
Data pruning

Thesis by

Anelia Angelova

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2004

(Submitted May 27, 2004)

ii

c© 2004

Anelia Angelova

All Rights Reserved

iii

Acknowledgements

I would like to thank my advisers Professor Pietro Perona and Professor Yaser Abu-

Mostafa for their help and support. This work would not have been possible without

them.

I would also like to thank my colleagues from the Vision Group and Learning

Systems Group at Caltech.

This work is supported by the National Science Foundation Research Center for

Neuromorphic Systems Engineering.

Finally, I thank Dragomir and my family for their love and support.

iv

Abstract

Could a training example be detrimental to learning? Contrary to the common belief

that more training data is needed for better generalization, we show that the learning

algorithm might be better off when some training examples are discarded. In other

words, the quality of the examples matters.

We explore a general approach to identify examples that are troublesome for

learning with a given model and exclude them from the training set in order to

achieve better generalization. We term this process ’data pruning’. The method is

targeted as a pre-learning step in order to obtain better data to train on.

The approach consists in creating multiple semi-independent learners from the

dataset each of which is influenced differently by individual examples. The multiple

learners’ opinions about which example is difficult are arbitrated by an inference

mechanism. Although, without guarantees of optimality, data pruning is shown to

decrease the generalization error in experiments on real-life data. It is not assumed

that the data or the noise can be modeled or that additional training examples are

available.

Data pruning is applied for obtaining visual category data with little supervision.

In this setting the object data is contaminated with non-object examples. We show

that a mechanism for pruning noisy datasets prior to learning can be very successful

especially in the presence of large amount of contamination or when the algorithm is

sensitive to noise.

Our experiments demonstrate that data pruning can be worth while even if the

algorithm has regularization capabilities or mechanisms to cope with noise and has a

potential to be a more refined method for regularization or model selection.

v

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Learning and Generalization . 1

1.2 Difficult examples and outliers . 1

1.3 Data pruning overview . 2

1.3.1 What is data pruning? . 2

1.3.2 Overview of data pruning method 2

2 Identifying noisy examples 4

2.1 Introduction . 4

2.1.1 What is a difficult example? 4

2.1.2 How to deal with outliers? . 5

2.1.3 Why defining outliers is difficult? 5

2.1.4 Motivation: Why study outliers? 6

2.2 Robust statistics . 7

2.2.1 Accommodating outliers . 7

2.2.2 Eliminating outliers . 7

2.2.3 RANSAC . 8

2.3 Regularization methods . 9

2.3.1 Regularization with penalties 10

2.3.2 Introducing slack variables . 10

vi

2.3.3 Case study: Regularizing AdaBoost 11

2.3.3.1 Applying penalties 12

2.3.3.2 Introducing slack variables 13

2.3.3.3 Modifying the cost function 13

2.3.3.4 Removing examples 13

2.4 Learning with queries . 14

2.4.1 Learning in the presence of classification noise 14

2.4.2 Learning in the presence of malicious noise 14

2.4.3 Active learning . 15

2.5 Outliers in a probabilistic setting . 15

2.6 Data valuation . 16

2.6.1 Exhaustive learning . 16

2.6.2 ρ-criterion . 16

3 Data pruning 18

3.1 Introduction . 18

3.2 Problem formulation . 19

3.3 The essence of data pruning problem 20

3.3.1 When is data pruning necessary? 20

3.3.2 Benefits of data pruning . 22

3.3.3 Difficult examples increase model complexity 25

3.3.4 Regularization can benefit from data pruning 28

3.3.5 Challenges for data pruning 28

3.4 Data pruning . 31

3.4.1 Overview of the approach . 31

3.4.2 Multiple models and data subsets are needed 31

3.4.3 Collecting multiple learners’ opinions 32

3.4.4 Pruning the data . 33

3.4.4.1 Combining classifiers’ votes 33

3.4.4.2 Naive Bayes classification 34

vii

3.4.5 Why pruning the data? . 34

3.4.6 Experiments . 35

3.5 Discussion . 36

3.6 Conclusion . 38

4 Cleaning contaminated data 39

4.1 Introduction . 39

4.2 Experimental setup . 40

4.2.1 Training data . 40

4.2.2 Feature projections . 41

4.2.3 Learning algorithms . 42

4.3 Data pruning for visual data . 42

4.3.1 Generating semi-independent learners 44

4.3.2 Data pruning results . 45

4.3.3 Pruning very noisy data . 51

4.4 Conclusion . 53

5 Conclusion 54

Bibliography 56

viii

List of Figures

3.1 Average test errors when training on subsets of the data with increasing

difficulty of examples . 21

3.2 Training on subsets of the data may provide for decreasing the general-

ization error . 23

3.3 Training on subsets of the data may provide for decreasing the general-

ization error. Single run on the training data 24

3.4 Inherent model complexity is increased by adding more difficult examples 26

3.5 Algorithms may share boundaries and therefore the difficult examples . 29

3.6 Definition of a difficult example depends on the model 30

3.7 Data pruning results . 36

3.8 Data pruning results for UCI datasets 37

4.1 Training data for face category . 41

4.2 Dictionary of filters . 43

4.3 Masks selecting sub-regions of the object 43

4.4 Sub-regions for training multiple independent learners for face category 44

4.5 Data pruning results for contaminated face data 46

4.6 Data pruning results for contaminated face data. Scatter plots 47

4.7 Comparison between different pruning mechanisms and different basic

learning algorithms . 48

4.8 Examples selected for elimination by bootstrapped learners 49

4.9 Examples selected for elimination by region learners 50

4.10 Data pruning results for very noisy data 52

ix

List of Tables

4.1 Average test error for learning on pruned and full face data, SVM algo-

rithm. Pruning based on bootstrapped learners 47

4.2 Statistics on the identified wrongly labeled examples. Bootstrapped

learners. 51

4.3 Statistics on the identified wrongly labeled examples. Region learners. 51

1

Chapter 1

Introduction

1.1 Learning and Generalization

A learning task can be defined in the following way: given a set of training examples

S = {(x1, y1), ..., (xN , yN)} which supposedly come from an unknown target function

f : X → {−1; +1} , yi = f(xi), i = 1 . . . , N find a function g, g : X → {−1; +1},

g ∈ G = {g} which agrees with the target function f as well as possible. The learning

model G is a predefined set of hypotheses from which the target function is selected.

The purpose of learning machines is to be able to classify correctly unseen exam-

ples, not only the training ones. In other words, to generalize well rather than simply

memorize the training data. If the learning algorithm performs well on the training

data but poorly on unseen data, overfitting is said to occur.

1.2 Difficult examples and outliers

In real-life problems it is possible that the training data is contaminated by noise,

meaning yi = f(xi) is not satisfied for all of the examples. Those wrongly labeled

examples would be problematic for the learning process. An important task of a

learning algorithm is to be robust to noisy or mislabeled examples.

Troublesome examples may also be ones which are difficult in a sense that in order

to learn them the algorithm would be in contradiction with other training examples,

or would need to increase its complexity in order to accommodate them. Learning

2

these hard examples may lead to the algorithm being unable to generalize well or

overfit.

In the presence of troublesome examples, the learning machine has to face a very

difficult task: it has to learn an unknown function using a finite number of examples

considering that some of the examples may be misleading or difficult in other ways.

We would like to explore if it is possible to find mechanisms to detect and eliminate

examples hard for learning and improve the generalization performance by doing so.

1.3 Data pruning overview

1.3.1 What is data pruning?

Suppose we are given a set of training examples and a selected learning model. The

task is to identify if there are examples in the training set such that by eliminating

them one may improve generalization performance.

Many methods deal with noisy examples by querying for more data, accommo-

dating the examples by reweighting or decreasing their influence by regularizing the

solution. We will study methods that fully eliminate those ’bad’ examples from train-

ing or, in other words, prune the training data.

The most challenging problem is how to define for a particular training data and

selected model which examples are worth removing so that to improve generalization

ability of the learner.

1.3.2 Overview of data pruning method

Our approach consists in learning diverse classifiers (learners) by randomizing the

training set and then combining their output to decide on difficult examples. We use

a bootstrapping method to select various semi-independent learners.

Each of the new learners would be capable of classifying the data comparably to

the learner on the full-sized training set. However, each one is trained on a different

subset of the training data in the hope that they will have independent or semi-

3

independent opinions with respect to the troublesome examples. Our intuition is that

most of the learners would agree on non-difficult examples. Furthermore, examples

which are forcing poor generalization performance would not influence all the learners.

So, combining the output of all the learners may help identify the troublesome training

examples. The classifiers’ opinions are combined using Bayesian reasoning to receive

a final decision of whether an example has to be eliminated.

We apply the data pruning method to learn to recognize face category from very

noisy datasets. As the target is visual category, multiple semi-independent learners

can be received by training on slightly overlapping regions containing parts of the

object.

4

Chapter 2

Identifying noisy examples

In this chapter we give a notion of which example is difficult and show various ways

to deal with outliers, noisy or difficult examples in different areas of learning from

examples.

2.1 Introduction

2.1.1 What is a difficult example?

Formal definition of difficult examples is hard to give. Below we give informal defini-

tion of outliers or difficult examples. Difficult examples are those which obstruct the

learning process or mislead the learning algorithm or those which are impossible to

reconcile with the rest of the examples.

Defining difficult example cannot be done without the learning model or the gen-

erating distribution.

The reliability of an observation is dependent on the other observations, i.e., defin-

ing difficult example should be done in the context of the remaining data. The rela-

tive number of outliers with the same ’weirdness’ should be small, i.e., the particular

properties of an outlier are not supported by many other examples.

Quite often in statistics the method advocated is through visual examination of

the data or the residuals after fitting a particular model. Further elimination of values

which are surprising to the investigator is done, if necessary. This makes the definition

5

of a difficult example very subjective and prone to errors due to misspecified model.

As a summary, an outlier is discordant with the remaining data and with respect

to the model.

We would use interchangeably the terms outliers, difficult, adversary, noisy and

troublesome example. Alternative names common in the literature are discordant

observations, contaminants, surprising values.

2.1.2 How to deal with outliers?

Defining what a difficult example is and how to cope with it are two interconnected

problems.

Different approaches have been taken trying to be robust to outliers: discard them,

give different weights to more influential examples, average out multiple observations

so that to diminish the poor influence of outliers in some models or accommodate them

in a redesigned model. Discarding examples is suitable in the case of inherently wrong

observations. It can improve the accuracy of the mean. Reweighting is suggested

for heavy tailed distributions, for example, give weights according to the standard

deviation. Averaging out observations would reduce the variance.

In this work we will eliminate the outlying examples altogether.

2.1.3 Why defining outliers is difficult?

Outliers and difficult examples may come from various sources and may be realizations

of different phenomena. So, assuming a particular model for the noise might not be

always appropriate.

Difficult examples may be noisy e.g. coming from different than the assumed

distribution, or may be the result of wrong measurements.

In statistics an outlier can be defined from the generating distribution. Given the

distribution, an outlier is a value which deviates ’too much’. This, in the first place,

is not a clear-cut definition because it is not known what deviations are tolerable.

Moreover, even if a particular distribution is assumed, there is no access to the actual

6

one.

An example may be a result of natural variation and the model should be able to

handle those without discarding them as outliers.

Furthermore, the learning algorithm may react in different ways to the presence

of outliers: some algorithms might be able to learn in the presence of noise, others

would be more severely influenced by adversary examples, resulting in poorer decision

boundary and worse generalization performance.

2.1.4 Motivation: Why study outliers?

The outliers themselves can be a main interest for practical purposes such as detection

of anomalies, interesting observations, etc.

The other side of the story is that outliers may just be measurements which are

wrong and subsequently would force the incorrect model parameters to be estimated

or the function selected may not generalize well because of overfitting with respect

to those difficult examples. In those cases the troublesome examples are again of

interest but to be considered for elimination.

An example which is too influential in the model can change the estimation of

the model. For example, outlying observations can result in a wrong estimate of the

mean of the population.

Moreover, in data analysis, identifying and studying outliers provides important

information as to how adequate the current model is and may suggest a revision of

the model and its assumptions.

As we have discussed so far, defining a difficult example is quite subjective. A

statistically objective method to identify and deal with outliers is still a topic of

research. In the following sections we review several methods to identify and cope

with troublesome examples in various machine learning settings.

7

2.2 Robust statistics

Robust statistics is preoccupied with how to identify outliers or noisy observations,

eliminate their influence or fully discard them [5], [21]. We give some examples of

how robust estimation can be done.

2.2.1 Accommodating outliers

One straightforward approach is to reweight the observations according to their in-

fluence or the confidence we have in them and re-estimate the model parameters.

Alternative one is to use more robust cost functions. For example, the least

squares objective function
∑

i(Xi−M)2 , where M denotes the fitted model for linear

regression, is notorious for being very sensitive to outliers. Huber [21] suggested to

use other cost functions
∑

i ρ(Xi−M) which are more robust to outlying observations,

for example ρ(t) = |t| [5].

Another approach is to modify the model so that it takes into consideration out-

lying observations.

2.2.2 Eliminating outliers

Various statistical tests have been created for particular cases of identifying one or

two outlying observations. Examples are removed one at a time and the model is

re-estimated. Students’ tests are used to decide if an observation is deviating too

much when not included in the estimation [43].

Robust estimation by examining residuals and removing examples can be done

for linear models with normal distributed noise Y = Xβ + e, var(e) = σ2I, where

X is a set of data points, Y are the responses and a linear model needs to be fit to

those points so that to minimize the least-squares error of the fit [43]. β contains

the parameters of the linear model and e is a vector of residual errors. The least-

squares estimate Ŷ is computed as follows Ŷ = X(XTX)−1XTY = ĤY where Ĥ is

called the ’hat’ matrix. Examples which have too large influence on the model can

8

be removed. The influence of example Xi is determined by hii in the ’hat’ matrix.

Details are given below.

The residuals are defined as e = Y − Ŷ = [I− Ĥ]Y. The residual of an example

satisfies var(ei) = σ2(1 − hii), i.e., values of hii close to 0 mean that the example

would have a large deviation of the error estimation and suggests that it might be an

outlier. However, caution should be taken because this might not always be so: the

hii value should be considered in the context of the other hij in the ’hat’ matrix [43].

Another way to estimate the influence of examples is by perturbing the data and

examining again the residuals. Examples which result in major changes of the model

are considered influential [43].

Many estimators are created particularly to improve the robustness of the mean

or other statistics of the data but we would not examine them here.

The practice in robust statistics is to identify outliers for further investigation.

The actual elimination is done after human supervision. In this work we explore an

approach which would automatically identify and eliminate outlying examples.

Generally, in statistics, it is recommended that the samples be ’routinely sub-

jected’ to outlier detection procedures before estimating the model. This diagnostic

might help to validate the adequacy of the model, to guide the subsequent data anal-

ysis, to take into consideration examples which might need to be further investigated,

rejected or accommodated by the model [5].

2.2.3 RANSAC

The RANSAC (RANdom SAmple Consensus) algorithm [16] is used to learn model

parameters in the presence of large number of outliers. It randomly samples minimal

subsets of the data to estimate the model parameters and selects the model with

maximum agreement among the samples.

It is assumed that the target model is known and a fixed number of data points

m (presumably small) are needed to determine the model parameters uniquely. The

9

algorithm proceeds by selecting multiple times (T trials) a random subset of m data

points, estimate the model parameters and rate the selected model correspondent to

how much it complies with the rest of the data. Out of the many attempts to fit a

model the one which fits the whole data best is selected. It relies on the fact that

in data containing a large amount of outliers (50% or more) the model parameters

selected using the outliers would be inconsistent with each other, while the correct

model parameters would be consistent throughout many trials. So, in order to esti-

mate them with high confidence a sufficient number of trials is needed.

RANSAC is often used in vision applications for example to fit geometric primi-

tives e.g. a line or a circle to a set of noisy points, to find point correspondences, or

to find a matrix for a transformation which best explains the evidence (usually very

noisy). A trivial example of using RANSAC is as follows: if we need to find a circle

which is consistent with a lot of noisy points, three points are sufficient to determine

the circle center at each trial, the most frequent center of circles is selected as the

best model.

The RANSAC algorithm requires the target model to be known and the number

of examples to estimate it uniquely should be small. In our task of data pruning

we are uncertain about both model complexity, and subset of data needed for esti-

mating learning. There is a large degree of freedom introduced by the model and its

complexity being unknown.

2.3 Regularization methods

Regularization methods are created to deal with problems which are ill-posed, namely,

the solution may not exist, is not unique or is unstable to small perturbations in the

initial data [39]. Generally, regularization methods apply penalty or restriction on the

class of admissible solutions so that the problem becomes a well-posed one. There

is a large body of work on regularization with applications in solving differential

equations, inverse problems, linear integral equations, etc.

We would discuss only regularization methods which are connected to learning.

10

Suppose the problem consists in minimizing a functional R(X) depending on the

training data. Regularization methods suggest to minimize R(X) + λΩ(X) instead,

where Ω(X) is a stabilizing functional or penalty. It may express desired properties

of the solution, for example, we can penalize for a function with large derivatives to

prefer a smoother (less oscillatory) function. The new target function is a trade-off,

controlled by the coefficient λ, between fitting the data and using too complex a

function.

There are other forms of regularization. Below, we discuss some of them. Without

trying to encompass all, we consider only cases which are relevant to learning and

more specifically to dealing with noisy examples or outliers.

2.3.1 Regularization with penalties

The most popular form of regularization is the weight decay for Neural Networks,

where the penalty is over the sum of squares of all parameters in the network, namely

its weights [6]. The regularizing functional penalizes large sum of weights in the

network which may lead to overly complex discrimination function: Ω = 1
2

∑
i w

2
i .

A heuristic with similar purposes is early stopping, in which smaller number of

iterations of the learning process (epochs) is preferred. It has a regularization effect

because more epochs are more likely to create more complex network and therefore

overfit the data [6].

Theoretical justification for preferring smaller sum of weights with weight decay

or early stopping in Neural Networks was given by Bartlett [3]. He showed that the

generalization ability of the Neural Network depends on the sum of weights of the

network. Thus networks with larger weights may be of large complexity, which would

increase the generalization error.

2.3.2 Introducing slack variables

We demonstrate the method of using slack variables for regularization with the so

called soft margin hyperplanes for Support Vector Machines (SVM) [36]. The essence

11

of SVM classification for linearly separable data is to find a hyperplane y = 〈w,x〉+b

which achieves maximum margin measured as 1
‖w‖2 , for both classes. The following

problem needs to be solved:

min 1
2
‖w‖2 subj.to

yi(〈w,xi〉 + b) ≥ 1 i = 1, . . . , N

To cope with linear nonseparability, the kernel trick is applied and the dataset

is transformed to high dimensional space [36]. Still, even in high dimensional space,

the data may not be perfectly separable and some form of regularization is needed.

Cortes and Vapnik [14] suggest to introduce slack variables which allow some data

points to violate the decision boundary. This method has proved to be very successful

in practice.

min 1
2
‖w‖2 − C

∑N
i=1 ξi subj.to

yi(〈w,xi〉 + b) ≥ 1 − ξi, ξi ≥ 0 i = 1, . . . , N

2.3.3 Case study: Regularizing AdaBoost

Boosting algorithms and in particular AdaBoost [18] combine weak learners, learners

performing slightly better than random guessing, into a strong one. The crucial idea

of boosting is to give larger weights to examples wrong with respect to the current

weak learner. Thus examples which are generally difficult would get consistently

larger weights.

Boosting methods are of particular interest to us, because their internal mechanism

is to overemphasize difficult examples - a strategy opposite to outlier elimination or de-

emphasizing. Yet, in noisy cases, this strategy of AdaBoost has shown in experiments

to be suboptimal. Therefore some sort of regularization is needed.

Jiang [22] supported theoretically the claim by demonstrating that ’boosting for-

ever’ leads to suboptimal solutions and that a regularized version of boosting would

give theoretically better prediction.

12

2.3.3.1 Applying penalties

The standard way of applying penalty to the cost function to be minimized can be

straightforwardly applied to AdaBoost.

Mason et al. [29] presented an interpretation of boosting methods as a gradient

descent over some cost function. By minimizing the cost function at each iteration,

the gradient descent algorithm selects a best hypothesis and a coefficient, which is

equivalent to modifying the weights over the examples in order to select the next best

hypothesis in the original boosting algorithm.

AdaBoost algorithm can be exactly retrieved from this framework with the expo-

nential cost function over the margin of an example, defined as γ(xi) = yi
∑T

t=1 αtgt(xi)

G =
N∑

i=1

e−yi

∑T

t=1
αtgt(xi)

where {xi, yi}N
i=1 is the training set of N examples and T is the number of itera-

tions.

Rätsch et al. [33],[34] proposed to regularize AdaBoost by modifying the cost func-

tion at each iteration through adding penalty for difficult examples. Their criterion

for a difficult example is the average weight of an example of all the iterations up

to the current one. The cost function to be minimized at iteration t0 by AdaBoost

becomes:

Gt0 =
N∑

i=1

e−yi(
∑t0

t=1
αtgt(xi))−Cµ(xi)

where µ(xi) = (
∑t0

t=1 αtwt(xi))
2 and wt(xi) is the weight of an example at iteration

t and C is a fixed constant. The rationale behind this type of regularization is that

examples which are hard would tend to be over-emphasized and therefore would have

large sum of weights throughout previous iterations. Therefore, the algorithm might

be better off excluding the most difficult examples.

13

2.3.3.2 Introducing slack variables

Another way to regularize AdaBoost solution is to introduce slack variables [33],[34],

as with SVM. An approximation of AdaBoost, called LP-AdaBoost [20], is used. In

LP-AdaBoost the hypotheses are selected using AdaBoost and then linear program-

ming is used to find best combining coefficients in order to achieve maximum margin.

Grove and Schuurmans [20] showed experimentally that maximizing the minimum

margin gives a suboptimal solutions especially in noisy cases. Slack variables are

introduced in the optimization problem so that to allow the algorithm to give up on

some noisy examples (to allow for some difficult examples to violate the maximum

margin condition). The formulation of regularized version of LP-AdaBoost is:

max γ − C
∑N

i=1 ξi subj.to

yi
∑T

t=1 αtgt(xi) ≥ γ − ξi, ξi ≥ 0, i = 1, . . . , N

αt ≥ 0,
∑T

t=1 αt = 1, t = 1, . . . , T

where gt(x) are the hypotheses already found by AdaBoost and αt are the coeffi-

cients we are optimizing for and C is a fixed regularization constant.

2.3.3.3 Modifying the cost function

Mason et. al. [28] suggest that a cost function of special type is used, so that not

to emphasize too much examples which might be noisy. AdaBoost cost function is

exponential, i.e., it would give exponentially large weights to misclassified examples.

Instead they propose optimizing over a family of less steep cost functions. Manipu-

lating the cost function so that it penalizes more difficult examples is again some sort

of regularization for a class of boosting techniques.

2.3.3.4 Removing examples

Regularization by removing examples for AdaBoost, termed ’example shaving’, has

been demonstrated by Merler et al. [30]. A level of difficulty of an example is deter-

mined by the weights throughout AdaBoost iterations, similar to [34], in this case by

14

the entropy of the weight distribution throughout iterations for each example [11]. A

validation set is used to define which of the most difficult examples to be removed [30].

The usefulness of regularizing AdaBoost has been demonstrated experimentally

in noisy datasets [28], [33], [34]. The need for regularizing AdaBoost has been theo-

retically explained in [22].

2.4 Learning with queries

2.4.1 Learning in the presence of classification noise

Angluin and Laird [2] investigated learning in the presence of classification noise in

the context of learning with queries. In the classification noise scenario examples have

their labels flipped with a certain probability β, but are otherwise not changed, i.e.,

they are assumed to come from the target distribution. They showed that if the noise

can be modeled as independent source then the amount of noise tolerated can be

very large but strictly less than 50%. For this setting they give a sample complexity

bounds for effective learning in which the number of examples is polynomial in 1
1−2β

,

where β is the noise level. That is, considerably more examples are needed to learn

the concept if the level of noise is large. They proved that learning in the presence

of noise is possible but the search for an optimal hypothesis for general problems is

polynomially intractable with their approach. For some classes of concepts efficient

algorithms exist which exploit the properties of the particular concept class.

2.4.2 Learning in the presence of malicious noise

Kearns and Li [23] consider an extension of learning with noise in which the noise is

not assumed to have nice properties and generally cannot be modeled. The adversary

creating the noise has ultimate powers such as changing examples’ labels, returning

examples from a wrong distribution, having access to the currently generated exam-

ples, i.e., it can generate new examples which are purposefully confusing given already

15

learned examples. This model is called learning with malicious noise. For this model

significantly smaller amounts of noise can be tolerated. The authors give hardness

results for learning of arbitrary concepts in this model as well as constructive learning

algorithms for learning particular concept classes.

2.4.3 Active learning

The objective of active learning is to select particularly informative examples in order

to speed up training [25], [13].

In some sense active learning is also preoccupied with excluding examples from

the dataset, but there, the redundant examples are the ones to be ignored. Smaller

number of data points and considerably less computational resources are required in

active learning than in the standard learning scenario to achieve the same generaliza-

tion performance [41]. The assumption of active learning is that the training data is

not noisy.

2.5 Outliers in a probabilistic setting

Finding and eliminating outliers can be cast in a probabilistic setting. A generative

probabilistic models are assumed for the two classes’ distributions. An appropriate

outlier model is selected. A new hidden variable is introduced for an example being

an outlier (and therefore need to be eliminated or ignored) and the problem can be

solved with maximum likelihood approach and the EM [17].

Although the method is very powerful its disadvantages come from the strong

assumptions made, namely the models of data distributions and outliers should be

known. Apart from that, more parameters for the generatve models need to be

estimated, i.e., more training data would be necessary, which might not always be

available.

16

2.6 Data valuation

The methods described above introduce mechanisms to cope with noisy situations,

usually by imposing penalty, by de-emphasizing (reweighting) noisy examples. The

most common case is trying to ignore them by overpowering the presence of noisy

examples by using more correct ones. Data valuation method, proposed by Nichol-

son [32], advocates removing examples from the training data and demonstrates it is

useful on several classification problems with noise.

Data valuation [32] consists in analyzing the training data prior to learning and

removing examples which might be adversary to learning. The examples are given a

ranking according to their agreement with the remaining data and examples which

disagree most are removed. Data valuation is created for the exhaustive learning

scenario.

2.6.1 Exhaustive learning

The exhaustive learning algorithm [37] returns hypotheses from the learning model

with a fixed prior distribution. Thus any hypothesis in the support of the prior dis-

tribution can be selected. That is, no actual learning is performed on the data. Note

the distinction from the standard learning scenario where only hypotheses which per-

form well with respect to the training data (for example minimize the empirical risk)

are selected. The distribution over hypotheses in the learning model in exhaustive

learning is independent (agnostic) of the training data.

Although the analysis of [32] is done for the exhaustive learning scenario [37], we

consider the data valuation method as a predecessor to our work.

2.6.2 ρ-criterion

A primary task in data elimination is to define which examples are difficult for learn-

ing and therefore candidates for elimination. Nicholson [32] proposes a heuristic for

identifying those examples, namely examples whose error does not correlate well with

17

the overall error rate π in the exhaustive learning. As π is unknown it is approxi-

mated by the leave-one-out error, the error of the dataset excluding the example in

question.

ρxi
= corrg(ei(g), eSi

(g))) =
Eg(ei(g)eSi

(g)) − Eg(ei(g))Eg(eSi
(g))√

V ar(ei(g))V ar(eSi
(g))

(2.1)

where corr is correlation of the error of the example xi, denoted by ei(g), with the

error of the remaining set, denoted by eSi
(g), Si = S\xi and S = {(x1, y1), ..., (xN , yN)}

is the training set.

Furthermore, because the expected value of errors with respect to all hypotheses

in G cannot be computed analytically in most of the cases, (2.1) will be approximated

by randomly sampling hypotheses from the learning model.

Thus a ρ value (2.1) is assigned to each example showing how much it agrees

with the target function for this particular model. It gives information whether the

example is contradicting on average the rest of the examples with respect to all

possible hypotheses. The higher the correlation the more the example complies with

the remaining training set, i.e., would not be expected to be troublesome in learning.

Examples with negative correlation ρ would be expected to be difficult using this

learning model. In practice Nicholson [32] has shown that ρ needs to be selected close

to -1 in order to avoid deterioration in performance, which is probably due to the

approximations in calculating ρ.

The author demonstrated that in noisy datasets removing examples from the

training data is beneficial for learning and less so for non-noisy cases.

18

Chapter 3

Data pruning

3.1 Introduction

In the previous chapter we have reviewed several learning methods which have mech-

anisms to cope with noisy examples. Some of them apply a common penalty for all

examples (regularization methods), others identify those examples which influence

the model too much and reweigh them, assuming that the model is known and fixed

(robust statistics), others model the noise source as independent white noise [2] and

show that learning can be done, provided that sufficient examples are available. Suc-

cessful identification of outliers can be done for models which are fixed and have very

few parameters to estimate e.g. RANSAC [16]. In those cases a large amount of noise

can be tolerated.

In many real-life learning problems noise is often present, the number of examples

is insufficient and the model and its complexity are not known a priori. Our goal is

to look into those more realistic settings.

We are interested in binary classification tasks in which we are given a fixed

training set and a desired model for classification. In this setting we want to identify

examples which are troublesome for the learning process for this particular training

set and this particular model and which might potentially cause the model to overfit

and therefore deteriorate the generalization performance. We term data pruning the

process of eliminating examples which might be troublesome for learning.

In this chapter we first try to understand the problem of data pruning as well as

19

the difficulties of solving it. We propose a way to identify and eliminate troublesome

examples and show experiments and promising results of data pruning on real-life

data.

In the next chapter we apply our method to the recognition of object categories

in which the training data is contaminated, namely, the data may have large amount

of wrongly labeled examples or examples which are otherwise difficult for the model

at hand.

3.2 Problem formulation

Data pruning may be defined as follows: given training data and a learning model, find

if there are training examples for which the learning and generalization performance

would be improved after removing those examples. The problem as we define it is

quite difficult to solve. Below, we examine the reasons why.

Eliminating the influence and detrimental effects of outliers is still an active area

of research in statistics. The main challenges come from the difficulty of modeling

outliers because their sources may be variable. In our case we do not assume a model

of the noise.

We are considering a binary classification problem which is ill-posed in the first

place even without any noisy examples. This is because the training data is finite

and a small change in the data, for example adding or removing a few examples, can

change the decision boundary. Apart from that the solution is not unique as the most

appropriate model and model complexity are not specified [36].

Straightforward approaches to solve the problem are to sort the examples in in-

creasing level of difficulty, difficult meaning closer to the decision boundary [11] or

level of disagreement [32] and eliminate sequentially most difficult ones. An indepen-

dent test set is used to identify which examples to be removed [30]. Although using

validation set can be very useful, in this case we feel that using additional data to

decide which examples to prune gives an unfair advantage of the pruned method with

respect to the full one. Of course, we could supply both methods with a validation

20

set in order to choose their best parameters but we feel we cannot allow the algorithm

to decide on pruning an example or not using extra validation set.

A lot of research has been done in using unlabeled data alongside with labeled.

The major conclusion being that using unlabeled data in addition to labeled is quite

useful and handy when labeling is expensive. Those depend on the assumption that

they have some reliably labeled data to start the learning and estimation from [8]. In

our formulation we have to identify the correctly labeled examples.

And last but not least, the powerful probabilistic models can be applied very

successfully to solve fully unsupervised problems modulo some technical problems

with local minima and amount of data needed to estimate the parameters correctly.

Those methods rely on the strong assumption that the data comes from a particular

distribution which can be modeled. If the assumption is correct Bayesian methods

would give the optimal solution. Nevertheless, we believe we cannot generally assume

we know and can model the sources that generated the data and want to use the

available training data in less requiring discriminative models.

3.3 The essence of data pruning problem

In this section we try to understand the problem of identifying troublesome examples

and removing them from the data. We would give examples to get intuition of the

problem at hand.

3.3.1 When is data pruning necessary?

We give characteristic examples of datasets with and without difficult examples and

show where data pruning would be helpful. We show those characteristic behaviors

on real datasets, figure 3.1.

(1) There are examples adversary to learning present in the dataset, difficult

examples can mislead the algorithm and it creates a poor boundary or overfits. The

difficult examples would rather be removed.

21

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Avg error of ordered and rand subsets, SVM−Poly, Wisconsin Cancer data

Number of examples removed

T
es

t e
rr

or

ordered set
rand set

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Avg error of ordered and rand subsets, SVM−Rbf, Wisconsin Cancer data

Number of examples removed

T
es

t e
rr

or

ordered set
rand set

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Avg error of ordered and rand subsets, SVM−Poly, Ionosphere data

Number of examples removed

T
es

t e
rr

or

ordered set
rand set

Figure 3.1: Average test errors when training on subsets of the data with increasing
difficulty of examples and random subsets of the same size. The leftmost part of
each plot shows the errors if no examples are removed. Only training on half of the
examples is shown. Top (1) Data pruning is necessary, Wisconsin cancer data, SVM,
polynomial kernel; middle (2) Data pruning is not necessary. The model can cope
with troublesome examples, Wisconsin cancer data, SVM, RBF kernel; bottom (3)
Data pruning would be harmful, Ionosphere data, SVM, polynomial kernel

22

(2) There are examples adversary to learning present in the dataset but the al-

gorithm has mechanisms to ignore noisy examples in its optimization (for example

SVM-SVC, Neural Networks). No matter that, the algorithm cannot always deal with

hard examples. In those cases adversary examples can lead to poorer generalization

performance, as in case (1).

(3) There are no examples adversary to learning in the dataset. Adding more

difficult examples improves the test error, the difficult examples are actually useful

for forming the proper boundary.

The plots of figure 3.1 show the three characteristic examples on real-life data

from UCI Repository [7] in which data pruning may or may not be useful. We should

note that the model in (1) has regularization capabilities but still cannot deal with all

difficult examples. Conversely, on the same training data, the model in (2) can deal

with difficult examples, which suggests that difficult examples are model dependent.

The ordering of examples used to generate these plots would be explained in the next

section.

The plots also give intuition that training on subsets of the data with increas-

ing difficulty gives a chance to improve the generalization performance compared to

training on the whole training data as is in case (1).

3.3.2 Benefits of data pruning

In this section we show that, given a learning model and a dataset, it is possible that

the algorithm would perform better if training on a subset rather than on the whole

set. One example has already been given in the previous section. To do that we need

to search for good subsets of the data. Finding the best subset of examples to train

on would need exponential number of subsets to be considered. Instead, we suggest to

define a measure of difficulty of an example and train on nested subsets of examples

of increasing complexity, hoping that if there are examples which are troublesome

they would be identified as most difficult and training without them would decrease

23

the generalization error.

We propose to use the margin of an example as a criterion for how difficult it

is and order the examples in terms of margin. However, we do not know the exact

complexity of the model according to which to measure the margin of the examples.

So, we suggest to learn the model using various complexities: create nested classes

of increasing capacity as in Structural Risk Minimization (SRM) [40], measure the

margins of each example and average them with respect to all models to get a more

reliable margin estimate.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Learning with adding difficult examples, SVM−Poly, Wisconsin Cancer data

Number of examples removed

T
es

t e
rr

or

ordered set
rand set

Figure 3.2: Training on subsets of the data of increasing complexity may provide for
decreasing the generalization error. Learning algorithm is SVM. Wisconsin cancer
data, 0% noise.

This criterion is quite natural as the margin is a measure of confidence in classi-

fication in an algorithm [35]. It is also a universal quantity because the margin of an

examples can be measured no matter what learning algorithm we use.

An interesting observation is that from this heuristic measure of difficulty we can

retrieve the criterion for an example being difficult defined by Rätsch et al. [33], [34]

24

20 40 60 80 100 120 140 160
0

0.2

0.4

S
V

M
 o

rd
er

in
g

Test error: learning on ordered subsets with AdaBoost. Ionosphere data, 10% noise

ordered
full

20 40 60 80 100 120 140 160
0

0.2

0.4

A
B

 o
rd

er
in

g

20 40 60 80 100 120 140 160
0

0.2

0.4

N
N

 o
rd

er
in

g

50 100 150 200 250
0

0.1

0.2

0.3

S
V

M
 o

rd
er

in
g

Test error: learning on ordered subsets with SVM. Wisc cancer data, 0% noise

ordered
full

50 100 150 200 250
0

0.1

0.2

0.3

A
B

 o
rd

er
in

g

50 100 150 200 250
0

0.1

0.2

0.3

N
N

 o
rd

er
in

g

Figure 3.3: Training on subsets of the data may provide for decreasing the general-
ization error. Each figure shows the test error for a single run of dataset ordered in
terms of difficulty. Ordering criteria are computed using the average margin for SVM,
AdaBoost and Neural Network models. Top: AdaBoost learning model, Ionosphere
data, 10% noise, Bottom: SVM learning model, Wisconsin cancer data, 0% noise.

in AdaBoost. The authors used the criterion to impose regularization penalty.

We could see that in some datasets it is possible to observe better generalization

25

error using such naive and heuristic way to order examples in terms of difficulty,

figures 3.2, 3.3. The plots are generated by multiple randomized runs, so we can see

an estimate of the out-of-sample error, figure 3.2, and for only a single run figure 3.3 to

demonstrate that this phenomenon can be observed for a particular training dataset.

We note that this is not data pruning yet. We merely demonstrate that data

pruning has potential for some datasets which contain difficult examples. Note that

there are datasets in which none of the examples are useless or harmful, as shown on

figure 3.1.

In this paragraph we have seen that it is possible to improve the generalization

error if training on a (suitably chosen) subset of the training data, for the sole reason

that there are troublesome examples. In other words not only the size of the dataset

matters but the quality of the examples as well.

3.3.3 Difficult examples increase model complexity

To demonstrate this point we again order the examples in terms of difficulty as in the

previous section. We measure the observed complexity of the model after training

on nested subsets of the training data by adding more and more difficult examples.

As we noticed in the previous section we can observe better generalization error after

training without the most difficult examples. In figure 3.4 we can see what the reason

might be. We plot the number of Support Vectors as a measure of complexity for each

nested subset of ordered training examples, as well as for random subsets of the same

size. We can notice that for some datasets we observe unduly increase in the measures

of complexity. For example, adding the last 15 most difficult examples for Wisconsin

cancer data would significantly increase the number of support vectors used as well

as the generalization error, figure 3.4. Again this results give intuition why some

examples might be troublesome and causing overfitting. Alternative measure of the

complexity actually used by SVM can be defined by R2

γ2 [4], where γ is the margin and

R is the radius of the sphere which encompasses all the points. For Neural Networks

the sum of weights on the edges can be used [3].

26

50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

Complexity measure for random and ordered sets, Wisc. cancer data, 0% noise

N
um

be
r

S
V

s

ordered
rand

50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

T
es

t e
rr

or

Test error

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

Complexity measure for random and ordered sets, Ionosphere data, 0% noise

N
um

be
r

S
V

s

ordered
rand

20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

T
es

t e
rr

or

Test error

Figure 3.4: Inherent model complexity is increased by adding more difficult examples.
Top plot in each figure shows the number of Support Vectors for examples entering
in increased complexity and for random set of the same size. Bottom plot shows
correspondent test errors. Wisconsin cancer data (top) and Ionosphere data (bottom).

Many researchers working on generalization bounds [3], [26], [35], [38] have found

out that a better bound on the expected error might be estimated if some examples

are ignored by the algorithm for the sake of using smaller complexity. For example,

27

the following theorem from [3] and [38] gives a trade-off between model complexity

and number of wrongly learned examples.

Theorem 3.3.1 Let F be a class of functions. With probability (w.p.) at least 1− δ

over m iid samples x from some fixed probability distribution P the following holds:

if f ∈ sgn(F) has margin at least γ on the examples x then the expected error of f

satisfies:

P (f(X) = Y) ≤ 2
m

(dln34em
d
log2(578m) + ln4

δ
)

For any other f ∈ sgn(F) (which may have errors on x) w.p. at least 1-δ:

P (f(X) = Y) ≤ P γ
m(f(X) = Y) +

√
2
m

(dln34em
d
log2(578m) + ln4

δ
)

where d = fatF (γ/16) and P γ
m(f(X) = Y) is the portion of examples with margin

less than γ.

A similar bound for combination of classifiers, for example AdaBoost, was given

by Schapire et al. [35]: w.p. at least 1-δ.

P (f(X) = Y) ≤ P γ
m(f(X) = Y) +

√
c
m

(dln2(m/d)
γ2 + ln(1

δ
)),

where d is the VC dimension of the base classifier.

The influence of difficult or impossible to learn examples can be diminished by

imposing a simpler model or rather a trade-off of the model complexity and fitting

the data well. This is again another form of regularization.

Unfortunately, for our example elimination tasks, those bounds are post factum,

meaning they estimate what the generalization error bound would be after the algo-

rithm has failed to learn some of the examples, or after certain margin is observed.

They are not constructive in the sense that they do not give ways to identify the ex-

amples which are troublesome so that the algorithm can benefit from ignoring them

before starting to learn on them. The bounds are loose and can be used for gen-

eral penalty in model selection [3], [27], but are not precise enough to estimate best

trade-off to determine which examples to be removed.

28

Generally, those bounds are useful because they state that it might be reasonable

that some examples be removed if their presence in the training data increases unduly

the expended model complexity. What is needed is to have a constructive way to find

out which are exactly the examples to be removed.

3.3.4 Regularization can benefit from data pruning

Regularization methods are a very successful way to ignore or decrease the influence of

some noisy examples. By penalizing overly complex models a trade-off between model

complexity and number of examples not learned by the algorithm can be achieved.

However, in the figures we have seen above, figure 3.2, we have a regularized

algorithm (SVM with slack variables, called SVC) which can still benefit from pruning

of some noisy examples. We can observe that there are subsets of the data which would

improve generalization error. Thus, there might be examples which are so difficult

that even though the algorithm has intrinsic mechanisms to cope with noise, they

might still influence it in an adversary way.

3.3.5 Challenges for data pruning

In this subsection we analyze important issues of what challenges and constraints we

have to face when dealing with noisy examples.

Model dependent or model independent definition of a difficult example

In most of the cases in practice, algorithms, provided that they are of comparable

power, would share discriminatory boundaries on the same data, so the difficult ex-

amples for one model would also be difficult for the other, see figure 3.5. So, criterions

for pruning which depend on other models would also give satisfactory results. See,

for example, figure 3.3, where criterions for ordering in terms of difficulty based on

Neural Networks, SVM and AdaBoost can be used for decreasing the error with a

different learning model, here SVM or AdaBoost. In general, however, the examples

which are impossible to accommodate by one model (i.e. are difficult) might be easy

29

to fit by another model. On figure 3.6 we show SVM model with different kernels on

the same dataset: SVM model with polynomial kernel would be influenced by some

examples and have larger test error if using the whole data while SVM with RBF

kernel can cope with those examples.

It seems a general criterion should depend on the learning model but if there are

particularly bad examples in the dataset they would be troublesome whatever model

is used, so, in practice a model different from the target learning model can be used

to do the pruning.

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20
SVM classification: Training points,SVs are marked with diamond

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20
AdaBoost decision boundary, superimposed on the training set

Figure 3.5: Algorithms may share boundaries on the same datasets and therefore dif-
ficult examples. Decision boundaries for Support Vector Machine (left) and AdaBoost
(right) on the same data.

Definition of difficult examples depends on the whole data

As we discussed earlier, the definition of an outlier depends on the remaining ex-

amples and that a general penalty on the whole data may solve only partially the

problem. So, we believe we need to consider examples individually for elimination

but in the context of the rest of the data.

Training data is insufficient

Learning from examples is an ill-posed problem in the first place because of the

finiteness of the training data and the fact that it is not known what class of functions

the target belongs to. If the data is noisy then the problem is even less well defined.

With data pruning, we would like to investigate a more complicated problem, namely,

whether it is possible to find training examples which are troublesome for learning,

30

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Learning with adding difficult examples, SVM−Poly, Wisconsin Cancer data

Number of examples removed

T
es

t e
rr

or

ordered set
rand set

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Learning with adding difficult examples, SVM−Rbf, Wisconsin Cancer data

Number of examples removed

T
es

t e
rr

or

ordered set
rand set

Figure 3.6: Definition of difficult example depends on the model. Test error for
ordered and random sets for SVM with Polynomial kernel (left) and with RBF kernel
(right) on the same data. The left plot is taken from fig. 3.2. It is given here for the
sake of comparison with another learning model.

where we do not know if and how much noise is present.

In many of the cases coping with noisy examples is done by relying on large amount

of data: RANSAC [16], query with noise [2], [23], etc. We are not entitled to using

more examples than the ones given.

Model and model complexity is unknown

Unlike probabilistic approaches here we cannot model the data. We take discrimi-

native approach in which the general model is fixed but its complexity is unknown.

For example we may want to use Neural Networks but we have to select or learn

the topology of the network as well as some parameters on it. This gives additional

complications, because overly complex models would fit the training data perfectly,

i.e., would overfit with respect to the difficult examples and would consequently have

poor generalization. Models which are too simple would not be learning the data well

enough, so many good examples would appear to be difficult.

31

3.4 Data pruning

3.4.1 Overview of the approach

Given the dataset and the learning model we want to find out if there are examples

in the training data such that the learning algorithm would give possibly better

generalization error when training without them.

Our approach consists in randomizing the data so that to select multiple classifiers

which are of comparable power to the target learner and are diverse enough to have

semi-independent classification. These classifiers would be affected in different ways

by the troublesome examples. Probabilistic inference with naive Bayes classifier is

done over the multiple classifiers’ opinions to decide which examples are troublesome.

3.4.2 Multiple models and data subsets are needed

Suppose the training data has troublesome examples and we knew the appropriate

model complexity. If the learning algorithm is applied to the whole data then it would

be influenced in an adversary way by these examples and would overfit or create a

poor discriminatory boundary. The trouble is that we do not know which examples

are actually causing the poor behavior. If we measure how well the examples do with

respect to the decision boundary it would not be correct because the algorithm may

have overfitted and learned those outlying examples very well. This problem is well

known in robust statistics [43].

One possible solution is to allow those troublesome examples to influence the

solutions in different ways, i.e., have both large and small influence. This can be

achieved by some sort of randomization of the training data. The correspondent

learners created from randomizing the data would be diverse and would be influenced

in different ways by the troublesome examples. However, assuming that the outlying

examples are not the majority of the data, most of the learners would be consistent

with the target function. Thus the troublesome examples can be identified as the

ones which create disagreement among classifiers.

32

3.4.3 Collecting multiple learners’ opinions

In the previous section we have argued that multiple diverse classifiers are needed to

be able to retrieve wrongly labeled or otherwise difficult examples.

One way to create multiple semi-independent classifiers is through bootstrap-

ping [15]. It is appropriate for smaller size datasets and for small number of input

dimensions. Other ways of creating diversity of classifiers are through selecting dif-

ferent subsets of input features or selecting slightly overlapping subsets of the data

or even through injecting noise in the training data [10].

In this section we would stick to bootstrapping as one possible approach. Using

learners from bootstrapped data does not guarantee diversity but bootstrapping data

does encourage it [9].

Why bootstrapping? It is known that the existence of outliers in the data can

have detrimental effect on the final bootstrapped classifier because some resampled

subsets may have higher contamination levels even than the initial set [1]. This

might be a problem for creating a robust estimate by using bootstrapping, but would

be an important observation for our goals. Namely, if some difficult examples would

influence some of the learners in an adversary way then using many other learners

which are not very badly influenced can identify this discrepancy.

Several explorations have shown that resampling with replicates gives an imbal-

ance in influence of certain random examples. The experiments of [12] show that

among multiple datasets created with bootstrapping there would be examples which

may not enter any resampled data as well as examples which would enter and influence

the committee multiple times. The important realization is that through bootstrap-

ping we can achieve an imbalance of influence of some random examples, but of course

we do not know which they would be. The authors of [12] as well as many others are

concerned with modifiying the bootstrapping sampling scheme so that to give equal

influence of each example. Conversely, we use bootstrapping to take advantage of the

imbalance of influence it gives. Our hope is that through multiple resamplings we

can give various opportunities of examples which are poor to influence in larger or

33

smaller extent the training set and therefore create classifiers which would be closer

or farther from the target.

Now, instead of aggregating the classifiers hoping to average out the poor effect

of outliers on some classifiers, as often done in learning with ensembles [9], [18], we

would apply inference machine to find out which examples have created discordant

classifications.

3.4.4 Pruning the data

So far we have retrieved multiple semi-independent learners which can classify the

data. The label and the confidence of classification of each learner, which we refer to

as a response of a classifier, can be used as opinion of which example is difficult and

its level of difficulty. The responses of the classifiers can be considered as projections

of the initial data.

Now we want to combine the classifiers responses or opinions of which example is

difficult in an appropriate way.

3.4.4.1 Combining classifiers’ votes

Instead of simple voting we suggest to use inference with probabilistic models to

determine the true label of an example. We are interested in finding the probability

p(y|X) of the label of an example y, given the data X. In fact the label would be

determined by the ratio P (y=1|X)
P (y=0|X)

.

P (y = c|X) ∝ P (X|y = c)P (y = c) where c ∈ {0, 1} denotes a class label.

P (y=1|X)
P (y=0|X)

= P (X|y=1)P (y=1)
P (X|y=0)P (y=0)

The ratio is compared to 1 and if larger or equal then the estimated label of an

example is 1, otherwise 0.

The probabilities P (y = 1) and P (y = 0) are set to our prior belief of the data.

They can be set to 1
2

if the examples come in approximately equal proportions.

In both expressions P (X|y = 0) and P (X|y = 1) can be modeled and estimated

from the data or in our case the projections from the multiple learners.

34

After estimating the new labels, the examples whose labels disagree with the

original ones are pruned.

3.4.4.2 Naive Bayes classification

A simplest way to model the data is to use Naive Bayes classifier and decompose the

data into several independent attributes. In our case the attributes are the projections

of the input data on several classifiers: P (X|y = c) =
∏J

j=1 P (Aj|y = c)

In order to use Naive Bayes, an assumption of the attributes being independent

is crucial. Quite often, however, the rule can be successfully applied even if the

attributes are not independent.

Note that we might have started with a probabilistic model in the beginning

to reason about which example is wrong. But this would require us to assume a

particular probabilistic model of both the data and the difficult examples which we

cannot do with enough generality.

3.4.5 Why pruning the data?

In the previous section we have estimated which examples create most disagreement

among classifiers and therefore are most difficult to learn. Those examples might come

from various sources. The simplest assumption is that there is an oracle which flips a

coin and with certain probability provides a wrong label. The examples are assumed

to come from the genuine distributions. This is the classification noise scenario of

Angluin and Laird [2]. In this case, the best way to proceed is to flip the labels of

the examples identified as noisy. However, in real-life dataset this is not a realistic

assumption: the examples may come from different distributions, may be result of

measurement errors, may have errors introduced in the data component not only in

the label.

So, as we do not know the source of those troublesome examples, we suggest to

eliminate them from the data, i.e., do data pruning. We consider it more dangerous

to flip the labels because the classification noise scenario cannot be guaranteed in

35

practice.

We will see an example of that in the next section, where we train on data of face

category from very challenging images. In this dataset we may have face examples

which are correctly labeled but are inherently hard to learn because of poor illumi-

nation, pose variations, etc. In this case pruning the data to receive a better training

set is more appropriate.

3.4.6 Experiments

We show results of data pruning on several datasets from UCI [7]. We apply data

pruning to the original dataset, as well as to the data with artificially introduced label

noise.

Results of data pruning for three datasets are shown on figure 3.7. Summarized

results for more datasets are shown on figure 3.8. The following datasets from UCI [7]

are used: Wisconsin breast cancer, ionosphere, twonorm, votes, pima indians diabetes,

waveform, wine, mushroom, sonar and credit. For multi-class datasets, such as wine

and waveform the first two classes are used. In some datasets the examples with

missing attributes are removed. For each dataset, half of the available data is used

for training and the rest for testing. The results show the average test errors from

100 independent runs.

In all our experiments we apply cross-validation on the training data to try to find

the most appropriate model parameters. This is a practical way to solve the problem

of model complexity not known. Note that only the training set is used to do that.

The results in figures 3.7 and 3.8 show advantage of data pruning method, espe-

cially if noise is present. For some datasets, e.g. votes, credit and mushroom, the

pruning method can identify that no troublesome examples are present and not do

pruning at all but for datasets like ionosphere, where all examples are needed, see

figure 3.1, the pruning method is detrimental. This calls for the need to refine the

decision of which examples to be eliminated and revision of Naive Bayes for these

purposes, which we plan to address in future work.

36

0% 10% 20%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
es

t e
rr

or

Label noise

Wisc. cancer data

full
pruned

0% 10% 20%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
es

t e
rr

or

Label noise

Ionosphere data

full
pruned

0% 10% 20%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
es

t e
rr

or
Label noise

Twonorm data

full
pruned

Figure 3.7: Pruning results for UCI data. SVM model. The pruning is done using
100 SVMs over bootstrapped data

3.5 Discussion

Several remarks concerning the method follow.

It is very difficult to define which examples would be troublesome and what are the

cases in which those examples are harmful for the algorithm and should be removed.

For, the training data is not sufficient, the best model complexity is not known and

some examples may be actually forming the decision boundary and may be harder to

learn but also very important in the dataset.

Data pruning is shown to be useful on several real-life datasets. Quite naturally,

the data pruning method does not always select the best subset for further learn-

ing, especially if no noise is present. Regularization methods are also shown to be

detrimental if applied to data with no noise [24].

37

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Pruned Error

F
ul

l E
rr

or

Data pruning for datasets from UCI

wisc
iono
2norm
votes
pima
wave
wine
mush
sonar
credit

Figure 3.8: Data pruning results for UCI datasets. SVM model. The pruning is done
using 100 SVMs over bootstrapped data. The character denotes the average test
errors over 100 runs on the original data and the lines point to the test errors on the
same data with 10% label noise

The work of Caprile, Merler and Furlanello [30], suggests estimating the examples’

hardness for AdaBoost algorithm and removing hardest examples. The methodology

for deciding on a cut-off threshold is based on a validation set. In data pruning we

addressed a more challenging problem, i.e., to determine which examples would be

troublesome for learning without using any sort of validation set, additional data or

prior information. To our knowledge this is the only work that considers the problem

in this more realistic setting.

38

The approach is different from the standard regularization methods. The regular-

ization methods are general penalties, applied to the whole data thus can affect also

the good data points, instead, we reason about each data point separately. Moreover,

regularization methods are defined a priori, before seeing the data.

Using multiple classifiers and combining their decisions for more reliable prediction

has been in the literature for a while [18], [9]. However, in this work we do not use

combination of classifiers to learn the target, rather, we use multiple projections for

the purpose of identifying difficult examples which are troublesome and remove them.

The final learning is done on the pruned set using a single learner of the learning

model, not a combination of learners.

It is no wonder that various methods which try to cope with noise use multiple

classifiers for that purpose, because, if no other information is known about the data

and there are noisy examples the only way to find out which examples are noisy or

to somehow ignore them is to use multiple projections of the data, hoping that noisy

observations would affect the classifiers in a discordant way and the good examples

would promote consistent with one another classification.

3.6 Conclusion

In this chapter we have explored the data pruning approach which improves learning

in the presence of noisy or outlying examples. Data pruning advocates eliminating

examples which have been identified as troublesome because they might be inherently

hard for the model.

Several important problems are left unexplored. What kind of multiple learners

can be used? Can we expect to perform equally well if we use weak learners, learners

slightly better than random guessing? What amount of noise can be tolerated in this

case? How does the level of independence among learners affect the pruning results?

We hope to be able to address them in future work.

39

Chapter 4

Cleaning contaminated data

4.1 Introduction

Object recognition is an easy task for humans, yet, still difficult for machines. Learn-

ing of visual object categories by humans is done by seeing examples, rather than

using predefined rules or descriptions. Inspired by the learning people do, most con-

temporary algorithms use training examples to learn a category.

Training examples are difficult to obtain and require human interference to man-

ually collect and label which examples belong to the category, a tedious and time

consuming task. Naturally, we are aiming to acquire training data with minimal hu-

man supervision. For example, web search machines, such as Google [19], can return

quite a lot of images of object categories as a response to keyword queries. Unfortu-

nately, the image search and indexing is not content based, but uses image caption

and context instead. So, among the returned images, there would be many which

contain the target category but also numerous of images which are not relevant to

the target. We can further assume we have access to infinite number of images which

do not contain the target category or might contain it with small probability (for

example if we query the web search machine with other keywords).

In this setting, we can apply the data pruning method to clean the training data

so that to achieve a better training set for learning.

Another important motivation to use data pruning, even in the cases when no

noise is introduced, is to identify examples which are correctly labeled but difficult for

40

learning. This is useful, especially for target images, because there might be examples

with poor illumination or extreme pose variations which the learning machine cannot

accommodate and would generalize better if training without them.

We shall note the difference to active learning scenario. In active learning we can

have many unlabeled examples and assume that we can query for the object label at

any time, but this query is more expensive than pulling out an unlabeled example

[13]. In our case we have a set of examples which contain instances of the target but

may have a lot of wrongly labeled examples. We can possibly ask for more data of

the same type but cannot access the true label of the examples.

In this section we apply the data pruning method to clean contaminated face data,

modifying it to take advantage of the fact that we are learning visual categories. For

our experiments we solve an easier problem in which the examples are aligned.

4.2 Experimental setup

4.2.1 Training data

In our setting we have training examples from one object category (human faces).

Among them we might have non-face examples which have been erroneously labeled

as faces. Apart from that we have available numerous images which are known not to

contain the target object and we can potentially create infinite non-target examples

by cutting random patches from those images. The chance that there is a target patch

among them is very small, almost zero. Example training data is shown on figure 4.1.

The face images, even without injected noise, may still contain very difficult examples,

as mentioned before, and may be hard to learn.

In order to learn the object category we align the target patches. We plan to

extend to nonaligned target objects in future work.

41

Training data

Figure 4.1: A subset of the training data, face examples (top) are contaminated with
wrongly labeled non-faces, non-face examples (bottom) are random patches cut from
images not containing the target.

4.2.2 Feature projections

The training data comes in patches of size 32x32. Instead of using pixel-wise corre-

spondence we exploit the fact that we are working with visual data and select suitable

projections, or features, which capture local dependencies of pixels, as well as invari-

ances to small translations and illumination changes. Using features, rather than raw

pixel values, has also the advantage of working in smaller dimension.

To ensure invariance to illumination changes, the images are preprocessed with

filters, forming several channels. Some of the filters are shown on figure 4.2. We

use the following filters: Gaussian 5x5 smoothing filter, Laplacian 3x3 filter, 5x3,

42

7x3, 3x5 and 3x7 horizontal and vertical long edge filters, four steerable filters based

on Gaussians at 45◦. Similar filters are proposed in [31]. From each filter channel

the sums of pixels in sub-regions of the image, represented as rectangular masks of

activity, figure 4.3, are taken. The object masks are also borrowed from the paper of

Murphy et al. [31].

The feature projections are selected in this particular way for the following reasons:

The face dataset, as seen in figure 4.1, contains quite challenging images with

large variation in terms of illumination, pose, image quality, etc. No matter that

the faces are aligned, pixel-wise correspondence or even correspondence within small

neighborhood is highly unlikely to give consistent response among the face examples.

Thus in order to select consistent features the pixels in larger regions need to be used,

so that to accommodate for variability in terms of local translations, rotations etc.

The easiest way to ensure variability is to sum the pixels in the region, as proposed

by Viola and Jones [42]. However, there would be large variations in illumination, so

working on changes in intensity would be more informative than on raw pixel values.

That is why we used the sum of pixels in several filter channels instead in the initial

image. We shall note we used only the first moment statistics (sum of pixels) in the

rectangular regions, while Murphy et al. [31], who created the features to discriminate

among many objects, used the second and fourth moment statistics.

4.2.3 Learning algorithms

Once we have projected the training data on certain potentially more useful feature

projections we can apply any algorithm for learning. The learning algorithm would

receive as input only the set of extracted features. For our particular application we

would be using Support Vector Machines (SVM) and AdaBoost.

4.3 Data pruning for visual data

We apply data pruning for cleaning visual data using the method described in the

previous chapter. Apart from using general methods to train multiple independent

43

2 4

2

4

1 2 3

1

2

3

1 2 3

2

4

2 4

1

2

3

1 2 3

1

2

3

1 2 3

1

2

3

1 2 3

1

2

3

1 2 3

1

2

3

Dictionary of filters

Filters applied to an image

Figure 4.2: Dictionary of filters (top) and example of their application to the image
of Lena (bottom). The filters (left to right) are as follows: Gaussian 5x5 smoothing
filter, Laplacian 3x3 filter, horizontal and vertical long edge 5x3 and 3x5 filters, four
steerable filters based on Gaussians at 45◦. Similar filters are used in [31]

Figure 4.3: Masks selecting sub-regions of the object [31]

learners, such as bootstrapping, we exploited the fact that the training data is for

a visual category and proposed more powerful and useful learners. Each of those

learners gives an opinion of which examples are hard to learn and their opinions are

combined with Bayesian reasoning. In this way examples are marked for elimination

and further learning is done on a pruned set of the data.

44

Figure 4.4: Sub-regions for training multiple independent learners for face category

4.3.1 Generating semi-independent learners

The visual object category gives more freedom in training semi-independent learners

because it provides for many potential feature projections. So we can easily select

large subsets of feature projections which are slightly overlapping (i.e. diverse) and

which are informative enough. Note that this is harder to do with a dataset of small

number of input dimensions.

To produce semi-independent learners we can split the image in slightly overlap-

ping regions. We use regions defined similarly to the ones in figure 4.3 but drop the

rectangles which take too large areas such as the first four, resulting in a total of

23 learners, so that not to receive fully dependent classifiers, see figure 4.4. We call

them region learners. Each classifier receives only the visual information in one of

45

those regions and is trained using AdaBoost with rectangular features, as in [42]. For

those learners the values in the channels of figure 4.2 are used. The features allowed

are rectangles of various sizes at different positions of the sub-region mask. Those

features are simpler than in [42]: within each rectangle only the sum of pixels is taken.

Note that linear combinations in this dictionary of features is sufficient to simulate

the original ones in [42], but would need more features to do so. The images are

normalized as suggested in [42].

4.3.2 Data pruning results

In our experiments we compare the results of an algorithm, say SVM or AdaBoost,

on the full and pruned dataset. The algorithm works in the feature space as described

above and is independent of what the data pruning procedure would be. The data

pruning step only provides a pruned subset of the data to train on. In the case of

face category our data pruning procedure can be model independent, for example

based on the region learners, in which case it would be the same for both AdaBoost

and SVM and can use potentially different feature projections, or model dependent,

based on bootstrapping the data and creating multiple learners of the same type as

the original algorithm.

To simulate contaminated data, we artificially flip the labels of some non-target

examples and compare learning on the full data with learning on the pruned one.

The data pruning module is as described above. In our experiments we have 1000

examples in which a number of background examples are labeled as face, dependent

on the noise level, the remaining examples are split in half among the faces and non-

faces with true labels. For example, for the 90% noise case we will have 900 non-face

examples labeled as faces, 50 correctly labeled faces and 50 correctly labeled non-

faces, for 0% noise we will have 500 face and 500 non-face examples all of which are

correctly labeled. The test set is composed of 500 face and 500 non-face examples. It

is independent of the training set and has not been contaminated. Within each run

the same test set is used to report the results of learning on pruned and full sets.

46

The results of learning with SVM, using bootstrapped learners for pruning, are

shown in table 4.1 and figures 4.5 and 4.6. As we can see pruning the data is helpful

especially in the presence of large amount of noise. The test error, while training

on the full set, increases steeply with increasing the noise level, much less so if we

preprocess the data and prune it. Pruning is not harmful in the no noisy case. The

scatter plot, figure 4.6, shows the errors in each individual run, so that we can see

that pruning the data is consistently better and is not due to isolated felicitous cases.

Examples which have been selected from the algorithm to be pruned can be seen on

figure 4.8.

0% 10% 20% 30%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Noise level

T
es

t e
rr

or

Data pruning for face dataset, SVM, Bootstrapped learners

full
pruned

Figure 4.5: Test errors of learning on full and pruned datasets for different levels of
noise. SVM algorithm. Pruning based on bootstrapped learners.

For comparison, we provide experiments with SVM algorithm where the pruning

is done by region learners and with AdaBoost algorithm, again with region learners

based pruning, figure 4.7. In the first comparison, the learning algorithm is the same,

47

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Pruned Error

F
ul

l E
rr

or

Data pruning for face dataset, SVM, Bootstrapped learners

Noise 0%
Noise 10%
Noise 20%
Noise 30%

Figure 4.6: Test errors of learning on full and pruned datasets for different levels of
noise. Scatter plots. SVM algorithm. Pruning based on bootstrapped learners

Table 4.1: Average test error for learning on pruned and full face data, SVM algo-
rithm. Pruning based on bootstrapped learners

Noise Full Pruned

0% 0.0918 0.0904
10% 0.1150 0.1118
20% 0.1604 0.1232
30% 0.3454 0.1853

SVM, but the pruning stage is done with region learners, specifically proposed for

visual data, or with bootstrapping, a more general method considered in the previous

chapter. Here we have the chance to compare the pruning mechanism. Both pruning

methods seem to be performing comparably well, but the bootstrapped learners, as

48

0% 10% 20% 30%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Noise level

T
es

t e
rr

or

Data pruning for face dataset, SVM, Bootstrapped learners

full
pruned

0% 10% 20% 30%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Noise level

T
es

t e
rr

or

Data pruning for face dataset, SVM, Region learners

full
pruned

0% 10% 20% 30%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Noise level

T
es

t e
rr

or

Data pruning for face dataset, AdaBoost, Region learners

full
pruned

Figure 4.7: Comparison between different pruning mechanisms and different basic
learning algorithms: SVM with bootstrapped learners based pruning (top), SVM
with region learners based pruning (middle) and AdaBoost with region learners based
pruning (bottom)

49

we will see later, allow for more improvement in the generalization error for large

amounts of noise, see figure 4.10. In the second comparison both SVM and AdaBoost

use the same pruning mechanism and we can notice only the different reactions of the

algorithms to different levels of noise. Namely, AdaBoost is sensitive to even small

amount of noise and would benefit from pruning in any noisy situations. SVM is

robust to small amounts of noise, but would need pruning much more than AdaBoost

in large noise cases.

Examples marked for elimination. Bootstrapped learners. 0% noise

Examples marked for elimination. Bootstrapped learners. 20% noise

Figure 4.8: Examples selected by the algorithm for elimination by bootstrapped learn-
ers. Dataset with 0% (top) and with 20% (bottom) label noise. Examples with
original face label are surrounded by a red box.

Examples which have been determined as wrongly labeled by the bootstrapped

learners and by the region learners are shown in figures 4.8 and 4.9, respectively,

and statistics of how well the examples with flipped labels are identified is shown in

tables 4.2 and 4.3. Both pruning methods can identify many of the examples with

flipped labels, except for very noisy datasets. We can notice that the pruning based

on bootstrapped learners is more precise in identifying wrongly labeled examples.

50

Examples marked for elimination. Region learners. 0% noise

Examples marked for elimination. Region learners. 20% noise

Figure 4.9: Examples selected by the algorithm for elimination by region learners.
Dataset with 0% (top) and with 20% (bottom) label noise. Examples with original
face label are surrounded by a red box.

The number in the first column in the tables 4.2 and 4.3 is the portion of detected

wrongly labeled examples among the ones with artificially flipped labels, whereas the

false alarm rate is measured against the whole data. Those numbers should be read

with care because they are compared against examples whose labels were artificially

flipped, whereas the algorithm may find examples which are otherwise hard to learn

and therefore are worth removing. Indeed, some face examples marked for pruning

(shown in red boxes in figures 4.9 and 4.8) are quite difficult and should not be

present in the training data in the first place. Comparing tables 4.2 and 4.3 we can

notice that the bootstrapped based learners are more precise in their decision which

examples to eliminate. Apart from removing unreasonably hard examples from the

dataset figures 4.8 and 4.9 show that data pruning with both mechanisms is quite

successful in identifying examples which have been wrongly labeled.

51

Table 4.2: Statistics on the identified wrongly labeled examples. Bootstrapped learn-
ers.

Noise Identified FA non-face FA face

0% 0.0 0.010 0.006
10% 0.737 0.015 0.027
20% 0.736 0.019 0.034
30% 0.700 0.022 0.042
50% 0.620 0.023 0.028
90% 0.280 0.012 0.007

Table 4.3: Statistics on the identified wrongly labeled examples. Region learners.
Noise Identified FA non-face FA face

0% 0.0 0.021 0.034
10% 0.725 0.020 0.028
20% 0.665 0.022 0.022
30% 0.589 0.017 0.020
50% 0.359 0.008 0.009
90% 0.162 0.001 0.001

4.3.3 Pruning very noisy data

In this section we wanted to try the limits of the pruning technique when adding

large amounts of noise. The results are seen on figure 4.10 and in tables 4.2 and 4.3.

Data pruning reduces the test error significantly for reasonable amount of noise. Not

surprisingly, in the presence of large amount of noise and very little signal, e.g. with

90% noise, the pruning method gives very little advantage. In this case we have

only 50 correctly labeled face examples among 1000 training examples, therefore

very poor signal-to-noise ratio. Moreover, the face examples are quite difficult and

probably the algorithm cannot find any consistent projections from this data so that

to give reasonable opinion of which examples are wrongly labeled. Still, for relatively

large amounts of noise, such as 50%, data pruning methods identify and remove

primarily wrongly labeled examples and improve the generalization. This makes the

data pruning technique very promising in learning from noisy datasets.

52

0% 10% 20% 30% 50% 90%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Noise level

T
es

t e
rr

or

Data pruning for face dataset, SVM, Bootstrapped learners

full
pruned

0% 10% 20% 30% 50% 90%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Noise level

T
es

t e
rr

or

Data pruning for face dataset, SVM, Region learners

full
pruned

Figure 4.10: Test errors of learning on full and pruned datasets for very noisy data.
SVM algorithm. Pruning based on bootstrapped (top) and region learners (bottom).

53

4.4 Conclusion

Our results show that in learning of object categories with a lot of label noise it pays

off if we preprocess the data to automatically remove the wrongly labeled or otherwise

difficult examples, prior to training, rather than leave the training algorithm to try

to ignore them while learning.

Data pruning for learning face category is demonstrated to work well with both al-

gorithms which are sensitive to noise (AdaBoost) and algorithms which have inherent

regularization capabilities (SVM).

The algorithm does not deteriorate the performance when no noise is introduced,

instead, it removes some examples which are inherently difficult for learning. Data

pruning is very helpful and necessary for high levels of noise.

A future plan is to extend the algorithm to work on non-aligned images of the

target category which, for visual categories, would require more involved feature and

algorithm selection rather than conceptual change in the data pruning ideas.

54

Chapter 5

Conclusion

In this work we have shown the usefulness of processing the training data prior to

learning, in which identification and elimination of difficult for learning examples is

done.

Conversely to methods for learning in the presence of noise, where general penalties

are imposed, data pruning advocates direct elimination of difficult to accommodate

examples. For, there might be examples which are so hard for the model that they

would influence the solution in an adversary way, even though the solution is regu-

larized. Cases in which data pruning is helpful for algorithms which have inherent

capabilities of ignoring noisy examples are shown.

Unlike methods which assume a known noise or data model, infinite amount of

training data or simply resort to additional training set to do the pruning we restrict

our problem to the given training data and do not model explicitly the noise or the

data. To our knowledge this is the only work that considers the problem in this more

realistic setting.

With this work we have shown that in learning the quality of the examples is also

important for better generalization.

Important future direction is to theoretically quantify example difficulty with re-

spect to a model and the influence of troublesome examples in the dataset on the

generalization error of a learning model.

55

The proposed method can be used for acquiring visual category data with very

little supervision. For example, images of an object category returned by search

engines can be used for training, but they contain a large amount of noise. We

demonstrate the usefulness of the approach for very challenging face dataset with large

levels of noise. Training on the pruned data demonstrated considerably improved

performance compared to training on the full data, especially for large amount of

contamination.

An extension of data pruning for object recognition with minimum supervision,

namely when the exact object position is not known in the image, would be a very

useful and challenging research direction.

56

Bibliography

[1] Allende, H., Ñanculef, R., Salas, R., ’Robust bootstrapping Neural Networks’,

MICAI 2004: 813-822

[2] Angluin, D., Laird, P., ’Learning from noisy examples’, Machine Learning, 2,

343:370, 1988

[3] Bartlett, P., ’The sample complexity of pattern classification with Neural Net-

works: the size of the weights is more important than the size of the size of the

network’, IEEE Transactions on Information Theory, 44, 525-536, 1998

[4] Bartlett, P., Shawe-Taylor, J., ’Generalization performance of Support Vector

Machines and other pattern classifiers’, in Schölkopf, B., Burges, C., Smola, A.

(eds.), ’Advances in Kernel Methods: Support Vector Learning’, The MIT Press,

1999

[5] Beckman, R., Cook, R., ’Outlier...s’, Technometrics, vol. 25, no. 2, p.119-149,

1983

[6] Bishop, C., ’Neural Networks for pattern recognition’, Oxford University Press,

1995

[7] Blake, C. L., Merz, C. J., ’UCI Repository of machine learning databases’

[http://www.ics.uci.edu/˜mlearn/MLRepository.html]. Irvine, CA: University of

California, Department of Information and Computer Science, 1998

[8] Blum, A., Mitchell, T., ’Combining labeled and unlabeled data with co-training’,

COLT: Conference on Computational Learning Theory, 1998

57

[9] Breiman, L., ’Bagging predictors’, Machine Learning, 24(2), 123-140, 1996

[10] Breiman, L., ’Randomizing outputs to increase prediction accuracy’, Technical

report 518, University of California, Berkeley, May 1, 1998.

[11] Caprile, B., Furlanello C., Merler, S., ’Highlighting hard patterns via AdaBoost

weights evolution’, Multiple Classifier Systems 2002: 72-80

[12] Christensen, S., Sinclair, I., Reed, P., ’Designing committees of models through

deliberate weighting of data points’, Journal of Machine Learning Research 4, p.

39-66, 2003

[13] Cohn. D., Ghahramani, Z., Jordan, M., ’Active learning with statistical models’,

Journal of Artificial Intelligence Research 4, p.129-145, 1996

[14] Cortes, C., Vapnik, V., ’Support vector networks’, Machine Learning, vol. 20,

pp. 273–297, 1995.

[15] Efron, B., Tibshirani, R., ’An introduction to the bootstrap’, Chapman and Hall,

1993

[16] Fischler, M., Bolles, R., ’Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography’, CACM,

24(6):381-395, June 1981

[17] Forsyth, D., Ponce, J., ’Computer vision: a modern approach’, Prentice Hall,

2003

[18] Freund, Y., Schapire, R., ’A decision-theoretic generalization of on-line learn-

ing and an application to boosting’, European Conference on Computational

Learning Theory, 1995

[19] [http://www.google.com]

[20] Grove, A., Schuurmans, D., ’Boosting in the limit: Maximizing the margin of

learned ensembles’, Fifteenth National Conference on Artificial Intelligence, 1998

58

[21] Huber, P., ’Robust statistics: A review’, The Annals of Mathematical Statistics,

vol. 43, no. 4, p.1041-1067, 1972

[22] Jiang, W., ’Is regularization unnecessary for boosting’, Proc. Eighth Interna-

tional Workshop on Artificial Intelligence and Statistics, Morgan Kaufmann,

January, 2001

[23] Kearns, M., Li, M., ’Learning in the presence of malicious errors’, In Proceedings

of the Twentieth Annual ACM Symposium on Theory of Computing, pages 267-

280, Chicago, Illinois, 2-4 May 1988

[24] Koistinen, P., ’Asymptotic theory for regularization: One-dimensional linear

case’, In Jordan, M., Kearns, M., Solla, S., editors, Advances in Neural In-

formation Processing Systems 10, pages 294-300, 1998.

[25] Kulkarni, S., Mitter, S., Tsitsiklis, J., ’Active learning using arbitrary binary

valued queries’, Machine Learning, Vol. 11, 1, 23-35, 1993

[26] Littlestone, N., Warmuth, M., ’Relating data compression and learnability’,

Technical report, University of California Santa Cruz, 1986

[27] Loy, G., Bartlett, P., ’Generalization and the size of the weights: an experimental

study’, Proceedings of the Eighth Australian Conference on Neural Networks,

60-64, 1997

[28] Mason L., Bartlett, P., Baxter, J., ’Improved generalization through explicit

optimization of margins’, Machine Learning, 0, 1-11,1999

[29] Mason, L., Baxter, J., Bartlett, P., Frean, M., ’Boosting algorithms as gradient

descent in function space’, Technical report, Department of Systems Engineering,

Australian National University, 1999

[30] Merler, S., Caprile, B., Furlanello, C., ’Bias-variance control via hard points

shaving’, International Journal of Pattern Recognition and Artificial Intelligence,

2004. In Press.

59

[31] Murphy, K., Torralba, A., Freeman, B., ’Using the forest to see the trees: a

graphical model relating features objects and scenes’, Advances in Neural Infor-

mation Processing Systems 15, 2003

[32] Nicholson, A., ’Generalization Error Estimates and Training Data Valuation’,

Ph.D. Thesis, California Institute of Technology, 2002

[33] Rätsch, G., Onoda, T., Muller, K, ’Regularizing AdaBoost’, Advances in Neural

Information Processing Systems 11, p. 564-570, MIT Press, 1999

[34] Rätsch, G., Onoda, T., Muller, K, ’Soft margins for AdaBoost’, Machine Learn-

ing, p. 1-35, Kluwer Academic Publisher, Boston, 2000

[35] Schapire, R., Freund, Y., Bartlett, P., Lee, W., ’Boosting the margin: A new

explanation for the effectiveness of voting methods. The Annals of Statistics,

26(5):1651-1686, 1998

[36] Schölkopf, B., Smola, A., ’Learning with kernels’, The MIT Press, 2002

[37] Schwartz, D., Samalam, V., Solla, S., Denker, J., ’Exhaustive learning’, Neural

Computation, 2(2):374-385, 1990

[38] Shawe-Taylor, J., Bartlett, P., Williamson,R., Anthony, M., ’Structural risk mini-

mization over data-dependent hierarchies’, Technical Report NC-TR-96-053, De-

partment of Computer Science, Royal Holloway, University of London, Egham,

UK, 1996

[39] Tikhonov, A., Arsenin, V., ’Solutions of ill-posed problems’, John Wiley & Sons,

Washington D.C., 1977

[40] Vapnik, V., ’The nature of statistical learning theory’, Springer-Verlag, New

York, 1995

[41] Vidyasagar, M., ’Learning and generalization with applications to Neural Net-

works’, Springer-Verlag London Limited, 2003

60

[42] Viola, P., Jones, M., ’Rapid object detection using a boosted cascade of simple

features’, Conference on Computer Vision and Pattern Recognition, 2001

[43] Weisberg, S., ’Applied linear regression’, John Wiley & Sons, 1985

