = 2 − 40 range), using a bin size of ∆ℓ = 140, are in

Table 4.3. We use a finer binning for the cosmology than for plotting spectra to make sure we don’t

lose any information to overly-large bins. The price is higher correlations, which is correctly treated

using the Fisher matrix in the cosmology, but can lead to misleading impressions when the spectrum

is looked at visually. The first bin for the ∆ℓ = 140 “even” binning has an upper limit of ℓ = 400,

while the first bin for the “odd” binning stops at ℓ = 330. The CBI is not very sensitive to the

spectrum below ℓ ∼ 400, so these cosmological results are basically independent of the first acoustic

peak. It is interesting to note that even without the first peak and quite mild restrictions, the CBI

measures the universe to be flat to about 10% (1.00+0.11−0.12).

The likelihood surface is often more complicated than can be described using simple error bars.

Historically, parameters have often had widely separated invervals allowed by the data (such as the

Padin et al. (2001a) result that Ωk < 0.4 or > 0.7), though this is less of a problem now as the data

are of higher quality. One dimensional likelihood distributions of cosmological parameters from the

CBI spectrum are plotted in Figure 4.17. One might ask how much of the cosmology is prior-driven
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rather than CMB-driven. Figure 4.18 shows the parameters from DMR+priors. The parameters in

Figure 4.18 are very weakly constrained relative to those with the CBI data in Figure 4.17, which

means that the accuracy of the individual parameters is driven by the CBI data and not imposed

through the priors used.

Some consistency checks between different binnings of the CBI data, as well as with some other

experiments are given in Table 4.4. The CBIo140 and CBIe140 are the “odd” and “even” ∆ℓ = 140

CBI binnings. The parameters labelled CBIo140 (ℓ > 610) are for the CBI “odd” binning, throwing

out the spectrum below ℓ = 610 in order to provide a check on parameters derived from a region of

the spectrum with almost no overlap with that of other, lower-ℓ experiments. The CBI ∆ℓ = 200

“odd” binning results are under CBIo200, with the deep field results labelled CBIdeep. Finally,

some comparisons with the spectra from DASI, BOOMERANG, and All-data (a large collection of

experiments that included basically all the CMB results up through summer 2002. Details are given

in Sievers et al., 2003). The cosmological parameters maintain a high degree of consistency in all

these various checks.
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Figure 4.17 1-D projected likelihood functions calculated for the CBIo140+DMR data. All panels
include the weak-h (solid dark blue) and LSS+weak-h(short-dash-dotted red) priors. (LSS is the
large-scale structure prior.) The Ωk panel also shows what the whole Cℓ-database gives before the
weak-h prior is imposed (black dotted). We note that even in the absence of CMB data there
is a bias towards the closed models (Lange et al., 2001). In the other panels, flat+weak-h (long-
dashed-dotted light blue) and LSS+flat+weak-h (dashed green) are plotted. Notice how stable the
ns determination is, independent of priors. We see here that, under priors ranging from the weak-
h prior to the weak-h+LSS+flat priors, the CBI provides a useful measure of four out of the six
fundamental parameters shown. This is independent of the first acoustic peak, where the CBI has
low sensitivity, and is also largely independent of the spectrum below ℓ ∼ 610 for all but Ωbh2 (see
Table 4.4). From Sievers et al. (2003).
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Figure 4.18 Cosmological constraints obtained using DMR alone. This gives an idea of the role of
the LSS prior in sharpening up detections for DMR. Note that DMR did reasonably well by itself
in first indicating for this class of models that ns ∼ 1 (e.g., Bond, 1996). Of course it could not
determine ωb and the structure in Ωk and ΩΛ can be traced to Cℓ-database constraints (Lange et al.,
2001). Comparison with Fig. 4.17 shows the greatly improved constraints when the CBI data are
added. From Sievers et al. (2003).
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Table 4.4. CBI Tests and Comparisons. From Sievers et al. (2003)

Priors Ωtot ns Ωbh
2 Ωcdmh

2 ΩΛ Ωm Ωb h Age τc

CBIo140
wk-h 1.000.110.12 1.080.110.10 0.0230.0160.010 0.160.080.07 0.430.250.28 0.590.220.22 0.0830.0530.053 0.580.110.11 13.92.22.2 < 0.66
flat+wk-h (1.00) 1.070.110.10 0.0230.0100.008 0.150.060.04 0.470.250.27 0.540.240.24 0.0680.0280.028 0.600.120.12 14.01.41.4 < 0.65
flat+wk-h+LSS (1.00) 1.050.150.09 0.0240.0110.009 0.110.020.02 0.670.100.13 0.340.120.12 0.0570.0200.020 0.660.110.11 14.21.31.3 < 0.62

CBIe140
wk-h 0.960.140.13 1.100.110.11 0.0160.0130.007 0.180.080.07 0.370.280.26 0.620.230.23 0.0590.0440.044 0.600.110.11 13.32.12.1 < 0.66
flat+wk-h (1.00) 1.080.110.10 0.0180.0090.006 0.150.050.04 0.440.260.27 0.560.240.24 0.0590.0250.025 0.580.110.11 14.11.31.3 < 0.66
flat+wk-h+LSS (1.00) 1.060.140.10 0.0200.0100.007 0.110.020.02 0.680.090.13 0.320.110.11 0.0490.0190.019 0.670.110.11 14.31.31.3 < 0.63

CBIo140(ℓ > 610)
wk-h 1.060.150.14 1.140.150.13 0.0680.0650.036 0.150.100.08 0.440.260.28 0.710.260.26 0.2640.2070.207 0.590.110.11 13.11.81.8 < 0.67
flat+wk-h (1.00) 1.100.120.10 0.0470.0560.019 0.180.070.07 0.410.220.26 0.620.230.23 0.1880.1660.166 0.630.110.11 12.61.41.4 < 0.66
flat+wk-h+LSS (1.00) 1.050.140.09 0.0410.0170.017 0.130.030.03 0.660.090.13 0.350.110.11 0.0820.0370.037 0.710.110.11 13.11.41.4 < 0.62

CBIo200
wk-h 1.120.130.14 1.140.120.11 0.0480.0230.024 0.220.090.08 0.360.270.25 0.820.320.32 0.1520.0880.088 0.580.100.10 12.81.91.9 < 0.67
flat+wk-h (1.00) 1.070.110.09 0.0250.0150.010 0.190.090.07 0.410.250.26 0.610.240.24 0.0710.0330.033 0.630.110.11 12.61.71.7 < 0.64
flat+wk-h+LSS (1.00) 1.040.140.08 0.0280.0140.011 0.120.030.02 0.680.090.13 0.330.110.11 0.0610.0250.025 0.700.110.11 13.61.41.4 < 0.59

CBIdeep
wk-h 1.090.110.24 1.160.150.14 0.0780.0700.049 0.210.110.12 0.420.310.29 0.850.320.32 0.2610.1900.190 0.610.100.10 12.21.81.8 < 0.67
flat+wk-h (1.00) 1.050.120.11 0.0500.0720.034 0.200.090.14 0.370.260.25 0.650.240.24 0.1890.1880.188 0.640.110.11 12.21.91.9 < 0.66
flat+wk-h+LSS (1.00) 1.030.130.11 0.0550.0640.035 0.130.040.04 0.550.160.28 0.500.230.23 0.1870.1790.179 0.660.130.13 12.92.02.0 < 0.65

DASI+CBIo140
wk-h 1.050.050.06 1.010.110.07 0.0230.0040.004 0.120.040.04 0.550.170.22 0.510.190.19 0.0770.0240.024 0.560.100.10 15.21.51.5 < 0.63
flat+wk-h (1.00) 0.990.080.05 0.0210.0040.003 0.140.030.03 0.560.180.26 0.460.210.21 0.0570.0170.017 0.620.110.11 13.90.80.8 < 0.39
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Table 4.4—Continued

Priors Ωtot ns Ωbh
2 Ωcdmh

2 ΩΛ Ωm Ωb h Age τc

flat+wk-h+LSS (1.00) 1.000.100.06 0.0220.0040.004 0.120.020.02 0.660.090.10 0.330.100.10 0.0480.0090.009 0.680.090.09 13.80.80.8 < 0.42

DASI+Boom+CBIo140
wk-h 1.030.050.05 0.950.090.05 0.0220.0030.003 0.130.030.03 0.520.180.20 0.520.190.19 0.0740.0220.022 0.560.100.10 15.01.41.4 < 0.52
flat+wk-h (1.00) 0.940.060.04 0.0210.0020.002 0.140.030.03 0.550.180.28 0.480.210.21 0.0580.0160.016 0.610.110.11 14.00.50.5 < 0.31
flat+wk-h+LSS (1.00) 0.940.080.04 0.0220.0020.002 0.130.020.02 0.630.090.11 0.370.100.10 0.0510.0080.008 0.650.070.07 13.90.50.5 < 0.36

all-data
wk-h 1.040.050.05 0.980.100.06 0.0230.0030.003 0.120.030.03 0.550.170.20 0.490.180.18 0.0750.0230.023 0.560.110.11 15.11.41.4 < 0.57
flat+wk-h (1.00) 0.960.090.05 0.0220.0030.002 0.130.030.03 0.600.150.26 0.420.200.20 0.0550.0150.015 0.640.110.11 13.90.50.5 < 0.35
flat+wk-h+LSS (1.00) 0.970.090.05 0.0220.0030.002 0.120.020.02 0.660.090.12 0.350.100.10 0.0510.0080.008 0.660.080.08 13.80.50.5 < 0.39

.Cosmological parameter estimates as in Table 4.3, except for a variety of data combinations which test and compare results. Only the wk-h,
flat+wk-h and flat+wk-h+LSS priors are shown.

One of the most intriguing results is that using just the CBI spectrum at ℓ > 610 gives parameters

consistent from those derived from the spectrum around the first and second peaks from other

experiments. It is indeed an impressive consistency check that non-overlapping spectra from different

experiments give the same overall properties of the universe! This results gives further confidence

that we are indeed seeing a coherent picture of the universe using many different lines of evidence. A

final display of the consistency between various experiments can be seen in Figure 4.19. This figure

shows the two dimensional 2σ likelihood contours for various parameters with the dark-matter

density, ωcdm for a set of experiments. The fact that all the contours circle the same region in

parameter space means that the individual experiments favor similar regions, which is what one

hopes for and expects. Again, the degree of consistency among heterogeneous CMB experiments is

remarkable.

The final cosmological results using CBI and all data available as of the summer of 2002, including

BOOMERANG, DASI, MAXIMA, and VSA, along with a variety of priors, is contained in Table

4.5. This was the most up-to-date parameter set possible at the time. Some of the most interesting

results are that the CMB, including the flat, wk-h, LSS and SN priors, but not the HST key project

h value, gives a Hubble constant of h = 0.69 ± 0.05. The agreement with the HST key project’s

value of h = 0.72±0.08 (Freedman et al., 2001) is very good, enough so that this author is convinced

that we finally indeed know the Hubble constant to better than 10%. The presence of dark energy
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Figure 4.19 Comparison of different experiments. 2-σ likelihood contours for the weak-h prior (ωcdm–
Ωk panel) and flat+weak-h prior for the rest, for the following CMB experiments in combination
with DMR: CBIe140 (black), BOOMERANG (magenta), DASI (dark blue), Maxima (green), VSA
(red) and “prior-CMB” = BOOMERANG-NA+TOCO+Apr99 data (light blue). Light brown region
shows the 2-σ contour when all of the data are taken together, dark brown shows the 1-σ contour.
The LSS prior has not been used in deriving the plots on the left, but it has for those on the right.
The hatched regions indicate portions excluded by the range of parameters considered (see Table 4.2).
This figure shows great consistency as well as providing a current snapshot of the collective CMB
data results. Even without the LSS prior (or the HST-h or SN1a priors), localization of the dark
matter density is already occurring, but ΩΛ still has multiple solutions. The inclusion of the SN1a
and/or the HST-h priors does not concentrate the bulls-eye determinations much more for the all-
data shaded case. Note that the expectation of minimal inflation models is that Ωk ≈ 0, ns ≈ 1
(usually a little less). The Big Bang Nucleosynthesis result, ωb = 0.019±0.002 also rests comfortably
within the bulls-eye. From Sievers et al. (2003).
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Table 4.5. Cosmological Parameters from All-Data

Priors Ωtot ns Ωbh
2 Ωcdmh

2 ΩΛ Ωm Ωb h Age τc

wk-h 1.040.050.05 0.980.100.06 0.0230.0030.003 0.120.030.03 0.550.170.20 0.490.180.18 0.0750.0230.023 0.560.110.11 15.11.41.4 < 0.57
wk-h+LSS 1.040.050.04 1.010.090.09 0.0230.0040.003 0.110.030.03 0.660.090.13 0.390.110.11 0.0690.0200.020 0.600.090.09 15.21.51.5 < 0.60
wk-h+SN 1.030.050.04 1.030.080.08 0.0240.0030.003 0.110.020.02 0.710.060.07 0.320.080.08 0.0610.0200.020 0.640.090.09 14.81.61.6 < 0.63
wk-h+LSS+SN 1.030.050.04 1.040.080.08 0.0240.0040.003 0.100.020.03 0.710.060.06 0.330.060.06 0.0640.0200.020 0.630.090.09 15.01.61.6 < 0.63

flat+wk-h (1.00) 0.960.090.05 0.0220.0030.002 0.130.030.03 0.600.150.26 0.420.200.20 0.0550.0150.015 0.640.110.11 13.90.50.5 < 0.35
flat+wk-h+LSS (1.00) 0.970.090.05 0.0220.0030.002 0.120.020.02 0.660.090.12 0.350.100.10 0.0510.0080.008 0.660.080.08 13.80.50.5 < 0.39
flat+wk-h+SN (1.00) 0.990.070.06 0.0230.0020.002 0.120.020.02 0.710.060.07 0.290.070.07 0.0450.0060.006 0.710.060.06 13.60.30.3 < 0.37
flat+wk-h+LSS+SN (1.00) 0.990.070.06 0.0230.0020.002 0.120.010.01 0.700.050.06 0.300.060.06 0.0470.0050.005 0.690.050.05 13.70.30.3 < 0.39

flat+HST-h (1.00) 0.990.070.06 0.0230.0020.002 0.120.020.02 0.700.080.11 0.300.100.10 0.0470.0090.009 0.700.080.08 13.60.40.4 < 0.37
flat+HST-h+LSS (1.00) 0.990.080.06 0.0230.0020.002 0.120.020.02 0.690.060.08 0.310.080.08 0.0480.0060.006 0.690.060.06 13.70.30.3 < 0.39
flat+HST-h+SN (1.00) 0.990.070.05 0.0230.0020.002 0.120.010.02 0.710.060.05 0.280.060.06 0.0450.0060.006 0.710.050.05 13.60.20.2 < 0.37
flat+HST-h+LSS+SN (1.00) 1.000.060.05 0.0230.0020.002 0.120.010.01 0.700.050.05 0.300.050.05 0.0470.0040.004 0.690.040.04 13.70.20.2 < 0.38

.Cosmological parameter estimates as in Table 4.3, but now for all-data. From Sievers et al. (2003)

is also convincingly detected, with a limit on Ωm using wk-h +LSS+SN (but not flat) of 0.33±0.06,

with the limit on Ωtot of 1.03
+0.05
−0.04. There is not really enough information to discriminate between

Λ and more generalized forms of non-collapsing energy density such as quintessence (Bond et al.,

2002a), but an exotic form of energy is definitely required. The age of the universe is also very

well determined, with CMB+flat+HST-h+LSS+SN giving T0 = 13.7 ± 0.2 Gyr, which is virtually

identical to the much-celebrated WMAP result of 13.7± 0.2 Gyr (presumably the values and errors

would differ given more (in)significant digits).
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Chapter 5

A Fast, General Maximum

Likelihood Program

In this chapter, I describe a program called CBISPEC that efficiently calculates window matrices

and then compresses them. In Section 5.1 I describe how the compression is carried out and some of

its advantages. In Section 5.2 I explain how to generalize the techniques of Section 3.3 to mosaicked

observations and present a fast algorithm for calculating the window functions for Gaussian primary

beams. In Section 5.3 I compare CBISPEC results with other maximum likelihood techniques.

Finally, in Section 5.4 I use CBISPEC to constrain potential foreground contributions to the CBI’s

power spectrum. This is very difficult to do with most traditional maximum likelihood methods

because they usually destroy the frequency information necessary for measuring foregrounds.

5.1 Compression

Modern experiments can easily have huge numbers of data points making them computationally

intractable if treated naively. As mentioned in Section 2.2, the CBI extended mosaics have ap-

proximately 800,000 data points in each. Finding the maximum likelihood spectrum from such a

problem would take literally years on a supercomputer. In addition, the memory requirements are

enormous - with 20 bins stored as doubles, even if we only keep half of each window matrix (since it

is symmetric), we would require over 40 terabytes of memory! The actual independent information

contained in the data set is very much smaller. For interferometers, it is on the order of the number
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of synthesized beams in the map. The CBI has a 3′ beam and the extended mosaics cover ∼ 2◦×4◦,

for a total number of beams ∼ 4, 000. While still a large number, this is easily handled using the fast

maximization techniques of Chapter 2 even on a desktop machine. It takes a P4 1.4 GHz machine

about 2 minutes to invert a 4000 by 4000 symmetric matrix. If we need 10 iterations to converge

using three extended mosaics, we could in principle measure the CBI power spectrum from 3 mosaics

in ∼ 10×3×2 minutes, about an hour. Clearly, it is of critical importance to get as close as possible

to the theoretical minimum number of estimators that contain all the information in the experiment.

Even Nyquist sampling is costly - a factor of 2 in each direction means a factor of 4 in data size

and a factor of 64 in execution time! One way of compressing data is optimal sub-space filtering,

also called a Karhunen-Loeve transform (see, e.g., White et al., 1999; Tegmark et al., 1998, and

references therein). It is conceptually straightforward to carry out a Karhunen-Loeve transform. If

necessary, one first rotates into a space in which the noise is identical and uncorrelated for all data

points (a so-called “whitening transform”). For the general case of a correlated noise matrix, this

requires the Cholesky decomposition of the noise matrix N = LLT with L a lower triangular matrix.

(Of course, there is nothing special about using a lower-triangular factorization: one can just as

easily use an upper-triangular matrix.) Once we have L, we use it to rotate the noise matrix, the

window matrices, the data vector, and any source matrices. The rotation of a matrix A is:

A→ L−1AL−1 T

The rotation for a vector (usually the data vector) is

∆→ L−1∆

This does not leave the likelihood unchanged, but rather shifts the log determinant term by the

constant factor log |L|. It does, however, leave the shape of the likelihood unchanged. Since all we

care about is the shape of the likelihood surface, all quantities of interest will remain unchanged,

provided we never compare whitened and unwhitened likelihoods.
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Once we have whitened the noise, we calculate the signal covariance, and rotate into the space in

which the signal covariance is diagonal. Since any rotation of the identity matrix leaves it unchanged,

the data in the new basis still have identical, independent noises. Since the modes all have the

same noise, and their expected variance is the corresponding eigenvalue, the eigenvalue is then the

expected signal to noise ratio of that mode. Furthermore, because the signal part of the covariance

is also diagonal, the different modes are truly independent - we have reverted back to the case of

uncorrelated data in Section 2.1. If the data are oversampled, as is usually the case, the transformed

data set will have a few modes with large SNR, and many with SNR close to zero. Those modes with

very small SNR contain information about the noise, but essentially no information about the signal,

and the shape of the likelihood surface will be highly insensitive to them. In that case, we might as

well throw them away and only use the high signal modes to calculate the power spectrum. So, we

can compress the data set by cutting the low signal modes. We can do the cutting more efficiently

by not using the full eigenvector matrix V and instead using only those eigenvectors corresponding

to the eigenvalues we wish to keep. If we denote the m×n matrix containing the first m eigenvectors

by V†, then the modified rotation is

A† −→ V†AV† T

The reason this compression method is called optimal sub-space filtering is because, for a fixed

number of modes m, we have transformed into the m×m subspace of the original n× n space that

has the highest signal to noise ratio possible.

While this seems at first an attractive solution to the problem of how one compresses the data,

in general for CMB data, it is not good. There are several major problems. First, it can be pro-

hibitively expensive computationally. We need to do the whitening transform, which for correlated

noise requires expensive O
(

n3
)

operations, both to calculate L−1 and to do the rotation. For in-

terferometery, this is happily not relevant because for a well-functioning system, the receiver noises

are uncorrelated. So, rather than having to factor a matrix, we can merely scale each data point

and matrix element by the associated visibility noises, so no O
(

n3
)

operations are required. More

problematic is calculating V† in the whitened space. If we expect the compression factor to be large
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(m very much smaller than n), then we can calculate only the m eigenvectors with the largest eigen-

values. This is then an O
(

mn2
)

operation. If m is only a few times smaller than n, then this step

can take as much time as it would have taken to extract the spectrum from the uncompressed data

set using the fast technique of Chapter 2! Clearly a faster way of compressing is highly desirable.

Even if the Karhunen-Loeve compression were computationally feasible, it suffers from another

drawback. Namely, though it is optimal at maximizing the expected SNR, for typical CMB behav-

iors, it is bad at retaining the information we want to preserve in the compression. What we desire

in a compression method is to do the best job of reproducing the uncompressed spectrum with as few

estimators as possible, which in practice is very different from maximizing the SNR. The problem

is essentially one of dynamic range. For an interferometer, the response of a baseline to the CMB

falls like one over the baseline length squared because long baselines have more fringes, so a long

baseline averages over many more independent patches on the sky than a short baseline. On top of

this, Cℓ generally falls rather quickly with increasing ℓ, so the intrinsic signal for a long baseline is

much weaker than that for a short baseline. These two factors combined can easily lead to factors

of several hundred between the expected variance on a short baseline and the expected variance on

a long baseline. To see why this causes optimal subspace filtering to perform very poorly, picture

the simple case of an experiment consisting of two pairs of visibilities, one pair at low ℓ, and one

pair at high ℓ. The visibilities within the pairs sample almost the same CMB. Clearly, we would

like our compression to keep one number for each pair, roughly corresponding to the average value

in that pair. If the measurements within a pair are sufficiently similar, then there is essentially no

other information contained in them. If they are slightly different, though, the K-L transform will

think there is some power in the modes corresponding to the differences. So here is the problem:

if the expected power in the difference of the low-ℓ mode is larger than the expected power in the

average of the high ℓ mode, then the low-ℓ difference will be preferentially kept over the high-ℓ mode.

This is problematic for three reasons. First, the K-L transform throws out desirable high-ℓ modes.

Second, it keeps undesirable low-ℓ modes that can be problematic in the limit of high SNR, which is

frequently the case for CBI low-ℓ data. As the noise drops, the ML tries to push further and further
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into the primary beam looking for weaker and weaker signals, so these modes are far more sensitive

to errors in the primary beam and, because the expected signal is lower, are more easily corrupted

by a fixed error, say due to a point source. The third problem is that because we are keeping too

many unwanted modes, the compression is not as efficient as it should be.

The ideal compression algorithm is both fast to run and efficient at keeping only useful data. For

the case of interferometers, a modified K-L transform achieves both these goals. One nice feature of

interferometers is that closely spaced visibilities in the UV plane are highly correlated (where closely

spaced is defined relative to the size of the primary beam FT), while widely spaced visibilities are

only weakly correlated, if at all. This is a very general property of interferometric observations

of the CMB because interferometers directly sample the FT of the sky, which is just the space in

which the CMB is expected to be independent. This does not apply to map-making experiments,

where pixels widely spaced on the sky are still correlated through long wavelength modes. So, we

would expect to be able to break up the entire UV plane into chunks on scales of the primary beam,

compress those, and get most of the reduction in size that we expect from a global K-L compression.

To fix the optimal filter problem of making poor choices about selecting modes to keep, instead

of calculating the compression on the basis of the best-fit spectrum, use a model spectrum during

compression that is something like a white-noise spectrum (Cℓ flat, or Cℓ rising as ℓ2). For a white-

noise spectrum, the visibilities on long baselines are expected to have the same variance as the short

baselines, and so using a white-noise spectrum as the model when forming the covariance matrix

used in compression will preserve the desired information while efficiently excising the redundant

modes. Strictly speaking, the data combinations kept by this algorithm are no longer normal modes

of the covariance matrix, and furthermore, the normal modes change as the power spectrum changes.

In practice, we have found that the eigenvectors are highly insensitive to the details of the assumed

power spectrum.

I ran a variety of tests on sets of simulated data to examine the sensitivity of the output spectra

to the model spectrum used in compression. The simulations were of a typical ΛCDM cosmology,

with data from a single deep field. I examined four spectral models for compression, a CMB-like
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Table 5.1. Model Spectra Used in Compression Tests

Bin ℓ range CMB Flat Slow-Rise Rising

ℓ < 900 3.0×10−10 3.0×10−10 3.0×10−10 1.0×10−10
900< ℓ <1500 1.0×10−10 3.0×10−10 4.0×10−10 4.0×10−10
1500< ℓ <2100 3.0×10−11 3.0×10−10 8.0×10−10 9.0×10−10
2100< ℓ <2700 1.0×10−11 3.0×10−10 1.3×10−9 1.6×10−9
ℓ > 2700 1.0×10−11 3.0×10−10 2.0×10−9 2.5×10−9

spectrum that falls quickly in ℓ, a flat spectrum with equal power in all bins, a rising spectrum roughly

proportional to ℓ2, and a slowly rising spectrum less steeply increasing than the rising spectrum. The

ℓ values for the bins and the corresponding spectral models used during compression are summarized

in Table 5.1 The effects of the different compression spectra are shown in Figures 5.1 and 5.2 for

the highest- and lowest-ℓ bins, respectively. If one uses the CMB spectrum during compression, one

needs more estimators (about 500) to capture all the information in the highest-ℓ bin than either the

rising or slow-rise spectra (about 200), with the flat spectrum intermediate (about 300). Conversely,

for the first bin, the CMB spectrum performed the best, since its estimators were predominantly

sensitive to the the first bin, with good performance down to about 200 estimators. The CMB

model may have performed well with even fewer estimators in the first bin, but at that severe a

compression level, the high-ℓ bins were so unconstrained that the fits were unable to converge. The

rising spectrum began to degrade at about 400 estimators, the slow-rise at around 300, and the flat

at 200. Except for a spike between 200 and 300 estimators (presumably due to shot noise in which

estimators were kept), the slow-rise spectrum closely matched the flat spectrum in performance in

the first bin.

Another way of visualizing the results is to plot, for various compression levels, the scatter in

each bin, and connecting bins from the same compression level. The ideal model spectrum used in

compression would lead to the scatter in the bins increasing at about the same rate, which would

keep the lines horizontal. A model spectrum that too heavily emphasizes one region of ℓ space would

lead to a tilt as that region keeps a low scatter while other regions of the spectrum become noisier.
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Figure 5.1 Figure showing the effects of different model spectra used during compression. Plotted is
the increased scatter from the compression against the number of estimators used (not the compres-
sion level!), for bin 5. For a high-ℓ bin, rising spectra should perform best, since they preferentially
keep high-ℓ information. This is clearly seen in the plot, as for a fixed number of estimators, the
falling CMB spectrum compression performs the worst, followed by the flat spectrum. The rising,
and slow-rise spectra both perform well, taking only 200 estimators to have minimally increased
scatter, as opposed to 500 for the CMB spectrum.
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Figure 5.2 Same as Figure 5.1, showing the lowest-ℓ bin. In this case, we expect the falling CMB
spectrum to perform better with a fixed number of estimators, since it will preferentially concentrate
them at low-ℓ. This is indeed the case, though the penalty associated with using a rising spectrum
at low-ℓ isn’t as large as that associated with using a falling spectrum at high-ℓ. The price at ∼ 300
estimators is 1.7% for the slow-rise spectrum for bin 1, but it is ∼ 5% for the CMB spectrum in bin
5.
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Figure 5.3 Plot showing increase in bin scatters for various compression levels using a CMB spec-
trum as the model for compression. Each horizontal line connects average bin scatters for a fixed
compression level. Clearly, the CMB spectrum underemphasizes the high-ℓ spectrum, since those
bins degrade tremendously before the first bins have been affected by the compression. This is the
hallmark of a poor choice for the model spectrum.

These plots are shown in Figures 5.3 through 5.6. Using the CMB model spectrum in compression

clearly leads to a excessive rise in scatter in the high-ℓ bins which means that too few estimators

have been devoted to high-ℓ, with the same true to a lesser extent for the flat spectrum model.

The rising model has the opposite problem, with the low-ℓ rising before the high-ℓ. The slow-rise

spectrum in Figure 5.5 shows how the scatters should increase with increasing compression, as the

bins degrade about equally as fewer and fewer estimators are used.

In practice, the quality of the compression is not terribly sensitive to the parameters, with flat

or slowly rising model spectra in the compression performing well at a level of about a few times

10−3. At this level, one keeps about 300 estimators if analyzing a single field, at a cost of < 1% in

increased variance. If we keep 150 complex estimators (for a total of 300) over the UV half-plane out

to 560λ, the end of the CBI coverage, then there is a total area of 3280λ2 per complex estimator,

which is a circle in the UV plane of diameter 65λ. This is rather remarkable, since the FWHM of the
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Figure 5.4 Same as 5.3 for a flat spectrum. Better than the CMB model spectrum, the high-ℓ bins
are nevertheless overly noisy relative to the low-ℓ bins.
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Figure 5.5 Same as 5.3 for a slowly rising spectrum. This is the best overall compression model,
with no one region of the spectrum clearly better or worse than the others.
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Figure 5.6 Same as 5.3 for a model spectrum rising as ℓ2. In this case, the low-ℓ region is underem-
phasized relative to the high-ℓ region of the spectrum. It’s better to use a flatter spectrum than ℓ2

to maintain sensitivity at low-ℓ.

primary beam FT is 67λ, which means that there is almost exactly one estimator per independent

patch in the UV plane. We have reached the absolute theoretical minimum amount of information

that can do a good job of characterizing the CMB. CBIGRIDR uses 1860 estimators to cover the

same region, which corresponds to an estimator footprint diameter of 25λ. This is not bad as it

about Nyquist samples the primary beam FT. The n3 part of the spectrum fitting will go much

faster with the highly compressed CBISPEC dataset though, with an expected CBISPEC execution

time about (300/1860)
3
that of CBIGRIDR, about 0.5%.

This is the basic outline of the compression scheme used by CBISPEC. It is both fast and efficient.

To estimate the operation count, we will assume we have an n×n covariance matrix split into nblock

blocks with roughly equal number of visibilities, and that we will compress by a factor of fcomp,

typically about 0.1 for the CBI. To calculate the compression matrix, we need to diagonalize the

blocks along the diagonal of the covariance matrix. Each block has roughly n/nblock visibilities, so

the work required to diagonalize a given block is O (n/nblock)3. Since we have nblock diagonalizations,
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the the total effort required to create the compression matrix from the covariance matrix is

n3

n2block
(5.1)

So, what are typical values of nblock? For the CBI, we have upwards of 25 primary beam patches per

individual field. With 80 fields in the extended mosaics (the 2000+2001 data shown in Figure 4.16),

we have a total of ∼ 2000 blocks. That means the speedup to calculate the compression matrix

is O
(

106
)

. So, what would have taken a decade can now be done in a few minutes. The other

computationally intensive part of the compression is actually carrying out the compression on the

large window matrices. We can take advantage of the fact that the compression matrix is a string

of isolated blocks to greatly speed up the compression as well. Compressing a matrix takes two

steps: first, multiply the uncompressed matrix by the compression matrix on the right. This gives

an intermediate matrix of size n× fcompn. Then multiply the intermediate matrix by the transpose

of the compression matrix on the left to get the final, compressed matrix. It turns out that, because

all relevant matrices are symmetric, we need only calculate half of the intermediate matrix. So, the

final number of elements we need to calculate is 12n× fcompn. Normally, each element would require

a set of n multiplications to calculate, but because the compression matrix consists of blocks, we

need only use the non-zero elements in the block. Since there are on average n/nblock elements, the

total operation count to compress is then

1

2

fcomp
nblock

n3 (5.2)

So, the speedup is a factor of 2nblock/fcomp. For the CBI, the compression factor is typically ∼ 10%

(although it depends on how oversampled the data are), so the execution time for the extended

mosaics is dropped by O (50, 000). This is not quite as much of a speedup as for calulating the

compression matrix, but is subtantial nonetheless, and certainly sufficient to bring the compression

into the realm of feasibility. The computational burden for the final compression from the interme-

diate matrix can be calculated the same way, but the number of elements we need to calculate is
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smaller yet by another factor of fcomp, so it is always faster than computing the intermediate matrix.

The compressed data vector is easy to calculate as it is simply the compression matrix times the

uncompressed data vector.

While feasible, even for fairly large problems, the above method can still be substantially sped

up. The compression becomes faster as we increase the number of blocks, but at a cost of reducing

the compression efficiency. Fortunately, this can be worked around using a multi-stage compression.

Notice that the compression matrix compresses blocks of uncompressed visibilities into compressed

visibilities without mixing any information between blocks. So, each output, compressed visibility

remains localized in UV space. So, we can do an initial compression using lots of blocks, then group

the blocks into a set of super-blocks and repeat the compression on the newly compressed problem

using the larger blocks. So for the case of the CBI, we could split each of our primary-beam sized

blocks into 10 (roughly a third in each direction) and do an intial compression that is very fast, but at

the cost of fcomp. Then we merge those 10 blocks back into a single block, and recompress. Because

the partially compressed matrices are already much smaller, the compression using the larger blocks

is very fast, and as efficient as if we had done a single, large (but expensive) compression.

This compression method has several useful properties in addition. First, because the com-

pression is based on the modes of a covariance matrix passed to the compression algorithm, the

compressed data set will naturally keep high signal modes present in the covariance matrix. So

it is easy to create a compressed data set that retains its sensitivity to any desired properties of

the data set described by their covariances. This is how CBISPEC can naturally retain sensitivity

to the spectral index of the sky signal - by adding a component with α (where α is defined such

that a visibility will have signal proportional to frequency raised to the power α) different from 2

to the input compression matrix, CBISPEC will retain not only modes that look like pure CMB,

but modes with spectral index α as well. Because modes with intermediate spectral indices can be

approximated by a superposition of modes with spectral index α as well as 2, in practice CBISPEC

keeps sensitivity to a wide range of spectral indices. Of course, this technique can be used to keep a

much wider range of possible data signals in the compressed data set as well. For a demonstration of



110

80 90 100 110 120 130 140 150
2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

Baseline Length, λ

E
xp

ec
te

d 
V

ar
ia

nc
e,

 m
Jy

2

Ability Two−Component α=0 and α=2 Model to Reproduce Single−Component α=1.00 Model

Variances on 100 cm baseline, α=1
Variances on 125 cm Baseline, α=1
Best−Fitting α=0 + α=2 Model, 100 cm Baseline
Best−Fitting α=0 + α=2 Model, 125 cm Baselines

Figure 5.7 Equivalence of single component models with variable spectral index α to two-component
spectral index data. The red points are 100 cm and 125 cm baseline expected variances for roughly
equal parts of α = 0 and α = 2. The blue points are 100 cm and 125 cm data at an intermediate
spectral index of α = 1. The band powers have been adjusted to provide the best overall fit between
the two models. The quality of the fit shows that single component models with adjustable spectral
index to a good job reproducing multiple-component Gaussian fields with different spectral indices
for the components.

how a combination of α = 0 and α = 2 models can reproduce a single α = 1 model, see Figure 5.7.

A single band power is applied to each of the α = 0 and α = 2 models, which were then adjusted to

give the best fit to the α = 1 model. The two-component model reproduces the α = 1 model very

faithfully both at different frequencies and different baseline lengths, so the spectral information will

indeed be kept during compression.

A second useful property of the compression is that it (usually) only needs to be done once. The

compression depends on the expected properties of the data, not on the actual values of the data.

So, if the data change, through recalibration, new point-source subtraction, etc., only the new data

vector needs to be compressed, and the previously calculated compressed window matrices remain

unchanged. Compressing the data is at worst an O
(

n2
)

operation, and so is a trivial computing

burden. This can be tremendously useful when data sets are undergoing incremental changes. The
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window matrices must be recompressed if the noise changes, though, since the compression relies on

having uniform, independent noises in the data.

A closely related benefit of CBISPEC is that it is extremely efficient at analyzing sets of simulated

data. Because only the data themselves change between different realizations and not the statistical

properties, the only compression required is again that of the data vector. This makes CBISPEC

ideal for Monte Carlo simulations.

5.2 Mosaic Window Functions

In this section we expand the analysis of Section 3.3 to include the calculation of window functions

for visibilities with different pointing centers. This is necessary to take advantage of the sharpened

ℓ resolution offered by mosaicked observations.

5.2.1 General Mosaic Window Functions

Starting from Equation 3.14, it is straightforward to adjust for the different pointing centers. If I

wish to move the primary beam around on the sky, I can equivalently move the mode on the sky, but

in the opposite direction. Because the mode is a plane wave, that is equivalent to simply shifting

the phase of the mode. If φ is the vector on the sky by which I have moved, and w is the wavevector

of the mode in question, then Equation 3.14 becomes

〈V ∗1 V2〉 = fT (ν1) fT (ν2)
∫ ∫ (

δT

TCMB
(w)

)2

exp (2πiφ ·w) d2w
∼

A
∗

(u1 −w)
∼

A (u2 −w) (5.3)

We can again pull out the angular part of the integral to get the window functions:

Wij (ℓ) =

∫

∼

A
∗

1 (u1 −w)
∼

A2 (u2 −w) exp (2πiφ ·w) d2wdθ
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5.2.2 Gaussian Beam

The evaluation of the window function proceeds along similar lines to the single pointing window

functions. For a Gaussian,

∼

Ai (u) =
1

2πσ2i
exp(− u

2

2σ2i
)

and so the window function is

W (w) =
1

4π2σ21σ
2
2

∫ 2π

0

exp(− (u1 −w)
2

2σ21
− (u2 −w)

2

2σ22
+ 2πiφ ·w)dθ

If we introduce the variables θ1 and θ2 for the angles of u1 and u2 respectively on the sky, and θφ

for the angle of φ on the sky, we have

W (w) =
1

4π2σ21σ
2
2

∫ 2π

0

exp[(− u
2
1

2σ21
− u

2
2

2σ22
)−w2( 1

2σ21
+
1

2σ22
)+w(

u1 cos(θ − θ1)
σ21

+
u2 cos(θ − θ2)

σ22
)+2πiwφ cos(θφ−θ)]dθ

The term involving θ1 and θ2 can be simplified to C cos(θ − θeff ) if we have

C2 =
u21
σ41
+
u22
σ42
+
2u1u2
σ21σ

2
2

cos(θ1 − θ2)

and

tan(θeff ) =

u1
σ2
1

sin(θ1) +
u2
σ2
2

sin(θ2)

u1
σ2
1

cos(θ1) +
u2
σ2
2

cos(θ2)

Let us also define the variables

A =
1

2σ21
+
1

2σ22

B =
u21
2σ21
+
u22
2σ22

These are the same definitions for A,B,C that we had in the single pointing case. This leaves

W (w) =
1

4π2σ21σ
2
2

∫ 2π

0

exp(−Aw2 −B − Cw cos(θ − θeff ) + 2πiwφ cos(θ − θφ))dθ
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The terms involving A and B do not have any θ dependence, so they can be pulled out of the

integral. If we define θ
′

to be θ − θeff and change the limits of integration (which are arbitrary as

long as we go exactly once around a circle), we are left with

W (w) =
1

4π2σ21σ
2
2

exp(−Aw2 −B)
∫ π

−π

exp[−Cw cos(θ′) + 2πiwφ cos(θ′ − θφ + θeff )]dθ
′

We can evaluate an integral of this form

∫ π

−π

exp[a cos(θ) + bi cos(θ + φ)]dθ

quickly by starting with the identities (derivable from, e.g. Abramowitz & Stegun, 1965, 9.1.42 and

9.1.43):

exp(ia cos(θ)) = J0(a) + 2

∞
∑

1

inJn(a) cos(nθ)

By letting a −→ ia, we also have

exp(a cos(θ)) = I0(a) + 2

∞
∑

1

In(a) cos(nθ)

Now we have a phase in the complex part, but it is easily dealt with as cos(a+ b) = cos(a) cos(b)−

sin(a) sin(b), so

exp(ia cos(θ + φ)) = J0(a) + 2

∞
∑

1

inJn(a)(cos(nθ) cos(nφ)− sin(nθ) sin(nφ))

If m and n are integers, we have
∫ π

−π
cos(nθ) cos(mθ) = πδn,m, or 2π if n = m = 0. The same

result holds for cos −→ sin, and
∫ π

−π
cos(nθ) sin(mθ) = 0. All sin(nθ) terms go away in the integral,

as well as all cross terms the product of the two cosin series, so we have the exact result:

∫ π

−π

exp(a cos(θ) + ib cos(θ + φ)) = 2πI0(a)J0(b) + 4π

∞
∑

1

inIn(a)Jn(b) cos(nφ) (5.4)
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Now as long as the Bessel functions are quickly calculable, this is a fast way of doing the integral.

Fortunately, this is indeed the case. The following recurrence relations hold:

Jn+1 =
2n

x
Jn(x)− Jn−1(x) In+1 = −

2n

x
In(x) + In−1(x)

They are unstable in the forward direction, but they are stable in the downward direction. For

calculating high order Bessel functions, Numerical Recipes (Press et al., 1992) recommends starting

with essentially random starting values for the recurrence relation, and running it downwards. One

saves the value at the desired order, and then continues down to order zero, at which point one

normalizes things by a call to the zeroth order Bessel function. So, rather than make separate calls

to different Bessel functions, we can accumulate the sums of the products of the Bessel functions

and normalize at the end, making the whole integral only marginally more work than two calls to

high order Bessel routines. It is also important to use the recurrence relations for sines and cosines

as well:

cos(nθ) = cos((n−1)θ) cos(θ)−sin((n−1)θ) sin(θ) sin(nθ) = sin((n−1)θ) cos(θ)+cos((n−1)θ) sin(θ)

In playing around with these, I’ve found that I should start accumulating the sum at nmax ≃

2min(|a|, |b|) + 16, and run someting like 40 iterations beforehand to let the recurrence relations

converge. This algorithm runs a few hundred times faster than carrying out numerical integrals to

achieve similar accuracy.

5.3 Comparisons with Other Methods

In order for CMB power spectrum measurements to be believable, it is critical that different methods

produce very similar spectra from the same data set. The most natural comparison is between

CBIGRIDR and CBISPEC. Many other methods are not applicable to interferometer data, such as

the one used by WMAP (algorithm described in Oh et al., 1999) and the one used by recent version of
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Table 5.2. CBIGRIDR and CBISPEC Comparison

Bin ℓ range 1-R m b(µK)

< 900 4.5e-5 0.988 -2.1
900-1500 7.0e-5 0.986 -2.9
1500-2100 5.1e-5 0.982 0.0
2100-2700 2.4e-5 0.985 -0.1
> 2700 2.3e-5 0.986 0.0

BOOMERANG (described in Hivon et al., 2002), since they require taking a fast spherical harmonic

transform of the data in order to calculate the window matrices. Because visibilities are point-like

neither in UV space or on the sky (as map pixels are), there is no comparable transform for the CBI

dataset.

I report here on a comparison between the power spectra measured by CBIGRIDR and MLIKELY

described in Myers et al. (2003) and those measured by CBISPEC and the fast fitting method

of Chapter 2 on a set of 100 simulated deep datasets. The agreement between CBISPEC and

CBIGRIDR/MLIKELY is excellent, with correlation coefficients ∼ 1− a few times 10−5. In addition

to the scatter about the best-fit lines being small, the slopes m to the linear fits were in all cases

nearly unity, with CBISPEC averaging about 1.5% less than CBIGRIDR, and the offsets from

the origin b of a few µK. See Table 5.2 for a summary of the comparison statistics, and Figures

5.8 and 5.9 for CBISPEC and CBIGRIDR fits to the first (high-signal) and last (high-noise) bins,

respectively.

5.4 Foreground with CBISPEC

The goal of measuring the primordial anisotropy spectrum is complicated by the presence of as-

tronomical sources in the foreground contributing to the intensity measured at earth. The most

prominent foreground signal at 30 GHz is radio point sources, discussed in greater detail in Mason

et al. (2003). If the point source positions are known, they can be quite effectively projected out

of the data set, making the spectrum insensitive to the actual value of the point source, as seen in
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Figure 5.8 Comparison of fit values between CBIGRIDR and CBISPEC, for the first bin (bins
defined in Table 5.1). The agreement is very good, with the CBIGRIDR and CBISPEC results
almost identical. Statistics of the comparison are in Table 5.2, where m and b are the slope and
intercept of best-fit line. The first bin has the highest SNR in the data of any of the bins.
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Figure 5.9 Same as Figure 5.8 for the highest-ℓ bin. This bin has the lowest SNR of any of the bins.
Again, the agreement between CBIGRIDR and CBISPEC is excellent.
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Chapter 4. This technique has been effectively used by many CMB experiments (e.g. Mason et al.,

2003; Pearson et al., 2003; Halverson et al., 2002). In addition, the power from faint radio sources

can be estimated, with reasonable accuracy, from the number counts of brighter sources (Mason

et al., 2003). So, the effects of point sources are calculable and removable. The uncertainties in the

spectrum due to point sources are negligible for all but the very smallest scales for the CBI, and

even on those scales, the uncertainty is much smaller than the measured spectrum.

More problematic is the signal due to diffuse galactic foregrounds, such as synchotron radiation

or bremsstrahlung. The major difficulty is they are rather poorly understood on the small scales

and high frequencies at which the CBI operates. Consequently, we wish to constrain the limits on

diffuse foreground emission from the CBI dataset itself. Unlike the point sources, where there is

information about their expected level, their expected spectral shape, and their expected angular

power spectrum, the only information we have to work with on the diffuse foregrounds is that their

spectral indices will likely be substantially lower than that of the CMB (α ∼ −0.7− 0 vs. α ∼ +2).

The ideal thing to do is to make otherwise identical maps covering a wide range of frequencies

with high signal to noise, and then measure the component only with the spectral shape of a 2.73

degree blackbody. For the CBI, which works in the Rayleigh-Jeans regime, we have to use the

CBI fractional bandwidth of ∼ 0.3 to distinguish between the CMB and foregrounds. A major

application of CBISPEC is placing limits on potential foreground signals using the CBI’s spectral

discrimination. CBIGRIDR is unsuitable for this task since it assumes all data has a single frequency

behavior during gridding, destroying frequency information in the process.

We place limits on the potential contribution of foreground sources through a two-part procedure.

The first part is to measure a single best-fitting spectral index to the low-ℓ data and its uncertainty.

We then use that spectral index to limit what fraction of the total signal could have come from a

foreground.
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5.4.1 Measuring the Spectral Index

To measure the overall spectral index α of a data set, we assume a single spectral index, calculate

the window functions using that spectral index, fit an angular power spectrum, and record the

likelihood of that spectrum, and repeat for a new assumed spectral index. Gradually, this builds up

the curve that describes the likelihood as a function of α. The peak of the curve is the best-fitting

spectral index, with the uncertainty in α given by the width of the likelihood curve. We have to re-fit

the power spectrum at each likelihood (rather than simply change α and evaluate the likelihood)

because, in general, the power spectrum is degenerate with α, and if we don’t re-fit, the constraint

will be artificially tight.

It is straightforward and fast to re-calculate the uncompressed window functions when varying

the spectral index. By looking at the general form for the window function, Equation 3.18, one

can see that the sensitivity to frequency is contained only in the coefficient, fT (ν1) fT (ν2), defined

in Equation 3.10. So, the window function for a given spectral index is simply the original CMB

window function (which we have already calculated) divided by fT (ν1) fT (ν2) ν
2
1ν
2
2 and multiplied

by να1 ν
α
2 . This must be done before compressing, as the compression mixes together visibilities

of different frequencies. If one wishes to compress, it is also essential to use the same compression

matrix at all spectral indices, or else the likelihoods will not be directly comparable. Otherwise, once

the window matrices have had α applied to them, the compression and fitting procedures proceed

exactly as in the pure CMB case.

When measuring foregrounds with the CBI, it is important to know what the expected best-fit

spectral index is. While we expect it to be in the vicinity of the Rayleigh-Jeans value of 2, there is

potentially a strong degeneracy between α and the shape of the underlying CMB power spectrum.

In fact, for an interferometer with baselines of a single length, the degeneracy is almost perfect.

Figure 5.10 shows the degeneracy between spectral index and slope of the power spectrum. Plotted

are the expected variances for the 10 CBI channels on a 100 cm baseline. The blue points are the

canonical, flat CMB spectrum expected variances. The red points are the expected variances for

the same Cℓ spectrum, with a frequency spectral index of να applied, for α = 0. The green points
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show the degeneracy between the flat, ν0 spectrum with a spectrum ∝ ℓ−6.4 and a CMB frequency

dependence. For clarity in the plot, the difference between the red and green points has been

magnified by a factor of 10, as they otherwise lie on top of each other. Clearly, no single baseline

length can discriminate between a CMB spectrum sloping in ℓ and a foreground spectrum flat in ℓ. If

the CMB spectrum is falling (as the trend is in the ℓ range covered by the CBI), then the best-fitting

value of α can be substantially less than 2, even if there are no foregrounds present. Once we add

baselines sampling the same ℓ region at different frequencies, though, the degeneracy is broken. In

Figure 5.11 same data in as in Figure 5.10 are plotted, along with the identical models evaluated

for a 125 cm baseline. The blue, green, and red stars on the right are the 125 cm models, with the

crosses the 100 cm data. The degeneracy is best broken in the overlap region where 100 cm and 125

cm baselines sample the same ℓ range at different frequencies. This is a more difficult measurement

than that of the power spectrum since the best handle on α comes from the difference between a

few channels rather than the average of all channels. Consequently, to measure foregrounds well, we

need groups of baselines of similar, but slightly different, lengths, preferably with high SNR.

Consequently, we reconfigured the CBI in July 2000 to have 3 125 cm baselines in addition to 7

100 cm baselines. Since the SNR is important, we use only the 100/125 cm baselines in measuring

α, as the sensitivity drops quickly at higher ℓ and contamination from radio point sources becomes

relatively more important. To determine the expected value of α as well as one measure of its

uncertainty, I used MOCKCBI to create simulations as close as is feasible to the CBI, using a purely

CMB sky. I also included realistic point-source populations (using the number counts in Mason

et al., 2003) and subtracted off simulated OVRO 40 meter fluxes with errors in order to get the

point-source population as close to reality. Because we use only the low-ℓ, short baseline data for

determining foregrounds, the effective beam on the sky is very large. This makes projection out

individual point sources unpracticable since each source in effect removes a patch the size of the

synthesized beam on the sky. When we use high-ℓ data with its small synthesized beam, there is

lots of sky left after removing the sources, but that is not the case if we use only the low-ℓ data.

Fortunately, the expected signal from point sources unmeasured by OVRO and the residuals caused
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Figure 5.10 Figure showing the degeneracy for a single baseline between a tilt in the power spectrum
(Cℓ ∝ ℓγ) and a flat power spectrum with a non-Black Body spectrum. Blue points are the expected
variances on the 10 CBI channels for a 100 cm baseline, assuming a flat CMB spectrum. Red points
are the expected variances for the same flat spectrum in ℓ, with a frequency spectral index of να

applied with α = 0. Green points are the expected variances for a non-flat CMB spectrum with
a power law applied that best matches the α = 0 points. The best-fit law for the green points is
Cℓ ∝ ℓ−6.4. For ease of viewing, the difference between the red and green points has been amplified
by a factor of 10.
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Figure 5.11 Same as Figure 5.10, this time with a 125 cm baseline added. Color scheme is the same
as Figure 5.10. The crosses are the 100 cm baseline, and the asterisks are the 125 cm baseline.
Again, the difference between the red and green crosses has been amplified by a factor of 10 for
clarity, but there is no scaling on the 125 cm points. The addition of the 125 cm baseline has broken
the degeneracy between the flat, ν0 spectrum and the ℓ−6.4, Planck spectrum. For these parameters,
in the region in which the two baselines overlap at 110− 120λ, the predicted values for the 125 cm
visibilities differ by a factor of 4 when the 100 cm visibilities are degenerate.
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by errors in the OVRO subtraction are quite small at ℓ ∼ 600 (the point source spectrum is rising

as ℓ2 while the CMB is falling off, so while care is required in the treatment of point sources at

ℓ ∼ 2500, their effect at ℓ ∼ 600 is negligible). Finally, I used the measured CBI primary beam in

the simulations, rather than the Gaussian approximation used by CBISPEC, in order to account for

any potential bias caused by using a Gaussian beam.

After creating a set of 90 simulations based on the 02 hour mosaic, I analyzed them for the

single best-fitting spectral index. I used the data below ℓ = 770, and for computational efficiency

grouped the fields into 3×3 mosaic blocks. The sample mean was α = 2.0528 with the scatter about

the mean of 0.24. The sample scatter agrees well with the uncertainties derived by the curvature

of the likelihood around the peaks, which was 0.27. Because of the good agreement between the

sample variance and the uncertainty measured by the likelihood curvature, we can again adopt the

likelihood curvature errors for spectral index as we did for total power. Also, since the simulations

seem consistent with the expected value of 2, I adopt that as the target value for the real data. See

Figure 5.12 for the histogram of the best fitting values of α for the individual simulations.

5.4.2 The Spectral Index Measured by CBI

With the simulation results from the previous section in hand, we are now in a position to intepret

the spectral index measured from the actual data. The pipeline used to process the results is identical

to that used for the simulations, save for the noise correction factor from Section 4.1 required when

using real data. The fields are again divided into 3× 3 patches. The individual field results are in

Table 5.3. We know that there is an extremely bright (∼ 1 Jy) source in the northern extension of

the 02 hour mosaic that leaves significant artifacts in the maps. Not surprisingly, this source also

has a significant impact on the spectral index of the 02 hour field. With the 4 patches around the

source left in, the 02 hour field has a best-fit α of 1.47±0.22, 2.46σ away from 2. When these patches

are removed, the best-fit α rises to 1.72 ±0.25, only 1.1σ from 2. Also, these four patches have the

highest power levels amongst all 31 individual patches that comprise our mosaic data set, with the

lowest of these four about 1000 µK2 higher than the next-highest patch. See Figure 5.13 for the
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Figure 5.12 Histogram of spectral index fits to a flat band power CMB model, made using simulations
based on the 02 hour mosaic. The expected value of α is 2, and the simulations do indeed cluster
around it. The mean of the distribution is α = 2.05 with 1-σ scatter of 0.24.

power/α plot with the four anomalous patches marked in blue. The odds of these four being the

highest is 1 in 31,465. For comparison, that is only about twice as likely as getting dealt a straight

flush in poker, without ever drawing. Since these patches are clearly corrupted, we remove them

in the joint fit. The best-fit α for the entire mosaic set is then 1.76 ± 0.13, a difference of 1.85σ

from 2. This is consistent with pure CMB, though perhaps a mildly suggestive of the presence of a

weak foreground. Unfortunately, it will be challenging to place much tighter constraints on potential

forground contamination. By looking at what fraction of the total signal is required to come from

a foreground at given α in order to make the visibility window function of CMB + foreground

agree with the best-fit α, we can estimate the upper limits on possible foreground signals. In our

case, if the entire difference from 2 is ascribed to the presence of a free-free foreground (α ≃ −0.1),

then the free-free signal makes up only ≃12% of the total power at the center of CBI’s band. If

instead the foreground source were synchotron, then it could contribute only ≃ 8.5%. So, to have

a reliable estimate of the foreground contribution from an outside source, the outside source would
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Table 5.3. Spectral Indices of CBI Mosaics

Field α σ(α) like(peak)-like(2)

C14 hour 1.63 0.22 1.38
C20 hour 1.90 0.21 0.11
C02 hour 1.47 0.22 3.02
C02 hour notop 1.72 0.25 0.62
Joint notop 1.76 0.13 1.70

need to have a signal-to-noise per pixel of the CMB at 30 GHz and ℓ ∼ 600 substantially larger than

10. While WMAP indeed has an all-sky foreground map at 30 GHz (Bennett et al., 2003), their

signal-to-noise is poor on a per-pixel basis at these scales. As follow-up to this work, I do plan to

try to estimate the foreground contribution from the WMAP maps, but the sensitivity will almost

certainly be much poorer than the CBI internal sensitivity to foregrounds.

As a final note on foregrounds, if foregrounds were indeed the cause of the shift in α away from 2,

then we would expect an anti-correlation between the spectral indices of the individual patches and

their power levels. Since the CMB is statistically identical for all the patches, a stronger foreground

should mean a higher power level in addition to a lower spectral index. The plot of α versus band

power for all 31 patches is Figure 5.13. The blue crosses are the four contaminated patches at

the north end of the 02 hour mosaic. The remaining 27 patches are marked with red asterisks.

If we exclude the four patches, then there is actually a positive correlation between α and band

power—the opposite of what one would expect from foregrounds. The correlation is extremely weak

(r = 0.12) and highly insignificant (prob(r > 0.12) = 48% for Gaussian data). While a statistically

very uniform foreground would not introduce an anti-correlation, it would indeed be baroque if our

three mosaics, separated by 90◦ and at different galactic latitudes had very similar foregrounds.

5.4.3 Future Improvements

The are a number of relatively straightforward improvements than will be made to the current

version of CBISPEC, greatly improving performance.
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Figure 5.13 Figure showing the distribution of spectral indices of the individual 3 by 3 chunks of the
CBI data, plotted against their low-ℓ power levels. The four blue fields with low values of α and high
power are adjacent patches at the north end of the 02 hour mosaic contaminated by a very bright
point source. For this reason, they have not been used in measuring the spectral index of CBI data.

The most important change will be the indexing of pre-calculated window function. Currently,

it takes 45 minutes on a 4 CPU es45 HP server (1.0 GHz alpha CPU’s) to calculate the raw,

uncompressed window matrices between two fields (in this case the 14 hour deep field). Tweaking

the Bessel function sums of Section 5.2 can cut the operation count by a factor of two, but calculating

the mosaic window functions will never be a very cheap operation (in contrast, CBIGRIDR takes

just over a minute). For a given UV coverage and a given set of pointings, however, they only need

to be calculated once, ever. Furthermore, if the UV coverage of all fields is identical, which is the

case for the CBI between reconfigurations, then pairs of fields with the same angle between the

fields will have identical window functions. So, we expect to be able to use the window functions,

calculated for a single pair of fields, many times when working with an entire mosaic. To estimate

how many separate fields we will need to calculate, picture the pointings on an evenly spaced grid

in RA and dec. This is how the CBI has observed. Then, ignoring cos(δ), the vector between any

pair of fields is also the vector that connects one of (any) two corners and another field. So, if we
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calculate all the window functions between only the two corner fields and the rest of the fields in

the mosaic, we will have all necessary window functions. If we have a total of m pointings, then

we need to calculate and store 2m sets of window functions. This means that the window function

calculations will scale quite well for CBISPEC, with the computational burden scaling linearly with

mosaic area. The CBIGRIDR scaling is different. If I double the size in each direction of a mosaic,

then I have four times as much area, and four times as many visibilities that need gridding. I also

need to grid onto estimators of only half the size because my sampling of the UV plane is now finer,

for a total of four times as many estimators. So, a factor of 4 in area leads to a factor of 16 in work,

which is a scaling of area2. So, CBISPEC should behave better for larger areas than CBIGRIDR.

The approximation used, ignoring the cos(δ) is a good one for the CBI, since we have restricted

ourselves to regions within 5◦ of the equator. The cosine of 5◦ is 0.996, which means that if we

calculate the window functions assuming that cos(δ) = 0.998, we will never make an error of more

than 0.2%. The effect will be to smear the spectrum in ℓ by 0.2%, which is negligible. Even at

ℓ = 3500, the highest value to which the CBI is sensitive, that is an error of only δℓ = 7.

When the reuse of precalculated window functions is in place, I intend to revisit the foreground

analysis of the mosaic data. Rather than break up the mosaics into three field by three field chunks,

it will be simple to treat the mosaic in its entirety. This should tighten the foreground constraints

somewhat because there is appreciable overlap between the chunks. Not taking advantage of that

overlap leads to a penalty in SNR, since some redundant information is being handled separately.

Treating the mosaic as a whole will give the best possible foreground constraints from the CBI data.

Because foregrounds will be more of a concern for polarization observations than CMB total-

intensity observations, a major future task for CBISPEC will be constraining the polarization spec-

tral index. This will require updating CBISPEC to do polarization. To do this, we will need to

calculate mosaic polarization window functions, which are similar to the standard mosaic window

functions, modulo an extra sine in the integral.

None of these changes should be difficult, and I hope to implement them soon, especially so

that we can measure the polarized foregrounds in the upcoming CMB polarization results. Martin
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Shepherd, who has done the lion’s share of the actual coding using the algorithms I have developed

here, is currently occupied working on another project. Once that is finished, which should be in a

few months, we will update CBISPEC, making it a far more powerful tool.
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Chapter 6

Conclusion

In this thesis, we have discussed observations of the Cosmic Microwave Backgroud with the Cosmic

Background Imager. The CBI is a highly sensitive interferometer working at 30 GHz optimized

for observations of the CMB in the multipole region 500 < ℓ < 3500. It was the first instrument

to measure the damping tail of the CMB spectrum, the falloff in power at small scales due to

photon diffusion before recombination, originally in Padin et al. (2001a), and then with more detail

in Mason et al. (2003) and Pearson et al. (2003). The CBI also measured an unexpectedly large

amount of power at large-ℓ(> 2000) in Mason et al. (2003), which is possibly the first time that

secondary anisotropy due to the Sunyaev-Zeldovich effect has been measured statistically either

from clusters (Bond et al., 2002b) or the first generation of stars (Oh et al., 2003) rather than

in pointed observations of known galaxy clusters. The CBI also measured the CMB on scales

of present-day galaxy clusters for the first time. We have also used the angular power spectrum

measured by the CBI to constrain cosmological parameters (Sievers et al., 2003) both alone (using

COBE-DMR as an anchor at low-ℓ) and in concert with other experiments. The parameters derived

from the combination of experiments are some of the most precise ever determined, with our best

determination (using data from CMB, large-scale structure, and Type Ia supernovae observations)

of the flatness of the universe to be Ωtot = 1.03
+0.05
−0.04. Since the universe appears to be flat to high

accuracy, as predicted by inflation, we adopt a flat universe prior in further parameter estimates. Our

best parameter values are calculated using the previous data, the flat prior, and also the Hubble

Space Telescope key project result for the value of the Hubble constant. The parameter limits
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are: primordial fluctuation spectrum ns = 1.00
+0.06
−0.05, physical baryon density ΩBh

2 = 0.023+0.002−0.002,

physical cold dark matter density Ωcdmh
2 = 0.12+0.01−0.01, and cosmological constant ΩΛ = 0.70

+0.05
−0.05.

We do not derive a useful constraint on the optical depth to reionization, τc < 0.38. We also place

limits on parameters of interest derived from these fundamental model parameters: the density of

matter relative to critical is Ωm = 0.30
+0.05
−0.05, the density of baryons relative to critical is ΩB =

0.047+0.004−0.004, the Hubble constant is h = 0.69
+0.04
−0.04, and the age of the universe is 13.7

+0.2
−0.2Gyr.

The author has participated in many phases of CBI acitivty. Initially, I helped in the construction

of the CBI, including assembling and testing the CBI receivers. One of my key contributions was

developing the analysis pipeline used to measure the power spectrum contained in Padin et al.

(2001a) as well as the derivation of some weak cosmological constraints from that dataset. Another

was to participate in the development of the pipeline described in Myers et al. (2003) and use it

to measure the spectrum in Pearson et al. (2003). This included the calculation of a statistical

correction to our noise estimate required to make it unbiased, numerous speedups in the pipeline

that allowed us to measure the spectrum from CBI mosaics to higher ℓ, and a fuller understanding

of the effects of radio point sources on the CBI spectrum, which took advantage of the high-ℓ data

in the CBI mosaics to reduce the impact of the sources. I also describe a major improvement

to the algorithm used to find the maximum likelihood spectrum that will be described in Sievers

(2004, in prep) that we have adopted into our current pipeline. Finally, I have developed a flexible

algorithm that efficiently compresses CBI datasets while maintaining considerable freedom in the

choice of information retained. Martin Shepherd and I have coded these algorithms into a program

called CBISPEC that I have used to constrain possible diffuse galactic foregrounds present in the

CBI data. I find that diffuse foregrounds contribute no more than about 12% of the CBI signal

at ℓ ∼ 600 for a bremsstrahlung-like spectral index of α = −0.1, with the data consistent with no

foregrounds at all at a level of 1.85σ. Finally, Patricia Udomprasert and I have developed and tested

optimal methods for treating the noise introduced by the CMB into observations with the CBI of

the Sunyaev-Zeldovich effect in clusters of galaxies. By properly weighting the data, we achieve a

significant reduction in the uncertainty in H0 measured using our cluster data, with the potential
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of even greater reductions if we survey larger regions around the clusters.
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Appendix A

First-Order Expectation of Noise

Correction Factor

This appendix derives the theoretical expectation of the noise correction factor. We have many

identical measurements (scans) we want to combine. Each scan is made up of many data points,

and the estimated error of the scan comes from the scatter of those internal data points. Our final

estimator is the weighted average of the scans, using the scatter-based errors for the weighting of

each individual scan. While the noise estimate for a single scan is unbiased, there is a bias introduced

when we combine many scans. In the limit of combining many statistically identical scans, with

each scan made up of ν independent data points, the bias is, to first order, 1 + 4
ν . We expect to

scale our estimates of the noise by something close to this quantity in order to get an unbiased noise

estimate.

A.1 Statistical Basics

We will need several basic statistical results in order to work out the epxectation of the noise. The

required results are presented here. Throughout this appendix, the variance of a variable x will be

written Var(x).
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A.1.1 Variance of a Product

We need to know the variance of the product of two independent random variables (not necessarily

identically distributed). It is easily shown to be (e.g. Mood et al., 1974):

Var(xy) = 〈x2〉〈y2〉 − 〈x〉2〈y〉2 (A.1)

for independent variables x and y. One can easily verify the following general result, again dependent

only upon x and y being independent:

Var(xy) = Var(x)Var(y) + 〈x〉2Var(y) + 〈y〉2Var(x) (A.2)

It is also worth noting explicitly that, if the expectation values of the variables are zero, the variance

of the product is the product of the variances: Var(xy) = Var(x)Var(y). Also, if only one of the

variables has an expectation of zero, then we have the following result (say for 〈y〉 = 0):

Var(xy) = Var(x)Var(y) + 〈x〉2Var(y) = Var(y)
(

Var(x) + 〈x〉2
)

= Var(y)〈x2〉 (A.3)

This form will get used often below.

A.1.2 Expectation of f(x)

We also need to understand how to calculate the expectation value of functions of variables. Say we

have random variable x whose distribution p(x) is relatively well-localized (by which we mean that p

has finite moments). If we desire the expectation of some function 〈f(x)〉, then we can Taylor-expand

the function and express the expectation in terms of derivatives of f and moments of p.

〈f(x)〉 = 〈f(x0) + (x− x0)
df

dx
|
x=x0

+ (x− x0)2
1

2!

df2

d2x
|
x=x0

+ ...〉 (A.4)
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We can break up the expectation into different terms since the expectation of the sum is the sum

of the expectations. Furthermore, since the derivatives are constant, they can be pulled out of the

expectation, yielding:

〈f(x)〉 = 〈f(x0)〉+ 〈(x − x0)〉
df

dx
|
x=x0

+ 〈(x− x0)2〉
1

2!

df2

d2x
|
x=x0

+ ... (A.5)

If we set the reference value x0 to be the expectation of x, then the second term goes to zero, since

〈x− x0〉 = 〈x〉 − x0 = 0 if x0 = 〈x〉. So, we have

〈f(x)〉 = f(x) + 〈(x− x)2〉 1
2!

d2f

dx2
|
x=x
+

∞
∑

n=3

〈(x− x)n〉 1
n!

dnf

dx2
|
x=x

(A.6)

Since the expectation value in the second term is simply the variance of the distribution, the expec-

tation value to second order is:

〈f(x)〉 = f(x) + 1
2
Var(x)

d2f

dx2
|
x=x
+O (x− 〈x〉)3 (A.7)

Let us use this formula to work out the specific case of 1x . The second derivative of
1
x is

2
x3 , so

we can plug that in to get:

〈

1

x

〉

=
1

x
+
1

2
Var(x)

2

x
3 =

1

x

(

1 +
Var(x)

x
2

)

+ ... (A.8)

A.1.3 Some Relevant Distributions

Several different probability distributions are relevant to our noise issues. Even though the individual

8.4 second samples are (assumed) Gaussian-distributed, we encounter more distributions than just

the Gaussian because we estimate the variances from the scatter of data points rather than knowing

the underlying variance. The incomplete Γ and χ2 distributions are taken from Press et al. (1992).

The single variance estimators are the sums of Gaussians random variables squared, hence they are

distributed like χ2 random variables. These can be derived from the incomplete Γ distribution,
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which is

P (a, x) =
1

Γ(a)

∫ x

0

e−tta−1dt (A.9)

where Γ(a+ 1) is a factorial. A χ2 with ν degrees of freedom is

Prob
(

χ2〈χ∗2
)

= P

(

ν

2
,
χ∗2

2

)

(A.10)

If we have n independent members drawn from a Gaussian population with an underlying variance

1 (our data), denote the variance of our particular data set by v, and the degrees of freedom by d

(n− 1 if we’re estimating the mean from the data, n if we’re not). We can then combine Equations

A.9 and A.10, then rescale to get the cumulative distribution function (CDF) of v. Differentiating

the CDF yields the probaility distribution function (PDF), which is:

PDF(v) =
d
(

dv
2

)
d
2
−1
e−

dv
2

2Γ(d2 )
(A.11)

It’s fairly easy to show that the first few expectations are

〈v〉 = 1 (A.12)

〈v2〉 = 1 + 2
d

(A.13)

Var(v) = 〈v2〉 − 〈v〉2 = 2
d

(A.14)

The general expectation relation is done by integrating by parts and comparing the resulting integral

to the expectation value of the order below it. Here is the answer:

〈vn〉 =
(

1 +
2(n− 1)
d

)

〈vn−1〉 (A.15)
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We can use this to calculate negative moments as well as positive moments:

〈v0〉 =
(

1 +
−2
d

)

〈v−1〉 = 1 (A.16)

〈v−1〉 = 1

1− 2d
≃ 1 + 2

d
(A.17)

The next order, and the variance of 1v are

〈v−2〉 = 1

1− 2
d

1

1− 4
d

≃ 1 + 6
d

(A.18)

Var

(

1

v

)

=

〈

1

v2

〉

−
〈

1

v

〉2

=
2
d

(

1− 4
d

) (

1− 2
d

)2 (A.19)

We also need the variance of v−2:

〈v−4〉 =
[(

1− 2
d

)(

1− 4
d

)(

1− 6
d

)(

1− 8
d

)]−1

≃ 1 + 20
d

(A.20)

Var
(

v−2
)

≃ 1 + 20
d
−
(

1 +
6

d

)2

≃ 8
d

(A.21)

Another important distribution is the F distribution. It is the distribution of the ratio of two

empirically determined variance estimates if they are drawn from samples with the same intrinsic

variance. It is based on the incomplete Beta function,

Ix(a, b) =
1

B(a, b)

∫ x

0

ta−1(1 − t)b−1dt (A.22)

with B(a, b) the complete beta function, B(a, b) =
∫ x

0
ta−1(1 − t)b−1dt (Press et al. (1992)). Ix is

unrelated to the modified Bessel function In. The CDF of an F is

Prob (Fobs〉F (ν1, ν2)) = I ν2
ν2+ν1F

(ν2
2
,
ν1
2

)

(A.23)

where F is the ratio of sample variance 1 to sample variance 2 with ν1 and ν2 degrees of freedom,
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respectively. After a change of variables in the expression for I, a differentiation, and some algebra,

one form of the PDF is

PDF (F ) =
Γ(ν1+ν22 )

Γ(ν12 )Γ(
ν2
2 )
F
ν1
2
−1

(

F +
ν2
ν1

)−
ν1+ν2
2
(

ν1
ν2

)−
ν2
2

(A.24)

To take moments of F , we need to integrate FnPDF (F ). The general integral is of the form

∫ ∞

0

xn(x + a)−mdx (A.25)

One can integrate by parts n times to get (omitting lengthy algebra):

∫ ∞

0

xn(x + a)−mdx =
Γ(n+ 1)Γ(m− n− 1)

Γ(m)
a−(m−n−1) (A.26)

This integral only converges ifm〉n+1. We can quickly check the normalization of the F distribution

using this. We have n = ν1
2 − 1, m =

ν1+ν2
2 , and a =

ν2
ν1
. The integral is then:

Γ(ν12 )Γ(
ν2
2 )

Γ(ν1+ν22 )

(

ν2
ν1

)−
ν2
2

(A.27)

Also, let us work out moments of the F distribution:

〈F p〉 = Γ(
ν1
2 + p)Γ(

ν2
2 − p)

Γ(ν1+ν22 )

(

ν2
ν1

)−
ν2
2
+p Γ(ν1+ν22 )

Γ(ν12 )Γ(
ν2
2 )

(

ν2
ν1

)

ν2
2

(A.28)

=
Γ(ν12 + p)

Γ(ν12 )

Γ(ν22 − p)
Γ(ν22 )

(

ν2
ν1

)p

(A.29)

The expectation of F is (p = 1):

ν1
2

1
ν2
2 − 1

ν2
ν1
=

ν2
ν2 − 2

(A.30)
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The second moment is

(ν1
2
+ 1
) ν1
2

1
ν2
2 − 1

1
ν2
2 − 2

(

ν2
ν1

)2

=
1 + 2

ν1

(1− 2
ν2
)(1 − 4

ν2
)

(A.31)

And the variance (calculated from the first two moments) is

1 + 2
ν1
− 6
ν2
− 4
ν1ν2

(

1− 4
ν2

)(

1− 2
ν2

)2 (A.32)

To first order in the degrees of freedom (since second order correction to the CBI will be down by a

factor of order 1002 = 0.01%), the variance is

1 + 2
ν1
− 6
ν2

1− 4
ν2
− 4
ν1

(A.33)

A.2 Combining Two Identical Data Points

The simplest case we can consider is that of two visibilities made up of several 8 second observations

(y1 and y2) with scatter weights w1 and w2. The scatter weights are merely the reciprocal of the

estimated variance on y1 and y2 calculated using the observed variance of their constituent 8 second

observations. Let the true mean have been subtracted off, so 〈yi〉 = 0. Further, let the underlying

variances be the same, and the number of degrees of freedom be the same, denoted by ν. The output

visibility V is then

V =
w1y1 + w2y2
w1 + w2

=
y1
1 + w2w1

+
y2
1 + w1w2

(A.34)

The the variance of V is just the sum of the variances of the terms since the yi are uncorrelated with

expectation value of zero. If we use the formula for the variance of a product where one expectation

is zero (Equation A.3), we have

Var(V) = Var(y1)

〈

1

(1 + w2w1 )
2

〉

+Var(y2)

〈

1

(1 + w1w2 )
2

〉

(A.35)
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Now it is a property of Gaussians that there is no correlation between the variance of yi and its

weight wi. In other words, if I tell you that the individual data points that comprise a single yi all

happened to lie very close together, that does not imply that yi is likely to lie closer to its expectation

value. This is not generally the case: Consider a distribution that has a very sharp central peak with

extremely broad tails with small area. If I draw a set of data points that all come from the central

peak, then their mean will be close to the true mean, and the measured scatter will be small. If,

however, some points from the tails are included in the data set, then the variance of the mean will

be significantly increased, as will the scatter of the data points. The case of a boxcar distribution

is even odder: if my points all come from the same small region, there is no reason to think that

that small region is the center of the distribution. However, if the points are very widely spaced out,

they must actually give a better estimate of the mean. The highest possible scatter variance is when

the points are evenly placed on the two edges of the distribution - in which case the estimate of the

mean is almost perfect. So, for a data set drawn from a given boxcar distribution, the worse the

estimated error on the mean is, the better the estimate of the mean actually is, and the better the

estimated error is, the worse the estimate of the mean actually is! The Gaussian is a distribution

that precisely balances these two things so that the variance of the estimate is uncorrelated with the

estimate of the variance. It is straightforward to demonstrate this empirically through Monte Carlo

simulations.

Now the quantity w2w1 is distributed precisely as an F distribution with degrees of freedom ν1

and ν2. In this case they’re the same, so it’s an Fν,ν . The desired quantity by which we need to

scale the variance is then of 〈(1+Fν,ν)−2〉. Fortunately, for the case of equal degrees of freedom, we

know exactly how to calculate this! Not only can we calculate the moments of F , we can also easily

calculate powers of
(

F + ν2ν1

)

. So, if ν1 = ν2, we have

〈(1 + Fν,ν)−2〉 =
1

2

(

1 + ν2
1 + ν

)

=
1

4

ν + 2

ν + 1
=
1

4

(

1 +
1

ν + 1

)

(A.36)
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So, the total variance is (the factor of two 14 → 1
2 comes from the two identical terms):

Var(V) = Var(yi)
1

2

(

1 +
1

ν + 1

)

(A.37)

And the expectation value of the estimated final variance is

〈

Var(yi)

w1 + w2

〉

≃ Var(yi)
2〈w〉

(

1 +
2Var(w)

(2〈w〉)2
)

≃ Var(yi)
2
(1− 2

ν
)(1 + 2

2

ν
/4) ≃ Var(yi)

2
(1− 1

ν
) (A.38)

where we have used the expansion for 〈 1x〉, and kept things to first order in ν. Empirically, I find

that a better value is

Var(yi)

2

(

1− 1

ν + 1

)

(A.39)

but, as Numerical Recipes says, if this makes a big difference, you are probably up to no good

anyways. So, if we want the expectation of the variance of V to equal the expectation of our

estimate, we need to scale by a factor of

1/2(1 + 1/(ν + 1))

1/2(1− 1/ν + 1) ≃ 1 +
2

ν
(A.40)

This approximation works quite well for even fairly small degrees of freedom. For 20,000 pairs of

averaged data points, I find that for 4 degrees of freedom, the predicted factor is 1.5, empirical

1.502; for 9 degrees of freedom, the predicted factor is 1.222, empirical 1.217, and for 29 degrees of

freedom, the prediced factor is 1.069, and the empirical is 1.069.

A.3 Combining Many Identical Data Points

Let us now take the limit in which we combine many identically distributed data points with scatter

weights. We will again keep terms only to first order in ν, and neglect terms down by n from

the leading term, where n is the number of scans we combine. First, find the true variance of the
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estimator:

Var(V) = Var

(∑

wiyi
∑

wi

)

(A.41)

Again, the yi are uncorrelated, so this expression becomes

Var(V) = nVar

(

w1y1
∑

wi

)

= nVar (y1)

〈

(

w1
∑

wi

)2
〉

(A.42)

Let us now work only on the expectation term. If the number of data points is large enough, the

correlation between the numerator and denominator becomes negligible, and the expectation of the

product becomes the product of the expectations:

〈

(

w1
∑

wi

)2
〉

= 〈w21〉
〈

(

∑

wi

)−2
〉

(A.43)

We have already calculated the first term - 〈w2〉 ≃ 1 + 6
ν . We can calculate the second term using

the power series expansion for expectations:

〈

(

∑

wi

)−2
〉

=
〈

∑

wi

〉−2

+
6

2
Var

(

∑

wi

)〈

∑

wi

〉−4

+ ... (A.44)

Now the variance of the sum is the sum of the variances, so it depends on n1. Also, the expectation

of the sum is the sum of the expectations, so it also depends on n1. This leaves an n dependency

of the first term of n−2, and of the second term of n−3, so the second term becomes negligible as n

becomes large. Now let us actually calculate the expectation:

〈

∑

wi

〉

= n〈w〉 ≃ n(1 + 2
ν
) (A.45)

〈

∑

wi

〉−2

≃ n−2(1 + 2
ν
)−2 ≃ n−2

(

1− 4
ν

)

(A.46)
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And the final variance of the estimator is then

Var(V) ≃ nVar(y)
(

1 +
6

ν

)

n−2
(

1− 4
ν

)

(A.47)

The expectation of our estimate of the variance is

Var(y)

〈

1
∑

wi

〉

Var(y) ≃ n−1〈w〉−1 ≃ Var(y)n−1
(

1− 2
ν

)

(A.48)

And the factor by which we have misestimated is the ratio of the two estimates:

≃ n−1Var(y)
(

1 +
2

ν

)

/Var(y)n−1
(

1− 2
ν

)

≃ 1 + 4
ν

(A.49)

It is this first-order factor of 1 + 4
ν to which we expect the noise bias to converge for many scans.
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Appendix B

CMB Weighting in SZ Cluster

Observations

In addition to observations of the CMB, a major campaign of the CBI has been a survey of clusters at

z < 0.1 with the goal of measuringH0 to an accuracy of 10% independently of other, more traditional

methods. This appendix describes simulations carried out by Patricia Udomprasert using algorithms

developed by the author that minimize the impact of the CMB on the cluster observations. For our

nearby clusters, the CMB is a major source of noise. The algorithm and results are more fully

discussed in Udomprasert (2003).

The Sunyaev-Zeldovich (SZ) effect is the heating of CMB photons as they scatter off of hot gas in

galaxy clusters. It is a rich source of information about galaxy clusters (see, e.g., Rephaeli, 2002, for

a recent review), especially when combined with other sources of information about the hot gas, such

as X-Ray observations. Observations of the SZ effect in nearby (z ∼ 0.1−0.2) clusters are especially

useful since the X-Ray data are of better quality, and a fixed angular resolution leads to better

physical resolution in closer clusters. However, the CMB is a major contaminant in observations

of these nearby clusters. It is, in fact, the single biggest contaminant for the sample of clusters at

z < 0.1 observed by the CBI, with typical CMB signals of 55µK compared to cluster signals of a

few hundred µK. The CMB is much less of a problem for use in more distant (and hence smaller in

angular size) clusters as the power in the CMB falls rapidly on decreasing scales. The best way to

separate the CMB signal from the SZ signal is to have multi-frequency observations spanning the

SZ null at 217 GHz. Then one can use the fact that the SZ effect appears as a hole in the CMB at
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frequencies below the null and a bright spot in the CMB at frequencies above it. This is clearly an

observationally expensive proposition, and since no high-frequency observations of our clusters are

available, some other way must be found of treating the CMB. The spectral coverage of the CBI is

of limited use here since the difference in frequency behavior between the SZ effect and the CMB

are of no consequence in the CBI bandpass.

To measure the SZ effect, one usually generates a model on the sky (typically an isothermal β

model, though this discussion applies equally well to other parameterizations of cluster structure),

predicts the values that visibilities have under the assumed model, and compares those predictions

to the actual data. The best-fit model is the one with the minimum value of χ2. Unlike measuring

the CMB power spectrum, models generate predicted values for the visibilities rather than predicted

variances, so mis-estimates of the noise lead to incorrect error bars rather than biased models. There

are some simplistic ways of treating the CMB when fitting clusters. The easiest is to simply ignore

the CMB, since the cluster parameters will be unbiased. A better way is to estimate the noise on

each visibility from the CMB and add it in quadrature to the thermal noise in the visibility before

calculating χ2. This gives better results than ignoring the CMB, but is not optimal because it

does not correctly take into account the fact that nearby visibilities have correlated CMB values.

This means that uncertainties will be larger than they need to be, and error estimates will still be

incorrect.

The correct way to treat the CMB is to transform the visibilities into a set of estimators where

both the thermal noise and CMB signal are uncorrelated. Once we have done this, the CMB and

thermal noise can be combined into an effective noise, and since each point is independent, a χ2 fit

is simple to carry out. Furthermore, the χ2 values reflect the true goodness-of-fit, and so errors can

be accurately estimated. To do this requires several steps. The first is to calculate the covariance

matrix of the data given a known (from outside sources) CMB spectrum. Then divide each visibility

by its noise, applying the same scaling to the covariance matrix and to the model visibilities (a

whitening transform of Section 5.1). Once we have done this, the noise matrix becomes the identity

matrix. This is important because a rotation of the identity matrix remains the identity matrix.
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Were the noises unequal, then if we rotated the noise matrix, it would no longer be diagonal. This

means that the thermal noise would no longer be uncorrelated between estimators. Next, one finds

the eigenvalues and eigenvectors of the whitened CMB covariance matrix. Finally, one uses the

eigenvector matrix to rotate both the covariance matrix, the noise matrix, the data, and the model

data. The signal from the CMB is now uncorrelated between estimators, and the thermal noise

remains so. We can now directly calculate χ2 for the model:

χ2 =
∑ (xi −mi)2

1 + λi
(B.1)

where xi is the value of the i
th rotated estimator, mi is the value for the i

th estimator predicted by

the model, and 1 + λi is the variance of the i
th estimator (because we have whitened the thermal

noise, the thermal noise in each estimator is unity). This method is optimal since we have used

all the information in the CMB covariance matrix, which fully describes the properties of the CMB

(assuming Gaussianity). The results of the simulations are described in Table B.1 which compares the

uncertainty in h−1/2 (which is proportional to the central temperature decrement) when measured

ignoring the CMB signal to the uncertainty when using optimal weighting. These errors in these

simulations are representative of the data already taken by the CBI on the clusters named in Table

B.1. The net effect is to reduce the ensemble uncertainty in h−1/2 from 0.178 to 0.130, a reduction

of 27%, which should lead to a reduction in uncertainty on H0 of 47%. We used a total of 1000

simulations for each cluster, with a standard ΛCDM model for the CMB with h = 0.7.

To visualize how the weighting scheme works, picture the behavior of both the model and the

CMB in the UV plane. If the cluster were a point source, it would have equal amplitude in all

baselines. In reality, clusters have finite size, so the response of visibilities to the cluster will be

uniform and large for baselines much shorter than the inverse of the cluster size in radians. Baselines

much longer than the inverse cluster size resolve the cluster, leading to a reduction in signal. The

detailed behavior of the falloff in signal with baseline length is dependent on the detailed shape of

the cluster. As the size of the cluster shrinks, longer and longer baselines are expected to retain
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Table B.1 Comparison of Predicted Errors in h−1/2for no Weighting and Eigenmode Weighting

Cluster β-FWHM σnowt σeigwt

A85 8.80 0.373 0.292
A399 12.54 0.423 0.379
A401 8.58 0.272 0.210
A478 3.77 0.251 0.183
A754 16.96 0.291 0.264
A1651 6.68 0.437 0.324
A2597 1.92 0.902 0.589

CMB error in h−1/2for sample 0.178 0.130
H0 for sample with uncertainty due to CMB 67+25−16 67+17−12

Results of simulations showing increase in accuracy in fit parameters when using our transformed
estimators compared to ignoring the CMB. The only free parameter is the cluster central temperature
decrement, with the location and shape of the cluster determined externally (such as from X-Ray
data). The first column is the cluster simulated, the second is the cluster FWHM in arcmin, the
third is the scatter in h−1/2 with no CMB weighting, the fourth is the scatter in h−1/2 using our
weighting. The central decrement is proportional to h−1/2, so we quote the results in terms of h−1/2

as it directly relates to our cosmological constraints. The net effect of the weighting scheme is to
reduce the uncertainty in h−1/2 from 0.178 to 0.130. Reprinted from Udomprasert (2003).

good sensitivity to the cluster. The CMB is a set of independent patches in the UV plane with size

set by the Fourier transform of the primary beam, and amplitude set by the power spectrum Cℓ at

the distance from the origin of the patch in question. This means that the CMB noise in each patch

usually falls quickly with increasing baseline length, so the most useful visibilities are those from

long enough baselines to have low CMB response but short enough not to resolve the cluster. Small

clusters have more of these visibilities than large clusters, where the SZ signal can fall off almost as

quickly at the CMB. In addition to the small clusters being less corrupted by the CMB, we expect

the weighting scheme to improve the fits to the small clusters more than those to the large clusters

since the small clusters have high signal visibilities relatively unaffected by the CMB that can be

preferentially used, whereas the large clusters have no such visibilities. This behavior is seen in

Table B.1, where the improvement in small clusters is indeed more than that in the large clusters.

It is worth noting that we can think of the weighting scheme as using a single noisy estimate

of the cluster signal in each independent patch. So the uncertainty in the cluster decrement is

approximately the SNR in each patch divided by the square root of the number of independent

patches. If the size of the independent patches were shrunk we would have more of them in a given
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region of the UV plane, and therefore a better determination of the cluster properties. What is the

size of the patches? It is the Fourier transform of the observed area. For a single pointing, this

is the size of the Fourier transform of the primary beam, but if we mapped out a larger area, it

would be the Fourier transform of the entire survey region. A larger map means a smaller Fourier

transform, which leads to the counterintuitive result that our measurement of the cluster becomes

more precise as we observe more blank sky around it! Essentially, surveying a larger region allows

us to better characterize the behavior of the CMB underneath the cluster. This is a potentially

powerful (and perhaps the only) way of increasing the accuracy with which sensitive instruments

working in narrow frequency ranges can measure cluster structure.
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Benôıt, A., Ade, P., Amblard, A., Ansari, R., Aubourg, É., Bargot, S., Bartlett, J. G., Bernard,
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