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by
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Abstract

This thesis presents a family of discrete differential operators. Since these operators are derived
taking into account the continuous notions of differential geometry, they possess many similar
properties. This family consists of first- and second-order properties, both geometric and para-
metric. These operators are then analyzed and their practical use is tested in several example
applications.

First, the operators are used in a smoothing application. Due to the properties of the opera-
tors, the resulting smoothing algorithm is general, efficient and robust to sampling problems. The
smoothing can be applied to many different inputs ranging from images to surfaces to volume
data.

Second, a surface remeshing technique using the operators is presented. Given the operators,
we present an algorithm that resamples a surface mesh according to several geometric criteria
(integrated curvature, directional curvature, geometric distortion). The resulting algorithm is
efficient, general and user-tunable.

Next, a surface mesh parameterization technique is presented. Using geometric invariants as-
sociated with the discrete operators, we present an efficient, tunable parameterization algorithm
that is robust to sampling irregularities in the input model. Using the properties of the differ-
ential operators allows us to make a parameterization algorithm that relies only on geometric
information and not the original parameterization of the input model.

Finally, we conclude and present future work including physical simulation and sampling

theory.
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Chapter 1

Introduction

1.1 Motivation

The study and estimation of differential quantities on surfaces (such as curvatures) are funda-
mental to applications in many fields. Computer Graphics is no exception with many potential

applications including (see Figure 1.1):

Rendering / Shading: Shading computations are used in almost every Computer Graphics ap-
plication. Programmable shaders allow artists and designers to achieve a wide variety of
effects ranging from physically based subsurface scattering to cartoon/cel-shading. These
shaders often use a surface’s differential properties for filtering, aiding texture lookups,
and general color computations. Non-photorealistic shading techniques [DFRSO03], such
as diagramatic and toon shading, often use curvatures and their derivatives to determine

where to place suggestive contours and where to place shading discontinuities.

Smoothing: Surface smoothing and enhancement algorithms are becoming more and more
commonplace in the fields of Computer Graphics, Computer Vision and CAGD (Com-
puter Aided Geometrical Design). The use of scanning devices to create surface models
has increased rapidly in recent years. While these devices can produce highly detailed
models of real-world objects, they also have the inherent problem of noise and scanning
errors. Curvature flow as well as other PDEs (partial differential equations) can be used to

remove this noise by smoothing the surface.

1
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Figure 1.1: Some applications of differential operators: (a) Non-photorealistic renderings

[DFRS03] can use curvatures (and their derivatives) to determine where to draw suggestive
contours, (b) a surface smoothing technique using curvature flow to reduce the noise caused by
laser scanning, (c) a remeshing algorithm uses curvature to place more samples in regions of
high curvature, where more detail is present, (d) a parameterization algorithm uses differential

guantities to minimize distortion.

Simplification / Remeshing: Mesh simplification and remeshing procedures are often used to
resample a mesh to create another with a reduced (or increased) number of samples while
maintaining some notion of error (usually geometric accuracy). Mesh simplification algo-
rithms [HG99] often use curvature estimates to determine which areas can be simplified
and to guarantee optimal triangulations. Similarly, remeshing algorithms [AMDO02] are

typically driven by curvature to sample with increased density in regions of high curvature.

Parameterization: Surface parameterization algorithms involve computing a mapping between
a surface and some other domain (often a flattened (2D) version of the surface). This
mapping can then be used to transfer quantities from the chosen domain to the surface

for operations such as texture mapping. Additionally, algorithms can be computed in (or



cached on) the parameter domain when it may be difficult to apply the same algorithm
to the surface directly — care must be taken, however, to account for the distortion and
differences between the surface and the parameter domain. To reduce this problem, these
parameterizations are often computed while trying to minimize some notion of distortion
(angle differences, length differences, area differences, etc.). These distortion measures
often involve differential properties of the surface such as curvatures (and their integrals)

and thus can benefit from robust and accurate estimations of these differential properties.

Simulation: With the increased computing power enjoyed today, simulation is becoming a more
and more important tool in many fields including Computer Graphics. Simulation allows
artists and animators to achieve realistic motions and fine details without requiring the
manual specification of every vertex or shaded pixel. This allows the creation of sec-
ondary motions and small-scale details that would otherwise have been prohibitively ex-
pensive. Simulations also provide predictive power allowing for more efficient tests and
experiments that may have been impractical using other means (due to time constraints,
expense, safety, etc.). PDEs computed using differential quantities are often used to drive

intricate simulations of clothing, skin, muscles, clouds, and fluids just to name a few.

Although differential surface properties have been well studied in other fields, Computer
Graphics has one important difference: while most fields use a continuous notion for a surface,
in Computer Graphics, we often use a discrete (or at gf)siescription of the surface — namely
triangle meshes. Because of this difference, it is difficult to directly transfer the existing formulae
and results to Computer Graphics applications. In fact, despite extensive use of triangle meshes
in Computer Graphics and the obviously many uses of differential operators, there is no consen-
sus on the most appropriate way to estimate simple geometric attributes such as normal vectors

and curvatures on discrete surfaces.

1.2 Contributions

This thesis defines one method for extending the continuous defintion and estimating differen-
tial properties on discrete surfaces. We define and derive operators that compute the first- and

second-order differential attributes (normal vectpmean curvature 7, Gaussian curvatures;,



principal curvatures;; andx., and principal directions; ande,) for piecewise linear surfaces

such as arbitrary triangle meshes. We present a unified framework for deriving such quantities

resulting in a set of operators that is consistent, accurate, robust (in both regular and irregular

sampling) and simple to compute. Additionally, as we show, many of these operators can be

generalized to any 2-manifold (or even 3-manifold) in an arbitrary dimension embedding space.
We then demonstrate the accuracy and usefulness of these operators in several different ge-

ometry processing applications:

¢ An efficient and robussmoothing algorithm that uses the differential operators to inte-

grate a surface flow PDE.

¢ Afast and tunableemeshing algorithmthat uses the differential operators in conjunction

with user requests to determine where to place the surface samples.

e A parameterization techniquethat uses the differential properties of the surface to define

the distortion metric to be minimized.

1.3 Thesis Overview

The remainder of this dissertation is organized as follows:

Chapter 2 reviews notions and formulae from continuous differential geometry and details why
alocal spatial averagef differential attributes over the immediate 1-ring neighborhood is
a good choice to extend the continuous definition to the discrete setting. We then present
a formal derivation of the Mean Curvature Normal, Gaussian Curvature, Principal Curva-
tures, and Principal Directions for triangle meshes using the mixed Finite-Element/Finite-
Volume paradigm. The relevance of our approach is demonstrated by showing the opti-
mality of our operators under mild smoothness conditions. Finally, the accuracy of our

operators is compared to that of previous techniques.

Chapter 3 describes a technique for smoothing using the discrete differential operators. This
technique is general, efficient and robust against sampling rate changes due to the proper-
ties of the operators themselves. Additionally, the smoothing algorithm can be applied to

many different forms of data including images, surfaces, volume data, and vector fields.



Chapter 4 describes a technique for remeshing a triangulated surface. This technique uses the
discrete differential operators to drive the placement of samples and the direction of edges.

The resulting algorithm is extremely efficient, general and robust.

Chapter 5 describes a technique for parameterizing a triangulated 2-manifold. This technique
uses geometric invariants (associated with the properties of our discrete differential opera-
tors) to compute sampling invariant, intrinsic parameterizations. These invariants produce
efficiently solvable linear systems resulting in an invaluable tool for mesh parameteriza-

tion.

Conclusions and Future Work are then discussed to complete the thesis.



Chapter 2

Discrete Differential Operators

In this chapter, we present a unified and consistent set of flexible tools to approximate important
geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We
present a consistent derivation of these first- and second-order differential propertieawsing
eraging Voronoi celleand the mixed Finite-Element/Finite-Volume method, and compare them
to existing formulations. Building upon previous work in discrete geometry, these operators are
closely related to the continuous case, guaranteeing an appropriate extension from the continu-
ous to the discrete setting: they respect most intrinsic properties of the continuous differential
operators.

Since differential geometry provides a well researched, formal basis for describing the dif-
ferential properties of a surface, we begin with a review of several important quantities from
differential geometry (a more complete discussion of differential geometry can be found in one
of the many great texts such as [dC76, Gra98, DHKW92]). This is followed by a discussion of
previous techniques for computing differential quantities on discrete surfaces. We then present
our technique for extending continuous differential operators to the discrete domain using spatial

averaging.

2.1 Notions from Differential Geometry

Let S be a surface (2-manifold) embedded iri,Rescribed by an arbitrary (local) parameteri-

zation of 2 variablesX(u, v), around a poinp. For each point on the surfa¢g we can locally

6



approximate the surface by its tangent plane, orthogonal tadh®al vectomn. Ignoring the
surface orientation, the normal vector®ft a pointp is given by:
n_ Xy X Xy
[[Xu x Xyl
where the subscripts indicate partial derivatives.
Using these same derivatives, we can describe the local shape of the $urfaaep. The

first fundamental form describes the change on the surface for a given small change in the pa-

rametergu, v), and is given by
| (u,v, du, dv) = dX - dX = du’ Gdu,

with du = (du,dv)”, and

The second fundamental form describes the change in the unit normal for a given small

change in the parameters, v), and is defined by
Il (u, v, du, dv) = —dX - dn = du? Ddu,

where

D N-Xyu N-Xyy
N Xup N Xyy
Note that the first fundamental form is invariant to the choice of surface parameterization
as well as rigid motions of the surface (rotations and translations). Since it does not depend
on the embedding of the surface, the first fundamental form istansic property. The second
fundamental form, on the other hand, does depend on the embeddirandfis therefore known
as arextrinsicproperty of the surface.

Using these two fundamental forms, we can locally describe the surface shape using the



shape operatoror Weingarten map :
B(t) =G 'Dt = —Vin,

wheret is a vector in the tangent plane@and—V¢n is the directional derivative of the normal

n in the directiont:

Vyn = lim n(p+at) —n(p)
a—0 «

Therefore, the shape operatgr,is a linear operator mappirig S — TpS, whereTp S is the
tangent space &f atp. It measures the change in normal in the directiand, as we shall see,

is useful for measuring the bending and local shape of the surface.

2.1.1 Curvatures and Principal Directions

Local bending of the surface is measuredchyvatures For every unit direction in the tangent
plane, the normal curvature” (t) is defined as the curvature of the curve that belongs to both

the surface itself and the plane containing bogndt:

The twoprincipal curvaturesx; andk. of the surfaceS, with their associated orthogonal
directionse; ande,, are the extremum values of the normal curvatures over all diredtifsee
Figure 2.1(a)). If we parameterize the directiarsy 0, the angle betweee, andt, the normal

curvature can be expressed in terms of the principal curvatures:
&N(0) = kicos?(0) + rasin®(6).
Themean curvature: g is defined as the average of the normal curvatures:

1 21
KE = ~— xN(6)dh. (2.1)



Using the above relation for normal curvatures, leads to the well-known definition:

K1+ Ko
Ky = 5 .

TheGaussian curvature is defined as the product of the two principle curvatures:
KGg = K1K2 . (2.2)

These latter two curvatures represent important local properties of a surface. Points on the
surface are often classified based on their mean and Gaussian curvatugs>- {f the point is
elliptic, if kg < 0 the point ishyperboliG if k¢ = 0 andxy # 0 the point isparabolic, and if
ke = kg = 0the point isplanar.

Lagrange noticed thaty = 0 is the Euler-Lagrange equation for surface area minimization.
This gave rise to a considerable body of literature on minimal surfaces and provides a direct

relation between surface area minimization and mean curvature flow:

2kgn= lim V—A
" _diam(.A)—>0 A

where A is a infinitesimal area around a poimton the surfacediam(.A) its diameter, and/
is the gradient with respect to ttie, y, z) coordinates op. We will make extensive use of the
mean curvature normaly n. Therefore, we will denote bi the operator that maps a point
p on the surface to the vectér(p) = 2k (p) n(p). K is also known as the Laplace-Beltrami
operator for the surfacg. Note that in the remainder of this chapter we will make no distinction
between an operator and the value of this operator at a point as it will be clear from context.
Gaussian curvature can also be expressed as a limit:

A9

lim

kG = —
¢ diam(A)—0 A ’

(2.3)

where.4Y is the area of the image of the Gauss map (also called the spherical image) associated

with the infinitesimal surfacel.
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2.1.2 Principal Quadric

The portion of a surfac8 near a poinp can be locally represented by the height field (or Monge
patch)h(z,y) = z, with p at the origin and the normalatp in the direction of the z-axis. Using
a Taylor Expansion ol and dropping the higher-order terms results in a quadratic surface which

approximatesS to second-order:
1
z= 5(hmsc2 + 2Ry Yy + hyyy?),

where the derivatives of h are evaluateghaflhis surface is known as thgincipal quadricof

S atp. At an elliptic point, the principal quadric is an elliptic paraboloid; at a hyperbolic point,

it is a hyperbolic paraboloid; at a parabolic point, it is a parabolic cylinder; and at a planar point,
it is a plane. Note that, since the principal quadric encodes the same differential information as
the surfaceS at p, computing the principal quadric is often used as a way to compute the the

differential properties of.

2.2 Previous Work

Due to the importance of these differential properties in many computer graphics applications,
it is no surprise that they have been heavily researched. This section describes several methods
for computing differential properties on triangle meshes. In some methods, the vertex normal is
computed at the same time as the curvatures. However, some methods require an estimate of the
vertex normal to compute the curvature properties. Therefore, we begin by desribing methods
for computing the normal at a vertex before discussing techniques for computing the curvatures
such as quadric fitting and direct extensions of continuous equations.

In the following sections, assunfeis an oriented triangle mesh with or without boundary.
Also assume that the orientation is consistent (neighboring triangles have their normals pointing
towards the same side of the surface). For a vgntexe denote the set of 1-ring neighbors as
Ni(p) and the number of such neighboars Similarly, the 1-ring neighborhood @f is the set

of all triangles inT" incident top.
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2.2.1 \Vertex Normal Estimation

Since the surface normal is such a fundamental quantity in computer graphics — useful in algo-
rithms such as shading, culling, even in computing other differential properties — the computation
of vertex normals from a triangle mesh has been studied for many years. It is fairly common to
approximate the normal at a vertgon a triangle mesh by a weighted average of the normals of

the triangles incident tp:

N i Wini

132 winall”
wheren; are the normals of the triangles incidengto

While the averaging of normals is fairly standard, the choice of the weights not.
Gouraud [Gou71] used an uniformly weighted average,i:g= 1. Depending on the arrange-
ment of triangles aroung, this can produce greatly varying normals. To reduce this problem,
Thiirmer and Vilithrich [TW98] use the angle incidentpoon thei-th face as the weighty; = 6;.
This fits their claim that the normal vector should only be defined very locally, however, this nor-
mal remains consistent only if the faces are subdivided linearly, introducing vertices which are
not on a smooth surface. Max [Max99] derived weights by assuming that the surface locally

approximates a sphere:

sinb;

T

Wi

wherep, are the (ordered) neighbors pfin facei. These weights are therefore exact if the
object is a (even irregular) tessellation of a sphere. However, it is unclear how this approxima-
tion behaves on more complex meshes, since no error bounds are defined. Additionally, many
meshes have local sampling adapted to local flatness, contradicting the main property of this ap-
proach. Even for a property as fundamental as the surface normal, we can see that several (often

contradictory) formulee exist.
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2.2.2 Principal Quadric Fitting

One of the most common ways of computing the differential properties at the vertices of a tri-
angle mesh is by locally fitting a continuous surface and computing the curvatures on this con-
tinuous surface [Ham93]. Since we are intereseted in second-order derivative properties, fitting
a quadric intuitively makes sense. In fact, it has been shown that fitting higher-order surfaces
has little advantage [KLM98] over fitting quadrics. Therefore, in this section, we will describe
techniques for fitting quadrics to triangle meshes and how to recover the associated differential
properties'.

While the parameters of the principal quadric could be directly estimated using an procedure
to fit to the 1-ring neighbors dd, this results in a non-linear optimization problem. More com-
monly, the surface normal is first computed, then the quadric is fit in a rotated space. The steps

are as follows:
1. Estimate the surface nornrahtp

2. Construct the rotation matrRR = (rq,ro, rg)T:

(I —nn7T)j

= [ann)i

ro =rsxry, rs=n
3. Map the 1-ring dataq(;) into the rotated frame:

q; =R(g; —p)
4. Using the rotated 1-ring neighbags fit the quadric using least squares:

7 = ai® + bij + i’

5. Solve forky, ko, andf (the angle between theaxis and the first principal direction):

kig=a+ct/(a—c)?+b?

0 = satan2(b,a — c)

1This section loosely follows the exposition laid out in [MV97].
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Note that this method relies heavily on the accuracy of the normal vector computation. This
dependence can be reduced by fitting an extended quadric and iteratively adjusting the normal.

The steps remain the same as before except for steps 4 and 5 which become:

4. Fit the extended quadric:
7 = aZ® 4 by + cj? + di +ej

This gives a new estimate for the surface normal:

(_d7 —€, 1)T

n= -
(d*>+e2+1)2

From this, a new rotatioR can be computed (step 2) and steps 2, 3, 4 can be repeated

until the change in normal is below a threshold.
5. Estimate the differential parameters from the extended quadric.

Note that this method could be further extended by adding a translationftésrthe extended

guadric to account for error in the positionmf

2.2.3 Statistical Methods

When trying to estimate the differential properties of a discrete surface, one of the biggest prob-
lems is noise. For this reason, several researchers have looked into statistical methods similar to
those in signal processing using covariance matrices. These statistical methods have the benefit
of being relatively insensitive to noise. The surface covariance matrix for the 1-ring neighbor-

hood ofp is:
C =

whereq is the centroid of the neighbors pf Note that the eigenvectors of this matrix are two
tangent vectors; andt, and the normah, making the matrix; similar to the first fundamental

form matrixg.
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Similarly, one can define a covariance matrix that is analogous to the second fundamental
form matrix D. This is done by projecting the edge frgmto g; onto the tangent plane and

scaling it by the orthogonal distance framto the tangent plane:

d=[(p—q) np—g) | " |
to

and then defining the covariance matrix:

The eigenvectors of this covariance matrix then estimate the principal directions.

2.2.4 Extensions From Differential Geometry

In addition to the methods mentioned above, several researchers have attempted to directly use
the formulae from continuous differential geometry on triangulated surfaces in order to compute
the differential properties of the triangle mesh itself. Many researchers have used curves formed
by the surface to determine the curvature. For instance, [CS92] creates circles using triples
of q;pq;, whereq;, g, are neighbors op, and then uses the curvatures of these circles along
with Meusnier’s theorem from continuous differential geometry (which relates the curvature

of surface curves to the curvature of the surface) to compute the differential properites of the
surface. Others have used the difference in normals between adjacent vertices as a measure of the
normal curvature and then used these normal curvatures to derive the full differential properties
of the surface.

[AvD95] use the fact that the mean curvature is always the average of a normal curvature
in one direction and a normal curvature in the perpendicular direction to show that the mean
curvature at the points along an edge is one half the dihedral angle (the angle between the two
adjacent faces). Using this, they average the mean curvatures from the edges around a vertex to
produce the mean curvature at the vertex.

Taubin proposed the most complete derivation of surface properties, leading to a discrete

approximation of the curvature tensors for polyhedral surfaces [Tau95a]. Let us consider the
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matrix:

1 ™
/\/l:/ N ttTadg,
2 J_,

wheret is a tangent vector. It can be shown that this 3 symmetric matrix has eigenvalues of
0, A1, A2 with the corresponding eigenvectarse;, e;. The principal curvatures of the surface

can then be computed as:
H1:3)\1—A2, H2:3)\2—A1 .

By first estimating the normal, and then projecting each outgoing pdgeo define a unit

tangent;, Taubin proposed to approximate the matkik as:

M = Z w; I{,N(ti) ti tIT,
qieNl(p)
where the weights); are proportional to the areas of the triangles adjacent to thepaggeon-
strained so that they sum to unity. The normal curvaidYét; ) is approximated by constructing

an osculating circle using, n, andg, and computing the inverse of its radius:

KN () = 2n - (g; — 5) _
19 — Pl
Once the matrixM is computed, the principal curvatures and directions can easily be recovered
using standard eigenvector decomposition techniques.

This thesis is closely related to these works since we also derive the differential properties
of a triangulated surface using extensions of properties from continuous differential geometry.
In order to preserve fundamental invariants from the continuous domain, we have followed a
path initiated by Federer, Fu, Polthier, and Morvan to name a few [Fu93, PP93, PS98, Mor01,
TMOZ2]. This series of work proposed simple expressions for the total curvatures, as well as the
Dirichlet energy for triangle meshes, and derived discrete methods to compute minimal surfaces
or geodesics. We refer the reader to the overview compiled by Morvan [MorO1]. Note also the

tight connection with the “Mimetic Discretizations” used in computational physics by Shashkov,
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Hyman, and Steinberg [HS97, HSS97]. Although it shares a lot of similarities with all these
approaches, our work offers a different, unified derivation that ensures accuracy and tight error

bounds, leading to simple formulee that are straightforward to implement.

(a) (b) (c)
Figure 2.1:Local regions: (a) an infinitesimal neighborhood on a continuous surface patch; (b)

a finite-volume region on a triangulated surface using Voronoai cells, or (c) Barycentric cells.

2.3 Discrete Properties As Spatial Averages

Most of the smooth definitions for differential properties described above need to be reformulated
for CY surfaces. We can consider a mesh as either the limit of a family of smooth surfaces, or
as a linear (yet assumedly “good”) approximation of an arbitrary surface. Since we wish for the
total (integrated) value of the property to be independent of the number of samples in the triangle
mesh, we define properties (geometric quantities) of the surface at each vespexialkaverages
around this vertex. This area-averaging is known as the finite volume method. Although this
thesis uses piecewise constant weighting functions (in the finite-element/finite-volume sense),
more complex weighting functions can easily be incorporated into the area-averaging scheme.
By using these spatial averages, we extend the definition of curvature or normal vector from
the continuous case to discrete meshes. Moreover, this definition is appropriate when, for exam-
ple, geometric flows must be integrated over time on a mesh as a vertex will be updated according
to the average behavior of the surface around it. Therefore, the piecewise linear result of the flow
will be a correct approximation of the smoothed surface if the initial triangle mesh was a good
approximation of the initial surface. Since we make no assumption on the smoothness of the sur-

face, we will restrict the average to be within the immediately neighboring triangles, the 1-ring
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neighborhood. For example, we define the discrete Gaussian curvatyiat,a vertexP as:

o= ff
kg = — kg dA,
AJJSa

whereA is a properly selected area arouRdNote however that we will not distinguish between
the (continuous) pointwise and the (discrete) spatially averaged notation, except when there may

be ambiguity.

2.3.1 General Procedure Overview

The next sections describe how we derive accurate numerical estimates of the first- and second-
order operators at any vertex on an arbitrary mesh. We first restrict the averaging area to a family
of special local surface patches denatg. These regions will be contained within the 1-ring
neighborhood of each vertex, with piecewise linear boundaries crossing the mesh edges at their
midpoints (Figures 2.1(b) and (c)). We show that this choice guarantees correspondences be-
tween the continuous and the discrete case. We then find the precise surface patch that optimizes
the accuracy of our operators, completing the operator derivation. These steps will be explained
in detail for the first operator, the mean curvature normal operdtoand a more direct deriva-

tion will be used for the Gaussian curvature operator the two principal curvature operators

k1 andks, and the two principal direction operat@sande;. All these operators take a vertex

x; and its 1-ring neighborhood as input, and provide an estimate in the form of a simple formula

that we will frame for clarity.

2.4 Discrete Mean Curvature Normal

We now provide a simple and accurate numerical approximation for both the normal vector, and

the mean curvature for surface meshes in 3D.

2.4.1 Derivation of Local Integral Using FE/FV

To derive a spatial average of geometric properties, we use a systematic approach which mixes
finite elements and finite volumes. Since the triangle mesh is meant to visually represent the sur-

face, we select a linear finite element on each triangle, that is, a linear interpolation between the
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three vertices corresponding to each triangle. Then, for each vertex, an associated surface patch
(so-called finite volume in the Mechanics literature), over which the average will be computed,
is chosen. Two main types of finite volumes are common in practice, see Figures 2.1(b-c). In
each case, their piecewise linear boundaries connect the midpoints of the edges emanating from
the center vertex and a point within each adjacent triangle. For the point inside each adjacent
triangle, we can use either the barycenter or the circumcenter. The surface area formed from
using the barycenters is denotdd.....; While the surface area using the circumcenters is rec-
ognized as the local Voronoi cell and denotéd..... In the general case when this point could
be anywhere, we will denote the surface arealas

We now wish to compute the integral of the mean curvature normal over thelgregince
the mean curvature normal operator, also known as Laplace-Beltrami operator, is a generalization
of the Laplacian from flat spaces to manifolds [DHKW92], we first compute the Laplacian of the
surface with respect to treonformal spac@arameters andv. As in [Dzi91] and [PP93], we
use the current surface discretization as the conformal parameter space, that is, for each triangle
of the mesh, the triangle itself defines the local surface metric. With such an induced metric, the

Laplace-Beltrami operator simply turns into a Laplaci®f, X = Xy, + Xy [DHKW92]:

/ /A K(X) dA = — / ) Ay oX du dv. (2.4)

Using Gauss's theorem as described in Appendix A.1, the integral of the Laplacian over a
surface going through the midpoint of each 1-ring edge of a triangulated domain can be expressed
as a function of the node values and the angles of the triangulation. The integral of the Laplace-

Beltrami operator thus reduces to the following simple form:

//A K (X)dA = % S (cot aiy + cot Biy) (% — x;), 2.5)
M JEN1(Xs)
whereo;; and3;; are the two angles opposite to the edge in the two triangles sharing the edge
(X, %;) as depicted in Figure 2.2(a), and (x;) is the set of 1-ring neighbor vertices of veriex
Note that this equation was already obtained by minimizing the Dirichlet energy over a trian-
gulation in [PP93]. Additionally, it can be shown to be the formula for the gradient of the surface

area of the mesh (see Appendix A.2). This confirms, in the discrete setting, the area minimiza-



19

tion nature of the mean curvature normal as derived by Lagrange. We can therefore express our

previous result using the following general formula, valid&owy triangulation

/ /A K(X)dA = 2V Ay ng. (2.6)

where A, ;,, is the 1-ring area around the vertex andV is the gradient with respect to the
(z,vy, z) coordinates OK;.

Notice that the formula results in a zero value for any flat triangulation, regardless of the
shape or size of the triangles of the locally-flat (zero curvature) mesh since the gradient of the
area is zero for any locally flat region.

Although we have found an expression for the integral of the mean curvature normal inde-
pendent of which of the two finite volume discretizations is used, one finite volume region must
be chosen in order to provide an accurate estimate of the spatial average. We show in the next
section that Voronoi cells provide provably tight error bounds under reasonable assumptions of

smoothness.

2.4.2 \Voronoi Regions for Tight Error Bounds

We now show that using Voronoi regions provides provably tight error bounds for the discrete

operators by comparing the local spatial average of mean curvature with the actual pointwise
value. Given a2 surface tiled by small patches; aroundn sample points;, we can define

the errorE created by local averaging of the mean curvature normal compared to its pointwise

value atx; as:

E = Z//iHK(x)—K(xi)WdA

S [ crix-xi s

i A

Cgrmx § // HX _Xi||2 dAa
i Ai

IN

IN

where(; is the Lipschitz constant of the Beltrami operator over the smooth surface gatch

andC,,.., the maximum of the Lipschitz constants. The Voronoi region of each samplelpoint
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definitionminimizes||x — x;|| since they contain the closest points to each sample, thus minimiz-
ing the bound on the errdr due to spatial averaging [DFG99]. Furthermore, if we add an extra
assumption on the sampling rate with respect to the curvature such that the Lipschitz constants
from patch to patch vary slowly with a ratig we can actually guarantee that the Voronoi cell
borders are less thaf(e) away from the optimal borders. As this still holds in the limit for a
triangle mesh, we use the vertices of the mesh as sample points, and pick the Voronoi cells of the
vertices as associated finite-volume regions. This will guarantee optimized numerical estimates

and, as we will see, determining these Voronoi cells requires few extra computations.

2.4.3 Voronoi Region Area

Given a non-obtuse triangle @, R with circumcentelO, as depicted in Figure 2.2(b), we must
now compute the Voronoi region f@?. Using the properties of perpendicular bisectors, we find :
a+b+c=m/2,andthereforeg = 7/2 — ZQ andc = 7/2 — ZR. The Voronoi area for poinP

lies within this triangle if the triangle is non-obtuse, and is th$P R|*cot ZQ+| PQ|*cot LR).
Summing these areas for the whole 1-ring neighborhood, we can write the non-obtuse Voronoi

area for a vertex; as a function of the neighbors:

1
Asonss = > (cot i + cot Big) X — %;11%. 2.7)

JEN1(X;)
Since the cotangent terms were already computed for Eq. (2.5), the Voronoi area can be computed
very efficiently. However, if there is an obtuse triangle among the 1-ring neighbors or among the
triangles edge-adjacent to the 1-ring triangles, the Voronoi region either extends beyond the 1-
ring, or is truncated compared to our area computation. In either case our derived formula no

longer stands.

2.4.4 Extension To Arbitrary Meshes

The previous expression for the Voronoi finite-volume area does not hold in the presence of
obtuse angles. However, the integral of the Laplace-Beltrami operator given in equation (2.6)
holds even for obtuse 1-ring neighborhoods — the only assumption used is that the finite-volume

region goes through the midpoint of the edges. It is 8tillsvalid even in obtuse triangulations
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(a) (b) (©)
Figure 2.2:(a) 1-ring neighbors and angles opposite to an edge; (b) Voronoi region on a non-

obtuse triangle; (c) External angles of a Voronoi region.

Therefore, we could simply divide the integral evaluation by the barycenter finite-volume area
in lieu of the Voronoi area for vertices near obtuse angles to determine the spatial average value.
We use a slightly more subtle area, to guarantee a perfect tiling of our surface, and therefore,
optimized accuracy as each point on the surface is counted once and only once. We define a
new surface area for each vertexdenotedA,,... for each non-obtuse triangle, we use the
circumcenter point, and for each obtuse triangle, we use the midpoint of the edge opposite to the
obtuse angle. Algorithmically, this area around a paictin be easily computed as detailed in
Figure 2.3. Note that the derivation for the integral of the mean curvature normal is still valid
for this mixed area since the boundaries of the area remain inside the 1-ring neighborhood and
go through the midpoint of each edge. Moreover, these mixed areas tile the surface without
overlapping. This new cell definition is equivalent to a local adjustment of the diagonal mass
matrix in a finite element framework in order to ensure a correct evaluation. The error bounds
are not as tight when local angles are more tha®, and therefore, numerical experiments are

expected to be worse in areas with obtuse triangles.

2.4.5 Discrete Mean Curvature Normal Operator

Now that the mixed area is defined, we can express the mean curvature normal dpelefined

in Section 2.1 using the following expression:

Mean Curvature Normal Operator

1

2 ixe .
Aured FENT(X;)

K(Xl) = (COt ;5 + cot ﬁU) (Xi — Xj) (2.8)




22

AMixed = 0
For each triangl€” from the 1-ring neighborhood of
If T is non-obtuse, // Voronoi safe
/I Add Voronoi formula (see Section 2.4.3)
Awixea+ = Voronoi region ofx in T’
Else /I Voronoi inappropriate
/I Add either area( T) 4 or area( T) 2
If the angle ofT" atx is obtuse
Apixeat+ = area(l’)/2
Else
Apixea+ = areall)/4

Figure 2.3:Pseudo-code for regiod,,.q ON an arbitrary mesh

From this expression, we can easily compute the mean curvature vglily taking half
of the magnitude of this last expression. As for the normal vector, we can just normalize the
resulting vectorK (x;). In the special (rare) case of zero mean curvature (flat plane or local
saddle point), we simply average the 1-ring face normal vectors to evalageropriately.

It is interesting to notice that using the barycentric area as an averaging region results in an
operator very similar to the definition of the mean curvature normal by DegbtalfDMSB99],
Since Agaycener IS @ third of the whole 1-ring ared, ,, used in their derivation — however, our
new derivation useson-overlappingegions and is therefore more accurate. At this time, we
are not aware of a proof of convergence for this operator. However, our tests have shown no
divergence as we refine a mesh, as long as we do not degrade the mesh quality (the triangles
must not degenerate). We will give more precise numerical results in Section 2.7.1 showing the

improved quality of our new estimate.

2.5 Discrete Gaussian Curvature

In this section, the Gaussian curvatuge for bivariate (2D) meshes embedded in 3D is studied.

We will demonstrate that a derivation similar to the above is easily obtained.
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2.5.1 Expression of the Local Integral ofkg

Similar to what was done for the mean curvature normal operator, we first need to find an exact
value of the integral of the Gaussian curvatuge over a finite-volume region on a piecewise
linear surface. From Eq. (2.3), we could compute the integral over anfrea the associated
spherical image area (also called the image of the Gauss map). Instead, weGiaessd3onnet
theoremDHKW92, Gra98, AZ67] which proposes a very simple equality, valid over any surface

patch. Applied to our local finite-volume regions, the Gauss-Bonnet theorem simply states:

// ngdA:27T—Zej,
Am

J
where the:; are the external angles of the boundary, as indicated in Figure 2.2(c). Note that this
simplified form results from the fact that the integral of geodesic curvature on the piece-wise
linear boundaries is zero. If we apply this expression to a Voronoi region, the external angles are
zero across each edge (since the boundary stays perpendicular to the edge), and the external angle
at a circumcenter is simply equal 89, the angle of the triangle at the vertex Therefore, the
integral of the Gaussian curvature (also called total curvature) for non-obtuse triangulations is:
21 — Zj 6;. This resultis still valid for the mixed region and is proven using a similar geometric
argument. This result was already proven by Polthier and Schmies [PS98], who considered the
area of the image of the Gauss map for a vertex on a polyhedral surface. Therefore, analogous

to Eqg. (2.6), we can now write for the 1-ring neighborhood of a vextex

#/

// ﬁgdAZQTF—ZQj,
Awm

J=1

whered); is the angle of thg-th face at the vertex;, and# f denotes the number of faces
around this vertex. Note again that this formula holds for any surface phtaehithin the 1-ring

neighborhood whose boundary crosses the edges at their midpoint.

2.5.2 Discrete Gaussian Curvature Operator

To estimate the local spatial average of the Gaussian curvature, we use the same arguments as

in 2.4.2 to claim that the Voronoi cell of each vertex is an appropriate local region to use for good
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error bounds. In practice, we use the mixed af@a., to account for obtuse triangulations. Since

the mixed area cells tile the whole surface without any overlap, we will satisfy the (continuous)
Gauss-Bonnet theorem: the integral of the discrete Gaussian curvature over an entire sphere for
example will be equal td7 whatever the discretization ussihce the sphere is a closed object

of genus zero. This result ensures a robust numerical behavior of our discrete operator. Our
Gaussian curvature discrete operator can thus be expressed as:

Gaussian Curvature Operator

#f
Ka(X;) = (2m — Z 0;)/ Avixea (2.9)

=1

Notice that this operator will return zero for any flat surface, as well as any roof-shaped 1-ring
neighborhood, guaranteeing a satisfactory behavior for trivial cases. Note alsortliatgence
conditions(using fatness or straightness) exist for this operator [Fu93, TM02], proving that if the
triangle mesh does not degenerate, the approximation quality gets better as the mesh is refined.

We postpone numerical tests until Section 2.7.1.

2.6 Discrete Principal Curvatures

We now wish to robustly determine the two principal curvatures, along with their associated
directions. Since the previous derivations give estimates of both Gaussian and mean curvature,
the only additional information that must be sought are the principal directions since the principal

curvatures are, as we are about to see, easy to determine.

2.6.1 Principal Curvatures

We have seen in Section 2.1 that the mean and Gaussian curvatures are easy to express in terms
of the two principal curvatures; andks. Therefore, since bothy andxg have been derived

for triangulated surfaces, we can define the discrete principal curvatures as:
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Principal Curvature Operators

K1 (X,L) = /iH(Xi) + A(Xz) (210)

HQ(XZ') = HH(Xi) — A(Xl) (211)

with:  A(x;) = &% (%) — ke (X;) andr (x;) = %HK(XZ-)H.

Unlike the continuous case wheteis always positive, we must make sure thgtis always
larger tharx to avoid any numerical problems, and threshldo zero if it is not the case (an

extremely rare occurrence).

Mean Curvature as a Quadrature

In order to determine the principal axes at a vertex, we will first show that the mean curvature

from our previous expression can be interpreted as a quadrature of normal curvature samples:

1 1
ru(Xi) = 5 (2er(xn)-n=5K(x)-n

1

= A Z (cot a;j + cot Bij) (Xi —X;5) - n
Mixed jEN1(Xz’)
1 % — ;1|2

= (cot ay; + cot Bij) T——Lo(X; — X;) - N
1 1

= 1 > g@m%ﬁ%d@ﬂWrﬂﬂ2%} (2.12)
Mixed €N1(X¢)

where we define:

YTk =Xl

This Iif}f can be shown to be an estimate of the normal curvature in the direction of the;&¢ge
The radiusRk of the osculating circle going through the verticgsandx; is easily found using

the mean curvature normal estimate as illustrated in Figure A.1(a). Since we must have a right
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angle at the neighbor vertex, we have(x; — X;) - (X; — X; — 2R n) = 0. This implies:

xi — %11

= %)

This proves thats{.}’ is a normal curvature estimate in the direction of the exdge (as it is the
inverse of the radius of the osculating circle). This expression was also used in the context of
curvature approximation in [MS92] and [Tau95a].

Therefore, Eq. (2.12) can be interpreted as a quadrature of the integral from Eqg. (2.1), with

weightsw;;:

/ﬁIH(Xi): Z Wij lﬂg,

JEN1(X;)

where thew;; = z-— [(cot a;j + cot ;) [[x; — x;||*] sum to one for eachon a non-obtuse

triangulation.

2.6.2 Least-Square Fitting for Principal Directions

In order to find the two orthogonal principal curvature directions we can simply compute the
eigenvectors of the curvature tensor. Since the mean curvature obtained from our derivation can
be seen as a quadrature using each edge as a sample direction, we use these samples to find the
best fitting ellipse, in order to fully determine the curvature tensor. In practice, we select the

symmetric curvature tensgras being defined by three unknowns, c:

a b
b ¢

This tensor will provide the normal curvature in any direction in the tangent plane. Therefore,

when we use the direction of the edges of the 1-ring neighborhood, we should find:

T N
t;; Bty = Kigs

wheret;; is the unit directiorin the tangent planef the edgex;x;. Since we know the normal

vector n to the tangent plane, this direction is calculated using a simple projection onto the
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tangent plane:

(Xj —%;) = [(Xj = %) -n] n
(% = %) = [(%; —%;) -] nf| -

tz‘j =

A conventional least-square approximation can be obtained by minimizing thererror

E(a,b,c) =Y w; (t Btij — kil )
j

Adding the two constraints + b = 2k andac — b?> = k¢, to ensure coherent results, turns

the minimization problem into a root-finding problem. Once the three coefficients of the matrix
B are found, we find the two principal axes ande, as the two (orthogonal) eigenvectors

of 8. In practice, all our experiments have demonstrated that the non-linear constraint on the
determinant is not necessary (reducing the problem to a linear system). An example of these
principal directions is shown in Figure 2.5(b).

Although we could actually determine the principal curvatures (and thus the mean and
gaussian curvatures) using an unconstrained least squares procedure (similar to Taubin’s work
[Tau95a]), we use our operators to compute the curvatures and only use the least squares for
the principal directions as the curvature values computed from the least squares atessften
accurate in practice while the directions are fairly robust. A plausible interpretation for the bad
numerical properties of a pure least squares approach is the hypothesis of elliptic curvature vari-
ation: although this is perfectly valid for smooth surfaces, this is somewhat arbitrary for coarse,
triangulated surfaces. It seems therefore more natural to use our previous operators that rely on

differential properties still valid on discrete meshes.

2.7 Operator Quality

Now that we have defined our discrete differential operators, this section examines how the

operators perform numerically and visually on several representative meshes.
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2.7.1 Numerical Quality of Our Operators

We performed a number of tests to demonstrate the accuracy of our approach in practice. First,
we compared our operators to the well-known second-order accurate Finite Difference opera-
tors on several discrete meshes approximating simple surfaces such as spheres, or hyperboloids,
where the curvatures are known analytically. In order to do so, we used special surfaces defined
as height fields over a flat, regular grid so that the FD operators can be computed and tested

against our results. The table below lists some representative results:

W ETTOT FD kg | [DMSB99] kg | ourky || FD kg | ourkg
Sphere patch 0.20 0.17 0.16 0.4 1.2

Paraboloid 0.0055 0.0038 0.0038| 0.01 0.02
Torus (irregular) - 0.047 0.036 - 0.05

Table 2.1:Comparison of our operators with Finite Differences. The error is measured in mean
percent error compared to the exact, known curvature values. Dashes “-” indicate that the
FD tests cannot be performed since the triangulation is irregular. The artgleseded for the
Gaussian curvature were computed using the C funetian2 |, instead oficos or asin since

acos andasin would significantly deteriorate the precision of the results.

Overall, the numerical quality of our operators is equivalent to FD operators for regular
sampling. A major advantage of our new operators over FD operators is that these differential-
geometry based operators cstill be used on irregular sampling, with the same order of accu-
racy.

We also tested our operators against one of the most widely used curvature estimation tech-
niques [Tau95a]. We tested several simple surfaces (spheres, parametric surfaces, etc.) to de-
termine the effect of sampling on the operators. The surfaces were created with 258 points,
guadrisected and reprojected to create surfaces of 1026, 4098 and 16386 points. In all cases, the
average percent error of our operators did not exceed 0.07% for mean curvature and 1.3% for
gaussian curvature. The previous method had average errors of up to 1.8% for mean curvature
and exceeding 10% in some instances for gaussian curvature.

Finally, we tested the effects of irregularity on the operators. In irregular areas of the surfaces

(such as the area joining two regions of different sampling rates), our operators performed with
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(@) (b) (©) (d)

Figure 2.4:Curvature plots of a triangulated saddle using pseudo-colors: (a) Mean, (b) Gaus-

sian, (c) Minimum, (d) Maximum.

the same order of accuracy as in the fairly regular regions (less than 0.2% average error for mean
curvature and below 1.8% average error for gaussian curvature in regions of mild irregularity).
The accuracy of our operators decreases as the irregularity (angle and edge length dispersion)

increases, but, in practice, the rate at which the error increases is low.

2.7.2 Visual Inspection of Meshes

Producing high quality meshes is not an easy task. Checking if a given mesh is appropriately
smooth requires a long inspection with directional or point light sources to detect any visually
unpleasant discontinuities on the surface. Curvature plots (see Figure 2.4), using false color
to texture the mesh according to the different curvatures, can immediately show problems or
potential problems since they will reveal the variation of curvatures in an obvious way. Figure 2.5
demonstrates that even if a surface (obtained by a subdivision scheme) looks very smooth, a
look at the mean curvature map reveals flaws such as discontinuities in the variation of curvature
across the surface. Conversely, curvature plots can reveal unsuspected details on existing scanned
meshes, like the veins on the horse. We tested our operators on a wide variety of meshes from
simple geometric shapes to artist sculpted models to highly detailed scanned models. We found

that our operators produced results visually consistent with the expected curvatures.
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Low High
Curvature Curvature

(b)

(c) (d)
Figure 2.5:Mean curvature plots revealing surface details for: (a) a Loop surface from an 8-
neighbor ring, (b) a horse mesh, (c) a noisy mesh obtained from a 3D scanner and the same
mesh after smoothing. Our operator performs well on irregular sampling such as on the ear of
the horse. Notice also how the operator correctly computes quickly varying curvatures on the
noisy head while returning slowly varying curvatures on the smoothed version. (d) An example

of our principal directions computed on a triangle mesh.

2.8 Discrete Operators innD

Up to this point, we defined and used our geometric operators for bivariate (2D) surfaces embed-

ded in 3D. We propose in this section to generalize our tools for 2D surfaces to any embedding
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space dimensionality, as well as extending the formulae to 3-manifolds (volumesjimen-
sions. This will allow us to apply the same types of algorithms (smoothing techniques, etc.) on

datasets such as vector fields, tensor images, or volume data.

2.8.1 Operators for 2-Manifolds innD

We now extend our operators for 2-parameter surfaces embedded in an arbitrary dimensional

space, such as color images (2D surface in 5D), or bivariate vector field (2D surface in 4D).

Beltrami Operator

As we have seen in Sections 2.1 and 2.4.1, the Beltrami operator is in the direction of surface
area minimization. In order to extend this operator to higher dimensional space, we must first
derive the expression for a surface areaih The area of a triangle formed by two vectars

andv in 3D is 2A = |ju x v||. Being proportional to the sine of the angle between vectors, we

can also express it as:

1 . 1
A= Slullfvllsin(u,v) = Slulllv][V'1 = cos*(u, V)

— SVIEIVE = -, 213

This expression is now valid inD, and is particularly easy to evaluate in any dimension.

We can now derive the gradient of the 1-ring area with respect to the central vertex to find the
analog of Eq. (2.5) imD. We detail this proof in Appendix A.3, but the result is very simple: the
previous cotangent formula is still valid #D if we define the cotangent between two vectors

andv as:
cos(a,b) a-b
sin(@b) /P[P’ - (@ b)*

cot(a,b) =

With this definition, the implementation inD space is straightforward and efficient, as dot

products require little computation.
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Gaussian Curvature Operator

The expression of the Gaussian curvature operator Eq. (2.9) still hold3.imdeed, the Gaus-

sian curvature is an intrinsic attribute of a 2-manifold, and does not depend on the embedding.

2.8.2 Beltrami Operator for 3-Manifolds in nD

We also extend the previous mean curvature normal operator, valid on triangulated surfaces,
to tetrahedralized volumes which are 3-parameter volumes in an embedding space of arbitrary
dimension. This can be used, for example, on any MRI volume data (intensity, vector field or
even tensor fields). For these 3-manifolds, we can compute the gradient of the 1-ring volume this
time to extend the Beltrami operator. Once again, the cotangent formula turns out to be still valid,
but this time for the dihedral angles of the tetrahedrons. Appendix A.4 details the derivation to
prove this result. This Beltrami operator can still be used to denoise volume data as it minimizes

volume just as we denoised meshes through a surface area minimization.

2.9 Conclusion

A complete set of accurate differential operators for any triangulated surface has been presented.
We consistently derived estimates for normal vectors and mean curvatures (Eq. (2.8)), Gaussian
curvatures (Eqg. (2.9)), principal curvatures (Eq. (2.10) and (2.11)), and principal directions (Sec-
tion 2.6.2), and numerically showed their quality. Extended versions of our operator for surfaces
and volumes in higher dimension embedding spaces have also been provided. Our operators
perform as well as established methods such as Finite Differences in the regular setting and de-
grade gracefully as irregularity is increased. In the following chapters, we will show the practical

benefits of our operators in several mesh processing algorithms that we have designed.
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Smoothing

Many times, a triangulated surface does not have the smoothnefsrfmsg required for a

given application. This problem has increased recently due to the use of highly detailed com-
puter graphics objects obtained from imperfectly-measured data from the real-world. When this
occurs, the mesh must be smoothed to remove undesirable noise and uneven edges while retain-
ing desirable geometric features (see Figure 3.1). In this chapter, we use our discrete differential
operators to develop methods to rapidly remove rough features from irregularly triangulated data
intended to portray a smooth surface.

Our approach contains several novel features, includingngticit integration method to
achieve efficiency, stability, and large time-steps; a scale-dependent Laplacian operator to im-
prove the diffusion process; and finally, use of a robust curvature flow operator that achieves
a smoothing of the shape itself, distinct from any parameterization. Additional features of the
algorithm include automatic exact volume preservation, and hard and soft constraints on the
positions of the points in the mesh. Extensions to the smoothing algorithm are also described
that allow for feature preservation using anistropic smoothing and simulataneous sampling and
shape smoothing using a mixture of Laplacian and curvature flow. The use of higher dimensional
smoothing for images, vector fields and volumes is also explored.

We compare our method to previous operators and related algorithms, and prove that our
discrete differential operators have several mathematically desirable qualities that improve the

appearance of the resulting surface. Finally, we provide a series of examples to graphically and

33
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numerically demonstrate the quality of our results.

3.1 Introduction

While the mainstream approach in mesh fairing has been to enhance the smoothness of triangu-
lated surfaces by minimizing computationally expensive functionals, Taubin [Tau95b] proposed
in 1995 a signal processing approach to the problem of fairing arbitrary topology surface tri-
angulations. This method is linear in the number of vertices in both time and memory space;
large arbitrary connectivity meshes can be handled quite easily and transformed into visually ap-
pealing models. Such meshes appear more and more frequently due to the success of 3D range
sensing approaches for creating complex geometry [CL96].

Taubin based his approach on defining a suitable generalization of frequency to the case of
arbitrary connectivity meshes. Using a discrete approximation to the Laplacian, its eigenvectors
become the “frequencies” of a given mesh. Repeated application of the resulting linear operator
to the mesh was then employed to tailor the frequency content of a given mesh.

Closely related is the approach of Kobbelt [Kob97], who considered similar discrete ap-
proximations of the Laplacian in the construction of fair interpolatory subdivision schemes. In
later work this was extended to the arbitrary connectivity setting for purposes of multiresolution
editing [KCVS98].

The success of these techniques is largely based on their simple implementation and the
increasing need for algorithms which can process the ever larger meshes produced by range
sensing techniques. However, a number of issues in their application remain open problems in
need of a more thorough examination.

The simplicity of the underlying algorithms is based on very basic, uniform approximations
of the Laplacian. For irregular connectivity meshes this leads to a variety of artifacts such as
geometric distortion during smoothing, numerical instability, problems of slow convergence for
large meshes, and insufficient control over global behavior. The latter includes shrinkage prob-
lems and more precise shaping of the frequency response of the algorithms.

In this chapter we consider more carefully the question of numerical stability by observing

that Laplacian smoothing can be thought of as time integration of the heat equation on an irreg-
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(c) (d)
Figure 3.1:(a): Original 3D photography mesh (41,000 vertices). (b): Smoothed version with

the scale-dependent operator in two integration step Wwith = 5 - 10~°, the iterative linear
solver (PBCG) converges in 10 iterations. (c),(d): Close-ups of the eye. All the images in this

chapter are flat-shaded to enhance the faceting effect.

ular mesh. This suggests the uséamplicit integrationschemes which lead to unconditionally
stable algorithms allowing for very large time steps. At the same time the necessary linear sys-
tem solvers run faster than explicit approaches for large meshes. We also consider the question
of mesh parameterization more carefully and propose the use of discretizations of the Laplacian
which take the underlying parameterization into account. The resulting algorithms avoid many
of the distortion artifacts resulting from the application of previous methods. We demonstrate
that this can be done at only a modest increase in computing time and results in smoothing
algorithms with considerably higher geometric fidelity. Finally a more careful analysis of the
underlying discrete differential geometry is used to derive a curvature flow approach, using our

previously defined discrete differential operators, which satisfies crucial geometric properties.
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We detail how these different operators act on meshes, and how users can then decide which one
is appropriate in their case. If the user wants to, at the same time, smooth the shape of an object
and equalize its triangulation, a scale-dependent diffusion must be used. On the other hand, if
only the shape must be filtered without affecting the sampling rate, then curvature flow has all
the desired properties. This allows us to propose a novel class of efficient smoothing algorithms
for arbitrary connectivity meshes. Using this family of smoothing algorithms as a base, we de-
fine several extensions including anisotropic smoothing to retain the features of the mesh while
reducing the noise, sampling regularization during the shape smoothing, and the smoothing of

other data types such as images, vector fields and volume data.

3.2 Implicit Fairing

In this section, we introducimplicit fairing, an implicit integration of the diffusion equation

for the smoothing of meshes. We will demonstrate several advantages of this approach over
the usual explicit methods. While this section is restricted to the use of a linear approximation
of the diffusion term, implicit fairing will be used as a robust and efficient numerical method
throughout the chapter, even for non-linear operators. We start by setting up the framework and

defining our notation.

3.2.1 Notation and Definitions

In the remainder of this chaptet, will denote a meshx; a vertex of this mesh, and; the edge
(if existing) connecting; to x;. As in chapter 2, we will callV; (x;) the “neighbors” (or 1-ring
neighbors) ok;, i.e., all the vertices; such that there exists an edge betweerx; andx; (see

Figure 3.2).

(@) (b)

Figure 3.2:(a) A vertexx; and its adjacent faces, (b) one term of its curvature normal formula.
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In the surface fairing literature, most techniques use constrained energy minimization. For
this purpose, different fairness functionals have been used. The most frequent functional is the

total curvature of a surfacs:
£(S) = / KT+ K3 dS. (3.1)
S

This energy can be estimated on discrete meshes [WW94, Kob97] by fitting local polynomial
interpolants at vertices. However, principal curvatutgsand ko, depend non-linearly on the
surfaceS. Therefore, many practical fairing methods prefer the membrane functional or the

thin-plate functional of a mesk:

1
gmembrane(x) = 5 /Q Xz + X?) dudv (32)
1
Ethin plate(X) = B /Q X2, 4+2X2 4+ X2 dudv. (3.3

Note that the thin-plate energy turns out to be equal to the total curvature only when the pa-
rameterization(u, v) is isometric. Their respective variational derivatives corresponds to the

Laplacian and the second Laplacian:

LX) = Xuu + Xuo (3.4)

L3(X) = L 0 L(X) = Xuuu + 2 Xuuvo + Xovvo- (3.5)

For smooth surface reconstruction in vision, a weighted average of these derivatives has been
used to fair surfaces [Ter88]. For meshes, Taubin [Tau95b] used signal processing analysis to
show that a combination of these two derivatives of the fofn )£ — ApL? can provide a
Gaussian filtering that minimizes shrinkage. The constartsd . must be tuned by the user to

obtain this non-shrinking property. We will refer to this technique as\thealgorithm.
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3.2.2 Diffusion Equation for Mesh Fairing

As stated above, one common way to attenuate noise in a mesh is thrdiffylsian process

OX
5 = MX). (3.6)

By integrating Equation 3.6 over time, a small disturbance will disperse rapidly in its neighbor-
hood, smoothing the high frequencies, while the main shape will be only slightly degraded. The
Laplacian operator can be linearly approximated at each vertex by the umbrella operator (we
will use this approximation in the current section for the sake of simplicity, but will discuss its

validity in section 3.4), as used in [Tau95b, KCVS98]:

1
,C(XZ) = E Z Xj — X, (37)
JEN1(X;)
wherex; are the neighbors of the vertex, andm = #N;(x;) is the number of these neighbors
(valence). A sequence of mesh@&’) can be constructed by integrating the diffusion equation

with a simpleexplicit Eulerscheme, yielding:
XL — (T 4 A\dtL)X™. (3.8)

With the umbrella operator, the stability criterion requites < 1. If the time step does not
satisfy this criterion, ripples appear on the surface, and often end up creating oscillations of
growing magnitude over the whole surface. On the other hand, if this criterion is met, we get

smoother and smoother versions of the initial mesh gsows.

3.2.3 Time-Shifted Evaluation

The implementation of this previous explicit method, calfedvard Euler methodis very
straightforward [Tau95b] and has nice properties such as linear time and linear memory size
for each filtering pass. Unfortunately, when the mesh is large, the time step restriction results in
the need to perform hundreds of integrations to produce a noticeable smoothing, as mentioned

in [KCVS98].
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Implicit integration offers a way to avoid this time step limitation. The idea is simple: if
we approximate the derivative using the new mesh (instead of using the old mesh as done in
explicit methods), we will get to the equilibrium state of the PDE faster. As a result of this
time-shifted evaluation, stability is obtained unconditionally [PFTV94]. The integration is now:
Xl = Xn 4 AdtL(X™ ). Performing an implicit integration, this time calledckward Euler

method thus means solving the following linear system:
(I — AdtL)X™+ = X", (3.9)

This apparently minor change allows the user not to worry about practical limitations on the time
step. Consequent smoothing will then be obtained safely by increasing the\vialudowever,

we now must solve a linear system.

3.2.4 Solving the Sparse Linear System

Fortunately, this linear system can be solved efficiently as the mateix I — A\dtL is sparse:

each line contains approximately seven non-zero elements if the Laplacian is expressed using
Eqg. (3.7) since the average number of neighbors on a typical triangulated mesh is six. We can
use a preconditioned bi-conjugate gradient (PBCG) to iteratively solve this system with great
efficiency*. The PBCG is based on matrix-vector multiplies [PFTV94], which only require linear
time computation in our case thanks to the sparsity of the matri/e review in Appendix A.5

the different options we chose for the PBCG in order to have an efficient implementation for our

purposes.

3.2.5 Interpretation of the Implicit Integration

Although this implicit integration for diffusion is sound as is, there are useful connections with
other prior work. We review the analogies with signal processing approaches and physical sim-

ulation.

We use a bi-conjugate gradient method to be able to handle non-symmetric matrices, to allow the inclusion of

constraints (see Section 3.2.7).
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Signal Processing

In [Tau95b], Taubin presents the explicit integration of diffusion with a signal processing point
of view. Indeed, ifX is a 1D signal of a given frequenay. X = ¢, thenL(X) = —w?X. Thus,
the transfer function for Eq. (3.8) is— \dtw?, as displayed in Figure 3.3(a) as a solid line. We
can see that the higher the frequengythe stronger the attenuation will be, as expected.

The previous filter is called FIR (for Finite Impulse Response) in signal processing. When
the diffusion process is integrated using implicit integration, the filter in Eq. (3.9) turns out to
be an Infinite Impulse Response filter. Its transfer function is ngWw + A\dtw?), depicted

in Figure 3.3(a) as a dashed line. Because this filter is alwaj 1), we have unconditional

stability.
Attenuation Attenuation
T T T T T
! Explicit filter —] 1 Filter for ten explicit integrations —|
08| X Implicit filter osl Filter for ten implicit integrations
06 sl
04
04
02
02
0
L L L L L 0 L.
0 05 1 15 2 25 3 0 0.2 04 0.6 0.8 1
Frequency Frequency
(a) (b)

Figure 3.3:Comparison between (a) the explicit and implicit transfer function\idr = 1, and

(b) their resulting transfer function after 10 integrations.

By rewriting Eq. (3.9) asX™ ! = (I —\dt£)~' X", we also note that our implicit filtering is
equivalent tol + \dtL + (\dt)2L? + ..., i.e., standard explicit filtering plus an infinite sequence
of higher-order filtering. Contrary to the explicit approach, one single implicit filtering step

performs global filtering.

Mass-Spring Network

Smoothing a mesh by minimizing the membrane functional can be seen as a physical simulation
of a mass-spring network with zero-rest length springs that will shrink to a single point in the

limit. Recently, Baraff and Witkin [BW98] presented an implicit method to allow large time
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steps in cloth simulation. They found that the use of an implicit solver instead of the traditional
explicit Euler integration considerably improves computational time while still being stable for
very stiff systems. Our method is analogous to theirs, but used for a different PDE. We therefore
have the same advantages of using an implicit solver over the usual explicitstgbdity and

efficiencywhen significant filtering is called for.

3.2.6 Filter Improvement

Now that the method has been described for the standard diffusion equation, we can consider
other equations that may be more appropriate or may give better visual results for smoothing
when we use implicit integration.

We have seen in Section 3.2.1 that bdtrand £? have been used with success in prior
work [Ter88, Tau95b, KCVS98]. When we use implicit integration, as Figure 3.4(a) shows, the
higher the power of the Laplacian, the closer tow-pass filterwe get. In terms of frequency
analysis, it is a better filter. Unfortunately, the matrix becomes less and less sparse as more and
more neighbors are involved in the computation. In practice, we find4has a very good
trade-off between efficiency and quality. Using higher-orders affects the computational time
significantly, while not always producing significant improvements. We therefore recommend
using (I + AdtL£?)X™ 1 = X" for implicit smoothing (a precise definition of the umbrella-like

operator for£? can be found in [KCVS98]).

1 ELSE S T
: (L)t — L2 oo |

o -1 . Implicit filter —
osk (L) Constant filter -
(- = ----- 1 Resulting convolution --- 7

(TR
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‘ 04

02 e
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(a) (b)
Figure 3.4: (a): Comparison between filters using, £2, £3, and £*. (b): The scaling
to preserve volume creates an amplification of all frequencies; but the resulting filter (diffu-

sion+scaling) only amplifies low frequencies to compensate for the shrinking of the diffusion.
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We also tried to use a linear combination of battand £2. We obtained interesting results
like, for instance, amplification of low or middle frequencies to exaggerate large features (refer
to [GSS99] for a complete study of feature enhancement). It is not appropriate in the context of
a fixed mesh, though: amplifying frequencies requires refinement of the mesh to offer a good

discretization.

3.2.7 Constraints

We can put hard and soft constraints on the mesh vertex positions during the diffusion. For the
user, it means that a vertex or a set of vertices can be fixed so that the smoothing happens only
on the rest of the mesh. This can be very useful to retain certain details in the mesh.

A vertex x; will stay fixed if we impose£(x;) = 0 (or more correctlyx = 0). More
complicated constraints are also possible [BW98]. For example, vertices can be constrained
along an axis or on a plane by modifying the PBCG to keep these constraints enforced during
the linear solver iterations.

We can also easily implemesoft constraintseach vertex can be weighted according to the
desired smoothing that we want. For instance, the user may want to smooth a part of a mesh less
than another one, in order to keep desirable features while getting a smoother version. We allow
the assignment of a smoothing value betweand1 to attenuate the smoothing spatially: this is
equivalent to choosing a variablefactor on the mesh, and happens to be very useful in practice.

Entire regions can be “spray painted” interactively to easily assign this special factor.

3.2.8 Discussion

Even though adding a linear solver step to the integration of the diffusion equation would appear
to slow down the problem at first glance, it turns out that we gain significantly by doing so. For
instance, the implicit integration can be performed with an arbitrary time step. Since the matrix of
the system is very sparse, we actually obtain computational time similar or better than the explicit
methods. In the following table, we indicate the number of iterations of the PBCG method for
different meshes and it can be seen that the PBCG is more efficient when the smoothing is high.
These timings were performed on an SGI High Impact Indigo2 175MHz R10000 processor with
128M RAM.
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(a) (b) () (d)

Figure 3.5:Stanford bunnies: (a) The original mesh, (b) 10 explicit integrations with= 1,

(c) 1 implicit integration with\dt = 10 that takes onlyr PBCG iterations (30% faster), and (d)

20 passes of tha|u algorithm, withA = 0.6307 and . = —0.6732. The implicit integration
results in better smoothing than the explicit one for the same, or often less, computing time. If
volume preservation is called for, our technique then requires many fewer iterations to smooth

the mesh than thg|u algorithm.

Mesh Nb of faces Adt = 10 Adt = 100

Horse 42,000 8 iterations (2.86s)| 37 iterations (12.6s)
Dragon 42,000 8 iterations (2.98s)| 39 iterations (13.82s
Isis 50,000 9 iterations (3.84s)| 37 iterations (15.09s
Bunny 66,000 7 iterations (4.53s)| 35 iterations (21.34s
Buddha| 290,000 | 5iterations (13.78s) 28 iterations (69.93s

To be able to compare the results with the explicit method, one has to notice that one iteration
of the PBCG is only slightly more time-consuming than one integration step using an explicit
method. Therefore, we can see in the following results that our implicit fairing takes about 60%
less time than the explicit fairing for a filtering ofdt = 100, as we get about 33 iterations
compared to the 100 integration steps required in the explicit case. We have found this behavior
to be true for all the other meshes as well. The advantage of the implicit method in terms of
computational speed becomes more obviouddare mesheand/orhigh smoothingralue. In
terms of quality, Figures 3.5(b) and 3.5 (c) demonstrate that both implicit and explicit methods
produce about the same visual results, with a slightly better smoothness for the implicit fairing.
Note that we use 10 explicit integrations of the umbrella operator ddth= 1, and 1 integration
using the implicit integration witidt = 10 to approximate the same results. Therefore, there is

a definite advantage in the use of implicit fairing over the previous explicit methods. Moreover,
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the remainder of this paper will make heavy use of this method and its stability properties.

3.3 Automatic Anti-Shrinking Fairing

Pure diffusion will, by nature, induce shrinkage. This is inconvenient as this shrinking may be
significant for aggressive smoothing. Taubin proposed to use a linear combinafl@ndiC o £

to amplify low frequencies in order to balance the natural shrinking. Unfortunately, the linear
combination depends heavily on the mesh in practice, and this requires fine tuning to ensure both
stable and non-shrinking results. In this section, we propose an automatic solution to avoid this
shrinking. We preserve the zeroth moment, i.e., the volume, of the object. Without any other
information on the mesh, we feel it is the most reasonable invariant to preserve, although surface

area or other invariants can be used.

Volume Computation

As we have a mesh given in terms of triangles, it is easy to compute the interior volume. This
can be done by summing the volumes of all the oriented pyramids centered at a point in space
(the origin, for instance) and with a triangle of the mesh as a base. This computation has a
linear complexity in the number of triangles [LK84]. For the reader’s convenience, we give the
expression of the volume of a mesh in the following equation, where; andz; are the three
vertices of thekth triangle:

nbFaces

1
V=g ; 9. - Nk, (3.10)

whereg = (X, + X}, + X})/3 andN; = x}x2 A xix3.

3.3.1 Exact Volume Preservation

After an integration step, the mesh will have a new voluiffe We then want to scale it back
to its original volumel’? to cancel the shrinking effect. We apply a simple scale on the vertices
to achieve this. By multiplying all the vertex positions by= (V?/V")!/3, the volume is

guaranteed to go back to its original value. As this is a simple scaling, it is harmless in terms
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of frequencies. To put it differently, this scaling corresponds to a convolution with a scaled
Dirac in the frequency domain, hence it amplifies all the frequencies in the same way to change
the volume back. The resulting filter, after the implicit smoothing and the constant amplification
filter, amplifies the low frequencies of the original meslexactlycompensate for the attenuation

of the high frequencies, as sketched on Figure 3.4(b).

The overall complexity for volume preservation is thus linear. With such a process, we do
not need to tweak parameters: the anti-shrinking filteugmaticallyadapted to the mesh and
to the smoothing, contrary to previous approaches. Note that hard constraints defined in the
previous section are applied before the scaling and do not result in fixed points anymore: scaling
alters the absolute, but not the relative position.

We can generalize this re-scaling phase to different invariants. For instance, if we have to
smooth height fields, it is more appropriate to take the invariant as being the volume enclosed
between the height field and a reference plane, which changes the computations only slightly.
Likewise, for surfaces of revolution, we may change the way the scaling is computed to exploit
this special property. We can also preserve the surface area if the mesh is a non-closed surface.
However, in the absence of specific characteristics, preserving the volume gives nice results.

According to specific needs, the user can select the appropriate type of invariant to be used.

3.3.2 Discussion

When we combine both methods of implicit integration and anti-shrinking convolution, we ob-
tain an automatic and efficient method for fairing. Indeed, no parameters need be tuned to ensure
stability or to have exact volume preservation. This is a major advantage over previous tech-
niques. Yet, we retain all of the advantages of previous methods, such as constraints [Tau95b]
and the possibility of accelerating the fairing via multigrid [KCVS98], while additionally offer-

ing stability and efficiency. This technique also dramatically reduces the computing time over
Taubin’s anti-shrinking algorithm: as demonstrated in Figures 3.5(c) and 3.5(d), using.the
algorithm may preserve the volume after fine tuning, but one iteration will only slightly smooth
the mesh. The rest of this paper exploits both automatic anti-shrinking and implicit fairing tech-

nigues to offer more accurate tools for fairing.
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3.4 An Accurate Diffusion Process

Up to this section, we have relied on the umbrella operator (Eg. (3.7)) to approximate the Lapla-
cian on a vertex of the mesh. This particular operator does not truly represent a Laplacian in the
physical meaning of this term as we are about to see. Moreover, simple experiments on smooth
meshes show that this operator, using explicit or implicit integration, can create bumps or “pim-
ples” on the surface, instead of smoothing it. This section proposes a sounder simulation of the
diffusion process, by defining a new approximation for the Laplacian and by taking advantage of

the implicit integration.

3.4.1 Inadequacy of the Umbrella Operator

The umbrella operator, used in the previous sections, corresponds to an approximation of the
Laplacian in the case of a specific parameterization [KCVS98]. This means that the mesh is
supposed to have edges of lengtland all the angles between two adjacent edges around a
vertex should be equal. This is of course far from being true in actual meshes, which contain a
variety of triangles of different sizes.

Treating all edges as if they had equal length has significant undesired consequences for the
smoothing. For example, the Laplacian can be the same for two very different configurations,
corresponding to different frequencies as depicted in Figure 3.6. This distorts the filtering sig-
nificantly, as high frequencies may be considered as low ones, and vice versa. Nevertheless, the
advantage of the umbrella operator is that it is normalized: the time step for integration is always
1, which is very convenient. But we want a more accurate diffusion process to smooth meshes
consistently, in order to more carefully separate high from low frequencies.

We need to define a discrete Laplacian which is scale dependent, to better approximate dif-
fusion. However, if we use explicit integration [Tau95b], we will suffer from a very restricted
stability criterion. Itis well known [PFTV94] that the time step for a parabolic PDE like Eqg. (3.6)
depends on the square of the smallest length scale (here, the smallest edge:lerigth):

min(|e|)?

<
at < 2

This limitation is a real concern for large meshes with small details, since an enormous number
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(a) (b)

Figure 3.6:Frequency confusion: the umbrella operator is evaluated as the vector joining the
center vertex to the barycenter of its neighbors. Thus, cases (a) and (b) will have the same

approximated Laplacian even if they represent different frequencies.

of integration steps will have to be performed to obtain noticeable smoothing. Thisaistable
in practice.

Using the implicit integration described in Section 3.2, we can overcome this restriction and
use a much larger time step while still achieving good smoothing, saving considerable com-
putation. In the next two subsections we present one design of a good approximation for the

Laplacian.

3.4.2 Simulation of the 1D Heat Equation

The 1D case of a diffusion equation corresponds to the heat equatisnz,,,,. It is therefore

worth considering this example as a test problem for higher dimensional filtering. To do so, we
use Milne’s test presented in [Mil95]. Milne compared two cases of the same initial problem:
first, the problem is solved on a regular meshj@ri], and then on an irregular mesh, taken to
consist of a uniform coarse grid of cells @ 1] with each of the cells i}, 1] subdivided into

two fine cells as depicted in Figure 3.7(a) and 3.7(b). With such a configuration, classical finite
difference coefficients for second derivatives can be used on each cell, except for the middle one
which does not have centered neighbors. Milne shows that if no particular care is taken for this
“peripheral” cell, it introduces aoise ternthat creates large inaccuracies — larger than if the
mesh was represented uniformly at the coarser resolution! But if we fit a quadratic spline at
this cell to approximate the second derivative, then the noise source disappears and we get more
accurate results than with a constant coarse resolution (see the errors created in each case in one
iteration of the heat equation in Figure 3.7(c)).

This actually corresponds to the extension of finite difference computations for irregular
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meshes proposed by Fornberg [For88]: to compute the FD coefficients, just fit a quadratic func-
tion at the sample point and its two immediate neighbors, and then return the first and second
derivative of that function as the approximate derivatives. For three points spaards apart

(see Figure 3.7(d)), we get the 1D formula:

2 Tic1 — X Tyl — T

Note that whem\ = §, we find the usual finite difference formula.
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Figure 3.7: Test on the heat equation: (a) regular sampling vs. (b) irregular sampling. Nu-
merical errors in one step of integration (c): using the usual FD weight on an irregular grid to
approximate second derivatives creates noise, and gives a worse solution than on the coarse grid,
whereas extended FD weights offer the expected behavior. (d) Three unevenly spaced samples of

a function and corresponding quadratic fitting for extended FD weights.
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3.4.3 Extension to 3D

The umbrella operator suffers from this problem of large inaccuracies for irregular meshes as
the same assumed constant parameterization is used (Figure 3.8 shows such a behavior). Sur-
prisingly, a simple generalization of the previous formula valid in 1D corresponds to a known

approximation of the Laplacian. Indeed, Fujiwara [Fuj95] presents the following formula:

1 X; — X .
L(x;) = EjeNle‘Xi) 1€ij| ., with B = jENZl(:Xi) leij- (3.11)
wherele;;| is the length of the edge;. Note that, when all edges are of sikzethis reduces to

the umbrella operator (Eq. 3.7). We will then denote this new operator a#he-dependent
umbrella operator

Unfortunately, the operator is no longer linear. But during a typical smoothing, the length of
the edges does not change dramatically. We thus make the approximation that the coefficients
of the matrixA = (I — A\dtL) stay constant during an integration step. We can compute them
initially using the current edges’ lengths and keep their values constant during the PBCG itera-
tions. In practice, we have not noted any noticeable drawbacks from this linearization. We can
even keep the same coefficients for a number of (or all) iterations: it will correspond to a filter-
ing “relative” to the initial mesh instead if the current mesh. For the same reason as before, we
also recommend the use of the second Laplacian for higher quality smoothing without signifi-
cant increase in computation time. As demonstrated in Figure 3.8, the scale-dependent umbrella
operator deals better with irregular meshes than the umbrella operator: no spurious artifacts are
created. We also applied this operator to noisy data sets from 3D photography to obtain smooth
meshes (see Figures 3.1 and 3.12).

The number of iterations needed for convergence depends heavily on the ratio between min-
imum and maximum edge lengths. For typical smoothing and for meshes over 50000 faces, the
average number of iterations we get is 20. Nevertheless, we still observe undesired behavior on
flat surfaces: vertices in flat areas still slide during smoothing. Even though this last formulation
generally reduces this problem, we may want to keep a flatiat@et. The next section tackles

this problem with a new approach.
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(a) (b) (©) (d)
Figure 3.8:Application of operators to a mesh: (a) mesh with different sampling rates, (b) the
umbrella operator creates a significant distortion of the shape, but (c) with the scale-dependent
umbrella operator, the same amount of smoothing does not create distortion or artifacts, almost

like (d) when curvature flow is used. The small features such as the nose are smoothed but stay

in place.
3.5 Curvature Flow for Noise Removal

In terms of differential equations, diffusion is a close relative of curvature flow. In fact, the direc-
tions of Laplacian and curvature flows coincide for tmmformalparameter space [DHKW92].

Thus we can interpret the mean curvature normal as a special laplacian: it is a laplacian for a
parameter space naturallyduced by the surface itseln this section, we first explore the ad-
vantages of using curvature flow over diffusion, and then propose an efficient algorithm for noise

removal using curvature flow.

3.5.1 Diffusion vs. Curvature Flow

The Laplacian of the surface at a vertex has both normal and tangential components. Even if the
surface is locally flat, the Laplacian approximation will rarely be the zero vector [KCVS98]. This
introduces undesirable drifting over the surface, depending on the parameterization we assume.

We in effect fair the parameterization (or sampling) of the surface as well as the shape itself (see
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Figure 3.10(b)).
We would prefer to have a noise removal procedure that does not depend on the parameter-
ization. It should use onljntrinsic propertiesof the surface. This is precisely what curvature
flow does. Curvature flow smoothes the surface by moving along the surface nowital a
speed equal to the mean curvature;:

aXZ'
ot

= *HH(Xl‘) n;. (312)

Using curvature flow, a sphere with different sampling rates should stay spherical under curvature
flow as the curvature is constant. And we should also not get any vertex “sliding” when an area
is flat as the mean curvature is then zero.

There are already different approaches using curvature flow [Set96], and even mixing both
curvature flow and volume preservation [DCG98] to smooth object appearance, but mainly in
the context of level-set methods. They are not usable on a mesh as is. However, we can use our

discrete differential defined in section 2.4, repeated here for convenience:

1
K(x;) = Y je%l:(i)(cot a;j + cot Bij) (X — Xj). (3.13)

Note that this equation for the mean curvature normal is equivalent to the gradient of surface

area with respect to the positionxf

VA

This discrete flow is thus an area-minimizing flow producing a minimal surface. Note the
interesting similarity with [PP93]. We obtain almost the same equation, but with a completely
different derivation than theirs, which was using energies of linear maps.

Using the area gradient property of our operator, it is easy to see that we will have a zero
curvature normal vector for a flat area. As shown in Figure 3.9, we see that moving the center
vertexz; on a flat surface does not change the surface area. On the other hand, moving it above
or below the plane will always increase the local area. Hence, we have the desired property of a

null area gradient for a locally flat surface, whatever the valence, the aspect ratio of the adjacent
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faces, or the edge lengths around the vertex.

SN

Figure 3.9: The area around a vertex; lying in the same plane as its 1-ring neighbors does

not change if the vertex moves within the plane, and can only increase otherwise. Being a local
minimum, it thus proves that the derivative of the area with respect to the positigriozero

for flat regions.

3.5.2 Boundaries

For non-closed surfaces or surfaces with holes, we can define a special treatment for vertices on
boundaries. The notion of mean curvature does not make sense for such vertices. Instead, we
would like to smooth the boundary, so that the shape of the hole itself gets rounder and rounder as
iterations go. We can then use for instance Eq. (3.11) restricted to the two immediate neighbors
which will smooth the boundary curve itself.

Another possible technique is to create a virtual vertex, stored but not displayed, initially
placed at the barycenter of all the vertices placed on a closed boundary. A set of faces adjacent
to this vertex and connecting the boundary vertices one after the other are also virtually created.
We can then use the basic algorithm without any special treatment for the boundary as now, each

vertex has a closed area around it.

3.5.3 Implementation

Similarly to Section 3.4, we have a non-linear expression defining the curvature normal. We
can proceed in the same way, holding the operator constant over each time step, as the changes
induced in a time step will be small. We simply compute the non-zero coefficients of the matrix
I — MdtK, whereK represents the matrix of the curvature normals. We then successively solve
the following linear system:

(I — \dtK) X" = X",
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We can use preconditioning or constraints, just as before as everything is basically the same
except for the local approximation of the speed of smoothing. As shown on Figure 3.10, a
sphere with different triangle sizes will remain the same sphere thanks to both the curvature flow
and the volume preservation technique.

In order for the algorithm to be robust, an important test must be performed while the matrix
K is computed: if we encounter a face of zero area, we skip it. Mesh decimation to eliminate all

degenerate triangles can also be used as suggested in [PP93].
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Figure 3.10:Smoothing of spheres: (a) The original mesh containing two different discretization
rates. (b) Smoothing with the umbrella operator introduces sliding of the mesh and unnatural

deformation, which is largely attenuated when (c) the scale-dependent version is used, while (d)

curvature flow maintains the sphere exactly.

3.5.4 Comparison of Results
Figures 3.8, 3.10, and 3.11 compare the different operators we have used:

e For significant fairing, the umbrella operator changes the shape of the object substantially:

triangles drift over the surface and tend to be uniformly distributed with an equal size.

e The scale-dependent umbrella operator allows the shape to stay closer to the original shape

even after significant smoothing, and almost keeps the original distribution of triangle
sizes.

e Finally, the curvature flow just described achieves the best smoothing with respect to the

shape, as no drift happens and only geometric properties are used to define the motion.
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Knowing these properties, the user can select the type of smoothing that fits best with the type of
fairing that is desired. Diffusion will smooth the parameterization along with the shape, resulting
in a more regular triangulation. If a parameterization independent smoothing is desired, then the
curvature flow should be used. In the next section, we will show how to derive a smoothing

technique that combines the advantages of both techniques.

(a) (b) () (d)

Figure 3.11:Significant smoothing of a dragon: (a) original mesh, (b) implicit fairing using

the umbrella operator, (c) using the scale-dependent umbrella operator, and (d) using curvature

flow.

3.6 Smoothing Shape and Sampling

As mentioned in the previous sections, the Laplacian contains a tangential component that
smoothes the parameterization. While this parametric smoothing is not, in itself, a problem,
the Laplacian does not contain the appropriate amount of shape smoothing in the normal com-
ponent. On the other hand, tparameterization-independentrvature flow provides the ap-
propriate shape smoothing while leaving the parameterization or sampling unchanged. In some
applications, it may be desirable to have the sampling regularization of the laplacian as well as

the correct shape smoothing of the curvature normal.

Graph Flow

We wish to produce a flow that geometrically equivalento curvature flow that allows us to

simultaneously alter the sampling. This can be accomplished using a variant of a technique



55

(a) (b) (©) (d)
Figure 3.12:Faces: (a) The original decimated Spock mesh has 12,000 vertices. (b) We linearly
oversampled this initial mesh (every visible triangle on (a) was subdivided in 16 coplanar smaller
ones) and applied the scale-dependent umbrella operator, observing significant smoothing. One
integration step was useddt = 10, converging in 12 iterations of the PBCG. Similar results
were achieved using the curvature operator. (c) curvature plot for the mannequin head (obtained
using our curvature operator), (d) curvature plot of the same mesh after a significant implicit

integration of curvature flow (pseudo-colors).

referred to as “graph flow.”

Suppose we have a surfaét) evolving in time, starting with a shap®. Let us define a
potential f (X(¢),¢) in space such that the zero isosurface @orresponds t& at every timel.
As the evolving potential characterizes a moving isosurface, we can derive a simple differential
equation satisfied by. The path of a poink(¢) during the evolution of the surface satisfies
f(x(t),t) = 0 for any timet, yielding:

of

SHX(8),8) + V(D)) - S =0 (3.15)

Note that with this equation (the typical PDE used in the level-set literature) only the normal
component ofdx(t)/dt matters since it is dotted with the gradient f which is along the
normal to the surface. An important consequence isadhtthe normal component of a surface
flow really affects the shapesince any tangential component will not be accounted for in the
PDE, the potentiaf will only evolve according to the normal component. Adding an arbitrary

tangent component to a flow field will not perturb the evolution of a surface, just modify its



56

parameterization (as mentioned in Section 3.6).
The preceding remark allows us to construct different particle paths that lie on the same

surface family. Since we want to obtain a mean curvature flow, the graph flow needs to match the
mean curvature flow after projection onto the normal, but we can use any tangential component
we desire (though, when using sampled surfaces, care must be taken when adjusting the sampling
since the resulting surface may undersampled or produce incorrect connectivity). One useful flow
is to use the mean curvature normal plus the tangential component of the laplacian. @htake

al. [OBBO00] use a similar flow to produce the results in Figures 3.13 and 3.14. Notice how the

shape is smoothed correctly while the mesh sampling is regularized.
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Figure 3.13:From left: Original pretzel shape, smoothing using the Taubjm algorithm (no-
tice the substantial shape deformation), mean curvature smoothing produces excellent shape

smoothing, and the combined curvature flow plus laplacian produces a smoothed shape with

regularized sampling (image from [OBBOQ]).
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Figure 3.14:From left: Original torus-like shape, smoothing using the Taubip algorithm
(notice the substantial shape deformation), mean curvature smoothing produces excellent shape

smoothing, and the combined curvature flow plus laplacian produces a smoothed shape with

regularized sampling (image from [OBBO0O]).
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(a) (b) (©)
Figure 3.15:Cube: (a) Original, noisy mesh{3% uniform noise added along the normal direc-

tion). (b) Isotropic smoothing. (c) Anisotropic smoothing defined in Section 3.7.1.
3.7 Anisotropic Smoothing

While the previous sections detail an impressive set of tools for denoising a mesh, they are
all isotropic — smoothing equally in all directions. Since an input mesh may have many sharp
features, we wish to get rid of the noise by smoothing the surface, while preserving clear features
such as sharp edges. For example, we would like to smooth a noisy cube without turning it into
the cushion-like shape in Figure 3.15(b).

Using anisotropic smoothing to solve this feature-preserving denoising problem has shown
good results in image processing [PM90], in flow visualization [PR99], and recently on
meshes [CDRO00]. The underlying idea is to still diffuse the noise, but with an adaptive con-
ductance over the domain in order to preserve edges. In Section 3.2.7, we described a way to
control the smoothing by locally altering the parametgipossibly through a manual “spray-
painting” of the mesh. While this technique could be used to manually define an anisotropic
smoothing, it is a rather time-consuming task for big meshes, and it will leave ragged edges
on the vertices forced to a low smoothing amount. Instead, we define an automatic weighting

technique using the principal curvatures of the surface.

3.7.1 An Anisotropic Weighting Technique

In order to keep the sharp features of a mesh intact, we desire an isotropic implicit curvature flow
on noisy regions, while directional diffusion should be applied to obvious edges and corners. The

presence of such features can be determined using the principal curvatures of the surface. Indeed,
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(@) (b)

Figure 3.16: Fandisk: (a) Original, noisy mesh. (b) Anisotropic smoothing is performed to

maintain the mesh features while removing the noise.

in the case of an edge between two faces of a cube mesh, the minimum curvature is zero along
the edge, while the maximum curvature is perpendicular to this edge. An immediate idea is to
perform a weighted mean curvature flow that penalizes vertices that have a large ratio between
their two principal curvatures. This way, clear features like sharp edges will remain present while
noise, more symmetric by nature, will be greatly reduced.

We define the smoothing weight at a vertgxas being:

,

1 if |/<1|§Tand|/<2|§T
0 if k1] > T and|ka| > T andkike > 0
wi = w1/kg i |k = min(|s], k2], |ka])

ko/kp if k2| = min(|k1], |k2|, |ku|)

| 1 if [kg| = min(|k1], |k2l, |kH])

The parametef’ is a user defined value determining edges. The general smoothing flow is
then: 0x;/0t = —w; kr(X;) N(X;). As we can see, uniformly noisy regions (cases 1 and 5 in
the weight definition given above) will be smoothed isotropically, while corners (case 2) will
not move. For edges (cases 3 and 4), we smooth with a speed proportional to the minimum
curvature, to be assured not to smooth ridges. The caveat is that this smoothing is no longer
well-posed: we try to enhance edges, and this is by definition a very unstable process. Pre-
mollification techniques have been reported successful in [PR99], and should be used in such

a process. However, we have had good results by simply thresholding the weigtitbe



59

no less than-0.1 to avoid strong inverse diffusion, and using implicit fairing to integrate the
flow. As Figure 3.15 demonstrates, a noisy cube can be smoothed and enhanced into an almost
perfect cube using our technique. For more complicated objects (see Figure 3.16), a pass of curve

smoothing (also using implicit curvature flow) has been added to help straighten the edges.

3.8 Smoothing General Bivariate Data

Since the previous smoothing algorithms were constructed using our discrete differential opera-
tors, we can use extensions such as those described in section 2.8 to smooth non-surface data. In

this section, we describe algorithms to smooth images, height fields, and vector/tensor fields.

3.8.1 Smoothing of Images and Height Fields

To reduce the noise in images, early research has advocated the use of the laplacian as a local
differential operator. Diffusing the signal using laplacian smoothing will reduce high frequency
noise. Unfortunately, an unintended consequence is that the noise is diffused uniformly in screen
space. Sharp edges and other fundamental features of an image are then lost, blurred away by the
uniform diffusion. Consequently, anisotropic operators have been proposed. They can diffuse
the signal non-uniformly to better preserve edges, while reducing noise in the signal.

The first inhomogeneous diffusion model was introduced by Perona and Malik [PM90]. The
idea was to vary the conduction spatially to favor noise removal in nearly homogeneous regions
while avoiding any alteration of the signal along significant discontinuities (see [TT99] for an

intuitive explanation of this technique). The change in intenkibyer time was defined as:

1
_. (3.16)
142

«

Iy = div( g(|VII)) VI) with: g(x) =

Many different variations on the conduction functighave been proposed [ROF92, ABBFC97,
ALM92], and recently a higher-order PDE has been introduced by Tumblin [TT99] in the con-
text of displaying high contrast computer graphics pictures. Similar techniques have been used
to visualize complex flow fields, as in [PR99]. All of these approaches rely on isophotes of the
image (see Figure 3.17(a)): the anisotropic diffusion equation can be interpreted as a diffusion

mainly in the direction tangential to each isophote. Therefore, discontinuities present in the or-
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TN
(a) (b)
Figure 3.17:The intensity mag(x, y) of an image can be thought of as (a) a set of isophotes,

or (b) a height field z, y, z = I(x,y)).

thogonal direction are not lost, as explained in [KDA97]. Typically, finite difference schemes are
used to discretize the differential operators used. Some of these approaches also use an inverse
diffusion process orthogonal to the isophotes to enhance edges; this process, being very unstable
by nature, requires a pre-smoothing of the gradient for the well-posedness of the problem.
However, in general, relying only on isophotes to restore a noisy image is questionable:
non-uniform lighting (glares, specularity effects) often enhance our understanding of a scene
while significantly affecting isophotes in complex ways. Other anisotropic diffusion models are

therefore desirable.

3.8.2 Intensity as a 2-Manifold

A number of approaches for denoising in image processing research consider an image as a 2-
manifold embedded in 3D: the imadéx, y) is regarded as a surface, y, I(z,y)) in a three
dimensional space, as depicted in Figure 3.17(b). The sufacéz,y, I(x,y)) is sometimes

called a Monge surface, or simplyheight fieldas the intensity represents an elevation along
the z direction of the(x, y, z) space. Many algorithms also make use of the square root of the
determinant of the first fundamental form of the surface [DHKW92, Gra98], denoted by

This quantity measures at a given point on the surface the area expansion between the parameter
domain and the surface itself: a surfat& on the screen (parameter domain, also called screen
space in our context) will then represent a surface aré& @afA on the height field. Due to the

simplicity of a height field, we can write:
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W= \/1+ 12+ 12, (3.17)

1
n= o5 (I —1 1), (3.18)

Now that we consider the image as a surface, it is natural to ask whether the mean curvature
based surface smoothing techniques of previous sections can be used for images as well. In fact,
since curvature flow is a natural generalization of diffusion (using a Laplacian parameterized by
the natural mteric of the surface itself), several researchers have used the mean curvature normal

for image smoothing:

¢ Malladi and Sethian [MS96] proposef}: = — Wk g to implement the geometrically natu-
ral mean curvature flow. Contrary to the conventional laplacian filtering, it is an anisotropic
flow more appropriate for a scale-space. They also derive a min/max flow, thresholding

the curvature locally depending on local averages.

e Extending the Perona-Malik formulation for an intensity height field, Ford and El-
Fallah [FEF98] proposed an inhomogeneous diffusion with a coefficient inversely pro-

portional to the gradient magnitude:

1
1+ 12+ 12

Since this expression is actually the divergence of the unit nanrtathe surface, we can

I, = div (=Ip, — 1y, 1)

reformulate it as:

It =-2 KRH.

They show how this flow provides good experimental results for noise removal with edge
preservation, and give a FD (finite difference) algorithm to implement it using the Sobel

operator for the evaluation of derivatives.

¢ Finally, Kimmel, Malladi and Sochen [KMS97, SKM98] proposed a framework for non-
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linear diffusion where equations are derived by minimizing a functional. Using the ex-
tended Polyakov action, which reduces to the surface area functional for 2D greyscale im-
ages, they obtained the Laplace-Beltrami operalg)) @s the associated parameterization-
independent Euler-Lagrange equation. To introduce an edge preserving flow, they pro-

posed the following technique, called Beltrami flow:

1
Ii=—0gS & = — ok,

wheree, is the unit vector in the (intensity) direction.

3.8.3 Denoising Greyscale Images

Using our differential operator based smoothing techinques, we can derive a general image

smoothing algorithm. Directly applying our surface flow to images results in the equation:

oS

— = —kyN.
ot =

Although this flow minimizes the surface area, we often can not easily “move” the sample
points along the normal direction as it is generally not aligned with the image parameter direc-
tions — the pixels would no longer be on a regular grid. We can, however, use the graph flow
technique of Section 3.6 to create a geometrically-equivalent flow by only evolving the intensity
field (therefore, constraining the sampling to remain the same). We require that the flow be only

in thee, direction and be equal to the mean curvature flow when projected back onto the normal:

It = _WHHa

sincee, - n = 1/W this gives the appropriate normal flow.

In the context of images, edges (i.e., sudden intensity changes) are fundamental. The above
flow is isotropic and will smooth edges as well as the noise. To make the flow anisotropic and
edge-preserving, we can add a smoothing weight, dependent on the metric of the surface, in
order to penalize the edges more than the flat regions.

Consider the tern®V (square root of the determinant of the surface metric): it measures the
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Kn
Intensity field Intensity field

Screen Screen

(@) (b)

Figure 3.18:(a): The left side indicates how normals are perpendicular to the screen in homo-

geneous, noisy areas, while parallel to the screen plane for edges. The right side shows how the
graph flow is built out of the mean curvature flow by having the same magnitude once projected
along the normal. (b))V measures the surface expansion between the parameter space (screen

pixel) and the surface of the height field.

surface expansion between the parameter space (screen) and the surface itself (intensity field
considered as a height field). Therefore, this term will be infinite along edges, while equal to
one in flat regions as depicted in Figure 3.18(b). Its inverse is therefore a good candidate for an
edge “indicator”. This holds for any positive power)af as well. SincaV is unitless this edge

indicator is also scale-invariant. The complete edge-preserving flow can now be expressed as:

I = —%. (3.19)

The coefficienty > —1 determines the relative penalization of small jumps in intensity versus
large jumps. Values less than one only penalize large jumps, while values larger than one penalize
even small jumps. It controls the linearity of our edge-preservation metric: as-gwem be
described as aedge contrast parameter

The flow derived above is quite general, and by varying the exponest can derive many
different flows. Settingy = —1 results in the isotropic curvature flow of [MS96]. Fer= 0,
we find the same flow used by El-Fallah and Ford [FEF98]. ¥ef 1, our formulation leads
to the Beltrami flow, mentioned in Section 3.8.2. Other values offer a whole new family
of denoising flows, all having the properties of parameterization-independence, scale-invariance,

and feature-preservation.
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3.8.4 Denoising of Arbitrary Bivariate Data

Two-dimensional data often has more than one channel of information. Color images for instance
have three channels per pixel: red, green, and blue. Although a straightforward channel by chan-
nel smoothing is easily achieved by the previous method, it may not lead to optimal smoothing.
Independent changes in the red, green, and blue channels result in perceptually-strong color vari-
ations in the smoothed image. Therefore, smoothing in color should be performed in a higher
dimensional color space such ag where coupling between channels results in more natural
color smoothing [Sha96]. Similarly, higher dimensional data should be smoothed in its respec-
tive space, not channel-by-channel. This section demonstrates that our previous approach can be

extended easily to provide a denoising technique for higher dimensional data.

Graph Flow for Mean Curvature Smoothing

We now consider our bivariate multi-dimensional data as lying on 2-manifold embedd&d in

We can still define the Laplace-Beltrami operator as being the generalization of the mean cur-
vature normal, or the generalization of the (parameterization-independent) surface area gradient.
For the sake of simplicity, we will denote the Laplace-Beltrami operatdB &#®om now on:

A4S = B. To make this flow a graph flow, we have to project this vector onto the sub-space of
free parameters, such a3y, b in the case of color images. The orthogonal projectioB ohto

this sub-space is the vectBr It consists of the same coordinatesBasexcept for the first two
components (corresponding to thendy axes of screen space) set to zero. Therefore, we need

a vector in the direction opposite Bto ensure a graph flow, but such that its projection d@to

has the same magnitude Bi$o ensure the geometric equivalence:

os)
os)

B. (3.20)

wl
w|
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Applied to color images (5D space.(e,, €., €;, &)), the graph flow geometrically equivalent

to a mean curvature flow is therefore:

r B-e
d B-B|_
it |9 BB|° % (3.21)
B-e

Edge-Preserving Flow

Following the same arguments as in Section 3.8.3, we now want to weight the features to favor
smoothing of almost uniform regions. Thus, we need to find a way to measure discontinuities.
Based on the same idea as in the greyscale case, we can use the ratio of surface expansion
between the screen and the surface. It is directly measured by the ratio between the magnitudes
of B and B, as cliffs are characterized by a normal parallel to the screen plane. Our multi-
dimensional scale-invariant edge indicator can be writteri|Bg;/||B||: the edge indicator will

be valued) on sharp edges, ardin homogeneous regions. Adding an edge contrast parameter

~ (slightly different than the previously defined purely for aesthetic reasons), our feature-

preserving flow becomes, for color pictures for instance:

r o B-e
d BN
el — _ [ Hi=n . . 3.22
it | 9 <||B|\ B-e (3:22)
b B-g

Notice thaty = 0 simplifies greatly to a Beltrami flow. The creation of higher dimension feature-

preserving smoothing flows follows naturally.

Incorporating Perceptual Bias for Color

The(r, g,b) color space is not necessarily the most perceptually sound. Put simply, the human
eye is not similarly sensitive to a change of red, green, or blue: what we visibly consider as a
major color edge may not be considered as such in this color space, and vice versa. Therefore,
smoothing a color image in such a space may not lead to the most pleasant visual results.

Instead, we use thel*, U*, V*) color space to take some of the human color perception
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biases into account. This model has the advantage of being almost perceptually uniform for the
human eye, and therefore, will appropriately define edges. Note that any other model and/or
linear combination of existing models is straightforward to implement in our framework as only

the input has to be changed.

Tuning of Global Contrast

The framework defined so far has an additional degree of freedom: the scaling of intensity/colors.
Colors are usually rescaled between 0 and 1, but the real color spectrum of the image is unde-
termined. Unless radiometric values of the image are available, we can arbitrarily choose a scale
factor « to define the global contrast of the image. Note that our surface functional for a large
value ofa will be equivalent, fory = 0, to a regularized version of the, norm of the intensity:
therefore, our flow will be equivalent to the total variation denoising approach of [ROF92]. On
the other hand, a small scale factor will tend to create a flow based ditherm [Sha96] for

the samey [KMS97].

3.8.5 Discussion

We have defined a scale-invariant anisotropic flow to denoise any bivariate data while preserving
features. It is based on surface area minimization, well-known in 3D to provide good denoising.
As this method tends to minimize surface area i), the smoothing between data samples is
treated in a non-linear way, significantly different from a channel-by-channel smoothing. In
the special case of color images, color smoothing will induce an alignment of the gradient of
each channel, which does not appear in a channel by channel smoothing. The integration of the
flow can be performed using either an explicit or implicit Euler scheme. The user can stop the
smoothing when the data is sufficiently denoised. The integration time step can either be user
defined or computed using El-Fallah and Ford’s technique based on the variation of the global
area [FEF98]. If the area of the whole image changes significantly during a time step, a lot of
noise was present in the image, and it is safe to take a larger time step. When the area change
starts to decrease, the image structure may be significantly affected by too large a time step, thus

the time step should be reduced.
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Figure 3.19:Examples of denoising for computer-generated greyscale and color images (a and

d: noisy images, b and e: denoised output, c: close-up of a and b).

3.8.6 Results

We tested our method on several datasets. We first used computer generated images with artifi-
cially added noise. In Figures 3.19(a-c) we can see that our method removes the noise from a
simple greyscale image while retaining the edges present in the original image. Similarly, Fig-
ures 3.19(d-e) shows a smoothing for a simple color picture in the presence of large amounts of
noise.

Next, we tested the method on “real-world” images. The denoising technique performs well
on classical test images, as demonstrated for instance in Figure 3.20. In Figure 3.21, we display
a noisy image of a clock and its restored version, along with the height field representation of the
images.

We also tried our technique on different depth data. Rather than using a 3D smoothing as
in Section 3.5, we can take advantage of the fact that the error is only indirection. While
former methods [Tau95b, DMSB99] would make the assumption of an isotropic noise in space,
our method applies better to this depth field as the noise (measurement error) mainly resides

along thez axis. To demonstrate this advantage, we smoothed an elevation map of a section of
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(@) (b)

Figure 3.20:(a) Noisy color image, (b) Denoising flow applied to (a), in 300 explicit iterations

withdt =1,~ = 0.

(a) (b) (©)
Figure 3.21.Clock example: The initial image (a, top) contains a significant amount of noise as

its height field (b) shows. Our denoising technigue significantly reduces this amount of noise (a,

bottom) while keeping the features in place (c).

Mars. Due to measurement errors and poor quantization of the original data, the height field is
noisy as shown in Figure 3.22(a). After an anisotropic smoothing, we suppress the noise and

most of the quantization effects, resulting in a smooth surface even with a flat-shaded rendering.

(a) (b)
Figure 3.22:Mars elevation map: (a) raw data, (b) smooth version after anisotropic diffusion.

Notice how, with our non-uniform diffusion, the aliasing due to poor quantization is suppressed

without altering the general topography of the surface (both pictures are flat-shaded).
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Figure 3.23:(a) Head model obtained from a noisy depth image. (b) Reconstructed model after

denoising (flat-shaded).
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Figure 3.24Vector field denoising: (a) Original, noisy vector field; (b) Smoothed using Beltrami

flow; (c) Smoothed using anisotropic weighted flow to automatically preserve the vortex region.

Figure 3.23 demonstrates how our method behaves on range images. Given a noisy range
image of a face, we can smooth the range image to reconstruct the face without visible noise
while keeping the features in place. Once again, previous methods would have altered the shape
since the assumption of isotropic noise in the data does not apply for range images.

The extension of our discrete differential operator to higher dimensional embedding spaces
allows us to use the same smoothing technology even for vector fields or tensor images. As
a final example demonstrating the practical accuracy of our operator, we performed different
smoothings on higher dimensional spaces. For instance, Figure 3.24 demonstrates how our oper-
ators can smooth a vector field, with or without preservation of features. Anisotropic smoothing
can indeed preserve significant discontinuities such as the boundary between the straight flow

and the vortex, just as we preserved edges during mesh smoottsibg in



Chapter 4

Remeshing

In this chapter, we present a novel technique, both flexible and efficient, for interactive remeshing
of irregular geometry [AMDO2]. First, the original (arbitrary genus) mesh is replaced by a series
of 2D maps in parameter space. Since these maps contain geometric quantities including our
discrete differential operators, they provide a complete substitute for the 3D mesh. Using these
maps, our algorithm is then able to take advantage of established signal processing and halftoning
tools that offer real-time interaction and intricate control. The user can easily combine these
maps to create a control map — a map which controls the sampling density over the surface
patch. This map is then sampled at interactive rates allowing the user to easily design a tailored
resampling. Once this sampling is complete, a Delaunay triangulation and fast optimization are
performed to perfect the final mesh.

As aresult, our remeshing technique is extremely versatile and general, being able to produce
arbitrarily complex meshes with a variety of properties including: uniformity, regularity, semi-
regularity, curvature sensitive resampling, and feature preservation. We provide a high level of
control over the sampling distribution allowing the user to interactively custom design the mesh
based on their requirements thereby increasing their productivity in creating a wide variety of

meshes.

70
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4.1 Introduction

As 3D geometry becomes a prevalent media, a proliferation of meshes are readily available,
coming from a variety of sources including 3D scanners, modeling software, and output from
computer vision algorithms. Although these meshes capture geometry accurately, their sam-
pling quality is usually far from ideal for subsequent applications. For instance, these (some-
times highly) irregular meshes are not appropriate for computations using Finite Elements, or for
rapid, textured display on low-end computers. Instead, meshes with nearly-equilateral triangles,
a smooth gradation of sample density depending on curvatures, or even uniform sampling are
preferable inputs to most existing geometry processing algoritfitemeshingi.e., modifying

the sampling and connectivity of a geometry to generate a new mesh, is therefore a fundamental

step for efficient mesh processing.

4.1.1 Background

Although studied in Computer Graphics for obvious reasons, surface remeshing has also received
a lot of attention from various non-CG fields interested in mesh generation — mainly Compu-
tational Fluid Dynamics, Finite Element Methods, and Computational Geometry. However, the

diverging goals resulted in vastly different, non-overlapping solutions as we now briefly review.

Mesh Generation Community Since the emphasis is generally on numerical accuracy, most

of the tools developed in the non-CG communities focus on mesh quality. Remeshing procedures
often use a parameter space to impose quantitative mesh properties such as local triangle sizes
and shapes [dCS96, TOC98, GB98]. Others simply perform mesh simplification [PV97] or edge
operations and vertex shifting [Bor98] to conform to a global mesh property. However, most
techniques heavily rely on mesh optimization [Fre00, RVSS00] to satisfy common requirements
like equal angles for FE computations [BGBI7] or smooth gradation [BHF97hccuracyis

therefore obtained at the price of rather slow computations.

Computer Graphics Community In contrast to the quality requirements of the other fields,
CG work has focused mainly cgfficiency The majority of previous work has proposed semi-

regular remeshing techniques [LS3, GSS99, GVSS00, HLGO01], based on an initial phase
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of simplification which could be used in itself for remeshing [GH98, LT98] since it performs
the aforementioned edge operations and vertex shifting. A noticeable body of work has also
recently been proposed to accurately remesh sharp features [VRKS01, BK0O1]. However, none
of these methods can offer flexibility on the quality of the remeshing obtained, since issues such
as area distortion or triangle shape distortion are not even considered: tailored output can only
be produced through extensive trial-and-error by a patient user.

A controllable mesh re-tiling technique was proposed by Turk [Tur92] to resample an input
mesh using properties such as uniformity or curvature-based density, allowing a much more pre-
cise design of the output meshes. However, the algorithm requires the propagation of “particles”
on the original mesh and a global relaxation of their positions until convergence, requiring heavy
computation. Similarly, Bossen and Heckbert [BH96] proposed a 2D anisotropic mesh genera-
tion involving vertex insertions, vertex removals, and iterative relaxation. Again, output meshes
conforming to various requirements can be generated but only after significant computational
effort. Our goal is thus to attain accuracy, flexibility, and efficiency for resampling, as none of

the techniques described above can offer such a combination.

4.1.2 Contributions and Overview

Our main contributions over previous remeshing techniques are in tereffi@éncy as sim-

ple meshes can now be processed in real or interactive time through a novel resampling stage
followed by anoutput-sensitiveemeshing algorithm, anttiexibility as we offer complete and
precise control over the sampling rate and quality anywhere on the geometry. These two critical
properties are obtained through the use of parameterization and conventional image processing
tools such as filtering, transfer functions and error diffusion, in order to compute near-optimal
resamplings in a matter of milliseconds. Previous approaches often worked directly on the mesh,
resulting in either slow performance or little control over the remeshing quality.

The structure of this paper follows closely the overall algorithmic pipeline depicted at the
bottom of Figure 4.1. We first describe the atlas of parameterization and geometry analysis
we perform on the input mesh in Section 4.2, in order to generate a catalog of 2D maps as an
alternate representation for the input mesh. We detail how these resulting maps are processed

efficiently using standard signal processing tools to create a near-optimal resampling of the input
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Original 3D Mesh Output 3D Meshes

Meshing &
Optimization

Half-
toning

Control map Sampling 2D Mesh

Geometry analysis

Remeshing Pipeline

Figure 4.1:A brief overview of our remeshing process: The input surface patch (top left) is first
parameterized; Then geometric quantities are computed over the parameterization and stored
in several 2D maps; These maps are combined to produce a control map, indicating the desired
sampling distribution; The control map is then sampled using a halftoning technique, and the
samples are triangulated, optimized and finally output as a new 3D mesh. A few examples of
the various types of meshes our system can produce are shown (top, from left to right): uniform,
increased sampling on higher curvature, the next with a smoother gradation, regular quads, and
semi-regular triangles. After an initial pre-processing stagel§), each of these meshes was

produced in less than 2 seconds on a low-end PC.

mesh in Section 4.3. A final, rapid phase of optimization can then be performed to get accurate
results as described in Section 4.4. Finally, we present a number of results to demonstrate the

wide range of possible resamplings we can interactively obtain in Section 4.5.

4.2 Geometry Analysis

In this section, we explain in detail how we build a complete sehapsfrom the raw, input
geometry. This will construct an alternative representation of the surface and all of its intrinsic
properties in the form of convenient 2D images, which are easy to process. We demonstrate

how simple and efficient this process is when graphics hardware is used appropriately. We also
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show how to create a small set of tiling patches from a closed object of arbitrary genus, and give
details on how to compute the geometry maps from these surface patches by flattening them onto

isomorphic planar triangulations.

4.2.1 Creation of an Atlas of Parameterization

The first processing stage undergone by the input mesh consists in splitting the surface into
disk-like patches, creating atlas of parameterizatioflGH95]. A number of existing cluster-
ing algorithms such as [GWHO01, PGO01, LPRMO02] could be used successfully to achieve such
a partition. Unfortunately, they do not produce smooth patch boundaries on the geometry as
demonstrated in Figure 4.4, and therefore lead to poor-quality stitching across the remeshed
patches. Note that one could also make some cuts in the geometry to turn it into a single patch,
as often proposed in the last two years [LPVV01, EHP02, She02, GGHO02]. All of these methods
are valid ways to deal with arbitrary genus surfaces, and the resampling technique presented in
this paper is mostly independent of the cutting/unfolding method chosen.

In the remainder of this paper, we use a variant of the mesh partitioning proposed by Eck
al. [EDD™"95] (later improved by Guskost al.[GVSSO00]), that computes approximate Vorono
diagrams as an initial non-smooth partitioning of the mesh into genus-0 patches. This procedure,
which we will extend in Section 4.2.4 to generate area-balanced patches, automatically produces

a series of tiling patches fromput meshes of arbitrary genus

4.2.2 Parameterization

The second stage is to map each individual surface patch to an isomorphic planar triangulation.
This operation, callegharameterizationalso has many solutions readily available ([EDI3,

Lév0l, LPRMO02, DMAO2] to name a few). Although most parameterization techniques would

be adequate, one that guarantees visual smoothness of isoparametric lines and preserves the
conformal structure of the input mesh is most preferable. We thus strongly advocate for the
conformal parameterization as defined in [PP93, EBBH) since it behaves extremely well even

on irregular triangulations [DMAO2]. This technique requires solving a simple, sparse linear
system with coefficients based on the geometry of the mesh, and is usually handled in a matter of

seconds using a Conjugate Gradient solver with good preconditioning. We fix the boundary to be
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a square (see Figure 4.2) or any convenient rectangular region so that our maps can be efficiently

stored and processed as regular floating point images.
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Parameterization
Figure 4.2: Original mesh, conformal parameterization [EDB5] and texture mapping of a
checker-board. Notice the inevitable area distortion on the nose, which we will automatically

compensate for during the resampling process (see Section 4.3.1).

Once a parameterization has been found, we compute several scalar maps to seora-as a

plete substitutéor the input geometry. This will allow us to work almost solely on the 2D images
instead of on the original 3D mesh.

Catalog of Maps For our application, we have identified the following geometrical values as
being relevant:

e Area distortion mapM 4: since no discrete parameterization can (in general) preserve
the area of every triangle, we need a piecewise constant scalar map indicating how each
triangle has been shrunk or expanded during the parameterization. This is easily computed
using the ratiadsp /. Asp of each triangle’s surface area in 3D and its corresponding area
in the 2D parameterization. Note that this map widmpensatdor any area distortion

inevitably introduced by the parameterization (as depicted in Figure 4.2).

e Curvature mapsM g and My: since any differential quantity on a smooth surface can
be expressed as a (possibly nonlinear) combination of three invariantsAatealssian
curvaturek, and mean curvaturl [Gra98], we compute both a Gaussian curvature and a

mean curvature map (in addition to the previously mentioned area distortion map). Using
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our discrete differential operators to compute these maps allows for accurate results even
on very irregular input meshes. These two maps can then be combined to obtain other
useful curvature maps: for instance, one can compute maps of minimum curxature
maximum curvatures,, or total curvatures? + 3 by simple per-pixel operations on those
two basic maps. Additional data, such as curvature tensors could also be computed on the

surface and stored in maps, but we do not make use of them in this work.

Embedding Map\x: we also need the position= (z,y, z) of each vertex, describing
the exact geometry of the surface in 3D. These three maps (one per component) will pro-
vide a very efficient way of computing the mapping between a valee(u,, u,) on the

parameterization and its associated 3D point on the input meslz, y, z).

Face Index MapM,,c we also construct a face index map by assigning a color to each
triangle in the parameterization corresponding to its face index in the mesh, as done by
Botschet al.[BRK0O0]. Such a map turns out to be efficient for locating in constant time

the triangle in which a given parametric value lies, saving potentially costly searches.

Additional Maps:finally, any attribute (normal, texture, color, etc.) can also be mapped

onto the parameterization to complete the catalog of maps.

) - »”
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A. Mean Curvature map

B. Area map

C. Control map (A« B)

Figure 4.3:Examples (in inverse mode for better visualization) of geometry maps for the mask

in Figure 4.2. A My, the mean curvature map computed according to [MDSBO2\MVBy, the

area map; the nose has been compressed during the flattening process, while areas nearby the

corners have been stretched. C. Sampling control map, using a per-pixel multiplicatioR:
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Hardware-Assisted Map Generation Piecewise-constant maps representing area distortions,
face indices or per-face normals are efficiently generated using hardware accelerated OpenGL
commands. Each floating-point or integer value is separated into the R, G, B, A color channels
(similar to [BRKOQ]), and all the triangles are rendered using OpenGL flat shaded triangle prim-
itives in a back buffer. We assign a depth proportional to the surface area of each triangle to
reduce the aliasing of small triangles in the map.

For linearly interpolated maps representing curvature, positions, per-vertex normals or at-
tributes, we use the face index map and standard barycentric coordinates to compute the linear
interpolation between the vertices in the parametric space. Note that the map creation could be
simplified and optimized even further now that graphics boards implement full 32-bit floating
point buffers for rendering. Nonetheless, generating the maps naively using graphics hardware
speeds up the map creationtiayo orders of magnitudeompared to a riae pixel-by-pixel imple-
mentation, and takes less th&0 ms for large meshes with thousands of triangles. Figure 4.3

depicts both a curvature and an area map, as well as a compositing of the two.

4.2.3 Features and Constraints

In addition to the geometry maps, we sometimes need to define specific features and/or con-
straints that the user wishes to enforce during the remeshing process. Typically, we want sharp
features (present in mechanical parts for instance, see top left of Figure 4.6) to be preserved.
Similarly, some particular points of the input surface may need to be constrained to become

vertices of the remeshed version, for animation purposes for example.

Features We first assume that feature edges are either extracted using a simple dihedral angle
thresholding, or directly input by the user by tagging existing input edges or creating arbitrary
piecewise-linear feature curves. From this set of feature edges (Figure 4.6, top middle) we clas-
sify vertices by their number of adjacent feature edges, leading to two categories: creasd

vertices any vertex connected to exactly two feature edges;@nér vertices all the other ver-

tices, connected to one or more than two feature edges. These feature edges are then chained
together into a feature graph. This is very similar to the feature skeleton composkedokt “

bone$ as introduced by Kobbekt al.in a series of papers concerning geometry resampling and

feature remeshing [BRKO0O, VRKSO01, BKO01] (see Figure 4.6, top right, for an example). This
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feature graph requires little memory and can be computed in a straightforward way. We should
note the following details that need to be addressed during the implementation: i) the graph can
have cycles, ii) each patch boundary or cutting patiseadded to the feature graph as a closed
cycle (as being either sharp boundaryor seamingbackbone), iii) some features may meet

at corners living on the boundary, and iv) a crease vertex should be classified as a corner if an
important change of direction is detected along the feature. The latter corresponds to a feature
inflexion point and is a rare occurrence. Once the feature graph has been properly constructed,
the specified piecewise linear features will be exactly preserved by our remeshing technique as

explained in Section 4.3.2.

Constraints We also allow the user to define a list of (u,v) values for which (s)he desires to get
corresponding vertices in the output mesh. These values can be defined by the user by simply

clicking on the input mesh. We save a list of all the constraints for later use during resampling.

4.2.4 Making the Atlas Area-Balanced

As mentioned in Section 4.2.1, we mostly use an existing technique to construct the atlas

of parameterization. We, however, make use of our novel maps to improve this procedure.

Chart Boundary Smoothing

Bunny ear  area distortion face clustering bisection parameterization area balancing

Figure 4.4:. Area-balanced atlas. From left to right: geometry of a Bunny ear; confor-

mal parameterization and resulting area distortion visualized through a texture mapping of a
checkerboard; face clustering obtained using [GWHOL1]; partitioning obtained by simple bisec-
tion [EDD'95, GVSSO00]; the conformal parameterization, with the two medians; area-balanced

and smooth partitioning, using the median line of its area mdp (computed irb0 ms).
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Eck [EDD"95] proposed to smooth patch boundaries iteratively by mapping two adjacent
patches onto & x 1 rectangular region using the discrete conformal mapping discussed in Sec-
tion 4.2.2, and then re-defining the boundary between the two patches as the middle isoline in the
parameterization (see Figure 4.4), which guarantees smoothness. However, this relaxation has a
major inconvenience: it islippery— since the parameterization does not have any guarantee on
area distortion, the middle isoline often splits the two patches into patches of two very different
sizes, with a tendency to slip away from very curved features. As depicted on Figure 4.4, this
often leads to patches with highly variable surface areas (compare the left and right areas after
splitting) and with large parameterization distortion (note that one patch contains the entire ear,
while the other is relatively flat).

Instead, we propose to construct the area distortion map @fthiemapping as described in
the previous section, and use it to find a good splitting line that creates equal sized patches. This
is done by finding the median vertical line such that the sum of all pixel values on one side of the
line is equal to the sum of the pixel values on the other side. Since a single sweep of the picture is
sufficient to find the median, this operation takes little time — ab0ut.s for a512 x 512 image.
As demonstrated in Figure 4.4, this change in the original algorithm significantly enhances the
quality of the partitioning, as no slipping occurs and each patch has the same surface area. Note
that the dividing line is smooth thanks to the angle-preserving parameterizefigma Gtraight
line in parametric space corresponds to a smooth line on the surface).

Once the patrtitioning is done, we can compute the maps for each of the created patches as
aforementioned. We use a lazy evaluation, computing a map only if needed to save both memory
and time. We show in the next section the main contribution of this chagehow these maps

alone are used to resample the surface geometry at interactive rate.

4.3 Real-Time Geometry Resampling

Now that the input geometry has been preprocessed and replaced by an equivalent series of
maps, we can use these maps to design a proper resampling. In this section we propose a real-
time technique to resample the geometry. This is achieved in two stages: first, the user designs

a control mapby combining different geometry maps to define the desiteakity of samples
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then a simplédnalftoningtechnique is used to discretize this map and generate the exact, requested
number of vertices. We show that this resampling is near optimal, and only a quick optimization

will be needed to obtain a high quality mesh as output.

4.3.1 Designing the Control Map

To allow for a vast range of possible remeshings, we let the user design a control map that denotes

the vertex density for the remeshing.

Area Map as Sampling Space Resampling the parameterization uniformly would not result in

a regular 3D resampling of the geometry, due to the area distortion introduced during flattening.
However, the area map1 4 does indicate the density of sampling needed on the parameterization
to obtain a uniform sampling on the surface itself. The area map is therefore the sampling space

we will use ageference sampling density

Modulating the Sampling Density The final control map is obtained by multiplying the sam-
pling space map by thiemportance map— a map denoting the desired sampling density across
the patch. Many different maps can be used to tailor the sampling to the user’s requirements,
though we have mainly used curvature related maps in this work. To demonstrate the diversity
of possible remeshing, we mention some canonical examples of importance maps that we have

tried:
e constant, we will obtain a uniform vertex density on the 3D surface (see Figure 4.8),

¢ related to an estimation of curvature usih@x andM g, we will adapt the sampling rate

to the local curvature (see Figure 4.11),

e any user-defined map, we will obtain a map with user specified sampling (useful for ani-

mation and displacement maps). See Figure 4.9 for such an example.

The resulting map is then rescaled to the unit interval, and inverted (I — z) so that darker
areas on the picture correspond to regions which require higher sampling. A simple example is

depicted in Figure 4.3(c), where the area map is modulated with a mean curvature map (very light
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(white) areas correspond to flat and/or highly stretched regions of the mesh due to the flattening,

and require few samples).

4.3.2 Halftoning the Control Map

Once the control map has been decided upon, we need to resample it with a local density of
vertices in accordance with the control map, and with the exact number of samples the user
requests. In other words, we need to transform the control map inittaay image indicating

the presence or absence of a vertex on the parameterization. In essence, our problem is directly
related to the technique dflftoninggrey-level images. Halftoning has been carefully studied

for decades [Uli88] and is still an active research field [Ost01], mainly trying to improve the
quality of dithering and printing. Different methods have been proposed to sample a continuous
image with an adequate density, and to best statistically simulate an optimal blue noise signal in

a single rasterization pass [UIi88].

Discretizing the Control Map We use a recent error diffusion algorithm developed by Ostro-
moukhov [Ost01], which samples an image usirsggoentine rasterizatiofieft to right on even
lines, right to left on odd lines) with near-optimal quality. We add the following modifications to

Suit our purposes:

¢ while the original technique works on 8-bit images, we use 32-bit images to increase the

range of densities;

¢ to avoid the well-known “dead zone” problem in error diffusion (large empty areas at the
start of an error diffusion), we concatenate a vertically flipped copy of the control map
above the control map and perform the halftoning for the total image, retaining only the

bottom half of the image as the result;

e we also test for features and constraints (see Section 4.2.3), forcing a pixel to be black if it
falls on one of the constraints, or forcing a pixel to be white if it falls on one of the features
(as they will be sampled separately). The error diffusion accommodates for these forced

selections by diffusing the error into nearby pixels.

The user simply chooses a given number of samples (which will be the final number of vertices)

since arexact number of verticesn easily be reached by a simple linear scaling of the intensity
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400 samples 8k samples 30k samples
Figure 4.5:Sampling of the map from Figure 4.3(c) using error diffusion with various numbers

of requested samples$( ms each).

of the control map [Ost01] that preserves the ratio between the number of black pigels (
number of samples) and the image area. Note that the size of the maps determines the maximum
number of samples (there cannot be more samples than there are pixels in the map). Therefore,
we allow the user to select an appropriate image size having enough space for the sampler to
work properly (though the choice of image size can easily be made automatically if desired).
Such a technigue turns out to be extremely efficieriti 2x512 image is sampled in onK0 ms

on a 1 GHz PIIl. Examples of error diffusion are given in Figure 4.5.

Discretizing the feature graph A separate 1D error diffusion is performed along the bound-
aries and features in order to guarantee a consistent mesh density between the boundary and
inner regions, as well as good feature preservation. After the initial sampling,)wgather all

the pixels of the feature graph in a 1D array using Bresenham'’s line algorithmormalize

their intensity according to the following law: — 1 — m (intuitively, the square root
appears since if we want the fractierof the samples to be black in 2D, it means we need the
fraction /2 of the samples to be black in any 1D cross-sectiai),apply a 1D error diffusion,

and finallyiv) put the resulting samples into the sampled image. This guarantees an adequate
feature sampling conforming to the control map, as demonstrated in Figure 4.8. The seams

across patches are dealt with similarly to ensure an easy stitching.
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4.3.3 User Control

Since our resampler runs at interactive rates, we can provide the user with a preview of the new
mesh and allow for real-time editing of the control map to tailor the sampling to specific needs.

An extremely powerful feature of our map based technique is that we can take advantage of many
well-known signal processing tools for images. As a consequence, we can offer a multitude of

tools still with real-time performance; for example:

e Transfer Function - Besides combinations obtained from filtering, scaling and shifting
of the maps, we found it particularly useful to allow editing of a general transfer function
over the importance map, or even direct editing of the importance map itself. For instance,
a simple gamma functiorf(z,~) = z” over the curvature map gives the user control
over the sampling with respect to the curvature. The user can also use pass-band filters or
even a general transfer function to produce meshes with arbitrary sampling. Notice that
the generality of this approach allows our system to simulate virtually any remeshing by
choosing the maps and transfer functions appropriately (such @ tbptimal sampling
derived in [Sim94]).

e Smooth Gradation[BGH"97] of the vertex density can be achieveditwy pass filtering
of the importance map, using an optimized Gaussian filter routine. Changes over the global
size of the filter kernel allow a fine and interactive tuning of the gradation. Note that in the
ideal case, the local size of the filter kernel should be driven by the area map, making it a

non-linear diffusion of the importance map.

e Minimum Sampling - A guaranteed minimum density of samples can be obtained by
shifting the intensity of the importance map so that its minimum corresponds to the re-

guested minimum sampling€., a minimum grey level).

Interactive Preview The error diffusion is fast enough( ms including the transfer function
computation) to provide a real-time feedback of the sampling. Additionally, we provide the
option of using the dithered map as a texture directly on the 3D original model since we already
have the(u, v) parameterization. The samples thus appear on the mesh instantaneously, leading

to a good preview of the current sampling.
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4.4 Mesh Creation and Optimization

At this point, we are already able toteractivelyproduce a resampling of an input mesh with

a density proven to be statistically in agreement with the user’s request. However, connectivity
has not yet been computed. Additionally, the halftoning imptigantized positiongor the
vertices. Therefore, we now explain how to generate an initial connectivity and how a post-
process optimization can greatly improve both connectivity and geometry in mere seconds. We
emphasize that, contrary to [BH96] and most other remeshing technigues, we neither add, nor
remove any vertex during the optimization since, in essence, the blue noise property already
spreads “just enough” vertices everywhere. Consequently, the optimization is extremely efficient

and consists of only a few edge swaps and local vertex displacements.

4.4.1 Mesh Creation

Once the control map has been sampled, we perform a 2D constrained Delaunay triangula-
tion [CGA, She96] over the points sampled in the parametric space. Constrained edges cor-
respond to an ordered list of points sampled using 1D error diffusion along backbones of the
feature skeleton (see Section 4.2.3), as can be seen in Figure 4.6, bottom middle. The vertex
coordinates are then mapped into 3D using the face index map (see Section 4.2.2) and barycen-
tric coordinates within the triangle to find the accurate 3D positidine constrained Delaunay
triangulation and the reprojection onto the original 2-manifold typically take a tot20@fns

for 3000 vertices generated. Notice that the connectivity generated by a Delaunay triangulation
in the parameter plane may not be the most relevant one. However, since all triangulations with
a given number of vertices are all isomorphic to each other through edge swapping, we use this

triangulation as an initial “guess,” and will perform connectivity optimization as necessary.

4.4.2 Connectivity Optimization

For a fixed set of vertices obtained by resampling, the connectivity can be arbitrarily modified by

simple edge swapping. Many optimizations can be easily implemented (see, for instance, tightest

Although usingMx would be faster, it is usually not accurate enough for small maps, and could therefore result

in small noise in the reprojection.
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1 backbone )

corner

Original model Parameterization and tagged edges Feature skeleton

Sampling Constrained triangulation After optimization

Figure 4.6:Simple example of features: the feature edges (in red) are chained together to create
the feature graph; a 1D error diffusion is then performed along the graph followed by a con-
strained Delaunay triangulation of the whole sampling; after a constrained mesh optimization,

the feature edges are perfectly preserved, while blended in the new mesh.

triangulation [vDA95], minimum curvature [DHKLO01]). We also used the following two simpler

criteria:

Regularity Edge swaps can be performed in order to favor valence 6 for interior vertices, and
valence 4 on boundary vertices. This is implemented by randomly picking a non-feature edge
and performing an edge swap only if it reduces the valence dispersion. A few additional con-
straints can be added in order to prevent face flipping in the parameterization, or large geometric
distortions for instance. Note that we can also balance the valences on both sides of each inner
backbone. The “rib effect” [BKO1] can therefore be obtained by forcing exactly two neighbors

on each side of a sharp edge whenever possible, as demonstrated in Figure 4.8.

Face Aspect Ratio Similarly, edge swaps can be performed to improve the aspect ratio of

the triangles. In practice, we swap an edge between two triangles if it improvestintzice
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area/perimetet ratio (computed in 3D). This simple test often results in dramatic improvements,
since the connectivity is now dependent on the embedding, and not solely on the parameteriza-

tion.
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Figure 4.7: Top: Left, Delaunay triangulation over the sampling. Right, after connectivity
and geometry optimization. Middle, comparison of valence dispersion. Bottom: Left, De-
launay triangulation of a sampling performed upon the area map (leading to uniform mesh)
of a mushroom-shape model. Middle, after minimization of local area dispersion. Right, the
remeshed model. Note the uniformity obtained despite the strong area distortion due to the flat-

tening process.

4.4.3 Geometry Optimization

In addition to the connectivity optimization, we also perform a small geometry optimization
to improve the geometric quality of the mesh. We perform a weighted Laplacian flow in the

parameterization by moving every vertgxthat does not belong to the feature graph by:
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Ap = At Z wi(q; — P)
i€N(P)
where At is a step chosen sufficiently smad.§, 0.1), N (p) is the set of adjacent vertex
indices to vertexp, andq; corresponds to thé" adjacent vertex tg.
Depending on the choice of remeshing that the user made when selecting the control
map, we perform an adequate optimization by choosing the weightso as to minimize
an appropriate quantity. For example, if the users require a uniformly resampled mesh,
we can minimize the local area dispersion by using the following weighting:
(A3P-cot(a;)+A3P -cot(B;))

w; = 5D ,  wherea; and; are the opposite angles in

j=1°7%

the parameterization as depicted, atitt and A2, are the 3D face areas to

the left and right obq;.
This novel weighting has the quality of inducing no changes if the tri-p
angles are already of equal sizes, while producing a Laplacian smoothing
(IMDSBO02)) to iteratively improve the quality otherwise. The result of such an optimization
can be seen in the bottom of Figure 4.8. The area distortion minimization is only a particular
instance of the more general mesh optimization we offer. The area terms in the previous weights
can be substituted by other values, based on the control map used. For a curvature-based map
for instance, we replace the area terms by integrals of the control map over the associated trian-
gles. Indeed, a single pass over the control map suffices to collect the integral of the map over
each triangle. These integrals, measuring the "amount of curvature” (or amount of anything the
control map measures) contained in a triangle, are therefore appropriate weighting values if one
wants to guarantee a triangulation adapted to the control map. This efficient smoothing generally

happens in a matter of seconds, leading for instance to the results on Figure 4.11.

4.4.4 Combined Optimization

Our system can create a variety of optimizations by alternating between connectivity and ge-
ometry optimization stages. For instance, uniform meshes can be obtained by alternating edge

swaps favoring regularity with geometry optimization iterations minimizing area dispersion (see
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Figure 4.7 bottom). If the user wishes to create the “rib” effect [BKO1], she can simply alternate
edge swaps which favor regularity and a univariate Laplacian smoothing of the feature vertices

(Figure 4.6, bottom right). Additional results are given in the following section.

4.5 Remeshing Results

Our current implementation is written in C++ using a sparse matrix structure, biconjugate gra-
dient and SSOR preconditioning for computing the conformal parameterization. All operations
on the maps are performed using a standard image processing library, using OpenGL hardware
whenever possible. The sampling previews use standard OpenGL texture mapping. All result
timings are given for a 1 GHz PIII with 256 MBytes of memory. Figure 4.8 illustrates uniform
remeshing of thdandiskat various resolutions using&0 x 800 control map. Note how the

1D error diffusion performs well all the way from 200 vertices to higher complexity along the

Figure 4.8:Uniform remeshing of the fandisk. Top: conformal parameterization, and sampling
obtained by error diffusion with 2.5k vertices with superimposed feature skeleton. Middle: result
of constrained Delaunay triangulation before and after uniformity optimization. Bottom: several
uniform remeshings with 0.2, 0.6, 1.4, 2.5 and 50k vertices respectively. Note the excellent
behavior of the 1D error diffusion along the backbones, leading to consistent density between

sharp edges and planar areas.
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Figure 4.9:Left: Semi-regular remeshing of a foot model. Right. Mesh created by pasting an

image on the importance map (useful for animations and displacement maps).

backbones of the feature skeleton. The conformal mapping is performsed inusing SSOR

with over-relaxation, and all the maps are computetl.ins total, while each sampling is done

at an interactive rate ih60 ms. For the 2.5k vertex version the constrained Delaunay triangula-
tion [She96] taked90 ms, and the optimization stage takes overall. The final 3D mapping
takes250 ms. Note that our goal of sampling at interactive rates is achieved, greatly increasing
the user’s productivity and workflow. Figure 4.10 illustrates an example of uniform geometry
remeshing of thMaxPlanckmodel using a 3 patch atlas. The origina<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>