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Abstract

In this thesis, research work concerning studies and applications of hyperpolarized

129Xe is presented. The research includes two projects. The first project is the

measurement and interpretation of the spin-exchange rates between 129Xe and three

alkali metals Rb, Cs, and K, for the cell density range of 0.2-0.7 amagats, with the

alkali number densities directly measured by the Faraday rotation method. The

determination of the constants governing the spin-exchange process provides a better

understanding of the spin-exchange optical pumping method that is used to polarize

129Xe, and it helps the optimization of mass production of hyperpolarized 129Xe. The

second project of the research work involves the construction of a low readout field

imaging system, which is capable of producing magnetic resonance images using both

water and hyperpolarized 129Xe as imaging agents, under a low readout magnetic

field, and is the first of its kind at room temperature.
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Chapter 1

Introduction

The practice of polarizing noble gases started with 3He [1, 2], and its usages were first

found in the field of nuclear physics. With two paired protons and an unpaired neutron

in its nucleus, polarized 3He provides a stable source of polarized neutrons, and has

been widely applied in nuclear physics studies [3, 4, 5]. When properly polarized, 3He

also has applications in various fields including medical magnetic resonance imaging

(MRI) [6]. During the attempts to achieve high polarization of 3He at high densities,

the technique of spin-exchange optical pumping (SEOP) [2, 7, 8] has been developed.

SEOP utilizes the spin of alkali metal valence electrons to transfer angular momentum

from laser light to the nuclei of 3He, and routinely achieves 3He polarizations of &50%

[3, 9].

When the SEOP technique was brought to maturity for 3He, it was soon afterwards

applied to polarize other noble gases [10, 11]. Of them, 129Xe was used for numerous

applications including medical diagnosis [12, 13], surface studies [14, 15], and searches

for permanent electric dipole moments [16]. 129Xe has certain merits as an agent for

MRI, compared to 3He: 129Xe can be polarized very fast (∼1 minute vs. &10 hours

for 3He), 129Xe is relatively cheap (∼10 dollars per liter vs. ∼100 dollars per liter

for 3He), its larger chemical shift results in a higher sensitivity to its environment,

and 129Xe is soluble in blood, while 3He is not. The polarization of 129Xe that can

be routinely achieved is 10%-20% [16, 17, 18]. While this number is about 105 times

larger than its thermal polarization at room temperature at a magnetic field of 1 Tesla,

it is still smaller than the achievable polarization for 3He by a factor of ∼3. This low
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polarization greatly limits the applications of polarized 129Xe. Therefore, studies

to improve the 129Xe polarization are still an important endeavour. My research is

focused on the study of the SEOP process for 129Xe. The ultimate goal is to try

to improve the 129Xe polarization. The application to MRI is the most important

motivation.

During a typical SEOP process to polarize 129Xe, 129Xe is mixed with the vapor

of some alkali metal in a transparent cell. Currently, Rb is most frequently used for

polarizing 129Xe, while K and Cs are possible alternatives. Circularly polarized laser

light shines on the cell and polarizes the spin of the alkali metal’s valence electron. The

polarized electrons subsequently interact with the nuclear spin of 129Xe, and transfer

angular momentum to 129Xe. The spin-exchange between alkalis and 129Xe can occur

in two ways: either exchange during binary collisions of the two species of particles,

or exchange by forming alkali-129Xe van der Waals molecules (vdW molecules) [8, 19].

Of them, the latter case requires the presence of third-body particles. In Ch. 2 we will

make detailed discussions about the theoretical background pertaining to the SEOP

process.

To improve the polarization of 129Xe achieved by the SEOP method, it is naturally

useful to learn more about both of the two mechanisms contributing to the spin-

exchange rate between the alkali metals K, Rb, and Cs and 129Xe. This knowledge

gives us information on how varying a couple of parameters, including the alkali

metal species, the number densities of the gases in the cell, and the cell temperature,

optimizes the polarization. In a 1985 paper by Zeng et al., the group measured

and studied the spin-exchange rate constants between K, Rb, and Cs and 129Xe at

low cell densities, and in N2-dominating environments [11]. Current efforts in the

production of hyperpolarized 129Xe, however, use higher cell densities (∼1 amagat 1)

and Xe-dominated environments. Accurate measurements of the spin-exchange rate

constants for the different conditions are, therefore, important. The relevant constants

for 129Xe-Rb spin-exchange have more recently been measured by Cates et al. at

∼1 amagat densities [20], but tests for K and Cs under similar conditions have not

1One amagat = 2.69×1025m−3, which is the number density of a gas at 1 atm pressure and 0◦C.



3

K Rb Cs
�1 atm, N2 dominating [11] [11] [11]
∼1 atm, Xe dominating

√ √
, [20]

√

Table 1.1: Summary of published spin-exchange rate constants measurements and
those presented in this thesis for various combinations of alkali-129Xe pairs and gen-
eral experimental conditions. The published measurements are marked by reference
numbers, and our new measurements are marked by “

√
.”

been done. In Ch. 3, results will be presented of measurements of the spin-exchange

rates between K, Rb and Cs and 129Xe, for cell densities in the range of 0.2 to

0.7 amagats. Explanations and analyses of the measured data, and determination of

the rate constants, will also be included in Ch. 3.

For clarity, Table 1.1 lists the combinations of alkali-129Xe pairs and experimental

conditions. The combinations in which spin-exchange rate constants have been mea-

sured in existing literature, and those in which the constants will be presented in this

thesis, are marked in Table 1.1.

One more issue that arose in recent years is the applicability of the empirical

saturated vapor density formulae for the alkali metals. In the experiments by both

Zeng et al. [11] and Cates et al. [20], these formulae were applied to calculate the alkali

number densities in the cell from the measured cell temperatures. However, in several

recent papers [21, 22], it has been reported that the values from the empirical formulae

can vastly differ from the directly measured alkali densities. Some researchers (e.g.,

[21]) also reported cell-to-cell differences in the relation between temperature and

alkali density. In our experiments, we studied the alkali densities in independent cells

using Faraday rotation method [23], and found that the measured values are indeed

different with values from the formulae, with the difference up to a factor of 3 in the K

case. However, we didn’t observe the cell-to-cell difference. We modified the existing

formulae by adding scaling factors to fit our experimental results. Since our results

of the spin-exchange rate constants were derived using our own empirical formulae,

they are free from the possible errors related with using formulae in the literature.
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A second study presented in this thesis pertains to the application of 129Xe polar-

ized by SEOP (“hyperpolarized” 129Xe, to be distinguished with 129Xe with thermal

polarizations) in magnetic resonance imaging (MRI). Compared with the thermal po-

larizations of imaging agents exploited in conventional MRI [24], the polarizations of

hyperpolarized 129Xe are usually larger by a factor of about 105. Moreover, unlike

the thermal polarization, which is proportional to the strength of the holding mag-

netic field, the polarization achieved by SEOP does not vary with the magnetic field.

Therefore, with hyperpolarized 129Xe, it wouldn’t be necessary to go to high magnetic

fields using expensive magnets in order to obtain good signal-to-noise ratios (SNR’s),

and the cost of an imaging system can be substantially reduced.

There is another MRI technique, which works with room temperature thermal

polarizations, but can also use a low magnetic field to collect signals, and reduce

the system cost. It is called prepolarized MRI (PMRI) [25, 26], and was carefully

explored by the Macovski group at Stanford University. In this technique, a strong

(∼1 T) but not very uniform (∼20 %) magnetic field is first turned on for a short

time (∼ 40 ms) to induce a relatively high thermal magnetization, and subsequently

a weak (∼ 30 mT) but uniform (∼10 ppm) field is used to collect signals. During

a collaboration between our group (Hughes group at Caltech) and Macovski group

at Stanford, the hyperpolarized 129Xe MRI and PMRI techniques were successfully

demonstrated on a single imaging system [17]. This the first successful attempt to

perform both hyperpolarized 129Xe MRI and water MRI at low magnetic field strength

and room temperature. Our part (the Caltech part) in the collaboration included

trying techniques to optimize the 129Xe polarization, construction of a vacuum system

to produce cells for polarizing 129Xe, testing the cells, setting up a laser and magnet

system to polarize 129Xe cells by the SEOP method, and polarizing the cells for

performing MRI. More details about this project will be discussed in Ch. 4, and the

MR images of tested cells will be shown.

Conclusion and future prospects are presented in Ch. 5.
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Chapter 2

Theory

In this chapter, we will lay out the theoretical foundations for the research to be

presented in this thesis. Sec. 2.1 discusses the theory of spin-exchange optical pumping

(SEOP), which includes two processes, optical pumping and spin-exchange. The

section will specifically focus on the SEOP for 129Xe. Sec. 2.2 includes further detailed

discussions about the spin-exchange rate, namely how the rate depends on various

factors. Finally, Sec. 2.3 will be a brief introduction to the theories of nuclear magnetic

resonance and magnetic resonance imaging.

2.1 Spin-Exchange Optical Pumping

Spin-exchange optical pumping (SEOP) [2, 7, 8] is the technique commonly applied

for producing polarized noble gases at high densities. SEOP involves two processes,

firstly, the optical pumping of the spin of the alkali metal atom’s valence electrons,

in which angular momentum is transferred from photons in a circularly polarized

laser beam to the alkali metal electrons, and secondly, the spin-exchange between

the alkali metal atoms and the noble gas nuclei, in which the angular momentum

is subsequently transferred to the nuclear spin of the noble gas. We’ll discuss in

this section the theories of these two processes. While the SEOP theory applies to

polarizing 3He and 129Xe with only minor differences between the two, this thesis is

primarily about the 129Xe case, and we will hereafter refer to our subject as “SEOP

of 129Xe.”
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In the following two subsections we will study the processes of optical pumping

and spin-exchange respectively.

2.1.1 Optical Pumping

Generally speaking, optical pumping is defined as manipulating the internal degrees

of freedom of a sample of atoms using light [27]. It is an efficient means to transfer

angular momentum from photons to the atoms. Before beginning to discuss the

optical pumping for our case, we need to define a few variables: let ~I be the alkali

nuclear spin, ~S be the alkali electron spin, ~F ≡ ~I+ ~S be the total angular momentum,

and z-direction be the direction of the holding external magnetic field B0ẑ. For most

SEOP experimental conditions, the holding field is weak enough to ensure that ~F 2

and Fz are good quantum numbers. We will assume a weak holding field in all

following discussions, and use f to denote the total angular momentum quantum

number, where the possible values of f are f = I ± 1
2

for our case.

In a typical optical pumping process for our purpose, circularly polarized laser

light along the z-direction, tuned to the D1 line is used to interact with the alkali

atoms. D1 is the transition line between electron levels nS1/2 and nP1/2, where n,

the principle quantum number, has different values for different alkali metals. While

either of the circular polarizations of the laser would work for the optical pumping,

we assume the laser photons to be with σ+ helicity for simplicity. In the holding field,

both the ground state S1/2 and excited state P1/2 split into two sublevels, Sz = 1/2

and Sz = −1/2 (Zeeman splitting). Due to the conservation of angular momentum,

only the transition between Sz = −1/2 sublevel of the ground state and the Sz = 1/2

sublevel of the excited state is possible, given that the photons have σ+ helicity.

Once excited, the electrons decay back to S1/2, either by spontaneous emission

or by quenching collisions. The photons generated by the spontaneous emission are

unpolarized, and would depolarize other alkali atoms. So, it’s a widespread practice

to add molecular gases (often N2) to “quench” the excited alkali atoms [8]—to collide

with these atoms and absorb the extra energy into the rotational and vibrational



7

degrees of freedom of the quenching gas molecules. When the quenching decay is the

dominant decay mechanism, the depolarizing effect of the spontaneous emission can

be neglected, and the overall rate for the electron to decay from the excited state is

typically on the order of 109 sec−1 (ns−1).

The quenching decay of excited electrons populates the two sublevels of the ground

state with the same rate. So, the overall effect of an excitation-decay cycle would be

pumping half of the Sz = −1/2 electrons to the Sz = 1/2 state. By putting the

electrons through the cycle many times, most of the electrons are pumped to the

Sz = 1/2 state.

When the gas number density in the sample cell is high (&0.1 amagat), the hy-

perfine structures of the alkali D1 lines are unresolved due to collisional broadening

of the lines. Therefore, the interaction between an alkali atom and a photon can

only flip the electron spin, while the nuclear spin remains unchanged. As we’ll see in

the next subsection, the durations of the spin-exchange processes are not much longer

than the hyperfine interaction timescale, and therefore do not significantly change the

alkali nuclear polarization either. Under these conditions, it is a valid approximation

to assume that the density matrix of the alkali atoms obeys the spin temperature

distribution [29], that is, the distribution is determined by a single parameter β:

ρ = Z−1 exp(βFz) = Z−1 exp(βIz) exp(βSz), (2.1)

where Z is the partition function. The electron polarization is defined as

P = 2〈Sz〉 =
N |spin-up −N |spin-down

N |spin-up +N |spin-down
=

exp(β/2) − exp(−β/2)

exp(β/2) + exp(−β/2)
= tanh(β/2). (2.2)

If we completely ignore the presence of the alkali nuclear spin, the evolution of

the electron spin due to optical pumping would be

d

dt
〈Sz〉 = R

(

1

2
− 〈Sz〉

)

, (2.3)

where R is the mean photon absorption rate for unpolarized alkali atoms, and we

have assumed the incident light has 100% circular polarization with helicity σ+. The
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above equation is straightforward, since an atom with electron spin down (〈Sz〉 =

−1/2) receives one unit of angular momentum from the photon, while a spin-up atom

(〈Sz〉 = 1/2) receives nothing.

However, the nuclear spin does interact with the electron spin, through the hyper-

fine interaction A~I · ~S, which roughly corresponds to a 109 ∼ 1010 sec−1 evolution rate.

So, between two consecutive sudden interactions (optical pumping or spin-exchange),

the electron spin slowly transfers to the nuclear spin of alkali atoms. This process

slows the build-up rate of the electron polarization by a factor 1 + ε̄(P ) which is

defined as

1 + ε̄(P ) =
∑

isotopes

〈Fz〉
〈Sz〉

=
∑

isotopes

(

1 + 2〈~I · ~I − I2
z 〉

)

. (2.4)

This slowdown factor is polarization-dependent, and is usually on the order of 1 to

10. So the actual electron spin evolution due to optical pumping is

d

dt
〈Sz〉 =

R

1 + ε̄(P )
(
1

2
− 〈Sz〉). (2.5)

Now the mean photon absorption rate for unpolarized atoms R is given by

R =

∫ ∞

0

Φ(ν)σopt(ν)dν, (2.6)

where Φ(ν) is the spectral distribution of the photon flux, and σopt(ν) is the spectral

distribution of the absorption cross section of the alkali atom. Φ(ν) usually takes a

Gaussian form, with typical full width at half maximum (FWHM) ranging from 1010

to 1012 Hz. The term σopt(ν) is commonly Lorentzian, for most cases its FWHM is

dominated by the collisional broadening effect, and is proportional to the environmen-

tal gas density, with 1 amagat density corresponding to roughly 2× 1010 Hz FWHM.

The term σopt satisfies the relation

∫ ∞

−∞

σoptdν = πrecf, (2.7)

where re = 2.82× 10−15 m is the classical radius of electron, c is the light speed, and

f is the oscillator strength [28]. For D1 lines, f ≈ 1
3
.
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Assume a typical SEOP senario: using a diode laser beam with intensity of 3

Watts/cm2, and bandwith of 600 GHz bandwith, to pump unpolarized Rb atoms, and

Xe and N2 gases in the cell have an overall density of 1 amagat. If the laser frequency

has been exactly tuned to the Rb D1 line, R ≈ 3 × 106 sec−1. So, considering the

slow-down factor 1 + ε̄(P ), the spin build-up rate of alkali electron is usually on the

order of 105 ∼ 106 sec−1. Because the photon flux Φ decreases as the laser beam

penetrates into the cell, the value of R will be smaller toward the back end of the cell.

As we will see in the next subsection, for our experimental conditions, the re-

laxation rate of Sz resulting from depolarizing mechanisms of alkali electron spin

(collisions with other alkali atoms, interactions with noble gas and other gas mole-

cules) is usually . 105 sec−1. So for our SEOP experiments, we can assume that the

equilibrium value of the alkali electron polarization is close to 100%, throughout most

of the cell volume. Close to the cell wall, the wall relaxation reduces the polarization

to zero, but from the discussion in [7, 8], the thickness of this unpolarized layer is on

the order of
√

D/R . 10−4m, where D is the diffusion constant. Toward the back

end of the cell, the alkali electron polarization might also be much smaller than 100%

due to the reduced photon flux.

To avoid confusion with the noble gas nuclear polarization, we shall from now on

denote the alkali electron polarization as Palkali.

2.1.2 Spin-Exchange

Spin-exchange is the process of spin transferring between interacting particles. Here,

the process that we’re interested in, is specifically the spin-exchange between the spin

of alkali metal valence electrons and 129Xe nuclei. The new notations to be defined

for this part are ~K, the 129Xe nuclear spin and ~N , the orbital angular momentum

of the system of two interacting particles (could be alkali-Xe system or alkali-buffer

gas system). For clarity, the angular momenta discussed in this and the previous

subsection have been plotted in Fig. 2.1.

For 129Xe, there are two different mechanisms that can induce transfer of angular
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Alkali Xenon

I

S

F
K

N

Figure 2.1: An illustration of the angular momenta discussed in the text: ~I, ~S, ~F ,
~K, and ~N .

momentum between the alkali metal atom and the 129Xe atom, namely transfer dur-

ing binary collisions and transfer by forming van der Waals molecules. The average

duration of the binary collisions between the particles is on the order of 10−12 sec.

Regarding the vdW molecules, their average lifetime is inversely proportional to the

number density of gases in the cell. For number densities &0.2 amagat, this average

lifetime is on the order of 10−11 sec. As we have seen in subsection 2.1.1, the charac-

teristic timescale for the alkali nuclear spin to precess is about 10−9 ∼ 10−10 sec, so

most spin-exchanging processes do not change the nuclear spin of alkali metals. The

assumptions leading to the spin-temperature representation in the last subsection are,

therefore, justified.

The term in the Hamiltonian of the system that is related to the spin-exchange is

the same for both mechanisms, and it has the form of α ~K ·~S, namely the interaction of

two magnetic moments. During the interaction, the two angular momenta are coupled

together, and due to the conservation of angular momentum, the only consequence

of this term would be transfer of angular momentum between ~K and ~S. We should

keep in mind that the spin-exchange term has different values for different isotopes

of Xe. The only other natural isotope of Xe with non-zero nuclear spin is 131Xe, its

nuclear spin is 3/2. For our studies, the polarization of 131Xe is not interesting. We
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will not discuss much about the spin-exchange between the alkali electron and 131Xe,

except when referring to the depolarization of alkali electron spin.

There is another term γ ~N · ~S in the Hamiltonian that transfers the alkali electron

spin ~S to the orbital angular momentum ~N . This term does not contribute to the

nuclear polarization of 129Xe, but does destroy the alkali electron polarization, so we

will also discuss this mechanism. This spin-rotation interaction does not depend on

the nuclear spin of Xe, i.e., it has the same value for all Xe isotopes. Because of the

existence of this spin-rotation interaction, only a fraction of the angular momentum

lost in ~S goes to ~K. The ratio of angular momentum that goes from ~S to ~N to that

which goes to ~K can be estimated as γN
α

. This quantity has been measured by Zeng

et al. to be approximately 3 for 129Xe with K, Rb, and Cs [11]. The measurements

are for nitrogen dominated environments, but we can use them to estimate that for

each unit of angular momentum lost in ~S during an alkali-129Xe interaction, about

0.1 ∼ 0.5 units go to ~K. Considering other Xe isotopes, if we assume that the

spin-exchange term for 131Xe is the same order of magnitude as for 129Xe, it can be

estimated that for each unit of angular momentum lost from ~S during interactions

with Xe atoms, about 0.02 ∼ 0.3 units go to the 129Xe nuclear spin. In the above

estimate, we have assumed that we are using Xe with natural isotopic abundance,

namely 26.4% of Xe atoms are 129Xe and 21.2% are 131Xe.

Since the binary collisions have very short durations, they can be considered as

instantaneous, and can be described by the collisional cross sections: 〈vσKS〉, corre-

sponding to the angular momentum that goes to ~K, and 〈vσNS〉, corresponding to the

angular momentum that is transferred to ~N . The term 〈vσNS〉 has different values for

different particles that interact with alkali atoms, and will be specified by 〈vσNS〉Xe,

〈vσNS〉N2
, etc. The relaxation rate of ~S caused by these collisional mechanisms are,

therefore,

ΓSD,collisional = [Xe]〈vσNS〉Xe + [129Xe]〈vσKS〉129Xe + [131Xe]〈vσKS〉131Xe + [N2]〈vσNS〉N2
,

(2.8)

where we have assumed that N2 is the only buffer gas in the sample cell. We have
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Alkali

Xenon

Nitrogen
K

S

Nitrogen S

K
van der Waals

molecule

Figure 2.2: Formation and break-up of a van der Waals molecule. A nitrogen molecule
acts as the third-party particle for both the formation and break-up processes. ~S and
~K are “exchanged” during the lifetime of the vdW molecule.

also introduced the use of pairs of brackets, “[ ],” to denote the number density of

a certain particle. For Xe with natural isotopic abundance used in our experiments,

[129Xe]=0.264[Xe], [131Xe]=0.212 [Xe].

To form or break a van der Waals molecule, a third-party particle has to be

present to satisfy the conservation of energy and momentum in the system. The

formation and break-up of a typical vdW molecule have been sketched in Fig. 2.2,

where a nitrogen molecule acted as the third-party particle. In Fig. 2.2, the alkali

electron spin and the 129Xe nuclear spin are “exchanged” during the lifetime of the

molecule, but it should be noted that, due to the spin-rotation interaction, in many

vdW molecules the loss in ~S would go to ~N instead of ~K.

Since the frequency of the break-up of van der Waals molecules depends on the

overall density of the gases that can act as the third-party particle, the mean lifetime

of the vdW molecules depends on the density in the sample cell. For our experiments,

where the overall density lies in the range of 0.2-0.7 amagat, the mean lifetime satisfies

the conditions of being “short but not very short” as defined in [7].

The “short but not very short” lifetime is defined as a lifetime τ that satisfies

γNτ/h � 1 and ατ/h� 1, (2.9)
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but does not satisfy

ωhfτ � 1, (2.10)

where γ and α are the coupling coefficients for spin-rotation and spin-exchange inter-

actions, respectively, and ωhf ≡ [I]A/(2~) is the hyperfine frequency. The relations

(2.9) show that the average rotation angles of ~S and ~K during a lifetime of the vdW

molecule are small. The relation (2.10) means that the lifetime is not negligibly short

compared to the timescale for the evolution of the alkali nuclear spin ~I, and thus the

total angular momentum quantum number f is not changed during the vdW lifetime.

The rigorous derivation of the contribution of van der Waals molecules in the

spin-exchange process and in the transfer of angular momentum between ~S and ~N

is complicated. We will discuss more about this topic in the next section. Detailed

discussions can also be found in the literature [7, 8, 20]. Naturally the spin-exchange

rate resulting from vdW molecules depends on the cell density.

Hereafter, we shall use “Xe” in subscripts to stand for “129Xe” unless otherwise

specified. So the polarization of the 129Xe nuclear spin ~K is denoted by PXe. To

characterize the time evolution of PXe, we define the spin-exchange rate γSE as the

relaxation rate of ~K resulting from the interaction with alkali atoms. The relaxation

rate includes contributions both from binary collisions and from vdW molecules. We

further define ΓXe as the relaxation rate of ~K from other sources, mainly due to the

interaction with the cell walls. As we will see in the next section, γSE depends on

various quantities, but it is a constant for a cell with certain amounts of gases and at

a certain temperature. The time evolution of PXe is, therefore,

d

dt
PXe = (Palkali − PXe)γSE − PXeΓXe. (2.11)

To verify our assumption that for our experimental conditions, the polarization of

~S is close to 100%, we can roughly estimate the relaxation rate of ~S resulting from

both spin-exchange interactions and spin-rotation interactions for typical situations.

The relaxation rate of ~S due to spin-exchange is related to the relaxation rate of ~K
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due to the same mechanism by

γ~S,spin−exchange =
[129Xe]

[alkali]
γ ~K,spin−exchange, (2.12)

where the subscripts ~S and ~K specify the quantities of the relaxation (We use the no-

tation γSE without a subscript to stand for γ ~K,spin−exchange. For our typical situation,

[Xe]=0.35 amagat. For our Xe with natural isotopic abundance, this corresponds to

[129Xe] ≈ 0.1 amagat ≈ 2.5×1024 m−3. Let [N2]=0.15 amagat and [alkali] = 2.5×1019

m−3. From our measurements to be shown in later chapters, the relaxation rates of

~K in the presence of any of the three alkali metals K, Rb, or Cs is on the order of

10−2 sec−1. From these numbers, we can estimate that γ~S,spin−exchange is on the order

of 103 sec−1.

As we have previously estimated, due to the presence of the spin-rotation inter-

action, the angular momentum lost in ~S due to interaction with Xe atoms is about

3-50 times the gain in ~K of 129Xe. So, the overall relaxation rate of ~S resulting

from interactions with noble gas atoms is one or two order of magnitude larger than

γ~S,spin−exchange, or on the order of 104 ∼ 105 sec−1. Contributions from other relax-

ation mechanisms of ~S are negligible. So the optical pumping rate of ~S, which is

105 ∼ 106 sec−1, dominates over the other relaxation rates, and our assumption is

justified.

ΓXe, the rate of ~K’s relaxation through mechanisms other than interactions with

alkali atoms, is dominated by the wall relaxation for our case. From our measure-

ments, this overall relaxation time is on the order of 0.01 sec−1. Other major relax-

ation mechanisms include Xe-Xe interactions and inhomogeneities in magnetic field.

According to the measurements by Chann et al. [32], the Xe-Xe interactions induce

a relaxation rate in ~K is given by

ΓXe-Xe = 6.7 × 10−5sec−1 + 5.0 × 10−6[Xe]sec−1, (2.13)

where [Xe] is measured in amagats.

The relaxation rate resulting from field inhomogeneities can be estimated as [30,
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31]

Γ∆B = D
|∇B⊥|2
B2

0

, (2.14)

where D is the diffusion constant, B0 is the holding field, and ∇B⊥ is the field

inhomogeneity in the plane perpendicular to the direction of ~B0. For our experimental

condition, |∇B⊥| ∼ 0.01 Gauss/cm when B0 ∼ 20 Gauss, and D ∼ 0.1 cm2/sec.

Therefore Γ∆B is on the order of 10−8 sec−1. Clearly, both ΓXe-Xe and Γ∆B are

negligible compared to the overall relaxation rate.

2.2 The Spin-Exchange Rate

As defined in the last section, the spin-exchange rate γSE is the relaxation rate of

~K resulting from interactions with alkali atoms. Naturally, γSE is proportional to

the number density of the alkali atoms. As we have discussed in the last subsection,

γSE can be divided into two parts, corresponding to the two spin-exchange mech-

anisms. The van der Waals molecules part is dependent on the number density of

gases (primarily Xe and N2 in our case), while the binary collision part is density

independent.

For a detailed derivation of the exact form of γSE, we will begin with the simple

case when Xe is the only gas in the cell (the number density of alkali vapor is usually

lower by at least 4 orders of magnitude, and can almost always be neglected compared

to other gases), and the alkali metal is monoisotopic (having only one isotope). The

binary collision part, as we stated in Sec. 2.1, can be characterized by a single parame-

ter 〈vσKS,Xe-alkali〉, which is the velocity-averaged spin-exchange cross section. Since

there will not be much discussion concerning σNS in the following parts, the simplified

notation σXe-alkali will be used for spin-exchange cross section. The binary collision

part of γSE is therefore [alkali]〈vσXe-alkali〉. The term σXe-alkali has slight temperature

dependences.

The van der Waals contribution to γSE is proportional to 1/TvdW,Xe, the formation

rate of vdW molecules per 129Xe atom. According to [8], for the short molecular
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lifetime limit, as defined by conditions (2.9) and (2.10), the spin-exchange interaction

during vdW molecule interactions induces change in Kz with the form of

d

dt
〈Kz〉 =

1

TvdW,Xe

( ατ

(2I + 1)~

)2
[〈K̂2 −K2

z 〉〈Fz〉 − 〈F̂ 2 − F 2
z 〉〈Kz〉], (2.15)

where α is the coefficient in the spin-exchange interaction, τ is the mean lifetime of

vdW molecules, and I is the alkali nuclear spin.

Semiclassically, we can view ατ
(2I+1)~ as the “mean rotation angle” of ~K during the

lifetime of a vdW molecule. Because this mean angle is small following Eq. (2.9),

the “relative change” in Kz is roughly 1 − cos ατ
(2I+1)~ ≈ 1

2

(

ατ
(2I+1)~

)2
. Under the spin-

temperature limit, the polarization of ~K can be defined as PXe = Kz

〈K̂2−K2
z〉

. (For a

spin-1/2 system, 〈K̂2 −K2
z 〉 ≡ 1

2
.) Similarly, for the alkali atoms, Palkali = Fz

〈F̂ 2−F 2
z 〉

=

Sz

〈Ŝ2−S2
z〉

= 2〈Sz〉.
Now we can simplify Eq. (2.15) to

dPXe

dt
=

1

TvdW,Xe

( ατ

(2I + 1)~

)2〈F̂ 2 − F 2
z 〉(Palkali − PXe), (2.16)

namely, the van der Waals part of γSE is 1
TvdW,Xe

(

ατ
(2I+1)~

)2〈F̂ 2 − F 2
z 〉.

To further simplify the expression, we study the formation of van der Waals mole-

cules

[alkali] + [129Xe] + [Xe] 
 [alkali-129Xe] + [Xe], (2.17)

where [alkali-129Xe] is the number density of the vdW molecules, and we have used

the assumption that Xe is the only gas in the cell. When the reaction (2.17) reaches

equilibrium, the molecule formation rate per 129Xe atom, 1/TvdW,Xe, and the break-up

rate of vdW molecules, 1/τ , are related by

[129Xe]

TvdW,Xe

=
[alkali-129Xe]

τ
= Z[alkali][129Xe][Xe], (2.18)

where Z is the rate constant for the reaction (2.17), and is independent of the number

densities. The chemical equilibrium constant κ is also independent of the number

densities, and is defined as

κ =
[alkali-129Xe]

[alkali][129Xe]
=

[alkali-Xe]

[alkali][Xe]
. (2.19)
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The second equality in (2.19) comes from the fact that the van der Waals interaction

is the same for different Xe isotopes.

With the above relations, we find

τ 2

TvdW,Xe

=
[alkali-129Xe]2

Z[alkali][129Xe]2[Xe]
=

[alkali]

Z[Xe]

( [alkali-129Xe]

[alkali][129Xe]

)2
=

[alkali]

[Xe]

κ2

Z
. (2.20)

Now we can express the vdW part of γSE using only number densities, and density-

independent quantities. We can also include all quantities that depend on the alkali

nuclear spin in one single quantity by defining

ζ ≡ 〈F̂ 2 − F 2
z 〉

(2I + 1)2
. (2.21)

Using our assumption that Palkali is close to 100% for our experimental conditions, ζ

can be simplified to

ζ → 1

4I + 2
. (2.22)

Note that for our case, ζ has different values with the cases when Palkali → 0, for

example [20].

Now we can rewrite Eq. (2.16) as

dPXe

dt
=

[alkali]

[Xe]

κ2

Z

α2

~2
ζ(Palkali − PXe). (2.23)

The vdW contribution to γSE is proportional to the alkali number density as expected,

and is inversely proportional to the Xe number density. The latter relationship is

because, when the Xe density increases, while the vdW molecule generation rate

increases correspondingly, the lifetime of vdW molecules decreases. Since the vdW

contribution to γSE is proportional to the generation rate of vdW molecules, and to the

square of molecule lifetime, the probability of spin-exchange through vdW molecules

is inversely proportional to the Xe density. The term α characterizes the interactions

between the alkali valence electron and the noble gas nucleus, it is independent of the

isotopic species of the alkali, and is also independent of the number densities of the

particles. The term Z is also a constant for any particular alkali. The quantity κ2

Z
is

a constant for each alkali-Xe pair as well. So, the term κ2α2

Z~2 in the relaxation rate is
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a constant for each alkali-Xe pair. In discussions later in this section, we will see that

this term needs to be slightly modified for the case when N2 is present in the sample

cell. We follow the notation in [20] and define this term as γM ≡ κ2α2

Z~2 .

From the above discussions, for the simplified situation where Xe is the only gas

in the cell, and the alkali is monoisotopic, γSE has the form of

γSE = [alkali]
(

〈vσXe-alkali〉 +
γMζ

[Xe]

)

. (2.24)

The quantity γSE, together with ΓXe, the relaxation rate induced by mechanisms other

than interactions with alkali atoms, governs the time evolution of PXe according to

Eq. (2.11).

We can now generate our result for multi-isotopic alkalis. This is important be-

cause, among K, Rb, and Cs, three frequently used alkali for SEOP of 129Xe, only

Cs is monoisotopic. Let different isotopes of the alkali be denoted by the subscript

“i,” and their relative abundances by fi. The velocity-averaged spin-exchange cross

section characterizing spin-exchange through binary collisions can be generalized to

a weighted average over all isotopes,

〈vσXe-alkali〉 =
∑

i

fi〈vσXe-alkali,i〉. (2.25)

For the spin-exchange rate coming from van der Waals molecules, the only quantity

depending on the isotopic species is ζ. So, for the multi-isotopic alkali cases, we do not

have to change the entire Eq. (2.24) and only need to modify slightly the definition

of ζ from Eq. (2.21) to

ζ ≡
∑

i

〈F̂ 2
i − F 2

i,z〉
(2Ii + 1)2

. (2.26)

For the limit when Palkali →100%, the approximate value of ζ becomes

ζ ≈
∑

i

fi
4Ii + 2

. (2.27)

For alkalis K, Rb, and Cs with natural isotopic abundances, we can numerically

calculate the values of ζ according to Eq. (2.27), with the results shown in Table 2.1.

Note that these are different from the ζ values in [20] where Palkali → 0.
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alkali K Rb Cs

isotope 39K 41K 85Rb 87Rb 133Cs

I 3
2

3
2

5
2

3
2

7
2

f 0.9326 0.0673 0.7215 0.2785 1

ζ 0.125 0.0949 0.0625

Table 2.1: The nuclear spin I and relative abundance f of all major isotopes of the
three alkalis K, Rb, and Cs. Values of ζ are calculated from these quantities. Alkali
electron polarizations of nearly 100% have been assumed.

To generalize the results to the experimental condition where N2 is also present in

the cell as a buffer gas, we need to consider the formation of van der Waals molecules

with N2 molecules acting as the third party particle,

[alkali] + [129Xe] + [N2] 
 [alkali-129Xe] + [N2], (2.28)

in addition to reaction (2.17). For reaction (2.28), we have a different rate constant

Z, so we can denote the Z for reaction (2.17) as ZXe, and the Z for reaction (2.28)

as ZN2
.

Eqs. (2.18) and (2.20) should now be respectively generalized to

[129Xe]

TvdW,Xe
=

[alkali-129Xe]

τ
= ZXe[alkali][129Xe]([Xe] +

ZN2

ZXe
[N2]), (2.29)

and

τ 2

TvdW,Xe

=
( [alkali-129Xe]

[alkali][129Xe]

)2
[alkali]

/(

ZXe([Xe] +
ZN2

ZXe

[N2])
)

=
κ2

ZXe

[alkali]
/(

[Xe] +
ZN2

ZXe

[N2]
)

.

(2.30)

Our generalization would not change the value of κ, since the third party particle

appears on both side of reactions (2.17) or (2.28). So, if we stick to the definition

of γM as γM ≡ κ2α2/(ZXe~
2), and for convenience make the definition b ≡ ZN2

/ZXe,

Eq. (2.24) now becomes

γSE = [alkali]
(

〈vσXe-alkali〉 +
γMζ

[Xe] + b[N2]

)

, (2.31)
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where 〈vσXe-alkali〉 and ζ have been generalized according to the above discussions.

Eq. (2.31) is the final form of the γSE for our experimental conditions, and will

be used to analyze data from our measurements.

2.3 Nuclear Magnetic Resonance (NMR) and Mag-

netic Resonance Imaging (MRI)

Nuclear Magnetic Resonance (NMR) is defined as the selective absorption of radio

frequency (RF) radiation by an atomic nucleus in an external magnetic field. It is a

very useful way for studying various properties of nuclei with non-zero spin. Through-

out our projects, we used NMR techniques to measure the nuclear polarization of our

laser-polarized 129Xe sample. We will discuss the fundamental NMR principles in

subsection 2.3.1.

Magnetic Resonance Imaging (MRI), an application of NMR, has by now become

one of the routine medical diagnostic methods. Compared to other approaches, it

has the advantages of being non-invasive, ultra fast (<1 sec), having high resolution

(on the scale of millimeters), providing images in multiple dimensions with a single

scan, and can be done in vivo. MRI is particularly useful for the diagnosis of many

brain diseases, as well as arthritis, and a number of other diseases afflicting tissues

and muscles. Other than applications in medical diagnosis, MRI can also be used

in various material studies (e.g., study of the permeability in porous media [33]). In

Ch. 4 we will present a project using laser-polarized 129Xe to perform MRI. Some

basic MRI techniques will be briefly introduced in subsection 2.3.2 for preparation.

2.3.1 NMR Principles

Nuclear Magnetic Resonance (NMR) [24, 34] was first discovered in 1946 by F. Bloch

and E. Purcell, who later received the Nobel prize for the discovery. As is well-known

by now, in an external field (“holding field”) B0ẑ, the nuclear magneton has the energy

of E = −µ · ~B0. The gyromagnetic ratio γ of this specific nucleus is defined as the
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nuclear magneton µ divided by the nuclear spin angular momentum I~. Considering

the quantization of Iz, the possible values of E become

E = γm~B0, (m = −I,−I + 1, ..., I), (2.32)

where m ≡ Iz is the magnetic quantum number in the direction of the external field.

The energy difference between two adjacent levels becomes ∆E = γ~B0. Therefore,

for a photon to excite transitions between two adjacent levels, its minimum energy

is Eγ = ~ω = γ~B0, and the lowest RF frequency that can induce nuclear magnetic

resonance is

ω0 = γB0. (2.33)

This is the Larmor equation for NMR, and the frequency ω0 is the Larmor frequency,

which is also the precession frequency of the nucleus about ~B0.

In an external magnetic field, quantum states with different m values correspond

to different energies. According to the Boltzmann distribution, the populations of

different m-states would be different, and the nuclear spin would be polarized. For a

typical spin-1/2 system, at temperature T , the thermal polarization becomes

P = 2〈m〉 =
N |spin-up −N |spin-down

N |spin-up +N |spin-down
=

exp(µB
kT

) − exp(−µB
kT

)

exp(µB
kT

) + exp(−µB
kT

)
= tanh(

µB

kT
) ≈ µB

kT
,

(2.34)

where the last approximation comes from the fact that under all practical circum-

stances, the quantity µB
kT

is far smaller than unity. This thermal polarization is usually

exploited in conventional NMR. We can see that to achieve a high polarization, it is

desirable to have a high magnetic field and/or a low temperature. For NMR using

laser-polarized 129Xe, however, the polarization of the nuclear spin is independent of

the magnetic field or the temperature. We will see that the size of the NMR signal

is proportional to P . So, laser-polarized 129Xe NMR has the advantage over conven-

tional MRI in that it doesn’t require high fields or low temperatures, and can thus

greatly reduce the cost.
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In equilibrium, a thermally polarized sample of nuclei has the magnetization of

~M0 = PNµẑ, (2.35)

where P is the nuclear polarization given by Eq. (2.34), N is the total number of

nuclei in the sample, and µ is the magneton of a single nucleus. The magnetization

of laser-induced polarization for 129Xe has the same form, as long as the magneti-

zation is aligned with ~B0, even though the polarization P is no longer the thermal

polarization. The above magnetizations are in z-direction, and do not precess. To

generate detectable signals, it is necessary to “tip” the magnetization ~M away from

the z-direction, so that it processes around z-direction, and induce signals in pickup

coils. For this purpose, a rotating magnetic field is usually applied.

In the context of NMR, it is often convenient to introduce a rotating frame of

reference, which shares the z-axis with the laboratory frame, but have x and y axes

rotating about z axis at a certain angular frequency ω. To distinguish from the

laboratory frame axes, we use x′ and y′ to denote the axes in the rotating frame.

If, in addition to the holding field ~B0, there exists another magnetic field ~B1

perpendicular to ~B0, and ~B1 rotates about the z-axis at the Larmor frequency of the

holding field ω0 = γB0, we can study the effects of ~B1 on the nuclear magnetons in

the rotating frame. Let the frame rotate at the same frequency as ~B1. Then, without

considering ~B1, the magnetization ~M would be at rest with respect to the rotating

frame. Now ~B1 is also static in the rotating frame, so ~M would precess about the

direction of ~B1, at the frequency ω1 = γB1. By applying the rotating field ~B1 for a

short durating ∆t1, the direction of the magnetons precesses by α = γB1 away from

the z-direction. Shown in Fig. 2.3 is a magnetization “tipped away” from the z-axis.

When ~M is tipped away from z-direction, it precesses about the z axis at the

Larmor frequency γB0. If pickup coils are placed near the sample of nuclei, the

precessing magnetization causes variations in the magnetic flux through the coils,

and induces a signal s(t) in the coils

s(t) = Cω0M sinα exp(−iω0t), (2.36)
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Figure 2.3: A magnetization ~M is tipped away from its initial direction by angle α, it
subsequently precesses about the holding magnetic field B0ẑ at the Larmor frequency.
The rotating field B1 used to tip the magnetization is not explicitly shown.

where C is a constant determined by the coils’ geometrical properties. The signal

s(t) is an AC signal at the Larmor frequency, and its amplitude is proportional to the

magnetization, the frequency, and sinα, where α is the tip angle. We can see that s

is proportional to the nuclear polarization P , since M is given by Eq. (2.35).

When ~M is tipped away from its equilibrium value, it tends to relax back. The

time evolution of ~M is described by the Bloch equation [35],

d

dt
~M = ~M × γ ~B0 −

Mxx̂ +Myŷ

T2
− (Mz −M0)ẑ

T1
, (2.37)

where the first term on the right-hand side is the precession about ~B0, and the last

two terms govern the relaxation of ~M . T1 is the “longitudinal” relaxation time, and

T2 is the “transverse” relaxation time. For most situations T2 ≤ T1. M0ẑ is the

equilibrium value of ~M , given by Eq. (2.35).

The longitudinal relaxation (sometimes called the “T1 process”) results from mag-

netic fields experienced by the nuclei that vary at the Larmor frequency ω0. Most

time-varying magnetic fields have components at the Larmor frequency, so practically

all time-varying fields contribute to the relaxation. In gaseous or liquid samples, the

nuclei perform a random-walk in the field, so spatial field gradients are viewed by the

nuclei as time-varying fields, and induces longitudinal relaxation of the magnetization

as well. For the transverse relaxation (“T2 process”), the relaxation mechanisms for
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longitudinal relaxation are still present, and there is also an additional mechanism,

the decoherence of the magnetization. The sample magnetization consists of many

nuclear magnetons. Each magneton experiences a slightly different holding field B0,

so each has a slightly different processing frequency. With time, the directions of the

transverse components of these magnetons disperse on the x-y plane, and their vector

sum, the overall magnetization, decays due to the dispersion.

For the NMR of protons in water, which is the most frequently exploited NMR

for imaging, T1 is typically on the order of 0.1 ∼ 1 sec, and T2 is on the order of

0.01 ∼ 0.1 sec. Both relaxation times vary with the environment of the sample. For

pure water, T1 can be up to 2 sec [36]. Therefore, the signal-acquisition time should

be generally within several T2 times, to obtain a good signal-to-noise ratio (SNR).

And the duration of the rotating field ~B1 field applied to tip the magnetization should

be much smaller than T2.

There is a difference between NMR using laser-polarized 129Xe and conventional

NMR exploiting thermal polarizations of nuclei. The magnetization of laser-polarized

129Xe is much larger than the equilibrium value of magnetization resulting from

the Boltzmann distribution given in Eq. (2.34). For instance, at room tempera-

ture (300 K), with a holding field B0 = 1 Tesla, the thermal polarization of 129Xe is

P ≈ µB/(kT ) ≈ 1.5 × 10−7, whereas the laser-induced polarization is usually on the

order of 0.01 or even 0.1. So, for laser-polarized NMR, the equilibrium magnetization

is about 105 times smaller than the initial magnetization, and is effectively zero. Also,

the longitudinal relaxation time T1 for laser-polarized gaseous 129Xe is on the order

of seconds to tens of seconds [37], much longer than the proton relaxation times.

In many NMR and MRI applications, the sample’s magnetization is tipped away

from the z-direction multiple times, producing one signal each time, and between two

consecutive signal acquisitions, the magnetization is allowed a time on the order of T1

to restore its equilibrium value. For thermal magnetizations, the tip angle α is often

chosen to be π/2 since the signal is proportional to sinα (Eq. (2.36)). However, when

laser-induced magnetizations are used, choosing α = π/2 would completely destroy

the longitudinal polarization, and make subsequent signal acquisitions impossible.
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Therefore, small α values are usually used for laser-polarized noble gases.

We now briefly discuss two common NMR techniques that have been applied in

the projects to be presented in this thesis: free induction decay (FID) and adiabatic

fast passage (AFP).

Free induction decay (FID) refers to the signal acquisition practice of tipping

the magnetization from the z-direction by an angle α, then allowing the transverse

magnetization to decay at the rate of 1/T2, and finally recording the signals induced

in pickup coils. The signals have the form

s(t) = Cω0M0e
−t/T2 sinα exp(−iω0t), (2.38)

where C is the pickup coil constant as in Eq. (2.36), and M0 is the magnetization

before being tipped, given by Eq. (2.35). The FID signals can be used to get in-

formation on T2 and M0. The latter, in turn, can be used to calculate the nuclear

polarization P .

Adiabatic fast passage (AFP) is another technique often used to measure the

nuclear polarization P . To induce an AFP signal, the rotating field B1 is kept on,

but its rotating frequency is deliberately set to be off resonance with the holding

field (i.e., ωB1
6= ω0 ≡ γB0). During the data acquisition, either B0 or ωB1

is swept

past the resonance point. For our tests, ωB1
remains constant, and B0 is swept at a

constant rate.

In the reference frame rotating at the frequency ωB1
, the Bloch equation (2.37)

becomes

( d

dt

)′ ~M = ~M × γ ~B − ~M × ωB1
ẑ − Mxx̂ +Myŷ

T2

− (Mz −M0)ẑ

T1

, (2.39)

where the prime denotes the time-derivative in the rotating frame, and ~B is the

superposition of ~B0 and ~B1. We can arbitrarily define the x′-direction of the rotation

frame to be aligned with ~B1, so ~B1 = B1x̂
′. The above equation can be written as

( d

dt

)′ ~M = ~M × γ ~Beff + relaxation terms, (2.40)

where the effective field

~Beff ≡ (B0 − ωB1
/γ)ẑ − B1x̂

′. (2.41)



26

Beff

Z =Z

X

rotating frame

Y

(t)

B0
(t)

B1

wB1

Figure 2.4: The time evolution of ~Beff in the rotating frame. When B0 is swept

across the resonance point B0 = ωB1
/γ, ~Beff traverses the x-y plane.

The magnitude of B1 is normally much smaller than B0, so when B0 is swept across

the value ωB1
/γ, ~Beff is rotated from near the +z-direction to near the −z-direction.

Fig. 2.4 shows the time evolution of ~Beff near the resonance point.

For the process to become an “adiabatic fast passage,” both the “adiabatic con-

dition” and the “fast condition” must be satisfied. The adiabatic condition ensures

that the rotation of ~Beff is much slower than the precession rate of the magnetization

~M , so that ~M follows the direction of ~Beff . The fast condition requires the rotation

of ~Beff to be much faster than the relaxation rates, so that the relaxational loss of

|M | during the passage is negligible. These conditions are, respectively,

(

dB0

dt

/

B1

)

� ω0 ≡ γB0, (2.42)

and

(

dB0

dt

/

B1

)

� 1/T1. (2.43)

Note that although the transverse relaxation rate 1/T2 is the greater of the two

relaxation rates, as long as the passage is adiabatic, the magnetization would follow

the direction of the effective field, and would not have a significant component on the

transverse direction with respect to the effective field.
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When these conditions are satisfied, ~M follows ~Beff exactly with minimal loss.

The signal induced in the pickup coils becomes

s(t) = C exp(−iω0t)ω0M0

(

~Beff

Beff
· x̂′

)

, (2.44)

where M0 is the magnetization before adiabatic fast passage, and M0

( ~Beff

Beff
· x̂′

)

is its

projection onto the x-y plane. If ~B0 is swept at a constant rate, and the time of the

resonance is defined as t = 0, we have ~Beff(t) = btẑ + B1x̂
′ where b is the constant

sweeping rate of ~B0. The magnitude of s(t) can now be written as

|s(t)| = Cω0M0
B1

√

B2
1 + (bt)2

. (2.45)

This is similar to a Lorentzian signal, with the peak value Cω0M0 proportional to the

nuclear polarization P .

Presented above is only a small fraction of the theory of NMR. Much more on this

topic can be found in A. Abragam’s The Principles of Nuclear Magnetism [34].

2.3.2 Basics of MRI

To use NMR signals to create images, it is necessary to encode information about

spatial positions into the resonance signals. The common approach to achieve this

information encoding is to introduce gradients in the holding field ~B0. We define

~B000 = B000ẑ as the magnetic field at the origin point of the laboratory frame (x =

y = z = 0), and denote the field gradient by ~G = (Gx, Gy, Gz). So now

~B0 =
(

B000 + ~G · (x, y, z)
)

ẑ. (2.46)

The field gradient is usually small, i.e., ~G · (x, y, z) � B000 throughout the sample.

Various techniques have been developed for different imaging modalities. The

field gradients in three directions could be carefully programmed into certain pulse

sequences, to be on and off at different stages, with different durations. A large

number of MRI techniques fall in the category of Fourier transform imaging, which
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uses Fourier transformations to “decode” the NMR signals into images. The two-

dimensional Fourier transform imaging (2DFT imaging) is simple, yet very helpful in

understanding the principles of MRI.

In a 2DFT imaging process, the first step is to select a thin “slice” in the three-

dimensional body to be imaged, and create the two-dimensional image for the slice.

The other slices are imaged subsequently, so that the 3D image of the full body can

be reconstructed. To select the slice, we can choose to tip the magnetization on the

slice by a certain angle, while leaving the magnetization on other slices unaffected.

As a result, the signal to be observed afterwards becomes the free induction decay

of the magnetization in the selected slice. For this purpose, a field gradient in the z-

direction is applied while the rotating field ~B1 is used to tip the magnetization. Only

the slice with B0 ∼ ωB1
/γ is significantly tipped. This step is called “slice selection”

or “selective excitation.”

To make sure that the selected slice can be clearly distinguished from the neigh-

bouring slices, it is a common practice to choose the magnitude of ~B1 to have a sinc

profile sin(kt)
kt

. The Fourier transformation of a sinc function is a square waveform

(F (ω) =const, |ω − ωB1
| ≤ k; F (ω) = 0, otherwise). So the slice with B0 within

ωB1
/γ ± k/γ is selected, the slice thickness is 2k/(γGz).

As B1 � B0, the effective magnetic field in the rotating frame ( ~Beff , as defined

in Eq. (2.41)) by which the magnetization precesses is close to ~B1 only when B0 is

very near the resonance point ωB1
/γ. So it is safe to neglect the contribution from

magnetizations outside of the selected slice.

After the slice selection is done, both the rotating field ~B1 and the gradient in the

z-direction, Gz, are turned off. The remaining work is to create a two-dimensional

image for the slice. There are two ways to encode spatial information in the FID

signals of the slice: frequency encoding and phase encoding.

If a field gradient exists in the x-direction when the resonance signals (FID signals

with the form of Eq. (2.38)) are recorded, different x-positions correspond to different

frequency components. This is the principle of frequency encoding. If ~B0 = (B000 +
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Gxx)ẑ, the overall signal has the form of

s(t) =

∫

x,y

dxdyC(ω0 + γGxx)M0(x, y)e
−t/T2 sinα exp

(

− i(ω0 + γGxx)t
)

≈ Cω0e
−t/T2 sinα

∫

x,y

dxdyM0(x, y) exp
(

− i(ω0 + γGxx)t
)

(2.47)

where M0(x, y) is the spatial distribution of the nuclear magnetization in the slice be-

fore the tipping process. The approximation above comes from the fact that the field

gradient is small. A simple Fourier analysis can separate the components with differ-

ent frequencies. The magnitude of the component with ω = ω0 + δω is proportional

to
∫

y
dyM0(x = δω/(γGx), y).

To further separate the magnetizations with same x-coordinate but different y’s,

the phase encoding is applied. The phase encoding actually occurs before the fre-

quency encoding, between the tipping process and the recording of resonance signals.

If the field gradient in the y-direction has been applied for a fixed duration ∆t by the

time of signal acquisitions, a relative phase difference is introduced in the precession

of the magnetization at different y positions

∆φ(y) = φ(y) − φ(0) = γGyy∆t, (2.48)

where we have assumed the gradient Gy is a constant for simplicity. In reality, the

gradients can be programmed to vary with time.

Combining the frequency encoding and phase encoding techniques above, we find

the final size of the signal to be

Cω0e
−t/T2 sinα

∫

x,y

dxdyM0(x, y) exp
(

− i[(ω0 + γGxx)t + γ∆tGyy]
)

. (2.49)

A certain frequency component with ω = ω0 + δω now has a magnitude proportional

to

∫

y

dyM0(x = δω/(γGx), y) exp
(

− i(γ∆tGy)y
)

, (2.50)

so M0(x, y) can be calculated from another Fourier transformation. The above choice

of encoding x information in the frequency and y information in the phase is, of
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course, arbitrary. In addition to the above basic 2DFT approach, there are other

more complicated 2DFT techniques, e.g., spin echo 2DFT [38].

To better illustrate the imaging process, the different pulses (rotating field, gradi-

ents in three directions, etc.) are often plotted versus time in graphs called “timing

diagrams.” For example, the above 2DFT process corresponds to the timing diagram

shown in Fig. 2.5.

By varying the pulse sequence, other imaging techniques could be designed, but

these are not so relevant with the research results that are to be presented here.

Since the signals used for MRI are FID signals, the signal-to-noise ratio for MRI

is also directly proportional to the spin polarization of the nuclei used for imaging.

In conventional MRI using thermal polarizations, much of the hardware cost goes

to the high-field magnets. If laser-polarized 129Xe is used as the imaging agent, the

requirement on the magnetic field can be lowered by orders of magnitude, and the

MRI cost would be greatly reduced.
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Figure 2.5: The timing diagram of the 2DFT process introduced in the text. The
relative time durations and relative gradient magnitudes are not drawn to scale. The
resonance signals are recorded during the “signal acquisition time” marked in the
diagram.
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Chapter 3

Experiments I: Measurements of
Spin-Exchange Rate Constants

As we have discussed, measurements of the spin-exchange rate constants 〈vσXe-alkali〉,
γM , and b are important for optimizing the production of laser-polarized 129Xe. We

have measured these constants between 129Xe and three alkali metals K, Rb, and Cs,

for cell densities in the range of 0.2-0.7 amagats. This project will be presented, in

detail, in this chapter. Sec. 3.1 introduces the experimental setup for the measure-

ments, including the optical, electronic, and heating system. Sec. 3.2 discusses how

adiabatic fast passage (AFP) signals from the polarized sample are used to derive

the values of γSE/[alkali], the spin-exchange relaxation rate of 129Xe polarization per

alkali atom. To get more accurate results, we have applied the Faraday rotation

method to measure directly the densities of the alkali metals, these supporting mea-

surements will be presented in Sec. 3.3. The γSE/[alkali] data are analyzed in Sec. 3.4

in order to determine the constants 〈vσXe-alkali〉, γM , and b. The error analysis and

some discussions of the project will also be presented in Sec. 3.4.

The measurements of the spin-exchange rate constants in this chapter do not

involve the absolute determination of the nuclear polarization of the 129Xe samples,

so we will not discuss the methods to measure nuclear polarization (“polarimetry”

methods) in this chapter, and will postpone the discussion to Ch. 4. Also, since

the measurements in this project do not require optimized 129Xe polarizations, the

discussions regarding the vacuum system for producing polarized 129Xe glass sample
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cells, and the cell preparations for optimizing the maximum achievable polarization,

will also be left until Ch. 4.

3.1 Experimental Setup

The central experimental setup of our measurements included an optical setup and

an electronics setup. The optical setup mainly consisted of lasers, polarizing optics,

and mirrors and lenses for manipulating the laser beam so that it covered the sample

cell evenly. The electronics setup included the NMR coils that provided the holding

field and the rotating field, the coils that received the NMR signals, electronic devices

supplying the power for the coils, a pre-amplifier, a lock-in amplifier for separating

the frequency component that we wanted from the raw signals, and a PC to control

the signal acquisition and to record the data. The cell-building will be discussed in

Ch. 4, here we will simply state that the alkali metals we used were produced by

Alfa Aesar, they had chemical purities of 99.95%, 99.75%, and 99.98% for K, Rb,

and Cs respectively. For the gases N2 and Xe, we used research grade gases produced

by Spectra Gases, with natural isotopic abundances (99.6% 14N for N2, 26.4% 129Xe

for Xe). The cells we used for this project were cylindrical ones, different with the

spherical cells used in Ch. 4. The cylindrical cells had diameters of 2.5 cm, and

lengths 7.5 cm (1 inch by 3 inch).

For the measurements of the Rb-129Xe pair, a diode laser (FAP-systemTM) manu-

factured by Coherent was used. The diode laser had a fixed 795 nm wavelength,

30 Watt output and 550 GHz linewidth. The diode laser was easy to use and

maintainance-free, but its wavelength could not be adjusted over a wide range. For

the measurements concerning K-129Xe and Cs-129Xe pairs, which required laser wave-

lengths of 770 nm and 894 nm, respectively, a Spectra Physics Ti:Sapphire laser was

used. The Ti:Sapphire laser was pumped by an Ar ion laser (Ar+ laser), its output

wavelength could be tuned over the range of 700∼1000 nm. The maximum output

power of the Ti:Sapphire laser was about 5 Watt at 770 nm, or 3 Watt at 894 nm,

and its linewidth was about 40 GHz. Since a high nuclear polarization of 129Xe was
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not our primary concern, we did not use multiple lasers to pump our cells. The out-

put beams of the lasers had linear polarizations. To obtain circular polarized beams

needed for spin-exchange optical pumping of 129Xe, an accessorial circular polarizer

was used for the diode laser output, and a quarter (λ/4) waveplate was inserted in

the path of the Ti:Sapphire laser beam. The diode laser system did not require a

water cooling system, and could be easily moved. The fiber output of the diode laser

was placed about 1 m from the sample cell. The Ti:Sapphire laser and Ar+ laser were

fixed on an optical table about 5 m away from the cell, and a mirror was used to

guide the beam to the cell. The diode laser beam had a circular cross section, with a

diameter of about 3 cm, so it could evenly cover the cell with a 2.5 cm diameter. But

the Ti:Sapphire laser beam had a smaller size, its diameter was . 1 cm even with

its divergence during propagation to the cell. Therefore, a concave lens was applied

to the Ti:Sapphire laser beam to expand it to about 3 cm by the time it reached the

cell. The optical setup for the Ti:Sapphire laser is shown in Fig. 3.1. The setup for

the diode laser is simple and is not sketched.

To perform AFP [34] tests for the sample cell, three pairs of coils in orthogonal

directions were used. A pair of Helmholtz coils with a diameter of 1.4 m were used

to generate the holding magnetic field (B0ẑ). A second pair of coils, in a direction

perpendicular to the holding coils, provided field ~B1 that rotated at radio frequency

(27.6 kHz for our tests). These two coils are called “radio frequency (RF) drive coils.”

A third pair of coils called “pickup coils,” in the third orthogonal direction, picked

up the induced resonance signals. The coil system was essentially same with what

had been used in the neutron spin structure function measurements at the Stanford

Linear Accelerator Center (SLAC) [3, 39, 40, 41]. Fig. 3.2 shows a schematic of the

coil system together with a sample cell.

The holding coils were powered by a Kepco power supply, which varied the field

strength according to waveforms provided by a HP 3325B function generator. The

function generator accepted from the PC the waveforms, as well as commands to start

and stop feeding the waveform into the power supply. For our AFP tests, we used a

triangle waveform, so that the holding field was swept at a constant rate, from a static
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Figure 3.1: Schematic showing the optical setup for measurements concerning K and
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Figure 3.2: The coil system for performing AFP measurements. The components are
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value up to a maximum value, and then back down, at the same rate, to the initial

value. The entire sweeping cycle took 9 seconds, and the range of the sweeping was

about 10 Volts in the output of the Kepco power supply, corresponding to a 11 Gauss

range for the strength of B0. The initial field strength can be adjusted between

10 Gauss and 25 Gauss, to change the time interval between the two AFP resonances

in the signal. The purpose for changing the time interval will become evident in

Sec. 3.2. The inhomogeneities in the holding field contribute to the relaxation rate of

the nuclear polarization of 129Xe, therefore they were minimized. We have measured

the inherent field inhomogeneities for the holding coils in a volume of about 10×10×
10 cm3 at the center of the coils, where cells are tested. At a static field strength of

20 Gauss, the inhomogeneities are around 10 mG/cm.

The frequency of the rotating field was set at 27.6 kHz by a HP function generator.

The output of the function generator was amplified by a RF amplifier manufactured

by Electronic Navigation Industries (ENI, model number 21002), and the amplified

signal powered the RF drive coils. The magnitude of ~B1 was difficult to measure

directly, since ~B1 was rotating at radio frequency. But following the discussions in

Sec. 3.2, we calculated | ~B1| ∼ 80 mG.

The outputs from the two pickup coils were added and amplified by going through

a pre-amplifier. The pickup coils were in a perpendicular direction with respect to

the RF drive coils, so theoretically the RF field should not induce voltages in the

pickup coils. But, in reality, perfect perpendicular alignment is not possible, and

there will always be some “leakage” signals induced by the RF field. The signal from

the pickup coils were actually the sum of a sine wave with constant magnitude (the

“leakage signal”) and the resonance signal. To isolate the resonance signal, the output

of the pre-amplifier was fed into a Stanford Research System (SRS) lock-in amplifier,

which compared the experimental signal to a reference sine signal (generated by a

HP function generator) at the AFP resonance frequency, and output their difference.

To make sure that the reference signal exactly cancelled the leakage signal in the

pickup coils, an oscilloscope was used to monitor the signals from the pre-amplifier

and from the function generator. The two signals were displayed on the same screen.
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The magnitude and phase of the reference signal were then adjusted so that the

two waveforms coincided. The peak-peak voltages (Vpp) of the extracted signal were

viewed as a vector with respect to the reference signal (synchronization signals from

a HP function generator were used), and projected onto the x and y axes in a vector

space. The outputs of the lock-in amplifier were digitized signals of these projections,

the two output channels corresponding to the x and y projections. By adjusting the

projection phase of the lock-in amplifier, we were able to change the distributions

of the signal and the noise between the two channels. We maximized the signal-to-

noise ratio of one of the two channels of the amplifier, and used that channel for

our measurements. A PC with Labview software was used to record the outputs of

the lock-in amplifier as text files, as well as to control the overall process of data

acquisition.

The schematic of the electronics setup of the experiment is shown in Fig. 3.3. The

two channels of the output of the lock-in amplifier are marked as “X” and “Y.”

In addition to the optical and electronic systems needed for the spin-exchange op-

tical pumping and the AFP measurements, we also used a heating system to maintain

the cell temperature, so that sufficient vapor densities of the tested alkali metal were

present in the cell for the SEOP process. Any inhomogeneities in the magnetic field

would cause increased relaxation rate of the 129Xe nuclear spin, so electronic currents

and ferromagnetic objects needed to be kept away from the center of the holding coils,

where the cells were tested. We used hot air flow to heat the cell, and constructed

a Teflon oven for the purpose, approximately 20 cm by 10 cm by 10 cm. The oven

has two optical windows on the two far ends to allow the laser beam through, an

air inlet, and a small hole on the bottom plate. The purpose of the small hole was

to allow a wire attached to the resistance temperature detector (RTD) to conduct

the temperature signals to outside the cell. The air inlet was connected by a brass

connector to brass tubings carrying hot air. The air flow was heated by an electric

heater placed about 1.5 m away from the cell. A variable AC transformer (Variac)

controlled the temperature of the heater, and ultimately the cell temperature. The

RTD was non-magnetic, manufactured by Omega Engineering (Model F3105). The
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RTD was attached to the tested cell, but out of the way of the laser beam during

the measurements. The cell temperature was in the range of 90◦C to 170◦C. For K,

Rb, and Cs, the individual temperature ranges were 130-170◦C, 110-150◦C, and 90-

130◦C, respectively. For each temperature point, the cell temperature was stabilized

to be within ±0.4◦C. The temperature variations along the outer wall of the cell were

measured to be smaller than ±1.0◦C during the cell tests.

3.2 Measurements of Spin-Exchange Rates between

129Xe and Alkalis

With the setup introduced in Sec. 3.1, AFP tests were performed for polarized 129Xe

nuclei. The AFP conditions Eqs. (2.42) and (2.43) require 1/T1 �
(

dB0

dt

/

B1

)

� γB0.

For our case, B1 ≈ 80 mG, d
dt
B0 ≈ 2.4 Gauss/sec, and ω0 = 27.6 kHz. From our

measurements, T1 & 20 seconds. However, there is a complication with the value of

the T1 during the AFP. Because, the T1 & 20 sec results were the rate of relaxation

between two AFP processes (see the later discussions in this section), whereas during

the AFP, the relaxation mechanism related with the inhomogeneities in the magnetic

field can be greatly increased. The denominator in Eq. (2.14), B2
0 , becomes B2

eff

during the AFP, and when Beff is perpendicular with B0, the quantity B2
eff takes

its minimum value B2
1 . Therefore, the maximum value of the relaxation rate of the

nuclear polarization during the AFP was

(1/T1)|AFP = (1/T1)|AFP +D
|∇B|2
B2

1

, (3.1)

where (1/T1)|AFP denotes the relaxation rate when the magnetization is not experi-

encing an AFP. Taking D ∼ 0.1 cm2/sec, the term D |∇B|2

B2

1

was calculated to be about

0.0015 sec−1, still much smaller than (1/T1)|AFP ≈ 0.05 sec−1.

Following the above discussions, the AFP conditions became 0.05 sec−1 � 30 sec−1 �
2.76 × 104 sec−1, and were strictly satisfied.

After the temperature was stabilized, approximately 10 minutes of optical pump-

ing was performed for the 129Xe nuclear polarization to build up and stabilize, before
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Figure 3.4: Time evolution of the 129Xe nuclear polarization during the AFP process.
AFP signals S1 and S2 were produced at the points where the polarization was re-
versed, with the signal sizes proportional to the polarizations at the resonance times.
Except for the resonance points, PXe underwent relaxation toward the equilibrium
value P (∞) with the rate γSE + ΓXe. The ratio S2/S1 was determined by ∆t, the
interval between two resonances, and by γSE + ΓXe. A small loss of polarization in-
duced by AFP is not explicitly shown in the picture. The laser was on continuously
with σ+ helicity throughout the process.

AFP signals were taken. Two consecutive AFP signals were separated by an in-

terval of at least 4 minutes, which was 3-10 times the relaxation time of the 129Xe

polarization. So all the AFP signals were taken when the 129Xe polarization reached

equilibrium between the spin-exchange optical pumping process and the relaxation

mechanisms.

During the acquisition of each AFP signal, the holding magnetic field B0ẑ was

swept up past the resonance point B0 = ωB1
/γ, and then back to the initial strength,

passing the resonance point again. Two resonance signals were generated and recorded

during each AFP process. Before the first resonance, the 129Xe nuclear polarization

PXe was at its equilibrium value, denoted by PXe(∞). After the first resonance, the

direction of the PXe was reversed, PXe = −PXe(∞), while the polarization of the alkali

metal, and thus the equilibrium value of PXe, remained unchanged. Being away from

its equilibrium value, the 129Xe polarization PXe underwent a longitudinal relaxation

between the two resonances. The time-evolution of PXe during our AFP process is

shown schematically in Fig. 3.4.
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As we have discussed in Sec. 2.3, the AFP signals had shapes similar to Lorentzian

in the form of Eq. (2.45), and the heights of the peaks were proportional to the 129Xe

nuclear polarization. Therefore, the relative ratio of the height of the second signal

peak to that of the first peak revealed the relaxation that the nuclear polarization

underwent during the interval between the two resonances. If the time at the first

resonance point is denoted by t = 0, then the time evolution of the 129Xe nuclear

polarization PXe induced by the relaxation is

PXe(t) = −PXe(∞) + [PXe(∞) − (−PXe(∞)]
(

1 − exp[−(γSE + ΓXe)t]
)

= PXe(∞) ×
(

1 − 2 exp[−(γSE + ΓXe)t]
)

(3.2)

If we denote the time interval between the two resonances by ∆t, the ratio of the

values of PXe at the two resonance points becomes

PXe,2nd resonance/PXe,1st resonance = 1 − 2 exp[−(γSE + ΓXe)∆t]. (3.3)

The sign of the AFP signal is determined by the direction of 129Xe nuclear polar-

ization PXe with respect to direction of the effective magnetic field Beff (defined by

Eq. (2.41)) immediately before the resonance point. If PXe is in the same direction as

Beff , the AFP signal becomes positive, and the signal peak is “upward.” If PXe is on

the opposite direction with Beff , the AFP signal is negative, with a downward peak.

Beff was on the −z direction before the first resonance, and on the +z direction

before the second one, so the AFP signal peak sizes S1 and S2 (as defined in Fig. 3.4)

had the ratio of

S2/S1 = −PXe,2nd resonance/PXe,1st resonance = −1 + 2 exp[−(γSE + ΓXe)∆t]. (3.4)

The interval ∆t can be varied by changing the initial strength of the holding

field, while keeping the sweeping range and sweeping rate of the field unchanged.

By recording the ratios of the peaks as a function of ∆t, we can readily calculate

γSE + ΓXe, the relaxation rate of the 129Xe nuclear polarization. Fig. 3.5 shows a

typical AFP signal with two peaks of different heights resulting from the relaxation.
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Figure 3.5: A typical 129Xe AFP signal in our tests. The second signal peak had
a smaller size than the first one due to the relaxation of PXe between the two reso-
nances. The signal size is in arbitrary units, and roughly corresponds to a 1% 129Xe
polarization at equilibrium.

The above approach of measuring γSE +ΓXe involves only the relative ratio of the

two signal sizes, so any drift of the laser power over timescales larger than ∼10 sec-

onds cancels out. An accurate calibration of the absolute polarization value was also

unnecessary. The flips of nuclear polarization at the resonance points, however, did

introduce a small loss of PXe. This loss, denoted by δ, was typically < 5% of the

original value. Considering this loss, Eq. (3.4) should now be modified to

S2/S1 = −
(

− (1 − δ) + [1 + (1 − δ)]
(

1 − exp[−(γSE + ΓXe)∆t]
)

)

= −1 + (2 − δ) exp[−(γSE + ΓXe)∆t]. (3.5)

The AFP signal data were recorded, and for each data, the vicinities of each of

the two peaks were extracted and fitted using Matlab. The regions used for the

fits centered on the peaks, and usually contained 200-300 discrete points. The data

sampling frequency of the lock-in amplifier was chosen to be 128 Hz, so each point

in the recorded text file corresponded to 1/128 second, and the fitted regions corre-

sponded to time periods of about 1.5-2.5 sec. The fitting model has the form of the



43

Lorenzian-like shape as in Eq. (2.45):

S(t) = C + k · t+
Hw

√

(t− t0)2 + w2
, (3.6)

where t0 is the center of the peak, i.e., the resonance time, H is the peak height of

the signal at the resonance, and w is the width of the peak. From Eq. (2.45) we

know that w = B1

/

(dB0/dt). Combining the fit values of w, and the known quantity

dB0/dt, we calculated B1 ≈ 80 mG. The terms C and k · t represent a constant

baseline and a linear drifting. They were added in the fitting model to account for

backgrounds under the signal. The time interval ∆t between two resonances was the

spacing between the centers of the two peaks. The value of ∆t ranged from 1 to

9 seconds for our tests.

For each sample cell and each temperature point, we fixed the cell temperature

monitored by the RTD to be within ±0.4◦C, and recorded AFP signals with different

∆t values to form a data set. Theoretically, the value of PXe should be the same

(PXe = PXe(∞)) before every AFP process, and the size of the first resonance peak S1

should remain a constant throughout any data set. However, due to slow and small

shifts in the laser power and the cell temperature, S1 did exhibit some fluctuations

among the AFP signals in each set. For a typical data set, the S1 fluctuations were

within ∼ ±7%. Most of the uncertainties resulting from the fluctuations had been

cancelled out in the ratio S2/S1, and will not be transferred to the results for γSE+ΓXe.

For each data set, a linear fit of ln 1+S2/S1

2
with respect to ∆t was performed.

Following Eq. (3.5), the fitted slope gave γSE +ΓXe, and the intercept gave ln(1− δ
2
).

The fit for a particular set of data is plotted in Fig. 3.6, where the fit value of γSE+ΓXe

was 0.0413 sec−1, and the fitted intercept of −0.012 corresponded to the AFP loss

of ∼2.5%. The inset shows a histogram of the relative deviations from the linear fit

of the 44 AFP data points for that data set. The deviations corresponded to a ∼3%

relative spread.

The above procedure describes the measurement of the 129Xe nuclear polarization

relaxation rate γSE+ΓXe for a cell at a particular temperature. For each cell, γSE+ΓXe

was measured at several different temperatures. There was always enough alkali
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Figure 3.6: A linear fit of ln 1+S2/S1

2
with respect to ∆t for a particular data set. A Rb-

129Xe cell was used as the sample cell, containing 0.124 amagat N2 and 0.248 amagat
Xe (natural abundance). The quantity γSE +ΓXe was found to be 0.0413 sec−1, while
the fitting intercept −0.012 corresponded to the AFP loss of ∼2.5%. A histogram
showing the relative deviations of the data points with respect to the fitted line, is
plotted as an inset.

metal in our sample cells, so that the alkali vapor was saturated. Therefore, different

temperatures corresponded to different values of the alkali number density for the

saturated vapor. These number densities were calculated from the temperatures

measured by the RTD, using empirical vapor pressure formulae for the three alkalis.

In the past, many researchers had used the empirical formulae in the literature,

such as the Killian formulae [42], Smithells formulae [43], formulae from Handbook

of Chemistry and Physics [44], and formulae from Vapor Pressure of the Elements

[45], to calculate alkali densities from measured cell temperatures. Unfortunately the

published values do not agree well, and have differences up to factor of three for

some cases. As an example, for the K vapor density, the Handbook of Chemistry and

Physics value and the Smithells value roughly agree, but the Killian value differs with
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them by a factor of 3. For the Rb density, the Handbook of Chemistry and Physics

value agrees with the Killian value, yet the Smithells value differs by a factor of 1.5∼2.

Worse still, as we have mentioned in Ch. 1, some groups have recently reported that

they have observed, in direct measurements, some cell-to-cell differences in the alkali

vapor densities at identical temperatures [21, 22]. This could rule out any possibility

of determining the alkali densities by only measuring the cell temperature. These

research groups have therefore switched to direct measurements of the alkali densities,

using the Faraday rotation method and the absorption spectroscopy method.

For our research, we used the Faraday rotation method [23] to study the alkali

densities in our cells. From these measurements, the alkali density values were, indeed,

different from values calculated using the formulae in the literature (specifically, we

compared with the Killian formulae for Rb and K [42], and the formula from Vapor

Pressure of the Elements for Cs [45]). The discrepancy between our measured values

and the formulae was largest for the case of K, where the difference was a factor

of three. However, we didn’t observe the cell-to-cell difference. We concluded that

since the vapor pressure of alkali metals could be vastly changed by the contaminants

in the metals, their actual values might be quite different from the empirical values

in the literature. But, since all our cells were made in a similar manner (details

about cell preparation will be discussed in Sec. 4.1), using alkali metals with same

specifications from the Alfa Aesar company, cell-to-cell variations in the vapor density-

temperature relations were not significant among our cells. So, it is still possible for

us to fit empirical vapor density formulae from measurements, and use these formulae

to calculate the alkali density in our cells. Using the Faraday rotation measurements,

we modified the existing formulae by adding scaling factors to fit our experimental

results. Since our results were derived using our own empirical formulae, they were

free from the possible errors related to using the various formulae in the literature.

More discussions about the measurements of the alkali vapor densities using the

Faraday rotation method, and the complete results can be found in Sec. 3.3. For now,

we will simply present the final forms of the fitted empirical formulae
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[K] = 1010.34−4964/T /kT, (3.7)

[Rb] = 109.25−4132/T /kT, (3.8)

[Cs] = 1012.89−4041/T /T 1.35/kT, (3.9)

where the unit of all number densities is m−3, and the unit for temperature T is

Kelvin. We estimate a relative error of 10% for all the formulae above, which comes

primarily from the fits.

For each cell, using the alkali densities [alkali] calculated from our empirical for-

mulae, we plotted the relaxation rates versus [alkali], and performed a linear fit to

separate the slope γSE/[alkali] and the intercept ΓXe. The quantity γSE/[alkali] has

a slight dependence on the temperature, since the collision term 〈vσ〉 is proportional

to
√
T . However, the experimental temperature spanned a range of less than 40◦C,

which corresponds to changes .5% in 〈vσ〉, whereas the alkali density changed dras-

tically with temperature (usually a factor of 5-10), so the temperature dependence of

〈vσ〉 was neglected during the fitting. For the final results of 〈vσ〉 for all the three

alkali metals, the average temperature for the measurements will be indicated for

each alkali.

The possible temperature dependence of ΓXe appeared to be small, since no no-

table deviation was observed in the linear fits of γSE + ΓXe with respect to the alkali

density. The curing process during the building of the cells (described in Sec. 4.1)

ensured that the ΓXe values were stabilized and did not drift with time. Some repre-

sentative data for a particular cell (Cs-Xe in this case) and the corresponding fit are

shown in Table 3.1 and Fig. 3.7, respectively. From the fits, we found that the wall

relaxation rate ΓXe for the cell is (0.0208± 0.0020) sec−1, and the spin-exchange rate

per Cs atom is γSE/[Cs]=(3.23±0.19)×10−21 sec−1m3. For this cell, the temperature

range corresponded to a Cs density range of 5 × 1018-3 × 1019m−3.
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Temperature (◦C) [Cs] (1019m−3) γSE + ΓXe (sec−1)
123.7 ± 0.4 2.92 ± 0.29 0.1158 ± 0.0049
110.7 ± 0.4 1.42 ± 0.14 0.0664 ± 0.0037
101.9 ± 0.4 0.853 ± 0.085 0.0479 ± 0.0022
89.9 ± 0.4 0.405 ± 0.040 0.0342 ± 0.0017

Table 3.1: Measured relaxation rates tabulated with respect to the cell temperature
and calculated Cs number density, for a Cs-Xe cell with 0.093 amagat of N2 and
0.310 amagat of Xe. The uncertainties for γSE + ΓXe come from the fits. The 10%
relative uncertainty associated with the number densities of Cs is mostly due to the
uncertainties in our empirical density formula.

Γ
γ

Figure 3.7: A linear fit of the measured relaxation rates versus Cs number density for a
Cs-Xe cell with 0.093 amagat N2 and 0.310 amagat Xe. The fit gives γSE/[Cs]=(3.23±
0.19) × 10−21 sec−1m3 and ΓXe = (0.0208 ± 0.0020) sec−1 for the cell.
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The analysis of the γSE/[alkali] data obtained using this method will be pre-

sented in Sec. 3.4, together with the final results for the spin-exchange rate constants

〈vσXe-alkali〉, γM , and b.

3.3 Direct Measurements of the Alkali Number

Density Using the Faraday Rotation Method

In this section we will discuss a direct measurement of the alkali vapor densities

using the Faraday rotation method. In the presence of an external magnetic field,

an alkali metal vapor becomes a circularly birefringent medium. In other words, the

vapor has different refractive indices for light with the circular polarization in the

same direction as the magnetic field, and for light with the circular polarization in

the opposite direction. Any linear polarization of the light can be decomposed into

a superposition of the two circular polarizations with a fixed phase difference. So,

when linearly polarized light passes through the alkali vapor, its two circular polarized

components will gain an extra phase difference during the passage, and as a result,

the linear polarization plane will be rotated. This rotation of the polarization plane

is called “Faraday rotation.” We will see that for alkali vapors, Faraday rotation is

relatively easy to detect when the vapor is optically thick, when the magnetic field is

strong, and when the incident light has a wavelength near an absorption resonance

of the alkali vapor.

The general form of the Faraday rotation angle is

∆θ = π
(n− − n+)l

λ
, (3.10)

where n− and n+ are the refractive indices for the two circular polarizations of the

incident light, l is the length of the circularly birefringent medium through which the

light passes, and λ is the wavelength of the light. From the discussions in Wu et al.

[23], in optically thick alkali vapor, for light with wavelength in the vicinities of the

D1 or D2 resonances of the alkali, the Faraday rotation angle approximately takes
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the form of

∆θ ≈ 2
πl

λ0
[alkali]reλ

5
0f

1

4πc

KµBB/h

(∆λ)2
, (3.11)

where λ0 is the resonance wavelength, ∆λ = λ − λ0 is the detuning between the

wavelength of the incident light and the resonance wavelength, re is the classical

electron radius, f is the oscillator strength of the resonance (f ≈ 1
3

for D1 lines,

f ≈ 2
3

for D2 lines), c is the speed of light, µB is the Bohr magneton, and h is

Planck’s constant. The quantity K is a constant related to the resonance transition,

defined as

K = gg
2 + Jg(Jg + 1) − Je(Je + 1)

4
+ ge

2 + Je(Je + 1) − Jg(Jg + 1)

4
, (3.12)

where the subscript g stands for the ground state of the transition, and e stands for

the excited state. The constants J refer to the total angular momenta, g’s are the

Lande g factors, where

g = 1 +
J(J + 1) + S(S + 1) − L(L+ 1)

2J(J + 1)
. (3.13)

In our measurements, the incident light had wavelengths near the D1 lines of the

alkalis. The D1 lines represent the resonance transitions between S1/2 and P1/2 states.

Therefore, gg = 2, ge = 2
3
, Jg = Je = 1

2
, and K is calculated to be 4

3
. We can plug

these values into Eq. (3.11) to obtain the Faraday rotation angle,

∆θ ≈ l[alkali]reλ
4
0

2

9c

µBB

h

1

(∆λ)2
. (3.14)

There is a similar term in the rotation angle resulting from the D2 resonance, but

since ∆θ is inversely proportional to the square of the detuning ∆λ, and all the

wavelengths were within ±0.3 nm of the D1 lines, the D2 term in the rotation angle

tended to be much smaller than the D1 term. Of the alkali metals that we measured,

K has the smallest wavelength difference between D1 and D2 lines, which is 2.3 nm.

The maximum relative correction pertaining to the D2 term is less than 2.3% for K.

The wavelength differences between the two resonance lines for Rb and Cs are much

larger (14.7 nm and 42.2 nm, respectively), and the D2 corrections are negligible for

these two alkalis.
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Compared with the absorption spectroscopy method, which is another approach

often used to measure alkali vapor densities, the Faraday rotation method has the

advantage of not requiring measurements at wavelengths very close to the resonance

lines. Therefore, the Faraday rotation method is particularly convenient for high alkali

densities. For example, Vliegen et al. have reported measurements of K density up

to 1022 m−3 [46]. This method had been applied by many groups for measurements

of alkali number densities [21, 23, 46].

Since the Faraday rotation measurements required varying the wavelength of the

incident laser light, we used our Ar+ pumped Ti:Sapphire laser for the measurements

for all three alkalis. The laser power was attenuated to ∼300 mW. The beam is

initially linearly polarized, and, therefore, no further manipulation of its polarization

was necessary. The Faraday rotation measurements did not require the laser beam to

cover the cell, so no lens was applied in the light path. The laser beam had a natural

size of about 3 ∼ 5 mm in diameter.

In addition to the laser, our optical setup for the Faraday rotation measurements

included a photoelastic modulator (PEM) manufactured by Hinds Instruments, two

polarizing cube beamsplitters (BS), a pinhole, and a photodiode (PD).

The optic setup is sketched in Fig. 3.8. In the sketch, as well as in the following

discussions, we define the direction along the holding magnetic field and the propa-

gation of the laser beam to be the z-direction. This is consistent with our previous

definition. We define the other horizontal direction in the laboratory frame as the x-

direction, and the vertical direction as the y-direction. The polarization vector of the

initial laser beam was close to the horizontal direction, or the x-direction. The beam

first went through a BS which allowed only light with horizontal linear polarization to

be transmitted, providing a beam with polarization exactly in the x-direction. Next,

the beam passed through the heated sample cell. The cell was a 1 inch by 3 inch

cylinder, identical to the sample cells used in Sec. 3.1, with the cylindrical axis along

the z-direction. The laser beam propagated through the full length of the cell, and its

polarization plane was rotated by the Faraday rotation angle. A pinhole was placed

after the cell to block stray lights reflected from the cell walls. For all measurements
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Figure 3.8: A schematical diagram of the optical experimental setup for the Faraday
rotation measurements. The sample cell was heated in an oven with optical windows,
the oven is not explicitly shown here.

at different alkali densities (thus different absorbances), the aperture of the pinhole

was adjusted between 2 mm and 4 mm, to reach a compromise between reducing

stray lights and maintaining a reasonable level of detectable photon flux. The beam

then passed through the PEM with the stress axis in the x-direction, and another

BS, whose axes were 45◦ with respect to the x-direction. The transmitted beam was

finally detected using the PD.

The photodiode detected the light signals and transformed them into electric

signals, which were input both to a HP oscilloscope and to a SRS Lock-in amplifier.

The oscilloscope averaged the signal over a 16-second period to remove transient

fluctuations, and recorded the size of the DC component of the signal. The lock-

in amplifier received its reference signal from the PEM, with the frequency set at

two times the modulating frequency of the PEM. The signal component at the same

frequency formed the lock-in amplifier’s output. The output was then sent to another

input channel of the oscilloscope and averaged. The averages of the two components

of the photodiode signal became the final data used to calculate the alkali densities.

Now we derive the forulae that describe the Faraday rotation measurement. The

laser beam propagated along the direction of holding magnetic field, i.e., the z-

direction, so the light’s polarization vector can only be in the x-y plane. After
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passing through the sample cell, the electric field of the light is in the direction of
(

cos(∆θ)x̂+sin(∆θ)ŷ
)

. The pinhole does not change the polarization, so the electric

field after the pinhole is in the form of

~E = E0e
−iωt

(

cos(∆θ)x̂ + sin(∆θ)ŷ
)

, (3.15)

where ω is the frequency of the incident laser light. The PEM introduces a relative

phase retardation between the linear polarization component on the PEM’s stress axis,

and the component on the perpendicular direction. We denote this phase retardation

by ψ, ψ varies with time, in the form of ψ(t) = ψ0 cos(ωPEMt), where ψ0 is the

maximum retardation, and ωPEM is the PEM frequency. After the PEM, the electric

field of the laser becomes

~E = E0e
−iωt

(

cos(∆θ)x̂+ sin(∆θ)e−iψŷ
)

. (3.16)

The second BS projects the electric field onto a direction 45◦ with respect to x-axis.

Denoting the projection direction to be the x′-direction, the projection becomes

~E = E0

√
2

2
e−iωt

(

cos(∆θ) + sin(∆θ)e−iψ
)

x̂′. (3.17)

Finally, the photodiode measures the flux of transmitted light that passes through the

PD aperture. The flux is the product of the intensity and the aperture area, and the

output signals are proportional to the flux. The signal from the PD can be written

as

S ∝ I ∝ |E|2 =
E2

0

2

∣

∣

∣

∣

cos(∆θ)

√
2

2
+ sin(∆θ)

√
2

2
cosψ + i sin(∆θ)

√
2

2
sinψ

∣

∣

∣

∣

2

∝ 1 + sin
(

2∆θ) cosψ. (3.18)

Substituting ψ by ψ0 cos(ωPEMt), we can expand the cosψ term in the above result

into Bessel functions of the first kind Jn(ψ0), keeping terms with frequencies up to

2ωPEM ,

S ≈ constant ×
(

1 + sin(2∆θ)J0(ψ0) − 2 sin(2∆θ)J2(ψ0) cos(2ωPEMt)
)

. (3.19)
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By choosing the PEM’s setting for ψ0 so that J0(ψ0) = 0, or ψ0 = 2.406 rad, we

can construct the DC component of the signal independent of ∆θ. Now, J2(2.406) =

0.432, so

∣

∣

∣

∣

S2

S0

∣

∣

∣

∣

= 0.864 sin(2∆θ), (3.20)

where S2 denotes the signal component with frequency 2ωPEM , and S0 is the DC

component of the signal. From the data we took, it was straightforward to calculate

the Faraday rotation angle ∆θ.

In reality, the passage through the alkali vapor in the sample cell can induce a

small circular polarization in the transmitted light. This small circular polarization,

quantified by the mean photon spin s, would alter the S2 signal component by a factor

of
√

1 − s2, and generate an extra signal component S1 at the ωPEM frequency, with

a size of

S1 = constant × 2sJ1(ψ0), (3.21)

where the constant is the same as the one in Eq. (3.19). During our measurements, we

monitored the mean photon spin by recording the signal component S1 with the fre-

quency of ωPEM , and found that for all our measurements, s = (S1/S0)/(2J1(ψ0)) .

3%. The relative inaccuracy in |S2/S1| induced by s is 1 −
√

1 − s2 ≈ s2/2 . 0.05%,

and was negligible for our measurements.

Using the above signal from the photodiode, we can calculate ∆θ. For each de-

tuning of the wavelength ∆λ, we made measurements at two different values of the

holding magnetic field (approximately ± 40 Gauss). The exact difference between

them was 84.1 Gauss. From Eq. (3.14), the difference in the two ∆θ values can be

found, it is related to the alkali density by

|∆θ2 − ∆θ1| ≈ l[alkali]reλ
4
0

2

9c

µB∆B

h

1

(∆λ)2
, (3.22)

where ∆B = 84.1 Gauss, and l = 7.5 cm. As a result, the difference in the Fara-

day rotation angles was solely determined by the alkali density and the wavelength
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Figure 3.9: A typical fit of the difference in Faraday rotation angles with respect
to the detuning of the incident light wavelength. The fit indicates a Rb density of
2.53 × 1019 m−3.

detuning ∆λ,

|∆θ2 − ∆θ1| =
CF

(∆λ)2
[alkali], (3.23)

where CF ≡ 2lreλ
4
0µB∆B

9hc
.

The constant CF varies for different alkali metals.

The laser wavelength λ was tuned in the range of ±0.3 nm of the D1 resonance

wavelength λ0 (i.e., ∆λ varied between −0.3 and 0.3 nm). The corresponding |∆θ2 −
∆θ1| values were recorded. An average data set contained about 20 data points of

|∆θ2 − ∆θ1| at different ∆λ values. The data were subsequently fit to the form of

Eq. (3.23) to calculate [alkali], the alkali number density. A typical fit of |∆θ2 −∆θ1|
with respect to ∆θ is shown in Fig. 3.9. The fit is for a Rb cell, and corresponds to

a Rb density of 2.53 × 1019 m−3.

For each alkali metal, we made measurements for two cells and at different tem-

peratures. It is possible that some cell-to-cell variation in the alkali densities results

from slight differences during the cleaning and filling processes of the cells. Therefore,

we purposedly chose cells made from different glass manifolds for the density mea-
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surements, so that the cell-to-cell variation, if existed, can be easily detected. The

temperature measurement was performed using a RTD, in the same manner as for

our relaxation rate measurements, which has been described in Sec. 3.1. Therefore,

the possible systematic uncertainty in the temperature measurement would not be

carried into the determination of alkali densities. For K, Rb, and Cs, we have plotted

our results in Fig. 3.10, 3.11, and 3.12, respectively. Also in the plots are plotted

some frequently used empirical formulae: Killian formulae for K and Rb [42], and the

formula from Vapor Pressure of the Elements for Cs [45]. These empirical formulae

are

[K] = 1010.83−4964/T /(kT ) (3.24a)

[Rb] = 109.55−4132/T /(kT ) (3.24b)

[Cs] = 1013.1781−1.35 log
10
T−4041/T /(kT ), (3.24c)

where the number densities are in m−3, k is Boltzmann’s constant, and the temper-

ature T is in Kelvin. From the plots we see that, although the experimental data

differed significantly from the existing formulae, the experimental and empirical val-

ues have good correlations. That is, no significant cell-to-cell variation in the alkali

vapor density-temperature relations was observed.

Concerning the alkali vapor density-temperature relations, we have a preliminary

conjecture, that the relations can vastly change due to contaminants in the alkali

metals and in the cell walls. This conjecture can explain the fact that cell-to-cell

variations in the density-temperature relations were observed by other research group,

yet were not present in our cells, since for all our sample cells, we used alkali metals

with same specifications, and prepared the cells in the same manner. This can also

explain the difference between our experimental values of the alkali densities and the

empirical formulae in the literature, since the sample cells used for determining the

empirical formulae were prepared in different manners.

Since the cell-to-cell variation in alkali density-temperature relations is not ob-

served in our cells, empirical formulae can still be used to calculate alkali densities

from the measured cell temperatures. It is usually assumed that the saturated vapor
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°

Figure 3.10: The K densities from our direct measurements, together with Killian’s
empirical density formula and the renormalized Killian formula we fitted using our
data.

°

Figure 3.11: The Rb densities from our direct measurements, together with Killian’s
empirical density formula and the renormalized Killian formula we fitted using our
data.
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°

Figure 3.12: The Cs densities from our direct measurements, together with Nes-
meyanov’s empirical density formula from Vapor Pressure of the Elements and the
renormalized formula we fitted using our data.

densities for all alkali metals take the form of [44]

[alkali] = 10A−B/T−C log10 T/(kT ), (3.25)

where A, B, and C are constants for a particular metal, [alkali] is in m−3, and T is

in Kelvin. We made a further assumption that the differences between our empirical

formulae and the formulae in the literature (3.24) are only scaling factors, that is, only

values of A differ. We fitted our data to estimate these factors. The fitted curves are

also shown in Figs. 3.10-3.12. The scaling factors for K, Rb, and Cs number densities

were found to be 0.32, 0.50, and 0.52, respectively.

With the scaling factors included, the final forms of the empirical formulae from

our Faraday rotation measurements are

[K] = 1010.34−4964/T /(kT ) (3.26a)

[Rb] = 109.25−4132/T /(kT ) (3.26b)

[Cs] = 1012.89−1.35 log10 T−4041/T /(kT ) (3.26c)

where the unit for number densities is still m−3. With these formulae we determined
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the spin-exchange rate constants. Based on the fitted curves, we estimated a 10%

relative uncertainty in our modified formulae of alkali saturated vapor densities as

functions of the temperature.

3.4 Determination of the Spin-Exchange Rate Con-

stants

Using the approach described above, for each alkali metal, we measured the values

of γSE/[alkali] for different cells, each with a different combination of Xe and N2

densities. As we discussed in Ch. 2, there are two spin-exchange mechanisms: the

transfer of spin in binary collisions, which is independent of the densities of Xe and N2

in the cell, and the transfer by forming van der Waals molecules, which is dependent

on these densities. By fitting the measured γSE/[alkali] values with respect to [Xe]

and [N2] in the form of Eq. (2.31), we extracted 〈vσ〉Xe-alkali, γM , and b for each alkali

metal. As an example, for the Cs case, the results of γSE/[Cs] measured for 9 Cs-Xe

cells are listed in Table 3.2. The data and fits are plotted in Fig. 3.13, with the

ordinate being γSE/[Cs], and the abscissa being the reciprocal of the effective number

density of the cell. The effective number density of the cell is defined as [Xe]+b[N2],

where b for the Cs-Xe case has the fit value of 0.97. The unit for number densities of

Xe and N2 has been changed from amagat to m−3 so that γM has the dimension of

sec−1.

Studies for K-129Xe and Rb-129Xe pairs were also performed, with 5 and 7 cells,

respectively. Raw data were analyzed with the same method, with one minor differ-

ence. For Rb, we took the value of b, the constant for N2 in the effective number

density, from calculations by Cates et al. [20]. The results for the three alkali-129Xe

pairs are listed in Table 3.3. As discussed above, the 〈vσ〉 values have slight tem-

perature dependencies, and the results listed in Table 3.3 for K, Rb, and Cs are for

average temperatures of 150◦C, 130◦C, and 110◦C, respectively.

As discussed in Sec. 3.3, the major systematic uncertainty comes from the deter-
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[Xe] (1024 m−3) [N2] (1024 m−3) γSE/[Cs] (10−21 m3 sec−1)
12.5 3.33 2.33 ± 0.10 ± 0.23
5.83 3.33 3.50 ± 0.10 ± 0.35
3.31 3.33 5.44 ± 0.19 ± 0.54
8.33 10.0 1.85 ± 0.10 ± 0.18
8.33 5.00 2.00 ± 0.12 ± 0.20
8.33 2.50 3.23 ± 0.19 ± 0.32
4.17 3.33 4.04 ± 0.13 ± 0.40
4.17 5.00 3.35 ± 0.08 ± 0.34
4.17 7.50 3.06 ± 0.08 ± 0.31

Table 3.2: The quantity γSE/[Cs] measured for the 9 Cs-Xe cells, tabulated with the
number densities of Xe and N2 in the cells. Note that m−3 has been used as the unit
for the number densities.

×

γ

Figure 3.13: A plot of γSE/[Cs] versus the reciprocal of the effective number density
in the cells. The effective number density is defined as [Xe]+b[N2], where b=0.97
for the Cs-Xe case. From the fit, we have γSE/[Cs]=9.4×10−23 + (3.1 ± 0.4) ×
104([Xe]+(0.97±0.11)×[N2])

−1(m3sec−1), with the number densities in m−3.
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Alkali 〈vσ〉 ζ γM b
Metal (10−22m3sec−1) (calculated) (105sec−1)

K 0.63 0.125 1.92 ± 0.24 ± 0.20 0.87 ± 0.08
Rb 10 0.095 1.02 ± 0.08 ± 0.09 0.275
Cs 0.94 0.0625 4.92 ± 0.63 ± 0.49 0.97 ± 0.11

Table 3.3: Experimental results of 〈vσ〉, γM , and b for the three alkali metals. The
ζ values were calculated from the relative abundances and nuclear spins of the al-
kali metals’ isotopes. The first term in the uncertainties of the γM values comes
from statistical scatterings of the data points, and the second term is the systematic
uncertainty.

mination of alkali densities, which we estimated to be a ∼10% relative uncertainty.

Other uncertainties (e.g., the knowledge of the pressures of the gases during fillings)

did not exceed ∼3%. An overall 10% systematic uncertainty has been included in

Table 3.3. The quantity b, however, is free from this systematic uncertainty, since the

uncertainty would be absorbed into γM .

Since all of the test cells contain Xe and N2 number densities less than one amagat,

the data points were not close enough to the high-density limit to give an accurate fit

value for the intercept. The intercept corresponds to the binary collision term 〈vσ〉,
so the results for 〈vσ〉 are only crudely determined. The uncertainties on the 〈vσ〉
values are large and have not been indicated in the table of results. The γM results

have reasonable precisions, with uncertainties of ∼15%.

Compared with previous measurements of 〈vσ〉 for the Rb-129Xe pair [20, 21],

which find

〈vσ〉 = (3.70 ± 0.15 ± 0.55) × 10−22 m3sec−1,

and

〈vσ〉 = (1.75 ± 0.12) × 10−22 m3sec−1,

respectively, our result 1.0×10−21m3sec−1 is different, in the latter case by a factor of

5. The uncertainties of our values of 〈vσ〉 are also large. Our γM value for Rb-Xe pair

(10.2±0.8±0.9)×104 sec−1 is about 3 times as large as the result from measurements
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by Cates et al. [20], which is

γM = (2.92 ± 0.18 ± 0.41) × 104 sec−1.

However, in Ref. [20], the Killian empirical formula was used to calculate the Rb

density, while we used direct Rb density measurements. Our Faraday rotation mea-

surements suggest that, at least for our cells, the Killian formula for Rb vapor densities

tends to give results higher than the actual values, and data analysis based on the

Killian formula might underestimate the relaxation rates.

The γM values for K and Cs have not been previously measured at high Xe density

(i.e., ∼1 amagat), so we do not have similar results with which to compare.

Presently the majority of applications [16, 17, 18, 47] using 129Xe polarization

through spin-exchange collisions with alkali metals have been performed with total

number densities of Xe and N2 . 1 amagat, similar to our conditions. For such

cell densities, it is the van der Waals mechanism that dominates the spin-exchange

process, and our precise determinations of γM ’s are helpful information for these cases.

Nonetheless, it is desirable to complement our studies with tests in the high-density

limit as has been done for Rb-129Xe by Jau et al. [21]. Such measurements can

provide accurate determinations of 〈vσ〉 by suppressing the contribution from vdW

molecules.

Since different alkali metals have different values for ζ and b, their γM ’s can not

be directly compared to find which alkalis are better for polarizing 129Xe through

the SEOP process. But comparisons might be done by calculating the spin-exchange

rates for different alkalis under typical conditions, so that we can gain insight into

the choice of the most promising alkali for polarizing 129Xe. An example of such

comparisons is shown in Table 3.4, in which the number densities for Xe and N2

were taken to be 0.35 amagat and 0.15 amagat, respectively. The number density

for the alkali metal was set at 2.5 × 1019atoms/m3, which corresponded to different

temperatures for different alkalis, as shown in Table 3.4. Naturally, laser availability,

pumping efficiency, temperature and other issues need to be considered for optimizing

the 129Xe polarization for different applications.
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Alkali Spin-Exchange Corresponding
Metal Rate (sec−1) Temperature (◦C)

K 0.031 164
Rb 0.048 136
Cs 0.062 122

Table 3.4: Comparison of spin-exchange rates between 129Xe and the three alkali met-
als K, Rb, and Cs, under a typical condition. This condition has [Xe]=0.35 amagat
and [N2]=0.15 amagat, [alkali] was set at 2.5×1019 atoms/m3, the corresponding tem-
peratures for different alkalis (calculated from our empirical alkali density formulae)
were listed in the table.

In summary, we had made measurements for the spin-exchange rates between

alkali-129Xe pairs for three alkali metals K, Rb, and Cs, with cell densities in the

range of 0.2 to 0.7 amagat. The two terms in the spin-exchange rate, the binary

collision term and the van der Waals molecule term, are separated by studying the

cell density dependence of the spin-exchange rates. The constants that govern the

spin-exchange process, γM , 〈vσ〉, and b are determined. These results, especially

the value of γM , provide useful information for estimating the spin-exchange rates

of the three alkali-129Xe pairs under typical polarizing conditions, and ultimately for

achieving optimal nuclear polarizations for 129Xe.
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Chapter 4

Experiments II: Imaging Study

In this chapter, we present a research project in which magnetic resonance imaging

(MRI) of polarized 129Xe was performed. The purpose of the project is to demon-

strate the possibilities of utilizing 129Xe polarized by the SEOP approach, as an imag-

ing agent for MRI. Specifically, in collaboration with a Stanford research group, we

constructed a low readout magnetic field imaging system, which is capable of produce

MRI images using both water and laser-polarized 129Xe as the imaging agent. Ours

was the first successful effort to perform both types of imaging in the same system,

with low magnetic field and room temperature. The main task of our group (Hughes

group at Caltech) was to produce sample cells containing 129Xe, and to build a po-

larizing system, which uses the SEOP method to polarize the nuclear spin of 129Xe

in the cell, inducing a polarization high enough for the imaging. Throughout this

project, we used the alkali metal Rb to polarize 129Xe.

To produce the sample cells, we needed a vacuum system to remove the air in

the cells, before filling with the alkali Rb and the gases Xe and N2. In Sec. 4.1, we

will discuss in detail the procedures of cell building, including the cell designs, the

preparation procedures of the glass cells before filling, a description of the vacuum

system, and the production of the sample cells containing Rb and the gases.

When the sample cells were ready, we tried to determine the maximum nuclear

polarization of 129Xe in the cells achieved by SEOP, to ensure that the imaging signal-

to-noise ratio would be good. The polarization measurement (“polarimetry”) was

performed by generating adiabatic fast passage (AFP) signals of the 129Xe magne-
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tization, and calibrating the signals using water AFP signals. More about these

measurements will be presented in Sec. 4.2.

The sample cells with the highest 129Xe polarizations were used for the MRI

imaging. They were polarized, and imaged in our low field imaging system. The

imaging system and the experimental designs for imaging the cells will be introduced

in Sec. 4.3, and the imaging results will be presented in Sec. 4.4.

4.1 Sample Cell Construction

The sample cells used for the imaging study were glass cells made of Pyrex. The cells

were filled with Xe (natural isotopic abundance) and N2, and they also contained

milligrams of Rb metal. The cells had spherical shapes, with the outer diameters

being about 2.5 cm (1 inch). The sizes of the cells were chosen so that they could

easily fit into the imaging magnet, yet be capable of producing signals with good

signal-to-noise ratios. After accounting for the thickness of the glass wall, the inner

diameters of the cells were estimated to be 2.4 ± 0.1 cm.

We used Pyrex tubes as our raw material, and had them blown into glass mani-

folds by a professional glassblower. During the glassblowing process, the tubes were

melted and expanded, resulting in cells with pristine glass surfaces having less ad-

sorbed impurities. This helps to decrease the wall-induced relaxation of 129Xe nuclear

polarization. The manifolds were designed so that each one could be used to produce

five cells. On the end of each manifold, a glass capsule was attached containing Rb

metal produced by the Alfa Aesar company. The purity of the Rb metal is 99.75%.

The capsule was kept sealed during the glass blowing, and was broken only after the

manifold had been pumped down to an appropriate level of vacuum. A sketch of

the manifold is shown in Fig. 4.1. Only two raw cells are shown in the figure; the

rest are not shown. To make it easier to pull off finished cells from the manifold, a

narrow part was devised on each “stem” connecting a raw cell to the manifold. The

completed cells were to be removed from these narrow parts.

The impurities in the cell can have unwanted effects on our study. For exam-
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Figure 4.1: A schematic of the design of our glass manifolds. Of the five raw cells in
the manifold, only two are shown. The left end of the manifold was for connecting
with the vacuum system, and on the right end was a glass capsule containing Rb
metal. The narrow parts in the stems of the cells were points where the filled cells
were to be separated from the manifold.

ple, oxygen and water vapor react with the Rb metal, resulting in some negative

consequences. First, the amount of Rb will be reduced, with the danger of leaving

insufficient Rb in the cell for the SEOP process. Secondly, the rubidium oxide pro-

duced by the reactions is strongly paramagnetic (the mass magnetic susceptibility

of rubidium oxide is 1.92 × 10−2, while for Rb metal it is 2.14 × 10−4). The para-

magnetic oxide can introduce strong magnetic field gradients in the cell, and induce

extra relaxation of the 129Xe nuclear polarization, reducing the maximum achievable

129Xe polarization. There are other solid impurities that may have adverse effects if

left in the manifolds. To reduce the impurities to acceptable levels, our manifolds

were carefully cleaned, by rinsing with distilled water, and then with methanol. The

manifolds dried for several hours, so that the water and methanol could evaporate,

and then connected to a vacuum system. The manifold/vacuum system connections

needed to be airtight, so the connections were sealed using epoxy.

The vacuum system was similar to filling stations used for producing polarized

targets in high energy particle physics studies [39], and had been carefully designed

to be able to reach an ultra high vacuum (UHV), with the residual gas pressure in the
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system reduced to being on the order of 10−8 mbar (10−11 atmosphere). To achieve

this, two vacuum pumps were used: a turbomolecular manufactured by Pfeiffer Vac-

uum Technology which brought the pressure down from one atmosphere (atm) to the

order of 10−6 mbar, and an ion pump manufactured by Varian Inc. to further reduce

the pressure to 10−8 mbar. The residual gas level was monitored at two points. A

Stanford Research Systems (SRS) residual gas analyzer (RGA) was placed close to

the valves, and a hot ion gauge (manufactured by Inficon) was placed close to the

glass manifold. A baratron (manufactured by MKS Instruments) that can measure

gas pressures on the order of atmospheres was used to help filling the cells to the

predetermined gas levels.

In addition to reaching UHV, a section of the system was also designed to with-

stand a maximum pressure of 6 atm. The system can roughly be divided into two

portions: the “bottom portion,” including all the pumps and the RGA, and the “top

portion,” including the connections to gas cylinders and to the glass manifold, the

hot ion gauge, and the baratron. The bottom portion was held under vacuum, while

the top portion worked under pressures of ∼1 atmosphere during cell fillings. The

two portions were separated by a “main valve,” denoted by “V1.” The valve between

the glass manifold and the rest of the system will be denoted by “V2.” Schematics

of the bottom and the top portions of the vacuum system are shown in Fig. 4.2 and

Fig. 4.3, respectively. To facilitate the collaborative project, we also built a new vac-

uum system in Stanford, identical to our existing one at Caltech, so that we could

make the cells quickly and test them immediately in the Stanford imager.

When a manifold was attached to the vacuum system, we opened the valves V2,

and began to remove the gases in the manifold. At room temperature, the water

and some other impurities adsorbed to the glass wall usually pumped away slowly.

Therefore, we used heating tapes to heat up the manifold to about 150◦C, so that

the vapor pressures of the impurities would increase, and the impurities were then

pumped away from the manifold efficiently. Typically after 1-2 days of pumping, the

gas pressure, monitored by the hot ion gauge, would drop below 10−7 mbar. The

RGA showed charts of the gas impurities, indicating the amounts of various gases.
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Figure 4.2: A schematic of the “bottom portion” of our vacuum system. Some of the
connections between the instruments are not shown.

A typical chart is shown in Fig. 4.4. From the analysis results of the RGA, we knew

that the dominant (over 50%) residual gas was N2, which did not have any adverse

effect on our studies, because N2 was one of the gases to be filled in the cells. The

levels of oxygen and water was reduced to well below 10−8 mbar, as shown in Fig. 4.4.

After the vacuum inside the manifold had reached a satisfactory level, we began to

chase the Rb metal into the cells. The glass capsule containing Rb was broken, using

a small magnet in the manifold, guided by a larger magnet outside of the manifold.

The region around the capsule was then heated using a torch. The heated capsule

was well above the melting temperature of Rb (39 ◦C), while the rest of the manifold

remained cold. The Rb vapor evaporated out of the capsule and condensed on the

glass walls. By carefully heating different parts of the cell walls in turn, we directed

a few milligrams of Rb metal into each of the cells.

When enough Rb had been transferred into each of the raw cells, valve V1 was

closed, isolating the top portion of the system from the vacuum pumps. Gases were

let out from the cylinders, first into the tubings between the cylinder valves and

the pressure regulators (“buffer portions” as shown in Fig. 4.3), and then, under

the control of the regulators, into the top portion of the system and into the glass

manifold. This two-stage filling process enabled a precise control over the amount of
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Figure 4.3: A schematic showing the “top portion” of the vacuum system. The 6-way
connecting cube was used to connect 5 tubings, and the extra face was sealed off.
The “buffer portions” in the figure were used for storing the gases from the cylinders
before filling the cells.

gas filled into the cells. The pressure in the manifold was controlled to a precision of

±0.01 pound per square inch (psi), or about ±7×10−4 atmosphere. We used research

grade Xe and N2 gases with natural isotopic abundances, produced by Spectra Gases

Incorporation.

After the gases had been filled in the manifold, we isolated the glass manifold from

the rest of the vacuum system by closing the valve V2. We removed the cells from the

manifold one by one, by heating the narrow parts in the stems using an ethyne-oxygen

flame. For most of the cells, the total pressures inside were kept below one atmosphere

at room temperature. As a result, when the glass at the narrow partss were softened
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Figure 4.4: A typical readout from the RGA, after the pressure in the system had
been brought down to a satisfactory level. The peak at 28 atomic mass units (AMU)
corresponds to N2 molecules, and the one at 14 AMU stands for N atoms. Together
they constituted over 50% of the residual pressure. The peaks at 1 and 2 AMU for
hydrogen, at 16 and 32 AMU for oxygen, at 18 AMU for water, at 17 amu for hydroxyl
ions (OH−), and at 44 AMU for carbon dioxide, were all well below 10−8 Torr, or
1.3 × 10−8 mbar.

by the heat, it collapsed under the atmospheric pressure, and sealed the cells from

the manifold. If cells with total pressures above 1 atmosphere at room temperature

were desired, a technique called cryo-filling was applied. The raw cells were immersed

in liquid nitrogen to reduced the pressures in the cells below 1 atmosphere during

the sealing process. The sealed cells were then gently pulled, and separated from

the manifold. After the cell removal, a portion of the stem, about 1 cm long, was

left on the cell. So the finished cells were 2.5 cm (outer diameter) spheres, with

1 cm-long conical protrusions. These protrusions were mostly solid glass, and did not

contribute significantly to the volume of the gas mixture in the cell. The gas volume

in the sample cells were estimated to be 1
6
π((2.2±0.1)×10−2)3 = (7.2±0.9)×10−6 m3

from the above discussions.

Since the valve V2 was closed throughout each pull-off, and only the small por-
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tions around the narrow parts were heated, the heating during the pull-off did not

significantly change the densities of the gases in our cells. To increase the precision

of the measurement of the gas densities in each cell, we performed the following pro-

cedure. After each pull-off, the manifold was allowed time to cool down to room

temperature, then valve V2 was opened, and the pressure in the system was recorded

by the baratron. The exact pressure inside a cell can be determined using these pres-

sure readings and the relative ratios of the volume of the cell to the volume of the

rest of the system (the rest of the glass manifold plus the top portion of the vacuum

system).

For example, denote the volume of each cell on a manifold by Vcell, and denote

the volume of the top portion of the vacuum system and the manifold excluding all

the cells by V0. The pressure before pulling off the first cell was P0, and the pressure

after the first pull-off was P1, both measured at room temperature. From the ideal

gas equation, it is easy to calculate that Pcell1, the pressure in the first cell measured

at room temperature, was

Pcell1 =
P0(V0 + 5Vcell) − P1(V0 + 4Vcell)

Vcell
= P0

(

V0

Vcell
+ 5

)

− P1

(

V0

Vcell
+ 4

)

, (4.1)

since each of our manifolds had 5 raw cells attached to it. Similarly, the pressure in

the i-th cell at room temperature was

Pcelli = Pi−1

(

V0

Vcell
+ (6 − i)

)

− Pi

(

V0

Vcell
+ (5 − i)

)

, (4.2)

where the cells were numbered according the order of the pull-off, and Pi−1 and Pi

stand for the pressure recorded by the baratron at room temperature before and after

the pull-off of the i-th cell, respectively.

The volume ratio V0

/

Vcell was obtained in the following way. Immediately after the

glass manifold was connected to the vacuum system, the manifold was first pumped

to a vacuum of below 10−5 mbar, and the valve V1 leading to the pumps was closed.

The valve V2 was closed as well, leaving the glass manifold under vacuum. The

rest of the top portion of the system was then filled with N2, with the pressure

Pi recorded. After the valve V2 was opened again, the pressure dropped to Pf =
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Figure 4.5: Schematic of the volumes involved in the determination of pressures in
the filled cells. The italic V ’s denote volumes, while V2 stands for the valve between
the top portion of the vacuum system and the glass manifold. Only 2 out of the 5
raw cells are shown in the schematic.

PiVtop

/

(Vtop + Vmanifold + 5Vcell), where Vtop denotes the volume of the top portion

excluding all glass parts, and Vmanifold is the volume of the glass manifold excluding

the raw cells. Note that by definition, V0 ≡ Vmanifold + Vtop. After all the pull-off’s

were completed, the entire top portion was pumped down to a low vacuum again,

then the above process was repeated. With V1 and V2 closed, and the tubings were

filled with N2 to a pressure of P ′
i . The valve V2 was once more opened, and the

pressure in the system became P ′
f , where P ′

f = P ′
iVtop

/

(Vtop + Vmanifold). From the

pressure ratios, R1 ≡ Pi/Pf and R2 ≡ P ′
i/P

′
f , we find

V0

Vcell
=

5R2

R1 −R2
. (4.3)

Plugging this ratio into Eq. (4.2), Pcelli was found for each of the cells.

For clarity, the volumes involved in the above calculations are sketched in Fig. 4.5.

The partial pressures of Xe and N2 in the cells were calculated by assuming that

heating did not change the relative proportion of the two gases Xe and N2. The pres-

sures were converted to densities by taking the temperatures at which the pressures

were measured to be 300 ± 2 K. From the description above for determining the gas

densities, we estimate a maximum relative uncertainty in the densities of 3%. Both

for the discussions in Sec. 3.4 and for the error analysis of calibration of the 129Xe

nuclear polarization in Sec. 4.2, this density uncertainty was used.
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To check that enough Rb was in the cells, the following calculations were made.

The highest temperature used during the SEOP process for this project was about

100◦C. This temperature corresponded to a Rb number density of about 3× 1018m−3

according to the empirical formula we fitted for our conditions (Eq. (3.8)), or about

6×1018m−3 according to the unmodified Killian’s formula (3.24b). Using 7.2×10−6m3

as the volume of each of our cells, the maximum amount of Rb we needed in the cells

was 4.3 × 1013 atoms≈ 7.2 × 10−11 moles. This amount corresponds to a weight of

less than 7 × 10−9 grams. So a few milligrams of Rb in each of our cells was indeed

sufficient for the SEOP processes.

Similarly, the maximum amount of alkali metals needed in the cylindrical cells

for the measurements of spin-exchange rate constants was estimated to be less than

10−6 gram. Therefore, all the cells that we built had plenty of alkali metals for our

purposes.

In the final stage of the cell building, the filled cells were placed in an oven,

and heated to over 200◦C. This process is called “curing” of the cells, and has been

regularly applied during the productions of SEOP sample cells containing noble gases

and alkali metals [11, 21, 48]. The purpose of the curing process is to ensure that

the interaction between alkali vapor and the Pyrex walls reached an equilibrium,

thereby reducing the wall relaxation rate to a stablized minimum. This was especially

important for the cells used in the measurements of spin-exchange rate constants

(Ch. 3), where the wall relaxation rates needed to be stable.

4.2 129Xe Polarimetry

The nuclear polarizations of 129Xe in our sample cells were measured using the adi-

abatic fast passage (AFP) technique introduced in Sec. 2.3. The experimental setup

was essentially the same as that described in Sec. 3.1. The diode laser was used as

the light source for the SEOP process. The AFP was performed by fixing the fre-

quency of ~B1, the rotating magnetic field, and sweeping the holding field, ~B0, past the

resonance point. The strength of the rotating field B1 and the holding field’s sweep-



73

ing rate dB0

/

dt also had the values used in Ch. 3. The rotating frequency of the

field B1, denoted as ωB1
, was 33 kHz, slightly different from the 27.6 kHz frequency

used in Ch. 3. The reason for the difference was that the pickup circuit had been

slightly modified between the two projects, and for each circuit, the frequency had

been adjusted to produce optimal signals. As discussed below, the AFP conditions

Eqs. (2.42) and (2.43) were satisfied for these experimental settings.

As discussed in Sec. 2.3, AFP produces Lorentzian-like signals in the form of

Eq. (2.45),

|s(t)| = CωB1
M0

B1
√

B2
1 + (bt)2

, (4.4)

such that the height of the signal peak is CωB1
M0. Following Eq. (2.35), the peak

size is directly proportional to the nuclear polarization of 129Xe in the form of

SXe = CωB1,XeNXeµPXe, (4.5)

where SXe is the peak signal above the background. The quantity NXe is the total

number of 129Xe nuclei in the sample cell, and µXe is the magnetic moment of a single

129Xe nucleus. We have used the subscript “Xe” to specify that these quantities

pertained to 129Xe, in order to distinguish them from quantities pertained to water

AFP signals, which will be discussed later.

The above signal s(t) is the voltage signal excited in the pick-up coils. To obtain

the final signal recorded by the computer, the response of the pick-up circuit and the

gain of the pre-amplifier must also be included (cf. Fig. 3.3 for the circuit). If we

denote the signal recorded by the computer as s̄Xe(t), and the peak size of s̄Xe(t) as

S̄Xe, then

S̄Xe = CωB1,XeNXeµXeGpreamp, Xercircuit, XePXe, (4.6)

where Gpreamp, Xe and rcircuit, Xe are the 129Xe AFP values of the amplification factor

of the pre-amplifier, and the response of the pick-up circuit, respectively.

As described in Sec. 3.1 and shown in Fig. 3.3, the AFP signals were separated

from background by the lock-in amplifier. The lock-in amplifier projected the signals
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in a vector space onto the x and y directions, and then transmitted the two projections

in two output channels. For the measurement of the alkali-129Xe spin-exchange rate

constants, the total signal size was not of primary importance, since all calculations

used instead the relative ratio of the two peaks from AFP signals. Therefore, in

Sec. 3.1, we described the optimization of the signal-to-noise ratio (SNR) for one

of the channels, and then recording the signals from that channel as our primary

data. However, for the purpose of deciding the 129Xe polarization, the most important

information came from the overall signal size of the AFP signals. Instead of optimizing

the SNR for one of the channels, we projected all the AFP signal into one channel

by adjusting the projection phase of the lock-in amplifier. The data used for the

determination of PXe came from the channel output containing the entire AFP signal.

The same applies to the water AFP signals to be discussed below.

Following Eq. (4.6), PXe can readily be calculated from the measured peak size

of the AFP signal, provided that the coefficient CωB1,XeNXeµXeGpreamp, Xercircuit, Xe is

known. All the quantities in the expression are either known or easy to calculate

or measure, except the pickup constant C. Unfortunately, C is determined by the

geometrical properties of the pickup coils, and is hard to calculate directly.

To work around the difficulties in determining C, we obtained water AFP signals

using a sample cell with the same specifications as our Xe sample cells, the same pair

of pickup coils, and the same relative position of the cell with respect to the coils.

The water signals were generated by the hydrogen nuclei (protons) in the water,

and the nuclear polarization of the protons came from the Helmholtz distribution

in the holding magnetic field. Following Eq. (2.34), the nuclear polarization of the

protons in water sample can be calculated as Pw = tanh
(

µpB
/

(kT )
)

≈ µpB
/

(kT )

where the subscript “w” stands for water, B is the strength of the holding field, k

is Boltzmann’s constant, T is the temperature of the water sample, and µp is the

magneton of a proton. We used deionized water for all our water AFP signals.

Similar to Eq. (4.6) for the peak size of a 129Xe AFP signal, we find the water
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AFP signal is

S̄w = CωB1,wNpµpGpreamp, wrcircuit, wPw, (4.7)

where the subscript “w” is used to specify quantities related to the water AFP signal,

with the exception of the quantities N and µ. The subscript “p” is used for N and

µ, to make it clear that Np is the total number of the protons in the water sample,

namely two times the number of the water molecules, and µp is the magneton of a

single proton. Combining the above equations (4.6) and (4.7), and plugging in the

expression for Pw, we find PXe

PXe =
µpB

kT
· S̄Xe

S̄w

· ωB1,w

ωB1,Xe
· µp
µXe

· Np

NXe
· Gpreamp, w

Gpreamp, Xe
· rcircuit, w

rcircuit, Xe
. (4.8)

In the above formula the pickup constant C has been cancelled out, and all the

quantities needed for the determination of PXe were either known or easily measured

or calculated. The practice of comparing the sizes of the water and 129Xe AFP signals

to calculate PXe is called “water calibration.” The above formula Eq. (4.8) will be

referred to as the “water calibration formula.”

A typical water AFP signal obtained in our lab is shown in Fig. 4.6. It was

obtained using a water sample cell, with identical shape and size with our 129Xe sample

cells. It is a sphere with an inner diameter of (2.4 ± 0.1) cm. For our experimental

conditions, i.e., at room temperature, and under a magnetic field of ∼20 Gauss, the

nuclear polarization of the protons in the water sample is on the order of 10−9. This

proton polarization is much smaller than the 129Xe polarization resulting from the

SEOP. As a result, the water signal sizes were very small, and the signal-to-noise

ratio (SNR) was not as good as for 129Xe signals. This can be clearly observed in

Fig. 4.6. To improve the SNR, water AFP signals were usually averaged over 10-100

scans, and the averaged signal sizes were used to calibrate the 129Xe polarization. The

averaging process was automated by our Labview program. Between two consecutive

signal acquisitions, a time delay of 9 seconds was allowed for the proton polarization

to relax back to its equilibrium value. By inspecting the two signal peaks for water

AFP signals, we estimated the relaxation time T1 of the protons in our water sample
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Figure 4.6: A typical water AFP signal. See text for the explanation of the two
resonance peaks having different directions. The signal size is in arbitrary units.
The signal-to-noise ratio is not as good as the 129Xe AFP signals due to the much
smaller polarization of the protons in the water sample. The signals used for 129Xe
polarization determination were averages of signals such as shown in the figure.

to be . 1 sec. Therefore the interval between the signal acquisitions was 9 times T1,

enough for the proton polarization to reach equilibrium.

For water signals, the sweeping rate of the holding magnetic field B0 was the same

as used for 129Xe AFP, but the value of ωB1
was chosen to be different, in order that

that the strength of B0 at the point of resonance remained about the same as its value

for 129Xe AFP. Since at the resonance point B0 = ωB1
/γ, and the gyromagnetic ratio

γ for protons is 3.6 times the value for 129Xe nuclei, we chose ωB1,w to be 98 kHz,

while ωB1,Xe was 33 kHz.

The relaxation time of our proton polarization was much shorter than that of

129Xe nuclear polarization in gaseous samples. Therefore, between the two resonances

in each of our AFP signals, the proton magnetization underwent several relaxation

times to relax back towards its equilibrium value. Before the first resonance, the
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magnetization of the sample was aligned along the direction of the effective field.

Immediately after the first resonance, the magnetization followed the effective field

during its reversal, and realigned opposite to the original direction. Immediately

before the time of the second resonance, the magnetization had relaxed back to its

original direction, and was in the opposite direction with the effective field. Since the

relative direction of the magnetization with respect to the effective field determines

the sign of the AFP signal, water AFP signals have the behaviour of having their two

resonance peaks with different signs (on different directions, upward and downward).

This behaviour can be clearly observed in Fig. 4.6, and is different from the case of

the 129Xe AFP signals.

We now check the adiabatic and fast conditions for the water AFP process. For

water, the relaxation resulting from diffusion and field inhomogeneities is much slower,

since diffusions are much slower in liquids than in gases. So, following the discussions

in Sec. 3.2 and dropping the D |∇B|2

B2

1

term, the AFP conditions for water are 1/T1 �
(

dB0

dt

/

B1

)

� γB0. Taking the T1 time for the protons in our case to be 1 sec, the AFP

relations became 1 sec−1 � 30 sec−1 � 9.8 × 104 sec−1, and were, indeed, satisfied.

The equilibrium value for the proton polarization was Pw ≈ µpB
/

(kT ). Im-

mediately before the AFP resonance, the value of B was B = ωB1
/γ, where γ =

4.258 × 107 Hz/Tesla=4258 Hz/Gauss. However, during the AFP process, B was

a time-varying quantity, and its rate of change dB
dt

/

B ≈ 0.1 sec−1 was faster than

the relaxation rate 1/T1 for the proton polarization. The actual proton polarization

would lag behind its time-dependent equilibrium value. Following the discussions in

Ref. [40], the average of the absolute values for the two resonance peaks is less affected

by the lagging and is closer to the equilibrium value. Since the main purpose of our

polarimetry measurements was to ensure that the cells would produce detectable sig-

nals in the imaging system, a high precision measurement was not necessary. Higher

order corrections described in [40], therefore, were not carried out. We take the proton

polarization corresponding to the averaged peak heights of the water AFP signals to

be µp(ωB1
/γ)

/

(kT ) ≈ 7.84 × 10−9. The uncertainty coming from this approximation

had been estimated in Ref. [40] to be less than 5%. The temperature was taken to
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be 300 K, with an uncertainty of less than 1%.

The averaged water AFP signals were fitted in the same way as described in

Sec. 3.2 for the 129Xe signals. We estimate the uncertainties in the fits to be about

3%, for both the water and the 129Xe AFP.

The preamplification factor Gpreamp was chosen to be 200 for both 129Xe and water

proton AFP signals. The responses of the pickup circuit, rcircuit, were different for

the two, since the two AFP frequencies occured at different points on the response

curve (Q-curve) for the pickup circuit. The pickup circuit was a simple RLC circuit,

and its Q-curve was measured with the following method. A small multi-turn test

coil was placed at the center of the pickup coils (i.e., where the cells would be placed

during AFP tests), and at a direction perpendicular to the pickup coils. A function

generator supplied the test coil with a fixed AC current, and the pickup coils detected

the induced signals. Since the current was fixed, the magnetic flux that the test coil

generated through the pickup coils had a fixed peak-to-peak size. The induced signal

was

Sinduced =
dΦ

dt
rcircuit = ωtestΦmaxrcircuit, (4.9)

where Sinduced is the signal induced in the pickup circuit, ωtest is the frequency of the

AC current in the test coil, and Φmax is the maximum value of magnetic flux through

the pickup coils. The quantity Φmax is determined by the AC current, and remained

constant throughout the test. We recorded the induced signals by an oscilloscope

while varying ωtest between the AFP frequencies for 129Xe and for water, and the

ratio of signals gave the ratio ωB1,Xercircuit, Xe

/

(ωB1,wrcircuit, w). The signal Sinduced was

measured to be 39.2 in arbitrary units at ωB1
= 33 kHz, and 1190 at ωB1

= 98 kHz.

The ratio rwωB1,w/(rXeωB1,Xe) = 30.36 was estimated to have an uncertainty of 3%

relative, the uncertainty came from the measurements of Sinduced.

The ratio of the total numbers of nuclei, Np/NXe, can be written as the product of

two terms, Vw/VXe and np/nXe, where V stands for the volume, and n for the number

density. The value of Vw/VXe was one, since the water sample cells were of identical

specifications compared to the Xe cells. The uncertainty in the cell dimensions intro-
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duced a corresponding uncertainty in the volume determinations. The inner diameter

of the spherical cells was (2.4 ± 0.1) cm, so the relative uncertainty in Vw/VXe was

12%.

The number density of H2O molecules in water at room temperature is 3.34 ×
1028 m−3, so np ≈ 6.7 × 1028 m−3. The uncertainty in np did not exceed 0.6%. The

number density of Xe atoms in each sample cell was recorded during the cell building

process, but it should be noted that only 129Xe nuclei contributed to the AFP signals,

so nXe becomes 26.4% of the total Xe number densities.

The 129Xe nucleus has a magnetic moment of −0.778 nuclear magnetons, while

the proton’s magnetic moment is 2.79 nuclear magnetons. The sign difference can be

ignored since we recorded only absolute values, so µp/µXe = 3.59. The uncertainty in

this term is negligible.

With all the quantities in Eq. (4.8) determined, we estimated the nuclear polar-

ization of 129Xe achieved in our cells. For a particular cell with good signals, we

had S̄Xe = 0.17 mV, and our water signal size was 0.07 mV after averaging the two

AFP peaks. The Xe pressure in this cell was calculated to be 7.02 pound per square

inch (psi), which is equal to 0.478 atmosphere. Since the pressure was measured

at room temperature, the number density of Xe in the cell was 0.478 × 273/300 =

0.435 amagat= 1.17× 1025 m−3. The 129Xe number density was 0.264× 1.17× 1025 =

3.09 × 1024 m−3. Plugging in the values for the quantities in Eq. (4.8), we obtain

PXe = 7.84 × 10−9 · 0.17

0.07
· 2.79

0.778
· 6.7 × 1028

3.09 × 1024
· 1 · 1190

39.2
≈ 0.032 = 4.5%, (4.10)

for this cell which we denoted “C5.” The 129Xe polarizations measured in similar cells

ranged from 1% to 5%. Cell C5 was one of the cells eventually used for imaging.

The uncertainty in the AFP polarimetry for cell C5 is shown in Table 4.1. The

overall uncertainty for PXe was calculated to be 14.8% relative, i.e., PXe = (4.5±0.7)%.

This polarization was about 20% of the best reported polarization results (e.g., [18]).

Using the water calibration, we also estimated the 129Xe nuclear polarization in

cells used for the project measuring the 129Xe-alkali spin-exchange rate constants (cf.

Ch. 3). A cylindrical water cell with the same specifications as our Xe sample cells
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Quantity Value Relative Uncertainty
Pw 7.84 × 10−9 5% +1%
S̄Xe 0.17 mV 3%
S̄w 0.07 mV 3%

µp/µXe 3.59 0
Vw/VXe 1 12%
np 6.7 × 1028 m−3 0.6%
nXe 3.09 × 1024 m−3 3%

Gw/GXe 1 0
rwωB1,w/(rXeωB1,Xe) 30.36 3%

PXe 4.5% 14.8%

Table 4.1: Error analysis for the water calibration of the 129Xe nuclear polarization
in sample cell C5. The quantity Pw has two sources of uncertainties, see the text
for details. In the table, the notations Gpreamp and rcircuit had been simplified to G
and r, only the subscripts “w” or “Xe” are kept. The overall relative uncertainty was
calculated as the square root of the square sum of all individual relative uncertainties,
since these uncertainties are uncorrelated.

was used for the calibration. For the AFP signal shown in Fig. 3.5, we have tabulated

in Table 4.2 the quantities that led to an estimation of the 129Xe polarization. For

the project described in Ch. 3, there was one change in the circuit. We used two

interchangeable capacitors in the pickup circuit, one for water AFP signals, and the

other for 129Xe AFP. The two capacitors correspond to two different Q-curves for the

pickup circuit. The radio frequency used for 129Xe signals was 27.6 kHz, and the one

for water AFP was 85.9 kHz, both near the top of the Q-curve using their respective

capacitor. Since the maximum response of an RLC circuit is solely determined by

its resistance, and is independent of the capacitance, the circuit response rcircuit was

taken to be the same for water and for 129Xe. The remaining quantities were obtained

similarly with the calibration for the spherical sample cells described above. The

estimated polarization is

PXe = 6.87 × 10−9 · 85.9

27.6
· 2.5

0.059
· 2.79

0.778
· 6.7 × 1028

4.84 × 1024
· 20

100
· 1 ≈ 0.9%. (4.11)

Since the exact polarization was not important for the measurements of the spin-

exchange rate constants, we do not include an error analysis.
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Quantity Value
Pw 6.87 × 10−9

S̄Xe 2.5 mV
S̄w 0.059 mV

µp/µXe 3.59
Vw/VXe 1
np 6.7 × 1028 m−3

nXe 4.84 × 1024 m−3

Gw/GXe 20/100=1/5
rw/rXe ≈ 1
ωw 85.9 kHz
ωXe 27.6 kHz
PXe 0.9%

Table 4.2: Water calibration for the 129Xe nuclear polarization in a cylindrical sample
cell used for the measurements of the spin-exchange rate constants. The 129Xe AFP
signal used for the calibration was shown in Fig. 3.5.

The 129Xe nuclear polarization in the cylindrical cell was lower than in the spherical

cells. This was expected since the cylindrical cell has a larger volume compared to

the spherical cells, while the laser power used for pumping the two types of cells

remained essentially unchanged, and the 129Xe densities in the two cells are on the

same order of magnitude. The product of the volume and the polarization for the two

cells was approximately the same: 33.5 cm3 × 0.9% ≈ 30 cm3·% for the cylindrical

cell, 7.2 cm3 × 4.5% ≈ 32 cm3·% for the spherical cell.

4.3 The Imaging System

4.3.1 The Stanford PMRI System for Water Imaging

A detailed description of the PMRI system built by the Macovski group at Stanford

can be found in their original papers [25, 26]. Here, we will only present a basic

description of the system. We will focus more on the experimental setup of the

hyperpolarized 129Xe imaging part in our collaborative project.

As introduced in Sec. 2.3, the most frequently exploited MRI method uses water
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signals, in which the nuclear polarizations of protons in water are induced by an

external holding magnetic fields. These thermal polarizations are proportional to the

holding magnetic field and inversely proportional to the environmental temperature.

Therefore, to achieve the best SNR, it is desirable to use a high holding field and/or a

low temperature for the imaging. In the case where in vivo MRI is to be performed, a

high holding field is the only choice for increasing the SNR. At the same time, because

the imaging process involves encoding the information about spatial positions into the

NMR signals (cf. subsection 2.3.2), degredation in image quality results thus from any

inherent spatial inhomogeneity or temporal instability in the holding magnetic field.

To achieve good field homogeneities, magnets with larger sizes are often essential.

The twofold requirement on the holding field, a high field strength and an excellent

field uniformity, greatly increases the cost of a practical MRI system, and therefore

limits the applicability of the MRI diagnosis method.

The Prepolarized MRI (PMRI) technique was brought to maturity in the last two

decades, trying to use a novel way to reduce the cost of a MRI system. The basic idea

of PMRI is that, the twofold requirement on the holding magnetic field can be divided

in two pieces, and each satisfied by a different field, generated by a different set of

magnet. A strong but inhomogeneous “polarizing field,” Bp, polarizes the proton

spins in the image sample, and a weak but homogeneous “readout field,” Br, acts

as the holding field during the imaging. The quantity Br is usually several hundred

Gauss, and is kept on continuously, while Bp is on the order of 1 Tesla, and is turned

on only for a specific duration. As soon as the protons have gained a satisfactory

polarization, Bp is turned off, field gradients encoding the spacial information are

turned on, and the imaging process begins. With a combination of a high field but

small in size (therefore inhomogeneous) magnet and a large but low field homogeneous

magnet, the fields needed for imaging can be provided. The system is constructed

with a cost reduction of an order of magnitude. Nevertheless, the system produces a

comparable SNR with the single magnet design. (In [26], Morgan et al. demonstrated

a design of PMRI system costing $19,000, whereas a commercial MRI system with a

similar SNR costs $136,000.)
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Using the technique of PMRI, the proton polarization is proportional to the polar-

izing field Bp, and the loss in the polarization by the time the imaging process begins

is estimated to be insignificant. The imaging SNR of a PMRI system was derived to

be [26]

SNR ∝ ωb1Bp∆V
√
tacq

√

TsRs(ω) + TcRc(ω)
, (4.12)

where ω is the readout frequency, b1 is the receiver coil sensitivity, ∆V is the “voxel

size” defined as the smallest distinguishable volume in the image, tacq is the total

imaging time, Ts and Tc are the temperatures of the sample and the receiver coils,

and Rs and Rc are the resistances of the sample and the receiver coils. The sample

resistance Rs is proportional to the square of the readout frequency, whereas Rc varies

more slowly with the frequency. Therefore, when the readout frequency is sufficiently

high, we can usually assume that the body noise dominates over the coil noise, i.e.,

TsRs � TcRc. In this “body noise domination scenario,” the ω term in the SNR gets

cancelled out in the SNR, and we are left with

SNR ∝ Bp∆V
√
tacq√

Ts
. (4.13)

Compared with conventional MRI, the readout frequency ω of PMRI is much

lower, since the readout magnetic field is lower. The MRI signal size is always pro-

portional to the proton polarization. In PMRI, the proton polarization is proportional

to the polarizing field Bp, while in MRI, the polarization is proportional to the hold-

ing field. As seen in Eq. (4.13), the imaging SNR is independent of ω. So we conclude

that, in the body noise domination scenario, a PMRI system can have comparable

SNR with a MRI system, provided that the polarizing field is the same, i.e., Bp = B0.

A schematic of the prototype PMRI system can be found in Fig. 4.7. The polariz-

ing and the readout magnets are separately shown. A set of radio frequency (RF) coils

both provide the RF excitation pulses, and pickup the NMR signals from the sample.

The transmit/receive (T/R) switch controls the RF circuit and switches the circuit

between its two functions. A RF source feeds the RF coils with the excitation pulses.

The preamplifiers receive the image signals, and amplify them. The frequency of the
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Figure 4.7: Schematic demonstrating the design of a PMRI system. Two sets of
magnets together provide the holding magnetic field. The RF coils generate the
excitation pulses, and also record the image signals.

signals is determined by the readout field Br, in that ω = γBr, where γ is the gyro-

magnetic ratio. For the particular system at Stanford, Bp = 0.3 T, with a uniformity

of about 20%, and Br can be adjusted between 0 and 350 Gauss, with a uniformity

∼10 ppm throughout the imaging volume of ∼ 1000 cm3. The polarizing field is

turned on for 300 ms to polarize the protons in the sample before each acquisition.

To demonstrate the imaging quality of the PMRI system, an image of a water

sample cell was produced, shown in Fig. 4.8 [17]. The sample cell had the same

specifications as the 129Xe sample cells used for the imaging, namely a spherical cell

with (2.4±0.1) cm inner diameter. The readout magnetic field used for the image was

93.7 Gauss, corresponding to a readout frequency of 399 kHz. The total imaging time

tacq was 10 s. The technique of two-dimensional Fourier transform imaging (2DFT

imaging, cf. Sec. 2.3) was used for the image. The resulting image is two-dimensional

without slice selection, i.e., a projection of the three-dimensional cell into a single

plane. Therefore, the center of the image is brighter than the edge. The water sample

cell imitated the protrusion on the 129Xe cells, and the protrusion is also observed in

the upper edge of the cell. The imaging field of vision (FOV) was 10 cm×10 cm, and

was divided into an “imaging matrix” of 64×128. So, the resolution of the image in

the two-dimensional plane is 1.56 mm×0.78 mm.
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Figure 4.8: An image of a spherical water sample cell, using the PMRI system con-
structed by the Macovski group. The 2DFT image without slice selection corre-
sponded to the projection of the 3D cell into a plane.

4.3.2 Experimental Design for Performing Hyperpolarized

129Xe MRI in the PMRI System

MRI using laser-polarized 129Xe, usually named hyperpolarized 129Xe MRI in the field

of MRI, does not require a high readout magnetic field to achieve high SNR’s. Similar

to the derivation of Eq. (4.13), we have estimated that the SNR of hyperpolarized

129Xe MRI is, in the body noise dominance scenario,

SNR ∝ PXe∆V
√
tacq√

Ts
, (4.14)

where PXe is the nuclear polarization of 129Xe obtained from the SEOP process. Since

the two imaging techniques, hyperpolarized 129Xe MRI and PMRI, have the common

merit of producing high SNR in low readout fields, they can be realized using a single

low field imaging system.

A straightforward experimental design to perform hyperpolarized 129Xe MRI using

the PMRI system, would be to use the readout field of the system as the holding field

both for the SEOP and for the imaging, and the polarizing field for PMRI would

not be necessary, nor would any extra magnetic field be needed. However, there

was a technical difficulty with this design. The bore of the polarizing magnet had
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a small size (∼10 cm in diameter), making it difficult to design an oven, which can

fit in the bore and heat the cell, yet does not interfere with the magnetic field.

Therefore, we decided on another design, in which the sample cell was polarized in

another independent holding magnetic field, and was subsequently transferred into

the imaging system. The magnetization of the sample cell would align with the earth

magnetic field during the transfer, and upon entering the imaging system, it would

realign with the readout field, and be ready for the imaging.

We built a smaller, and more portable pair of Helmholtz coils to provide the

holding magnetic for the SEOP process for this project. The coils had a diameter of

about 50 cm, and they produced a magnetic field of about 45 Gauss in the central

region, where SEOP was performed. The field gradient at the central of the coils was

measured to be . 0.4 Gauss/cm. During the polarizing stage, the sample cell would

be placed at the coils’ center, laser beam from the diode laser would be guided to

the cell. Since the purpose of the magnetic field was solely for the SEOP, a good

field homogeneity was not required, and it was not essential to keep all feromagnetic

elements away from the coil. So, to make the setup simple and portable, we used

a heat gun, instead of an oven, to maintain the cell temperature of about 100◦C. A

schematic of the polarizing system can be found in Fig. 4.9. Not shown in the sketch

is the resistance temperature detector (RTD) for monitoring the cell temperature.

One problem with the above design is the loss of 129Xe nuclear polarization during

the transfer and the imaging stages. During the SEOP, the cell had to be at a tem-

perature of about 100◦C, so that it contained Rb vapor of a sufficiently high density

for the SEOP. Once the cell left the laser beam, the Rb vapor would change from

a source of polarization into a sink, and contribute a large portion of the relaxation

of 129Xe polarization. A high cell temperature would also increase the sample noise

level. So, it was desirable for the cell to be cooled down between the polarizing and

the imaging processes. In practice, the cell was immersed in cold water for about

5 seconds so that its temperature decreased to 40-50◦C, and the Rb vapor density in

the cell became negligible.

The time it took to transfer the cell from the polarizing system to the imaging
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Figure 4.9: A sketch of the polarizing system for our hyperpolarized 129Xe imaging
study. A diode laser provided the beam for SEOP, a pair of Helmholtz coils provided
the holding magnetic field. The sample cell was heated using a heat gun to about
100◦C.

system, including the immersion in water, was about 10 seconds. The imaging time

was about 15 seconds. So, we had to make sure that throughout the imaging time,

the 129Xe in the cell had a sufficient nuclear polarization. In other words, we needed

to check that the relaxation time of the nuclear polarization of 129Xe in the sample

cell would not be much shorter than 25 seconds, and the transfer would not induce

any extra loss in the 129Xe polarization.

To test the feasibility of the plan of transferring the cell before imaging, we carried

out a measurement at Caltech, before shipping the cells and coils to Stanford. A

sample cell was put in the center region of the coils, heated up, and underwent

approximately 10 minutes of SEOP. The cell was then removed from the polarizing

field, immersed in cold water for 5 seconds, and put in the AFP system at Caltech

(described in Sec. 3.1). We then performed several consecutive AFP measurements.

It turned out that on average, we were able to obtain 3-5 129Xe AFP signals, before

the signal decayed to unacceptably low levels. Cell C5, which was used as an example

of water calibration for the 129Xe nuclear polarization, had a particularly long lifetime.

The lock-in amplifier was adjusted so that for each AFP signal, the entire signal was
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±

Figure 4.10: Time-decay of AFP signals produced by cell C5. These signals were
obtained after the 129Xe inside had been polarized to an equilibrium value by SEOP,
and the cell had been removed from the laser beam, cooled and placed in the AFP
system. The t = 0 point corresponded to the time when the cell was removed from
the laser beam. The square data points were first peaks of the AFP signals. From
them a solid line is fitted as an exponential decay.

projected into one output channel, and we used the first of the two peaks for the

analysis. The size of these first peaks was plotted as a function of time, and fitted

to an exponential decay. From the fit, we estimate the 129Xe nuclear polarization

lifetime in cell C5 to be (69 ± 5) sec. The plot and the fit are shown in Fig. 4.10.

Note that the lifetime was obtained at 40-50◦C (i.e., when no Rb vapor was in the

cell to interact with the 129Xe nuclei).

Fits as in Fig. 4.10 were not accurate enough for the purpose of determining the

spin-exchange rate constants (so we used other approaches in Ch. 3), but it was safe

to conclude from them that, after being transferred from the polarizing system to the

imaging system, the 129Xe nuclear polarizations in the cells would still be sufficiently

large for the imaging. It should be noted that, in this design of polarizing and imaging

in different magnetic fields, to calculate the SNR of hyperpolarized 129Xe MRI, the

quantity PXe in Eq. (4.14) should be interpretated as the time average of PXe(t) during
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the imaging time. If the lifetime of PXe was 70 sec, the time between the sample cell’s

removal from the polarizing laser beam and the beginning of imaging was 10 sec, and

the imaging lasted 15 sec, then the averaged PXe would be about one fourth less than

the equilibrium value of PXe during the SEOP process.

Two of our spherical sample cells, labelled as C3 and C5, were selected for the final

imaging studies. They both had long 129Xe polarization lifetimes (i.e., ∼ 70 seconds),

and they both produced equilibrium 129Xe polarizations of 3-5% during SEOP. They

were shipped to Stanford together with the small pair of Helmholtz coils, and we

proceeded to image them.

4.4 Imaging Results

At Stanford, we set up the polarizing system in the same way as described in subsec-

tion 4.3.2, and performed the following tests with the polarize-and-transfer approach

described above. For a first test, we tried to produce a NMR signal of the 129Xe

sample cell without encoding the spatial information, that is, without separating the

signals generated by different parts of the cell. The result is shown in Fig. 4.11. In

the figure, the x-axis is “∆f ,” defined as the frequency detuning from the resonance

frequency. The signal size is given in arbitrary units. The readout field used for the

signal was 33.6 mT=336 Gauss, corresponding to the resonance frequency of 398 kHz.

The bandwith of the receiving circuit was set to be ±2415 kHz, for this signal and

for all the following NMR signals. The polarizing magnetic field was not activated.

The SNR for the signal was estimated to be 20:1, and was satisfactory for performing

imaging tests.

For comparison, we also recorded two water NMR signals. For the acquisition

of the first water signal, the prepolarizing technique was applied. The polarizing

magnetic field was 0.3 T, and the readout field had the same strength as the 129Xe

NMR, corresponding to a resonance frequency of 1430 kHz. The NMR signal is shown

in Fig. 4.12. The plot is centered on the resonance frequency 1430 kHz. The SNR of

the signal was estimated to be 100:1.
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Figure 4.11: A NMR signal obtained using a sample cell containing hyperpolarized
129Xe.

For a second test, we performed water NMR without the prepolarizing process.

The proton polarization was the thermal polarization induced by the readout mag-

netic field. The resonance frequency was chosen to be approximately the same as the

129Xe NMR frequency, so the readout magnetic field was set at 9.37 mT, which corre-

sponds to a resonance frequency of 399 kHz. The water signal is shown in Fig. 4.13.

The plot is also centered at the resonance frequency. The signal had a SNR of ∼10:1.

From the three NMR signals, it is clear that both the hyperpolarizing technique

and the prepolarizing technique can produce low magnetic field NMR signals with

good SNR.

Next, we tried to obtain hyperpolarized 129Xe MR images. We performed the

2DFT imaging without slice selection. A RF pulse was used to tip all the 129Xe

magnetons in the sample cell (not just a slice of atoms) by 13.5◦. Imaging signals

were then recorded, and the magnetization returned to the direction of the holding

field due to the “T2 processes” (cf. subsection 2.3.1). Such a signal acquisition period

lasted 255 msec, and was repeated 64 times. The total imaging time was 16.3 seconds.
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Figure 4.12: A water NMR signal, obtained using the prepolarizing technique. The
sample cell was a spherical one containing deionized water, and had the same size as
the 129Xe sample cells.
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Figure 4.13: A water NMR signal obtained using the water sample cell, exploiting
only the thermal proton polarization induced by the readout magnetic field.
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Figure 4.14: A hyperpolarized 129Xe MRI, obtained under a low readout magnetic
field.

The imaging FOV was 14.5 cm×10 cm, and the imaging matrix was 128×64, so the

resolution in the x-y plane was 1.13 mm×1.56 mm. The imaging result is shown

in Fig. 4.14. In the figure, the display has been magnified to a field of vision of

4 cm×3.5 cm. The profile of the spherical cell with a protrusion can be clearly

discerned in the figure.

To summarize, the hyperpolarized noble gas MRI, in particular the hyperpolarized

129Xe MRI, has the following advantages over conventional water proton MRI. As an

imaging agent, 129Xe produces good imaging SNR, without requiring a high magnetic

field (&0.05 Tesla), and therefore, the cost of the magnets in the imaging system

can be greatly reduced. The gaseous nature of 129Xe enables MRI of void-spaces,

for example lungs. At the same time, unlike 3He, 129Xe can dissolve in blood, so

MRI of other tissues is also possible. Because 129Xe is not naturally abundant in

the human body, the imaging agent will be concentrated in the region where it is

injected/inhaled, and the background signal will be minimal. Due to 129Xe’s larger

chemical shift, it has a better sensitivity to the environments. For example, the 129Xe

chemical shift is dependent on the oxygenation level of the blood, and this feature

has been exploited in the work by Wolber et al. [49].

On the other hand, compared with water MRI, the disadvantages of hyperpo-
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larized 129Xe MRI include: the 129Xe nuclear polarization induced by SEOP is a

non-equilibrium polarization, and it decays with time, usually on the timescale of

several tens of seconds. The polarization decay limits the available time for transfer-

ring polarized 129Xe to the part to be imaged, and for performing MRI. Techniques of

freezing polarized 129Xe during the transfer have been proposed and developed (e.g.,

[18]). Also, the achievable density of 129Xe in human body is low, either when Xe is

inhaled as a gas or is injected as a solute. Since the MRI signal is proportional to

the density of the imaging agent, the low 129Xe density is a disadvantage, and high

nuclear polarizations must be achieved to make the technique practical.

The Prepolarized MRI (PMRI) technique uses protons as the imaging agent, and

uses low readout magnetic fields. Like hyperpolarized 129Xe MRI, PMRI can also

achieve comparable SNR with high magnetic field MRI, so it can also reduce the

cost of the imaging magnets. The proton polarizations induced by the prepolarizing

process are non-equilibrium as well, so the polarizing magnet has to be activated

before every signal acquisition period during the imaging process.

Before our project, low field 129Xe imaging had been reported, for example in works

by Augustine et al. [50] and Tseng et al. [51]. Our collaborative project demonstrated

the first successful attempt to perform both hyperpolarized 129Xe imaging and water

imaging in the same system, under low magnetic field and room temperature. The

results of our project have been previously reported in [17].
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Chapter 5

Future Outlook

Noble gases with nuclear spin-1/2, in particular 129Xe, can receive nuclear spin polar-

izations through spin-exchange optical pumping processes. The nuclear polarizations

thus obtained can be utilized in various applications, including magnetical resonance

imaging for medical diagnose. However, the current achievable nuclear polarization

for 129Xe is still not high enough to become practical for diversified applications.

Therefore, efforts to achieve higher 129Xe polarization are still important.

In this thesis, two research projects have been introduced in detail, and their

outcomes presented. The first project served to determine the constants that char-

acterize the rate of spin-exchange between 129Xe and alkali metals K, Rb, and Cs.

Knowledge of these constants can help predict the build-up rate of 129Xe polarization

through SEOP, as well as the maximum achievable 129Xe polarization for a particular

polarizing scenario. This project was the first to measure the spin-exchange rate con-

stants between 129Xe and the alkalis K and Cs at cell densities of . 1 amagat. In the

project, direct measurements of the alkali number densities in the sample cells were

carried out using the Faraday rotation method. These measurements can provide

more accurate alkali densities than empirical formulae found in the literature.

The second project explored the possibility of using hyperpolarized 129Xe as an

agent for MRI with low magnetic fields. In this project, we demonstrate the first

successful attempt to build a MRI system using a low readout magnetic field (∼
0.01 Tesla) which can perform both water MRI and hyperpolarized 129Xe MRI. The

water MRI was performed using the technique of Prepolarized MRI developed by the
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Macovski group at Stanford university.

For a given SEOP scenario (i.e., fixed laser availability and laser power, fixed wall

relaxation rate of 129Xe polarization in the sample cells, etc.), the knowledge of the

spin-exchange rate constants can help choosing the polarizing parameters necessary

to optimize the production of hyperpolarized 129Xe samples. These parameters in-

clude the choice of alkali metal, the experimental cell temperature and thus the vapor

density of the alkali metal, and the densities of Xe and N2 in the sample cell. Fu-

ture studies can be designed to achieve better efficiency for producing polarized 129Xe

sample in various applications. Coating the inner walls of the sample cells to reduce

the wall relaxation rate of 129Xe polarization [52, 53], and developments of cheaper

lasers would also facilitate in the mass production of hyperpolarized 129Xe. Numerous

research groups are also exploiting polarized 129Xe with the current achievable po-

larizations, for medical and material applications (for example, [54, 55]). The study

of polarized 129Xe is still a lively and active field with many promising applications.

Achieving high polarizations for large volume 129Xe is still a fruitful endeavor.
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