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Averaging and Control of Nonlinear Systems
(with Application to Biomimetic Locomotion)

by
Patricio Antonio Vela

In Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Abstract

This dissertation investigates three principal areas regarding the dynamics and control of nonlinear systems:
averaging theory, controllability of mechanical systems, and control of underactuated nonlinear systems.
The most effective stabilizing controllers for underactuated nonlinear systems are time-periodic, which leads
to the study of averaging theory for understanding the nonlinear effect generated by resonant oscillatory
inputs.

The research on averaging theory generalizes averaging theory to arbitrary order by synthesizing series
expansion methods for nonlinear time-varying vector fields and their flows with nonlinear Floquet theory.
It is shown that classical averaging theory is the application of perturbation methods in conjunction with
nonlinear Floquet theory. Many known properties and consequences of averaging theory are placed within
a single framework.

The generalized averaging theory is merged with controllability analysis of underactuated nonlinear
systems to derive exponentially stabilizing controllers. Although small-time local controllability (STLC) is
easily demonstrated for driftless systems via the Lie algebra rank condition, STLC for systems with drift is
more complicated. This thesis exploits notions of geometric homogeneity to show that STLC results for a
large class of mechanical systems with drift can be recovered by considering a class of nonlinear dynamical
systems satisfying certain homogeneity conditions. These theorems generalize the controllability results for
simple mechanical control systems found in Lewis and Murray [85]. Most nonlinear controllability results
for classes of mechanical systems may be obtained using these methods.

The stabilizing controllers derived using the generalized averaging theory and STLC analysis can be
used to stabilize both systems with and without drift. Furthermore, they result in a set of tunable gains
and oscillatory parameters for modification and improvement of the feedback strategy. The procedure can
not only derive known controllers from the literature, but can also be used to improve them. Examples
demonstrate the diversity of controllers constructed using the generalized averaging theory.

This dissertation concludes with a chapter devoted to biomimetic and biomechanical locomotive control
systems that have been stabilized using the generalized averaging theory and the controller construction
procedure. The locomotive control systems roll, wriggle, swim, and walk, demonstrating the universal
nature of the control strategy proposed.
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Chapter 1

Introduction

The analysis of time-varying or time-periodic nonlinear systems is challenging, requiring a degree of sophis-
tication not needed for autonomous nonlinear systems. Most analysis methods for time-varying nonlinear
dynamical systems are coordinate-based approaches [161, 17, 50] that do not utilize the power and gener-
ality afforded to a description using the language of differential geometry. Such an oversight has important
consequences in the area of control of underactuated nonlinear systems due to the increasing prevalence of
geometric techniques for the study of nonlinear control systems. This dissertation aims to develop a sys-
tematic technique to understand and analyze time-varying and, more specifically, time-periodic nonlinear
dynamical systems in a geometric setting.

One immediate outcome is an improved understanding of control techniques for stabilization of un-
deractuated nonlinear control systems. The techniques have practical utility when applied to biomimetic
and biomechanical locomotive control systems. Biomimetic and biomechanical locomotive control systems
and strategies are becoming increasingly important as engineers seek to push the limits of traditional en-
gineering design. This especially holds in the area of unmanned and autonomous navigation. Biological
systems operate in diverse environments, ranging from aquatic and terrestrial to aerial, with some adapted
to multiple environments. Within each environment, biological systems can be found operating in different
regimes, from the micro-scale to the macro-scale. Often, the biological systems found within a particular
environment locomote optimally given their morphology and environmental needs. In spite of the obvi-
ous benefits of utilizing biologically inspired locomotive systems, they have yet to be considered practical,
standard solutions to the locomotive problem for engineering systems. This failure is in part due to the
diversity of locomotive mechanisms, which are difficult to encapsulate into a unified framework, let alone
to understand. The references [38, 55, 102, 138, 163] provide a good introduction into the diversity and dif-
ficulty of biologically-inspired locomotive strategies. Perhaps the most important reason, to date, is the fact
that biomimetic and biomechanical locomotive systems are excellent examples of underactuated nonlinear
control systems.

The geometric and mechanical analysis of biomimetic locomotive systems and, more generally, of me-
chanical control systems, has led to much success regarding the governing equations of motion for such
systems [38, 66]. There has been a push to understand the geometry and calculus of mechanical systems,
with the goal of creating a general paradigm capable of deriving the governing equations for Lagrangian me-
chanical systems [15, 29, 30, 82]. Concurrently, research on differential geometry and geometric mechanics
has resulted in general and systematic analysis tools for such dynamical systems [98, 99]. The tools for
dynamical analysis have then been utilized towards control-theoretic purposes [21, 47, 56, 82, 126]. In spite
of these important contributions, the problem of controller synthesis for underactuated nonlinear systems is
still an open problem.

Underactuated nonlinear control systems are challenging from many perspectives. Besides being un-
controllable in the linearization, underactuated nonlinear control systems cannot be exponentially stabilized
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using continuous state feedback [16, 20], and any exponentially stabilizing solutions are necessarily non-
Lipschitz [108]. Combined with the complexity inherent to nonlinear systems, the above results concerning
stabilization lead to the realization that construction of exponentially stabilizing controllers for underactu-
ated nonlinear systems is a difficult problem. Support of this statement lies in the fact that few general
solutions exist.

It has been shown, however, that time-varying controllers can be used to achieve exponential stabiliza-
tion [33]. Additional analysis of underactuated nonlinear control systems has further refined the importance
of time-varying and time-periodic controllers for locomotion and exponential stabilization [19, 119, 122,
108]. Consequently, the analysis of this thesis will focus on time-varying methods for exponential feed-
back stabilization of underactuated nonlinear control systems. Importantly, biological systems exhibit time-
periodic behavior in their underlying locomotive strategy, meaning that the stabilizing controllers will also
apply to such systems.

In addition to the above challenges of underactuated nonlinear control systems, biomimetic and biome-
chanical locomotive control systems have their unique difficulties when compared to canonical underac-
tuated nonlinear control systems. The majority of nonlinear locomotive control systems examined to date
are mechanical systems of the engineer’s design. They typically incorporate mechanisms whose actuation
directly results in locomotion, e.g., wheels, propellers, jets, etc. Most biological systems do not have such
mechanisms at their disposal, and must rely on other strategies for locomotion. More specifically, they must
rely on the interaction between their body and the environment within which they locomote. The geometry
and mechanics underlying the locomotive strategy results in a system that is not only uncontrollable in the
linearization, but is often quite difficult to linearize along along feasible trajectories. For the majority of
these systems, the nonlinear coupling of inputs implies that standard linearization techniques will not be
capable of capturing the appropriate input-output relationship needed for more refined control. Anholon-
omy or geometric phase is essential to the basic locomotive strategy of biological systems. Once achieved,
nonholonomic effects are again required to obtain controllability in the classical sense (small-time local
controllability). Averaging theory will be an indispensible tool for obtaining realizations that are minimally,
linearly controllable along feasible trajectories. When viewed from a control-theoretic perspective, these
averaged realizations will have multiple control strategies, some of which recover known techniques, and
some of which are novel.

While many of the theoretical elements needed for the systematic derivation of a theory for underac-
tuated nonlinear control systems are known, they have not been widely and methodically studied from a
practical perspective. Consequently, control of underactuated nonlinear systems remains an endeavour of
the theoretician and not a practical tool of the engineer. The work in this thesis can be seen as a large
step towards the development of a systematic procedure for understanding the control-theoretic and dynam-
ical properties of underactuated nonlinear systems and, more specifically, of mechanical and biologically-
inspired locomotive control systems. Intuitive and systematic controller synthesis is a net result of this
improved understanding.

1.1 Review of Relevant Prior Work

The contents of this dissertation build on a large body of literature covering the dynamics and control of
nonlinear systems. Prior to describing our contributions and methods, we first review the relevant literature.

1.1.1 Series Expansions

The foundation of this dissertation utilizes series expansion methods to understand nonlinear, time-varying
control and dynamical systems. The series expansions methods are rooted in the works of Magnus [96] and
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Chen [32]. Agračhev and Gamkrelidze [2] made those series expansions more amenable to nonlinear time-
varying differential equations. They also provided a means to better understand the nature of convergence
for the series, and to better formulate the series expansions for systematic computation. The resulting series
expansion theory for time-varying nonlinear systems has been termed the chronological calculus. At heart
is an awareness that truncated series expansions have practical use both as an approximation to the true
time-varying nonlinear flow, and as a perturbation method for time-varying vector fields.

Within the field of nonlinear control, series expansions have received considerable attention [3, 4].
Kaswki [63, 64, 65] has studied the mathematical structure underlying the series expansions and their con-
nection to controllability and reachability. Leonard and Krishnaprasad have integrated series expansions
with averaging theory to construct open-loop controls for drift-free systems evolving on Lie groups [80].
Radford and Burdick [137] have successfully applied these ideas to kinematic nonholonomic systems with
symmetry within the context of averaging. Some of the strongest results tying controllability analysis to
control design is found in the work of Lafferriere, Liu, and Sussman [76, 154]. They construct extended
control systems using the Jacobi-Lie brackets required for controllability, and use ideas similar to averaging
in order to prove open-loop trajectory tracking. The extended control systems are based on the work of
Kurzweil and Jarník [74, 75], who looked at the nonlinear response of a system to highly oscillatory inputs.
An ε paremeter is introduced that drives the oscillations to increasing frequency as ε tends to the limit ε→ 0.
In the limit, a new system is derived, whose construction corresponds to an averaging procedure [92, 93].

The framework of the chronological calculus may be utilized to better understand averaging in general.
Particularly, how the series expansions fit within the method of averaging, and how they may be used to
obtain arbitrary orders of approximation. Sarychev [144, 145] has published in this arena with regards to
vibrational control. In [144, 145], important ideas are presented regarding the use of the chronological
calculus and nonlinear Floquet theory as a foundation for averaging theory. Due to the scope of the investi-
gations in [144, 145], Sarychev did not examine in detail the consequences of his observations regarding the
connection between Floquet theory and averaging. Together with [101], the Sarychev’s work can be seen
as a step torwards generalizing the vibrational control reasearch of Ballieul, Bullo, Bellman, Bentsman, and
Meerkov [7, 8, 9, 10, 11, 23].

1.1.2 Averaging Theory

Sanders and Verhulst [161] give a detailed treatment of the method of averaging and the related theorems that
comprise averaging theory. Of particular note, they give formulas for the average of a time-periodic vector
field up to second order, as well as theorems concerning the stability of the flow of time-periodic vector fields
with regards to stability of the flow due to the averaged vector field. For low-order, averaging is shown to
be applicable to time-varying differential equations that do not necessarily exhibit time-periodic behavior.
Bogoliubov and Mitropolsky [17] cover the same topics, and also give a general algorithm for calculating
higher-order averages. Guckenheimer and Holmes [50] provide a background on stability analysis of time-
periodic differential equations via averaging and Poincaré maps. The Poincaré map is a powerful tool
for proving nonlinear Floquet theory. Sarychev [144, 145] lays down the basic elements required for full
development of nonlinear Floquet theory, but does not deeply investigate the consequences due to the scope
of his investigation.

Bogoliubov and Mitropolsky were aware that the averaged equations of a time-dependent differen-
tial equation gave the Poincaré map, thereby allowing for stability analysis, and also posited that their
method was able to recover higher orders of averaging. This method of averaging is known as the Krylov-
Bogoliubov-Mitropolsky (KBM) method of averaging. The higher-order methods proposed by Bogoliubov
and Mitropolsky have been studied and extended by several researchers as they are the most general and most
powerful of the known averaging methods. Perko [132] was able to obtain higher-order averaged expansions
for periodic and quasi-periodic differential equations. Higher-order averages are obtained by building upon
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the lower-order averages in a systematic manner. Ellison et al. [42] have taken the basic algorithm and devel-
oped an improved Nth-order estimate for higher-order averaging theory, in the process demonstrating how
averaging theory may be used to prove the existence of flows of time-dependent differential equations. A
follow-up by Sáenz [143] extended averaging theory to non-periodic systems. Montgomery [111] examined
the stability of time-periodic differential equations, by examining the stabillity of the averaged differen-
tial equations. Leung and Zhang [81] have demonstrated the link between higher-order averaging and the
Poincaré normal form for oscillatory systems. This dissertation will demonstrate how the chronological cal-
culus may be used to obtain the above results, all within the same framework. The use of nonlinear Floquet
theory as a cornerstone of averaging theory will also demonstrate why averaging and Poincaré normal forms
should be related.

While not immediately addressed by this thesis, it should be noted that averaging theory has been ex-
tended in many directions. For example, Lehman and Weibel study the use of averaging theory for con-
trol of systems with time delay [79]. In Verduyn-Lunel and Hale [52], averaging theory is extended to
infinite-dimensional spaces. Averaging theory also includes two-timing methods, which involve fast and
slow timescale; only the fast time scale is averaged over. In many cases averaging over multiple dimen-
sions will introduce resonance [162]. There also exist other papers detailing higher-order averaing theory,
however they focus on particular classes of time-periodic systems. In Yagasaki and Ichikawa [164], a com-
putational algorithm is given for weakly nonlinear time-periodic systems. In this dissertation, a general
averaging strategy is sought.

Averaging theory in its most general form applies to a larger class of time-dependent vector fields, not
necessarily time periodic. Although part of the analysis will focus on strictly time-periodic vector fields, a
large portion of the concepts developed herein do not require this property. For the flows of vector fields,
it will be possible to obtain a series expansion representing the flow or the average of the vector field in
question. The classical first- and second-order averaging theorems are then appropriately truncated versions
of the series expansions. Time-periodicity allows for stability analysis using the autonomous averaged vector
field alone.

1.1.3 Controllability of Mechanical and Nonlinear Systems

In order to provide a general strategy for stabilization of systems with drift, a general, working definition
of controllability must exist from which to build upon. The work in this dissertation touches upon issues
regarding the description of mechanical systems, as well as nonlinear controllability tests for mechanical
systems.

Mechanical Systems. In order to address specific control issues, prior work has proposed a large number
of specialized descriptions for mechanical systems. Baillieul [7, 8] begins with a very general class of me-
chanical systems, but then restricts elements of the description to be polynomial in the velocities. Morgansen
and Brockett [112] consider classes of second-order nonlinear control systems consisting of interconnected
blocks, each of which has a very simple structure. Using the structure of the blocks and interconnections,
a controllability test is found for the various possibilities. The most general block is excluded from the
analysis.

Using ideas from geometric mechanics and control theory, Murray [121] reviewed advances in nonlin-
ear control for previously studied classes of mechanical systems: simple mechanical systems [85], principal
kinematic systems [67], and differentially flat systems [45]. Investigations by Bloch, Reyhanoglu and oth-
ers [16, 139, 141] look at specific forms of nonholonomically constrained mechanical systems and related
controllability issues for low-order Jacobi-Lie brackets. The inherent structure of mechanical systems plays
an important role in reducing the complexity of the associated control analyses. Sontag and Sussmann [148]
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examine the simplifying structure of mechanical systems with respect to manipulators. They also suggest
that geometric homogeneity is an important factor to consider.

One class of mechanical systems that generalizes much of the above work is the class of simple mechan-
ical systems (SMS). Simple mechanical systems are Lagrangian systems with kinetic and potential energy
only. Bullo and Lewis have adroitly used the properties of affine connections to obtain control-theoretic
results for this class of systems. However, there are many useful mechanical systems that do not fit into the
SMS framework. The papers by Bullo and Cortés et al. [23, 34] consider some possible extensions of the
affine connection framework to variations on the SMS class.

Simple mechanical systems which possess Lie group symmetries and the associated process of reduction
form an important subclass of simple mechanical systems. In Cortés et al. [35], a complicated structure
termed the “connection within a connection” was studied. The mixture of the affine connection and principle
bundle connection nomenclature from the two different mathematical perspectives leads to a complex theory
that provides the equivalent configuration controllability results for the reduced structures. The approach to
nonholonomic mechanical systems with symmetries found in Bloch et al. [15] and more recently in Cendra
et al. [29, 30] emphasizes the principal bundle part by explicitly deriving the equations of motion from a
reduced perspective, avoiding the “connection within a connection.” Recent controllability analysis for such
nonholonomic mechanical systems with symmetry by Ostrowski and Burdick [125, 126] suggests that much
of the same controllability structure exists without explicitly requiring the affine connection approach. One
could also view the work of Kelly and Murray [66, 67] as demonstrating configuration controllability results
for principal kinematic systems.

Controllability and Nonlinear Systems. Sussmann’s work [152] on sufficient conditions for small-time
local controllability forms the backbone of many subsequent analyses of mechanical system controllability.
This work introduced two key concepts that we also build upon: the use of free Lie algebras and exponential
series representations of flows. The use of the free Lie algebra formalism clarifies the algebraic properties
that are inherent in the nonlinear controllability problem. The exponential series representation allows for a
systematic means to analyze and compute the flow of a nonlinear system. More recent work by Kawski and
Sussmann has expanded upon these ideas [63, 65].

Many prior investigations on the controllability of mechanical systems base their analyses on Suss-
mann’s original work. For example, Bloch and Reyhanoglu et al. [16, 139, 141] examine mechanical sys-
tems that are controllable with lower order Lie bracketing. Their analysis is limited to what corresponds to,
in this dissertation, the first level symmetric product and the first and second level Lie brackets. Morgansen
and Brockett [112, 113, 114] generalize this work to a limited class of systems and still only examine Lie
brackets to finite order. The contributions are nevertheless important for they detail the relevant Lie brackets
to first examine for systems controllable to low order.

The conditions provided by Sussmann are only sufficient. Furthermore, the small-time local controlla-
bility conditions are only applicable in the vicinity of a fixed point. Bridging the gap between necessary
and sufficient has been the focus of many investigations [59, 60, 13]. Bianchini and Stefani [12, 14] have
extended Sussmann’s original results to incorporate controllability away from an equilibrium point. More
precisely, Bianchini and Stefani examine controllability along a reference trajectory. This is not the primary
goal of this disseration, although suitable extensions may be realized with additional work.

Many of the controllability results summarized above do not take advantage of any inherent structure in
the governing equations, although some do rely on the structure obtained by restricting to special cases of
mechanical systems. However, when general structure can be shown to exist, it may simplify the properties
of the free Lie algebras computed by Sussmann [152]. This is the premise behind the configuration con-
trollability analysis of Lewis and Murray [85, 86] for the case of simple mechanical systems. Subsequent
work by Lewis showed how mechanical constraints may be included into the analysis without destroying
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the underlying geometric structure [84]. Furthermore Cortés et al. [35] demonstrate how symmetries may
lead to configuration controllability tests using reduced structures. Moving beyond the simple mechanical
system paradigm is a challenge as the simple mechanical system formalism does not easily incorporate a
number of effects that commonly arise in practical mechanical systems. Cortés et al. [34] have shown that
the addition of isotropic dissipation to the equations of motion does not severely affect the configuration
controllability tests. However, they do not address the common case of configuration dependent dissipation.

Instead of assuming a specific class of mechanical systems, this dissertation focuses on the basic prop-
erties of geometric homogeneity, which hold for the great majority of mechanical systems that have been
studied to date, including all of the mechanical systems referenced above. The emphasis is not on the
derivation of the equations of motion, but on universal properties common to the equations of motion for all
mechanical systems. Our results will be compatible with additional mechanical structure such as an affine
connection, Lie group symmetries, or nonholonomic constraints, and will allow contemplation of additional
elements, such as dissipation, not considered in prior work on the formal control theoretic properties of
mechanical systems.

1.1.4 Control of Underactuated Nonlinear Systems

We unite recent results in our generalized averaging theory with nonlinear controllability analysis to synthe-
size the new control methods for underactuated nonlinear systems. Some of the strongest results tying con-
trollability analysis to control design can be found in the work of Sussmann and Liu [153, 154, 155, 92, 93].
Building upon the work of Kurzweil and Jarnik [74, 75], they studied the limiting behavior of highly os-
cillatory inputs to driftless control systems. The limiting process leads to a fully controllable autonomous
system. Sussmann and Liu are able to demonstrate that, in the limit, the flow of the fully controllable
autonomous system is faithful to the flow of the actual underactuated time-varying system. Although the
contributions have been enormously important in furthering control for underactuated nonlinear systems,
the work is limited to open-loop analysis of driftless systems.

In general, the analysis of open-loop response to sinusoidal and oscillatory inputs has been well studied
[122, 19]. Methods for specific classes of control systems have also been developed. Teel et al. [157] have
demonstrated how sinusoids may be used to obtain stabilizing controllers for the restricted class of chained
form systems. Leonard and Krishnaprasad have used averaging methods, together with series expansions, to
approximate the flow of driftless systems evolving on Lie groups [80]. The averaged response is computed
up to third order, and is used for open-loop motion planning. Lafferrierre and Sussmann [76, 77] proposed
an open-loop path planning methodology for driftless systems based on the averaging process of Sussmann
and Liu, which requires highly oscillatory control inputs. Motions planned for the fully controlled averaged
system are transformed to oscillatory control inputs for the actual control system.

The closed loop problem for time-varying control of general underactuated driftless systems is diffi-
cult and few general solutions exist. Generically, smooth state-feedback will not exponentially stabilize
these systems [20], leading to the use of time-varying or non-smooth feedback techniques. Coron [33]
has demonstrated that time-varying controllers can asymptotically stabilize underactuated nonlinear control
systems. Work on non-smooth stabilizing controllers has varied from continuous asymptotically stabilizing
controllers to discontinuous and hybrid controllers; see [71] and references therein. The focus of this the-
sis is on deriving exponentially stabilizing controllers, for which the time-varying approach appears most
promising.

Driftless Systems. One of most general methods with strong results utilizes homogeneous approxima-
tions of underactuated driftless control systems. The resulting controllers are exponentially stabilizing with
regards to a homogeneous norm, and are termed ρ-exponential stabilizing controllers. In M’Closkey and
Murray [109], a method to transform asymptotically stabilized homogeneous systems into ρ-exponentially
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stabilized homogeneous systems is given. Although the method is quite general, it does require a pre-
existing controller; the pre-existing controller is generally constructed using a method that does not result
in exponential stabilization. In Pomet [136], homogeneous controllers for driftless systems are algorithmi-
cally constructed by solving a linear partial differential equation. The method is quite general, though often
difficult to apply in practice. Pomet addresses how additional problem-specific heuristics may streamline
the controller design process and improve the resulting controller. Further work by M’Closkey [108] ex-
tended Pomet’s algorithm for computing ρ-exponentially stabilizing feedbacks, thereby avoiding the a priori
assumptions of M’Closkey and Murray [109].

The open-loop path planning ideas of Lafferrierre, Liu, and Sussmann were successfully extended to ob-
tain closed loop ρ-exponentially stabilizing controllers in Morin et al. [117]. Feedback solutions requiring
the use of homogeneous approximations were found for stabilization, however the algorithm is computa-
tionally difficult to apply. Additional investigation by Morin and Samson has sought to better understand
the properties of the time-periodic control inputs required for stabilization [119], and how to derive a con-
structive controller method that is proveably robust [118]. A drawback to following the approach pioneered
by Sussman and Liu is the requirement of highly oscillatory inputs. The oscillatory controllers are designed
with a frequency inversely proportional to an ε parameter. The averaging process requires for ε→ 0, leading
to highly oscillatory inputs, although in practice it is understood that the method may work for ε small. The
generalized averaging methods used in this dissertation build upon the work of Agračhev and Gamkrelidze
[2], who consider the effect of a small ε parameter, as opposed to an infinitesimally small ε parameter that
tends to zero. Estimates for the error due to a truncatation of the infinite series expansion, for ε small, may
be obtained [2]. Consequently, the need to approach the limit ε → 0 is avoided, while it is still possible
to obtain stabilization with no error. The results found in the aforementioned citations of Sussmann, Liu,
Morin, and Samson can be given a new interpretation by examining them using the generalized averaging
theory [92, 93, 118, 119, 117, 153, 154, 155].

In a technique reminiscent of the approach found herein, Struemper and Krishnaprasad [151] utilize
Floquet theory to prove linear stability of systems evolving on simple Lie groups. The control inputs,
found through approximate inversion, are thereby shown to be exponentially stabilizing. Additional control
methods exist, however, these solutions are largely found in specific application domains. Canudas de Wit
and Sordalen [28, 41] give exponentially stabilizing controllers for mobile robots or underwater vehicles
evolving on the Lie groups SE(2) and SE(3), respectively. Sørensen and Egeland discuss exponential
stabilization of chained systems [149]. The focus of this dissertation is on a general and systematic method-
ology.

Systems with Drift Similar to the case of driftless systems, moving from analysis to the design of sta-
bilizing feedback laws for systems with drift is a challenge. There has been recent success on the use of
motion control algorithms and series expansion methods to obtain (exponentially) stabilizing control laws
for simple mechanical systems. Bullo [22] has developed series expansions for the flows of simple me-
chanical systems. Further research led to a constructive algorithm for computing the series expansions and
approximate inversions under kinematic actuation of systems with drift [21, 24]. Mart ínez and Cortés [100]
have extended these initial results to arbitrary motions, both in the series expansions and in the necessary
approximate inversions. One important element of analysis is missing: although time-periodic inputs are
required to generate many of the motion primitives, averaging theory was not explicitly used. By under-
standing the role of averaging within this context, we can make stronger conclusions regarding the motion
control algorithms. Therefore, elements of this thesis can be seen as an extension of the recent work on
motion control algorithms for simple mechanical systems [21, 22, 24, 100].

Given the difficulties associated with the control of underactuated nonlinear dynamical systems with
drift, many efforts for feedback stabilization of systems with drift tend to focus on specific canonical control
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forms, [16, 112], which are actually special instances of simple mechanical or 1-homogeneous control
systems. Morgansen and Brockett [112, 113] consider trajectory tracking, via approximate inversion, of
specific classes of second-order nonlinear control systems consisting of interconnected blocks, each of which
has a very simple structure (e.g., an integrator block and a canonical nonholonomic system block). Work by
Reyhanoglu et al. [16, 140, 141] has focused on mechanical systems whose dynamic structure is equivalent
to the canonical forms examined by Morgansen and Brockett. The papers emphasize controllability and
stabilizability calculations over general constructive controllability for the class of mechanical systems with
nonholonomic constraints. Additional investigations have focused on specific subclasses of mechanical
systems: Reyhanoglu et al. [139] construct a discontinuous controller for systems underactuated by one
degree, and Kolmanovsky and McClamroch [72] study open-loop planning from controllability analysis
of nonholonomic mechanical systems. In [72], averaging methods were used to obtain approximations to
time-periodic open-loop flows.

The closed loop problem of feedback stabilization of underactuated nonlinear systems with drift is dif-
ficult and few general solutions exist. Many of the solutions found for driftless systems fail to extend to
the case of systems with drift. One of the few investigations into exponential stabilization of underactuated
systems that has been extended from driftless systems to systems with drift is [107]. In [107], M’Closkey
and Morin provide two methods for constructing stabilizing controllers, which are exponentially stabilizing
with respect to a homogeneous norm. The first method requires a pre-existing stabilizing controller and a
Lyapunov function, which is subsequently improved upon to achieve exponential convergence. The second
method uses lower-order averaging methods, and is an extension of prior work for stabilization of driftless
systems [117]. The averaging methods are based on the work of Sussmann and Liu involving limit of highly
oscillatory functions. The controller design often utilizes problem-specific intuition for simplification or
transformation of the system with drift into a driftless system.

We note that Floquet theory and averaging have recently been applied to the problem of stabilizing
nonlinear systems. However, many of these methods have been restricted to special application domains.
For example, [156] utilize feedback techniques and Floquet analysis to stabilize a free joint manipulator.
There are additional stabilization techniques to be found, however they, again, are typically restricted to
special application domains, or do not result in exponential stabilization. In contrast to these specialized
applications, our methods are quite general.

1.2 Contributions of This Thesis

The contributions of this dissertation are multiple. In order to derive a paradigm for understanding nonlinear
and biologically inspired locomotive control systems, several distinct theories need to be synthesized in
order to construct a framework capable of encompassing all known results. In particular, the emphasis
of this dissertation is on providing coherent frameworks to: averaging theory, controllability theory for
mechanical systems, and nonlinear control theory of underactuated systems.

Averaging Theory The goal of this disseration, with regards to averaging theory, is to synthesize many
of the ideas of classical averaging theory and to develop an intuitively appealing and easily implementable
averaging theory for the analysis of time-dependent (time-periodic) nonlinear ordinary differential equa-
tions. In doing so, a new approach to averaging theory is developed that encompasses the classical results
of Sanders and Verhulst [161], and Bogoliubov and Mitropolsky [17]. It is shown that averaging theory, as
classically studied, is derived from nonlinear Floquet theory and perturbation theory. The approach found
in this thesis can be seen as complementary to that found in the literature [17, 132], as the analysis involves
two important distinctions, (1) there are strict requirements on the vector fields, i.e., smoothness, and (2) the
proximity results are conservative. Both can be improved via a more detailed analysis. Nevertheless, the im-
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portant elements comprising averaging theory are placed within a single framework. Calculations are made
for up to fourth-order averaging. A general algorithm and philosophy are given to aid in the calculation of
higher orders of averaging.

Controllability of Mechanical Systems. Controllability for underactuated driftless nonlinear systems
typically revolves around the Lie algebra rank condition (LARC). For systems without drift satisfaction
of the LARC implies that the control system is small-time locally controllable (STLC), in principal. Un-
deractuated nonlinear systems with drift are more complicated since satisfaction of the LARC does not
necessarily imply STLC [152]. This dissertation exploits geometric homogeneity to develop controllability
results for a large class of mechanical systems with drift. In particular, we generalize the results of Lewis
and Murray [85] to an arbitrary vector bundle. By choosing the vector bundle to be the tangent bundle, the
homogeneous structure implies the existence of an affine connection and our results collapse to those found
in Lewis and Murray [85]. Selecting the cotangent bundle, one may obtain equivalent controllability results
for Hamiltonian systems. Furthermore, geometric homogeneity is preserved under Lie group symmetry re-
duction, so reduced systems can utilize the same properties for controllability analysis. Thus, our results tie
together and extend much prior work in the literature.

No attempt is made to examine the subtle issue of necessary and sufficient conditions. Instead we
analyze the interplay between geometric homogeneity of vector fields and the free Lie algebras that are used
for controllability analysis. Geometric homogeneity may serve to prune the search process and to provide a
heuristic search for “preferable” Jacobi-Lie brackets.

Control of Underactuated Nonlinear Systems. General strategies for feedback stabilization of under-
actuated driftless nonlinear control systems using time-varying methods utilize many of the same ideas:
homogeneity, averaging, and series expansions. The goal of this dissertation is to synthesize these ideas in a
coherent fashion; in the process, we develop practical, systematic, and intuitive feedback control strategies
for stabilization of underactuated nonlinear control systems. The strategy works for driftless systems and for
systems with drift. Importantly, the algorithm does not use nonlinear transformations of state to canonical
control forms and does not require a homogeneous norm for proof of exponential stability. Neither are there
a priori requirements, such as pre-existing controllers or Lyapunov functions, although such knowledge may
be helpful.

Linear state-space control is dependent on understanding the exponential representation of flows. Non-
linear time-varying control systems can also be given an exponential representation, meaning that all of
the intuition and analysis from linear control theory may provide the control engineer with the needed
background to construct and analyze stabilizing controllers for nonlinear systems. Consequently, the main
contribution of this thesis, vis-à-vis its control-theoretic goals, is a systematic and intuitive procedure for the
design and analysis of stabilizing feedback controllers for underactuated nonlinear systems. The technique
will culminate in a set of control functions with tunable gains and oscillatory parameters that can be well
understood using concepts from linear control theory and the generalized averaging theory. The systematic
nature of the calculations easily lends itself to algorithmic computation.

The material here gives calculations for up to fourth-order averaging for driftless systems, and up to
third-order for systems with drift. The structure of the controller synthesis derivation results in a general
algorithm which may be followed to aid in the calculation of feedback controller for higher levels of averag-
ing. By following the procedure implicitly given, it is possible to construct a stabilizing controller without
detailed understanding of the underlying mathematics of our averaging methods.
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1.3 Outline of Dissertation

The thesis is separated into five main chapters and one concluding chapter. Each of the chapters builds upon
an extensive literature, some of which the reader is presumed to know for the sake of brevity of exposition.
In particular, the reader is assumed to have working knowledge of differential geometry and geometric
mechanics [18, 69, 70, 99]. Mastery of the Riemannian and Lagrangian mechanical techniques in addition
to the theory of Lie group reduction, both within the context of the control of nonlinear mechanical systems,
is also assumed [15, 21, 29, 30, 82, 126].

Chapter 2. Chapter 2 details the generalized averaging theory. Classical averaging theory is first reviewed
for presentation of the basic components to which the generalized averaging theory must remain faithful.
The exponential representation of nonlinear time-varying flows is discussed and linear Floquet theory is
extended to nonlinear systems. Nonlinear Floquet theory demonstrates that time-periodic systems may be
represented exactly by a periodic mapping and the flow of an autonomous vector field. The autonomous
vector field is the exact average of the time-periodic system. Unfortunately, a closed form solution for
the autonomous averaged vector field is generally difficult to compute, necessitating the introduction of
perturbation methods. The perturbation methods provide a way to systematically determine the dominant
components and the ignorable, perturbative components of an infinite series approximation. In this manner,
it is shown that averaging theory is the synthesis of two distinct theories: (1) nonlinear Floquet theory, and
(2) perturbation theory. All known results concerning averaging theory can now be systematically proven
and analyzed using these two theories in conjunction.

Chapter 3. In Chapter 3, the problem of controller design for underactuated driftless nonlinear systems is
covered. Using the generalized averaging theory, it is possible to derive an algorithm for the construction of
exponentially stabilizing controllers. The algorithm consists of several simple steps. In some cases, existing
controllers are enhanced by recasting them within the framework of the generalized averaging theory. Most
controller design methods found in the literature do not result in a set of tunable control parameters, and
the appropriate gains must be found by chance. In contrast, the method found herein results in controllers
with tunable control gains. The modified controllers demonstrate how the generalized averaging theory may
replace the fixed controllers with tunable parameters for performance improvement.

Chapter 4. Prior to extending the results of Chapter 3 to the case of systems with drift, a general de-
scription of systems with drift is required. By examining the structure of most nonlinear control systems
with drift studied in the literature, a new class of nonlinear control systems can be defined. In Chapter 4
the notion of a 1-homogeneous control system is introduced. Chapter 4 then concerns itself with the con-
trollability analysis of 1-homogeneous control systems. The idea of geometric homogeneity so critical to
the control of underactuated driftless nonlinear control systems is extended to the case of systems with
drift. Geometric homogeneity is shown to be a powerful analysis tool for mechanical systems with drift.
Since 1-homogeneous systems are an abstraction of simple mechanical systems, the notion of configuration
controllability is generalized beyond the simple mechanical systems framework.

Chapter 5. Given the general controllability results of Chapter 4, it is possible to extend the controller
synthesis methods of Chapter 3 to 1-homogeneous control systems with drift. The same procedure is devel-
oped with attention paid to the particular structures that appear for systems with drift. The net result is also
a constructive method for obtaining stabilizing controllers with tunable control parameters.
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Chapter 6. Although many investigations have considered how to construct stabilizing feedback control
laws for nonlinear systems, it is rare that the control design be applied to more than the token nonlinear
control problems. To demonstrate the assertion that the technique discussed in this dissertation is truly of a
general nature, a complete chapter, Chapter 6, is devoted solely to the design of locomotive controllers for
many distinct biomimetic control systems. The biomimetic control systems vary from those without drift
to those with drift, and even include systems whose natural dynamics involve discontinuous evolution. The
biomimetic control systems swim, walk, wriggle, and roll, demonstrating the universal nature of the control
strategy found in this dissertation. The results are not surprising given the common property of time-periodic
actuation found in most biological locomotive systems.

Chapter 7. Finally, Chapter 7, concludes with a summary of the results from the perspectives of nonlinear,
and biomimetic and biomechanical control systems. Future research that may be synthesized into a unified
control theory for biomimetic locomotive systems is discussed. The research contained in each Chapter
may also be furthered, although it does not immediately apply towards the specific context and goals of this
dissertation. Therefore, at the end of each Chapter can be found specific comments on possible extensions
of the analysis found in the chapter.
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Chapter 2

A Generalized Averaging Theory

The method of averaging provides a useful means to study the behavior of nonlinear dynamical systems un-
der periodic forcing. The method of averaging has a long history, which, with its canon of related theorems,
has been sufficiently developed into an averaging theory. In spite of its maturity, many of the elements of
this theory have not been cast into a comprehensive framework. The goal of this chapter is to provide a
more coherent structure to the theory of averaging and in the process consolidate many results that currently
appear to stand alone.

This dissertation highlights the use of series expansions of time-varying vector fields. An important
tool in the development of this averaging theory, series expansions approximate time-varying vector fields
by infinite series’ of autonomous vector fields. The series expansions provide alternative expressions for
flows or vector fields, and are an important means for proving results in nonlinear Floquet theory. It is
shown that Floquet theory places time-periodic vector fields into an autonomous averaged form. For sys-
tems that cannot be analyzed in closed form using nonlinear Floquet theory, the use of perturbation methods
in conjunction with series expansion methods will lead to an approximate averaging theory, which is how
averaging is typically applied. As a consequence, we demonstrate that averaging theory is really the syn-
thesis of two distinct mathematical theories: Floquet theory and perturbation theory. All known results of
classical averaging theory can be better understood when viewed from this perspective. This approach also
allows for the systematic development of higher-order averaging methods.

Organization of this chapter. Section 2.1 reviews relevant results from classical averaging theory that
are subsequently generalized. Section 2.2 contains a synopsis of the chronological calculus as derived by
Agračhev and Gamkrelidze [2]. It reviews relevant results regarding the exponential representation of flows,
and the approximation of flows and vector fields by series expansions. These expansions are key to the
development of our generalized averaging theory via nonlinear Floquet theory in Section 2.3. Section 2.4
shows how to calculate averages to higher-order and also points out the connection between these formulas
and those of classical averaging theory. The implications of the averaging theory are detailed for a class of
periodically forced systems in Section 2.5. Several examples of dynamical systems that can be analyzed us-
ing averaging theory are given in section 2.6. One of the examples demonstrates how averaging via Floquet
theory may result in an exact average. The example is important because it shows that averaging theory may
be exact; a common misunderstanding is that averaging theory will always result in some quantifiable error.
The applicability and exactness of averaging theory is certainly an important issue. Section 2.7 discusses
related literature concerning the approximation of time-varying vector fields by autonomous vector fields.
Section 2.8 concludes with a synopsis of the current results and ideas for future work.
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2.1 Classical Averaging Theory

Before developing the elements of the generalized averaging theory, it is important to understand the basic
structure and theorems of classical averaging theory. This section reviews the key ideas that will subse-
quently be generalized.

The standard form of the equations of motion for averaging are

dx

dt
= εX(x, t), x(0) = x0, (2.1)

where X is T -periodic, i.e., X(x, t) = X(x, t+ T ), and x ∈M ⊂ R
n. The average of X is typically given

as

X(x, t) =

∫ t+T

t
X(x, τ) dτ , (2.2)

where the evaluation point x is considered fixed. Often, X(·, t) will be written as X(·)1. The average then
defines new autonomous equations of motion,

dy

dt
= εX(y), y(0) = x0. (2.3)

The goals of averaging theory are multiple. The primary goal is to determine conditions under which the
two flows coincide and to what degree they coincide. The parameter, ε, will provide a means to determine
this coincidence.

Theorem 1 (first-order averaging) [161] Consider the initial value problems (2.1) and (2.3) with x, y, x0 ∈
M ⊂ R

n, t ∈ [t0,∞), ε ∈ (0, ε0]. Suppose that the following all hold,

1. X(x, t) is Lipschitz-continuous in x on M , t ≥ 0, continuous in x and t on M × R
+, and

2. y(t) belongs to an interior subset of M on the timescale 1
ε .

Then,
x(t) − y(t) = O (ε)

as ε ↓ 0 on the timescale 1
ε .

Theorem 1 determines the conditions under which the flow of the autonomous vector field (2.3) remains
close to the flow of the original vector field (2.1). Proximity holds on a finite timescale, and few additional
results can be derived unless additional constraints are placed on the vector fields.

Theorem 2 [161] Assume that in addition to the conditions of Theorem 1, the following are met:

1. y = 0 is an asymptotically stable fixed point.

2. X is continuously differentiable in M , and has a domain of attraction M ∗ ⊂M .

If x0 ∈M∗,then,
x(t) − y(t) = O (δ(ε)) , 0 ≤ t <∞

with δ(ε) = o (1).

1Via a change of coordinates, the average can instead be written: X(x, t) =
∫ T

0
X(x, θ) dθ . The change of coordinates only

holds in the time-periodic case.
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An asymptotically stable fixed point in the average (2.1) renders the averaged approximation valid for all
time. For a dynamical system satisfying Theorem 2, there are important implications: the restriction of a
flow to a neighborhood of a fixed point implies an orbit.

Theorem 3 [50] Consider the mapping,

y(t) = z(t) + εw(z(t), t)

and the initial value problem
ż = εX(z) + ε2Y (z, t),

where

w(x, t) =

∫ t

0

(
X(x, τ) −X(x)

)
dτ

Y (x, t) = DX(x, t) · w(x, t) −Dw(x, t) ·X(x).

Suppose that X(x, t) is Cr, r ≥ 2, and bounded on bounded sets. Then the following statements hold:

1. |x(t) − z(t)| = O (ε) on the timescale 1
ε .

2. If z∗ is a hyperbolic fixed point of (2.3), then there exists an ε0 such that for all ε ∈ (0, ε0], (2.1)
possesses a unique hyperbolic periodic orbit γε(t) = z∗ +O (ε) of the same stability type as z∗.

3. If xs(t) is a solution of (2.1) lying in the stable manifold of the hyperbolic periodict orbit γε, and zs(t)
is a solution of (2.3) lying in the stable manifold of the hyperbolic fixed point z∗, then |xs(t) − zs(t)| =
O (ε) for t ∈ [0,∞). Similar results apply to solutions lying in the unstable manifolds on the time
interval t ∈ (−∞, 0].

The proof of the portion of this theorem related to stability is based on the use of the average as a Poincaré
map of the actual flow. Theorem 3 does not preclude the case where the orbit is degenerate, i.e., that it is in
fact the point z∗.

Theorem 4 [68] Assume that the conditions of Theorem 3 hold and that both X and its average X share
the same equilibrium point. If the equilibrium point is exponentially stable for the averaged system, then the
equiblirium point is exponentially stable for the original system.

First-order averaging is not always sufficient to approximate the dynamics of a system. In these cases,
second- or higher-order averaging techniques are needed.

Theorem 5 (second-order averaging) [161] Consider the mapping,

y(t) = z(t) + εw(z(t), t)

and the initial value problem
ż = εX(z) + ε2Y (z),

where

w(x, t) =

∫ t

0

(
X(x, τ) −X(x)

)
dτ + a(x)

Y (x, t) = DX(x, t) · w(x, t) −Dw(x, t) ·X(x),

and a(x) is chosen so that the time average of w(x, t) vanishes. Suppose that the following all hold,
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1. X(x, t) has a Lipschitz-continuous first derivative in x and is continuous on its domain of definition,
and

2. z(t) belongs to an interior subset of M on the timescale 1
ε .

Then,
x(t) = y(t) +O

(
ε2
)

on the timescale 1
ε .

When moving to second- and higher-order averaging methods, Theorems 2, 3, and 4 are no longer appli-
cable. The explicit ε dependence of the higher-order terms complicates matters, and care must be taken to
ensure that even higher-order approximations do not alter stability [111, 161].

Note that by using the coordinate-based definition of the Jacobi-Lie bracket and the integration of prod-
ucts formula, the time average of Y (z, t) may be rewritten as

Y (z) =
1

2

[∫ t

0
X(z, τ) dτ ,X(z, t)

]
+
[
a(z), X(z)

]
, (2.4)

meaning that the second-order term, Y from Theorem 5, has an intrinsic description within the space of
vector fields and has a mathematical interpretation2 . This points to the fact that averaging may be a natural
operation, and that there must exist a natural procedure to obtain Equation (2.4) without the use of coordinate
calculations.

The procedure should be general enough to allow for an arbitrary order of approximation while preserv-
ing the intrinsic description of the averages. Although the KBM method of averaging works to arbitrary
order, the averages do not explicitly involve Jacobi-Lie brackets. Much like Theorem 5, the KBM method
does demonstrate that higher order averaging will consist of two elements,

1. an autonomous vector field approximation of the time-periodic vector field in (2.1), and

2. a time-dependent compensation mapping to approximate the flow of (2.1).

The goal of this investigation is to find an algorithm for the computation of higher-order averages involving
Jacobi-Lie brackets. The analysis should allow for the use of Poincaré maps for inference of stability, and
should recover the known properties of averaged expansions [17, 42, 111, 132, 143]. Additionally, the
derivation should illuminate the mathematical context and role of averaging.

2.2 Evolution of Systems and the Chronological Calculus

This section reviews the important concepts of the chronological calculus found in Agračhev and Gamkre-
lidze [2]. The chronological calculus demonstrates that the exponential representation for flows of linear
autonomous differential equations can be applied to nonlinear time-varying differential equations. If the
chronological calculus is well understood, many concepts and theorems proven for linear (time-varying) dif-
ferential equations may hold for nonlinear (time-varying) differential equations with little additional work.
Section 2.3 demonstrates this beneficial property by extending linear Floquet theory to the nonlinear setting.

The chronological calculus focuses on a series representation of the exponential flow. The series rep-
resentation is used to determine the consequences of a finite series approximation to the infinite series rep-
resentation, thereby developing the notion of perturbation methods for nonlinear dynamical systems. From

2See Appendix 2.A for derivation.
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there, the series expansions and their related approximations can be used to derive a generalized averaging
theory.

The general form for the equations of motion are

dx

dt
= X(x, t), x(0) = x0, (2.5)

where x ∈ R
n, t ∈ R, X is in Cr (Rn,Rn) as a function of the state x only, and it is absolutely continuous

as a function of time t only. Sometimes we will write Xt for X(·, t). The ultimate goal is to understand the
flow, denoted by ΦX

0,t. This will require notions of proximity for flows and functions.
Define the semi-norm of a function ϕ ∈ C r (Rn,R),

||ϕ||s,M ≡ sup
x∈M

s∑

α=0

1

α!
sup
|χ|=1

|χαϕ(x)| , (2.6)

where M ⊂ R
n, s ∈ [0, r] is an arbitrary integer, and χ is a constant vector field. When the second index is

absent, then it is assumed to be M = R
n, i.e., ||ϕ||s = ||ϕ||s,Rn . The semi-norm (2.6) induces the following

semi-norm on matrix valued functions A ∈ C r (Rn,Rm1×m2),

||A||s,M =

m2∑

β=1

max
1≤α≤m1

∣∣∣∣aα
β

∣∣∣∣
s,M

, A = [aα
β ], aα

β ∈ Cr (Rn,R) ,

with the semi-norms on column and row vector valued functions defined as

||X||s,M = max
1≤α≤n

||X||s,M ,

||ξ||s,M =
n∑

β=1

||ξβ||s,M ,

respectively. All topologies, unless specified otherwise, will be defined with respect to the semi-norms
||·||s,K , where K is an arbitrary compact set in R

n. It is called the topology of compact convergence with
respect to all derivatives [2]. Hereafter, we will only concern ourselves with smooth mappings of state, i.e.,
r = ∞.

The flow of equation (2.5) satisfies

d

dt
ΦX

0,t = Xt ◦ ΦX
0,t, ΦX

τ,τ = Id

or in pull-back form,
d

dt

(
ΦX

0,t

)?
=
(
ΦX

0,t

)? ◦Xt,
(
ΦX

τ,τ

)?
= Id?, (2.7)

where, on the right-hand side of Equation (2.7), the pull-back is not of vector-fields but of functions, i.e.,

(
ΦX

0,t

)? ◦Xt = Xt ◦ ΦX
0,t = X(ΦX

0,t(·), t).

The pull-back flow is continuous and invertible [2]. The pull-back of vector fields is given by the adjoint,

Ad
(
ΦX

0,t

)? ·X =
(
ΦX

0,t

)? ◦X ◦
((

ΦX
0,t

)?)−1
,
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where the following identity is in effect,

((
ΦX

0,t

)?)−1
=
((

ΦX
0,t

)−1
)?
.

In [4], Agračhev and Gamkrelidze conceptualize the extension of their results to manifolds. This is
done by providing C∞(M) with the topology given to R

n using the semi-norms. We restrict the current
investigation to R

n, however, the ideas naturally extend to systems evolving on manifolds.

2.2.1 Series Expansions

Series expansion methods for finding the solution to a differential equation are based on the Volterra series
expansion. This is also known as a Picard iteration, which is often used to prove existence of solutions to
differential equations. A solution, Ft0,t, to the differential equation in (2.7) is

Ft0,t = Id? +

∫ t

t0

Ft0 ,τ ◦Xτ dτ ,

which via successive substitutions results in the Volterra series,

Ft0 ,t = Id? +

∫ t

t0

Xτ dτ +

∫ t

t0

dτ1

∫ τ1

t0

dτ2Xτ2 ◦Xτ1 + . . .

= Id? +

∞∑

m=1

∫ t

t0

dτ1

∫ τ1

t0

dτ2 . . .

∫ τm−1

t0

dτmXτm ◦ . . . ◦Xτ1 .

Under the appropriate conditions, the series summation converges and represents the true flow of the system
[2]; the analysis of this chapter is restricted to smooth functions, therefore, the convergence conditions are
satisfied for finite time. The convergent Volterra series summation can be written as

−→V t0,t (Xτ ) = Id? +

∞∑

m=1

∫ t

t0

dτ1

∫ τ1

t0

dτ2 . . .

∫ τm−1

t0

dτmXτm ◦ . . . ◦Xτ1 ,

where
−→V t0,t (Xτ ) is the Volterra series expansion of the flow corresponding to the time-varying vector field

X . When the vector fields at different points in time commute, i.e., [Xt′ , Xt′′ ] = 0 , ∀ t′, t′′ ∈ R, then the
Volterra series expansion of the flow reduces to the time-independent exponential,

−→V t0,t (Xτ ) Id =

∞∑

m=1

1

m!

(∫ t

t0

Xτdτ

)m

= exp

(∫ t

t0

Xτdτ

)
,

recovering the classical notion of an exponential for autonomous ordinary differential equations. In the more
general time-dependent case, the convergent Volterra series is still an exponential series. It is, therefore,
called the chronological exponential in Xτ , and is written

Ft0,t
∼= −→V t0 ,t (Xτ ) ≡ −→exp

(∫ t

t0

Xτdτ

)
, (2.8)

where the flows in Equation (2.8) are pull-back flows. The first equality in Equation (2.8) is an asymptotic
equality as per the proposition below.
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Proposition 1 [2] Let Xt, t ∈ R, be a bounded (locally integrable) vector field, and
(
ΦX

t0,t

)?
the flow of

Xt. Then, for all ϕ in C∞ (Rn,R), s ≥ 0, m ≥ 2, and any compact set K ⊂ R
n,

∣∣∣∣∣

∣∣∣∣∣

(
(
ΦX

t0,t

)? −
(

Id? +
m−1∑

α=1

∫ t

t0

∫ τ1

t0

. . .

∫ τα−1

t0

Xτα
◦ · · · ◦Xτ1

dτα . . . dτ2 dτ1

))
ϕ

∣∣∣∣∣

∣∣∣∣∣
s,K

≤ C1e
C2

∣∣∣
∫

t

t0
||Xτ ||s dτ

∣∣∣
(
3n(2s+ 2m)(s+m)

)m 1

m!

∣∣∣∣
∫ t

t0

||Xτ ||s+m−1 dτ

∣∣∣∣
m

||ϕ||s+m,M ,

where

C1 = (1 + s)(2ns)s

(
1 + n+ diamK + 2

∫ t

0
||Xτ ||0 dτ

)s

C2 = 3n(2s+ 2)s+1C1,

and M = OR(K) is a neighborhood of radius R =
∫ t
t0
||Xτ ||0 dτ of the compact set K .

Given the existence of the chronological exponential it is natural to expect likewise the existence of an
inverse to the chronological exponential. It will be called the chronological logarithm. This is a mapping
from

−→exp

(∫ t

t0

Xτ dτ

)
7→ Xt,

and will be written as
−→
logt0

−→exp

(∫ t

t0

Xτ dτ

)
= Xt, (2.9)

as per [2]. The most important use of Equation (2.9) for the purposes of this thesis is in the time-independent
case, where it will be called the logarithm.

The Logarithm. Averaging theory seeks to find an autonomous vector field approximating the vector
field of Equation (2.5). This is equivalent to the question posed by Agračhev and Gamkrelidze regarding the
existence of a vector field

−→
V t0,t (Xτ ), such that the asymptotic equality holds:

−→exp

∫ t

t0

Xτ dτ ∼= exp
−→
V t0,t (Xτ ) , (2.10)

where the asymptotic equality uses Proposition 2. In other words, does there exist an autonomous differen-
tial equation, given by

−→
V t0,t (Xτ ), whose flow after unit time is equal to the flow of the non-autonomous

differential equation given by Xt at time t? A series expansion for this vector field exists, and assuming
convergence [2] it is called the logarithm, i.e.,

−→
V t0,t (Xτ ) ∼= ln−→exp

∫ t

t0

Yτ dτ . (2.11)

The vector field,
−→
V t0,t (Xτ ), is an autonomous vector field, but is parametrized by time, t. It is the au-

tonomous vector field whose flow after unit time maps to the same point in space that the actual time-
dependent flow will at time t. Variation of the final time will result in a new autonomous vector field.

The logarithm is at the heart of a series expansion solution to the approximation of the flow ΦX
t0,t. The
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logarithm vector field is an infinite series consisting of variations,

−→
V t0,t (Xτ ) =

∞∑

m=1

−→
V (m)

t0,t (Xτ ) , (2.12)

where
−→
V (m)

t0,t (Xτ ) =

∫ t

t0

∫ τ1

t0

· · ·
∫ τm−1

t0

v(m)(Xτ1 , . . . , Xτm) dτm . . . dτ2 dτ1 (2.13)

is the mth-variation of the identity flow corresponding to the perturbation field Xτ [2]. The integrands of
the variations in Equation (2.13) are the sum of iterated Jacobi-Lie brackets, and thereby reside within the
space of vector fields. An algorithm to compute the integrands can be found in Section 2.2.2.

In order to prove the asymptotic equality of Equation (2.10), Agračhev and Gamkrelidze utilize the
following proposition,

Proposition 2 [2] If ∫ t

t0

||Xτ ||s+m dτ ≤ 1,

then
∣∣∣∣∣

∣∣∣∣∣

(
−→exp

∫ t

t0

Xτ dτ − exp
m∑

α=1

−→
V (α)

t0,t (Xτ )

)
ϕ

∣∣∣∣∣

∣∣∣∣∣
s,K

≤ C1

∣∣∣∣
∫ t

t0

||Xτ ||s+2m dτ

∣∣∣∣
m+1

||ϕ||s+m+1,NC2
(K)

where the constants C1 andC2 depend only on s,m, and diamK , and whereNC2
(K) is aC2-neighborhood

of the compact set K .

Proposition 2 is important when using a finite series expansion of the variations from Equation (2.12) in
lieu of the full infinite series expansions. In general, the series

−→
V t0,t (Xτ ) diverges, but under certain

conditions it can converge. Assume that ∆ is a sub-algebra of the space of vector fields, with a norm such
that ||[X,Y ]|| ≤ ||X|| ||Y || , ∀X, Y ∈ ∆. This makes ∆ a Banach Lie algebra.

Proposition 3 [2] Let X be a time dependent vector field, and let Xt ∈ ∆ for all t ∈ R. If
∫ t
t0
||Xτ || dτ ≤

0.44, then
−→
V t0,t (Xτ ) converges absolutely in ∆.

According to Agračhev and Gamkrelidze [3], S. Vakhrameev gave an improved estimate for convergence. It
is ∫ t

0
||Xτ || dτ ≤

∫ π

0

2

θ(1 − cot(θ)) + 2
dθ ,

and is a sharp estimate.

2.2.2 Elements of the Series Expansion

Calculation of the integrands of the variations (2.13) is not simple; Sarychev [144, 145] has an abbreviated
discussion of the derivation procedure. The basic idea is very similar to the expansion described by Magnus
[96]. Using the time-dependence of the logarithm together with the identity,

exp
(−→

V t0,t (Xτ )
)

= −→exp

(∫ t

t0

Xτ dτ

)
, (2.14)
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it is possible to derive the following equation,

Xt =

∫ 1

0
exp

(
−τ ad

−→
V t0,t (Xτ )

)
dτ

(
d

dt

−→
V t0,t (Xτ )

)
, (2.15)

via time differentiation of Equation (2.14), [2]. The integral on the right hand side of Equation (2.15) can be
inverted. Define the following function,

ϕ(z) ≡ 1∫ 1
0 exp (−τz) dτ

=
−z

exp (−z) − 1
,

which has a series expansion,

ϕ(z) = 1 +
1

2
z +

∞∑

α=2

Bα

α!
zα,

where the Bα are Bernoulli numbers. Equation (2.15) may be rewritten as

d

dt

−→
V t0,t (Xτ ) = ϕ

(
ad

−→
V t0,t (Xτ )

)
·Xt. (2.16)

There are several equivalent ways to calculate the series expansion of the right-hand side of Equation (2.16).
The one we shall adopt comes from [2]; most others are an attempt to extract more structure from derivation
that follows [4, 145, 65]. Define a grammar whose constitutive alphabet is { ad, ξ1, . . . , ξm }.

Definition 1 [3] A regular word in the grammar given by the alphabet { ad, ξ1, . . . , ξm } is a word that, by
suitable parenthetication, can be expressed as a commutator polynomial.

The commutator is defined to be the Jacobi-Lie bracket, here given by the letter ad. Note that this choice of
definition of a regular word places a requirement on the number of times that the ad letter must appear in a
word. As an example, we have the word below:

adξ1adξ2ξ3 = (adξ1)((adξ2)ξ3) = [ξ1, [ξ2, ξ3]]

The set consisting of the words of the grammar form a free associative algebra over R with generators in the
alphabet. The free associative algebra is the same one used by Sussmann [152] to prove his general theorem
on local controllability. The calculation of the logarithm vector field will also require the definition of the
depth of a letter in a word.

Definition 2 [3] The depth of a letter ξi in a word w = w1ξiw2, where w1 or w2 may be empty, is the
number of regular words that can be made with contiguous subsequences of the letters in w1ξi containing
ξi in them.

Example
To see this more clearly two examples of regular words are given below where the regular words that can be
formed from subsequences have been delineated.

adadξ3ξ2ξ1 , adξ3adξ2ξ1

For the first word, the depths of the letters (ξ1, ξ2, ξ3) are (1, 1, 0), respectively. For the second word, the
depths of the letters (ξ1, ξ2, ξ3) are (2, 0, 0), respectively.
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To this algebra can be added a differentiation operator.

Definition 3 [3] The differentiation operator D(w) is a linear operator associated with each word w acting
according to the following rules on the alphabet:

1. D(w) ad = w ad

2. D(w) ξi = w ξi

3. D(w)w1 w2 = (D(w)w1)w2 + w1 (D(w)w2) (Leibniz rule)

Each variation of the series, Equation (2.13), consists of a linear combination of the (2m− 3)!! words3

formed by the operation

D(adξm) . . . D(adξ2) ξ1 = w1 + · · · + w(2m−3)!!. (2.17)

Define, νiα to be the depth of the letter ξi in the word wα from Equation (2.17). The integrand of the mth

variation of the identity flow corresponding to the perturbation field Xt is

v(m)(ξ1, . . . , ξm) =

(2m−3)!!∑

α=1

(
m∏

i=1

bνiα

)
wα (2.18)

where bν = (Bν/ν!) , and the Bν are Bernoulli numbers. The first three variations are given below:

v(1)(ξ1) = ξ1

v(2)(ξ1, ξ2) =
1

2
adξ2ξ1

v(3)(ξ1, ξ2, ξ3) =
1

12
ad ξ3 ad ξ2 ξ1 +

1

4
ad ad ξ3 ξ2 ξ1 +

1

12
ad ξ2 ad ξ3 ξ1.

(2.19)

By taking advantage of the Jacobi-Lie identity the third variation can be simplified. The same must be done
to render the fourth variation tractable.4

v(3)(ξ1, ξ2, ξ3) =
1

6
(ad ξ3 ad ξ2 ξ1 + ad ad ξ3 ξ2 ξ1)

v(4)(ξ1, ξ2, ξ3, ξ4) = − 1

12
(ad ad ξ4 ξ3 ad ξ2 ξ1 + ad ad ad ξ4 ξ3 ξ2 ξ1

+ad ξ4 ad ad ξ3 ξ2 ξ1 + ad ξ3 ad ad ξ4 ξ2 ξ1)

(2.20)

The integrands v(m)(·) are then integrated to give the mth-variations from Equation (2.13). To see how the
integrands of the mth-variations are integrated, refer to Equation (2.33).

2.2.3 Exponential Representation of a Flow and Perturbation Theory

This section is concluded by giving the exponential representation of a flow as described by the chrono-
logical calculus, under the addition of a smallness parameter ε. The logarithm operator utilizes the flow,
ΦX

0,t, of the time-varying vector field X to compute an autonomous vector field, Z . Consquently, the flow

3This is the recursively defined product k!! = k (k − 2)!!, where 1!! = 1 and 0!! = 1.
4See Appendix 2.B for calculations.
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of the autonomous vector field Z can be used in lieu of flow of the time-varying vector field X , however,
the autonomous vector field Z is given by an infinite series. If the vector field Z naturally has the (small)
parameter ε as a factor, Proposition 2 can be used to determine how close the flow of a finite series expansion
for Y is to the actual flow of X . Consider the differential equation,

ẋ = εX(x, t), x(0) = x0. (2.21)

The actual flow of (2.21), represented by the chronological exponential, −→exp
(∫ t

0 Xτ dτ
)

, is asymptotically

approximated by the exponential of the logarithm of the original vector field as per Equation (2.10), rewritten
below,

−→exp

(∫ t

t0

εXτ dτ

)
∼= exp

(−→
V t0 ,t (εXτ )

)
= Id +

∞∑

m=1

1

m!

(−→
V t0,t (εXτ )

)m
.

Explicit calculations can be complicated, since both the variation,
−→
V t0,t (εXτ ), and the exponent, exp(·),

are infinite series. The parameter ε can be used to determine how the error of a finite series approximation
scales, see Proposition 2.

The expansion of only the first element of the variation is trivial,

−→
V (1)

t0,t (εXτ ) =

∫ t

t0

εXτ dτ ,

meaning that the expansion to first-order is

−→exp

(∫ t

t0

εXτ dτ

)
≈ Id +

∫ t

t0

εXτ dτ +O
(
ε2
)
,

naturally recovering the first element of the Volterra series expansion. Continuing the expansion to include
the second variation introduces the new term,

−→
V (2)

t0,t (εXτ ) =
1

2
ε2
∫ t

t0

[∫ τ

t0

Xs ds ,Xτ

]
dτ .

Incorporation into the exponent gives

−→exp

(∫ t

t0

εXτ dτ

)
≈ Id+

∫ t

t0

εXτ dτ +
1

2
ε2
∫ t

t0

∫ τ

t0

[Xs, Xτ ] ds dτ +
1

2
ε2
∫ t

t0

Xτ dτ ◦
∫ t

t0

Xτ dτ +O
(
ε3
)
.

Decomposing the Jacobi-Lie bracket and using integration by parts one can retrieve the original Volterra
series expansion to second-order,

−→exp

(∫ t

t0

εXτ dτ

)
≈ Id +

∫ t

t0

εXτ dτ + ε2
∫ t

t0

∫ τ

t0

Xs ◦Xτ ds dτ +O
(
ε3
)
.

The expansion of the exponent of the logarithm can be done up to any desired order, and will coincide with
the Volterra series to the same order (in ε). Higher-order expansions are prohibitively expensive from a
computational perspective, due to the power series representations of the exponent and the logarithm. Once
performed, and the terms determined, the computation need not be repeated. We shall soon see the role
played by these expansions in the generalized averaging theory.

Under the condition that the first (m − 1) elements of the variations vanish, choosing only the first
non-vanishing element to represent the flow gives the following theorem.
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Proposition 4 [2] If at the point x ∈ R
n, the following holds:

−→
V (α)

t0,t (Xτ ) = 0, ∀α = 1, . . . ,m− 1,

then

−→exp

∫ t

t0

Xτ dτ = x+
−→
V (m)

t0 ,t (Xτ ) +O

((∫ t

t0

||Xτ ||s+2m dτ

)m+1
)
.

Notice that if the magnitude of the integral inside the O (·) were to be less than unity, the error would be
dimished according to the number of vanishing initial terms. The ε term in perturbation theory, which scales
the vector field X , will play an important role in the asymptotics of the missing terms using Proposition 4.
Certainly, all of the prior theorems of this treatise can be viewed from the perspective of perturbation theory;
a fact well known to Agračhev and Gamkrelidze.

The Variation of Constants. Many systems may not come in the form of Equation (2.21), but may

��

����

��

X

X + εX̃

ΦX+εX̃
0,t (x0)

ΦY
0,t(x0)x0 Y

Figure 2.1: Depiction of the geom-
etry of the variation of constants.

come in the form
ẋ = X(x, t) + εX̃(x, t). (2.22)

The variation of constants method can be used to transform the per-
turbed system into the form required by Equation (2.21). The variation
of constants transformation operates as follows,

ΦX+εX̃
0,t = ΦX

0,t ◦ ΦY
0,t,

where ΦY
0,t is the flow corresponding to the differential equation,

ẏ = Y (y, t) ≡
(
ΦX

0,t

)∗ (
εX̃
)

= ε
(
ΦX

0,t

)∗
X̃, y(0) = x0;

see [2, §4] for more details. Therefore, ΦY
0,t can be interpreted as the effect of the pertubation εX̃ to X on

the unperturbed flow ΦX
0,t, c.f. Figure 2.1. Using Equation (2.11), the time-varying vector field Y may be

approximated by an autonomous vector field, Z ,

Z = ln−→exp

∫ t

0
Yτ dτ .

The ε parameter will carry through to the expression for Z , whereby one may obtain truncations of the
infinite series representing Z . The variation of constants is a key transformation for proving many of the
averaging results of Section 2.3. It is discussed further in Section 2.5, and is utilized in several of the
examples found in Section 2.6.

In conclusion, the exponential representation for flows and vector fields leads to infinite series expan-
sions for both. If it is possible to calculate the full series expansions, then solutions may be found in closed
form. If, instead, the expansions prove to be computationally intractable, then perturbation methods can be
used to obtain finite series approximations. The standard form for application of perturbation methods is
found in Equation (2.21). The variation of constants may be used if the system under inspection is not a
priori in the standard form of Equation (2.21).
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2.3 Averaging via Floquet Theory

This section reformulates averaging theory in terms of nonlinear Floquet theory. The basic theorems of
Floquet theory are first reviewed in the linear setting, and then extended to the nonlinear setting. Averaging
theory is then shown to be the synthesis of nonlinear Floquet theory with the perturbation methods of Section
2.2.3. Consider the flow of the differential equation (2.5) rewritten below,

ẋ = X(x, t) , x(0) = x0, (2.23)

where X is T -periodic, i.e., X(x, t) = X(x, t+ T ).

2.3.1 Linear Floquet Theory

The case of a homogeneous linear periodic system,

ẋ = A(t)x, A(t) = A(t+ T ), (2.24)

is well understood using linear Floquet theory. For convenience, we repeat here many of the basic theorems
of linear Floquet theory. For linear systems, the flow corresponding to Equation (2.24), written as ΦA

0,t,
can be represented by a matrix, called the fundamental matrix solution. Consequently, ΦA

0,t will be used
interchangably for both, as they represent the same object.

Lemma 1 [51] If C is an invertible matrix, then there is a matrix B such that C = exp(B).

The proof of this Lemma involves using the logarithm function for matrices [51, pg. 118], consequently
Lemma 1 means that B = ln(C). Suppose that C is the fundamental matrix solution, ΦA

0,t, of the system in
Equation (2.24) for a fixed time, t. Then, in the notation of the chronological calculus,

B = ln
(
ΦA

0,t

)
= ln−→exp

∫ t

0
A(τ) dτ ,

for t fixed, c.f. Equation (2.11).

Theorem 6 (Linear Floquet Theorem) [51] Every fundamental matrix solution ΦA
0,t of (2.24) has the form

ΦA
0,t = P (t) exp(Bt),

where P(t) is T -periodic, P (t+ T ) = P (t), and B is constant.

Definition 4 The monodromy matrix corresponding to the flow of (2.24) is the fundamental solution matrix
of (2.24) after one period of evolution, M = ΦA

0,T .

The monodromy matrix is the Poincare map for the periodic system (2.24), therefore its eigenvalues may be
used to determine stability of system (2.24). The eigenvalues are typically called the Floquet multipliers, or
the characteristic multipliers.

Theorem 7 [51] A necessary and sufficient condition that the system (2.24) be uniformly stable is that all
Floquet multipliers of (2.24) have modulii less than unity.

Theorem 6 and Lemma 1 imply that the logarithm of the monodromy matrix may be used to determine
stability. From the proof of the linear Floquet theorem [51, pg. 118], it is clear the autonomous linear
homogeneous system that represents the average of (2.24) is

ẏ = By, (2.25)
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where

B =
1

T
ln(M) =

1

T
ln−→exp

∫ T

0
A(τ) dτ . (2.26)

Therefore, an alternative to determining stability of the mondramy matrix, M , is determining stability of the
averaged system (2.25) via B. The eigenvalues of B are called the Floquet exponents, or the characteristic
exponents.

Corollary 1 [51] A necessary and sufficient condition that the system (2.24) be uniformly stable is that all
characteristic exponents of (2.25) lie in the complex left half-plane.

Non-uniqueness of Monodromy Matrix. Given two fundamental matrix solutions, ΦA1

0,t and ΦA2

0,t , to
(2.24) there must exist a transformation of state, D, taking A1 to A2, i.e., A2 = D−1A1D, [51]. Given
the monodromy matrix for the flow of A1, denoted M1, the monodromy matrix for the flow of A2 is M2 =
D−1M1D. In developing Floquet theory for nonlinear systems, we shall see this same freedom occur.
The freedom is obtained by noting that the time-periodicity of A in Equation (2.24) implies that the time
shift τ 7→ t + T , does not change the differential equation in Equation (2.24). Consequently, there exist a
multitude of solutions, each shifted by one period of time, T . For more details, see [51].

2.3.2 Nonlinear Floquet Theory

By using the exponential representation of the flow of nonlinear systems, linear Floquet theory nicely ex-
tends to the nonlinear time-periodic case, Equation (2.23). While hinted at in prior work [144], the extension
of Floquet theory to nonlinear systems is fully developed in this section.

Theorem 8 (Nonlinear Floquet Theorem) Let ΦX
0,t be the flow generated by the time-periodic differen-

tial equation (2.23). If the monodromy map has a logarithm, then the flow ΦX
0,t can be represented as a

composition of flows ΦX
0,t = P (t) ◦ exp(Zt), where P is T -periodic, and Z is an autonomous vector field.

proof
The proof exactly follows the proof of the linear Floquet theorem [51]. It is assumed that the T -periodic
vector field in (2.23) determines a flow, therefore the time shifted version, τ = t+T , does so also. The flow
of the time-shifted version is the solution to the differential equation,

dx

dτ
= X(x, τ).

The flows ΦX
0,t and ΦX

0,τ differ by an invertible mapping, Ψ,

ΦX
0,τ = ΦX

0,t+T = ΦX
0,t ◦ Ψ.

Assume, for now, that there exists an autonomous flow denoted by ΦZ
0,t equaling Ψ at time T . Consider,

P (t) ≡ ΦX
0,t ◦

(
ΦZ

0,t

)−1
. (2.27)

This defined flow, P (t), is T -periodic.

P (t+ T ) = ΦX
0,t+T ◦

(
ΦZ

0,t+T

)−1
= ΦX

0,t ◦ Ψ ◦
(
ΦZ

0,t ◦ ΦZ
0,T

)−1

= ΦX
0,t ◦ Ψ ◦

(
ΦZ

0,T

)−1 ◦
(
ΦZ

0,t

)−1
= ΦX

0,t ◦
(
ΦZ

0,t

)−1

= P (t).
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The T -periodicity of the original vector field X ensures that

ΦX
0,t+T = ΦX

0,t ◦ ΦX
0,T ,

implying that
ΦZ

0,T = Ψ ≡ ΦX
0,T , (2.28)

i.e., Ψ is the monodromy map of the flow. If we rewrite the respective flows in the chronological calculus
formalism, then

exp (ZT ) = −→exp

(∫ T

0
Xτ dτ

)
.

Inverting via the logarithm,

Z =
1

T
ln−→exp

(∫ T

0
X(x, θ) dθ

)
. (2.29)

This is precisely the average of the T -periodic vector field; a connection that will be made more explicit in
the sequels. Conditions under which this logarithm exists are given in [2]. For now, the theorem statement
assumes the existence of the logarithm, and by extension the autonomous flow assumed in the proof of the
theorem.5

�

The mapping P (t) is called the Floquet mapping, and the vector field Z is called the autonomous averaged
vector field corresponding to X . When the vector field X is known through context, then Z will simply be
called the autonomous averaged vector field.

The monodromy map, Ψ, plays an important role in nonlinear Floquet theory, just as it did in linear
Floquet theory. The proposition below relates the stability of the monodromy map to the stability of the
original system.

Theorem 9 If the monodromy map, Ψ of the system (2.23) has a fixed point, then the actual flow, ΦX
0,t, has

a periodic orbit whose stability is determined by the stability of the monodromy map.

proof
Suppose that the monodromy map has a fixed point denoted x∗, then the actual flow periodically returns to
this fixed point, as can be seen by the following equalities:

ΦX
0,0(x

∗) = (P (0) ◦ exp(Z 0)) (x∗) = x∗, and

ΦX
0,T (x∗) = (P (T ) ◦ exp(Z T )) (x∗) = (P (0) ◦ Ψ) (x∗) = x∗,

implying that x∗ lies on a periodic solution to the flow, ΦX
0,t, of the system (2.23). The orbit through x∗ is

the orbit of the theorem statement. The monodromy map is the Poincaré map of (2.23), evaluated on the
orbit through x∗ [162].
�

If the monodromy map is asymptotically (exponentially) stable, then the correspoding orbit is asymptotically
(exponentially) stable.

Corollary 2 If the flow, ΦX
0,t, of system (2.23) has a fixed point x∗, as does the monodromy map, Ψ, then

stability of the fixed point under the flow ΦX
0,t can be determined from the stability of the monodromy map.

In particular an asymptotically (exponentially) stable fixed point for the monodromy map implies an asymp-
totically (exponentially) stable fixed point for the actual system (2.23).

5In Section 2.2 we restricted the vector fields to be smooth. Smoothness implies existence of the logarithm for finite time.
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proof
To see that stability of the monodromy map implies stability of the actual flow, it will be necessary to appeal
to notions of D-stability and C-stability in per Pars [131]. C-stability is the traditional notion of stability; the
“C” stands for continuous time. The “D” in D-stability refers to discrete time and involves taking discrete
samples of the system response at fixed intervals. Pars shows that the two notions are equivalent when
stability of a fixed point is sought. If the monodromy map is stable, then that implies D-stability for the
actual system. Since D-stability and C-stability are equivalent under the conditions of interest, the system is
stable. The same holds for D-instability.
�

Explicitly calculating the monodromy map may be problematic if not impossible. Equivalent to stability of
the monodromy map is stability of the autonomous vector field Z whose flow gives the monodromy map.

Corollary 3 [144] The stability properties of the logarithm of the monodromy map may be used to infer the
stability properties of the monodromy map itself.

Comment. When applied to the simplified case of linear stability analysis, the above conclusions lead
to the following well known fact for Floquet theory: calculation of the Floquet multipliers is equivalent to
calculation of the Floquet exponents. In the nonlinear theory, the monodromy map is a nonlinear transfor-
mation of state, therefore it’s a bit more complicated to determine such a property. In this case, the logarithm
provides a useful means to analyze stability.

Non-uniqueness of the Monodromy Map. Given two fundamental matrix solutions, ΦX1

0,t and ΦX2

0,t , to
(2.24) there must exist a transformation of state, Θ, fromX1 toX2, i.e.,X2 = Θ∗X2. Given the monodromy
matrix forX1, called Ψ1, the monodromy matrix forX2 is Ψ2 = Θ−1Ψ1Θ. As in the linear case the freedom
occurs because of the ability to shift time by T .

An additional freedom may occur because of the dependence of the mondramy map calculation on initial
conditions. Although the monodromy map was defined to be Ψ = ΦX

0,T , any choice of initial time may be

used, Ψ̃ = ΦX
t0,t0+T , so long as there is flow for one period of time. The two monodromy maps will differ

by a transformation of state Θ, i.e., Ψ = Θ−1Ψ̃Θ, corresponding to flow by the difference in initial times.
It is not known a priori whether or not a given initial condition will provide the best calculation of

the monodromy map or its logarithm, therefore one should not expect for the evolution of the autonomous
vector field, Z , to generically result in the best average. It may be possible for the time-periodic mapping,
P , to contain a bias that leads to a better representation of the average. Suppose that

P (t) = P̃ (t)P0, (2.30)

with P0 a time-independent transformation. It is possible to recover a different averaged vector field from
this knowledge.

Theorem 10 Suppose the the Floquet mapping has a time-independent bias, i.e., Equation (2.30) holds.
Then the new averaged vector field is

Z̃ = (P0)∗ Z.

proof
The proof is rather straightforward and is basically a change of coordinates. The autonomous flow is

z(t) = exp(Zt)x(0)
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and the actual flow is
x(t) = P (t, z(t)).

However, with the bias mapping, we obtain

x(t) = P̃ (t) ◦ P0(z(t)).

Define the new variable, z̃(t),
z̃(t) = P0(z(t)).

The evolution of z̃(t) obeys the differential equation,

˙̃z = TP0

(
Z(P−1

0 (z))
)

= (P0)∗ Y (z), z̃0 = P0(x0)

and the solution evolves according to

x(t) = P̃ (t) ◦ exp(Z̃t) ◦ P0(x0).

�

The role played by P0 is equivalent to Θ in the discussion of the non-uniqueness of the monodromy map.
The flexibility inherent to the decomposition P and exp(Zt) is well known in classical nth-order averaging
theory [42]. The opposite may also be desirable: to extract unecessary coordinate transformations from the
averaged vector field, the reverse procedure may be performed. This is important when one would like to
utilize the stability theorems of Section 2.3, because the bias might prevent the fixed point of the autonomous
vector field from corresponding to the fixed point of the actual vector field.

2.3.3 Application to Averaging Theory

Floquet theory is an important tool for averaging theory. The vector field Z from Theorem 8 is the exact
average of the time-periodic vector field from Equation (2.23). Since the actual flow oscillates around the
trajectory determined by the autonomous vector field Z , the monodromy map gives the turnpike behavior
of the system [145]. To check stability, one must calculate the monodromy map or the full series expansion
of Z . If Z cannot be found in closed form, then truncations of the series expansions for the vector field Z
can be thought of as partial averages of the system on the order of the truncation [144]. In order to compute
truncations of the infinite series, it is essential for the relevant expression to be in the standard form for the
perturbation methods of Section 2.2.3 to be applied. The standard form, Equation (2.21), is rewritten below,

ẋ = εX(x, t), X(·, t+ T ) = X(·, t). (2.31)

Introduction of the ε parameter allows for important proximity results and minimizes the error when trun-
cating a series expansion, c.f. Section 2.2.3. The averaged vector field corresponding to (2.31) is the
autonomous vector field,

Z =
1

T
ln−→exp

(∫ T

0
εXτ dτ

)
.

Recall that the integrand of the mth variation of the identity flow, v(m)(·), is given by the sum of Lie brackets,
c.f. Equation (2.18). The arguments are first-order homogeneous so that the parameter ε may be factored.
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Therefore, Z , has a power series expansion in ε,

Z ≡
∞∑

α=1

εαΛ(α). (2.32)

Definition 5 If the function F can be given by a power series expansion in ε, then Truncm (F) is a trunca-
tion of the power series, where the (m+ 1) and higher terms are removed.

Thus,

Truncm (Z) =
m∑

α=1

εαΛ(α).

Definition 6 A truncated power series expansion in ε is considered to be a stabilized expansion with respect
to property P if the inclusion of additional terms to the truncation does not affect the given property of
the series expansion, i.e., if property P holds for all Truncm+k (F), k > 0, when property P holds for
Truncm (F).

In this treatise, the desired property is linear stability for vector fields.

Definition 7 [144] A stabilized truncated series expansion with respect to linear stability for the vector field
(2.32) is a truncated vector field that has the same linear stability properties as any higher-order truncation
of the vector field, and also the full series expansion of the vector field.

Definitions 5-7 imply that when a series is stabilized with respect to linear stability for a given truncation,
Truncm (·), the eigenvalues will not be significantly affected by incorporating additional terms of the series
to the truncation. At this stabilized truncation, linear stability can be computed and used to determine
the linear stability of the original system as per the previous propositions. See [144, 145] for particular
examples involving matrix ODEs. This theorem is a generalization of known problems in classical higher-
order averaging theory; see [161] and references therein, and also [111].

If a truncation has not yet stabilized, it may still be capable of approximating the actual flow. The
following theorem determines the valid interval of approximation. It is reminiscent of classical averaging
theorems, only it holds for arbitrary truncations.

Theorem 11 The mth-order truncation of the logarithm of the monodromy map gives an (m + 1)th-order
approximation of the flow for finite time, i.e.,

exp(Zt) = exp(Truncm (Z) t) +O
(
εm+1

)

for time o (1).

proof
The difference in the flows could be understood by decomposing the total logarithm into a truncation and a
truncated remainder,

Z = Zm + Z̃, where Zm = Truncm (Z) ,

and using the variation of constants formula on the flow,

ΦZ
0,t = ΦY

0,t ◦ ΦZm

0,t ,

where
Y =

(
ΦZm

−t,0

)∗
Z̃.
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Thus the flow, ΦY
0,t, acts as a perturbation to the final point of the flow of the truncated vector field. The size

of this perturbation determines how far the flow of the truncated vector field is from the actual flow used
to find the monodromy map. Since the pull-back is a linear operator, the vector field Y will scale with ε
according to its contribution in Z̃ . By definition, Z̃ has a factor of ε(m+1) that may be factored. Therefore,

Y = ε(m+1)
(
ΦZm

−t,0

)∗
Ẑ ≡ ε(m+1)Ŷ ,

where
Z̃ ≡ ε(m+1)Ẑ.

At this point, invoke Proposition 4 with m = 0.

−→exp

(∫ t

0
Y dτ

)
= Id +O

(∫ t

0
||Yτ ||s dτ

)
= Id +O

(
εm+1

∫ t

0

∣∣∣
∣∣∣Ŷτ

∣∣∣
∣∣∣
s

dτ

)

By taking the maximum of Ŷ over space and time, one can arrive at,

−→exp

(∫ t

0
Y dτ

)
= Id +O

(
εm+1tm+2

)
.

The rest follows on the timescale 1.
�

Note that the order of time may be increased at the cost of orders of approximation. For example, choosing
time on the order of O

(
ε−1/2

)
moves the order of approximation to O

(
ε(m+1)/(2m+4)

)
. If the truncation is

linearly stable, and is a stabilized truncation with respect to linear stability, then Theorem 2 can be used to
extend the timescale of the approximation.

Theorem 12 [161] Suppose that the mth-order truncation of the logarithm of the monodromy map is stabi-
lized with respect to linear stability. Then the truncation is (m + 1)th-order close over the time domain of
definition, i.e.,

exp(Zt) = exp(Truncm (Z) t) +O
(
εm+1

)

for t ∈ [0, tf ), where tf is the maximal time for which the flow is defined.

Thus it has been shown that in lieu of the full logarithm series expansion, it may be possible to utilize
truncations of the expansion. The truncations calculated as per Section 2.2, c.f. Equation (2.19), consist of
the variations from Equation (2.18). The variations up to order four are given by

Λ(1 ) = X,

Λ(2 ) =
1

2

[∫ t

0
Xτ dτ ,Xt

]
,

Λ(3 ) =
1

2
T
[
Λ(1 ),Λ(2 )

]
+

1

3

[∫ τ

0
Xτ1 dτ1 ,

[∫ τ

0
Xτ1 dτ1 , Xτ

]]
, and (2.33)

Λ(4 ) = − 1

12

∫ τ

0

[∫ τ1

0

[∫ τ2

0
Xτ3 dτ3 , Xτ2

]
dτ2 , [Xτ1 , Xτ ]

]
dτ1

− 1

12

[∫ τ

0

[∫ τ1

0

[∫ τ2

0
Xτ3 dτ3 , Xτ2

]
dτ2 , xτ1

]
dτ1 , Xτ

]

− 1

12

∫ τ

0

[∫ τ1

0
Xτ2 dτ2 ,

[[∫ τ1

0
Xτ2 dτ2 , Xτ1

]
, Xτ

]]
dτ1 .
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2.3.4 Truncations of the Floquet Mapping

It was shown in the previous subsection how to obtain truncations of the autonomous Floquet flow for
approximation of the infinite series expansion. Here it is likewise shown that one may calculate truncations
of the time-periodic mapping P (t). Recall that P (t) is given by

P (t) ≡ ΦX
0,t ◦ exp (−Zt) .

Theorem 13 An mth-order truncation of the time-periodic Floquet mapping is of order (m + 1)-close to
the time-periodic Floquet mapping on the timescale o (1).

P (t) = Truncm (P (t)) +O
(
εm+1

)
.

proof
The proof is similar that of Theorem 11. We show the difference between the two flows is of the order
O
(
εm+1

)
. The two flows whose composition results in P (t), c.f. Equation (2.27), can be written as power

series expansions in ε. Hence, consider the two flows to consist of a truncation and a truncated remainder,

ΦX
0,t = Φm + Φ̃,

and
exp (−Zt) = Ψm + Ψ̃,

where
Φm = Truncm

(
ΦX

0,t

)
and Ψm = Truncm (exp (−Zt)) .

Then,
ΦX

0,t ◦ exp (−Zt) =
(
Φm + Φ̃

)
◦
(
Ψm + Ψ̃

)
.

Expanding,
ΦX

0,t ◦ exp (−Zt) = Truncm (Φm ◦ Ψm) + Θ̃,

where Truncm (Φm ◦ Ψm) is the truncation of the Floquet mapping and,

Θ̃ = (Φm ◦ Ψm − Truncm (Φm ◦ Ψm)) + Φ̃ ◦ Ψm + Φm ◦ Ψ̃ + Φ̃ ◦ Ψ̃,

is the truncated remainder of the Floquet mapping. The quantity εm+1 can be factored from Θ̃,

Θ̃ ≡ εm+1Θ̂,

implying that,

∣∣∣∣ΦX
0,t ◦ exp (−Zt) − Truncm (Φm ◦ Ψm)

∣∣∣∣
s,M

=
∣∣∣
∣∣∣Θ̃
∣∣∣
∣∣∣
s,M

= εm+1
∣∣∣
∣∣∣Θ̂
∣∣∣
∣∣∣
s,M

.

The composed flows that result in P (t) exist and are finite on the timescale 1, therefore the truncated
remainder of P (t) exists and is finite on the timescale 1.
�

So far, we have the following method of averaging for a time-periodic vector field,

x(t) = Truncm−1 (P (t)) (z(t)) +O (εm) , and (2.34a)

ż = Truncm (Z) , (2.34b)
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where Z is the infinite series expansion for the autonomous vector field from the nonlinear Floquet theorem
(Theorem 8). It is not known a priori what properties the truncation of P (t) will have, however one essential
ingredient is time-periodicity. Therefore a realistic constraint to add to the truncation is time-periodicity,

Truncm (P (t)) = Truncm (P (t+ T )) .

The removal of the higher-order terms may result in an aperiodic truncated Floquet mapping. If Truncm (P (t))
is not periodic, but Truncm (P (0)) = Truncm (P (T )), then it is possible to make Truncm (P (t)) periodic.
Take the truncated Floquet mapping as defined on t ∈ [0, T ), then extend it periodically for all time by
defining Truncm (P (τ + kT )) ≡ Truncm (P (τ)), where τ ∈ [0, T ) and k ∈ Z. When the domain of defi-
nition for Truncm (P ) is adjusted to be periodic, it is called the amended truncation of the Floquet mapping
or, when the context is clear, the amended truncation.

Corollary 4 If the (amended) truncation Truncm (P (t)) is periodic with period T , and the period is on the
timescale 1, then the (amended) truncation is order ε(m+1 )-close to P (t) for all time.6

proof
From Theorem 13, the flow is order ε(m+1 )-close on the timescale 1. If the period lies within the timescale
1, then the periodicity of both P (t) and the (amended) truncation Truncm (P (t)) implies that the two map-
pings will return to the same values on a periodic basis. If P (t) and the (amended) truncation Truncm (P (t))
do not diverge over one period, the will not diverge over any number of periods.
�

Improved m
th-order averaging. Ellison et al. [42] discuss what they term to be improved mth-order

averaging. Essentially, the improved average comes from the observation that the truncation of the Floquet
mapping, P (t), is not of the same order of approximation as the truncation of the autonomous vector field,
Z . As compared to Equation (2.34), the improved average incorporates an additional order of expansion in
the Floquet mapping,

x(t) = Truncm (P (t)) (z(t)) +O
(
εm+1

)
(2.35a)

ż = Truncm (Z) . (2.35b)

The quasi-periodic and aperiodic cases. The papers by Perko and Sáenz [132, 143] have shown that the
KBM method of averaging may be used for quasi-periodic and aperiodic systems. The Floquet decomposi-
tion in Theorem 8 is still applicable for quasi-periodic and aperiodic systems, however the periodicity of the
Floquet mapping, P (t), no longer holds. The method for finding the autonomous vector field, Z , does not
depend on the time-periodicity of the vector fieldX from (2.23). This fact was already proven by Agravchev
and Gamkrelidze [2], and is simply the logarithm function

Z =
1

T
ln−→exp

(∫ T

0
Xτ dτ

)

from equation (2.29). The choice of T is restricted to be within the interval of definition for the flow ΦX
0,t.

The ability of the generalized averaging theory to hold for the quasi-periodic and aperiodic cases demon-
strates why the averaged expansions have such conservative proximity estimates. Classical averaging also
begins with derivations of approximate autonomous vector fields that do not require time-periodicity [161].

6The corollary can be modified to get other orders of time at the sacrifice of orders of proximity.
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The introduction of time-periodicity is then shown to improve the order of approximation. The same im-
provement occurs for the generalized averaging theory proven here, however it will not be proven. In
the examples of Section 2.6, it can be seen that time-periodicity will improve the order of approximation,
whereas aperiodicity will result in the conservative estimates of Theorems 11 and 13.

What is often emphasized in the literature is that averaging theory is a perturbation method that includes
the computation of an approximate reconstruction function [42]. This function is the Floquet mapping,
and maps the flow of the approximated autonomous system back to the flow of the original system. The
approximate autonomous vector field, together with the Floquet mapping, will provide a good approximation
to the actual flow for some finite order of time. Ellison et al. [42] argue that averaging is a more powerful
perturbation method, compared to other perturbation methods, precisely because it allows for approximate
reconstruction of the actual flow using the Floquet mapping P (t).

2.4 A General Averaging Theory

This section demonstrates how the chronological calculus, nonlinear Floquet theory, and truncations of
series expansions combine to form a generalized averaging theory. Nonlinear Floquet theory successfully
decomposes the flow of a time-periodic system into the composition of a time-periodic mapping and the flow
of an autonomous vector field. Classical higher-order averaging theory suggests the form of the autonomous
vector field and the compensatory periodic mapping. Hence, the nonlinear Floquet theorem indicates that the
compensatory mapping of classical averaging theory is the Floquet mapping, P (t). Here, we demonstrate
how series expansions and the chronological calculus are used to construct the compensatory (or Floquet)
mapping and the autonomous averaged vector field.

First-order averaging. As a simple application, let’s revisit first-order averaging. Unlike second- and
higher-order averaging, first-order averaging does not involve a compensatory mapping. This is because

Trunc0 (P (t)) = Trunc0

(
ΦX

0,t ◦ exp (−Zt)
)

= Id. (2.36)

Since the compensatory mapping is the identity, the T -periodicity constraint is trivially satisfied. This leaves
the autonomous vector field,

Z =
1

T

∫ T

0
εXτ dτ = εX, (2.37)

as the only important element in performing first-order averaging. Floquet theory can be applied to obtain
the standard facts concerning stability of the average vector field flow and its relation to the actual flow.

Second-order averaging. The benefits of the chronological calculus become more apparent when we
reconstruct the second-order averaging theorem of Sanders and Verhulst, c.f. Theorem 5. Truncating P (t)
results in

Trunc1 (P (t)) = Id + ε

∫ t

0

(
Xτ −X

)
dτ +O

(
ε2
)
. (2.38)

In other words,

x(t) = z(t) + ε

∫ t

0

(
X(z(t), τ) −X(z(t))

)
dτ +O

(
ε2
)
, (2.39)

where z(t) is the flow of the autonomous vector field,

Z = εX +
1

2
ε2
[∫ t

0
Xτ dτ ,Xt

]
, (2.40)
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with the initial condition z(0) = x0. The beauty of the series expansions approach lies in the fact that no
new theorems need to be derived to obtain and analyze the consquences of the second-order average.

Equation (2.39) is close to what Sanders and Verhulst obtain for the compensating flow. Sanders and
Verhulst also require the integral term in the flow to have a vanishing average [161]. Bogoliubov and
Mitropolsky [17] obtain the same zero average assertion. By introducing an integration constant to ensure
a zero average for the term

∫ t
0

(
X(y(t), τ) −X(y(t))

)
dτ , the integration constant factors out the effect of

varying the initial time t0 for which the monodromy map in computed, c.f. Section 2.3.2. For systems that
are asymptotically stable, the transient dynamics related to the initial conditions of the full system (2.21) are
neglected. Examples in Sections 3.3 and 5.3 address this issue, and also relate it to Theorem 10.

Remark. There are significant differences between the generalized averaging theory and classical averag-
ing theory in spite of their similarity. In order to utilize the powerful results of the chronological calculus,
the vector fields must be smooth or analytic. The pertubation approach of Sanders and Verhulst requires the
existence of a first derivative and Lipschitz continuity up to the first derivative affording it a level of gener-
ality that does not hold for the former. The same goes for the improved nth-order averages found in Ellison
et al. [42]. Truncated expansions may be calculated without regard to the requirements of the chronological
calculus. By appealing to the classical averaging theorems it is possible to determine the minimal require-
ments for the calculated average to hold. Regardless of the requirements, it is still posible to carry out the
formal series expansions, whose truncations may provide asymptotic understanding of the actual flow [145].

2.4.1 Higher-order Averaging

Third-order averaging. The truncated Floquet mapping for third-order averaging is

Trunc2 (P (t)) =Id + ε

∫ t

0

(
Xτ −X

)
dτ +

1

2
ε2
∫ t

0

([∫ τ

0
Xs ds ,Xτ

]
−
[∫ t

0
Xs ds ,Xt

])
dτ

+
1

2
ε2
∫ t

0
Xτ dτ ◦

∫ t

0
Xτ dτ − ε2

∫ t

0
Xτ dτ ◦X t+

1

2
ε2X ◦X t2

(2.41)

This truncation satisfies P (0) = P (T ), but may not periodic for t > T . If this is so, then it may be amended
according to the discussion in Section 2.3.4. The autonomous averaged vector field is

Z = εX +
1

2
ε2
[∫ t

0
Xτ dτ ,Xt

]
+

1

4
Tε3

[
X,

[∫ t

0
Xτ dτ ,Xt

]]
+

1

3
ε3
[∫ τ

0
Xτ1 dτ1 ,

[∫ τ

0
Xτ1 dτ1 , Xτ

]]

(2.42)

Fourth-order averaging. The fourth-order averaging results begin to get complicated due to the rate of
growth of the averaging terms with each higher order. Averaging calculations for higher orders increasingly
become computationally expensive. This fourth level is the last averaging order that will be computed here.
In the sequel is given the general algorithm followed in case fifth- or higher-order averaging is required.

The Floquet mapping for fourth-order averaging can be found in Table 2.1, and the autonomous averaged
vector field is in Table 2.2. The truncation is easily amended to be T -periodic.

2.4.2 A General Averaging Algorithm

Although calculating higher-order expansions for averaging is a difficult task, there is a very simple algo-
rithm for doing so. Based on the results from the previous sections, this algorithm will obtain a method
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Trunc3 (P (t)) =Id + ε

∫ t

0

(
Xτ −X

)
dτ

+
1

2
ε2
∫ t

0

([∫ τ

0
Xs ds ,Xτ

]
−
[∫ σ

0
Xs ds ,Xσ

])
dτ

+
1

4
ε3

([∫ t

0
Xτ dτ ,

∫ t

0

[∫ τ

0
Xs ds ,Xτ

]
dτ

]
− T

[
X,

[∫ t

0
Xτ dτ ,Xt

]]
t

)

+
1

3
ε3
∫ t

0

([∫ τ

0
Xs ds ,

[∫ τ

0
Xs ds ,Xτ

]]
−
[∫ t

0
Xτ dτ ,

[∫ t

0
Xτ dτ ,Xt

]])
dτ

+
1

2
ε2
∫ t

0
Xτ dτ ◦

∫ t

0
Xτ dτ − ε2

∫ t

0
Xτ dτ ◦X t+

1

2
ε2X ◦X t2

+
1

4
ε3
∫ t

0
Xτ dτ ◦

∫ t

0

[∫ τ

0
Xs ds ,Xτ

]
dτ − 1

2
ε2
∫ t

0
Xτ dτ ◦

[∫ t

0
Xτ dτ ,Xt

]
t

− 1

2
ε3
∫ t

0

[∫ τ

0
Xs ds ,Xτ

]
dτ ◦X t+

1

4
ε3X ◦

[∫ t

0
Xτ dτ ,Xt

]
t2

+
1

4
ε3
∫ t

0

[∫ τ

0
Xs ds ,Xτ

]
dτ ◦

∫ t

0
Xτ dτ +

1

4
ε3
[∫ t

0
Xτ dτ ,Xt

]
◦X t2

+
1

6
ε3
(∫ t

0
Xτ dτ ◦

∫ t

0
Xτ dτ ◦

∫ t

0
Xτ dτ ,−X ◦X ◦X t3

)

Table 2.1: Truncated Floquet mapping, Trunc3 (P (t)), for fourth-order average.

of averaging that contains two dimensions of approximation. The first is in the truncations of the loga-
rithm vector field, Truncm (Z), which captures up to mth-order the dynamics of the system. The second is
the truncations of the compensation map, Trunc(m−1) (P (t)), which will give mth-order proximity of the
composed system to the actual system.

The two components of the generalized averaging theory lead to a very important distinction that can
sometimes be confused when performing higher-order averages. For example, ignoring the Floqut mapping
and using only the autonomous flow results in averaged equations of motion that are capable of capturing
the mth-order dynamics, but will only be good to 1st-order proximity. The distinction between roles of the
mapping P (t) and the autonomous vector field was also made by Bogoliubov and Mitropolsky [17].

The averaging process described by Bogoliubov and Mitropolsky utilizes the mth-order average to find
the (m + 1)th-order average. This is done by viewing the solution to the (m + 1)th-order average as coming
from a perturbed version of the mth order average. The technique is akin to a Picard iteration on the averages.
The series expansions given in this dissertation and elsewhere are an attempt to extract structure from the
Picard iterations (a.k.a Volterra series expansions). An important similarity is that the higher-order averages
build upon the lower-order averages in a systematic way.

The averaging method provided here is capable of replicating classical averaging results and appears
to coincide with known methods for obtaining higher-order averages. The general strategy implied by the
averaging theory derived herein can be found in Table 2.3.
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Z =εX +
1

2
ε2
[∫ t

0
Xτ dτ ,Xt

]
+

1

4
Tε3

[
X,

[∫ t

0
Xτ dτ ,Xt

]]

+
1

3
ε3
[∫ τ

0
Xτ1 dτ1 ,

[∫ τ

0
Xτ1 dτ1 , Xτ

]]

+
1

3
ε3
[∫ τ

0
Xτ1 dτ1 ,

[∫ τ

0
Xτ1 dτ1 , Xτ

]]
+

1

3
ε3 [a1, a21]

+
1

3
ε3

[
a1,

[∫ τ

0
Xτ1 dτ1 , Xτ

]]
+

1

3
ε3

[∫ τ

0
Xτ1 dτ1 , a21

]

− 1

12
ε4
∫ τ

0

[∫ τ1

0

[∫ τ2

0
Xτ3 dτ3 , Xτ2

]
dτ2 , [Xτ1 , Xτ ]

]
dτ1

− 1

12
ε4
[∫ τ

0

[∫ τ1

0

[∫ τ2

0
Xτ3 dτ3 , Xτ2

]
dτ2 , Xτ1

]
dτ1 , Xτ

]

− 1

12
ε4
∫ τ

0

[∫ τ1

0
Xτ2 dτ2 ,

[[∫ τ1

0
Xτ2 dτ2 , Xτ1

]
, Xτ

]]
dτ1

Table 2.2: Truncated averaged vector field, Trunc4 (Z), for fourth-order average.

1. Calculate the logarithm vector field, Truncm (Z).

2. Calculate the truncated version of exp (−Zt).

3. Calculate the truncated version of −→exp
(∫ t

0 Xτ dτ
)

.

4. Use the truncations for Trunc(m−1) (P (t)).

Table 2.3: Algorithm for Computing the Average.

2.5 Perturbed Systems with Periodic Properties

In order to apply Floquet theory, time-periodicity of X in (2.23) is required. Some nonlinear systems,
however, exhibit time-periodic behavior without having time-periodic vector fields. A transformation of
state may rectify this problem and place the system into a form suitable to averaging. For other systems, the
infinite series required to calculate both the autonomous vector field Z and the Floquet mapping P (t) in the
statement of Theorem 8 may be intractable. In order obtain truncations of the infinite series expansions, the
form of X must be compatible with the standard form for application of perturbation methods, see Equation
(2.21). Many systems are not a priori in this form and require transformation to the standard form for
averaging. This section investigates the commonly utilized technique known as the variation of constants,
or the variation of parameters, first discussed in Section 2.2.3, for two special cases of dynamical systems.
It is a transformation of state that may result in a dynamical system with periodic behavior and in the form
required by perturbation methods.
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2.5.1 The Variation of Constants Transformation

Consider the case of a dynamical system described by a nominal vector field, X0, and an additional vector
field X̃ ,

ẋ = X0 + X̃ (2.43)

where X̃ is independent of time, andX0 has no such restriction. The variation of constants provides a way to
focus on the vector field, X̃ , and begins with the transformation of state, x(t) = ΦX0

0,t (y(t)). The associated
evolution equations for the new state y(t) are,

ẏ = Y (y, t) ≡
(
ΦX0

0,t

)∗
X̃, y(0) = x0. (2.44)

Very often, what makes this technique appropriate is that the evolution of X0 is “nice,” in that it is time-
periodic, or results in Y being time-periodic.

Assumption 1 Assume that one of the following two possibilities holds,

1. The evolution of the vector field X0(x, t) is periodic with period T , i.e., ΦX0

0,t = ΦX0

0,t+T , or

2. The pull-back system, Y , given in equation (2.44) is periodic with period T .

When ΦX0

0,t is computable in closed-form and the pull-back computation in Equation (2.44) can also be found
in closed-form, then analysis may proceed directly. If the pull-back cannot be found in closed form, a series
expansion may be used to approximate the vector field Y in Equation (2.44), [2],

Y = X̃ +

∞∑

k=1

∫ τ

τ0

∫ τ1

t0

· · ·
∫ τk−1

t0

adX0(τk) · · · adX0(τ1)X̃ dτk · · · dτ2 dτ 1. (2.45)

If the properties of X0 and X̃ are such that the series expansions for the pull-back vanish for some n > N ,
then the series is finite in extent and averaging can be applied to this finite summation. A nilpotent system
satisfies this criterion. A finite summation may result even if the system is not nilpotent. If the series is not
finite, then it must be truncated to some length, resulting in a loss of accuracy. By choosing to truncate at the
same order as the order of averaging, this loss is minimized. Proposition 3.2 of [2] can be used to determine
the error of this truncation.

As Assumption 1 implies that Y is time-periodic, Theorem 8 may be applied to decompose the flow of
Y into the composition of two parts. When combined with the variation of constants transformation, this
decomposition yields a Floquet decomposition of the perturbed system (2.43),

ΦX
t = ΦX0

0,t ◦ P (t) ◦ exp(Zt),

where Z is the autonomous averaged vector field corresponding to the time-periodic vector field Y . The
composition

P̃ = ΦX0

0,t ◦ P (2.46)

is periodic if possibility 1 of Assumption 1 holds. Therefore, the flow of X can be decomposed into an
autonomous vector field flow composed with a T -periodic mapping. The Floquet and averaging analysis of
Section 2.3 may then be applied.

If, instead, possibility 2 of Assumption 1 holds, then although the mapping, P (t) is periodic, the trans-
formation of state from y to x, ΦX0

0,t , may not be time-periodic. Consequently, the Floquet mapping P̃ (t) is
not periodic and the Floquet analysis of Section 2.3 does not hold. Nevertheless, the decomposition may be
used to emphasize important dynamical system behavior. Examples will be given in Section 2.6.
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A Comment on the Transformation. Since the variation of constants method involves solving for the
flow of the unperturbed system, the averaging procedure for a system transformed using the variation of
constants method may be improved by an order of ε. In this case, to obtain the correct truncation of the
Floquet mapping, the improved mth-order Floquet mapping may be needed, c.f. Equation (2.34a) versus
Equation (2.35a).

2.5.2 Perturbed Systems

The following two classes of perturbed systems, to be studied as examples in Section 2.6, can be analyzed
via the variation of constants transformation.

1) Perturbed Conservative Systems. Consider a system where X0 is the Hamiltonian vector field of a
conservative Hamiltonian, H0, and X̃ is a perturbation to the Hamiltonian,

ẋ = XH0
+ X̃. (2.47)

Suppose that the flow of the unperturbed system is periodic. What conclusion can be drawn about the system
(2.47) and its stability under perturbation? Stability can be studied via Equation (2.44). Using the Floquet
decomposition,

ΦY
0,t = P (t) ◦ exp(Zt),

stability of the flow of (2.47), can be determined from the stability properties of the flow of Z . This can be
done in one of two ways, using the Floquet multipliers, or the Floquet exponents.

2) Vibrational control. Second order systems under high-frequency high-amplitude forcing can be stud-
ied with these methods. The general form for these systems is

q̈ = X +
1

ε
F (q,

t

ε
), (2.48)

where F is T -periodic. Moving to a first-order representation, x = (q, q̇), and transforming time, t/ε 7→ τ ,
leads to

dx

dτ
= εX̂(x) + F̂ (x, τ), (2.49)

where

X̂ =

{
q̇

X(x)

}
, and F̂ =

{
0

F (x, τ)

}
,

and it must be emphasized that F depends only on the state configurations and not on the state velocities.
The variation of constants formula can be used to render system (2.49) into the form required by averaging
theory. The form of F ensures that the resulting flow will be time-periodic as demanded by Assumption 1;
see [23].

2.5.3 Highly Oscillatory Systems

There also exist unperturbed systems exhibiting oscillatory behavior that need to be truncated, but are not
in the form required for truncation by perturbation methods. One particular class of such systems are high-
oscillatory systems,

ẋ = X(x, t/ε), (2.50)
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where X(·, t+ T ) = X(·, t). A transformation of time, t 7→ ετ , converts the system to

dx

dτ
= εX(x, τ).

The averaging process followed by series truncation may be performed, resulting in the mth-th order Floquet
decomposition,

x(τ) = Truncm−1 (P ) (τ) +O (εm) ,

dz

dτ
= Truncm (Z) .

Transforming back to original time, the mth-th order Floquet decomposition of (2.50) becomes,

x(t) = Truncm−1 (P ) (t/ε) +O
(
εm−1

)
, (2.52a)

ẏ =
1

ε
Truncm (Y ) . (2.52b)

Although it is not explicitly noted, the series expansions for Y and P will contain increasing orders of ε.
Because an order of ε is lost in the expansions when transforming back to the original time, t, it may be
best to use improved mth-th order averaging to recover the lost order in the Floquet mapping, c.f. Equation
(2.35a). The work of Sussmann and Liu [155, 93] is recovered in this case, however they do not discuss
the existence of the Floquet mapping, P (t/ε). Their work extends Kurzweil and Jarník [74, 75], where
averaging is a limit process by which the autonomous differential equation (2.52b) is obtained from (2.50)
as ε→ 0.

2.6 Examples

This section contains several examples that are used to highlight different components of the generalized
averaging theory. The first example in Section 2.6.1 is an averaged expansion which is finite in extent,
meaning that the averaged expansion and Floquet mapping are exact. The Floquet decomposition can be
found in closed form. In Section 2.6.2 a charged particle channeling through a crystal lattice is studied.
The example demonstrates that the generalized averaging theory still applies to systems that are not strictly
time-periodic. Lastly, Section 2.6.3 details how averaging theory may be used for nonlinear observability.
The averaging process captures the nonlinear interaction dynamics of two coupled systems and utilizes the
coupling to make estimations of state. Higher-order averaging is required to incorporate corrections to the
first-order estimates.

2.6.1 Particle in an Electromagnetic Field

This example will consist of a charged particle in R
3 constrained to move in the (x, y)-plane while subject

to a magnetic field, B, pointing in the z direction, and an electric field, E, pointing in the x direction, see
Figure 2.2. The phase space is P ∼= T ∗

R
2 with coordinates (x, y, px, py) ∈ P . This problem was examined

in Omohundro [124] within the context of symmetry reduction.
The Hamiltonian of the system is

H = H0 + εH1 =
1

2m

(
p2

x + p2
y

)
− εeEx,
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with the noncanonical Poisson bracket,

{f, g} = {f, g}0 +
eB

c

(
∂f

∂px

∂g

∂py
− ∂f

∂py

∂g

∂px

)
,

E

B

ẑ

ŷ

x̂

Figure 2.2: Charged particle in an
electromagnetic field.

where {·, ·}0 is the canonical Poisson bracket,

{f, g}0 =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.

The constants, m, e, and c are the mass of the particle, the charge of
the particle, and the speed of light, respectively. Finally, the parameter
ε ∈ [0, 1], determines how much of the electric field strength is acting
on the particle. In the unperturbed case, ε = 0, and in the case of the
full field strength, it is ε = 1. The dynamical equations of motion are,

ẋ =
px

m
ṗx =

eB

mc
py + εeE

ẏ =
py

m
ṗy = −eB

mc
px.

In the unperturbed case, the system is a charged particle in a constant
magnetic field; trajectories are circular orbits. The unperturbed system
and perturbative vector fields are,

X0 =





1
mpx
1
mpy
eB
mC py

− eB
mcpx




, and X̃ = ε





0
0
eE
0




, (2.53)

where the complete perturbed system is described by the flow of the vector field X = X0 + εX̃ . Using the
variation of constants formula, the system evolves as

ΦX
0,t = ΦX0

0,t ◦ ΦY
0,t,

where
Y = ε

(
ΦX0

0,t

)∗
X̃,

and Assumption 1 (possibility 1) is satisfied. Via Floquet theory, the flow of Y is decomposed into two
parts,

ΦY
0,t = P (t) ◦ ΦZ

0,t,

where Z is an autonomous vector field. In total, the flow of X is described by,

ΦXH

0,t = ΦX0

0,t ◦ P (t) ◦ ΦZ
0,t.

With (q0, p0) = (x0, y0, px,0, py,0), the unperturbed flow is

ΦX0

0,t (q0, p0) =





x0 +
px,0

mω sin(ωt) +
py,0

mω (1 − cos(ωt))
y0 − px,0

mω (1 − cos(ωt)) +
py,0

mω sin(ωt)
px,0 cos(ωt) + py,0 sin(ωt)
−px,0 sin(ωt) + py,0 cos(ωt)




,
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where ω = eB
mc . The vector field, Y , is given by

Y = εeE





− 1
mω sin(ωt)

− 1
mω (1 − cos(ωt))

cos(ωt)
sin(ωt)




,

and the average of Y is

Z = εeE





0
− 1

mω
0
0




.

An analysis of the system, shows that this is the exact average, i.e. it has not been truncated. The evolution
of Z shows that there is a net drift in the negative y direction, about which the actual system will oscillate.
Together, Y and Z can be used to find the partial Floquet mapping,

P (t) = Id + εeE





− 1
mω2 (1 − cos(ωt))

1
mω2 sin(ωt)

1
ω sin(ωt)

1
ω (1 − cos(ωt)




.

The true Floquet mapping of the system, according to Equation (2.46), is the periodic mapping

P̃ (t) = ΦX0

0,t ◦ P (t).

Thus, using the variation of constants, and Floquet theory, it is possible to obtain a closed form Floquet
decomposition of this system. The complete flow of the system is

ΦX
0,t = P̃ (t) ◦ exp(Zt) = ΦX0

0,t ◦ P (t) ◦ exp(Zt).

Explicitly composing the flows results in

ΦX
0,t(q0, p0) =





x0 + εeE
mω2 (1 − cos(ωt)) + 1

mωpx,0 sin(ωt) + 1
mωpy,0 (1 − cos(ωt))

y0 − εeE
mω

(
t− 1

ω sin(ωt)
)
− 1

mωpx,0 (1 − cos(ωt)) + 1
mωpy,0 sin(ωt)

px,,0 cos(ωt) + py,0 sin(ωt) + εeE
ω sin(ωt)

− εeE
mω (1 − cos(ωt)) − px,0 sin(ωt) + py,0 cos(ωt)




.

By finding the solution in closed form using Floquet theory, we have demonstrated that averaging may be
exact. The ε parameter is not needed to obtain the averaged vector field and Floquet mapping; there is no
restriction on the value of ε. For nilpotent systems, the infinite series collapses to a finite series, and the
exponential representation is exact if no truncation of the finite series is made. Consequently, the averaging
proces is exact. Only in the case that the average vector field requires an infinite series expansion are
truncations necessary, at which point the method of averaging becomes an approximation, and ε plays a
greater role in determining the how faithful the approximation is to the actual system.

The variation of constants transformation that was used in this example is a well-known technique in
the area of quantum physics and electrodynamics; it goes by the name of the rotating-wave approximation.
Averaging of the oscillatory dynamics due to a magnetic field has also been studied by Littlejohn [89, 90, 91]
under the name of guiding center theory. Although the resulting averages are the same, the two techniques
differ. Littlejohn utilizes a sequence of Lie transforms, based on a proof of the Darboux theorem, to obtain
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cyclic coordinates that correspond to the periodic symmetries. Averaging is then reduction of the cyclic
symmetries; see also Omohundro [124].

2.6.2 Axial Crystal Lattice Channeling

This example follows from Dumas and Ellison [39], and models a particle channeling through a planar
crystal lattice. The three-dimensional case is more involved, but does not provide any additional insight
[40]. Understanding the mechanism behind crystal channeling is relevant in particle physics, see Dumas et
al. [40] and references therein.

x

z

Figure 2.3: Planar channeling in a
crystal lattice.

The case of axial planar channeling involves evolution on the
cotangent bundle, T ∗

R
2. The coordinates of the phase space are,

(x, z, px, pz) ∈ T ∗
R

2. The vector field describing the equations of
motion for the simplified planar model is

X =





εpx

pz

−1
2ε

∂W
∂x (x, z)

−1
2ε

2 ∂W
∂z (x, z)




, (2.54)

where

W (x, z) = (A+
1

2
Bx2) + (A+

1

2
Cx2) cos(2πz).

The spatial-periodicity of the potential W arises from the spatial reg-
ularity of the crystal lattice. The vector field in Equation (2.54), as obtained from [39], has been non-
dimensionalized. The non-dimensionalization process introduces the parameter ε, which for a 1MeV proton
is approximately, ε = 0.01.

The equations of motion do not have time-periodic terms, however, the transformation method discussed
in Section 2.5.2 may be applied to (2.54). The vector field X can be decomposed into two parts,

X = X1 + εX2 =





0
pz

0
0





+ ε





pz

0

−1
2

∂W
∂x (x, z)

−1
2ε

∂W
∂z (x, z)




.

The flow corresponding to X1 is

ΦX1

0,t = Id +





0
pzt
0
0




.

The pull-back flow is found to be

Y =
(
ΦX1

0,t

)∗
εX2(q) = ε





px
1
2εt

∂W
∂z (x, z + pzt)

−1
2

∂W
∂x (x, z + pzt)

−1
2ε

∂W
∂z (x, z + pzt)





=





εpx

−πε2(A+ 1
2Cx

2)t sin(2πz + 2πpzt)
−1

2ε(B + C cos(2πz + 2πpzt))x
πε2(A+ 1

2Cx
2) sin(2πz + 2πpzt)




.

(2.55)
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The flow of X is obtained via the composition,

ΦX
0,t = ΦX1

0,t ◦ ΦY
0,t.

Due to the spatial regularity of W in the ẑ-direction, Assumption 1 (possibility 2) is almost satisfied. Al-
though the time-dependent vector field Y has components that are periodic in time, there is one component
of the vector field that also has linear growth in time. Although Y is not periodic, the vector field may still
be averaged.

After first-order averaging, the flow of the vector field Y is approximated by the vector field

Z =





εpx
1
2ε

2 cos(2πz)
pz

(A+ 1
2Cx

2)

−1
2εBx
0




. (2.56)

The averaged vector field, Z , predicts nominally stable oscillatory behavior in the (x, px) phase-space. It
also predicts a slight increase in the z-velocity, with no such increase in the z-momenta. To obtain the Flo-
quet mapping, the improved first-order truncation of P (t) is needed. According to Table 2.3, Trunc1 (P (t))
is constructed using the composed truncated flows of −Z and Y , which are

−→exp

(∫ t

0
Yτ dτ

)
≈ Id

+





εpxt
1

2pz

ε2
(
A+ 1

2Cx
2
)(
t cos(2πz + 2πpzt) − 1

2πpz

(sin(2πz + 2πpzt) − sin(2πz))
)

− 1
2εBxt− 1

4πpz

εCx sin(2πz + 2πpzt)
1

2pz

ε2
(
A+ 1

2Cx
2
)
(1− cos(2πz + 2πpzt))




,

and

exp (−Zt) ≈ Id +





−εpxt
1

2pz

(
A+ 1

2Cx
2
)
t cos(2πz)

1
2εBxt

0




.

Combined, they result in a first-order approximation to the Floquet mapping of the almost-periodic vector
field (2.55),

P (t) ≈ Id+





0
1

2pz

ε2(A+ 1
2Cx

2)
(
t cos(2πz + 2πpzt) − t cos(2πz) − 1

2πpz

(sin(2πz + 2πpzt) − sin(2πz))
)

− 1
4πpz

εCx sin(2πz + 2πpzt)

− 1
2pz

ε2(A+ 1
2Cx

2) (1 − cos(2πz + 2πpzt))





The actual Floquet mapping for (2.54) is

P̃ (t) = ΦX1

0,t ◦ P (t)

Figure 2.4 shows a simulation of the evolution of (2.54) for A = 1, B = 1, C = 1
3 . These parameters were

arbitrarily chosen, and do not necessarily reflect the true values for axial channeling. The ε parameter is
ε = 0.01, corresponding to a 1MeV proton as discused earlier. The initial condition is q0 = (10−8, 0, 0, 1).
Figure 2.5 plots the error of the evolution reconstructed from the flow of the averaged system (2.56) com-
posed with the Floquet mapping P̃ (t), as compared to the unaverged evolution of Equation (2.54).
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The error is largest for the subsystem where the time-dependent vector field Y (2.55) fails to be periodic,
e.g. (z, pz); it is O

(
ε2t
)

in the z-state and O
(
ε2
)

in the pz state. The time-periodic subsystem (x, px) is
order O

(
ε2
)

close (after normalizing by the amplitude of oscillations) for the time course of the simulation.
The solid property of some of the plots is due to oscillations. Figure 2.6 shows the drifting z velocity.
According to the averaged vector field (2.56), the slope of the drift should be about 5 ∗ 10−5, whereas in
actuality it is 1.56 ∗ 10−5, a slight over-estimate by a factor of 3.
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Figure 2.4: Axial channeling plots.
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Figure 2.5: Error between evolution of the averaged and actual systems.
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2.6.3 Observer Using Coupled Oscillators

This example is a continuous finite dimensional analog of two coupled quantum oscillators, which are
idealized as two spring-mass systems. In quantum electrodynamics jargon, the analysis that will be done for
this system is known as the rotating-wave approximation, which is obtained by first moving to the interaction
picture. The interaction picture corresponds to performing the variation of constants transformation to the
system.

Figure 2.7: Coupled oscillators.

The configuration space is the cotangent bundle, T ∗
R

2, with coor-
dinates (x1, x2, p1, p2). The system can be described using a Hamil-
tonian in canonical coordinates. The Hamiltonian contains two terms,
Λ1 and Λ2, which couple the dynamics of the two oscillators,

H(z) =
1

2m1
p2
1+

1

2m2
p2
2+

1

2
m1ω

2
1x

2
1+

1

2
m2ω

2
2x

2
2+Λ1x1x2+Λ2x

2
1x

2
2,

where m1 and m2 represent mass, and ω1 and ω2 represent the natural
frequencies of the oscillators. The Hamiltonian vector field is

XH =





1
m1
p1

1
m2
p2

−m1ω
2
1x1 − Λ1x2 − 2Λ2x1x

2
2

−m2ω
2
2x2 − Λ1x1 − 2Λ2x

2
1x2




.

The system parameters are such that ω1 >> ω2 and m1 ≤ m2, i.e., the time-scale of the dynamics for the
first state are much faster than the second state. We’d like to understand how the second state, with much
slower oscillatory evolution, is affected by the first state and, quite possibly, vice versa. Decompose the
equations of motion into primary and perturbative components,

XH = X1 +X2 =





1
m1
p1

0
−m1ω

2
1x1

0





+





0
1

m2
p2

−Λ1x2 − 2Λ2x1x
2
2

−m2ω
2
2x2 − Λ1x1 − 2Λ2x

2
1x2




,

both of which are still Hamiltonian flows. Although, there is not an ε parameter, we may still perform the
decomposition. The flow of the primary vector field, X1, is

ΦX1

0,t =





q1(0) cos(ω1t) + 1
m1ω1

p1(0) sin(ω1t)

q2(0)
p1(0) cos(ω1t) +m1ω1q1(0) sin(ω1t)

p2(0)




. (2.57)

The time-dependent vector field Y is given by

Y =
(
ΦX1

0,t

)∗
X2,

which is actually time-periodic since the flow ΦX1

0,t is time-periodic. Therefore, Assumption 1 (posibility 1)
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is satisfied. After computing the pull-back,

Y =





Λ1

m1ω1

x2 sin(ω1t) + 2Λ2

m1ω1

x2
2

(
x1 cos(ω1t) sin(ω1t) + 1

m1ω1

p1 sin2(ω1t)
)

1
m2

p2

−Λ1x2 cos(ω1t) − 2Λ2x2

(
x1 cos2(ω1)t+ 1

m1ω1

p1 cos(ω1t) sin(ω1t)
)

−m2ω
2
2x2 − Λ1

(
x1 cos(ω1t) + 1

m1ω1

p1 sin(ω1t)
)
− 2Λ2x2

(
x1 cos(ω1t) + 1

m1ω1

p1 sin(ω1t)
)2




.

Because it is assumed that the oscillations of the first state are fast, the system is a highly oscillatory system
as per Section 2.5.3. The frequency ω1 may be used in lieu of the parameter, ε. In other words, ε = 1

ω1
. The

first-order average is

Z =





Λ2

2m2
1
ω2

1

x2
2p1

1
m2
p2

−Λ2

2 x
2
2x1

−m2ω
2
2x2 − 2Λ2

m1ω2
1

(
1
2m1ω

2
1x

2
1 + 1

2m1
p2
1

)
x2




.

To first-order, the Λ1 term has no effect, whereas the Λ2 term introduces some slow oscillatory behavior into
the (x1, p1) phase space. Additionally, the natural frequency of the second oscillator, (x2, p2), is adjusted
by a value on the order of the energy of the first oscillator. By observing the frequency of the (x2, p2) phase
space oscillations, it should be possible to determine the energy of the first oscillator, (x1, p1).

Moving to the second-order averaged expansion, the effect of Λ1 may be seen. The second-order average
is

Z =





Λ2

2m2
1
ω2

1

x2
2p1 − Λ1

m1m2ω2
1

p2 − Λ2

2m1m2ω2
1

x2p2x1 − 3Λ2
2

8m3
1
ω4

1

x4
2

1
m2
p2 − Λ1

m1m2ω2
1

p1 − Λ2

2m1m2ω2
1

x1p1

−Λ2

2 x
2
2x1 + Λ2

2m1m2ω2
1

x2p2p1 − Λ1Λ2

2m1ω2
1

x3
2 −

Λ2
2

8m1ω2
1

x4
2x1

−m2ω
2
2x2 − 2Λ2

m1ω2
1

(
1
2m1ω

2
1x

2
1 + 1

2m1
p2
1 −

Λ2
1

2Λ2

)
x2 − 3Λ1Λ2

2m1ω2
1

x2
2x1

+
3Λ2

2

8m3
1
ω4

1

(1 + x2)p
2
1x

2
2 −

Λ2
2

8m1ω2
1

(1 + x2)x
2
1x

2
2





.

A non-vanishing Λ1 will shift the frequency of the second state by the amount Λ2
1/(2Λ2). When observing

the frequency of the second state, it will be necessary to correct for the frequency shift, otherwise the energy
estimate will be biased.

Figure 2.8 shows the actual and observed kinetic energies of the fast ocillator, for the parameters, m1 =
1
2 , m2 = 1

2 , ω1 = 10, ω2 = 1, Λ1 = 0.25, and Λ2 = 1. At random intervals, the first oscillator receives a
kick of energy. The energy observations are made by timing the delay between zero crossings of the second
oscillator. The error of the observer is plotted in Figure 2.9. It is of order O (ε), where ε = 1

ω1
= 1

10 , except
during the interval when an energy shift occurs. The delay is because the frequency is observed using zero
crossings of the state x2. A better technique capable of continuously observing the frequency, and more
robust to noise, would be to examine the evolution of the state x2 in the frequency domain.

Because the Floquet mapping was not calculated, there are missing parts of the dynamics which account
for much of the error in estimating the energy using the second oscillator, (x2, p2). Without the Floquet
mapping, P (t), it will not be possible to improve the error of the estimate beyond O (ε); see the comments
of Section 2.4.2. For quantum systems, knowledge of P (t) is not possible due to the uncertainty in the states
of the first oscillator. Consequently, there may be a physical limit to how well the energy can be observed
using a coupled oscillator.
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Figure 2.8: Actual and observed energies for two simulations.
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Figure 2.9: Error between observed and actual energy for two simulations.

2.7 Averaging Theory and Dynamical Systems Theory

The averaging theory described in this chapter connects to fundamental theorems concerning dynamical
systems theory. Most importantly, it is related to the embedding of (homeo-)diffeomorphisms in flows gen-
erated by vector fields. Define Diff(M) to be the set of diffeomorphisms of M into M , and also define
Diffr(M) ⊂ Diff(M) to consist of Cr diffeomorphisms. It is known that diffeomorphisms embed into
the flows of time-varying vector fields [147]. It is more difficult to ascertain conditions for which a diffeo-
morphism may be embedded into the flow of an autonomous vector field. The logarithm computation of
Equation (2.29) provides a means to convert the flow of a smooth time-varying time varying vector field into
the flow of a smooth autonomous vector field, providing a mechanism by which smooth diffeomorphisms
embed into the flows of smooth autonomous vector fields. Unfortunately, the dynamical systems literature
appears to contradict this possibility.

The diffeomorphism, f ∈ Diff(M) embeds into a flow, if there exists a vector field X and a finite time
tf such that

f = ΦX
0,tf

. (2.58)
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The embedding problem is defined by the question: Does the diffeomprohism f ∈ Diff(M) embed into
a flow? If a diffeomorpism, f , may be embedded into the flow of an autonomous vector field, then f
has a large, non-trivial centralizer. The centralizer of a diffeomorphism, f , is defined to be the set of
diffeomorphisms that commute with f ,

C(f) ≡ { g ∈ Diff(M) | gf = fg } .

A trivial centralizer has only iterates of f in it, i.e. f k for k ∈ Z. Define the trivial centralizer, C0, to be

C0(f) ≡
{
fk | k ∈ Z

}
. (2.59)

Smale posed the question of whether the elements of Diff(M) with trivial centralizers form an open and
dense subset, i.e., how many f ∈ Diff(M) have C(f) = C0(f)? Work by Kopell [73] has shown that for
diffeomorphisms on the circle, the subset of diffeomorphisms with trivial centralizers is open and dense.
Further work by Palis and Yoccoz [128, 129, 130] has demonstrated that this property is not unique to the
circle. Although the general problem is still open, these results do imply that the logarithm should not
exist for the finite-time flow of most nonlinear time-varying vector fields (in the linear setting, there is no
problem).

Given that arbitrary diffeomorphisms may not embed into flows, it is natural to seek conditions under
which a diffeomorphism may embed into a flow. It has been shown that if a diffeomorphism embeds in a
flow, then it may do so for uncountably many flows [44, 128]. Consequently, there may not be a unique
vector field whose flow at a fixed time will result in a given diffeomorphism (this freedom will be seen in
future chapters dealing with the construction of stabilizing controllers for underactuated nonlinear control
systems). Uniqueness aside, the primary difficulty of the embedding appears to lie near fixed points of
diffeomorphisms [129]. Transversality of the flow and non-resonance of the linear eigenvalues of the vector
field play an important role in ensuring embeddability [88, 130]. Most proof techniques giving conditions
for embeddability revolve around hyperbolic fixed points and involve transversality conditions [97, 128].

For diffeomorphisms that do not have a center manifold in the linearization, there are positive results
concerning the embedding problem [5, 88]. The proofs involve extending standard linear Floquet theory
to the nonlinear setting; nonresonance of the eigenvalues allows the extension of linear Floquet theory to
follow through. In the future chapters of this dissertation, we will explicitly incorporate resonance to excite
nonlinear coupling. The goal of the nonlinear coupling is to achieve a response in the center manifold that
can be used for control-theoretic purposes; oscillatory forcing is used to create the coupling. Therefore,
the approach of this dissertation is in contrast to the prevailing approaches found in the body of literature
dealing with the embedding problem via Floquet theory. Recent work by Morin and Samson [119, 120]
has demonstrated that oscillatory transverse actuation is important for the stabilization of underactuated
nonlinear control systems, which are the focus of this thesis. Although dynamical systems theory indicates
that our analysis should not be possible for a large class of systems, the solutions found in this dissertation
appear to be inline with the known positive results in the literature.

In spite of the negative results, research suggests that diffeomorphisms may be asymptotically embedded
into flows [58, 73], i.e., given an ε, there exists a vector field whose flow after a fixed time is a diffeomor-
phism ε-close to the given diffeomorphism. Perhaps, the limit fails to be in the acceptable set of vector
fields, but still results in the appropriate flow. The fact that a property may not be preserved by limit pro-
cesses is not new. Arnold and Khesin [6] discuss a problem whose solutions ε-close to the limit solution are
smooth, yet in the limit of ε → 0, the solution fails to be smooth. The practical implications are that, for
certain cases, the logarithm computation is close in an asymptotic sense, as emphasized by Agračhev and
Gamkrelidze [2].

Such a situation is also eluded to by the works of Epstein, Mather, and Thurston [43, 104, 158], who
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show that the subgroup of diffeomorphisms that are isotopic to the identity, Diff r
0(M) ⊂ Diffr(M), is

simple. Here r >= n + 2, where n = dim(M). Simplicity is related to the embedding problem [43].
Under weaker hypotheses, or in the appropriate sense, the fixed time maps of flows may generate all dif-
feomorphisms isotopic to the identity. This supports the idea that the logarithm may be used to obtain an
autonomous vector field with the property that its fixed-time flow asymptotically approximates the diffeo-
morphism obtained from the fixed-time flow of a time-varying vector field sufficiently close to the identity
flow, as per Proposition 2.

2.8 Conclusion

One goal of this chapter was to generalize averaging theory to arbitrary order, and in the process prove
associated theorems related to stability under averaging. Additionally, a new paradigm for thinking about
averaging theory was presented. Averaging theory was shown to come from a synthesis of two distinct
theories: (1) Floquet theory, and (2) perturbation theory. By working within this framework many of the
properties of classical and KBM averaging methods can be recovered. Understanding how averaging theory
is really a synthesis of the two aforementioned theories may lead to a better understanding of what the
process of averaging physically means for dynamical systems.

Although the theory was capable of recovering known results in averaging theory, the framework used
is restricted to smooth or analytic vector fields, and provided conservative estimates. The works of Ellison
et. al. [42] and others have weaker requirements on the vector fields and stronger estimates, but use a
perturbative approach. Further investigation into the similarities between the perturbative approach and
Volterra series expansions could serve to relax this requirement. The approach of Sussmann and Kawski
[65], which provides alternative derivations of the exponential representation, may be favored over the
derivation of Agračhev and Gamkrelidze [2].

Given that Floquet theory neatly decomposes time-periodic systems into two elements, a Floquet map-
ping and an autonomous flow, it may be possible to couch averaging as a reduction technique where the
symmetry is time periodicity. Due to the time-dependent nature of composed flows, such an endeavour may
not fit squarely within the context of Lie groups, but may rely on the more general concept of Lie groupoids.
The autonomous averaged vector field is then the corresponding Lie algebroid.

Additional elements that comprise averaging theory have yet to be explicitly placed within this frame-
work, of which we mention the development of two-timing methods and the analysis of resonance or multi-
phase averaging. An important extension would also be to partial differential equations. The exponential
representation of flows in Agračhev and Gamkrelidze [2] appears to support this goal, although not without
difficulty.

The averaging analysis of this chapter leads to several topics within the realm of nonlinear control and
dynamics as originally envisioned by Agračhev, Gamkrelidze, and Sarychev [4]. In particular the utilization
of this theory for nonlinear time-periodic control systems. The remaining chapters of this dissertation ad-
dress this issue. A natural consequence is the use of the generalized averaging theory to analyze resonance
for nonlinear control systems. Resonant oscillatory forcing of underactuated control systems will lead to
flow that would not seem possible from analysis of the linearized system.
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2.A Sanders and Verhulst Revisited

Recall that w and f̃ are related to each other via integration in time as per Theorem 5. We obtain an
alternative expression for ḡ(z),

ḡ(z) =
1

T

∫ T

0

(
Dzf(z, t) · w(z, t) − Dzw(z, t) · f̄(z)

)
dt

=
1

T

∫ T

0

(
Dzf(z, t) ·

(∫ τ

0
(f(z, τ) − f̄(z))dτ

)
− Dz

(∫ t

0
(f(z, τ) − f̄(z))dτ

)
· f̄(z)

)
dt

=
1

T

∫ T

0

(
Dzf(z, t) ·

∫ t

0
f(z, τ)dτ − Dzf ·

∫ t

0
f̄(z)dτ

− Dz

(∫ τ

0
f(z, τ)dτ

)
· f̄(z) + Dz

(∫ τ

0
f(z, τ)dτ

)
· f̄(z)

)
dt

=
1

T

∫ T

0

(
Dzf(z, t) ·

∫ t

0
f(z, τ)dτ − Dzf(z, t) · f̄(z)t

+ Dzf(z, t) · f̄(z)t+ Dz f̄(z)t · f̄(z)
)
− T Dz f̄(z) · f̄(z)

=
1

T

∫ T

0
Dzf(z, t) ·

∫ τ

0
f(z, τ)dτ − T

2
Dz f̄(z) · f̄(z)

=
1

2T

∫ T

0

(
Dzf(z, t) ·

∫ τ

0
f(z, τ)dτ − Dz

∫ t

0
f(z, τ)dτ · f(z, t)

)
dt,

where for now the integration constant is not included. The form of the last equation is the coordinate form
of the Jacobi-Lie bracket, meaning that ḡ(z) actually takes the simpler form below

ḡ(z) =
1

2T

∫ T

0

[∫ t

0
f(z, τ)dτ, f(z, t)

]
dt =

1

2

[∫ t

0
f(z, τ)dτ, f(z, t)

]
. (2.60)

Using, instead, the actual equation for w from Theorem 5 with the additional integration constant a(z),

ḡ(z) =
1

2

[∫ t

0
f(z, τ)dτ, f(z, t)

]
+
[
a(z), f (z)

]
. (2.61)

Alternatively,

ḡ(z) =
1

2

[∫ t

0

(
f(z, τ) − f̄(z)

)
dτ + a(z), f(z, t)

]
. (2.62)

A similar conclusion to (2.60) was found by Kurzweil and Jarník [74] when examining the limit of highly
oscillatory differential equations, and subsequently generalized to arbitrary order in [75]. The method used
resembles that of a Volterra series expansion, and was given further study by Sussman and Liu [154, 92, 93].

2.B Computation of Logarithm Series Expansions

The integrand of the third variation is obtained from the following derivation

D(adξ3)D(adξ2)ξ1.
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It’s expansion according to the rule of differentiation is

D(adξ3)D(adξ3)ξ1

=

(D(adξ3)ad) ξ2ξ1 + ad (D(adξ3)ξ2) ξ1 + adξ2D(adξ3ξ1)

=

adξ3adξ2ξ1 + adadξ3ξ2ξ1 + adξ2adξ3ξ1.

The depth of (ξ1, ξ2, ξ3) in each of the regular words is (2, 0, 0), (1, 1, 0), and (2, 0, 0), respectively, implying
the coefficients 1/12, 1/4, and 1/12, respectively. Thus the third variation integrand is

v(3)(ξ1, ξ2, ξ3) =
1

12
ad ξ3 ad ξ2 ξ1 +

1

4
ad ad ξ3 ξ2 ξ1 +

1

12
ad ξ2 ad ξ3 ξ1. (2.63)

For the fourth term and higher-order terms, the number of words begins to increase at a rapid rate. The
fourth term will consist of 15 regular words. It begins as

D(adξ4)D(adξ3)D(adξ2)ξ1.

It’s expansion according to the rules of differentiation is

D(adξ4)D(adξ3)D(adξ2)ξ1

=

D(adξ4) (adξ3adξ2ξ1 + adadξ3ξ2ξ1 + adξ2adξ3ξ1)

=

adξ4adξ3adξ2ξ1 + adadξ4ξ3adξ2ξ1 + adξ3adξ4adξ2ξ1

+ adξ3adadξ4ξ2ξ1 + adξ3adξ2adξ4ξ1

+ adξ4adadξ3ξ2ξ1 + adadξ4adξ3ξ2ξ1 + adadadξ4ξ3ξ2ξ1

+ adadξ3adξ4ξ2ξ1 + adadξ3ξ2adξ4ξ1

+ adξ4adξ2adξ3ξ1 + adadξ4ξ2adξ3ξ1 + adξ2adξ4adξ3ξ1

+ adξ2adadξ4ξ3ξ1 + adξ2adξ3adξ4ξ1.

The depths of the fifteen words, in order, are

(3, 0, 0, 0), (2, 0, 1, 0), (3, 0, 0, 0), (2, 1, 0, 0), (3, 0, 0, 0)

(2, 1, 0, 0), (1, 2, 0, 0), (1, 1, 1, 0), (1, 2, 0, 0), (2, 1, 0, 0)

(3, 0, 0, 0), (2, 1, 0, 0), (3, 0, 0, 0), (2, 0, 1, 0), (3, 0, 0, 0)
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Since the Bernoulli numbers vanish for the odd numbers greater than 1, those with depth 3 have vanishing
coefficients. Combining the remaining terms gives

v(4)(ξ1, ξ2, ξ3ξ4) = − 1

24
ad(adξ4ξ3)(adξ2ξ1) −

1

24
adξ3(ad(adξ4ξ2)ξ1)

− 1

24
adξ4(ad(adξ3ξ2)ξ1) −

1

24
ad(adξ4(adξ3ξ2)ξ1

− 1

8
ad(ad(ad(ξ4ξ3)ξ2)ξ1 −

1

24
ad(adξ3(adξ4ξ2))ξ1

− 1

24
ad(adξ3ξ2)(adξ4ξ1) −

1

24
ad(adξ4ξ2)(adξ3ξ1)

− 1

24
adξ2(ad(adξ4ξ3)ξ1).

The remaining terms can be simplified by use of the Jacobi-Lie identity,

v(4)(ξ1, ξ2, ξ3ξ4) = − 1

12
(ad(adξ4ξ3)(adξ2ξ1) + ad(ad(adξ4ξ3)ξ2)ξ1

+adξ4(ad(adξ3ξ2)ξ1) + adξ3(ad(adξ4ξ2))ξ1) ,

which agrees with Agračhev and Gamkrelidze [2] (except for sign).

2.C The Averaged Expansions

Second-order. The first-order expansions of the Volterra series and the exponential in the periodic Floquet
function are,

Trunc1 (exp (−Y t)) = Id − εX t+O
(
ε2
)

Trunc1

(−→V 0,t (Xτ )
)

= Id + ε

∫ t

0
Xτ dτ +O

(
ε2
)
.

Taking the composition of the two pull-back flows, and truncating to first order, results in

Trunc1 (P (t)) = Id + ε

∫ t

0

(
Xτ −X

)
dτ +O

(
ε2
)
.

Third-order. The truncations evaluate to

Trunc2

(
−→exp

(∫ t

t0

Xτ dτ

))
= Id+

∫ t

t0

Xτ dτ +
1

2

∫ t

t0

∫ τ

t0

[Xs, Xτ ] ds dτ +
1

2

∫ t

t0

Xτ dτ ◦
∫ t

t0

Xτ dτ ,

and

Trunc2 (exp (−Y t)) = Id + εX +
1

2
ε2
[∫ t

0
X(x, τ) dτ ,X(x, t)

]
+

1

2
ε2X ◦Xt2,
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whose composition and truncation to second order gives

Trunc2 (P (t)) =Id + ε

∫ t

0

(
Xτ −X

)
dτ +

1

2
ε2
∫ t

0

([∫ τ

0
Xs ds ,Xτ

]
−
[∫ t

0
Xs ds ,Xt

])
dτ

+
1

2
ε2
∫ t

0
Xτ dτ ◦

∫ t

0
Xτ dτ − ε2

∫ t

0
Xτ d ◦ X t+

1

2
ε2X ◦X t2.

Fourth-order. The fourth-order truncation of the flow is

Trunc3

(
−→exp

∫ t

0
Xτ dτ

)
= Id + ε

∫ t

0
Xτ dτ +

1

2
ε2
∫ t

0

[∫ τ

0
Xs ds ,Xτ

]
dτ

+
1

4
ε3
[∫ t

0
Xτ dτ ,

∫ t

0

[∫ τ

0
Xs ds ,Xτ

]
dτ

]

+
1

3
ε3
∫ t

0

[∫ τ

0
Xs ds ,

[∫ τ

0
Xs ds ,Xτ

]]
dτ

+
1

2

∫ t

t0

Xτ dτ ◦
∫ t

t0

Xτ dτ

+
1

4
ε3
∫ t

0
Xτ dτ ◦

∫ t

0

[∫ τ

0
Xs ds ,Xτ

]
dτ

+
1

4
ε3
∫ t

0

[∫ τ

0
Xs ds ,Xτ

]
dτ ◦

∫ t

0
Xτ dτ

+
1

6
ε3
∫ t

0
Xτ dτ ◦

∫ t

0
Xτ dτ ◦

∫ t

0
Xτ dτ ,

while the fourth order truncation of the autonomous flow is

Trunc3 (exp (−Y t)) = Id − εX t− 1

2
ε2
[∫ t

0
Xτ dτ ,Xt

]
t

− 1

4
Tε3

[
X,

[∫ t

0
Xτ dτ ,Xt

]]
t

− 1

3
ε3
[∫ t

0
Xτ dτ ,

[∫ t

0
Xτ dτ ,Xt

]]
t

+
1

2
ε2X ◦X t2 +

1

4
ε2X ◦

[∫ t

0
Xτ dτ ,Xt

]
t2

+
1

4
ε3
[∫ t

0
Xτ dτ ,Xt

]
◦X t2

− 1

6
ε3X ◦X ◦X t3.
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Composing the two will result in the truncated Floquet mapping,

Trunc3 (P (t)) =Id + ε

∫ t

0

(
Xτ −X

)
dτ

+
1

2
ε2
∫ t

0

([∫ τ

0
Xs ds ,Xτ

]
−
[∫ σ

0
Xs ds ,Xσ

])
dτ

+
1

4
ε3

([∫ t

0
Xτ dτ ,

∫ t

0

[∫ τ

0
Xs ds ,Xτ

]
dτ

]
− T

[
X,

[∫ t

0
Xτ dτ ,Xt

]]
t

)

+
1

3
ε3
∫ t

0

([∫ τ

0
Xs ds ,

[∫ τ

0
Xs ds ,Xτ

]]
−
[∫ t

0
Xτ dτ ,

[∫ t

0
Xτ dτ ,Xt

]])
dτ

+
1

2
ε2
∫ t

0
Xτ dτ ◦

∫ t

0
Xτ dτ − ε2

∫ t

0
Xτ dτ ◦X t+

1

2
ε2X ◦X t2

+
1

4
ε3
∫ t

0
Xτ dτ ◦

∫ t

0

[∫ τ

0
Xs ds ,Xτ

]
dτ − 1

2
ε2
∫ t

0
Xτ dτ ◦

[∫ t

0
Xτ dτ ,Xt

]
t

− 1

2
ε3
∫ t

0

[∫ τ

0
Xs ds ,Xτ

]
dτ ◦X t+

1

4
ε3X ◦

[∫ t

0
Xτ dτ ,Xt

]
t2

+
1

4
ε3
∫ t

0

[∫ τ

0
Xs ds ,Xτ

]
dτ ◦

∫ t

0
Xτ dτ +

1

4
ε3
[∫ t

0
Xτ dτ ,Xt

]
◦X t2

+
1

6
ε3
(∫ t

0
Xτ dτ ◦

∫ t

0
Xτ dτ ◦

∫ t

0
Xτ dτ ,−X ◦X ◦X t3

)
.
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Chapter 3

Control of Underactuated Driftless Nonlinear Systems

A tremendous amount of research has gone into understanding controllability and determining conditions
under which a system is controllable. There is still a gap, however, between the tests that determine control-
lability and the actual feedback laws that realize control. This chapter demonstrates how the “generalized
averaging theory” may be used in conjunction with controllability tests to realize feedback control of under-
actuated driftless systems. The control laws will be exponentialy stabilizing in the average. The approach is
an easily implementable and understandable strategy for designing exponentially stabilizing controllers for
such systems.

The method does not need a homogeneous norm to demonstrate exponential stabilization, does not re-
quire complicated coordinate transformations, the construction of Lyapunov functions, nor the pre-existence
of stabilizing controllers, although such elements can be used to facilitate the process. The complexity of the
nonlinear analysis grows with the order of Lie bracketing. Only lower orders will be discussed. Extensions
to higher orders follow the same principles, but may be more involved computationally.

Organization of This Chapter. The control of driftless systems is studied in Section 3.1, with a focus
on using the results of averaging theory for control of underactuated driftless affine control systems. The
particular class of systems with nonholonomic constraints is studied in Section 3.2, as well as the subclass
of systems reducible via Lie group symmetries. Several examples are given in Section 3.3 demonstrating
the utility and power of the control strategies derived using the generalized averaging theory. Section 3.4
concludes with a synopsis of the current results and a vision of future work.

3.1 Control of Driftless Systems

The standard form for an underactuated driftless affine control system is

q̇ = Ya(q)u
a(q, t), (3.1)

where q ∈ Q, with Q ⊂ R
n open, and a = 1 . . . m < n ≡ dim(Q) (full actuation occurs when m = n).

The inputs ua reside in U , the set of functions piecewise smooth with respect to q, and absolutely continuous
with respect to t. Controllability is defined using the sets of reachable states and accessible states at q ∈ Q.
The reachable states at q ∈ Q are

RV
tf

(q) ≡
⋃

0≤t≤tf

AV
tf

(q), (3.2)
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where,

AV
tf

(q) ≡
{
qf ∈ Q | ∃ ua ∈ U , a = 1 . . . m, q(0) = q, ΦYaua

0,tf
(q) = qf : ΦYaua

0,t (q) ∈ V,∀ 0 ≤ t ≤ tf

}
,

(3.3)
is the set of states accessible (at time tf ) from q. To obtain the set of accessible states at q ∈ Q, take the
union over all time,

AV (q) ≡
⋃

0≤T≤∞
AV

T (q). (3.4)

Definition 8 The system (3.1) is controllable if A(q) = Q, for all q ∈ Q.

Definitions that further refine the notion of controllability are local accesibility and (small-time) local con-
trollability.

Definition 9 The system (3.1) is locally accessible if for all q ∈ Q, RV
T (q) contains a non-empty open set

of Q for all neighborhoods V of q and all T > 0.
The system (3.1) is (small-time) locally controllable (STLC) if for any neighborhood V , time T ≥ 0,

and q ∈ Q, q is an interior point of RV
T (x) for all T ≥ 0.

For underactuated driftless affine control systems, local controllability can be determined via the Lie Algebra
Rank Condition (LARC), due to the equivalence of local accessibility and local controllability. To determine
LARC, it is necessary to construct the involutive closure of the control vector fields. Let the set C∞ be
recursively constructed as follows

C1 = span{Y1, ..., Ym}, and

Ck+1 = Ck +
[
C1, Ck

]
.

(3.5)

In practice, the sets Ck(q) become maximal at CN (q) for some N < ∞ sufficiently large. The Lie Algebra
Rank Condition at q ∈ Q is satisfied if,

dim C∞(q) = dimTqQ. (3.6)

Theorem 14 The system (3.1) is locally accesible if the Lie Algebra Rank Condition (3.6) holds.

Theorem 15 [146] The system (3.1) is (small-time) locally controllable if and only if it is locally accessible.

Definition 10 The Lie Algebra Basis Condition (LABC) is said to hold if there exists a basis of vector fields
in C that spans the tangent space for every point q ∈ Q.

Definition 11 [78] An underactuated driftless control system is well-controllable if the Lie Algebra Basis
Condition holds.

In general, the Jacobi-Lie brackets used to satisfy the LARC may vary from point to point. If a system is
well-controllable then the controller synthesis for global control will be simpler. We assume that Theorem
15 is satisfied, and now focus on relating the terms in C∞(q) to control system design.

3.1.1 Averaging Theory for Control

In Equation (3.1), the functions ua(q, t) are control functions, which decompose into state feedback terms
and time-periodic terms: ua(q, t) = fa(q) + va(t/ε). The functions va(t) are T -periodic functions and
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the functions f a(q) are feedback terms for stabilization of the directly controlled states. Substitution into
equation (3.1) gives

q̇ = Ya(q)f
a(q) + Ya(q)v

a(t/ε) = XS(q) + Ya(q)v
a(t/ε), (3.7)

where XS(q) = Ya(q)f
a(q). A transformation of time, t 7→ ετ , takes (3.7) into a form compatible with

averaging theory,
dq

dτ
= εXS(q) + εYa(q)v

a(t). (3.8)

The average of (3.8) is

q(τ) = Truncm−1 (P (τ)) (z(τ)) +O (εm) ,

dz

dτ
= Truncm (Z) .

Transformating back to time, t,

q(t) = Truncm−1 (P (t/ε)) (z(t/ε)) +O
(
εm−1

)
,

ż =
1

ε
Truncm (Z) .

Recall that P (t) and Z can be expressed as power series in ε. The time transformation lowers the power
series order by one. For P (t), this might pose a problem at lower orders of averaging since P (t) will go from
being O (εm)-close to O

(
εm−1

)
-close. Choosing the improved mth-order average, with Truncm (P (t)),

will resolve the problem,

q(t) = Truncm (P (t/ε)) (z(t/ε)) +O (εm) ,

ż =
1

ε
Truncm (Z) .

Averaged Coefficients

The averaged version of (3.8) will contain vector fields that have combinations of time integrals and Jacobi-
Lie brackets, see Section 2.4. Since the periodic inputs act as coefficients to the input vector fields, and
iterated Jacobi-Lie brackets are multi-linear, the integrals can be factored. The integral terms represent the
net effect of the inputs on the Jacobi-Lie bracket terms, and will be called averaging coefficients.

Define the following notation for the averaging coefficients:

V
(a)
(n)(t) ≡

∫ t

t0

∫ sn−1

. . .

∫ s2

va(s1)ds1 · · · dsn−1. (3.12)

For the purposes of this paper, the initial time will always be t0 = 0. Cases of multiple upper and lower
indices denote products of this type of integral. An example is V

(a,b)
(1,1)(t),

V
(a,b)
(1,1)

(t) = V
(a)
(1)

V
(b)
(1)

=

(∫ t

0
va(s1)ds1

)(∫ t

0
vb(s1)ds1

)
.

Time-averaged terms are called averaged coefficients. The single index averaged coefficients are

V
(a)
(n)(τ) =

1

T

∫ T

0
V

(a)
(n)(τ) dτ =

1

T
V

(a)
(n+1)(T ).
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Additionally define the following,

Ṽ
(a)
(n) ≡ V

(a)
(n) − V

(a)
(n),

and for the multi-index version,

Ṽ
(A)
(N) ≡ V

(A)
(N) − V

(A)
(N),

where (A) = (a1, a2, ..., a|A|) and (N) = (n1, n2, ..., n|N |). The ·̂ symbol will denote integrals within the
product structure. For example,

V
(â,b,c)

(0̂,0,1)
(t) =

(∫ t

0
V

(a,b)
(0,0)(τ) dτ

)(
V

(c)
(1)(t)

)
=

(∫ t

0
(va(τ) vb(τ)) dτ

) (∫ t

0
vc(τ) dτ

)
.

Another example is the averaged coefficient

V
(a,b)
(1,0)

(τ) =
1

T

∫ T

0
V

(a,b)
(1,0)

(τ) dτ =
1

T
V

(â,b)

(1̂,0)
(T ).

The notation will simplify the expressions for the averaged expansions of (3.7).

Comment. Those familiar with approximate inversion techniques for open-loop approximate tracking of
nonholonomic systems will notice the indefinite nature of the integrals in Equation (3.12). The generalized
averaging theory does lead to definite integrals. However, the lower integral limit can be shown to corre-
spond to integration of the initial conditions of dynamical system (3.7). Although the definite integrals do
predict the transient response, under state feedback the transient effects of the initial conditions die out over
time. Our generalized averaging theory leads to the use of indefinite integrals, as does classical averaging
theory. In the motion control algorithms of Bullo, and Martínez and Cortés [21, 100], the integrals are also
indefinite. The examples section, Section 3.3, will more explicitly cover this difference between open-loop
approximate inversion and closed-loop approximate inversion.

Averaged Expansions

First-order. The first-order averaged version of system (3.7) is

ż = XS + V
(a)
(0)(t)Ya(z), (3.13)

where the upper and lower indicies indicate multiplication and summation. The Floquet mapping is approx-
imated by

Trunc0 (P (t/ε)) = Id. (3.14)

An improved approximation is

Trunc1 (P (t/ε)) = Id + ε

∫ t/ε

0
Ṽ

(a)
(0)(τ) dτ Ya(·). (3.15)

First-order averaging may be useful when the inputs are constrained to lie in an admissable set that is restric-
tive. In [46], Gallivan et al. achieve a set of transition rates for thin film growth that is unachievable using
the inputs that the process is normally restricted to. Although the inputs are time-periodic, the inputs for
film-growth are not in control affine form, and the averaging process highlights the nonlinear effect of time-
periodic inputs. For systems in the affine control form, a non-vanishing average is equivalent to constant
actuation, to first-order. It is the higher-order nonlinear effect of periodic inputs that will be important.
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Second-order. Second- and higher-order average approximations are usually sought when the first-order
average of the time-periodic inputs vanishes.

Assumption 2 For higher-order averaging, it is assumed that the time-averages of the oscillatory control

inputs vanish, i.e., V
(a)
(0)(t) = 0.

The second-order average has the form,

ż = XS(z) + εV
(a)
(1)(t) [Ya(z), XS(z)] +

1

2
εV

(a,b)
(1,0)(t) [Ya(z), Yb(z)] , (3.16a)

Trunc1 (P (t/ε)) = Id + εV
(a)
(1)(t/ε)Ya(·), (3.16b)

whose derivation requires integration by parts and Assumption 2. The averaged coefficient notation allows
for a quick assessment of the nature of the integral product, as the lower indices determine which terms are
integrated and how many times to iterate the integral.

Third-order If the LARC is satisfied via higher levels of iterated Lie brackets, then higher-order averaging
is required. The averaged vector field to third order 1 is

ż =XS + εV
(a)
(1)(t) [Ya, XS ] +

1

2
εV

(a,b)
(1,0)(t) [Ya, Yb] + ε2

(
V

(a)
(2)(t) −

1

2
TV

(a)
(1)(t)

)
[XS , [XS , Ya]]

− 1

3
ε2
(

V
(â,b)

(1̂,0)
(t) +

1

2
TV

(a,b)
(1,0)(t)

)
[XS , [Ya, Yb]]

+
1

3
ε2
(

V
(a,b)
(1,1)(t) + V

(â,b)

(1̂,0)
(t) − TV

(a,b)
(1,0)(t)

)
[Ya, [Yb, XS ]] +

1

3
ε2V

(a,b,c)
(1,1,0)(t) [Ya, [Yb, Yc]] .

(3.17)

The Floquet mapping is

Trunc2 (P (t/ε)) = Id + εV
(a)
(1)(t/ε) Ya + ε2

∫ t/ε

0
Ṽ

(a)
(1)(τ) dτ [Ya, XS ]

+
1

2
ε2
∫ t/ε

0
Ṽ

(a,b)
(1,0)(τ) dτ [Ya, Yb] +

1

2
ε2V

(a,b)
(1,1)(t/ε) Ya · Yb .

(3.18)

Higher-order. To compute fourth- and higher-order averages follow the averaged expansion procedure
delineated in Chapter 2, taking into account the affine control decomposition. Appendix 3.A contains the
lower-order averaged expansions, to give the reader a sense of the procedure.

The Averages Revisited

The existence of the vector fields f a(q) complicates matters because they act like drift terms. Suppose that
first-order, direct state feedback was not necessary, f a(q) = 0. The simplifications afforded in this case
allow for higher-order averages to be computed.

Third-order. The third-order equations simplify to

ż =
1

2
εV

(a,b)
(1,0)(t) [Ya, Yb] +

1

3
ε2V

(a,b,c)
(1,1,0)(t) [Ya, [Yb, Yc]] , (3.19)

1See Appendix 3.A for the relevant calculations
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and the reductions actually make a fourth-order expansion tractable.

Fourth-order. The averaged autonomous vector field to fourth-order is

ż = εV
(a,b)
(1,0)(t) [Ya, Yb] +

1

3
ε2V

(a,b,c)
(1,1,0)(t) [Ya, [Yb, Yc]] (3.20)

=
1

12
ε3
(

V
(a,b,ĉ,d)

(1,0,1̂,0)
(t) [[Ya, Yb] , [Yc, Yd]] −

(
V

(a,b,ĉ,d)

(1,0,0̂,1)
(t) + V

(a,b,c,d)
(1,1,1,0)(t)

)
[Ya, [Yb, [Yc, Yd]]]

)
.

The Floquet mapping is

Trunc3 (P (t/ε)) = Id + εV
(a)
(1)(t/ε) Ya +

1

2
ε2
∫ t/ε

0
Ṽ

(a,b)
(1,0)(τ) dτ [Ya, Yb] +

1

2
ε2V

(a,b)
(1,1)(t/ε) Ya · Yb

− 1

2
ε2V

(a)
(1)(t/ε)V

(b,c)
(1,0)(t) t Ya · [Yb, Yc] +

1

6
ε3V

(a,b,c)
(1,1,1)(t)Ya · Yb · Yc

+
1

4
ε3V

(a)
(1)(t/ε)

∫ t/ε

0
V

(b,c)
(1,0)(σ) dσ (Ya · [Yb, Yc] + [Yb, Yc] · Ya) .

(3.21)

For driftless systems, it is the iterated Jacobi-Lie brackets generated using the set { Ya }m
1 that is impor-

tant for both determination of controllability, and for realization of control. When the vector field XS 6= 0,
the averaged expansions become more complicated, but the Jacobi-Lie brackets that are needed for control
do not change. Therefore, it always useful to examine the case where XS = 0 to determine the appropriate
averaged coefficients and Jacobi-Lie brackets to analyze.

3.1.2 Sinusoidal Inputs for Indirect Actuation

The work of Murray and Sastry [122], and the subsequent developments by Teel et al. [157] have both
demonstrated the use of sinusoidal inputs for motion generation in Lie bracket directions. By approximating
the flow using series expansions with averaged coefficients, it is possible to compute the amplitudes of the
response to sinusoidal forcing in a given Jacobi-Lie bracket direction. This approximate inversion technique
is successfully utilized by Bullo [22] and Martínez and Cortés [100] in deriving motion control algorithms
for control of underactuated mechanical systems. Recent work on the second-order case has shown how
to construct sinusoidal inputs with proper amplitude modulation and frequency spacing so as to isolate the
various Lie bracket contributions [159, 160]. More generally, Sussmann and Liu [154, 155, 92] give a strat-
egy for finding the sinusoidal functions and frequencies to obtain individually excited averaged coefficients.
This section examines the algorithm for select averaged coefficients with the goal of providing a practical
approach to-, and interpretation of-, the Ω-sets found in the work of Sussman and Liu.

Second-order Averaged Coefficients

The process of determining the oscillatory inputs for an arbitrary system to any given order of averaging
is difficult. Sinusoidal input pairs in resonance will lead to Jacobi-Lie bracket motion. Each averaged
coefficient has algebraic frequency requirements for resonance, which may conflict and cause coupling.
Certain Jacobi-Lie brackets can never be actuated independently. Nevertheless, useful guidelines can be
established by investigating simple, lower-order cases. Abstraction to higher-order follows naturally.
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V
(a,b)
(1,0)(t) αa sin(ωat) αa cos(ωat)

αb sin(ωbt) 0

{
αaαb

2ωa
if ωa = ωb

0 otherwise

αb cos(ωbt)

{
−αaαb

2ωa
if ωa = ωb

0 otherwise
0

Table 3.1: Averaged coefficients for second-order averaging of driftless systems.

For second-order averaging, the averaged coefficient is

V
(a,b)
(0,1)(t) =

1

T

∫ T

0

∫ t

va(τ) dτ . vb(t) dt .

For each input va(t), a = 1 . . . m, one of the following two forcing functions can be chosen,

αa sin(ωat) or αa cos(ωat),

where ωa ∈ Z
+. The four permutations of input function choices result in the averaged coefficients found in

Table 3.1. Of the four options, in-phase sinusoidal inputs do not work. Additionally, the algebraic equality

ωa − ωb = 0 (3.22)

must hold for the desired out-of-phase sinusoidal input pair and for no other oscillatory inputs. The net
result of this analysis is a set of inputs that operate at unique carrier frequencies; a commmonly known fact.

Lemma 2 Consider the second-order Jacobi-Lie bracket, [Ya, Yb]. If the associated inputs

va(t) = αa
ab cos(ωabt), vb(t) = αb

ab sin(ωabt),

are chosen for some unique carrier frequency, ωab, then only the bracket [Ya, Yb] will be excited. The
corresponding averaged coefficient will evaluate to

V
(a,b)
(1,0)(t) =

αab

2ωab
, where αab = αa

abα
b
ab.

Lemma 2 imposes a unique carrier frequency for each Jacobi-Lie bracket. This will pose a problem for
severely underactuated systems, as the number of frequencies needed is directly related to the number of
Jacobi-Lie brackets required. For a pair of oscillatory inputs generating motion in the direction of the Jacobi-
Lie bracket [Ya, Yb], the averaged coefficient is found in Lemma 2 to be αab

2ωab
. As the frequency increases,

the response decreases. If either αa
ab or αb

ab is set equal to ωab, the response is no longer attenuated by the
frequency. Unfortunately, the oscillation amplitude for one of the inputs is on the order of ωab, which may
be large. It is possible to recycle carrier frequencies to lower the total amount of unique frequencies used,
while avoiding coupling.

Algorithm 1 (Second-order Selection Algorithm) The inductive selection algorithm below gives inde-
pendent Jacobi-Lie bracket contributions.
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1. All of the brackets that incorporate the input v1(t) are assigned the frequency ω1 = 1. The input
function for v1(t) will be cos(ω1t). Let the number of distinct brackets [Y1, Ya] required for STLC be
termed the multiplicty, µ1. For each of the distinct brackets add the term αa

1a sin(ω1t) to the input
function va(t).

2. Let b = 2.

3. Consider next, all of the essential brackets that incorporate the input vb(t). The corresponding input
functions will be assigned the frequency ωb = ωb−1 + 1. The oscillatory function ωb cos(ωbt) will be
added to the input function vb(t). The number of distinct brackets [Yb, Ya], a > b, required for STLC
will be termed the multiplicity µb. For each distinct bracket add the term αa

ba sin(ωbt) to the input
function va(t).

If there are no brackets using [Yb, Ya], a > b, then do no assignments. Set ωb = ωb−1 and αa
ba = 0,

a > b.

4. Repeat Step 3 with b = b+ 1, until all of the Jacobi-Lie brackets are assigned corresponding cosine
and sine functions.

Mathematically, the input va(t) is of the form

va(t) = ωaδ(µa) cos(ωat) +

b≤a∑

b=1

αa
ba sin(ωat), (3.23)

where

δ(µ) =

{
0 if µ = 0
1 otherwise

.

According to the algorithm above, the αa
ba terms will be assigned a nonzero value if the corresponding

Jacobi-Lie bracket, [Yb, Ya] is needed for controllability. The carrier frequency and the choice of sinusoidal
functions for va(t) and vb(t) have been chosen to ensure independence of the α values in the averaged
coefficient, and therefore independent contributions of the bracket-related terms.

proof
Compare two input functions,

va(t) = ωa cos(ωat) +
b<a∑

b=1

αa
ba sin(ωbt), and

vc(t) = ωc cos(ωct) +

d<c∑

d=1

αc
dc sin(ωdt).
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Without loss of generality, assume that a ≤ c. The averaged coefficient V
(a,c)
(1,0)(t), can be decomposed into

four parts:

V
(a,c)
(1,0)(t) = ωaωc

(∫ t

0
cos(ωaτ) dτ

)
cos(ωct)

︸ ︷︷ ︸
1

+ωa

(∫ t

0
cos(ωaτ) dτ

) d<c∑

d=1

αc
dc sin(ωdt)

︸ ︷︷ ︸
2

,

+

∫ t

0

b<a∑

b=1

αa
ba sin(ωbτ) dτ ωc cos(ωct)

︸ ︷︷ ︸
3

+

∫ t

0

b<a∑

b=1

αa
ba sin(ωbτ) dτ

d<c∑

d=1

αc
dc sin(ωdt)

︸ ︷︷ ︸
4

.

Using Table 3.2, and the fact that a < c, all but the second term vanish. The second term averages to

V
(a,c)
(1,0)(t) = ωa

(∫ t

0
cos(ωaτ) dτ

) d<c∑

d=1

αc
dc sin(ωdt) =

{
1
2α

c
ac a < c

0 a = c
.

Skew-symmetry of the averaged coefficient, V
(a,c)
(1,0)(t), takes care of the other case, a > c. To show skew-

symmetry of the averaged coefficient, integrate by parts and use Assumption 2.
�

There are two properties of the selection algorithm worth noting: (1) when all of the α are set to zero, the
inputs do not vanish due to the cosine terms, and (2) the selection algorithm requires modification if third-
or higher-order averaging is used. The principal modification required when moving to higher-order is the
spacing of the carrier frequencies; the current choice ωa = ωa−1 + 1 will introduce higher-order coupling.

Third-Order Averaged Coefficients

The important factor for the selection of inputs in the previous analysis involved the algebraic equality
(3.22). Higher-order expansions will lead to additional algebraic restrictions that keep the effect of the
inputs isolated. These restrictions will also affect the previous construction, if both second- and third-order
effects are to be simultaneously included. To motivate the use of these additional constraints, consider the
following example that involves third-order averaging.

Example (Three inputs, 3rd-order averaging)
Consider the case of a three-input underactuated driftless control system that requires third-order iterated
Jacobi-Lie brackets for the LARC to be satisfied. To third-order, the important averaged coefficients are

V
(a,b)
(1,0)(t) and V

(a,b,c)
(1,1,0)(t).

Because V
(a,b)
(1,0)(t) was analyzed in the previous section, the focus will be on the latter averaged coefficient.

The possible input choices are

v1(t) v2(t) v3(t)

α1 sin(ω1t) α2 sin(ω2t) α3 sin(ω3t)
α1 cos(ω1t) α2 cos(ω2t) α3 cos(ω3t)

,

whose eight permutations lead to the contributions found in Table 3.2, with potential coupling found in Table
3.3. Based on Table 3.2, the important algebraic equalities that influence the averaged coefficients are as
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v1(t), v2(t), v3(t) V
(1,2,3)
(1,1,0)(t)

α1 sin(ω1t), α
2 sin(ω2t), α

3 sin(ω3t) = 0

α1 sin(ω1t), α
2 sin(ω2t), α

3 cos(ω3t) =





ω1 + ω2 − ω3 = 0,
α1α2α3

4ω1ω2
if ω1 − ω2 − ω3 = 0,

ω1 − ω2 + ω3 = 0
0 otherwise

α1 sin(ω1t), α
2 cos(ω2t), α

3 sin(ω3t) =





α1α2α3

4ω1ω2
if ω1 + ω2 − ω3 = 0,

ω1 − ω2 + ω3 = 0

−α1α2α3

4ω1ω2
if ω1 − ω2 − ω3 = 0

0 otherwise
α1 sin(ω1t), α

2 cos(ω2t), α
3 cos(ω3t) = 0

α1 cos(ω1t), α
2 sin(ω2t), α

3 sin(ω3t) =





−α1α2α3

4ω1ω2
if ω1 − ω2 − ω3 = 0,

ω1 − ω2 + ω3 = 0
α1α2α3

4ω1ω2
if ω1 + ω2 − ω3 = 0

0 otherwise

α1 cos(ω1t), α
2 sin(ω2t), α

3 cos(ω3t) = 0
α1 cos(ω1t), α

2 cos(ω2t), α
3 sin(ω3t) = 0

α1 cos(ω1t), α
2 cos(ω2t), α

3 cos(ω3t) =





α1α2α3

4ω1ω2
if ω1 − ω2 − ω3 = 0,

ω1 − ω2 + ω3 = 0

−α1α2α3

4ω1ω2
if ω1 + ω2 − ω3 = 0

0 otherwise

Table 3.2: Averaged coefficients for third-order averaging of driftless systems.
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va(t), vb(t) V
(i,j,k)
(1,1,0)(t), i, j, k ∈ { a, b }

αa sin(ωat), α
b sin(ωbt) = 0

αa sin(ωat), α
b cos(ωbt), =





V
(a,a,b)
(1,1,0)(t) = (αa)2αb

4ω2
a

if 2ωa = ωb

V
(a,b,a)
(1,1,0)(t) = − (αa)2αb

4ωaωb
if 2ωa = ωb

V
(b,a,a)
(1,1,0)(t) = − (αa)2αb

4ωaωb
if 2ωa = ωb

0 otherwise

αa cos(ωat), α
b sin(ωbt), =





V
(b,b,a)
(1,1,0)(t) = (αb)2αa

4ω2
b

if 2ωb = ωa

V
(b,a,b)
(1,1,0)(t) = − (αb)2αa

4ωaωb
if 2ωb = ωa

V
(a,b,b)
(1,1,0)(t) = − (αb)2αa

4ωaωb
if 2ωb = ωa

0 otherwise

αa cos(ωat), α
b cos(ωbt), =





V
(a,a,b)
(1,1,0)(t) = − (αa)2αb

4ω2
a

if 2ωa = ωb

V
(a,b,a)
(1,1,0)(t) = (αa)2αb

4ωaωb
if 2ωa = ωb

V
(b,a,a)
(1,1,0)

(t) = (αa)2αb

4ωaωb
if 2ωa = ωb

V
(b,b,a)
(1,1,0)(t) = − (αb)2αa

4ω2
b

if 2ωb = ωa

V
(b,a,b)
(1,1,0)(t) = (αb)2αa

4ωaωb
if 2ωb = ωa

V
(a,b,b)
(1,1,0)(t) = (αb)2αa

4ωaωb
if 2ωb = ωa

0 otherwise

Table 3.3: Coupling of averaged coefficients for third-order averaging of driftless systems.
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follows,
ω1 + ω2 − ω3 = 0, ω1 − ω2 − ω3 = 0, and ω1 − ω2 + ω3 = 0. (3.24)

In order to avoid second-order coupling between terms when three distinct vector fields are contributing, the
following inequality also needs to hold,

ωi − ωj 6= 0, for i 6= j. (3.25)

Failure to satisfy the inequality (3.25) will excite a Jacobi-Lie bracket of the form, [Yi, Yj ]. With the above
conditions met, the only non-zero combinations involve an odd number of cosines and an even number of
sines. It is important to note that the algebraic inequality,

2ωi − ωj 6= 0, for i 6= j, (3.26)

may also need to hold, according to the coupling of Table 3.3. Failure to satisfy the inequality (3.26) may
excite the Jacobi-Lie bracket corresponding to the averaged coefficients found in Table 3.3. These Jacobi-Lie
brackets take the form, [Yi, [Yj, Yi]].

Let’s examine the possiblities for the 3rd order case. If the Jacobi-Lie bracket is a function of three
distinct vector fields, i.e., [Y1, [Y2, Y3]], then satisfying the algebraic relations in Equations (3.24)-(3.26) for
the associated input functions, according to the Tables 3.2 and 3.3, will result in at least three contributions
from three Jacobi-Lie bracket combinations (obtained by cycling the vector fields) due to the fact that they
all satisfy the algebraic equalities. The averaged coefficients are

V
(i,j,k)
(1,1,0)(t) =






0
0
0







0
0

α1α2α3

4ω1ω2







0

−α1α2α3

4ω1ω3

0







0
0

α1α2α3

4ω1ω2







0
0
0







α1α2α3

4ω2ω3

0
0







0

−α1α2α3

4ω1ω3

0







α1α2α3

4ω2ω3

0
0







0
0
0







, (3.27)

where ω2 > ω3 > ω1 and i, j, k ∈ { 1, 2, 3 }. The matrix representing the averaged coefficient is read
as follows: i gives the outer row, j gives the column, and k gives the inner row. When multiplied by the
corresponding Jacobi-Lie brackets then summed over all indices,

V
(i,j,k)
(1,1,0)

(t) [Yi, [Yj, Yk]] =
α1α2α3

4ω1ω2
[Y1, [Y2, Y3]] −

α1α2α3

4ω1ω3
[Y1, [Y3, Y2]] +

α1α2α3

4ω2ω3
[Y2, [Y3, Y1]]

+
α1α2α3

4ω1ω2
[Y2, [Y1, Y3]] −

α1α2α3

4ω1ω3
[Y3, [Y1, Y2]] +

α1α2α3

4ω2ω3
[Y3, [Y2, Y1]] .

=
α1α2α3

4

((
1

ω1ω2
+

1

ω2ω3

)
[Y1, [Y2, Y3]] +

(
1

ω2ω3
− 1

ω1ω2

)
[Y2, [Y3, Y1]]

−
(

1

ω1ω2
+

1

ω1ω3

)
[Y3, [Y1, Y2]]

)
.

(3.28)

Using the Jacobi identity, it is possible to reduce this number.
�
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This example highlights a few critical issues when moving to higher-order. The first being the possi-
bility of coupling due to integrally related choices of frequencies failing to satisfy the algebraic inequality
(3.25). Additional coupling may occur between the Jacobi-Lie bracket of two of the input vector fields, i.e.,
[Ya, [Yb, Ya]], if the algebraic inequality (3.26) fails to be satisfied according to Table 3.3. Secondly there is
the problem of exciting more than one Jacobi-Lie bracket simultaneously. It will be shown that, when the
input functions are restricted to sines and cosine, it may not be possible to simplify the multiple Jacobi-Lie
bracket contributions down to a single contribution.

Lemma 3 For the case of three distinct vector fields entering into the third-order iterated Jacobi-Lie bracket,
[Ya, [Yb, Yc]], (a 6= b, a 6= c, and b 6= c), no choice of inputs will result in the excitation of motion along a
single bracket direction. If the following inputs are chosen,

va(t) = αa
abc cos(ωabct), v

b(t) = αb
abc sin(3ωabct), v

c(t) = αc
abc sin(2ωabct)

for some principle carrier frequency, ωabc, then only the bracket [Ya, [Yb, Yc]] and a cyclicly related bracket,
[Yc, [Ya, Yb]] or [Yb, [Yc, Ya]], will be excited. The corresponding averaged coefficients will be,

V
(a,b,c)
(1,1,0)

(t) =
3αabc

8ω2
abc

and V
(c,a,b)
(1,1,0)

(t) =
αabc

8ω2
abc

or,

V
(a,b,c)
(1,1,0)(t) =

αabc

4ω2
abc

and V
(b,c,a)
(1,1,0)(t) = − αabc

8ω2
abc

,

where αabc = αa
abcα

b
abcα

c
abc.

proof
Assume for now that, va, vb, and vc, are the only nonzero inputs to the system. We will examine the
corresponding averaged coefficient. Since the other inputs are set to zero, the system behaves similarly to
the three input example above. Without loss of generality, assume that a = 1, b = 2, and c = 3.

Let the input functions be

v1(t) = α1 cos(ω1t), v
2(t) = α2 sin(ω2t), v

3(t) = α3 sin(ω3t).

Assume that the algebraic inequality in Equation (3.26) for the coupling found in Table 3.3 is satisfied, and
no coupling occurs. The critical elements of the averaged coefficient are the same as in Equation (3.27),
where ω2 > ω3 > ω1 and i, j, k ∈ { 1, 2, 3 }. From Equation (3.28), the excited Jacobi-Lie brackets are

V
(i,j,k)
(1,1,0)(t) [Yi, [Yj, Yk]]

=
α1α2α3

4

((
1

ω1ω2
+

1

ω1ω3

)
[Y1, [Y2, Y3]] +

(
1

ω2ω3
− 1

ω1ω2

)
[Y2, [Y3, Y1]]

−
(

1

ω1ω3
+

1

ω2ω3

)
[Y3, [Y1, Y2]]

)
.

(3.29)

Denote ω̂i by

ω̂1 =
1

ω1

(
1

ω2
+

1

ω3

)
, ω̂2 =

1

ω2

(
1

ω3
− 1

ω1

)
, and ω̂3 =

1

ω3

(
1

ω1
+

1

ω2

)
.
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With these definitions,
ω̂1 > 0, ω̂2 < 0, ω̂3 > 0.

The Jacobi identity may be used to remove one of the Jacobi-Lie brackets, [Y2, [Y3, Y1]] or [Y3, [Y1, Y2]].
Select the last Jacobi-Lie bracket from Equation (3.29) to be removed using the Jacobi identity,

V
(i,j,k)
(1,1,0)(t) [Yi, [Yj, Yk]] =

α1α2α3

4
((ω̂1 + ω̂3) [Y1, [Y2, Y3]] + (ω̂2 + ω̂3) [Y2, [Y3, Y1]]) . (3.30)

The second Jacobi-Lie bracket in Equation (3.30) can be cancelled only if there exists a selection of ω i

satisfying one of the tensor equalities (3.24), such that

ω̂2 + ω̂3 = 0. (3.31)

This requires finding ω1 and ω3, achieving the equality,

2

(ω1 + ω3)ω3
− 1

(ω1 + ω3)ω1
+

1

ω1ω3
= 0.

Placing all of the terms under the same denominator gives the equivalent problem,

2ω1 − ω3 + (ω1 + ω3) = 3ω1 = 0,

which is not a valid solution. Therefore, there does not exist a selection of ω2 > ω3 > ω1, such that only
one Jacobi-Lie bracket contribution is achieved.

As for the choice of inputs given above, notice that selecting any ω2 > ω3 > ω1 such that the equality
ω2 = ω1 + ω3 holds will excite only two Jacobi-Lie brackets. Choosing ω3 = 2ω1 = 2ω will avoid the
coupling in Table 3.3 according to the algebraic inequality in Equation (3.26). The important decision of
the frequency assignments is to have the cosine carrier frequency be the smallest to avoid the coupling. The
final contribution is

V
(i,j,k)
(1,1,0)(t) [Yi, [Yj, Yk]] =

α1α2α3

8ω2
(3 [Y1, [Y2, Y3]] + [Y2, [Y3, Y1]]) .

Suppose that, instead, the second Jacobi-Lie bracket from Equation (3.29) were to be removed using the
Jacobi identity. Then the important averaged coefficients are

V
(i,j,k)
(1,1,0)(t) [Yi, [Yj, Yk]] =

α1α2α3

4
((ω̂1 − ω̂2) [Y1, [Y2, Y3]] − (ω̂2 + ω̂3) [Y3, [Y1, Y2]]) . (3.32)

The second Jacobi-Lie bracket in Equation (3.32) can be cancelled only if there exists a selection of ω i

satisfying one of the algebraic equalities (3.24), such that Equation (3.31) holds, which is not possible.
Again, choosing ω3 = 2ω1 = 2ω will avoid the coupling in Table 3.3 according to the algebraic

inequality in Equation (3.26). The final contribution is

V
(i,j,k)
(1,1,0)(t) [Yi, [Yj, Yk]] =

α1α2α3

8ω2
(2 [Y1, [Y2, Y3]] − [Y2, [Y3, Y1]]) .

Suppose now that a, b, and c are arbitrary, and the carrier frequency ωabc is chosen to be unique in the
sense that the algebraic inequalities of Equation (3.25), and Equation (3.26) according to Table 3.3, hold.
Furthermore, the algebraic equalities in Equation (3.24) hold with no undesired coupling. The analysis
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implies either,

V
(d,e,f)
(1,1,0) (t) [Yd, [Ye, Yf ]] =

αabc

8ω2
abc

(3 [Ya, [Yb, Yc]] + [Yb, [Yc, Ya]]) ,

or,

V
(d,e,f)
(1,1,0) (t) [Yd, [Ye, Yf ]] =

αabc

8ω2
abc

(2 [Ya, [Yb, Yc]] − [Yb, [Yc, Ya]]) ,

for summation over all indices d, e, f ∈ { 1 . . . m }, and where αabc = αa
abcα

b
abcα

c
abc.

In the worst case, the frequency ωabc = 2ωmax + 1 may be chosen, where ωmax is the maximal carrier
frequency of the other sinusoidal inputs. When utilizing higher-order averaged coefficients, the frequency
spacing will change to avoid coupling.
�

There is nothing that can be done to resolve the problem of exciting a second Jacobi-Lie bracket in this
case. However, one might be fortunate and have a vanishing bracket, i.e., if [Yb, [Yc, Ya]] = 0, then it is
possible to excite the remaining Lie bracket independently. This is precisely what happens in the two-input,
three-bracket case, one of the cycled brackets vanishes.

Lemma 4 For the case of two distinct vector fields entering into the third-order iterated Jacobi-Lie bracket,
[Yb, [Ya, Yb]], if the following inputs are chosen,

va(t) = αa
bab cos(2ωbabt), v

b(t) = αb
bab sin(ωbabt),

for some unique principle carrier frequency, ωbab, then only the bracket [Yb, [Ya, Yb]] will be excited. The
corresponding averaged coefficient is

V
(b,a,b)
(1,1,0)(t) = −3αbab

8ω2
bab

,

where αbab = αa
bab

(
αb

bab

)2
.

proof
Assume that these are the only nonzero inputs to the system. Without loss of generality, assume that a = 1,
b = 2. Set the input functions to be

v1(t) = α1 cos(2ωt), v2(t) = α2 sin(ωt). (3.33)

The averaged coefficients are

V
(i,j,k)
(1,1,0)(t) =




[
0
0

] [
0

−α1(α2)2

8ω2

]

[
0

−α1(α2)2

8ω2

] [
α1(α2)2

4ω2

0

]



, (3.34)

where the averaged coefficient is represented as a tensor with indices i, j, k ∈ { 1, 2 }. Since these are the
only non-zero inputs, the other indices, i, j, k ∈ 3, . . . m, of the averaged coefficient vanish. The averaged
coefficient matrix is read as follows: i choose the outer row, j chooses the column, and k chooses the inner
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row. The corresponding contribution to system motion is then,

V
(i,j,k)
(1,1,0)(t) [Yi, [Yj, Yk]] = −α

1(α2)2

8ω2
[Y1, [Y2, Y2]] −

α1(α2)2

8ω2
[Y2, [Y1, Y2]] +

α1(α2)2

4ω2
[Y2, [Y2, Y1]]

= −3α1(α2)2

8ω2
[Y2, [Y1, Y2]] , (3.35)

for summation over the indices i, j, k ∈ { 1, 2 }. With the choice of ω = ω212, α1 = α1
212 and α2 = α2

212,

V
(i,j,k)
(1,1,0)(t) [Yi, [Yj, Yk]] = −3α212

8ω2
212

[Y2, [Y1, Y2]] , (3.36)

where α212 = α1
212(α

2
212)

2. More generally, when a, b ∈ { 1, . . . ,m }, this analysis implies

V
(c,d,e)
(1,1,0)(t) [Yc, [Yd, Ye]] = −3αbab

8ω2
bab

[Yb, [Ya, Yb]] , (3.37)

where αbab = αa
bab(α

b
bab)

2. In the general case, the algebraic inequalities of Equation (3.25), and Equation
(3.26) according to Table 3.3, must hold with respect to other sinusoidal inputs to avoid coupling. The
algebraic equalities of Equation (3.24) must only hold for those that combine to form a Jacobi-Lie bracket
contribution. Again, the frequency ω = 2ωmax + 1 may be chosen, where ωmax is the maximal carrier
frequency of the other sinusoidal inputs. When higher-order Jacobi-Lie bracket contributions are desired the
frequency spacing will change.
�

Abstracting on the Sinusoidal Inputs

For higher-order expansions, myriad algebraic identities must hold in order to isolate specific bracket related
motions. Each averaged coefficient must be examined to determine its contribution, and the limitations
arising from the chosen set of input functions. Once a particular calculation is done, it need not be repeated
for another problem with the same Jacobi-Lie bracket requirements. The general strategy was proven in
[154, 155, 92], and also allows for the frequency choices to be positive rational numbers instead of only
positive integers.

Definition 12 Let B be an iterated Jacobi-Lie bracket. Define δa(B) to be the number of times that the
control vector field Ya appears in the iterated Jacobi-Lie bracket B.

In [92], it was shown that for any Jacobi-Lie bracket B such that δi(B) = δj(B) for all i, j = 1 . . . m, there
is no way to obtain unique activation of the Jacobi-Lie bracket B. The cyclicly related Jacobi-Lie brackets
will also be excited, as was seen in Lemma 3.

The time-periodic inputs are defined such that the averaged coefficients scale linearly with the parame-
ters αJ . For purposes of feedback, the αJ should be defined as functions of state so as to achieve stabilization
for the averaged equations of motion. There is no unique method for picking the αI

J to obtain the desired
product αJ = Πi∈Iα

i
J . Different choices of decomposing the product αJ into αI

J will result in different
controllers, although the averaged evolution will be the same. Both the Theorems of Section 3.1.3 below,
and the examples in Section 3.3 will discuss this freedom and its implications.
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3.1.3 Stabilization Using Sinusoids

To summarize, we have obtained the system response to a set of oscillatory control inputs for an arbitrary
order of averaging. We have also analyzed the effects of the oscillatory control inputs on the averaged
expansion, leading to an α-parametrized control form. Now, we must determine a stabilizing feedback
strategy.

For convenience, order the Jacobi-Lie brackets as they appear in the series expansion of the averaged

vector field. Let
{

Ŷj

}
denote the Jacobi-Lie brackets, and let

{
Tj
}

be their corresponding averaged

coefficients. With this ordering, the averaged equations of motion can be put into the form:

ż = XS + Ti(α)Ŷi = XS +B(z)H(α), (3.38)

where the matrices B and H are

B(z) = [Ŷ1 . . . ŶN ], and H(α) = [T1 . . .TN ]T. (3.39)

The α parameters will be used to obtain control authority over the indirectly controllable states.
The dependence of the controller design on a local Lie algebra basis is problematic if the Jacobi-Lie

brackets used to satisfy the LARC vary pointwise. If the controller is to stabilize to different points, each
with a unique basis spanning the Lie algebra, then multiple α-parametrizations are necessary [77]. For
systems that are well-controllable, multiple parametrizations can be avoided.

Oscillatory Control via Discretized Feedback

We first consider feedback based on time discretization, while a continuous time version is developed below.
State error will be used as feedback to modulate the α-parameters, converting the problem to periodic
discrete feedback. It is very similar to the motion control algorithms, based on motion primitives, that
use approximate inversion for open loop stabilization and trajectory tracking [21, 100]. In the language of
Floquet theory, our goal is to utilize feedback so as to create stable Floquet multipliers.

Theorem 16 Consider a system of the form (3.7) which satisfies the LARC at q∗ ∈ Q. Let ua(t) be the
corresponding set of α parametrized, T -periodic inputs functions where a = 1 . . . m and α ∈ R

n−m. Let
z(t) be the averaged system response to the inputs. Given the averaged system (3.38), assuming that the m
directly controlled states have been linearly stabilized and that the linearization of H from Equation (3.39)
with respect to α at α = 0 and z = q∗ is invertible on the (n −m) dimensional subspace to control, then
there exists a K ∈ R

(n−m)×n such that for

α = −ΛKz(T bt/T c),

where Λ(n−m)×(n−m) is invertible and b·c denotes the floor function, the average system response is stabi-
lized.

proof
Given the assumptions on the system, the averaged system (3.38) is fully controllable. Linearization of the
system with respect to z and α yields

ż = Az +B
∂H

∂α
α ≡ Az +BΥα. (3.40)
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Choosing α constant over a period, the above system can be directly integrated:

z(T ) = eAT z(0) + eAT

∫ T

0
e−AtdtBΥα.

Now we effectively have the discrete, linear system

z(k + 1) = Âz(k) + B̂α,

where

Â = eAT , and B̂ = eAT

∫ T

0
e−AtdtBΥ.

The control assumptions on the system imply that the matrix B̂ has a pseudo-inverse for the (n − m)
dimensional subspace that we would like to stabilize. Denote this pseudo-inverse by Λ. Now choose the
matrix K such that the eigenvalues of Â −K lie within the unit circle. With this choice of Λ and K , the
discrete system has been stabilized, and by extension the continuous system with feedback that is piecewise
constant over a period.
�

The directly controlled subspace is continuously stabilized, whereas the indirectly controlled subspace is
stabilized with time-discretized feedback. The error is sampled at the end of every period, and the error is
computed and used to update the α-parameters. The α-parameters then remain remain fixed for the duration
of a period.

Using the analysis of Sussman and Liu [155, 93], Morin and Samson [118] derived a discretized feed-
back strategy which functions the same as the one proven in Theorem 16. Morin and Samson considered
an extended system, which consists of an extra copy of the configuration space that evolves discretely in
time. The discretely evolving configuration space is used for feedback modulation of sinusoidal inputs. We
have more explicitly linked the discretely evolving system to the average of the actual oscillatory system.
Additional distinctions are that for the method presented here, (1) the directly controllable subsystem is still
continuously stabilized, (2) a homogeneous approximation is not needed to construct the controller, and (3)
by appealing to the generalized averaging theory, it is possible to make modifications and improvements
to the control strategy. The improvements follow below, some of which recover other known stabilizing
controllers for underactuated, driftless nonlinear systems.

Oscillatory Control via Continuous Feedback

The control design procedure outlined above required integration of the linearized dynamical model over
a period of actuation, and a discretized feedback strategy. Corollary 3 implies that stability can also be
determined from the Floquet exponents, i.e., the stability of the continuous autonomous averaged vector
field. A version of Theorem 16 can be proven without discretizing the closed-loop system.

Theorem 17 Consider a system of the form (3.7) which satisfies the LARC at q∗ ∈ Q. Let ua(t) be the
corresponding set of α parametrized, T -periodic inputs functions where a = 1 . . . m and α ∈ R

n−m. Lastly
denote by z(t), the averaged system response to the inputs. Given the averaged system (3.38), assuming that
the m directly controlled states have been linearly stabilized and that the linearization of H with respect to
α at α = 0 and z = q∗ is invertible on the (n − m) dimensional subspace to control, then there exists a
K ∈ R

(n−m)×n such that for
α = −ΛKz(t),

where Λ(n−m)×(n−m) is invertible, we have stabilized the average system response.
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proof
Follows the proof of Theorem 16, but without the discretization step.
�

Oscillatory Control via Lyapunov Functions

In Section 2.3, the linearization of the autonomous Floquet vector field, Z , was emphasized as a means
to prove stability of the original oscillatory flow. In reality, any method to demonstrate stability of the
average can be applied; for example, using a Lyapunov function for the averaged system is permissible. In
this section, we demonstrate how ideas from homogeneous control theory [108, 109] can also be used to
prove exponential or ρ-exponential stability. The methods provide a way to improve the controllers found in
[108, 109, 136] for two reasons: (1) the Lyapunov function for the averaged system will take a simpler form
and will not be time-varying, allowing for improved Lyapunov analysis, and (2) in practice, the modification
introduces adjustable controller gains that can be used to improve the closed-loop system response.

Definition 13 A stabilized truncated series expansion with respect to the Lyapunov function, V , for the
vector field (2.32) is a truncated vector field that has the same stability property using the Lyapunov function,
V , as any higher-order truncation of the vector field, and also the full series expansion of the vector field.

Recall, the averaged system response in Equation (3.38). Consider a parametrization for α, e.g., α =
p(z). The system in Equation (3.38) may be expressed as,

ż = Z(z) ≡ XS(z) +B(z)H ◦ p(z). (3.41)

Theorem 18 Consider a system of the form (3.7) which satisfies the LARC at q∗ ∈ Q. Let ua(t) be the
corresponding set of α parametrized, T -periodic inputs functions where a = 1 . . . m and α ∈ R

n−m. Lastly
denote by z(t), the averaged system response to the inputs. Given the averaged system (3.38), assume that
there exists an α-parametrization and a Lyapunov function, V , such that (3.41) is a stabilized truncated
series expansion with respect to the Lyapunov function, V . If the system in Equation (3.41) is shown to
be asymptotically (exponentially) stable using the Lyapunov function, then the averaged system response is
asymptotically (exponentially) stable.

proof
Follows the proof of 16, but without the discretization step. Instead of the linearization, use the Lyapunov
function, V , to demonstrate stability.
�

Since the system (3.7) is nonlinear, the closed-loop system (3.41) will also contain nonlinear terms that
complicate the Lyapunov analysis. In a local neighborhood of the equilibrium, some of the nonlinear terms
do not affect stability and may be disregarded. Theorem 17 resolved the problem by linearizing the equations
of motion; linearization emphasizes the dominant terms within a neighborhood of the equilibrium. A general
strategy for extracting the dominant stabilizing terms and removing the unnecessary nonlinear terms is
needed for the Lyapunov technique to be useful.

Homogeneous Systems Geometric homogeneity will be used to identify the higher order terms that can
be removed. Although what follows can be described in more generality, for brevity we follow the material
from [62, 108]. Without loss of generality, the equilibrium point will be translated to the origin of R

n.
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Definition 14 Let x = (x1, . . . , xn) denote a set of coordinates for R
n. A dilation is a mapping ∆r

λ :
R

+ × R
n → R

n defined by
∆r

λ(x) = (λr1x1, . . . , λrnxn),

where r = (r1, . . . rn) are n positive rationals such that r1 = 1 ≤ ri ≤ rj ≤ rn for 1 < i < j < n.

Typically r, called the scaling, will be given and the notation ∆λ will be used in place of ∆r
λ.

Definition 15 A continuous function f : R
n → R is homogeneous of degree l ≥ 0 with respect to ∆λ if

f(∆λ(x)) = λlf(x).

Definition 16 The homogeneous space, Hk, is the set of all continuous functions, f : R
n → R, with

homogeneous degree k.

Definition 17 A continuous vector field X(x, t) = X i(x, t) ∂
∂xi is homogeneous of degree m ≤ rn with

respect to ∆λ, if X i(·, t) ∈ Hri−m.

Definition 18 A continuous map from ρ : R
n → R, is called a homogeneous norm with respect to the

dilation ∆λ, when

1. ρ(x) ≥ 0, ρ(x) = 0 ⇐⇒ x = 0.

2. ρ(∆λ(x)) = λρ(x), ∀λ > 0.

The notion of homogeneous degree and the homogeneous norm are used to characterize vector fields
and truncatable components of vector fields.

Definition 19 The mth-degree homogeneous truncation of a vector field, denoted Trunc∆
m (·), is the trunc-

tion obtained by removing all terms of homogeneous degree greater than m.

The m-degree homogeneous truncation with respect to the dilation ∆ results in the differential equation,

ż = Zm = Trunc∆
m (XS(z) +B(z)H ◦ p(z)) . (3.42)

If there exists a Lyapunov function such that the system in Equation (3.42) is stable, then the averaged
system is locally stable.

Theorem 19 Consider a system of the form (3.7) which satisfies the LARC at 0 ∈ R
n. Let ua(t) be the

corresponding set of α parametrized, T -periodic inputs functions where a = 1 . . . m and α ∈ R
n−m. Lastly

denote by z(t), the averaged system response to the inputs. Given the averaged system (3.38), assuming
that there exists an α-parametrization and a Lyapunov function such that the homogeneous truncation in
Equation (3.42) is asymptotically (ρ-exponentially) stable with respect to the Lyapunov function, then the
actual system response is asymptotically (ρ-exponentially) stable.

proof
Rosier [142, Theorem 3] has proven that the homogeneous truncation of Equation (3.42) will preserve
the dominant terms vis-a-vis stability. If the Lyapunov function can be used to demonstrate stability of the
homogeneous truncation (3.42), then locally the Lyapunov function is stabilized with respect to the averaged
expansion of Equation (3.38). Invocation of Theorem 18 completes the proof.
�

To achieve ρ-exponential stability for the dynamical system in Equation (3.41), the homogeneous truncation
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of order 0 must be stabilizing. The 0-degree homogeneous truncation with respect to the dilation ∆ results
in the system

ż = Z0 = Trunc∆
0 (XS(z) +B(z)H ◦ p(z)) . (3.43)

If there exists a Lyapunov function such that the system in Equation (3.43) is stable, then the averaged
system is locally ρ-exponentially stable.

Corollary 5 Consider a system of the form (3.7) which satisfies the LARC at 0 ∈ R
n. Let ua(t) be the

corresponding set of α parametrized, T -periodic inputs functions where a = 1 . . . m and α ∈ R
n−m. Lastly

denote by z(t), the averaged system response to the inputs. Given the averaged system (3.38), assuming that
there exists an α-parametrization and a Lyapunov function such that the 0-degree homogeneous truncation
in Equation (3.43) is asymptotically stable with respect to the Lyapunov function, then the actual system
response is ρ-exponentially stable.

If the parametrization is contructed so that the averaged coefficients are of homogeneous order 0 and are
stabilizing, then the existence of a Lyapunov function for the homogeneous truncation of the averaged vector
field is guaranteed by Rosier [142]. Hence, there is no need to find the Lyapunov function in this case.

Corollary 6 Consider a system of the form (3.7) which satisfies the LARC at 0 ∈ R
n. Let ua(t) be the

corresponding set of α parametrized, T -periodic inputs functions where a = 1 . . . m and α ∈ R
n−m. Lastly

denote by z(t), the averaged system response to the inputs. Given the averaged system (3.38), assuming
that there exists an α-parametrization such that the 0-degree homogeneous truncation in Equation (3.43) is
asymptotically stable, then the actual system response is ρ-exponentially stable.

In M’Closkey [108], dilation is used in the construction of the stabilizing controller. Consequently, the
dilation is adapted to the Lie algebra of the underactuated driftless control system2, which is why ρ-norms
must be used. As a consequence, only ρ-exponential stability can be proven. The Lyapunov function used
to show ρ-exponential stability in Theorem 19 will typically be a power of the ρ-norm,

L(z) = ρ2rn(z). (3.44)

We have provided an alternative method for constructing the time-varying controllers, which only uses
the dilation and homogeneous norm to define a homogeneous truncation. Consequently, the dilation need
not be adapted to the Lie algebra, but may be the standard dilation where ri = 1. Under the standard
dilation, the 2-norm may be used. In this case, Corollary 6 improves upon Theorem 18. It does so, not
only by using the standard 2-norm, ||·||, and feedback of homogeneous order 0 under the 2-norm, but by
also proving stabilization of the Lyapunov function with respect truncations of the averaged expansions. In
practice the Lyapunov function used to show exponential stability will be the 2-norm squared,

L(z) = ||z||2. (3.45)

Just like in the theorems using linearization of the average, the homogeneous truncation focuses on the
dominant contributions within a local neighborhood of the equilibrium; local ρ-exponential (exponential)
stability is achieved.

Comments on the Stabilizing Controllers

Theorems 16-19 and Corollaries 5-6 stabilize an equilibrium point of the averaged system. If the α-
parametrized control input functions do not vanish at the equilibrium q∗, then by Theorem 9, the flow of the

2In a dilation adapted to the Lie algebra, the scalings r will not satisfy ri = rj for all i, j ∈ [1, n]. See M’Closkey [108] for
more details.



78

actual system stabilizes to an orbit (of size O (ε)) around the fixed point. If, on the other hand, the input
functions do vanish at the equilibrium, then Corollary 2 implies that the flow of the actual system stabilizes
to the fixed point (i.e., the orbit collapses to the fixed point).

The states requiring continuous feedback use the average rather than the instantaneous values of the
system for state feedback. Trajectories of the actual flow are related to the average flow by the Floquet
mapping,

x(t) = P (t)(z(t)). (3.46)

We may solve for the average z(t), using the current state x(t). Since P (t) is given by a series expansion,
we can easily compute its inverse.

For the discretized feedback strategy, the difference in the averaged and instantaneous indirectly con-
trolled states is not a critical factor to consider due to the fact that P (t) is periodic, i.e., P (kT ) = P (0) =
Id, k ∈ Z

+. The directly stabilized states do not use discretized feedback, and consequently do require the
average to be used as feedback. If the Floquet mapping P (t) is ignored and instantaneous states x(t) are
used in the feedback control of the directly controllable states, this averaging method will place an upper
bound on the feedback gains. The oscillatory inputs should be faster than the natural stabilizing dynamics
of the directly stabilized subsytem, otherwise there will be attenuation of the oscillatory signal (and conse-
quently the feedback signal to the indirectly controlled states). With the exception of [118], this effect has
not been discussed in prior presentations of feedback strategies that utilize averaging techniques [108, 136].

In practice, one may utilize averages computed in realtime as continuous feedback. The benefit of
this latter approach is that the averaging process may serve to filter out noise in the sensor signals. It
will also attenuate the feedback of external disturbances. As the continually computed average, x̄(t) =
1
T

∫ t
t−T x(τ) dτ , is not quite the same as z(t) = P−1(t) (x(t)), there may be some differences. When

performing averaging of sensed measurements, calculate P (t) to determine which states require averaging.
Recall that P (t) is a periodic function with a power series representation in ε. The states with dominant
oscillatory terms will require averaging, whereas the states that have no oscillatory terms, or ignorable,
perturbative oscillatory terms, in P (t) will not require averaging.

Trajectory Tracking. To track a trajectory, replace x(t) with x(t) − xd(t); the system must be locally
controllable along the trajectory. As the trajectory evolves, the Jacobi-Lie brackets contributing to the Lie
algebra rank condition may vary. The trajectory tracking feedback strategy is more complicated since mul-
tiple parametrizations will be needed. If a system is well controllable, then a single parametrization will
suffice to track trajectories. Systems with group symmetris are well controllable if and only if there exists a
Lie algebra basis at the group identity. Lastly, for the discretized feedback, the Nyquist criteria is a limiting
factor in tracking a trajectory for the indirectly controlled states.

Existence and Continuity of Solutions. M’Closkey [108] has shown that any exponentially stabilizing
feedback-law is necessarily non-Lipschitz. The feedback laws created by the algorithm in [108] are smooth
on Q\ { q∗ }, and continuous at q∗ ∈ Q. The stabilization is (ρ-exponentially) asymptotic; although the
control system may stabilize to a neighborhood of the origin in finite time, it will not stabilize to the origin
in finite time. The stabilizing feedback strategies using the generalized averaging theory are also smooth on
Q\ { q∗ }, and continuous at q∗ ∈ Q (some are piecewise smooth and piecewise continuous, respectively).
According to [108], solutions to the series expansions exist and are unique. On a related note, conditions for
the continuity of solution trajectories with respect to the control inputs may be desired. Liu and Sussman
[94, 95] have published work regarding the continuous dependence of trajectories with respect to the input
functions.
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3.2 Mechanical Systems with Nonholonomic Constraints

This section specializes the above results to systems with nonholonomic constraints; for more background
see Bloch et al. [15]. It is assumed that the constraints are linear nonholonomic constraints; the generaliza-
tion to affine constraints should follow naturally from the analysis of this section and of [15]. Initially, the
focus is on systems whose constraints may be defined using an Ehresmann connection form. Lie group sym-
metries are subsequently added, resulting in a principal connection form. The averaged expansions of the
underactuated driftless affine control system, Equation (3.1), may be simplified by incorporating the addi-
tional structure imposed by the connections forms. The connection forms may also be used to refine the Lie
algebra rank condition, and consequently the controllability verification of mechanical systems with non-
holonomic constraints. For more information on the background differential geometry, see the references
[69, 70].

3.2.1 Systems with Nonholonomic Constraints

The control system (3.1) evolves on a manifold Q, called the configuration space which is assumed to have
a bundle structure, π : Q → R, where R is a manifold called the base space. In addition to the base
projection, π, there is a complementary fiber projection, πS : Q → S, [70]. The mapping, π, may be used
to define a vertical subspace to the tangent bundle, TQ. It is given by the kernel of the tangent mapping
Tqπ : TqQ→ Tπ(q)R.

Definition 20 The vertical subspace of TqQ, denoted, VqQ, is the kernel of the bundle projection,

VqQ = { uq | Tπ(uq) = 0 } .

The horizontal subspace is determined by the constraints, which can be described via the vanishing of an
Ehresmann connection.

Definition 21 [15] An Ehresmann connection, A, is a vertical-valued one-form on Q that satisfies

1. Aq : TqQ 7→ VqQ is a linear map ∀q ∈ Q.

2. A is a projection, A(vq) = vq, ∀q ∈ Q.

The Ehresmann connection defines a splitting of the tangent space into horizontal and vertical vectors. The
horizontal subspace HqQ ⊂ TqQ at q ∈ Q is given by the kernel of the Ehresmann connection.

In a local trivialization, Q ∼= R× S, the constraint equations take the form,

ṡ+Aloc(r, s) · ṙ = 0, (3.47)

where Aloc is the local form of the Ehresmann connection [15]. In local coordinates it is mapping from
Q ×M TM to TS, where Q ×M TM is the fiber product with base M (see Section 4.1.1). For every
point q ∈ Q, there exists a isomorphic mapping taking elements in Tπ(q)R to elements in HqQ, called the
horizontal lift. In local coordinates, q = (r, s), it operates as follows,

vr ∈ TrR, vh
r = (vr,−Aloc(r, s) · vr) ∈ HqQ. (3.48)

Underactuated Driftless Control Systems. The definitions and operations above extend to vector fields,
which are sections on the tangent bundle.
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Definition 22 The horizontal subspace of the space of vector fields on Q, is denoted by X H(Q) ⊂ X (Q).
It is the subspace of vector fields which are horizontal for all points in Q. The vertical subspace of the space
of vector fields on Q is denoted by X V (Q) ⊂ X (Q). It is the subspace of vector field which are vertical for
all points in Q.

Definition 23 [69] Given an Ehresmann connection and a vector field onR,X ∈ X (R), there is a uniquely
defined horizontal vector field on Q, denoted by Xh ∈ XH(Q), such that

Tπ ◦Xh = X.

The horizontal vector field, Xh is called the horizontal lift of X . Conversely, given a horizontal vector field
Xh ∈ XH(Q), there exists a vector field X ∈ X (R), whose horizontal lift is Xh.

Typically the base space, R, will be directly actuated and fully controllable. Consequently, there exists a
collection of control vector fields, { Ya }m

1 , where m = dim(R) and Ya ∈ X (M). The horizontal lift of the
control vector fields, in local coordinates, may be used to give the governing equations for an underactuated
driftless affine system,

ṙ = Yau
a

ṡ = −Aloc(r, s) · Yau
a (3.49)

Therefore, under constraints defined by an Ehresmann connection, the standard form for an underactuated
driftless affine control system, given in Equation (3.1), may be rewritten as,

q̇ = Y h
a u

a. (3.50)

The involutive closure at q ∈ Q is C∞(q), c.f. Equation (3.5), and consists of iterated Jacobi-Lie brackets
of horizontally lifted control vector fields. Using the structure of the Ehresmann connection, it is possible to
refine the Lie algebra rank condition from Equation (3.6).

The Lie Algebra Rank Condition. Since vertical vector fields in X V (Q) are π-related to the zero vector
field in X (R), it is possible to show that

[
Xh, Y v

]
∈ X V (Q), (3.51)

where X ∈ X (R) and Y v ∈ X V (Q). In other words, the Jacobi-Lie bracket between a horizontal and a
vertical vector field is again vertical. Additionally, the curvature of the Ehresmann connection, denoted by
B, is given by,

B(Xh, Y h) =
[
Xh, Y h

]
. (3.52)

Importantly, the curvature is vertical valued. Consequently, the only vector fields in C∞ with a nontrivial
horizontal projection are the horizontal lifts of the control vector fields.

Theorem 20 Under the assumption that the control vector fields, Ya ∈ X (R), span the tangent space
Tπ(q)R for q ∈ Q, the Lie algebra rank condition at q is equivalent to the condition that

span
{[

Y h
ik
. . . ,

[
Y h

i2 ,
[
Y h

i1 , Y
h
i0

]]]
(q)
}

= VqQ, (3.53)

for k ∈ Z
+\ { 0 }.
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The Ehresmann connection can be used to define the notion of parallel transport. Parallel transport is given
by flow along horizontal vector fields,

PtX
0,t = ΦXh

0,t , X ∈ X (R). (3.54)

Parallel transport naturally leads to the notion of a covariant derivative for elements f ∈ C∞(R),

∇Xf ≡ LXhf (3.55)

Corollary 7 [69] Under the assumption that the control vector fields, Ya ∈ X (R), span the tangent space
Tπ(q)R for q ∈ Q, the Lie algebra rank condition at q is equivalent to the condition that

span
{
∇Yik

· · · ∇Yi2
B(Y h

i1 , Y
h
i0 )(q)

}
= VqQ, (3.56)

for k ∈ Z
+\ { 0 }.

Because the curvature and its higher order covariant derivative are all vertical, the local curvature form may
be used instead. The local curvature form may be obtained from the complementary projection,

Bloc(X,Y ) ≡ TπS ◦ B(Xh, Y h), ∀X,Y ∈ X (R). (3.57)

The covariant derivative, ∇, induces a covariant derivative, ∇̃, on the local curvature form via the identity,

∇̃XBloc(Y,Z) = TπS

(
∇XB(Y h, Zh)

)
, ∀X,Y,Z ∈ X (R). (3.58)

Corollary 8 Under the assumption that the control vector fields, Ya ∈ X (R), span the tangent space Tπ(q)R
for q ∈ Q, the Lie algebra rank condition at q is equivalent to the condition that

span
{
∇̃Yik

· · · ∇̃Yi2
Bloc(Yi1 , Yi0)(q)

}
= TπS(q)S, (3.59)

for k ∈ Z
+\ { 0 }.

The Lie algebra rank condition has been simplified to the condition that the local form of the curvature and
its covariant derivatives span the tangent to the fiber.

Controllability of Systems with Constraints. From Kelly and Murray [67], we may define the notion of
strong and weak fiber controllability.

Definition 24 A system (3.50) is said to be strongly fiber controllable if, for any qi, qf ∈ Q, there exists a
time T > 0 and a curve r(·) ∈ R connecting ri = π(qi) and rf = π(qf ) such that the horizontal lift of r(·)
passing through qi satisfies, rh(0) = qi and rh(T ) = qf .

Strong controllability is the standard definition of controllability interpreted using an Ehresmann connection
form and its horizontal lift. For systems with constraints, trajectories in the configuration space must be
horizontal lifts of trajectories in the base space. Kelly and Murray further noted that some locomotive
systems did not require strong controllability, since the evolution of the base space was not of primary
importance. By not imposing final conditions on the base space, weak controllability may be defined.

Definition 25 A system (3.50) is said to be weakly controllable if, for any qi ∈ Q and sf ∈ S, there exists
a finite time T > 0 and a curve in the base space r(·) whose horizontal lift passing through qi at time t = 0
satisfies, rh(T ) = qf , where sf = πS(qf ).
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Weak controllability does not place restrictions on the final point of the base space. Mobile robots whose
base space corresponds to the angles of wheels are systems that may be weakly controlled. By not restricting
the final angle of the wheel, greater freedom is allowed. Most importantly, the need to stabilize or control the
base space no longer holds for weakly controlled systems. Since controllability of only the fiber is sought,
the control brackets may also be used to span the vertical space.

Theorem 21 For the system (3.50), the following are equivalent:

1. the system is small-time weakly controllable,

2. span
{
TqπS

([
Y h

ik
. . . ,

[
Y h

i3
,
[
Y h

i2
, Y h

i1

]]]
(q)
) }

= TπS(q)S,

3. span
{{

TqπS

(
∇Yik

· · · ∇Yi2
B(Y h

i1
, Y h

i0
)(q)

)}⋃{
TqπS(Y h

i0
)
}}

= TπS(q)S,

4. span
{{

∇̃Yik
· · · ∇̃Yi2

Bloc(Yi1 , Yi0)(q)
}⋃{

TqπS(Y h
i0

)
}}

= TπS(q)S,

for k ∈ Z
+\ { 0 } and a = 1 . . . m.

The theorem follows from the definition of weak controllability, Theorem 20, and Corollaries 7 and 8.

The Averaged Expansions. Suppose that the system (3.50) were to be weakly fiber controllable, and
there was no need to stabilize the base space. Then the averaged expansions from Section 3.1 may be
simplified. Suppose furthermore that controllability was obtained through the curvature and higher-order
covariant derivatives.

Third-order averaging using the averaged expansion of Equation (3.19) is

{
ṙ
ṡ

}
=

{
0

1
2V

(α,β)
(1,0) (t)Bαβ(r, s) + 1

3V
(α,β,γ)
(1,1,0) (t)Bαβγ(r, s)

}
(3.60)

where Bαβ is the local form of the curvature form, defined as follows,

Bαβ ≡ Bloc(Yα, Yβ),

and Bαβγ is the covariant derivative of the local curvature form,

Bαβγ ≡ ∇YαBloc(Yβ, Yγ).

Due to the structure of the vector fields, there will never be a contribution to the base space unless the
first order average is non-vanishing. This means that all expansions will only affect the fiber space. In the
average, the evolution of the base space is trivial, a very nice result when dealing with systems of this type.
Since, in the average, the base variables are constant, replacing them by their averages in the equations of
motion reduces Equation (3.60) to

ṡ =
1

2
V

(α,β)
(1,0) (t)Bαβ(r, s) +

1

3
V

(α,β,γ)
(1,1,0) (t)Bαβγ(r, s) (3.61)

The equations have been simplified to evolution of the fiber only, possibly rendering further analysis tractable.
Higher-order averages have the same simplifying property.

Many of these results can be found in the literature when the system with nonholonomic constraints also
involves Lie groups symmetries [137, 67]. The next section discuss the consequences of reduction under
group symmetry.
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3.2.2 Systems with Nonholonomic Constraints and Symmetries

This section examines the simplifications that occur when symmetries are added to nonholonomic systems
with constraints. The symmetry involved is group invariance with the Lie group G, where G acts on the
configuration manifold Q. The action of G will be denoted by Φg, and maps g 7→ gq. The action gives
the manifold Q a principal bundle structure, π : Q → Q/G. The base space is M = Q/G. The reader is
referred to Marsden and Ratiu [99] for more background on Lie groups and geometric mechanics.

For the Lie group, G, there is a corresponding Lie algebra g, defined using the tangent space of the
group identity, TeG. The Lie algebra elements act as vector fields on the configuration space Q via the
infinitesimal generator,

ξ · q ≡ ξQ(q) ≡ d

dt
Φexp ξt.

Assume that the entire system is invariant under the group action. In particular, the constraints are G-
invariant, i.e.,

TΦ∗
gA(q, q̇) ≡ A(TΦg(q, q̇)) = A(q, q̇) = 0.

Group invariance means that the system may be reduced. The Ehresmann connection form reduces to a
principal connection form.

Definition 26 [15] A principal connection on the principal bundle π : Q → Q/G is a map A : TQ 7→ g

that is linear on each tangent space (e.g., A is a Lie-algebra valued one-form) and is such that

1. A((Qq)) = ξ, ∀ξ ∈ g and q ∈ Q.

2. A is Ad-equivariant:
A(TqΦg(vq)) = AdgA(vq),

for all vq ∈ TqQ and g ∈ G, where Ad denotes the adjoint action of G on g.

Notions of horizontality and verticality are inherited from the Ehresmann connection, except that now the
G-invariant vertical space can be, pointwise, isomorphically identified with the Lie algebra, g. The equations
of motion reduce also to the Lie algebra, and in a trivialization the oscillatory control equation (3.49) is now
given by

ṙ = Ya(r)u
a

ξ = −Aloc(r)Ya(r)u
a,

(3.62)

where the Lie group evolution is obtained from the reconstruction equation,

ġ = −gξ , g(0) = g0. (3.63)

The local form of the principal connection is a Lie-algebra valued 1-form, Aloc : TM → g.

Lie algebra rank condition. Due to the identification of the vertical vector space with the Lie algebra,
Theorem 20 may be reinterpreted for systems evolving on a principal bundle with a principal connection.

Theorem 22 [137] Under the assumption that the control vector fields, Ya ∈ X (M), span the tangent
space Tπ(q)M for q ∈ Q, the Lie algebra rank condition at q is equivalent to

span
{
A
([
Y h

ik
. . . ,

[
Y h

i2 ,
[
Y h

i1 , Y
h
i0

]]])}
= g. (3.64)

for k ∈ Z
+\ { 0 }.
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The principal connection can be used to define the notion of parallel transport. Parallel transport is given by
flow along horizontal vector fields,

PtX
0,t = ΦXh

0,t , X ∈ X (M). (3.65)

Using the parallel transport, it is possible to define a covariant derivative for elements in C∞M ,

∇Xf = LXhf (3.66)

Corollary 9 [137] Under the assumption that the control vector fields, Ya ∈ X (R), span the tangent space
Tπ(q)R for q ∈ Q, the Lie algebra rank condition at q is equivalent to

span
{
A
(
∇Yik

· · · ∇Yi2
B(Y h

i1 , Y
h
i0 )
)}

= g, (3.67)

for k ∈ Z
+\ { 0 }.

Because the principal connection is Ad-equivariant and its higher order covariant derivative are all vertical,
the curvature form may be identified with an element of the associated adjoint bundle, g̃, of the principal
bundle,

g̃ ≡ Q×G g ≡ (Q× g)/G. (3.68)

Sections of the associated adjoint bundle are in 1−1 correspondence with Ad-equivariant Lie algebra valued
functions. The local form of the principal connection, Aloc, is such a section.

The local curvature form may be obtained from the principal connection, via covariant differantiation
on the associated adjoint bundle,

Bloc(X,Y ) ≡ ∇̃XAloc(Y ), ∀X,Y ∈ X (R). (3.69)

Corollary 10 [137] Under the assumption that the control vector fields, Ya ∈ X (M), span the tangent
space Tπ(q)M for q ∈ Q, the Lie algebra rank condition at q is equivalent to the condition that

span
{
∇̃Yik

· · · ∇̃Yi2
Bloc(Yi1 , Yi0)(r)

}
= g, (3.70)

for k ∈ Z
+\ { 0 }.

The Lie algebra rank condition has been simplified to the condition that the local form of the curvature and
its covariant derivatives span the tangent to the fiber.

Controllability of Systems with Constraints. It was shown in the analysis for systems with an Ehres-
mann connection that weak controllability does not place the same restrictions on the Lie algebra as strong
controllability. Analogous results hold for the principal connection.

Theorem 23 For the system (3.62), the following are equivalent:

1. the system is small-time weakly controllable,

2. span
{ ([

Y h
ik
. . . ,

[
Y h

i3
,
[
Y h

i2
, Y h

i1

]]]
(q)
) }

= VqQ,

3. span
{{(

∇̃Yik
· · · ∇̃Yi2

Bloc(Yi1 , Yi0)(q)
)}⋃ {Aloc(Yi0)) }

}
= g,

for k ∈ Z
+\ { 0 } and a = 1 . . . m.

For more information on this derivation, see Cendra et al. [29, 30] or Radford and Burdick [137].
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The Averaged Expansions. Suppose that the system (3.62) were to be weakly fiber controllable, and
there was no need to stabilize the base space. Then the averaged expansions from Section 3.1 may be
simplified. Suppose furthermore that controllability was obtained through the curvature and higher-order
covariant derivatives.

Third-order averaging using the averaged expansion of Equation (3.19) is

{
ṙ
ġ

}
=





0

−g
(

1
2V

(α,β)
(1,0) (t)Bαβ(r, s) + 1

3V
(α,β,γ)
(1,1,0) (t)Bαβγ(r, s)

)


 (3.71)

where Bαβ is the local form of the curvature form, defined as follows,

Bαβ ≡ Bloc(Yα, Yβ),

and Bαβγ is the covariant derivative of the local curvature form,

Bαβγ ≡ ∇̃YαBloc(Yβ, Yγ).

Due to the structure of the vector fields, there will never be a contribution to the base space unless the
first order average is non-vanishing. This means that all expansions will only affect the fiber space. In
the average, the evolution of the base space is trivial ince, in the average, the base variables are constant.
Replacing them by their averages in the equations of motion reduces Equation (3.71) to

ġ = −g
(

1

2
V

(α,β)
(1,0) (t)Bαβ(r, s) +

1

3
V

(α,β,γ)
(1,1,0) (t)Bαβγ(r, s)

)
(3.72)

The equations have been simplified to evolution of the fiber only. Higher-order averages have the same
simplifying property.

3.3 Examples

Several examples will be examined to demonstrate the applicability of this approach. In some cases, the con-
trollers constructed using the generalized averaging theory are compared to known stabilizing controllers.
The first example in Section 3.3.1 is a three-state nonholonomic integrator. Being the simplest type of un-
deractuated nonlinear driftless control system, all of the controller strategies are worked out to demonstrate
how different controllers may be derived from different choices of the α-parametrization. Additionally,
the difference between averaged coefficients with and without definite integrals will be studied using the
nonholonomic integrator.

In Section 3.3.2, the Hilare robot is examined. Because the Hilare robot evolves on the Lie group
SE(2), the Lie group exponential is used instead. It is possible to provide a stabilizing controller without
the use of coordinate transformations. The essential information needed for stability is found in the averaged
coefficients and Jacobi-Lie brackets. Lastly, a discretized control strategy is given for the kinematic car in
Section 3.3.3. The controller is quickly derived using the procedure of this chapter. The discretized strategy
can be improved via modification to a continuous feedback strategy.

3.3.1 Nonholonomic Integrator

Here, a three-state nonholonomic integrator is presented and worked out in detail for the reader. The various
control strategies applicable via averaging theory are demonstrated. The nonholonomic integrator in R

3 is a
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driftless system with two control inputs, m = 2,

q̇ = Ya(q)u
a(q, t), for a = 1 . . . m,

where,

Y1(q) =





1
0

−q2



 and Y2(q) =





0
1
q1





The system is not linearly controllable at the origin, but does satisfy the LARC. To see this, take the Lie
bracket of the two input vector fields,

[Y1(q), Y2(q)] =





0
0
2



 .

Only second-order averaging will be necessary. Nevertheless, this example will serve as an excellent in-
troduction to the capabilities of the theory. For the directly controllable states, define the state-feedback to
be

f1(q) = −k1q1, f2(q) = −k2q2.

As per Lemma 2, out of phase sinusoids will be used to excite the critical averaged coefficient. Define

v1(t) = α1
12 sin(t) , v2(t) = α2

12 cos(t). (3.73)

This choice of control inputs results in the averaged coefficients,

V
(a)
(1)(t) =

[
0
0

]
, V

(a,b)
(1,0)(t) =

[
0 −1

2α12
1
2α12 0

]
,

where α12 = α1
12α

2
12. The averaged equations of motion are

d

dt





z1
z2
z3



 =





−k1z1
−k2z2

−k1z1z2 − k2z1z2



+ εα12





0
0
1



 (3.74)

The linearized averaged equations of motion are

d

dt





z1
z2
z3



 =





−k1z1
−k2z2

0



+ εα12





0
0
1



 , (3.75)

where linearization is with respect to z at 0, and α12 at 0. System (3.75) is stabilizable. The first two states
are exponentially stable, so the primary concern is the last state. There are several stabilization possibilities.

Discretized Stabilization to an Orbit. The first method is to stabilize the system to an orbit using Theo-
rem 16. To determine the range of feedback gains that will stabilize the system, it suffices to work out the
derivation of the feedback law in the proof of Theorem 16. Integrating the linearized system over one time
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period, gives the following discrete time system:

z1(k + 1) = exp(−k1T )z1(k),

z2(k + 1) = exp(−k2T )z2(k),

z3(k + 1) = z3(k) + εTα1
12α

2
12.

(3.76)

Choosing the parametrization,
α1

12 = −Kz3(k), α2
12 = 1,

for K > 0, the discrete evolution of the last state becomes

z3(k + 1) = (1 − εTK)z3(k)

Exponential stabilization occurs for
|1 + εTK| < 1

Solving for K , the range of stabilizing feedback gains is

K ∈
(

0,
1

πε2

)
(3.77)

The most effective gain lies at the midpoint of the range, whereas the boundary coincides with nominal
stability; simulations with gains set slightly outside of the boundary points diverge. At this point, there are
two options from which to choose: (1) we may feedback instantaneous values of the directly controlled
states, or (2) we may use the Floquet mapping to feedback averaged values of the directly controlled state.

(1) Instantaneous Feedback. If Option 1 is chosen, then the oscillatory inputs need to be faster than
the natural stabilizing dynamics of the directly controlled states. Otherwise, the closed loop response of
the directly controlled states will attenuate the oscillatory signal, and consequently the feedback to the
indirectly controlled states. A simulation for this case can be found in Figure 3.1(a). The system parameters
are k1 = k2 = 1, K = 4, and ε = 1

5 . The averaged system response does indeed stabilize exponentially,
however the actual system stabilizes to an orbit as predicted. For driftless systems this is not a great concern
since deactivation of the control inputs halts the system. Stopping at the appropriate moment in the cycle
will leave one at the origin.

(2) Averaged Feedback. Option 2 requires the calculation of the Floquet mapping, P (t). To first order,
the truncation is

P (t) ≈ Id +





εα1(1 − cos(t/ε))
εα2 sin(t/ε)

−εα1z2(1 − cos(t/ε)) + εα2z1 sin(t/ε)



+O

(
ε2
)

(3.78)

Since P (0) = P (kT ), where T is the period of oscillation, the discretized feedback to the third state may
use the instantaneous values z(kT ). However, the first two states have oscillatory behavior that must be
accounted for. The error values for feedback to the directly controlled subsystem are obtained from the
inversion of P (t) on the directly stabilized subsystem,

{
z1
z2

}
=

{
x1 − εα1(1 − cos(t/ε))
x2 − εα2 sin(t/ε)

}
, (3.79)
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c.f. Equation (3.46). With this method, not only may one choose any values of ε and K that satisfy (3.77),
but the feedback values k1 and k2 may be arbitrarily chosen. By feeding back averaged values, the con-
troller may give precedence to stabilization of the indirectly controlled state via oscillatory actuation. In the
simulation results presented in Figure 3.1(b), the gain choices were, k1 = k2 = 2, K = 4 and ε = 1

5 .
According to Equation (3.77), the smaller ε is, the larger the range of choices for K . As ε gets smaller,

the discretized feedback occurs more often and approaches the continuous system (3.74). In the limit ε→ 0,
the averaged (3.75) and discretized (3.76) systems coincide. This is the mathematical perspective of the
averaging found in the work of Sussmann and Liu [155, 93].

Discretized Stabilization to a Point. For stabilization to a point to occur, the control law must vanish
at the desired equilibrium. If periodic discontinuities in the control equations are admissable, then the
following control law will exponentially stabilize the system,

α1
12 = −sign(Kz3)

√
|Kz3| , α2

12 =
√
|Kz3|. (3.80)

The discontinuity occurs for the second input, v2(t) , at the end of each period, as the feedback gain is
adjusted, c.f. Equation (3.73). Again, there are two options concerning the actual implementation, however
we will only implement one: feedback of the average of the directly controlled states, Equation (3.79).
Simulations can be found in Figure 3.2, using the parameters k1 = k2 = 3, K = 4 and ε = 1

5 .

Continuous Stabilization to a Point. To avoid the discontinuity, one may utilize the inverse of the map-
ping P (t) to translate the instantaneous state values to the averaged state values for full state-feedback, i.e.,
z = P−1(t)(q(t)), where

P−1(t) ≈ Id −





εα1(1 − cos(t/ε))
εα2 sin(t/ε)

−εα1q2(1 − cos(t/ε)) + εα2q1 sin(t/ε)



−O

(
ε2
)
. (3.81)

Continuous feedback is now possible, the discretization step is avoided, and stability of Equation (3.75) is
sought. Any choice of the parameters k1, k2, K , and ε making the system (3.75) stable may be chosen.

Typically, the choice of ε is important because ε is used to ensure that the series representation may
be truncated. The nonholonomic integrator is a nilpotent system, therefore the series is finite in extent.
Consequently, there are no restrictions on ε and the averaging process is exact. The parameter ε will be
chosen to coincide with the amount time required to reach a small neighborhood of the origin of the linear
averaged system (3.75). Figures 3.1(a), 3.1(b), and 3.2 show that within about 3 seconds the indirectly
controlled state is close to the origin compared to the initial condition q3 = 1, so ε is chosen to be ε = 1

2 ,
which corresponds to a period of π seconds. In Figure 3.3(a), can be found the system response to the
continuous feedback controller; the gains are k1 = k2 = 7, and K = 3. No matter how high the gains k1

and k2 are set, the system will not reach the desired equilibrium until a certain amount of area in the control
space has been encircled. This area corresponds to the geometric phase associated with stabilization of the
third state. In Figure 3.3(a), it is possible to see that the first state attempts to stabilize to the origin, but is
pulled back up so that stabilization of the third state may occur (see also Figures 3.1(b) and 3.2). Figure
3.3(b) is the same controller but with the parameters k1 = k2 = 9, K = 1.5, and ε = 1 to demonstrate
that ε need not be small, nor even less than unity. The complete freedom in ε demonstrates a problem with
choosing nilpotent approximations. Under the nilpotent approximation, it is not possible to determine what
the natural choice of ε should be to ensure convergence of the series expansion for the actual system.
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(b) Option 2, Averaged feedback.

Figure 3.1: Discretized orbit stabilization for nonholonomic integrator.
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Figure 3.2: Discretized point stabilization for nonholonomic integrator.

Continuous Stabilization via Lyapunov Function The following parametrization choice is provably sta-
ble using a Lyapunov function,

α1
12 =

−Kz3
||z||1/2

, α2
12 =

z2
3

||z||3/2
. (3.82)

The averaged equations of motion are

d

dt





z1
z2
z3



 =





−k1z1
−k2z2

−k1z1z2 − k2z1z2



+ ε





0
0

−K z3
3

||z||2




. (3.83)

Taking the 0-degree homogeneous truncation,

d

dt





z1
z2
z3



 =





−k1z1
−k2z2

0



+ ε





0
0

−K z3
3

||z||2




. (3.84)

The Lyapunov function
V (z) = z2

1 + z2
2 + z2

3 (3.85)

trivially demonstrates stability of the system (3.84). Figure 3.4 shows the stabilized system response for
k1 = k2 = 3, K = 1, and ε = 1.
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(b) ε = 1

Figure 3.3: Continuous point stabilization of nonholonomic integrator.
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Figure 3.4: Continuous 2-norm stabilization of nonholonomic integrator.

Continuous Homogeneous Stabilization The following parametrization choice leads to the homoge-
neous controller from M’Closkey and Morin [107],

α1
12 =

−Kz3
ρ(z)

, α2
12 =

z2
3

ρ3(z)
, (3.86)

where

ρ(z) = 4

√
z4
1 + z4

2 + z2
3 . (3.87)

The averaged equations of motion are

d

dt





z1
z2
z3



 =





−k1z1
−k2z2

−k1z1z2 − k2z1z2



+ ε





0
0

−K z3
3

ρ4(z)




. (3.88)

Taking the 0-degree homogeneous truncation,

d

dt





z1
z2
z3



 =





−k1z1
−k2z2

0



+ ε





0
0

−K z3
3

ρ4(z)




. (3.89)

The Lyapunov function
V (z) = z4

1 + z4
2 + z2

3 = ρ4(z) (3.90)

trivially demonstrates stability of the averaged system.
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Although the controller is designed using ideas from M’Closkey [108], the resulting controller is differ-
ent from the homogeneous controllers in [108] because the average values are used as feedback instead of
the instantaneous values of the states, affording the feedback strategy more freedom regarding the feedback
gains and oscillation frequency. Figure 3.5(a) demonstrate stabilization with the parameters, k1 = k2 = 3,
K = 1, and ε = 1. Compare this to Figure 3.5(b), which is the ρ-homogeneous stabilizer from Example
4.17 of M’Closkey [108]; the parameters are k1 = k2 = 1, K = 1, and ε = 1.

The gains are different for the ρ-homogeneous stabilizer from [108] compared to the ρ-homogeneous
stabilizer using the generalized averaging theory, because any adjustment of the gains degrades the system
performance. For homogeneous controllers, there is no way to systematically understand the effect of differ-
ent feedback gains because the nonlinear oscillatory response is not accounted for in the closed loop system
analysis. How the oscillatory response and the stabilizing gains interact is not well understood.

The Averaged Coefficients. The averaged coefficients computed in the nonholonomic integrator example
used indefinite integrals. If definite integrals were used instead, the averaged coefficients would be

V
(a)
(1)(t) =

[
α1

12

0

]
, V

(a,b)
(1,0)(t) =

[
0 −1

2α12
1
2α12 0

]
,

where α12 = α1
12α

2
12. The averaged equations of motion are

d

dt





z1
z2
z3



 =





−k1z1 + α1
12

−k2z2
(−k1z1 + α1

12)z2 − k2z1z2



+ εα12





0
0
1



 . (3.91)

The α1
12 term may be an obstruction to stability, or to the construction and demonstration of a stabilizing

controller. Although the analysis may still work out as desired, we would like to avoid having to do analysis
with the α1

12 term. If the transformation of state,

Θ(z) = (z1 +
α1

12

k1
, z2, z3), (3.92)

is defined, then a new averaged vector field may be recovered,

d

dt





z̃1
z̃2
z̃3









−k1z̃1
−k2z̃2

−k1z̃1z̃2 − k2z̃1z̃2



+ εα12





0
0
1



 . (3.93)

The new system is the same average that would have been obtained had indefinite integrals been used, as in
Equation(3.75).

In Section 3.1.1, it was argued that the definite integrals corresponded to integration or inclusion of
the initial conditions in the governing equations. Furthermore, this inclusion implied that the averaged
expansions with definite integrals were capable of accurately predicting the transient response of the system.
The transformation of state Θ gives a clue as to what the transient response will be. For the initial conditions
z0 = (1, 1, 1), the transformation of state Θ is

Θ(z0) = (1 +

√
K

k1
, 1, 1), (3.94)

impying that the first state will behave as though the initial condition were larger. Analysis of Figure 3.1(b)
shows that the initial trajectory of the first state does have a higher average as can be seen by the upwards
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Figure 3.5: Continuous ρ-homogeneous stabilization of nonholonomic integrator.
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bump for early times. The later figures (e.g., Figures 3.2 and 3.3) have larger gains, so this initial bump dies
out faster.

A Comment on the Controllers. The purpose behind the averaging methods is to obtain a linearly (or
homogeneous order 0) stabilized closed-loop averaged autonomous vector field for local exponential stabil-
ity. Although the parametrizations differed for the various control strategies, the net averaged closed-cloop
system for all of the cases were similar. Consequently, all of the strategies outlined above have the qualita-
tively similar closed-loop performance in the average, with the exception of the ρ-homogeneous controller
from [108]. The parametrization choice does affect how the actual time-varying system will evolve, which
explains why some controllers stabilized to an orbit around the equilibrium, whereas others stabilized to the
equilibrium.

3.3.2 Hilare Robot

The Hilare robot is a control example that can be transformed into the nonholonomic integrator form just
studied. The purpose of this example is to demonstrate that nonlinear transformations to canonical nonlinear
control forms may be avoided. In general such transformations are undesirable as they may dilate the natural
length scales of the control system [108], involve complicated coordinate transformations, or may have
singularities [157]. One consequence may be that a feasible controller for the canonical nonlinear control
forms could result in an infeasible controller for the actual system, e.g., the nonlinear transformation to
canonical form results in a control law that significantly magnifies a control input, thereby saturating the
actual control signal. For homogeneous controllers such a stretching of the manifold space implies a warped
homogeneous norm, and hunting may occur [108].
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Figure 3.6: Hilare robot.

The Hilare robot is a mechanical system with symmetry, function-
ally equivalent to a wheelchair, Figure 3.6. The wheels provide suffi-
cient constraints to define a principal connection, c.f. Kelly and Murray
[67]. The equations of motion in the principal bundle, Q ∼= M × G,
are

q̇ = Y h
a (q)ua, q ∈ Q, (3.95)

where ·h : X (M) → X (Q) is the horizontal lift with respect to the
principal connection form, denoted A : TM → g. The control input
vector fields, Ya ∈ X (M) are

Y1(r) =
∂

∂r1
, Y2(r) =

∂

∂r2
. (3.96)

In a local trivialization, q = (r, g), and the horizontal lift takes the form

Y h
a (r, g) =

{
Ya(r)

−gAloc(r)Ya(r)

}
. (3.97)

The local form of the principal connection for the Hilare robot is

Aloc(r) =



−1

2ρdr
1 − 1

2ρdr
2

0
ρ

2wdr1 − ρ
2wdr2


 (3.98)

For the robot, the main concern is control of the Lie group, the rotational orientations of the wheels are
inconsequential. In the language of Section 3.2, weak fiber controllability is sought. The local connection
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form (3.98) spans two unique directions in the three-dimensional Lie algebra se(2). The curvature of the
connection form is

Bloc(r) =




0

− ρ2

2wdr1 ∧ dr2

0


 . (3.99)

Together, the local connection and curvature forms span the Lie algebra, therefore the system is (small-time)
locally, weakly fiber controllable. Since the curvature form corresponds to the Lie bracket of horizontally
lifted control inputs, we can control the system using the controller from the nonholonomic integrator ex-
ample. The oscillatory controls and α-parametrization will be such that the average system results in a fully
controllable system evolving on SE(2). The technique found in Bullo and Murray [26] for control on Lie
groups will be used. Define an error function on SE(2),

gerr = g−1gdes, (3.100)

where gdes is the desired SE(2) position. The controls are

ua(t) = fa(g; gdes) + va(t/ε), (3.101)

where

f1(g; gdes) = k1g
1
err + k3g

3
err,

f2(g; gdes) = k1g
1
err − k3g

3
err,

(3.102)

and the oscillatory terms are obtained from Equations (3.80),

v1(t) = sign(Kg2
err)
√

|Kg2
err| sin(t) , v2(t) =

√
|Kg2

err| cos(t). (3.103)

The controller construction follows that of the nonholonomic integrator, however we use the matrix Lie
group exponential for the flow of SE(2), instead of the R

n exponential. The averaged equations of motion
in the Lie group are

ḣ = −h
(
XS +

1

2
εV

(a,b)
(1,0)(t)Bab

)
. (3.104)

The truncated Floquet mapping is

Trunc1 (P (t/ε)) ≈ Id + ξ̂avg +O
(
ε2
)
, (3.105)

where
ξavg = εα1

12(1 − cos(t/ε))A1 + εα2
12 sin(t/ε)A2. (3.106)

Therefore, the truncation of P (t) acts in the following manner,

Trunc1 (P (t)) (g) = g + gξ̂avg +O
(
ε2
)
. (3.107)

The controller (3.101) is shown stabilizing to the origin in Figure 3.7. The simulation parameters are k1 = 6,
K = 4

√
5, k3 = 3

2 , and ε = 2
3 . Additional examples of point stabilization can be found in Figure 3.8. A

saturation function was included to prevent the wheel velocities from being too high. The saturation choice
of 4.5 radians per second was obtained from M’Closkey [108]. The dimensions of the Hilare robot are
ρ = 0.05, and w = 0.2. A benefit to the averaging theory approach over other methods is the existence
of the feedback control parameters. By placing the system within a linear state-feedback framework, it is
possible to examine different choices for the feedbacks gains. An additional parameter the control engineer
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Figure 3.7: Hilare robot point stabilization. Snapshots at t = 0, 1.1, 1.8, and 5.3 seconds.
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Figure 3.8: Additional examples of point stabilization for the Hilare robot.



99

may modify is the oscillation period. Control of underactuated nonlinear driftless affine control systems
boils down to a set of feedback gains plus a set of oscillatory parameters. Such a simplification of the
control strategy has obvious benefits.

3.3.3 Kinematic Car

The kinematic car is a driftless model of an automobile. The front two wheels freely spin but may be used
for steering, and the rear wheels may be actuated to move the car forward. The kinematic car is a mechanical
system with group symmetries. The wheels provide sufficient constraints to define a principal connection,
c.f. Kelly and Murray [67]. The principal bundle describing the configuration manifold is Q ∼= M × G,

l

ψ

(x, y, θ)

Figure 3.9: Kinematic car.

where M ⊂ T
2 describes the steering and driving angles, and G =

SE(2) describes the planar position and orientation of the vehicle. In
coordinates, the base space is specified by r = (ψ, φ), where ψ is the
wheel rotation angle, and φ is the steering angle. The group variables
specify planar position and orientation of the center of the rear axle,
g = (x, y, θ). The equations of motion motion for the driftless auto-
mobile are

q̇ = Y h
a u

a, (3.108)

where ·h : X (M) → X (Q) is the horizontal lift with respect to the
principal connection form, A : TM → g. The control input vector
fields are

Y1(r) =
∂

∂ψ
, Y2(r) =

∂

∂φ
.

In a local trivialization, q = (r, g), the horizontal lifts of equation (3.108) are

Y h
a (r, g) =

{
Ya(r)

−gAloc(r)

}
, (3.109)

where the local principal connection form for the kinematic car is

Aloc(r) =




−ρdψ
0

−(ρ/l) tan(φ)dψ


 . (3.110)

The curvature of the local connection form is

Bloc(r) =

{
0

0 − (ρ/l) sec2(φ)dφ ∧ dψ

}
, (3.111)

and the covariant derivative of the curvature is

∇B(r) =





0
(ρ2/l) sec2(φ)dψ ∧ dφ ∧ dψ

2(ρ/l) sec2(φ) tan(φ)dφ ∧ dφ ∧ dψ



 . (3.112)

Although it is important that the steering angle remain in a neighborhood of the straight forward configura-
tion (φ = 0), the rotation angle is not restricted in any way. Since the rotation angle, ψ, is not restricted, the
local connection can be used for control, and weak fiber controllability will be sufficient [67]. The important
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covariant derivative contributions for control are given by the following Jacobi-Lie brackets,
[
Y h

1 , Y
h
2

]
, and

[
Y h

1 ,
[
Y h

2 , Y
h
1

]]
, (3.113)

whose corresponding averaged coefficients are

V
(1,2)
(1,0)(t), and V

(1,2,1)
(1,1,0)(t). (3.114)

To define the α-parametrization, an error function is needed. The group error and its logarithm are

gerr = g−1gdes, and ξerr = log(gerr). (3.115)

According to Lemmas 2 and 3, the oscillatory inputs should be,

v1(t) = α1
12 sin(ω12t) + α1

121 sin(2ω121t), and

v2(t) = α2
12 cos(ω12t) + α2

121 cos(ω121t). (3.116)

The α-parametrization is

α1
12 = 2

√
|k3ξ3err| α2

12 =
1

2
sign(k3ξ

3
err)
√
|k1ξ1err|

α1
121 = 2 3

√
|k2ξ2err| α2

121 =
1

4
sign(k2ξ

2
err)

3
√

|k2ξ2err|. (3.117)

The constant factors in the oscillatory functions cancel out in the averaged coefficients. They were placed
into the oscillatory functions to reshape the controls because the steering wheel cannot turn more than 45
degrees. By driving forward/backwards more, it is possible to compensate for the reduced steering angle.
The first state can be stabilized using state-feedback,

f1(g) = −k1ξ
1
err.

Because the first state is continuously stabilized, the inverse Floquet mapping will be needed. To first order,
it is

Trunc1

(
P (t)−1

)
= g − gV

(a)
(1)(t/ε)Aa +O

(
ε2
)
.

Snapshots of a simulation can be found in Figure 3.10. The grey line is the trajectory of the vehicle over the
previous period of oscillatory actuation. By the end of the third cycle, the car has pretty much stabilized.
The system parameters were ρ = 3/20, l = 6/10, ε = 1, ω12 = 1, ω121 = 2, k1 = 2, k2 = 7/(10ρ), and
k3 = 1/(4ρ). The error plot can be found in Figure 3.12. The dots represent the error at the end of a period
of actuation. The stabilization is discretized feedback to the indirectly controlled states. The stabilizing
strategy of the kinematic car was designed in less than a day. With more time, an improved controller can be
developed. One improvement would be to employ a continuous feedback strategy. The trajectories would
be much smoother and less jagged; more like the Hilare robot example.

The scale is chosen so that 1 unit of distance corresponds to about 10 feet. The kinematic car parameters
were set to be on the same order as a standard vehicle. Additional simulation snapshots can be found in
Figure 3.11, for which it is possible to see the effects of the oscillatory actuation.
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Figure 3.10: Kinematic car point stabilization snapshots.
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(a) g0 = (1.5, 0.5,−π/4)
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(b) g0 = (−2, 0.5, 0)

Figure 3.11: Additional examples of point stabilization for the kinematic car.
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Figure 3.12: Kinematic car stabilization error, log10 (||ξerr||).

3.4 Conclusion

The generalized averaging theory of Chapter 2 was applied to underactuated driftless affine control systems,
resulting in exponentially stabilizing control strategies. Since the strategies is constructive, any system sat-
isfying the required conditions can be stabilized. The algorithm itself is decomposed into distinct controller
synthesis steps: (1) averaging, (2) sinusoidal actuation design, (3) and feedback parametrization. The only
knowledge utilized is the Lie algebra structure of the underactuated driftless control system, thereby avoid-
ing the use of nonlinear transformations, Lyapunov functions, and pre-existing controllers. Although no
special knowledge of the system is required, any additional information or structure can be used to facilitate
and optimize the process. Most importantly, the strategy results in tunable control parameters reminiscent
of the control parameters from linear control theory. The system nonlinearities enter into the control law as
additional oscillatory control parameters.

The averaging method takes a time-varying nonlinear driftless control system and determines an au-
tonomous approximation to the control system. It was shown that Lyapunov techniques could be applied
to the averaged autonomous system to determine stability. By using the averaged autonomous system,
the use of time-varying Lyapunov analysis was avoided. Recently Peuteman and Aeyels have investigated
the application of averaging methods to determine stability of nonlinear systems via Lyapunov techniques
[133, 134, 135]. The generalized averaging theory can be used not only to recover many of their results, but
also to extend them.

The control strategy based on averaging has many other attractive features. Since integration of time de-
pendent portions of the inputs smoothes out discontinuities, the approach can be used for legged locomotion
control design. The examples chapter, Chapter 6, will study this idea for a simple bipedal robot model.

Although there are unique problems inherent to systems with drift, the general strategy set forth in this
chapter still holds in this case. Prior to developing the ideas for systems with drift, the notion of small-
time local controllability must be revisited. Small-time local controllability for systems with drift is more
complicated, as not all elements of the involutive closure C∞ will be beneficial from a control-theoretic
perspective.
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3.A Computing the Averaged Expansions

First-order. The first order averaged equations of motion are just the time-average of the original equa-
tions of motion,

dz

dτ
= εXS + εV

(a)
(0)(τ)Ya.

The zero order truncation is trivially
Trunc0 (P (τ)) = Id.

An improved version involves approximation to an additional order of ε,

Trunc1 (P (τ)) = Id + ε

∫ τ

0

(
XS + V

(a)
(0)(τ)Ya −XS − V

(a)
(0)(τ)

)
dτ = Id + ε

∫ τ

0
Ṽ

(a)
(0)(τ) dτ Ya.

Second-order. The second-order average has the additional term,

Λ(2 ) =
1

2

[∫ τ

X dσ ,X

]

=
1

2

[
XSt+ V

(a)
(1)(σ)Ya, XS + V

(b)
(0)(τ)Yb

]

=
1

2

([
XSt,V

(b)
(0)(τ)

]
+
[
V

(a)
(1)(τ)Ya, XS

]
+
[
V

(a)
(1)(τ)Ya,V

(b)
(0)(τ)Yb

])

=
1

2

(
V

(a)
(0)(τ)τ [XS , Ya] + V

(a)
(1)(τ) [Ya, XS ] + V

(a,b)
(1,0)(τ) [Ya, Yb]

)

=
1

2

(
2V

(a)
(1)(τ [Ya, XS ] + V

(a,b)
(1,0)(τ) [Ya, Yb]

)

= V
(a)
(1)(τ) [Ya, XS ] +

1

2
V

(a,b)
(1,0)(τ) [Ya, Yb] ,

under Assumption 2. Incorporating the second-order term into the averaged equations of motions leads to

ż = XS(z) + εV
(a)
(1)(t) [Ya(z), XS(z)] +

1

2
εV

(a,b)
(1,0)(t) [Ya(z), Yb(z)] .

The truncated Floquet mapping is

Trunc1 (P (τ)) = Id + ε

∫ τ

0

(
XS + V

(a)
(0)(τ)Ya −XS − V

(a)
(0)(τ)

)
dτ = Id + ε

∫ τ

0
V

(a)
(0)(τ) dτ Ya,

(3.118)

since Assumption 2 means that V
(a)
(0)(τ) = 0.

Third-order. The third-order contribution to the averaged expansion of equation (3.8) is

Λ(3 ) = −1

2
T

[
εXS , εXS + ε2V

(a)
(1)(t) [Ya, XS ] +

1

2
ε2V

(a,b)
(1,0)(t) [Ya, Yb]

]

+
1

3T

∫ T

0

[
εXSt+ V

(a)
(1)(t)Ya,

[
εXSt+ V

(b)
(1)(t)Yb, εXSt+ V

(c)
(0)(t)Yc

]]
dt . (3.119)
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Using the bilinear property of the Jacobi-Lie bracket,

Λ(3 ) = − 1

2
Tε2 [XS , XS ] − 1

2
Tε3V

(a)
(1)(t) [XS , [Ya, XS ]] − 1

2
Tε3V

(a,b)
(1,0)(t) [XS , [Ya, Yb]]

+
1

3T
ε3
∫ T

0
t2 dt [XS , [XS , XS ]] +

1

3T
ε3
∫ T

0
t2V

(a)
(0)(t) dt [XS , [XS , Ya]]

+
1

3T
ε3
∫ T

0
tV

(a)
(1)(t) dt [XS , [Ya, XS ]] +

1

3T
ε3
∫ T

0
tV

(b,c)
(1,0)(t) dt [XS , [Ya, Yb]]

+
1

3T
ε3
∫ T

0
tV

(a)
(1)(t) dt [Ya, [XS , XS ]] +

1

3T
ε3
∫ T

0
tV

(a,b)
(1,0)(t) dt [Ya, [XS , Yb]]

+
1

3T
ε3
∫ T

0
V

(a,b)
(1,1)(t) dt [Ya, [Yb, XS ]] +

1

3T
ε3
∫ T

0
V

(a,b,c)
(1,1,0)(t) dt [Ya, [Yb, Yc]] .

Removal of the vanishing Jacobi-Lie brackets and integration by parts leads to

Λ(3 ) = − 1

2
Tε3V

(a)
(1)(t) [XS , [Ya, XS ]] − 1

2
Tε3V

(a,b)
(1,0)(t) [XS , [Ya, Yb]]

+
1

3T
ε3
(
−2T 2V

(a)
(1)(t) + 2TV

(a)
(2)(t)

)
[XS , [XS , Ya]]

+
1

3T

(
T 2V

(a)
(1)(t) − TV

(a)
(2)(t)

)
[XS , [Ya, XS ]]

+
1

3T
ε3
(
T 2V

(a,b)
(1,0)(t) − TV

(â,b)

(1̂,0)
(t)

)
[XS , [Ya, Yb]]

+
1

3T
ε3
(
T 2V

(a,b)
(1,0)(t) − TV

(â,b)

(1̂,0)
(t)

)
[Ya, [XS , Yb]]

+
1

3
ε3V

(a,b)
(1,1)(t) [Ya, [Yb, XS ]] +

1

3
ε3V

(a,b,c)
(1,1,0)(t) [Ya, [Yb, Yc]] ,

which can further be simplified by consolidating like terms,

Λ(3 ) = ε3
(

1

2
TV

(a)
(1)(t) −

2

3
TV

(a)
(1)(t) +

2

3
V

(a)
(2)(t) −

1

3
TV

(a)
(1)(t) +

1

3
V

(a)
(2)(t)

)
[XS , [XS , Ya]]

+ ε3
(
−1

2
TV

(a,b)
(1,0)(t) +

1

3
TV

(a,b)
(1,0)(t) −

1

3
V

(â,b)

(1̂,0)
(t)

)
[XS , [Ya, Yb]]

+
1

3
ε3
(

V
(a,b)
(1,1)(t) − TV

(a,b)
(1,0)(t) + V

(â,b)

(1̂,0)
(t)

)
[Ya, [Yb, XS ]]

+
1

3
ε3V

(a,b,c)
(1,1,0)(t) [Ya, [Yb, Yc]] .
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The final form of the third variation is

Λ(3 ) =ε3
(

V
(a)
(2)(t) −

1

2
TV

(a)
(1)(t)

)
[XS , [XS , Ya]]

− 1

3
ε3
(

V
(â,b)

(1̂,0)
(t) +

1

2
TV

(a,b)
(1,0)(t)

)
[XS , [Ya, Yb]]

+
1

3
ε3
(

V
(a,b)
(1,1)(t) + V

(â,b)

(1̂,0)
(t) − TV

(a,b)
(1,0)(t)

)
[Ya, [Yb, XS ]]

+
1

3
ε3V

(a,b,c)
(1,1,0)(t) [Ya, [Yb, Yc]] .

The final form of the third order truncation of the averaged autonomous vector field, Z , is

Trunc3 (Y ) = εΛ(1 ) + ε2Λ(2 ) + ε3Λ(3 )

= εXS(z) + ε2V
(a)
(1)(t) [Ya(z), XS(z)] +

1

2
ε2V

(a,b)
(1,0)(t) [Ya(z), Yb(z)]

+ ε3
(

V
(a)
(2)(t) −

1

2
TV

(a)
(1)(t)

)
[XS , [XS , Ya]]

− 1

3
ε3
(

V
(â,b)

(1̂,0)
(t) +

1

2
TV

(a,b)
(1,0)(t)

)
[XS , [Ya, Yb]]

+
1

3
ε3
(

V
(a,b)
(1,1)(t) + V

(â,b)

(1̂,0)
(t) − TV

(a,b)
(1,0)(t)

)
[Ya, [Yb, XS ]] +

1

3
ε3V

(a,b,c)
(1,1,0)(t) [Ya, [Yb, Yc]] .

A transformation back to time τ 7→ t/ε gives

Trunc3 (Y ) =XS(z) + εV
(a)
(1)(t) [Ya(z), XS(z)] +

1

2
εV

(a,b)
(1,0)(t) [Ya(z), Yb(z)]

+ ε2
(

V
(a)
(2)(t) −

1

2
TV

(a)
(1)(t)

)
[XS , [XS , Ya]]

− 1

3
ε2
(

V
(â,b)

(1̂,0)
(t) +

1

2
TV

(a,b)
(1,0)(t)

)
[XS , [Ya, Yb]]

+
1

3
ε2
(

V
(a,b)
(1,1)(t) + V

(â,b)

(1̂,0)
(t) − TV

(a,b)
(1,0)(t)

)
[Ya, [Yb, XS ]] +

1

3
ε2V

(a,b,c)
(1,1,0)(t) [Ya, [Yb, Yc]] .

Fourth-order. The fourth-order terms get very complicated due to the Jacobi-Lie brackets withXS . Under
the assumption that XS = 0, fourth order computation is tractable. The additional term introduced by
fourth-order averaging is,

Λ(4 ) = − 1

12

∫ τ [∫ τ1
[∫ τ2

Xτ3 dτ3 , Xτ2

]
dτ2 , [Xτ1 , Xτ ]

]
dτ1

− 1

12

[∫ τ [∫ τ1
[∫ τ2

Xτ3 dτ3 , Xτ2

]
dτ2 , Xτ1

]
dτ1 , Xτ

]

− 1

12

∫ τ [∫ τ1

Xτ2 dτ2 ,

[[∫ τ1

Xτ2 dτ2 , Xτ1

]
, Xτ

]]
dτ1 .
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Substitution of the actual controls gives

Λ(4 ) = − 1

12

∫ τ [∫ τ1
[∫ τ2

V
(d)
(0)(τ3)Yd dτ3 ,V

(c)
(0)(τ2)Yc

]
dτ2 ,

[
V

(b)
(0)(τ1)Yb,V

(a)
(0)(τ)Ya

]]
dτ1

− 1

12

[∫ τ [∫ τ1
[∫ τ2

V
(d)
(0)(τ3)Yd dτ3 ,V

(c)
(0)(τ2)Yc

]
dτ2 ,V

(b)
(0)(τ1)Yb

]
dτ1 ,V

(a)
(0)(τ)Ya

]

− 1

12

∫ τ [∫ τ1

V
(d)
(0)(τ2)Yd dτ2 ,

[[∫ τ1

V
(c)
(0)(τ2)Yc dτ2 ,V

(b)
(0)(τ1)Yb

]
,V

(a)
(0)(τ)Ya

]]
dτ1

= − 1

12

∫ τ ∫ τ1
∫ τ2

V
(d)
(0)(τ3) dτ3 V

(c)
(0)(τ2)Yc dτ2 V

(b)
(0)(τ1)V

(a)
(0)(τ)Ya dτ1 [[Yd, Yc] , [Yb, Ya]]

− 1

12

∫ τ ∫ τ1
∫ τ2

V
(d)
(0)(τ3)Yd dτ3 V

(c)
(0)(τ2) dτ2 V

(b)
(0)(τ1) dτ1 V

(a)
(0)(τ) [[[Yd, Yc] , Yb] , Ya]

− 1

12

∫ τ ∫ τ1

V
(d)
(0)(τ2) dτ2

∫ τ1

V
(c)
(0)(τ2) dτ2 V

(b)
(0)(τ1)V

(a)
(0)(τ) dτ1 [Yd, [[Yc, Yb] , Ya]]

= − 1

12
V

(
̂̂
d,c,b,a)

(̂̂1,0,0,0)
(τ) [[Yd, Yc] , [Yb, Ya]] −

1

12
V

(
̂̂
d,c,b,a)

(̂̂1,0,0,0)
(τ) [[[Yd, Yc] , Yb] , Ya]

− 1

12
V

(d̂,c,b,a)

(1̂,1,0,0)
(τ) [Yd, [[Yc, Yb] , Ya]]

= +
1

12
V

(d̂,c,b,a)

(1̂,0,0,1)
(τ) [[Yd, Yc] , [Yb, Ya]] +

1

12
V

(d̂,c,b,a)

(1̂,0,0,1)
(τ) [[[Yd, Yc] , Yb] , Ya]

+
1

12
V

(d,c,b,a)
(1,1,0,1)(τ) [Yd, [[Yc, Yb] , Ya]] .

Rearranging the indices and the Jacobi-Lie brackets,

Λ(4 ) =
1

12
V

(a,b,ĉ,d)

(1,0,1̂,0)
(τ) [[Ya, Yb] , [Yc, Yd]] −

1

12
V

(a,b,ĉ,d)

(1,0,0̂,1)
(τ) [Ya, [Yb, [Yc, Yd]]]

− 1

12
V

(a,b,c,d)
(1,1,1,0)(τ) [Ya, [Yb, [Yc, Yd]]] .

In summary, the additional fourth-order contribution is

Λ(4 ) =
1

12

(
V

(a,b,ĉ,d)

(1,0,1̂,0)
(t) [[Ya, Yb] , [Yc, Yd]] −

(
V

(a,b,ĉ,d)

(1,0,0̂,1)
(t) + V

(a,b,c,d)
(1,1,1,0)(t)

)
[Ya, [Yb, [Yc, Yd]]]

)
.

The associated Floquet mapping is,

Trunc3 (P (t/ε)) = Id + εV
(a)
(1)(t/ε) Ya +

1

2
ε2
∫ t/ε

0
Ṽ

(a,b)
(1,0)(τ) dτ [Ya, Yb] +

1

2
ε2V

(a,b)
(1,1)(t/ε) Ya · Yb

− 1

2
ε2V

(a)
(1)(t/ε)V

(b,c)
(1,0)(t) t Ya · [Yb, Yc] +

1

6
ε3V

(a,b,c)
(1,1,1)(t)Ya · Yb · Yc

+
1

4
ε3V

(a)
(1)(t/ε)

∫ t/ε

0
V

(b,c)
(1,0)(σ) dσ (Ya · [Yb, Yc] + [Yb, Yc] · Ya) .
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Chapter 4

Controllability and 1-Homogeneous Control Systems

Mechanical control systems form a large and important subclass of nonlinear control systems. Besides their
practical utility, mechanical systems also have inherent structure that simplifies their analysis. This chapter
develops a detailed understanding of this structure in terms of geometric homogeneity. The homogeneous
properties of mechanical systems are then used to simplify the analysis of mechanical system controllability.

The problem of determining controllability for nonlinear control systems is in general quite difficult.
Sussmann [152] provides sufficient conditions to determine small-time local controllability of general non-
linear systems, however there is factorial growth in the number of elements to test. Lewis and Murray [85]
showed how the Riemannian or affine connection description of mechanical systems prunes the tests found
in [152] for the particular case of configuration controllability. Their work is applied to simple mechanical
systems, which form a subset of mechanical systems. Simple mechanical systems are characterized by a La-
grangian with kinetic and potential energy terms only; constraints may be included. In [25], Bullo and Lewis
demonstrate that geometric homogeneity is behind much of the simplifications. Geometric homogeneity has
the interpretation of being an infinitesimal symmetry of the equations of motion [123]. Bullo and Lewis fur-
ther argued that geometric homogeneity should be a fruitful avenue of continued study for nonlinear control
systems. This is especially true given that analogous controllability results have subsequently been found
to hold for other descriptions of mechanical control systems [8, 16, 35, 125]. This chapter develops the
concept of geometric homogeneity for vector bundles and demonstrates how geometric homogeneity is the
connecting link to all of these seemingly related results.

Organization of this chapter. Section 4.1 reviews and develops notions of geometric homogeneity for
application to 1-homogeneous control systems. This section culminates with results that describe the con-
sequences of homogeneity vis-a-vis the Lie-algebraic structure of dynamical systems evolving on vector
bundles. These results are subsequently used in Section 4.2 to extend the configuration controllability the-
orems of Lewis and Murray to a generic vector bundle. This section closely follows the structure of Lewis
and Murray [85] to aid the reader in understanding and comparing the relevant concepts to this prior work.
Since dissipation is an important element of realistic control systems, and not accounted for in the simple
mechanical system paradigm, Section 4.3 analyzes the effects of including dissipation on the homogeneous
nature of mechanical control systems. For some classes of control problems, the configuration controllabil-
ity results do not differ from the case without dissipation. For others, the inclusion of dissipation complicates
the controllability analysis. Finally, Section 4.4, applies our results to various instances of control sytems
evolving on vector bundles. Since most of these examples have previously been studied in the literature, our
analysis serves to demonstrate how these prior results are all connected and may be placed within the same
framework.
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4.1 Geometric Homogeneity and Vector Bundles

This section reviews the elementary concepts related to vector bundles and geometric homogeneity. Geo-
metric homogeneity has been a widely, but not uniformly studied aspect of nonlinear dynamics and control.
Controllability analysis often involves the use of dilations [53, 54, 14, 110, 152]. Kawski has successfully
demonstrated the importance of geometric homogeneity for stabilization [61, 62], as have M’Closkey and
Morin et al. [109, 107, 117]. Geometric homogeneity also plays a role in describing the geometry of
Lagrangian systems [36]. This section discusses the relevant ideas concerning geometric homogeneity of
vector bundles and vector fields in a systematic manner. Doing so will require working knowledge of dif-
ferential geometry and its attendant terminology; familiarity with the notation found such texts [1, 18, 70]
is assumed.

4.1.1 Vector Bundles

The nonlinear control systems analyzed in this paper can be cast into a vector bundle framework. Conse-
quently, we formulate homogeneity in terms of vector bundles. For background material, see standard texts
such as [1, 70, 150].

Definition 27 A (differentiable) fibre bundle (Q,π,M,F,G) consists of the following elements:

1. differentiable manifold Q called the total space (configuration space)

2. differentiable manifold M called the base space (shape space)

3. differentiable manifold F called the fibre (typical fibre).

4. A surjection π : Q→M called the projection: π−1(p) = Fp
∼= F is called the fibre at p.

5. A Lie group G called the structure group, which acts on F (on the left).

6. A set of open coverings {Vi} of M with diffeomorphisms φi : Vi × F → π−1(Vi) such that π ◦
φi(p, f) = p, where p ∈ Vi and f ∈ F . The map φi is called the local trivialization since φ−1

i maps
π−1(Vi) onto the direct product Vi × F .

7. If defined by φi,p(f) ≡ φi(p, f), then the map φi,p : F → Fp is a diffeomorphism. On Ui ∩ Uj 6= ∅,
the transition function tij(p) = φ−1

i,p ◦ φj,p : F → F must be an element of G. Then φi and φj are
related by a smooth map tij : Ui ∩ Uj → G as

φj(p, f) = φi(p,Φtij(p)f).

Definition 28 Given a fibre bundle (Q,π,M,F,G), a section (cross section) σ : M → Q is a smooth map
satisfying π ◦ σ = idM . The space defined by the collection of all sections on the fiber bundle Q is denoted
by Γ(Q). Γ(Q) is a fiber bundle.

The analysis in this paper will focus on vector bundles. Typically the structure group, G, will be the general
linear group, GL(·), which acts as a transformation of basis of the vector fiber [70].

Definition 29 A vector bundle (E, π,M, V ) is fiber bundle whose typical fiber is a vector space.

Definition 30 Given a vector bundle (E, π,M, V ), the zero section , denoted by σ0, is a smooth mapping
of points in the base space to the zero vector.
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Often, we will refer to a local trivialization of the vector bundle, E, as E ∼= M × V . Given a local
trivialization, the zero section operates as follows,

σ0(x) = 0x ∈ Ex, ∀ x ∈M.

As a vector bundle, the zero section M × { 0 } is isomorphic to the base space, M .

Products of Bundles. If two bundles share the same base space, M = M1 = M2, they may be composed
via the fiber product, denoted ×M , to form a new bundle Q1×M Q2, with base space M . Let vector bundles
E1 and E2 have a common base space. Their fiber product, known as the Whitney sum, is denoted E1 ⊕E2.
In a local trivialization, the Whitney sum is E1 ⊕E2

∼= M × V1 × V2.

The Tangent Bundle. The tangent bundle is a canonical example of a vector bundle, and will play a
prominent role in this paper. In particular, we review the tangent bundle, TE, to the vector bundle, E. A
local trivialization for E is given by

E ∼= M × V.

Let the tangent space, TM , to M , have the local trivialization

TM ∼= M ×W,

where W models the tangent fiber of M . It is known that the fiber of the tangent space to a vector space can
be modelled by the vector space itself. This means that,

TV ∼= V × V.

Logically then, the local trivialization of the tangent space TE, can be given by

TE ∼= M × V ×W × V, (4.1)

where M × V represents the vector bundle, and W × V represents the tangent fiber to the vector bundle.
The trivialization suggests that two natural projection operators exist for TE, ρ1 and ρ2 [70]. In a local
trivialization, ρ1 operates as follows,

ρ1 : M × V ×W × V →M × V ×W × { 0 } , ρ1(q, u, w, v) = (q, u, w, 0), (4.2)

and ρ2 is
ρ2 : M × V ×W × V →M × V × { 0 } × V, ρ2(q, u, w, v) = (q, u, 0, v). (4.3)

Note that ρ1 = idTE − ρ2.
Very often, the components of a fiber bundle are implicitly known, justifying a shorter notation. When

dealing with vector bundles, we will henceforth assume that a vector bundle E consists of the collection
(E, π,M, V ), although it will not be explicitly noted. Likewise, the tangent bundle TE will be given by
(TE, Tπ,E,W × V ). Additionally, all vector bundles are assumed to be finite dimensional.

4.1.2 Geometric Homogeneity

Much of the terminology concerning geometric homogeneity can be found in Crampin [36] or Kawski [62].
Geometric homogeneity is defined using the dilation operator δt, which in a local trivialization uniformly
dilates the vector fiber,

δt : E → E, (x, u) 7→ (x, et u). (4.4)



112

The dilation operator satisfies (δt)
p = δpt. Corresponding to the dilation is its infinitesimal generator, ∆, a

vector field on E. In the coordinates of a local trivialization, the generator is

∆ = ui ∂

∂ui
. (4.5)

There is an alternative to the dilation operator which exchanges the additive property of the dilation with a
multiplicative one,

δ̃c ≡ δln(c) : E → E, (x, u) 7→ (x, c u). (4.6)

Our working definition of homogeneity follows.

Definition 31 A mapping between bundles Ψ : E1 → E2 is homogeneous of order p if

Ψ ◦ δt = δpt ◦ Ψ.

The two bundles need not have the same base nor fiber. We assume that Ψ is a smooth function defined over
E, and that all vector bundles are finite dimensional. Below, E1 and E2 are vector bundles.

Proposition 5 All smooth functions, Ψ : E1 → E2 of homogeneous order 0 are equivalent to mapping of
the zero-section on the vector bundle E1 into E2.

proof
If Ψ is homogeneous of order0, then Ψ ◦ δ̃0 = Ψ. As the (multiplicative) zero dilation, δ̃0, maps arbitrary
sections to the zero section, the conclusion naturally follows.
�

Proposition 6 [70] The only smooth functions, Ψ : E1 → E2 of homogeneous order −p for p > 0 are
mappings of the zero section on the vector bundle E1 to the zero-section on the vector bundle E2.

Proposition 7 If Ψ : E1 → E2 is homogeneous of order p ≥ 1, then Ψ evaluated on the zero section of E1

results in the zero section of E2.

proof
From Equation (4.6), evaluation of Ψ on the zero section of E1 is equivalent to Ψ ◦ δ̃0. Applying Definition
31 yields

Ψ ◦ δ̃0 = δ̃0p ◦ Ψ = δ̃0 ◦ Ψ,

and we obtain the zero section on E2.
�

Configuration controllability evaluations are made on the zero section of a vector bundle; the above homo-
geneity results will allow certain vector fields to be ignored. This is precisely how Lewis and Murray [85]
achieved a simplification of Sussmann’s controllability theorem.

4.1.3 The Tangent Bundle and Vector Fields

Equally important are the homogeneous properties of vectors in TE, the tangent bundle toE, or equivalently
of vector fields in X (E), the space of vector fields defined on E. We focus now on the properties of the
tangent bundle TE. Using the projection operator there is a natural notion of vertical for TE.
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Definition 32 The vertical bundle over E, denoted by V E, is the subbundle of TE given by the union of
Tπ−1(0q) for all q ∈ Q. A vector in TE is vertical if it lies in the kernel of Tπ.

Definition 33 There is a canonical isomorphism between E⊕E and V E, called the vertical lift. It is given
by

vlift =
d

dt

∣∣∣∣
t=0

(ux + tvx) , u, v ∈ E. (4.7)

A complementary horizontal subbundle can be defined using a connection form, also called an Ehresmann
connection. We rewrite below, the definition of an Ehresmann connection,

Definition 34 An Ehresmann connection, A, is a vertical valued one form on a manifold Q that satisfies,

1. Aq : TqQ→ VqQ is a linear map for each point q ∈ Q.

2. A is a projection, A ◦ A = A.

There is no unique decomposition of the tangent bundle into horizontal and vertical, however there exists a
trivial decomposition into horizontal and vertical subbundles. Its associated Ehresmann connection is called
the trivial connection. On the vector bundle E, the natural projection operator, ρ2, can be used to define the
trivial connection on TE,

Atriv : TE → V E, Atriv = ρ2. (4.8)

Pointwise, horizontal vectors are isomorphic to vectors on the tangent bundle of the base space using the
trivial connection and the bundle projection, Tπ. In local trivializations for TM and TE, the injective
mapping is given by

vx ∈ TxM, vx = Tπ ◦ u(x,u), for u(x,u) ∈ H(x,u)E. (4.9)

From (4.2), the horizontal bundle is in 1-1 correspondance with the Whitney sum E ⊕ TM .

Vector Fields

Properties that hold for tangent vectors will also hold for sections on TE, which give rise to vector fields
X (E). Through the following derivations and propositions, we study how geometric homogeneity applies
to vector fields.

Definition 35 The subspace X V (E) ⊂ X (E), consists of all vector fields that are vertical for all points in
E.

Proposition 8 If X,Y ∈ X V (E), then [X,Y ] ∈ X V (E).

The notion of homogeneity extends to vector fields via the generator, ∆.

Definition 36 A vector field X ∈ X (E) is said to be homogeneous of order p if,

[∆, X] = pX

for p > −2.

The only vector field of homogeneous order p ≤ −2 is the zero vector field. Under the trivial splitting of
vector fields into horizontal and vertical, the dilation vector field has the following properties,

Proposition 9 Let ∆ be the infinitesimal generator corresponding to the dilation action, δt. Given a vector
field X ∈ X (E), the following properties hold:
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1.
[
∆, XH

]
is horizontal, and

2.
[
∆, XV

]
is vertical,

for the trivial decomposition, X = XH +XV , of X into horizontal and vertical components, respectively.

proof
Since horizontal vectors in TE are in 1-1 correspondance with vectors in TM , horizontal vector fields are
in 1-1 correspondance with functions in C∞ (E, TM). We may, therefore, make the identification

ρ1(X) = XH 7→ Y ∈ C∞ (E, TM) .

In a local trivialization, the dynamic definition of the Jacobi-Lie bracket is

[
∆, XH

]
≡ d

dt

∣∣∣∣
t=0

(
(δt)

∗XH
)

=
d

dt

∣∣∣∣
t=0

(δt)
∗ (Y, 0) =

d

dt

∣∣∣∣
t=0

(Tδ−t(Y ◦ δt, 0)) .

Since the dilation operator leaves the base component invariant, the resulting vector field remains horizontal
using the trivial decomposition. The second statement is a consequence of Proposition 8, as the dilation
vector field, ∆, is vertical.
�

Proposition 10 Given X,Y ∈ X (E) homogeneous of order p and q, respectively, the Jacobi-Lie bracket
[X,Y ] is homogeneous of order p+ q.

Proposition 11 Any mapping Ψ : E → E preserving the base, i.e., π = π ◦ Ψ, and homogeneous of order
p, loses one degree of homogeneity when vertically lifted. That is Ψlift ∈ X (E) is homogeneous of order
p− 1.

proof
By Definition 33, the vertical lift of Ψ is a vector field on E. Homogeneity of Ψlift is determined by
Definition 36, [

∆,Ψlift
]

=
d

dt

∣∣∣∣
t=0

(δt)
∗ Ψlift =

d

dt

(
Tδ−t ◦ Ψlift ◦ δ−t

)
.

In a local trivialization for the tangent bundle,

[
∆,Ψlift

]
=

d

dt

∣∣∣∣
t=0

(
0, e−tΨ ◦ δt

)

=
d

dt

∣∣∣∣
t=0

(
0, e(p−1)tΨ

)

= (0, (p− 1)Ψ)

= (p− 1)Ψlift

�

Corollary 11 Given a section of the vector bundle E, its vertical lift is homogeneous of order −1.
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As stated next, the converse to the corollary also holds.

Proposition 12 All vector fields of homogeneous order −1 are the vertical lift of a section of E.

proof
This is a commonly known result, c.f. Crampin [36], but will be proven regardless. Using Proposition 13,
the horizontal component must be homogeneous of order −1, but by Proposition 6 the only such vector field
is the zero vector field. Thus, all vector fields of homogeneous order −1 must be vertical. The rest follows
from Propositions 5 and 11.
�

Proposition 13 A vector field homogeneous of order p can be decomposed into horizontal and vertical
components, X = XH +XV , that satisfy the following properties,

1. XH is in 1-1 correspondence with a Y ∈ C∞ (E, TM) where Y is homogeneous of order p, and

2. XV is in 1-1 correspondence with a Ψlift, where Ψ ∈ C∞ (E,E) is homogeneous of order p+ 1.

proof
Using Proposition 9, Definition 36, and the linearity of the Jacobi-Lie bracket, the decomposition satisfies

[
∆, XH +XV

]
=
[
∆, XH

]
+
[
∆, XV

]
,

That is, the horizontality and verticality of both contributions are preserved. The second statement is a
consequence of Proposition 11. The first statement follows by further carrying out the proof of Proposition
9.
�

Proposition 13 is analogous to the discussion following Eq. (3.1) in Bullo and Lewis [25], but extended to
hold for arbitrary vector bundles.

Filtrations of Homogeneous Spaces. The subbundles created by examining spaces of constant homoge-
neous order form a filtration. The graded structure of a filtration means that homogeneous properties may
be reduced to algebraic identities on the filtration order. Define the vector subbundle of homogeneous order
k to be

Pk(E) ≡ {X ∈ X (E) | X is of homogeneous degree k. } . (4.10)

Propositions 6 and 10 imply that

1. [Pi(E),Pj(E)] ⊂ Pi+j(E),

2. Pk(E) = { 0 } , ∀ k < −1.

Accordingly, we may define the following union of homogeneous spaces,

Mj,k(E) = ⊕i≤k
i=jPi(E), (4.11)

which inherit the properties of its constitutive sets:

1.
[
Mi,j(E),Mi′ ,j′(E)

]
⊂ Mi+i′,j+j′(E),

2. Mi,j(E) = { 0 } , ∀ i, j < −1.
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The following notational convenience is used: when the first subscript is absent, then it is assumed to be −1,
e.g., Mi(E) ≡ M−1,i(E). It can be seen that

M−1(E) = P−1(E),

meaning that this ”basic” space is not enlarged. The spaces Mk form a filtration.

Corollary 12 If X,Y ∈ M−1(E), then [X,Y ] = 0.

The Jacobi identity implies a symmetry of the following bracket constructions.

Corollary 13 Given X,Y ∈ M−1(E), then [X, [Γ, Y ]] = [Y, [Γ, X]] for any Γ ∈ X (E).

Via Corollary 13, the (2,1)-tensor, [·, [Γ, ·]], may be used to define a symmetric product for vector fields in
M−1.

Definition 37 The symmetric product of vector fields in M−1(E) using the vector field Γ is defined to be

〈X : Y 〉Γ ≡ [X, [Γ, Y ]] , (4.12)

where X,Y ∈ M−1(E).

Very often the vector field Γ will be specified and the relevant space of vector fields restricted such that the
shortened notation symmetric product of vector fields, or even symmetric product, will make implicit sense.
In this case, we will simply write 〈X : Y 〉 without reference to the vector field Γ. By Pk or Mk, we will
mean Pk(E) or Mk(E), respectively.

The symmetric product was originally derived and defined using the Riemmanian or affine connection
structure of simple mechanical systems [37, 83]. However it is known, and we have shown, that is holds in
the more general setting discussed here. What is critical to simple mechanical systems is not the symmetric
product alone, but the homogeneous structure implied by the Lagrangian framework from which such sys-
tems are derived. The homogeneous structure will imply that, for mechanical systems, it is only Jacobi-Lie
brackets with a structure similar to the one above that will be important from both control-theoretic and
dynamical systems perspectives.

For the systems that we will study, the homogeneous order of the vector field Γ will not exceed 1, e.g.
Γ ∈ M1(E). Therefore 〈X : Y 〉 ∈ M−1, and the symmetric product of vector fields in M−1 is again in
M−1. Most importantly, this implies that the symmetric product is a vertical lift, and commutes with other
vertical lifts in M−1. It also implies that there exists a symmetric product defined on X (M) such that the
following commutative diagram holds,

X,Y
lift

−−−−→ X lift, Y lift

〈 · : · 〉
y

y〈 · : · 〉

Z −−−−→
lift

Z lift

, (4.13)

where X,Y,Z ∈ Γ(E) and X lift, Y lift, Z lift ∈ M−1(E). Alternatively stated, there exists a symmetric
product on sections of E uniquely defined by

〈X : Y 〉lift ≡
〈
X lift : Y lift

〉
, (4.14)

where X,Y ∈ Γ(E). Although it is not explicitly noted, the choice of Γ for the symmetric product of vector
fields plays an important role in defining the symmetric product of sections, c.f. Equation (4.12). It was
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demonstrated in Lewis and Murray [85] that equation (4.14) was responsible for computational reductions
in the involutive closure calculations for simple mechanical systems. The structure of vector bundles and
geometric homogeneity has been used to show that it holds even when E 6= TQ. Again, it is emphasized
that the majority of canonical forms for mechanical systems discussed in the introduction satisfy the homo-
geneous properties assumed above. Systems with these properties will be called 1-homogeneous systems.
We shall further refine the definition of a 1-homogeneous system in Section 4.2.

4.2 Control of Dynamical Systems

This core section of the paper develops the main consequences of geometric homogeneity for controllabil-
ity of 1-homogeneous systems and presents our main controllability results. Concepts and definitions for
controllability of nonlinear affine control systems will be reviewed. Nonlinear control systems are typically
written in affine control form,

ż = f(z) + ga(z)u
a(t), (4.15)

where f ∈ X (E) is the drift vector field and the ga ∈ X (E) are input or control vector fields. The variable,
z, evolves on the vector bundle E, and there are a total of m inputs to the system, a = 1 . . . m. The input
functions ua are assumed to be in the class of piecewise constant functions of time. We first review standard
notions of controllability.

Definition 38 The affine nonlinear control system (4.15) is controllable if for any two points z0, zf ∈ E,
there exists controls ua(t) such that the system evolving via (4.15) and starting at z0 reaches zf in finite
time.

Let RU (z0, T ) denote the set of reachable points in E at time T > 0, starting at point z0 and using admiss-
able controls, ua(t), such that the system trajectories remain in the neighborhood U of z0 for all t ≤ T .
Define

RU
T (z0) ≡

⋃

0≤t≤T

RU (z0, t). (4.16)

Definition 39 The nonlinear control system (4.15) is locally accessible if for all z ∈ E, RU
T (z) contains a

non-empty open subset of E for all T > 0 and U ⊂ E.

Local accessibility may be determined using the well-known Lie algebra rank condition (LARC).

Definition 40 The nonlinear control system (4.15) is locally controllable if for all z ∈ E, z is in the interior
of RU

T (z) for all T > 0 and U ⊂ E.

Definition 41 A system (4.15) is small-time locally controllable (STLC) at z0 if it is locally accessible at z0

and if there exists a T > 0 such that z0 is in the interior of RU
t (z0) for every neighborhood U of z0 and

0 ≤ t ≤ T . If this holds for any z ∈ E, the system is small-time locally controllable.

Configuration Controllability. Suppose that one is not interested in achieving control over all of the
vector bundle E, but would instead like to achieve arbitrary control on the base space M . This is equivalent
to asking for configuration controllability of the system, where the configurations are elements of M . Let
RCU (x0, T ) denote the set of reachable configurations in M at time T > 0, starting at point 0x0

∈ E and
using admissable controls, ua(t), such that the trajectories remain in the neighborhood U of x0 for all t ≤ T .
Define

RCU
T (x0) =

⋃

0≤t≤T

RCU (x0, t). (4.17)
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Definition 42 [85] A system (4.15) is locally configuration accessible at x0 ∈ M if there exists a T > 0
such that RCU

t (x0) contains a non-empty open set of M for all neighborhoods U of x0 and all 0 ≤ t ≤ T .
If this holds for any x0 ∈M , then the system is locally configuration accessible.

Definition 43 [85] A system (4.15) is small-time locally configuration controllable (STLCC) at x0 if it is
locally configuration accessible at x0 and if there exists a T > 0 such that x0 is in the interior of RCU

t (x0)
for every neighborhood U of x0 and 0 ≤ t ≤ T . If this holds for any x ∈ M , then the system is called
small-time locally configuration controllable.

Definition 44 The equilibrium subspace, E ⊂ E, of the nonlinear control system (4.15) consists of those
elements of the zero section of E where ż = 0.

Definition 45 [85] A system (4.15) is equilibrium controllable if, for z1, z2 ∈ E, there exists a solution
(c, u) of (4.15) where c : [0, T ] →M is such that c(0) = π(z1), c(T ) = π(z2), and c′(0) = c′(T ) = 0.

1-Homogeneous Control Systems

The nonlinear affine control system (4.15) will be rewritten using homogeneous and vector bundle notation,

ż = XS(z) + Y lift
a (z)ua, (4.18)

where XS is the drift vector field, and Y lift
a are the control vector fields.

Definition 46 A 1-homogeneous control system is a nonlinear affine control system such that the drift vector
field is XS ∈ M1, and the control vector fields are Y lift

a ∈ M−1.

The remaining subsections are devoted to proving sufficient conditions for local configuration control-
lability.

4.2.1 Configuration Controllability Revisited

The goal of this section is to extend the work of [85] to the broader context of 1-homogeneous control
systems. In doing so, the results will now apply to an enlarged class of systems, and will reproduce many
of the known results concerning controllability of mechanical control systems. The content and structure
found in Sussmann [152], and Lewis and Murray [85], is assumed familiar to the reader. We develop the
ideas using the same language and construction. In some cases proofs will be crafted using the language of
geometric homogeneity, although the analogous proofs from [85] do not require modification.

We will relate the control system (4.18) to free Lie algebras. Sussmann’s work has demonstrated that
much progress can be achieved by examining an algebraic abstraction of the vector fields found in the nonlin-
ear affine control system (4.15). By placing the two descriptions in bijective homomorphic correspondence,
properties of the free Lie algebra translate to properties of the original control system. Geometric homo-
geneity fits within this algebraic realization; we need only examine how bracketing affects the homogeneous
order of free Lie algebra elements.

Recall the standard 1-homogeneous control form (4.18),

ż = XS + Y lift
a (z)ua, (4.19)

where XS ∈ M1 is the drift vector field, the Y lift
a ∈ M−1 are control vector fields, and the ua are inputs,

for a = 1 . . . m. Although we will fully develop the case of XS ∈ M1, currently we restrict ourselves to
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the simple homogeneous case, where XS ∈ P1 ⊕P−1. In this case, XS can always be rewritten1 as

XS = Γ − Z lift, (4.20)

where Γ ∈ P1 and Z lift ∈ P−1.

Free Lie algebras

Consider a finite set X = {X0, X1, . . . , Xl } of elements called indeterminants. A(X) is the set of asso-
ciative, but not necessarily commutative, products of indeterminants from the set X. Define I(X) to be the
two-sided ideal generated by elements of the form X ·X and X · (Y ·Z) +Z · (X · Y ) + Y · (Z ·X). The
free Lie algebra, denoted L(X), generated by X is the quotient algebra, L(X) = A(X)/I(X). The product
under consideration, written [·, ·], will correspond to the Jacobi-Lie bracket, see Equation (4.24).

Definition 47 Define Br(X) to be the subset of L(X) containing only products of elements in X.

The subset Br(X) will generate L(X) as a R-vector space as can be seen using Proposition 14. Every
element X ∈ L(X) has a unique decomposition X = [X1, X2]. In turn, each of X1 and X2 may be
uniquely expressed likewise, X1 = [X11, X12] and X2 = [X21, X22]. This continues until the elements can
no longer be decomposed in this manner. The elements Xi1...ik , ia ∈ 1, 2, are called components of X . The
decompositioon of X into components plays an important role in many of the following proofs.

For each element B ∈ Br(X) let δa(X) be the number of times that the element Xa, a = 0, . . . , l,
occurs in B. The degree of B, denoted δ(·), is the sum of the δa’s,

δ(B) ≡ δ0(B) +
l∑

a=1

δa(B). (4.21)

The relative degree, is the difference between δ0 and the sum of the δa’s for a = 1 . . . l. The relative degree
will be denoted by δ̃(·), and mathematically it is written

δ̃(B) ≡ δ0(B) −
l∑

a=1

δa(B). (4.22)

Proposition 14 [85] Every element of L(X) is a linear combination of repeated brackets of the form,

[Xk, [Xk−1, [. . . , [X2, X2] . . .]]]

where Xi ∈ X, i = 1, . . . , k.

A consequence of this proposition is that all proofs need only consider the generating set, Br(X) instead of
the full set L(X). Henceforth, the focus shall be on Br(X) only.

Connection to Vector Fields. A family of vector fields on the manifold Q is a subset V ⊂ X (Q). The
family may be used to define a distribution on Q,

DV(x) ≡ spanR {X(x) | X ∈ V } . (4.23)

The important structure here is the smallest Lie subalgebra of the Lie algebra, X (Q), which will be the set
of vector fields on Q generated by repeated Lie brackets of elements in V . This Lie subalgebra, which will

1the minus sign is an artifact of the simple mechanical systems paradigm, and comes from the Euler-Lagrange equations
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be used for small-time controllability, is generated by the free Lie algebras previously described. Let X and
V be in bijective correspondence via the bijection, φ : X → V . Utilizing the tensor algebra T (RX) and the
bijection φ, one may define a R-algebra homomorphism from T (RX) to X (Q). It is

Ev(φ) : T (RX) → X (Q), u1 ⊗ · · · ⊗ uk 7→ φ(u1) · . . . · φ(uk). (4.24)

where the products, ·, correspond to Jacobi-Lie brackets [85]. The smallest Lie subalgebra of X (Q) is the
image of Ev(φ)|L(X), which shall be denoted Lie(V) and is called the involutive closure of V .

When evaluated at a point, q ∈ Q, the homomorphism gives a mapping

Evq(φ) : T (RX) → TqQ, Evq(φ)(u) = (Ev(φ)(u)) (q).

The Lie algebra rank condition (LARC) at q is satisfied if,

Evq(φ) (L(X)) = TqQ,

or, equivalently,
rank(Lie(V)) = dimQ,

for φ : X → V , where V = { f, g1, . . . , gm }. LARC is used to determine local accessibility, from which
small-time local controllability may follow under additional requirements. The condition still applies if the
manifold Q is the vector bundle E.

Properties of and Computations with the Free Lie Algebra. There will be two sets of vector fields that
will be placed into 1-1 correspondence with free Lie algebras.

Definition 48 The bijective mapping φ : X → V =
{

Γ, Y lift
1 , . . . , Y lift

m , Z lift
}

maps X0 to Γ, Xa to Y lift
a

for a = 1 . . . m, and Xm+1 to Z lift.

Definition 49 The bijective mapping φ′ : X
′ → V ′ =

{
XS , Y

lift
1 , . . . , Y lift

m

}
maps X ′

o to XS and Xa to
Y lift

a , for a = 1 . . . m.

The bijection φ′ is obtained by placing the set X
′ into 1-1 correspondence with the vector fields appearing

in Equation (4.18). This is contrasted to the bijection φ, which decomposes the drift term according to
Equation (4.20) and considers the potential Z lift ∈ P−1 to be an input. The P−1 term contributing to the
drift is removed and used as an input vector field because (a) it may contribute to controllability, and (b) it
has the same homogeneous order as the control vector fields. Controllability analysis will be done with the
free Lie algebra generated by X, then the analysis will be translated to the free Lie algebra generated by X

′.
The link between the two sets, X and X

′, will be discussed shortly.
Define the following notation,

Brk(X) ≡ {B ∈ Br(X) | δ(B) = k } , and (4.25)

Brk(X) ≡
{
B ∈ Br(X) | δ̃(B) = k

}
. (4.26)

Thus, Brk(X) is the set of elements in Br(X) whose degree is k. The degree of an element will determine
how many iterated Jacobi-Lie brackets it consists of under the evaluation map Ev(·). This is compared to
Brk(X), which is the set of elements in Br(X) whose relative degree is k. Relative degree will correspond
to the homogeneous order under the evaluation map Ev(·).
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Definition 50 [85] Let B ∈ Br0(X)
⋃
Br−1(X) and let B1, B2, B11, B12, B21, B22, . . . be the com-

ponent decomposition of B. We shall say that B is primitive if each of its components is in
Br−1(X)

⋃
Br0(X)

⋃ {X0 }.

Some observations may be made concerning primitive brackets.

Observation 1 [85] If B ∈ Br−1 is primitive, then, up to sign, we may write B = [B1, B2] with B1 ∈
Br−1(X) and B2 ∈ Br0(X).

Observation 2 [85] If B ∈ Br0(X) is primitive, then, up to sign, B may have one of two forms. Either
B = [X0, B1] with B1 ∈ Br−1(X) primitive, or B = [B1, B2] with B1, B2 ∈ Br0(X) primitive.

Lemma 5 [85] Let us impose the condition on elements of Br(X) that we shall consider a bracket to be
zero if any of its components are in Br−j(X) for j ≥ 2. Let B ∈ Br0(X)

⋃
Br−1(X). Then B is the finite

sum of primitive brackets.

Observation 3 If B ∈ Br0(X), then B may be written as

[X0, B1] , (4.27)

with B1 ∈ Br−1(X), or as the sum of repeated brackets of such forms, i.e., elements that look like

[Ci, [Ci−1, [. . . , [C2, C1] . . .]]]

where the Ci ∈ Br0(X) are, up to sign, of the form [X0, Ci1] with Ci1 ∈ Br−1(X).

proof
Characterizing the set Br0(X) is difficult since it contains elements that have arbitrary orders of products.
By examining the intersection of Br0(X) with Brk(X) for individual values of k, we may find some
useful structure. Consequently, the proof is by induction on k using degrees, i.e., using elements B ∈
Br0(X)

⋂
Brk(X). For k = 1, there are no elements in Br0(X)

⋂
Br1(X), by definition of relative

degree, Equation (4.22). For the case k = 2, there are only two equivalent ways to express elements in
Br0(X)

⋂
Br2(X),

[Xa, X0] and [X0, Xa] ,

for each element of Xa ∈ X, a > 0. In this case, the statement trivially holds.
For clarity, we analyze the next two levels before moving to the inductive case. For k = 3, it is not

possible to have an element of Br0(X)
⋂
Br3(X). In fact, analysis of Equation (4.22) shows that all odd

values, e.g., Br2l+1(X) for l ∈ Z
+, cannot contribute to Br0(X). For k = 4, there are a two basic

possibilities: [[X0, Xa] , [X0, Xb]], [X0, [Xa, [X0, Xb]]], which satisfy the necessary criteria. All others can
be transformed into these cases by taking advantage of Jacobi-Lie bracket identities. For example, using the
Jacobi-Lie identity and skew-symmetry, the bracket

[Xa, [X0, [X0, Xb]]]

can be expressed as
[[X0, Xb] , [X0, Xa]] + [X0, [Xa, [X0, Xb]]] .

Hypothesize that the statement holds for the kth-case, and must be proven for the (k + 1)th-case. Take
the element B ∈ Br0(X)

⋂
Brk+1(X), and decompose it according to Observation 2. There will be two

options:
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(i) B = [X0, B1], with B1 ∈ Br−1(X) primitive.
(ii) B = [B1, B2] with B1 ∈ Br0(X)

⋂
Bri′(X) and B2 ∈ Br0(X)

⋂
Brj′(X), where i′ + j′ = k+1. B1

and B2 satisfy the inductive hypothesis. There are three distinct possibilities for the decomposition of B1

and B2 into components. They are

1. B1 = [X0, B12] and B2 = [X0, B22].

2. B1 = [X0, B12] and B2 is the sum of elements resembling [Ci, [Ci−1, [. . . , [C2, C1] . . .]]].

3. B1 and B2 are the sum of elements [Ci, [Ci−1, [. . . , [C2, C1] . . .]]].

The first two cases satisfy the conclusion of the observation. The third case requires some manipulation. We
obtain the sum of elements that resemble

[
[Ci, [Ci−1, [. . . , [C2, C1] . . .]]] ,

[
C̃j ,
[
C̃j−1,

[
. . . ,

[
C̃2, C̃1

]
. . .
]]]]

,

which we rewrite as [
[Ci, Cxx] , C̃

]
.

Using Jacobi-Lie bracket identities, the bracket is equivalent to

−
[
Cxx,

[
Ci, C̃

]]
+
[
Ci,
[
Cxx, C̃

]]
.

Note that the original bracket terms have been redistributed to appear more like the desired elements. The
Cxx element is decomposed as above (e.g. Cxx = [Ci−1, Cyy ]) and the bracket manipulated once more. The
process is repeated until the Cxx element is reduced to the basic component C1, at which point we are done.
�

Recall that the set X, under the evaluation map Ev(φ), did not correspond precisely to the set of vector fields
that could be found in equation (4.18). The proper set to use is X

′ with the bijection φ′ from Definition 49.
To apply the results to control systems of the form in equation (4.18), a method to equate an element of
Br(X′) to elements of Br(X) must be given. Prior to the stating the equation, the set S(·) ⊂ Br(X) must
be defined.

Definition 51 Suppose that B ′ ∈ Br(X′). It is possible to write B ′ as an R-linear sum of elements in
Br(X). These primitive elements uniquely define the set S(B ′).

Lemma 6 [82] The mapping Φ : Br(X′) → L(X) is

Φ(B′) =
∑

B∈S(B′)

(−1)δm+1(B)B, for B′ ∈ Br(X′). (4.28)

Intuitively, the element B ′ ∈ Br(X′) is converted to L ∈ L(X) by replacing X ′
0 with X0 − Xm+1 and

replacing X ′
a with Xa for a = 1 . . . m. Using Proposition 14, L may be decomposed into a R-linear

combination of elements Bi ∈ Br(X). It is precisely these elements Bi which comprise the set S(B ′) ⊂
Br(X). A simple example is the following,

[
X ′

1,
[
X ′

0, X
′
2

]]
7→ [X1, [X0 −Xm+1, X2]] = [X1, [X0, X2]] − [X1, [Xm+1, X2]] . (4.29)

The two iterated Jacobi-Lie brackets, [X1, [X0, X2]] and [X1, [Xm+1, X2]], form the set S(B ′), where the
sign of their contribution is related to the degree δm+1(·). In this manner elements of Br(X′) can be
regarding as being in the linear span of elements from Br(X).
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Free Symmetric algebras

Consider, now, the algebra A(Y), where Y = {X1, . . . , Xl+1 }. Let J(Y) be the two-sided ideal generated
by elements of the form X · Y − Y · X . The free symmetric algebra, denoted S(Y), generated by Y is
the quotient algebra, S(Y) = A(Y)/J(Y). Denote by Pr(Y) the subset of S(Y) consisting of symmetric
products using elements from Y. The set Pr(Y) generates S(Y) just as Br(X) generated L(X), see
Proposition 14.

For each element P ∈ Pr(Y), one can define the degree of P . Let γa(X) be the number of times that
the element Xa, a = 1, . . . , l + 1, occurs in P . The degree of P ∈ Pr(Y), denoted γ(P ), is the sum of the
γ’s,

γ(P ) =
l+1∑

a=1

γa(P ). (4.30)

The free symmetric algebra will be used to generate a symmetric subalgebra in a manner equivalent to the
free Lie algebras in Section 4.2.1, by considering a family of vector fields Y ⊂ X (M). The construction
will use the previously defined symmetric product.

〈Xa : Xb 〉X0 ≡ [Xb, [X0, Xa]] , (4.31)

where X0 ∈ X maps to Γ ∈ X (E), c.f. Equation (4.20), under φ.

Definition 52 The bijective mapping ψ : Y → Y maps Xa to Y lift
a for a = 1 . . . m, and Xm+1 to Z lift.

The bijection ψ may be extended naturally to obtain a map from Pr(Y) to X (E), which may be extended
further via R-linearity to be defined on S(Y). The map that results will be denoted by Ev(ψ). When
evaluated for P ∈ S(Y), at a point x ∈ E,

Evx(ψ)(P ) = (Ev(ψ)(P )) (x). (4.32)

Consequently, the symmetric closure may be defined to be the image under the free symmetric algebra,

Sym(Y) ≡ Im (Ev(ψ)(S(Y))) . (4.33)

Properties of and Computations with the Free Symmetric Algebra. The set, Y, used to create the free
symmetric algebra, S(Y), is really a subset of X, the set used to create the free Lie algebra, L(X). By
definition of the product used in the free symmetric algebra, S(Y) is a subset of L(X). Any properties
derived for the free symmetric algebra S(Y) translate to the appropriat subset of the free Lie algebra L(X).
This is desired as the free symmetric algebra can be used to obtain properties of the control vector fields,
which will be useful for controllability computations.

Observation 4 Suppose that B is a primitive. If B ∈ Br−1(X), then B ∈ S(Y).

proof
The proof is by induction on k using degrees, Brk(X). For the case k = 1, the statement holds trivially.
For the case k = 2, it is not possible since there are not enough individual degree combinations, δa(B), to
result in a −1. For the case k = 3, the only options are

[Xa, [X0, Xb]] , [Xb, [X0, Xa]] ,
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but by definition of the symmetric product, there is really only one option,

〈 Ya : Yb 〉 ∈ Pr(X).

For the inductive case, where it is assumed to hold for the sets Brj(X) for j ≤ k, we will need to carefully
consider the decomposition of B into its components.

By Observation 1, choose the case where B = [B1, B2], with B1 ∈ Br−1(X) and B2 ∈ Br0(X).
It must hold that B1 ∈ Brj(X) for j ≤ k, therefore B1 may be written as a symmetric product, by the
inductive assumption.

What remains to be shown is that [B1, B2] will be a symmetric product. There are two possibilities for
B2 ∈ Bri(X)

⋂
Br0(X), i ≤ k.

(i) By Observation 2, B2 can be decomposed into B2 = [X0, B21], with B21 ∈ Br−1(X). But by the
inductive hypothesis, B21 can be expressed as a symmetric product. This gives,

B = [B1, [X0, B21]] = 〈B21 : B1 〉 , (4.34)

and the first case is complete.
(ii) It may hold, instead, that B2 = [B21, B22] with B21, B22 ∈ Br0(X). Observation 3 gives the sum

of iterated brackets of the form
[Ci, [Ci−1, [. . . , [C2, C1] . . .]]]

where the Ci ∈ Br0(X) are of the form Ci = [X0, Ci1] and Ci1 ∈ Br−1(X)
⋂
Brj(X), for some j ≤ k.

By the inductive hypothesis, Ci1 ∈ Pr(X). The Lie bracket for B is

B = [B1, [Ci, [Ci−1, [. . . , [C2, C1] . . .]]]] .

By the Jacobi-Lie identity,

B = − [[Ci−1, [. . . , [C2, C1] . . .]] , [B1, Ci]] − [Ci, [B1, [Ci−1, [. . . , [C2, C1] . . .]]]]

Note that in the first term, the Lie bracket element with B1 evaluates to a symmetric product. Thus we
recuperate a form like,

[[Ci−1, [Ci−2, [. . . , [C2, C1] . . .]]] , B1i]

where B1i is a symmetric product. The Jacobi identity is used repeatedly until all of the Ci have been
integrated into symmetric products.

The second term has the structure of the original B, but at a lower degree and with the extra Lie bracket
with Ci. Repeated Jacobi identity applications will also result in symmetric products with the outer brackets,
i.e., terms like

[Ci−1, [Ci−2, [. . . , [C2, B1i] . . .]]] .

The brackets really form iterated symmetric products. There will be other terms like

[
Ci−1,

[
Ci−2,

[
. . . ,

[
B1i1...ij , . . . [C2, C1]

]]]]

but via the analysis above, they also become symmetric products. Since the Ci are of the form [X0, Ci1],
where Ci1 is a symmetric product, the recursive simplification must occur.
�

This observation is analogous to the result in Lemma 5.6 part (i) of [85] for simple mechanical systems.
Since the observation states that an element B ∈ Br−1(X) is a symmetric product, this implies for simple
mechanical systems that it must be a lift. Recall that the simple mechanical system symmetric product
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operates on the unlifted vector fields and is lifted after all of the symmetric products have been calculated
(although this need not be the case).

Free Algebras and Homogeneity

Lemma 7 Let l ≥ 1 be an integer and let B ∈ Brl(X). Then Ev(φ)(B)(0q) = 0 for all q ∈ Q.

proof
An element B ∈ Brl(X) contains brackets with l more instances of the vector field X0 showing up than
the vector fields Xa. Supposing that B ∈ Br(2m+l)(X) for any m ≥ 0. Then, there are m instances of the
elements Xa, and m + l instances of the element, X0. Since the Xa map to input vector fields, they lie in
the space P−1, and since the element X0 maps to the drift vector field, it is in P1. The Lie brackets map
into Pl. When evaluated on the zero section, homogeneity of order l ≥ 1 implies that the result is the zero
vector, c.f. Proposition 7.
�

Lemma 8 Let l ≥ 2 be an integer, and let B ∈ Br−l(X). Then Ev(φ)(B) = 0.

proof
An element B ∈ Br−l(X) contains brackets with l more instances of the vector fields Xa showing up than
the vector field X0. Supposing that B ∈ Br(2m+l)(X) for any m ≥ 0. Then, there are m instances of the
element X0, and m+ l instances of the elements, Xa. The Lie brackets map into P−l. For l ≥ 2, the space
only contains the zero vector field, c.f. Propoition 6.
�

The homogeneous structure of the nonlinear system implies that only the brackets that reside in M−1,0

when evaluated on the zero section of E, will give contributions to the controllable Lie subalgebra. The
homogeneous structure also implies that the brackets of P−1 will be vertical elements, and the brackets of
P0 evaluated on the zero section will be horizontal elements, using the trivial connection.

STLC in the Algebraic Sense

In order to determine small-time local controllability using the Lie algebra rank condition, it is necessary to
define the notion of a good and a bad bracket.

Definition 53 An element B ∈ Br(X) is called bad if δa(B) is even for all a = 1 . . . m, and if δ0(B) is
odd. If B is not bad, then it is good.

In addition, Sussmann utilized the permutation group Sm, of permutations using m symbols. An element
σ ∈ Sm takes the m elements Xa ∈ X, and maps them to Xσ(a) ∈ X. The set of all possible permutations
can be used to define a bracket permutation, β : Br(X) → Br(X) on the primitive B ∈ Br(X).

β(B) =
∑

σ̄∈Sm

σ̄(B)

Sussman’s general derivation, relying on the standard form of the nonlinear control equation (4.15), culmi-
nated in the following theorem.
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Theorem 24 [152] Consider the bijection φ : X → { f, g1, . . . , gm }, which sends X0 to f and Xa to ga

for a = 1 . . . m. Suppose that (4.15) is such that every bad bracket B ∈ Br(X) has the property that

Evz(φ) (β(B)) =

k∑

a=1

ξaEvz(φ) (Ca) ,

where Ca are good brackets in Br(X) of lower degree than B and ξa ∈ R for a = 1 . . . k. Also suppose
that (4.15) satisfies the LARC at z. Then (4.15) is STLC at z.

Lewis examined the structure of simple mechanical systems to refine this idea for configuration controllabil-
ity. In particular, only the brackets in the homogeneous space Br−1(X) can result in bad brackets. As they
correspond to symmetric products, the search for bad brackets was reduced to examination of the symmetric
products only. Define the set Y = {X1, . . . , Xm+1 } to be bijective to Y via ψ : Y → Y .

Definition 54 An element P ∈ Pr(Y) is called bad if γa(P ) is even for each a = 1 . . . m. If P is not bad
then it is good.

Theorem 25 [85] Consider the bijection ψ : Y → Y , which sends Xa to Y lift
a for a = 1 . . . m, and Xl+1

to Z lift. Suppose that (4.18) is such that every bad symmetric product in P ∈ Pr(Y) has the property that

Ev0x(ψ)(ρ(P )) =
k∑

a=1

ξaEv0x(ψ)(Ca), (4.35)

where Ca are good symmetric products in Pr(Y) of lower degree than P and ξa ∈ R for a = 1, . . . , k.
Also, suppose that (4.18) is locally configuration accessible at x. Then (4.18) is STLCC at x.

This theorem was proven for the case that E = TQ, and is precisely the theorem that will be recreated for
a 1-homogeneous control system evolving on a generic vector bundle2 . Configuration controllability will
imply controllability of the base space, M , of the vector bundle, E.

The Form of the Accessibility Distribution on the Zero Section for 1-Homogeneous Control Systems.

Lemma 9 Let x ∈M . Then,
DLie(V)(0x)

⋂
V0xE = DSym(Y)(0x),

and
DLie(V)(0x)

⋂
H0xE = DLie([Γ,Sym(Y)])(0x).

proof
The proof mirrors that of Lewis and Murray [85], however, the main steps of the proof will be sketched.
Propositions 5 - 7 imply that only the primitive bracket contributions will be essential to this analysis. Of
the primitive brackets, the only contributions to the Lie closure are those elements that lie in Br−1(X) and
Br0(X), which correspond to elements of the vertical and horizontal subspaces, respectively (using the
trivial decomposition). The space Br−1(X) consists of only symmetric products, via Observation 4, and
likewise the space Br0(X) is generated through the Lie closure of the set [Γ, Br−1(X)], using Observation
3.
�

2The notation of this theorem is a bit different. The Y in the theorem statement corresponds to Y
⋃

{ gradV } from Lewis and
Murray [85].
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Lemma 9 allows us to compare the involutive closures Sym(Y) and Lie
([

Γ,Sym(Y)
])

evaluated on the
zero section with the horizontal and vertical distributions of the trivial connection. Since Sym(Y) and
Lie
([

Γ,Sym(Y)
])

are generated by the evaluation of Br−1(X) and Br0(X), respectively, we may define
horizontal and vertical distributions using the free Lie algebras.

Definition 55 The horizontal distribution corresponding to Brk(X) is given by

C(k)
hor(V) ≡

{
Ev(φ)(B) | B ∈ Brk(X)

⋂
Br0(X)

}
.

The vertical distribution corresponding to Brk(X) is given by

C(k)
ver(V) ≡

{
Ev(φ)(B) | B ∈ Brk(X)

⋂
Br−1(X)

}
.

The union of these spaces over all k ∈ Z
+ may be used to define the horizontal and vertical distributions.

Definition 56 The horizontal distribution is defined to be,

Chor(V) =
⋃

k∈Z+

C(k)
hor(V),

and the vertical distribution is defined to be,

Cver(V) =
⋃

k∈Z+

C(k)
ver(V).

Certainly in the absence of a potential energy term, Z lift = 0, in the drift vector field, XS , these defini-
tions and lemma suffice to characterize the Lie algebra of the control system (4.18). Unfortunately, in the
presence of a nonvanishing potential, additional work is needed to demonstrate that the Lie algebra L(X ′)
is represented by L(X), or equivalently Br(X′) is represented by Br(X). This means that the brackets in
Br(X) neeed to be equated with brackets in Br(X′), which is done via the replacement operator,

Definition 57 The replacement operator, Rep : Br(X) → Br(X′), operates as follows: given an element
B ∈ Br(X), all instances of X0 ∈ X and Xm+1 ∈ X are replaced with X ′

0 ∈ X
′, and all instances of Xa

are replaced with X ′
a for a = 1 . . . m.

The term Xm+1 evaluates to the vector field Z lift which cannot occur on its own, it is part of the drift vector
field. The replacement map respects this fundamental fact. The problem with the replacement map is that
we have fully characterized the sets Br(X), but not Br(X′), therefore we will need to map the replaced
bracket into L(X). This is done by the operator Φ. Define the function Φ̃ to map Br(X) into Br(X′), then
finally into L(X),

Φ̃ : Br(X) → L(X), Φ̃ ≡ Φ ◦ Rep. (4.36)

Definition 58 The horizontal distribution corresponding to Brk(X′) is given by

C(k)
hor(V ′) =

{
Ev(φ)(B̃) | B̃ = Φ̃(B), ∀ B ∈ Brk(X)

⋂
Br0(X)

}
.

The vertical distribution corresponding to Brk(X′) is given by

C(k)
ver(V ′) =

{
Ev(φ)(B̃) | B̃ = Φ̃(B), ∀ B ∈ Brk(X)

⋂
Br−1(X)

}
.
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proof
What will be demonstrated is that not only does the set X′ allow for horizontal and vertical decompositions
as did X, but that they in fact coincide. Take an arbitrary primitive bracket B ∈ Br (k)(X) and calculate its
replacement B ′ = Rep(B) ∈ Br(k)(X′), whereby the following identities are obtained: I ′ = δ(B′), and
J ′ =

∑m
a=1 δa(B

′). It turns out that δ0(B′) = δ0(B)+ δm+1(B). The mapping Φ takes B ′ and maps it into
a sum of brackets in Br(X). Those brackets that linearly combine to give B ′ form the set S(B ′).

We shall characterize an arbitrary element C ∈ S(B ′). The element, C , will have the following degrees,
I = δ0(C), J =

∑m
a=1 δa(C) = J ′, and K = δm+1(C) = I ′ − I . Its relative degree will be δ̃(C) =

I − J −K . The only contributions, when evaluated on the zero section will be those with relative degree 0
or −1. There is only one way to contribute in the set S(B ′), and it will depend on the parity of the relative
degree of the original B ′, δ̃(B′) = I ′ − J ′.

Take the element with maximal degree B ∈ S(B ′). There can only be one such element. It is the one
with I = I ′. The next highest degree are the terms with I = I ′ − 1. Notice that, if any one of the slots with
X0 in it is replaced byXm+1, then the relative degree changes by two degrees; one degree is lost because X0

is removed, but one degree is also lost because Xm+1 is added. Since the degree drops by two degrees each
time we move from I to I − 1, the relative degree of elements from S(B ′) have the same parity, they will
be even only, or odd only. For an even parity, the only contributions can be B ∈ S(B ′)

⋂
Br0(X), whereas

for odd parity, the only contributions can be B ∈ S(B ′)
⋂
Br−1(X). But these precisely correspond to the

contributions found in C(k)
hor(V) and C(k)

ver(V), respectively, from Definition 55, meaning that the distributions
are still horizontal and vertical, accordingly. The only contributing elements turn out to be those that have
the same relative degree as the original B ∈ Br0(X)

⋃
Br−1(X).

Elements with the Jacobi-Lie bracket [X0, Xm+1] require special consideration, since Xm+1 is not an
input that we have full control over. Fortunately, under the replacement operator Rep, this bracket becomes
[X ′

0, X
′
0] = 0, and has no contribution under Φ̃. Thus, such primitive elements of Br(X) can be ignored.

�

It should be noted that the proof of the above definition replaces the algorithm found in Lewis and Murray
[85]. This deviation was preferred because it will be useful to understand the above proof when dissipation
is considered , as will be done in Section 4.3. We may now define the horizontal and vertical distributions
by taking the union over all k ∈ Z

+.

Definition 59 The horizontal distribution is defined to be,

Chor(V ′) =
⋃

k∈Z+

C(k)
hor(V ′),

and the vertical distribution is defined to be,

Cver(V ′) =
⋃

k∈Z+

C(k)
ver(V ′).

All of the fundamental work to prove the following statement has been completed.

Proposition 15 Let x ∈M . Then

DLie(V ′)(0x)
⋂
H0xE = Chor(V ′)(0x),

and
DLie(V ′)(0x)

⋂
V0xE = Cver(V ′)(0x).
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4.2.2 Conditions for Configuration Controllability

Up to this point, we have given and proven the analogous theorems derived in [85] for use within the
context of 1-homogeneous control sytems. Consequently, all of the theorems concerning configuration
controllability may now hold for these homogeneous control sytems without modification of the proofs
from Lewis and Murray [85].

Theorem 26 [85] The control system (4.18) is locally configuration accessible at x ∈M if Chor(V)(0x) =
H0xE.

The partial converse proven for the case when there is no potential also holds.

Theorem 27 [85] Suppose that Z lift = 0 and (4.18) is locally configuration accessible. Then Chor(V)(0q) =
H0qE for Q in an open dense subset of Q.

Theorem 28 [85] Suppose that Y is such that every bad symmetric product in Pr(Y) has the property that

Ev0x(ψ)(ρ(P )) =
m∑

a=1

ξaEv0x(ψ)(Ca),

where Ca are good symmetric products in Pr(Y) of lower degree that P and ξa ∈ R for a = 1 . . . m. Also,
suppose that (4.18) is locally configuration accessible at x ∈M . Then (4.18) is STLCC at x.

Corollary 14 [85] Suppose that the hypotheses of Theorem 28 hold for all x ∈ M . Then the system (4.18)
is equilibrium controllable.

4.2.3 Conditions for Small-Time Local Controllability

It may be the case that configuration controllability will not suffice for some systems, and actual controlla-
bility is sought. Small-time local controllability for elements in the equilibrium subspace can also be given.
Recall that to be an element of the equilibrium subspace, according to Definition 44, the element has to lie
in the zero section of E.

Theorem 29 [85] The control system (4.18) is locally accessible at 0x ∈ E if Chor(V)(0x) = H0xE and
Cver(V)(0x) = V0xE.

Theorem 30 [85] Suppose that Y is such that every bad symmetric product in Pr(Y) has the property that

Ev0x(ψ)(ρ(P )) =

m∑

a=1

ξaEv0x(ψ)(Ca),

where Ca are good symmetric products in Pr(Y) of lower degree that P and ξa ∈ R for a = 1 . . . m. Also,
suppose that (4.18) is locally accessible at 0x ∈ E. Then (4.18) is STLC at 0x.

4.3 Dissipation and Controllability

This section extends the controllability analysis to the case where dissipation is included in the mechanical
model. The dissipation modelled is often known as Rayleigh dissipation; as a vector field it is vertical and
of homogeneous order 0 (implying linearity as a function of the vector fiber).

ż = XS(z) + Y lift
a (z)ua = Γ(z) +Dlift(z) − Z lift(z) + Y lift

a (z)ua. (4.37)
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The vector field Dlift(z) ∈ P0 represents the additional dissipation vector field. Cortés et al. [34] studied
the effect of isotropic dissipation; more precisely D lift(x) was restricted to be symmetric and independent of
configuration. This section attempts to generalize [34] to configuration dependent, not necessarily symmet-
ric, dissipation. The dissipation vector field is seen as an interfering element in the controllability analysis,
and not as a control vector field that may grant additional control authority. Although the free Lie algebras
will recover additional control directions, a large set of potential Jacobi-Lie brackets will be ignored by re-
stricting the analysis to the homogeneous spaces that were found to be useful in Section 4.2. Consequently,
the results of this section are conservative in nature.

Free Algebras and Homogeneity

Lemma 10 If B ∈ Br−1(X), then Ev(φ)(B) ∈ M−1.

proof
If B ∈ Br−1(X) then B ∈ Pr(X). Evaluation of the symmetric product gives a vector field in the
homogeneous space M−k−1,−1 = P−1.
�

The addition of dissipation, a vertical vector field of homogeneous order 0, does not alter the symmetric
product calculation, which can be seen by appealing to the definition of the symetric product, Definition 37.
Consequently, the nature of good and bad brackets does not change.

Lemma 11 Let l ≥ 2 be an integer, and let B ∈ Brk(X)
⋂
Br−l(X) for k ≥ 2. Then Ev(φ)(B) = 0.

proof
An element B ∈ Br−l(X) contains brackets with l more instances of the vector fields Xa, a = 1 . . . m+ 1,
than the vector field X0. Supposing that B ∈ Br(2k+l)(X) for any k > 0. Then, there are k instances of the
element X0, and k + l instances of the elements Xa in the products that make up B. Under the evaluation
operator, Ev(φ), the Xa map to input vector fields lying in the space P−1, and the element X0 maps to
the drift vector field in M0,1. Therefore, the element B maps to an iterated Jacobi-Lie bracket in the space
M−k−l,−l. For l ≥ 2, the space contains only the zero vector field.
�

The remaining elements requiring analysis for configuration accessability are those in those in Br l(X), for
l ≥ 0.

Lemma 12 Let l ≥ 0 be an integer and let B ∈ Brl(X). Then Ev0q (φ)(B) ∈ M−1,0(0q) for all q ∈ Q.

proof
An element B ∈ Brl(X) contains brackets with l more instances of the vector fieldX0 than the vector fields
Xa, a = 1 . . . m+ 1. Supposing that B ∈ Br(2k+l)(X) for any k > 0, there are k instances of the elements
Xa, and k + l instances of the element, X0. Under the evaluation operator, Ev(φ), the Xa map to input
vector fields lying in the space P−1, and the element X0 maps to Γ+Dlift ∈ M0,1. The element B maps to a
iterated Jacobi-Lie bracket in the space M−k,l = M−1,l. Of course, all vector fields of homogeneous order
greater than 0 vanish on the zero section, therefore only the subspace M−1,0 will provide a contribution.
�

Previously, Ev(φ)(Br0(X)) ⊂ P0, whereas now Ev(φ)(Br0(X)) ⊂ M0. The vertical dissipation vector,
introduces new vertical contributions to the Jacobi-Lie bracket computations. By projecting to Ev(φ)(Br0(X))
to the horizontal subspace, we may recover the original (dissipation free) distribution. Equally important,
the evaluation Ev(φ)(Brk(X)) is no longer the trivial space { 0 } for k ≥ 0. Dissipation introduces ad-
ditional brackets that before had been vanishing. These brackets can provide either new control directions
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if needed, or new bad brackets. The bad brackets will only occur for spaces of odd homogeneous order,
Br2k+1(X) for k ≥ 0.

The Form of the Accessiblity Distribution on the Zero Section for 1-Homogeneous Control Systems
with Dissipation. The horizontal and vertical decomposition is no longer viable. We shall consider, in-
stead, several distributions. The first consists of only those element that were previously found useful on the
zero section.

C0(V) =
⋃

k∈Z+

C(k)
0 (V), (4.38)

where
C(k)

0 (V) ≡
{

Ev(φ)(B) | B ∈ Brk(X)
⋂
Br0(X)

}
. (4.39)

In the case of vanishing dissipation, C0(V) is equal to Chor(V). The remaining two distributions will be used
to characterize the good brackets and the bad brackets of Br(X).

Ceven(V) =
⋃

k∈Z+

C(k)
even(V), (4.40)

where
C(k)

even(V) ≡
{

Ev(φ)(B) | B ∈ Brk(X)
⋂
Br2l(X), l ≥ 0

}
. (4.41)

Under the mapping Φ̃, we will find that C0(V) maps into Ceven(V). Comparing this to the case of no dis-
sipation, where Φ̃ (C0(V)) = C0(V), we see that dissipation enlarges the set of possible contributions to
configuration controllability. The same can be said of Codd(V),

Codd(V) =
⋃

k∈Z+

C(k)
odd(V), (4.42)

where
C(k)

odd(V) ≡
{

Ev(φ)(B) | B ∈ Brk(X)
⋂
Br2l−1(X), l ≥ 0

}
. (4.43)

In the case of no dissipation, Φ̃ (Cver(V)) = Cver(V), whereas in the case with dissipation, Φ̃ (Cver(V)) ⊂
Codd(V). Consequently, dissipation also enlarges the space of potential bad brackets. The nice thing is that
the bad brackets are in a complementary subdistribution to the good brackets.

It is critical to understand how these brackets relate to the actual system, which utilizes the set V ′ instead.

Definition 60 Define the distribution

C0(V ′) =
⋃

k∈Z+

C(k)
0 (V ′), (4.44)

which consists of

C(k)
0 (V ′) ≡

{
Ev(φ)(B̃) | B̃ = Φ̃(B), B ∈ Brk(X)

⋂
Br0(X)

}
. (4.45)

Proposition 16 C0(V ′) ⊂ Ceven(V).

proof
Take an arbitrary primitive bracketB ∈ Br(k)(X)

⋂
Br0(X), and calculate its replacement B ′ = Rep(B) ∈

Br(k)(X′), whereby the following identities are obtained: I ′ = δ(B′), and J ′ =
∑m

a=1 δa(B
′), where
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δ0(B
′) = δ0(B) + δm+1(B). The mapping Φ takes B ′ and maps it into a sum of brackets from the set

S(B′) ⊂ Br(X).
We shall characterize an arbitrary element C ∈ S(B ′). The element, C , will have the following degrees,

I = δ0(C), J =
∑m

a=1 δa(C) = J ′, and K = δm+1(C) = I ′ − I . Its relative degree will be δ̃(C) =
I − J −K . Whereas before, the only contributions on the zero section were those with relative degree 0 or
−1, contributions may be obtained for any relative degree greater than or equal to −1.

Take the element with maximal degree B ∈ S(B ′). There can only be one such element. It is the one
with I = I ′. The next highest degree terms are the terms with I = I ′ − 1. Notice that, if any one of the
slots with X0 in it is replaced by Xm+1, then the relative degree changes by two degrees; one degree is lost
because X0 is removed, but one degree is also lost because Xm+1 is added. Since the degree drops by two
degrees each time we move from I to I−1, the relative degree of elements from S(B ′) have the same parity,
they will be even only, or odd only. For an even parity, the only contributions can beB ∈ S(B ′)

⋂
Br2l(X),

whereas for odd parity, the only contributions can be B ∈ S(B ′)
⋂
Br2l−1(X), for l ≥ 0. Since the original

parity was even, B ′ is spanned by elements in Br2k(X) for k ≥ 0.
As before, elements with the Jacobi-Lie bracket [X0, Xm+1] vanish under the replacement operator.

�

The distribution C(V ′) does not contain brackets of odd relative degree, so it can never contain bad brackets.
According to Lemma 12, the distribution C(V ′) will contain vertical contributions. Given that the concern
of configuration controllability is only on the horizontal subdistribution, we shall define the projection of
C(V) to the horizontal subdistribution by

PC(V) =
(
Id −Atriv

)
(C(V)) . (4.46)

Definition 61 Define the distribution

C−1(V ′) =
⋃

k∈Z+

C(k)
−1 (V ′), (4.47)

which consists of

C(k)
−1 (V ′) ≡

{
Ev(φ)(B̃) | B̃ = Φ̃(B), B ∈ Brk(X)

⋂
Br−1(X)

}
. (4.48)

Proposition 17 C−1(V ′) ⊂ Codd(V)

proof
Same as the proof in Proposition 16, except that now the parity is odd.
�

This proposition is used to characterize the space of bad brackets obtained from symmetric products. Just as
the space of useful brackets was enlarged, the space of bad brackets is bigger, requiring more work to check
configuration controllability. In the case of no potential, Z lift = 0, we can improve our understanding. This
is because the mapping Φ̃ is no longer needed (it is the identity mapping since the sets X and X′ map to the
same objects under Ev(φ)), and all of our analysis reduces to understanding the set Br(X).

Proposition 18 Assume that there does not exist a potential term in the drift vector field, i.e., Z lift = 0. If
the space C(V ′) is calculated on the zero section for equation (4.37) according to the algorithm, then its
horizontal projection is equal to Chor(V ′), which is calculated on the zero section using equation (4.18), i.e.,
with the dissipation removed. Equivalently,

PC(V ′)(0x) = Chor(V ′)(0x). (4.49)
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proof
In the case of no potential term, C(V ′) = C(V). The proof in Lemma 12 reveals that C(V) ⊂ M−1,0 on the
zero section. Further analysis of the proof demonstrates that the P−1 terms come from the dissipation vector
field only, and there is only one possible bracket that can lie in P0. This unique bracket is the same bracket
that appears in the Chor(V ′) computations for the case without dissipation. Hence, the horizontal projection
annihilates the new contributions due to dissipation and preserves the original contribution.
�

This proposition implies that the addition of dissipation does not affect the original configuration control-
lability calculation in the case that there is no potential term in the drift vector field. When restricted to
isotropic dissipation, this replicates the conclusion of Cortés et al. [34].

4.3.1 Conditions for Configuration Controllability with Dissipation

Theorem 31 [85] The control system (4.18) is locally configuration accessible at x ∈M if PC(V ′)(0x) =
H0xE.

proof
The distribution C(V ′)(0x) ⊂ M−1,0 due to geometric homogeneity, c.f. Lemma 12. Do I need this proof?
�

Theorem 32 [85] Suppose that X is such that every bad bracket in B ∈ Φ(Br2l−1(X)) , for l ≥ 0, has
the property that

Ev0x(ψ)(ψ(B)) =

m∑

a=1

ξaEv0x(ψ)(Ca)

where Ca are good brackets in Φ(Br(X)) of lower degree that P and ξa ∈ R for a = 1 . . . m. Also,
suppose that (4.37) is locally configuration accessible at x ∈M . Then (4.37) is STLCC at x.

In the absence of a potential term, Z lift = 0, a stronger statement holds.

Theorem 33 Suppose that the 1-homogeneous control system (4.37) has no potential term, i.e., Z lift = 0.
If the 1-homogeneous system with dissipation excluded, eq. (4.37), is STLCC at x ∈ M , then the original
system (4.37) is STLCC at x ∈ E.

Again, this is a generalization of the configuration controllability results found in Cortés et al. [34].

4.4 Examples

In this section, we present several instances of controllability analysis found in the literature. For each case,
we define the vector bundle, E, and demonstrate how the instances are special cases of 1-homogeneous
control systems.

4.4.1 The Tangent Bundle

Let the vector bundle be given by the tangent bundle to a manifold, E = TM . Take a control system whose
evolution, XS ∈ X (TM), is a second-order vector field. A second-order vector field has the property that
Tπ ◦XS(uq) = uq, where Tπ : TE → TM is the bundle projection for TE. The space of all second-order
vector fields will be denoted X SO(E) ⊂ X (E), for more information on second order vector fields, please
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see [70, 36, 99, 1]. Given a second-order vector field, X ∈ X SO(TQ), if it is of homogeneous order +1,
e.g., [∆, X] = X , then it is said to be a spray [70]. There exists a bijection between linear symmetric
connections and sprays (an affine connection and its related Christoffel symbols form such a bijection); see
[70, 36] and references therein.

In a local trivialization the second iterated tangent bundle takes the form T (TQ) ∼= Q × E × E × E.
Thus both the vertical and horizontal subspaces of T (TQ) can be identified with TQ. This is behind much
of the simplification that occurs in the paper by Lewis and Murray [85]. In particular, on the zero section,

[
Γ, X lift

a

]
∈ HE and Tπ

([
Γ, X lift

a

])
= −Xa.

Consequently, on the zero section,

Tπ
([[

Γ, X lift
a

]
,
[
Γ, X lift

b

]])
= [Xa, Xb] ,

meaning that the space Lie
([

Γ,Sym(Y)
])

, when evaluated on the zero section, can be given by Lie
(

Sym(Ỹ)
)

,

where Ỹ = {Y1, . . . Ym, Z } is the set of unlifted vector fields from Y . The commutativity of the symmetric
product, see Equations (4.13) and (4.14), also has ramifications: the symmetric closure Sym(Y), when eval-
uated on the zero section, is in 1-1 correspondence with the symmetric closure of the unlifted vector fields
Sym(Ỹ). Essentially, all of the calculations drop to TM , resulting in computational reductions, precisely as
emphasized by Lewis and Murray [85]. The important configuration controllability lemmas and theorems
are rewritten below using the simplified notation.

Lemma 13 [85] Let x ∈M . Then,

DLie(V)(0x)
⋂
V0xE =

(
DSym(Ỹ)

(x)
)lift

,

and
DLie(V)(0x)

⋂
TxM = DLie(Sym(Ỹ))(x).

Theorem 34 [85] The control system (4.18) is locally configuration accessible at x ∈ M if Chor(V)(x) =
TxM .

Theorem 35 [85] Suppose that Ỹ is such that every bad symmetric product in Pr(Y) has the property that

Evx(ψ)(ρ(P )) =

m∑

a=1

ξaEvx(ψ)(Ca),

where Ca are good symmetric products in Pr(Y) of lower degree that P and ξa ∈ R for a = 1 . . . m. Also,
suppose that (4.18) is locally configuration accessible at x ∈M . Then (4.18) is STLCC at x.

The bijection between sprays and linear symmetric connections, means that the controllability analysis of
any second-order system such that XS ∈ (P1 ⊕P−1)

⋂X SO(TQ) is a special case of the affine connection
approach; for example [112].

4.4.2 The Cotangent Bundle

As the cotangent bundle is a vector bundle in its own right, controllability analysis can be done on the
cotangent bundle just as easily as on the tangent bundle. A notable exception is that the identification of
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the horizontal and vertical tangent spaces of T (T ∗Q) with the covector bundle T ∗Q will not be made.
Analysis on the cotangent bundle is useful for Hamiltonian systems, although the authors are unaware of
any research that specifically studies how the Lie-algebraic structure of Hamiltonian systems may be used
for control. The ability to formulate controllability results on the cotangent bundle will play a vital role
when considering the case of nonhonolonomic mechanical systems with symmetry.

4.4.3 Constrained Mechanical Systems

Controllability for systems with nonholonomic velocity constraints can be addressed using this theory.
While affine connections and constraints are compatible [84], we focus on alternative approaches that de-
scribe contraints via an Ehresmann connection, A : TQ → V Q, on the fiber bundle Q with bundle projec-
tion τ : Q → M and model fiber S [15]. In a local trivialization the vector bundle is E ∼= M × S × V ,
where V is the model vector space for the tangent bundle to M , and M × S is the base space. The bundle
projection operator is defined to be πQ : E → Q.

This description applies to the constrained mechanical systems found in Bloch et al. [15], for which
the paper by Bloch et al. [16] details configuration controllability for the special case of an Ehresmann
connection. The tangent bundle TE cannot be identified with E, so the computational simplifications from
Lewis and Murray [85] do not occur. Fortunately, the vertically lifted structure of the control vector fields
has fundamental implications beyond this type of identification. The inputs Y lift

a ∈ Y are sections of the
vector bundle E, and we can uniquely define the set Ỹ using Ỹ lift = Y , just as in the above case.

More importantly, the set Ỹ can actually be horizontally lifted into TE, c.f. Section 3.2. The horizontal
lift will be done using the constraint Ehresmann connection as opposed to the trivial Ehresmann connection
that was defined earlier. It can be shown that the horizontal lift of the constraint Ehresmann connection is
still horizontal with regards to the trivial Ehresmann connection. In a local trivialization, the horizontal lift
takes an element of E and maps it into a horizontal vector in TE,

(r, s, v)h = (v,−Aloc(r, s) · v, 0) ∈ T(r,s,v)E, (4.50)

where Aloc is the local form of the Ehresmann connection [15]. It is normally assumed that the base space,
M , to Q is fully controllable; (configuration) controllability of the fiber is the unknown. Configuration
controllability is found via Lie(

[
Γ,Sym(Y

]
), which coincides precisely with what Bloch et al. [16] find,

however the analysis found here works to arbitrary orders of bracketing. According to the analysis of

Section 3.2, Lie(
[
Γ,Sym(Y

]
) corresponds to Lie(

(
Sym(Ỹ)

)h
), where ·h is the horizontal lift of sections

of E using the constraint Ehresmann connection. It is well known, and was shown in Section 3.2, that the
Jacobi-Lie brackets of horizontally lifted vector fields are equivalent to covariant derivatives of the local
connection form. The involutive closure Lie(

[
Γ,Sym(Y

]
), therefore, corresponds to covariant derivatives

of the constraint connection. The configuration controllability test will span H0qE only if the curvature
form, B(r, s), of the Ehresmann connection, and its higher-order covariant derivatives span the tangent fiber
of TS. Constraint reduction simplifies the controllability test to analysis of the local connection form only.
Thus, we can also show that the constraints and their vector bundle structure will naturally imply a reduction
of the configuration controllability tests. Of course, if the base space is not fully controlled, then additional
computations are required to determine this.

If the fiber is a Lie group, S = G, and the equations of motion are group invariant3 , then we are in
the principal kinematic case, which was initially studied by Kelly and Murray [67], and was also covered
in Section 3.2.2. All of their notions of fiber controllability (weak and strong) hold for this case. The
local form of the principal connection, Aloc(r) : TrM → g, only depends on the base space, meaning that

3Typically this arises from group invariant Lagrangian and constraints.
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configuration controllability is further reduced to analysis of the associated adjoint bundle g̃, as in Section
3.2.2. See also [30, 67, 137] for more information.

The mechanical systems described by this bundle construction correspond to the dynamic extension of
kinematic (i.e. driftless) systems with constraints.

4.4.4 Constrained Mechanical Systems with Symmetry

For some systems, the constraints do not fully constrain the fiber. In this case, it may be possible to accrue
momentum in the unconstrained fiber directions. Assume further, that the we have a principal fiber bundle,
Q ∼= M × G, where G is a Lie group. The Lie algebra, g, corresponding to the Lie group is decomposed
into two parts, (1) one which is kinematically constrained, and (2) a second which is not. The system will
evolve on the vector bundle, E ∼= TM × G × V , with base space diffeomorphic to M × G, and vector
bundle diffeomorphic to W ×V , where W is the model fiber for the tangent space TM . Typically V will be
the unconstrained subspace of the Lie algebra, g, or its dual, g∗. The controllability analysis may be done
for either case.

Choosing V ⊂ g, reproduces the conclusions found in Cortés et al. [35]. Cortés et al. combined the
affine connection and principal connection approaches to come up with configuration controllability results
for constrained mechanical systems with symmetry. By focusing only on the homogeneous structure of the
vector bundle E, we may obtain the same conclusions without the complex notation coming from the merger
of principal connections with affine connections. This approach corresponds to beginning with the reduced
structure; a coordinate invariant derivation may be found in Cendra et al. [29]. Selecting, instead, V ⊂ g∗,
we recover the equations of motion found in Bloch et al. [15]. Controllability analysis for this case can be
found in Ostrowski and Burdick [125, 126], where part of the system evolves on the dual to the Lie algebra
instead of the Lie algebra itself. Using V ⊂ g∗ corresponds to part of the dynamics having Hamiltonian-like
evolution.

In particular, the controllability analysis is reduced to the examination of the curvature of the principal
connection as before, and also of the symmetric products. The symmetric products are what allows the
system to accrue momentum in the unconstrained fiber directions [126]. Ostrowski and Burdick [125], and
Bullo and Lewis [25] were aware that the two approaches are in some way connected, and recommended
further study of this connection. This example demonstrates why the link exists, and does so using the
geometric homogeneity properties inherent to many mechanical systems as envisioned by Bullo and Lewis
[25].

4.5 Conclusion

The description of mechanical systems from the perspective of geometric homogeneity demonstrates that
certain system properties are not tied down to any particular instantiation of the equations of motion. Al-
though each mechanical system framework can be used to highlight special properties to varying degrees,
certain properties will hold irrespective of the paradigm chosen. Therefore, this leads to the idea of studying
second-order mechanical systems from a broader differential geometric perspective. This chapter explored
the role of geometric homogeneity on the evolution of control systems on vector bundles, and developed
configuration controllability tests analogous to those for simple mechanical systems. The homogeneous
structure gives priority to specific Jacobi-Lie bracket combinations when searching for controllability, thus
allowing one to heuristically prune the controllability analysis.

A surprising result to come out of this analysis is that the computational simplifications found on
E = TQ are not unique to the affine connection case. Utilizing the structure afforded by constraints
and symmetries can also drastically reduce the computational costs of configuration controllability tests. In
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fact the simplifications may be larger since very often the base space is controllable and what needs to be
discovered is configuration controllabilty of the fiber. The computations are reduced not only to the tangent
space of the base space of the vector bundle, TQ, but to a submanifold of this tangent space.

The role of dissipation has been examined because of the desire to incorporate linearly dissipative forces
into the equations of motion. It has been shown that, for some cases, the original configuration controllability
analysis for systems without dissipation is not severely affected by the introduction of dissipation. It has also
been shown that dissipation causes many originally vanishing Lie brackets to be non-vanishing. These new
contributions may allow for additional control authority if the controllability analysis without dissipation did
not give the desired result. Such an example can be found in the work of Ostrowski on the development of
an underwater eel-inspired robot [106]. Without external dissipation, the mathematical model of the aquatic
robot would not be capable of locomotion.

It would be useful to design control laws based on the controllability analysis of this chapter. Controller
synthesis has been done using motion control algorithms for simple mechanical systems [21, 24, 100]. The
next chapter, Chapter 5, will cover this idea in more detail. The averaging methods of Chapter 2 recover
the symmetric product directions, or the Lie bracket directions needed for small-time local controllability.
The technique will generalize the body of work on motion control algorithms to arbitrary 1-homogeneous
control systems, just as this chapter generalized the body of work on configuration controllability for simple
mechanical systems.
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Chapter 5

Control of Underactuated 1-Homogeneous Systems with Drift

This chapter introduces a new technique to stabilize a large class of underactuated nonlinear systems with
drift. The technique is a direct extension of the stabilization technique for underactuated driftless systems
from Chapter 3, and is based on the generalized averaging theory of Chapter 2. We apply this averaging
method to 1-homogeneous control systems with drift. The method exponentially stabilizes 1-homogeneous
control systems in the average. As with the driftless case, the method does not need a homogeneous norm
to demonstrate exponential stabilization, coordinate transformations to canonical forms, the construction of
Lyapunov functions, nor the pre-existence of stabilizing controllers, although such elements can be used to
facilitate the process. The complexity of the nonlinear analysis grows with the order of Jacobi-Lie brack-
eting; only lower order control will be discussed in detail. Extensions to higher-order follow the same
principles.

Organization of this chapter. Section 5.1 examines the structure of 1-homogeneous control systems for
transformation to the standard form required by the perturbation methods of the generalized averaging theory
from Chapter 2. Once in standard form, averaged expansions for the control systems may be computed.
Techniques to stabilize 1-homogeneous control systems using the averaged expansions are presented in
Section 5.2. Section 5.3 illustrates the method with various examples.

5.1 Averaging of Oscillatory Systems with Drift

The material from Section 2.5 is covered in more detail here, for the case of vibrational control of a system
with drift. Recall that vibrational control inputs are high amplitude, high frequency, i.e.,

ẋ = X(x) + (1/ε)F (x, t/ε), (5.1)

with ε small and where F (·, t) is T -periodic. Although the system (5.1) may be averaged using nonlinear
Floquet theory, it is rare that a closed form solution will exist. Consequently, perturbation methods will be
required to obtain an approximation. After transformation of time, t/ε 7→ τ , and application of the variation
of constants, the system is transformed to the form required by the perturbation methods of the generalized
averaging theory. Transform time, t/ε 7→ τ , to obtain

dx

dτ
= εX(x) + F (x, τ). (5.2)

In the variation of constants method, εX(x) is a perturbation to the primary vector field F (x, τ). Define the
vector field

Y (y, τ) = ε
((

ΦF
0,τ

)∗
X
)

(y), (5.3)
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where ΦF
0,τ is the flow of the vector field F . According to the variation of constants, the solution x(t) is

given exactly by
x(τ) = ΦF

0,τ (y(τ)), (5.4)

where y(τ) is the solution to the system

ẏ = Y (y, τ), y(0) = x0, (5.5)

as per Eq. (5.3). In order to apply Floquet theory to the vector field Y , a periodicity assumption, Assumption
1, was introduced in Section 2.5. Periodicity of the flow, ΦF

0,t, implies that Y is alo periodic, with the same
period, T . Consequently, one can compute the average of Y to obtain the autonomous evolution equation:

dz

dτ
= Z(z), (5.6)

where, Z is the autonomous vector field obtained from application of Theorem 8 to the time-periodic vector
field Y .

Theorem 36 The Floquet decomposition of system (5.2), under Assumption 1, is given by the averaged
autonomous vector field of system (5.6), and the Floquet mapping,

P̃ (τ) = ΦF
0,τ ◦ P (t).

The mapping P (τ) and the autonomous vector field Z are obtained via the Floquet decomposition of Y
from Equation (5.3).

proof
Floquet theory decomposes the flow of Y into the composition of two parts,

ΦY
0,t = P (t) ◦ exp(Zt), (5.7)

where P (t) is a T -periodic mapping and exp(Zt) is an autonomous flow. The exponent, or autonomous
flow, of Z describes the essential behavior of the system. The flow of the system (5.2) is

ΦεX+F
0,τ = ΦF

0,τ ◦ ΦY
0,τ , (5.8)

per the variation of constants. Applying Theorem 8,

ΦεX+F
0,τ = ΦF

0,τ ◦ P (τ) ◦ exp(Zτ) (5.9)

As both ΦF
0,τ and P (t) are T -periodic, they can both be absorbed into one T -periodic mapping,

P̃ (τ) ≡ ΦF
0,t ◦ P (t). (5.10)

Therefore the Floquet decomposition of (5.2) is

ΦεX+F
0,τ = P̃ (τ) ◦ exp(Zτ). (5.11)

�

The Floquet decomposition of Equation (5.3) is in the form required to obtain truncations of the infinite
series expansions for P̃ and Z . Nonlinear Floquet theory and perturbation methods may be applied to
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systems with drift of the form assumed here. In particular the proximity of the flow of truncated averages to
the actual flow (Theorems 11 and 13, the determination of stable orbits (Theorem 9), and the stabilization
of fixed points (Corollary 2).

Alternative Forms: High Frequency and Small Motions

It is possible to consider instead the case of high-frequency oscillatory control of a system with drift, e.g.,

ẋ = X(x) + F (x, t/ε). (5.12)

with ε small and where F (·, t) is T -periodic. A transformation of time converts the system to the standard
form required by perturbation theory,

dx

dτ
= εX(x) + εF (x, τ). (5.13)

Equation (5.13) is similar to the case of small motions studied in Bullo et. al. [24]. The case of small-
motions takes the form,

ẋ = X(x) + εF (x, t), (5.14)

with the assumption that X(x) is initially small. The previous theory reviewed above can still be applied to
Equations (5.13) and (5.14), however, the dependence of the formulas on ε will differ. The control analysis
that will be done for the vibrational control case also applies to the two forms in Equations (5.13) and (5.14).

5.1.1 Averaging and Geometric Homogeneity

The vibrational control systems to be examined are assumed to be 1-homogeneous control systems. 1-
homogeneous control systems take the form,

ẋ = X(x) + Y lift
a ua(x, t), (5.15)

where X ∈ M1 and Y lift
a ∈ M−1. We consider control inputs that combine state feedback and time-

periodic vibrational terms; ua(x, t) = fa(x) + (1/ε)va(t/ε), with va(·) T -periodic. Substituting these
controls into (5.15) gives

ẋ = X(x) + Y lift
a (x)fa(x) +

1

ε
Y lift

a (x)va(t/ε).

To meet our requirements, the state feedback, f a(x), can consist of terms that are at most homogeneous
order 2; state feedback which is an arbitrary function of the base space, M , and linear in the vector fiber, V ,
easily satisfies this requirement. The time-independent terms are absorbed into one term,

ẋ = XS(x) +
1

ε
Y lift

a (x)va(t/ε), (5.16)

which is XS ∈ M1. The system may be transformed into the form required by the perturbation methods of
averaging theory, according to the previous discussion. After transformation of time, and application of the
variation of constants, we obtain the equivalent form of Equation (5.3) for the 1-homogeneous vibrational
control systems of Equation (5.16),

Y (y, τ) =
(
Φ

Y lift
a (x)va(τ)

0,τ

)∗
(εXS) = ε

(
Φ

Y lift
a (x)va(τ)

0,τ

)∗
(XS). (5.17)
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Proposition 19 [23] The flow Φ
Y lift

a (x)va(τ)
0,τ is T -periodic.

Proposition 19 implies that Assumption 1 holds, and Floquet analysis of Y may proceed. To compute the
pull-back in Equation (5.17), we may utilize the series expansion in Equation (2.45),

(
Φ

Y lift
a va(τ)

0,τ

)∗
XS = XS +

∑∞
k=0

∫ T
0 · · ·

∫ sk−1

0

(
adY lift

a va(sk) · · · adY lift
a va(s1)XS

)
dsk . . . ds1 (5.18)

where the {sj} represent time and ad operates as follows: adgf = [g, f ]. Due to the homogeneous structure
of our class of systems, only the first two terms of the summation are nonvanishing. Hence, (5.17) takes the
form

Y = εXS + εV
(a)
(1)(t)

[
Y lift

a , XS

]
− 1

2
εV

(a,b)
(1,1)(t)

〈
Y lift

a : Y lift
b

〉
, (5.19)

where the V
(·)
(·)(t) terms are the averaging coefficients from Section 3.1.1, and the symmetric product calcu-

lations use Γ = XS , c.f. Definition 37.

5.2 Averaging and Control

Although the standard form for a 1-homogeneous control system is not in the form required by the perturba-
tion methods of averaging theory, Section 5.1 demonstrated that the variations of constants transformation
resulted in a system with a truncatable average, Equation (5.19). The vector field, Y , from Equation (2.1)
determines the differential equation,

dy

dτ
= Y = εXS + εV

(a)
(1)(τ)

[
Y lift

a , XS

]
− 1

2
εV

(a,b)
(1,1)(τ)

〈
Y lift

a : Y lift
b

〉
,

which is T -periodic according to Proposition 19. We may now apply averaging theory. Notably, we may
use averaged expansions obtained from a truncated approximation according to Theorem 11. Recall from
Section 5.1 that the exact Floquet mapping will be

P̃ (τ) = Φ
Y lift

a va(τ)
0,τ ◦ P (τ). (5.20)

The mapping P (τ) will be known as the partial Floquet mapping to distinguish it from the actual Floquet
mapping, P̃ (t), for the system (5.16). After transformation to regular time, t, the mth-order averaged system
corresponding to (5.16) is

x(t) = Truncm−1

(
P̃ (t/ε)

)
(z(t)) +O

(
εm−1

)

ż =
1

ε
Truncm (Z) +O (εm) ,

where the mth-th order truncation of the Floquet mapping is

Truncm

(
P̃ (t/ε)

)
= Φ

1

ε
Y lift

a va(t/ε)

0,t/ε ◦ Truncm (P (t/ε)) .

The partial Floquet mapping P (t/ε) and the autonomous vector field Z are powers series in ε. The transfor-
mation back to regular time lowers the power series order by one. This might pose a problem at low orders
of averaging since Truncm (P (τ)) will go from being O (εm) close to being Truncm (P (t/ε)), which is

O
(
εm−1

)
close. Choosing the improved mth-th order average, with Truncm

(
P̃ (t/ε)

)
, will resolve the
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problem, c.f. Equation (2.35a),

x(t) = Truncm

(
P̃ (t/ε)

)
(z(t)) +O (εm)

ż =
1

ε
Truncm (Z) +O (εm) .

5.2.1 Averaged Expansions

The affine form of the control inputs implies the control inputs, ua, enter linearly. Having oscillatory in-
puts with non-zero average is equivalent to having constant actuation plus zero average oscillatory inputs,
therefore the following assumption will be made:

Assumption 3 It is assumed that the first order time-averages of the control inputs vanish, i.e., V (a)
(0)(t) = 0.

First-order. First order averaging gives the autonomous differential equation,

ż = XS + V
(a)
(1)(t)

[
Y lift

a , XS

]
− 1

2
V

(a,b)
(1,1)(t)

〈
Y lift

a : Y lift
b

〉
. (5.21)

The first order partial Floquet mapping is Trunc0 (P (t/ε)) = Id. An improved version capturing an addi-
tional order of ε is given by

Trunc1 (P (t/ε)) = Id + ε

∫ t/ε

0
Ṽ

(a)
(1)(τ) dτ

[
Y lift

a , XS

]
− 1

2
ε

∫ t/ε

0
Ṽ

(a,b)
(1,1)(τ) dτ

〈
Y lift

a : Y lift
b

〉
. (5.22)

Second-order. The second-order averaged vector field is

ż = XS + V
(a)
(1)(t)

[
Y lift

a , XS

]
− 1

2V
(a,b)
(1,1)(t)

〈
Y lift

a : Y lift
b

〉

+ε

(
V

(a)
(2)(t) − 1

2T V
(a)
(1)(t)

)[[
Y lift

a , XS

]
, XS

]

−1
2ε

(
V

(â,b)

(1̂,1)
(t) − 1

2T V
(a,b)
(1,1)(t)

)[〈
Y lift

a : Y lift
b

〉
, XS

]

+1
2εV

(a,b)
(2,1)(t)

[[
Y lift

a , XS

]
,
[
Y lift

b , XS

]]

+1
2ε

(
V

(a,b,c)
(2,1,1)(t) − 1

2T V
(a)
(1)(t) V

(b,c)
(1,1)(t)

)〈
Y lift

a :
〈
Y lift

b : Y lift
c

〉 〉
.

(5.23)

The second-order partial Floquet mapping is given in Equation (5.22).

Third- and higher-order. The third-order truncated partial Floquet mapping and averaged vector field
can be found in Tables 5.1 and 5.2, respectively. To compute fourth- and higher-order averages, follow
the averaged expansions procedure delineated in Chapter 2, taking into account the control decomposition.
In the Appendix 5.A, lower-order averaged expansions are worked out to give the reader a sense of the
procedure involved.

5.2.2 Sinusoidal Inputs for Indirect Actuation

From a controls perspective, the averaged coefficients play an important role. By appropriately modulating
their values, it is possible to effect controlled flow in the direction of the Jacobi-Lie brackets or symmetric
products they multiply. Accordingly, there has been much study of oscillatory input combinations that will
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Trunc2 (P (t/ε)) = Id + ε

∫ t/ε

0
Ṽ

(a)
(1)(τ) dτ

[
Y lift

a , XS

]
− 1

2
ε

∫ t/ε

0
Ṽ

(a,b)
(1,1)(τ) dτ

〈
Y lift

a : Y lift
b

〉

+ ε2

(∫ t/ε

0
Ṽ

(a)
(2)(τ) dτ − 1

2

t

ε

∫ t/ε

0
Ṽ

(a)
(1)(τ) dτ

−1

2

t

ε

(∫ t/ε

0
V

(a)
(1)(τ) dτ − T V

(a)
(1)(τ)

))[[
Y lift

a , XS

]
, XS

]

− 1

2
ε2
∫ t/ε

0
Ṽ

(a,b)
(1,1)(τ) dτ − t

ε

∫ t/ε

0
Ṽ

(a,b)
(1,1)(τ) dτ

−1

2

t

ε

(∫ t/ε

0
V

(a,b)
(1,1)(τ) dτ − T V

(a,b)
(1,1)(τ)

))[〈
Y lift

a : Y lift
b

〉
, XS

]

− 1

2
ε2
∫ t/ε

0
V

(a,b)
(2,1)(τ) dτ

[[
Y lift

a , XS

]
,
[
Y lift

b , XS

]]

+
1

2
ε2

(∫ t/ε

0
Ṽ

(a,b,c)
(2,1,1)(τ) dτ − 1

2

(
V

(a,b̂,c)

(2,1̂,1)
(t/ε) − T

t

ε
V

(a)
(1)(τ) V

(b,c)
(1,1)(τ)

t2

ε2

))

〈
Y lift

a :
〈
Y lift

b : Y lift
c

〉〉

− ε2
(

V
(a)
(2)(t/ε)V

(b)
(1)(τ)

t

ε
− 1

2
V

(a,b)
(2,2)(t/ε) −

1

2
V

(a)
(1)(τ) V

(b,c)
(1,1)(τ)

t2

ε2

)

[
Y lift

a , XS

]
·
[
Y lift

b , XS

]

+
1

2

(
V

(a)
(2)

(t/ε)V
(b,c)
(1,1)

(τ)
t

ε
− 1

2
V

(â,b,c)

(1̂,1,2)
(t/ε) − 1

2
V

(a)
(1)

(τ) V
(b,c)
(1,1)

(τ)
t2

ε2

)

[
Y lift

a , XS

]
·
〈
Y lift

b : Y lift
c

〉

+
1

2
ε2
(

V
(â,b)

(1̂,1)
(t/ε)V

(c)
(1)(τ)

t

ε
− 1

2
V

(â,b,c)

(1̂,1,2)
(t/ε) − 1

2
V

(a,b)
(1,1)(τ) V

(c)
(1)(τ)

t2

ε2

)

〈
Y lift

a : Y lift
b

〉
·
[
Y lift

c , XS

]

− 1

4
ε2
(

V
(â,b)

(1̂,1)
(t/ε)V

(b,c)
(1,1)(τ)

t

ε
− 1

2
V

(â,b,ĉ,d)

(1̂,1,1̂,1)
(t/ε) − 1

2
V

(a,b)
(1,1)(τ) V

(c,d)
(1,1)(τ)

t2

ε2

)

〈
Y lift

a : Y lift
b

〉
·
〈
Y lift

c : Y lift
d

〉

Table 5.1: Third-order partial Floquet mapping, Trunc2 (P (t/ε)), for systems with drift.
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ż = εXS + εV
(a)
(1)(t)

[
Y lift

a , XS

]
− 1

2εV
(a,b)
(1,1)(t)

〈
Y lift

a : Y lift
b

〉

+ε2
(

V
(a)
(2)(t) − 1

2T V
(a)
(1)(t)

) [[
Y lift

a , XS

]
, XS

]

−1
2ε

2

(
V

(â,b)

(1̂,1)
(t) − 1

2T V
(a,b)
(1,1)(t)

)[〈
Y lift

a : Y lift
b

〉
, XS

]

+1
2ε

2V
(a,b)
(2,1)(t)

[[
Y lift

a , XS

]
,
[
Y lift

b , XS

]]

+1
2ε

2

(
V

(a,b,c)
(2,1,1)(t) − 1

2T V
(a)
(1)(t) V

(b,c)
(1,1)(t)

)〈
Y lift

a :
〈
Y lift

b : Y lift
c

〉 〉

−ε3
(

1
3V

(a)
(2)(t) t− 1

3V
(a)
(1)(t) t

2 − 1
2T V

(a)
(2)(t) + 1

4T
2 V

(a)
(1)(t)

)[[[
Y lift

a , XS

]
, XS

]
, XS

]

+ε3
(

1
6V

(â,b)

(1̂,1)
(t) t− 1

6V
(a,b)
(1,1)(t) t

2 − 1
2T V

(a)
(2)(t) + 1

4T
2 V

(a)
(1)(t)

)[[〈
Y lift

a : Y lift
b

〉
, XS

]
, XS

]

−ε3
(

1
3V

(a,b)
(2,1)(t) t− 1

4T V
(a,b)
(2,1)(t)

)[[[
Y lift

a , XS

]
,
[
Y lift

b , XS

]]
, XS

]

+ε3
(

1
6V

(a,b̂,c)

(1,1̂,1)
(t) t− 1

6V
(a,b,c)
(2,1,1)(t) t+ 1

4T V
(a,b,c)
(2,1,1)(t) − 1

8T
2 V

(a)
(1)(t) V

(b,c)
(1,1)(t)

)

[〈
Y lift

a :
〈
Y lift

b : Y lift
c

〉 〉
, XS

]

+ε3
(

1
3V

(a,b)
(2,2)(t) −−1

3V
(a,b)
(2,1)(t) t− 1

2T V
(a)
(1)(t) V

(b)
(2)(t) + 1

4T
2 V

(a)
(1)(t) V

(b)
(1)(t)

)

[[
Y lift

a , XS

]
,
[[
Y lift

b , XS

]
, XS

]]

−ε3
(

1
6V

(a,b̂,c)

(2,1̂,1)
− 1

6V
(a,b,c)
(2,1,1)(t) t+ 1

4T V
(a)
(1)(t) V

(â,b)

(1̂,1)
(t) − 1

8T
2 V

(a)
(1)(t) V

(b,c)
(1,1)(t)

)

[[
Y lift

a , XS

]
,
[〈
Y lift

b : Y lift
c

〉
, XS

]]

+ε3
(

1
3V

(a,b,c)
(2,2,1)(t) − 1

4T V
(a)
(1)(t) V

(b,c)
(2,1)(t)

)[[
Y lift

a , XS

]
,
[[
Y lift

b , XS

]
,
[
Y lift

c , XS

]]]

+ε3
(

1
6V

(a,b,ĉ,d)

(2,1,1̂,1)
(t) − 1

6V
(a,b,c,d)
(2,2,1,1)(t) + 1

4T V
(a)
(1)(t) V

(b,c,d)
(2,1,1)(t) − 1

8T
2 V

(a)
(1)(t) V

(b)
(1)(t) V

(c,d)
(1,1)(t)

)

〈
Y lift

a :
〈
Y lift

b :
〈
Y lift

c : Y lift
d

〉 〉 〉

−ε3
(

1
6V

(â,b,c)

(1̂,1,2)
(t) − 1

6V
(â,b,c)

(1̂,1,1)
(t) t− 1

4T V
(a,b)
(1,1)(t) V

(c)
(2)(t) + 1

8T
2 V

(a,b)
(1,1)(t) V

(c)
(2)(t)

)

[〈
Y lift

a : Y lift
b

〉
,
[[
Y lift

c , XS

]
, XS

]]

+ε3
(

1
12V

(â,b,ĉ,d)

(1̂,1,1̂,1)
(t) − 1

12V
(â,b,c,d)

(1̂,1,1,1)
(t) − 1

8T V
(a,b)
(1,1)(t) V

(ĉ,d)

(1̂,1)
(t) + 1

1T
2 V

(a,b)
(1,1)(t) V

(c,d)
(1,1)(t)

)

〈 〈
Y lift

a : Y lift
b

〉
:
〈
Y lift

c : Y lift
d

〉 〉

+ε3
(

1
6V

(a,b,ĉ,d)

(2,1,1̂,1)
(t) − 1

6V
(a,b,ĉ,d)

(1,2,1̂,1)
(t) − 1

8T V
(a,b)
(2,1)(t) V

(c,d)
(1,1)(t) − 1

8T V
(a,b)
(1,2)(t) V

(c,d)
(1,1)(t)

)

〈
Y lift

a :
〈
Y lift

b :
〈
Y lift

c : Y lift
d

〉 〉 〉

Table 5.2: Third-order averaged expansion, Trunc3 (Z), for system with drift.
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uniquely activate select brackets (i.e. approximate inversion), [22, 100]. Sussmann and Liu [154, 155, 92]
have provided a general strategy for open-loop approximate inversion of the oscillatory controls for driftless
systems. This section examines the algorithm for select averaged coefficients appearing in the averaged
expansions of systems with drift, with the goal of providing a practical approach to-, and interpretation of-,
the Ω-set notation found in Sussman and Liu.

Remark on bad brackets. For systems with drift, the averaged coefficient analysis is complicated by the
existence of bad bracket directions. The bad brackets correspond to symmetric products which have even
degrees for each of the control inputs, c.f. Definition 54. In controllability analysis, bad brackets are bad
because they are unidirectional; it is not possible to arbitrarily excite bad brackets for controlled flow. The
ensuing analysis will also show that bad brackets are activated whenever their constitutive control inputs
are actuated by oscillatory controls. Consequently, we operate under the assumption that the bad symmet-
ric products can be neutralized, a critical requirement for most small-time local controllability theorems,
and specifically those of Chapter 4. Many of the oscillatory inputs used to modulate specific averaged co-
efficients will also modulate the bad symmetric product averaged coefficients. When a set of oscillatory
inputs is said to uniquely activate an average coefficient, the bad symmetric products are exempt from the
statement.

First-order Averaged Coefficients

The process of determining the inputs for an arbitrary system to any given order of averaging is difficult.
Sinusoidal input groups in resonance will lead to Jacobi-Lie bracket or symmetric product motion. Each
averaged coefficient has requirements for resonance, which may conflict and cause coupling. Certain Jacobi-
Lie brackets and symmetric products can never be actuated independently. Nevertheless, useful guidelines
can be established by investigating simple, lower order cases. Abstraction to higher-order follows naturally.

For first order averaging, the averaged coefficient is

V
(a,b)
(1,1)(t) =

1

T

∫ T

0

∫ t

va(τ) dτ

∫ t

vb(τ) dτ dt .

For each input va(t), a = 1 . . . m, one of the following two forcing functions can be chosen,

βa sin(ωat) or βa cos(ωat),

where ωa ∈ Z
+\ { 0 }. The four permutations of the input function choices result in the averaged coefficient

evaluations found in Table 5.3. Of the four options, out-of-phase sinusoidal inputs do not work. Additionally,
the algebraic equality

ωa − ωb = 0 (5.24)

must hold for the desired in-phase sinusoidal input pair and for no other oscillatory inputs. The net result of
this analysis is a set of inputs that operate at unique carrier frequencies; a commonly known fact.

Lemma 14 In order to excite the symmetric product
〈
Y lift

a : Y lift
b

〉
, use the inputs

va(t) = βa
ab cos(ωabt) and vb(t) = βb

ab cos(ωabt),

or
va(t) = βa

ab sin(ωabt) and vb(t) = βb
ab sin(ωabt),
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V
(a,b)
(1,1)(t) βa sin(ωat) βa cos(ωat)

βb sin(ωbt)

{
βaβb

2ωaωb
if ωa = ωb

0 otherwise
0

βb cos(ωbt) 0

{
ββ

2ωaωb
if ωa = ωb

0 otherwise

Table 5.3: First-order averaged coefficient, V
(a,b)
(1,1)(t), for systems with drift.

for a unique carrier frequency, ωab. The averaged coefficient will evaluate to

V
(a,b)
(1,1)(t) =

βab

2ω2
ab

, where βab = βa
abβ

b
ab.

Lemma 14 imposes a unique carrier frequency for each Jacobi-Lie bracket. This will pose a problem for
severely underactuated systems, as the number of frequencies needed is directly related to the number of
Jacobi-Lie brackets required. For a pair of oscillatory inputs generating motion in the direction of the
symmetric product, 〈Ya : Yb 〉, the averaged coefficient is found in Lemma 14 to be βab

2ω2
ab

. As the frequency

increases, the response decreases. If βa
ab and βb

ab include a factor of ωab, the response is no longer attenuated
by the frequency. Unfortunately, the oscillation amplitude for the inputs will scale with ωab, which may be
large. An algorithm analogous to Algorithm 1 for driftless system can be used to recycle carrier frequencies
and lower the total amount of unique frequencies used, while avoiding coupling.

Second-order Averaged Coefficients

For second-order averaging, there are two averaged coefficient types that are important with respect to the
controllability analysis of Chapter 4. They are the averaged coefficients,

V
(a,b)
(2,1)(t) and

(
V

(a,b,c)
(2,1,1)(t) −

1

2
TV

(a)
(1)(t)V

(b,c)
(1,1)(t)

)
.

It will be shown that the averaged coefficient V
(a,b)
(2,1)(t) has the same properties as the averaged coefficient

V
(a,b)
(1,0)

(t) from the driftless case, c.f. Section 3.1.2, leaving only the three-input averaged coefficient for
serious analysis. Additionally, the use of the sinusoidal functions, sine and cosine, implies that the averaged

coefficients V
(a)
(n)(t) always vanish,

V
(a)
(n)(t) = 0, ∀n ∈ Z

+. (5.25)

Hence analysis of the three-input averaged coefficient terms simplifies to

V
(a,b,c)
(2,1,1)(t).
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V
(a,b)
(2,1)(t) αa sin(ωat) αa cos(ωat)

αb sin(ωbt) 0

{
− αaαb

2ω2
aωb

if ωa = ωb

0 otherwise

αb cos(ωbt)

{
αaαb

2ω2
aωb

if ωa = ωb

0 otherwise
0

Table 5.4: Averaged coefficient, V
(a,b)
(2,1)(t), for second-order averaging of systems with drift.

The averaged coefficient V
(a,b)
(2,1)(t) is a coefficient to a Jacobi-Lie bracket term, whereas the averaged co-

efficient V
(a,b,c)
(2,1,1)(t) is a coefficient to a symmetric product term, c.f. Equation (5.23). When evaluated for

points in the equilibrium subspace as defined by Definition 44, the Jacobi-Lie brackets will correspond to
motion in the base space only, also known as kinematic motions. The symmetric products will correspond to
actuation of the vector fiber (e.g. accelerations), and will be called dynamic motions. Due to the distinction
between the two types of motions, the parametrization labelling will be different. For kinematic motions the
parameters will be denoted by α, as in the analysis for driftless systems, since kinematic motions correspond
to maneuvers with no net drift. For dynamic motions, the parameters will be denoted by β, as was already
seen in the first-order symmetric product case.

The averaged coefficient V
(a,b)
(2,1)(t) is

V
(a,b)
(2,1)(t) =

1

T

∫ T

0

∫ t ∫ τ

va(σ) dσ dτ

∫ t

vb(τ) dτ dt .

For each input va(t), a = 1 . . . m, one of the following two forcing functions can be chosen,

αa sin(ωat) or αa cos(ωat),

where ωa ∈ Z
+. The four permutations of input function choices result in the averaged coefficient eval-

uations found in Table 5.4. Of the four options, in-phase sinusoidal inputs do not work. Additionally, the
algebraic equality

ωa − ωb = 0, (5.26)

must hold for the desired out-of-phase sinusoidal input pair and for no other oscillatory inputs. These are

the same conclusions that have been made for the averaged coefficient V
(a,b)
(1,0)(t) for driftless systems, c.f.

Lemma 2.

Lemma 15 Consider the Jacobi-Lie bracket,
[[
Y lift

a , XS

]
,
[
Y lift

b , XS

]]
. If the associated inputs

va(t) = αa
ab cos(ωabt), vb(t) = αb

ab sin(ωabt),

are chosen for some unique carrier frequency, ωab, then only the bracket
[[
Y lift

a , XS

]
,
[
Y lift

b , XS

]]
will be
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excited. The corresponding averaged coefficient will evaluate to

V
(a,b)
(2,1)(t) =

αab

2ω3
ab

, where αab = αa
abα

b
ab.

The important factor for the selection of inputs in the previous analysis involved the algebraic equality

(5.26), as did the averaged coefficient V
(a,b)
(1,1)(t). For inclusion of averaged coefficients corresponding to

higher-order expansions, additional algebraic restrictions are needed to keep the effect of the inputs isolated.
These restrictions will also affect the previous construction, if both second and third-order effects are to be
simultaneously included. To motivate the use of these additional constraints, consider the following example
that involves second-order averaging.

Example
Consider the case of a three-input underactuated driftless control system that requires second-order averag-
ing to recover the iterated Jacobi-Lie brackets or symmetric products required for control. To second-order,
the important averaged coefficients are

V
(a,b)
(1,1)(t), V

(a,b)
(2,1)(t), and V

(a,b,c)
(2,1,1)(t).

Because the former two averaged coefficients have been analyzed, the focus will be on the latter averaged
coefficient. The possible input choices are

v1(t) v2(t) v3(t)

β1 sin(ω1t) β2 sin(ω2t) β3 sin(ω3t)
β1 cos(ω1t) β2 cos(ω2t) β3 cos(ω3t)

,

whose eight permutations lead to the contributions found in Table 5.5, with potential coupling found in Table
5.6.

Based on Table 5.5, the important algebraic equalities that influence the averaged coefficients are as
follows,

ω1 + ω2 − ω3 = 0, ω1 − ω2 − ω3 = 0, and ω1 − ω2 + ω3 = 0. (5.27)

In order to avoid first-order coupling between terms when three distinct vector fields are contributing, the
following inequality needs to hold,

ωi − ωj 6= 0, for i 6= j. (5.28)

Failure to satisfy the inequality (5.28) will excite Jacobi-Lie brackets or symmetric products of the form,[[
Y lift

i , XS

]
,
[
Y lift

j , XS

]]
or
〈
Y lift

i : Y lift
j

〉
, respectively. With the above conditions met, the only non-

zero combinations involve an odd number of cosines and an even number of sines. It is important to note
that the algebraic inequality

2ωi − ωj 6= 0, for i 6= j, (5.29)

may also need to hold, according to the coupling of Table 5.6. Failure to satisfy the inequality (5.29) may
excite the symmetric products corresponding to the averaged coefficients found in Table 5.6, which are

symmetric products of the form,
〈
Y lift

i :
〈
Y lift

j : Y lift
i

〉〉
or
〈
Y lift

j :
〈
Y lift

i : Y lift
i

〉 〉
.

Let’s examine the possiblities for the third-order case. If the symmetric product is a function of three
distinct vector fields, i.e.,

〈
Y lift

1 :
〈
Y lift

2 : Y lift
3

〉 〉
, then satisfying the algebraic relations in Equations

(5.27)-(5.29) for the associated input functions, according to the Tables 5.5 and 5.6, will result in at least 3
contributions from 3 symmetric product combinations (obtained by cycling the vector fields) due to the fact
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that they all satisfy the algebraic equalities. The averaged coefficients are

V
(i,j,k)
(1,1,0)(t) =







0
0
0







0
0

− β1β2β3

4ω2
1
ω2ω3







0

− β1β2β3

4ω2
1
ω2ω3

0







0
0

β1β2β3

4ω1ω2
2
ω3







0
0
0







β1β2β3

4ω1ω2
2
ω3

0
0







0

− β1β2β3

4ω1ω2ω2
3

0






− β1β2β3

4ω1ω2ω2
3

0
0







0
0
0







. (5.30)

where ω2 > ω3 > ω1 and i, j, k ∈ { 1, 2, 3 }. The matrix representing the averaged coefficient is read
as follows: i gives the outer row, j gives the column, and k gives the inner row. When multiplied by the
corresponding symmetric products, then summed over all indices,

V
(i,j,k)
(1,1,0)(t)

[
Y lift

i ,
[
Y lift

j , Y lift
k

]]

=

− β1β2β3

4ω2
1ω2ω3

〈
Y lift

1 :
〈
Y lift

2 : Y lift
3

〉〉
− β1β2β3

4ω2
1ω2ω3

〈
Y lift

1 :
〈
Y lift

3 : Y lift
2

〉〉

+
β1β2β3

4ω1ω2
2ω3

〈
Y lift

2 :
〈
Y lift

3 : Y lift
1

〉〉
+

β1β2β3

4ω1ω2
2ω3

〈
Y lift

2 :
〈
Y lift

1 : Y lift
3

〉〉

− β1β2β3

4ω1ω2ω
2
3

〈
Y lift

3 :
〈
Y lift

1 : Y lift
2

〉〉
− β1β2β3

4ω1ω2ω
2
3

〈
Y lift

3 :
〈
Y lift

2 : Y lift
1

〉〉

=

β1β2β3

2ω1ω2ω3

(
− 1

ω1

〈
Y lift

1 :
〈
Y lift

2 : Y lift
3

〉〉
+

1

ω2

〈
Y lift

2 :
〈
Y lift

3 : Y lift
1

〉〉

− 1

ω3

〈
Y lift

3 :
〈
Y lift

1 : Y lift
2

〉〉)
.

(5.31)

It is not possible to simplify this contribution without introducing coupling to other Jacobi-Lie bracket and
symmetric product terms.
�

Lemma 16 For the case of three distinct vector fields entering into the second-order iterated symmetric
product,

〈
Y lift

a :
〈
Y lift

b : Y lift
c

〉 〉
, (a 6= b, a 6= c, and b 6= c), no choice of inputs will result in the

excitation of motion along a single symmetric product direction. If the following inputs are chosen,

va(t) = βa
abc cos(ωabct), v

b(t) = βb
abc sin(3ωabct), v

c(t) = βc
abc sin(2ωabct),

for some principle carrier frequency, ωabc, then only the symmetric product
〈
Y lift

a :
〈
Y lift

b : Y lift
c

〉 〉
and

its cyclicly related symmetric products,
〈
Y lift

c :
〈
Y lift

a : Y lift
b

〉 〉
and

〈
Y lift

b :
〈
Y lift

c : Y lift
a

〉 〉
, will be
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v1(t), v2(t), v3(t) V
(1,2,3)
(2,1,1)(t)

β1 sin(ω1t), β
2 sin(ω2t), β

3 sin(ω3t) = 0

β1 sin(ω1t), β
2 sin(ω2t), β

3 cos(ω3t) =





β1β2β3

4ω2
1
ω2ω3

if ω1 − ω2 − ω3 = 0,

ω1 + ω2 − ω3 = 0

− β1β2β3

4ω2
1
ω2ω3

if ω1 − ω2 + ω3 = 0

0 otherwise

β1 sin(ω1t), β
2 cos(ω2t), β

3 sin(ω3t) =





β1β2β3

4ω2
1
ω2ω3

if ω1 − ω2 − ω3 = 0,

ω1 − ω2 + ω3 = 0

− β1β2β3

4ω2
1
ω2ω3

if ω1 + ω2 − ω3 = 0

0 otherwise

β1 sin(ω1t), β
2 cos(ω2t), β

3 cos(ω3t) = 0

β1 cos(ω1t), β
2 sin(ω2t), β

3 sin(ω3t) =





ω1 + ω2 − ω3 = 0,

− β1β2β3

4ω2
1
ω2ω3

if ω1 − ω2 − ω3 = 0,

ω1 − ω2 + ω3 = 0
0 otherwise

β1 cos(ω1t), β
2 sin(ω2t), β

3 cos(ω3t) = 0
β1 cos(ω1t), β

2 cos(ω2t), β
3 sin(ω3t) = 0

β1 cos(ω1t), β
2 cos(ω2t), β

3 cos(ω3t) =





− β1β2β3

4ω2
1
ω2ω3

if ω1 + ω2 − ω3 = 0,

ω1 − ω2 + ω3 = 0
β1β2β3

4ω2
1
ω2ω3

if ω1 − ω2 − ω3 = 0

0 otherwise

Table 5.5: Second-order averaged coefficient, V
(a,b,c)
(2,1,1)(t), for systems with drift.
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va(t), vb(t) V
(i,j,k)
(2,2,0)(t), i, j, k ∈ { a, b }

βa sin(ωat), β
b sin(ωbt) = 0

βa sin(ωat), β
b cos(ωbt), =





V
(a,a,b)
(2,1,1)(t) = (βa)2βb

4ω3
aωb

if 2ωa = ωb

V
(a,b,a)
(2,1,1)(t) = (βa)2βb

4ω3
aωb

if 2ωa = ωb

V
(b,a,a)
(2,1,1)(t) = − (βa)2βb

4ω2
aω2

b

if 2ωa = ωb

0 otherwise

βa cos(ωat), β
b sin(ωbt), =





V
(b,b,a)
(2,1,1)(t) = βa(βb)2

4ωaω3
b

if 2ωb = ωa

V
(b,a,b)
(2,1,1)(t) = βa(βb)2

4ωaω3
b

if 2ωb = ωa

V
(a,b,b)
(2,1,1)(t) = −βa(βb)2

4ω2
aω2

b

if 2ωb = ωa

0 otherwise

βa cos(ωat), β
b cos(ωbt), =





V
(a,a,b)
(2,1,1)(t) = − (βa)2βb

4ω3
aωb

if 2ωa = ωb

V
(a,b,a)
(2,1,1)(t) = − (βa)2βb

4ω3
aωb

if 2ωa = ωb

V
(b,a,a)
(2,1,1)(t) = (βa)2βb

4ω2
aω2

b

if 2ωa = ωb

V
(b,b,a)
(2,1,1)(t) = −βa(βb)2

4ωaω3
b

if 2ωb = ωa

V
(b,a,b)
(2,1,1)(t) = −βa(βb)2

4ωaω3
b

if 2ωb = ωa

V
(a,b,b)
(2,1,1)(t) = βa(βb)2

4ω2
aω2

b

if 2ωb = ωa

0 otherwise

Table 5.6: Coupling of second-order averaged coefficient, V
(a,b,c)
(2,1,1)(t), for systems with drift.
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excited. The corresponding averaged coefficients will be

V
(a,b,c)
(2,1,1)(t) = − βabc

24ω2
abc

and V
(b,c,a)
(1,1,0)(t) =

βabc

36ω2
abc

and V
(c,a,b)
(2,1,1)(t) = − βabc

12ω2
abc

where βabc = βa
abcβ

b
abcβ

c
abc.

proof
Assume for now that, va, vb, and vc, are the only nonzero inputs to the system. We will examine the
corresponding averaged coefficient. Since the other inputs are set to zero, the system behaves similarly to
the three-input example above. Without loss of generality, assume that a = 1, b = 2, and c = 3.

Let the input functions be

v1(t) = β1 cos(ω1t), v
2(t) = β2 sin(ω2t), v

3(t) = β3 sin(ω3t).

Assume that the algebraic inequality in Equation (5.29) for the coupling found in Table 5.6 is satisfied, and
no coupling occurs. The critical elements of the averaged coefficient are the same as in Equation (5.30),
where ω2 > ω3 > ω1 and i, j, k ∈ { 1, 2, 3 }. From Equation (5.31), the excited Jacobi-Lie brackets are

V
(i,j,k)
(1,1,0)(t)

[
Y lift

i ,
[
Y lift

j , Y lift
k

]]
=
β1β2β3

2ω1ω2ω3

(
− 1

ω1

〈
Y lift

1 :
〈
Y lift

2 : Y lift
3

〉〉

+
1

ω2

〈
Y lift

2 :
〈
Y lift

3 : Y lift
1

〉〉

− 1

ω3

〈
Y lift

3 :
〈
Y lift

1 : Y lift
2

〉〉)
.

(5.32)

The symmetric products cannot be manipulated without introducing coupling to other Jacobi-Lie bracket
and symmetric product terms. Choosing ω3 = 2ω1 = 2ω will avoid the coupling in Table 5.6 according to
the algebraic inequality in Equation (5.29). The final contribution is

V
(a,b,a)
(1,1,0)(t) [Ya, [Yb, Ya]] =

β1β2β3

144ω4

(
−3
〈
Y lift

1 :
〈
Y lift

2 : Y lift
3

〉〉
+ 2

〈
Y lift

2 :
〈
Y lift

3 : Y lift
1

〉〉

−6
〈
Y lift

3 :
〈
Y lift

1 : Y lift
2

〉〉)
.

Suppose now that a, b, and c are arbitrary, and the carrier frequency ωabc is chosen to be unique in the sense
that the algebraic inequalities of Equations (5.28) and (5.29) according to Table 5.6, hold. Furthermore, the
algebraic equalities in Equation (5.27) hold with no undesired coupling. The analysis implies

V
(d,e,f)
(1,1,0)

(t) [Yd, [Ye, Yf ]] =
βabc

144ω4
abc

(
−3
〈
Y lift

a :
〈
Y lift

b : Y lift
c

〉〉
+ 2

〈
Y lift

b :
〈
Y lift

c : Y lift
a

〉〉

−6
〈
Y lift

c :
〈
Y lift

a : Y lift
b

〉〉)
,

for summation over all indices d, e, f ∈ { 1 . . . m }, and where βabc = βa
abcβ

b
abcβ

c
abc.

At worst case, the frequency ωabc = 2ωmax + 1 may be chosen, where ωmax is the maximal carrier
frequency of the other sinusoidal inputs. When utilizing higher-order averaged coefficients, the frequency
spacing will change to avoid coupling.
�
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There is nothing that can be done to resolve the problem of exciting the cycled symmetric products in this
case. The control parameter βabc must be interpreted as exciting the ensemble of cycled symmetric products.

Lemma 17 For the case of two distinct vector fields entering into the second-order iterated symmetric
product,

〈
Y lift

b :
〈
Y lift

a : Y lift
b

〉 〉
, if the following inputs are chosen,

va(t) = βa
bab cos(2ωbabt), v

b(t) = βb
bab sin(ωbabt),

for some unique principle carrier frequency, ωbab, then the brackets
〈
Y lift

b :
〈
Y lift

a : Y lift
b

〉 〉
and〈

Y lift
a :

〈
Y lift

b : Y lift
b

〉 〉
will be excited. The corresponding averaged coefficients are

V
(b,a,b)
(2,1,1)(t) =

βbab

4ω2
bab

and V
(a,b,b)
(2,1,1)(t) = − βbab

16ω2
bab

,

where βbab = βa
bab

(
βb

bab

)2
.

proof
Assume that these are the only nonzero inputs to the system. Without loss of generality, assume that a = 1,
b = 2. Set the input functions to be

v1(t) = β1 cos(2ωt), v2(t) = β2 sin(ωt).

The averaged coefficients are

V
(i,j,k)
(2,1,1)(t) =




[
0
0

] [
0

−β1(β2)2

16ω4

]

[
0

β1(β2)2

8ω4

] [
β1(β2)2

8ω4

0

]



,

where the averaged coefficient is represented as a tensor with indices i, j, k ∈ { 1, 2 }. Since these are
the only non-zero inputs, the other indices, i, j, k ∈ { 3, . . . m }, of the averaged coefficient vanish. The
averaged coefficient matrix is read as follows: i choose the outer row, j chooses the column, and k chooses
the inner row. The corresponding contribution to system motion is then,

V
(i,j,k)
(2,1,1)(t) [Yi, [Yj, Yk]] =

β1(β2)2

16ω4

(
−
〈
Y lift

1 :
〈
Y lift

2 : Y lift
2

〉〉
+ 2

〈
Y lift

2 :
〈
Y lift

1 : Y lift
2

〉〉

+2
〈
Y lift

2 :
〈
Y lift

2 : Y lift
1

〉〉)
,

which simplifies to

V
(i,j,k)
(2,1,1)(t) [Yi, [Yj, Yk]] =

β1(β2)2

16ω4

(
4
〈
Y lift

2 :
〈
Y lift

1 : Y lift
2

〉〉
−
〈
Y lift

1 :
〈
Y lift

2 : Y lift
2

〉〉)
,

for summation over the indices i, j, k ∈ { 1, 2 }. With the choice of ω = ω212, β1 = β1
212 and β2 = β2

212,

V
(i,j,k)
(2,1,1)(t) [Yi, [Yj, Yk]] =

β212

16ω4
212

(
4
〈
Y lift

2 :
〈
Y lift

1 : Y lift
2

〉〉
−
〈
Y lift

1 :
〈
Y lift

2 : Y lift
2

〉〉)
,
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where β212 = β1
212(β

2
212)

2. More generally, when a, b ∈ { 1, . . . ,m }, this analysis implies

V
(c,d,e)
(2,1,1)(t) [Yc, [Yd, Ye]] =

βbab

16ω4
bab

(
4
〈
Y lift

b :
〈
Y lift

a : Y lift
b

〉〉
−
〈
Y lift

a :
〈
Y lift

b : Y lift
b

〉〉)
,

where βbab = βa
bab(β

b
bab)

2. In the general case the algebraic inequalities of Equation (5.28), and Equation
(5.34) according to Table 5.6, must hold with respect to other sinusoidal inputs to avoid coupling. The
algebraic equalities of Equation (5.33) must only hold for those that combine to form a Jacobi-Lie bracket
contribution. Again, the frequency ω = 2ωmax + 1 may be chosen, where ωmax is the maximal carrier
frequency of the other sinusoidal inputs. When higher-order Jacobi-Lie bracket contributions are desired the
frequency spacing will change.
�

Although the contribution is not unique, it is a result of undesired actuation of a bad symmetric product. The
excitation of the bad symmetric product

〈
Y lift

b : Y lift
b

〉
couples to the oscillatory control inputs and also

excites the bracket
〈
Y lift

a :
〈
Y lift

b : Y lift
b

〉 〉
. Our working assumption is that the bad symmetric products

can be neutralized by lower order symmetric products, which in this case would be by a control vector field.

Third-order Averaged Coefficients

The third-order averaged expansion from Table 5.2 is quite complicated. This section will examine only one

of the averaged coefficients found in the averaged expansion; the averaged coefficient, V
(a,b,c)
(2,2,1)(t), associated

with the Jacobi-Lie bracket,
[[
Y lift

a , XS

]
,
[[
Y lift

b , XS

]
,
[
Y lift

c , XS

]]]
. We shall see that it is analogous to

the averaged coefficient V
(a,b,c)
(1,1,0)(t) from the driftless analysis of Section 3.1.2. It is an averaged coefficient

that is sometimes found to be required for controllability. For example, this Jacobi-Lie bracket is needed in
the dynamic extension to the kinematic car. The kinematic car was reviewed in Section 3.3.3.

Example (Three inputs, third–order averaging)
Consider the case of a three-input system that requires excitation of a third-order iterated Jacobi-Lie bracket.
Suppose further, that the Jacobi-Lie bracket coresponding to the following averaged coefficent was required,

V
(a,b,c)
(2,2,1)(t).

The possible input choices are

v1(t) v2(t) v3(t)

α1 sin(ω1t) α2 sin(ω2t) α3 sin(ω3t)
α1 cos(ω1t) α2 cos(ω2t) α3 cos(ω3t)

,

whose eight permutations lead to the contributions found in Table 5.7, with potential coupling found in Table
5.8. Based on Table 5.7, the important algebraic equalities that influence the averaged coefficients are as
follows,

ω1 + ω2 − ω3 = 0, ω1 − ω2 − ω3 = 0, and ω1 − ω2 + ω3 = 0. (5.33)

In order to avoid lower-order coupling between terms when three distinct vector fields are contributing, the
inequality (5.28) needs to hold. Failure to satisfy the inequality (5.28) may excite a Jacobi-Lie bracket or

symmetric product of the form,
[[
Y lift

i , XS

]
,
[
Y lift

j , XS

]]
or
〈
Y lift

i : Y lift
j

〉
, respectively.

With the above conditions met, the only non-zero combinations involve an even number of cosines and
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v1(t), v2(t), v3(t) V
(1,2,3)
(2,2,1)(t)

α1 sin(ω1t), α
2 sin(ω2t), α

3 sin(ω3t) =





− α1α2α3

4ω2
1
ω2

2
ω3

if ω1 − ω2 − ω3 = 0,

ω1 − ω2 + ω3 = 0
α1α2α3

4ω2
1
ω2

2
ω3

if ω1 + ω2 − ω3 = 0

0 otherwise
α1 sin(ω1t), α

2 sin(ω2t), α
3 cos(ω3t) = 0

α1 sin(ω1t), α
2 cos(ω2t), α

3 sin(ω3t) = 0

α1 sin(ω1t), α
2 cos(ω2t), α

3 cos(ω3t) =





α1α2α3

4ω2
1
ω2

2
ω3

if ω1 − ω2 − ω3 = 0,

ω1 + ω2 − ω3 = 0

− α1α2α3

4ω2
1
ω2

2
ω3

if ω1 − ω2 + ω3 = 0

0 otherwise
α1 cos(ω1t), α

2 sin(ω2t), α
3 sin(ω3t) = 0

α1 cos(ω1t), α
2 sin(ω2t), α

3 cos(ω3t) =





α1α2α3

4ω2
1
ω2

2
ω3

if ω1 − ω2 + ω3 = 0,

ω1 + ω2 − ω3 = 0

− α1α2α3

4ω2
1
ω2

2
ω3

if ω1 − ω2 − ω3 = 0

0 otherwise

α1 cos(ω1t), α
2 cos(ω2t), α

3 sin(ω3t) =





ω1 + ω2 − ω3 = 0,

−α1α2α3

4ω1ω2
if ω1 − ω2 − ω3 = 0,

ω1 − ω2 + ω3 = 0
0 otherwise

α1 cos(ω1t), α
2 cos(ω2t), α

3 cos(ω3t) = 0

Table 5.7: Third-order averaged coefficient, V
(a,b,c)
(2,2,1)(t), for system with drift.
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va(t), vb(t) V
(i,j,k)
(2,2,1)(t), i, j, k ∈ { a, b }

αa sin(ωat), α
b sin(ωbt) =





V
(a,a,b)
(2,2,1)(t) = (αa)2αb

4ω4
aωb

if 2ωa = ωb

V
(a,b,a)
(2,2,1)(t) = − (αa)2αb

4ω3
aω2

b

if 2ωa = ωb

V
(b,a,a)
(2,2,1)(t) = − (αa)2αb

4ω3
aω2

b

if 2ωa = ωb

V
(b,b,a)
(2,2,1)(t) = −αa(αb)2

4ωaω4
b

if 2ωb = ωa

V
(b,a,b)
(2,2,1)(t) = −αa(αb)2

4ω2
aω3

b

if 2ωb = ωa

V
(a,b,b)
(2,2,1)(t) = αa(αb)2

4ω2
aω3

b

if 2ωb = ωa

0 otherwise

αa sin(ωat), α
b cos(ωbt) =





V
(b,b,a)
(2,2,1)(t) = −αa(αb)2

4ωaω4
b

if 2ωb = ωa

V
(b,a,b)
(2,2,1)(t) = αa(αb)2

4ω2
aω3

b

if 2ωb = ωa

V
(a,b,b)
(2,2,1)(t) = αa(αb)2

4ω2
aω3

b

if 2ωb = ωa

0 otherwise

αa cos(ωat), α
b sin(ωbt) =





V
(a,a,b)
(2,2,1)(t) = − (αa)2αb

4ω4
aωb

if 2ωa = ωb

V
(a,b,a)
(2,2,1)(t) = (αa)2αb

4ω3
aω2

b

if 2ωa = ωb

V
(b,a,a)
(2,2,1)(t) = (αa)2αb

4ω3
aω2

b

if 2ωa = ωb

0 otherwise
αa cos(ωat), α

b cos(ωbt) = 0

Table 5.8: Coupling of third-order averaged coefficient, V
(a,b,c)
(2,2,1)(t), for system with drift.
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an odd number of sines. It is important to note that the algebraic inequality

2ωi − ωj 6= 0, for i 6= j, (5.34)

may also need to hold, according to the coupling of Table 5.8. Failure to satisfy the inequality (5.34) may
excite the Jacobi-Lie bracket corresponding to the averaged coefficients found in Table 5.8, which take the

form,
[[
Y lift

j , XS

]
,
[[
Y lift

i , XS

]
,
[
Y lift

j , XS

]]]
.

Let’s examine the possiblities for the third-order case. If the Jacobi-Lie bracket is a function of three
distinct vector fields, i.e.,

[[
Y lift

1 , XS

]
,
[[
Y lift

2 , XS

]
,
[
Y lift

3 , XS

]]]
, then satisfying the algebraic relations in

Equations (5.28), (5.33), and (5.34) for the associated input functions, according to the Tables 5.7 and 5.8,
will result in at least 3 contributions from 3 Jacobi-Lie bracket combinations (obtained by cycling the vector
fields) due to the fact that they all satisfy the algebraic equalities. The averaged coefficients are

V
(i,j,k)
(2,2,1)(t) =






0
0
0







0
0

− α1α2α3

4ω2
1
ω2

2
ω3







0
α1α2α3

4ω2
1
ω2ω2

3

0







0
0

− α1α2α3

4ω2
1
ω2

2
ω3







0
0
0






− α1α2α3

4ω1ω2
2
ω2

3

0
0







0
α1α2α3

4ω2
1
ω2ω2

3

0






− α1α2α3

4ω1ω2
2
ω2

3

0
0







0
0
0







. (5.35)

where ω2 > ω3 > ω1 and i, j, k ∈ { 1, 2, 3 }. The matrix representing the averaged coefficient is read
as follows: i gives the outer row, j gives the column, and k gives the inner row. When multiplied by the
corresponding Jacobi-Lie brackets, then summed over all indices,

V
(i,j,k)
(2,2,1)(t)

[[
Y lift

i , XS

]
,
[[
Y lift

j , XS

]
,
[
Y lift

k , XS

]]]

=

α1α2α3

4ω2
1ω

2
2ω3

[[
Y lift

1 , XS

]
,
[[
Y lift

2 , XS

]
,
[
Y lift

3 , XS

]]]
− α1α2α3

4ω2
1ω2ω2

3

[[
Y lift

1 , XS

]
,
[[
Y lift

3 , XS

]
,
[
Y lift

2 , XS

]]]

+
α1α2α3

4ω2
1ω

2
2ω3

[[
Y lift

2 , XS

]
,
[[
Y lift

1 , XS

]
,
[
Y lift

3 , XS

]]]
+

α1α2α3

4ω1ω2
2ω

2
3

[[
Y lift

2 , XS

]
,
[[
Y lift

3 , XS

]
,
[
Y lift

1 , XS

]]]

− α1α2α3

4ω2
1ω2ω

2
3

[[
Y lift

3 , XS

]
,
[[
Y lift

1 , XS

]
,
[
Y lift

2 , XS

]]]
+

α1α2α3

4ω1ω
2
2ω

2
3

[[
Y lift

3 , XS

]
,
[[
Y lift

2 , XS

]
,
[
Y lift

1 , XS

]]]

=

α1α2α3

4ω1ω2ω3

((
1

ω1ω2
+

1

ω1ω3

)[[
Y lift

1 , XS

]
,
[[
Y lift

2 , XS

]
,
[
Y lift

3 , XS

]]]

+

(
1

ω2ω3
− 1

ω1ω2

)[[
Y lift

2 , XS

]
,
[[
Y lift

3 , XS

]
,
[
Y lift

1 , XS

]]]

−
(

1

ω1ω3
+

1

ω2ω3

)[[
Y lift

3 , XS

]
,
[[
Y lift

1 , XS

]
,
[
Y lift

2 , XS

]]])
.

(5.36)
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Using the Jacobi identity, it is possible to reduce this number.
�

Lemma 18 For the case of three distinct vector fields entering into the third-order iterated Jacobi-Lie
bracket,

[[
Y lift

a , XS

]
,
[[
Y lift

b , XS

]
,
[
Y lift

c , XS

]]]
, (a 6= b, a 6= c, and b 6= c), no choice of inputs will

result in the excitation of motion along a single bracket direction. If the following inputs are chosen,

va(t) = αa
abc sin(ωabct), v

b(t) = αb
abc cos(3ωabct), v

c(t) = αc
abc cos(2ωabct),

for some principle carrier frequency, ωabc, then only the bracket
[[
Y lift

a , XS

]
,
[[
Y lift

b , XS

]
,
[
Y lift

c , XS

]]]

and a cyclicly related bracket,
[[
Y lift

c , XS

]
,
[[
Y lift

a , XS

]
,
[
Y lift

b , XS

]]]
or[[

Y lift
b , XS

]
,
[[
Y lift

c , XS

]
,
[
Y lift

a , XS

]]]
, will be excited. The corresponding averaged coefficients will be

V
(a,b,c)
(2,2,1)(t) =

3αabc

48ω5
abc

and V
(c,a,b)
(2,2,1)(t) =

αabc

48ω5
abc

or

V
(a,b,c)
(2,2,1)(t) =

αabc

144ω5
abc

and V
(b,c,a)
(2,2,1)(t) = − 3αabc

144ω5
abc

,

where αabc = αa
abcα

b
abcα

c
abc.

proof
Assume for now that, va, vb, and vc, are the only nonzero inputs to the system. We will examine the
corresponding averaged coefficient. Since the other inputs are set to zero, the system behaves similarly to
the three-input example above. Without loss of generality, assume that a = 1, b = 2, and c = 3.

Let the input functions be

v1(t) = α1 sin(ω1t), v
2(t) = α2 cos(ω2t), v

3(t) = α3 cos(ω3t).

Assume that the algebraic inequality in Equation (5.34) for the coupling found in Table 5.8 is satisfied, and
no coupling occurs. The critical elements of the averaged coefficient are the same as in Equation (5.35),
where ω2 > ω3 > ω1 and i, j, k ∈ { 1, 2, 3 }. From Equation (5.36), the excited Jacobi-Lie brackets are

V
(a,b,a)
(2,2,1)(t) [Ya, [Yb, Ya]] =

α1α2α3

4ω1ω2ω3

((
1

ω1ω2
+

1

ω1ω3

)[[
Y lift

1 , XS

]
,
[[
Y lift

2 , XS

]
,
[
Y lift

3 , XS

]]]

+

(
1

ω2ω3
− 1

ω1ω2

)[[
Y lift

2 , XS

]
,
[[
Y lift

3 , XS

]
,
[
Y lift

1 , XS

]]]

−
(

1

ω1ω3
+

1

ω2ω3

)[[
Y lift

3 , XS

]
,
[[
Y lift

1 , XS

]
,
[
Y lift

2 , XS

]]])
.

(5.37)

Denote ω̂i by

ω̂1 =
1

ω1

(
1

ω2
+

1

ω3

)
, ω̂2 =

1

ω2

(
1

ω3
− 1

ω1

)
, ω̂3 =

1

ω3

(
1

ω1
+

1

ω2

)
.

With these definitions,
ω̂1 > 0, ω̂2 < 0, ω̂3 > 0.
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The Jacobi identity may be used to remove one of the Jacobi-Lie brackets, [Y2, [Y3, Y1]] or [Y3, [Y1, Y2]].
Select the last Jacobi-Lie bracket from Equation (5.37) to be removed using the Jacobi identity.

V
(i,j,k)
(2,2,1)(t)

[[
Y lift

i , XS

]
,
[[
Y lift

j , XS

]
,
[
Y lift

k , XS

]]]
=

α1α2α3

4ω1ω2ω3

(
(ω̂1 + ω̂3)

[[
Y lift

1 , XS

]
,
[[
Y lift

2 , XS

]
,
[
Y lift

3 , XS

]]]

+(ω̂2 + ω̂3)
[[
Y lift

2 , XS

]
,
[[
Y lift

3 , XS

]
,
[
Y lift

1 , XS

]]])
. (5.38)

The second Jacobi-Lie bracket in Equation (5.38) can be cancelled only if there exists a selection of ω i

satisfying one of the tensor equalities (5.33), such that (3.31) holds. It was already shown that (3.31) would
not lead to feasible frequency selections.

As for the choice of inputs given above, notice that selecting any ω2 > ω3 > ω1 such that the equality
ω2 = ω1 + ω3 holds will excite only two two Jacobi-Lie brackets. Choosing ω3 = 2ω1 = 2ω will avoid the
coupling in Table 5.8 according to the algebraic inequality in Equation (5.34). The important decision of the
frequency assignments is to have the sine carrier frequency be the smallest to avoid the coupling. The final
contribution is

V
(a,b,c)
(2,2,1)(t) [Ya, [Yb, Ya]]

[[
Y lift

a , XS

]
,
[[
Y lift

b , XS

]
,
[
Y lift

c , XS

]]]
=

α1α2α3

48ω5

(
3
[[
Y lift

1 , XS

]
,
[[
Y lift

2 , XS

]
,
[
Y lift

3 , XS

]]]

+
[[
Y lift

2 , XS

]
,
[[
Y lift

3 , XS

]
,
[
Y lift

1 , XS

]]])
.

Suppose that, instead, the second Jacobi-Lie bracket from Equation (5.37) were to be removed using the
Jacobi identity. Then the important averaged coefficients are

V
(a,b,c)
(1,1,0)(t)

[[
Y lift

a , XS

]
,
[[
Y lift

b , XS

]
,
[
Y lift

c , XS

]]]
=

α1α2α3

4ω1ω2ω3

(
(ω̂1 − ω̂2)

[[
Y lift

1 , XS

]
,
[[
Y lift

2 , XS

]
,
[
Y lift

3 , XS

]]]

− (ω̂2 + ω̂3)
[[
Y lift

3 , XS

]
,
[[
Y lift

1 , XS

]
,
[
Y lift

2 , XS

]]])
. (5.39)

The second JAcobi-Lie bracket in Equation (5.39) can be cancelled only if there exists a selection of ω i

satisfying one of the tensor equalities (5.33), such that Equation (3.31) holds, which is not possible.
Again, choosing ω3 = 2ω1 = 2ω will avoid the coupling in Table 5.8 according to the algebraic

inequality in Equation (5.34). The final contribution is

V
(a,b,a)
(2,2,1)(t)

[[
Y lift

a , XS

]
,
[[
Y lift

b , XS

]
,
[
Y lift

c , XS

]]]
=

α1α2α3

144ω5

([[
Y lift

1 , XS

]
,
[[
Y lift

2 , XS

]
,
[
Y lift

3 , XS

]]]

−3
[[
Y lift

2 , XS

]
,
[[
Y lift

3 , XS

]
,
[
Y lift

1 , XS

]]])
.

Suppose now that a, b, and c are arbitrary, and the carrier frequency ωabc is chosen to be unique in the
sense that the algebraic inequalities of Equation (5.28), and Equation (5.34) according to Table 5.8, hold.
Furthermore, the algebraic equalities in Equation (5.33) hold with no undesired coupling. The analysis
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implies that either

V
(d,e,f)
(2,2,1) (t)

[[
Y lift

d , XS

]
,
[[
Y lift

e , XS

]
,
[
Y lift

f , XS

]]]
=

αabc

48ω5

(
3
[[
Y lift

a , XS

]
,
[[
Y lift

b , XS

]
,
[
Y lift

c , XS

]]]

+
[[
Y lift

b , XS

]
,
[[
Y lift

c , XS

]
,
[
Y lift

a , XS

]]])
,

or

V
(d,e,f)
(2,2,1) (t)

[[
Y lift

d , XS

]
,
[[
Y lift

e , XS

]
,
[
Y lift

f , XS

]]]
=

αabc

144ω5

([[
Y lift

a , XS

]
,
[[
Y lift

b , XS

]
,
[
Y lift

c , XS

]]]

−3
[[
Y lift

b , XS

]
,
[[
Y lift

c , XS

]
,
[
Y lift

a , XS

]]])
.

for summation over all indices d, e, f ∈ { 1 . . . m }, and where αabc = αa
abcα

b
abcα

c
abc.

At worst case, the frequency ωabc = 2ωmax + 1 may be chosen, where ωmax is the maximal carrier
frequency of the other sinusoidal inputs. When utilizing higher-order averaged coefficients, the frequency
spacing will change to avoid coupling.
�

Lemma 19 For the case of two distinct vector fields entering into the third-order iterated Jacobi-Lie bracket,[[
Y lift

b , XS

]
,
[[
Y lift

a , XS

]
,
[
Y lift

b , XS

]]]
, if the following inputs are chosen,

va(t) = αa
bab cos(ωbabt), v

b(t) = αb
bab sin(2ωbabt),

for some unique principle carrier frequency, ωbab, then only the bracket
[[
Y lift

b , XS

]
,
[[
Y lift

a , XS

]
,
[
Y lift

b , XS

]]]

will be excited. The corresponding averaged coefficient is

V
(b,a,b)
(2,2,1)(t) =

3αbab

16ω5
bab

,

where αbab = αa
bab

(
αb

bab

)2
.

proof
Assume that these are the only nonzero inputs to the system. Without loss of generality, assume that a = 1,
b = 2. Set the input functions to be

v1(t) = α1 sin(2ωt), v2(t) = α2 cos(ωt). (5.40)

The averaged coefficients are

V
(i,j,k)
(1,1,0)(t) =




[
0
0

] [
0

α1(α2)2

16ω5

]

[
0

α1(α2)2

16ω5

] [
−α1(α2)2

8ω5

0

]



, (5.41)
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where the averaged coefficient is represented as a tensor with indices i, j, k ∈ { 1, 2 }. Since these are the
only non-zero inputs, the other indices, i, j, k ∈ 3, . . . m, of the averaged coefficient vanish. The averaged
coefficient matrix is read as follows: i choose the outer row, j chooses the column, and k chooses the inner
row. The corresponding contribution to system motion is then,

V
(i,j,k)
(1,1,0)(t)

[[
Y lift

i , XS

]
,
[[
Y lift

j , XS

]
,
[
Y lift

k , XS

]]]

= +
α1(α2)2

16ω5

[[
Y lift

1 , XS

]
,
[[
Y lift

2 , XS

]
,
[
Y lift

2 , XS

]]]

+
α1(α2)2

16ω5

[[
Y lift

2 , XS

]
,
[[
Y lift

1 , XS

]
,
[
Y lift

2 , XS

]]]

− α1(α2)2

8ω5

[[
Y lift

2 , XS

]
,
[[
Y lift

2 , XS

]
,
[
Y lift

1 , XS

]]]

=
3α1(α2)2

16ω5

[[
Y lift

2 , XS

]
,
[[
Y lift

1 , XS

]
,
[
Y lift

2 , XS

]]]
, (5.42)

for summation over the indices i, j, k ∈ { 1, 2 }. With the choice of ω = ω212, α1 = α1
212 and α2 = α2

212,

V
(i,j,k)
(1,1,0)

(t)
[[
Y lift

i , XS

]
,
[[
Y lift

j , XS

]
,
[
Y lift

k , XS

]]]
=

3α212

16ω5
212

[[
Y lift

2 , XS

]
,
[[
Y lift

1 , XS

]
,
[
Y lift

2 , XS

]]]

(5.43)
where α212 = α1

212(α
2
212)

2. More generally, when a, b ∈ { 1, . . . ,m }, this analysis implies

V
(c,d,e)
(1,1,0)(t)

[[
Y lift

c , XS

]
,
[[
Y lift

d , XS

]
,
[
Y lift

e , XS

]]]
=

3αbab

16ω5
bab

[[
Y lift

b , XS

]
,
[[
Y lift

a , XS

]
,
[
Y lift

b , XS

]]]

(5.44)
where αbab = αa

bab(α
b
bab)

2. In the general case the algebraic inequalities of Equation (5.28), and Equation
(5.34) according to Table 5.8, must hold with respect to other sinusoidal inputs to avoid coupling. The
algebraic equalities of Equation (5.33) must only hold for those that combine to form a Jacobi-Lie bracket
contribution. Again, the frequency ω = 2ωmax + 1 may be chosen, where ωmax is the maximal carrier
frequency of the other sinusoidal inputs. When higher-order Jacobi-Lie bracket contributions are desired the
frequency spacing will change.
�

Abstracting on the Sinusoidal Inputs

For higher-order expansions, myriad algebraic identities must hold in order to isolate specific bracket related
motions. Each averaged coefficient must be examined to determine its contribution, and the limitations aris-
ing from the chosen set of input functions. Once a particular calculation is done, it need not be repeated for
another problem with the same Jacobi-Lie bracket requirements. The general strategy for driftless systems
was proven in [154, 155, 92], and also allows for the frequency choices to be positive rational numbers
instead of only positive integers. One major difference in implementing the strategy for systems with drift
is the excitation of bad symmetric products that cannot be avoided. This excitation will cuse additional
symmetric products and Jacobi-Lie brackets to be excited unintentionally (as was seen in Lemma 16).

Th sufficient conditions found in Chapter 4 and in most other controllability analyses requires that the
unintended excitation of bad brackets can be neutralized. Recall the definition of degree for a Jacobi-Lie
bracket.

Definition 62 Let B be an iterated Jacobi-Lie bracket. Define δa(B) to be the number of times that the
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control vector field Ya appears in the iterated Jacobi-Lie bracket B.

In [92], for the case of underactuated, driftless nonlinear systems, it was shown that for any Jacobi-Lie
bracket B such that δi(B) = δj(B) for all i, j = 1 . . . m, there is no way to obtain unique activation of
the Jacobi-Lie bracket B. The same property holds for systems with drift; the cyclicly related Jacobi-Lie
brackets will also be excited, as was seen in Lemmas 16 and 18.

A system with drift is parametrized by α- and β-parameters. When used in conjunction, they will be
denoted by γ = (α, β) and called the γ-parametrization. Occasionally, one of the two of parameter sets will
be explicitly referred to, in which case, the complementary parameter set has parameters equal to zero. The
time-periodic inputs are defined such that the averaged coefficients scale linearly with the parameters γJ .
For purposes of feedback, the γJ should be defined as functions of state so as to achieve stabilization for the
averaged equations of motion. There is no unique method for picking the γ I

J to obtain the desired product
γJ = Πi∈Iγ

i
J . Different choices of decomposing the product γJ into γI

J will result in different controllers,
although the averaged evolution will be the same. Both the Theorems found below, and the examples in
Section 5.3 will discuss this freedom and its implications.

5.2.3 Stabilization Using Sinusoids

To summarize, we have obtained formulas for the response of 1-homogeneous control systems to an oscil-
latory control at some arbitrary order. We may analyze the effects of the control inputs on the expansions,
leading to an α-parametrized form. Now, we must determine a stabilization feedback strategy. For conve-
nience, order the Jacobi-Lie brackets as they appear in the averaged expansion (symmetric products are also
brackets). Let Ŷj denote the Jacobi-Lie brackets, and let Tj(α) be their corresponding averaged coefficients.
With this ordering, the averaged equations can be put into the form:

ż = XS(z) + Tj(α)Ŷj(z)

= XS(z) +B(z)H(α),
(5.45)

where the matrices B and H are

B(z) = [Ŷ1 . . . ŶN ] and H(α) = [T1 . . .TN ]. (5.46)

It is important to realize that Equation (5.45) will often represent a truncation of the full series expansion.
The α parameters will be used to obtain control authority over the indirectly controllable states.

The dependence of the controller design on a local Lie algebra basis is problematic if the Jacobi-Lie
brackets used to satisfy the small-time local (configuration) controllability vary pointwise. If the con-
troller is to stabilize to different points, each with a unique basis spanning the Lie algebra, then multiple
α-parametrizations are necessary [77]. For systems that are well-controllable, multiple parametizations can
be avoided.

Stabilization via Discretized Feedback

We first consider feedback based on discrete sampling, while a continuous time version is developed below.
State error will be used as feedback to modulate the γ-parameters, converting the problem to periodic dis-
crete feedback. The technique is very similar to the motion control algorithms, based on motion primitives,
that use open-loop approximate inversion for open-loop stabilization and trajectory tracking [21, 24, 100].
However, averaging theory is explicitly used to prove stability. In the language of Floquet theory, our goal
is to utilize feedback so as to create stable Floquet multipliers.
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Theorem 37 Consider a system (5.16) which is small-time locally controllable at x∗ ∈ E. Let uk(t) be
the set of γ parametrized, T -periodic input functions where k = {1, . . . ,m} and γ ∈ R

n−m. Let z(t), be
the averaged system response to the inputs. Given the averaged system (5.45), assuming that the m directly
controlled states have been linearly stabilized and that the linearization of H from Equation (5.46), with
respect to γ at γ = 0 and z = x∗, is invertible on the (n−m) dimensional subspace to control, there exists
a K ∈ R

(n−m)×n such that for
γ = −ΛKz(T bt/T c),

where Λ(n−m)×(n−m) is invertible and b·c denotes the floor function, the average system response is stabi-
lized.

proof
The proof was given in [160], but will be quickly sketched. Given the assumptions on the system, the
averaged system (5.45) is controllable. Linearization with respect to z and γ yields

ż = Az +B
∂H

∂γ

∣∣∣∣
γ=0

γ = Az +BΥγ.

Choosing γ constant over a period, the above system can be directly integrated to obtain a discrete, linear
system

z(k + 1) = Âz(k) + B̂γ.

The assumptions imply that B̂ has a pseudo-inverse, Λ, for the (n −m)-dimensional subspace to stabilize.
Choose K so that the eigenvalues of Â−K lie in the unit circle. This stabilizes the discrete system (i.e. the
monodramy map), and the continuous system with piecewise constant feedback.
�

In the theorem it is assumed that the directly controlled state have been stabilized using continuous feedback,
and a discretized feedback strategy is provided to stabilize the remaining states. At the end of each oscillation
period, the error is computed and used to update the γ-parameters. The modified γ-parameters are held
constant for the duration of the period, at which point a new error estimate is provided.

Stabilization via Continuous Feedback

The control design procedure outlined above required integration of the linearized dynamical model over
a period of actuation, and a discretized feedback strategy. Corollary 3 implies that stability can also be
determined from the Floquet exponents, i.e., the stability of the continuous autonomous averaged vector
field. A version of Theorem 37 can be proven without discretizing the closed-loop system.

Theorem 38 Consider a system of the form (5.16) which is small-time locally controllable at x∗ ∈ E.
Let ua(t) be the corresponding set of γ parametrized, T -periodic inputs functions where a = 1 . . . m and
γ ∈ R

n−m. Lastly denote by z(t), the averaged system response to the inputs. Given the averaged system
(5.45), assuming that the m directly controlled states have been linearly stabilized and that the linearization
of H , with respect to γ at γ = 0 and z = x∗, is invertible on the (n−m) dimensional subspace to control,
then there exists a K ∈ R

(n−m)×n such that for

γ = −ΛKz(t)

where Λ(n−m)×(n−m) is invertible, we have stabilized the average system response.
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proof
Same as Theorem. 37, without discretization.
�

Stabilization via Lyapunov Functions

In Section 2.3, the linearization of the autonomous Floquet vector field, Y , was emphasized as a means to
prove stability of the original oscillatory flow. In reality, any method to demonstrate stability of the average
can be applied; for example, using a Lyapunov function for the averaged system is permissible.

Definition 63 A stabilized truncated series expansion with respect to the Lyapunov function, V , for the
vector field (2.32) is a truncated vector field that has the same stability property using the Lyapunov function,
V , as any higher-order truncation of the vector field, and also the full series expansion of the vector field.

Recall, the averaged system response in Equation (5.45). Consider a parametrization for γ, e.g., γ = p(z).
The system in Equation (5.45) may be expressed as

ż = Z(z) ≡ XS(z) +B(z)H ◦ p(z). (5.47)

Theorem 39 Consider a system of the form (5.16) which is small-time locally controllable at z ∗ ∈ E.
Let ua(t) be the corresponding set of γ parametrized, T -periodic inputs functions where a = 1 . . . m and
γ ∈ R

n−m. Lastly, denote by z(t) the averaged system response to the inputs. Given the averaged system
(5.45), assume that there exists an γ-parametrization and a Lyapunov function, V , such that (5.47) is a
stabilized truncated series expansion with respect to the Lyapunov function, V . If the system in Equation
(5.47) is shown to be asymptotically (exponentially) stable using the Lyapunov function, then the averaged
system response is asymptotically (exponentially) stable.

proof
Follows the proof of 37, but without the discretization step. Instead of the linearization, use the Lyapunov
function, V , to demonstrate stability.
�

Since the system (3.7) is nonlinear, the closed-loop system (5.47) will also contain nonlinear terms
that complicate the Lyapunov analysis. In a local neighborhood of the equilibrium, some of the nonlinear
terms do not affect stability and may be disregarded. Theorem 38 resolved the problem by linearizing the
equations of motion; linearization emphasizes the dominant terms within a neighborhood of the equilibrium.
A general strategy for extracting the dominant stabilizing terms and removing the unnecessary nonlinear
terms is needed for the Lyapunov technique to be useful.

Geometric Homogeneity. Geometric homogeneity may be used to identify higher-order terms that act as
minor perturbations in a local neighborhood of the desired equilibrium z∗. Recall that equilibria for systems
with drift are elements of the zero section of E.

Definition 64 The mth-degree homogeneous truncation of a vector field, denoted Trunc∆
m (·), is the trunc-

tion obtained by removing all terms of homogeneous degree greater than m.

In a local neighborhood of the equilibrium z∗ ∈ E, the dominant terms will be those of homogeneous
order less than or equal to 0. Consequently, the γ-parametrization must result in state error feedback whose
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homogeneous truncation of order 0 is stabilizing. The 0-degree homogeneous truncation with respect to the
dilation vector field, ∆, results in the vector field,

ż = Z0 = Trunc∆
0 (XS(z) +B(z)H ◦ p(z)) . (5.48)

If there exists a Lyapunov function such that the system in Equation (5.48) is stable, then the averaged
system is locally stable.

Theorem 40 Consider a system of the form (5.16) which is small-time locally controllable at z ∗ ∈ E.
Let ua(t) be the corresponding set of γ parametrized, T -periodic inputs functions where a = 1 . . . m and
γ ∈ R

n−m. Lastly denote by z(t), the averaged system response to the inputs. Given the averaged system
(5.45), assuming that there exists an γ-parametrization and a Lyapunov function such that the homogeneous
truncation in Equation (5.48) is asymptotically (exponentially) stable with respect to the Lyapunov function,
then the actual system response is asymptotically (exponentially) stable.

proof
Same as Theorem 19, followed by invocation of Theorem 39.
�

Comments on the Stabilizing Controllers

Theorems 37-40 stabilize an equilibrium point of the averaged system. If the γ-parametrized control input
functions do not vanish at the equilibrium q∗, then by Theorem 9, the flow of the actual system stabilizes
to an orbit (of size O (ε)) around the fixed point. If, on the other hand, the input functions do vanish at the
equilibrium, then Corollary 2 implies that the flow of the actual system stabilizes to the fixed point (i.e. the
orbit collapses to the fixed point).

The states requiring continuous feedback use the averaged rather than the instantaneous values of the
system for state feedback. Trajectories of the actual flow are related to the averaged flow by the Floquet
mapping,

x(t) = P (t)(z(t)). (5.49)

We may solve for the average z(t), using the current state x(t). Since P (t) is given by a series expansion,
we can easily compute its inverse.

For the discretized feedback strategy, the difference in the averaged and instantaneous indirectly con-
trolled states is not a critical factor to consider due to the fact that P (t) is periodic, i.e., P (kT ) = P (0) =
Id, k ∈ Z

+. The directly stabilized states do not use discretized feedback, and consequently do require the
average to be used as feedback. If the Floquet mapping P (t) is ignored and instantaneous states x(t) are
used in the feedback control of the directly controllable states, this averaging method will place an upper
bound on the feedback gains. The oscillatory inputs should be faster than the natural stabilizing dynamics
of the directly stabilized subsytem, otherwise there will be attenuation of the oscillatory signal (and conse-
quently the feedback signal to the indirectly controlled states). With the exception of [118], this effect has
not been discussed in prior presentations of feedback strategies that utilize averaging techniques [108, 136].

In practice, one may utilize averages computed in realtime as continuous feedback. The benefit of
this latter approach is that the averaging process may serve to filter out noise in the sensor signals. It
will also attenuate the feedback of external disturbances. As the continually computed average, x̄(t) =
1
T

∫ t
t−T x(τ) dτ , is not quite the same as z(t) = P−1(t) (x(t)), there may be some differences. When

performing averaging of sensed measurements, calculate P (t) to determine which states require averaging.
Recall that P (t) is a periodic function with a power series representation in ε. The states with dominant
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oscillatory terms will require averaging, whereas the states that have no oscillatory terms, or ignorable,
perturbative oscillatory terms, in P (t) will not require averaging.

Trajectory Tracking To track a trajectory, replace x(t) with x(t) − xd(t); the system must be locally
controllable along the trajectory. For the discretized feedback, the Nyquist criteria is a limiting factor in
tracking a trajectory for the indirectly controlled states. As the trajectory evolves, the Jacobi-Lie brackets
contributing to small-time local controllability may vary. The trajectory tracking feedback strategy is more
complicated since multiple parametrizations wil be needed. If a system is well-controllable, then a single
parametrization will suffice to track trajectories. Systems with group symmetris are well-controllable if and
only if they are small-time locally controllable at the identity.

Configuration Control via Kinematic Motions. To recover the stabilization via kinematics motions from
Bullo [21], only the α-parameters are used for feedback. The system must be initially at rest. Kinematic
motions are those that return the sysstem to rest and the end of each actuation period.

5.3 Examples

This section examines the control synthesis of this chapter for a couple of standard underactuated systems
with drift. The first example, in Section 5.3.1, is a simple second-order nonholonomic integrator. Sev-
eral control strategies for the nonholonomic integrator are examined. Section 5.3.2 examines vibrational
stabilization of a passive arm. The example highlights the use of indefinite integrals for the averaged coef-
ficients, versus the definite integrals used by approximate inversion methods for open-loop path planning.
The closed-loop nature of the system is important for ensuring that indefinite integrals may be used instead.

5.3.1 Nonholonomic Integrator

As a simple didactic example, we begin with a second-order nonholonomic integrator in R3, which only
requires first-order averaging techniques. The control vector fields are

Y1(x) =





1
0
q2



 , Y2(x) =





0
1
0



 ,

and act as accelerations to the second-order system,

q̈ = Y1(q)u
1(q, q̇, t) + Y2(q, q̇, t)u

2(q, q̇, t).

In first order form, x = (q, q̇) ∈ TQ,

ẋ = Z(x) + Y lift
a (x)ua(x, t),

where

Z =

{
q̇
0

}
.

The system is trivially a 1-homogeneous control system with the vector bundle E = TQ. The system is
fully controllable as can be seen by the fact that the vertically lifted control inputs and vertical lift of the
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symmetric product,

〈Y1 : Y2 〉Z =





0
0
1



 ,

span the vertical subbundle of TE. Here, the symmetric product operates on unlifted vector fields due to the
identification of vertical vector fields with sections on the base, X V (E) 7→ Γ(E) = X (Q). Decompose the
control inputs into state-feedback and oscillatory terms,

ua(x, t) = fa(x) +
1

ε
va(t/ε) = −(kpq

a + kv q̇
a) +

1

ε
va(t/ε).

The equations of motion become

ẋ = XS +
1

ε
Y lift

a va(t/ε), (5.50)

where XS = Z+Y lift
a fa(x). With the feedback, XS ∈ M0, and the system (5.50) is still a 1-homogeneous

control system. The feedback does not affect the symmetric product calculation at all, consequently we use
Γ = XS for all symmetric product calculations, c.f. Definition 37. Since the symmetric product can be used
to add a third vector to complete the basis for the tangent space, and there are no bad symmetric products up
to this level, the system should be locally controllable. Using oscillatory time dependent inputs for va(τ),
the averaged form of the equations of motion is

ż = XS(q) + V
(a)
(1)(t)

[
Y lift

a , XS

]
− 1

2
V

(a,b)
(1,1)(t) 〈 Ya : Yb 〉lift .

The corresponding partial Floquet map is

Trunc0 (P (t)) = Id,

with an improved version being

Trunc1 (P (t/ε)) = Id + ε

∫ t/ε

0
Ṽ

(a)
(1)(τ) dτ

[
Y lift

a , XS

]
− 1

2
ε

∫ t/ε

0
Ṽ

(a,b)
(1,1)(τ) dτ

〈
Y lift

a : Y lift
b

〉
.

Recall that the actual Floquet map also incorporates the flow Φ
Y lift

a va

0,t/ε , which is

Φ
Y lift

a va

0,t/ε = Id + V
(a)
(1)(t/ε)Y

lift
a . (5.51)

Choosing the inputs
v1(t) = α1

12 sin(t), v2(t) = α2
12 sin(t)

the equations of motion become
ż = Z(q) − α12 〈Y1 : Y2 〉lift ,

where α12 = α1
12α

2
12. Explicitly written, the equations of motion are

d

dt





z1
z2
z3
ż1
ż2
ż3





=





ż1
ż2
ż3

−(kpz1 + kv ż1)
−(kpz2 + kv ż2)
−(kpz1 + kv ż1)z2





−





0
0
0
0
0
1





α12,
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whose linearization about the origin is

ż =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−kp 0 0 −kv 0 0
0 −kp 0 0 −kv 0
0 0 0 0 0 0



z −





0
0
0
0
0
1





α12. (5.52)

System (5.52) is stabilizable. As, the first two directly controlled states are exponentially stable, the primary
concern is the last state. There are several options regarding stabilization of control system.

Discrete Orbit Stabilization The first method will stabilize the system to an orbit using Theorem 37.
To determine the range of feedback gains that will stabilize the system, it is necessary to work out the
derivations of the feedback law in the proof of Theorem 37. The continuous time evolution is

d

dt

{
z3
ż3

}
=

[
0 1
0 0

]{
z3
ż3

}
−
{

0
1

}
α12.

When integrated over a period,
{
z3(t)
ż3(t)

}
=

[
1 T
0 1

]{
z3(0)
ż3(0)

}
−
[
T + 1

2T
2

T

]
α12.

The discretized version is therefore equal to

{
z3(k + 1)
ż3(k + 1)

}
=

[
1 T
0 1

]{
z3(k)
ż3(k)

}
−
[
T + 1

2T
2

T

]
α12.

Choosing α12 to be error feedback,

α12 = Kp z(k) +Kv ż(k),

the discretized system becomes
{
z3(k + 1)
ż3(k + 1)

}
=

[
1 − (T + 1

2T
2)Kp T − (T + 1

2T
2)Kv

−TKp 1 − TKv

]{
z3(k)
ż3(k)

}
.

Choose Kp and Kv so that the system is stabilized. Note that the value of ε is critical because it determines
the period T , and consequently will affect the range of Kp and Kv that will stabilize the system. As the
limit ε → 0 is approached, the range of feedback gains will increase. In the limit, the discretized averaged
system and the continuous system coincide.

At this point, there are two options available: (1) we may feedback instantaneous values of the state, or
(2) we may use the Floquet mapping to feedback averaged values of the state. Only the first option will be
contemplated. For Option 1, the oscillatory inputs need to be faster then the natural dynamics of the directly
controlled states, otherwise the direct state feedback will degrade the oscillatory signal, and consequently
the feedback signal to the indirectly controlled states. A plot of the step response if shown in Figure 5.1.
Due to the second sinusoidal input, the origin is no longer a fixed point, and the actual time-varying system
will have a stable orbit. The parameters are kp = 3, kv = 4, Kp = 0.5, Kv = 1.9, ε = 1/7. The period
is T = 2πε, which gives a frequency of just over 1Hz. All of the controllers found in the remainder of this
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Figure 5.1: Discretized Orbit Stabilization for Nonholonomic Integrator, Option 1.

example use these control parameters also.

Discretized Stabilization to a Point For stabilization to a point to occur, the control law must vanish at
the desired equilibrium. The equivalent control law will exponentially stabilize the system:

α1
12(t) = sign(α)

√
|α| sin(t) and α2

12(t) =
√
|α| sin(t). (5.53)

The origin is a fixed point and the resulting control law will stabilize to the origin precisely, i.e., the orbit
collapses to a point. The resulting control law is shown in Figure 5.2, using the same parameters as before,
kp = 3, kv = 4, Kp = 0.5, Kv = 1.9, and ε = 1/7.

Continuous Stabilization to a Point We may modify the control strategy to utilize continuous feedback
instead of discretized feedback. The α-parametrization the same as Equation (5.53). The inverse of the
Floquet mapping, P (t), will be used to translate the instantaneous state values to the averaged state values

for full-state feedback. For first-order averaging, P (t) ≈ Id, so only the flow Φ
Y lift

a va

0,t/ε is needed to compute

the Floquet mapping P̃ (t). Figure 5.3 shows a simulation using continuous feedback of the average.

Improved Continuous Stabilization to a Point The Floquet mapping using the standard averaging method
does an decent job, however, by using the Floquet mapping from the improved averaging method, the stabi-
lization can be smoothed out and improved. The improved expansion of P −1(t) is

Trunc1

(
P−1(t)

)
= Id −

∫ t

0
Ṽ

(a)
(1)

(τ) dτ
[
Y lift

a , XS

]
+

∫ t

0
Ṽ

(a,b)
(1,1)

(τ) dτ 〈Ya : Yb 〉lift (5.54)
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Figure 5.2: Discretized Point Stabilization for Nonholonomic Integrator.
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Figure 5.3: Continuous Point Stabilization for Nonholonomic Integrator.
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Figure 5.4: Improved Continuous Point Stabilization for Nonholonomic Integrator.

5.3.2 Vibrational Control of a Passive Arm

Consider a two-link manipulator whose second joint is passive. By quickly oscillating the first link, it is
possible to stabilize the second link to be at a right angle to the first link. The goal here is to show how some
elements of the generalized averaging theory manifest when dealing with an actual oscillatory system. In

θ1

θ2

τ

Figure 5.5: Passive arm.

particular, we will demonstrate how non-uniqueness of the monodramy
map is obtained and what it means physically. In the process, the input
set restrictions determined in Bullo [23] will be removed. As famil-
iarity with the problem statement is not assumed, there will be some
reproduction of material from [23].

The configuration of the arm can be described by the angle of the
first joint, θ1, and the angle of the second joint with respect to the first
link, θ2. Consequently, the system evolves on the two torus T

2, and is
represented by the coordinates q = (θ1, θ2). The phase space of the
system is x = (q, q̇) = (θ1, θ2, ω1, ω2) ∈ TT

2.
The second-order equations of motion can be derived using the La-

grangian of the system, which is kinetic energy minus potential energy,

L(q, q̇) =
1

2
q̇TM(q)q̇ − Vcontrol.

The kinetic energy metric is represented by the matrix,

M(q) =

[
1
4 (1013 + 1968 cos(θ2)) 15 (5 + 6 cos(θ2))

16 (5 + 6 cos(θ2)) 80

]
. (5.55)
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The gradient corresponding to the kinetic energy metric is

grad ϕ(q) = M ij ∂ϕ

∂qj
.

The potential term consists of integrable control inputs,

Vcontrol(q) =
1

2
kθ2

1 +
1

ε

√
Kθ1v(t/ε),

where v(t) = v(t+ T ). The equations of motion are

q̈i = Γi
jkq̇

j q̇k +Ri
j(q)q̇

j + grad (Vcontrol), (5.56)

where the Γi
jk are the Christoffel symbols corresponding to the kinetic energy metric (5.55), R(q) is

Rayleigh dissipation represented by the matrix,

R(q) =

[
− 2

10 0
0 2

10

]
.

Although the equations of motion in Equation (5.56) exhibit periodic behavior, additional work is needed to
transform them into standard form for averaging. To describe the dynamics of the system in first order form,
use x = (q, q̇),

ẋ = Γ̃ +Dlift(x) + (grad Vcontrol)
lift,

where

Γ̃ =

{
q̇

Γq(q̇, q̇)

}
.

With the definition,
Ya ≡ grad qa,

the equations of motion can be expressed as

ẋ = Γ̃ +Dlift(x) − kY lift
1 θ1 +

1

ε
Y lift

1 v1(t/ε).

A transformation of time, t 7→ ετ , leads to

dx

dτ
= ε

(
Γ̃ +Dlift(x) − kY lift

1 θ1

)
+ Y lift

1 v1(τ) = εX̃ +X.

The high-amplitude, high-frequency control inputs are the primary vector field, with the remaining dynamics
acting as a perturbation. The variation of constants may be used to render the system in the required form for
averaging. The vector field Y from Equation (5.17) is computed using the series representation in Equation
(5.18),

dy

dτ
= Y = εX̃ + V

(1)
(1)(τ)

[
Y lift

1 , X̃
]
− 1

2
V

(1,1)
(1,1)(τ)

〈
Y lift

1 : Y lift
1

〉
,

where the Γ used in the symmetric product is X̃ , c.f. Definition 37. The Lagrangian structure of the system
implies that it is a 1-homogeneous control system. First order averaging results in

dy

dτ
= Y = εX̃ + V

(1)
(1)(τ)

[
Y lift

1 , X̃
]
− 1

2
V

(1,1)
(1,1)(τ)

〈
Y lift

1 : Y lift
1

〉
.
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To demonstrate stability of equilibria, the Lagrange-Dirichlet criterion will be used. In order to utilize the
Lagrange-Dirichlet criterion, the Lagrangian system must be transformed to a Hamiltonian system using the
Legendre transformation [98]. The tangent bundle coordinates (q, q̇) are transformed to cotangent bundle
coordinates (q, p).

Theorem 41 (Lagrange-Dirichlet criterion) [98] If the matrix of the second variation δ2H is either posi-
tive or negative definite at the equiblirium (qe, pe), then it is a stable fixed point.

For Hamiltonian systems defined on a cotangent bundle, the equilibrium subspace is a subspace of the zero
section, c.f. Definition 44. Equilibria will have vanishing momenta, (qe, pe) = (qe, 0). The Lagrange-
Dirichlet criterion simplifies to a non-degenerate minimum of the potential energy of the Hamiltonian.

Actuation with Cosine. Using the input function

v(τ) = 2
√
K cos(τ),

the averaged coefficients evaluate to

V
(1)
(1)(τ) = 0 and V

(1,1)
(1,1)(τ) = 2K.

The averaged equations of motion are

dy

dτ
= Y = εX̃ −K

〈
Y lift

1 : Y lift
1

〉
.

The symmetric product term is integrable and may be incorporated into the Lagrangian as an additional
potential. The averaged potential is

Vavg =
1

2
kθ2

1 +K
20

2313 − 1152 cos(2θ2)
, (5.57)

and the averaged equations of motion may be derived from the Lagrangian,

Lavg(q, q̇) =
1

2
q̇TM(q)q̇ − Vavg. (5.58)

When the system is transformed into Hamiltonian form, the Lagrange-Dirichlet criteria can be used to
determine stability of the average, from which orbital stability of the original system (5.56) may hold.
Figure 5.6 shows minima at ±π

2 , which together with dissipation leads to the conclusion of stability. The
actual system has an asymptotically stable orbit. The results up to here are known.

Actuation with Sine. What is interesting about this example is that the vibrational control design of [23]
restricts the oscillatory actuation to be cosine. Intuitively sine should function equally well, however in
developing the theory, the following integral constraints were imposed,

∫ T

0
va(t) dt = 0 and

∫ T

0

∫ t

0
va(τ) dτ dt = 0. (5.59)

Both cosine and sine satisfy the first integral constraint, however, only cosine satisfies the second constraint.

The double integral constraint is to ensure that V
(a)
(1)(t) = 0, whose vanishing allows the averaged equations

of motion to be described by the simple averaged Lagrangian of (5.58). The simple Lagrangian transforms
trivially to a Hamiltonian that can be analyzed using the Lagrange-Dirichlet criteria.
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Figure 5.6: Contours for Vavg , Equation (5.57).

Choosing the sine function will lead to the same net response: stabilization to the π
2 , with one caveat.

The oscillatory inputs will stabilize to one of the two equilibria θ2 = ±π
2 depending on what region in phase

space that the arm begins in. Under the averaging process, the two inputs, sine and cosine, begin in different
regions of the phase space for the same initial conditions. This subtle distinction can be seen by examining
the structure of the averaged equations. Under oscillatory forcing with cosine, the averaged equations of
motion are

Zcos = Z − 〈Y1 : Y1 〉 , (5.60)

whereas, under actuation by sine,

Zsin = Z + 2
√
K [Y1, Z] − 〈 Y1 : Y1 〉 .

The averaged product evaluates to V
(1)
(1)(t) = 2

√
K because definite integrals were used to compute the

averaged coefficient. The two averaged equations of motion differ by one term, which is very important
because it hinders the stability analysis from [23]. The averaged equations of motion are no longer in
second-order form and the Lagrange-Dirichlet criterion cannot be applied. The Jacobi-Lie bracket term
[Y1, Z] actually incorporates a bias in the angular velocities. By examining how the term [Y1, Z] leads to the
velocity shift, we may define the following transformation of state,

Θ(z) =





θ1
θ2

ω1 + 40
√

K
2313+1152 cos(2θ2)

ω2 − 8
√

K(5+6 cos(θ2))
2313−1152 cos(2θ2)




. (5.61)

Using the transformation, Θ, it is possible to show that

Zcos = Θ∗Zsin.

Therefore, the average respresented by Zcos can be used to represent the averaged evolution using oscillatory
inputs with the sine function, only after changing coordinates. In fact, it is possible to show that for any
choice of phase, i.e., v(t) = cos(t−ϕ), there exists a transformation depending on ϕ, Θϕ, that will transform
the averaged vector field Zϕ, corresponding to the choice of cos(t−ϕ), to Zcos from Equation (5.60). Recall
from Section 2.3.2 that the monodramy map was used to calculate the averaged autonomous vector field.
From Equation (2.28), the monodramy map was defined to be Ψ = ΦX

0,T . The same section, however,
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discussed that there was a degree of freedom in calculating the monodramy map, the initial time could be
shifted by any amount. Therefore, the choice Ψ = ΦX

φ,φ+T for the monodramy map will give the averaged
autonomous vector field Zcos. The mapping Θ above, is precisely the mapping Θ discussed in Section 2.3.2.

What this means is that there will typically exist an averaged vector field with a given phase that does
not incorporate the effect of initial conditions on the average. Using the initial conditions, q0 = (0, 0, 0, 0),
the initial averaged conditions for forcing by sine and using the averaged vector field Zcos are

q′0 = Θ(q0) = (0, 0,
200

√
6

1161
,−440

√
6

1161
),

meaning that the ”elbow” part of the arm, θ2, will first be pushed towards the fixed point − π
2 , whereas

the ”shoulder” part of the arm, θ1, will be pushed upwards. This behaviour is seen in the initial transient
response of the passive arm, c.f. Figure 5.7. Over time, the transient effect due to the initial conditions die
out, on account of the stabilizing feedback to the first joint.

In Figure 5.8 the same system is simulated without the use of stabilizing feedback to the first joint.
Notice that the transient response is attenuated due to the Rayleigh dissipation, but the angle of the first joint
does not return to 0 degrees as in the case with feedback. In both cases, the angle of the second joint still
stabilizes to one of the two equilibria, ± π

2 .
Recall the zero-average assumption that is commonly found in classical averaging theory [161, 17].

The constraints are the same as (5.59), with the exception that the oscillatory input set is not restricted to
satisfy the constraints. Instead, the terms are annihilated by introducing an integration constant. The net
effect, as we have discussed, is to ignore certain parts of the system dynamics. Consequently, the average
may not be a faithful approximation to the system in the open-loop. In particular annihilation of these
terms won’t capture transients due to initial conditions, but is capable of obtaining the gross characteristic
behavior, which might be the more important part. Especially if there exists stabilizing behavior that will
attenuate this initial transient response. Under the classical averaging methods, both sine and cosine would
result in the same averaged equations of motion. Stability of the θ2 = π

2 position holds for both cases,
but we have seen that the domain of attraction is not the same. Thus the classical averaging methods are
only valid within a sufficiently small neighborhood of the fixed point. Introduction of integration constants
is physically equivalent to averaging around the steady-state oscillatory behavior of the system; interpreted
differently, classical averaging theory is akin to a linearization around the ideal average as the constant terms
are ignored. Which approach to averaging is more useful depends on the calculation at hand, and also the
needs of the problem statement.

5.4 Conclusion

We applied the generalized averaging theory of Chapter 2 to 1-homogeneous control systems, and showed
how averaging theory may be used to stabilize a large class of underactuated mechanical systems with
drift. By proving feedback stabilization for systems evolving on a vector bundle, E, the theory collapses
to known instances from the literature for various choices of the vector bundle E, e.g., for example we
recover [16, 21, 24, 112, 100]. These ideas have been successfully used to stabilize systems with drift. In
[116], we experimentally verified these ideas with a robotic fish using continuous feedback of the sensed
average. In [106], McIsaac and Ostrowski employed discretized feedback based on the sensed average for
trajectory tracking of an experimental robotic eel. Although they were unable to theoretically prove stability,
the theory in this chapter can be used to do so.
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Figure 5.7: Closed-loop vibrational stabilization.
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5.A Computing the Averaged Expansions

First-order. First order averaging is trivially the time average of the original vector field,

Λ(1 ) = XS + V
(a)
(1)(t) [Ya, XS ] − 1

2
V

(a,b)
(1,1)(t) 〈Ya : Yb 〉 .

Incorporating Λ(1 ) into the first order truncation of Y ,

dz

dτ
= εΛ(1 ) = εXS + εV

(a)
(1)(τ) [Ya, XS ] − 1

2
εV

(a,b)
(1,1)(τ) 〈Ya : Yb 〉 . (5.62)

The truncated partial Floquet mapping is Trunc0 (P (τ)) = Id.

Second-order. The second-order average is obtained by appending the second order correction. The ad-
ditional term for second order averaging is

Λ(2 ) =
1

2

[∫ τ

0
Y (σ) dσ , Y (τ)

]
.

The nine terms that result from the correction Jacobi-Lie bracket computation are
[∫ τ

0
Y (σ) dσ , Y (τ)

]
= [XS τ,XS ] +

[
V

(a)
(2)(τ) [Ya, XS ] , XS

]
− 1

2

[
V

(â,b)

(1̂,1)
(τ) 〈 Ya : Yb 〉 , XS

]

+
[
XSτ,V

(a)
(1)(τ) [Ya, XS ]

]
+
[
V

(a)
(2)(τ) [Ya, XS ] ,V

(b)
(1)(τ) [Yb, XS ]

]

− 1

2

[
V

(â,b)

(1̂,1)
(τ) 〈Ya : Yb 〉 ,V(c)

(1)(τ) [Yc, XS ]

]

− 1

2

[
XS τ,V

(a,b)
(1,1)(τ) 〈Ya : Yb 〉

]

− 1

2

[
V

(a)
(2)(τ) [Ya, XS ] ,V

(b,c)
(1,1)(τ) 〈Yb : Yc 〉

]

+
1

4

[
V

(â,b)

(1̂,1)
(τ) 〈Ya : Yb 〉 ,V(c,d)

(1,1)(τ) 〈Yc : Yd 〉
]
.

(5.63)
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By using the properties of the Jacobi-Lie bracket with regards to geometric homogeneity, the bracket can be
written as
[∫ t

0
Y (τ) dτ , Y (t)

]
= V

(a)
(2)(t) [[Ya, XS ] , XS ] − 1

2
V

(â,b)

(1̂,1)
(t) [〈Ya : Yb 〉 , XS ] + V

(a)
(1)(t) t [XS , [Ya, XS ]]

+ V
(a,b)
(2,1)(t) [[Ya, XS ] , [Yb, XS ]] − 1

2
V

(â,b,c)

(1̂,1,1)
(t) 〈 Yc : 〈Ya : Yb 〉 〉

− 1

2
V

(a,b)
(1,1)(t) t [XS , 〈 Ya : Yb 〉] +

1

2
V

(a,b,c)
(1,1,2)(t) 〈 Yc : 〈Ya : Yb 〉 〉

=
(
V

(a)
(2)(t) − V

(a)
(1)(t) t

)
[[Ya, XS ] , XS ]

− 1

2

(
V

(â,b)

(1̂,1)
(t) − V

(a,b)
(1,1)(t) t

)
[〈 Ya : Yb 〉 , XS ]

+ V
(a,b)
(2,1)(t) [[Ya, XS ] , [Yb, XS ]]

− 1

2

(
V

(a,b̂,c)

(1,1̂,1)
(t) − V

(a,b,c)
(2,1,1)(t)

)
〈Ya : 〈Yb : Yc 〉 〉

The final step is to incorporate the correction into the first order averaged expansion. Using integration of
products and Assumption 2, the coefficients that have time multiplication can be converted to integrals of
the control inputs only. The final averaged equations of motion are

ż = εΛ(1 ) + ε2Λ(2 )

= εXS + εV
(a)
(1)(t) [Ya, XS ] − 1

2εV
(a,b)
(1,1)(t) 〈Ya : Yb 〉

+ε2
(

V
(a)
(2)(t) − 1

2T V
(a)
(1)(t)

)
[[Ya, XS ] , XS ]

−1
2ε

2

(
V

(â,b)

(1̂,1)
(t) − 1

2T V
(a,b)
(1,1)(t)

)
[〈Ya : Yb 〉 , XS ]

+1
2ε

2V
(a,b)
(2,1)(t) [[Ya, XS ] , [Yb, XS ]]

+1
2ε

2

(
V

(a,b,c)
(2,1,1)(t) − 1

2T V
(a)
(1)(t) V

(b,c)
(1,1)(t)

)
〈 Ya : 〈 Yb : Yc 〉 〉 .

(5.64)

To calculate the partial Floquet mapping, the first order truncation is needed, Trunc1 (P (t)). It is

Trunc1 (P (t/ε)) = Id + ε

∫ t/ε

0
Ṽ

(a)
(1)(τ) dτ

[
Y lift

a , XS

]
− 1

2
ε

∫ t/ε

0
Ṽ

(a,b)
(1,1)(τ) dτ

〈
Y lift

a : Y lift
b

〉
.

Third-order The additional term for third order averaging is

−1

2
T
[
Λ(1),Λ(2)

]
+

1

3

[∫ t

0
Y (τ) dτ ,

[∫ t

0
Y (τ) dτ , Y (t)

]]
.
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The twelve elements of the first Jacobi-Lie bracket are

[
Λ(1),Λ(2)

]
=

(
V

(a)
(2)(τ) −

1

2
TV

(a)
(1)(τ)

)
[XS , [[Ya, XS ] , XS ]]

−
(

1

2
V

(â,b)

(1̂,1)
(τ) − 1

4
T V

(a,b)
(1,1)(τ)

)
[XS , [〈 Ya : Yb 〉 , XS ]]

+
1

2
V

(a,b)
(2,1)(τ) [XS , [[Ya, XS ] , [Yb, XS ]]]

+

(
1

2
V

(a,b,c)
(2,1,1)(τ) −

1

4
T V

(a)
(1)(τ) V

(b,c)
(1,1)(τ)

)
[XS , 〈 Ya : 〈Yb : Yc 〉 〉]

+ V
(a)
(1)(τ)

(
V

(b)
(2)(τ) −

1

2
T V

(b)
(1)(τ)

)
[[Ya, XS ] , [[Yb, XS ] , XS ]]

− V
(a)
(1)(τ)

(
1

2
V

(b̂,c)

(1̂,1)
(τ) − 1

4
T V

(b,c)
(1,1)(τ)

)
[[Ya, XS ] , [〈 Ya : Yb 〉 , XS ]]

+
1

2
V

(a)
(1)(τ) V

(b,c)
(2,1)(τ) [[Ya, XS ] , [[Yb, XS ] , [Yc, XS ]]]

+ V
(a)
(1)(τ)

(
1

2
V

(a,b,c)
(2,1,1)(τ) −

1

4
T V

(b)
(1)(τ) V

(c,d)
(1,1)(τ)

)
[[Ya, XS ] , 〈 Yb : 〈 Yc : Yd 〉 〉]

− 1

2
V

(a,b)
(1,1)(τ)

(
V

(c)
(2)t) −

1

2
T V

(c)
(1)(τ)

)
[〈 Ya : Yb 〉 , [[Yc, XS ] , XS ]]

+
1

2
V

(a,b)
(1,1)(τ)

(
1

2
V

(ĉ,d)

(1̂,1)
(τ) − 1

4
T V

(c,d)
(1,1)(τ)

)
[〈Ya : Yb 〉 , [〈Yc : Yd 〉 , XS ]]

− 1

4
V

(a,b)
(1,1)(τ) V

(c,d)
(2,1)(τ) [〈 Ya : Yb 〉 , [[Yc, XS ] , [Yd, XS ]]]

− 1

4
V

(a,b)
(1,1)(τ)

(
1

2
V

(c,d,e)
(2,1,1)(τ) −

1

4
T V

(c)
(1)(τ) V

(d,e)
(1,1)(τ)

)
[〈 Ya : Yb 〉 , 〈 Yc : 〈Yd : Ye 〉 〉] .
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The twelve elements of the second component, prior to averaging, are
[∫ τ

0
Y (σ) dσ ,

[∫ τ

0
F (σ) dσ , F (τ)

]]

=

−
(
V

(a)
(2)(τ) τ − V

(a)
(1)(τ) τ

2
)

[[[Ya, XS ] , XS ] , XS ]

+
1

2

(
V

(â,b)

(1̂,1)
(τ) τ − V

(a,b)
(1,1)(τ) τ

2

)
[[〈 Ya : Yb 〉 , XS ] , XS ]

− V
(a,b)
(2,1)(τ) τ [[[Ya, XS ] , [Yb, XS ]] , XS ]

+
1

2

(
V

(a,b̂,c)

(1,1̂,1)
(τ) τ − V

(a,b,c)
(2,1,1)(τ) τ

)
[〈 Ya : 〈 Yb : Yc 〉 〉 , XS ]

+
(
V

(a,b)
(2,2)(τ) − V

(a,b)
(2,1)(τ) τ

)
[[Ya, XS ] , [[Yb, XS ] , XS ]]

− 1

2

(
V

(a,b̂,c)

(2,1̂,1)
(τ) − V

(a,b,c)
(2,1,1)(τ) τ

)
[[Ya, XS ] , [〈 Yb : Yc 〉 , XS ]]

+ V
(a,b,c)
(2,2,1)(τ) [[Ya, XS ] , [[Yb, XS ] , [Yc, XS ]]]

+
1

2

(
V

(a,b,ĉ,d)

(2,1,1̂,1)
(τ) − V

(a,b,c,d)
(2,2,1,1)(τ)

)
〈 Ya : 〈 Yb : 〈 Yc : Yd 〉 〉 〉

− 1

2

(
V

(â,b,c)

(1̂,1,1)
(τ) − V

(â,b,c)

(1̂,1,1)
(τ) τ

)
[〈Ya : Yb 〉 , [[Yc, XS ] , XS ]]

+
1

4

(
V

(â,b,ĉ,d)

(1̂,1,1̂,1)
(τ) − V

(â,b,c,d)
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Properties of the Jacobi-Lie bracket may be used to obtain simplifications of the third-order correction term.
Doing so, the third order averaging equations of motion are
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(â,b,ĉ,d)
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The truncation of the partial Floquet mapping remains to be computed. The truncated logarithm of the flow
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The truncated exponential of Trunc2
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is an approximation to truncation of the actual time

varying chronological exponential,

Trunc2

(
−→exp

∫ τ

0
Y dτ

)
= Id + εXSτ + εV

(a)
(2)(τ)

[
Y lift

a , XS

]
− 1

2
εV
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The truncated exponential of −Zτ is
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To obtain Trunc2 (P (t)), the two truncated flows are composed and truncated. The final truncation keeps
only the terms up to order 2 in ε,
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(â,b,ĉ,d)
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Chapter 6

Biomimetic and Biomechanical Control Systems

This chapter is devoted to constructing stabilizing controllers for a variety of biologically-inspired and
biomechanical underactuated control systems. Recall that biomimetic and biomechanical control systems
are not only uncontrollable in the linearization, but may also be difficult or impossible to linearize along fea-
sible trajectories. Anholonomy or geometric phase is essential to the basic locomotive strategy of biological
systems.

6.1 Amoeba

This example studies the locomotive abilities of a macroscopic “robot amoeba,” idealized to swim in an irro-
tational, inviscid, and incompressible fluid. It is assumed that the amoeba is incapable of generating vorticity.
The amoeba-like creature that will be studied here has been researched previously [103]. It is a system whose
evolution best fits within the framework of nonholonomic systems with symmetry. The position and orienta-
tion of the body’s center of mass are denoted by g ∈ SE(2). The boundary of the amoeba body is controlled
by the amoeba itself, and is the shape space. The shape corresponds to three deformation modes the amoeba
is assumed to have, Figure 6.1. The description of the shape space is denoted by r = (r1, r2, r3) ∈ T

3.

Figure 6.1: Deformation modes of
amoeba.

Given a radius of r0, the amoeba shape is defined by the follow-
ing function of ϕ,

R(ϕ, r) = r0[1 + δ(r1 cos(2ϕ) + r2 cos(3ϕ) + r3 sin(3ϕ))].

Traversing around the amoeba’s body via ϕ ∈ [0, 2π) gives the
radius at distinct points along the circumference. The parameter
δ ∈ (0, 1) gives the nominal amplitude of the deformations.

The local form of the principle connection is

Aloc(r)ṙ = δ2



r0(1 − α)r2 r0 r1 0
r0(1 − α)r3 0 r0 r1

0 −2 π r0
2 ρ r3

M
2 π r0

2 ρ r2

M


+O

(
ε3
)
, (6.1)

where α = (2πr2
0ρ)/(M + πr2

0ρ) [103]. The theory for reduced systems with a principle connection states
that the curvature terms are responsible for the second order contribution of motion. Due to skew-symmetry,
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only 3 terms are nonzero. They are

B12(r) = δ2
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2
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 .

(6.2)

For oscillatory inputs with zero average, the average shape will be r = (0, 0, 0). Entering this into the
curvature term results in

B12(r) =
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0
0
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0
0
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0
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M




. (6.3)

Thus, the second order Lie brackets span the Lie algebra about the zero shape configuration, meaning that
the amoeba is locally controllable. In [103] open loop translational controls were given, and in [160] a
stabilizing feedback strategy was given for motion in the plane. Here we present a method to control the
amoeba in SE(2). A saturation function is included, to prevent the control values from being unrealistic.
When the error exceeds a limit, the amoeba travels at a maximum allowable speed until the error falls
within this limit. Thereafter, the system exponentially stabilizes to the desired position and orientation,
gdes ∈ SE(2). The control inputs are

v1(t) = − sin(ω1t),

v2(t) = − 1

ω1
α2

12 cos(ω1t) +
M

2ω2πr
2
0ρδ

2
sin(ω2t),

v3(t) = −1

2
α3

13 cos(ω1t) +
M

2ω2πr
2
0ρδ

2
α3

23 cos(ω2t).

(6.4)

With these controls, the amoeba undergoes oscillations of the first and second modes when at equilibrium
(αI

J = 0), meaning that stabilization will be orbit stabilization. Notice that the oscillatory functions corre-
sponding to the ω2 frequency are multiplied by the factor M

2πr2
0
ρδ2 . Rotation for the amoeba is much easier

from a control perspective; the curvature terms demonstrate that rotational capability is several orders of
magnitude greater than the translational capability for the same magnitude of oscillation. If the control sig-
nal is not attenuated then the rotational motion over a period of oscillation will be too large. Systematic
examination of the system from the perspective of averaging theory correctly identifies this problem and
provides a mechanism to correct for it.

To define the α-parametrization an error function is needed. The group error and Lie algebra error are

gerr = g−1
desg, and ξerr ≡ log (gerr) , (6.5)

where gdes is the desired group configuration and the logarithm function is log : G → se2. The α-
parametrization is

α2
12 = k1ξ

1
err,

α3
13 = k2ξ

2
err,

α3
23 = k3ξ

3
err.

(6.6)
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Snapshots of simulations demonstrating point stabilization and trajectory tracking can be found in Figure
6.2. The dot and cross located at the center of the amoeba depicts the amoeba’s planar position and ori-
entation, respectively. The simulation parameters were M = 0.01kg, r0 = 0.2m, ρ = 1000, δ = 0.1,
ε = 1

5 , ω1 = 2, ω2 = 7. The choice of ω2 provides additional attenuation of the rotational control signal
as discussed above (otherwise the choice ω2 = 3 would have been sufficient). The α parameters saturated
at unity. The authors were unable to find any information regarding what the natural frequency of robotic
amoeba locomotion should be; the choices of ω1 and ω2 were arbitrarily chosen, and are presumed to be
somewhat plausible (and conservative). Taking into account the value of ε, the periods of the oscillations are
2π
10 , and 2π

35 for the translational and rotational modes, respectively (about 1.6 Hz and 5.6 Hz). The amoeba
is a slow locomotor, requiring approximately 1000 periods of oscillatory actuation to go approximately 10
body lengths.

For point stabilization the gains were k = (75, 75, 6). Figure 6.3 has a time plot of the individual state
values and also a log plot of the error signal norm, where the norm was chosen to be,

|g| =
√

(g1)2 + (g2)2 + (g3)3. (6.7)

The linear slope demonstrates exponential convergence. The trajectory tracking gains were set to k =
(100, 100, 5). The trajectory tracking error is shown in Figure 6.4. The error in the translational states
oscillates with an amplitude on the order of 2.5% of the body radius, r0. The oscillating error in θ, which
averages to about 1.3 degrees, is steady state error due to the ramp input, and can be improved by increasing
the gain k3, or by incorporating a feedforward term. This highlights another nice feature of the averaging
method for control of nonlinear systems. By resulting in a linearized averaged expansion, it is possible to
understand elements of the system response in terms of standard linear control ideas.

Although the controls are discontinuous for the amoeba example, what is important is the shape space
evolution. Integrating the velocities leads to the following shape space evolution,

r1(t) = − ε

ω1
cos(ω1t)

r2(t) = − ε

ω2
1

α2
12 sin(ω1t) +

εM

2ω2
2πr

2
0ρδ

2
cos(ω2t)

r3(t) = − ε

2ω1
α3

13 sin(ω1t) +
εM

2ω2
2πr

2
0ρδ

2
α3

23 sin(ω2t).

(6.8)

Discontinuous changes of the αI
J at the times t = kT , kZ

+, are continuous because the sine function
evaluates to zero. For biomimetic systems it is important that the controls represent continuous and feasible
shape space trajectories. Command of the shape space has been successfully done with an experimental
carangiform fish [160].
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(a) Snapshots at t = 0, 5, 15, 25, 35, and 45 seconds.

(b) Snapshot interval is 75 seconds.

Figure 6.2: Point stabilization and trajectory tracking for amoeba (grid spacing 0.1m).
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6.2 Ball and Plate Control Problem

The ball and plate control problem is an idealization of two-finger manipulation of a sphere. A sphere is
located between two plates, with the constraint that it rolls without slipping. The system is symmetric with
respect the right action (spatial symmetry). Its derivation is discussed in Bloch et al. [15]. It is assumed
that the sphere is initially at rest, and the fingers are at the origin. The goal is to utilize the fingers to
manipulate the ball to achieve a desired orientation. The Lie group describing the ball configuration is
SO(3), and the shape space is R2, specifying the planar position of the top finger. The principal bundle is
then, Q = R

2 × SO(3).

Figure 6.5: Ball and Plate.

The local form of the connection is

Aloc(r) =





1
ρdr

1

1
ρdr

2

0



 . (6.9)

The two fingers must remain near the origin, therefore we seek strong
fiber controllability of the control system [67]. A system with group
symmetries is strongly fiber controllable if the local curvature form and
its higher order covariant derivative span the Lie algebra, c.f. Section
3.2.2. Since the local connection form is constant, Cartan’s structure
equations imply that the Lie brackets of the local connection will give

these covariant derivatives. The curvature is

Bloc(r) =





0
0

1
ρ2 dr

1 ∧ dr2



 , (6.10)

and the covariant derivative of the curvature is

∇Bloc(r) =





1
ρ3 dr

1 ∧ dr2 ∧ dr2

1
ρ3 dr

1 ∧ dr2 ∧ dr1

0




. (6.11)

The higher-order covariant derivatives span the Lie algebra, therefore the system is locally controllable.
Translating the curvature calculations to Jacobi-Lie brackets of horizontally lifted vector fields, the important
Jacobi-Lie brackets are

[
Y h

1 , Y
h
2

]
,
[
Y h

1 ,
[
Y h

2 , Y
h
1

]]
, and

[
Y h

2 ,
[
Y h

1 , Y
h
2

]]
, (6.12)

whose corresponding averaged coefficients are

V
(1,2)
(1,0)(t), V

(1,2,1)
(1,1,0)(t), and V

(2,1,2)
(1,1,0)(t). (6.13)

According to Lemmas 2 and 3, the oscillatory input functions take the form,

v1(t) = α1
12 sin(ω12t) + α1

121 sin(2ω121t) + α1
212 cos(ω212t), and (6.14)

v2(t) = α2
12 cos(ω12t) + α2

121 cos(ω121t) + α2
212 sin(2ω212t). (6.15)
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The underactuated driftless nonlinear control system,

q̇ = Y h
a u

a, (6.16)

is averaged to obtain the fully fiber-actuated driftless control system,

ż = ε2V
(a,b)
(1,0)(t)Bab +

1

3
ε3V

(a,b,c)
(1,1,0)(t)Babc, (6.17)

as per Equation (3.72). To define the α-parametrization an error function is needed. The group error and
group error function are

gerr = g−1
desg, and ξerr ≡ log (gerr) , (6.18)

where gdes is the desired group configuration and the logarithm function is log : G → se2. The α-
parametrization is

α1
12 = sign(k1ξ

1
err)
√

|k1ξ1err| α2
12 =

1

2

√
|k1ξ1err| (6.19)

α1
121 =

√
|k2ξ2err| α2

121 = sign(k2ξ
2
err)
√

|k2ξ2err| (6.20)

α1
212 =

√
|k3ξ3err| α2

212 = sign(k3ξ
3
err)
√

|k3ξ3err| (6.21)

Integrating the control functions, the shape space evolution is

r1(t) =
α1

12ε

ω12
(1 − cos(ω12t)) +

α1
121ε

2ω121
(1 − cos(2ω121t)) +

α1
212ε

ω212
sin(ω212t), and (6.22)

r2(t) =
α2

12ε

ω12
sin(ω12t) +

α2
121ε

ω121
(1 − cos(ω121t)) +

α2
212ε

2ω212
sin(2ω212t). (6.23)

At the end of each period of evolution, the shape space returns to the initial configuration, r0 = (0, 0).
Snapshots of a point stabilization simulation are given in Figure 6.7. The ball is drawn as a box to

help visualize the stabilizing trajectory in SO(3). The static line indicates the desired location of the body
z−axis. The exponential convergence of the average can be seen in Figure 6.6. The circles are the logarithm
of the error feedback after one period of actuation, whereas the continuous oscillatory line is the logarithm
of the actual time-varying error feedback. The simulation parameters are ρ = 1, ε = 1, ω12 = 2, ω121 = 3,
ω212 = 4, and k = (1, 3, 13). To achieve trajectory tracking for the discretized strategy, the choice of ε must
be smaller, or equivalently, the frequencies ωJ must be larger. Higher frequency inputs will also result in
smaller orbits, hence less deviation from the desired trajectory. Alternatively, a continuous controller could
be derived using the ideas from Chapter 3.
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Figure 6.7: Ball and plate point stabilization snapshots.
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6.3 Kinematic Biped

As a demonstration of the theory for systems with time-discontinuous evolution, we consider a ”kinematic
biped” that is motivated by the underactuated crawling robot of Ito et. al. [57]. The model (see Fig.
6.8) operates on flat ground. When either of the two vertically moving peg-legs contact the ground, we
assume the crawler pivots about the contact. Casters on the four corners provide balance, thereby pla-
narizing the motion. A rotating momentum wheel is the main motion generator. It is hereafter called the
rotor. By properly switching the feet contacts in phase with the rotor’s spin, the biped can maneuver.
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Figure 6.8: Top and side views of the kine-
matic biped.

In keeping with the language of [127], the configuration
space, Q, is the principal bundle Q = G × B, where G and
B denote the group and shape spaces. The shape variables
are the rotor angle, ψ, and the feet state, N = {L,R }. The
symbols L and R denote when the left or right foot is put
down. The group is G = SE(2), the set of planar rigid body
motions.

The equations of motion are derived using the approach
of Bloch et al. [15]. This method uses the principal bun-
dle structure and the group invariance of the Lagrangian and

constraints to compute the ”reduced” Euler-Lagrange equations. The Lagrangian for the system is:

L(q, q̇) =
1

2
M(ẋ2 + ẏ2) +

1

2
Jθ̇2 +

1

2
Jm(θ̇ + ψ̇)2, (6.24)

where M is the robot’s total mass, J (Jm) is the inertia of the body (rotor). When the right leg is planted,
the resulting holonomic constraint on the robot’s motion is:

ẋ = d sin θ θ̇, and ẏ = −d cos θ θ̇.

Since the Lagrangian and constraints are G-invariant, they may be reduced to the Lie algebra; equivalent to
giving a description in body coordinates. The reduced constraints are

ξ1 = 0 and ξ2 = −dξ3.

Since the constraints span 2 dimensions of the 3-dimensional Lie algebra, se(2), Noether’s theorem implies
a conserved momentum (about the foot’s axis). Conservation of momentum is given more abstractly by
the equation, Anhc ≡ (Ic)−1 Jnhc = (Ic)−1 p, where Ic is the inertia of the system and p is the conserved
momentum. More explicitly,

Mdξ2 + (J + Jm) ξ3 + Jm ψ̇ = p. (6.25)

This equation is combined with the kinematic constraints to obtain the constraint equations,

E(r)ξ + F(r)ṙ = G(r)p,

where

E(r) =



1 0 0
0 1 d
0 Md J + Jm


 F(r) =




0
0
Jm


 G(r) =



0
0
1


 .

The local connection form, describing the system constraints in body coordinates, is found by solving for
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the Lie algebra element, ξ, giving the reconstruction equation,

ξ = −Aloc(r)ṙ + Γloc(r)p, (6.26)

with the local connection and the affine forms equal to

Aloc(r) =
Jm

J + Jm +Md2




0
−d
1


 , and Γloc(r) =

1

J + Jm +Md2




0
−d
1


 . (6.27)

Continuing with the method of [15], one defines an orthogonal basis (in the Lagrangian metric) for the
Lie algebra:

e1(r) =




0
−d
1


 , e2(r) =



1
0
0


 , e3(r) =




0
J+Jm

Md
1


 .

The basis is used to derive the momentum equation,

d

dt
p1 = 0, (6.28)

and also the shape space dynamics,

(
1

2
Jm +

3

2

J2
r

Jb + Jr +Md2

)
ψ̈ = τ, (6.29)

where τ is the torque on the rotor. For zero initial momentum, the reconstruction equation becomes

ξ = −Aloc(ψ)ψ̇, (6.30)

where Aloc(ψ) will be one of two choices, according to which foot 1 is on the ground

right : Aloc(ψ) =
Jm

J + Jm +Md2




0
d
−1


 ,

left : Aloc(ψ) =
−Jm

J + Jm +Md2




0
d
1


 .

(6.31)

Locomotion and Controllability. By appropriate cycling of the feet and phasing of the rotor, it is possible
to (i) rotate in place (ii) move forward (iii) move laterally. The existence of these motions can be shown by
our averaging theory. Choosing ψ̇ and the foot placements as inputs, Equation (6.26) takes the form

ξ = A1v
1(t) + A2v

2(t) (6.32)

where
A1 = (Aloc)right , A2 = (Aloc)left , (6.33)

and the functions v1(t) and v2(t) cannot be non-zero simultaneously. Further, we assume that foot placement
transitions occur when at the robot is at rest. Since the functions va(t) will be chosen to be periodic functions

1The calculations for the opposite foot merely changes a sign on the constraints. The trivial dynamics of the momentum state
are not modified, nor are the shape space dynamics.



198

of time, we can use averaging theory to analyze the crawler’s motion.
To demonstrate the crawler’s controllability, note that the two distinct foot placement possibilities repre-

sent two linearly independent vectors in the Lie algebra. A third linearly independent possibility must exists
for controllability. From Bullo and Zefran [27], it suffices to show that the Lie bracket between the two
motions results in a lineary independent direction. Since

[A1,A2] = −
[
2d 0 0

]T
, (6.34)

the system is configuration controllable, therefore enabling point-to-point repositioning and reorientation.
Matsuno et. al. [105] reached the same conclusion for a similar crawling robot, but without utilizing the
inherent symmetries of the system to reduce to the Lie algebra. The geometry of this biped also avoids the
singularity associated with their robot analysis.

Forward Gait. For forward motion, let ψ̇(t) = sin(t). The right foot starts in the down position, while
the left foot is placed at t = π, when the rotor reverses direction. The periodic functions va(t) decompose
accordingly,

v1(t) =

{
sin(t) for 0 ≤ t < π
0 for π ≤ t ≤ 2π

,

v2(t) =

{
0 for 0 ≤ t < π
sin(t) for π ≤ t ≤ 2π

.

(6.35)

A non-zero average, implies that first order averaging theory will suffice. The average is

η = A1v1(t) + A1v2(t) = A1
1

π
− A2

1

π
=




0
2d
π
0


 . (6.36)

Rotate Gait. Rotational motion is similar, but does not require a reversal of the rotor’s spin direction, i.e.,
ψ̇ = 1 − cos(2t). The input functions are

v1(t) =

{
1 − cos(2t) for 0 ≤ t < π
0 for π ≤ t ≤ 2π

,

v2(t) =

{
0 for 0 ≤ t < π
1 − cos(2t) for π ≤ t ≤ 2π

.

(6.37)

The first order average is

η = A1v1(t) + A1v2(t) = A1
1

2
+ A2

1

2
=




0
0
1


 . (6.38)

Sideways Gait. This gait is subtler, as it arises from a higher order dynamical effect. The rotor follows
the function

ψ̇(t) =

{
sin(2t) 0 ≤ t < π

− sin(2t) π ≤ t ≤ 2π
, (6.39)
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with foot placements occuring at the zero crossings of this function. The corresponding input functions are

v1(t) =





sin(2t) 0 ≤ t ≤ π/2
− sin(2t) π ≤ t ≤ 3π/2

0 otherwise

v2(t) =





sin(2t) π/2 ≤ t ≤ π
− sin(2t) 3π ≤ t ≤ 2π

0 otherwise

(6.40)

The averages of these functions vanish. Hence, second-order averaging methods must be used. The averaged
system evolution is given by

ξ =
1

2
V

(a,b)
(1,0)(t) [Aa,Ab] , (6.41)

where the only non-vanishing second order averaged coefficent, V
(a,b)
(1,0)(t), is:

V
(1,2)
(1,0)(t) =

1

T

∫ T

0

∫ t

0
v1(τ) dτ v2(t) dt = − 1

2π
,

and it’s skew-symmetric partner, V
(2,1)
(1,0)(t). The averaged evolution of the system is

η =
1

2
V

(1,2)
(1,0) [A1,A2] +

1

2
V

(2,1)
(1,0) [A2,A1] = − 1

4π
·



−2d
0
0


+

1

4π
·



2d
0
0


 =




d
π
0
0


 , (6.42)

which is sideways translation for the discrete crawler.
The various gaits are simulated in Fig 6.9. The forward gait moves the kinematic biped forward at an

angle due to neglected second-order effects. Feedback control will be added below to correct for existing
gait errors and other disturbances.
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Figure 6.9: Gaits for the kinematic biped.

Stabilization. Define the rotor’s control function to be

ψ(t) = α1 sin(t) +
1

2
α2(1 − cos(2t)), (6.43)

with α1 and α2 to be chosen. The foot constraints transition at t = (2k + 1)π, k ∈ Z. The parameter α1

controls forward motion, while α2 controls rotational motion, allowing a superposition of the forward and
rotate gaits.
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The configuration error is defined to be gerr ≡ g−1gdes, where gdes ∈ SE(2) is the goal configuration
and g ∈ SE(2) the current configuration. Define error functions

α1 = k2 yerr

α2 = k1 tan−1(xerr/yerr) + k3θerr.
(6.44)

where the ki are chosen according to Theorem 16. Note that when the configuration error is zero, the terms
(α1, α2) vanish. Hence, both the original and averaged systems share the same equilibria. Therefore, via
Corollary 2, the system exponentially stabilizes to the goal, achieving point-to-point repositioning (control
of orientation is possible, but more complicated).

Using the gains k = (3, 8, 0) results in the stabilizating trajectory pictured in Fig. 6.10. The biped started
at (x, y, θ) = (−1, 5, π

5 ) and was commanded to the origin. Fig. 6.11 shows superimposed snapshots from
the simulation. The small dot on either side of the biped’s body represents the active foot constraint. The
gridlines are spaced 1 unit apart. Orientation control can also be included, but would require a slightly more
sophisticated controller.

Our stabilization theorem also allows for trajectory tracking—the goal point is time varying. Fig. 6.12(a)
demonstrates trajectory tracking for a straight path. In Fig. 6.12(b) the crawler must track the same trajec-
tory, but starts with a large initial error of (x, y, θ) = (−1, 5, π

5 ). It successfully moves toward the trajectory,
then proceeds to track it. There is a small steady state error.
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Figure 6.10: Point stabilization; parametric plot, magnitude plot, x(t) and y(t), and θ(t) plots.
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Figure 6.11: Snapshots of point stabilization of kinematic biped.
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Figure 6.12: Trajectory tracking for kinematic biped.



203

6.4 The Snakeboard

Since the snakeboard model was introduced and described in detail in [87], we only summarize here its
equations. The snakeboard represents an underactuated system with drift—traditionally a difficult control
problem. In the simplified model used here, the snakeboard consists of a rigid body to which there is attached
a momentum wheel (or rotor), and two pairs of wheels. The wheels axles are coupled to the main body by
independently controllable revolute joints (see Fig. 6.13).

(x,y)

l

ψ

φ
b

θ
back wheels

fφfront wheels

Figure 6.13: Model of the snakeboard.

The configuration space for this system is [x, y, θ, ψ, φb, φf ] ∈
SE(2)×T

3 where g = [x, y, θ]T is the position and orientation
of the board with respect to a fixed reference frame, ψ is the
angle of the rotor relative to the board, and φb and φf are, re-
spectively, the angles subtended by the back and front wheels
(relative to the body). For simplicity, we restrict the front and
back wheel motions so that φb = φ = −φf . The rotor and
wheels are actuated. The wheels provide nonholonomic con-
straints on the snakeboard’s motions. However, because it is not
fully constrained, the snakeboard can build up momentum and

coast.
After feedback linearization on the directly controlled states, the equations of motion are

ψ̈ = u1,

φ̈ = u2,

ġ = g
(
−Aloc(r)ṙ + (Ic(r))−1 p

)
,

ṗ = 2Jr cos2(φ)φ̇ψ̇ − tan(φ)φ̇p,

(6.45)

where

Aloc(r) =





− Jr

2Ml cos2(φ) tan(φ)
0

− Jr

2Ml2
sin(2φ) tan(φ)



 ,

I
c(r) =





1
2Ml
0

− 1
2Ml tan(φ)



 ,

and r = [ψ, φb, φf ]T .
The control inputs consist of state feedback for the directly controlled states, coupled with periodic terms

to influence the indirectly controlled states:

u1 = −2ψ − 3ψ̇ +
1

ε
v1(

t

ε
), u2 = −2φ− 3φ̇+

1

2
α2ε+

1

ε
v2(

t

ε
),

which results in the autonomous contribution,

Y0 = −
(
2ψ + 3ψ̇

) ∂

∂ψ̇
−
(

2φ+ 3φ̇− 1

2
α2ε

)
∂

∂φ̇
.

The time-periodic control input contribution is

v1(t) = α1
12 cos(t),

v2(t) = α2
12 cos(t),

(6.46)
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with α1 a free parameter. The averaged equations become

ψ̈ = −2ψ − 3ψ̇,

φ̈ = −2φ− 3φ̇+ 1
2α2ε,

ġ = g
(
−Aloc(r)ṙ + (Ic(r))−1 p

)
,

ṗ = 2Jr cos2(φ)φ̇ψ̇ − tan(φ)φ̇p− 2Jr cos2(φ)α12,

(6.47)

with α12 = α1
12α

2
12. The controllable subspace is then stabilized to the point (0, 1

2α2ε), corresponding to a
steering bias. The group and velocity error in body coordinates are

gerr = g−1
fdbk gdes,

ξerr = g−1
des g

′
des + Adgfdbk

g′fdbk,
(6.48)

where gfdbk is the feedback of the group variables, and gdes is the desired trajectory. The error function is

err1 = −k1
pg

1
err + k1

vξ
1
err,

err2 = k2
pg

2
err + k2

vξ
2
err + k3

pg
3
err + k3

vg
3
err.

Noting that the term err1 corrects velocity and position along the relative equilibria, and the term err2 at-
tracts trajectories to the relative equilibria curve, we define the parameters αi

12 and α2 according to Theorem
16,

α1
12 = −2 sign(err1)

√
|err1|,

α2
12 = −1

2

√
|err1|,

α2 = err2.

(6.49)

At zero configuration error, the feedback terms (α1, α2) and the oscillatory signals vanish. Hence, both
the original and averaged systems share the same relative equilibria. Therefore, via Corollary 2, the system
exponentially stabilizes to the desired trajectory. Recall that state feedback corrections are determined at
discrete times corresponding to the basic control oscillation. With ε = 1

3 this update occurs every T = 2π/3
seconds. The feedback gains are k1

p = 3
16 , k1

v = 3
8 , k2

p = 1
4 , k2

v = 3
4 , k3

p = 1, and k3
v = 3

2 .
Stabilization is demonstrated in Fig. 6.14 where the system parameters areM = 8kg, Jr = 0.167 kg m2,

l = 0.3m. The initial condition occurs at the origin, with zero initial velocity. The upper figures depict the
evolution of the states (x, y, θ) and forward velocity, v, describing the relative equilibria in the body frame.
The desired trajectory is the dash-dotted plot, and the actual trajectory is the solid plot.

The bottom two graphs show the rotor and steering angle histories. Fig. 6.15, shows snapshots (every
7 seconds) of the snakeboard’s configuration during the first 50π seconds. The grid lines are spaced 5 units
apart. At time t = 100, there is a discontinuous change in the desired trajectory’s bearing and velocity. The
oscillations decrease in amplitude as the error approaches zero. There is a small steady state error.
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Figure 6.14: Trajectory tracking results for the snakeboard.
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Figure 6.15: Snapshots of trajectory tracking for snakeboard (snakeboard enlarged 6x).
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6.5 Carangiform Fish

The model of a carangiform fish here is not the full infinite-dimensional model that incorporates the fluid
effects, but is a finite-dimensionl model with a lift vector field that seeks to determine the effect of fluid-
body interaction when the caudal fin flaps. The simple fish-like robot discussed in this paper and related
earlier works [116, 115] consists of a planar three-link mechanism immersed in water (see Fig. 6.16).

vqc

vb

F D

y

x

F
L

θ

ψ

ψ

1

2

Figure 6.16: Model for carangiform locomotion.

The orientation of the peduncle and tail joints are
the shape space of the system, and are denoted by
r = [ψ1, ψ2]

T ∈ T
2. They are angles measured

with respect to the main body reference frame. The
fish is restricted to planar motion, meaning that the
Lie group will be SE(2). The configuration space
is the principal bundle Q = T

2 × SE(2).
The forces acting on the system are lift on the

tail and drag on the body. The comparatively small
effects of lift on the body, form drag on the tail, and
skin friction are ignored. As discussed in [115], the

drag for a translating and rotating plate is taken to be

FD =
1

2
ρCdh

∫ l
2
+a

l
2
−a

‖ξ((a+ s)e1) × e1‖ξ((a+ s)e1)ds,

and the associated moment to be

MD =
1

2
ρCdh

∫ l
2
+a

l
2
−a

‖ξ((a + s)e1) × e1‖(ξ((a+ s)e1) × e1)sds,

where ρ is the fluid density, l is the plate length, Cd is the plate’s drag coefficient when its velocity lies in
the y direction, h is the plate height, a is the difference in position between the plate’s center of mass and
center of geometry, and ξ((a+ s)e1) is an infinitesimal generator giving the body-fixed velocity of the plate
at the point a+ s along the body. The value of s varies from l

2 − a to l
2 + a, and the unit vector e1 is in the

direction of the body-fixed x axis. The lift acting on a flat plate is

FL = πρA(ξqc × et) × ξqc,

where ξqc is the velocity at the plate’s quarter chord point as measured in the body frame, et is a unit vector
pointing along the plate toward its leading edge andA is the plate’s area. These equations are a simplification
via reduction of those from [115], in recognition of the position invariant nature of the lift and drag forces.

The principal bundle structure of the configuration space can be used to obtain further refinements.
The Lagrangian is invariant with respect to the Lie group SE(2). Consequently, one can apply reduction
theory [15, 99] to simplify the resulting equations of motion and to expose useful geometric structure in the
mechanics. In the absence of constraints, the equations of motion are given by Hamel’s equations [15]:

d

dt

∂L
∂ξ

= ad∗ξ
∂L
∂ξ

+ Fξ,
d

dt

∂L
∂ṙ

=
∂L
∂r

+ Fr, (6.50)

where ξ = g−1ġ is the vehicle’s velocity (in body coordinates), Fξ = Fξ(g, r, ξ, ṙ) and Fr = Fr(r, ṙ, t)
are forces acting on the mechanism in the position and shape directions, and L is the system Lagrangian.
The Lagrangian structure of the system, and the nature of the control inputs means that this system is a
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1-homogeneous control system. For more information, please see [116, 160] and references therein.
The control inputs are

Y1 =
∂

∂ψ1
, and Y2 =

∂

∂ψ2
.

The symmetric product
〈
Y lift

1 : Y lift
2

〉
can be used to generate forward locomotion, and the Jacobi-Lie

bracket between the drift vector field and the peduncle angle control vector field,
[
Y lift

1 , XS

]
can be used to

generate rotation while in motion. The first order symmetric product and Jacobi-Lie bracket for this system
evaluated at the reference configuration ([ψ1, ψ2] = [0, 0]) for typical physical parameters (see [116]) give,

〈
Y lift

1 : Y lift
2

〉
≈ (0.15, 0, 0)T , and

[Y1, S + Y0 −D] ≈ (f(ξ2, ξ3), 0.27ξ1, −18.70ξ1)
T ,

for the group variables, where f is a function of the lateral and rotational body velocities, ξ2 and ξ3, re-
spectively. The symmetric product demonstrates that forward locomotion is theoretically possible. The Lie
bracket shows that a turning motion is achievable; it must be mentioned that the lateral translation and the
turning do not oppose each other in directing the carangiform fish to reduce the error. Thus, in the plane we
have rudimentary control over forward motion and bearing, which can be used for locomotion. Interpreted
differently, the above calculations demonstrate that, after averaging, the planar carangiform model is linearly
controllable along feasible trajectories (relative equilibria in the plane). Using the average, it is possible to
stabilize to trajectories.

The oscillatory control functions are

v1(t) = β1
12 sin(ω12t) +

1

2
α1

12(1 − cos(ω12t)),

v2(t) = β2
12 sin(ω12t) +

1

2
α1

12(1 − cos(ω12t)). (6.51)

For second order systems the group error and Lie algebra error must be defined [26],

gerr = g−1gdes and ξerr = g−1
desġdes − adgerrξ,

where gdes is the desired trajectory and ξ is the carangiform fish’s body velocity. The error functions for
forward motion and bearing control are

err1 = k1
pg

1
err + k1

vξ
1
err,

err2 = tan−1(g1
err, g

2
err), (6.52)

err3 = k3
pg

3
err + k3

vξ
3
err) + k2

perr
2 + k2

vξ
2
err.

The α- and β-parametrizations are

α1
12 = sign(err1)

√
|err1|, α2

12 =
√

|err1|,
β1

12 = err3, β2
12 = err3. (6.53)

The results of tracking a straight line along the x-axis given an initial position error are shown in Fig. 6.17.
The carangiform fish model was given an initial position error. Steady state error is within 5% and could
be eliminated by including an integral term in the feedback control functions. Actual experimental results
can be found in [116]. In Figure 6.18, the fish was commanded to track a trajectory similar to the one given
to the snakeboard example from Section 6.4. The closed-loop fish model was able to control to the new
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heading and velocity. The control parameters for the simulation were ω12 = 1, ε = 1
8 , k1

p = 1
64 , k1

v = 1
16 ,

k2
p = 1

3 , k2
v = 2

3 , k3
p = 1

3 , and k3
v = 1.

0 1 2 3 4 5 6 7 8

0

0.5

1

y 
(m

)

x (m)

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

θ 
(r

ad
)

t (sec)

Figure 6.17: Trajectory tracking for carangiform fish.

Figure 6.18: Snapshots of trajectory tracking for carangiform fish.
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Chapter 7

Conclusion

In this thesis, the foundations underlying several common areas in control and dynamical systems theory
have been generalized. Each of the areas studied: averaging theory, controllability theory for mechanical
systems, and nonlinear control theory, have been provided with a framework capable of reproducing and
extending known results. The most practically important contribution of this work can be found in Chap-
ter 6, where the basic methods of the thesis are synthesized into a paradigm for constructing controllers
for nonlinear biomimetic locomotory systems. The α-parametrized controllers correspond to oscillatory
shape parameters that are used by biomimetic system to generate directed locomotion; a common theme for
biomimetic systems. The fact that the control strategy successfully works for biomimetic control systems
that roll, undulate, swim, and walk, has deep implications. Although the thesis contributions are primarily
theoretical, the controllers designed by the theory have found practical application for a variety of experi-
mental nonlinear control setups [105, 106, 116, 108], implying that the techniques are viable from a practical
engineering perspective.

7.1 Summary of Dissertation

In Chapter 2 the exponential representation of nonlinear time-varying flows was introduced and utilized to
derive a generalized averaging theory. It was shown that averaging theory is the synthesis of two distinct
theories: (1) nonlinear Floquet theory, and (2) perturbation theory. Nonlinear Floquet theory demonstrates
that time-periodic systems may be represented exactly by a periodic mapping and the flow of an autonomous
vector field. The perturbation methods provide a way to systematically compute a series expansion approx-
imation when the exact closed-form solution is intractable.

Chapter 3 detailed the problem of controller design for underactuated driftless nonlinear systems. Using
the generalized averaging theory, an algorithm was implicitly given for the construction of exponentially
stabilizing controllers. In some cases, existing controller design methods may be enhanced by recasting
them within the framework of the generalized averaging theory. The controllers result in a set of tunable
control parameters some of which are analogous to the feedback gains found in linear control theory.

In order to extend the results of Chapter 3 to the case of systems with drift, a new class of nonlinear
control systems was defined. Chapter 4 introduced the notion of a 1-homogeneous control system, which
is an abstraction of simple mechanical systems and most other canonical forms for mechanical systems.
It was shown that geometric homogeneity is the unifying concept to many of the related results regarding
controllability of mechanical systems.

Chapter 4 then synthesized the controller design method of Chapter 3 with the controllability analysis
of Chapter 4 to design stabilizing controllers for 1-homogeneous control systems with drift. The net result
is also a constructive method for obtaining stabilizing controllers with tunable control parameters.

Finally, Chapter 6 was devoted to the design of locomotive controllers for a variety biomimetic systems.
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The purpose of grouping the biologically-inspired control examples was to emphasize the wide range of
dynamical systems controllable using the generalized averaging theory, and also to demonstrate the degree
to which biologically-inspired systems utilize fundamentally similar control strategies.

7.2 Future Directions

This dissertation focused on controller synthesis methods and the understanding of dynamical systems ex-
hibiting time-periodic behaviour, both basic contributions to the field of control and dynamical systems.
Future work may proceed in two directions: (1) continued investigations into the basic elements of nonlin-
ear dynamics and control, and (2) the synthesis of these concepts with higher-level goal oriented control.
Additionally, our understanding of biomimetic and biomechanical control systems may be improved by ex-
ploring the connection between these ideas and the mechanics of biologically-inspired locomotive systems.

The Dynamics of Nonlinear Systems. The generalized averaging theory was derived for use in con-
structing stabilizing controller for underactuated nonlinear systems, however it has potential use within the
broader context of dynamical systems theory. Furthermore, there is a large literature dealing with the anal-
ysis of time-varying and oscillatory systems via averaging theory, much of which has not been explicitly
covered by this dissertation. The examples from Chapter 2 suggest that averaging may be a useful theory in
area of physics, especially particle physics.

The Control of Underactuated Nonlinear Systems. Continuous stabilization for underactuated nonlin-
ear control systems was recently proven, consequently many of the examples found in this dissertation do not
utilize the continuous controller strategies. The strategy has had success in practical applications [106, 116],
and further exploration of this novel control strategy should be pursued. The nonlinear observability exam-
ple using coupled oscillators is an interesting application that was brought to my attention recently. Given
that observability is dual to controllability, it would be interesting to see the application of averaging theory
towards observation of nonlinear systems. Since the averaging theory can actually determine the effect of
resonance between different oscillatory states, it should be possible to derive a nonlinear identification strat-
egy. The averaged coefficients may be used to estimate coupling, and are what must be measured for system
identification.

Robust and Optimal Control. The linear (or homogeneous degree 0) autonomous control model approx-
imating the actual nonlinear time-varying control model may be used to determine stability margins under
uncertainty. Morin and Samson [118] have demonstrated robustness of a discretized feedback method for
stabilization of driftless systems. The analysis is based on the work of Sussmann and Liu [155, 93], which
utilizes averaging methods to obtain a fully controllable representation of the original underactuated sys-
tem. The discretized feedback method of [118] is one of the control strategies derived using the generalized
averaging theory, meaning that the success of [118] is initial validation of this research avenue.

Computation of optimal trajectories for time-varying nonlinear systems is a difficult problem. The
difficulty is enhanced when nonholonomic effects are required for locomotion. By utilizing the averaged
dynamics it is possible to simplify the optimal control problem to an autonomous, potentially fully-actuated,
control problem. Trajectories generated for the autonomous sytem will be feasible trajectories for the actual
time-varying, possibly underactuated, system.

Control and Dynamics of Biomimetic Systems. The mathematics derived in this dissertation have prac-
tical utility for biomimetic and biomechanical control systems. Many such systems exhibit time-periodic
behavior to overcome actuator limitations and nonholonomic constraints. Biological systems often employ
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multiple locomotive strategies, or have parametrized gaits whose variations result in a variety of locomotive
modes. The averaging theory is capable of recovering oscillatory parameters for modulation to achieve con-
certed motion. An interesting system to apply averaging methods to would be the housefly. Houseflies are
equipped with muscles capable of modulating wing dynamics for directed flight. Perhaps a rigorous analysis
of housefly wing kinematics could lead to an α-parametrized model capable of qualitatively reproducing the
real flight dynamics.

Secondly, we are trying to connect this work to the stratified configuration space approach for legged
locomotion modeling [48, 49]. The success of the kinematic biped suggests that this would be a promising
avenue of study. Recent work on the application of Floquet theory to legged locomotion systems by Cham
et al. [31] has shown that Floquet analysis can be used to optimally control stride parameters for improved
locomotion over unknown terrain.
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