
Discrete Differential Operators for Computer Graphics

Thesis by
Mark Meyer

Advisor
Alan H. Barr

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Science

California Institute of Technology
Pasadena, California

(Defended May 2004)

May 27, 2004

c© 2004

Mark Meyer

All rights Reserved

Acknowledgements

There are many people without whose guidance and support this work would not have been

possible. To them I now offer my thanks. First and foremost, I thank my advisor, Alan Barr, for

his sage advice and unwavering enthusiasm and encouragement. He has provided a wonderful

insight into the world of serious research and helped to nurture my interest in solving challenging

intellectual problems. The combination of his knowledge, creativity, and approachability still

amazes me.

I am also deeply indebted to the other faculty members who offered unofficial advisement

in both research and life. To Mathieu Desbrun, who showed through both his teaching and

personal example that with a strong work ethic and creativity, great problems could be tackled.

His intelligence and broad range of knowledge didn’t hurt either – and were always of great

help in my research. To Peter Schroeder, who pointed out new directions, challenged existing

ideas, and always offered his time and expertise to provide constructive suggestions. I am also

very grateful for the help and support of the staff who never complained when my ambition (and

disorganization) asked them to go far beyond the call of duty: Louise Foucher, Jeri Chittum, and

David Felt.

Special thanks to my officemate Min Chen for always bringing interesting problems and

stimulating discussions, as well as an understanding shoulder whenever I needed it. Thanks

to all my colleagues who helped me through the years to keep my academic focus as well as

my personal sanity. Thank you, Pierre Alliez, Eitan Grinspun, Zoë Wood, Matt Hanna, Jessie

Stumpfel, Jon Alferness, Steven Schkolne, Tran Gieng, Nathan Litke and Catherine Wong.

Finally, and most importantly, I thank my family and my friends who have become my

family. Throughout the years you have offered unconditional love and understanding, many

iii

iv

times when my actions did not warrant it, all while asking nothing in return. I am a product of

your love and support. Saying thank you doesn’t seem like enough

The Research on differential operators was partially supported by the STC for Computer

Graphics and Scientific Visualization (ASC-89-20219), IMSC - an NSF Engineering Research

Center (EEC-9529152), an NSF CAREER award (CCR-0133983), NSF (DMS-9874082, ACI-

9721349, DMS-9872890, and ACI-9982273), the DOE (W-7405-ENG-48/B341492), Intel,

Alias|Wavefront, Pixar, Microsoft, and the Packard Foundation.

The work on smoothing was supported by the Academic Strategic Alliances Program of

the Accelerated Strategic Computing Initiative (ASCI/ASAP) under subcontract B341492 of

DOE contract W-7405-ENG-48. Additional support was provided by NSF (ACI-9624957, ACI-

9721349, DMS-9874082, DMS-9872890, and ASC-89-20219 (STC for Computer Graphics and

Scientific Visualization)), Alias|Wavefront and through a Packard Fellowship.

The research on remeshing was supported in part by IMSC NSF Engineering Research Cen-

ter (EEC-9529152), by the ECG project of the EU No IST-2000-26473, and by a NSF CAREER

award (CCR-0133983).

The work on parameterization was supported by IMSC, an NSF Engineering Research Center

(EEC-9529152), and a NSF CAREER award (CCR-0133983).

Discrete Differential Operators for Computer Graphics

by

Mark Meyer

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Science

Abstract

This thesis presents a family of discrete differential operators. Since these operators are derived

taking into account the continuous notions of differential geometry, they possess many similar

properties. This family consists of first- and second-order properties, both geometric and para-

metric. These operators are then analyzed and their practical use is tested in several example

applications.

First, the operators are used in a smoothing application. Due to the properties of the opera-

tors, the resulting smoothing algorithm is general, efficient and robust to sampling problems. The

smoothing can be applied to many different inputs ranging from images to surfaces to volume

data.

Second, a surface remeshing technique using the operators is presented. Given the operators,

we present an algorithm that resamples a surface mesh according to several geometric criteria

(integrated curvature, directional curvature, geometric distortion). The resulting algorithm is

efficient, general and user-tunable.

Next, a surface mesh parameterization technique is presented. Using geometric invariants as-

sociated with the discrete operators, we present an efficient, tunable parameterization algorithm

that is robust to sampling irregularities in the input model. Using the properties of the differ-

ential operators allows us to make a parameterization algorithm that relies only on geometric

information and not the original parameterization of the input model.

Finally, we conclude and present future work including physical simulation and sampling

theory.

v

Table of Contents

Acknowledgements iii

Abstract v

List of Figures x

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis Overview . 4

2 Discrete Differential Operators 6

2.1 Notions from Differential Geometry . 6

2.1.1 Curvatures and Principal Directions . 8

2.1.2 Principal Quadric . 10

2.2 Previous Work . 10

2.2.1 Vertex Normal Estimation . 11

2.2.2 Principal Quadric Fitting . 12

2.2.3 Statistical Methods . 13

2.2.4 Extensions From Differential Geometry 14

2.3 Discrete Properties As Spatial Averages . 16

2.3.1 General Procedure Overview . 17

2.4 Discrete Mean Curvature Normal . 17

2.4.1 Derivation of Local Integral Using FE/FV 17

2.4.2 Voronoi Regions for Tight Error Bounds 19

vi

vii

2.4.3 Voronoi Region Area . 20

2.4.4 Extension To Arbitrary Meshes . 20

2.4.5 Discrete Mean Curvature Normal Operator 21

2.5 Discrete Gaussian Curvature . 22

2.5.1 Expression of the Local Integral ofκG 23

2.5.2 Discrete Gaussian Curvature Operator 23

2.6 Discrete Principal Curvatures . 24

2.6.1 Principal Curvatures . 24

2.6.2 Least-Square Fitting for Principal Directions 26

2.7 Operator Quality . 27

2.7.1 Numerical Quality of Our Operators . 28

2.7.2 Visual Inspection of Meshes . 29

2.8 Discrete Operators innD . 30

2.8.1 Operators for 2-Manifolds innD . 31

2.8.2 Beltrami Operator for 3-Manifolds innD 32

2.9 Conclusion . 32

3 Smoothing 33

3.1 Introduction . 34

3.2 Implicit Fairing . 36

3.2.1 Notation and Definitions . 36

3.2.2 Diffusion Equation for Mesh Fairing . 38

3.2.3 Time-Shifted Evaluation . 38

3.2.4 Solving the Sparse Linear System . 39

3.2.5 Interpretation of the Implicit Integration 39

3.2.6 Filter Improvement . 41

3.2.7 Constraints . 42

3.2.8 Discussion . 42

3.3 Automatic Anti-Shrinking Fairing . 44

3.3.1 Exact Volume Preservation . 44

3.3.2 Discussion . 45

viii

3.4 An Accurate Diffusion Process . 46

3.4.1 Inadequacy of the Umbrella Operator 46

3.4.2 Simulation of the 1D Heat Equation . 47

3.4.3 Extension to 3D . 49

3.5 Curvature Flow for Noise Removal . 50

3.5.1 Diffusion vs. Curvature Flow . 50

3.5.2 Boundaries . 52

3.5.3 Implementation . 52

3.5.4 Comparison of Results . 53

3.6 Smoothing Shape and Sampling . 54

3.7 Anisotropic Smoothing . 57

3.7.1 An Anisotropic Weighting Technique 57

3.8 Smoothing General Bivariate Data . 59

3.8.1 Smoothing of Images and Height Fields 59

3.8.2 Intensity as a 2-Manifold . 60

3.8.3 Denoising Greyscale Images . 62

3.8.4 Denoising of Arbitrary Bivariate Data 64

3.8.5 Discussion . 66

3.8.6 Results . 67

4 Remeshing 70

4.1 Introduction . 71

4.1.1 Background . 71

4.1.2 Contributions and Overview . 72

4.2 Geometry Analysis . 73

4.2.1 Creation of an Atlas of Parameterization 74

4.2.2 Parameterization . 74

4.2.3 Features and Constraints . 77

4.2.4 Making the Atlas Area-Balanced . 78

4.3 Real-Time Geometry Resampling . 79

4.3.1 Designing the Control Map . 80

ix

4.3.2 Halftoning the Control Map . 81

4.3.3 User Control . 83

4.4 Mesh Creation and Optimization . 84

4.4.1 Mesh Creation . 84

4.4.2 Connectivity Optimization . 84

4.4.3 Geometry Optimization . 86

4.4.4 Combined Optimization . 87

4.5 Remeshing Results . 88

5 Parameterization 91

5.1 Introduction . 91

5.1.1 Problem Statement and Conventions . 93

5.1.2 Background . 93

5.1.3 Overview . 95

5.2 Distortion Measures for 1-Rings . 96

5.2.1 Notion of Distortion Measure . 96

5.2.2 Properties of Intrinsic Measures . 97

5.2.3 Admissible Intrinsic Measures . 98

5.3 Optimal 1-Ring Flattening . 99

5.3.1 Notion of Optimal Vertex Placement . 99

5.3.2 Discrete Conformal Mapping . 100

5.3.3 Discrete Authalic Mapping . 102

5.3.4 General Discrete Parameterization . 104

5.3.5 Connection to Barycentric Coordinates 104

5.4 Parameterizing Meshes . 105

5.4.1 Computing an Intrinsic Parameterization 106

5.4.2 Modifying Boundaries . 107

5.5 Nonlinear Optimization of Maps . 110

5.5.1 Near-Optimal Maps . 110

5.5.2 Boundary Optimization . 112

x

6 Conclusions and Future Work 113

6.1 Contributions . 113

6.2 Future Research . 115

6.3 Subsequent Developments . 116

A Additional Proofs 118

A.1 Mean Curvature Normal on a Triangulated Domain 118

A.2 Gradient of Area . 120

A.3 Area Gradient innD . 122

A.4 Volume Gradient innD . 122

A.5 Preconditioned Bi-Conjugate Gradient for Smoothing 124

A.6 Gradient of Angle . 125

Bibliography 127

List of Figures

1.1 Some applications of differential operators: (a) Non-photorealistic renderings

[DFRS03] can use curvatures (and their derivatives) to determine where to draw

suggestive contours, (b) a surface smoothing technique using curvature flow to

reduce the noise caused by laser scanning, (c) a remeshing algorithm uses cur-

vature to place more samples in regions of high curvature, where more detail is

present, (d) a parameterization algorithm uses differential quantities to minimize

distortion. 2

2.1 Local regions: (a) an infinitesimal neighborhood on a continuous surface patch;

(b) a finite-volume region on a triangulated surface using Voronoi cells, or (c)

Barycentric cells. 16

2.2 (a) 1-ring neighbors and angles opposite to an edge; (b) Voronoi region on a

non-obtuse triangle; (c) External angles of a Voronoi region.. 21

2.3 Pseudo-code for regionAMixed on an arbitrary mesh. 22

2.4 Curvature plots of a triangulated saddle using pseudo-colors: (a) Mean, (b)

Gaussian, (c) Minimum, (d) Maximum.. 29

2.5 Mean curvature plots revealing surface details for: (a) a Loop surface from an

8-neighbor ring, (b) a horse mesh, (c) a noisy mesh obtained from a 3D scanner

and the same mesh after smoothing. Our operator performs well on irregular

sampling such as on the ear of the horse. Notice also how the operator correctly

computes quickly varying curvatures on the noisy head while returning slowly

varying curvatures on the smoothed version. (d) An example of our principal

directions computed on a triangle mesh.. 30

xi

xii

3.1 (a): Original 3D photography mesh (41,000 vertices). (b): Smoothed version

with the scale-dependent operator in two integration step withλdt = 5 · 10−5,

the iterative linear solver (PBCG) converges in 10 iterations. (c),(d): Close-ups

of the eye. All the images in this chapter are flat-shaded to enhance the faceting

effect. 35

3.2 (a) A vertexxi and its adjacent faces, (b) one term of its curvature normal formula.36

3.3 Comparison between (a) the explicit and implicit transfer function forλdt = 1,

and (b) their resulting transfer function after 10 integrations.. 40

3.4 (a): Comparison between filters usingL, L2, L3, andL4. (b): The scaling to

preserve volume creates an amplification of all frequencies; but the resulting

filter (diffusion+scaling) only amplifies low frequencies to compensate for the

shrinking of the diffusion.. 41

3.5 Stanford bunnies: (a) The original mesh, (b) 10 explicit integrations withλdt =

1, (c) 1 implicit integration withλdt = 10 that takes only7 PBCG iterations

(30% faster), and (d) 20 passes of theλ|µ algorithm, withλ = 0.6307 and

µ = −0.6732. The implicit integration results in better smoothing than the

explicit one for the same, or often less, computing time. If volume preservation is

called for, our technique then requires many fewer iterations to smooth the mesh

than theλ|µ algorithm. 43

3.6 Frequency confusion: the umbrella operator is evaluated as the vector joining

the center vertex to the barycenter of its neighbors. Thus, cases (a) and (b) will

have the same approximated Laplacian even if they represent different frequencies.47

3.7 Test on the heat equation: (a) regular sampling vs. (b) irregular sampling. Nu-

merical errors in one step of integration (c): using the usual FD weight on an

irregular grid to approximate second derivatives creates noise, and gives a worse

solution than on the coarse grid, whereas extended FD weights offer the expected

behavior. (d) Three unevenly spaced samples of a function and corresponding

quadratic fitting for extended FD weights.. 48

xiii

3.8 Application of operators to a mesh: (a) mesh with different sampling rates, (b)

the umbrella operator creates a significant distortion of the shape, but (c) with

the scale-dependent umbrella operator, the same amount of smoothing does not

create distortion or artifacts, almost like (d) when curvature flow is used. The

small features such as the nose are smoothed but stay in place.. 50

3.9 The area around a vertexxi lying in the same plane as its 1-ring neighbors does

not change if the vertex moves within the plane, and can only increase otherwise.

Being a local minimum, it thus proves that the derivative of the area with respect

to the position ofxi is zero for flat regions.. 52

3.10 Smoothing of spheres: (a) The original mesh containing two different discretiza-

tion rates. (b) Smoothing with the umbrella operator introduces sliding of the

mesh and unnatural deformation, which is largely attenuated when (c) the scale-

dependent version is used, while (d) curvature flow maintains the sphere exactly.. 53

3.11 Significant smoothing of a dragon: (a) original mesh, (b) implicit fairing using

the umbrella operator, (c) using the scale-dependent umbrella operator, and (d)

using curvature flow. 54

3.12 Faces: (a) The original decimated Spock mesh has 12,000 vertices. (b) We lin-

early oversampled this initial mesh (every visible triangle on (a) was subdivided

in 16 coplanar smaller ones) and applied the scale-dependent umbrella opera-

tor, observing significant smoothing. One integration step was used,λdt = 10,

converging in 12 iterations of the PBCG. Similar results were achieved using the

curvature operator. (c) curvature plot for the mannequin head (obtained using

our curvature operator), (d) curvature plot of the same mesh after a significant

implicit integration of curvature flow (pseudo-colors).. 55

3.13 From left: Original pretzel shape, smoothing using the Taubinλ/µ algorithm

(notice the substantial shape deformation), mean curvature smoothing produces

excellent shape smoothing, and the combined curvature flow plus laplacian pro-

duces a smoothed shape with regularized sampling (image from [OBB00]).. . . 56

xiv

3.14 From left: Original torus-like shape, smoothing using the Taubinλ/µ algorithm

(notice the substantial shape deformation), mean curvature smoothing produces

excellent shape smoothing, and the combined curvature flow plus laplacian pro-

duces a smoothed shape with regularized sampling (image from [OBB00]).. . . 56

3.15 Cube: (a) Original, noisy mesh (±3% uniform noise added along the normal

direction). (b) Isotropic smoothing. (c) Anisotropic smoothing defined in Sec-

tion 3.7.1. 57

3.16 Fandisk: (a) Original, noisy mesh. (b) Anisotropic smoothing is performed to

maintain the mesh features while removing the noise.. 58

3.17 The intensity mapI(x, y) of an image can be thought of as (a) a set of isophotes,

or (b) a height field(x, y, z = I(x, y)). 60

3.18 (a): The left side indicates how normals are perpendicular to the screen in ho-

mogeneous, noisy areas, while parallel to the screen plane for edges. The right

side shows how the graph flow is built out of the mean curvature flow by hav-

ing the same magnitude once projected along the normal. (b):W measures the

surface expansion between the parameter space (screen pixel) and the surface of

the height field. 63

3.19 Examples of denoising for computer-generated greyscale and color images (a

and d: noisy images, b and e: denoised output, c: close-up of a and b).. 67

3.20 (a) Noisy color image, (b) Denoising flow applied to (a), in 300 explicit iterations

with dt = 1, γ = 0. 68

3.21 Clock example: The initial image (a, top) contains a significant amount of noise

as its height field (b) shows. Our denoising technique significantly reduces this

amount of noise (a, bottom) while keeping the features in place (c).. 68

3.22 Mars elevation map: (a) raw data, (b) smooth version after anisotropic diffusion.

Notice how, with our non-uniform diffusion, the aliasing due to poor quantiza-

tion is suppressed without altering the general topography of the surface (both

pictures are flat-shaded).. 68

3.23 (a) Head model obtained from a noisy depth image. (b) Reconstructed model

after denoising (flat-shaded).. 69

xv

3.24 Vector field denoising: (a) Original, noisy vector field; (b) Smoothed using Bel-

trami flow; (c) Smoothed using anisotropic weighted flow to automatically pre-

serve the vortex region.. 69

4.1 A brief overview of our remeshing process: The input surface patch (top left) is

first parameterized; Then geometric quantities are computed over the parame-

terization and stored in several 2D maps; These maps are combined to produce

a control map, indicating the desired sampling distribution; The control map is

then sampled using a halftoning technique, and the samples are triangulated, op-

timized and finally output as a new 3D mesh. A few examples of the various types

of meshes our system can produce are shown (top, from left to right): uniform,

increased sampling on higher curvature, the next with a smoother gradation,

regular quads, and semi-regular triangles. After an initial pre-processing stage

(∼1s), each of these meshes was produced in less than 2 seconds on a low-end PC.73

4.2 Original mesh, conformal parameterization [EDD+95] and texture mapping of

a checker-board. Notice the inevitable area distortion on the nose, which we will

automatically compensate for during the resampling process (see Section 4.3.1).. 75

4.3 Examples (in inverse mode for better visualization) of geometry maps for the

mask in Figure 4.2. A.MH , the mean curvature map computed according

to [MDSB02]. B.MA, the area map; the nose has been compressed during

the flattening process, while areas nearby the corners have been stretched. C.

Sampling control map, using a per-pixel multiplication:A ·B. 76

4.4 Area-balanced atlas. From left to right: geometry of a Bunny ear; conformal

parameterization and resulting area distortion visualized through a texture map-

ping of a checkerboard; face clustering obtained using [GWH01]; partitioning

obtained by simple bisection [EDD+95, GVSS00]; the conformal parameteriza-

tion, with the two medians; area-balanced and smooth partitioning, using the

median line of its area mapMA (computed in50 ms). 78

xvi

4.5 Sampling of the map from Figure 4.3(c) using error diffusion with various num-

bers of requested samples (40 ms each). 82

4.6 Simple example of features: the feature edges (in red) are chained together to

create the feature graph; a 1D error diffusion is then performed along the graph

followed by a constrained Delaunay triangulation of the whole sampling; after a

constrained mesh optimization, the feature edges are perfectly preserved, while

blended in the new mesh.. 85

4.7 Top: Left, Delaunay triangulation over the sampling. Right, after connectivity

and geometry optimization. Middle, comparison of valence dispersion. Bottom:

Left, Delaunay triangulation of a sampling performed upon the area map (lead-

ing to uniform mesh) of a mushroom-shape model. Middle, after minimization of

local area dispersion. Right, the remeshed model. Note the uniformity obtained

despite the strong area distortion due to the flattening process.. 86

4.8 Uniform remeshing of the fandisk. Top: conformal parameterization, and sam-

pling obtained by error diffusion with 2.5k vertices with superimposed feature

skeleton. Middle: result of constrained Delaunay triangulation before and after

uniformity optimization. Bottom: several uniform remeshings with 0.2, 0.6, 1.4,

2.5 and 50k vertices respectively. Note the excellent behavior of the 1D error dif-

fusion along the backbones, leading to consistent density between sharp edges

and planar areas.. 88

4.9 Left: Semi-regular remeshing of a foot model. Right: Mesh created by pasting

an image on the importance map (useful for animations and displacement maps).89

4.10 Uniform remeshing of the MaxPlanck model. In clockwise order: Original mesh;

Conformal parameterization; Parameterization-driven tiling with tree tiles re-

quested; Three tiles meet at a corner; Mesh separation from the tiling; Burst

view of the three tiles after independent uniform remeshing; The tiles put to-

gether require vertex stitching at the boundaries; A post-process swaps some

edges and performs tangential smoothing along the stitching line; and the new

model after uniform remeshing.. 90

xvii

4.11 Remeshing of the MaxPlanck model with various distribution of the sampling

with respect to the curvature. The original model (left) is remeshed uniformly

and with an increasing importance placed on highly curved areas (left to right)

as the magnified area shows.. 90

5.1 A piecewise linear mapping between a 3D meshM and an isomorphic flat mesh

U , where a triangle on the mesh is mapped to a triangle in the parameterization.92

5.2 Intrinsic Parameterizations: Most previous parameterization techniques (b-c)

are not robust to mesh irregularity, exhibiting large distortions for highly irreg-

ular, yet geometrically smooth meshes such as in (a). Non-linear techniques

(d) can achieve much better results, but often require several minutes of com-

putational time. In comparison, with the exact same boundary conditions, our

technique quickly generates very smooth parameterizations, regardless of the

mesh irregularity (sampling quality) as demonstrated by the two texture-mapped

members (e-f) of the novel parameterization family (denotedIntrinsic Parame-

terizations) that we introduce in this chapter.. 94

5.3 A 3D 1-ring, and its associated flattened version.. 96

5.4 Other Examples of Natural Conformal Maps: to demonstrate the conformality

of the maps we obtain, we use an irregularly sampled mesh and observe that

the symmetry is preserved despite the drastic change in sampling rate. The third

natural parameterization uses the same mesh as in Figure 5.2. These four pa-

rameterizations were obtained in 0.8s, 0.5s, 1.8s, and 0.3s, respectively. 105

5.5 Left: A 3D surface (top) and its natural conformal parameterization (bottom).

Right: Views of the textured 3D surface.. 109

5.6 Area Distortion Minimization can be achieved by optimizing the linear com-

bination λUA + (1 − λ)Uχ of the conformal and authalic parameterizations.

The parameterizations (top) and the area distortion pseudo-coloring (middle)

demonstrate the quality of the optimization.. 111

xviii

5.7 Boundary Optimization: after choosing a (non)linear functional to minimize

over the parameterization, we can move the boundary points to perform a gradi-

ent descent and optimize the parameterization. Here, an initial irregular spheri-

cal strip is mapped to a circle, then evolves towards an optimized parameteriza-

tion (1.5s) minimizing edge-length distortion.. 112

A.1 (a) Osculating circle for edgexixj . (b) The integration of the surface gradient

dotted with the normal of the region contour does not depend on the finite volume

discretization used. (c) The area and angle gradients of trianglePAB can be

computed from the edges and angles shown here.. 119

Chapter 1

Introduction

1.1 Motivation

The study and estimation of differential quantities on surfaces (such as curvatures) are funda-

mental to applications in many fields. Computer Graphics is no exception with many potential

applications including (see Figure 1.1):

Rendering / Shading: Shading computations are used in almost every Computer Graphics ap-

plication. Programmable shaders allow artists and designers to achieve a wide variety of

effects ranging from physically based subsurface scattering to cartoon/cel-shading. These

shaders often use a surface’s differential properties for filtering, aiding texture lookups,

and general color computations. Non-photorealistic shading techniques [DFRS03], such

as diagramatic and toon shading, often use curvatures and their derivatives to determine

where to place suggestive contours and where to place shading discontinuities.

Smoothing: Surface smoothing and enhancement algorithms are becoming more and more

commonplace in the fields of Computer Graphics, Computer Vision and CAGD (Com-

puter Aided Geometrical Design). The use of scanning devices to create surface models

has increased rapidly in recent years. While these devices can produce highly detailed

models of real-world objects, they also have the inherent problem of noise and scanning

errors. Curvature flow as well as other PDEs (partial differential equations) can be used to

remove this noise by smoothing the surface.

1

2

In SIGGRAPH 2003

Suggestive Contours for Conveying Shape

Doug DeCarlo1 Adam Finkelstein2 Szymon Rusinkiewicz2 Anthony Santella1

1Department of Computer Science & Center for Cognitive Science 2Department of Computer Science
Rutgers University Princeton University

Abstract

In this paper, we describe a non-photorealistic rendering system that
conveys shape using lines. We go beyond contours and creases by
developing a new type of line to draw: thesuggestive contour. Sug-
gestive contours are lines drawn on clearly visible parts of the sur-
face, where a true contour would first appear with a minimal change
in viewpoint. We provide two methods for calculating suggestive
contours, including an algorithm that finds the zero crossings of the
radial curvature. We show that suggestive contours can be drawn
consistently with true contours, because they anticipate and extend
them. We present a variety of results, arguing that these images
convey shape more effectively than contour alone.

Keywords: non-photorealistic rendering, contours, silhouettes

1 Introduction

Our interpretation of natural imagery draws upon a wealth of vi-
sual cues, including contours,1 texture, shading, shadow, and many
others. Since each individual cue can be noisy, ambiguous or even
misleading, our visual system integrates all the information it re-
ceives to obtain a consistent explanation of the scene.

When artists design imagery to portray a scene, they do not just
render visual cues veridically. Instead, they select which visual cues
to portray and adapt the information each cue carries. Such imagery
departs dramatically from natural scenes, but nevertheless conveys
visual information effectively, because viewers’ perceptual infer-
ences still work flexibly to arrive at a consistent interpretation.

In this paper, we suggest that lines in line-drawings can convey
information about shape in this indirect way, and develop tools for
realizing such lines automatically in non-photorealistic rendering
(NPR). We start from the observation that many lines in natural and
artistic imagery come fromcontours, where a surface turns away
from the viewer and becomes invisible. As in the rendering at left
in Figure 1, contours can be quite limited in the information they
convey about shape on their own. But the visual system is readily
capable of relaxing the natural interpretation of lines as contours;
instead, it can read lines merely as features where a surface bends
sharply away from the viewer, yet remains visible—as features that
are almost contours, that become contours in nearby views. We
call thesesuggestive contours. When we draw suggestive contours
alongside contours, as in the rendering at right in Figure 1, we exag-
gerate the shape information provided by contours to make a sparse
line-drawing easier to understand. Figure 1 suggests how the two

Figure 1: An example showing the expressiveness added by sugges-
tive contours. The left image is drawn using contours alone, while
the right image uses both contours and suggestive contours.

kinds of lines together convey an object’s shape consistently and
precisely.

In this paper, we describe new NPR techniques based on sugges-
tive contours. Our system produces still frames, such as those in
Figure 1, which combine contours with a selection of those sugges-
tive contours that are stable, given small perturbations of the view-
point or surface. In introducing, characterizing and implementing
suggestive contours, we make the following contributions:

• We offer several intuitive characterizations of lines that can
augment true contours to help convey shape.

• We provide mathematical definitions corresponding to each
of these intuitive characterizations, and show that these defi-
nitions are equivalent.

• We describe the mathematical relationship between sugges-
tive contours and contours, showing that suggestive contours,
despite being drawn on clearly visible parts of the surface, in-
tegrate with true contours in a seamless and consistent way.

• We provide two algorithms (one in object space and one in
image space) for finding and rendering suggestive contours.

• We show imagery created by our implementation, demonstrat-
ing that suggestive contours complement contours in convey-
ing shape effectively.

1.1 Related work

Lines are the scaffold of non-photorealistic rendering of 3D shape;
and contours, which offer perhaps the strongest shape cue for
smooth objects [Koenderink 1984], make great lines [Gooch et al.
1999; Hertzmann and Zorin 2000; Kalnins et al. 2002; Markosian
et al. 1997; Raskar 2001; Winkenbach and Salesin 1994]. In many
cases, however, contours alone cannot convey salient and important
aspects of a rendered object, and additional lines are needed.

Before this work, all other lines drawn from general 3D shapes
have been features fixed on the surface. Creases are the most fre-
quent example [Kalnins et al. 2002; Markosian et al. 1997; Raskar
2001; Saito and Takahashi 1990; Winkenbach and Salesin 1994];
this can yield a pronounced improvement, but only when creases
are conspicuous features of an object’s shape (as for a cube, for ex-
ample). On smooth surfaces, ridges and valleys, also called crest

1There is significant variability in terminology—these are often called
silhouettes [Markosian et al. 1997; Hertzmann and Zorin 2000].

(a) (b)

Parameterization

(c) (d)

Figure 1.1: Some applications of differential operators: (a) Non-photorealistic renderings

[DFRS03] can use curvatures (and their derivatives) to determine where to draw suggestive

contours, (b) a surface smoothing technique using curvature flow to reduce the noise caused by

laser scanning, (c) a remeshing algorithm uses curvature to place more samples in regions of

high curvature, where more detail is present, (d) a parameterization algorithm uses differential

quantities to minimize distortion.

Simplification / Remeshing: Mesh simplification and remeshing procedures are often used to

resample a mesh to create another with a reduced (or increased) number of samples while

maintaining some notion of error (usually geometric accuracy). Mesh simplification algo-

rithms [HG99] often use curvature estimates to determine which areas can be simplified

and to guarantee optimal triangulations. Similarly, remeshing algorithms [AMD02] are

typically driven by curvature to sample with increased density in regions of high curvature.

Parameterization: Surface parameterization algorithms involve computing a mapping between

a surface and some other domain (often a flattened (2D) version of the surface). This

mapping can then be used to transfer quantities from the chosen domain to the surface

for operations such as texture mapping. Additionally, algorithms can be computed in (or

3

cached on) the parameter domain when it may be difficult to apply the same algorithm

to the surface directly – care must be taken, however, to account for the distortion and

differences between the surface and the parameter domain. To reduce this problem, these

parameterizations are often computed while trying to minimize some notion of distortion

(angle differences, length differences, area differences, etc.). These distortion measures

often involve differential properties of the surface such as curvatures (and their integrals)

and thus can benefit from robust and accurate estimations of these differential properties.

Simulation: With the increased computing power enjoyed today, simulation is becoming a more

and more important tool in many fields including Computer Graphics. Simulation allows

artists and animators to achieve realistic motions and fine details without requiring the

manual specification of every vertex or shaded pixel. This allows the creation of sec-

ondary motions and small-scale details that would otherwise have been prohibitively ex-

pensive. Simulations also provide predictive power allowing for more efficient tests and

experiments that may have been impractical using other means (due to time constraints,

expense, safety, etc.). PDEs computed using differential quantities are often used to drive

intricate simulations of clothing, skin, muscles, clouds, and fluids just to name a few.

Although differential surface properties have been well studied in other fields, Computer

Graphics has one important difference: while most fields use a continuous notion for a surface,

in Computer Graphics, we often use a discrete (or at mostC0) description of the surface – namely

triangle meshes. Because of this difference, it is difficult to directly transfer the existing formulae

and results to Computer Graphics applications. In fact, despite extensive use of triangle meshes

in Computer Graphics and the obviously many uses of differential operators, there is no consen-

sus on the most appropriate way to estimate simple geometric attributes such as normal vectors

and curvatures on discrete surfaces.

1.2 Contributions

This thesis defines one method for extending the continuous defintion and estimating differen-

tial properties on discrete surfaces. We define and derive operators that compute the first- and

second-order differential attributes (normal vectorn, mean curvatureκH , Gaussian curvatureκG,

4

principal curvaturesκ1 andκ2, and principal directionse1 ande2) for piecewise linear surfaces

such as arbitrary triangle meshes. We present a unified framework for deriving such quantities

resulting in a set of operators that is consistent, accurate, robust (in both regular and irregular

sampling) and simple to compute. Additionally, as we show, many of these operators can be

generalized to any 2-manifold (or even 3-manifold) in an arbitrary dimension embedding space.

We then demonstrate the accuracy and usefulness of these operators in several different ge-

ometry processing applications:

• An efficient and robustsmoothing algorithm that uses the differential operators to inte-

grate a surface flow PDE.

• A fast and tunableremeshing algorithm that uses the differential operators in conjunction

with user requests to determine where to place the surface samples.

• A parameterization techniquethat uses the differential properties of the surface to define

the distortion metric to be minimized.

1.3 Thesis Overview

The remainder of this dissertation is organized as follows:

Chapter 2 reviews notions and formulae from continuous differential geometry and details why

a local spatial averageof differential attributes over the immediate 1-ring neighborhood is

a good choice to extend the continuous definition to the discrete setting. We then present

a formal derivation of the Mean Curvature Normal, Gaussian Curvature, Principal Curva-

tures, and Principal Directions for triangle meshes using the mixed Finite-Element/Finite-

Volume paradigm. The relevance of our approach is demonstrated by showing the opti-

mality of our operators under mild smoothness conditions. Finally, the accuracy of our

operators is compared to that of previous techniques.

Chapter 3 describes a technique for smoothing using the discrete differential operators. This

technique is general, efficient and robust against sampling rate changes due to the proper-

ties of the operators themselves. Additionally, the smoothing algorithm can be applied to

many different forms of data including images, surfaces, volume data, and vector fields.

5

Chapter 4 describes a technique for remeshing a triangulated surface. This technique uses the

discrete differential operators to drive the placement of samples and the direction of edges.

The resulting algorithm is extremely efficient, general and robust.

Chapter 5 describes a technique for parameterizing a triangulated 2-manifold. This technique

uses geometric invariants (associated with the properties of our discrete differential opera-

tors) to compute sampling invariant, intrinsic parameterizations. These invariants produce

efficiently solvable linear systems resulting in an invaluable tool for mesh parameteriza-

tion.

Conclusions and Future Work are then discussed to complete the thesis.

Chapter 2

Discrete Differential Operators

In this chapter, we present a unified and consistent set of flexible tools to approximate important

geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We

present a consistent derivation of these first- and second-order differential properties usingav-

eraging Voronoi cellsand the mixed Finite-Element/Finite-Volume method, and compare them

to existing formulations. Building upon previous work in discrete geometry, these operators are

closely related to the continuous case, guaranteeing an appropriate extension from the continu-

ous to the discrete setting: they respect most intrinsic properties of the continuous differential

operators.

Since differential geometry provides a well researched, formal basis for describing the dif-

ferential properties of a surface, we begin with a review of several important quantities from

differential geometry (a more complete discussion of differential geometry can be found in one

of the many great texts such as [dC76, Gra98, DHKW92]). This is followed by a discussion of

previous techniques for computing differential quantities on discrete surfaces. We then present

our technique for extending continuous differential operators to the discrete domain using spatial

averaging.

2.1 Notions from Differential Geometry

Let S be a surface (2-manifold) embedded in IR3, described by an arbitrary (local) parameteri-

zation of 2 variables,X(u, v), around a pointp. For each point on the surfaceS, we can locally

6

7

approximate the surface by its tangent plane, orthogonal to thenormal vectorn. Ignoring the

surface orientation, the normal vector ofS at a pointp is given by:

n =
Xu × Xv

‖Xu × Xv‖
,

where the subscripts indicate partial derivatives.

Using these same derivatives, we can describe the local shape of the surfaceS nearp. The

first fundamental form describes the change on the surface for a given small change in the pa-

rameters(u, v), and is given by

I(u, v, du, dv) = dX · dX = duTGdu,

with du = (du, dv)T , and

G =

 Xu · Xu Xu · Xv

Xu · Xv Xv · Xv

 .

The second fundamental form describes the change in the unit normal for a given small

change in the parameters(u, v), and is defined by

II (u, v, du, dv) = −dX · dn = duTDdu,

where

D =

 n · Xuu n · Xuv

n · Xuv n · Xvv

 .

Note that the first fundamental form is invariant to the choice of surface parameterization

as well as rigid motions of the surface (rotations and translations). Since it does not depend

on the embedding of the surface, the first fundamental form is anintrinsic property. The second

fundamental form, on the other hand, does depend on the embedding ofS and is therefore known

as anextrinsicproperty of the surface.

Using these two fundamental forms, we can locally describe the surface shape using the

8

shape operatoror Weingarten mapβ:

β(t) = G−1Dt = −∇tn,

wheret is a vector in the tangent plane atp and−∇tn is the directional derivative of the normal

n in the directiont:

∇tn = lim
α→0

n(p + αt)− n(p)
α

.

Therefore, the shape operator,β, is a linear operator mappingTpS → TpS, whereTpS is the

tangent space ofS at p. It measures the change in normal in the directiont and, as we shall see,

is useful for measuring the bending and local shape of the surface.

2.1.1 Curvatures and Principal Directions

Local bending of the surface is measured bycurvatures. For every unit directiont in the tangent

plane, the normal curvatureκN (t) is defined as the curvature of the curve that belongs to both

the surface itself and the plane containing bothn andt:

κN (t) =
β(t) · t
|t|2

.

The twoprincipal curvaturesκ1 andκ2 of the surfaceS, with their associated orthogonal

directionse1 ande2, are the extremum values of the normal curvatures over all directionst (see

Figure 2.1(a)). If we parameterize the directionst by θ, the angle betweene1 andt, the normal

curvature can be expressed in terms of the principal curvatures:

κN (θ) = κ1cos
2(θ) + κ2sin

2(θ).

Themean curvatureκH is defined as the average of the normal curvatures:

κH =
1
2π

∫ 2π

0
κN (θ)dθ. (2.1)

9

Using the above relation for normal curvatures, leads to the well-known definition:

κH =
κ1 + κ2

2
.

TheGaussian curvatureκG is defined as the product of the two principle curvatures:

κG = κ1κ2 . (2.2)

These latter two curvatures represent important local properties of a surface. Points on the

surface are often classified based on their mean and Gaussian curvatues – ifκG > 0 the point is

elliptic, if κG < 0 the point ishyperbolic, if κG = 0 andκH 6= 0 the point isparabolic, and if

κG = κH = 0 the point isplanar.

Lagrange noticed thatκH = 0 is the Euler-Lagrange equation for surface area minimization.

This gave rise to a considerable body of literature on minimal surfaces and provides a direct

relation between surface area minimization and mean curvature flow:

2κH n = lim
diam(A)→0

∇A
A

,

whereA is a infinitesimal area around a pointp on the surface,diam(A) its diameter, and∇

is the gradient with respect to the(x, y, z) coordinates ofp. We will make extensive use of the

mean curvature normalκH n. Therefore, we will denote byK the operator that maps a point

p on the surface to the vectorK(p) = 2κH(p) n(p). K is also known as the Laplace-Beltrami

operator for the surfaceS. Note that in the remainder of this chapter we will make no distinction

between an operator and the value of this operator at a point as it will be clear from context.

Gaussian curvature can also be expressed as a limit:

κG = lim
diam(A)→0

AG

A
, (2.3)

whereAG is the area of the image of the Gauss map (also called the spherical image) associated

with the infinitesimal surfaceA.

10

2.1.2 Principal Quadric

The portion of a surfaceS near a pointp can be locally represented by the height field (or Monge

patch)h(x, y) = z, with p at the origin and the normaln atp in the direction of the z-axis. Using

a Taylor Expansion ofh and dropping the higher-order terms results in a quadratic surface which

approximatesS to second-order:

z =
1
2
(hxxx

2 + 2hxyxy + hyyy
2),

where the derivatives of h are evaluated atp. This surface is known as theprincipal quadricof

S at p. At an elliptic point, the principal quadric is an elliptic paraboloid; at a hyperbolic point,

it is a hyperbolic paraboloid; at a parabolic point, it is a parabolic cylinder; and at a planar point,

it is a plane. Note that, since the principal quadric encodes the same differential information as

the surfaceS at p, computing the principal quadric is often used as a way to compute the the

differential properties ofS.

2.2 Previous Work

Due to the importance of these differential properties in many computer graphics applications,

it is no surprise that they have been heavily researched. This section describes several methods

for computing differential properties on triangle meshes. In some methods, the vertex normal is

computed at the same time as the curvatures. However, some methods require an estimate of the

vertex normal to compute the curvature properties. Therefore, we begin by desribing methods

for computing the normal at a vertex before discussing techniques for computing the curvatures

such as quadric fitting and direct extensions of continuous equations.

In the following sections, assumeT is an oriented triangle mesh with or without boundary.

Also assume that the orientation is consistent (neighboring triangles have their normals pointing

towards the same side of the surface). For a vertexp, we denote the set of 1-ring neighbors as

N1(p) and the number of such neighborsm. Similarly, the 1-ring neighborhood ofp is the set

of all triangles inT incident top.

11

2.2.1 Vertex Normal Estimation

Since the surface normal is such a fundamental quantity in computer graphics – useful in algo-

rithms such as shading, culling, even in computing other differential properties – the computation

of vertex normals from a triangle mesh has been studied for many years. It is fairly common to

approximate the normal at a vertexp on a triangle mesh by a weighted average of the normals of

the triangles incident top:

n =
∑

iwini

‖
∑

iwini‖
,

whereni are the normals of the triangles incident top.

While the averaging of normals is fairly standard, the choice of the weightswi is not.

Gouraud [Gou71] used an uniformly weighted average, i.e.,wi = 1. Depending on the arrange-

ment of triangles aroundp, this can produce greatly varying normals. To reduce this problem,

Thürmer and Ẅuthrich [TW98] use the angle incident top on thei-th face as the weight,wi = θi.

This fits their claim that the normal vector should only be defined very locally, however, this nor-

mal remains consistent only if the faces are subdivided linearly, introducing vertices which are

not on a smooth surface. Max [Max99] derived weights by assuming that the surface locally

approximates a sphere:

wi =
sinθi

‖ppi‖ ‖ppi+1‖
,

wherepi are the (ordered) neighbors ofp in face i. These weights are therefore exact if the

object is a (even irregular) tessellation of a sphere. However, it is unclear how this approxima-

tion behaves on more complex meshes, since no error bounds are defined. Additionally, many

meshes have local sampling adapted to local flatness, contradicting the main property of this ap-

proach. Even for a property as fundamental as the surface normal, we can see that several (often

contradictory) formulæ exist.

12

2.2.2 Principal Quadric Fitting

One of the most common ways of computing the differential properties at the vertices of a tri-

angle mesh is by locally fitting a continuous surface and computing the curvatures on this con-

tinuous surface [Ham93]. Since we are intereseted in second-order derivative properties, fitting

a quadric intuitively makes sense. In fact, it has been shown that fitting higher-order surfaces

has little advantage [KLM98] over fitting quadrics. Therefore, in this section, we will describe

techniques for fitting quadrics to triangle meshes and how to recover the associated differential

properties1.

While the parameters of the principal quadric could be directly estimated using an procedure

to fit to the 1-ring neighbors ofp, this results in a non-linear optimization problem. More com-

monly, the surface normal is first computed, then the quadric is fit in a rotated space. The steps

are as follows:

1. Estimate the surface normaln atp

2. Construct the rotation matrixR = (r1, r2, r3)
T :

r1 = (I−nnT)i
‖(I−nnT)i‖ , r2 = r3 × r1, r3 = n

3. Map the 1-ring data (qi) into the rotated frame:

q̃i = R (qi − p)

4. Using the rotated 1-ring neighbors̃qi, fit the quadric using least squares:

z̃ = ax̃2 + bx̃ỹ + cỹ2

5. Solve forκ1, κ2, andθ (the angle between thẽx axis and the first principal direction):

κ1,2 = a+ c±
√

(a− c)2 + b2

θ = 1
2atan2(b, a− c)

1This section loosely follows the exposition laid out in [MV97].

13

Note that this method relies heavily on the accuracy of the normal vector computation. This

dependence can be reduced by fitting an extended quadric and iteratively adjusting the normal.

The steps remain the same as before except for steps 4 and 5 which become:

4. Fit the extended quadric:

z̃ = ax̃2 + bx̃ỹ + cỹ2 + dx̃+ eỹ

This gives a new estimate for the surface normal:

n =
(−d,−e, 1)T

(d2 + e2 + 1)
1
2

From this, a new rotationR can be computed (step 2) and steps 2, 3, 4 can be repeated

until the change in normal is below a threshold.

5. Estimate the differential parameters from the extended quadric.

Note that this method could be further extended by adding a translation termf to the extended

quadric to account for error in the position ofp.

2.2.3 Statistical Methods

When trying to estimate the differential properties of a discrete surface, one of the biggest prob-

lems is noise. For this reason, several researchers have looked into statistical methods similar to

those in signal processing using covariance matrices. These statistical methods have the benefit

of being relatively insensitive to noise. The surface covariance matrix for the 1-ring neighbor-

hood ofp is:

C1 =
1
m

m∑
i=1

(qi − q̄)(qi − q̄)T ,

whereq̄ is the centroid of the neighbors ofp. Note that the eigenvectors of this matrix are two

tangent vectorst1 andt2 and the normaln, making the matrixC1 similar to the first fundamental

form matrixG.

14

Similarly, one can define a covariance matrix that is analogous to the second fundamental

form matrixD. This is done by projecting the edge fromp to qi onto the tangent plane and

scaling it by the orthogonal distance fromqi to the tangent plane:

di = [(p− qi) · n] (p− qi)
T

 t1

t2

 ,
and then defining the covariance matrix:

C2 =
1
m

m∑
i=1

(di − d̄)(di − d̄)T .

The eigenvectors of this covariance matrix then estimate the principal directions.

2.2.4 Extensions From Differential Geometry

In addition to the methods mentioned above, several researchers have attempted to directly use

the formulae from continuous differential geometry on triangulated surfaces in order to compute

the differential properties of the triangle mesh itself. Many researchers have used curves formed

by the surface to determine the curvature. For instance, [CS92] creates circles using triples

of qipqj , whereqi, qj are neighbors ofp, and then uses the curvatures of these circles along

with Meusnier’s theorem from continuous differential geometry (which relates the curvature

of surface curves to the curvature of the surface) to compute the differential properites of the

surface. Others have used the difference in normals between adjacent vertices as a measure of the

normal curvature and then used these normal curvatures to derive the full differential properties

of the surface.

[AvD95] use the fact that the mean curvature is always the average of a normal curvature

in one direction and a normal curvature in the perpendicular direction to show that the mean

curvature at the points along an edge is one half the dihedral angle (the angle between the two

adjacent faces). Using this, they average the mean curvatures from the edges around a vertex to

produce the mean curvature at the vertex.

Taubin proposed the most complete derivation of surface properties, leading to a discrete

approximation of the curvature tensors for polyhedral surfaces [Tau95a]. Let us consider the

15

matrix:

M =
1
2π

∫ π

−π
κN (t) t tTdθ ,

wheret is a tangent vector. It can be shown that this3× 3 symmetric matrix has eigenvalues of

0, λ1, λ2 with the corresponding eigenvectorsn,e1,e2. The principal curvatures of the surface

can then be computed as:

κ1 = 3λ1 − λ2, κ2 = 3λ2 − λ1 .

By first estimating the normal, and then projecting each outgoing edgepqi to define a unit

tangentti, Taubin proposed to approximate the matrixM as:

M =
∑

qi∈N1(p)

wi κ
N (ti) ti tTi ,

where the weightswi are proportional to the areas of the triangles adjacent to the edgepqi, con-

strained so that they sum to unity. The normal curvatureκN (ti) is approximated by constructing

an osculating circle usingp, n, andqi and computing the inverse of its radius:

κN (ti) =
2n · (qi − p)
‖qi − p‖2

.

Once the matrixM is computed, the principal curvatures and directions can easily be recovered

using standard eigenvector decomposition techniques.

This thesis is closely related to these works since we also derive the differential properties

of a triangulated surface using extensions of properties from continuous differential geometry.

In order to preserve fundamental invariants from the continuous domain, we have followed a

path initiated by Federer, Fu, Polthier, and Morvan to name a few [Fu93, PP93, PS98, Mor01,

TM02]. This series of work proposed simple expressions for the total curvatures, as well as the

Dirichlet energy for triangle meshes, and derived discrete methods to compute minimal surfaces

or geodesics. We refer the reader to the overview compiled by Morvan [Mor01]. Note also the

tight connection with the “Mimetic Discretizations” used in computational physics by Shashkov,

16

Hyman, and Steinberg [HS97, HSS97]. Although it shares a lot of similarities with all these

approaches, our work offers a different, unified derivation that ensures accuracy and tight error

bounds, leading to simple formulæ that are straightforward to implement.

n

1e1κ
e2κ 2

(a) (b) (c)

Figure 2.1:Local regions: (a) an infinitesimal neighborhood on a continuous surface patch; (b)

a finite-volume region on a triangulated surface using Voronoi cells, or (c) Barycentric cells.

2.3 Discrete Properties As Spatial Averages

Most of the smooth definitions for differential properties described above need to be reformulated

for C0 surfaces. We can consider a mesh as either the limit of a family of smooth surfaces, or

as a linear (yet assumedly “good”) approximation of an arbitrary surface. Since we wish for the

total (integrated) value of the property to be independent of the number of samples in the triangle

mesh, we define properties (geometric quantities) of the surface at each vertex asspatial averages

around this vertex. This area-averaging is known as the finite volume method. Although this

thesis uses piecewise constant weighting functions (in the finite-element/finite-volume sense),

more complex weighting functions can easily be incorporated into the area-averaging scheme.

By using these spatial averages, we extend the definition of curvature or normal vector from

the continuous case to discrete meshes. Moreover, this definition is appropriate when, for exam-

ple, geometric flows must be integrated over time on a mesh as a vertex will be updated according

to the average behavior of the surface around it. Therefore, the piecewise linear result of the flow

will be a correct approximation of the smoothed surface if the initial triangle mesh was a good

approximation of the initial surface. Since we make no assumption on the smoothness of the sur-

face, we will restrict the average to be within the immediately neighboring triangles, the 1-ring

17

neighborhood. For example, we define the discrete Gaussian curvature,κ̂G, at a vertexP as:

κ̂G =
1
A

∫∫
A
κG dA,

whereA is a properly selected area aroundP . Note however that we will not distinguish between

the (continuous) pointwise and the (discrete) spatially averaged notation, except when there may

be ambiguity.

2.3.1 General Procedure Overview

The next sections describe how we derive accurate numerical estimates of the first- and second-

order operators at any vertex on an arbitrary mesh. We first restrict the averaging area to a family

of special local surface patches denotedAM . These regions will be contained within the 1-ring

neighborhood of each vertex, with piecewise linear boundaries crossing the mesh edges at their

midpoints (Figures 2.1(b) and (c)). We show that this choice guarantees correspondences be-

tween the continuous and the discrete case. We then find the precise surface patch that optimizes

the accuracy of our operators, completing the operator derivation. These steps will be explained

in detail for the first operator, the mean curvature normal operator,K , and a more direct deriva-

tion will be used for the Gaussian curvature operatorκG, the two principal curvature operators

κ1 andκ2, and the two principal direction operatorse1 ande2. All these operators take a vertex

xi and its 1-ring neighborhood as input, and provide an estimate in the form of a simple formula

that we will frame for clarity.

2.4 Discrete Mean Curvature Normal

We now provide a simple and accurate numerical approximation for both the normal vector, and

the mean curvature for surface meshes in 3D.

2.4.1 Derivation of Local Integral Using FE/FV

To derive a spatial average of geometric properties, we use a systematic approach which mixes

finite elements and finite volumes. Since the triangle mesh is meant to visually represent the sur-

face, we select a linear finite element on each triangle, that is, a linear interpolation between the

18

three vertices corresponding to each triangle. Then, for each vertex, an associated surface patch

(so-called finite volume in the Mechanics literature), over which the average will be computed,

is chosen. Two main types of finite volumes are common in practice, see Figures 2.1(b-c). In

each case, their piecewise linear boundaries connect the midpoints of the edges emanating from

the center vertex and a point within each adjacent triangle. For the point inside each adjacent

triangle, we can use either the barycenter or the circumcenter. The surface area formed from

using the barycenters is denotedABarycenterwhile the surface area using the circumcenters is rec-

ognized as the local Voronoi cell and denotedAVoronoi. In the general case when this point could

be anywhere, we will denote the surface area asAM.

We now wish to compute the integral of the mean curvature normal over the areaAM. Since

the mean curvature normal operator, also known as Laplace-Beltrami operator, is a generalization

of the Laplacian from flat spaces to manifolds [DHKW92], we first compute the Laplacian of the

surface with respect to theconformal spaceparametersu andv. As in [Dzi91] and [PP93], we

use the current surface discretization as the conformal parameter space, that is, for each triangle

of the mesh, the triangle itself defines the local surface metric. With such an induced metric, the

Laplace-Beltrami operator simply turns into a Laplacian∆u,vx = xuu + xvv [DHKW92]:

∫∫
AM

K(x) dA = −
∫∫

AM

∆u,vx du dv. (2.4)

Using Gauss’s theorem as described in Appendix A.1, the integral of the Laplacian over a

surface going through the midpoint of each 1-ring edge of a triangulated domain can be expressed

as a function of the node values and the angles of the triangulation. The integral of the Laplace-

Beltrami operator thus reduces to the following simple form:

∫∫
AM

K(x)dA =
1
2

∑
j∈N1(xi)

(cot αij + cot βij) (xi − xj), (2.5)

whereαij andβij are the two angles opposite to the edge in the two triangles sharing the edge

(xi, xj) as depicted in Figure 2.2(a), andN1(xi) is the set of 1-ring neighbor vertices of vertexi.

Note that this equation was already obtained by minimizing the Dirichlet energy over a trian-

gulation in [PP93]. Additionally, it can be shown to be the formula for the gradient of the surface

area of the mesh (see Appendix A.2). This confirms, in the discrete setting, the area minimiza-

19

tion nature of the mean curvature normal as derived by Lagrange. We can therefore express our

previous result using the following general formula, valid forany triangulation:

∫∫
AM

K(x)dA = 2∇A1-ring. (2.6)

whereA1-ring is the 1-ring area around the vertexxi, and∇ is the gradient with respect to the

(x, y, z) coordinates ofxi.

Notice that the formula results in a zero value for any flat triangulation, regardless of the

shape or size of the triangles of the locally-flat (zero curvature) mesh since the gradient of the

area is zero for any locally flat region.

Although we have found an expression for the integral of the mean curvature normal inde-

pendent of which of the two finite volume discretizations is used, one finite volume region must

be chosen in order to provide an accurate estimate of the spatial average. We show in the next

section that Voronoi cells provide provably tight error bounds under reasonable assumptions of

smoothness.

2.4.2 Voronoi Regions for Tight Error Bounds

We now show that using Voronoi regions provides provably tight error bounds for the discrete

operators by comparing the local spatial average of mean curvature with the actual pointwise

value. Given aC2 surface tiled by small patchesAi aroundn sample pointsxi, we can define

the errorE created by local averaging of the mean curvature normal compared to its pointwise

value atxi as:

E =
∑

i

∫∫
Ai

∥∥K(x)− K(xi)
∥∥2
dA

≤
∑

i

∫∫
Ai

C2
i ‖x− xi‖2 dA

≤ C2
max

∑
i

∫∫
Ai

‖x− xi‖2 dA,

whereCi is the Lipschitz constant of the Beltrami operator over the smooth surface patchAi,

andCmax the maximum of the Lipschitz constants. The Voronoi region of each sample pointby

20

definitionminimizes‖x−xi‖ since they contain the closest points to each sample, thus minimiz-

ing the bound on the errorE due to spatial averaging [DFG99]. Furthermore, if we add an extra

assumption on the sampling rate with respect to the curvature such that the Lipschitz constants

from patch to patch vary slowly with a ratioε, we can actually guarantee that the Voronoi cell

borders are less thanO(ε) away from the optimal borders. As this still holds in the limit for a

triangle mesh, we use the vertices of the mesh as sample points, and pick the Voronoi cells of the

vertices as associated finite-volume regions. This will guarantee optimized numerical estimates

and, as we will see, determining these Voronoi cells requires few extra computations.

2.4.3 Voronoi Region Area

Given a non-obtuse triangleP,Q,R with circumcenterO, as depicted in Figure 2.2(b), we must

now compute the Voronoi region forP . Using the properties of perpendicular bisectors, we find :

a+b+c = π/2, and therefore,a = π/2−∠Q andc = π/2−∠R. The Voronoi area for pointP

lies within this triangle if the triangle is non-obtuse, and is thus:1
8(|PR|2cot∠Q+|PQ|2cot∠R).

Summing these areas for the whole 1-ring neighborhood, we can write the non-obtuse Voronoi

area for a vertexxi as a function of the neighborsxj :

AVoronoi =
1
8

∑
j∈N1(xi)

(cot αij + cot βij) ‖xi − xj‖2. (2.7)

Since the cotangent terms were already computed for Eq. (2.5), the Voronoi area can be computed

very efficiently. However, if there is an obtuse triangle among the 1-ring neighbors or among the

triangles edge-adjacent to the 1-ring triangles, the Voronoi region either extends beyond the 1-

ring, or is truncated compared to our area computation. In either case our derived formula no

longer stands.

2.4.4 Extension To Arbitrary Meshes

The previous expression for the Voronoi finite-volume area does not hold in the presence of

obtuse angles. However, the integral of the Laplace-Beltrami operator given in equation (2.6)

holds even for obtuse 1-ring neighborhoods – the only assumption used is that the finite-volume

region goes through the midpoint of the edges. It is thusstill valid even in obtuse triangulations.

21

x i
βij

jx
ijα a

c
P Q

c

R

b

O

a

b

ii
εθ

(a) (b) (c)

Figure 2.2:(a) 1-ring neighbors and angles opposite to an edge; (b) Voronoi region on a non-

obtuse triangle; (c) External angles of a Voronoi region.

Therefore, we could simply divide the integral evaluation by the barycenter finite-volume area

in lieu of the Voronoi area for vertices near obtuse angles to determine the spatial average value.

We use a slightly more subtle area, to guarantee a perfect tiling of our surface, and therefore,

optimized accuracy as each point on the surface is counted once and only once. We define a

new surface area for each vertexx, denotedAMixed: for each non-obtuse triangle, we use the

circumcenter point, and for each obtuse triangle, we use the midpoint of the edge opposite to the

obtuse angle. Algorithmically, this area around a pointx can be easily computed as detailed in

Figure 2.3. Note that the derivation for the integral of the mean curvature normal is still valid

for this mixed area since the boundaries of the area remain inside the 1-ring neighborhood and

go through the midpoint of each edge. Moreover, these mixed areas tile the surface without

overlapping. This new cell definition is equivalent to a local adjustment of the diagonal mass

matrix in a finite element framework in order to ensure a correct evaluation. The error bounds

are not as tight when local angles are more thanπ/2, and therefore, numerical experiments are

expected to be worse in areas with obtuse triangles.

2.4.5 Discrete Mean Curvature Normal Operator

Now that the mixed area is defined, we can express the mean curvature normal operatorK defined

in Section 2.1 using the following expression:

Mean Curvature Normal Operator

K(xi) =
1

2AMixed

∑
j∈N1(xi)

(cot αij + cot βij) (xi − xj) (2.8)

22

AMixed = 0

For each triangleT from the 1-ring neighborhood ofx

If T is non-obtuse, // Voronoi safe

// Add Voronoi formula (see Section 2.4.3)

AMixed+ = Voronoi region ofx in T

Else // Voronoi inappropriate

// Add either area(T)/ 4 or area(T)/ 2

If the angle ofT atx is obtuse

AMixed+ = area(T)/2

Else

AMixed+ = area(T)/4

Figure 2.3:Pseudo-code for regionAMixed on an arbitrary mesh

From this expression, we can easily compute the mean curvature valueκH by taking half

of the magnitude of this last expression. As for the normal vector, we can just normalize the

resulting vectorK(xi). In the special (rare) case of zero mean curvature (flat plane or local

saddle point), we simply average the 1-ring face normal vectors to evaluaten appropriately.

It is interesting to notice that using the barycentric area as an averaging region results in an

operator very similar to the definition of the mean curvature normal by Desbrunet al.[DMSB99],

sinceABarycenter is a third of the whole 1-ring areaA1-ring used in their derivation – however, our

new derivation usesnon-overlappingregions and is therefore more accurate. At this time, we

are not aware of a proof of convergence for this operator. However, our tests have shown no

divergence as we refine a mesh, as long as we do not degrade the mesh quality (the triangles

must not degenerate). We will give more precise numerical results in Section 2.7.1 showing the

improved quality of our new estimate.

2.5 Discrete Gaussian Curvature

In this section, the Gaussian curvatureκG for bivariate (2D) meshes embedded in 3D is studied.

We will demonstrate that a derivation similar to the above is easily obtained.

23

2.5.1 Expression of the Local Integral ofκG

Similar to what was done for the mean curvature normal operator, we first need to find an exact

value of the integral of the Gaussian curvatureκG over a finite-volume region on a piecewise

linear surface. From Eq. (2.3), we could compute the integral over an areaAM as the associated

spherical image area (also called the image of the Gauss map). Instead, we use theGauss-Bonnet

theorem[DHKW92, Gra98, AZ67] which proposes a very simple equality, valid over any surface

patch. Applied to our local finite-volume regions, the Gauss-Bonnet theorem simply states:

∫∫
AM

κG dA = 2π −
∑

j

εj ,

where theεj are the external angles of the boundary, as indicated in Figure 2.2(c). Note that this

simplified form results from the fact that the integral of geodesic curvature on the piece-wise

linear boundaries is zero. If we apply this expression to a Voronoi region, the external angles are

zero across each edge (since the boundary stays perpendicular to the edge), and the external angle

at a circumcenter is simply equal toθj , the angle of the triangle at the vertexxi. Therefore, the

integral of the Gaussian curvature (also called total curvature) for non-obtuse triangulations is:

2π−
∑

j θj . This result is still valid for the mixed region and is proven using a similar geometric

argument. This result was already proven by Polthier and Schmies [PS98], who considered the

area of the image of the Gauss map for a vertex on a polyhedral surface. Therefore, analogous

to Eq. (2.6), we can now write for the 1-ring neighborhood of a vertexxi:

∫∫
AM

κGdA = 2π −
#f∑
j=1

θj ,

whereθj is the angle of thej-th face at the vertexxi, and#f denotes the number of faces

around this vertex. Note again that this formula holds for any surface patchAM within the 1-ring

neighborhood whose boundary crosses the edges at their midpoint.

2.5.2 Discrete Gaussian Curvature Operator

To estimate the local spatial average of the Gaussian curvature, we use the same arguments as

in 2.4.2 to claim that the Voronoi cell of each vertex is an appropriate local region to use for good

24

error bounds. In practice, we use the mixed areaAMixed to account for obtuse triangulations. Since

the mixed area cells tile the whole surface without any overlap, we will satisfy the (continuous)

Gauss-Bonnet theorem: the integral of the discrete Gaussian curvature over an entire sphere for

example will be equal to4π whatever the discretization usedsince the sphere is a closed object

of genus zero. This result ensures a robust numerical behavior of our discrete operator. Our

Gaussian curvature discrete operator can thus be expressed as:

Gaussian Curvature Operator

κG(xi) = (2π −
#f∑
j=1

θj)/AMixed (2.9)

Notice that this operator will return zero for any flat surface, as well as any roof-shaped 1-ring

neighborhood, guaranteeing a satisfactory behavior for trivial cases. Note also thatconvergence

conditions(using fatness or straightness) exist for this operator [Fu93, TM02], proving that if the

triangle mesh does not degenerate, the approximation quality gets better as the mesh is refined.

We postpone numerical tests until Section 2.7.1.

2.6 Discrete Principal Curvatures

We now wish to robustly determine the two principal curvatures, along with their associated

directions. Since the previous derivations give estimates of both Gaussian and mean curvature,

the only additional information that must be sought are the principal directions since the principal

curvatures are, as we are about to see, easy to determine.

2.6.1 Principal Curvatures

We have seen in Section 2.1 that the mean and Gaussian curvatures are easy to express in terms

of the two principal curvaturesκ1 andκ2. Therefore, since bothκH andκG have been derived

for triangulated surfaces, we can define the discrete principal curvatures as:

25

Principal Curvature Operators

κ1(xi) = κH(xi) +
√

∆(xi) (2.10)

κ2(xi) = κH(xi)−
√

∆(xi) (2.11)

with: ∆(xi) = κ2
H(xi)− κG(xi) andκH(xi) =

1
2
‖K(xi)‖.

Unlike the continuous case where∆ is always positive, we must make sure thatκ2
H is always

larger thanκG to avoid any numerical problems, and threshold∆ to zero if it is not the case (an

extremely rare occurrence).

Mean Curvature as a Quadrature

In order to determine the principal axes at a vertex, we will first show that the mean curvature

from our previous expression can be interpreted as a quadrature of normal curvature samples:

κH(xi) =
1
2

(2κH(xi)n) · n =
1
2

K(xi) · n

=
1

4AMixed

∑
j∈N1(xi)

(cot αij + cot βij) (xi − xj) · n

=
1

4AMixed

∑
j∈N1(xi)

(cot αij + cot βij)
‖xi − xj‖2

‖xi − xj‖2
(xi − xj) · n

=
1

AMixed

∑
j∈N1(xi)

[
1
8
(cot αij + cot βij) ‖xi − xj‖2

]
κN

ij , (2.12)

where we define:

κN
ij = 2

(xi − xj) · n
‖xi − xj‖2

.

ThisκN
ij can be shown to be an estimate of the normal curvature in the direction of the edgexixj .

The radiusR of the osculating circle going through the verticesxi andxj is easily found using

the mean curvature normal estimate as illustrated in Figure A.1(a). Since we must have a right

26

angle at the neighbor vertexxj , we have(xi − xj) · (xi − xj − 2R n) = 0. This implies:

R =
‖xi − xj‖2

(2 (xi − xj) · n)
.

This proves thatκN
ij is a normal curvature estimate in the direction of the edgexixj (as it is the

inverse of the radius of the osculating circle). This expression was also used in the context of

curvature approximation in [MS92] and [Tau95a].

Therefore, Eq. (2.12) can be interpreted as a quadrature of the integral from Eq. (2.1), with

weightswij :

κH(xi) =
∑

j∈N1(xi)

wij κN
ij ,

where thewij = 1
AMixed

[
1
8(cot αj + cot βj) ‖xi − xj‖2

]
sum to one for eachi on a non-obtuse

triangulation.

2.6.2 Least-Square Fitting for Principal Directions

In order to find the two orthogonal principal curvature directions we can simply compute the

eigenvectors of the curvature tensor. Since the mean curvature obtained from our derivation can

be seen as a quadrature using each edge as a sample direction, we use these samples to find the

best fitting ellipse, in order to fully determine the curvature tensor. In practice, we select the

symmetric curvature tensorβ as being defined by three unknownsa, b, c:

β =

 a b

b c

 .

This tensor will provide the normal curvature in any direction in the tangent plane. Therefore,

when we use the direction of the edges of the 1-ring neighborhood, we should find:

tTij β tij = κN
ij ,

wheretij is the unit directionin the tangent planeof the edgexixj . Since we know the normal

vector n to the tangent plane, this direction is calculated using a simple projection onto the

27

tangent plane:

tij =
(xj − xi)− [(xj − xi) · n] n
‖(xj − xi)− [(xj − xi) · n] n‖

.

A conventional least-square approximation can be obtained by minimizing the errorE:

E(a, b, c) =
∑

j

wj

(
tTij β tij − κN

ij

)2
.

Adding the two constraintsa + b = 2κH andac − b2 = κG, to ensure coherent results, turns

the minimization problem into a root-finding problem. Once the three coefficients of the matrix

B are found, we find the two principal axese1 and e2 as the two (orthogonal) eigenvectors

of β. In practice, all our experiments have demonstrated that the non-linear constraint on the

determinant is not necessary (reducing the problem to a linear system). An example of these

principal directions is shown in Figure 2.5(b).

Although we could actually determine the principal curvatures (and thus the mean and

gaussian curvatures) using an unconstrained least squares procedure (similar to Taubin’s work

[Tau95a]), we use our operators to compute the curvatures and only use the least squares for

the principal directions as the curvature values computed from the least squares are oftenless

accurate in practice while the directions are fairly robust. A plausible interpretation for the bad

numerical properties of a pure least squares approach is the hypothesis of elliptic curvature vari-

ation: although this is perfectly valid for smooth surfaces, this is somewhat arbitrary for coarse,

triangulated surfaces. It seems therefore more natural to use our previous operators that rely on

differential properties still valid on discrete meshes.

2.7 Operator Quality

Now that we have defined our discrete differential operators, this section examines how the

operators perform numerically and visually on several representative meshes.

28

2.7.1 Numerical Quality of Our Operators

We performed a number of tests to demonstrate the accuracy of our approach in practice. First,

we compared our operators to the well-known second-order accurate Finite Difference opera-

tors on several discrete meshes approximating simple surfaces such as spheres, or hyperboloids,

where the curvatures are known analytically. In order to do so, we used special surfaces defined

as height fields over a flat, regular grid so that the FD operators can be computed and tested

against our results. The table below lists some representative results:

%error FD κH [DMSB99] κH ourκH FD κG ourκG

Sphere patch 0.20 0.17 0.16 0.4 1.2

Paraboloid 0.0055 0.0038 0.0038 0.01 0.02

Torus (irregular) - 0.047 0.036 - 0.05

Table 2.1:Comparison of our operators with Finite Differences. The error is measured in mean

percent error compared to the exact, known curvature values. Dashes “-” indicate that the

FD tests cannot be performed since the triangulation is irregular. The anglesθj needed for the

Gaussian curvature were computed using the C functionatan2 , instead ofacos or asin since

acos andasin would significantly deteriorate the precision of the results.

Overall, the numerical quality of our operators is equivalent to FD operators for regular

sampling. A major advantage of our new operators over FD operators is that these differential-

geometry based operators canstill be used on irregular sampling, with the same order of accu-

racy.

We also tested our operators against one of the most widely used curvature estimation tech-

niques [Tau95a]. We tested several simple surfaces (spheres, parametric surfaces, etc.) to de-

termine the effect of sampling on the operators. The surfaces were created with 258 points,

quadrisected and reprojected to create surfaces of 1026, 4098 and 16386 points. In all cases, the

average percent error of our operators did not exceed 0.07% for mean curvature and 1.3% for

gaussian curvature. The previous method had average errors of up to 1.8% for mean curvature

and exceeding 10% in some instances for gaussian curvature.

Finally, we tested the effects of irregularity on the operators. In irregular areas of the surfaces

(such as the area joining two regions of different sampling rates), our operators performed with

29

(a) (b) (c) (d)
Figure 2.4:Curvature plots of a triangulated saddle using pseudo-colors: (a) Mean, (b) Gaus-

sian, (c) Minimum, (d) Maximum.

the same order of accuracy as in the fairly regular regions (less than 0.2% average error for mean

curvature and below 1.8% average error for gaussian curvature in regions of mild irregularity).

The accuracy of our operators decreases as the irregularity (angle and edge length dispersion)

increases, but, in practice, the rate at which the error increases is low.

2.7.2 Visual Inspection of Meshes

Producing high quality meshes is not an easy task. Checking if a given mesh is appropriately

smooth requires a long inspection with directional or point light sources to detect any visually

unpleasant discontinuities on the surface. Curvature plots (see Figure 2.4), using false color

to texture the mesh according to the different curvatures, can immediately show problems or

potential problems since they will reveal the variation of curvatures in an obvious way. Figure 2.5

demonstrates that even if a surface (obtained by a subdivision scheme) looks very smooth, a

look at the mean curvature map reveals flaws such as discontinuities in the variation of curvature

across the surface. Conversely, curvature plots can reveal unsuspected details on existing scanned

meshes, like the veins on the horse. We tested our operators on a wide variety of meshes from

simple geometric shapes to artist sculpted models to highly detailed scanned models. We found

that our operators produced results visually consistent with the expected curvatures.

30

Low
Curvature

High
Curvature

(a) (b)

(c) (d)

Figure 2.5:Mean curvature plots revealing surface details for: (a) a Loop surface from an 8-

neighbor ring, (b) a horse mesh, (c) a noisy mesh obtained from a 3D scanner and the same

mesh after smoothing. Our operator performs well on irregular sampling such as on the ear of

the horse. Notice also how the operator correctly computes quickly varying curvatures on the

noisy head while returning slowly varying curvatures on the smoothed version. (d) An example

of our principal directions computed on a triangle mesh.

2.8 Discrete Operators innD

Up to this point, we defined and used our geometric operators for bivariate (2D) surfaces embed-

ded in 3D. We propose in this section to generalize our tools for 2D surfaces to any embedding

31

space dimensionality, as well as extending the formulæ to 3-manifolds (volumes) inn dimen-

sions. This will allow us to apply the same types of algorithms (smoothing techniques, etc.) on

datasets such as vector fields, tensor images, or volume data.

2.8.1 Operators for 2-Manifolds innD

We now extend our operators for 2-parameter surfaces embedded in an arbitrary dimensional

space, such as color images (2D surface in 5D), or bivariate vector field (2D surface in 4D).

Beltrami Operator

As we have seen in Sections 2.1 and 2.4.1, the Beltrami operator is in the direction of surface

area minimization. In order to extend this operator to higher dimensional space, we must first

derive the expression for a surface area innD. The area of a triangle formed by two vectorsu

andv in 3D is 2A = ‖u × v‖. Being proportional to the sine of the angle between vectors, we

can also express it as:

A =
1
2
||u||||v||sin(u, v) =

1
2
||u||||v||

√
1− cos2(u, v)

=
1
2

√
||u||2||v||2 − (u · v)2. (2.13)

This expression is now valid innD, and is particularly easy to evaluate in any dimension.

We can now derive the gradient of the 1-ring area with respect to the central vertex to find the

analog of Eq. (2.5) innD. We detail this proof in Appendix A.3, but the result is very simple: the

previous cotangent formula is still valid innD if we define the cotangent between two vectorsu

andv as:

cot(a,b) =
cos(a,b)
sin(a,b)

=
a · b√

||a||2||b||2 − (a · b)2
.

With this definition, the implementation innD space is straightforward and efficient, as dot

products require little computation.

32

Gaussian Curvature Operator

The expression of the Gaussian curvature operator Eq. (2.9) still holds innD. Indeed, the Gaus-

sian curvature is an intrinsic attribute of a 2-manifold, and does not depend on the embedding.

2.8.2 Beltrami Operator for 3-Manifolds in nD

We also extend the previous mean curvature normal operator, valid on triangulated surfaces,

to tetrahedralized volumes which are 3-parameter volumes in an embedding space of arbitrary

dimension. This can be used, for example, on any MRI volume data (intensity, vector field or

even tensor fields). For these 3-manifolds, we can compute the gradient of the 1-ring volume this

time to extend the Beltrami operator. Once again, the cotangent formula turns out to be still valid,

but this time for the dihedral angles of the tetrahedrons. Appendix A.4 details the derivation to

prove this result. This Beltrami operator can still be used to denoise volume data as it minimizes

volume just as we denoised meshes through a surface area minimization.

2.9 Conclusion

A complete set of accurate differential operators for any triangulated surface has been presented.

We consistently derived estimates for normal vectors and mean curvatures (Eq. (2.8)), Gaussian

curvatures (Eq. (2.9)), principal curvatures (Eq. (2.10) and (2.11)), and principal directions (Sec-

tion 2.6.2), and numerically showed their quality. Extended versions of our operator for surfaces

and volumes in higher dimension embedding spaces have also been provided. Our operators

perform as well as established methods such as Finite Differences in the regular setting and de-

grade gracefully as irregularity is increased. In the following chapters, we will show the practical

benefits of our operators in several mesh processing algorithms that we have designed.

Chapter 3

Smoothing

Many times, a triangulated surface does not have the smoothness (orfairness) required for a

given application. This problem has increased recently due to the use of highly detailed com-

puter graphics objects obtained from imperfectly-measured data from the real-world. When this

occurs, the mesh must be smoothed to remove undesirable noise and uneven edges while retain-

ing desirable geometric features (see Figure 3.1). In this chapter, we use our discrete differential

operators to develop methods to rapidly remove rough features from irregularly triangulated data

intended to portray a smooth surface.

Our approach contains several novel features, including animplicit integrationmethod to

achieve efficiency, stability, and large time-steps; a scale-dependent Laplacian operator to im-

prove the diffusion process; and finally, use of a robust curvature flow operator that achieves

a smoothing of the shape itself, distinct from any parameterization. Additional features of the

algorithm include automatic exact volume preservation, and hard and soft constraints on the

positions of the points in the mesh. Extensions to the smoothing algorithm are also described

that allow for feature preservation using anistropic smoothing and simulataneous sampling and

shape smoothing using a mixture of Laplacian and curvature flow. The use of higher dimensional

smoothing for images, vector fields and volumes is also explored.

We compare our method to previous operators and related algorithms, and prove that our

discrete differential operators have several mathematically desirable qualities that improve the

appearance of the resulting surface. Finally, we provide a series of examples to graphically and

33

34

numerically demonstrate the quality of our results.

3.1 Introduction

While the mainstream approach in mesh fairing has been to enhance the smoothness of triangu-

lated surfaces by minimizing computationally expensive functionals, Taubin [Tau95b] proposed

in 1995 a signal processing approach to the problem of fairing arbitrary topology surface tri-

angulations. This method is linear in the number of vertices in both time and memory space;

large arbitrary connectivity meshes can be handled quite easily and transformed into visually ap-

pealing models. Such meshes appear more and more frequently due to the success of 3D range

sensing approaches for creating complex geometry [CL96].

Taubin based his approach on defining a suitable generalization of frequency to the case of

arbitrary connectivity meshes. Using a discrete approximation to the Laplacian, its eigenvectors

become the “frequencies” of a given mesh. Repeated application of the resulting linear operator

to the mesh was then employed to tailor the frequency content of a given mesh.

Closely related is the approach of Kobbelt [Kob97], who considered similar discrete ap-

proximations of the Laplacian in the construction of fair interpolatory subdivision schemes. In

later work this was extended to the arbitrary connectivity setting for purposes of multiresolution

editing [KCVS98].

The success of these techniques is largely based on their simple implementation and the

increasing need for algorithms which can process the ever larger meshes produced by range

sensing techniques. However, a number of issues in their application remain open problems in

need of a more thorough examination.

The simplicity of the underlying algorithms is based on very basic, uniform approximations

of the Laplacian. For irregular connectivity meshes this leads to a variety of artifacts such as

geometric distortion during smoothing, numerical instability, problems of slow convergence for

large meshes, and insufficient control over global behavior. The latter includes shrinkage prob-

lems and more precise shaping of the frequency response of the algorithms.

In this chapter we consider more carefully the question of numerical stability by observing

that Laplacian smoothing can be thought of as time integration of the heat equation on an irreg-

35

(a) (b)

(c) (d)

Figure 3.1:(a): Original 3D photography mesh (41,000 vertices). (b): Smoothed version with

the scale-dependent operator in two integration step withλdt = 5 · 10−5, the iterative linear

solver (PBCG) converges in 10 iterations. (c),(d): Close-ups of the eye. All the images in this

chapter are flat-shaded to enhance the faceting effect.

ular mesh. This suggests the use ofimplicit integrationschemes which lead to unconditionally

stable algorithms allowing for very large time steps. At the same time the necessary linear sys-

tem solvers run faster than explicit approaches for large meshes. We also consider the question

of mesh parameterization more carefully and propose the use of discretizations of the Laplacian

which take the underlying parameterization into account. The resulting algorithms avoid many

of the distortion artifacts resulting from the application of previous methods. We demonstrate

that this can be done at only a modest increase in computing time and results in smoothing

algorithms with considerably higher geometric fidelity. Finally a more careful analysis of the

underlying discrete differential geometry is used to derive a curvature flow approach, using our

previously defined discrete differential operators, which satisfies crucial geometric properties.

36

We detail how these different operators act on meshes, and how users can then decide which one

is appropriate in their case. If the user wants to, at the same time, smooth the shape of an object

and equalize its triangulation, a scale-dependent diffusion must be used. On the other hand, if

only the shape must be filtered without affecting the sampling rate, then curvature flow has all

the desired properties. This allows us to propose a novel class of efficient smoothing algorithms

for arbitrary connectivity meshes. Using this family of smoothing algorithms as a base, we de-

fine several extensions including anisotropic smoothing to retain the features of the mesh while

reducing the noise, sampling regularization during the shape smoothing, and the smoothing of

other data types such as images, vector fields and volume data.

3.2 Implicit Fairing

In this section, we introduceimplicit fairing, an implicit integration of the diffusion equation

for the smoothing of meshes. We will demonstrate several advantages of this approach over

the usual explicit methods. While this section is restricted to the use of a linear approximation

of the diffusion term, implicit fairing will be used as a robust and efficient numerical method

throughout the chapter, even for non-linear operators. We start by setting up the framework and

defining our notation.

3.2.1 Notation and Definitions

In the remainder of this chapter,X will denote a mesh,xi a vertex of this mesh, andeij the edge

(if existing) connectingxi to xj . As in chapter 2, we will callN1(xi) the “neighbors” (or 1-ring

neighbors) ofxi, i.e., all the verticesxj such that there exists an edgeeij betweenxi andxj (see

Figure 3.2).

X

ij

j

e

Xi

Aβ

j
j

j+1

jj

j
αA

β
j-1

X

i

α

X

X

X

(a) (b)

Figure 3.2:(a) A vertexxi and its adjacent faces, (b) one term of its curvature normal formula.

37

In the surface fairing literature, most techniques use constrained energy minimization. For

this purpose, different fairness functionals have been used. The most frequent functional is the

total curvature of a surfaceS:

E(S) =
∫
S
κ2

1 + κ2
2 dS. (3.1)

This energy can be estimated on discrete meshes [WW94, Kob97] by fitting local polynomial

interpolants at vertices. However, principal curvaturesκ1 andκ2 depend non-linearly on the

surfaceS. Therefore, many practical fairing methods prefer the membrane functional or the

thin-plate functional of a meshX:

Emembrane(X) =
1
2

∫
Ω

X2
u + X2

v dudv (3.2)

Ethin plate(X) =
1
2

∫
Ω

X2
uu + 2 X2

uv + X2
vv dudv. (3.3)

Note that the thin-plate energy turns out to be equal to the total curvature only when the pa-

rameterization(u, v) is isometric. Their respective variational derivatives corresponds to the

Laplacian and the second Laplacian:

L(X) = Xuu + Xvv (3.4)

L2(X) = L ◦ L(X) = Xuuuu + 2 Xuuvv + Xvvvv. (3.5)

For smooth surface reconstruction in vision, a weighted average of these derivatives has been

used to fair surfaces [Ter88]. For meshes, Taubin [Tau95b] used signal processing analysis to

show that a combination of these two derivatives of the form:(λ + µ)L − λµL2 can provide a

Gaussian filtering that minimizes shrinkage. The constantsλ andµ must be tuned by the user to

obtain this non-shrinking property. We will refer to this technique as theλ|µ algorithm.

38

3.2.2 Diffusion Equation for Mesh Fairing

As stated above, one common way to attenuate noise in a mesh is through adiffusion process:

∂X
∂t

= λL(X). (3.6)

By integrating Equation 3.6 over time, a small disturbance will disperse rapidly in its neighbor-

hood, smoothing the high frequencies, while the main shape will be only slightly degraded. The

Laplacian operator can be linearly approximated at each vertex by the umbrella operator (we

will use this approximation in the current section for the sake of simplicity, but will discuss its

validity in section 3.4), as used in [Tau95b, KCVS98]:

L(xi) =
1
m

∑
j∈N1(xi)

xj − xi, (3.7)

wherexj are the neighbors of the vertexxi, andm = #N1(xi) is the number of these neighbors

(valence). A sequence of meshes(Xn) can be constructed by integrating the diffusion equation

with a simpleexplicit Eulerscheme, yielding:

Xn+1 = (I + λdtL)Xn. (3.8)

With the umbrella operator, the stability criterion requiresλdt < 1. If the time step does not

satisfy this criterion, ripples appear on the surface, and often end up creating oscillations of

growing magnitude over the whole surface. On the other hand, if this criterion is met, we get

smoother and smoother versions of the initial mesh asn grows.

3.2.3 Time-Shifted Evaluation

The implementation of this previous explicit method, calledforward Euler method, is very

straightforward [Tau95b] and has nice properties such as linear time and linear memory size

for each filtering pass. Unfortunately, when the mesh is large, the time step restriction results in

the need to perform hundreds of integrations to produce a noticeable smoothing, as mentioned

in [KCVS98].

39

Implicit integration offers a way to avoid this time step limitation. The idea is simple: if

we approximate the derivative using the new mesh (instead of using the old mesh as done in

explicit methods), we will get to the equilibrium state of the PDE faster. As a result of this

time-shifted evaluation, stability is obtained unconditionally [PFTV94]. The integration is now:

Xn+1 = Xn +λdtL(Xn+1). Performing an implicit integration, this time calledbackward Euler

method, thus means solving the following linear system:

(I − λdtL)Xn+1 = Xn. (3.9)

This apparently minor change allows the user not to worry about practical limitations on the time

step. Consequent smoothing will then be obtained safely by increasing the valueλdt. However,

we now must solve a linear system.

3.2.4 Solving the Sparse Linear System

Fortunately, this linear system can be solved efficiently as the matrixA = I − λdtL is sparse:

each line contains approximately seven non-zero elements if the Laplacian is expressed using

Eq. (3.7) since the average number of neighbors on a typical triangulated mesh is six. We can

use a preconditioned bi-conjugate gradient (PBCG) to iteratively solve this system with great

efficiency1. The PBCG is based on matrix-vector multiplies [PFTV94], which only require linear

time computation in our case thanks to the sparsity of the matrixA. We review in Appendix A.5

the different options we chose for the PBCG in order to have an efficient implementation for our

purposes.

3.2.5 Interpretation of the Implicit Integration

Although this implicit integration for diffusion is sound as is, there are useful connections with

other prior work. We review the analogies with signal processing approaches and physical sim-

ulation.
1We use a bi-conjugate gradient method to be able to handle non-symmetric matrices, to allow the inclusion of

constraints (see Section 3.2.7).

40

Signal Processing

In [Tau95b], Taubin presents the explicit integration of diffusion with a signal processing point

of view. Indeed, ifX is a 1D signal of a given frequencyω: X = eiω, thenL(X) = −ω2X. Thus,

the transfer function for Eq. (3.8) is1− λdtω2, as displayed in Figure 3.3(a) as a solid line. We

can see that the higher the frequencyω, the stronger the attenuation will be, as expected.

The previous filter is called FIR (for Finite Impulse Response) in signal processing. When

the diffusion process is integrated using implicit integration, the filter in Eq. (3.9) turns out to

be an Infinite Impulse Response filter. Its transfer function is now1/(1 + λdtω2), depicted

in Figure 3.3(a) as a dashed line. Because this filter is always in[0, 1], we have unconditional

stability.

0

0.2

0.4

0.6

0.8

3

Frequency

Explicit filter

Implicit filter

Attenuation

2.5

1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

1

Filter for ten implicit integrations

Filter for ten explicit integrations

Frequency

Attenuation

0.8

0.8

1

0 0.2 0.4 0.6

(a) (b)

Figure 3.3:Comparison between (a) the explicit and implicit transfer function forλdt = 1, and

(b) their resulting transfer function after 10 integrations.

By rewriting Eq. (3.9) as:Xn+1 = (I−λdtL)−1Xn, we also note that our implicit filtering is

equivalent toI + λdtL+ (λdt)2L2 + ..., i.e., standard explicit filtering plus an infinite sequence

of higher-order filtering. Contrary to the explicit approach, one single implicit filtering step

performs global filtering.

Mass-Spring Network

Smoothing a mesh by minimizing the membrane functional can be seen as a physical simulation

of a mass-spring network with zero-rest length springs that will shrink to a single point in the

limit. Recently, Baraff and Witkin [BW98] presented an implicit method to allow large time

41

steps in cloth simulation. They found that the use of an implicit solver instead of the traditional

explicit Euler integration considerably improves computational time while still being stable for

very stiff systems. Our method is analogous to theirs, but used for a different PDE. We therefore

have the same advantages of using an implicit solver over the usual explicit type:stability and

efficiencywhen significant filtering is called for.

3.2.6 Filter Improvement

Now that the method has been described for the standard diffusion equation, we can consider

other equations that may be more appropriate or may give better visual results for smoothing

when we use implicit integration.

We have seen in Section 3.2.1 that bothL andL2 have been used with success in prior

work [Ter88, Tau95b, KCVS98]. When we use implicit integration, as Figure 3.4(a) shows, the

higher the power of the Laplacian, the closer to alow-pass filterwe get. In terms of frequency

analysis, it is a better filter. Unfortunately, the matrix becomes less and less sparse as more and

more neighbors are involved in the computation. In practice, we find thatL2 is a very good

trade-off between efficiency and quality. Using higher-orders affects the computational time

significantly, while not always producing significant improvements. We therefore recommend

using(I + λdtL2)Xn+1 = Xn for implicit smoothing (a precise definition of the umbrella-like

operator forL2 can be found in [KCVS98]).

0

0.2

0.4

0.6

0.8

1

0 0.5

-1

(I-L) -1

(I-L)2

3

4
(I-L)

1 1.5 2 2.5

-1

-1(I-L)

3
0

0.2

0.4

2 2.5 3

Implicit filter
Constant filter

Resulting convolution

1.5

0.6

0.8

1

1.2

0 0.5 1

(a) (b)

Figure 3.4: (a): Comparison between filters usingL, L2, L3, and L4. (b): The scaling

to preserve volume creates an amplification of all frequencies; but the resulting filter (diffu-

sion+scaling) only amplifies low frequencies to compensate for the shrinking of the diffusion.

42

We also tried to use a linear combination of bothL andL2. We obtained interesting results

like, for instance, amplification of low or middle frequencies to exaggerate large features (refer

to [GSS99] for a complete study of feature enhancement). It is not appropriate in the context of

a fixed mesh, though: amplifying frequencies requires refinement of the mesh to offer a good

discretization.

3.2.7 Constraints

We can put hard and soft constraints on the mesh vertex positions during the diffusion. For the

user, it means that a vertex or a set of vertices can be fixed so that the smoothing happens only

on the rest of the mesh. This can be very useful to retain certain details in the mesh.

A vertex xi will stay fixed if we imposeL(xi) = 0 (or more correctlyλ = 0). More

complicated constraints are also possible [BW98]. For example, vertices can be constrained

along an axis or on a plane by modifying the PBCG to keep these constraints enforced during

the linear solver iterations.

We can also easily implementsoft constraints: each vertex can be weighted according to the

desired smoothing that we want. For instance, the user may want to smooth a part of a mesh less

than another one, in order to keep desirable features while getting a smoother version. We allow

the assignment of a smoothing value between0 and1 to attenuate the smoothing spatially: this is

equivalent to choosing a variableλ factor on the mesh, and happens to be very useful in practice.

Entire regions can be “spray painted” interactively to easily assign this special factor.

3.2.8 Discussion

Even though adding a linear solver step to the integration of the diffusion equation would appear

to slow down the problem at first glance, it turns out that we gain significantly by doing so. For

instance, the implicit integration can be performed with an arbitrary time step. Since the matrix of

the system is very sparse, we actually obtain computational time similar or better than the explicit

methods. In the following table, we indicate the number of iterations of the PBCG method for

different meshes and it can be seen that the PBCG is more efficient when the smoothing is high.

These timings were performed on an SGI High Impact Indigo2 175MHz R10000 processor with

128M RAM.

43

(a) (b) (c) (d)

Figure 3.5:Stanford bunnies: (a) The original mesh, (b) 10 explicit integrations withλdt = 1,

(c) 1 implicit integration withλdt = 10 that takes only7 PBCG iterations (30% faster), and (d)

20 passes of theλ|µ algorithm, withλ = 0.6307 andµ = −0.6732. The implicit integration

results in better smoothing than the explicit one for the same, or often less, computing time. If

volume preservation is called for, our technique then requires many fewer iterations to smooth

the mesh than theλ|µ algorithm.

Mesh Nb of faces λdt = 10 λdt = 100

Horse 42,000 8 iterations (2.86s) 37 iterations (12.6s)

Dragon 42,000 8 iterations (2.98s) 39 iterations (13.82s)

Isis 50,000 9 iterations (3.84s) 37 iterations (15.09s)

Bunny 66,000 7 iterations (4.53s) 35 iterations (21.34s)

Buddha 290,000 5 iterations (13.78s) 28 iterations (69.93s)

To be able to compare the results with the explicit method, one has to notice that one iteration

of the PBCG is only slightly more time-consuming than one integration step using an explicit

method. Therefore, we can see in the following results that our implicit fairing takes about 60%

less time than the explicit fairing for a filtering ofλdt = 100, as we get about 33 iterations

compared to the 100 integration steps required in the explicit case. We have found this behavior

to be true for all the other meshes as well. The advantage of the implicit method in terms of

computational speed becomes more obvious forlarge meshesand/orhigh smoothingvalue. In

terms of quality, Figures 3.5(b) and 3.5 (c) demonstrate that both implicit and explicit methods

produce about the same visual results, with a slightly better smoothness for the implicit fairing.

Note that we use 10 explicit integrations of the umbrella operator withλdt = 1, and 1 integration

using the implicit integration withλdt = 10 to approximate the same results. Therefore, there is

a definite advantage in the use of implicit fairing over the previous explicit methods. Moreover,

44

the remainder of this paper will make heavy use of this method and its stability properties.

3.3 Automatic Anti-Shrinking Fairing

Pure diffusion will, by nature, induce shrinkage. This is inconvenient as this shrinking may be

significant for aggressive smoothing. Taubin proposed to use a linear combination ofL andL◦L

to amplify low frequencies in order to balance the natural shrinking. Unfortunately, the linear

combination depends heavily on the mesh in practice, and this requires fine tuning to ensure both

stable and non-shrinking results. In this section, we propose an automatic solution to avoid this

shrinking. We preserve the zeroth moment, i.e., the volume, of the object. Without any other

information on the mesh, we feel it is the most reasonable invariant to preserve, although surface

area or other invariants can be used.

Volume Computation

As we have a mesh given in terms of triangles, it is easy to compute the interior volume. This

can be done by summing the volumes of all the oriented pyramids centered at a point in space

(the origin, for instance) and with a triangle of the mesh as a base. This computation has a

linear complexity in the number of triangles [LK84]. For the reader’s convenience, we give the

expression of the volume of a mesh in the following equation, wherex1
k, x

2
k andx3

k are the three

vertices of thekth triangle:

V =
1
6

nbFaces∑
k=1

gk · Nk , (3.10)

whereg = (x1
k + x2

k + x3
k)/3 andNk = ~x1

kx2
k ∧

~x1
kx3

k.

3.3.1 Exact Volume Preservation

After an integration step, the mesh will have a new volumeV n. We then want to scale it back

to its original volumeV 0 to cancel the shrinking effect. We apply a simple scale on the vertices

to achieve this. By multiplying all the vertex positions bys = (V 0/V n)1/3, the volume is

guaranteed to go back to its original value. As this is a simple scaling, it is harmless in terms

45

of frequencies. To put it differently, this scaling corresponds to a convolution with a scaled

Dirac in the frequency domain, hence it amplifies all the frequencies in the same way to change

the volume back. The resulting filter, after the implicit smoothing and the constant amplification

filter, amplifies the low frequencies of the original mesh toexactlycompensate for the attenuation

of the high frequencies, as sketched on Figure 3.4(b).

The overall complexity for volume preservation is thus linear. With such a process, we do

not need to tweak parameters: the anti-shrinking filter isautomaticallyadapted to the mesh and

to the smoothing, contrary to previous approaches. Note that hard constraints defined in the

previous section are applied before the scaling and do not result in fixed points anymore: scaling

alters the absolute, but not the relative position.

We can generalize this re-scaling phase to different invariants. For instance, if we have to

smooth height fields, it is more appropriate to take the invariant as being the volume enclosed

between the height field and a reference plane, which changes the computations only slightly.

Likewise, for surfaces of revolution, we may change the way the scaling is computed to exploit

this special property. We can also preserve the surface area if the mesh is a non-closed surface.

However, in the absence of specific characteristics, preserving the volume gives nice results.

According to specific needs, the user can select the appropriate type of invariant to be used.

3.3.2 Discussion

When we combine both methods of implicit integration and anti-shrinking convolution, we ob-

tain an automatic and efficient method for fairing. Indeed, no parameters need be tuned to ensure

stability or to have exact volume preservation. This is a major advantage over previous tech-

niques. Yet, we retain all of the advantages of previous methods, such as constraints [Tau95b]

and the possibility of accelerating the fairing via multigrid [KCVS98], while additionally offer-

ing stability and efficiency. This technique also dramatically reduces the computing time over

Taubin’s anti-shrinking algorithm: as demonstrated in Figures 3.5(c) and 3.5(d), using theλ|µ

algorithm may preserve the volume after fine tuning, but one iteration will only slightly smooth

the mesh. The rest of this paper exploits both automatic anti-shrinking and implicit fairing tech-

niques to offer more accurate tools for fairing.

46

3.4 An Accurate Diffusion Process

Up to this section, we have relied on the umbrella operator (Eq. (3.7)) to approximate the Lapla-

cian on a vertex of the mesh. This particular operator does not truly represent a Laplacian in the

physical meaning of this term as we are about to see. Moreover, simple experiments on smooth

meshes show that this operator, using explicit or implicit integration, can create bumps or “pim-

ples” on the surface, instead of smoothing it. This section proposes a sounder simulation of the

diffusion process, by defining a new approximation for the Laplacian and by taking advantage of

the implicit integration.

3.4.1 Inadequacy of the Umbrella Operator

The umbrella operator, used in the previous sections, corresponds to an approximation of the

Laplacian in the case of a specific parameterization [KCVS98]. This means that the mesh is

supposed to have edges of length1 and all the angles between two adjacent edges around a

vertex should be equal. This is of course far from being true in actual meshes, which contain a

variety of triangles of different sizes.

Treating all edges as if they had equal length has significant undesired consequences for the

smoothing. For example, the Laplacian can be the same for two very different configurations,

corresponding to different frequencies as depicted in Figure 3.6. This distorts the filtering sig-

nificantly, as high frequencies may be considered as low ones, and vice versa. Nevertheless, the

advantage of the umbrella operator is that it is normalized: the time step for integration is always

1, which is very convenient. But we want a more accurate diffusion process to smooth meshes

consistently, in order to more carefully separate high from low frequencies.

We need to define a discrete Laplacian which is scale dependent, to better approximate dif-

fusion. However, if we use explicit integration [Tau95b], we will suffer from a very restricted

stability criterion. It is well known [PFTV94] that the time step for a parabolic PDE like Eq. (3.6)

depends on the square of the smallest length scale (here, the smallest edge lengthmin(|e|)):

dt ≤ min(|e|)2

2 λ
.

This limitation is a real concern for large meshes with small details, since an enormous number

47

(a) (b)

Figure 3.6:Frequency confusion: the umbrella operator is evaluated as the vector joining the

center vertex to the barycenter of its neighbors. Thus, cases (a) and (b) will have the same

approximated Laplacian even if they represent different frequencies.

of integration steps will have to be performed to obtain noticeable smoothing. This isintractable

in practice.

Using the implicit integration described in Section 3.2, we can overcome this restriction and

use a much larger time step while still achieving good smoothing, saving considerable com-

putation. In the next two subsections we present one design of a good approximation for the

Laplacian.

3.4.2 Simulation of the 1D Heat Equation

The 1D case of a diffusion equation corresponds to the heat equationxt = xuu. It is therefore

worth considering this example as a test problem for higher dimensional filtering. To do so, we

use Milne’s test presented in [Mil95]. Milne compared two cases of the same initial problem:

first, the problem is solved on a regular mesh on[0, 1], and then on an irregular mesh, taken to

consist of a uniform coarse grid of cells on[0, 1] with each of the cells in[12 , 1] subdivided into

two fine cells as depicted in Figure 3.7(a) and 3.7(b). With such a configuration, classical finite

difference coefficients for second derivatives can be used on each cell, except for the middle one

which does not have centered neighbors. Milne shows that if no particular care is taken for this

“peripheral” cell, it introduces anoise termthat creates large inaccuracies — larger than if the

mesh was represented uniformly at the coarser resolution! But if we fit a quadratic spline at

this cell to approximate the second derivative, then the noise source disappears and we get more

accurate results than with a constant coarse resolution (see the errors created in each case in one

iteration of the heat equation in Figure 3.7(c)).

This actually corresponds to the extension of finite difference computations for irregular

48

meshes proposed by Fornberg [For88]: to compute the FD coefficients, just fit a quadratic func-

tion at the sample point and its two immediate neighbors, and then return the first and second

derivative of that function as the approximate derivatives. For three points spaced∆ andδ apart

(see Figure 3.7(d)), we get the 1D formula:

(xuu)i =
2

δ + ∆

(
xi−1 − xi

δ
+
xi+1 − xi

∆

)
.

Note that when∆ = δ, we find the usual finite difference formula.

0.6

0.4

0.2

0

0.8

π

Samples on grid A

x0

y

2
π

0.8

0.6

0.4

0.2

0

y

x2
π

Samples of grid B

π0

(a) (b)

0

5e-07

1e-06

1.5e-06

2e-06

2.5 3 x

Grid A, regular FD

Grid B, extended FD

Grid B, regular FD

Error

2

2.5e-06

3e-06

3.5e-06

0 0.5 1 1.5

X

iX

Xi-1

u

i+1

u

X

δ ∆
i+1ii-1u u

(c) (d)

Figure 3.7: Test on the heat equation: (a) regular sampling vs. (b) irregular sampling. Nu-

merical errors in one step of integration (c): using the usual FD weight on an irregular grid to

approximate second derivatives creates noise, and gives a worse solution than on the coarse grid,

whereas extended FD weights offer the expected behavior. (d) Three unevenly spaced samples of

a function and corresponding quadratic fitting for extended FD weights.

49

3.4.3 Extension to 3D

The umbrella operator suffers from this problem of large inaccuracies for irregular meshes as

the same assumed constant parameterization is used (Figure 3.8 shows such a behavior). Sur-

prisingly, a simple generalization of the previous formula valid in 1D corresponds to a known

approximation of the Laplacian. Indeed, Fujiwara [Fuj95] presents the following formula:

L(xi) =
1
E

∑
j∈N1(xi)

xj − xi

|eij |
, with E =

∑
j∈N1(xi)

|eij |. (3.11)

where|eij | is the length of the edgeeij . Note that, when all edges are of size1, this reduces to

the umbrella operator (Eq. 3.7). We will then denote this new operator as thescale-dependent

umbrella operator.

Unfortunately, the operator is no longer linear. But during a typical smoothing, the length of

the edges does not change dramatically. We thus make the approximation that the coefficients

of the matrixA = (I − λdtL) stay constant during an integration step. We can compute them

initially using the current edges’ lengths and keep their values constant during the PBCG itera-

tions. In practice, we have not noted any noticeable drawbacks from this linearization. We can

even keep the same coefficients for a number of (or all) iterations: it will correspond to a filter-

ing “relative” to the initial mesh instead if the current mesh. For the same reason as before, we

also recommend the use of the second Laplacian for higher quality smoothing without signifi-

cant increase in computation time. As demonstrated in Figure 3.8, the scale-dependent umbrella

operator deals better with irregular meshes than the umbrella operator: no spurious artifacts are

created. We also applied this operator to noisy data sets from 3D photography to obtain smooth

meshes (see Figures 3.1 and 3.12).

The number of iterations needed for convergence depends heavily on the ratio between min-

imum and maximum edge lengths. For typical smoothing and for meshes over 50000 faces, the

average number of iterations we get is 20. Nevertheless, we still observe undesired behavior on

flat surfaces: vertices in flat areas still slide during smoothing. Even though this last formulation

generally reduces this problem, we may want to keep a flat areaintact. The next section tackles

this problem with a new approach.

50

(a) (b) (c) (d)

Figure 3.8:Application of operators to a mesh: (a) mesh with different sampling rates, (b) the

umbrella operator creates a significant distortion of the shape, but (c) with the scale-dependent

umbrella operator, the same amount of smoothing does not create distortion or artifacts, almost

like (d) when curvature flow is used. The small features such as the nose are smoothed but stay

in place.

3.5 Curvature Flow for Noise Removal

In terms of differential equations, diffusion is a close relative of curvature flow. In fact, the direc-

tions of Laplacian and curvature flows coincide for theconformalparameter space [DHKW92].

Thus we can interpret the mean curvature normal as a special laplacian: it is a laplacian for a

parameter space naturallyinduced by the surface itself. In this section, we first explore the ad-

vantages of using curvature flow over diffusion, and then propose an efficient algorithm for noise

removal using curvature flow.

3.5.1 Diffusion vs. Curvature Flow

The Laplacian of the surface at a vertex has both normal and tangential components. Even if the

surface is locally flat, the Laplacian approximation will rarely be the zero vector [KCVS98]. This

introduces undesirable drifting over the surface, depending on the parameterization we assume.

We in effect fair the parameterization (or sampling) of the surface as well as the shape itself (see

51

Figure 3.10(b)).

We would prefer to have a noise removal procedure that does not depend on the parameter-

ization. It should use onlyintrinsic propertiesof the surface. This is precisely what curvature

flow does. Curvature flow smoothes the surface by moving along the surface normaln with a

speed equal to the mean curvature:κH :

∂xi

∂t
= −κH(xi) ni. (3.12)

Using curvature flow, a sphere with different sampling rates should stay spherical under curvature

flow as the curvature is constant. And we should also not get any vertex “sliding” when an area

is flat as the mean curvature is then zero.

There are already different approaches using curvature flow [Set96], and even mixing both

curvature flow and volume preservation [DCG98] to smooth object appearance, but mainly in

the context of level-set methods. They are not usable on a mesh as is. However, we can use our

discrete differential defined in section 2.4, repeated here for convenience:

K(xi) =
1

2AMixed

∑
j∈N1(i)

(cot αij + cot βij) (xi − xj). (3.13)

Note that this equation for the mean curvature normal is equivalent to the gradient of surface

area with respect to the position ofxi.

κH n =
∇A
2 A

. (3.14)

This discrete flow is thus an area-minimizing flow producing a minimal surface. Note the

interesting similarity with [PP93]. We obtain almost the same equation, but with a completely

different derivation than theirs, which was using energies of linear maps.

Using the area gradient property of our operator, it is easy to see that we will have a zero

curvature normal vector for a flat area. As shown in Figure 3.9, we see that moving the center

vertexxi on a flat surface does not change the surface area. On the other hand, moving it above

or below the plane will always increase the local area. Hence, we have the desired property of a

null area gradient for a locally flat surface, whatever the valence, the aspect ratio of the adjacent

52

faces, or the edge lengths around the vertex.

x

ix

ix

ixi

Figure 3.9:The area around a vertexxi lying in the same plane as its 1-ring neighbors does

not change if the vertex moves within the plane, and can only increase otherwise. Being a local

minimum, it thus proves that the derivative of the area with respect to the position ofxi is zero

for flat regions.

3.5.2 Boundaries

For non-closed surfaces or surfaces with holes, we can define a special treatment for vertices on

boundaries. The notion of mean curvature does not make sense for such vertices. Instead, we

would like to smooth the boundary, so that the shape of the hole itself gets rounder and rounder as

iterations go. We can then use for instance Eq. (3.11) restricted to the two immediate neighbors

which will smooth the boundary curve itself.

Another possible technique is to create a virtual vertex, stored but not displayed, initially

placed at the barycenter of all the vertices placed on a closed boundary. A set of faces adjacent

to this vertex and connecting the boundary vertices one after the other are also virtually created.

We can then use the basic algorithm without any special treatment for the boundary as now, each

vertex has a closed area around it.

3.5.3 Implementation

Similarly to Section 3.4, we have a non-linear expression defining the curvature normal. We

can proceed in the same way, holding the operator constant over each time step, as the changes

induced in a time step will be small. We simply compute the non-zero coefficients of the matrix

I − λdtK, whereK represents the matrix of the curvature normals. We then successively solve

the following linear system:

(I − λdtK) Xn+1 = Xn.

53

We can use preconditioning or constraints, just as before as everything is basically the same

except for the local approximation of the speed of smoothing. As shown on Figure 3.10, a

sphere with different triangle sizes will remain the same sphere thanks to both the curvature flow

and the volume preservation technique.

In order for the algorithm to be robust, an important test must be performed while the matrix

K is computed: if we encounter a face of zero area, we skip it. Mesh decimation to eliminate all

degenerate triangles can also be used as suggested in [PP93].

(a) (b) (c) (d)

Figure 3.10:Smoothing of spheres: (a) The original mesh containing two different discretization

rates. (b) Smoothing with the umbrella operator introduces sliding of the mesh and unnatural

deformation, which is largely attenuated when (c) the scale-dependent version is used, while (d)

curvature flow maintains the sphere exactly.

3.5.4 Comparison of Results

Figures 3.8, 3.10, and 3.11 compare the different operators we have used:

• For significant fairing, the umbrella operator changes the shape of the object substantially:

triangles drift over the surface and tend to be uniformly distributed with an equal size.

• The scale-dependent umbrella operator allows the shape to stay closer to the original shape

even after significant smoothing, and almost keeps the original distribution of triangle

sizes.

• Finally, the curvature flow just described achieves the best smoothing with respect to the

shape, as no drift happens and only geometric properties are used to define the motion.

54

Knowing these properties, the user can select the type of smoothing that fits best with the type of

fairing that is desired. Diffusion will smooth the parameterization along with the shape, resulting

in a more regular triangulation. If a parameterization independent smoothing is desired, then the

curvature flow should be used. In the next section, we will show how to derive a smoothing

technique that combines the advantages of both techniques.

(a) (b) (c) (d)

Figure 3.11:Significant smoothing of a dragon: (a) original mesh, (b) implicit fairing using

the umbrella operator, (c) using the scale-dependent umbrella operator, and (d) using curvature

flow.

3.6 Smoothing Shape and Sampling

As mentioned in the previous sections, the Laplacian contains a tangential component that

smoothes the parameterization. While this parametric smoothing is not, in itself, a problem,

the Laplacian does not contain the appropriate amount of shape smoothing in the normal com-

ponent. On the other hand, theparameterization-independentcurvature flow provides the ap-

propriate shape smoothing while leaving the parameterization or sampling unchanged. In some

applications, it may be desirable to have the sampling regularization of the laplacian as well as

the correct shape smoothing of the curvature normal.

Graph Flow

We wish to produce a flow that isgeometrically equivalentto curvature flow that allows us to

simultaneously alter the sampling. This can be accomplished using a variant of a technique

55

(a) (b) (c) (d)

Figure 3.12:Faces: (a) The original decimated Spock mesh has 12,000 vertices. (b) We linearly

oversampled this initial mesh (every visible triangle on (a) was subdivided in 16 coplanar smaller

ones) and applied the scale-dependent umbrella operator, observing significant smoothing. One

integration step was used,λdt = 10, converging in 12 iterations of the PBCG. Similar results

were achieved using the curvature operator. (c) curvature plot for the mannequin head (obtained

using our curvature operator), (d) curvature plot of the same mesh after a significant implicit

integration of curvature flow (pseudo-colors).

referred to as “graph flow.”

Suppose we have a surfaceS(t) evolving in time, starting with a shapeS0. Let us define a

potentialf(x(t), t) in space such that the zero isosurface off corresponds toS at every timet.

As the evolving potential characterizes a moving isosurface, we can derive a simple differential

equation satisfied byf . The path of a pointx(t) during the evolution of the surface satisfies

f(x(t), t) = 0 for any timet, yielding:

∂f

∂t
(x(t), t) +∇f(x(t), t) · dx(t)

dt
= 0 . (3.15)

Note that with this equation (the typical PDE used in the level-set literature) only the normal

component ofdx(t)/dt matters since it is dotted with the gradient off , which is along the

normal to the surface. An important consequence is thatonly the normal component of a surface

flow really affects the shape: since any tangential component will not be accounted for in the

PDE, the potentialf will only evolve according to the normal component. Adding an arbitrary

tangent component to a flow field will not perturb the evolution of a surface, just modify its

56

parameterization (as mentioned in Section 3.6).

The preceding remark allows us to construct different particle paths that lie on the same

surface family. Since we want to obtain a mean curvature flow, the graph flow needs to match the

mean curvature flow after projection onto the normal, but we can use any tangential component

we desire (though, when using sampled surfaces, care must be taken when adjusting the sampling

since the resulting surface may undersampled or produce incorrect connectivity). One useful flow

is to use the mean curvature normal plus the tangential component of the laplacian. Ohtakeet

al. [OBB00] use a similar flow to produce the results in Figures 3.13 and 3.14. Notice how the

shape is smoothed correctly while the mesh sampling is regularized.

Figure 3.13:From left: Original pretzel shape, smoothing using the Taubinλ/µ algorithm (no-

tice the substantial shape deformation), mean curvature smoothing produces excellent shape

smoothing, and the combined curvature flow plus laplacian produces a smoothed shape with

regularized sampling (image from [OBB00]).

A Survey of Methods for Recovering Quadrics in Triangle Meshes · 25

ε = 0.1 gives good results independently of the mesh sampling rate. A further refinement
allows for the smoothing to slow down automatically, thus avoiding oversmoothing and the
destruction of small-scale surface features.

Two examples showing the advantages of the new smoothing schemes over past methods
are displayed in Figs. 10 and 11.

Fig. 10. From left to right: a pretzel-like shape consisting of parts with different sampling rates, and best smooth-
ing with the Taubin algorithm (which substantially deforms the shape), the mean curvature flow (which produces
an irregular mesh) the combined method of [Ohtake et al. 2000].

Fig. 11. From left to right: a two-holed polyhedral torus, and best smoothing with the Taubin scheme, the mean
curvature flow and the new method of [Ohtake et al. 2001].

Ohtake et al. [2000] also introduce modifications of these schemes to better retain sharp
edges. This idea is to smooth the face normals and then to move vertices based on the
smoothed normals. Smoothing of normals is achieved by a weighted averaging of neigh-
boring normals, with large weights if the normals are close and small weights if they are
different. An example is shown on Figure 12.

Fig. 12. From left to right: a mesh, a common smoothing and a feature-preserving smoothing [Ohtake et al.
2001].

ACM Computing Surveys, Vol. 2, No. 34, July 2002.

Figure 3.14:From left: Original torus-like shape, smoothing using the Taubinλ/µ algorithm

(notice the substantial shape deformation), mean curvature smoothing produces excellent shape

smoothing, and the combined curvature flow plus laplacian produces a smoothed shape with

regularized sampling (image from [OBB00]).

57

(a) (b) (c)

Figure 3.15:Cube: (a) Original, noisy mesh (±3% uniform noise added along the normal direc-

tion). (b) Isotropic smoothing. (c) Anisotropic smoothing defined in Section 3.7.1.

3.7 Anisotropic Smoothing

While the previous sections detail an impressive set of tools for denoising a mesh, they are

all isotropic – smoothing equally in all directions. Since an input mesh may have many sharp

features, we wish to get rid of the noise by smoothing the surface, while preserving clear features

such as sharp edges. For example, we would like to smooth a noisy cube without turning it into

the cushion-like shape in Figure 3.15(b).

Using anisotropic smoothing to solve this feature-preserving denoising problem has shown

good results in image processing [PM90], in flow visualization [PR99], and recently on

meshes [CDR00]. The underlying idea is to still diffuse the noise, but with an adaptive con-

ductance over the domain in order to preserve edges. In Section 3.2.7, we described a way to

control the smoothing by locally altering the parameterλ (possibly through a manual “spray-

painting” of the mesh. While this technique could be used to manually define an anisotropic

smoothing, it is a rather time-consuming task for big meshes, and it will leave ragged edges

on the vertices forced to a low smoothing amount. Instead, we define an automatic weighting

technique using the principal curvatures of the surface.

3.7.1 An Anisotropic Weighting Technique

In order to keep the sharp features of a mesh intact, we desire an isotropic implicit curvature flow

on noisy regions, while directional diffusion should be applied to obvious edges and corners. The

presence of such features can be determined using the principal curvatures of the surface. Indeed,

58

(a) (b)

Figure 3.16: Fandisk: (a) Original, noisy mesh. (b) Anisotropic smoothing is performed to

maintain the mesh features while removing the noise.

in the case of an edge between two faces of a cube mesh, the minimum curvature is zero along

the edge, while the maximum curvature is perpendicular to this edge. An immediate idea is to

perform a weighted mean curvature flow that penalizes vertices that have a large ratio between

their two principal curvatures. This way, clear features like sharp edges will remain present while

noise, more symmetric by nature, will be greatly reduced.

We define the smoothing weight at a vertexxi as being:

wi =



1 if |κ1| ≤ T and|κ2| ≤ T

0 if |κ1| > T and|κ2| > T andκ1κ2 > 0

κ1/κH if |κ1| = min(|κ1|, |κ2|, |κH |)

κ2/κH if |κ2| = min(|κ1|, |κ2|, |κH |)

1 if |κH | = min(|κ1|, |κ2|, |κH |)

.

The parameterT is a user defined value determining edges. The general smoothing flow is

then: ∂xi/∂t = −wi κH(xi) n(xi). As we can see, uniformly noisy regions (cases 1 and 5 in

the weight definition given above) will be smoothed isotropically, while corners (case 2) will

not move. For edges (cases 3 and 4), we smooth with a speed proportional to the minimum

curvature, to be assured not to smooth ridges. The caveat is that this smoothing is no longer

well-posed: we try to enhance edges, and this is by definition a very unstable process. Pre-

mollification techniques have been reported successful in [PR99], and should be used in such

a process. However, we have had good results by simply thresholding the weightswi to be

59

no less than−0.1 to avoid strong inverse diffusion, and using implicit fairing to integrate the

flow. As Figure 3.15 demonstrates, a noisy cube can be smoothed and enhanced into an almost

perfect cube using our technique. For more complicated objects (see Figure 3.16), a pass of curve

smoothing (also using implicit curvature flow) has been added to help straighten the edges.

3.8 Smoothing General Bivariate Data

Since the previous smoothing algorithms were constructed using our discrete differential opera-

tors, we can use extensions such as those described in section 2.8 to smooth non-surface data. In

this section, we describe algorithms to smooth images, height fields, and vector/tensor fields.

3.8.1 Smoothing of Images and Height Fields

To reduce the noise in images, early research has advocated the use of the laplacian as a local

differential operator. Diffusing the signal using laplacian smoothing will reduce high frequency

noise. Unfortunately, an unintended consequence is that the noise is diffused uniformly in screen

space. Sharp edges and other fundamental features of an image are then lost, blurred away by the

uniform diffusion. Consequently, anisotropic operators have been proposed. They can diffuse

the signal non-uniformly to better preserve edges, while reducing noise in the signal.

The first inhomogeneous diffusion model was introduced by Perona and Malik [PM90]. The

idea was to vary the conduction spatially to favor noise removal in nearly homogeneous regions

while avoiding any alteration of the signal along significant discontinuities (see [TT99] for an

intuitive explanation of this technique). The change in intensityI over time was defined as:

It = div(g(‖∇I‖) ∇I) with: g(x) =
1

1 + x2

α

. (3.16)

Many different variations on the conduction functiong have been proposed [ROF92, ABBFC97,

ALM92], and recently a higher-order PDE has been introduced by Tumblin [TT99] in the con-

text of displaying high contrast computer graphics pictures. Similar techniques have been used

to visualize complex flow fields, as in [PR99]. All of these approaches rely on isophotes of the

image (see Figure 3.17(a)): the anisotropic diffusion equation can be interpreted as a diffusion

mainly in the direction tangential to each isophote. Therefore, discontinuities present in the or-

60

(a) (b)

Figure 3.17:The intensity mapI(x, y) of an image can be thought of as (a) a set of isophotes,

or (b) a height field(x, y, z = I(x, y)).

thogonal direction are not lost, as explained in [KDA97]. Typically, finite difference schemes are

used to discretize the differential operators used. Some of these approaches also use an inverse

diffusion process orthogonal to the isophotes to enhance edges; this process, being very unstable

by nature, requires a pre-smoothing of the gradient for the well-posedness of the problem.

However, in general, relying only on isophotes to restore a noisy image is questionable:

non-uniform lighting (glares, specularity effects) often enhance our understanding of a scene

while significantly affecting isophotes in complex ways. Other anisotropic diffusion models are

therefore desirable.

3.8.2 Intensity as a 2-Manifold

A number of approaches for denoising in image processing research consider an image as a 2-

manifold embedded in 3D: the imageI(x, y) is regarded as a surface(x, y, I(x, y)) in a three

dimensional space, as depicted in Figure 3.17(b). The surfaceS = (x, y, I(x, y)) is sometimes

called a Monge surface, or simply aheight fieldas the intensity represents an elevation along

thez direction of the(x, y, z) space. Many algorithms also make use of the square root of the

determinant of the first fundamental form of the surface [DHKW92, Gra98], denoted byW.

This quantity measures at a given point on the surface the area expansion between the parameter

domain and the surface itself: a surfacedA on the screen (parameter domain, also called screen

space in our context) will then represent a surface area ofW dA on the height field. Due to the

simplicity of a height field, we can write:

61

W =
√

1 + I2
x + I2

y , (3.17)

n =
1
W

(−Ix,−Iy, 1). (3.18)

Now that we consider the image as a surface, it is natural to ask whether the mean curvature

based surface smoothing techniques of previous sections can be used for images as well. In fact,

since curvature flow is a natural generalization of diffusion (using a Laplacian parameterized by

the natural mteric of the surface itself), several researchers have used the mean curvature normal

for image smoothing:

• Malladi and Sethian [MS96] proposed:It = −WκH to implement the geometrically natu-

ral mean curvature flow. Contrary to the conventional laplacian filtering, it is an anisotropic

flow more appropriate for a scale-space. They also derive a min/max flow, thresholding

the curvature locally depending on local averages.

• Extending the Perona-Malik formulation for an intensity height field, Ford and El-

Fallah [FEF98] proposed an inhomogeneous diffusion with a coefficient inversely pro-

portional to the gradient magnitude:

It = div

 1√
1 + I2

x + I2
y

(−Ix,−Iy, 1)t

 .

Since this expression is actually the divergence of the unit normaln to the surface, we can

reformulate it as:

It = −2 κH .

They show how this flow provides good experimental results for noise removal with edge

preservation, and give a FD (finite difference) algorithm to implement it using the Sobel

operator for the evaluation of derivatives.

• Finally, Kimmel, Malladi and Sochen [KMS97, SKM98] proposed a framework for non-

62

linear diffusion where equations are derived by minimizing a functional. Using the ex-

tended Polyakov action, which reduces to the surface area functional for 2D greyscale im-

ages, they obtained the Laplace-Beltrami operator (∆g) as the associated parameterization-

independent Euler-Lagrange equation. To introduce an edge preserving flow, they pro-

posed the following technique, called Beltrami flow:

It = −∆gS · ez = − 1
W
κH ,

whereez is the unit vector in thez (intensity) direction.

3.8.3 Denoising Greyscale Images

Using our differential operator based smoothing techinques, we can derive a general image

smoothing algorithm. Directly applying our surface flow to images results in the equation:

∂S

∂t
= −κHn.

Although this flow minimizes the surface area, we often can not easily “move” the sample

points along the normal direction as it is generally not aligned with the image parameter direc-

tions – the pixels would no longer be on a regular grid. We can, however, use the graph flow

technique of Section 3.6 to create a geometrically-equivalent flow by only evolving the intensity

field (therefore, constraining the sampling to remain the same). We require that the flow be only

in theez direction and be equal to the mean curvature flow when projected back onto the normal:

It = −WκH ,

sinceez · n = 1/W this gives the appropriate normal flow.

In the context of images, edges (i.e., sudden intensity changes) are fundamental. The above

flow is isotropic and will smooth edges as well as the noise. To make the flow anisotropic and

edge-preserving, we can add a smoothing weight, dependent on the metric of the surface, in

order to penalize the edges more than the flat regions.

Consider the termW (square root of the determinant of the surface metric): it measures the

63

κn
Intensity field

Screen

Intensity field

Screen

(a) (b)

Figure 3.18:(a): The left side indicates how normals are perpendicular to the screen in homo-

geneous, noisy areas, while parallel to the screen plane for edges. The right side shows how the

graph flow is built out of the mean curvature flow by having the same magnitude once projected

along the normal. (b):W measures the surface expansion between the parameter space (screen

pixel) and the surface of the height field.

surface expansion between the parameter space (screen) and the surface itself (intensity field

considered as a height field). Therefore, this term will be infinite along edges, while equal to

one in flat regions as depicted in Figure 3.18(b). Its inverse is therefore a good candidate for an

edge “indicator”. This holds for any positive power ofW as well. SinceW is unitless this edge

indicator is also scale-invariant. The complete edge-preserving flow can now be expressed as:

It = − κH

Wγ
. (3.19)

The coefficientγ ≥ −1 determines the relative penalization of small jumps in intensity versus

large jumps. Values less than one only penalize large jumps, while values larger than one penalize

even small jumps. It controls the linearity of our edge-preservation metric: as such,γ can be

described as anedge contrast parameter.

The flow derived above is quite general, and by varying the exponentγ we can derive many

different flows. Settingγ = −1 results in the isotropic curvature flow of [MS96]. Forγ = 0,

we find the same flow used by El-Fallah and Ford [FEF98]. Forγ = 1, our formulation leads

to the Beltrami flow, mentioned in Section 3.8.2. Other values ofγ offer a whole new family

of denoising flows, all having the properties of parameterization-independence, scale-invariance,

and feature-preservation.

64

3.8.4 Denoising of Arbitrary Bivariate Data

Two-dimensional data often has more than one channel of information. Color images for instance

have three channels per pixel: red, green, and blue. Although a straightforward channel by chan-

nel smoothing is easily achieved by the previous method, it may not lead to optimal smoothing.

Independent changes in the red, green, and blue channels result in perceptually-strong color vari-

ations in the smoothed image. Therefore, smoothing in color should be performed in a higher

dimensional color space such asrgb where coupling between channels results in more natural

color smoothing [Sha96]. Similarly, higher dimensional data should be smoothed in its respec-

tive space, not channel-by-channel. This section demonstrates that our previous approach can be

extended easily to provide a denoising technique for higher dimensional data.

Graph Flow for Mean Curvature Smoothing

We now consider our bivariate multi-dimensional data as lying on 2-manifold embedded innD.

We can still define the Laplace-Beltrami operator as being the generalization of the mean cur-

vature normal, or the generalization of the (parameterization-independent) surface area gradient.

For the sake of simplicity, we will denote the Laplace-Beltrami operator asB from now on:

∆gS = B. To make this flow a graph flow, we have to project this vector onto the sub-space of

free parameters, such asr, g, b in the case of color images. The orthogonal projection ofB onto

this sub-space is the vectorB. It consists of the same coordinates asB, except for the first two

components (corresponding to thex andy axes of screen space) set to zero. Therefore, we need

a vector in the direction opposite toB to ensure a graph flow, but such that its projection ontoB

has the same magnitude asB to ensure the geometric equivalence:

−B · B
B · B

B. (3.20)

65

Applied to color images (5D space (ex,ey,er,eg,eb)), the graph flow geometrically equivalent

to a mean curvature flow is therefore:

d

dt


r

g

b

 = −B · B
B · B


B · er

B · eg

B · eb

 . (3.21)

Edge-Preserving Flow

Following the same arguments as in Section 3.8.3, we now want to weight the features to favor

smoothing of almost uniform regions. Thus, we need to find a way to measure discontinuities.

Based on the same idea as in the greyscale case, we can use the ratio of surface expansion

between the screen and the surface. It is directly measured by the ratio between the magnitudes

of B and B, as cliffs are characterized by a normal parallel to the screen plane. Our multi-

dimensional scale-invariant edge indicator can be written as:||B||/||B||: the edge indicator will

be valued0 on sharp edges, and1 in homogeneous regions. Adding an edge contrast parameter

γ (slightly different than the previously definedγ, purely for aesthetic reasons), our feature-

preserving flow becomes, for color pictures for instance:

d

dt


r

g

b

 = −
(
||B||
||B||

)γ


B · er

B · eg

B · eb

 . (3.22)

Notice thatγ = 0 simplifies greatly to a Beltrami flow. The creation of higher dimension feature-

preserving smoothing flows follows naturally.

Incorporating Perceptual Bias for Color

The (r, g, b) color space is not necessarily the most perceptually sound. Put simply, the human

eye is not similarly sensitive to a change of red, green, or blue: what we visibly consider as a

major color edge may not be considered as such in this color space, and vice versa. Therefore,

smoothing a color image in such a space may not lead to the most pleasant visual results.

Instead, we use the(L∗, U∗, V ∗) color space to take some of the human color perception

66

biases into account. This model has the advantage of being almost perceptually uniform for the

human eye, and therefore, will appropriately define edges. Note that any other model and/or

linear combination of existing models is straightforward to implement in our framework as only

the input has to be changed.

Tuning of Global Contrast

The framework defined so far has an additional degree of freedom: the scaling of intensity/colors.

Colors are usually rescaled between 0 and 1, but the real color spectrum of the image is unde-

termined. Unless radiometric values of the image are available, we can arbitrarily choose a scale

factorα to define the global contrast of the image. Note that our surface functional for a large

value ofα will be equivalent, forγ = 0, to a regularized version of theL1 norm of the intensity:

therefore, our flow will be equivalent to the total variation denoising approach of [ROF92]. On

the other hand, a small scale factor will tend to create a flow based on theL2 norm [Sha96] for

the sameγ [KMS97].

3.8.5 Discussion

We have defined a scale-invariant anisotropic flow to denoise any bivariate data while preserving

features. It is based on surface area minimization, well-known in 3D to provide good denoising.

As this method tends to minimize surface area innD, the smoothing between data samples is

treated in a non-linear way, significantly different from a channel-by-channel smoothing. In

the special case of color images, color smoothing will induce an alignment of the gradient of

each channel, which does not appear in a channel by channel smoothing. The integration of the

flow can be performed using either an explicit or implicit Euler scheme. The user can stop the

smoothing when the data is sufficiently denoised. The integration time step can either be user

defined or computed using El-Fallah and Ford’s technique based on the variation of the global

area [FEF98]. If the area of the whole image changes significantly during a time step, a lot of

noise was present in the image, and it is safe to take a larger time step. When the area change

starts to decrease, the image structure may be significantly affected by too large a time step, thus

the time step should be reduced.

67

(a) (b) (c)

(d) (e)

Figure 3.19:Examples of denoising for computer-generated greyscale and color images (a and

d: noisy images, b and e: denoised output, c: close-up of a and b).

3.8.6 Results

We tested our method on several datasets. We first used computer generated images with artifi-

cially added noise. In Figures 3.19(a-c) we can see that our method removes the noise from a

simple greyscale image while retaining the edges present in the original image. Similarly, Fig-

ures 3.19(d-e) shows a smoothing for a simple color picture in the presence of large amounts of

noise.

Next, we tested the method on “real-world” images. The denoising technique performs well

on classical test images, as demonstrated for instance in Figure 3.20. In Figure 3.21, we display

a noisy image of a clock and its restored version, along with the height field representation of the

images.

We also tried our technique on different depth data. Rather than using a 3D smoothing as

in Section 3.5, we can take advantage of the fact that the error is only in thez direction. While

former methods [Tau95b, DMSB99] would make the assumption of an isotropic noise in space,

our method applies better to this depth field as the noise (measurement error) mainly resides

along thez axis. To demonstrate this advantage, we smoothed an elevation map of a section of

68

(a) (b)

Figure 3.20:(a) Noisy color image, (b) Denoising flow applied to (a), in 300 explicit iterations

with dt = 1, γ = 0.

(a) (b) (c)

Figure 3.21:Clock example: The initial image (a, top) contains a significant amount of noise as

its height field (b) shows. Our denoising technique significantly reduces this amount of noise (a,

bottom) while keeping the features in place (c).

Mars. Due to measurement errors and poor quantization of the original data, the height field is

noisy as shown in Figure 3.22(a). After an anisotropic smoothing, we suppress the noise and

most of the quantization effects, resulting in a smooth surface even with a flat-shaded rendering.

(a) (b)

Figure 3.22:Mars elevation map: (a) raw data, (b) smooth version after anisotropic diffusion.

Notice how, with our non-uniform diffusion, the aliasing due to poor quantization is suppressed

without altering the general topography of the surface (both pictures are flat-shaded).

69

(a) (b)

Figure 3.23:(a) Head model obtained from a noisy depth image. (b) Reconstructed model after

denoising (flat-shaded).

(a) (b) (c)

Figure 3.24:Vector field denoising: (a) Original, noisy vector field; (b) Smoothed using Beltrami

flow; (c) Smoothed using anisotropic weighted flow to automatically preserve the vortex region.

Figure 3.23 demonstrates how our method behaves on range images. Given a noisy range

image of a face, we can smooth the range image to reconstruct the face without visible noise

while keeping the features in place. Once again, previous methods would have altered the shape

since the assumption of isotropic noise in the data does not apply for range images.

The extension of our discrete differential operator to higher dimensional embedding spaces

allows us to use the same smoothing technology even for vector fields or tensor images. As

a final example demonstrating the practical accuracy of our operator, we performed different

smoothings on higher dimensional spaces. For instance, Figure 3.24 demonstrates how our oper-

ators can smooth a vector field, with or without preservation of features. Anisotropic smoothing

can indeed preserve significant discontinuities such as the boundary between the straight flow

and the vortex, just as we preserved edges during mesh smoothing in3D.

Chapter 4

Remeshing

In this chapter, we present a novel technique, both flexible and efficient, for interactive remeshing

of irregular geometry [AMD02]. First, the original (arbitrary genus) mesh is replaced by a series

of 2D maps in parameter space. Since these maps contain geometric quantities including our

discrete differential operators, they provide a complete substitute for the 3D mesh. Using these

maps, our algorithm is then able to take advantage of established signal processing and halftoning

tools that offer real-time interaction and intricate control. The user can easily combine these

maps to create a control map – a map which controls the sampling density over the surface

patch. This map is then sampled at interactive rates allowing the user to easily design a tailored

resampling. Once this sampling is complete, a Delaunay triangulation and fast optimization are

performed to perfect the final mesh.

As a result, our remeshing technique is extremely versatile and general, being able to produce

arbitrarily complex meshes with a variety of properties including: uniformity, regularity, semi-

regularity, curvature sensitive resampling, and feature preservation. We provide a high level of

control over the sampling distribution allowing the user to interactively custom design the mesh

based on their requirements thereby increasing their productivity in creating a wide variety of

meshes.

70

71

4.1 Introduction

As 3D geometry becomes a prevalent media, a proliferation of meshes are readily available,

coming from a variety of sources including 3D scanners, modeling software, and output from

computer vision algorithms. Although these meshes capture geometry accurately, their sam-

pling quality is usually far from ideal for subsequent applications. For instance, these (some-

times highly) irregular meshes are not appropriate for computations using Finite Elements, or for

rapid, textured display on low-end computers. Instead, meshes with nearly-equilateral triangles,

a smooth gradation of sample density depending on curvatures, or even uniform sampling are

preferable inputs to most existing geometry processing algorithms.Remeshing, i.e., modifying

the sampling and connectivity of a geometry to generate a new mesh, is therefore a fundamental

step for efficient mesh processing.

4.1.1 Background

Although studied in Computer Graphics for obvious reasons, surface remeshing has also received

a lot of attention from various non-CG fields interested in mesh generation — mainly Compu-

tational Fluid Dynamics, Finite Element Methods, and Computational Geometry. However, the

diverging goals resulted in vastly different, non-overlapping solutions as we now briefly review.

Mesh Generation Community Since the emphasis is generally on numerical accuracy, most

of the tools developed in the non-CG communities focus on mesh quality. Remeshing procedures

often use a parameter space to impose quantitative mesh properties such as local triangle sizes

and shapes [dCS96, TOC98, GB98]. Others simply perform mesh simplification [PV97] or edge

operations and vertex shifting [Bor98] to conform to a global mesh property. However, most

techniques heavily rely on mesh optimization [Fre00, RVSS00] to satisfy common requirements

like equal angles for FE computations [BGH+97] or smooth gradation [BHF97];accuracyis

therefore obtained at the price of rather slow computations.

Computer Graphics Community In contrast to the quality requirements of the other fields,

CG work has focused mainly onefficiency. The majority of previous work has proposed semi-

regular remeshing techniques [LSS+98, GSS99, GVSS00, HLG01], based on an initial phase

72

of simplification which could be used in itself for remeshing [GH98, LT98] since it performs

the aforementioned edge operations and vertex shifting. A noticeable body of work has also

recently been proposed to accurately remesh sharp features [VRKS01, BK01]. However, none

of these methods can offer flexibility on the quality of the remeshing obtained, since issues such

as area distortion or triangle shape distortion are not even considered: tailored output can only

be produced through extensive trial-and-error by a patient user.

A controllable mesh re-tiling technique was proposed by Turk [Tur92] to resample an input

mesh using properties such as uniformity or curvature-based density, allowing a much more pre-

cise design of the output meshes. However, the algorithm requires the propagation of “particles”

on the original mesh and a global relaxation of their positions until convergence, requiring heavy

computation. Similarly, Bossen and Heckbert [BH96] proposed a 2D anisotropic mesh genera-

tion involving vertex insertions, vertex removals, and iterative relaxation. Again, output meshes

conforming to various requirements can be generated but only after significant computational

effort. Our goal is thus to attain accuracy, flexibility, and efficiency for resampling, as none of

the techniques described above can offer such a combination.

4.1.2 Contributions and Overview

Our main contributions over previous remeshing techniques are in terms ofefficiency as sim-

ple meshes can now be processed in real or interactive time through a novel resampling stage

followed by anoutput-sensitiveremeshing algorithm, andflexibility as we offer complete and

precise control over the sampling rate and quality anywhere on the geometry. These two critical

properties are obtained through the use of parameterization and conventional image processing

tools such as filtering, transfer functions and error diffusion, in order to compute near-optimal

resamplings in a matter of milliseconds. Previous approaches often worked directly on the mesh,

resulting in either slow performance or little control over the remeshing quality.

The structure of this paper follows closely the overall algorithmic pipeline depicted at the

bottom of Figure 4.1. We first describe the atlas of parameterization and geometry analysis

we perform on the input mesh in Section 4.2, in order to generate a catalog of 2D maps as an

alternate representation for the input mesh. We detail how these resulting maps are processed

efficiently using standard signal processing tools to create a near-optimal resampling of the input

73

Original 3D Mesh

2D Parametric space Control map Sampling

Half-
toning

Meshing &
Optimization

Geometry analysis

A
re

a

Filtering

Transfer
function

FilteringC
ur

va
tu

re

Output 3D Meshes

Remeshing Pipeline

2D Mesh

Figure 4.1:A brief overview of our remeshing process: The input surface patch (top left) is first

parameterized; Then geometric quantities are computed over the parameterization and stored

in several 2D maps; These maps are combined to produce a control map, indicating the desired

sampling distribution; The control map is then sampled using a halftoning technique, and the

samples are triangulated, optimized and finally output as a new 3D mesh. A few examples of

the various types of meshes our system can produce are shown (top, from left to right): uniform,

increased sampling on higher curvature, the next with a smoother gradation, regular quads, and

semi-regular triangles. After an initial pre-processing stage (∼1s), each of these meshes was

produced in less than 2 seconds on a low-end PC.

mesh in Section 4.3. A final, rapid phase of optimization can then be performed to get accurate

results as described in Section 4.4. Finally, we present a number of results to demonstrate the

wide range of possible resamplings we can interactively obtain in Section 4.5.

4.2 Geometry Analysis

In this section, we explain in detail how we build a complete set ofmapsfrom the raw, input

geometry. This will construct an alternative representation of the surface and all of its intrinsic

properties in the form of convenient 2D images, which are easy to process. We demonstrate

how simple and efficient this process is when graphics hardware is used appropriately. We also

74

show how to create a small set of tiling patches from a closed object of arbitrary genus, and give

details on how to compute the geometry maps from these surface patches by flattening them onto

isomorphic planar triangulations.

4.2.1 Creation of an Atlas of Parameterization

The first processing stage undergone by the input mesh consists in splitting the surface into

disk-like patches, creating anatlas of parameterization[GH95]. A number of existing cluster-

ing algorithms such as [GWH01, PG01, LPRM02] could be used successfully to achieve such

a partition. Unfortunately, they do not produce smooth patch boundaries on the geometry as

demonstrated in Figure 4.4, and therefore lead to poor-quality stitching across the remeshed

patches. Note that one could also make some cuts in the geometry to turn it into a single patch,

as often proposed in the last two years [LPVV01, EHP02, She02, GGH02]. All of these methods

are valid ways to deal with arbitrary genus surfaces, and the resampling technique presented in

this paper is mostly independent of the cutting/unfolding method chosen.

In the remainder of this paper, we use a variant of the mesh partitioning proposed by Ecket

al. [EDD+95] (later improved by Guskovet al. [GVSS00]), that computes approximate Voronoı̈

diagrams as an initial non-smooth partitioning of the mesh into genus-0 patches. This procedure,

which we will extend in Section 4.2.4 to generate area-balanced patches, automatically produces

a series of tiling patches frominput meshes of arbitrary genus.

4.2.2 Parameterization

The second stage is to map each individual surface patch to an isomorphic planar triangulation.

This operation, calledparameterization, also has many solutions readily available ([EDD+95,

Lév01, LPRM02, DMA02] to name a few). Although most parameterization techniques would

be adequate, one that guarantees visual smoothness of isoparametric lines and preserves the

conformal structure of the input mesh is most preferable. We thus strongly advocate for the

conformal parameterization as defined in [PP93, EDD+95] since it behaves extremely well even

on irregular triangulations [DMA02]. This technique requires solving a simple, sparse linear

system with coefficients based on the geometry of the mesh, and is usually handled in a matter of

seconds using a Conjugate Gradient solver with good preconditioning. We fix the boundary to be

75

a square (see Figure 4.2) or any convenient rectangular region so that our maps can be efficiently

stored and processed as regular floating point images.

Parameterization

Figure 4.2: Original mesh, conformal parameterization [EDD+95] and texture mapping of a

checker-board. Notice the inevitable area distortion on the nose, which we will automatically

compensate for during the resampling process (see Section 4.3.1).

Once a parameterization has been found, we compute several scalar maps to serve as acom-

plete substitutefor the input geometry. This will allow us to work almost solely on the 2D images

instead of on the original 3D mesh.

Catalog of Maps For our application, we have identified the following geometrical values as

being relevant:

• Area distortion mapMA: since no discrete parameterization can (in general) preserve

the area of every triangle, we need a piecewise constant scalar map indicating how each

triangle has been shrunk or expanded during the parameterization. This is easily computed

using the ratioA3D/A2D of each triangle’s surface area in 3D and its corresponding area

in the 2D parameterization. Note that this map willcompensatefor any area distortion

inevitably introduced by the parameterization (as depicted in Figure 4.2).

• Curvature mapsMK andMH : since any differential quantity on a smooth surface can

be expressed as a (possibly nonlinear) combination of three invariants: areaA, Gaussian

curvatureK, and mean curvatureH [Gra98], we compute both a Gaussian curvature and a

mean curvature map (in addition to the previously mentioned area distortion map). Using

76

our discrete differential operators to compute these maps allows for accurate results even

on very irregular input meshes. These two maps can then be combined to obtain other

useful curvature maps: for instance, one can compute maps of minimum curvatureκ1,

maximum curvatureκ2, or total curvatureκ2
1 +κ2

2 by simple per-pixel operations on those

two basic maps. Additional data, such as curvature tensors could also be computed on the

surface and stored in maps, but we do not make use of them in this work.

• Embedding MapMx: we also need the positionx = (x, y, z) of each vertex, describing

the exact geometry of the surface in 3D. These three maps (one per component) will pro-

vide a very efficient way of computing the mapping between a valueu = (ux, uy) on the

parameterization and its associated 3D point on the input meshx = (x, y, z).

• Face Index MapMindex: we also construct a face index map by assigning a color to each

triangle in the parameterization corresponding to its face index in the mesh, as done by

Botschet al. [BRK00]. Such a map turns out to be efficient for locating in constant time

the triangle in which a given parametric value lies, saving potentially costly searches.

• Additional Maps:finally, any attribute (normal, texture, color, etc.) can also be mapped

onto the parameterization to complete the catalog of maps.

A. Mean Curvature map B. Area map C. Control map (A B)

Figure 4.3:Examples (in inverse mode for better visualization) of geometry maps for the mask

in Figure 4.2. A.MH , the mean curvature map computed according to [MDSB02]. B.MA, the

area map; the nose has been compressed during the flattening process, while areas nearby the

corners have been stretched. C. Sampling control map, using a per-pixel multiplication:A ·B.

77

Hardware-Assisted Map Generation Piecewise-constant maps representing area distortions,

face indices or per-face normals are efficiently generated using hardware accelerated OpenGL

commands. Each floating-point or integer value is separated into the R, G, B, A color channels

(similar to [BRK00]), and all the triangles are rendered using OpenGL flat shaded triangle prim-

itives in a back buffer. We assign a depth proportional to the surface area of each triangle to

reduce the aliasing of small triangles in the map.

For linearly interpolated maps representing curvature, positions, per-vertex normals or at-

tributes, we use the face index map and standard barycentric coordinates to compute the linear

interpolation between the vertices in the parametric space. Note that the map creation could be

simplified and optimized even further now that graphics boards implement full 32-bit floating

point buffers for rendering. Nonetheless, generating the maps naively using graphics hardware

speeds up the map creation bytwo orders of magnitudecompared to a naı̈ve pixel-by-pixel imple-

mentation, and takes less than100 ms for large meshes with thousands of triangles. Figure 4.3

depicts both a curvature and an area map, as well as a compositing of the two.

4.2.3 Features and Constraints

In addition to the geometry maps, we sometimes need to define specific features and/or con-

straints that the user wishes to enforce during the remeshing process. Typically, we want sharp

features (present in mechanical parts for instance, see top left of Figure 4.6) to be preserved.

Similarly, some particular points of the input surface may need to be constrained to become

vertices of the remeshed version, for animation purposes for example.

Features We first assume that feature edges are either extracted using a simple dihedral angle

thresholding, or directly input by the user by tagging existing input edges or creating arbitrary

piecewise-linear feature curves. From this set of feature edges (Figure 4.6, top middle) we clas-

sify vertices by their number of adjacent feature edges, leading to two categories: we callcrease

vertices any vertex connected to exactly two feature edges, andcornervertices all the other ver-

tices, connected to one or more than two feature edges. These feature edges are then chained

together into a feature graph. This is very similar to the feature skeleton composed of “back-

bones” as introduced by Kobbeltet al. in a series of papers concerning geometry resampling and

feature remeshing [BRK00, VRKS01, BK01] (see Figure 4.6, top right, for an example). This

78

feature graph requires little memory and can be computed in a straightforward way. We should

note the following details that need to be addressed during the implementation: i) the graph can

have cycles, ii) each patch boundary or cutting path isalsoadded to the feature graph as a closed

cycle (as being either asharp, boundaryor seamingbackbone), iii) some features may meet

at corners living on the boundary, and iv) a crease vertex should be classified as a corner if an

important change of direction is detected along the feature. The latter corresponds to a feature

inflexion point and is a rare occurrence. Once the feature graph has been properly constructed,

the specified piecewise linear features will be exactly preserved by our remeshing technique as

explained in Section 4.3.2.

Constraints We also allow the user to define a list of (u,v) values for which (s)he desires to get

corresponding vertices in the output mesh. These values can be defined by the user by simply

clicking on the input mesh. We save a list of all the constraints for later use during resampling.

4.2.4 Making the Atlas Area-Balanced

As mentioned in Section 4.2.1, we mostly use an existing technique to construct the atlas

of parameterization. We, however, make use of our novel maps to improve this procedure.

bisection parameterization area balancingBunny ear area distortion face clustering

Chart Boundary Smoothing

Figure 4.4: Area-balanced atlas. From left to right: geometry of a Bunny ear; confor-

mal parameterization and resulting area distortion visualized through a texture mapping of a

checkerboard; face clustering obtained using [GWH01]; partitioning obtained by simple bisec-

tion [EDD+95, GVSS00]; the conformal parameterization, with the two medians; area-balanced

and smooth partitioning, using the median line of its area mapMA (computed in50 ms).

79

Eck [EDD+95] proposed to smooth patch boundaries iteratively by mapping two adjacent

patches onto a2× 1 rectangular region using the discrete conformal mapping discussed in Sec-

tion 4.2.2, and then re-defining the boundary between the two patches as the middle isoline in the

parameterization (see Figure 4.4), which guarantees smoothness. However, this relaxation has a

major inconvenience: it isslippery– since the parameterization does not have any guarantee on

area distortion, the middle isoline often splits the two patches into patches of two very different

sizes, with a tendency to slip away from very curved features. As depicted on Figure 4.4, this

often leads to patches with highly variable surface areas (compare the left and right areas after

splitting) and with large parameterization distortion (note that one patch contains the entire ear,

while the other is relatively flat).

Instead, we propose to construct the area distortion map of the2×1 mapping as described in

the previous section, and use it to find a good splitting line that creates equal sized patches. This

is done by finding the median vertical line such that the sum of all pixel values on one side of the

line is equal to the sum of the pixel values on the other side. Since a single sweep of the picture is

sufficient to find the median, this operation takes little time – about50 ms for a512×512 image.

As demonstrated in Figure 4.4, this change in the original algorithm significantly enhances the

quality of the partitioning, as no slipping occurs and each patch has the same surface area. Note

that the dividing line is smooth thanks to the angle-preserving parameterization (i.e., a straight

line in parametric space corresponds to a smooth line on the surface).

Once the partitioning is done, we can compute the maps for each of the created patches as

aforementioned. We use a lazy evaluation, computing a map only if needed to save both memory

and time. We show in the next section the main contribution of this chapter,i.e., how these maps

alone are used to resample the surface geometry at interactive rate.

4.3 Real-Time Geometry Resampling

Now that the input geometry has been preprocessed and replaced by an equivalent series of

maps, we can use these maps to design a proper resampling. In this section we propose a real-

time technique to resample the geometry. This is achieved in two stages: first, the user designs

a control mapby combining different geometry maps to define the desireddensity of samples;

80

then a simplehalftoningtechnique is used to discretize this map and generate the exact, requested

number of vertices. We show that this resampling is near optimal, and only a quick optimization

will be needed to obtain a high quality mesh as output.

4.3.1 Designing the Control Map

To allow for a vast range of possible remeshings, we let the user design a control map that denotes

the vertex density for the remeshing.

Area Map as Sampling Space Resampling the parameterization uniformly would not result in

a regular 3D resampling of the geometry, due to the area distortion introduced during flattening.

However, the area mapMA does indicate the density of sampling needed on the parameterization

to obtain a uniform sampling on the surface itself. The area map is therefore the sampling space

we will use asreference sampling density.

Modulating the Sampling Density The final control map is obtained by multiplying the sam-

pling space map by theimportance map – a map denoting the desired sampling density across

the patch. Many different maps can be used to tailor the sampling to the user’s requirements,

though we have mainly used curvature related maps in this work. To demonstrate the diversity

of possible remeshing, we mention some canonical examples of importance maps that we have

tried:

• constant, we will obtain a uniform vertex density on the 3D surface (see Figure 4.8),

• related to an estimation of curvature usingMK andMH , we will adapt the sampling rate

to the local curvature (see Figure 4.11),

• any user-defined map, we will obtain a map with user specified sampling (useful for ani-

mation and displacement maps). See Figure 4.9 for such an example.

The resulting map is then rescaled to the unit interval, and inverted (x → 1 − x) so that darker

areas on the picture correspond to regions which require higher sampling. A simple example is

depicted in Figure 4.3(c), where the area map is modulated with a mean curvature map (very light

81

(white) areas correspond to flat and/or highly stretched regions of the mesh due to the flattening,

and require few samples).

4.3.2 Halftoning the Control Map

Once the control map has been decided upon, we need to resample it with a local density of

vertices in accordance with the control map, and with the exact number of samples the user

requests. In other words, we need to transform the control map into abinary image, indicating

the presence or absence of a vertex on the parameterization. In essence, our problem is directly

related to the technique ofhalftoninggrey-level images. Halftoning has been carefully studied

for decades [Uli88] and is still an active research field [Ost01], mainly trying to improve the

quality of dithering and printing. Different methods have been proposed to sample a continuous

image with an adequate density, and to best statistically simulate an optimal blue noise signal in

a single rasterization pass [Uli88].

Discretizing the Control Map We use a recent error diffusion algorithm developed by Ostro-

moukhov [Ost01], which samples an image using aserpentine rasterization(left to right on even

lines, right to left on odd lines) with near-optimal quality. We add the following modifications to

suit our purposes:

• while the original technique works on 8-bit images, we use 32-bit images to increase the

range of densities;

• to avoid the well-known “dead zone” problem in error diffusion (large empty areas at the

start of an error diffusion), we concatenate a vertically flipped copy of the control map

above the control map and perform the halftoning for the total image, retaining only the

bottom half of the image as the result;

• we also test for features and constraints (see Section 4.2.3), forcing a pixel to be black if it

falls on one of the constraints, or forcing a pixel to be white if it falls on one of the features

(as they will be sampled separately). The error diffusion accommodates for these forced

selections by diffusing the error into nearby pixels.

The user simply chooses a given number of samples (which will be the final number of vertices)

since anexact number of verticescan easily be reached by a simple linear scaling of the intensity

82

400 samples 8k samples 30k samples

Figure 4.5:Sampling of the map from Figure 4.3(c) using error diffusion with various numbers

of requested samples (40 ms each).

of the control map [Ost01] that preserves the ratio between the number of black pixels (i.e.,

number of samples) and the image area. Note that the size of the maps determines the maximum

number of samples (there cannot be more samples than there are pixels in the map). Therefore,

we allow the user to select an appropriate image size having enough space for the sampler to

work properly (though the choice of image size can easily be made automatically if desired).

Such a technique turns out to be extremely efficient: a512×512 image is sampled in only40 ms

on a 1 GHz PIII. Examples of error diffusion are given in Figure 4.5.

Discretizing the feature graph A separate 1D error diffusion is performed along the bound-

aries and features in order to guarantee a consistent mesh density between the boundary and

inner regions, as well as good feature preservation. After the initial sampling, we:i) gather all

the pixels of the feature graph in a 1D array using Bresenham’s line algorithm,ii) normalize

their intensity according to the following law:x → 1 −
√

(1− x) (intuitively, the square root

appears since if we want the fractionx of the samples to be black in 2D, it means we need the

fraction
√
x of the samples to be black in any 1D cross-section),iii) apply a 1D error diffusion,

and finallyiv) put the resulting samples into the sampled image. This guarantees an adequate

feature sampling conforming to the control map, as demonstrated in Figure 4.8. The seams

across patches are dealt with similarly to ensure an easy stitching.

83

4.3.3 User Control

Since our resampler runs at interactive rates, we can provide the user with a preview of the new

mesh and allow for real-time editing of the control map to tailor the sampling to specific needs.

An extremely powerful feature of our map based technique is that we can take advantage of many

well-known signal processing tools for images. As a consequence, we can offer a multitude of

tools still with real-time performance; for example:

• Transfer Function - Besides combinations obtained from filtering, scaling and shifting

of the maps, we found it particularly useful to allow editing of a general transfer function

over the importance map, or even direct editing of the importance map itself. For instance,

a simple gamma functionf(x, γ) = xγ over the curvature map gives the user control

over the sampling with respect to the curvature. The user can also use pass-band filters or

even a general transfer function to produce meshes with arbitrary sampling. Notice that

the generality of this approach allows our system to simulate virtually any remeshing by

choosing the maps and transfer functions appropriately (such as theL2-optimal sampling

derived in [Sim94]).

• Smooth Gradation [BGH+97] of the vertex density can be achieved bylow pass filtering

of the importance map, using an optimized Gaussian filter routine. Changes over the global

size of the filter kernel allow a fine and interactive tuning of the gradation. Note that in the

ideal case, the local size of the filter kernel should be driven by the area map, making it a

non-linear diffusion of the importance map.

• Minimum Sampling - A guaranteed minimum density of samples can be obtained by

shifting the intensity of the importance map so that its minimum corresponds to the re-

quested minimum sampling (i.e., a minimum grey level).

Interactive Preview The error diffusion is fast enough (40 ms including the transfer function

computation) to provide a real-time feedback of the sampling. Additionally, we provide the

option of using the dithered map as a texture directly on the 3D original model since we already

have the(u, v) parameterization. The samples thus appear on the mesh instantaneously, leading

to a good preview of the current sampling.

84

4.4 Mesh Creation and Optimization

At this point, we are already able tointeractivelyproduce a resampling of an input mesh with

a density proven to be statistically in agreement with the user’s request. However, connectivity

has not yet been computed. Additionally, the halftoning impliesquantized positionsfor the

vertices. Therefore, we now explain how to generate an initial connectivity and how a post-

process optimization can greatly improve both connectivity and geometry in mere seconds. We

emphasize that, contrary to [BH96] and most other remeshing techniques, we neither add, nor

remove any vertex during the optimization since, in essence, the blue noise property already

spreads “just enough” vertices everywhere. Consequently, the optimization is extremely efficient

and consists of only a few edge swaps and local vertex displacements.

4.4.1 Mesh Creation

Once the control map has been sampled, we perform a 2D constrained Delaunay triangula-

tion [CGA, She96] over the points sampled in the parametric space. Constrained edges cor-

respond to an ordered list of points sampled using 1D error diffusion along backbones of the

feature skeleton (see Section 4.2.3), as can be seen in Figure 4.6, bottom middle. The vertex

coordinates are then mapped into 3D using the face index map (see Section 4.2.2) and barycen-

tric coordinates within the triangle to find the accurate 3D position1. The constrained Delaunay

triangulation and the reprojection onto the original 2-manifold typically take a total of200 ms

for 3000 vertices generated. Notice that the connectivity generated by a Delaunay triangulation

in the parameter plane may not be the most relevant one. However, since all triangulations with

a given number of vertices are all isomorphic to each other through edge swapping, we use this

triangulation as an initial “guess,” and will perform connectivity optimization as necessary.

4.4.2 Connectivity Optimization

For a fixed set of vertices obtained by resampling, the connectivity can be arbitrarily modified by

simple edge swapping. Many optimizations can be easily implemented (see, for instance, tightest

1Although usingMx would be faster, it is usually not accurate enough for small maps, and could therefore result

in small noise in the reprojection.

85

Constrained triangulation After optimizationSampling

Original model Parameterization and tagged edges Feature skeleton

1 backbone

corner

Figure 4.6:Simple example of features: the feature edges (in red) are chained together to create

the feature graph; a 1D error diffusion is then performed along the graph followed by a con-

strained Delaunay triangulation of the whole sampling; after a constrained mesh optimization,

the feature edges are perfectly preserved, while blended in the new mesh.

triangulation [vDA95], minimum curvature [DHKL01]). We also used the following two simpler

criteria:

Regularity Edge swaps can be performed in order to favor valence 6 for interior vertices, and

valence 4 on boundary vertices. This is implemented by randomly picking a non-feature edge

and performing an edge swap only if it reduces the valence dispersion. A few additional con-

straints can be added in order to prevent face flipping in the parameterization, or large geometric

distortions for instance. Note that we can also balance the valences on both sides of each inner

backbone. The “rib effect” [BK01] can therefore be obtained by forcing exactly two neighbors

on each side of a sharp edge whenever possible, as demonstrated in Figure 4.8.

Face Aspect Ratio Similarly, edge swaps can be performed to improve the aspect ratio of

the triangles. In practice, we swap an edge between two triangles if it improves theirsurface

86

area/perimeter2 ratio (computed in 3D). This simple test often results in dramatic improvements,

since the connectivity is now dependent on the embedding, and not solely on the parameteriza-

tion.

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10

Figure 4.7: Top: Left, Delaunay triangulation over the sampling. Right, after connectivity

and geometry optimization. Middle, comparison of valence dispersion. Bottom: Left, De-

launay triangulation of a sampling performed upon the area map (leading to uniform mesh)

of a mushroom-shape model. Middle, after minimization of local area dispersion. Right, the

remeshed model. Note the uniformity obtained despite the strong area distortion due to the flat-

tening process.

4.4.3 Geometry Optimization

In addition to the connectivity optimization, we also perform a small geometry optimization

to improve the geometric quality of the mesh. We perform a weighted Laplacian flow in the

parameterization by moving every vertexp that does not belong to the feature graph by:

87

∆p = ∆t
∑

i∈N∞(p)

wi(qi − p)

where∆t is a step chosen sufficiently small (e.g., 0.1),N∞(p) is the set of adjacent vertex

indices to vertexp, andqi corresponds to theith adjacent vertex top.

Depending on the choice of remeshing that the user made when selecting the control

map, we perform an adequate optimization by choosing the weightswi so as to minimize

an appropriate quantity. For example, if the users require a uniformly resampled mesh,

α

p

q

β

i

i

i

A
A

i

i-1

we can minimize the local area dispersion by using the following weighting:

wi =
(A3D

i ·cot(αi)+A3D
i−1·cot(βi))∑n

j=1 A3D
j

, whereαi andβi are the opposite angles in

the parameterization as depicted, andA3D
i andA3D

i−1 are the 3D face areas to

the left and right ofpqi.

This novel weighting has the quality of inducing no changes if the tri-

angles are already of equal sizes, while producing a Laplacian smoothing

([MDSB02]) to iteratively improve the quality otherwise. The result of such an optimization

can be seen in the bottom of Figure 4.8. The area distortion minimization is only a particular

instance of the more general mesh optimization we offer. The area terms in the previous weights

can be substituted by other values, based on the control map used. For a curvature-based map

for instance, we replace the area terms by integrals of the control map over the associated trian-

gles. Indeed, a single pass over the control map suffices to collect the integral of the map over

each triangle. These integrals, measuring the ”amount of curvature” (or amount of anything the

control map measures) contained in a triangle, are therefore appropriate weighting values if one

wants to guarantee a triangulation adapted to the control map. This efficient smoothing generally

happens in a matter of seconds, leading for instance to the results on Figure 4.11.

4.4.4 Combined Optimization

Our system can create a variety of optimizations by alternating between connectivity and ge-

ometry optimization stages. For instance, uniform meshes can be obtained by alternating edge

swaps favoring regularity with geometry optimization iterations minimizing area dispersion (see

88

Figure 4.7 bottom). If the user wishes to create the “rib” effect [BK01], she can simply alternate

edge swaps which favor regularity and a univariate Laplacian smoothing of the feature vertices

(Figure 4.6, bottom right). Additional results are given in the following section.

4.5 Remeshing Results

Our current implementation is written in C++ using a sparse matrix structure, biconjugate gra-

dient and SSOR preconditioning for computing the conformal parameterization. All operations

on the maps are performed using a standard image processing library, using OpenGL hardware

whenever possible. The sampling previews use standard OpenGL texture mapping. All result

timings are given for a 1 GHz PIII with 256 MBytes of memory. Figure 4.8 illustrates uniform

remeshing of thefandiskat various resolutions using a800 × 800 control map. Note how the

1D error diffusion performs well all the way from 200 vertices to higher complexity along the

Figure 4.8:Uniform remeshing of the fandisk. Top: conformal parameterization, and sampling

obtained by error diffusion with 2.5k vertices with superimposed feature skeleton. Middle: result

of constrained Delaunay triangulation before and after uniformity optimization. Bottom: several

uniform remeshings with 0.2, 0.6, 1.4, 2.5 and 50k vertices respectively. Note the excellent

behavior of the 1D error diffusion along the backbones, leading to consistent density between

sharp edges and planar areas.

89

Figure 4.9:Left: Semi-regular remeshing of a foot model. Right: Mesh created by pasting an

image on the importance map (useful for animations and displacement maps).

backbones of the feature skeleton. The conformal mapping is performed in3.1 s using SSOR

with over-relaxation, and all the maps are computed in1.2 s total, while each sampling is done

at an interactive rate in160 ms. For the 2.5k vertex version the constrained Delaunay triangula-

tion [She96] takes190 ms, and the optimization stage takes5 s overall. The final 3D mapping

takes250 ms. Note that our goal of sampling at interactive rates is achieved, greatly increasing

the user’s productivity and workflow. Figure 4.10 illustrates an example of uniform geometry

remeshing of theMaxPlanckmodel using a 3 patch atlas. The original mesh (23kV) is uniformly

remeshed to the requested 8.3kV. Notice that the final, remeshed model shows no signs that it

was created using 3 independent patches. In Figure 4.11 theMaxPlanckmodel is remeshed with

various transfer functions over the curvature map. The first example is uniform (i.e., flat transfer

function) with 15kV, and the three following examples are generated using a progressively in-

creasing gamma function over the curvature map. All intermediate meshes ranging from uniform

to adapted sampling can be obtained easily just by increasing the gamma or other custom trans-

fer functions. Figure 4.9 (left) shows a semi-regular remeshing of thefoot model by applying

regular subdivision in parametric space over a uniform base mesh. Figure 4.9 (right) illustrates a

custom-tailored sampling.

90

separation

per-tile remeshingstitching

original

uniformly remeshed edge swap & tangential smoothing

Figure 4.10:Uniform remeshing of the MaxPlanck model. In clockwise order: Original mesh;

Conformal parameterization; Parameterization-driven tiling with tree tiles requested; Three tiles

meet at a corner; Mesh separation from the tiling; Burst view of the three tiles after independent

uniform remeshing; The tiles put together require vertex stitching at the boundaries; A post-

process swaps some edges and performs tangential smoothing along the stitching line; and the

new model after uniform remeshing.

Figure 4.11:Remeshing of the MaxPlanck model with various distribution of the sampling with

respect to the curvature. The original model (left) is remeshed uniformly and with an increasing

importance placed on highly curved areas (left to right) as the magnified area shows.

Chapter 5

Parameterization

Parameterization of discrete surfaces is a fundamental and widely used operation in graphics,

required, for instance, for texture mapping or remeshing. As 3D data becomes more and more

detailed, there is an increased need for fast and robust techniques to automatically compute

least-distorted parameterizations of large meshes. In this chapter, we present new theoretical and

practical results on the parameterization of triangulated surface patches. Given a few desirable

properties such as rotation and translation invariance, we show that the only admissible param-

eterizations form a two-dimensional set and each parameterization in this set can be computed

using a simple, sparse, linear system. Since these parameterizations minimize the distortion of

different intrinsic measures of the original mesh, we call themIntrinsic Parameterizations. In

addition to this partial theoretical analysis, we propose robust, efficient and tunable tools to ob-

tain least-distorted parameterizations automatically. In particular, we give details on a novel, fast

technique to provide an optimal mapping without fixing the boundary positions, thus providing

a uniqueNatural Intrinsic Parameterization. Other techniques based on this parameterization

family, designed to ease the rapid design of parameterizations, are also proposed.

5.1 Introduction

Parameterization is a central issue in graphics. Parameterizing a 3D mesh amounts to comput-

ing a correspondence between a discrete surface patch and an isomorphic planar mesh through

a piecewise linear function ormapping. In practice, this piecewise linear mapping is simply

91

92

ψ
M U

Figure 5.1:A piecewise linear mapping between a 3D meshM and an isomorphic flat meshU ,

where a triangle on the mesh is mapped to a triangle in the parameterization.

defined by assigning each mesh node a pair of coordinates(u, v) referring to its position on

the planar region. Such a one-to-one mapping provides a flat parametric space, allowing one

to perform any complex operation directly on the flat domain rather than on the curved surface.

This facilitates most forms of mesh processing, such as surface fitting, remeshing, or texture

mapping. This last application, for instance, is widely used in Graphics as it dramatically en-

hances the visual richness of a 3D surface, both for overly simplified character meshes in game

engines as well as for incredibly detailed complex surfaces in computer-generated feature films.

Unfortunately despite numerous existing parameterization techniques [Flo97, Lév01] and com-

mercial applications (Maya, Softimage, Flesh), it usually takes several hours of tedious(u, v)

adjustments for a talented user to map a texture correctly (i.e., with acceptable distortions) onto

an arbitrary surface.

This failure can be partially blamed on the intrinsic difficulty of the problem at hand. Since

we are basically trying to flatten a surface from 3D down to 2D, there is in generalno perfect

way to perform such a flattening without introducing some form of distortion. However, most

existing techniques, supposed to minimize distortion, do not result in a visually “smooth param-

eterization”, even more so for very irregular meshes issued from scanners as demonstrated in

Figure 5.2.

93

5.1.1 Problem Statement and Conventions

In this chapter, we will deal with the following problem:Given a piecewise linear mesh patch

M, possibly with holes but non-closed, construct a piecewise linear mappingψ betweenM and

an isomorphic planar triangulationU ∈ IR2 that best preserves the original, intrinsic charac-

teristics ofM. Throughout the chapter, we will denote byxi the 3D position of theith node in

the original meshM, and byui the 2D position (parameter value) of the corresponding node in

the 2D meshU . We will also use the self-explanatory notation:xi = (xi, yi, zi)t, ui = (ui, vi)t.

Parameterizing a mesh is therefore providing the piecewise linear mappingψ (see Figure 5.1)

such as:

ψ : M→ U

xi → ui.

Texturing the meshM will then be as simple as pasting a picture onto the parameter domain,

and mapping each triangle of the original meshM with the part of the picture present within the

associated triangle in the parameter plane.

5.1.2 Background

Due to its primary importance for any subsequent mesh manipulation, the subject of mesh pa-

rameterization has been researched for a number of years, and not only in Computer Graphics.

Computer Graphics: A significant body of work on parameterization has been published

over the last ten years in Computer Graphics. Almost all techniques explicitly aim at pro-

ducing least-distorted parameterizations, and vary only by the distortions considered and the

minimization processes used. Early work used the notion of flattening to obtain an isomor-

phic planar triangulation [BVIG91, MYV93, SF96], often minimizing discrete variables in the

process, such as the ratio of angles between the 3D triangles and their associated 2D ver-

sions [CCFM99, SdS00, CCM01]. Others considered spring-like energies [KCP92, PM93,

CS98, KL96, Flo97, LSS+98, PFH00, FR01, LM98] that can be minimized quickly by a lin-

ear system solver when the boundary has been fixed to an arbitrary contour (with the noticeable

exception of [Ĺev01] where only a few internal points need to be fixed by the user).

94

(a) irregular mesh (b) [Tut63] (c) [KCP92] (d) [SSGH01] (e)DAP (f) DCP

Figure 5.2: Intrinsic Parameterizations: Most previous parameterization techniques (b-c) are

not robust to mesh irregularity, exhibiting large distortions for highly irregular, yet geometrically

smooth meshes such as in (a). Non-linear techniques (d) can achieve much better results, but

often require several minutes of computational time. In comparison, with the exact same bound-

ary conditions, our technique quickly generates very smooth parameterizations, regardless of the

mesh irregularity (sampling quality) as demonstrated by the two texture-mapped members (e-f)

of the novel parameterization family (denotedIntrinsic Parameterizations) that we introduce in

this chapter.

The Discrete Conformal Parameterization (DCP) has been proposed independently by a num-

ber of authors [PP93, EDD+95, HAT+00] who derived the same linear condition for confor-

mality either using Differential Geometry, harmonic maps, or Finite Elements. Here again, a

boundary condition is needed to induce a conformal mapping.

Finally, one can use nonlinear formulations to define an optimal parameterization [HG00,

PSS01]. The MIPS method for instance finds a “natural boundary” that minimizes their highly

non-linear energy [HG00]. Unfortunately, this requires quite a computational effort (even if

hierarchical solvers can be used [HGC98, SGSH02]) for a result visually very close to the DCP.

Sander and co-authors [SSGH01] proposed yet another nonlinear energy for the specific problem

of texture stretch distortion.

Most of these techniques proposed to minimize a continuous energy over a piecewise linear

surface. However, the choice of the energy sometimes seems arbitrary, and most of them may

visually result in non-smooth parameterizations and therefore non-smooth textured meshes, as

demonstrated in Figures 5.2(b-c). Note that using [SSGH01] results in a smooth parameteriza-

tion, but takes more than six minutes to converge since it requires a non-linear minimization. In

95

our experience, the only parameterizations that consistently provide visually smooth parameter-

izations are Floater’s [Flo97, Flo02].

Cartography: Concurrently, cartographers have been dealing with the parameterization of

non-flat surfaces for centuries, in order to represent our spherical earth as flat maps. Their work

has mainly focused on differential parameterization, and is therefore only marginally relevant

in Computer Graphics in practice. It is however interesting to mention that it is well known

in this field that a mapping of a curved surface can either beauthalic (i.e., area-preserving),

or conformal(i.e., angle-preserving). No mapping of the earth can beisometric(i.e., distance-

preserving): as it would have to bebothauthalic and conformal, and this is strictly impossible

for non-developable surfaces like a sphere and most other geometries. This chapter establishes

similar results, but for discrete surfaces, extending the known continuous differential geometry

results as well as providing insights for novel notions.

5.1.3 Overview

In this chapter, we restrict ourselves to the parameterization of non-closed triangulated surfaces

since many existing papers already describe different techniques to split a closed object into a

series of patches (also called atlas of charts [GH95, GWH01, SSGH01, LPRM02]). We demon-

strate that the set of desirable mappings for such patches form a simple low-dimensional space

(Section 5.2). Moreover, the two generative parameterizations of this space are the existing dis-

crete conformal mapping and a novel discrete authalic mapping, and all other validintrinsic pa-

rameterizations can be found by simply solving a sparse linear system as detailed in Sections 5.3

and 5.4. We also demonstrate that they generate smooth texture mappings even for highly irreg-

ular meshes. We then show how easily one can find an optimal parameterization without fixing

boundary points, providing anatural parameterization, by simply adding natural boundary con-

ditions. Finally, we quickly review the possible immediate extensions that one could do with this

new parameterization family before concluding.

96

x

ψ

x

ijij
ij

ij

u
δ α

i

j

γ
ui

j

β

M U

Figure 5.3:A 3D 1-ring, and its associated flattened version.

5.2 Distortion Measures for 1-Rings

We want to preserve as much of the intrinsic qualities of a surface as we possibly can during

its parameterization, i.e., its flattening. This implies that we need to first define what these

intrinsic qualities are for a discrete surface: minimal distortion will then mean best preservation

of these qualities. In this section, we restrict our investigation to the distortion measures between

simple 1-ring neighborhoods, and demonstrate that the appropriate measures actually form a low

dimensional space.

5.2.1 Notion of Distortion Measure

As in the problem statement, letM be a simple mesh embedded in 3D consisting of a 1-ring

neighborhood (i.e., a vertex and all its adjacent triangles), and letU be an isomorphic mesh:U ∼

M (we use the symbol∼ to indicate isomorphy). Figure 5.3 shows the mapping between two

simple 1-ring neighborhoods. We define adistortion measurebetweenM andU as a functional

E taking two isomorphic triangulations (T) as inputs, and returning a real value:

E : T × T → IR

(M,U)→ E(M,U).

This kind of functional is sometimes referred to as amutual energy, as it can be seen as a

measure of the energy required to distort one into the other. By the very definition of a distortion

measure,E(M, ·) must be minimum forM, as there is no mesh less distorted compared toM

97

than itself.1 We therefore have the following inequality for everyU such thatU ∼M:

E(M,M) ≤ E(M,U). (5.1)

For convenience, we will denoteφ the distortion of a 1-ring with itself:E(M,M) = φ(M).

Thus,φ is ameasure(sometimes calledenergy) of the triangulated surface. In order to further

investigate what the appropriate distortion measures are for 1-rings, we now explore what the

possible measures of a mesh are, since it will restrict the possible set of distortion measures.

5.2.2 Properties of Intrinsic Measures

A measure of a mesh is afunctionalφwhich, given a piecewise-linear surface patchM, basically

returns a “score”φ(M). This functional must satisfy a fewbasic properties, that we now go over.

• Rotation and Translation Invariance: Obviously, we want the functional to beinvariant

to any translation or rotation of the mesh. Since these affine transformations do not affect

the geometry of the mesh, the measure should remain identical. This will consequently

render the parameterization independent of rotation and translation of the input mesh.

• Continuity: We also want the functional to be a discrete version of a continuous measure,

consistent with the continuous, differential case. Thus, the functional needs to converge

to a continuous measure as we get a finer and finer triangulation, under some possible

additional conditions (such as bounded fatness, or more generally, non-degenerated trian-

gulations). This is calledconditional continuity, and is usually stated as:

φ(Mn) → φ(M) if Mn →M asn→∞.

Here again, this will induce a very natural property for our parameterizations.

• Additivity: A measure should also beadditive, i.e.:

φ(M1 ∪M2) + φ(M1 ∩M2) = φ(M1) + φ(M2).

1Note however that there generally exist other meshes, different fromM, that also achieve the same energy

minimum.

98

The measure with such a property has the desirable quality of beingintrinsic, that is to say,

it only depends on the surface itself, not on its sampling. To illustrate this fact, consider the

addition of one or several vertices onto the existing surface (along the boundary or inside

a triangle for instance); it is easy to verify that the functional will still return the same

measurement, since the real geometry of the surface is not affected – only its discretization,

hence the term intrinsic. This sampling-independent property will be particularly attractive

when dealing with large meshes, since hierarchical solvers will prove particularly efficient

in solving for the parameterization.

5.2.3 Admissible Intrinsic Measures

Although the restrictions imposed on the notion of measure seem to be loose and natural, there

are, surprisingly, only a small family of functionals that meet the requirements.

Minkowski Functionals of 2-Manifolds: A set of well-known functionals satisfies all the pre-

vious conditions. These are called the Minkowski functionals. For 2D surfaces, there are three

such functionals: theArea φA, theEuler characteristic φχ, and thePerimeter φP (length of

the boundary) of a triangle mesh. It is straightforward to check that each of these functionals

meet the three conditions we just listed. It is also interesting to notice that the two first ones (the

perimeter being only a boundary measure) correspond respectively to the integrals of the deter-

minants of thefirst— area element — and of thesecond— Gaussian curvature —fundamental

forms[Gra98]. These are well-known to beintrinsic in the differential geometry sense, meaning

that they could be computed by “inhabitants” of the surface having no knowledge of the actual

embedding of the surface.

Admissible Functionals: Since we are looking for measures over a triangulation, a result dat-

ing back to the previous century explicitly states the set of all admissible functionals. A triangu-

lation (considered as a 2-manifold, and disregarding its embedding) belongs to theconvex ring,

since it is the union of a set of triangles, therefore a union of convex bodies (which doesnot

mean that the triangulation itself has to be convex). On this convex ring, Hadwiger [Had57] has

proven that the only functionals, defined over the convex ring, matching the three conditions we

99

mentioned above arelinear combinations of the Minkowski functionals2. Therefore, the only ad-

missible functionals fitting the three previous properties arelinear combinations of Area, Euler

characteristic, and Perimeter. The set of all admissible functionals is therefore a 3-dimensional

space, and for any admissible measureφ, there exists auniquetriplet of constantsc1, c2, c3 such

that:

φ = c1 φ
A + c2 φ

χ + c3 φ
P . (5.2)

Valid Distortion Measures Between 1-rings

Let’s go back to our measures of distortion between two isomorphic 1-rings. Since the distortion

measures must match the intrinsic measures, this restrains the admissible set to a special sub-

set of the general case proven in [Rum96], because of the additional additivity and continuity

conditions. We show in the next section that thesimplestrelevant distortion measures form a

two-dimensional space.

5.3 Optimal 1-Ring Flattening

We now introduce the only quadratic distortion measures that fit the requirements that we de-

rived in the previous sections. We show that their critical points, when a boundary condition is

imposed, can be found by solving a simple linear equation. We start by developing the two most

representative optimal mappings, thediscrete conformal parameterization(DCP) and the novel

discrete authalic parameterization(DAP), and demonstrate how all the others can be deduced

from their formulation. We also point to some of the similarities between the differential and the

discrete case.

5.3.1 Notion of Optimal Vertex Placement

We call anoptimal 1-ring parameterizationany mapping from a given 3D 1-ringM to an iso-

morphic 2D 1-ringU that is the minimum of a distortion measure (as previously defined) for a

2Hadwiger’s book has never been translated in English. There are however several books [San76] and pa-

pers [SK97, KM00] that clearly state the aforementioned theorem.

100

fixed, given boundary mappingψ(∂M). Therefore, if a distortion measureE is known and if

each boundary vertexxj has a given parameter valueuj , the condition for the 2D 1-ring to be

minimally distorted (i.e., optimal) is simply thatE(M,U) is minimum over allU ∼ M, which

yields this simple condition for the center nodeui of the 1-ring in the parameter plane:

∂E

∂ui
= 0.

We shall now describe what the appropriate energiesE are that define a distortion measure

between two meshes. The first one is known under the name of Dirichlet energy.

5.3.2 Discrete Conformal Mapping

The first optimal mapping is actually already known. We now recall a bit of history and back-

ground to demonstrate the connection to our problem, and later build upon it.

Conformality on Differential Surfaces: While working on the area minimization problem

introduced by the Belgian physicist Plateau, Mrs. Rado, Douglas, and later Courant proposed

the use of the Dirichlet energy of a mapping instead of the highly nonlinear area functional

previously used (see [PP93] for a good overview). The simple idea behind this functional [Gra98]

is that, in differential geometry, the area of a patchM is:

Area = 1
2

∫
M |fu × fv| dudv ≤ 1

2

∫
M |fu| |fv| dudv

≤ 1
4

∫
M(f2

u + f2
v) dudv = Dirichlet energy.

It is simple to verify that the first inequality becomes an equality ifffu · fv = 0 everywhere,

while the second does iff|fu| = |fv| (deriving from the positivity of(fu − fv)2). A further

analysis [Gra98] shows that the minimum of this energy (quadratic in the parameterization) is

the area, and is only attained forconformal mappings, i.e., mappings where the two previously

introduced conditions onf hold. Conformality of the map equivalently meansangle preservation

since these conditions imply that any angle between two vectors on the parameter plane will

be preserved through the mapping. In other words, in the differential case, it is known that a

conformal map will result from the minimization of the Dirichlet energy.

101

Dirichlet Energy on Triangulations: Pinkall and Polthier provided a formal derivation of

the Dirichlet energy between two triangles in [PP93] for piecewise linear parameterizations.

Summing the energies over the whole 1-ring, they found:

EA =
∑

oriented edges(i,j)

cotαij |ui − uj |2, (5.3)

where|ui − uj | is the length of the edge(i, j) in the parameter domain, andαij is the opposite

left angle in 3D as shown in Figure 5.3. This nicely complements the differential case since this

is also a quadratic energy in the parameterization, and that this discrete energy dependsonly on

the anglesof the original surface. Indeed, the only term depending on the original surface is

the cotangent term. This energy is also equal, at its minimum, to the total surface areaφA(M)

when applied on the identity map (i.e., whenui − uj is taken to be the actual 3D edge), and is

therefore the exact equivalent of Equation 5.1:EA represents a distortion measure that fits our

requirements defined in Section 5.2.

Critical Point of EA: Mimicking the differential case, Pinkall and Polthier [PP93] proposed

to define thediscrete conformal mapto be the critical point (a.k.a. the minimum) of the Dirichlet

energy. Since this energy is quadratic, the derivation results in a simple linear system, that has a

provably unique solution which is easy to compute once we fix the boundaries in the parameter

domain. Notice that we can not formally claim this mapping to be angle-preserving, since there

is generally no way to flatten a curved, discrete surface with a one-to-one correspondence of the

3D angles to the 2D angles. However, since the Dirichlet energy depends only on the 3D angles,

and that in the differential case, the minimum of the Dirichlet energy is indeed conformal, this

definition results in a visually satisfying parameterization as depicted in Figures 5.2(f) and 5.6(a).

This explains the success (and the name) of this discrete conformal parameterization (DCP). Due

to the simple formulation of this energy, deriving its critical point is rather simple, yielding the

linear equation for the central nodei:

∂EA
∂ui

=
∑

j∈N1(ui)

(cotαij + cotβij) (ui − uj) = 0. (5.4)

Again, we can note that the linear coefficients are functions of only the angles of the orig-

102

inal surface. We will describe in detail the computations required to numerically solve for the

parameterization in Section 5.4, as well as an extension to natural boundary conditions.

2D Analogy: Consider a mesh vertex in flatland (2D) and its immediate neighboring vertices.

Any motion of this vertexui in the plane will preserve the1-ring area. Therefore, computing the

gradient of the 1-ring area with respect toui will provide a nontrivial equation (the gradient for

each triangle being nonzero) that does always sum to zero (since the total area is constant). Not

surprisingly, Appendix A.2 shows that we find the same coefficients as in Equation 5.4. Indeed,

φA is the area of mesh, and therefore, the coefficients of∂EA(M,M)/∂xi must match those of

∂EA(M,U)/∂ui — giving an alternate, simple derivation of the conformality condition.

5.3.3 Discrete Authalic Mapping

Similarly toEA(M, ·) matchingφA on the identity map ofM, we now discuss the existence of

a novel quadratic energyEχ that matches the Euler characteristicχ on the identity map while

being a valid distortion measure. Despite the relative simplicity of the optimality condition,

we did not find any mention of it for the differential or the discrete case in the vast literature

available. We will show, however, that this new condition has smoothness qualities similar to

those of the conformality condition.

Hands-on Derivation: Remember that the Euler characteristic is the integral of the Gaussian

curvature. Our differential operators show that the Gaussian curvature, hence the determinant of

the second fundamental form, is equal to2π −
∑

j θj where theθj ’s are the tip angles around

ui. Therefore, a similar gradient computation can be done for thesum of the tip anglesaround

ui. Indeed, for a flat triangulation, this sum also remains constant (and is equal to2π) asui

moves within the plane. This time, we get new coefficients as proven in Appendix A.6. From

this simple derivation, we now derive an appropriate energyEχ in the next paragraph.

103

Chi Energy on Triangulations: Guided by the previous derivation, we introduce the following

quadratic energy:

Eχ =
∑

j∈N1(xi)

(cot γij + cot δij)
|xi − xj |2

(ui − uj)2 , (5.5)

where the anglesγij andδij are defined in Figure 5.3. This energy is constant for a given 1-ring

when evaluated on the identity map, and therefore can always be scaled and shifted to be equal

toχ (1 for a closed 1-ring). Additionally, since it is quadratic, we can show that it is greater than

(or equal to)χ (after the above scaling and shifting) for any other map with the same boundary.

This energy therefore satisfies all the properties we required in Section 5.2.

Critical Point of Eχ: Once again, the optimal parameterization deriving fromEχ is easily

obtained when the center nodeui satisfies:

∂Eχ

∂ui
=
∑

j∈N (i)

(cot γij + cot δij)
|xi − xj |2

(ui − uj) = 0. (5.6)

Duality of EA and Eχ: Now, the coefficients of both this optimality condition and ofEχ are

shown (also in the appendix) to be only functions of local areas of the 3D mesh. This should

not come as a complete surprise: remember that the Dirichlet energy, which derives from the

determinant of the first fundamental form, a measure of the localarea extension[Gra98], de-

pends only on localanglesand provides anangle-preservingmapping when minimized. Since

χ is (up to a constant) the integral of the determinant of the second fundamental form, which is a

measure of the localangle excess[Gra98], we have a dual situation here. The energyEχ is now

depending only on localareas, and we therefore denote itDiscrete Authalic Parameterization

(DAP) for the same reasons as the DCP. Solving for the optimality ofEχ, using numerical meth-

ods described in Section 5.4, results in smooth parameterizations as shown on Figures 5.2(e)

and 5.6(b). Just like the DCP does for the angles, the DAP tries to preserve the area structure of

the original 1-ring.

104

5.3.4 General Discrete Parameterization

As mentioned in Section 5.2.3, the set of all admissible measures are linear combinations of

the Minkowski functionals. For fixed boundary conditions, the only distortion measures possi-

ble are linear combinations of the area and the angle distortion measures (note: the perimeter

distortion does not induce a particular position for the center vertex being a lower-order (1D)

distortion measure for the boundary only). Therefore, it results that the family of admissible,

simple distortion measures of a 1-ring is reduced tolinear combinations of the two discrete dis-

tortion measuresdefined above. A general distortion measureE as we defined can thus always

be written:

E = λEA + µEχ,

whereλ and µ are two arbitrary real constants. The optimality condition will simply be a

linear combination of the two optimality condition we have described above. We call this 2-

dimensional space of optimal discretizationsIntrinsic Parameterizations, since they naturally

derive from intrinsic measures of the input mesh. As demonstrated in Figure 5.2, they provide

smooth parameterizations even on highly irregular meshes since they minimizeintrinsic distor-

tions. Caveat: Although the DCP can easily be proven to beglobally optimal (and therefore,

angle-preserving when the triangulation is fine enough), the DAP is, as far as we know, only

locally optimal. This means that we should not expect the DAP to perfectly preserve the area

distortion across the mesh, but only as best as possible between each 1-ring.

5.3.5 Connection to Barycentric Coordinates

There exists a direct connection between barycentric coordinates and parameterization. It was

already noted in [Flo97, GS01] that the coefficients of the usual linear systems used to param-

eterize meshes can be interpreted as barycentric coordinates of each internal vertex within its

1-ring. If the linear system for parameterization really represents barycentric coordinates, then

any flat mesh will be its own parameterization, since each vertex will not move from its orig-

inal position within its 1-ring. Although this condition seems to be an obvious quality for a

105

Figure 5.4:Other Examples of Natural Conformal Maps: to demonstrate the conformality of the

maps we obtain, we use an irregularly sampled mesh and observe that the symmetry is preserved

despite the drastic change in sampling rate. The third natural parameterization uses the same

mesh as in Figure 5.2. These four parameterizations were obtained in 0.8s, 0.5s, 1.8s, and 0.3s,

respectively.

“good” parameterization, only a few previous techniques satisfy this simple criterion. On the

other hand, any linear combinations of the coefficients in Equations 5.4 and 5.6 defines perfectly

valid barycentric coordinates [MLBD02]. We additionally proved that there is no other possible

barycentric coordinates with the same properties, due to Hadwiger’s theorem.

5.4 Parameterizing Meshes

We now discuss the practical implementation of the theoretical results presented above, along

with convenient improvements to further aid in the design of good parameterizations. We first

give details on how to solve for the least-distorted parameterizations with a fixed boundary,

then show how to interactively move the boundaries to further reduce the burden of designing

texture mapped surfaces, and finally present a natural parameterization that automatically finds

an optimal boundary.

106

5.4.1 Computing an Intrinsic Parameterization

Since the gradients of the energies introduced in Section 5.3.4 are linear, computing a parame-

terization reduces to solving a sparse linear system:

MU =

 λMA + µMχ

0 I

 Uinternal

Uboundary

 =

 0

Cboundary

 = C ,

whereU is the vector of 2D-coordinates to solve for (separated for convenience into the inter-

nal vertices and the boundary vertices);C is a vector of boundary conditions that contains the

positions where the boundary vertices are placed; andMA andMχ are sparse matrices whose

coefficients are given respectively by:

MA
ij =


cot(αij) + cot(βij) if j ∈ N1(xi)

−
∑

k∈N1(xi)
MA

ik if i = j

0 otherwise,

Mχ
ij =


(cot(γij) + cot(δij)) /|xi − xj |2 if j ∈ N1(xi)

−
∑

k∈N1(xi)
Mχ

ik if i = j

0 otherwise.

Note that this technique can handle an arbitrary number of boundary curves (they are simply

additional boundary vertices) and therefore easily parameterize patches containing holes. Once

the boundary points have been chosen (either automatically or by the user), the sparse system is

efficiently solved using Conjugate Gradient with an appropriate preconditioning (we recommend

SSOR or inverse diagonal preconditioning — see [PFTV94]).

Constraints The user may possibly want to constrain certain points to given parameter values.

This can be easily achieved using Lagrange multipliers. Each point constraint creates a linear

equation relating the parametric values of the vertices of the enclosing triangle (using triangular

barycentric coordinates) to the constrained position. We then add these additional constraints

to the linear system using standard Lagrange multipliers. The previous linear system is then

107

augmented to the following system:

 M (Mη)T

Mη 0

 U

η

 =

 C

Cη

 ,
whereMη

ij is nonzero only if thejth constraint constrains theith vertex and0 otherwise, and

Cη
j is set to thejth constrained position. Note that constraining a line is also possible by simply

constraining the endpoints as well as the intersections of the line with the edges of the mesh.

5.4.2 Modifying Boundaries

In addition to simple fixed-boundary conditions, we can allow the user to interactively modify

the positions of boundary points while updating the parameterization inrealtime. This efficiency

is achieved by taking advantage of the linear nature of our solution and precomputing how the

parameterization responds to the movement of a boundary point.

Impulse response We first precompute the parameterizations that result from placing one

boundary point at(1, 1) and all others at(0, 0) (these correspond to the Green functions of

our parameterization equation):

Mb i = ei, ∀i ∈ boundary,

whereei is a 1D vector (i.e., a vector of scalars) containing 1 inith position and 0 elsewhere,

while bi is the unknown 1D vector.

Real-time Boundary Manipulation By solving this system once for every boundary point,

we construct a set of “basis parameterizations” that describe how the parameterization is altered

by a change in a single boundary position. Indeed, the parameterization can then be efficiently

updated as the user manipulates the boundary by noting that:

C =

 ∑
i∈boundary

(uboundary
i)Tei

 = M

 ∑
i∈boundary

(uboundary
i)T bi

 ,

108

whereuboundary
i is the position ofith boundary point. Therefore, the parameterization for a given

set of boundary points can easily be reconstructed in real-time, allowing real-time boundary

manipulation, as:

U =
∑

i∈boundary

(uboundary
i)T bi.

This novel feature provides an easy tool for a user to optimize the design of a texture mapping

on arbitrary surface patches.

Natural Boundaries / Natural Conformal Map

Interestingly, we can also solve a similar linear system while letting the computer pick the “best”

boundaries. Earlier, we showed how to get a parameterization once a boundary was given, but we

can also solve for an optimal conformal mapping by imposingnatural boundaries(also called

Neumann boundaries). This requires only minor modifications to the prior algorithm, and due

to the quadratic nature of the energy, we will also obtain a unique solution. As demonstrated in

Appendix A.2, we show that the derivative of the area energy on a triangle with respect to one

of its vertices is equal to the opposite edge rotated by 90 degrees (such that(x, y) → (−y, x)).

A natural boundary condition is therefore to have the same property at the boundary. Summing

over all adjacent triangles, the equation for the boundary pointi (which we place into the matrix

M) becomes:

∑
∆ijk

cotα(ui − uj) + cotβ(ui − uk) =
∑
∆ijk

(uk − uj)⊥, (5.7)

whereα andβ are the angles atk andj, and⊥ is a rotation by 90◦. Note that this property also

holds for interior vertices as the terms on the left become the conformal condition (Equation 5.4)

and the terms on the right sum to zero.

To complete the minimization, we need to constrain two vertices to fix the rotation and trans-

lation of the resulting minimum parameterization. In our implementation, we constrain the two

boundary vertices the farthest from each other to two arbitrary positions in the parameterization

109

Figure 5.5:Left: A 3D surface (top) and its natural conformal parameterization (bottom). Right:

Views of the textured 3D surface.

plane. This simple modification results inNatural Conformal Maps, such as those depicted on

Figures 5.4 and 5.5. Notice that these parameterizations take the same amount of time to compute

as the fixed-boundary ones, offering a very nice tool for initial flattening before minor editing of

the boundaries if necessary. Note also that if the authalic coefficients are proven, in the future, to

derive from a global energy, a similar treatment can be used to find natural boundaries.

110

5.5 Nonlinear Optimization of Maps

The theoretical and practical work introduced in this chapter opens many avenues. Aside from

the natural conformal map and the entire family of intrinsic parameterizations by varying the

parametersλ andµ, we can also compute parameterizations sufficiently close to these optimal

ones to be visually smooth, but potentially more appropriate for a given application. As a final

addition to our parameterization toolbox, we propose two simple algorithms to compute good

parameterizations that minimize other types of functionals.

5.5.1 Near-Optimal Maps

We sometimes wish to minimize highly nonlinear energies while remaining within the space of

the aforementioned intrinsic parameterizations. In order to make this tractable, we can linearize

the solution space by assuming that all solutions can be expressed as a linear combination of the

two base intrinsic parameterizations:

U = λUA + (1− λ)Uχ. (5.8)

Note thatµ = 1−λ to ensure that the solution always interpolates the same boundary as we vary

λ. Since we restrained the vector space of solutions to only linear combinations of the intrinsic

parameterizations, many nonlinear functionals can be minimized by a simple low-order polyno-

mial minimization (often in real-time). Below are two simple examples of such functionals.

Edge-Length Distortion Minimization is achieved by minimizing the nonlinear energy:

E =
∑

ij∈Edges

(
|ui − uj |2

|xi − xj |2
− 1)2.

By substituting the values forui anduj from Equation 5.8, the energy becomes a quartic poly-

nomial inλ. This energy can then be minimized in real-time using a3rd order polynomial root

finder to solve for:dE
dλ =

∑
ij∈Edges4

(
|ui−uj |2
|xi−xj |2 − 1

)
s

(ui−uj)·[(uAi −uχ
i)−(uAj −uχ

j)]

|xi−xj |2 = 0.

111

Area Distortion Minimization can be achieved by minimizing:E =
∑

ijk∈Faces

((
Aparam

ijk

A3D
ijk

)2

− 1

)2

.

As in the edge length distortion minimization, this results in a quartic polynomial in lambda and

can be efficiently solved using a simple root finder. An example resulting from this technique is

depicted in Figure 5.6

Conformal Authalic Optimal lambda

Figure 5.6: Area Distortion Minimization can be achieved by optimizing the linear combination

λUA+(1−λ)Uχ of the conformal and authalic parameterizations. The parameterizations (top)

and the area distortion pseudo-coloring (middle) demonstrate the quality of the optimization.

112

Figure 5.7:Boundary Optimization: after choosing a (non)linear functional to minimize over the

parameterization, we can move the boundary points to perform a gradient descent and optimize

the parameterization. Here, an initial irregular spherical strip is mapped to a circle, then evolves

towards an optimized parameterization (1.5s) minimizing edge-length distortion.

5.5.2 Boundary Optimization

Similar to the way we minimized an energy by modifyingλ, we can, alternatively, minimize the

energy by modifying the boundary of the parameterization. We first choose an appropriate energy

(edge length distortion, area distortion, etc.), and then take its derivative with respect to each of

the boundary points. Note that the terms of the form∂ui/∂uboundary
p can be (pre)computed using the

impulse response technique described in section 5.4.2. These derivatives are then used to perform

a gradient descent to find a local minimum of the specified energy. Since the gradient descent is

performed in terms of boundary points only (much fewer than the total number of points), this

process is very efficient, and takes generally less than 10 seconds for several hundreds boundary

vertices. A sequence of boundary optimizations using this method is depicted in Figure 5.7.

All the results we obtained were computed in less than 5 seconds for fixed-boundary and

natural parameterizations, and less than 15 seconds for boundary-optimized maps. These tech-

niques are thus very well suited for interactive parameterization design and form an extensive

and powerful parameterization toolbox.

Chapter 6

Conclusions and Future Work

6.1 Contributions

This thesis has presented a family of operators for computing differential quantities on triangu-

lated surfaces commonly found in computer graphics. We have derived operators for computing

normal vectors and mean curvatures, Gaussian curvatures, principal curvatures and principal di-

rections. These operators were derived using area averaging and a mixed finite element - finite

volume technique resulting in a robust and consistent operator family. Since these operators were

derived using properties of continuous differential geometry they preserve many of the proper-

ties used in the continuous setting. This allows one to use these operators, leveraging work in

the continuous setting, to build an extensive and powerful mesh processing toolbox. In order to

demonstrate the practical use of these operators, we have designed several novel digital geometry

processing algorithms that are contributions in their own right:

Surface Smoothing: Chapter 3 presented an algorithm for smoothing triangulated surfaces. We

presented animplicit fairing method, using implicit integration of a diffusion process that

allows for both efficiency, quality, and stability. Since the umbrella operator used in the

literature appears to have serious drawbacks, we defined a new scale-dependent umbrella

operator to overcome undesired effects such as large distortions on irregular meshes. Ad-

ditionally, by using the proposed mean curvature normal operator, we derived a curvature

flow for surface smoothing that only depends only on the surface itself, not its parameter-

113

114

ization/sampling.

This isotropic smoothing algorithm was then made anisotropic to account for, preserve and

enhance the features of the mesh. A graph flow based technique was also presented that

allows for independent shape and sampling smoothing. Additionally, since our differential

operators generalize to arbitrary dimensional data, the above techniques were easily ap-

plied to other data types including images, height fields / range images, vector and tensor

fields, and even volume data. By taking into account the way these datasets were acquired,

we show that more accurate smoothing can be achieved.

Surface Remeshing:Chapter 4 presented a versatile technique for interactive geometry resam-

pling that allows a very fine and intuitive control over the desired quality of the mesh.

We substitute the original geometry by one or more 2D maps on which numerous surface

quantities, including our differential operators, have been computed. We then use these

maps to carry out the sampling. This has the advantage in that it allows us to use many

image processing techniques as well as halftoning to both control the sampling as well as

offer interactive updates. Once the initial, near-optimal resampling has been designed, a

fast optimization is performed to perfect the resulting mesh. This map based remeshing

pipeline allows the user to custom design the mesh based on their requirements at interac-

tive rates thereby increasing their productivity in creating a wide variety of meshes.

Surface Parameteriztion: Chapter 5 presented a novel family of discrete surface parameter-

izations that we denote Intrinsic Parameterizations. We showed that they are the only

parameterizations satisfying the proper conditions to make them easy to compute and ro-

bust to arbitrary meshes with guaranteed smoothness qualities. We have also proposed

several algorithms using these parameterizations and automatically design optimal maps,

with or without boundary conditions.

Thus, we have shown that our differential operators along with the presented algorithms create a

versatile set of mesh processing tools. Hopefully, this work, combined with the efforts of other

researchers, will form a basis for digital geometry processing and bring all the benefits that signal

processing offers to audio, images and movies to the realm of 3D geometry.

115

6.2 Future Research

Future work on the discrete operators will try to answer some of the open questions. For instance,

we are trying to determine what would be the minimum sampling rate of a continuous surface to

guarantee that our discrete estimates are accurate within a givenε – laying the foundations for

an irregular sampling theory. More generally, we would like to extend well-known digital signal

processing tools and theorems to digital geometry. Additionally, we would like to test their use

in other applications including geometry based subdivision schemes, and mesh simplification

[HG99].

Although the implicit smoothing offers a performance jump over the explicit schemes, we

believe that the computational time for the integration can still be improved on. We expect that

multigrid preconditioning for the PBCG in the case of the scale-dependent operator for diffusion

and for curvature flow would speed up the integration process. This multigrid aspect of mesh

fairing has already been mentioned in [KCVS98], and could be easily extended to our method.

Likewise, subdivision techniques can be directly incorporated into our method to refine or sim-

plify regions according to curvature for instance. Additionally, wish to further study smoothing

of volumetric data.

Many additional features can be added to our remeshing framework. We are investigating

error diffusion in a quadtree data structure (to avoid the possibly large memory requirement

of our current approach), anisotropic remeshing (possibly using ellipse packing) on a tensor

control map of the principal curvatures, and hierarchical solving to accelerate the potentially

slow parameterization stage. Finally, we plan to use our remeshing engine for other projects

such as compression (how to remesh a surface to obtain the best rate/distortion tradeoff), as well

as better geometric approximation.

Future work for the parameterization algorithm includes defining additional energies to opti-

mize using the linear combination of our Intrinsic Parameterizations. Since these combinations

of our basis parameterizations will be visually smooth, this provides us with a great deal of

freedom in building other algorithms for parameterizations if more complex constraints must be

enforced. Additional future work will focus on clarifying the relationship between our results

and the existing body of work in Circle Packing, a technique which also provides the same kind

of discrete mapping, but at the cost of a computationally expensive iterative process. Developing

116

a good hierarchical solver as in [DCDS97] and in [SGSH02] could also speed up the process,

making parameterization of extremely large meshes tractable. Finding optimal charts on a closed

surface to locally parameterize a whole geometry is also of interest.

6.3 Subsequent Developments

Following our initial publication of the techniques described in this thesis, and preceding the

final thesis publication, several researchers have begun to build upon this work.

Additional Discrete Operators: Recently, several researchers have continued to derive addi-

tional discrete differential operators. For example, Polthier [PP03], Tong [TLHD03] and

their colleagues have developed operators to decompose vector fields into divergence-free,

curl-free, and harmonic components. Additionally, Hildebrandt and Polthier [HP04] de-

veloped a discrete Shape Operator on edges and demonstrated its use for surface smooth-

ing. Notice also recent work by Cohen-Steiner [CSM03] on curvature tensor estimation,

also defined on edges.

Initial Work on Convergence and Error Analysis: Although the convergence and error anal-

ysis of many of the discrete operators is still an open research question, various researchers

have begun to examine these topics. Cazalset al. [BCM03] have examined the pointwise

convergence properties of several discrete operators including the Gaussian curvature de-

fined in this thesis. Meanwhile, Dziuk and coauthors [DD03] have published several in-

teresting papers on the accuracy of discrete surface flows, this time using Sobolev spaces

to prove convergence.

Towards a Complete Discrete Differential Calculus: Recently, Desbrun and colleagues [DHLM04]

have revisited the foundations of calculus (namely exterior calculus) in order to develop

a complete discrete exterior calculus. The foundations of exterior calculus have been

defined by many well-known mathematicians over the last two centuries (Poincaré, La-

grange, etc.). They established the basis of all differential and integral computations on

smooth manifolds through a small set of operators (exterior derivative, Hodge star, etc.).

By redefining these basic operators ab initio on discrete manifolds, Desbrunet al. can

117

define any complex calculation on the discrete manifold by simply combining these basic

building blocks. Therefore, these calculations will automatically satisfy the important

differential properties (invariance to rotation, integration by parts, etc.). The link with our

geometric operators remains to be determined, as a notion of discrete connection needs to

be added to this DEC work in order to derive notions such as curvatures.

Appendix A

Additional Proofs

A.1 Mean Curvature Normal on a Triangulated Domain

In this appendix, we derive the integral of the mean curvature normal over a triangulated domain.

We begin by computing the integral of the Laplacian of the surface pointx with respect to the

conformal parameter space. Using Gauss’s theorem, we can turn the integral of a Laplacian over

a region into a line integral over the boundary of the region:

∫∫
AM

∆u,vx du dv =
∫

∂AM

∇u,vx · nu,v dl, (A.1)

where the subscriptu, v indicates that the operator or vector must be with respect to the parameter

space.

Since we assumed our surface to be piecewise linear, its gradient∇u,vx is constant over each

triangle of the mesh. As a consequence, whatever the type of finite-volume discretization we

use, the integral of the normal vector along the border∂AM within a triangle will result in the

same expression since the border of both regions passes through the edge midpoints as sketched

in Figure A.1(b). Inside a triangleT = (xi, xj , xk), we can write:

∫
∂AM∩T

∇u,vx · nu,v dl = ∇u,vx · [a− b]⊥u,v =
1
2
∇u,vx · [xj − xk]⊥u,v ,

where⊥ denotes a counterclockwise rotation of 90 degrees.

118

119

n

C

xj
xi

bX

X

Xi

j

k

a

α

β

ε
ε1

A

P

B

H

2

(a) (b) (c)

Figure A.1:(a) Osculating circle for edgexixj . (b) The integration of the surface gradient dotted

with the normal of the region contour does not depend on the finite volume discretization used.

(c) The area and angle gradients of trianglePAB can be computed from the edges and angles

shown here.

Since the functionx is linear over any triangleT , using the linear basis functionsBl over the

triangle, it follows:

x = xi Bi(u, v) + xj Bj(u, v) + xk Bk(u, v)

∇u,vx = xi ∇u,vBi(u, v) + xj ∇u,vBj(u, v) + xk ∇u,vBk(u, v).

Using the fact that the gradients of the 3 basis functions of any triangleT sum to zero and

rearranging terms, the gradient ofx over the triangle can be expressed as:

∇u,vx =
1

2AT
[(xj − xi)

(
[xi − xk]⊥u,v

)T
+ (xk − xi)

(
[xj − xi]⊥u,v

)T
] ,

whereT denotes the transpose. Note that∇u,vx is ann x 2 matrix - n for the dimension of the

embedding ofx and2 for the(u, v) space. The previous integral can then be rewritten as:

∫
∂A∩T

∇u,vx · nu,v dl =
1

4AT
[([xi − xk] · [xj − xk])u,v (xj − xi)

+([xj − xi] · [xj − xk])u,v (xk − xi)] .

Moreover, the areaAT is proportional to the sine of any angle of the triangle. Therefore, we can

use the cotangent of the 2 angles opposite toxi to simplify the parameter space coefficients and

120

write:

∫
∂AM∩T

∇u,vx · nu,v dl =
1
2
[cotu,v ∠(xk)(xj − xi) + cotu,v ∠(xj) (xk − xi)].

Combining the previous equation with Eq. (2.4) and (A.1), using the current surface discretiza-

tion as the conformal parameter space, and reorganizing terms by edge contribution, we obtain:

∫∫
AM

K(x)dA =
1
2

∑
j∈N1(i)

(cot αij + cot βij) (xi − xj) ,

whereαij andβij are the two angles opposite to the edge in the two triangles sharing the edge

(xj , xi) as depicted in Figure 2.2(a).

A.2 Gradient of Area

In this section, we show that the mean curvature normal defined in this thesis (see Appendix

A.1) has the property of being equivalent to the gradient of the surface area. In this and the

following sections, we will make heavy use of Einstein summation notation for conciseness. For

an introduction, see [Bar89].

Let’s consider a pointP of the mesh. Its neighbors, in counterclockwise order aroundP , and

the points{A,B, ...}. We will denote the edge vector going, for example, fromP toA as:

PA = A− P.

The only triangles affected by the movement ofP are the adjacent faces. Let us consider

a single facePAB whose area is thus:A = 1
2‖PA × PB‖. So, using Einstein summation

notation [Bar89], we have:

A2 =
1
4
εijk PAj PBk εilm PAl PBm,

whereεijk is the permutation symbol. Using the Kronecker deltaδij , and theε-δ rule stating

121

εijkεilm = δjlδkm − δjmδkl, we obtain:

A2 =
1
4

(PAiPAiPBjPBj − PAiPBiPAjPBj) .

Straighforward differentiation (using∂Pi
∂Pq

= δiq) term by term yields:

4
∂A2

∂Aq
= −δiqPAiPBjPBj − δiqPAiPBjPBj

−δjqPAiPAiPBj − δjqPAiPAiPBj

+δiqPBiPAjPBj + δiqPAiPAjPBj

+δjqPAiPBiPBj + δjqPAiPBiPAj

= −2PAqPBjPBj − 2PAiPAiPBq + PBqPAjPBj

+PAqPAjPBj + PAiPBiPBq + PAiPBiPAq

= 2 [PAq(PA · PB − PB · PB) + PBq(PA · PB − PA · PA)]

= 2 [APq(PB ·AB) + BPq(PA ·BA)] .

Using the fact:
∂A2

∂Pq
= 2A ∂A

∂Pq
,

we can solve for∂A∂P as:

∂A
∂P

=
1

4 A
(AP (PB ·AB) +BP (PA ·BA)) .

Noting that the dot product divided by the area is simply a cotangent produces:

∂A
∂P

=
1
4

(AP cotβ +BP cotα) .

Performing this gradient on each of the neighboring triangles, summing, and reorganizing terms

by edge contribution shows that the mean curvature operator defined in the previous section is

equivalent to the gradient of the surface area:

∫∫
AM

K(x)dA = 2∇A.

Additionally, since the area is equal to12‖AB‖ times the height‖PH‖, we have another simple

122

expression for the gradient of the area of a triangle:

∇A = |AB|∇(|PH|) = |AB| PH
|PH|

= AB⊥ ,

where “⊥” indicates a 90 degrees counterclockwise rotation about the triangle’s normal.

A.3 Area Gradient in nD

Notice that most of the calculations in the previous section did not rely on the dimensionality

of the vertex data. Therefore, we can easily extend the area gradient tonD. In fact, the only

quantity that must be extended tonD is the cross product, as the rest of the derivation does not

rely on the dimension of the data. If we define thenD area (and similarly thenD cross product)

as:

A =
1
2
||u||||v||sin(u, v) =

1
2
||u||||v||

√
1− cos2(u, v)

=
1
2

√
||u||2||v||2 − (u · v)2.

and the cotangent then becomes:

cot(u, v) =
u · v√

‖u‖2‖v‖2 − (u · v)2
.

Therefore the gradient of the surface area defined in the previous section naturally generalizes to

any dimension.

A.4 Volume Gradient in nD

In this section, we generalize the notion of the area gradient to volumes, defining a volume

gradient operator that can be used, for instance, in volume smoothing applications.

LetP,A,B, andC be fourn-dimensional points. We can calculate the volume of the region

(tetrahedron in 3D) formed by the three vectors originating at A:

a = PA b = PB c = PC.

123

We define a transformation of a 3D unit cube with axesu, v, w: T (u, v, w) = au+ bv+ cw. The

Jacobian matrixJ of this transformation is composed of three columns,a, b, andc:

J =
(
a|b|c

)
(A.2)

The volume of the transformed unit cube is:
∫∫∫ √

det G dudvdw, whereGij = JimJjm is the

3x3 metric tensor of the transformation.

The volumeV we are looking for is therefore16 of the square root of the determinant ofG

(ratio between the untransformed and transformed cube). We can obtain this latter term through

the standard formulation:

det G = εijkJ1uJ2vJ3wJiuJjvJkw.

Expanding this expression, we find the following terms involving dot products:

det G = 2(a · b)(a · c)(b · c) + (a · a)(b · b)(c · c)

−(a · b)2(c · c)− (a · a)(b · c)2 − (a · c)2(b · b).

The remainder of the derivation is very similar to the surface area minimization innD, detailed

in the previous section. So, using the fact that:

∂V2

∂Aq
= 2V ∂V

∂Aq
,

and that we have, as a consequence of Eq. (A.2):∂Jij

∂Aq
= −δiq, we finally get the following terms

for the gradient:

∂V
∂Aq

= 1
V (aq ((a · c)(b · b) + (b · c)2 + (a · b)(c · c)

−(b · b)(c · c)− (a · c)(b · c)− (a · b)(b · c))

+bq ((b · c)(a · a) + (a · c)2 + (a · b)(c · c)

−(a · a)(c · c)− (b · c)(a · c)− (a · b)(a · c))

+cq ((a · c)(b · b) + (a · b)2 + (a · a)(b · c)

−(a · a)(b · b)− (a · b)(b · c)− (a · b)(a · c))).

124

Although we can use this expression to compute the gradient of the volume, it turns out we can

simplify it using Lagrange’s identity to get a better insight of what these terms are. Lagrange’s

identity in 3D can be written as:

(s · u)(t · v)− (s · v)(t · u) = (s ∧ t) · (u ∧ v).

The multiplicative term in front ofcq is then(PA ∧ PB) · (CB ∧ CA), representing (up to the

product of the norm of these vectors) the cosine of the dihedral angle between the two opposite

faces to the edgec. As the volume is proportional to the sine of this angle, we can see that we

once again have the same formula as Eq. (2.5), this time with cotangents of the dihedral angles

opposite to the edge. Note that there are generally more than two tetrahedra sharing the same

edge.

A.5 Preconditioned Bi-Conjugate Gradient for Smoothing

In this section, we describe the different implementation choices we made for the PBCG lin-

ear solver. With this simple configuration, we obtain an efficient linear solver for the implicit

integration in the smoothing application.

Preconditioning

A good preconditioning, and particularly a multigrid preconditioning, can drastically improve

the convergence rate of conjugate gradient solver. The umbrella operator (Eq. 3.7) has all its

eigenvalues in[−1, 0]: in turn, the matrixA is always well conditioned for typical values of

λdt. In practice, the simpler the conditioning the better. In our examples, we used the usual

diagonal preconditioner̃A with: Ãii = 1/Aii, which provides a significant speedup with almost

no overhead.

Convergence Criterion

Different criteria can be used to test whether or not further iterations are needed to get a more

accurate solution of the linear system. We opted for the following stopping criterion after several

125

tests: ||AXn+1 − Xn|| < ε||Xn||, where||.|| can be either theL2 norm, or, if high accuracy is

needed, theL∞ norm.

Memory Requirements

An interesting remark is that we don’t even need to store the matrixA in a dedicated data struc-

ture. The mesh itself provides a sparse matrix representation, as the vertexxi and its neighbors

are the only non-zero locations inA for row i. Computations can thus be carried directly within

the mesh structure. ComputingAX can be implemented by gathering values from the 1-ring

neighbors of each vertex, whileAT X can be achieved by “shooting” a value to the 1-ring neigh-

bors.

A.6 Gradient of Angle

Despite an extensive literature search, we have not found any published derivation for the gradi-

ent of one of a triangle’s angles with respect to its associated vertex. We therefore describe our

derivation here.

Let T = (P,A,B) be a triangle (as shown in Figure A.1 (c)), and letH be the orthogonal

projection ofP onto the segmentAB. We denote byε1 the anglêAPH, ε2 the anglêHPB, and

ε the angle ofT atP . Finally, we denote byα the angle atA andβ the angle atB.

The gradient ofε with respect toP can be decomposed into the sum of the gradients ofε1

andε2. Using the relationcos(ε1) = |PH|/|PA|, the gradient can be computed as:

∇ε1 = ∇ arccos(|PH|/|PA|) = − |PA|
|AH|∇(|PH|

|PA|) (A.3)

= − |PA|
|AH|

∇(|PH|) |PA|−∇(|PA|) |PH|
|PA|2 . (A.4)

From the following identities:∇|PA| = AP/|PA|,∇|PH| = HP/|PH|, HP = HA+AP,

126

andcotα = |AH|/|PH|, we obtain:

∇ε1 = − |PA|
|AH|

[
HP

|PA| |PH| −
|PH|
|PA|3 AP

]
= PA

|PA|2

(
|PA|2

|AH| |PH| −
|PH|
|AH|

)
+ AH

|PH| |AH|

= cot α
|PA|2 PA + AB

|PH| |AB| . (A.5)

The gradient ofε2 will cancel out the last term, leading to the simple formula:

∇ε =
cotα
|PA|2

PA +
cotβ
|PB|2

PB .

Notice that the vector weights can be expressed only in terms of local areas: ifK is the orthog-

onal projection ofB ontoPA, thencotα/|PA|2 is equal to the area of the triangle(A,B,K)

divided by twice the square of the total area of triangleT .

Summing the contribution due to each triangle of a 1-ring, we obtain, withθ the total angle

around a vertexxi (in the notation of figure 5.3):

∇θ =
∑

j∈N1(xi)

(cot γij + cot δij)
||xi − xj ||2

(xj − xi).

Bibliography

[ABBFC97] G. Aubert, M. Barlaud, L. Blanc-Feraud, and P. Charbonnier. Deterministic edge-preserving

regularization in computed imaging.IEEE Trans. Imag. Process., 5(12), February 1997.

[ALM92] L. Alvarez, P-L. Lions, and J-M. Morel. Image selective smoothing and edge detection by

nonlinear diffusion (II).SIAM Journal of Numerical Analysis, 29:845–866, 1992.

[AMD02] Pierre Alliez, Mark Meyer, and Mathieu Desbrun. Interactive geometry remeshing. InPro-

ceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques,

pages 347–354. ACM Press, 2002.

[AvD95] L. Alboul and R. van Damme. Polyhedral metrics in surface reconstruction: Tight triangu-

lations.Mathematical Methods for Curves and Surfaces, pages 309–336, 1995.

[AZ67] A. D. Aleksandrov and V. A. Zalgaller.Intrinsic Geometry of Surfaces. AMS, Rhode Island,

USA, 1967.

[Bar89] Alan H. Barr. The Einstein summation notation: Introduction and extensions. InSIGGRAPH

89 Course notes #30 on Topics in Physically-Based Modeling, pages J1–J12, 1989.

[BCM03] V. Borrelli, F. Cazals, and J.-M. Morvan. On the angular defect of triangulations and the

pointwise approximation of curvatures.Comput. Aided Geom. Des., 20(6):319–341, 2003.

[BGH+97] H. Borouchaki, P. L. George, F. Hecht, P. Laug, and E. Saltel. Delaunay mesh generation

governed by metric specifications.Finite Elements in Analysis and Design, 25:61–83, 1997.

[BH96] Frank Bossen and Paul Heckbert. A pliant method for anisotropic mesh generation. In5th

Intl. Meshing Roundtable, pages 63–76, oct 1996.

[BHF97] Houman Borouchaki, Fréd́eric Hecht, and Pascal J. Frey. Mesh gradation control. InPro-

ceedings of 6th International Meshing Roundtable, Sandia National Labs, pages 131–141,

oct 1997.

127

128

[BK01] Mario Botsch and Leif Kobbelt. Resampling feature and blend regions in polygonal meshes

for surface anti-aliasing. InEurographics Proceedings, pages 402–410, sep 2001.

[Bor98] Houman Borouchaki. Geometric surface mesh. In2nd International Conference on Inte-

grated and Manufacturing in Mechanical Engineering, pages 343–350, may 1998.

[BRK00] Mario Botsch, Christian R̈ossl, and Leif Kobbelt. Feature sensitive sampling for interactive

remeshing. InVision, Modeling and Visualization Proceedings, pages 129–136, 2000.

[BVIG91] Chakib Bennis, Jean-Marc V́ezien, Ǵerard Igĺesias, and André Gagalowicz. Piecewise sur-

face flattening for non-distorted texture mapping.Computer Graphics (Proceedings of SIG-

GRAPH 91), 25(4):237–246, July 1991.

[BW98] David Baraff and Andrew Witkin. Large steps in cloth simulation. InSIGGRAPH 98 Con-

ference Proceedings, pages 43–54, July 1998.

[CCFM99] Charlie C.L.Wang, Shiang-Fong Chen, Jin Fan, and Matthew M.F.Yuen. Two-dimensional

trimmed surface development using a physics-based model.Proceedings of the 25th Design

Automation Conference, Sept. 1999. Paper No. DETC99/DAC-8634.

[CCM01] Charlie C.L.Wang, Shiang-Fong Chen, and Matthew M.F.Yuen. Surface flattening based on

energy model.Computer Aided Design, 2001.

[CDR00] U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic geometric diffusion in surface process-

ing. In IEEE Visualization, pages 397–405, 2000.

[CGA] www.cgal.org: Computational Geometry Algorithms Library.

[CL96] Brian Curless and Marc Levoy. A volumetric method for building complex models from

range images. InSIGGRAPH 96 Conference Proceedings, pages 303–312, 1996.

[CS92] Xin Chen and Francis Schmitt. Intrinsic surface properties from surface triangulation. In

European Conference on Computer Vision, pages 739–743, May 1992.

[CS98] S. Campagna and H.-P. Seidel. Parameterizing meshes with arbitrary topology. In B. Girod

H. Niemann, H.-P. Seidel, editor,Image and Multidimensional Digital Signal Processing,

pages 287–290, 1998.

[CSM03] David Cohen-Steiner and Jean-Marie Morvan. Restricted delaunay triangulations and nor-

mal cycle. InProceedings of the Nineteenth Conference on Computational Geometry, pages

312–321. ACM Press, 2003.

[dC76] Manfredo do Carmo.Differential Geometry of Curves and Surfaces. Prentice-Hall, Engle-

wood Cliffs, New Jersey, 1976.

129

[DCDS97] Tom Duchamp, Andrew Certian, Tony DeRose, and Werner Stuetzle. Hierarchical Compu-

tation of PL Harmonic Embeddings”.Technical Report, July 1997.

[DCG98] Mathieu Desbrun and Marie-Paule Cani-Gascuel. Active implicit surface for computer an-

imation. InGraphics Interface (GI’98) Proceedings, pages 143–150, Vancouver, Canada,

1998.

[dCS96] H. L. de Cougny and M. S. Shephard. Surface meshing using vertex insertion. InProceed-

ings of 5th International Meshing Roundtable, Sandia National Labs, pages 243–256, oct

1996.

[DD03] Klaus Deckelnick and Gerhard Dziuk. Mean curvature flow and related topics. In T. Shard-

low J.F. Blowey, A.W. Craig, editor,Frontiers in Numerical Analysis, pages 63–108.

Springer, 2003.

[DFG99] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal voronoi tesselations: Applications

and algorithms.SIAM Review, 41(4):637–676, 1999.

[DFRS03] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony Santella. Suggestive

contours for conveying shape.ACM Trans. Graph., 22(3):848–855, 2003.

[DHKL01] N. Dyn, K. Hormann, S.J. Kim, and D. Levin. Optimizing 3d triangulations using discrete

curvature analysis.Mathematical Methods for Curves and Surfaces, Oslo 2000, pages 135–

146, 2001.

[DHKW92] Ulrich Dierkes, Stefan Hildebrandt, Albrecht Küster, and Ortwin Wohlrab.Minimal Sur-

faces (I). Springer-Verlag, 1992.

[DHLM04] Mathieu Desbrun, Anil Hirani, Melvin Leok, and Jerrold Marsden. Discrete exterior calcu-

lus. in preparation, 2004.

[DMA02] Mathieu Desbrun, Mark Meyer, and Pierre Alliez. Intrinsic parameterizations of surface

meshes. InProceedings of Eurographics, 2002.

[DMSB99] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. Implicit fairing of irregu-

lar meshes using diffusion and curvature flow. InProceedings of the 26th Annual Conference

on Computer Graphics and Interactive Techniques, pages 317–324. ACM Press/Addison-

Wesley Publishing Co., 1999.

[Dzi91] G. Dziuk. An algorithm for evolutionary surfaces.Numer. Math., 58, 1991.

130

[EDD+95] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, and

Werner Stuetzle. Multiresolution analysis of arbitrary meshes.Proceedings of SIGGRAPH

95, pages 173–182, August 1995.

[EHP02] Jeff Erikson and Sariel Har-Peled. Optimally cutting a surface into a disk. InProceedings of

the 18th Annual ACM Symposium on Computational Geometry, 2002. to appear.

[FEF98] G. Ford and A. El-Fallah. On mean curvature in non-linear image filtering.Pattern Recog-

nition Letters, 19:433–437, 1998.

[Flo97] Michael S. Floater. Parametrization and smooth approximation of surface triangulations.

Computer Aided Geometric Design, 14(3):231–250, 1997. ISSN 0167-8396.

[Flo02] Michael Floater. Mean value coordinates.Preprint, 2002.

[For88] Bengt Fornberg. Generation of finite difference formulas on arbitrarily spaced grids.Math.

Comput., 51:699–706, 1988.

[FR01] Michael S. Floater and Martin Reimers. Meshless parameterization and surface reconstruc-

tion. Computer Aided Geometric Design, 18(2):77–92, March 2001.

[Fre00] Pascal J. Frey. About surface remeshing. InProceedings of the 9th Int. Meshing Roundtable,

pages 123–136, 2000.

[Fu93] J. Fu. Convergence of curvatures in secant approximations.Journal of Differential Geome-

try, 37:177–190, 1993.

[Fuj95] Koji Fujiwara. Eigenvalues of laplacians on a closed riemannian manifold and its nets. In

Proceedings of the AMS 123, pages 2585–2594, 1995.

[GB98] P. L. George and H. Borouchaki, editors.Delaunay Triangulation and Meshing Application

to Finite Elements. HERMES, Paris, 1998.

[GGH02] X. Gu, S. Gortler, and H. Hoppe. Geometry images. InProceedings of SIGGRAPH, 2002.

[GH95] Cindy M. Grimm and John F. Hughes. Modeling surfaces of arbitrary topology using mani-

folds.Proceedings of SIGGRAPH 95, pages 359–368, August 1995.

[GH98] Michael Garland and Paul Heckbert. Simplifying surfaces with color and texture using

quadric error metrics. InIEEE Visualization Conference Proceedings, pages 263–269, 1998.

[Gou71] H. Gouraud. Continuous shading of curved surfaces.IEEE Transactions on Computers,

6(20):623–629, 1971.

131

[Gra98] Alfred Gray, editor.Modern Differential Geometry of Curves and Surfaces. Second edition.

CRC Press, 1998.

[GS01] Craig Gotsman and Victor Surahhsky. Guaranteed intersection-free polygon morphing.

Computer and Graphics, 25(1):67–75, 2001.

[GSS99] Igor Guskov, Wim Sweldens, and Peter Schröder. Multiresolution signal processing for

meshes. InSIGGRAPH 99 Conference Proceedings, pages 325–334, 1999.

[GVSS00] Igor Guskov, Kiril Vidimce, Wim Sweldens, and Peter Schröder. Normal meshes. InPro-

ceedings of SIGGRAPH, pages 95–102, 2000.

[GWH01] Michael Garland, Andrew Willmott, and Paul S. Heckbert. Hierarchical face clustering on

polygonal meshes.2001 ACM Symposium on Interactive 3D Graphics, pages 49–58, March

2001.

[Had57] H. Hadwiger.VorlesungenÜber Inhalt, Oberfl̈ache und Isoperimetrie. Springer-Verlag,

1957.

[Ham93] Bernd Hamann. Curvature approximation for triangulated surfaces. In G. Farinet al., editor,

Geometric Modelling, pages 139–153. Springer Verlag, 1993.

[HAT+00] Steven Haker, Sigurd Angenent, Allen Tannenbaum, Ron Kikinis, Guillermo Sapiro, and

Michael Halle. Conformal surface parameterization for texture mapping.IEEE Transactions

on Visualization and Computer Graphics, 6(2):181–189, April-June 2000.

[HG99] Paul S. Heckbert and Michael Garland. Optimal triangulation and quadric-based surface

simplification.Journal of Computational Geometry: Theory and Applications, November

1999.

[HG00] K. Hormann and G. Greiner. Mips: An efficient global parametrization method. In P.-J.

Laurent, P. Sablonnière, and L. L. Schumaker, editors,Curve and Surface Design: Saint-

Malo 1999, pages 153–162. Vanderbilt University Press, 2000.

[HGC98] K. Hormann, G. Greiner, and S. Campagna. Hierarchical parametrization of triangulated

surfaces. In H.-P. Seidel B. Girod, H. Niemann, editor,Proceedings of Vision, Modeling and

Visualization, pages 219–226, 1998.

[HLG01] K. Hormann, U. Labsik, and G. Greiner. Remeshing triangulated surfaces with optimal pa-

rameterizations.Computer-Aided Design, 33:779–788, 2001.

[HP04] Klaus Hildebrandt and Konrad Polthier. Anisotropic filtering of non-linear surface features.

In Proceedings of Eurographics, 2004.

132

[HS97] J. M. Hyman and M. Shashkov. Natural discretizations for the divergence, gradient and curl

on logically rectangular grids.Applied Numerical Mathematics, 25:413–442, 1997.

[HSS97] J. M. Hyman, M. Shashkov, and S. Steinberg. The numerical solution of diffusion prob-

lems in strongly heterogenous non-isotropic materials.Journal of Computational Physics,

132:130–148, 1997.

[KCP92] James R. Kent, Wayne E. Carlson, and Richard E. Parent. Shape transformation for polyhe-

dral objects.Proceedings of SIGGRAPH 92, pages 47–54, July 1992.

[KCVS98] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. Interactive multi-

resolution modeling on arbitrary meshes. InSIGGRAPH 98 Conference Proceedings, pages

105–114, July 1998.

[KDA97] P. Kornprobst, R. Deriche, and G. Aubert. Nonlinear operators in image restoration. In

CVPR’97, pages 325–331, Puerto-Rico, 1997.

[KL96] Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense polygon meshes.

Proceedings of SIGGRAPH 96, pages 313–324, August 1996.

[KLM98] P. Kresk, G. Lukacs, and R. Martin. Algorithms for computing curvatures from range data.

The Mathematics of Surfaces VIII, pages 1–16, 1998.

[KM00] J.G.E.M. Fraaije K. Michielsen, H. De Raedt. Morphological characterization of spatial

patterns.Prog. Theor/ Phys. Suppl., 138:453–548, 2000.

[KMS97] R. Kimmel, R. Malladi, and N. Sochen. Images as embedding maps and minimal surfaces:

Movies, color, and volumetric medical images. InIEEE CVPR’97, pages 350–355, 1997.

[Kob97] Leif Kobbelt. Discrete fairing. InProceedings of the Seventh IMA Conference on the Math-

ematics of Surfaces ’97, pages 101–131, 1997.

[L év01] Bruno Ĺevy. Constrained texture mapping for polygonal meshes.Proceedings of SIG-

GRAPH 2001, pages 417–424, August 2001.

[LK84] S. Lien and J. Kajiya. A symbolic method for calculating the integral properties of arbitrary

nonconvex polyhedra.IEEE CG&A, 4(9), October 1984.

[LM98] Bruno Lévy and Jean-Laurent Mallet. Non-distorted texture mapping for sheared triangu-

lated meshes.Proceedings of SIGGRAPH 98, pages 343–352, July 1998.

[LPRM02] Bruno Ĺevy, Sylvain Petitjean, Nicolas Ray, and Jérôme Maillot. Least squares conformal

maps for automatic texture atlas generation.ACM SIGGRAPH Proceedings, July 2002.

133

[LPVV01] F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust. Computing a canonical polygonal

schema of an orientable triangulated surface. InProceedings of 17th Annu. ACM Sympos.

Comput. Geom., pages 80–89, 2001.

[LSS+98] Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David Dobkin.

Maps: Multiresolution adaptive parameterization of surfaces.Proceedings of SIGGRAPH

98, pages 95–104, July 1998.

[LT98] P. Lindstrom and G. Turk. Fast and memory efficient polygonal simplification. InIEEE

Visualization Proceedings, pages 279–286, 1998.

[Max99] Nelson Max. Weights for computing vertex normals from facet normals.Journal of Graphics

Tools, 4(2):1–6, 1999.

[MDSB02] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. Discrete differential-

geometry operators for triangulated 2-manifolds. InVisMath ’02 Proceedings, 2002.

[Mil95] Roger B. Milne. An adaptive level-set method.PhD Thesis, University of California, Berke-

ley, December 1995.

[MLBD02] Mark Meyer, Haeyoung Lee, Alan Barr, and Mathieu Desbrun. Generalized barycentric

coordinates on irregular polygons.Journal of Graphics Tools, 7(1):13–22, 2002.

[Mor01] J.M. Morvan. On generalized curvatures.Preprint, 2001.

[MS92] Henry P. Moreton and Carlo H. Séquin. Functional minimization for fair surface design. In

SIGGRAPH 92 Conference Proceedings, pages 167–176, July 1992.

[MS96] R. Malladi and J.A. Sethian. Image processing: Flows under min/max curvature and mean

curvature.Graphical Models and Image Processing, 58(2):127–141, March 1996.

[MV97] Alan M. McIvor and Robert J. Valkenburg. A comparison of local surface geometry estima-

tion methods.Mach. Vision Appl., 10(1):17–26, 1997.

[MYV93] Jérôme Maillot, Hussein Yahia, and Anne Verroust. Interactive texture mapping.Proceed-

ings of SIGGRAPH 93, pages 27–34, August 1993.

[OBB00] Yutaka Ohtake, Alexander G. Belyaev, and Ilia A. Bogaevski. Polyhedral surface smooth-

ing with simultaneous mesh regularization. InProceedings of the Geometric Modeling and

Processing 2000, page 229. IEEE Computer Society, 2000.

[Ost01] Victor Ostromoukhov. A simple and efficient error-diffusion algorithm. InProceedings of

SIGGRAPH, pages 567–572, 2001.

134

[PFH00] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures.Proceedings of SIG-

GRAPH 2000, pages 465–470, July 2000.

[PFTV94] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.Numer-

ical Recipes in C: the Art of Scientific Computing. Cambridge University Press, New York,

USA, 2nd edition, 1994.

[PG01] Mark Pauly and Markus Gross. Spectral processing of point-sampled geometry. InProceed-

ings of SIGGRAPH, pages 379–386, 2001.

[PM90] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639, July 1990.

[PM93] Laxmi Parida and S.P. Mudur. Constraint-satisfying planar development of complex sur-

faces.Computer Aided Design, 25(4):225–232, April 1993.

[PP93] Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and their conju-

gates.Experimental Mathematics, 2(1):15–36, 1993.

[PP03] Konrad Polthier and Eike Preuss. Identifying vector fields singularities using a discrete

hodge decomposition. In H.C. Hege and K. Polthier, editors,Visualization and Mathematics

III , pages 113–134. Springer Verlag, 2003.

[PR99] T. Preußer and M. Rumpf. Anisotropic nonlinear diffusion in flow visualization. InIEEE

Visualization, pages 323–332, 1999.

[PS98] Konrad Polthier and Markus Schmies. Straightest geodesics on polyhedral surfaces. In H.C.

Hege and K. Polthier, editors,Mathematical Visualization. Springer Verlag, 1998.

[PSS01] Emil Praun, Wim Sweldens, and Peter Schröder. Consistent mesh parameterizations.Pro-

ceedings of SIGGRAPH 2001, pages 179–184, August 2001.

[PV97] J-C. Ĺeon P. V́eron. Static polyhedron simplification using error measurements.Computer-

Aided Design, 29(4):287–298, 1997.

[ROF92] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.

Physica D, 60:259–268, 1992.

[Rum96] Martin Rumpf. A variational approach to optimal meshes.Numer. Math., (72):523–540,

1996.

[RVSS00] A. Rassineux, P. Villon, J-M. Savignat, and O. Stab. Surface remeshing by local hermite

diffuse interpolation.International Journal for Numerical Methods in Engineering, 49:31–

49, 2000.

135

[San76] Luis A. Santalo.Integral Geometry and Geometric Probability. Addison-Wesley, 1976.

[SdS00] Alla Sheffer and E. de Struler. Surface parameterization for meshing by triangulation flat-

tening. InProceedings of the 9th International Meshing Roundtable, Sandia National Lab-

oratories, pages 161–172, Oct. 2000.

[Set96] James A. Sethian.Level-Set Methods: Evolving Interfaces in Geometry, Fluid Dynamics,

Computer Vision, and Material Science. Cambridge Monographs on Applied and Computa-

tional Mathematics, 1996.

[SF96] Meng Sun and Eugiene Fiume. A technique for constructing developable surfaces.Graphics

Interface ’96, pages 176–185, May 1996.

[SGSH02] Pedro Sander, Steven Gortler, John Snyder, and Hugues Hoppe. Signal-specialized parame-

terization.MSR Technical Report MSR-TR-2002-27, 2002.

[Sha96] J. Shah. Curve evolution and segmentation functionals: Applications to color images. In

IEEE ICIP’96, pages 461–464, 1996.

[She96] Jonathan R. Shewchuk. Triangle: Engineering a 2d quality mesh generator and delaunay

triangulator. InProceedings of the First workshop on Applied Computational Geometry,

Philadelphia, Pennsylvania, pages 123–133, 1996.

[She02] A. Sheffer. Spanning tree seams for reducing parameterization distortion of triangulated

surfaces. InProceedings of Shape Modeling International, 2002. to appear.

[Sim94] R. Bruce Simpson. Anisotropic mesh transformations and optimal error control.Appl. Num.

Math., 14(1-3):183–198, 1994.

[SK97] Jens Schmalzing and Martin Kerscher. Minkowsky functionals in cosmology.Generation of

Large-Scale Structure in Cosmology, pages 255–260, 1997.

[SKM98] N. Sochen, R. Kimmel, and R. Malladi. A geometrical framework for low level vision.IEEE

Trans. on Image Processing, 17(3):310–318, 1998.

[SSGH01] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture mapping pro-

gressive meshes.Proceedings of SIGGRAPH 2001, pages 409–416, August 2001.

[Tau95a] Gabriel Taubin. Estimating the tensor of curvature of a surface from a polyhedral approxi-

mation. InProc. 5th Intl. Conf. on Computer Vision (ICCV’95), pages 902–907, June 1995.

[Tau95b] Gabriel Taubin. A signal processing approach to fair surface design. InSIGGRAPH 95 Con-

ference Proceedings, pages 351–358, August 1995.

136

[Ter88] Demetri Terzopoulos. The computation of visible-surface representations.IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 10(4), July 1988.

[TLHD03] Yiying Tong, Santiago Lombeyda, Anil N. Hirani, and Mathieu Desbrun. Discrete multi-

scale vector field decomposition.ACM Trans. Graph., 22(3):445–452, 2003.

[TM02] B. Thibert and J.M. Morvan. Approximations of a smooth surface with a triangulated mesh.

Preprint, 2002.

[TOC98] Joseph R. Tristano, Steven J. Owen, and Scott A. Canann. Advancing front surface mesh

generation in parametric space using a riemannian surface definition. InProceedings of 7th

International Meshing Roundtable, Sandia National Labs, pages 429–445, oct 1998.

[TT99] Jack Tumblin and Greg Turk. Lcis: A boundary hierarchy for detail-preserving contrast

reduction. InSIGGRAPH 98 Conference Proceedings, pages 83–90, 1999.

[Tur92] Greg Turk. Re-tiling polygonal surfaces. InProceedings of SIGGRAPH, pages 55–64, 1992.

[Tut63] W. T. Tutte. How to draw a graph.Proc. London Math. Soc., (13):743–768, 1963.

[TW98] Grit Thürmer and Charles Ẅuthrich. Computing vertex normals from polygonal facets.

Journal of Graphics Tools, 3(1):43–46, 1998.

[Uli88] Robert A. Ulichney. Dithering with blue noise. InProceedings of the IEEE, volume 76(1),

pages 56–79, 1988.

[vDA95] R.M.J. van Damme and L. Aboul. Tight triangulations.Mathematical Methods for Curves

and Surfaces, 1995.

[VRKS01] Jens Vorsatz, Christian Rössl, Leif Kobbelt, and Hans-Peter Seidel. Feature sensitive

remeshing. InEurographics Proceedings, pages 393–401, sep 2001.

[WW94] Willian Welch and Andrew Witkin. Free-form shape design using triangulated surfaces. In

SIGGRAPH 94 Conference Proceedings, pages 247–256, July 1994.

