To my Family

Acknowledgements

I would like to thank my advisor, Professor Peter Dervan, and my fellow Dervanites for creating such a diverse and stimulating place to work. I count myself lucky to have shared a lab with Justin, Ryan, Jim, Christian, and Dave C., both for their scientific prowess and companionship, which made the late nights in lab a lot more fun and a little less frustrating. Katy graciously provided tireless proofreading services, helpful suggestions, and vital material support in the form of baked goods. Puckett knows a lot about almost everything, and I will miss dissecting current events with him. Dan provided invaluable suggestions on a manuscript and a cool head in Dervana. Anne's sage advice during daily coffee runs is gratefully acknowledged. I would also like to thank Mareike, Nick, Fei, Sherry, Julie, Carey, Adam, John, Mike B., Dave, Ben E., Marques, Ray, Eric, Michelle, Ben L., and Dan G. It has been a pleasure working with you all, and I wish the best of luck to the newest members of the Dervan group.

I don't have the room to thank all the people who looked out for me along the way. I do want to acknowledge Mrs. Rabin and Dr. Gordo Stonington for their early encouragement, Professor Steve Sibener for letting me into his lab as an undergraduate, and Professor Ka Yee Lee for being an inspiration. I would like to thank Kat, Russell, and Sherry for their generosity and care. I am grateful to Erika, Marten, Skumfi, and Adri for their friendship and camping companionship. PY, Tabby, Mark, Nadia, Asim; I look forward to having the time to catch up with you all.

I owe an enormous debt of gratitude to JP for his friendship. I am extraordinarily grateful for RJN's support, patience, and skills with a camping stove. Lou, thanks for the early introduction to science and enthusiasm for all things science. Finally, I want to thank my family, especially my mother, for their love, encouragement, and advice.

Abstract

Polyamides are a class of synthetic small molecules that recognize DNA in a sequencespecific fashion through a network of hydrogen bonds formed with bonding partners in the floor of the minor groove. The binding affinity of polyamides is comparable to that of numerous DNA-binding proteins, and polyamides have been shown to displace DNAbinding proteins. As such, they present a powerful opportunity to modulate expression levels of genes vital to human health. The cellular permeability and biological activity of polyamides has presented an impediment in moving from *in vitro* to *in vivo* work that was partially removed by the discovery that fluorescein dyes facilitate cell entry. The work described here details recent advances in modifications to the C-terminal polyamide linker, linkage and tail groups that improve the endogenous inducible gene regulation activity of polyamides in cell culture.

Table of Contents

Acknowledge	ements	iii
Abstract		v
Table of Con	tents	vi
List of Figure	es and Tables	vii
Chapter 1	Introduction	1
Chapter 2	Improved Nuclear Localization of	
	DNA-Binding Polyamides	23
Chapter 3	Modulating Hypoxia-Inducible Transcription by	
	Disrupting the HIF-1-DNA Interface	48
Chapter 4	Effect of Linkger, Linkage, and Tail Modifications on	
	Biological Activity of Pyrrole/Imidazole Polyamides	73
Appendix A		109
Appendix B		112
Appendix C		114

List of Figures and Tables

Chapter 1

Figure 1.1	Structure of DNA	3
Figure 1.2	Crystal Structures of two DNA-binding Natural Products	4
Figure 1.3	Crystal Structure of Minor-Groove Recognition by	
	Polyamide Heterocycles	5
Figure 1.4	Structure of Eight-Ring Hairpin Polyamide and	
	Putative Hydrogen Bonds to DNA	6
Figure 1.5	Polyamide Structural Motifs	7
Figure 1.6	Schematic of Solid-Phase Polyamide Synthesis	8
Figure 1.7	Schematic of Gene Regulation by Polyamides	8
Figure 1.8	DNA-Binding Proteins Inhibited by Polyamides	9
Figure 1.9	β-Enhanseosome Structure	10
Figure 1.10	Cellular Localization of Polyamide-Fluorophore Conjugates	11
Figure 1.11	Structure of Hairpin Polyamide Indicating	
	C-Terminal Linker, Linkage and Tail Groups	14

Chapter 2

Figure 2.1	Structure of Polyamide-FITC Conjugates	26
Figure 2.2	Summary of Biological Data for Polyamide-FITC Conjugates	30
Figure 2.3	Structures of Polyamide Cores and Tail Groups	31
Table 2.1	Binding Affinities of Compounds	32
Figure 2.4	DNase I Footprint Titration Data for Lead Compounds	33
Figure 2.5	DNase I Footprint Titration Data	34
Figure 2.6	Quantitative RT-PCR Data, HeLa Cells	35

Figure 2.7	Quantitative RT-PCR Data, Lead Compounds, HeLa Cells	viii 36
Figure 2.8	Confocal Microscopy Uptake Data	37
Figure 2.9	Quantitative RT-PCR and ChIP Data, U251 Cells	38
Table 2.2	MALDI-ToF Data	42

Chapter 3

Figure 3.1	Project Overview	53
Table 3.2	Binding Affinities of Compounds	54
Figure 3.2	Quantitative DNase I Footpring Titration Data	55
Figure 3.3	Quantitative RT-PCR Data	57
Table 3.2	Number of Transcripts Affected by Compounds	58
Figure 3.4	Microarray Analysis Data	59
Table 3.3	HIF-1 Induced Genes Affected by Compounds	61
Figure 3.5	Ven Diagram Representation of Microarray Data	62
Figure 3.6	Chromatin Immunoprecipitation Data	63
Figure 3.7	Analytical HPLC Data	66

Chapter 4

Figure 4.1	Project Overview	76
Figure 4.2	Structures of Polyamide Cores and C-Terminal Modifications	77
Figure 4.3	Quantitative RT-PCR Data, U251 and LNCaP Cell Culture	80
Figure 4.4	Quantitative RT-PCR Data LNCaP Cell Culture	81
Table 4.1	Melting Temperature Data	82
Figure 4.5	Cell Viability Data for Control Compounds	83
Figure 4.6	Quantitative RT-PCR Data for Oxime-Linked Compounds	87
Table 4.2	IC ₅₀ Values for Cell Viability and Gene Regulation	88
Figure 4.7	Isotherms for Cell Viability and Gene Regulation	89

		iv
Table 4.3	MALDI-ToF and Purity Data	95
Figure 4.8	Structures of Polyamide Cores and C-Terminal Tail Modifications	98
Figure 4.9	Quantitative RT-PCR Data	99
Figure 4.10	Quantitative RT-PCR Data	101
Figure 4.11	Quantitative RT-PCR Data	103
Table 4.4	Melting Temperature Data	105
Table 4.5	Melting Temperature Data	105

Appendix A

Figure	Time-Course Schematics, quantitative RT-PCR	110
Figure	Time-Course Schematics, Cell Viability	111