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Abstract

For the applications of high Reynolds number flows, the vortex method presents the advantage
of being free from numerically dissipative truncation error. In practice, however, many vortex
methods introduce some numerical dissipation in mesh-based spatial adaption stages, or schemes
such as vortex particle splitting. The need for spatial adaption in vortex methods arises from the
Lagrangian framework, which results in an increase of discretization over time. Presently, a vortex
method is devised that incorporates radial basis function (RBF) interpolation to provide spatial
adaption in a fully mesh-less formulation. Numerical experiments show that there is a potential for
higher accuracy in comparison with the standard remeshing techniques. The rate of convergence of
the new spatial adaption method is exponential, however convection error limits the vortex method
to second order convergence. Avenues for future research involve decreasing convection error, for
example by means of deformable basis functions. Nevertheless, the RBF-based spatial adaption
scheme has various advantages, in addition to a demonstrated higher accuracy and the obvious
benefit of not requiring a regular arrangement of particles or mesh. One presently demonstrated
advantage is automatic core size control for the core spreading viscous method, without the need
for vortex particle splitting.

Three applications have been successfully treated with the presently developed vortex method.
The relaxation of monopoles under non-linear perturbations has been computed, resulting in notice-
able improvements compared to previously published results. The existence of a quasi-steady state
consisting of a rotating tripole has been corroborated, for the case of large amplitude perturbations.
The second application consists of the early adaptation of two co-rotating vortices at high Reynolds
number, characterized by elliptical deformation of the cores, as well as small scale deformation in
the weak areas of vorticity. This is considered to pose a severe test on the present method, or indeed
any method. Comparison with results using spectral methods demonstrate in practice the potential
for high accuracy computations using a mesh-less method, and in addition show that the naturally
adaptive vortex method can result in considerably reduced problem sizes. Finally, for the calculation
of non-symmetric Burgers vortices, a correction to the core spreading method for out-of-plane strain
was developed. The results establish the capability of the vortex method for the computation of

vortices under three-dimensional strain.
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Chapter 1

Introduction and Overview

In this research, a new formulation of the vortex particle method for incompressible flows is imple-
mented. The general objective has been to develop improvements in the vortex method to enhance
its suitability for the computation of high-Reynolds number flows. To this purpose, the accuracy
limitations of the different algorithmic elements of a vortex method have been investigated, with
the aim of producing developments in the key components of a code implementation. An additional
objective of this investigation is the development of a vortex method that is wholly grid-free, and
the demonstration in practice of the capabilities of a grid-free method to accurately compute flows

at moderate and high Reynolds numbers.

Vortex methods for the simulation of incompressible flows correspond to a numerical approach
with three fundamental features. First, the Navier-Stokes or Euler equations are formulated in
terms of vorticity and so the spatial discretization is carried out over the vorticity field instead of
the velocity field. Second, making use of one of Helmholtz’ theorems which states the correspondence
of vorticity elements with material fluid elements, the computational vortex elements are Lagrangian
and so convect with the fluid velocity. And third, to obtain the fluid velocity one makes use of the
fact that the vorticity, defined as w = V x u, can be inverted giving the velocity u as an integral over
the vorticity field. This is the Biot-Savart law in vorticity kinematics, which allows to completely
describe the flow field by tracking vorticity elements.

The fundamental features described above generate both the most desirable aspects of vortex
methods, as well as their most serious difficulties. Describing the flow in terms of vorticity is desirable
due to the intuitive power of visualizing the vorticity field, especially in complex and unsteady flows.
Another advantage is the fact that the pressure drops out of the governing equation, and thus
only needs to be solved for when and where force measurements are desired. In addition, as the
vortex method literature profusely extols, the fact that the vorticity field is predominantly compact
means that smaller sized computational domains can be used, in comparison with primitive variable

formulations, and also boundary conditions at infinity can be automatically satisfied. In contrast,
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satisfying the free-space boundary condition of external flows can be a delicate matter in grid-based
methods with truncated flow domains. Furthermore, the Lagrangian vortex particles convect without
numerical dissipation, as the non-linear term of the Euler or Navier-Stokes equations is traded by
a set of ordinary differential equations for the particle trajectories. This is, again, in contrast with
grid-based schemes which inevitably suffer from numerical dissipation. Finally, the essentially grid-
free nature of the vortex particle method is itself an advantage, as grid-generation is often one of the
most expensive processes in computational fluid dynamics, CFD. The difficulties which arise with
vortex methods, on the other hand, will be discussed after first giving a brief historical account.

Vortex methods have been around almost as long as finite differences and the earliest methods
of computational mathematics. Indeed, the seminal work of Préger [160] with vortex distributions
on surfaces is the origin of panel methods —widely used in the aeronautics industry to this day,
whereas Rosenhead’s work on the calculation of vortex sheets with the point vortex method [169]
was of such great consequence that it is still very much cited today; this work is a true classic in the
field. Interestingly, Rosenhead’s point vortex method was partially discredited around 1960 by the
observation that proof of convergence of the method was lacking [28], and by computer calculations
which exhibited apparently chaotic motion of the particles [29]. This last problem was attributed
to the singular character of the induced velocity close to a point vortex and different approaches
were proposed to deal with it. One of these lead to the vortex blob method [42] which is used in
this investigation, while others deal with the problem analytically by removing the singularity in the
Biot-Savart expression (see [106, 108, 107]).

The modern vortex method was born in the 1970s and the prominent investigators involved in its
early development are A. Chorin, A. Leonard, and C. Rehbach in France. Much interest in vortex
methods during the early 1980s focused on mathematical aspects such as the convergence properties
[83, 81, 13, 14, 15, 16]. In later years the development of the method was very rich, mainly in
relation to the issues of accurate inclusion of viscous effects, the treatment of boundary conditions
at solid surfaces, and the efficient reduction of the computational costs, so as to make them suitable
for the high-resolution simulation of unsteady, high-Reynolds number flows. Comprehensive reviews
of the development of vortex methods and their applications can be found in [113, 114, 197, 183],
and [162]; see [5] for a collection of articles that reveal the state of the subject at the beginning of
the 1990’s. Recently, a book has been published that is dedicated to the subject including many
practical considerations for the implementation of the methods [48].

In spite of their contemporaneous evolvement with finite differences, vortex methods have not
become a member of the standard or mainstream tools of CFD. They have sometimes suffered the
reputation of being mostly coarse attempts at modelling flows of high complexity and unsteadiness,
those flows which are still all but intractable with the traditional CFD methods. The main difficulties

for vortex methods to be accepted in the mainstream of computational fluid dynamics have been
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threefold: (i) the numerical complexity of calculating the velocity using the Biot-Savart law, which
is in fact analogous to an “N-body problem” and hence requires order N2 operations for N vortex
elements; (i7) the inconvenience of adding viscous effects in a Lagrangian formulation, diffusion
being viewed as much more readily computed using grid-based methods; and, (%) the effect of the
Lagrangian time evolution, which results on a loss of discretization accuracy due to the distortion
of the particle distribution.

The first of the mentioned difficulties has been successfully addressed by the application of the
Fast Multipole Method [80] for the calculation of the particle velocities, whereas some workers
have bypassed the problem with mixed Eulerian-Lagrangian formulations such as the vortex-in-cell
method [43, 55, 175, 45, 196, 30, 64, 119, 118, 54], although at the cost of adding interpolation
errors. The inclusion of viscous effects, on the other hand, has benefited from profuse research,
there being at least seven proven schemes, with varied degree of success. The loss of accuracy due
to Lagrangian distortion of the particles, finally, has been generally dealt with by the application of
“remeshing schemes”, which utilize high-order interpolation kernels on a Cartesian tensor product
formulation. The standard remeshing schemes have made long-time, accurate calculations of com-
plex flows possible; they have, however, caused quite a bit of controversy as they add a mesh to an
otherwise mesh-less method. In addition, they do introduce some interpolation error, generally ac-
cepted as tolerable. As one wishes to simulate flows at higher Reynolds numbers, however, increased
resolution becomes crucial and the interpolation error may be a limitation. Also, a more accurate
method may allow for reduced problem sizes at high Reynolds numbers (i.e., smaller numbers of
vortex particles for a given accuracy). But most importantly, there are problems in fluid dynam-
ics where numerical diffusion, which is introduced inevitably by mesh-based interpolation schemes,
can completely annihilate the physics. This is particularly true of vortical flows at high Reynolds
numbers. One can cite the example of vortex-blade interaction in rotorblades, where capturing the
blade tip vortices for one or more revolutions of the rotor is still impracticable using conventional
mesh-based methods [2, 3]. For this reason, the present investigation endeavors to provide a fully
mesh-less method of calculation. It is argued that the mesh-less approach can be even extended to
spatial adaption processes, and this concept is demonstrated by using a technique of radial basis
functions for scattered data interpolation. Ample numerical experimentation will demonstrate that
increased accuracy is possible, in comparison with standard vortex methods, and applications in

viscous vortex interaction at high Reynolds numbers will thus be practicable.

1.1 Basic Formulation of a Vortex Method

Let u(x,t) be the velocity field and w(x,t) = V x u(x,t) the vorticity field. Taking the curl of

the momentum equation and considering an incompressible fluid for which V - u(x,t) = 0, the
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vorticity transport equation is obtained. This is the governing equation in vortex methods, which
for three-dimensional flow corresponds to the following vector equation,
ow

E+U~Vw:w~Vu+l/Aw. (1.1)

The assumptions in the above equation are: constant density flow, conservative body forces, an
inertial frame of reference and unbounded domain. In the case of a two dimensional and inviscid
flow the right-hand side of (1.1) is zero and the governing equation reduces to the simple form
%“t’ = 0, where D% stands for the material derivative. This corresponds to the basic formulation of
vortex methods, for which clearly a Lagrangian method based on elements of vorticity is natural
and ideal. Based on this simplest of formulations, the vortex method historically found its first
successful applications in the simulation of phenomena governed by the 2D Euler equations. Sub-
sequently, vortex methods have been extended to three-dimensional flow by including the vortex
stretching/tilting term, and have incorporated the presence of internal boundaries by using vortex
sheet formulations in the inviscid case and vorticity generation models with boundary elements for
the viscous case. Viscous effects were added first by the random walk method [42], but a number of
so-called deterministic viscous schemes have been proposed and tested during the last two decades.
And recently, some researchers have ventured on the addition of compressibility effects [66, 67, 143].

In the vortex blob discretization, the elements are identified by a position vector, x;; a strength

vector (vorticity xvolume) of circulation; and a core size, o;. The discretized vorticity field is ex-

pressed as the sum of the vorticities of the vortex elements in the following way:

N
w(x, )~ wh(x,1) =Y Ti(t)(s, (x — xi(t)), (1.2)

i=1
where T'; corresponds to the vector circulation strength of particle i (scalar in 2D). In the blob
version of the vortex method —in contrast to point vortices, the elements have a non-zero core size
o; and a characteristic distribution of vorticity ¢, , commonly called the cutoff function. Frequently,
the blob cutoff function is a Gaussian distribution and the core sizes are uniform (o; = o), which

means that in two dimensions one has

1 _ 2
Co(%) = exp( k‘;' ) (1.3)

where the constant & determines the width of the cutoff and is chosen by different authors as either
1, 2 or 4. For example, in the review paper of Leonard [113], the Gaussian blob is presented with
k = 1; this form is also used in [16, 162] and many others [70, 44, 147, 126]. In the accuracy studies
of Perlman [152], k = 2 is chosen, as in [105] and [193]. In Rossi’s studies of core spreading diffusion

[170], finally, & = 4 is used. The three versions of the 2D Gaussian blob are plotted in Figure 1.1.
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Figure 1.1: Gaussian blob distributions, three different versions (1D slice of 2D functions).

In this investigation, we have used k = 2.
In the majority of vortex methods (almost all), the Lagrangian formulation is expressed by
assuming that the vortex elements convect without deformation with the local velocity. The velocity

is obtained from the vorticity using the Biot-Savart law:

u(x,t) = /(V x G)(x — x")w(x', t)dx’

= /K(xfxl)w(x',t)dx' = (K *w)(x,1) (1.4)

where K = V x G is known as the Biot-Savart kernel, G is the Green’s function for the Poisson
equation, and * represents convolution. For example, in two dimensions the Biot-Savart law is

written explicitly as

u(x, ) = %/ (X_T;)X;(;(/’t)kdx’. (1.5)

For the customary case of an axisymmetric cutoff function ¢ = {(r), r = |x|, the velocity kernel

can be obtained analytically. The velocity regularization function is defined as the integral

q(r) = /OT ¢(r)rdr. (1.6)

The regularized Biot-Savart kernel is expressed as follows, where X represents cross product (with

the vorticity vector, or wé, in the 2D case) and d is the dimension:

Therefore, for the 2D Gaussian blob with & = 2 one has
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K, (x)
The formula for the discrete Biot-Savart law in two dimensions gives the velocity as follows,

N
u(x,t) = _er K, (x — x;). (1.9)

Finally, the Lagrangian formulation of the (viscous) vortex method in two-dimensions is expressed

in the following system of equations:

d;i = u(x;, t) (1.10)
Z—‘;’ =1V + B.C. (1.11)

The complete numerical method is defined by Equations (1.10) and (1.11) which express that
the method is to be implemented by integrating the particle trajectories due to the local fluid
velocity, while the velocity is obtained from the vorticity using the Biot-Savart law. The vorticity
field evolves due to the effects of viscosity, both in the free-stream and on the boundaries (no-slip
condition, denoted by B.C.). The viscous effects in the free-stream are enforced by one of a variety
of viscosity schemes available for vortex methods (described in §2.1), while the effects due to solid
boundaries are traditionally accounted for by generation of vorticity implemented in a version of
the boundary element method. This is based on the physical mechanism by which the solid wall is

dw

a source of vorticity that enters the flow, so a vorticity flux 52 may be determined at the wall to

satisfy the boundary condition of no-slip at the surface [104].

1.2 Overview

As mentioned, the objective of this research is the development of a vortex method which is capable
of computing high-Reynolds number flows accurately. The main difficulty in computing viscous
flow at high Reynolds numbers is the fact that numerical diffusion can dominate over the physical
viscosity, which many times destroys the physics that one wishes to observe. This is particularly
true of viscous flows with concentrated regions of vorticity.

To improve on the accuracy that can be obtained with the current vortex methods, one needs
to address one-by-one the different components of a realistic implementation of the method, and
find where the accuracy issues lie. To start, it is helpful to get a broad picture by considering the
“building-blocks” of any viscous vortex method implementation. Based on the description of the
algorithm given above, a basic vortex method implementation can be represented graphically by the

flowchart in Figure 1.2. This diagram represents the most basic building blocks of a vortex method,



(0) DISCRETIZATION

(1) VELOCITY EVALUATION - Fast Summation

(2A) CONVECTION

(2B) DIFFUSION

(3) Satisfaction of B.C.’s - Measurement of Forces

(4) Spatial Adaption

Figure 1.2: Basic building blocks of a viscous vortex method implementation.

and their algorithmic relationships. In small capital letters are indicated the compulsory, minimal
components of a viscous vortex method. In slanted font are indicated the parts which, although
not obligatory, are generally necessary in a modern application of vortex methods to bounded flows.
The arrows designate the program flow in a time-marching algorithm.

The first basic component of a vortex method, the DISCRETIZATION, consists of representing
accurately a given, initial, vorticity field using vortex particles or blobs. This stage includes the
choice of a cutoff function and optimal discretization parameters. In essence, as will be discussed
amply later on, the problem of accurately discretizing a vorticity field in the vortex method is one
of function approximation using nodal functions with global influence. This problem, fortunately,
has recently benefitted from considerable research efforts in the function approximation community,
and the present work will use their results to remarkable benefit.

The next component in the diagram is the VELOCITY EVALUATION on the location of each
vortex element, by use of the discrete Biot-Savart law. Due to the global influence of the vortex
particles, calculating the velocity on a single point in space requires O(N) operations, and so the
complexity of the direct evaluation of velocity is O(NN?). This situation is analogous to the calculation

of gravity forces due to the interaction of N masses, which has become known as the “N-body
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problem”. Thanks to this analogy, a very important development in vortex methods was due to
the cross-over application of the “fast-methods” developed for astrophysics, in particular the Fast
Multipole Method (FMM) [80]. These methods have led to the approximate evaluation of velocity
with a complexity of O(N log N) and even O(N). Although a production vortex code would almost
certainly require a fast summation method for velocity evaluation, particularly in three dimensions,
this component has not been incorporated in the present investigation. On the one hand, the solution
is well known, and we cannot hope to contribute much in this subject; the application of the FMM in
vortex methods is well researched and efficient implementations have been developed [182]. It is, in
addition, a component of the implementation that involves great programming effort. On the other
hand, the use of a fast Biot-Savart method involves an approximation, and it introduces a controllable
error. In this investigation, it is desirable to study the accuracy of all the other components of the
vortex method with respect to the direct Biot-Savart evaluation. Subsequently, in a production code
with fast velocity evaluation, the error introduced by the fast velocity evaluation is controlled by the
multipole acceptance criterion [181], which can be provided as an input parameter to the calculation.

Perhaps at the heart of the vortex method are the components labelled (2a) and (2b), i.e.,
CONVECTION and DIFFUSION of the vortex blob elements. The Lagrangian convection of the vortex
particles involves using an adequate time-stepping scheme and choosing an appropriate step size
according to the characteristics of the flow and the desired accuracy. These issues will be briefly
discussed later, and this investigation will for the most part utilize Runge-Kutta integration schemes
of fourth order. Providing viscous diffusion effects, on the other hand, can be quite difficult in
the context of a Lagrangian method. Over the past three decades, a vast amount of research in
this subject has produced at least seven different schemes for adding viscosity in a vortex method
calculation. In more or less chronological order, these are the random vortex method (RVM), core
spreading, particle strength exchange (PSE), the vortex redistribution method, diffusion velocity,
Fishelov’s method, and the triangulated vortex element method. Due to this profusion of methods,
this investigation includes a review and assessment of the advantages and disadvantages of viscous
schemes, after which a case is made for the core spreading method. Also, the problems associated
with using core spreading will be tackled in a novel (yet simple) way, avoiding numerically diffusive
splitting and merging schemes [170, 171].

The splitting/merging schemes mentioned above are one example of Spatial Adaption in vortex
methods. In the case of core spreading, convergence of the method necessitates some form of core
size control, tackling the concerns of [79]. In general, however, the Lagrangian deformation of the
particle field is tied to a loss of accuracy of discretization, no matter the viscous scheme used. This
issue will be thoroughly investigated in the present work, bringing into play new research in the area
of function approximation with nodal functions. Traditionally, vortex methods have incorporated

spatial adaption in the form of “remeshing” and “rezoning” algorithms, which consist in re-starting
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the particle field on a regular lattice every few time steps, and obtaining the circulation strength at
the new particle locations by interpolation or other means. The present investigation will include
a considerable amount of numerical experiments and an analysis of the standard methods. In
particular, it will be demonstrated that remeshing can introduce visible interpolation errors and can
put a limitation on the accuracy of the vortex method. Furthermore, an approach for providing
spatial adaption in a mesh-less formulation will be developed and demonstrated, which is based
on the technique of radial basis function (RBF) interpolation [31, 32]. This will be the principal
contribution of the present research to increasing the accuracy of vortex methods for high-Reynolds
number flow computations.

Finally, a vortex method application to bounded flows necessitates the Satisfaction of boundary
conditions at the wall. The standard way to provide this, since the introduction of the vortex blob
method by Chorin [42], is by application of the concept of vorticity generation at the surface.
Implementations for this concept vary, but there is a widespread preference for Neumann-type
formulation of the vorticity boundary condition and many workers use a model of vorticity creation at
the wall. The vorticity creation algorithm is inspired by the model of Lighthill [116], who invoked the
existence of vorticity sources and vorticity sinks in regions of falling or rising pressure (respectively)
along a boundary. The prominent approach of formulating a viscous splitting algorithm [46, 104] to
satisfy the boundary conditions has led to the popular use of boundary element methods (BEMs)
coupled with the vortex method [101, 103, 105, 115, 193, 155, 194, 154, 156]. Although the present
investigation has not included a study regarding the accuracy of the standard BEM-vortex method
coupling, some ideas have sprouted from the survey of research in the subject of radial basis functions.
It is well-known that panel methods “leak”, that is, due to the satisfaction of the boundary conditions
at a control point and the use of flat panels to approximate a curved surface, there is a non-zero
velocity at the edges of the boundary elements. Since radial basis functions are now also being utilized
for accurate three-dimensional geometric modelling [35], it is possible to conceive an application of
nodal functions on surfaces to formulate boundary conditions in a vortex method without panels.
This, however, is only speculative at the moment and it is proposed as one of the future roads for

research.

In the next chapter, the current standard and experimental techniques that have been identified
as topics where this investigation makes a contribution will be presented. This includes the subject
of viscous vortex methods and also the vortex blob discretization and spatial adaption. In the
first case, one is confronted by a vast assortment of methods that have been developed over the
years, neither of which seems to be fully satisfactory. The goal of the discussion of this topic will
be to identify where there is the most potential for an accurate method to compute flows at high

Reynolds numbers, and this potential will be associated with the facility to produce a mesh-less
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formulation. Although, as will be seen, hundreds, maybe thousands, of research hours have been
spent developing some elaborate algorithms to account for viscous effects, this investigation will
be in support of the most utterly simple approach, namely, the core spreading method. It will be
argued that the sole problem that rests is the provision of an accurate means for adaptive spatial
refinement. Which brings to the next topic in the chapter: the spatial discretization in vortex
methods. The way in which an existing or initial vorticity field is discretized using vortex blobs will
be discussed first. Then, the different schemes that have been used for providing spatial adaption
will be reviewed. It will be seen that all the existing techniques have the shortcoming of introducing
a mesh, or rather of being dependent on a regular, Cartesian arrangement of particles. That is, all
except for the vortex splitting concept, which nevertheless suffers from numerical dissipation. This
discussion will aid in later making the connection between the vortex blob representation and the
approximation of functions using nodal bases of global influence, which are briefly introduced at the
end of Chapter 2. This, in turn, will lead to formulating applications of the technique of radial basis
function interpolation to the initialization of a vortex method calculation and to spatial adaption.
These applications will not only allow for a fully grid-free numerical method, but will provide for
considerable increase in the accuracy that can be expected from a vortex method computation.
Subsequently, Chapter 3 will present a numerical investigation into the accuracy of vortex meth-
ods, including the effects of standard remeshing schemes. To investigate the accuracy of the vortex
blob discretization and of the Lagrangian evolution of the vortex particles, two classic test problems
are used, both problems of the simplest possible nature: an axisymmetric, inviscid vortex patch

(1.12), and a Lamb-Oseen vortex (1.13), given by

1—r2F rgi
w(r) = ( ) (1.12)

2
= 451)/75 exp <—Lt> : (1.13)
where r = 22 + y2. The first problem is particularly suited to observe the effects of features in the
inviscid vortex method, as the exact solution consists of circular trajectories of different velocity
and the initial particle distribution gets rapidly distorted due to the large shear (hence, this flow
belongs to the class of problems known as circular shear layers). This class of problems has been
used by many authors to test their methods. The case k = 3 was used for numerical experiments
in [16] and it was also used in an example to observe the effect of different particle initializations in
[48] (p. 28). Nordmark [144] used k = 3, 7,14 in his numerical experiments and the case k = 7 was
also used for accuracy tests by Perlman [152]. In the present work, we have used mostly k = 3, but

k = 7 will be used briefly as well. The second test problem, the Lamb-Oseen vortex, is especially
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useful to consider different viscosity schemes, being the simplest viscous vortex flow and having an
analytical solution; in addition, the vorticity transport equation reduces to the diffusion equation for
this problem, so that the viscous effects are decoupled from the nonlinear effects. This classic test
problem has been utilized by so many authors, it would be hard to list all of them. Presently, it will
be useful in examining the effect of Reynolds number in the loss of regularity of the particle field. It
will be seen how for large Reynolds number (small viscosity), the discretization errors quickly grow
in a time-marching calculation. This responds to the fact that the vortex particles grow apart in
certain areas of the domain, causing gaps to appear and thus becoming unable to reconstruct the
smooth vorticity field. This is a well-known problem with vortex methods, which calls for the need
to use spatial adaption algorithms.

Using the test problems described above, a study is performed of the errors produced by dis-
cretizing the vorticity using vortex blobs, and the importance of the overlap ratio, defined as the
inter-particle spacing divided by the core size, h/o, is clearly demonstrated. The effects of the
Lagrangian deformation of the particle field will then be discussed and exposed by numerical exper-
iments. Finally, numerical calculations using the standard remeshing schemes will show how these
techniques serve to maintain accuracy for long-time simulations, but at the same time introduce
noticeable errors themselves.

In addition, Chapter 3 will present numerical experiments exploring the comparative accuracy of
different time stepping schemes. This will help to support the use of Runge-Kutta methods, which
are sometimes discouraged due to the need for multiple velocity evaluations. In comparison to the
one-evaluation Adams-Bashford schemes, it will be shown that the need for a much smaller time
step when using Runge-Kutta results in their application being not only more accurate but also
more efficient. Finally, this chapter will discuss and present numerical experiments using classic
rezoning schemes [16], and demonstrate that they are useful but should only be applied when using
high-order blob kernels.

Chapter 4 will develop the formulation of the vortex method with mesh-less spatial adaption
based on radial basis function (RBF) interpolation. Preliminary numerical experiments are presented
where, once again using the classic test problems discussed above, the comparative accuracy of the
new method with respect to standard remeshing schemes can be ascertained. These experiments
will show the potential of the new method for considerably increased accuracy. Also, the spatial
adaption scheme will be used to provide the needed core size control for the application of the core
spreading viscous scheme, without vortex particle splitting. The efficient implementation of the
RBF interpolation problem by means of iterative methods of solution, in particular the generalized
minimum residual or GMRES method, is here developed and tested. In addition, a first approach
at studying the convergence properties of the new method will be shown to suggest spectral-like

convergence; this is consistent with the error bounds for interpolation with Gaussian kernels, as
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established in the literature on radial basis function interpolation. Some additional discussions will
be included regarding the numerical complexity of the evaluation of the RBF interpolants, which
can be expensive unless fast methods are used, and regarding the possibilities for truly adaptive
spatial refinement that is local, and based on error measurements or estimates.

To follow the presentation and the numerical experiments of the new, mesh-less vortex method
formulation, a discussion of some numerical analysis topics in Chapter 5 will clarify some of the
possible limitations. A discussion of the effect of a different initial lattice of particle locations will
be presented, and an analysis of the convection error. Finally, this chapter includes some topics
of numerical analysis of radial basis function interpolation that are likely to be relevant for their
application in vortex methods.

In Chapter 6 are presented three applications of significant fluid dynamical interest where the
capabilities of the vortex method with mesh-less spatial adaption are tested. The first application
consists of the relaxation of monopoles under non-linear perturbations of quadrupolar structure.
This flow has previously been shown to possess two possible quasi-steady states, one consisting
of a rotating tripole and the other being the axisymmetric state. Which of these “attractors” is
approached as the flow relaxes depends on the amplitude of the perturbation. The results obtained
here corroborate the existence of this “tripole attractor”, first observed in [174], and also provide
smoother and better quality visualization than the previous work. Discrepancy is observed for the
low Reynolds number case, which is attributed to the numerical dissipation present in the vortex
particle splitting scheme used in [174].

The second application will explore the early interaction of two co-rotating vortices at high-
Reynolds number, a problem recently studied by means of spectral methods in [111]. Our calcu-
lations are able to reproduce very well the previous results, which constitutes a severe test for the
present method. Here, small-scale deformations of the vorticity field are observed in very weak areas,
down to a level of 1076, and we are able to capture these very well. It is also shown that coarser res-
olutions smooth out these small scale deformations and lose some steepness of the vorticity gradient.
Significantly, the vortex method is able to reproduce the spectral method results with a problem
size reduced by two orders of magnitude. This is attributed to the fact that the vortex method can
concentrate computational effort where it is needed, whereas the spectral method requires a very
large computational domain to minimize the effects of image vorticity.

In the third and final application, that of non-symmetric Burgers vortices, the core spreading
vortex method has needed a correction to account for the out-of-plane strain. This correction has
allowed the use of the two-dimensional method for computing flows with uni-directional vorticity
and three-dimensional strain, broadening the possible applications for the present method. Results
are compared with previously published computations using pseudo-spectral methods [161].

Finally, Chapter 6 includes a grid-refinement study, performed with a parallel implementation
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of the program to compute the perturbed monopoles. This flow does not have radial symmetry and
as a result this study obtains an observed second order of convergence. This has been attributed
to the convection error, shown in §5.1 to be bounded by second order terms with respect to the
core size of the elemental vortices. In consequence, and comparing with the first convergence study
using a radially symmetric test problem, the next area of improvement for the vortex method lies
in providing higher order convergence for the convection. This could be possible for example by

allowing deformable basis functions, which is a subject of some current research efforts.
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Chapter 2

Contributions to the Vortex
Method

2.1 Viscous Schemes for Vortex Methods

Vortex methods have long proved to be an effective tool for the approximation of solutions to the
Euler equations, and have been used for decades in the simulation of both unbounded and bounded
flows. In most applications of more than academic interest, however, the limitations of the inviscid
approximation cannot be accepted. For example, in flows around solid bodies viscous effects are
needed to account for the mechanisms of vorticity generation at the surface and to accurately describe
the vorticity dynamics in the wake. Unfortunately, it is not easy to implement a numerical solution
of the diffusion term in the vorticity transport equation that is compatible with the Lagrangian
formulation. This section examines the different schemes that have been introduced over the years
to include viscous effects in vortex methods. First, the viscous splitting algorithm, or fractional step
method, is described on which the majority of viscous vortex methods are based. The first scheme
that was put forward to account for viscous effects, namely, the random vortex method, is described
briefly, since it has become standard practice in engineering applications. The diverse deterministic
(as opposed to random or stochastic) viscous schemes that have been introduced during the past
twenty years or so as alternatives to the random vortex method include the particle strength exchange
method, the redistribution method, Fishelov method, diffusion velocity method, and core spreading
method, among others. This diversity of approaches deserves an in-depth analysis, not least because
viscosity is a crucial fluid property that can dictate the physics of high-Reynolds number flows.
The subject is far from a consensus in regards to the “best” viscous scheme for Lagrangian meth-
ods based on vorticity, and ample room for improvement still exists. Many methods are based on the
concept of viscous splitting which, although convergent and convenient in its implementation, means
that no better than first order temporal accuracy can be achieved, irrespective of the time march-

ing scheme (unless an elaborate multi-step splitting is used, rather than the conventional two-step
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method). Other methods are not based on viscous splitting but critically depend on the preserva-
tion of a certain “order” in the arrangement of vortex elements (e.g., particle strength exchange,
Fishelov method) which of course can be a serious problem in a Lagrangian method where elements
are bound to become disorganized through convection. Hence, these susceptible methods depend
on the application of remeshing processes consisting of tensor product interpolation with high-order
kernels. The remeshing processes introduce numerical dissipation due to the interpolations and also
do away with one of the favourable features of vortex methods, namely, their grid-free nature. Some
methods are intrinsically computationally expensive and make use of many ad hoc numerical param-
eters, e.g., the redistribution method, or require further development to be accurate and efficient in
the application problems of interest, or are difficult to implement in three dimensions, which could
be the case of the redistribution method as well as triangulated vortex elements.

After discussing the features of the different viscous schemes for vortex methods, it will be argued
that the simplest of these approaches, core spreading, has the most potential for the applications
of high-Reynolds number flows. This method has not been the choice of many workers in vortex
methods. First of all, the mathematical objections of Greengard [79] effectively stalled the research
efforts using this method, until a solution based on vortex blob splitting was proposed about a
decade later by Rossi [170]. The consistency error of core spreading is caused by the advection
without deformation of larger and larger vortex blobs as they spread. On the other hand, Rossi’s
vortex splitting idea is convergent and effective, but it introduces non-negligible errors. These will
be argued here to be caused by numerical diffusion during splitting and lack of any overlap control.
In fact, core spreading with vortex splitting may have an accuracy that is no better than the random
vortex method. In the present investigation, the core size control needed for convergence of the core
spreading method will be implemented without vortex splitting. This contribution will prove to be

effectual in making core spreading a suitable method for computing high-Reynolds number flows.

2.1.1 Viscous Splitting

Some authors consider it a natural approach in a time-stepping scheme to take into account the
viscous and inviscid parts of the governing equations as successive sub-steps. Indeed, in [48] the
concept is associated to the division made in 1904 by Prandtl between viscous and inviscid effects.
Viscous splitting —sometimes called “fractional step” method— is in fact a particular case of the
general technique of “operator splitting”, and it is introduced to viscous vortex methods together
with the random walk diffusion scheme by Chorin [42]. Convergence of the viscous splitting algorithm
for the Navier-Stokes equations in an unbounded flow is proved in [13] and [207]; bounded flow
was considered in [24, 1] and [206]. The algorithm consists of sub-time-steps where the effects of
convection and diffusion are considered successively. More sub-steps are involved in higher order

schemes, but the basic two-step viscous splitting algorithm is second-order accurate at each time
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step and first-order overall (irrespective of the time-stepping scheme used). Following [48], this can

be realized more easily by looking at the linear convection-diffusion equation for a scalar W,

aa—vl/—i-c-VW:uAW

with initial condition W,(x). Using operator notation, where ¢ -V — A and vA — B, the above
equation can be written as %V = AW + BW, which is integrated to

W(t) =W, eATBE,

Considering discrete time steps of length ¢ the solution at time ndt is used as initial condition to
obtain the solution at the subsequent time step, W"t! = e(A+B)¥/n The fractional step method

is then expressed in the following way:

o Sub-step 1: Convection.

M =AW = Wn+% _ €A6th
dt
o Sub-step 2: Diffusion.
aw 1 B§ 1
— =BW = Wn"tt=Popynta
dt

e Approzimated solution:

WnJrl _ 6B5teA5twn
For §t small, the operator in the expression above can be Taylor expanded into
ot? 5t

A comparison with the Taylor expansion of the exact operator e(A+tB)t reveals that the two
expansions are equivalent only in the case of commutivity of the operators A and B. In general,
however A and B don’t commute, due to the vector field ¢ being space-dependent, and so the error
introduced is O(dt)? at each time step. Hence, this fractional step method is always first-order
accurate in time.

Temporal accuracy of second order can be achieved with a three-step procedure called “Strang

splitting” after [198]. This method is expressed in the following algorithm:

Wn+1 _ eB%eAéteB%Wn

Going back to the nonlinear Navier-Stokes equations in vorticity formulation, the (two-step)
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fractional step method is expressed in the sequence w"t! = HY(6t)E(dt)w"™ —where E(t)w, and
HY(t)w, are respectively the solutions at time ¢ to the Euler and diffusion equations with initial
condition w,—. Algorithmically, the method consists in advancing the vortices with the convective
velocity in the first sub-step, and taking account of diffusion in the second sub-step. For two-

dimensional, viscous flows

ow

N +u-Vw=rAuw. (2.1)
e Sub-step 1: Convection.
d
% = u(xy)
ow Dw
dwp _
at
o Sub-step 2: Diffusion.
d
|
A dt
T vAw (2.3)
dw
d—tp = vAw(x,)

The convective sub-step in a vortex method is ideally expressed in the Lagrangian frame of
reference, the same as for an inviscid flow. Using the discrete representation of the vorticity field,
the velocity is obtained by the Biot-Savart law and the particles are advanced in the inviscid sub-
step. But the discretization of the vorticity field in vortex methods, conceived for the simulation of
the inviscid vorticity equation, is not well suited for the evaluation of the Laplacian in the diffusive
term, because of the unstructured nature of the data. Hence the wide variety of approaches that
have been put forward to include diffusive effects in a vortex method, as will be discussed in detail.

A straightforward procedure may be to use a grid-dependent scheme such as finite differences
to solve the viscous sub-step, and apply mappings of the data from a structured grid overlaid on
the irregular particle distribution, as was done in [37], where this method is used to study flow
around a circular cylinder at Reynolds numbers of 300-10%. This approach partially defeats the
advantages of a Lagrangian method, since it brings about the need to generate grids in the fluid
domain that conform to boundaries and it introduces numerical diffusion due to the interpolations
between meshes. Finding other ways of accounting for diffusion in a Lagrangian method has been
an active topic of research for many years. The oldest viscous scheme is the random vortex method,
as already mentioned, and to make a distinction with this method of stochastic nature, alternative
schemes proposed later have been termed “deterministic”; they include the core spreading method,

particle strength exchange, redistribution method and diffusion velocity method, among others.
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2.1.2 Random Vortex Method

The random vortex method (RVM) was introduced by Chorin [42] and is formulated essentially as
a fractional step method. It takes into account the viscous effects in the mean, simulating diffusion
by a random walk, i.e., a Brownian-like motion of the vortex particles. Consider the discretized
vorticity as expressed by (1.2); in the inviscid case, the particle strengths T'; remain constant, and ¢
is not a function of time, i.e., the vortices are elements of fixed geometry, and the particle positions
are updated only as a result of convection. Various viscous vortex methods require that either the
particle strengths or the base functions be modified in such a way that the diffusion equation is
approximately solved. In contrast, the random vortex method acts by modifying the positions of
the particles at each (diffusive sub-) step by adding a random walk, that is, the particle locations
are transformed using: x?“ =z + £, where the £ are Gaussian independent random variables of
zero mean and variance equal to 2vAt. This formula is based on the probabilistic interpretation of
the diffusion equation, which says that the probability of finding a particle that moves at random in
Brownian motion is given by (2.3). Consider the fundamental solution of a one-dimensional diffusion

equation w; = Re_lwm7 for —co < x < 00, t > 0:

G(x,t) = \/%exp (—%gﬂ) ) (2.4)

The function above is the same as the probability density function of a Gaussian random variable
with zero mean and standard deviation o = v/2t/Re. Hence, in two dimensions (2.3) is simulated
stochastically by a displacement of the particles in two orthogonal directions, using two independent
Gaussian random variables with o = \/m.

The accuracy of the random vortex method was studied in [133], for an initially finite region
of vorticity in an unbounded domain. They estimate the error to be of order \/W , for N vortex
particles, which in two dimensions corresponds to first order in the particle spacing, h, for a regular
grid. Similarly, the rate of convergence corresponds to order h3/2 in a three-dimensional rectangular
discretization. Convergence proofs for the random vortex method were provided by [120] and [77].
A more detailed description of this method, presentation of convergence analysis and aspects of
numerical analysis are provided in [48] (pp. 130-141).

It is worth mentioning that the RVM has been used extensively for modeling unsteady flows
around bodies, where it has proved to reproduce global quantities and main features of the flow,
while preserving the grid-free nature of vortex methods. The main disadvantage is that it requires
a large number of particles to obtain reasonable accuracy, due to its slow convergence rate. On the
other hand, only slightly viscous flows can be modeled, and at low Reynolds numbers the solution
can be quite rough. Generally, the (lower) limit of the method is taken as Re=100. Additionally,

forces and pressures can only be obtained by averaging or smoothing over several time steps.
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Some benchmark numerical investigations using the RVM can be cited; for example, the circular
cylinder flow studies of [175] at Re=250, the simulation of flow around general cylinder shapes at
Re=1000 in [195], and circular cylinder flows at Re=3000, 9500 and 10* in [39], and at Re=300,
550, 3000, 9500 in [196]. The RVM has been implemented in parallel [190] taking advantage of
the fact that the local nature of the scheme lends itself easily for parallelization. A more recent
three-dimensional parallel RVM application to wall bounded flows was presented in [75], where the
number of elements used was in the order of 10°. Also, many hybrid methods have been introduced
that, based on domain decomposition ideas, utilize the RVM in certain portions of the fluid and
either inviscid or other viscous schemes in other zones. For example, in [44] the random walk and
diffusion velocity methods were combined for the study of impulsively started flow around a circular
cylinder. Diffusion velocity is used near the body surface, while random walk is applied at a certain
distance from the body where it is assumed that the noise introduced by the method will not disrupt
the boundary layer and affect force calculations. More recently, workers have experimented with a
hybrid RVM/Finite volume method as well [157]. Research using the RVM is still active, and further
applications include internal flows [76], turbulent flows with flames [36], and flows with free-surface
effects [168, 189].

It is safe to say that the RVM has been the most widely utilized of viscous vortex methods,
especially in engineering applications. But we wish to quote Prof. Sarpkaya [183] when he says that
“the simulation of viscous diffusion by random walk is based on numerical convenience and it has

nothing whatever to do with the physical process being simulated.”

2.1.3 Deterministic Vortex Methods

The limited accuracy of the random vortex method motivated the development of deterministic
schemes, from the 1980’s onward. Many of these are also based on the viscous splitting concept,
while some of the most prevalent are formulated by an integral representation of the solution to
the heat equation, and the discretization of the integral operators using the particle positions as
quadrature points, as described below.

The solution of the diffusion equation is expressed in integral form as follows,

wx, t) = /G(X —y,vt)wo(y)dy (2.5)

where GG represents the heat kernel, i.e., the Green’s function solution of the diffusion equation,
which in two dimensions is

1 e 2yan
G(X_YW):me‘ I/ (2.6)

Viscous schemes which have been termed “resampling methods” [50, 163, 51] use this represen-

tation and, in contrast to the random-walk schemes which modify the particle locations, introduce
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a change in the strength of the vortex particles I'; at the diffusion sub-step. The method consists of
resampling the vorticity field induced by each particle on its neighbors, in the following manner. If
in the discretized vorticity (1.2), the circulation is replaced by vorticity times volume and the delta
function is used as cutoff, and in (2.5) the vorticity at time step ¢,, is used as initial condition to
obtain the vorticity at the next time step due to diffusion, after evaluating at the particle locations

the following formula is obtained:

N
Wit = oW Glxp — xp, vot]. (2.7)
q=1

This last equation is the induction rule used to update the vorticity of each particle at the diffusion
sub-step. However, if used as presented above, the method does not conserve total circulation. To
correct it, the fact is used that the heat kernel integrates to 1 over the whole domain, and the

vorticity at t,41 is re-written as

WX, tni1) = w(x, ty) + /G(x —y,vot)[w(y, tn) — w(x, ty)]dy. (2.8)

Again, substituting the discretized form of the vorticity and evaluating at the particle locations,
the following conservative scheme is obtained to update the particle vorticities,

N
N RN (ELRL) el <) (2.9)
q=1

For more details, see [48]. As explained therein, other resampling methods have been proposed,
for example by utilizing another cutoff function instead of G which has the same moment properties.
The method of Particle Strength Exchange (PSE) is a generalization of the idea of redistributing
the particle circulations, similarly based on the integral approximation of the diffusion equation, but
not conceptually linked to viscous splitting. Resampling methods turn out to be a particular case
of PSE where a low-order discretization in time is used; hence, PSE, which has been amply tested

in high-resolution simulation of moderate to high-Reynolds number flows, is discussed next.

2.1.4 Particle Strength Exchange

The principal features of the PSE method are, (i) it is based on the exchange of circulation among
particles to approximate diffusion; (%) it involves approximating the Laplacian at a particle’s location
based on nearby particles, and (iii) it is formulated grid-free but requires frequent remeshing of the
particle field onto a well-ordered field. PSE is based on the general particle methods proposed by
Degond and Mas-Gallic [57, 58]. The basis of the algorithm is that the Laplacian can be replaced
by an integral operator —given that the smoothing function ( satisfies certain moment conditions,

see [48] p. 145— in this way,
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Viw(x) = % /C(, (x — %) [w(x) —w(x)] dx’ (2.10)

or,

V2w(x) ~ /GU (Jx — x'|) [w(x") — w(x)] dx'. (2.11)

The order of accuracy of the approximation above depends on the smoothing function. It is

accurate to O(c?) for the Gaussian, in which case one has

2 — |x[?
Gy (x) = —5 eXP ( 2|J2| ) (2.12)

so that when o2 = 2v6t, G, is equivalent to the heat kernel. The integral operator in (2.11) is

discretized by quadrature, using as quadrature points the locations of the particles. Hence, for the
case of bounded flow, one can formulate the PSE method in the following way. The Lagrangian

viscous vortex method expressed by Equations (1.10) and (1.11) is translated into the integral

formulation
dx 1
ditp == K(x, — x') x wdx’ + Uy (xy, t)
d
%= v [ Gallx X o) - o) ax

+V/H(xp,x/)g—2(x’)dx’
where the second term on the right-hand side of the second equation is the contribution from vorticity
generation at the surface; U, contains the contribution from the free stream velocity and any solid
body rotation, and K (z) = z/|z|*. Note that the mechanism of vorticity generation at the solid
surface is expressed by an integral operator also, but this topic will not be discussed further here.
The full discretized equations can now be written. Using w” (x,t) = >, T';i(t) (, (x — x;(t)), the

following system is obtained,

dx, 1

2= 7ﬂ§izri K, (x, — xi) + Uy(xp, 1) (2.13)
N M

dI’ ow

L=V D= Tp] Go (jx = x') v Y H(xp, Xm) 5= (xm) (2.14)
i=1 m=1

Note that it is assumed that the solid surface was discretized using M panel elements. Both singular
integral operators were convolved with the smoothing function and are replaced by smooth operators;
K, is the regularized Biot-Savart kernel, K, = K * (,.

It should be noted that PSE is not formulated in terms of viscous splitting; however, it does

implement a fractional-step scheme for the enforcement of the boundary conditions. Generally, the
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splitting is as follows,

1. Particles are advanced using the velocity computed by the Biot-Savart law and integrated
using an appropriate time-stepping scheme; their strength is modified using PSE, and the
no-through flow boundary condition is enforced. At the end of this sub-step there is a slip

velocity at the solid boundary.

2. The no-slip boundary condition is enforced by a vorticity generation algorithm. The vorticity
flux from the surface within the time step is calculated so as to cancel the slip velocity generated

at the previous sub-step.

In summary, the main feature of the PSE method is the replacement of differential operators by
integral operators, more suited to the particle representation of the data. The integral operators
are discretized by quadrature on the locations of the particles, then the discrete integral operator
for diffusion reduces to a contribution from nearby particles to a change of circulation on a given
vortex blob. Note that in Equation (2.14) the strength exchange is written as involving all particles;
in practice, though, each vortex particle is allowed contributions to the change in its circulation
strength from particles within a radius of, say, 5o (as in [155]). This is allowed by the rapidly
decaying smoothing function; it does mean that the discrete PSE operator does not approximate
exactly the continuous integral, and so sometimes a re-normalization of the PSE kernel becomes
necessary.

In principle, the formulation of PSE is grid-free, but the fact that the accuracy relies strongly
on the quadrature rules used for the discretized integral means that in practice the method hinges
on having nearly uniformly spaced particle locations. For this reason, the extensive utilization of
the PSE method has promoted the development and widespread use of remeshing schemes in vortex
methods [101, 103, 102, 115, 52] (see §2.2). This has caused a bit of debate, as some workers maintain
that the grid-free nature of the vortex method is undermined when remeshing schemes relying on
regular particle grids are applied, sometimes as often as every time step. Indeed, if this were the
case, as pointed out by G. Winckelmans (private communication, 2002), then there may not be
much difference between PSE with remeshing and vortex-in-cell methods (which nowadays utilize
the same interpolation kernels as used in particle remeshing). In both cases, each interpolation step
introduces some numerical diffusion, although these errors are generally considered acceptable and
indeed a number of remarkable results have been obtained on unsteady wake flows, e.g., [155, 156]
using PSE with remeshing, and [158, 53] using the vortex-in-cell approach. In spite of this, it is
possible that the interpolation errors in both of these approaches impose a limitation on the accuracy
of the vortex method, especially at high Reynolds numbers where the small physical viscosity might
be overwhelmed by the numerical effects. This thought will be one of the important motivations of

the present investigation.
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Let us conclude by saying that the PSE method has been extensively developed and applied
in many benchmark problems of bluff-body flow. For example, high-resolution simulation of the
impulsively started cylinder at Reynolds number from 40 to 9500 in [101, 103], and impulsively
started and uniformly accelerated flat plate in [105]. The method has also been implemented in
parallel [182] and applied to flows around arbitrary geometries [155]. For this reason, whereas the
RVM can be considered the workhorse vortex method used in engineering, PSE can be considered

the prevalent vortex method used by the academic community.

2.1.5 Redistribution Method

The motivation for the development of the vortex redistribution method (VRM) was precisely that
of providing an alternative to PSE that does away with the need to perform remeshing of the particle
field; in other words, the aim was retaining the grid-free formulation of the vortex methods [192].
Similarly to PSE, this method is based on the exchange of circulation between particles to simulate
diffusion, but the formulation is different from PSE as it does not use integral operators. The
algorithm hinges on finding fractions of each particle’s circulation that will be redistributed among
its neighbors, these being defined as those particles within a maximum distance in the order of the

typical diffusion distance, h, = VvAt. The ‘redistribution fractions’ f7% are solved for by assembling

b
a system of equations which is formulated so that locally there is conservation of circulation, linear

and angular momentum. The following transformation is sought:

:Zr;fgg(x_x,») — ZZ TP (x — x;). (2.15)

The approach used to determine the redistribution fractions is to demand that all finite wave
numbers of the Fourier transform be correctly damped. The Fourier transform of the new vorticity

field is
Gt = (ko) anexp —ik - x;) Z -exp(—ik - (x; — x;)), (2.16)

while the Fourier transform of the exactly diffused vorticity is

2" = (ko) ZF exp(—ik - x;) exp(—k?vAt). (2.17)

These two Fourier transforms cannot be equal for all values of k using a finite number of vortices.
Using the fact that within a “neighbourhood” of vortex ¢ the distance |x; — x;| ~ VAt is small,
the trailing exponentials in the two Fourier transforms can be approximated by a truncated Taylor
series. The resulting equations are the redistribution equations, below. The neighbourhood of a
particle is taken as a distance in the order of the typical diffusion distance, h, = VAL so, a

vortex j is inside the neighbourhood of vortex i if: |x; — x;| < Rh,, the parameter R being chosen
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empirically (in [192], R = v/12). Defining the scaled relative vortex position as: §;; = xf;:; (< R).

The redistribution equations are

oy: Y fr=1 (2.18)
J
O(VAt): Z fij&1ij = 0; Z [i362i; =0 (2.19)
J J
Ot): D fred; =2 D B =2 Y flifusbey =0 (2.20)
J J J
O(VA#3) Z Bl =0 Z 13156215 = 0;
J J
SO =0 > fléngs, =0. (2.21)
J J
O(VAt™) : higher-order moment equations,m =4--- M + 1.

The first three redistribution equations are necessary to ensure consistency in the sense that the
numerical solution approximate the O(At) diffusive changes in the exact solution, with a truncation
error of order h,. The physical meaning of the equations is the following: (2.18) implies conservation
of circulation for each vortex; (2.19) locally conserves the center of vorticity; and, (2.20) implies the
correct expansion of the mean diameter of the vortex system. The subsequent equations can be used
to obtain a higher order of accuracy. However, viscous splitting error is present.

Additional components of the scheme are, first, that positivity of the solution is enforced as a
stability condition, i.e., it is demanded that all fractions be positive: f;i > 0. The positivity condition
expresses the physical fact that reverse vorticity cannot form spontaneously in the flow field. Second,
whenever it is encountered that there is no acceptable solution to the system of equations, an ad
hoc algorithm is used that inserts new vortex particles within the neighbourhood in question. The
number of vortices can increase without apparent bound when the Reynolds number is high, so
vortex particle merging is sometimes used to alleviate this problem. Finally, preconditioning of the
system of equations is needed in practice.

The authors of the VRM claim that the advantage of the method is that it retains the grid-free
nature of vortex methods, because it is not needed that the particles be in an ordered distribution (in
contrast to PSE). This is achieved, however, at the high cost of solving N underdetermined systems
for N particles, at each time step. The size of these systems is determined by the redistribution
influence neighbourhood, |x; — x;| < RVVAt, involving an empirically chosen parameter R. Then
again, as will be discussed in §§2.2.1, 3.2 and 3.3, no matter the viscous scheme, the accuracy of the
vortex method in general does depend on preserving overlap throughout a calculation. The vortex
insertion algorithm in the VRM does provide some form of spatial adaption, but with no overlap

control. Finally, there may also be numerical diffusion involved in the vortex merging processes.
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The method also has the disadvantages of using various parameters that need to be “tuned” in
a practical implementation, and involving a considerable computational cost, which can be of the
same order as the velocity evaluation, and even larger. In comparison, as reported in [48] (p. 163),
the computation of diffusion using PSE including remeshing has a small (~ 2%) computational cost

compared to the convective step.

2.1.6 Fishelov Method

A deterministic scheme for diffusion which is not based on the exchange of circulation was proposed
by Fishelov [70], whose suggestion was to convolve the vorticity with a cutoff function and then
approximate the second-order derivatives in the Laplacian by explicit differentiation of the cutoff
function. The concept is based on Anderson and Greengard [4], who explicitly differentiate the
smooth kernel to obtain the stretching term in a three-dimensional inviscid vortex method algorithm.

The problem is how to approximate the spatial derivatives appearing in the vorticity transport
equation. Assume a uniform grid at t=0, with grid spacing h, and write XZ(t), w;}(t) for the
approximate particle locations and approximate vorticity respectively, then using the discretized

form of (1.4) one can write

T D Ko (xp(t) — X} ()w) (), (2.22)

where K, is the regularized Biot-Savart kernel, K, = K * (,. Then, by explicit differentiation of

the smoothed kernel in Eulerian coordinates, the stretching term can be written as

N
wi(t) > VK (xp(t) — xI(t))w! ()h?. (2.23)

Similarly for the viscous term, when the vorticity is convolved with the smoothing function,
w & (, * w, then the Laplacian can be approximated in this way: Aw = A((, * w) = A, * w.
Approximating the integrals by the trapezoid rule, the following ODE’s are obtained, which together
with (2.22) constitute Fishelov’s vortex method, expressed by the following system of equations:

N
dwgt(t) =wh(t) Z VK, (x!(t) — x(t)wl(t)h?

N
Y AG(xD(t) — X (t))wl (t)h? (2.24)
j=1

Note that in the above formulation time-splitting has not been applied. Fishelov proves stability
under the condition that the Fourier transform of the cutoff function is nonnegative, and gives five

examples that satisfy the condition. Using one of these —a fourth-order cutoff function based on
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exponentials—, she carries out some simple numerical experiments in two dimensions, using two
test problems: a step function initial vorticity, which she compares to RVM results; and Chorin’s
periodic test case (from [41]), which has an exact solution.

In [71], Fishelov utilized her method for the simulation of flow around a sphere at Re=3000,
where the vortex method was used only in the far-away region and a boundary layer formulation
was used near the body with random walks to approximate viscosity. The results presented, however,
seem quite coarse and the simulation short-lived. The method was also used by Bernard for two-
dimensional turbulent boundary layer flow in [25]. He used vortex sheet elements of rectangular
geometry or “tiles” of vorticity, which are convected as solid bodies. The application problems are
start-up channel flow at Re=1000 and zero-pressure gradient (Blasius) and stagnation (Faulkner-
Skan) boundary layers at Re=1000. These simulations utilize small numbers of elements (N ~ 10%)
and boundary layer approximations to evaluate the velocity field. Also, an approximate method is
used for evaluating the Laplacian of the cutoff function taking advantage of the regular geometry of
the vortex elements, and many ad hoc considerations are included for ensuring that no voids in the
element population arise as a result of convection, as these would distort the diffusive process.

Applications of the Fishelov method seem to be scarce and have not provided much confidence
in it. The method encounters difficulties when the particle field gets distorted, and seems to be
even more sensitive to this problem than the PSE scheme. There do not appear to be any ongoing
research efforts to use the method with frequent remeshing processes, but in this case PSE may
be preferable. However, in the context of analyzing the use of higher-order cutoff functions, the
Fishelov method is used in [145] to calculate unbounded two-dimensional vortex flows, using what is
called an “automatic rezoning strategy”; this consists in resetting the particle locations on a uniform
grid when the error in vorticity has grown past a certain limit. The rezoning scheme was previously
introduced for inviscid flows in [144]. This work has not been extended to flows with boundaries;
indeed, in [145] it is argued that the use of vorticity creation at the boundary to approximate
boundary conditions introduces errors that make the use of high order vortex methods ineffectual.

Finally, as noted in [48] (p. 147), the Fishelov method is not conservative, as it does not include
the correction term —w, > . veA(; (X, — X4) that the integral approach requires, just as in the
resampling methods, ¢f. (2.9). This could be rectified, but there does not seem to be further research

in this line.

2.1.7 Diffusion Velocity

The diffusion velocity approach [146] can be deduced from considering the general case of an arbitrary
scalar function in two space dimensions F'(z,y, t) that moves with velocity u(x,y,t) = (u,v), whose

evolution equation can be written as
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— + —=—+ —=—=0. 2.25

ot * ox + dy ( )
The two-dimensional vorticity transport equation (2.1) can be written in this form, using the in-

compressibility condition,

8—w—|—i u_z@_w w —G—g v—za—w w| = (2.26)
ot  Ox w Ox Oy w Oy - ’
Comparing (2.25) with (2.26), where (u,v) is the convective velocity, the diffusion velocity is defined

by the extra contribution to the total velocity, as follows,

v (0w Ow

So that now the vorticity equation can be written in a conservation form as

%—L: + V(wu 4+ wuy) = 0. (2.28)

The concept of a diffusion velocity implies that the net flow of vorticity is proportional to the
vorticity gradient, which is analogous to Fick’s First Law of diffusion where v/w is taken as a non-
constant diffusion coefficient. It translates into saying that w has a preferred direction of transport,
namely that of Vw. The way the vorticity gradient is obtained in the diffusion velocity method is
by directly taking the derivatives of the cutoff function in the discretized vorticity representation.

The suitability of the diffusion velocity concept was demonstrated in [146] for a one-dimensional
diffusion test problem and for the case of a circular cylinder at Re=1200 and Re=40 (below the
limit of applicability of the RVM). However, the results presented for cylinder flow are of rather low
resolution when compared with finite-difference calculations (The authors themselves admit: “the
streamlines by our method are somewhat clumsy...”). One notes, as well, that the one-dimensional
proof-of-concept calculation was started with core size ¢ = 0.4h, which means that overlap of the
vortex particles was not enforced.

Later work [44] demonstrated a higher-resolution application of diffusion velocity, and pointed
out that the scheme models diffusion correctly only where particle overlap is maintained. That
investigation used a hybrid method, with diffusion velocity near the surface of the body, and random
walks farther away where overlap has been lost due to convection but the low resolution of the RVM
is not damaging to force calculations and boundary layer resolution. The application code is written
in parallel and benchmarked using the problem of the translating circular cylinder at Reynolds
numbers of 300, 550, 3000, and a rotating circular cylinder at Re=1000. A vortex panel method
is used for satisfaction of the boundary conditions at the body by a vorticity creation algorithm,

and forces were calculated as well as streamline patterns finding good agreement with experiment
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and results produced using finite differences. One should rightly be apprehensive, however, of the
authors’ decision to use the strength of the particular vortex particle whose diffusion velocity is being
calculated, rather than the local vorticity, in the denominator of Equation (2.27). The authors simply
say that the quality of results was “unaffected” by this decision. In addition, to avoid problems were
particles are very weak, resulting in very large diffusion velocity, the vortices that are weaker than
0.1% of the maximum circulation are simply deleted.

Additional results for the circular cylinder using the diffusion velocity scheme, but for a wider
range of Reynolds numbers in the range of 107! — —107, were presented in [147]. Although these
calculations are performed over relatively long times, the unsteady forces are rather noisy and the
streamline patterns quite rough. Still, enough simulations were performed to present a plot of
the change of drag coefficient with Reynolds number, which shows a “good resemblance to that
of the experimental data”, according to the authors. One must question, however, results of two-
dimensional calculations that claim good agreement with experimental data at Re up to 107, as it
is well-known that there exist considerable three-dimensional effects from around Re = 300 up. If
one attentively examines the plots presented in [147], one sees qualitative agreement at best.

The diffusion velocity scheme was demonstrated for calculation of thin boundary layers in [199],
where a fix was provided for the problem that can present itself where the vorticity is zero while
the gradient of vorticity is not (which risks a division by zero). Also, a “bi-zonal” approach is used
to solve the topological problem which exists when using vortex blobs near a wall, consisting of
using stream-wise elongated elements in the wall region and blobs in the outer region. The method
was benchmarked using the flow of an infinite plate moving at constant velocity, an impulsively
started plate (Stokes’ 15 problem), a sinusoidally moving plate (Stokes’ 2°¢ problem), and a Blasius
boundary layer. Reynolds numbers are in the order of 10° and good agreement with analytical
solutions is reported. Later, the diffusion of an initially square patch of vorticity and flow around a
wedge were added to the test cases [200]. These authors formulate the diffusion velocity concept a

little differently, starting from the definition of circulation around a curve which encloses surface S

= / w - AdS. (2.29)
S

Defining u to be the velocity of the area occupied by vorticity, they take the time derivative of

the above equation to obtain

ar

E_/S[aa—":—|—(ﬁ-V)w—i—w(Vfl)—((.«J-V)fl -ndS =0, (2.30)

which is true when the integrand is zero:

ow - - -
S H - Vw +w(V-8) - (- V)a=0. (2.31)
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Let u = u + ug, where u is the fluid velocity and uy is the diffusion velocity, and subtract the
three-dimensional vorticity transport equation (1.1) from (2.31), to obtain the following governing

equation for the diffusion velocity:

(ug - Viw+w(V-uy) — (w-V)ug = —rvAw. (2.32)

Using the solenoidal property of the vorticity and some vector identities, the above equation is

written in the following form, where the diffusion velocity appears once,

-V x (ug x w) =vV x (V x w). (2.33)

The above equation implies

U X w=—-vVxw+Vo. (2.34)

The gradient of the arbitrary scalar field, V¢, can be shown to be equal to zero. At this point
the authors of [199] restrict themselves to two dimensions and obtain the definition of diffusion
velocity as expressed by (2.27). They add a further simplification by assuming a thin layer where
the diffusion in the direction tangential to the wall can be neglected. But the presentation of the
diffusion velocity in this way aids in the extension of the scheme to three dimensions.

The extension of the diffusion velocity concept to three-dimensional flows is introduced in [165],
and applied to the evolution of an axisymmetric vortex ring with a small periodic perturbation.
Since the vorticity transport equation in 3D is a vector equation, the concept of viscous rotation
needs to be added to the viscous velocity. These authors decompose the vorticity field in two parts,

denoted by w; and w,,, which are defined locally at point x, by

wi(x) = L“’(’2“%()&,), (2.35)
|w(xo)]

wn(x) = w(x) — wi(x). (2.36)
The decomposition above is used to express the diffusion term rAw in two parts:

VAw = v(Aw; + Awy,). (2.37)

The first component of the diffusion term represents a longitudinal diffusion, preserving the structure

of the vortex elements. The second part represents a rotation of the vorticity vectors. Taking into
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account this decomposition, the vorticity transport equation may be written in the following form:

0
7 +V - (u®w)— (w-V)u=v(Aw: + Aw,)
ot (2.38)
=—V - (uu®w)+wgXw
. Aw,
where: uy = fuw and, wq = 71/(4.’7;((.0. (2.39)
|l |l
Now the vorticity transport equation can be written in the following form:
ow
E—i—V((u—i—ud)@w)—(w-V)u—wd><w=0. (2.40)

This form of the Navier-Stokes equation is now a nonlinear advection equation, i.e., the diffusion
effect was written as a convection term just like in the two-dimensional diffusion velocity method.
The first two terms are interpreted as a convective derivative, the third term is still vortex stretch-
ing/tilting, and the last term expresses a rotation applied to the vorticity field. At this point, the
Lagrangian particle discretization can be applied and the problem is translated into a set of ordinary

differential equations. The Lagrangian system is

d

% —u, +uy (2.41)
dw

ditp = (wp - V)u, — wg X wp. (2.42)

The diffusion velocity in the above system is obtained by a discrete form of equations (2.39),

using the discrete vorticity field (1.2) and approximating the term V x w by

V xw(x)~ Y T x Vi (xi — x). (2.43)

Finally, the calculation of the diffusion vorticity or viscous rotation w, requires the approximation
of the Laplacian Aw,,, for which the authors of [165] propose the direct discretization of the integral
approximation, as used in the PSE method for the complete diffusion operator.

Investigations into the use and extension of the diffusion velocity concept continue and are
plentiful, including a specific method for axisymmetric flows [164], application to Fokker-Planck

equations [117], and an extension of the method to the case of anisotropic diffusion [22].

2.1.8 Core Spreading

At the turn of the 1990’s, only two viscous vortex methods were well known: the random vortex
method of Chorin [42] and core spreading, which apparently was used for the first time in [109].

The latter method was, however, under discredit due to the mathematical objections of Greengard
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[79]. Into this stage, many new performers were introduced during the decade: particle strength
exchange and general particle methods, vortex redistribution method, Fishelov method, diffusion
velocity method. They all boasted their ‘deterministic’ nature, and many workers compared results
with RVM and were satisfied. Then, a correction was suggested for the core spreading method by
Rossi [170], and interest in this scheme was revived, but still only a very few workers have performed
further investigations with it.

The core spreading method, presented by Leonard in [113], is a purely Lagrangian scheme that
accounts for viscous effects by changing the core size of the particles to exactly solve the diffusion
equation. It is easily understood using as analogy the classical exact solution of the two-dimensional
Navier-Stokes equations termed “spreading line vortex” (see Batchelor [9], p. 204). In this problem

the vorticity is given by

Tr
w(x,t) = T P (2.44)

Consider again the approximate vorticity given by the discretized form (1.2), but write it slightly

differently to express the fact that the core function will now carry the dependence on time,

N

w(x,t) mwh(x,1) =Y T Glx = xi(t)). (2.45)

i=1

The core function is now chosen to be the solution of the heat equation with initial data (,

1
 Anvt

Ce(x) / e~ At (dy = (G x C) (%), (2.46)

where G is the heat kernel. If the initial distribution function (, is a Dirac delta, then

1 2
_ —(x)%/4vt 2.4
G(x) drvt € (2.47)

By comparing with (2.44), the discretized vorticity field in two dimensions can be seen as a
superposition of “spreading line vortices” of different circulation strengths. The core spreading
vortex method is then formulated so as to satisfy identically the viscous part of the vorticity equation

by expanding o2 linearly according to
do?

B 2.48
=4, (2.48)

which means that the core of each particle must spread out at a rate proportional to v/vt, or v At
at each time step. As we use a Gaussian blob function with & = 2, the method is expressed in the

following simple algorithmic rule:

o (t+ At) = a?(t) +2vAt,  i=1---N (2.49)
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The attraction of this formulation —apart from its utter simplicity of implementation— is that
the method is fully localized and grid-free in nature (hence more easily expressed in a parallel
application code), and that it is fully deterministic (so allows faster convergence and better error
control compared with the RVM). Additionally, a core spreading scheme does not necessarily rely on
the fractional step method. However, as mentioned, research in its regard was largely stalled when
the method was declared inconsistent in 1985 [79], and it was proved that the scheme converges to
an equation different from the Navier-Stokes equations.

The inconsistency of the core spreading method is related to the treatment of the particles as
solid bodies, from which the “convection error” arises. With the core spreading method the diffusion
of vorticity is approximated accurately, but the vorticity is advected with an average velocity and
not with the actual local velocity. The vorticity is incorrectly convected even in the limit of infinitely
many particles. Greengard derives in his note [79] the actual equation which is solved by the vorticity
obtained by core spreading, which differs from the Navier-Stokes equation in the convection term
only. But it is easy to understand the problem with a simple argument, noting that with the
uncorrected method particle cores will grow to a size of at least VT in a simulation ran to a final
time T'. As the convergence of a vortex method depends on core size remaining small, the method will
clearly eventually break down. This simple argument illuminates how a correction is implemented,
based on adding spatial refinement, e.g., splitting of the blobs which have grown beyond a specified
maximum into smaller elements. Rossi [170] proved the convergence of the corrected core spreading
method with vortex splitting and provided details of implementation. He went on to propose vortex
merging as a means to control problem size [171], as the splitting can rapidly increase the blob
population. The vortex splitting scheme of Rossi will be described in more detail in §2.2.

The core spreading method of Rossi has been used in unbounded flow only. Shiels [193] incorpo-
rated boundaries and tested his method on the flow around a circular cylinder, as his goal was the
simulation of bluff body flows. He also constructed rules to provide for variable spatial resolution
and hence increase efficiency by having coarser blob population far from the body, but many ad
hoc numerical parameters were introduced. Shiels’ experiments with a circular cylinder at Re=100
and 3000 were promising, as an accuracy comparable to the PSE method was reported, while at
a much lower computational cost. His preliminary simulations at high Reynolds number (15,000)
show general qualitative agreement with benchmark PSE computations but the resolution is not
comparable. Still, the core spreading method evidences considerable potential for improvement and
the work described above has broken new ground. The higher Reynolds number simulations were
published recently [194], in what is probably one isolated application of the core spreading method
with boundaries.

There are no extensions to three dimensions of either the method of Rossi or of Shiels. Rossi is

proposing an enhancement of his core spreading method by using deformable elliptic blobs [172, 173],
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which provide higher order of spatial accuracy. It does seem that his elliptic blobs are farther
from an extension to three dimensions, as complicated expressions are used for the calculation of
the Biot-Savart velocity using the anisotropic elements. Rossi could not express the Biot-Savart
integral in terms of elementary functions with his elliptical Gaussian blobs, so he used asymptotic
approximations. Although it would be possible to carry out the same sort of asymptotics for the
three dimensional case, there are many mathematical challenges, as Rossi acknowledges in [172].
Perhaps it is less known that Japanese scientists have investigated with the core spreading scheme
for quite some time. Before Rossi’s celebrated correction on the method, there were remarks in the
Japanese literature regarding the validity of core spreading within a finite time [138], which also leads
to correction concepts. There are early attempts at constructing a three-dimensional application of
the core spreading method in [139], and improved treatment of boundaries for simulation of bluff
body flow in [148]. In this three-dimensional core spreading the stretching and diffusion effects are

separately considered to effect a change in the core radius of particles:

do
n+1 R} -
o o+ <dt

do

STRETCH dt

> At. (2.50)
DIFFUSE

For the account of the different contributions it is now necessary to replace the generic “core
size” by two dimensions, the core radius o and the blob length [ which is in the direction of the
vorticity vector. At the beginning of a time step the blobs have spherical symmetry so that | = 20.

The change in core radius due to the stretching term is obtained from

d
=@V (2.51)
dl l; |dw
T T 2.52
dt — |wy dt’ (2.52)
do Ot dl
At = 75 7+ 2.
dt |streTcH 21, dt ( 53)

The authors of [139] use a somewhat bizarre version of the core spreading due to diffusion, given by

821/

= v (2.54)

- 9
DIFFUSE 2Ut

do
di

where the constant ¢ has the value 2.242, which they claim is obtained from the exact solution of
a diffusing infinitely long vortex filament. Now, updated values for blob length and vorticity are

obtained using the expression (2.50) and

dl
l =1+ —At 2.
t+AL t+ a (2.55)

2
o
lwerat] = |wil (t;At> : (2.56)
t
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Finally, the new element is replaced by a spherical blob of equivalent volume. The particulars of
the derivation of some expressions in this method are not very clear in the papers consulted, while
many of the references therein were not available to us, so we are not able to express confidence
in the method as yet. However, the results presented in [148] do seem to simulate well the flow
features, such as boundary layer separation and development of the vortical wake, for the cases
studied. These correspond to the flow around a sphere at Reynolds numbers of 300 and 1000, and
the flow around a prolate spheroid after impulsive start at Re=1000 for angles of attack of 0, 10 and
30 degrees. The main contribution of [148] over [139] seems to be a different scheme for vorticity
creation at the boundary, while the three-dimensional core spreading method used in both cases is
the same.

The two-dimensional core spreading method was given an alternative mathematical treatment
which is interesting [99]. It consists of deriving a Fredholm integral equation for a function which
represents a sort of “vorticity flux” supplied due to the difference in convection velocity. After
this mathematical derivation, the Japanese researchers propose the existence of higher-order core
spreading schemes. The mathematical derivation starts from the two-dimensional vorticity equation

(2.1) and introduces the Lagrangian variable
X =x — ®4(a), (2.57)

where ®;(a) represents the approximate trajectory of a fluid particle which is initially at point a,
assumed to be approximately convected by a velocity t(x,t). Using the new coordinate system, the

vorticity equation is expressed as

Ow 0w

a = l/m + f(X, a, t), (258)

where w = w(X, a, t), summation convention is assumed on the index i, and f(X,a,t) is the correc-
tion term due to the difference between the approximate velocity @ and the exact velocity u. The

solution of (2.58) in term of the Green’s function is written as
t
(%, ) = w(a)G (£, [x — By (a)]) + / dT/ FX a,7)G (- 7% — By(a) — X')dX,  (2.59)
0 D

where D = R? and

11 |x|?
G(t = — —— 2.60
(t, 1)) o2t “xP ( 03t> ( )
o, =V4v.

This solution corresponds to the vorticity of the one fluid particle considered. If the total ini-
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tial vorticity has compact support S,, it is assumed that the total vorticity field is obtained by

superimposing the solution (2.59) over S, with respect to a, so that it can be written as

(1) :/5 wo(a)G (£, [x — B, (a)]) da

+/Sa da/0 dT/D f(X'a,7)G(t—7,|x — ®(a) — X'|) dX'. (2.61)

The above is only an approximate solution to the vorticity transport equation, but it suggests
to the authors of [99] that the exact solution can be expressed in the same integral form, only
substituting the function f(X,a,t) by an unknown function f(X,a,¢) which must be determined
from the Navier-Stokes equations. The problem is now to find the governing equation for f, which

—after a significant amount of algebra work— turns out to be the following integral equation:

fXoat) =5 (wo<a>G (1, [X) [is(®1 () £) — s (X + <I>t<a>,t>})
0

0X;

x/oth/Df(X',a,t)G(t—T, |X—X’|)dX’>

+

(['&i(@t(a), t) — u; (X + ®(a), t)] (2.62)

A new scalar function (Q is defined by

f(X,a,t) = V- ([a(®:(a),t) — u(X + 0:(a),1)] X, a,t)), (2.63)

so that the governing equation for €2 is the following:

(X, a,1) = w,(a)G(t, 1X|) + / dr /D %([ai@t(a),t) S w(X 4 @), 1)

x (X', a, t)) Gt —7,|X — X)) dX'. (2.64)

Looking at this last equation and comparing with (2.61) it is seen that

w(x, t) = /S Q(x — ¥y(a), a,t) da (2.65)

o

and, as remarked in [99], the first approximation of (2.64) would be equivalent to a classic core
spreading method. An alternative approach is suggested by this analysis which is termed “higher-
order core spreading” by the authors and is based on the “reformation of the discretized vorticity

field at each time step”, i.e., the discretized vorticity field is transformed according to
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D%, ty1) = /D B(a, t)G(L, [x — B, (a)]) da. (2.66)

This looks very much like a resampling method, as described in the beginning of §5. Not many
details of the algorithm are given in [99], but it is stated that the circulation of each particle “is not
conserved and is set at every time step”. This seems to be saying that there is an exchange of circu-
lation between the vortices incorporated into the algorithm. Convergence and stability properties of
both the classic core spreading method, called “Algorithm A”, and the higher order method, called
“Algorithm B”, are analyzed in [99], where the latter is shown to converge to the Navier-Stokes
equations (unlike the first one which as noted by Greengard converges to a different equation). Er-
ror bounds are given and also a simple one-dimensional numerical example is performed, where both
methods are seen to give reasonably good results for short times. In a separate publication, the
research group in Osaka reports two-dimensional numerical experiments of a simple Oseen-type ini-
tial vorticity, and again concludes that both their Algorithms A and B are suitably accurate within
a small lapse of time [100]; however, the numerical experiment is of quite low resolution. In later
work [98], additional numerical experiments were reported, this time adding the presence of a solid
boundary by coupling with a panel method and including boundary layer considerations in the line
of [39]. The treatment of the boundary in this approach incorporates vortex sheet elements within
a stipulated boundary layer thickness, which transfer the vorticity to the rest of the flow with the
creation of new vortex blobs. A separate solution for the flow inside and outside of the boundary
layer is obtained, and the two solutions are matched at their edges. In any case, the presentation
in the above mentioned publications is not easy to follow and we suggest studying it in more detail
at a later time. As well, it would be interesting to complement by looking at other publications by
the same authors and their most recent work, since the mathematical approach they present is quite

interesting even if their numerical examples are not striking.

2.1.9 Least-Squares and Triangulated Vortex Methods

There are at least two more deterministic approaches for inclusion of diffusion in vortex methods.
As we remark below, they have been later combined together. The first approach is the so-called
“free Lagrangian” method [176], which is based on a discrete approximation of the Laplacian on an
irregular grid. A Voronoi triangulation is built using as nodes the particle positions, and discrete
differential operators are approximated on this mesh. The construction of a Voronoi diagram can
be computationally expensive, and it has to be updated at every time step as the particle positions
are advected. In subsequent work [177] a fast method is used to construct a Delaunay triangulation
that is of O(N log N), incorporating also a fast summation technique for the velocity evaluation,

but restricting this time to inviscid flows. (A Delaunay triangulation is not the same as the Voronoi
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diagram, but one can be obtained from the other). This last work includes commentaries on how
to generalize the fast triangulated vortex method to viscous flows, flows with boundaries and three-
dimensional flows, but neither of these generalizations was carried out. Actual application of the
Delaunay triangulated vortex method to two-dimensional viscous flows with solid boundaries is
presented in [89, 90], where the concept of diffusion velocity is incorporated as well as a coupled
panel method. This work also integrates a least-squares approach to calculate derivatives, described
below, hence the combined use of the two methods that we remarked upon.

The other concept used in vortex methods for inclusion of viscous effects is the “moving least-
squares method” of [126]. The authors were motivated by the loss of accuracy of both the Fishelov
method and PSE when the particles become irregularly spaced, and wanted to provide an alterna-
tive means of obtaining the derivatives of vorticity. The least-squares method consists of fitting a
polynomial of order two to the vorticity field in a neighbourhood of the point where the derivative
is desired. When the points are regularly spaced and only close neighbours are considered, the
approach is equivalent to a centered difference. The drawback is having to solve a two-by-two linear
system per particle, at each time step. Consider this one-dimensional example, define (,,(x) as the
approximation to the vorticity w(z) in the neighbourhood of a control point z,,, denote w,, = w(x,),
and write

(i () = Wi + B (2 — ) 4+ O — 2,2, (2.67)

where the constants B, and C), correspond to approximations of the first and second derivatives

of the vorticity at the control point. Define the error at the control point by

Im

N
> L [wn = G ()] (2.68)

The coefficients L, are used to establish the width of the neighbourhood around the control point.

Defining a length scale d,, to set up the locality of L,,,, the authors of [126] use

i G Im)z} , (2.69)

Ly = exp |: 52
m

Now, minimizing the error, the following equations are obtained for the coefficients B,, and C,,

N
Z Lym (2 — l'm)l [wn = Cm(zn)] =0, =12 (2.70)
n=1

The least-square method is basically a way for calculating derivatives. Once a polynomial function
has been fit onto the control points in the neighbourhood of the point of interest, then the derivatives
of vorticity at this point are approximated by differentiating the polynomial fit. The method was

tested in [126] by measuring the RMS error in the second derivative of a one-dimensional vorticity
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field (a simple Gaussian) and plotting versus the overlap ratio. This error was compared with the
Fishelov method and PSE for different irregular grids. The results show how the error increases
severely with both Fishelov and PSE methods when the grid becomes irregular. In contrast, the
least-squares calculation remains accurate with very irregular grids. For tests using an error-function
initial vorticity field, it was necessary to add image vortices near the discontinuity (which is anal-
ogous to a “wall”) at © = 0. The results showed that the least-squares calculation exhibits errors
comparable to a central difference formula when sufficient images are included.

The application of the least-squares approach to two- or three-dimensional vortex methods was
implemented by combining it with a diffusion velocity concept which is used to spread the vortic-
ity support. The details of the full-fledged vortex method are not given in [126], which basically
reports the preliminary one-dimensional numerical experiments to obtain error measurements. The
implementation of the vortex method is only sketched and described to be underway. But in [127]
it is shown how the diffusion velocity method is combined with the moving least-squares scheme to
calculate derivatives, although this work is restricted by the simplifications of axial symmetry.

Recently, the authors of the moving least-squares method have combined it with the triangulation
method of [177]. In [128] a three-dimensional viscous vortex method is described which relies on the
moving least-squares approach to approximate the derivatives for calculation of the stretching and
diffusion terms, but instead of using vortex blobs the vorticity field is interpolated on a tetrahedral
mesh that is fitted to the Lagrangian points. We stress that the triangulated methods are not vortex
blob methods, and therefore do not require cutoff functions. Hence, the advantage is attained that
the vorticity field does not penetrate the surface of the body. Additionally, it is possible to have
node points in a distribution with high anisotropy in one direction, which is advantageous when
boundary layer flows are computed. The method —given the name “tetrahedral vortex element”
or TVE method— was benchmarked on the flow past a sphere at Reynolds number of 100, and
has recently been applied to a more complicated three-dimensional flow in [78] with notable results.
But perhaps one could consider this a method closer to vortex-in-cell than to vortex blob methods,
where the mesh is now unstructured. It is clearly not a grid-less method, as a tetrahedral mesh is

constructed and fit to the Lagrangian points on each time step.

In conclusion, with so many different approaches to construct a viscous vortex method, it is clear
that the field is still maturing and is yet far from a consensus in regards to the “best” viscous scheme.
Each method reviewed above has some desirable characteristics as well as some disadvantages.
Particle strength exchange is very sensitive to having an ordered distribution of particles, and so
there has been a great amount of work on remeshing schemes. The method of superposing derivatives
of the cutoff function, as used by Anderson and Greengard for vortex stretching and Fishelov for

diffusion, is also dependent on a regular particle arrangement to maintain accuracy; diffusion velocity,
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as well, requires constant overlap of blobs. It would seem that the problem for an accurate viscous
vortex method is not the viscous scheme, but spatial adaption. Indeed, to liberate themselves from
the problem generated by irregular particle fields, the authors of the vortex redistribution method
resort to elaborate and computationally expensive algorithms, while the tetrahedral vortex element
method does away with the particle representation altogether (at the cost of constructing a mesh
at every time step). Even the core spreading method suffers from the problem of how to limit the
size that vortex blobs can grow, so needs a form of spatial adaption. But in contrast to the other
methods, core spreading is utterly simple in its approach to satisfying diffusion effects. If the spatial
accuracy can be maintained with some form of adaptive refinement, the core spreading method

seems to offer the opportunity of a truly grid-less viscous vortex method.

2.2 Vortex Blob Discretization and Spatial Adaption

2.2.1 Discretization and Vortex Method Initialization

Upon initializing a vortex method calculation, one needs to obtain the identifying quantities of the
vortex particles, i.e., their location and circulation strength. Their core size is chosen initially as
a discretization parameter, dictating the resolution of the calculation. As has been discussed, the
discretized vorticity field is expressed in two dimensions as the aggregation of the vortex particles

in the following way:

N
Whx,t) = T G (x —xi), (2.71)
=1

where T'; is the scalar circulation strength of the two dimensional particle i. (In three dimensions the
particle strengths become vector quantities, and the discretized vorticity is the vector field obtained
by superposition of the vector vortex particles.)

The initial particle locations are most commonly chosen to be on a Cartesian mesh. An alter-
native could be to divide the support of the initial vorticity in cells of uniform size and initialize a
particle in a random location inside the cell; this has been called “quasi-random” initialization [48],
while a random initialization will not construct any form of ordered lattice. On a square lattice of
initial particle locations, one can assign the circulation values by simply evaluating the vorticity at

the particle location and multiplying by the cell area (or volume in 3D). That is,
I? = wih? = w(x;,t = 0) he. (2.72)

For the random or quasi-random initializations one could use again the local value of vorticity, and
multiply by the average cell area (obtained by dividing the support of the vorticity by the number of

particles, N). This approach is less accurate but can be preferable if the vorticity is not smooth; but
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the initialization on a square lattice and the use of (2.72) is the most commonly used initialization
method. Note, however, that the use of (2.72) to initialize the particle strengths incurs an error
related to the midpoint rule; one can try to decrease this error by iterating on the I';’s, for example
(as will be discussed in detail later).

Indeed, the particle representation of the initial vorticity field incorporates a sort of numerical
diffusion when (2.72) is used; this ‘diffusive effect’ of the discretization can be quantified for the
particular case of Gaussian blobs used on flows which are exact solutions of the diffusion equation.
This can be seen by writing the general solution of the heat equation as (in one dimension, for

simplicity)

(2,8) = —— /OO @ty exp (=Y gy (2.73)
g - Varut ,oog »to) €XD 4ut ' ’

Writing the discrete representation of the integral above using single interval extrapolative rule,
it can be seen that if one spatially discretizes the function g(x,t) using Gaussian cores (with k = 2)
the summations obtained on the left and right hand sides of the equation can be made equivalent by
making 02 = 2vt. Hence, the discretization reconstructs not the initial vorticity but this vorticity
field as if it had diffused for a time interval of o2 /2v.

As a result, a scheme for improving the accuracy of initialization for test problems based on
exact solutions of the diffusion equation —as is the case of the Lamb-Oseen vortex, the classic
test problem which will also be used in this investigation— is the application of a numerical “anti-
diffusion” process, equivalent to shifting the initial time backwards by an amount ¢2/2v. Hence,
the initial circulation strengths for a Lamb-Oseen vortex at time-zero, t,, would be obtained by

L'oh? 2 2
T9 — o2 — Whﬂ/?v) exp (—wx—%) . (2.74)
This “time-shift correction” can be applied in the very particular situation of discretizing an exact
solution of the diffusion equation using Gaussian blobs. As such, it will not be usable in a practical
application; it allows, however, the production of accurate initialization of the Lamb vortex for the
purposes of studying overlap dependence and the effects of the particle distribution. This will be
useful in the numerical investigation of Chapter 3 regarding the accuracy of the blob discretization.

As some example calculations given in Chapter 3 will show, the error of initialization with
Equation (2.72) can be considerable, at least when using simple Gaussians or other cutoff functions
of low order. For this reason, one finds that in the calculations of [102] the vortex method is initialized

by solving, for unknown I';’s, the following set of equations:

N
w(xj,O):ZI‘i (o (x5 —%;), forj=1,...,N (2.75)
i=1
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Koumoutsakos [102] reports that the system can be solved with the method of successive over-
relaxation (SOR), using a coefficient in the range of 0.3 to 0.4 (i.e, under-relaxed). In another
example of formulating a linear system for the accurate discretization of an initial condition, a
procedure is developed in [115] which is conditional of having a regular, square lattice of particles.
This condition allows the authors to construct an exact inverse, which is unfortunately not possible
to implement in an actual calculation due to the global influence. Therefore, a preconditioner is
built based on a “best compact approximation” to the inverse, and an iterative scheme similar to
the Jacobi method is used to solve the system of equations.

The subject of this linear system will come up again in §2.2.3, where Beale’s method of circulation
processing is presented, and again later in the discussion of radial basis functions. It will be seen
that there is a close relationship between the initialization of the vortex method and the solution of a
radial basis function interpolation problem. Hence, many recent developments in the latter subject
will aid in conquering what was qualified as “still a current research topic” in [48] (p. 211), namely,

the efficient inversion of the system (2.75).

2.2.2 Rezoning

Most vortex method application programs incorporate spatial adaptation in the form of “remeshing”
or “rezoning”’ algorithms, which consist in re-starting the particle field on a regular grid every few
time steps, and re-calculating the particle circulation strengths by interpolation or other means.
This subject constitutes an important active area of research in vortex methods.

The first attempt at controlling Lagrangian distortion errors was termed “rezoning” [16], and
it was suggested in the context of high-order vortex methods. As will be shown with experiments
later, the high-order blob kernels are more vulnerable to the disorder in the particle field than their
lower-order counterparts, and this was recognized upon their introduction. Rezoning consists in
re-starting the particles on a regular mesh, and obtaining the vorticity at the new particle locations
as the value induced by the sum of the old blobs, to be discarded. In other words, one defines a
continuous vorticity field using the current particle distribution, and then evaluates this function on

any new blob location X, i.e., summing over all j current blobs:
Weomp (X, 1) = > (j(% — %) wyh?. (2.76)
J

After this, the vortex method is re-initialized by obtaining the new circulation strengths using the
standard initialization formula (2.72), on the new particle locations.

Using a naive approach to evaluate the function (2.76) at a new blob location on a square mesh,
the vorticity contribution of each old particle would be added, requiring O(N - M) operations for

N old particles and M new ones. This approach is expensive computationally, and although in
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theory one could implement some form of fast summation, the literature does not to our knowledge
show any such implementation. A criterion for determining how often to execute a rezoning process
was introduced in [144], but it is based on calculating at every time step the “vorticity error along
vortex paths”, which is just as expensive. On the other hand, if one is to obtain the new circulation
strengths using the calculated vorticity values at the new particle locations and equation (2.72), then
an error equivalent to the initialization error is incurred. For this reason, it seems that rezoning as
described by Beale should be applied only when using high-order blobs. This will be demonstrated

later with numerical experiments.

2.2.3 Beale’s Method of Circulation Processing

An alternative approach to control the effects of Lagrangian deformation, not based on restarting
the particle field, is the processing of the particle circulations to improve the way the discretized
vorticity field approximates the exact one at the particle locations. The concept of recalculating the
circulation values can be understood as a way of adjusting the particle volumes to account for the
changes in overlap. To improve on the approximation given by (1.2) at a given time, one may search

for new values of the circulation strengths ~;’s so that

N
Z Yi Co (%5 (t) — x:i(t)) = wj, (2.77)

where w; = w(x;,t) is the local vorticity value at the particle location, i.e., the value one wishes
to approximate. Multiplying this equation by h2, representing the volume of a blob in a regular,

square mesh, one obtains

N
W2 i o (x5(8) = xi(1) = T, (2.78)
i=1

where the T';’s are the known, current circulation values of the blobs. Equation (2.78) represents a

linear system for the coefficients 7;, which can be written in matrix form as
Ay =T, (2.79)

where, A;; = h?(,(x;(t) — x;(t)). An iterative method to solve this system was proposed by Beale
[12], who observed that the previous circulation values are a natural first guess for the 7;’s. First
rewriting the system (2.79) as

(A-Iy+~v=T, (2.80)

then Beale’s iterative method is expressed by the following rule:
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%nJrl =T +4" — ZhQ'Y;LCU (Xj(t) —x;(t)). (2.81)

J
This iterative method was used at every time step in [12], as well as in [40] in combination with
the PSE viscous scheme. However, Beale’s method is not guaranteed to converge, and in the example
given in p. 209 of [48] one can see that even though an improvement of two orders of magnitude in
the velocity accuracy is obtained at time-zero, the errors do seem to grow persistently so that the
final accuracy is just slightly better than the unprocessed case. The problem that arises here is that,
as recognized in [12], the matrix A;; = h2(,(x;(t) — x;(t)) is severely ill-conditioned. This matter

will be discussed amply later on, in the context of radial basis function interpolation theory.

2.2.4 Remeshing Schemes

The now prevalent approach of “remeshing” (also called “redistribution” by some workers) the
particle field consists of constructing a Cartesian lattice of new particle locations, and obtaining the
new circulation values from the old particles by interpolation. The 2D or 3D interpolation rules
are built by Cartesian tensor product of 1D kernels, and these have been constructed of increasing
order in terms of the interparticle separation, h. The commonly used interpolation kernels are of

two families, the “A” and the “M” family, and are given by the following formulas:

1 ifo<u<s,
Ao(u) = (2.82)

0 otherwise.

1—u if0<u<l,

Ay (u) = (2.83)
0 otherwise.
1—u? fo<u< %,
Ap(u) =411 —u)2—w) ifl<u<?, (2.84)
0 otherwise.
11—u?)(2—u) ifo<u<il,
Ag(u) =411 -w)2-u)B—u) fl<u<?2, (2.85)
0 otherwise.
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M;(u) = %(g—u)2 if L <u<$, (2.86)
0 otherwise.
12-uP—2(1-uw?® f0<u<l,
My(u) = 4 12 —u)? if1<u<2, (2.87)
0 otherwise.
1-32u?+ 34 f0<u<l,
Mi(u) =411 —w)@2-uw)? ifl1<u<?2, (2.88)
0 otherwise.

Using one of the interpolation kernels above, the remeshing schemes obtain the contribution of
circulation AT';; from the i-th old vortex with I'; to the new mesh point (Z;,7;) according to (in

the two-dimensional case)

AW
AT, =T, A | 22 Al Z 2.
e (52 (552),

where A represents the 1D interpolation kernel.

The first interpolation formula listed above, the Ag kernel, gives a first order scheme, equivalent
to nearest grid point (NGP) interpolation. It is the same as the corresponding M; kernel (omitted)
and can approximate exactly only constant functions. When used with vortex methods, it will ensure
conservation of total circulation only (zero-th vorticity moment). The so-called “tent-function”, Ay,
is a second order interpolant and is equivalent to the My kernel (also omitted). It can approximate
exactly only linear functions, and when used in vortex methods it will conserve total circulation and
linear impulse (first moment of vorticity), using a 2¢ stencil (with d the dimension). Following is the
third-order As kernel, corresponding to quadratic interpolation; it will additionally conserve second
moment of vorticity, with a 3¢ stencil. This scheme was used in [101, 105]; its main disadvantage is
its lack of smoothness, as it is not even continuous. The piecewise-cubic and continuous kernel A3 is
known as Everett’s fourth order formula, and requires a 4¢ stencil, conserving up to third moment
of vorticity. (Indeed, the A family of kernels is constructed precisely by specifying that increasing
moments of vorticity be conserved.)

The interpolation kernels of the “M” family are derived from splines; they are characterized by
being more regular than the A family. The M3 kernel is the first of the central B-splines that has
continuous first derivatives, and is dubbed “triangular-shaped cloud” (TSC), while the M, kernel
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Figure 2.1: Plot of the M} interpolation kernel.

is of class C?; they are both second-order schemes, however, as central B-splines are capable of
interpolating exactly only linear functions. The improved M} kernel introduced in [135] is of higher
accuracy (third order) and when used in vortex methods will conserve the first three invariants
(total circulation, linear impulse and angular impulse). This kernel is shown in Figure 2.1, where
one can see that a small amount of negative circulation is introduced. M} remeshing has been used
by researchers who want to ensure highly accurate results (e.g. [102]); it has the advantage of being
quite smooth (class C1) and in [52] it was shown to be considerably more accurate than the A
scheme which is of the same formal order. One can safely say that it is the preferred remeshing
scheme used today by many of the leading experts in vortex blob methods, as well as vortex-in-cell
methods. It is also still used in smooth particle hydrodynamics (SPH) methods, the subject where
it was originally introduced.

Remeshing schemes are still an active area of research in vortex methods. A new scheme has re-
cently been developed (P. Chatelain, private communication) which has the advantage of a narrower
stencil than M}, and a more isotropic distribution of the circulation in comparison to the standard
approach of tensor products for higher dimensions. This new scheme operates on a triangular lattice
of particles, and is based on the face-centered schemes introduced in [38]. This “hexagonal redistri-
bution” scheme is third order accurate, like M}, but if one observes the result of applying the latter
in 2D tensor product (see Figure 2.2) it is clear that the circulation is anisotropically distributed; the
hexagonal redistribution corrects this very effectively. Also, as mentioned, it has a narrower stencil,
which has the result that the problem size grows more slowly (due to the need for a stencil on the
edge of the domain) than when using M. In the present investigation, some numerical experiments

will also be performed using the hexagonal redistribution scheme.
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Figure 2.2: Contour plots of interpolating functions in 2D. (a) M} scheme; (b) hexagonal redistri-
bution scheme.

2.2.5 Vortex Blob Splitting

Finally, let us discuss the splitting method of Rossi for core spreading. In [170], a blob splitting
algorithm is proposed to control the consistency error of the core spreading method, which maintains
the maximum blob radius below a stipulated value, . The core spreading method is thus corrected
by “adaptive spatial refinement”. The refinement consists in replacing a single vortex blob of width
o > | with a number (chosen as 4) of children blobs of width ao. The algorithm is controlled by
the numerical parameter «, while other parameters are determined by imposing the conservation of
vorticity moments. Since the splitting generates exponential growth of the problem size, a fusion
algorithm is proposed to alleviate this problem. A convergence analysis is developed which proves
linear convergence (i.e., assuming known velocity) to the Navier-Stokes equations in the L> norm.
(As it is pointed out in the paper, the classic convergence theory of Beale and Majda [14] utilizes the
LP norm in the full nonlinear case. It is also noted that the standard convergence theory is applied
to the velocity, while Rossi utilizes the vorticity instead.) The error of the refinement is proved to
converge to zero as a« — 1, and for the particular choice of 1:4 refinement used by Rossi, it is proved
to be bounded by O(1 — «?) in the linear case (L° norm vorticity error).

The basic resolution parameter in the splitting algorithm is the fixed maximum blob width
l. The accuracy parameter of the splitting is «, determining the width ao of the children blobs.
The children blobs’ circulation is of course % the strength of the parent, for conservation of zeroth

moment of vorticity (total circulation). They are placed with their center at a distance r from
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the parent blob’s center, where r is determined from conservation of second moment of vorticity,
giving 7 = 20(1 — a2)z. In [170], the values of « are chosen between 0.7 and 0.9 and numerical
experiments are presented using a Lamb vortex and a co-rotating vortex pair, where this latter case
was compared with an RVM calculation using much larger N. In the case of the Lamb vortex,
plotted results of tangential velocity at a given location show quite visible errors, while the plots
showing blob locations reveal that there is loss of overlap in some areas. In the case of the co-rotating
vortices, the figures also indicate an overlap loss, in particular near the edges of each vortex. The
calculation is said to compare well with RVM, but it must be said that at the Reynolds number of
the experiment, equal to 100, random walk can be quite crude. It would seem, then, that the chosen
splitting scheme is of rather low accuracy.

One of the problems of the splitting technique of Rossi is the lack of any overlap control. In
addition, the scheme is numerically diffusive. Furthermore, it is not clear that the criterion for
calculating r based on conservation of second moment of vorticity is the best choice. An alternative
scheme was studied in [193], where r is chosen to conserve the value of vorticity at the parent blob’s
center. In one-dimensional experiments, it was found that the center vorticity constraint is more
accurate than conservation of second moment of vorticity for one-blob splitting, but it was less
accurate in an experiment with eleven blobs superimposed. Since neither constraint proved to be
‘ideal’, a set of two-dimensional tests using a Lamb vortex were carried out with the aim of finding
an empirical relationship r = f(«). A linear fit was performed to («,r) pairs obtained on the basis
of minimizing L' norm errors of vorticity, comparing with the analytical solution, which resulted
in a relationship somewhere in between the center vorticity and second moment constraints. This
empirical law was built into the code used for the core spreading experiments in [194], one of the
few recent implementations of the core spreading vortex method.

In the case of using the second moment criterion for r, one can demonstrate how the splitting is
diffusive, for in this case the vorticity of a blob placed at the origin is (note that Rossi uses k = 4

for the Gaussian blob)

2
wp = - exp <—&) - (2.90)

T 4ro? 402 ) 4dmo?’

whereas the vorticity of the four children placed at a distance r = 20v/1 — a2 from the parent blob

is

TN xp — xif? g (1-0?) 2.901)
We = —5— E exp | — = exp | ——— . .
16ma?o? — P 40202 ima2o? P a?

Performing the ratio between the added vorticity of the children blobs and the original vorticity of
the parent blob, one sees that the result is always less than 1 (see Figure 2.3), indicating that the

maximum vorticity has decreased and hence there has been diffusion.
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Figure 2.3: Ratio of the maximum vorticity of the four children blobs to the maximum vorticity of
the parent blob placed at the origin, for Rossi’s 1:4 splitting.

2.3 Introduction and Applications of Radial Basis Functions

Both the static discretization (initialization) and the problem of spatial adaption for vortex meth-
ods —i.e., determining the identifying quantities (location and circulation) of a new set of well-
overlapped particles to best approximate the current vorticity field— can be approached as a prob-
lem of function approximation. In this perspective, one can see a similarity between the vortex blob
discretization given by (1.2) and the technique of radial basis function (RBF) interpolation, a tool
for solving multivariate scattered data interpolation problems. In the context of Beale’s method of
circulation processing, the problem of finding the new circulation values so that the particle repre-
sentation best approximates the vorticity field has been recognized as a problem of “scattered data
interpolation” in [12] and [40]. They both refer to Franke’s review paper [73], where a study is made
of different algorithms for the problem of scattered data interpolation on a set of known surfaces.
Franke assessed about 30 algorithms and ranked them based on six criteria —accuracy, visual as-
pect, sensitivity to parameters, execution time, storage requirements and ease of implementation—.
The two methods that ranked best, the so-called multi-quadrics (MQ) and thin-plate splines (TPS)
are examples of radial basis functions. Since Franke’s review work, however, a significant volume of
literature has been published on this subject.

The problem of scattered data interpolation can be formulated as how to best approximate an
unknown function f € C(2) whose values are known on a set of points X = {z1,...,2x5} C Q C R?,
which are scattered on the domain. The RBF approach, following the notation of [188], is to choose

the function that approximates f to be of the form

N
syx (@) = Zaj ®j(z, z;) + p(z), (2.92)
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where p(x) is a low-degree polynomial, and ® : Q x Q — R is a fixed function that is translation

invariant and in particular satisfies

O(z,y) = ¢(||lz —yl|ly) with¢:[0,00) — R (radiality) (2.93)

Clearly, the blob discretization of the vorticity is analogous to the interpolant (2.92), where
the polynomial part is chosen as null and the basis function is the cutoff function, a Gaussian for
example. Indeed, Gaussians are used in RBF interpolation (and usually with null polynomial part),

as are basis functions of the following types:

(i) #(r) =", B>0, ¢ 2N: pseudo-cubics (2.94)
(i) o(r) =7r*log(r), k € N: thin-plate splines (2.95)
(iii)  o(r) = (2 +rH)P, B3>0, 8¢ N: multi-quadrics (2.96)

The construction of the interpolant (2.92) requires the satisfaction of the interpolation conditions
by collocation, leading to a linear system of equations for the coefficients a = (a1, ..., an) and the
polynomial coefficients. For our purposes, we can assume that the polynomial part is null, and write
the system as

da=f, (2.97)

where frepresents the vector of function values at the centres, f: {f(z1),..., f(zn)}, and ®,; =
&(|lzi — «;]|). The matrix ® being full and ill-conditioned, Franke [73] concluded that global basis
function methods are not feasible for large N. But since then, a great deal of work has contributed to
effectively resolve this and several other difficulties. Preconditioning operators were first introduced
in [63] for the cases of the MQ and TPS, based on triangulation of the data points and construction
of discrete approximations to the iterated Laplacian operators, A¥. At the same time, progress was
made in regards to theoretical aspects of the problem, with the result of [132] that the interpolation
system (2.97) is guaranteed a solution whenever the function ®(x, y) is strictly conditionally positive
definite and the data distinct. As described in [188] (where proofs are given), the theory has been
greatly extended and many basis functions have been characterized, for example, the MQ interpolant
is conditionally positive definite and can be made positive definite by appending a linear polynomial,
and the Gaussian is positive definite hence not requiring a polynomial part.

The problem of ill-conditioning of the distance matrix ® has been subject of extensive analysis
aiming to establish bounds on the norm of the inverse, ||® ||, and on the spectral condition number
of ® for different basis functions. In [141, 142] upper bounds on the inverse, for a given basis function,

are found to depend only on the dimension of the domain space R? and the separation radius of the

data locations, which is defined by
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gx = min__||z; — x| (2.98)

1

2 1<j#k<N

This density measure of a point set is the minimal (half) distance that separates one site to its
nearest neighbour in the data set. If it is very small, it means that two data locations are very close
together, which in turn makes the distance matrix close to singular. The estimates on the condition
number, x(®) = ||®|| [|®| !, depend additionally on N, through the dependence of ||®|| on N. For
strictly positive definite basis functions (including the Gaussian), however, estimates independent
of N were given in [140]. These estimates reveal that the condition number becomes very large as
the minimal overlap ratio, which we could define as gx /o for the k = 1 Gaussian, becomes small.
This article also demonstrates how, for the Gaussian, the requirement of good conditioning is at
odds with the accuracy of the interpolation, what is called the problem of “good conditioning ws.
good fit”. Additional results in regards to upper bounds on the inverse ||® '| are found in [7],
whereas [8] provides lower bounds for special cases of regular arrangements of the data, and [185]
provides general lower bounds for scattered data which are not expressed as a function (explicitly)
of separation radius. In this last work, it is shown how the lower bounds for ||® !|| depend on the
smoothness of ®, becoming larger as the smoothness increases; also, support is provided to the idea
that regular placement of the data is most favorable to the conditioning.

Much theoretical progress has been made, in addition, in the estimation of the error of inter-
polation with RBF’s. Error bounds of arbitrarily high order were proved for the multi-quadrics
in [122, 123], and for Gaussians in [205], where a simpler theoretical approach is used. Both of
these works require a certain restrictive condition on the Fourier transform of the function f being
approximated. The error estimates refer to the pointwise difference between the function f and the
interpolant sy x, and are found to be of O(h%) where k depends on the RBF @ and the density
measure hy is called the fill distance and defined by

h = i — . 2.
X = sup min [lo— a| (2.99)

The fill distance measures the maximal distance from any point z € € (not necessarily a data
location) to its nearest point in the data set. In the terminology of computational geometry, it is the
radius of the largest empty circle in the data. Hence, it measures how the data “fills” the support 2,
and the quality of the approximation using RBF’s (for all different choices of RBF) will deteriorate as
hx o gets larger. For some basis functions, including the multi-quadrics and the Gaussian, improved
error estimates based on h < hx o were found in [124]; these local estimates are O()\l/ "y as h — 0,
with 0 < A < 1. Subsequently, a representation of the norm of the error functional for different
RBF’s that is workable numerically has been developed [184, 186]. This representation is bounded

by the so-called power function, P(z), in the following manner:
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[f (@) = sp(@)] < |flp, - P(2), (2.100)

where Fg is an inner-product space of functions defined via ® and | - |p, is the seminorm defined
in the function space. For the Gaussian, Fg is the space of C'*° functions. The upper bound of
P(x) is written in the form P?(z) < F(h(x)) where h(z) is a local measure of fill distance. For
example, the Gaussian ®(z) = e=Bl=l” has F(x) = 67%, with 6 > 0. Note that this most favorable
case of exponential convergence for Gaussians comes at the cost of the worst situation in terms of
conditioning, due to it being very smooth. This was developed into a general notion of an uncertainty
principle for RBF interpolation by Schaback in [186], which says that good reproduction quality is
only obtained at the cost of poor numerical stability and vice versa. By introducing increased
smoothness constraints on the function f, approximation orders are doubled in [187], but for the
Gaussian with exponential error bounds, this does not bear a major improvement.

Finally, the extensive research in RBF interpolation has also made significant progress in regards
to computational efficiency. First, consider that evaluating a function whose approximation has
been expressed as an expansion in RBF’s can be quite expensive, involving O(N) operations for
each evaluation point. Multipole expansions for the fast evaluation of the interpolant (2.92) were
introduced for the TPS in [20], where in addition the fast algorithms are also applied to the matrix-
vector product required at each step of an iterative solution method, in particular the pre-conditioned
conjugate-gradient method. A new method for the fast evaluation of RBF expansions, based on
generalizing the multipole method so that changes of basis are easily performed, was presented in
[21]. Second, the actual solution of the RBF interpolation problem can be prohibitive for large N,
unless fast methods are implemented. This was successfully addressed in [17], where preconditioning
strategies were used in conjunction with fast matrix-vector multiplication and a GMRES iterative
solution method. The preconditioning method is based on changing the basis in which the RBF’s
are represented, using approximate cardinal functions. Numerical experiments with TPS and MQ
demonstrated significant clustering of the eigenvalues, improving the condition number by several
orders of magnitude. This led to the GMRES solution converging in only a few iterations. The
overall strategy entails O(N log N) operations and O(N) storage. Alternatively, an approach for the
fast solution of RBF interpolation analogous to forward substitution is developed in [159, 69], based
on generalization of the iterative method constructed in [18]; this was applied to TPS while the
extension to the MQ and other conditionally positive definite functions was shown to be accessible.
Considerable improvements to this method have been performed, in particular the inclusion of a
Krylov subspace algorithm which is guaranteed to converge [68]. A third approach for the efficient
solution of the RBF interpolation system is based on domain decomposition [19]; such a method

was applied to data sets of up to 5 million two-dimensional points.
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The RBF technique for scattered data interpolation originates on the work of Hardy [85, 86], who
derived the multi-quadric scheme in two dimensions to approximate geographical surfaces and gravi-
tational and magnetic anomalies. The thin-plate spline, on the other hand, is generally attributed to
Duchon [60, 61, 62], but it was previously discovered in [84]. The TPS is a two-dimensional analogue
of the cubic spline in one dimension, constructed so that it passes through the interpolation points
minimizing the “bending energy”.

The use of RBF’s has been proposed for the numerical solution of partial differential equations
by Kansa [92, 93], who used the multi-quadrics as the spatial discretization scheme for parabolic,
hyperbolic and the elliptic Poisson equation. Kansa’s approach is the following. Consider the linear
advection-diffusion problem: f; + uf, — Dfy =0 (+ B.C.’s). Now, expand f in terms of MQ basis

functions and add a low-order polynomial

N
flx) = a1 +ax+ Zaj g(x — ;) (2.101)
j=3
g(ZL’*.’Ej) _ g(xij)f (xZ_‘rj)g(x_?l)i_(wjj_wl)g(x_q@) (2102)
T9 T
g(x —xz;) = (x— ;)% +r? (2.103)

2

where 7 is a non-zero parameter, the “shape parameter” of the M(Q basis. The set of discretized

values of the unknown function f, {f;}, ¢ = 1,..., N, are transformed from the set of expansion

coefficients {a;} according to the linear system of equations

N
fi= ZAij aj, (2.104)
j=1

where the matrix A;; has the following components in the row 4:

Ay = 1,
Aip =
Ajj = glo;—x;), for3<j<N.

Now one can construct the solution of the advection-diffusion equation by obtaining the partial

derivatives of f using the MQ expansion as follows:

0 N 94,
(a_i) = a+y ang aj, (2.105)
7 j=3
0 f o %G
7 j=3
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where the partial derivatives of g;; and g;; are obtained explicitly. Subsequently, the advection-
diffusion equations are solved in the Eulerian frame with nodes whose location in space is fixed.
The spatial basis functions, then, are fixed in time, whereas the expansion coefficients vary in time,
a; = a;(t), which is analogous to the finite element approach.

Kansa compared the method sketched above with finite differences, using a weighted average of
upwind and central difference; in this case, upwinding is necessary to stabilize the advection term.
He points out that, in contrast, the M(Q approach does not require upwinding. The results presented
by Kansa demonstrate that coarser data can be used with the MQ spatial discretization to obtain
the same accuracy as with finite differences, showing that RBF’s can be very efficient for the solution
of PDE’s. He does find that the MQ method behaves badly as the diffusion coefficient tends toward
zero (when a front is formed in the solution tending toward a step-function). In this situation, the
flat regions fore and aft of the shock are very noisy. The problem is that these flat regions need very
flat basis functions (large 72), which give rise to very ill-conditioned coefficient matrices.

Kansa’s second test problem was a 1D von Neumann blast wave, and his third was a 2D elliptic
Poisson equation with either Dirichlet or Neumann boundary conditions. In general, his conclusions
are that the MQ scheme is very high order, hence excellent results can be obtained with a coarser
distribution of data points than with a finite difference approximation. Being a global scheme,
however, he concludes that it is impractical for large fluid dynamics problems.

Maybe one should pause for a moment, and consider the similarity between the approach of
Kansa for the advection-diffusion equation, and the method of obtaining derivatives used by some
workers of vortex methods. It was already mentioned that Fishelov [70] obtains the Laplacian of the
vorticity by directly differentiating the cutoff function, thus obtaining an expression for the diffusion
term in the vorticity transport equation. This same approach was used by Greengard and Anderson
[4], who explicitly differentiate the cutoff function to obtain the stretching of vorticity term. This
can be seen to be the same basic idea as that used in Equation (2.105). Perhaps one could say that
in the vortex blob method the RBF approach to solving PDE’s was being applied long before the
work of Kansa. There is one fundamental difference, however, and that is that in the vortex method

the nodes are allowed to vary in time, whereas Kansa’s method is Eulerian.
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Chapter 3

Numerical Experiments on the
Accuracy of Vortex Methods

3.1 Error Definitions and Measurements

When one wishes to study the accuracy of a vortex method, there are three fields one can look at and
measure the errors on: the vorticity field —whose governing equation is actually being solved by the
method—, the velocity field, and the flow map. The classical accuracy analyses provide estimates or
bounds for the velocity errors. But there are different sources of error which are relevant in a vortex
method computation. For example, Perlman [152] distinguishes between these sources of error in

h|, the distance between the exact velocity u

the following way. The consistency error is |[lu —u
and the discrete velocity u”, the latter obtained by a Biot-Savart calculation over the collection of
vortex blobs used to discretize the vorticity field. This error has two components, the smoothing

error, and the discretization error, so that using the triangle inequality one can write

lu =" < flu— w7+ [[u” —u"]. (3.1)

The first term on the right hand side of the equation above is produced by the regularization
of the singular Biot-Savart kernel, and the introduction of the cutoff function to replace the Delta
function in the discretization. It depends on the cutoff parameter o and it will also depend on time.
The second term is due to the numerical integration of the regularized Biot-Savart velocity by the
trapezoid rule, and therefore depends on the mesh width h, in addition to o and ¢. There is as well
the error introduced by the fact that the velocity is calculated using an approximate particle path,
and not the exact one, and this is called the stability error and represented by ||u” — a"|.

The convergence theory of vortex methods establishes convergence in two dimensions for the

particle paths, for the discrete velocity and for the continuous velocity [81, 14, 15]. In three dimen-

sions there is additionally proof of convergence of the particle vorticities and of the vorticity field
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[11]. Finally, the time discretized method is proved convergent for the particle paths using specific
time-stepping schemes in [4, 82].

In the present experiments, the error of the discretization is measured in terms of the maxi-
mum relative error in vorticity and velocity —i.e. the maximum field value of the point-by-point
difference between the exact and discretized vorticity /velocity, divided by the maximum value of

vorticity /velocity—, and a discrete L2-norm error, calculated using the following formula:

=" = (Z w(x:) w(x»ﬁh?) (3.2)

where, most of the time, the value of h in the formula above will be in practice replaced by h/2, to

measure errors in a sub-grid scale as well.

3.2 Errors of the Blob Discretization

The first fundamental question one may pose in regards to the practical use of the vortex (blob)
method refers to the accuracy that one can expect from the spatial discretization of the vorticity
field, by means of equation (1.2). Note that we do not deal with the point vortex method which
presents certain difficulties due to its singular nature. The vortex blob method deals with this
problem by using elements of vorticity which have a distribution that is a smooth approximation
to the delta function (the “cutoff function”). Both the vortex blob method and the point vortex
method have an extensive convergence analysis [83, 81, 14, 15, 82, 47, 88], as already mentioned, but
here we examine the accuracy of the blob discretization in practice, based on numerical experiments.

Since the study of Perlman [152], one of the early efforts to analyze and quantify the errors in
vortex methods, it has become well-known that the accuracy of discretization with the vortex method
fundamentally depends on three factors: the choice of cutoff function used in the discretization, the
value of the cutoff parameter, o, and the way an initially existing vorticity field is discretized and the
numerical method initialized. Two choices of cutoff function were used in the present calculations:
the most popular choice with most workers is the Gaussian (1.3), formally a second order cutoff, i.e.

O(0?); in addition, we used the algebraic eighth-order cutoff of Nordmark [144], given by

52(1 — 2172 +1057* — 140r7)(1 — r%)? r <1
(Br)y=2" (3.3)
r>1

o

where r = |x|, and (,(x) = 1/0? {(|x|/o), with d the dimension of the problem.
As mentioned in the Introduction, two classic test problems will be used: the Lamb-Oseen

vortex given in (1.13), and the inviscid vortex patch, or circular shear layer, given in (1.12). In the
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Figure 3.1: Lamb vortex, I', = 1, v = 0.01, ¢, = 0.05. (a) Vorticity at ¢ = t,; (b) point-wise error
in vorticity when discretized with Gaussian blobs with ¢ = 0.02 and h/o = 0.7, using the time shift
correction. The maximum relative error (i.e., normalized by wmax) is 9.2514e-11; N = 5184.

numerical experiments one chooses the following parameters: for the Lamb vortex, the initial time
t, and maximum circulation T', (usually taken as 1); for both test problems, the cutoff parameter o
and the inter-particle spacing in the initially regular lattice, h.

When using the Gaussian cutoff, the relevant spatial discretization parameters that are varied
in the experiments are the blob core size, o, and the overlap ratio, defined by h/o. On the other
hand, it is standard for higher-order cutoff functions to require a relationship between core size and
inter-particle separation to be of the type o ~ h4, with ¢ < 1. This is to conform to the convergence
theory developed, in particular, in [81, 82]. For this reason, the discretization parameters to be
chosen in the case of the Nordmark blobs are the inter-particle spacing h and the proportionality
constant ¢ used in the relationship o = ¢v/h.

The first set of tests was performed by discretizing the vorticity field of a Lamb vortex, with
a fixed value of h, but varying overlap ratio. The vortex blobs are placed on a square lattice and
their circulation strengths are obtained using the ‘time shift correction’ given in Equation (2.74).
To illustrate the efficacy of the correction for initialization, suppose the Lamb vortex with ¢, = 0.05
and v = 0.01 is discretized with blobs of size ¢ = 0.02 and overlap ratio h/oc = 0.7. Note that
this is a very “spiky” initial vorticity, with wpyax = 151.45, which is plotted as contours in Figure
3.1(a). Vortex blobs are placed on a square lattice in the (z,y)-domain [—0.5,0.5]%. The vorticity
error that is obtained, measured in the maximum norm and normalized by the maximum vorticity,
is plotted in the contours of Figure 3.1(b), and is very small (of order 10~!!). If one did not use

the time shift correction, but instead used Equation (2.72) directly, the maximum vorticity error is
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Figure 3.2: Lamb vortex, as in Figure 3.1(a). (a) Error of discretizing the vorticity without the time
shift correction; (b) error using the time shift correction, plus population control, N = 624.

almost 24% of the maximum vorticity, which clearly illustrates that the standard initialization can
lead to very large errors (in this case, they are dramatically large due to the high gradients of the
initial vorticity; for a very diffused Lamb vortex, say ¢, = 1.0, the error obtained is about 2%, which
is still considerable). Figure 3.2(a) shows the error field when the vorticity is discretized without
the time shift correction, plus the vortex blob locations are indicated with a dot; the number of
particles is 5184. The error when using the time-shift is shown again in Figure 3.2(b), in a closer
view (the color-bar of Fig. 3.1(b) applies), and also a technique is illustrated which will be used
often: population control. In this case, upon initializing, all particles with a circulation strength
smaller than the machine round-off error (about 2.2e-16) were eliminated. As one can see, this had
no effect on the error (which is obviously calculated after population control), but the problem size
was reduced drastically to N = 624. This example is quite extreme, due to the high gradients of the
initial vorticity, but it serves well the purpose of illustration.

To perform the tests of discretization with varying overlap ratio, more diffused states of the
Lamb vortex are chosen, one case with ¢, = 0.25 and ¢, = 0.5 in the second case; v is still 0.01
and I', = 1. These initializations are once again performed placing the particles on a square lattice,
now in the domain [—0.6,0.6]?, and using the time shift correction. Figure 3.3(a) shows the plotted
results of maximum relative error in vorticity, discrete L2-norm error in vorticity and the same two
measures of error for the velocity, in the first case of t, = 0.25. The overlap ratio is varied from a
minimum of 0.2 to a maximum of 2.0 (only 0.5 to 2.0 shown on the plot), and the number of vortex
blobs varies from 312 = 961 with an overlap of 2, to 3012 = 90601 with an overlap of 0.2. In Case

2, t, = 0.5, a larger domain was used to start with but population control was enforced by deleting
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Figure 3.3: Lamb vortex, I', = 1, ¥ = 0.01. (a) Vorticity and velocity errors vs. overlap ratio, using
Gaussian blobs with ¢ = 0.02; (b) Vorticity and velocity errors vs. ¢, with o = ¢v/h for Nordmark
blobs. Case 1: t, = 0.25, h = 0.01, N = 5177; Case 2: t, = 0.25, h = 0.025, N = 925; Case 3:
to, = 0.5, h =0.025, N = 925.

blobs with strength less than eps=2.2e-16 (as before); only the L?-norm measures of error are shown
(for clarity of the plot). Due to population control, the errors are bounded below by about ~ 10719,
but the problem size is drastically reduced. These larger errors now occur on the edge of the particle
field (where blobs were deleted), not on the region of maximum vorticity.

The results shown in Figure 3.3(a) demonstrate how, with the appropriate choice of the overlap
ratio, it is possible in practice to obtain negligibly small errors with the vortex blob representation.
In this case of the Lamb vortex discretized with Gaussian blobs (k = 2), an optimum overlap ratio in
the range (0.7,1.0) will produce velocity errors smaller than about O(107%). It is clear as well how
strongly the initialization depends on overlap ratio, there being a loss of several orders of magnitude
in the accuracy as h/o increases passing through the value of 1. Another observation that one can
make from the figure is the fact that the vorticity errors are always larger than the velocity errors,
which is consistent with the general results of the convergence theory of vortex methods. Note, as
well, that the errors are slightly smaller for Case 2, with t, = 0.5, before the effects of population
control are felt at the smaller values of overlap ratio; this is accounted for by the fact that this more
diffused state of the Lamb vortex is more accurately discretized with the same value of o, as it has
a larger “characteristic length” than the less diffused state.

Using the Nordmark cutoff function, the Lamb vortex is now discretized with different values of
the proportionality constant ¢ used in the relation o = ¢v/h. The particles are placed on a square
lattice, and the standard initialization formula (2.74) is used. The results shown in Figure 3.3(b)

demonstrate how it is possible to obtain tolerably small errors when using standard initialization
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Figure 3.4: Errors of discretization of a vortex patch of vorticity given by Equation (1.12) with
k = 3, using Nordmark blobs with varying proportionality constant ¢, o = ev/h.

with high-order cutoff functions (which is one of the reasons why they were introduced in [16]). This
is of course quite useful, due to the fact that the time shift correction used with the Gaussian cutoff
is of purely academic use, since it can only be applied in the very particular case of the Lamb-Oseen
vortex which is an exact solution of the diffusion equation. For this reason, one could argue that
the accuracy demonstrated in Figure 3.3(a) is the best possible accuracy that one can expect of the
discretization using Gaussian vortex blobs. It will be later discussed at some length how one can
obtain comparable accuracy as when using the time shift correction, but with any initial vorticity
field. This will be an application of radial basis function interpolation and will be discussed in §5.3.

The results of discretizing the Lamb vortex using (2.72) with Nordmark blobs and varying propor-
tionality constant ¢ (Figure 3.3(b)) indicate that minimal errors can be obtained with ¢ € (0.7,0.9).
Nordmark reported in [144] finding an optimal value of ¢ = 1.7 for his cutoff, using the test problem
of the inviscid axisymmetric vortex patch (1.12). This optimum was chosen by him to minimize the
velocity error at time-zero with i = 0.1. The optimum proportionality constant, one can conclude,
is dependent on the flow field being approximated. Next, using the test problem of the vortex patch,
the errors of discretization with Nordmark blobs were obtained for A = 0.05; results are presented
in Figure 3.4. It can be seen that this time the smallest errors are obtained for ¢ € (1.3,1.6), which
is closer to what was reported by Nordmark.

The discretizations used for the plot in Figure 3.3(a) were carried out with particles placed on a
square lattice. To observe the effect of a different particle arrangement, discretizations were carried
out on the Lamb vortex with initial conditions as in case 1 of Figure 3.3(a), but using both a square

lattice and a triangular lattice of equilateral triangles. Until now, the errors had been measured
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Figure 3.5: Lamb vortex I', = 1, t, = 0.25 and v = 0.01. Vorticity and velocity errors vs. overlap
ratio for Gaussian blobs with ¢ = 0.02, on square vs. triangular lattice.

on the particle locations, that is, on a mesh of size h. This time, the discrete L2-norm errors were
measured on a finer mesh of spacing h/2 for h the inter-particle spacing. Discretizations on the
triangular lattice were carried out twice: once with the same value of h as the ones on the square
lattice, which produces in the denser triangular lattice a slightly increased resolution, and once with
a “stretched” value of h to obtain an equivalent resolution to the square lattice (that is, for equal
cell area in both lattices; see Figure 3.6). This last option results in an effective larger overlap ratio
for the same nominal value of h, for comparison with the same resolution case on a square lattice.
For the same value of h, the triangular lattice “fills space” 15% more in 2D, i.e., there are 15%
more particles on average in the same area. With the stretched value of h, of course, the number
of particles for each value of overlap ratio is almost the same for both lattices. The domain of
initialization is obtained by first filling with blobs a square area larger than the support of vorticity,
then calculating the particle strengths using the time-shift correction and finally eliminating all
particles whose calculated strength is less than the machine roundoff, 2e-16. The errors are calculated
after this form of population control is enforced, which has the effect of limiting the accuracy that
is obtained at the smallest values of overlap ratio. For clarity, the plot in Figure 3.5 shows only
the errors calculated with a discrete L2-norm on an %—mesh (i.e., the errors on the maximum norm
are omitted); also note the lowest overlap ratio used in this Figure is 0.7 rather than 0.5 as was in
Figure 3.3(a).

Figure 3.5 demonstrates how the triangular lattice provides an increased accuracy in comparison

with a square lattice. For example, with an overlap ratio of 1.0 at the same value of h, the triangular

lattice proves to be almost three orders of magnitude more accurate, although with a larger N (by
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Figure 3.6: The area associated to a particle in the square lattice, for inter-particle spacing h, is h2,
whereas for the triangular lattice it is v/3h? /2. For this reason, to get equivalent resolutions on both
lattices, the value of h is ‘stretched’ for the triangular lattice.

about 15%, as already mentioned). If one compares the equivalent resolution cases for a nominal
overlap ratio of 1.0, then the triangular lattice gives about one order of magnitude improvement
(with an effective overlap of 1.075). We will come back to this when discussing radial basis function
interpolation, in §5.3.

The value of the overlap ratio at which one obtains a desired accuracy is associated to the choice
of cutoff function; in particular, the numerical value for a given accuracy at the same value of ¢ will
be different for Gaussians of different spread. Consider the plots in Figure 3.7, where the errors are
once again obtained on a mesh of width h/2. The initializations were repeated for the three usual
choices of Gaussian cutoff, with varying overlap ratio, and one can see that the errors obtained with
the k = 2 Gaussian at h/o = 1 are reproduced at a smaller value of h/o with the k¥ = 1 Gaussian,
and at a larger value of h/o with the k = 4 Gaussian. In other words, the scale that the parameter o
measures in each case is different. For this reason one needs to be careful when comparing the work
of different authors, in particular when a given ‘optimum’ value of overlap is given. Considering the
resulting requirement that the overlap ratio be less than 1 as a very convenient one, we opt for the
k = 2 Gaussian.

Finally, the relationship between the overlap ratio and the conditioning of the distance matrix
formed using the cutoff function has been examined. For both the square and the triangular lattices,
the condition number is plotted against the overlap ratio in Figure 3.8, where it can be seen how
the matrix becomes increasingly ill-conditioned as the overlap decreases below the value of 1 (once
again, this is for the k = 2 Gaussian). At an overlap ratio of 0.7, the condition number for the square
lattice is of order ~ 10%, but note that for the equivalent resolution triangular lattice (stretched h),

the condition number is smaller by two orders of magnitude.
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3.3 Effects of the Lagrangian Time Evolution

It was seen in the previous section how the accuracy of discretization with vortex blobs depends
crucially on the overlap ratio. This demonstrates the practical situation when the vortex blobs cease
to overlap fully (overlap ratio larger than 1, for k¥ = 2 Gaussian blobs). The theoretical situation,
on the other hand, is that convergence proofs of the vortex method require overlap of the blobs, in
the sense that it is an assumption in the proof [83, 81, 14, 4, 82]. One expects, therefore, that as
the vortex particles are allowed to evolve in a Lagrangian manner, the strain of the flow field will
cause the overlap to be lost in some areas thereby increasing the errors. The problem becomes of
crucial importance as the viscosity value is reduced, and it is the determining factor in the results
that can be obtained from an inviscid simulation. Early on, numerical experiments [152] showed
that for o = h the initial accuracy is lost in a relatively short time. Hence, it was proposed that the
optimal choice of o be made based on the final time desired for the computation, in other words, it
was suggested that providing an initially denser particle field was necessary for longer time-marching
calculations. This of course refers to calculations with no added spatial adaption algorithms.

In the present work, a large number of numerical calculations have been performed, using both
test problems described previously and both the Gaussian and Nordmark blobs. Different time
stepping methods were used as well, including Adams-Bashford of second and third order with
different start-up schemes, and Runge-Kutta of fourth order. The experiments show clearly that
good initialization and time-stepping do not guarantee that the accuracy can be maintained at later
times of a computation. In what follows, some exemplary cases will be presented.

A typical calculation of a Lamb vortex with small viscosity, giving a moderately high Reynolds
number of 2000, is presented in Figure 3.9. The initial vorticity is discretized using Gaussian blobs
on a square lattice with the time-shift correction, resulting in an initial velocity error of O(10~?) with
h/o = 0.8. As shown in Figure 3.9(a), the errors quickly grow, and oscillate around a deteriorated
accuracy level about five orders of magnitude larger than initially. Note that the errors do not grow
without bound, which has been pointed out before [152, 16, 12]. Figure 3.9(b) shows the contours
of vorticity error as well as particle locations at the final time of the calculation. The error contours
show how the Lagrangian distortion of the particles introduces spurious (although weak) vortical
structures. The vorticity error is measured in a maximum norm, and the contour of largest absolute
value is 1.23% of the maximum vorticity, while the outermost contour has a value of 0.2% the
maximum vorticity. In this calculation, vorticity diffusion was provided by core spreading and the
final value of ¢ is 0.0490 (note that in a problem with radial symmetry, Greengard’s inconsistency

observations [79] do not apply).
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Figure 3.9: Calculation of a Lamb vortex: ', = 1, ¢, = 4.0 and v = 0.0005; Gaussian blobs with
o =0.02, h =0.0160, N = 1560. RK4 time-stepping, At = 0.01. (a) Evolution of errors in vorticity
and velocity; (b) vorticity error contours and particle locations at final time.

t Erel,max Erel,max EL2 EL2
4.0 4.85E-09 6.02E-09 6.48E-08 3.67E-09
6.0 1.23E-02 2.10E-03 9.23E-02 7.09E-04

Summary of errors for the experiment shown in Figure 3.9.

For the experiment just described, the errors in vorticity and velocity at initialization (¢t = t, =
4.0) and at the final time of the calculation are shown in the table above. About six orders of
magnitude are lost in the accuracy, quite quickly in fact. With every other parameter kept the
same, if this experiment is carried out with a larger time step of At = 0.02, one observes almost
the same final errors, whereas a difference is obvious at the beginning of the calculation, the first
10 time steps or so, indicating time-stepping errors. See Figure 3.10(a). A number of numerical
experiments with relatively small values of viscosity, giving Re ~ 103, produced similar results.
In contrast, one can produce a calculation of the evolution of the Lamb vortex where the initial
accuracy is maintained (without applying any sort of spatial adaption) throughout the calculation.
For example, an experiment with a rather viscous Lamb vortex using v = 0.01 produced a final
velocity error of order 10~%; the evolution of errors in this case are plotted in Figure 3.10(b).
However, the fact is that in this more viscous case the vortex cores are growing fast enough (due
to core spreading) that one can expect that overlap is maintained even though the particles become
disordered. In the case shown, for example, the cores grow from an initial value of o = 0.02 to a

final value of 0.3169, which is an increase of fifteenfold. This really is of no use in practice, due to
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time-stepping, At = 0.02. (b) ¢, = 1.0 and v = 0.01; N = 7704. RK4 time-stepping, At = 0.05.

the necessity of core size control for convergence of the core spreading method, but it is nevertheless

interesting to note. It will also be helpful for studying time-stepping effects (next section).

t Erel,max Erel,max EL2 EL2
1.0 6.04E-07 2.87E-07 4.83E-07 5.51E-08
6.0 2.34E-07 3.14E-07 2.14E-07 3.13E-08

Summary of errors for the experiment shown in Figure 3.10(b).

3.4 Aspects of Time-Stepping

A concise analysis of the effect of time-stepping will be presented here. Consider first the result of
repeating the experiment presented in Figure 3.10(b), but using an Adams-Bashford scheme of third
order (AB3) instead of Runge-Kutta of fourth order (RK4). The use of Adams-Bashford schemes
is advocated by some workers due to the fact that only one velocity evaluation is required per time
step. In contrast, RK4 requires four velocity evaluations, and this is the most expensive part of
most time-marching computations, a fact that is especially true for vortex methods when no fast
summation method is used for the Biot-Savart law.

The errors obtained with the AB3 scheme are shown on the table below, while the evolution
of errors is plotted in Figure 3.11(a). One can see that three orders of magnitude were lost in

comparison with RK4, most of which once the AB3 starts at the third time step (two initial steps
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Figure 3.11: Evolution of errors in vorticity and velocity; calculations of a Lamb vortex: I', = 1,
t, = 1.0 and v = 0.01; N = 7704. Gaussian blobs with o = 0.02, h = 0.0160, both cases. (a) AB3
time-stepping, At = 0.05, with two RK4 steps to start. (b) AB3 time-stepping, At = 0.02.

of RK4 are used as the AB schemes are not self-starting). One would have expected, sensibly, that
a smaller time step would be needed when using AB3, to obtain a similar accuracy than with RK4.
It is not solely due to the lower order of the AB3 scheme being tested in this case, but to the fact
that the constant factor in front of that order can be large enough to require using smaller time
steps. So, next an experiment is performed with a time step At = 0.02, resulting in approximately
a one order-of-magnitude decrease in the errors in comparison with the case above. This is still not

enough, however, to equal the RK4 calculation. The errors are detailed on the second table, below.

t Erel,max Erel,max EL2 EL2
1.0 6.04E-07 2.87E-07 4.83E-07 5.51E-08
6.0 1.48E-04 9.53E-05 5.93E-05 1.47E-05

Summary of errors for the experiment in Figure 3.11(a), using AB3.

rel,max rel,max L? L?
t Ex E" EL EL

1.0 6.04E-07 2.87E-07 4.83E-07 5.51E-08
6.0 8.33E-06 5.35E-06 3.38E-06 8.16E-07

Errors for the calculation using AB3 and At = 0.02, Figure 3.11(b)
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Figure 3.12: Evolution of errors in vorticity and velocity; Lamb vortex: I', = 1, t, = 1.0 and
v =0.01; N = 7704. Gaussian blobs: ¢ = 0.02, h = 0.0160. (a) AB3 time-stepping, At = 0.01 (500
steps), two RK4 steps to start. (b) RK4 time-stepping throughout, At = 0.1 (50 steps).

Decreasing the time step to At = 0.01, at last one observes a final error which is similar to the
one obtained with RK4; this calculation required 500 time steps. But in fact, one is able to increase
the time step to At = 0.1 with RK4, and still obtain an L2-norm velocity error of order ~ 1078,
although a jump is observed in the errors upon the first time step of almost an order of magnitude,
the errors relax back to their initial levels. This calculation required only 50 time steps, which means
that 200 velocity evaluations were necessary. Indeed, if one compares this case with the one shown
in Figure 3.11(b), where AB3 was used with At = 0.02 (250 time steps), one can conclude that RK4

is more accurate and more efficient than AB3.

t Erel,max Erel,max EL2 EL2
1.0 6.04E-07 2.87E-07 4.83E-07 5.51E-08
1.03 6.63E-06 2.98E-06 4.60E-06 6.08E-07
6.0 9.38E-07 b5.66E-07 4.54E-07 7.98E-08

Summary of errors for the case shown in Figure 3.12(a).

t Erel,max Erel,max EL2 EL2
1.0 6.04E-07 2.87TE-07 4.83E-07 5.51E-08
1.1 1.34E-05 5.50E-06 8.18E-06 1.04E-06
6.0 2.83E-07 3.7T1E-07 2.34E-07 5.00E-08

Summary of errors for the case shown in Figure 3.12(b)
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The numerical experiments presented above indicate that a step size ten times smaller is needed
to attain with AB3 the same accuracy as with RK4. Although it is admissible to think that this
result may be problem-dependent, the difference is considerable and it is enough to frustrate the
arguments in favor of a one-evaluation time stepping scheme versus a many-evaluation method.

Another concern in regards to time-stepping refers to the relevance of criteria for the choice of
a step size, which one can occasionally find mentioned in the literature (surprisingly, the subject

-1
max?

is very often neglected or barely touched upon). One can compare the time step with w for
example (when quantities are made non-dimensional, sometimes the value of /v is mentioned for
viscous flows, in which case w ~ v/Re).

The wy,}, criterion is based on estimating the time step such that the particles can follow a
curved path accurately. One possible way to look at this is to consider a simple local description
of the flow in the incompressible case. Using a Taylor series expansion of the velocity field u(x,t)
around a point Xg, see [125], one can show that, to linear order in |x — x¢|, a smooth velocity field

is the sum of three terms
1
u(x,tg) = u(xog, to) + §w X (x —x0) + D(x — x0), (3.4)

where D is the symmetric deformation matrix. The first term on the right-hand side of (3.4)
describes the velocity of an infinitesimal translation, the second term is an infinitesimal rotation in
the direction of w, and the third term represents an infinitesimal deformation velocity. Considering
only the contribution of the rotation term, one can estimate then that for an infinitesimal motion
ot ~ (%w)fl. Using the maximum vorticity in the field to estimate the time step should then assure
that the rotational motions can be integrated accurately. This may be enough in flows dominated
by vorticity, but one should probably consider criteria that include the effects of deformation in the
more general case.

Examination of the numerical experiments presented in this section permits the following obser-
vation. For the calculations presented in Figures 3.10(b) to 3.12(b), the initial condition is such that
the value of w,l is 0.1261, which would indicate that a choice of At = 0.1 is adequate. This time
step did indeed give good results in the case shown in Figure 3.12(b), where the RK4 scheme was

used. It seems, however, that if the AB scheme is used, the criterion for choosing a time step could

produce disappointing results.

3.5 Experiments Using Standard Remeshing

Tests Using Inviscid Vortex Patch: Initialization. To demonstrate the capabilities of the

standard remeshing schemes, we start with numerical experiments using an axisymmetric, inviscid
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vortex patch of order k = 3, with vorticity given by Equation (1.12), using a rather low-resolution
discretization with h = 0.1. This classic test problem is used in [48] (p. 28) to demonstrate different
initialization approaches, also using h = 0.1 (resulting in about 300 particles, as in the experiments
presented here). They report velocity errors at discretization (time-zero) of order ~ 1072, for
three different initializations: on a square lattice, on a random and on a “quasi-random” lattice
(the coefficient in each case is —reading from the plot, approximately— 2, 8 and 3, respectively).
Presently, a square lattice is used, which when initialized using the standard formula (2.72) results
in the errors shown on the first row of the table below. This apparently corresponds very well to
the example in [48] just cited, although they used a different cutoff function (fourth order linear
combination of Gaussians, with ¢ = 2h). Note, however, that using Beale’s method of circulation
processing, the initial errors can be considerably decreased; the result shown on the second row of

the table below was obtained with only 5 iterations.

method ~ Erebmax - prebwax  pl? EF
standard  2.05E-01 1.67E-01 7.18E-02 1.96E-02
Beale's  1.01E-02 2.13E-03 9.87E-03 2.05E-04

Initialization errors for the low-resolution discretization of the

inviscid vortex patch using Gaussian blobs, ¢ = 0.2 and h = 0.1.

Growth of Discretization Errors. Time-stepping the improved initialization obtained with
circulation processing, using RK4 and a step At = 1, one can see that the errors soon start to
oscillate and grow. The maximum observed L?-norm error in the velocity is 0.0017 and in vorticity
it is 0.0504, both one order of magnitude larger than initially. Furthermore, if one examines the
field error of vorticity as it varies with time, one can see that there are spurious structures, which

exhibit a periodicity consistent with the initial Cartesian lattice, see Figure 3.13.

Control of Discretization Errors with Standard Remeshing. Calculations were performed
next with remeshing using the M} kernel; at a frequency of either 10 or 5 time steps, the oscillations
and growth of errors were still present, but these were inhibited when remeshing at a frequency of
2 time steps. The time-evolution of the errors for the case with no remeshing is shown in Figure
3.14(a) and for the case with remeshing every 2 time steps in Figure 3.14(b). In addition, if one
looks at the field vorticity error in the remeshed case (not shown here), one finds that the spurious
structures almost have disappeared. The maximum values, during the long of the experiments
(80 time steps), of the different error measurements are detailed on the table below. There is a
substantial improvement in accuracy thanks to the remeshing processes, beside the fact that the

spurious structures in the vorticity field have been controlled. One inconvenience of the classical
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o = 0.2,

Figure 3.13: Evolution of vorticity error field; inviscid vortex patch. Gaussian blobs:

h

0.1. No remeshing.
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Figure 3.14: Evolution of errors in vorticity and velocity (measured on %—mesh); inviscid vortex

patch. Gaussian blobs: ¢ = 0.2, h = 0.1. (a) No remeshing. (b) Remeshing every 2 steps, using M.

remeshing scheme becomes apparent, however, as the problem size grows from N = 305 to N = 2960
during the 40 remeshing processes; this is due to the need for a stencil of particles on the edge of

the initial domain, to redistribute the circulation according to the M} scheme.

spatial adaption Efdel’max Ef)el’max E£2 EUL2
no remeshing 5.64E-02 1.76E-02 5.04E-02 1.73E-03
M} every 2 steps  1.26E-02 7.96E-03 1.13E-02 7.64E-04

Maximum errors for the calculations of the inviscid vortex patch using

Gaussian blobs (o = 0.2, h = 0.1), corresponding to Figure 3.14(a) and (b).

Initial Remesh Error and Need for Population Control. Increasing the resolution of the
discretization, and thanks to the improved accuracy of initialization using Beale’s method of circu-
lation processing, another limitation of the standard remeshing scheme seems to become evident.
Using h = 0.05, obtained by the combination ¢ = 0.05 and h/c = 1.0, one can obtain an initial L2-
norm error in velocity of 5.6E-7, and in vorticity of 1.1E-4. With the same time-stepping conditions
as before (RK4, At = 1.0), and remeshing every 2 time steps, the errors evolve as seen in Figure
3.15(a). Especially in the case of the vorticity, one can see that after the first remeshing process
there is a sharp jump in the errors. In this calculation, the number of particles grows from N = 1245
to N = 3897 in the 25 remeshing processes (only 50 time steps were advanced in this case). Note
the following conflict: on the one hand, the initial vorticity error is of order ~ 10~4, which added

the fact that A2 ~ 10~3 means that the resolution in terms of circulation is of order ~ 10~7. On
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Figure 3.15: Evolution of errors in vorticity and velocity; inviscid vortex patch. Gaussian blobs:
o = 0.05, h = 0.05. (a) Square lattice; remeshing every 2 steps, using M, (measured on %-mesh).
(b) Triangular lattice; hexagonal redistribution every 2 steps, (measured on h-mesh).

the other hand, due to the remeshing stencil and its effect on growing the computational domain,
the minimum value of particle circulation at the end of the run is 2.16E-16. Indeed, there are 2284
particles whose absolute value of circulation is less than 1E-7 (almost 60% of the total number of

particles). This clearly justifies employing some form of population control.

Tests Using Hexagonal Redistribution Scheme. Subsequently, numerical experiments were
performed using a triangular lattice and the hexagonal redistribution scheme of Chatelain. To obtain
an accurate initialization, instead of using Beale’s method of circulation processing (which assumes
a square lattice), the circulation strengths were obtained by solving the linear system (2.75), using
—as in [102]— successive over-relaxation. A relaxation parameter of 0.20 was used (chosen by trial
and error), and 25 iterations were imposed, to obtain the initial errors shown on the table below.
Population control was enforced by deleting particles whose circulation strength fell below 2E-8,

hence the problem size grows moderately from N = 1261 at ¢ =0, to N = 1996 at T

initialization /adaption Erebmex  prelmax  pL? EL?
t = 0: Beale’s method, 5 its.  2.33E-04 1.15E-05 1.10E-04 5.57E-07
Mj, every 2 steps; T = 50: 2.13E-02 3.73E-03 9.23E-03 3.05E-04
t = 0: SOR, 15 its. 5.66E-05 6.36E-06 2.20E-05 2.87¢-07

hex. redist. every 2 steps; T'=80: 1.26E-02 7.96E-03 1.13E-02 7.64E-04

Errors for the calculations of the inviscid vortex patch using Gaussian

blobs (¢ = 0.05, h = 0.05), corresponding to Figure 3.15(a) and (b).
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Results. A number of observations are possible from these experiments. The most noteworthy is
that both using the third-order M remeshing scheme and the hexagonal redistribution (also third-
order), there is a jump on the errors upon the first remeshing process: an “initial remesh error”.
This can be seen only when the resolution is moderately high, and then, only with a sufficiently
accurate initialization. Note that if standard initialization had been used, the time-zero errors
would have been such to make it impossible to see this initial remesh error. On the other hand, the
usual quantities used to measure the performance of remeshing schemes, i.e., conservation of total
circulation and linear impulse, would indicate excellent results in these remeshing experiments. In the
case shown in Figure 3.14(b), the maximum change in total circulation during a remeshing process
was 8.7E-15, and in linear impulse it was 1.04E-16. Similarly, for the more resolved experiment
shown in Figure 3.15(a), total circulation was conserved to 9.3E-15, and impulse to 2.5E-16, on
each remeshing process. In the experiment shown using the hexagonal redistribution scheme, the
measured maximum change in total circulation was 1.38E-6 and in linear impulse it was 5.0E-8;
however these larger values are due to the effect of population control. Other numerical experiments
with this scheme, not presented here, conserved total circulation to order ~ 1071°, just like M} —but
produced, e.g., a fivefold increase in the number of particles in 8 remeshing processes with h = 0.1,
which justifies population control—. If one compares the actual vorticity and velocity errors, in
contrast, one observes slightly more accurate results with the hexagonal redistribution scheme, in
comparison with the M} scheme (that is comparing the errors at the same time, ¢ = 50; note that
the triangular lattice used a ‘stretched’ value of h for an equivalent resolution to the square lattice).

Figure 3.16 shows the errors of experiments using the same discretization parameters as above,
o = 0.05, h/o = 1.0 (square lattice), but with a smaller step At = 0.2 and for a shorter time. One
can observe more clearly how the errors start growing, and what happens upon remeshing. Note
that the turn-around time for the initial condition is T, ~ 20 (the maximum tangential velocity is
0.1737, at a radius of 0.575). Initialization was performed using 5 iterations of circulation processing
(but the errors are slightly different than the case in Figure 3.15(a) because the errors were measured
on a coarser grid). Remeshing does provide an improvement in accuracy at t = T = 12.0; the initial
remesh error at ¢ = 2, however, is of almost 2 orders of magnitude. Once again, note that this
jump in the errors would not have been visible if circulation processing had not been performed to
improve the accuracy of initialization (by almost four orders of magnitude, with 5 iterations).

To further emphasize the importance of an accurate initialization to be able to see the error
introduced by remeshing, consider similar calculations presented in the literature. For example, using
the same test problem, an example is provided in [48], p. 235, where different remeshing schemes
are compared, with h = 0.05 as here (the type of cutoff is not specified). Reading approximately
from the plot, one sees that at time-zero the velocity error was 1E-3, and without any remeshing the

final error was 2TE-2. Remeshing at every time step with the Ay scheme, the final error is 27 E-2,
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Figure 3.16: Experiments with an inviscid vortex patch and Gaussian blobs, o = 0.05, h/o = 1.0
and N = 1245, RK4 At = 0.2 (errors measured on h-mesh). Population control at I'; = 2E-10.

representing a slight improvement. With M}, in contrast, the final error is 2E-3, thus maintaining

the initial accuracy quite well.

Similar Remeshing Experiments in the Literature. There is an experiment in [52], where,
using the same test problem, different remeshing schemes are compared. The initial particle spacing
is h = 0.05 and the final time T = 50; one can read from the plot that the time step was 0.5,
but no mention is made of the time marching scheme used. The authors state that a second order
interpolant must be considered too dissipative and higher order formulas are required. But between
the two third-order schemes, their experiment again shows M) to give much better results, and
they choose this scheme for the applications presented (including a vortex-wall interaction problem,
vortex shedding behind a circular cylinder, and behind an array of two cylinders). To compare the
experiment of [52] with the ones presented here, we are forced to extract more details from their
plot. One can read that the initial velocity error was around 4E-4; they do not specify what type
of cutoff was used, but we suspect that this experiment was part of the thesis of [151], in which
case a fourth-order algebraic cutoff was used. Reading from the error plot in [52], the final L2-norm
velocity error without any remeshing is 4E-2, hence two orders of magnitude in accuracy were lost
with respect to initialization. Remeshing at every step using the A5 kernel, the final error decreases
slightly to 2E-2. With both the A3 and the M} kernels, in contrast, the final error is 2E-3, a one
order of magnitude improvement. Note that the final errors are very similar to the example in [48],
p. 235, for the three cases, even though the initial error was one order of magnitude smaller in [52].

The initial L?-norm velocity error in the experiment shown here in Figure 3.16(b) is 5.57E-7. In

an experiment with M} remeshing every 5 time steps using At = 0.5, the final error was 3E-4, which
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Figure 3.17: Experiments with a Lamb vortex: I', = 1, t, = 4.0 and v = 0.0005; Gaussian blobs
with ¢ = 0.02, h = 0.0160. RK4 time-stepping, At = 0.02. Remeshing every 10 steps with Mj:
compare with Figure 3.10(a).

decreases to 1.4E-4 with remeshing every 2 steps (these cases are not shown in the figures). This is
a one order of magnitude improvement over the case in [52]. An interesting observation is that in
these experiments there was once again a noticeable jump in the errors on the first remesh, bringing
them immediately to order 1075. In the experiment of [52] the initial error was already one order

of magnitude larger than this, so no jump can be seen.

Test Using Lamb-Oseen Vortex. Finally, a remeshing experiment using the Lamb vortex is
presented in Figure 3.17, where the M} scheme was used every 5 steps on the same initial condition
as that of Figure 3.10(a). The use of remeshing improved the vorticity accuracy by about one order
of magnitude. But once again, there is a significant increase in all the errors upon the first remeshing
process. In Figure 3.17(b) are presented the absolute errors in total circulation and linear impulse on
each remeshing process, and one can be satisfied that these are indeed small (population control was
enforced by deleting particles whose strength was below 2E-10). A summary of error measurements

for this experiments is presented in the table below.

rel,max rel,max L? L?
t Ew EU Ew Ev

4.0 5.95E-09 7.01E-09 7.35E-08 4.12E-09
4.02 2.00E-06 1.64E-06 1.23E-05 5.33E-07
4.1 3.10E-03 5.59E-04 1.61E-02 1.40E-04
8.0 288E-03 1.55E-03 9.20E-03 4.55E-04

Summary of errors for the experiment shown in Figure 3.17.
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3.6 Experiments with Rezoning and a Higher-Order Cutoff

Tests Using Inviscid Vortex Patch: Faster Growth of Discretization Errors with High-
Order Cutoff. Consider again the experiments presented at the beginning of the previous section,
using Gaussian blobs on the inviscid vortex patch, with h = 0.1. If one uses instead the eighth-order
cutoff function of Nordmark, with the same value of h and hence the same number of particles,
and with o = 1.6v/h, there is an improvement of about two orders of magnitude in the accuracy
of discretization at time zero (using the standard formula for initialization, with no circulation
processing). The initial accuracy is lost very rapidly, however, and at the fourth time step the
velocity error is about the same as it was initially with the Gaussian blobs (see Figure 3.18(a), and
compare with Figure 3.14(a)). Thereafter, the errors are considerably larger than with the lower-
order Gaussians. It was observed consistently in further numerical experiments that the higher-order
blobs are much more vulnerable to the Lagrangian distortion of the particle locations. This was likely
the motivation for the introduction of the rezoning schemes with the high-order kernels presented
in [16]. Without some form of spatial adaption, there is no advantage in using higher order blobs in
comparison with simple Gaussians, on the contrary. The observation of the field of vorticity errors
as it evolves with time reveals that the high-order blobs produce smaller scale (or higher frequency)

spatial structures, see Figure 3.19 and compare with 3.13.

Standard Remeshing. With the addition of standard remeshing every two time steps using the
M} kernel, an improvement of two orders of magnitude is observed in all errors by the end of the
run. The errors in this case are shown in Figure 3.18(b), where once again one can see that there
is a noticeable jump upon the first remeshing event. The table below shows the initial errors, the
errors at the fifth time step, and the maximum errors during the run for the case without remeshing

and the case with M remeshing every 2 steps.

spatial adaption Erebmax - prelmax E£2 E5’2
at t =0: 4.14E-04 4.29E-05 3.02E-04 3.05E-06

no remeshing, t =5 0.1012 0.0078 0.0427 4.71E-04
no remeshing, max. 0.9834 0.2880 0.4076 0.0197
M} every 2 steps, max. 0.1005 0.0176 0.0383 0.0013

Errors for the calculations of the inviscid vortex patch using Nordmark blobs

(0 = cv'h, h=0.1, ¢ = 1.6), corresponding to Figure 3.18(a) and (b).

Hexagonal Redistribution Scheme. When initializing on a triangular lattice with the Nord-
mark blobs, and using the hexagonal redistribution scheme of Chatelain, one obtains very similar

results to the ones presented above for the square lattice and the M) remeshing scheme. The evo-
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Figure 3.20: Experiments with an inviscid vortex patch using Nordmark blobs with o = ¢v/h, on a

triangular lattice. RK4 time-stepping (errors measured on %-mesh). (a) h = 0.1, ¢ = 1.6 , At = 1.0;

hexagonal redistribution every 2 steps. (b) h = 0.05, ¢ = 1.3 , At = 0.5; hexagonal redistribution
every 4 steps.

lution of errors in this case in shown in Figure 3.20(a), and the values of errors at initialization and
the end of the calculation are given on the table below. Increasing the resolution by halving the
value of h and At, one sees a slight improvement in final errors; however, the initial remesh error in

this case is about 3 orders of magnitude, see Figure 3.20(b).

time Erel,max Erel,max EL2 EL2

t=0: 3.98E-04 6.37E-05 2.56E-04 3.17E-06
t=3 2.83E-02 5.20E-03 1.67E-02 4.35E-04
t=50 &8.25E-02 243E-02 4.43E-02 1.70E-03

Errors for the calculations of the inviscid vortex patch using Nordmark blobs

on a triangular lattice, corresponding to Figure 3.20(a).

time ELel,max Eqr)el,max E£2 EUL2
t=0: 7.18E-05 6.93E-06 3.82E-05 2.63E-07
t=25 243E-02 1.89E-03 1.13E-02 1.48E-04
t=50 3.96E-02 5.02E-03 1.67E-02 2.99E-04

Errors for the calculations of the inviscid vortex patch using Nordmark blobs

on a triangular lattice, corresponding to Figure 3.20(b) (h = 0.05).
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Figure 3.21: Evolution of vorticity error field; inviscid vortex patch. Nordmark blobs: ¢ = ¢v/h,
h = 0.1, ¢ = 1.6. Hexagonal redistribution performed every 2 steps.

Note, finally, that the use of a triangular lattice with the hexagonal redistribution leads to a
vorticity error field that has an hexagonal pattern, see Figure 3.21 which corresponds to time-slices

of vorticity error for the case of Figure 3.20(a).

Results. At this stage, one would be tempted to conclude that there is no advantage in using
higher-order cutoff functions. The initial discretization is indeed more accurate than with simple
Gaussian blobs, but not only is this accuracy lost dramatically quickly once time-stepping begins, but
also the remeshing schemes introduce the same amount of error as with the low-order cutoff. Hence,
in the end of a moderately long calculation the errors are very similar with both a second-order and
an eighth-order blob. In the experiments presented above, e.g., at a relatively low resolution obtained
with A = 0.1, the Nordmark blobs with standard initialization provided a two-order-of-magnitude
improvement in the accuracy at time-zero compared to Gaussian blobs initialized with circulation
processing. This difference is lost in as little as five time steps, due to the fact that higher-order
blobs are much more vulnerable to loss of overlap. And when using one of the remeshing schemes,
the final errors are not smaller with the higher-order blobs; in fact, for the case of the vorticity, they

are slightly larger.
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Figure 3.22: Experiments with an inviscid vortex patch using Nordmark blobs with o = ¢v/h,

h =0.1, c = 1.6. RK4 time-stepping with At = 1.0, and classic rezoning every 2 time steps (errors
h

measured on 3-mesh).

Classic Rezoning. Experiments were performed next using the classic rezoning strategy of Beale
and Majda [16], as described on §2.2.2. Note that in obtaining the circulation values of the new
particles after spatial adaption by multiplying the local value of vorticity by the cell area, the
rezoning scheme is subject to the same errors as the standard initialization. Thus, when using
low-order blobs this scheme is not very accurate and produces results which are very much inferior
to standard remeshing using a kernel such as M} (several experiments were performed, but they
are not detailed here). However, seen that the initialization errors are so much smaller with the
higher-order blobs, classic rezoning should provide better results in this case.

In Figure 3.22(a) is shown the evolution of the errors for the case of Nordmark blobs initialized
on a square lattice, with i = 0.1 as before, using classic rezoning every 2 time steps. This calculation
results in an order-of-magnitude improvement over the case with M, remeshing every 2 steps, and
hence two orders of magnitude over no-remeshing. Note, however, that for the case with M, most
of the accuracy is lost on the first remeshing event, while here the errors seem to slowly creep up

along the calculation. Possibly, for longer times, the rezoning option may accumulate more errors.

Rezoning on a Triangular Lattice. Figure 3.22(b) shows the results of an experiment of classic
rezoning used on the triangular lattice. The nominal value of h is once again 0.1, but in the
calculation this is stretched to obtain an equivalent resolution to the square lattice. In the formula
for the particle strengths after rezoning, the cell area for the triangular lattice is used, and thus
one is able to obtain good results with rezoning on this lattice. The results show that all errors are

slightly smaller in comparison with the equivalent resolution case on the square lattice. And, once
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again, in comparison with the hexagonal redistribution scheme, there is a one-order-of magnitude

improvement with rezoning on high-order blobs. Note that most of the error occurs on the first

remeshing event when the hexagonal redistribution scheme was used. A summary of the error

values for the two rezoning experiments is given on the tables below.

: rel,max
time E

rel,max L2 L?
Ev Ew Ev

t=0: 4.14E-04

4.29E-05 3.46E-04 3.05E-06

t=3 2.00E-03
t=50 1.03E-02

2.18E-04 8.38E-04 1.98E-05
3.57TE-03 2.18E-03 2.96E-04

Errors for the calculations of the inviscid vortex patch using Nordmark blobs,

rezoning on a square lattice, corresponding to Figure 3.22(a).

: rel,max
time ET

rel,max L? L?
Ev Ew Ev

t=0: 3.98E-04

6.37TE-05 2.56E-04 3.17E-06

t=3.0 6.96E-04
t=50 7.31E-03

1.46E-04 4.38E-04 1.35E-05
2.57E-03 2.36E-03 2.22E-04

Errors for the calculations of the inviscid vortex patch using Nordmark blobs,

rezoning on a triangular lattice, corresponding to Figure 3.22(b).

Results. In conclusion, one may suggest that the classic rezoning strategy 