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Abstract

As the sophistication of systems used in chemical processing industries increases and
demands for high quality products manufactured at low costs mount, the need for
improved methods for automatic monitoring of processes arises. This is particularly
true for systems operating under automatic control where the control system often
acts to eliminate early warning signs of process changes. This thesis examines prob-
lems in the area of dynamic system monitoring, with emphasis on control systems.
Problems in the areas of controller performance monitoring, estimation, and fault
detection are considered.

In the area of controller performance monitoring, techniqueé for assessing per-
formance in a minimum variance framework are developed. In contrast to previous
methods, the current approach is applicable to general systems, including unstable
and nonminimum-phase plants and systems with unstable controllers. Through two
simple examples, it is shown that significant errors may be encountered when in-
formation on the unstable poles and non-invertible zeros of a system is not properly
included in the performance evaluation techniques. An alternative approach to evalu-
ating deterioration in performance of control systems is formulated using a framework
in which acceptable performance is expressed as constraints on the closed loop trans-
fer function impulse response coefficients. Likelihood methods are used to determine
if the constraints are met. This second approach can be applied to more general
performance criteria than the minimum variance based method.

The problem of constrained state estimation is pursued using Moving Horizon
Estimation. It is shown that previous formulations of this estimation technique can
be unstable when constraints on the innovations and estimated states are included.
By expanding the constraint set and modifying the estimation objective, stability is
guaranteed. The proposed algorithm can be implemented as a quadratic program.

Several approaches to fault detection are considered. First, the simultaneous



v
design of linear fault detection filters and controllers is considered using the four
parameter controller framework. It is shown how this framework may be considered as
a special case of a more general interconnection framework for which a deep synthesis
theory exists. Second, using the Moving Horizon Estimation framework, a model
based fault detection scheme capable of directly incorporating a class of bounded
model uncertainty is developed. The proposed method is compared to other methods
employing an adaptive threshold, and is demonstrated on a simulation example of a
cold tandem steel mill. Finally, a statistical framework for general change detection
problems is presented. This method uses a two-model approach, where signals and
parameters subject to change are modeled by Brownian motion for the faulty case
and by constant values in the nominal case. A detection algorithm using likelihood
ratio testing is implemented through the use of recursive dynamic filtering.

The use of qualitative modeling in detection and control problems is formulated
using propositional logic. By representing literals using integer variables, qualita-
tive features can be incorporated into control and detection problems. Symptom
alded detection and multiobjective performance prioritization are among the prob-
lems which can be solved in this framework using mixed integer linear and quadratic

programming.
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Chapter 1 Introduction

An increase in the level of automation in the chemical process industry over the past
few decades has created a greater need for performing monitoring and diagnostic
tasks. Under manual operation, human operators must decide to take action when
unexpected problems arise, and by so doing they gather early warning signs of serious
problems. By contrast, in an automated environment, control algorithms compen-
sate for changing conditions in a manner which may not provide early warnings to
the reduced staff of human operators, and greater problems might develop before
being noticed. In addition, the complexity of modern control systems is increasing.
Demands for higher quality products, cost efficient production, and improved reliabil-
ity and safety all act to increase performance requirements. As higher requirements
are placed on control system, more efficient methods are needed to monitor these
automated processes.

The term monitoring can be used to describe a wide range of activities associated
with automated or computer assisted process supervision. Among these activities are
included performance monitoring, state and parameter estimation, and fault detec-
tion. Even though each of these pursuits has distinct characteristics, there exist com-
mon properties binding them together. In each case, process data are collected. The
monitoring method processes the data with the goal of inferring additional informa-
tion about the system’s operation and its transient behavior. Finally, the monitoring
operation is seldom the end goal but instead a means to achieving a larger objec-
tive. In the case of controller performance, this objective is to achieve the desired
performance level. When the monitoring scheme indicates that system performance
is not met, engineering modifications must be undertaken to achieve this goal. In
state estimation, the larger goal may be controlling the system using an algorithm
which requires the process state as an input. Alternatively, state estimation may be

an important component of a fault detection scheme. In fault detection, the final
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objective is to be able to compensate for faulty behavior. In this work, only the mon-
itoring problems are considered and not the larger schemes of which they are vital
components.
In Sections 1.1-1.3, a brief description of each of the monitoring problems which are
mentioned above and which are investigated in more detail in the following chapters
is given. After this introduction, the organization of this thesis will be laid out in

Section 1.4.

1.1 Performance monitoring

As market place competition leads to consumer demand for higher quality products,
monitoring of process performance is a key component of modern manufacturing.
Traditional methods make use of statistical process control technology to monitor final
and intermediate product quality [93]. In this approach, a set of product properties
is measured and recorded. Bounds on acceptable ranges for these properties are
determined, and statistical tests to determine if the properties violate the bounds are
applied. The Shewart control chart is among the best known methods of this type.

Recent advances in this area have focused on the development of multivariate sta-
tistical control charts [81, 51]. For processes with a large number of measurements,
Principle Component Analysis and Partial Least Squares are used to compress the
information contained in the data trajectories into low-dimensional spaces that de-
scribe past operation. By using latent variables, univariate control charts can be
constructed. Other methods from chemometrics have also been successfully applied
to generate control charts [112, 64].

As with other monitoring problems, the ultimate goal of performance monitoring
is not to determine if specifications have been met but rather to determine what
must be done to assure that specifications will be satisfied. With this in mind, for
systems operating under automated control, assessing the performance of the control
loops is of vital importance. When the control system is not performing as designed,

producing a quality product may be very difficult. Experience has shown that in large
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production facilities, poorly operating control loops are frequently a significant cause
of low quality product [52]. In modern chemical manufacturing facilities, thousands of
automated control loops are employed. A single control engineer may be responsible
for the maintenance of literally hundreds of controllers. Without control performance

assessment tools, supervision of so many loops can be unmanageable.

1.2 State and parameter estimation

State and parameter estimation problems have been studied extensively ever since
the seminal work on linear regress by Gauss [38]. Although the theory of state
estimation for linear systems has been extensively developed (see for example [1]),
the implementation of such estimation procedures in more general detection problems
remains an active area of research. Estimation of states and parameters forms a
foundation for many other monitoring schemes. For example, residual errors from
Kalman filters based state estimators have been employed in detection schemes for
over two decades. Recursive parameter estimation methods have been used to test for
unwanted changes in the properties of system components [48]. Recently, Benveniste
et al. [12] and Zhang et al. [113] have developed methods to design a change detection
algorithm from any recursive parameter estimation scheme.

An important problem in estimation theory which has recently received attention
involves the estimation of system states when it is known that they must satisfy cer-
tain constraints. This situation often arises in practice due to engineering knowledge
on estimated variables which may be formulated as bounding constraints. Due to
measurement noise and other considerations, filtered estimates obtained using tradi-
tional methods will not necessarily satisfy these conditions. By including explicitly
the constraints in the estimation scheme, it may be possible to obtain more accurate
estimates and reduce the sensitivity to measurement errors. Moving Horizon Estima-
tion [92] has been proposed as an estimation strategy for this situation. An important
consideration which is resolved for the first time in this thesis addresses the stability

of such methods.



1.3 Fault detection

The terms “fault” and “failure” refer to any type of malfunction of a system which
affect the operating conditions, such as inaccurate sensor readings, failure of actuators
to respond to control signals, unexpected changes in operating conditions, poisoning
of catalysts, or leaks or clogs in pipelines. Faults can be divided into two classes,
depending upon the way in which they are modeled. Additive faults are those which
can be modeled as an input signal to the system. Examples of faults which are
well modeled as additive faults include sensor bias and actuator failure. Many types
of system failures cannot be represented by an additive disturbance. For example,
changes in location of system poles and gains affect parameters which multiply the
process states and therefore cannot be accurately represented by input signals. Such
faults are often referred to as multiplicative faults.

Significant research effort has been devoted to detection of additive faults since
the seminal work of work of Beard [11] and Jones [50]. Early approaches employed
Kalman filters to generate residual signals which should be zero-mean white noise
when the system is operating properly [110]. Subsequently, methods based on the
notion of redundancy of measured variables were developed. Physical redundancy,
referring to the situation in which multiple identical sensors are used to measure the
same variable, is the simplest example of this concept. In this case, deviations between
the measurements indicate faults, and a voting procedure can be put to use to isolate
the fault. Physical redundancy is a hardware based solution to fault detection, and
will not be investigated in this work.

In addition to physical redundancy, analytical redundancy can be employed in
fault detection schemes. Analytical redundancy is a result of the inherent static and
dynamic relations between system inputs and outputs. For example, material and
energy balances may be used to analyze the consistency of measurements obtained
in a piping network. Chow and Willsky [18] have presented a discussion of the use
of analytical redundancy in fault detection schemes. The simplest case of analyti-

cal redundancy, sometimes referred to as spatial or direct redundancy, involves only
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static relations of variables. When the measurements from a system are linearly de-
pendent, it is possible to find linear combinations of the measurements which are
nominally zero. Even when the measurements are linearly independent, dynamic re-
lations among the variables produce temporal redundancies. Parity space methods
[18] can be used to derive detection schemes based on these relationships. A parity
relation is a linear relation between the temporal process variables which, according
to the dynamic model, should be zero. The parity space contains all such relations.

A detection scheme based on analytical redundancy can be implemented on an
existing process without the expense of refitting sensors and actuators concomitant
with physical redundancy methods. However, analytical methods require the use of
process models. As mathematical models only provide an approximate description for
physical systems, the reliability of analytical methods is often unsatisfactory. Model
uncertainty is perhaps the largest existing obstacle in implementing analytical redun-
dancy based detection schemes. For example, when the model for the system does
not describe the system exactly, the residuals generated from parity relations may
vary from zero even when no disturbances or faults are present.

Several approaches have been proposed to deal with modeling error. Chow and
Willsky [18] have proposed a parity space method for generating residuals in the face
of uncertainty. In their approach, a parity vector which minimizes the worst case
effect of model uncertainty on the residual is sought. This method suffers from the
shortcoming that it does not consider the type of fault to be detected. Thus, although
the residual may be insensitive to model uncertainty, it may not be sensitive to the
faults one desires to detect. Lou et al. [62] have proposed another approach to robust
fault detection. They assume that the set of possible models can be parameterized
by a finite number of models, ¢ = 1,...,Q, and then find a parity vector which
minimizes the sum of residuals for each of the models. The design of such a detector
reduces to finding the orthogonal complement of a matrix. Frank and Wiinnenberg
[35] have proposed the use of unknown input observers (UIO) for generating residuals
which are robust to model uncertainty. The UIO is an observer which is structured in

such a way that it is insensitive to certain input directions. Frank and Wiinnenberg
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claim that the UIO can be used to genérate residuals which are robust to model
uncertainty. To accomplish this, they propose that uncertainty be represented by
input disturbances, and the observer be designed to be insensitive to these directions.
One limitation of this method is the fact that many types of modeling errors cannot be
represented by additive signals. In addition, for each of the above mentioned methods,
unmodeled model perturbations are restricted to lie in a certain subspace. No bounds
are associated with these perturbations. Often, this is an unrealistic representation
of actual model uncertainty. For example, if there exists a small error in an input
gain which affects all outputs, such a direction will not exist. A better description
would provide for bounded perturbations.

Basseville [8] and Isermann [47, 48] have provided reviews of the most significant
methods for detection of multiplicative faults. The majority of these methods employ
recursive or some other form of on-line parameter estimation to track parameter values
which change when a fault occurs. Using statistical significance tests, one determines
if changes in the value of the estimated parameters warrant raising an alarm.

The methods discussed above are based upon quantitative process models. An
alternative approach to fault detection which has been applied when quantitative
models are unavailable uses qualitative process models. Past approaches to detection
based upon qualitative modeling have used confluence equations [23, 84] and sign

directed graphs [45, 71, 42, 106].

1.4 Thesis organization

This thesis is organized as follows. In Part II, the problem of controller performance
monitoring is considered. Chapter 2 is concerned with performance monitoring based
on a minimum variance control objective. Building on previous work by Harris [43]
and Stanfelj et al. [97], tests for determining if a controller achieves this objective for
general plants are developed. In Chapter 3, a new performance monitoring method
which is based upon statistical hypothesis testing and is capable of dealing with a

wide range of industrially important control objectives is presented.



8

Part III addresses problems in fault detection. Chapter 4 deals with the design
of linear fault detection filters. In particular, the problem of designing an integrated
control and diagnostic module is considered using the four degree of freedom con-
troller framework introduced by Nett [78]. It is shown that this framework can be
recast as a special case of a more general control theory, in which case existing results
can be used to synthesize detection filters in conjunction with controllers. In Chapter
5, the problem of constrained estimation is addressed using the framework of Moving
Horizon Estimation. Modifications to previous algorithms are developed which en-
able the designer to guarantee stability for the estimation scheme in the presence of
constraints. In Chapter 6, fault detection using uncertain models is addressed using
Moving Horizon Estimation. For a wide class of uncertainty descriptions, the fault
estimation scheme can explicitly account for model mismatch by using constrained
estimation. The approach developed in this chapter is applied to a model of an
industrial cold tandem steel mill.

The methods of Chapters 4 through 6 are applicable to additive faults, i.e., those
faults which can be represented as input signals. In Chapter 7, a more general fault
detection method is derived which can address both additive and multiplicative fail-
ures. This approach employs statistical change detection methods along with nonlin-
ear Bayesian filtering.

Chapter 8 addresses qualitative process modeling and performance objective for-
mulation. In particular, qualitative features are represented using propositional logic.
By using integer variables, propositions can be expressed as linear constraints and
the truth values of literals can be related to process variables. This approach cannot
only be applied to detection problems, but also to control problems. The formulation
of constraints from logic propositions is recapitulated. Symptom based fault detec-
tion combining both a qualitative and quantitative model can be posed as a mixed
integer quadratic program using this framework. In the area of control, it is shown
how multiobjective performance criteria can be met using mixed integer programming

methods.



Part 11

Controller Performance Monitoring
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Chapter 2 Minimum Variance
Performance Monitoring for Unstable and

Nonminimum-phase Systems

Summary

This chapter presents minimum variance control evaluation techniques and derives ex-
tensions of previous results to general systems, including unstable and nonminimum-
phase plants and systems with unstable controllers. An analysis of the sensitivity of
these methods to uncertainties in the location of unstable poles and non-invertible
zeros is presented. An on-line implementation scheme which first divides data into
segments with similar dynamical properties and then analyzes the individual seg-
ments is outlined. Through two simple examples, it is shown that significant errors
may be encountered when information on the unstable poles and non-invertible zeros

of a system is not properly included in the performance evaluation techniques.

2.1 Introduction

Although enormous research effort has been directed towards design and analysis of
controllers, relatively little work has addressed the problem of evaluating the perfor-
mance of closed loop systems. Nevertheless, automatic monitoring of control loop per-
formance is extremely important for practical control applications, wherein changes
in equipment or operating conditions may result in deterioration of a controller which
originally functioned well. In a typical chemical manufacturing facility, thousands
of control loops are used to track set points and reject disturbances, and manual

supervision of each loop is an unwieldy task. As a single control engineer may be
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responsible for over a thousand controllers, efficient tools are needed to automatically
identify controllers which may need to be re-designed.

In his pioneering work in performance monitoring, Harris [43] presented a cor-
relation test for determining whether a controller achieves minimum variance (MV).
When the test fails, an estimate of the factor by which MV is exceeded can be obtained
using data collected under routine closed loop conditions. Based on this estimate,
Desborough and Harris [24] have introduced a normalized performance index, which
expresses the fractional increase in output variance arising from not implementing an
MYV controller. Stanfelj et al. [97] have outlined a hierarchical method for monitor-
ing and diagnosing performance of control loops based on these tools. Extensions to
feedforward /feedback control systems have also appeared [25, 97].

Although these methods have found some application to industrial systems [31,
107], they may only be applied to systems which are stable and whose only nonmini-
mum-phase (NMP) behavior is due to process delay. Many real systems, however,
exhibit inverse response. In addition, it is known that for any continuous time system
with relative degree larger than two, for sufficiently high sampling rate the sampled
system will be NMP even when the underlying continuous system has no right half
plane zeros [3]. Several examples where this phenomenon occurs at reasonable sam-
pling rates are given in the cited reference.

In this chapter, extensions of the MV evaluation techniques which may be applied
to general systems, including unstable and NMP systems, are derived. Section 2.2
contains some preliminaries, and Section 2.3 briefly reviews the most important past
results. In Section 2.4, the main results are presented. Section 2.5 analyzes the effect
of uncertainty in the plant parameters on the MV test, and issues surrounding on-
line implementation are discussed in Section 2.6. Section 2.7 presents two examples
which illustrate the types of errors which may be expected when NMP and unstable

behavior are not considered.
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2.2 Preliminaries

Consider sampled systems which can be adequately represented by discrete time mod-
els. Let g denote the delay operator (i.e., gy, = y,_1 or ¢ = z~!). Consider a process
described by the following discrete dynamic model relating the output y to the ma-

nipulated input u and a disturbance d:
y = P(q)u+d. (2.1)

Let P(q) have 8+1 zeros at ¢ = 0 (i.e., , 6 is the number of integer periods of delay
not including the sampling delay). Call P minimum phase modulo 8 (MP/#) if it has
no other zeros within the unit disk {q| |q| < 1} or, in other words, if Pg~+1) is MP.

d is a disturbance signal generated by
d=Wi(q)e, (2.2)

where W is a stable transfer function, with the possible exception of poles located at
g = 1, and e is an independently and identically distributed random sequence with
zero mean, constant spectrum, and variance o (white noise). The performance of the
dynamic system described in (2.1) and (2.2) under output feedback with the input u

obtained by the control law,

v =C(q)y, (2.3)

will be analyzed. This system is depicted in Figure 2.1.

Figure 2.1: Closed loop system
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Let @ be the closed-loop transfer function from e to y:

o(g) = — Wia) (2.4)

P(q)C(q)

Denote by ¢ the sequence of impulse response coefficients of . The variance o, of

the output y is given by:

or = E(y})
o]
= Z 303

-
I
o

where E(-) denotes the expectation operator. Also, let MSE(y) denote the mean
square error of y,

MSE(y) = ~

L 2
N Y-

M=

k=1

Il

2.3 MV control assessment: stable, MP /6 case

Minimizing the variance of y is equivalent to minimizing the [3-norm of the sequence
@, or equivalently by Parseval’s Theorem, the Hy-norm of transfer function ®(g). This
section reviews results aimed at assessing whether a system achieves the MV control
objective. Section 2.3.1 contains a PASS/FAIL diagnostic tool, and Section 2.3.2 an

approach for estimating by what factor MV is exceeded.

2.3.1 MYV correlation test

The following correlation test has been proposed as a tool to assess whether MV is

achieved:

Result 1 [{3] For a stable, MP/8 process P the theoretical autocorrelation of the

controlled variable under MV control will be zero beyond lag 6.
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This result is derived from the fact that for stable MP /8 plants P, the MV control

law results in a finite impulse response transfer function of length 6 + 1 [14, 4]:

<I>(q) :¢o+¢1q+...+¢9q9.

In the language of time-series analysis, such a process is called a moving-average

process of order § (MA(6)), and has the property that the autocorrelation function,

pyyPl = E(YrYk—p), is zero for p > 6.

2.3.2 Estimation of MV from data

Minimum variance is an ideal that is rarely met in practice. Frequently, this crite-
rion may not be a suitable objective since it does not place any weighting on control
action. Also, to achieve MV, reasonably accurate disturbance models must be avail-
able, whereas typical disturbances have time varying characteristics which are not
well known or easily predicted. Therefore, the MV test stated above will fail in most
practical cases, and when it fails it gives no information about how close the per-
formance comes to the theoretical limit. When the output variance is determined
to be suboptimal, an estimate of the extent to which the observed variance exceeds
the theoretical limit serves as a useful performance measure. The following result of

Harris [43] can be used to estimate the MV from closed loop data:

Result 2 [48] For a stable MP/8 process, the minimum achievable variance can be

estimated as follows:
1. Determine delay 6.

2. Fit a time-series model (e.g., AR, ARMA) ®(q) to the closed loop process out-

put. Estimate variance 6% from the model residuals.

3. The theoretical MV is estimated by 62, = =0 $262. The ratio

i7e"

MSE(y)

muv A0
Umv
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gives an estimate of the factor by which MV is exceeded.

This result in based upon the fact that the first #+ 1 coefficients of the closed loop
system are independent of control action, and when the only NMP characteristics of

the plant are delays, MV corresponds to ¢; = 0 for i > 4.

2.4 MYV control: general case

By parameterizing all stabilizing controllers, the results of Section 2.3 can be extended
in a straightforward fashion. The results of Sections 2.3.1 and 2.3.2 are extended in
Sections 2.4.1 and 2.4.2 respectively. Section 2.4.3 briefly outlines how a similar

approach could be used for performance objectives other than minimum variance.

2.4.1 MV correlation test: general case

In this section, the correlation test is extended to the general case wherein the plant
may be unstable or NMP. Let us consider anew the problem of minimizing the [y-norm
of the closed loop system given in (2.4). For SISO systems, the parameterization of

all stabilizing controllers is well known [105] and given by:

~U(q) + Q(q)D(q)

@)= Ty TowNa)

where @ is stable, N, D, U, and V are each stable and form a coprime factorization

of P, ie.,

p(g) = 210

D(q)

U(g)N(q) + D(9)V(g) = 1.

Using this parameterization, the set of achievable closed loop maps is given by

®(q) = W(g) (D(9)V(g) + N(q)D(9)Q(q))
H(q) — T(9)Q(q)- (2:5)

il
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Minimization of ||®(q)||2 subject to @ stable is well understood. The following
discussion parallels that given in [22]. A stable Q) cannot cancel the zeros of T which lie
within the unit disk, and this fact can be used to reformulate the stability constraints
as interpolation conditions. Let A = {aj,s,...,a,} be the zeros of T within the
unit circle with multiplicities {mj, ma,...,m,}, and let M = >, m;. Note that this
set contains both the poles and the zeros of P which lie within the unit disk. The

optimization can now be seen to be equivalent to
. 2
min || ]2

o 2| _ dMH(g)

o (2.6)

q==Qy
k=0,..m;—1,i=1,...,n.

These constraints are linear functions of the impulse response coefficients of ®(q),

¢, and can be expressed using functionals. Let V% be the linear functional which

dk® L k : ; . .
takes ¢ onto —dqé—q—) , l.e., %Zi,(cﬂ =32 Vikg, . Vi is given by
q=0; q=a;

! -k
vk (nfk)!a,? ifn>k
ik

0 fn<k

Let V be the oo x M-dimensional matrix whose columns are composed of the function-
als V** and let b be the M-dimensional vector whose elements are the corresponding
right-hand side values of (2.6). The optimization problem can now be rewritten as

follows:

min E #2 sit. Vig=>
n=0

The solution to this problem is given by the normal equations [63]

bmy = [b0, b1, .. T = V(VTV) b, (2.7)

The matrix (VTV) is a M x M dimensional matrix, and since |a;| < 1 for i =
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1,...,n, (VIV) is finite. ¢m, is thus a linear combination of the columns of V. The

transfer function whose impulse response is given by V¥ is

. & 1
i,k — k=
1
k
= k! 2.8
I (1= a;q)k+t’ (28)
so that
n m;—1 ) )
Prnu(q) = BHEVHE(g), (2.9)
i=1 k=0

where 3%* corresponds to the appropriate element of the vector (VIV)™1b.

This construction clearly reveals that the minimum-variance control results in
a closed loop FIR transfer function only when a; = 0 Vi, that is P is MP/0. A
generalization of Result 1 which can be applied to arbitrary systems can now be

stated.

Theorem 1 Let P be a discrete-time dynamic process, and let y = Pu+d where d is
filtered white noise and u is obtained via a feedback control law. Let A = {ay,...,an}
contain the poles and zeros of P which lie within the unit disk in the q-plane, and let
oy have multiplicity m;. Let 1 be a sequence obtained by filtering the output of the

closed loop system y as follows:

b= [ﬁ(l ~aa)™ |y (2.10)

i=1

Then the closed loop system is MV if and only if

pyy[p) = E ($rthr—p) = 0 for p > M, (2.11)
where M =37 | m,.

Proof From (2.9) and (2.8), the minimum wvariance closed loop response has the



transfer function

(2.12)

Since under MV control, y = ®,,,(q)e, ¥ is given by

n m;—1 ) )
Y o= >3 BFEIPY(g)e
i=1 k=0
P*g) = ¢F1—aig)™ " I — aj)™.

J#i

Each polynomial P**(q) is degree M — 1, and therefore 1 is a moving average
process of order M — 1, whose autocorrelation will be zero beyond lag M — 1. This
completes the proof of the necessity.

For sufficiency, consider a signal 1 which satisfies the autocorrelation condition.
1 is a moving average process of length M — 1, and therefore there exist parameters

b such that
M-1

Y= Z bigie = B(q)e
i=0
By inverting (2.10), y can be related to ):

1
V= (1= aig)miw
S M g
e (1 — aq)™
= ®(qg)e. (2.13)

® has M free parameters b;, but (2.6) provides M independent equations for these
parameters. The minimum-variance optimal ®p,, given in (2.9) is also a rational
transfer function with numerator of degree M and the same denominator as given in

(2.13), satisfying the constraints in (2.6). Therefore, ®(q) = ®py(q).

Remark 1 In the case where a; = 0 for each i, ¥ =y, and M = 0 + 1, so the result

reduces to Result 1.

Remark 2 The only process information needed to apply Result 1 is the number of
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integer periods of delay 0. By contrast, Theorem 1 requires knowledge of the location

and multiplicity of all unstable poles and non-invertible zeros of the underlying process.

2.4.2 Estimation of MV from data: general case

In this section, Harris’ result concerning the estimation of MV from output data is
extended to the general case. Consider the parameterization of closed-loop stable
transfer functions given in (2.5). Let ¢ = ay, |ay| < 1, be a zero or pole of P with
multiplicity m;. From (2.6), ® and its first m; — 1 derivatives evaluated at «; are

independent of @) and thus independent of the controller, i.e., for any stable &,
d*®(q)|  d*Pmu(q)

2.14

q=ay

fork =0,...,m; — 1, i = 1,...,n. The MV response has the form (2.12), and
contains M parameters. If a model of the closed loop system ®(gq) were known, the
following procedure could be used to estimate the minimum achievable performance

from closed loop data:

1. Determine the plant poles and zeros which lie within the unit disk in the g-

domain.

2. Fit the M parameters 8% in ®,,, in (2.12) using the M equations (2.14).

Typically, the closed loop system model ®(g) is not known a priori and must be
estimated using time series methods. For any stable closed loop, the unstable poles of
P and C will manifest themselves as closed loop system zeros. Therefore, whenever
the plant P (or the controller C) is unstable, the closed loop will be NMP.

Standard time series identification routines, such as those found in [61] and [94],
always result in an MP time series model ®(g) with ®(0) = 1. Suppose y is a time
series given by y = He, where e is white noise with covariance 1. Let the MP-allpass

factorization of H be given by H(q) = Hpm(q)Ha(q), and define H'(q) by
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Because a white noise signal has constant spectrum, without measuring e it would be

impossible to distinguish between the two following scenarios from the spectrum of
y:
1. y was generated by H(q) and an unknown signal e; with unit covariance, or

2. y was generated by H'(q) and an unknown signal e; with covariance Hjs(0)?
(e2 = Hu(0)Ha(g)er)-

Although |le1|| < ||ez]|, identification methods which minimize the prediction error
will converge to H' rather than H since calculating the prediction error for a non-
invertible system is numerically unstable. With this in mind, the following method

for estimating the MV from closed loop data is proposed:

Result 3 Given the unstable poles of P and C and the zeros of P within the unit disk,
the minimum achievable variance can be estimated using routine closed loop operating

data by the following technique:

1. Fit an MP time series model O’ to the output data, with ' (0) = 1 and calculate

) . .
' from the covariance of the residuals.

2. Form ®(q) and o2 by

d(q) = ﬁ( *—q) ®'(q)

1 —pigq
9 n
i=0
where p1,...,pn are the unstable poles of the plant (or controller) with multi-

plicity m;.
3. Using ®(q) and the constraints (2.14), estimate the free parameters in ®,,,(q)
as in (2.12).

~

4. 62, = ||®mo||?0? is an estimate of the minimum achievable variance. The ratio

MSE(y)
N
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gives an estimate of the factor by which MV is exceeded.

Remark 3 In the case of a stable plant and controller and A = {0}, m; = 6 + 1,

and the equations reduce to the method used in Result 2.

2.4.3 Other performance measures

The estimation method discussed above, involving recasting stability criteria as in-
terpolation conditions and relating these interpolation conditions to values obtained
from closed loop data, is not limited to the case of minimum variance control. For
example, performance objectives other than the minimization of the [ norm of the
closed loop could also be implemented. Although the optimization solutions will not
be obtained by Euclidean projection as in (2.7), the interpolation conditions can be
obtained in exactly the same way as in the MV case. For example, performance could
be compared to the /; optimal. The problem involves solving a linear program. Let
@ be a sequence denoting the impulse response of the closed loop. Then an infinite

dimensional linear program which minimizes the [; norm of ¢ is given by

min 3067+
s.t. lx;?»’cqﬁ — Vikg™ =g
¢F >0 Vn
¢n 20V
(2.15)

It has been shown [22] that although the problem is infinite dimensional, in the
optimal solution there exists an N such that ¢, = 0 Vn > N. This value of N can
be estimated a priori. In practice, the LP can often be solved quickly be guessing N
and checking the solution to assure that ¢, — 0 before n = N.

Note that the values of b°* are obtained exactly as in the MV case.
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2.5 Sensitivity analysis of MV techniques

As previously mentioned, in order to apply Theorem 1, it is necessary to know the
location of unstable poles and non-invertible zeros for the underlying process P. The
issue of uncertainty in the pole/zero locations is now addressed. The following result

applies:

Theorem 2 Let @,,,(q) = 1—_1—9%—7; where Cry(q) is the MV controller for the plant P
and the disturbance W. Let A = {au,...,a,} contain the poles and zeros of P which
lie within the unit disk in the q-plane, and let o; have multiplicity m;. Let y = P, €,

where e is white noise, and let 1/3 be obtained by filtering y as follows:
) = [1Q = &)™y
i=1
Then forp > M,

o M(oy; — &;)e; + Olla — &)
1

B (dites) =

n
P

~

where ¢; are constants which depend on o but not &, and o = [ay,...,0,),& =

[diy c ,(ln].

Proof A Taylor expansion of the filter used to obtain @/A) around the point o yields

=1l —alg)™ .
! 11_0“1 q)y+Ola—al

§ =101 - g™y +3° (mxai — &)
=1 i=1

Let 9 be the sequence obtained through filtering y by the correct filter from (2.10):

n

4=

and let 2* = I_Liqz/}. Then 1) is given by

b=+ mi(a; — &)q2 + Olla — &l
=1
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Substituting this expression for 7,5 yields:

E ("Z)k'(/;k—p> = E(Yrthr—p) +
Zmi(ai — &) [E (¢kzii_p—1) + B <¢k~pzz—1)} +Olla —&|?

From Theorem 1, 1 is a moving average process of order M, so that for p > M,
E (Ypr—p) = 0. Let b; be the moving average coefficients of 1, i.e., P, = Zé‘i’o’l bjen—j.

The sequence z* is similarly given by 2}, = 332 gien—; with g5 given by

bo j=0
g;= bJ-I—ozzg;_l 1S]SM"‘1
i—(M=1) ; )
of M Vgt 2 M

For n > M the expectations E (1/)k:2;ig—p_1) and E (wk_pz,i_l) are given by

M-1
i _ 2 i
E (wkzk—p—l) = 0Og bjgj-—l—p)
=0
= (0
M-1
i A2 i
E (wk—;ﬂzk—l) = O¢ biG5sk—1-
=0

g M-1

— p—M i 2 J

= 0 Gpyo10, Z aibj'
Jj=0

Letting ¢; = g4,_1B(a;)0? gives the final result.

Remark 4 If the plant is stable and MP/8, underestimating 6 by one delay period
results in only one non-zero correlation coefficient beyond the predetermined lag. On
the other hand, when the plant in non-MP/0, the effect of errors in & is manifested
for all lags greater than M through the decay factor .

Remark 5 The proportionality constants ¢; can be estimated from the closed loop
data by estimating the MV closed loop as in Result 3, forming the filter, and calculating

the resulting coefficients b;.
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2.6 On-line implementation of MV estimation

Recall that the minimum variance estimation involves identifying a time series model
which describes the closed loop transfer function, and using this model to evaluate
the interpolation conditions (2.14). In order to implement this scheme on-line, one
needs efficient methods for identifying time-varying model parameters. Desborough
and Harris [24] have proposed restricting the time series model structure to be au-
toregressive (AR), and using recursive least squares with an appropriate forgetting
factor. While this approach is advantageous from a computational standpoint, it has

two significant shortcomings:

1. Many closed loop systems are not well modeled by AR time series. For example,
consider the simple case of an MP/0 plant driven by a discrete-time Wiener
process. Under minimum variance control, the closed loop will be Zf:o q*, which
is purely moving-average (MA). Modeling the closed loop with an inappropriate
model structure generally results in biased model estimates which will adversely

affect the evaluation of the interpolation conditions.

2. Recursive estimation with forgetting factor essentially discards data which if
used could result in more accurate minimum variance estimates. Suppose ¢
parameterizes a model, and let f(¢) be the function which calculates the mini-
mum variance from the interpolation conditions on ¢. If gZ) is an estimate of ¢
obtained from a finite number of data, and ¢ and ¥ are the mean and covariance

of this estimate, then under Gaussian assumptions

BU(@)) = (§) + girace (Sfy) + O(ISI)

where f44 is the Hessian matrix of f. Standard identification techniques, such
as prediction error methods, result in a covariance matrix ¥ of order 1/N where
N is the number of data points. The covariance matrix for recursive estimation
behaves similarly if the forgetting factor A is chosen as (N — 1)/(N +1). To

~

minimize the error in the estimate f(¢), as many points as possible should be
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used to estimate ¢. Using recursive least squares, 2 can be made small by se-
lecting A nearly 1, but this subsequently increases the delay for detection. More
intelligent methods are available for selecting which data should be included in

the parameter estimation.

An alternative approach involves dividing the data into segments with similar
dynamics. Then each of these segments can be analyzed in an off-line manner. In

other words, the following steps are carried out:

1. Use a detection scheme to locate changes in the dynamics of the closed loop.
Let t_; denote the last time for which a change was detected, and ¢ denote the

current time.
2. Identify a model using all the data in the interval (¢_4,1).

By dividing the data in this fashion, the maximum amount of available data can
be used to estimate the time series, resulting in a smaller covariance > and thus a
smaller error in the MV estimate. In addition, more general model structures can
be used. For example, including MA coefficients in a time series model necessitates
iterative identification procedures whose approximate recursive implementations (ex-
tended Kalman filter) converge slowly, but this two-step approach can take advantage
of computationally efficient detection algorithms while only requiring the use of a more
expensive identification algorithm once a change has been detected. Similarly, model
structure evaluation using methods such as cross-validation [98], which may not be
feasibly implemented at each time step, can be carried out following a change detec-
tion. In practice, structure evaluation may be important since system changes may
also produce changes in the model structure.

A few methods which are capable of addressing the problem of segmenting the
data are outlined below. A more comprehensive description of these methods can
be found in the individual references as well as in the monograph by Basseville and

Nikiforov [9] and the survey paper by Basseville [8].
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2.6.1 Two-model approach

Consider the case where the closed loop model changes from ¢%* to ¢! at some time
t. The output y is a random sequence with conditional probability measure functions
Pyo-(Yn|yn—1, - - -) and Py1(yn|Yn-1,...) before and after change respectively. To test
whether the change occurs or whether a single model ¢° was valid for all time up to
n, the likelihood of y assuming a change is compared to that assuming a constant

model over the entire horizon, yielding the following likelihood ratio:

— H?C—zll P¢O* (yk‘yk——h v ) HZ:t P¢1 (yklyk—h v )
[Tiz1 Pso (Yr|yk—15-- )

Since the models ¢°, ¢!, and ¢°* are generally unknown, they are replaced with

LR

(2.16)

their maximum likelihood estimates, yielding a so-called Generalized Likelihood Ratio
or GLR test. Appel and Brandt [2] have shown that in the Gaussian case, the GLR
may be evaluated by first dividing the data and fitting three models as follows:

1. ¢° for data in the window {1,...,n}
2. ¢**(t) for data in the window {1,...,t — 1}, and

3. ¢*(t) for data in the window {¢,...,n}.

The log-likelihood is then given by

u,(t) = nlogég — [(t —1)log g, (t) + (n—t+ 1) log 6?(75)] :
(2.17)

where 62, 62,(t), and 62(t) are the variances of the innovations from the estimated

models ¢°, ¢%*(¢), and ¢*(¢) respectively.
As the change time £ is also unknown, the criterion u,, is replaced with is maximum
over t

9 = max ua(t),

and g, is compared to a threshold to decide if a change has occurred. As the com-

putational cost of this algorithm can be quite high due to the search over t € [1,n],
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Appel and Brandt [2] propose modifying the algorithm by fitting ¢! over a window
of fixed length L. Equivalently, u, is calculated only for ¢ = n — L. Then if an exact
change detection time is desired, when u,(n — L) exceeds a threshold, an exhaustive
local search is used to find the optimal change time. This modification decreases the
computational load and does not significantly affect the detection capabilities.

For efficient on-line implementation of this method, AR models should be used
so that recursive identification can be done. It has already been argued that AR
models may not properly describe the closed loop behavior; however, Basseville [7]
has reported that in the area of speech segmentation, although AR models do not
describe the speech signals well, the two-model method using AR models does segment
the signals well. Since the AR model is used only to segment the data and not to
evaluate the minimum variance, the interpolation conditions will not be biased by an
incorrect model structure.

Other measures, such as the Kullback divergence, can also be used in the two-

model method to determine if a change occurred. The interested reader is referred to

[7].

2.6.2 Local approach

The local approach not only has strong theoretical justification, it is also capable
of addressing more general models than AR. From a theoretical standpoint, this
approach is asymptotically uniformly most powerful, which roughly means that for
small changes and large data sets, no other algorithm has a higher probability of
correct diagnosis. A brief outline of the local approach as applied to the present
problem follows and a more complete treatise of local methods can be found in the
references [12] and [26], as well as in Chapter 7.

Consider a time series model whose conditional probability measure function

Py(yi|ts-1,...) is dependent upon the parameters ¢. Let Y,(t) be defined as the
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derivative of log P with respect to ¢, that is

qu(t lOg P¢/ (ytlyt—ly .. )

0
o7 vt

It can be shown that, asymptotically, Y4(¢) is a zero mean sequence, normally dis-

tributed with covariance given by the Fischer information matrix J where

1) = B ggtoaPaudus,-- ) (215)

If a small parameter change A¢ occurs, then the mean of Y,(t) changes to J(¢)Ag.
Using the local approach, the problem of detecting the change in the parameters of a
time series can be transformed to detecting a change in the mean of a signal, which
is one of the simplest change detection problems and can be easily solved using the
Cumulative Sum (CUSUM) algorithm [6].

The local approach can be easily implemented on quite general model structures.

For example, for an ARMA model of the form

Na Np
Yn + Z QiYn—i = €n + Z bien s,

i=1 i=1

or equivalently y = B(q)/A(q)e, and for e Gaussian white noise, the conditional

probability measure function is given by
log Py(yn|Yn-1,--.) = —log (\/ 27r0) — o %2

where e is obtained by filtering y by A(q)/B(g). The signal Yy(n) can easily be

calculated by carrying out the following filtering operations:

1
W = —
B(Q)y
Alq)
Vo= —
B*(g)”
logPy = —2e,q'w,

aai
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%10gP¢ = —2e.q"v,.

The matrix J can also be easily calculated from the model parameters.

2.7 Examples

This section contains two examples which demonstrate the errors which might be
made when the MV techniques are applied without regard to NMP and unstable
behavior. Example 1 concerns the estimation of o2, for a plant with a zero inside
the unit disk, and Example 2 addresses the issue of NMP behavior in the closed loop
due to an unstable controller. In both cases, egregious errors are made when Results

1 and 2 are directly applied.

Example 1 Let P(q) be a model for an open loop stable system which has a zero at
g = o with |a| < 1 as well as 0 delay periods. Let H(q) be a time-series model fit to
the closed loop data.

Since the process is open loop stable, the parameterization of stable closed loop

transfer functions is simply given by [74]

®=W(g)[1 - P()Q(q)]- (2.19)

The MV closed loop will have the following form:

[}
: B
Drno(q) =D higt + ¢ — ) 2.920
mo(q) };6 T (2.20)

where h; are the impulse response coefficients of H(q). Defining the transfer function
Hy(q) = S9_, hiq*, the stability constraints (2.14) are all met only if the constant (3
satisfies

B=a (1 - a?)(H(a) - Hy(a)).
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In the form (2.20), the norm of ®n. can be easily calculated:

- p?

1—a2

7}
Hgbmvllz = Zh? +

=0

(2.21)

If the existence of the zero at o s unknown or neglected, the MV would be incorrectly

estimated by

6 6
q)mv = Zhiqza |I¢mv”2 = Zh? (222)
=0 =0

These values may vary significantly. For ezample, if W(q) = 1—15, stability would
require that h; = 1,1 =10, ...,0, and also H(a) = I—_l-&, resulting in = (1+a). Then
the correct calculation of minimum variance yields || ®my||? = (0 + 1 + 1£2), whereas
neglecting the effect of the zero would erroneously yield ||®,,||? = 0 + 1. For o near
1, errors arising from neglecting the zero will be much more significant than errors

arising from a poor estimate of the delay 0.

Example 2 Consider a process described by the transfer function
P(g) = 20g + ¢,

and disturbance model d = I%Ee, where e is a white-noise process. The MV controller

15 given by
1

(20 +¢)(1—q)’

resulting in a closed loop transfer function ®,,,(q) = 1. Suppose the closed loop is

Cmv (Q) =

originally operating with the controller Cp,,, but at time to, component failures result

in the controller Cy being implemented, where Cy is given by

—-22 4 21q
(1 —¢q)(—21+419q + 21¢%)

Ca(q) =
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Although C5 is unstable, the closed loop remains internally stable, and can be described

by the transfer function
2\9) = 57 9g q-) -

By changing from Cp,, to Cy, the root mean square output error increases by more
than a factor of twenty. Now suppose the MV correlation test were applied to the data
both before and after the change. ¢, produces the autocorrelation function {1,0, ...},
whereas ¢y gives {1,0, — 17%4i43 ,0,0,...}. The autocorrelation function for ¢, indicates
that it is not minimum-variance; however, over 640,000 samples would be needed in
order for the value 17‘é4i43 to lie outside the 95% confidence limits. Thus, based solely
on the autocorrelation test, one might incorrectly deduce that the increase in output
variance is not due to deterioration in control, but to a larger disturbance.

Now suppose the MV ratio is also estimated. Using standard identification software

[60], a MA(2) model was fit to 500 points simulated using Cs, yielding the model
d(q) =1 — 0.057¢ — 0.038¢%, 52 = 404.

The mean square error of simulated output data was MSE(y) = 406. If the method of

Result 2 1s used, the estimated MV ratio v, is given by

MSE(y
$2(0)s

Tm'u

MSEW) _ 1 005,
o2

which would confirm the results of the correlation test. On the other hand, if the

manipulated variable u is measured and a model of the form

3
U =Y aty—i + boys + b1yt

1=1
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is identified, the unstable pole in the controller at ¢ = 0.05 is easily detected. Using

this information and the method of Result 8, the MV ratio estimate is

MSE(y)

$2(0)02 402,

which correctly indicates that the variance exceeds the minimum by a large factor.

2.8 Conclusions

Data analysis tools which may be used to determine if a control system is achiev-
ing MV control, and to estimate the factor by which MV is exceeded, have been
presented. These tools apply to general plants, including unstable and nonminimum-
phase processes, and systems with unstable controllers. The examples of Section 2.7
have shown that estimates of minimum achievable variance obtained without regard
to limitations imposed by NMP behavior and instabilities can be drastically incorrect.

For on-line implementation of MV control, a two-step approach has been outlined.
The first step uses change detection algorithms to divide the data into segments
with similar dynamical properties. Two possible algorithms for segmentation were
reviewed. The second step involves analyzing the segments in an off-line fashion. This
two-step approach not only allows for more general models than those which may be
used effectively with recursive identification methods, but also minimizes errors in
the estimated minimum variance by using the largest data segment available.

As the MV methods of this chapter follow directly from the interpolation condi-
tions resulting from the Youla parameterization, the effective use of these methods re-
quires knowledge of the location and multiplicity of unstable poles and non-invertible
zeros. For the case where performance degradation is primarily due to changes in
the disturbance spectrum (or equivalently the transfer function W(q) in Figure 2.1),
these methods should work well since the process parameters do not change; however,
when performance degradation is due to changes in the process, including possible

drifting of poles and zeros, this approach is only feasible if combined with effective
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methods to estimate the value of these parameters.

Although minimum-variance is an optimal control law, in many cases it does not
reflect the desired closed loop properties. For example, a near minimum-variance
controller may oscillate around the set point and have a large settling time. Some
practical objectives, such as minimal overshoot, can be expressed as linear programs
as in Section 2.4.3; however, other objectives cannot be translated into optimization
problems constrained by the interpolation condition (2.14), in which case other per-
formance monitoring approaches are needed [103]. When implementing a scheme for
controller performance monitoring, care should be taken to ensure that the monitored
performance objective reflects the desired system behavior. In Chapter 3, an alter-
native performance monitoring method is presented which allows for more general

control objectives.
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Chapter 3 Performance Monitoring

using Likelihood Ratio Testing

Summary

In this chapter, evaluating deterioration in performance of control systems using
closed loop operating data is addressed by proposing a framework in which acceptable
performance is expressed as constraints on the closed loop transfer function impulse
response coeflicients. Using likelihood methods, a hypothesis test is outlined to de-
termine if control deterioration has occurred. The method is applied to a simulation
example as well as data from an operational distillation column, and the results are

compared to those obtained using minimum variance estimation approaches.

3.1 Introduction

In Chapter 2, performance monitoring methods based upon theoretical variance limits
were presented. Even though these “minimum variance” methods may provide useful
information about achievable performance limits, they have several shortcomings as
tools for evaluating deteriorating control. For example, in many cases, minimum vari-
ance does not provide a meaningful measure of control performance. Achieving this
theoretical limit may require a controller with high band width, or excessive control
action which may result in the violation of robustness conditions. In addition, a shift
in the ratio of actual variance to minimum variance may be due to either changes in
the controller, changes in the plant, or changes in the disturbance spectrum. Whereas
changes in the controller or the plant may merit retuning, changes in the disturbance
spectrum may not. Finally, changes in performance may be due to changes in delay

or in the location of the non-invertible zeros. Since the minimum variance methods
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require these parameters to be known, the estimates obtained may be quite poor
when incorrect values are used.

In this chapter, an approach to performance monitoring is developed for distur-
bance rejection problems applied to sampled single input/single output systems whose
closed loop behavior may be accurately described by linear models. The goal of the
monitoring scheme is to be able to detect violations of performance specifications from
routine operating data. In other words, the method should not depend on external
stimulation by test signals. Clearly if no disturbance or a constant disturbance drives
the system, evaluation of the control performance may be difficult as the steady state
behavior of the closed loop system will not reflect the dynamic performance. There-
fore, we restrict the class of disturbances which will be considered to those which may
be accurately represented by filtered white noise.

This chapter is organized as follows. A framework wherein good performance can
be expressed as constraints on the impulse response coeflicients is established. In Sec-
tion 3.2, we show how several practical performance criteria can easily be expressed
in this paradigm. Once a meaningful performance criterion is established, a hypoth-
esis testing problem is developed to determine if the performance is being achieved.
Section 3.3 shows how this test can be evaluated using a generalized likelihood ratio
(GLR) approach. In Section 3.4, threshold selection criteria for the GLR test are
enumerated. Extensions to systems subject to command signals are discussed in Sec-
tion 3.5. Finally, Section 3.6 presents examples which compare the methods of this

chapter to minimum variance methods.

3.2 Impulse response performance specifications

In order to evaluate if a given performance criterion is achieved, performance spec-
ifications must first be expressed mathematically. For controller synthesis, the per-
formance objectives commonly used are chosen so as to result in a solvable design
problem. For example, a linear quadratic objective is often used because the result-

ing optimal control is easy to compute. Similarly, for robust control of systems with
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bounded uncertainty, a H.-norm performance objective leads to a solvable problem.
However, many performance criteria such as settling time and overshoot are not easily
translated into these objectives.

Consider systems of the form shown in Figure 3.1, with e a Gaussian white noise
signal. Let ¢ denote the impulse response [1, ¢1, ¢, .. .] of the closed loop transfer
function from e to y. Note that ¢ depends not only on the plant P and the controller
C, but also on the disturbance generator W. Also, because the magnitude of the
input signal e is unknown, we can always assume ¢o = 1. Many useful performance
criteria can be recast as constraints on the coefficients of the ¢. We consider some

examples here.

¥
Q
¥
v
A 4
Nad

Figure 3.1: Closed loop system

1. Closed loop settling time. In industry, this criterion is commonly used to

assess controller performance, as is evident from the following quotation from

[52]:

Shell control engineers typically aim for a closed loop response with a
settling time close to the speed of response of the loop input transfer

function when significant upsets occur.

Letting 7 denote the response time, this performance objective could be stated

as

|p:| < 8o for t > T, (3.1)
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where ¢ is a suitably small constant.

. Decay rate. Alternatively, good performance may be specified by requiring
that after ¢, sampling periods, ¢ decay no slower than exponentially with time

constant 7. This objective translates to the following bounds on ¢:
t—1tp
|| < exp (——T—> ¢o for t > t. (3.2)

. Minimum variance. For processes whose only non-invertible zeros lie at in-
finity, the minimum variance closed loop response is a moving average process
of order d where d is the number of delays [43]. Minimum variance control could

then be expressed by the impulse response constraints:

¢t =0 for t > d. (33)

. Frequency domain bounds. Often, it is desired to keep the frequency re-
sponse of the closed loop ¢ small over a specified frequency range [74]. This is

expressed by
i e—jkw ¢k

k=0

< b(w). (3.4)

Although this constraint is non-linear in the coefficients of ¢, it can be approx-
imated by linear constraints by noting that |z| < 1 for z complex is equivalent
to R(z) cos(d) +I(z) sin(f) < 1 for 0 < 6 < 27. For ¢ real, this transforms the

above constraint to the set of linear constraints

i @i cos(kw + 6) < b(w) for all 0 € [0, 2. (3.5)
k=0

Although in general this amounts to an infinite number of constraints at each

frequency, approximating with a finite discretization of 8 is usually acceptable.

. Filtered coefficient constraints. Consider as an example the case where re-

Jjection of step-like disturbances is important, but due to controller bandwidth
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limitations or modeling errors, high frequency oscillations must be tolerated. A
meaningful performance criterion should not depend on high frequency phenom-
ena. By constraining the low frequency components of the closed loop impulse
response coefficients, this feature may be built into the performance criterion.
In general, filtering introduces phase distortion. As a result, the filtered time
response may look quite different from the unfiltered time response, even when
the time response is band-limited by the filter cutoff frequency. When a filter
with linear phase is used, the phase distortion results in a time shift of the
time response coefficient for which one can easily compensate [83]. An FIR low
pass filter with linear phase can be designed using the method of [65], which
has been incorporated in MATLAB as the command remez [59]. Implementing
such a linear filter on the impulse response coefficients will result in a delayed
approximation of the response to low frequency disturbances. Thus, meaningful

performance constraints will take the form

|| < bedh (3.6)

for k > D, where ¢f = 21’;0 Fi._;¢; are the filtered impulse response coeflicients,
[Fo, ..., Fop] is the FIR low pass filter, and D is the delay associated with this
filter, that is the slope of the phase.

Each of the above examples involve linear equality or inequality constraints on

the closed loop impulse response coefficients of the form:
Ap < b, (3.7)

where A is an appropriately dimensioned matrix and b is a vector. Although ¢
is an infinite dimensional vector, realistic performance criteria will restrict ¢, to be
arbitrarily small for t > t*, where t* is not too large, implying that ¢ can be accurately
approximated by a finite impulse response model of reasonable length when the system

is performing satisfactorily.
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Let us now formally state the assumptions which have been introduced in this

Section.

Assumption 3.2.1 The signal e in Figure 3.1 is a Gaussian white noise signal.

Assumption 3.2.2 The closed loop transfer function from e to y in Figure 3.1 can
be accurately represented by a linear FIR model when good performance is achieved,
and the performance objective can be erpressed as constraints on the impulse response

coefficients as in (3.7).

Just as a linear quadratic objective leads to straightforward optimal control design,
specifying performance criteria as bounds on ¢ results in performance evaluation
methods with tractable solutions. In addition, although objectives of the form (3.7)
are simple, they can represent a wide variety of realistic performance measures. In
the next section, methods for detecting violations of performance criteria of the form
(3.7) are developed. In applying the methods of this chapter, effort should be made so
that the performance constraints are properly formulated to reflect the desired closed

loop properties so that the tests are meaningful.

3.3 Generalized Likelihood Ratio test

Performance evaluation of control systems can be viewed as choosing between the

two hypotheses given by:

Ho: The closed loop behavior satisfies the performance objective,

Hi: The closed loop behavior violates the performance objective.

For a disturbance and noise free system, the hypothesis test could be quite simple,
for example noting the settling time for a set point step change. Unfortunately, many
industrial control systems do not satisfy these conditions. Unmeasured disturbances
which are stochastic and perhaps time-varying affect the output, and the performance
criterion of interest will frequently address the capability of the control system to

reject such unknown disturbances.
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Throughout the ensuing discussion, the following terminology and notation will
be used. Let 0 denote a parameterization of a fixed model. Furthermore, let © be a
set of such parameterizations. For example, § may be the vector of coefficients for an
n'" order Moving Average (MA(n)) model, and © the set of all MA(n) models. For
convenience, we will refer to © as a set of models, and an element § € © as a model.
We also denote by ¢y the impulse response coefficients of a model 6.

By assuming that the noise is Gaussian with zero mean and that its covariance o is
part of the model parameterization, a probability density function may be associated
with each model § € ©. Let Y.(t) be the vector containing the L most recent
measurements, i.e., Vi(t) = [y(¢),y(t — 1),...,y(t — L + 1)]. Given a model 6, we

denote the probability of V() by pe(Vr(?)).
Example Suppose YV (t) is generated by a moving average stochastic model,
y(t) = e(t) + Y bielt - 9), (3.8)
i=1

where e is Gaussian white noise with covariance o®. Then 6 = [by,...,by,0%. The

probability density function py is given by

w0 = ] ——exp (fz(’“’”), (39)

k=t—L—m 210 202
with e(k, ) obtained by filtering y according to

1

.t 10
T+ 57, be—i” (3.10)

€

In order to calculate €, the transfer function 1 + -7, b;27 should be invertible.
In practice this does not pose a problem. As the signal e is unknown, the closed
loop transfer function is essentially fit to the spectrum of the output, and it is well
known that for any non-invertible transfer function, there exists an invertible transfer
function with the same spectrum.

We now consider the problem of evaluating the performance of a closed loop
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system. To do so, first define two model sets, ©y and O, corresponding to hypotheses

Ho and Hll

©y = {6|Performance Satisfied},
©; = {B|Performance Violated}.

Since a model cannot both satisfy and violate the performance specifications, the
two set ©p and ©; will be disjoint. By defining the model sets in this fashion, the

hypotheses become

Ho : YVi(t) generated by 6 € O,
Hy: Yi(t) generated by 6 € ©; .

To address testing the hypotheses Hy against H;, consider first the idealized sit-
uation where good performance corresponds to exactly one closed loop model, 6,
and poor performance corresponds to a different model 8;. Such a hypothesis testing
problem in which each hypothesis can be reduced to a single value in the space of
probability distributions is referred to as a simple test. In this case, a hypothesis can
be chosen using a likelihood ratio test in which the ratio of the probability density
functions pg, to pg, is compared to a threshold A. The decision function gy is given
by:

poy (YL ()
Hos potzay > N

(L(t) = (3.11)

pog (VL (1))
Hi, po, (VL(t)) <A

Two measures used to evaluate a decision function g, are the size and the power. The

size a of a test is the probability of a false H; diagnosis,
a(A) = P(ga(Vr(t)) = Hi|Ho), (3.12)
and the power [ is the probability of a correct H; diagnosis:
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The fundamental lemma of Neyman and Pearson [57] implies that for a simple hy-
pothesis test, the most powerful test for a fixed size is necessarily based upon the
likelihood ratio. The likelihood ratio approach has found wide use in detection prob-
lems [9] and is the basis of many common schemes, such as the cumulative sum, or
CUSUM, algorithm. ,

In practice, the assumption of a simple hypothesis for which the likelihood ratio
test may be applied will be violated. Many different closed loop models will satisfy the
performance criteria, and many other models will violate them so that both ©¢ and ©,
will contain many elements. In hypothesis testing terminology, this situation is called
a composite hypothesis testing problem. A common way to deal with composite
hypothesis testing problems is to formulate a likelihood ratio test with the single
probability density function py replaced by the density function corresponding to the
most likely hypothesis in the set, i.e., supgcg 9. Replacing the densities with their
maximum likelihood estimates results in the Generalized Likelthood Ratio, or GLR,

criterion. The GLR is calculated as

GLR — SUPg,e0, Péo (yL(t)) ' (314)
Sup91€@1 p91 (yL (t))
The decision function g, based on the GLR is given by:
Ho, GLR > A,
n(L(t)) = (3.15)
Hi, GLR <A

Although the exact optimality properties of the GLR are unknown, for many special
cases the GLR test is optimal [9].

In the case of Gaussian white noise, the probability measure function is given by

pe(Yr(t)) = \/%r? exp (- Zk:t'?;;z(k’ 0)) , (3.16)

where €(k, ) is the model residual, which is obtained from the data and model through
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the relation
e(k,0) =y(k) — Ep (y(k)|y(k—1),...,y(t — L+1)), (3.17)

with F, the conditional expectation under model 8. Since the parameter o does not
affect the calculation of €(k, 6), it is possible to calculate the optimal o2 as a function
of the other parameters. Let the model parameters be partitioned as 6 = [0, 02]. For
any €(-,0*), the Gaussian probability measure function is maximized with respect to
o2 when o2 takes on the value V(Y (t),6*) which is defined to be the mean residual
square error: Lo

=Y k0. (3.18)

o =V(L(t),6%) 7
k=t—L+1

This relation can be easily verified by setting the partial derivative of ps with respect
to o2 to zero. Substituting this value of o2 into the probability measure function, it

follows that

L
1
s%ppa()fL(t)) = sup (W) exp(—L/2). (3.19)

Therefore, the supremum is achieved by minimizing the sum of squares of the resid-

uals, that is

g = argr@réigV(yL(t),H*)
&% = VL), 0. (3.20)

The GLR then becomes

VoL 0)\?
v<yL,éo>> | (3:21)

We see that for the case of Gaussian white noise e, the GLR is calculated by min-

GLR = (

imizing the residual square error over the two sets ©y and ©;. Assumption 3.2.1
guarantees that the driving force for the closed loop transfer function is persistently
exciting so that it will be possible to identify the transfer function from routine op-

erating data.
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Now let us consider the specific case where the performance specifications are given
as linear constraints on the impulse response coefficients, as discussed in Section 3.2.
With the performance criterion as in (3.7), the natural structure for models in 9y is
that of moving average models. Although autoregressive models have the advantage
that the residuals € are linear functions of the model parameters, thus reducing the
estimation of §, in the unconstrained case to a least squares problem, they have the
disadvantage that constraints of the form (3.7) are quite cumbersome to express in
terms of the free model parameters. By contrast, moving average models are more
difficult to estimate, but the performance criteria are easily implemented. As efficient
numerical methods for estimating moving average model parameters are well known
[60, 61, 94], we do not view this difficulty to be overly burdensome. Our experience
has shown that including constraints in the estimation of MA coefficients only slightly
increases the computational burden. We note that using models with both AR and
MA terms, which in most cases gives the most parsimonious fit to a generic time series,
also makes implementing constraints of the form (3.7) difficult. For these reasons,
the model set © in this chapter will be restricted to moving average models.

Although it is important that the set of models ©, accurately describe the closed
loop system under good performance, it is less important that some element of ©;
provide an unbiased fit when the performance specification is violated. Indeed, since
performance violation could result in significantly different model structure which
may be completely unpredictable, it will frequently be quite difficult to select a set
©, which fits deteriorated performance conditions in an unbiased manner. What is
important for determining performance deterioration is that when the system is not
performing well, some model in ©; fits the data much better than any model from
the set ©g. When Oy is the set of MA(¢*) models satisfying the constraints Agy < b,
this feature can often by achieved by allowing ©; to be the complement of ©, in the
set of MA(t*) models, even though this structure may not adequately describe the

closed loop under deteriorated performance. Therefore, the sets ©, and ©; are of the
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form:

O0 = {0€ MA(t")|Ags < b},

where t* is the order of the MA process, and A; and b; represent the i*" row of the
matrix A and the i*! element of the vector b respectively.

Evaluation of the GLR requires that the residual square error V be minimized
over each of the sets ©y and ©;. The performance criterion has been formulated so
that the set ©¢ is convex, and therefore the optimization over ©, will be straight-
forward; however, the set ©; is clearly non-convex and in general its optimal point
will be difficult to calculate. Let us therefore consider another model, éu, the optimal

unconstrained model:

6, = arg Jnin V(YL 0). (3.23)

Since the two sets Oy and ©, are disjoint, it follows that éu lies in exactly one of these

sets. Therefore, the following implications hold:
0. € 0= V(¥,0) <V(Y,0,) = GLR > 1, (3.24)

0,€ 0, = V(,0)>V(Q,0)=GLR < 1. (3.25)

Now suppose that the decision function g, is as in (3.15) with A < 1. Intuitively,
the assumption A < 1 is appealing as it implies that if the optimal unconstrained
model 8, satisfies the performance constraints, H is accepted. Under this assump-
tion, it is never necessary to perform the optimization over the set ©;. Instead, the
hypotheses Hy and H; defined by the model sets (3.22) are tested by implementing
the following steps:

1. Calculate the unconstrained model 6, given by (3.23).

2. Check if §, satisfies the constraints Adg, < b. If so, accept Ho; otherwise,

proceed to step 3.
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3. Find 6, by solving the optimization problem (3.20) for the set ©g, and then
calculate the GLR via (3.21) with 6; = 4,.

4. Use the decision function gy given by (3.15) to choose Hy or H,;.

Implementation of this scheme requires the selection of a threshold A. In Section

3.4, methods for choosing a threshold are discussed.

3.4 Threshold selection

In the previous section, a generalized likelihood ratio test for determining whether a
control system meets performance constraints was presented. Typically, the threshold
A is obtained by choosing an acceptable false alarm rate, given by the size o of the
test, and calculating the value of A which yields this false alarm rate. Applying this
approach to the detection problem outlined in the previous section, the false alarm

rate is given by

a(A) = P(ga(Y) = HilHo),
= P(GLR < \H,), (3.26)

which gives the relationship between the threshold A\ and the false alarm rate of the
test gx. Let § denote the actual system associated with the data ). To evaluate
a, for each value of 6 a probability distribution function (pdf) for the GLR must be
calculated from the estimation schemes used to calculate 8, and 6. Then, a pdf for
8, p(6) must be specified. The latter distribution determines the likelihood of various
model and disturbance changes which may affect the system. Once these two pdf

have been determined, the size of the test o may be calculated:
a()) = /@ P(GLR < \8)p(6)dd. (3.27)

Although this gives a theoretical expression for v in terms of A, two primary difficulties

render this approach impractical. First, no systematic method exists for deriving the
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pdf for the GLR from the estimation schemes. Second, this approach requires that
a probability distribution be assigned to the set of models ©y U ©,, and in most
applications, no such distribution is readily available. For these reasons, this method
for selecting the threshold A will not be pursued.

Because of the difficulties mentioned above in calculating the size of a GLR test,
the asymptotic local approximation [9] is commonly used to select thresholds for
GLR tests. When the probability measures associated with H, and H; get closer
to each other as the data length L approaches infinity, for a large class of systems
the distributions become locally asymptotically normal. Under these conditions, the
pdf for the GLR can be well approximated by a local normal distribution. This
approximation readily permits computation of the test size o and power 3 in terms of
the threshold A. Although the local approach is widely used to select threshold levels
for GLR tests, the assumption that as L increases, the probability measures associated
with the two hypotheses Hy and H; approach each other is not well suited to the
performance diagnosis problem considered here. The goal of the detection scheme at
hand is to detect changes in the closed loop transfer function which correspond to the
system changing from good performance to poor performance, which is quite different
from a detection problem wherein one is interested in arbitrary small changes in the
system. For the case of performance monitoring, there are many dynamical changes
that may occur without violating the performance specifications, and these types of
changes should not affect the monitoring scheme. Under the assumptions of the local
theory, as the data length L grows, the magnitude of the changes to be detected
decreases, and thresholds selected using this theory will result in detection schemes
which perform poorly when these assumptions are violated.

Because the available theoretical results for threshold selection cannot be straight-
forwardly applied to the performance monitoring problem at hand, other approaches
must be introduced to set the threshold. In the following Sections, three threshold
selection methods are introduced. The first two methods consider the confidence of
the parameter estimates to reduce the threshold determination to the selection of a

new parameter which carries a more intuitive meaning. The third method considers
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a cross-correlation criterion which produces a threshold without requiring selection

of a secondary parameter.

3.4.1 Confidence limit approach

As an insightful example, consider the estimation of a MA(t,) model using a MA(m)
structure with m > t,. Applying the methods of [61] or of [94] to estimating the
parameters will result in an unbiased estimate. Therefore, in the limit of infinite data,
the m — ¢y, “extra” parameters in the MA(m) structure will be correctly identified as
zero; however, for finite data, the variance of these estimates will be non-zero. To
determine if these extra parameters could be set to zero, it is useful to compare their
estimated values to their variance. More generally, the variance of the parameter
estimates serve as a measure of their precision. Since the variance of the estimated
parameters can also be estimated from the data, we can use this information for
our criterion. In this section and the next, we discuss two possible approaches of
incorporating parameter covariance estimates in the decision criterion.

Let V(,6,) be as in (3.23), with 6, € ©;. The GLR method compares the values
of the two quantities V(),8) and V(),6,). If there were no uncertainty in the
models 6 and 6,,, it would be reasonable to accept H; whenever V(),6,) < V(V,6,);
however, using finite data, the estimates 6, and 8, will always have some uncertainty
associated with them. Representing this uncertainty by a probability distribution
for the estimated éu, consider the question “Given the distribution for (}u, is there a
model 8, which is not much less probable than éu and which would give the same
residual square error as éo for the data V7" If such a 6, exists, then accepting H;

may be a rash decision. This leads to the following test:

Test 3.4.1 Is there a model 0, such that P(6,) > r*P(6,) and V(,8,) = V(,b,),
where P is the probability of the parameter estimates, and r* is a specified constant

on the interval (0,1]. If so, accept Hy; otherwise, accept Hy.

Here, r* determines how much less probable such a 8, must be before one is willing

to accept H;. Using standard identification methods, the asymptotic estimate 6,
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obtained from minimizing V' will be normally distributed with mean 8, and covariance

>.. For this distribution, the relative likelihood of two models 9u and éu + df can be

calculated:
P(b,+do) exp(3(0, — 0,)7E71 (8, — 6,)) (328)
P(8,) exp(L(0, +dI — 8,)TS;1 (0, + db — 6,)) ‘
By assuming 6, = 9u, the ratio (3.28) becomes:
w = exp(—}dHTZgldO). (3.29)
P(6,) 2

Choosing a value r*, and letting 6* = —2log(r*), Test 3.4.1 can be expressed as

max VY, 0, +d8) 2 V(Y,b), (3.30)
o7y do<s*

where the poor H; is accepted if < holds, and H, if > holds. To apply this test, we
could either solve the optimization problem (3.30), or we could consider an equivalent
test,

§* 26, S=mindst. max V(),0,+df) =V, b). (3.31)
doT x5 do<s

In general, both of these optimization problems may be very difficult to solve; how-
ever, a simple approximation can be made to the latter using that fact that 6, is

an unconstrained optimal point of V/(),6). Consider the second order expansion of

V(),6) about V(,8,):
VD, b, +d0) = VD, 0.) + Va(V, 6,)7d6 + %d@%(y, 6.)d8 + O(||d8|[*), (3.32)

where V() éu) and Vge(), éu) are the gradient and Hessian of V' (), 6) respectively
evaluated at 6,. Since the matrix Voo (Y, éu) is usually calculated in the optimization
routine to find 8, it is readily available, and also Vj(), éu) = 0 since 6, is a minimum

of V. Using this expansion, we see that for df small, the maximization in (3.30) can
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be approximated by

N n 1 ~
max V(),0,+d8) —V(V,0,) = max  —df7 Vae(Y, 0,)d0 + O(]|d6] ),
doT s do<s" doTs  do<s* 2
— 1 T N 3
= z%aé);* 21‘ TV (Y, 6,) Iz + O(]]d6]%),

1 - .
= —2-5*A(J‘/ee(3’,9u)=7)+0(lld9l!3), (3.33)

where J? = 3, and X denotes the largest eigenvalue. The matrix J is guaranteed to
exist since X, is symmetric and positive definite. An approximate of the minimal *

as in (3.31) can easily be obtained from this solution:

Y, bo) — V(¥,6,) N O(||d6]}*)
IV, 6,7) AMJIVie(V,60,)T)

5 =

(3.34)

If 6 > 6", we accept hypothesis H;. Rearranging (3.34) results in a threshold for the
GLR test, ,

V,0.) ., NI VeV, 0.)J) '3‘__ .
<V(y,éo)> < (1 2V (Y, 0) ) =Ti(r") (3.35)

In summary, evaluating decision function gy in (3.15) using the threshold A = T;(r*)

consists of the following steps:

Application of Test 3.4.1:

1. Calculate 8,. If Adg. < b, accept Ho; otherwise, go to step 2.

2. Estimate the covariance matrix ¥, of éu Calculate J such that J? = X,,.
3. Calculate 6y = SUPgeo, V (Y, 0).

4. Choose a confidence limit r* and the associated value 6* = —2logr*, and cal-

culate A = Ty (r*).

5. Evaluate gy.
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3.4.2 Constraint softening approach

In the previous section, the covariance matrix ¥, for the unconstrained parameter
estimates éu was used to determine a GLR threshold A for the decision function g,
in (3.15). An alternative approach would be to set A = 1, and relax the constraints
until éu € Oy, in which case g; = Hg. Then, the amount by which the constraints
must be relaxed can be compared against the covariance of the parameter estimates
to decide whether acceptance of Hy is justified. To motivate this approach, consider
again the example of estimating the parameters for a MA(¢y) time series using a
MA (m) model, m > to. Using the MA(m) structure, an unbiased fit can be obtained;
however, for finite data, the probability that the extra m — tg coefficients are exactly
zero is infinitesimally small. By contrast, the probability that these parameters lie
within a standard deviation of zero will be significant.

Let o, = 1/Z.(k, k). If performance constraints were all of the form ¢y < by, soft-
ening the constraints so that P4, . lies within 6* standard deviations of the constraint

would result in a constraint of the form:
dr < b + 00y (3.36)

This constraint softening approach is depicted in Figure 3.2. The performance con-
straints in this figure corresponds to ¢ < 0.1 for k > 6. The model 8, clearly violates
the constraints, but each parameter ¢¢ through ¢4 lies within a standard deviation
of satisfying the performance specifications.

More generally, the following test may be applied:

Test 3.4.2 Does there exist a 8 which satisfies the performance objective and is such
that each parameter 6y is within §* standard deviations of the optimal estimate éu,k?

If so, accept Ho; otherwise, accept H;.

For linear constraints as in (3.7) and MA(¢*) models, Test 3.4.2 may be carried out by

replacing ¢, , in the constraint equations by P4, T doror and solving the feasibility
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Figure 3.2: Illustration of constraint softening approach

problem: Does there exist a vector d¢ = [d¢y, . .., d@] such that
Ay + Adg < b, |dgy| < 6*0p. (3.37)

This feasibility problem can easily be solved via the following linear program:

LP1
n(};n 85
s.t. Alp+do) <b
|dgx| < b0y,

The problem is feasible if and only if 6, < 6*. The Test 3.4.2 can therefore be applied
by carrying out the following steps:
Application of Test 3.4.2:

1. Calculate 0,. If Adg. < b, accept Ho; otherwise, go to step 2.
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2. Estimate the covariance matrix ¥, of éu
3. Solve the linear programming problem LP 1 for 6,.

4. If §, > 6*, then choose H;; otherwise, choose H,.

We make a brief comparison between this method and the one of the previous sec-
tion. Each test measures the distance in the parameter space from the unconstrained
optimum of V' to another point. The first method uses a weighted 2-norm, where
the weight is the full covariance matrix, whereas the second method measures the
distance using an oo-norm, and only the diagonal elements of the covariance are used
for weighting. When the covariance matrix is diagonal, these two measurements are
equivalent in the following sense. Let D,©(9) and D,.©(4) be defined in the following

way:

D,0(8) = {df|doT=;tdo < 6},
D©(8) = {df | |dbk| < box},

then for any &y, there exists §; and d, such that
D20(61) C Du®(d0) C D20(57). (3.38)

However, when 3, is not diagonal, such an equivalence does not exist, and points
which are “near” 6, with the 2-norm measure may not be near with the co-norm
measure. This will especially be true in the case where ¥, is ill-conditioned. In this
case, incorporating the directionality of ¥, into the linear program may result in a
smaller value of §. Since ¥, is positive definite and symmetric, it can be factored as

¥, = VT DV with V a unitary matrix and D diagonal. Using this factorization, the

set Dy© can be expressed as
D,0(8) = {df|||D~'Vdo|2 < &} (3.39)

From this expression, the infinity norm measure which is equivalent to the norm used
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in defining D,© can easily be gleaned, ||D'Vdf||o,. Minimizing this norm subject

to the performance constraints results in the linear program LP 2:

LP 2
o
st.  A(p+de) <b
z=D"1Vd¢
21| < &

3.4.3 Cross-validation approach

The GLR test (3.15) with A < 1 compares the residual square error for the two
models éo and 9u Unless by chance éu € O, éu will always produce a smaller
residual square error than f, since the optimization in the former case is performed
over the larger set ©, = ©oUO;. If the extra degrees of freedom of the set ©,, actually
allow a better description of the system, then the model set © is inferior to O, in
describing the closed loop system. To determine whether added degrees of freedom in
O, are justified by the data, one could use 9u to calculate residuals from a different
data set which was not used in the search for ,. This approach is commonly used for
selecting model structures for process identification, and is referred to in the literature
as Cross-Validation. As the proposed performance evaluation essentially consists of
choosing between two model structures, ®, and ©,, cross-validation tools can be
used to test the hypothesis. In this section, we briefly review the general approach
and develop a convenient estimation technique which is valid for model structures
containing constraints. We then show how the cross-validation approach can give a
threshold for the GLR test.

The idea of using cross-validation for model selection dates to [99]. The basic
concept can be described as follows. Given a sequence of data and two separate
model structures, first divide the data into two segments. Use one segment to obtain

the best possible fit for the chosen structure, and then use the second segment to test
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the model. The structure which produces the smallest error on the test sequence is
chosen.
A generalization of this approach has been presented by [98]. Let I = {1,2,...L}
be an index corresponding to a data sample. Partition the data into k segments I,
such that
L={(p-1m+1,...,pm}. (3.40)

We assume here that L = km. When this assumption does not hold, we simply let
I}, contain more than m but less than 2m points. Also define the following model

performance criteria:

> E(t,0), (3.41)

tel—I,

SI

V() = %Zez(tﬂ), VP(0) =

tel

where for notational simplicity, we have dropped Y from the argument of V', although
it is still implied that V depends on the data. Cross-validation involves first finding
ép € © which produces the smallest residual error for ¢ € I — I, , and then using
the residual errors for t € I, which were not included in the optimization objective
to evaluate the model structure ©. When this procedure is repeated for each of the

data partitions I, the cross-validation criterion can be mathematically expressed by:

k
Cr(©) =>">" (t,6,), 0, = argmin V?(4). (3.42)
p=1telp 9e®
This measure can be applied to performance evaluations in a straightforward fashion

by comparing the values of C;(©y) and C;(0,), resulting in the following test:
Test 3.4.3 If C1(©g) < C1(0,,), then accept Hy; otherwise accept H.

Although C; could be calculated exactly, for large k this direct approach would
be computationally expensive. Stoica et al. derive an asymptotic approximation for
Cr which is much easier to compute for the case where the model structures do not
contain constraints on the parameters. Under a relatively mild assumption, a similar

approximation can be made for constrained model structures. Let us consider the
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following assumption:

Assumption 3.4.1 Let © be a set whose elements satisfy linear constraints of the
form (8.7), and let ép be as in (3.42). For eachp=1,...,k, the active constraints of

0, are the same as the active constraints of 0, where 6 minimizes V ().

The active constraints can easily be determined by calculating the vector A¢y — b
and finding the elements which are zero to within machine precision. Under the above
assumption, the following theorem holds:

Theorem Let § = arg mingee V(6), and let J index the set of active constraints
for . Then

%C’I(@) — gn(©)+ 0 (#) , (3.43)

where

k
in(©) = V() + 75 3 wp(@) WoB)uy(d),
wp(0) = 3 et O)eolt, D),

W(0) = (W&(é)TNAJVea(é) + A§AJ)-1 Voo (0) N,
NAJ = (I‘—AEI;(AJA?)—IAJ)’

and A; is a matrix containing the rows of A indexed by J. When no constraints are
active, Wy = Vyo(6)~1.
Proof: (follows similar proof in [98]) First, consider the Kuhn-Tucker conditions

for an optimum in V() subject to linear constraints as in (3.7):
Va(6) + ATuy = 0. (3.44)

This implies that Vj(f) is in the range of A7. As the range of AT equals the null
space of Ay, this condition could be written as My, V3(d) = 0, or equivalently as

Vy(6)TN 4, = 0.
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For k sufficiently large, ép is close to é, and we write
(t,0,) = €(t,0) + 2¢(t, 0)eq(t,6)T (8, — 6) + O(|16, — 6]]%). (3.45)
Using the assumption that the active constraints for ép are the same as for 0,

0 = NAJVBp(ép)a
= Na, (VE0) + V©0) (6, — ) + O(l16, — 0112) ,

v (ve@ 25 e D)aln )

tel,

+ {Vee(é) - ((,% 2 > elts O)eo(t: 0) } (6, = 0) + O(]16, - 6l|2>> ,
telp 90
_ (—% 5 et 0ealt, ) + [Vaold) + 0 (1 )] G — )+ O(16, - ém)
tel,
(3.46)
To evaluate the order of Mg, <—7}—1 Ster, €(t, 0)es(t, é)), note the following:
Na, (% 3" e(t, )es(t, é)) = N, (E(e(B)es(0)) + O(1/m))
tel,
= Na, (-}: > e(t,0)eq(t, 0) + O(1/VL) + 0(1/@)) :
= Na,Vo(6) +0(1/vm),
= O(1/y/m). (3.47)
It then follows that ||d, — || = O(1/(kv/m)). Therefore, we get the relation
N, Vao(6)(@, — 0) = N, (% t;,, e(t, O)eolt, 6) + 0(-@-1\7_7%)) . (3.48)

Combined with the constraints A J(ép — é) = (), we get the following system of equa-
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tions for (8, — 6):

N, Vap(0 A a Na, (2w, (8) + O(=E=
Ay 99( ) (ep . 9) — Ay <LwP( ) (k ﬁ)) , (349)
Ay 0
which has the unique solution
0, —0= —WJ(Q)wp +0 (3.50)
L k2\/—

Next, noting that A, (8, — ) = 6, — § , and substituting (3.50) into (3.45) gives

201(0) = }L_pzi:uez,,{e (t,6) + 2¢(t, B)eo(t, )TN, (WJ(e) w, () + <k2 \/_)>}
+0(13m)
. 4 . .
= V() + ﬁ;wp 0)TW;(8)w,(6)
B [k Z ) 0 (i) +0 ()
_ wéw%}ijlwp(éfwj(é) (9)+0(k21 ) (3.51)

By applying the approximate cross-correlation criterion g,,(©) to the model struc-
tures ©, and ©p, we can determine if the set ©, fits the data Y (t) better than 6. If
4m(©4) < gm(©y), then the performance bounds imposed by O are too restrictive. If
the inequality is switched, acceptable performance is concluded. This approach can
also be interpreted as the selection of a threshold for testing the GLR. The relation

Im(Oy) < gm(©y) is equivalent to

GLR = (M) ZT3,
V(Y,6o)

(1 B > (wp(éO)TWJ(éO)wp(éO) - wp(éu)TVGB(é )~ wp(é ))
V (¥, 60)

oft

T3E

(3.52)
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In summary, a hypothesis test incorporating a cross-validation can be applied through

the following steps:
Application of Test 3.4.3:

1. Calculate 8, = Supgeo, V (I, 0). If éu € Oy, accept Ho; otherwise, go to step 2.
2. Calculate 0, = SUPgeo, V (I, 8) and determine the active constraints for f.

3. Calculate threshold T3 as in (3.52).

K

. Evaluate the decision function g, in (3.15) using the threshold T5.

3.4.4 Comparison of threshold selection methods

In this Section, the threshold selection approaches of Tests 3.4.1, 3.4.2, and 3.4.3 are
compared. A brief comparison of the norms used in Tests 3.4.1 and 3.4.2 was made
above. Besides the different norms used in the two approaches, another important
distinction exists between the two methods. Whereas the latter measures the distance
from the unconstrained optimum to the set of good performance models, the former
measures the distance to the nearest point which lies on the same contour of V (Y, 6)
as V (), 90). Thus Test 3.4.1 gives a point éu + df which has the same likelihood as
6o, but may not satisfy the constraints, and Test 3.4.2 gives a point 6., + d6 which
satisfies the constraints, but may be less likely than V(, 90). This is illustrated in
Figure 3.3. The point A represents the unconstrained minimum 6, of V(6), and B
the constrained minimum y. The set {6| = 0, + df, d6TS-1d6 < 6*} is contained
within the heavy ellipse, and the set {00 = 8, + db, |df;/ox| < 65} is the interior
of the heavy rectangle. The other curves represent the equicost curves of V(6). The
latter criterion measures the distance from A to C, the nearest feasible point, and
the former criterion measures the distance from A to D, the nearest point with the
same cost as the point B.

Although different philosophies lie behind the distances measured in Tests 3.4.1
and 3.4.2, it is probable that both measures will give similar diagnoses, and the

examples of Section 3.6 support this claim. As no theoretical results are available,
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Feasible Region
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| dB, /oy | < O,

Cost Curves

y

Figure 3.3: Graphic interpretation of Tests 3.4.1 and 3.4.2

further empirical comparisons between the two tests should be made with industrial
data.

From a computational standpoint, a significant difference exists between the two
Tests 3.4.1 and 3.4.3 and Test 3.4.2. To implement the former, both an unconstrained
and a constrained optimization of V' (), 6) must be solved along with other algebraic
computations, whereas for the latter, the constrained optimization of V(}, ) is re-
placed by a linear program. In most cases, solution of LP 1 or LP 2 will be more
efficient than the constrained optimization of V.

As noted in Section 3.3, it is desirable that given a threshold, performance criteria
such as the false alarm rate can be evaluated; however, this requires knowledge of the
distribution of closed loop transfer functions, which is generally unknown. For this
reason, the threshold selection methods presented above were derived so as to have an
intuitive meaning. For the method of Section 3.4.1, the threshold obtained depends

upon the selection of a new threshold, r*; however, for many practical applications, the
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interpretation of r* will be more straightforward as it is related to the uncertainty in
the estimated model 8. Similarly, the parameter §* required for the method Section
3.4.2 also carries an intuitive interpretation as the number of standard deviations
about the estimated parameters which must be considered before the constraints are
satisfied. Although the goal in deriving the criteria of Sections 3.4.1 and 3.4.2 was to
provide intuitive insight into threshold selection, in many cases the parameters r* or
6* will necessarily need to be tuned on line to give the desired detection properties.

The goal of performance monitoring is to identify control loops which may need
to be retuned. Therefore, one approach to selecting 7* and §* is to simply calculate
the values they must take for the good performance hypothesis H; to be accepted. In
this manner, the control loops needing retuning can be prioritized. The smaller the
value of 7* (or larger §*) which is needed to accept Hg, the higher the priority should
be set to retuning the controller.

Unlike the other two methods, using the cross-validation method of Section 3.4.3
does not require the selection of any secondary thresholds. From this standpoint, its
application is more straightforward, and when selection of the levels 7* and §* is not

intuitive, this method will be preferred.

3.5 Extensions to systems with command signals

The methods developed in the previous sections focus on evaluating the ability of a
control system to reject unknown, unmeasured disturbances. We implicitly assumed
that no changes in set point occur within the data sequence being tested; however,
operating data will often contain set point changes. We could apply the methods of
this chapter to the signal y — r, where r is the reference signal, but this approach
has disadvantages. For the GLR method, one essentially seeks to find the most likely
unknown sequence e that produces y via some model within the sets ©, and ©,.
When the set point changes are large compared to the disturbances, a large value of
€ will be needed to produce y — r when no information on r is included, and this will

typically bias the estimation of the underlying closed loop model.
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In order to include reference signal data in the performance evaluation scheme, we
consider two separate cases. The first corresponds to the case wherein the reference
signal excites the system sufficiently for identification purposes, whereas in the second
case, it does not. In most circumstances where routine operating data are used, the
reference signal will excite the system poorly, and the second approach will be more
applicable.

Consider a system as in Figure 3.1, with the modification that instead of y, the

controller C is driven by y — r. The closed loop transfer function becomes:

W 1
—r= — .
y 1+PC¢ 1+ PC

(3.53)

Previously, we have considered evaluating performance by estimating the transfer

function using two model structures, one of which has been constrained to

W
1+PC
correspond to acceptable performance. When the reference signal r is persistently

exciting, a similar approach can be taken by specifying a set ©f which contains all

1
1+PC

transfer functions which corresponds to acceptable performance levels. Simi-
larly, a set ©f, analogous to ©1, is specified, and a generalized likelihood approach

test may be developed using the ratio:

P(YVL(t)|RL(t),0 € O, 0" € OF)
P(YL®)|RL(t),0 € ©1,0" € ©F)’

(3.54)

where Ry (t) is a vector analogous to Y (t) containing the history of the reference
signal. Once again, by choosing a threshold value less than one, the optimization
over ©7 can be replaced by a simpler unconstrained optimization over O] = ©f U ©7.

When the reference signal r is not persistently exciting, this approach will work
poorly because the unconstrained structure ©f, will tend to over fit the data, resulting
in a small GLR. This may result in a poor performance conclusion, when the system
is in fact performing satisfactorily. Consider, for example, the special case where the
data R (t) contain only one step change in the reference which takes place at time

to € [t — L+ 1,t]. If ©} is an FIR(m) model, then the data can be made consistent
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with €(t*) = 0,ty < t* < £y + m, whereas the constrained fit will not be able to make
€ zero on this range. Since in most practical cases, the signal r will not be sufficiently
exciting, another approach is needed.
If the plant and controller were known exactly, one could easily calculate the signal

1—ﬁp—5r, and then use the previous likelihood approach on the signal z defined by:
1 W

1+PC  1+PC” (3:55)

z2=y—r+

Since we are interested in monitoring changes in the performance of the system which
could have possibly been caused by changes in P or C, it is unrealistic to assume mod-
els are known, in which case z will not be independent of r. Nevertheless, when the

performance has not deteriorated, the transfer function will be approximately

1
1+PC
as designed, and dependence on z of r will be less significant than if the term TJFlP‘ET
were not included. Therefore, when the performance is satisfactory, using z as the
input to the monitoring scheme should result in similar diagnosis as in the case where
r is constant. On the other hand, when performance has degraded and the transfer

function is no longer accurate, both the estimation of éu and éo are affected

T
by the changes in r, and the constraints of ©, will generally result in larger residu-
als € than will be needed for the optimal model in ©,. Therefore, changes in r will
tend to make the GLR smaller, and thus favor a poor performance diagnosis. In the

case where the reference signal is not sufficiently exciting, applying the methods of

Sections 3.3 and 3.4 to the signal z in (3.55) is recommended.

3.6 Examples

In this section, we consider examples which serve to demonstrate the advantages of
the methods of this chapter over minimum-variance estimation methods. Example 1
addresses disturbance rejection for a simple system in which the process parameters
as well as the disturbance characteristics may vary. In Example 2, the performance

of a distillation column controller is evaluated.
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Example 3 Consider a simple model of a stable system, described by the transfer

function
_ _2§ 1—062"1

F 41— 0.52z"1

(3.56)

Using the IMC design method of [74], a controller is designed to reject step distur-

bances. The controller has the form:

(1-f) 1-05z7"
1—fz711-0.6271

Q

CZI—PQ

Qz% , 0< f< 1 (3.57)
Increasing the parameter f detunes the controller while increasing robustness to model
uncertainty. In this example, f = 0.3, which corresponds to tight control which
will be nearly minimum variance when there is no plant/model mismatch and the
disturbances are accurately modeled as integrated white noise.

In order to use the likelihood method to determine system performance, mean-
ingful constraints must be specified. The controller was designed to provide good
rejection of step like disturbances. For the nominal plant, the closed loop step re-
sponse to a unit step disturbance settles to 0.027 within four time samples, suggesting

the performance specification:
|pr| < 0.1 for k > 4. (3.58)

If the disturbance transfer function W were known a priori to be equal to 1—_%, these
constraints would be satisfactory. However, in practice W is not known, and may
possibly have a large high frequency component. Assuming we are only interested
in the rejection of low frequency disturbances, we should use the filtered coefficient
constraint method of Section 3.2. A twentieth order (length 21) FIR filter was de-
signed so that it had approximately unit amplitude in the range 0 < w < 0.47 and
zero amplitude in the range 0.6m < w < 7. For systems with bandwidth less than
0.4m, filtering the impulse response coefficients with this filter will result in a sequence

approximately equal to the impulse response delayed by ten samples. Because the

impulse response coeflicients correspond to the product of W and 1—111?5, including
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Table 3.1: Nominal and Perturbed Plants

Plant TF OL gain | M, M, | Diagnosis
P | 32108 1 0.027 | 0.063 | GOOD
Py | Bp2l0d 1 |0.163]0.2197 | POOR,
Py | 2272100200 1 |0332] 0355 | POOR,
P, | 12108 1 |0.226] 0235 | POOR
Py | Ip21=005e0, 1 |0.039] 0125 | GOOD
Py | 121206 1 |0317] 0373 | POOR,
P, | L2208 | g7 0216 | 0.212 | POOR
Py | 2,721=06= | 09 | 008 | 008 | GOOD

the filter implies that the performance criterion depends only on the response of the
system to a disturbance of the form F'We rather than We. Combining the settling

time criterion (3.58) and a low pass filter gives the following performance constraints:
|¢F| < 0.1 ¢F, for k > 14, (3.59)

where ¢f = Fj, + Zle Fy_i¢p;. The set ©q is given by all models of the form 6, =
(1, ¢1,...,¢], with ¢ satisfying the above filtered. constraints.
Eight different plants were used in the simulations, as shown in Table 3.1. The

table also shows the open loop steady state gain, the two measures

hE
M; = max [hk| = max | }’;;;10 : (3.60)

k24 10

where h and h'" are respectively the unfiltered and filtered closed loop step response
coefficients, and the proper diagnosis based on M; < 0.1. The plant P, corresponds
to the nominal system. The open loop and closed loop step responses for the plants
are shown in Figures 3.4 through 3.7.

For each of the plants P; through P, the closed loop system was simulated using
two separate disturbances. The first disturbance was generated by d; = _1 w, with
w a white noise process. The second disturbance d, was obtained by addmg to dy the

1—r cos(w)z™! : 2 . .
sequence -~ “rm=s W with w = g7, r = 0.95, and w the same sequence which
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Table 3.2: Diagnostics, disturbance d;

Plant | MV ratio | GLR T: T 09 04 KX
P 1.04 0.959 0.736 | 0.439 | 0.26 | 0.15 | 176
b, 1.17 0.155 0.734 | 0.0978 | 1.5 | 1.00 | 153
By 1.07 2.46e-05 | 0.75 | 0.0965 | 3.8 | 2.8 | 243
Py 1.03 0.0142 [ 0.746 | 0602 | 24 | 1.6 | 256
B 1.02 0.8 0.735 | 0.473 | 0.60 | 0.38 | 161
B 1.34 5.44e-06 | 0.745 | 0.137 | 3.9 | 2.8 | 220
P 1.15 0.0293 074 | 0.289 | 2.6 | 1.4 | 198
Fs 1.07 0.707 0.737 1 0451 | 0.7 | 0.4 | 182

generated d;. The disturbance d, has a significant high frequency component. Both
disturbances are shown in Figure 3.8.

For each plant/disturbance pair, the GLR was computed, along with the thresh-
olds Ty (Eq. (3.35)) for r* = 0.5 and T3 (Eq. (3.52)) for m = 1. In addition, 4,
and &, were calculated from the linear programming problems LP 1 and LP 2. For
the unconstrained estimation of éu, standard Newton-Rapson methods such as out-
lined by [94] were used, and the constrained optimization of éo was calculated using
a quadratic penalty function [10]. Tables 3.2 and 3.3 show the decision criteria, along
with the minimum variance (MV) ratio, ||Y||/0my, where 0,,, was estimated using the
method outlined in [43]. In addition, the Tables show the scaled condition number

k" for the covariance matrix ¥, where x* is calculated by

k" = min (D13, D), (3.61)

D1,Dy

with D; and D, diagonal matrices, and & the usual condition number.

Although X, was poorly conditioned in each example, the measure §, from LP
1 gives similar diagnosis as comparing the GLR to the threshold 7;. The measure
8y from LP 2 is smaller than &, implying that by using the eigenvectors of X, as
coordinates, the perturbation which must be added to 6, so that the sum lies within
©p is smaller than when the standard coordinate system is used. For the plants

Py, P, Py, Ps, Ps, and Pr, the GLR test gives correct performance diagnosis with either
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Table 3.3: Diagnostics, disturbance d»

Plant | MV ratio GLR T Ts O 9 K*
P 1.9 0.931 0.599 | 0.426 | 0.20 | 0.16 | 314
b 1.71 0.38 0.555 | 0.156 | 0.671 | 0.56 | 155
Py 2.16 2.34e-05 | 0.632 | 0.375 2.2 | 25 | 773
By 2.22 0.00615 | 0.625 | 0.526 1.5 1.4 | 697
P 1.92 0.837 | 0.609| 0473 | 0.30 | 0.30 | 345
B 1.74 0.000542 | 0.55 | 0.0881 | 2.0 1.6 | 134
P, 1.83 0.0217 | 0.574 | 0.546 1.6 1.1 | 235
Py 1.87 0.602 0.59 | 0.438 | 0.55 | 0.41 | 287

threshold T or T3, and for both disturbances d; and dy. For the plant P, a correct
diagnostic conclusion will be drawn when the threshold 77 is used, but not when
the threshold T3 is used. The performance deterioration for P, is the least for all of
the poor performing models, so incorrect diagnosis in this case is less severe than it
would be in the others. For plant Py, all cases give correct diagnosis except when the
threshold 77 is used and the disturbance corresponds to d;; however, the threshold T}
depends upon the tuning parameter r* or 6*, and choosing a smaller value of r* will
give a correct diagnosis. That the GLR is less than the threshold 77 approximately
implies that for parameters 6 to have generated ) with the same likelihood as as 6,
f must be less than half as probable as O,

If the measures &, or 8, were used to prioritize the control loops, plants Ps and
P53 would receive high priority, followed by P;, Py, and with plants P,, Ps, Ps, and
P, receiving the lowest priority. From Figures 3.4 through 3.7, it is clear that this
prioritization would be an efficient approach to re-designing the controllers.

Conclusions are more difficult to draw from the MV ratio. Consider first the case
of disturbance d;. For the plants with good performance, Py, and P, the MV ratio
are within 3% of the nominal case, P;; however, two of the poor performance plants,
P; and Py, also have MV ratios within 3% of the nominal case, whereas the GLR
clearly indicates a deterioration in performance. In addition, although P, has the
least performance deterioration in terms of the settling criterion, its MV ratio is the

largest of any of the plants. In each case, this improper diagnosis is not due to poor
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estimation of the MV ratio, but rather to the fact that the MV ratio does not provide
a good performance measure. In the case of the disturbance d,, for each plant the
MV ratio is significantly larger than when the simulation was carried out with d;.
Additionally, drawing conclusions about which of the models is performing worse,
where performance is measured by the settling time criterion, is not possible from the
MYV ratio.

We would now like to consider four separate scenarios, and use the results in
Tables 3.2 and 3.3 to evaluate how the GLR methods and the MV method would

diagnose changes in process conditions. The scenarios will be:
1. Shift from P; to P; or Fg, constant disturbance spectrum djy;
2. Shift from P; to Py or P, constant disturbance spectrum dy;
3. Shift in disturbance spectrum from d; to ds, constant plant Pi;

4. Shift in disturbance spectrum from ds to d;, shift in plant from P; to P, or F.

Scenario 1 For a shift to P;, the MV ratio test would indicate a 1% improvement
in controller performance, incorrectly suggesting no retuning necessary, whereas for
Ps, a 28% deterioration in controller performance would be noted. When the GLR

test is applied, a clear deterioration for both cases P, and Fs is correctly diagnosed.

Scenario 2 Here, the opposite situation occurs. Using only the MV ratio, when
the plant shifts to P, a correct deterioration in control is concluded (increased MV
ratio 1.9 to 2.22), but a shift to Ps gives an incorrect diagnosis (decreased MV ratio
1.9 to 1.74). Again, the GLR test gives a clear poor performance diagnosis in each

case.

Scenario 3 When the plant remains unchanged, but the disturbance spectrum
changes from d; to ds, the MV ratio indicates a substantial decrease in performance.
Although the theoretical MV ratio actually does increase, the increased variance is

due to the high frequency component of the disturbance d,. Retuning the controller



69
would require that the model accurately describe the behavior of the system at high
frequency. Because the high frequency modes of the system may be difficult to iden-
tify, retuning may not be desirable. On the other hand, the GLR test, through
the filtered coefficient constraints, considers only the low frequency phenomena, and

indicates that performance remains satisfactory.

Scenario 4 If the disturbance changes from d, to d;, the MV ratio test would
indicate substantial improvements in performance, regardless of any changes in the
plant. In particular, if the plant were to shift from P; to either P, or Ps at the same
time as the disturbance dynamics change, the MV ratio diagnosis would be incorrect.
On the other hand, the GLR would correctly diagnose that the performance has
deteriorated.

Comparing the threshold 7} in Tables 3.2 and 3.3, we see that lower values of
the threshold are obtained in case of d. This is expected because although in the
case of disturbance d;, the closed loop system can be very accurately modeled by 20
impulse response coefficients, for disturbance d,, which contains a slowly decaying,
high frequency oscillation, more than 20 coefficients are needed. Since the uncon-
strained structure ©, is a MA(20) model, the true system with disturbance d, is not
contained within ©,,, and the estimated covariance ¥, will be larger than in the case

of dy, resulting in the smaller threshold T} observed in Table 3.3.

Example 4 This example addresses the control of overhead temperature for a dis-
tillation column. The data used have been made publicly available by Shell Research
Company, and a full description of the system may be found in [52], wherein it is
referred to as Column 2. Although the complete data set contained measurements
for 80,000 time samples, only the smaller segment of 1000 points shown in Figure
3.9 is analyzed in this example. From visual inspection, it is clear that a significant
change in the overall process occurred after the first 500 samples.

The performance constraints were specified as in the previous example, with the
settling time set to 10, which represented the open loop settling time for a step

response, as indicated by the step response supplied with the data. ©, and ©;



70

were respectively the set of all MA(25) models which satisfied the constraints and
is complement in the set of all MA(25) models. Table 3.4 contains the results of
the various diagnostic tests. The threshold 77 was calculated for both r* = 0.5 and
r* = 0.25, and T3 for m = 1. The MV ratio indicates only a slight decrease in the
performance of segment 1 compared to segment 2, suggesting that the primary source
of the poor quality output is due to an increase in the energy of the disturbances. On
the other hand, the GLR tests indicate that for the first segment, the performance is
borderline acceptable, whereas for the second test, it is clearly below the acceptable
limit.

The data also contain measurements of the feed temperature for the column input.
Although this measurement was not used in calculating the control moves, it can pro-
vide some insight to the proper diagnosis. The power spectra for the feed temperature
for each of the two data segments are shown in Figure 3.10. For the segment from
t € [501,1000], the energy of this disturbance is significantly higher (approximately
60 times). This accounts for much of the increased energy in the overhead temper-
ature. In addition to the increased energy, the second segment also has a large low
frequency component at approximately w = 0.17. Similarly, the unconstrained model
6, fit to this segment has a low frequency oscillation which does not quickly decay.
Since the constrained model é() must be small after 10 time samples, 6, fits the data
much better than 8, and the GLR is small. Thus the GLR test correctly diagnoses
that the change in the signal is not only due to increased disturbance energy but also
to a change in controller performance due to the disturbance spectrum. The decision
whether to retune the controller should depend on several other factors, which may
include the time required to retune and knowledge about the transient behavior of
the disturbance. For example, if experience or other process knowledge indicated
that the disturbance is likely to have the same characteristics for a considerable time,

retuning the controller will be profitable.
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Table 3.4: Diagnostics, Shell Column 2
Sequence | MV ratio | GLR | 71(0.5)/77(0.25) | T3 | 62 5 K*
1-500 1.16 0.46 0.66/0.44 044106 | 0.64| 69
501 — 1000 1.30 3.6e-28 0.61/0.38 >11| 57| 5.0 | 1102

3.7 Conclusions

In this chapter, we have shown how many common and practical controller per-
formance criteria can be expressed as linear constraints on the closed loop impulse
response coefficients. Using this type of criterion, performance monitoring can be for-
mulated as a generalized likelihood ratio test. Evaluating the GLR involves solving
a constrained as well as an unconstrained model identification problem. In order to
evaluate performance, the GLR must be compared to a threshold.

Three approaches to selecting the threshold have been discussed. The first two
methods use the covariance of the estimated unconstrained model. The method of
Section 3.4.1 can be interpreted as calculating the maximum relative probability that
the system is described by a model with the same likelihood as the optimal constrained
model, given the unconstrained estimate is distributed normally with mean 6, and
covariance 2,. The method of Section 3.4.2 tests to see if a set of parameters exists,
with each individual parameter within some confidence limit of its optimal estimate,
which satisfies the performance bounds. Alternatively, cross-correlations between the
parameter estimates can also be incorporated using a modified linear program. These
methods require the sélection of secondary thresholds, * and ¢*, which carry intuitive
meanings. As an alternative to using a set value of * or 6*, the maximum value of
r* or minimum value of §* which would be necessary to accept Ho can be calculated
and used to prioritize control loops targeted for retuning. Finally, in Section 3.4.3 a
threshold selection with a cross-validation interpretation is derived.

When the operating data used to calculate the performance-measure contain set
point changes, and the reference signal excites the system sufficiently, the GLR meth-

ods can be extended directly by specifying performance bounds for reference tracking,
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and parameterizing the transfer function from the reference signal to the tracking er-
ror. More frequently, changes in the set point will not produce a sufficiently exciting
signal, but by subtracting from the tracking error the nominal response to the refer-
ence signal, the frequency of false poor performance diagnoses will be decreased.

The examples of Section 3.6 showed that for a meaningful performance objective,
the likelihood ratio methods gave correct diagnoses whereas the minimum variance
ratio of [43] did not. In particular, we demonstrated through Example 1 that the MV
ratio test can be strongly influenced by changes in the high frequency component of a
disturbance which may not merit retuning, and may at the same time be insensitive
to model changes which do result in deteriorated controller performance and can be
easily rectified by retuning the controller. On the other hand, by properly select-
ing the performance objective, the GLR test can be made insensitive to irrelevant
changes in the disturbance dynamics, while maintaining high sensitivity to model
changes. Finally, for the examples considered, the measures d; or &, while easier to
compute, gave diagnoses consistent with those obtained by comparing the GLR. to

the thresholds 77 and T3.



73

15 1
0.8
1 b 4
. 0.6}
I
&
o 0.4
0.5}
0.2} AI_‘i
0 0
0 5 10 15 (¢] 5 10 15
OL Step Response CL Step Response
1 1
08 J—Jf -
N Q.6 05t
c
<
004
0.2 0
0
0 5 10 15 0 5 10 15
OL Step Response CL Step Response
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Chapter 4 Integrated design of control

and detection filters

Summary

The problem of designing an integrated control and diagnostic module is considered.
The four degree of freedom controller is recast into a general framework wherein re-
sults from optimal and robust control theory can be easily implemented. For the case
of an H; objective, it is shown that the optimal control-diagnostic module involves
constructing an optimal controller, closing the loop with this controller, and then de-
signing an optimal diagnostic module for the closed loop. When uncertain plants are
involved, this two-step method does not lead to reasonable diagnostics, and the con-
trol and diagnostic modules must be synthesized simultaneously. An example shows

how this design can be accomplished with available methods.

4.1 Introduction

One of the earliest approaches to fault detection centered on the design of filters
which when applied to system measurements would produce an output signal which
deviates from zero only when the system was malfunctioning. Considerable attention
has been focused on the design of such filters since the seminal work of Beard [11]
and Jones [50]. The survey paper [110] provides an early summary of work in this
area, and [34] provides a more recent account. Although the majority of results for
model based fault detection are based solely upon nominal models, a few significant
studies which incorporate uncertain models have appeared [35, 62, 18]. However, the
methods developed in these references are unable to incorporate the norm bounded

uncertainty descriptions commonly employed in control synthesis. In addition, for
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feedback systems, these methods do not consider the interaction between detection
and control, i.e., the detection algorithms consider the effect of known inputs on the
outputs, but do not consider the effect of the output on the input.

Nett [78] introduced the four degree of freedom, or four parameter, controller
which integrates control and diagnostics. By parameterizing all stabilizing controllers
of this form, he was able to elucidate tradeoffs involving both controller performance
and diagnostic performance. In addition to diagnostic tradeoffs such as between
the detection of sensor and actuator faults, Nett et al. [79] have shown that when
uncertain models are used, control performance must be traded off against diagnostic
performance. This work suggests that both control and diagnostic modules must be
designed together.

Although several years have passed since Nett parameterized the four degree of
freedom controller, it has not found widespread use due to the fact that a systematic
synthesis method which guarantees robust control and diagnostic performance in the
face of uncertainty does not exist. Notable attempts at outlining synthesis methods
can be found in [79] and [32]. The former proposes a four step procedure in which
each degree of freedom is considered successively. The latter employs a method which
first designs a nominal control module with robust stability in an I, framework, and
then designs the diagnostic module on the resultant closed loop.

In this chapter, we show how the four degree of freedom controller is simply a
special case of the general interconnection structure used in modern control syn-
thesis methods. Viewed in this framework, we employ results from H,-, Ho-, and
p-synthesis methods to design integrated control and diagnostic systems. Through an
example, we show that for uncertain systems, robust performance of both control and
diagnostics requires that these two modules be designed simultaneously. The results
of this chapter suggest that for control systems with inherent uncertainty and tight

performance specifications, linear fault detection filters will perform poorly.
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4.2 Four degree of freedom controller

Consider a general multi-input, multi-output (MIMO) system G. Partition the inputs
to G into uncontrolled inputs d, and controlled inputs u. The signal d represents
noises, disturbances, and faults. Also partition the outputs as those outputs used by

the control algorithm (y) from those not used (z), yielding the following partition for

G G d
z _ 11 12 ' (4.1)
Yy Ga G u

The four degree of freedom controller has access to a reference signal r as well as the
measurement gy, and returns not only the control moves u, but also a diagnostic alarm

signal a:

a . Kll K12 T (42)
U Ki Ko Y

Let the input d be described by d = [f¥,nT]¥, where f represents faults, and n
represents noises and disturbances which occur under normal operation. Nett et al.
[79] have elucidated several algebraic tradeoffs involved with fault detection which we
will not repeat, except to comment that, in general, one must tradeoff the ability to
detect input or actuator faults from output or sensor faults.

Of more interest for our discussion is the tradeoff between diagnostics and control.
For example, consider the block diagram shown in Figure 4.1. Suppose we desire that

the alarm signal a tracks input faults f;. The alarm signal a is given by
a = Torr + Ty, (fo + 10+ Gaa(fi +14))
where the perturbed transfer functions 7, and 7, 7, are given by
Tor = Ki1 + Ki3(I — S;Go2 AW, K32) 71 S,(Gaz + G2 AW, ) Koy,

Tof, = (I — SoG AW, Ka) 1Sy,
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and S, = (I — GK2,)™! is the output sensitivity function. For nominal systems, K
can easily be designed so that T,, = 0 [78]; however, as the above expression for
this transfer function suggests, model uncertainty prohibits such a design, and the

objective of making T, robustly small will compete with disturbance rejection and

reference tracking objectives.

m nz+fz no+.fo
l ng l Y

a Klo

U e T’

K2o

Figure 4.1: Control and diagnostic configuration for uncertain system

4.3 General framework

“o—  [l—=gr—l
u Y g
=] M
a ~«— F—
K [ o -

Figure 4.2: Equivalent four parameter controller configurations

Consider the plant and four parameter controller as in (4.1) and (4.2). As written,
the reference signal r is not an input to G, and the output alarm a is not an output of
G. We would like to obtain a reconfigured system G so that all the inputs are inputs
to G, all the outputs are outputs of G, and the closed loop systems are equivalent, as

shown in Figure 4.2. This can easily be accomplished with the following augmented
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plant: ]
Gu 0 0 Grpg
- 0 0TI 0
G = (4.3)
0 I 0 O
| Ga1 0 0 Ga |

We may therefore view the four degree of freedom controller as a special case of
the more general interconnection input-output system. Several advantages arise by
viewing the control-diagnostic system in this light. First, the parameterization of
stabilizing controllers can be viewed as a simple application of the Youla parame-
terization, as shown in Section 4.4. Second, optimal control results, such as those
found in [30], may be applied in a straightforward way. Finally, robust analysis and
synthesis of the control-diagnostic module may be carried out in a systematic fashion

using readily available tools such as those available in [5].

4.4 Four-parameter control parameterization

By using the augmented G, the parameterization of stabilizing controllers is a straight-
forward application of the Youla parameterization. In order to analyze stability, we

need only consider the bottom right partition of G,

- 0 0
Gy = . (4.4)
0 Gy

Suppose a doubly coprime factorization of G, is given by
Gaa = NgDg* = D' Ng, (4.5)
where

Ve Us D¢ —Ug
~N¢ Dg Ne Vg
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Then a doubly coprime factorization of Ga, is given by

(0 0 | o
My =  Me{N, U N, T},
0 M
(7 0 | L
My = ,Me{D,V, D, V). (4.7)
0 Mg

The parameterization of all stabilizing controllers can be found in [105] and is given
by:
- N1 -
K= (Vé + QNé> (—Ué + QDG') : (4.8)
where @) is any stable transfer function. By partitioning @ and substituting the

coprime factorization of Gag given in (4.7) into (4.8), K can be parameterized in

terms of the factorization of Gag, resulting in

where

Ki = Qu—Qi2Ng (VG + Q22NG)—1 Qa1,

Ko = QuDe—Quie (Vo + Q2Ne)  (QuDe - Us),

Ky = (VG + Q22NG) 7 Qu,

Ky = (VG + Q22NG)_1 (22D — Ug). (4.9)

Using algebraic manipulations and properties of the doubly coprime factorization,

one can show

K1z = Q12(NgQa + V)™, (4.10)

in which case K has the same form as in [78].
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4.5 H; optimal control and diagnostics

In this section, we consider the problem of designing an #; optimal controller which
provides a nominally small output and also tracks faults. Let d = [fT,nT, rT]T  and
y = [g7,77])7. Let the transfer function which maps [d¥,u"] onto [z, y”] be given

by:

Ac Bcl Bc2
Ge = Ca 0 D12 (4'11)
CC? D c21 0

The following assumptions simplify the analysis, and relaxing these assumptions do

not change the nature of the results:
1. D:12Cc1 - O‘

Assumption 1 implies that the objective function has no cross terms of the form
< z,u >, where x represents the system states. Assumption 2 can easily be relaxed
by introducing scaling matrices. Note that the common assumption B, D}y, = 0 is
not meaningful since the signal r is directly measured.

A general diagnostic objective function is taken as the output of the following

transfer function which takes d and a to z4:

Aqg lel B

Gy =
Cdl! 0 Dy

(4.12)

For example, if the alarm signal should track actuator faults, then an appropriate
choice of the signal z; may be [ def/“(‘ )f") } By combining the two systems to obtain

the objective output [2T, 27]7, the following interconnection structure is obtained:

il B B
D |, (4.13)
02 D21 O

Y
I
AS!
(e}
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where the inputs are partitioned such that B; multiplies [f7, nT,rT]T and B, multi-

plies [aT,uT]T. The system matrices for G are given by:

-~ AC O ~ Bcl ~ O BC2
- y Bl = ’ - 3
0 Ay B Bgp 0
o Jey o] . 0 D
= 1 ’ D12 — cl2
' 0 Ca Dgis 0

6'2 = [ Co 0 } ; Dzl = Dea1.

The H; optimal controller can be found in [30] and is given by

A+ BoFy + L,Cy | —L
2472 22] 2}, (414)

Fy 'O

where

~Ly=YC; + B\D;,, —F, = B} X,

and X and Y are the solutions to the algebraic Riccati equations determined respec-

tively by the Hamiltonian matrices H, and Js:

A —B,B,"
HZ = ~ % ~ 2.. ’ s
~C,°C, —A
A* — C; Dy By -GG,

Jy =

~Bi(I — D3 Dy)B," —A+ B,Dy,C,
By partitioning X and Y in the obvious fashion and introducing the following matri-

Ces:
_ i A, — ByD%Coy 0

M=A-BD}C, =
—By D% Ce Ag

7
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Bcl(I" D:21Dc2l)Bgl Bcl(I - D:21Dc21)B§1

R - Bl(-[ - D;ll‘jgl)é; -
Bollur - Dzlecm)le Bdl(I - Dz21Dc21)B§1

the two Riccati equations can be written as the following coupled matrix equations:
AcXu + XA — X1 B Bo X + C;Coy — X19Bge B, X1, = 0,

Ay Xog + XopAg+ CHCiqt — Xo2Bya Bjo X oo — X12BBLX[, =0,

(AZ = X11Be2B3) Xaz + X12(Ad — Bz B X20) = 0

MY +YuM{;, —YuCLCLY1 + Ry =0,

M1 Yo + Yo M3y 4+ Y11 M3, — Y11C5CY12 + Ria = 0,
MaoYos + Mo1Yig + Yoo Moy + Y15M5, + Rop — Y5CHCraY1a = 0

We see that the equations for Y are coupled only in one direction, i.e., Y}, depends
upon Y11, but ¥3; can be found independently of Y35. In fact, none of the parameters
for Y1; depend upon the diagnostic terms, so Y7; is the same solution that would be
obtained if diagnostics were not considered. As for the X equations, the second is
linear and homogeneous in Xis, so Xj» = 0. This decouples the equations. F, and

L, are then given by

BrnX 0
Fz - c2<*11 ,
0 BiXy
Y1.Ch + Ba DYy,
L2 = -
Yfzcgz + BdlDzzl

Thus, for systems whose interconnection structure can be described by (4.13), the
optimal control module is independent of the optimal diagnostic module for the .
solution. Thus, when considering only a nominal model, the two step procedure of
designing an optimal control module, calculating the closed loop system, and then

designing the optimal diagnostic module is equivalent to designing the optimal control
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and diagnostic module simultaneously. However, when uncertainty is considered, we
will show by example that the two modules should be considered simultaneously.

The key feature of the system (4.13) which allows for the control to be designed
independently of the diagnostic is that the alarm signal a does not affect the states
associated with G.. This restriction is reasonable as its violation would imply that
the overall objective included some cross-terms between the output and the alarm.
For example, in a stochastic setting, assuming the form (4.13) would allow objective
function terms of the form E(yTy) and E ((a — H¥(a— f)), but not £ (yT(a - f)),

where E is the expectation operator.

4.6 Robust synthesis

Viewing the integrated control-diagnostic problem as a simple case of the general
interconnection framework as shown in Figure 4.2 allows the application of robust
synthesis tools such as those in [5] in a straightforward fashion. In particular, a
control-diagnostic module which guarantees robust performance may be synthesized
using a two block p structure, and the DK iteration method.

Consider a system with the structure shown in Figure 4.1. We would like to design

a control-diagnostic module with the following properties:

1. The output signal tracks reference commands and is insensitive to actuator

faults.
2. The alarm signal is large only when a fault has occurred.
3. Properties 1 and 2 hold in the presence of a bounded uncertainty.

Let T, be the transfer function from [f7,nT rT]T to y-r, Ty be the transfer function
from [fT,n”,rT)T to a-f, and T, be the transfer function from [fT,nT rT)T to a.

A mathematical statement of the design objective is formulated as follows: Find a



90

stabilizing K such that

WCTC
W, T, <1lforall Ay, | [[Aully, <1

W1,

o

Including a weight on 7T, is needed for the problem to be well posed. By introducing
a full performance block A, this problem can be stated equivalently as: Find a
stabilizing K such that
¥ o } (R(G K)) <1,
D

where G is an appropriate interconnection structure which contains the weighting
functions, and Fj represents the lower linear fractional transformation.

Now let us consider as a specific example a second order, two-input, two-output
system with actuator faults and measurement noise, ie., f = f;, n = n,, and f, =

n; = 0. The frequency response for the nominal model is shown in Figure 4.3, and

the system matrices are given by

—-0.5672 —0.0629
0.7189 —0.1175

0.0592 0.0014
0.1039 —0.1132

—0.0916 —-0.1997
0.2251 —0.4038

?

D =0.

We assume an uncertainty of 10% in the gain of each input channel, and cover this
model set by an input uncertainty, with W, = 0.1, A, = diag(A;, Ay), where A,
and A, depict 1 x 1 blocks, and lAully. < 1. The performance weights W,, Wy,

and W, are diagonal, with the same weight on each component, and the magnitudes
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of these weights are shown in Figure 4.4. Note that the performance objective is not
very aggressive, namely, we desire steady state reference tracking within 10%. One

would expect that this type of objective could be easily achieved.

input 1 input 2
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107 10° 107 10 10° 10°

Figure 4.3: Frequency response for plant

Two controllers were synthesized. For the first controller, the DK iteration method
was used to simultaneously design the control and diagnostic modules, and a final
value of 1 = 0.95 was achieved. We will refer to this controller as the one-step con-
troller. In the second case, a robust control module was designed without considering
the diagnostic objective. The resulting controller was used to close the loop. Synthe-
sis of an H, optimal diagnostic led to a value of p =~ 12. Several iterations on the
DK scheme resulted in p =~ 6.5. We describe the control-diagnostic module which
achieves the latter x4 value as the two-step controller.

For both the one-step and the two-step control-diagnostic modules, the output



92

10
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Figure 4.4: Performance weights

was simulated with A, = diag(0.1,-0.1). The input consisted of a ramp actuator
fault in the first channel which rose from 0 to 1 between time 100 and 200, and a
set point step change of —1 for the second output at time 10, as shown in Figure
4.5. The results of the simulation are shown in Figure 4.6, which displays the plant
output, and Figure 4.7, which shows the filtered alarm signal Wja.

From the simulations, one can make the following observations. The two-step
control-diagnostic module provides much better performance in regard to reference
tracking; however, the diagnostics are inadequate. A large false alarm occurs at time
10 when the reference signal changes. The one-step module does not issue a false
alarm, but experiences significantly deteriorated reference tracking performance. This
suggests that robust control-diagnostic performance requires detuning of the control

action to a much greater extent than would be expected when diagnostics are not
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Figure 4.5: Fault in first actuator (dashed), and reference signal for second output
(solid). All other input signals are zero.

considered.

For the one-step system, the alarm signal is raised when the slope of the fault
changes, but not during the constant slope section of the fault ramp. This is due to
the diagnostic weighting function W, which annihilates low frequency behavior. For
this example, it was not possible to achieve robust performance with a weighting with
significant low frequency energy. Roughly speaking, the facts that a signal W,A,u
enters the system in the same way as the fault f and that in steady state u must
change to track r preclude the possibility of robust control and detection in the low
frequency range.

The two-step controller achieves robust control performance, with u ~ 0.1 for
the first step of this synthesis; however, the resulting control action leads to poor
diagnostics. This suggests that methods for optimal or robust diagnostics which do
not explicitly consider control action, such as in [28], will not work well for uncertain

plants.

4.7 Conclusions

In this chapter, we have shown how systems which integrate diagnostics and control
can be designed using standard methods. For nominal models, H, theory justifies
designing the control and diagnostic modules successively; however, uncertainty re-

quires that the design be simultaneous since diagnostic objectives may limit achievable
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Figure 4.6: Plant output for one-step and two-step controller designs

performance.

An important question which we did not address in this study is the selection of
performance measures for diagnostics. We considered the #5 norm for the nominal
case, and the Ho, norm for the robust case primarily due to the availability of methods
to address these problems. In choosing a performance measure for a diagnostic system,
one should consider the detection algorithm which will be used to determine when
faults have occurred.

From the example in Section 4.6, two important conclusions concerning the de-
sign of linear fault detection filters can be made. First, small model uncertainties
which are not problematic from a control perspective can pose severe limitations on
detection performance. One explanation for this phenomenon lies in the fact that in

controlling a process, the use of feedback tends to mitigate poor modeling so that
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Figure 4.7: Filtered alarm signal Wya for one-step and two-step controller designs

good performance can be obtained with an uncertain model. Indeed, many classic
control methods are independent of a process models. On the other hand, in the de-
tection problem the model is fundamental as it provides the redundant relationships
between the measured signals whose violation indicates a fault. When uncertainty
enters the picture, these relationships based upon the model cease to hold under fault
free circumstances. Second, when tight control is required for uncertain process, it
may often be the case that no linear detection filter will provide satisfactory detec-
tion performance even for modest model uncertainty. In the example, in order to
detect changes in the desired frequency range, it was necessary that the controller
be detuned to the point that it was sluggish enough that the effect of control action
propagated through the uncertainty could be distinguished from faults.

Due to the inadequacy of linear filters in model based fault detection, methods
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based upon other approaches must be pursued. In the following chapters, several such
methods are proposed. In Chapters 5 and 6, fault detection based upon Moving Hori-
zon Estimation is considered. This algorithm’s capacity to incorporate constraints in
estimation problems can be used to reduce fault detection false alarms due to model
uncertainty. In Chapter 7, a statistical approach to fault detection using nonlinear
models is developed. Both of these approaches rely exclusively on quantitative models
of the monitored systems. By combining qualitative and quantitative process infor-
mation, improved detection may be possible. Chapter 8 investigates the incorporation
of qualitative information in process engineering problems using a propositional logic

formulation.
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Chapter 5 Moving Horizon Estimation

Summary

A Moving Horizon Estimation method is reviewed and its stability properties are
investigated. For the unconstrained case, stability is guaranteed by properly choosing
an initial error weighting matrix. For the constrained case, feasibility at each step can
be guaranteed by expanding the constraints to include the future trajectory. Stability
in the constrained case with the expanded constraint set and a modified objective is
proven. In both cases, the proposed algorithms involve solving at each time step a
quadratic programming problem. Examples are used to demonstrate the improved
stability properties of the modified algorithm, as well as to show how constraints can

improve estimation of unknown faults and disturbances.

5.1 Introduction

In Chapter 4, the problem of designing linear filters for fault detection was considered.
Filters designed for detection purposes can be considered as a special kind of estimator
whose purpose is to estimate the value of unknown fault signals. For many process
monitoring problems, estimation of state variables and parameters is an important
component. A wide number of applications of parameter estimation in fault detection
schemes have appeared in the literature as well as in review articles [47, 48]. State
estimation via Kalman filters [110] has long been used to calculate residual or error
signals which should be small under normal operation, but differ from zero for faulty
operation.

Before collecting any data, a fair amount of information is usually known about
the numerical values of parameters and states with physical significance. Often, this

knowledge can be transformed into constraints on the variables. For example, a state
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representing the mole fraction of a chemical species must lie between 0 and 1. If the
data are processed in batch fashion, constraints can easily be incorporated within
least squares estimation, and including this knowledge may result in more reliable
estimates.

For estimation of dynamic states and parameters, recent attention has focused
on performing on-line optimization. Zimmer [115] derived an iterative process based
on Newton’s method for estimating the state of a nonlinear system. Michalska and
Mayne [69] presented an observer for the case of a noise and disturbance free nonlinear
system which produces an estimate of the state by minimizing an L, cost function over
a preceding interval which advances with time. Robertson et al. [92] have presented
a least squares formulation for a general estimation in which noise and disturbances
as well as constraints on the estimated variables are considered. A probabilistic
interpretation of this approach corresponding to a modification of the Kalman filter
with the innovations distributed according to a truncated Gaussian distribution rather
than a pure Gaussian distribution was also developed in the cited reference. As this
method updates the state and parameter estimates by solving a finite moving horizon
least squares problem, it may be considered dual to the Model Predictive Control
(MPC) problem [37].

As the Moving Horizon Estimation (MHE) scheme of [92] is quite similar to MPC,
one may anticipate that some of the shortcomings of MPC are inherent in this scheme.
For example, it is well known that MPC can result in an unstable closed loop when
the horizon length is not long enough [13]. Similarly, if not properly implemented,
constrained MHE may result in estimates which either fail to converge to the correct
value or completely diverge. It is imperative that any estimation scheme satisfy
certain stability requirements, otherwise the estimates obtained may diverge and
become completely meaningless.

Muske et al. [76] have presented stability results for constrained batch estimation
implemented in a recursive fashion. Although this constrained estimation scheme is
stable, it suffers from the shortcoming that as more data is collecting, the dimension

of the optimization problem which must be solved also increases. For on-line imple-
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mentation, the computation time for this quadratic program with growing dimension
soon becomes prohibitive. On the other hand, the scheme of [92] results in a constant
size quadratic program, but the algorithm may result in an unstable estimate when
constraints are enforced.

In this chapter, the stability properties of MHE are examined, and modifications
are made to guarantee stability. Specifically, the stability of MHE for linear systems
with constraints is addressed. In Section 5.3, the basic concepts of MHE are briefly
reviewed, and it is shown that by properly choosing weighting matrices for the esti-
mated variables, MHE can be made stable when no constraints are enforced. A similar
result was presented by [92]. When constraints are enforced, this scheme can lead to
an unstable estimate. Section 5.4 introduces a modified constrained MHE algorithm
and presents stability results. Section 5.5 extends the results to the case of nonzero
known input signal u. Two examples are contained in Section 5.6 to demonstrate
how constraints could lead to an unstable estimate and to illustrate the proposed

methods.

5.1.1 Notation

Lower case letters such as z, y, denote vector quantities. Upper case letters such
as A, ¥, denote matrices. Script characters, such as V, ), denote concatenations of
vector variables from several consecutive sampling instances, collected into a single
vector variable. The circumflex accent applied to a variable, rsuch as Z, denotes an
estimate of that variable.

Unless otherwise stated, || - || stands for the Euclidean norm. The notation ||z| g

is used to denote the weighted norm

lz||% = z*Rz. (5.1)
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5.2 Preliminaries

The estimation scheme presented in this chapter is applicable to sample data systems
which can be accurately represented by linear time invariant models, and which are
driven by both a known signal, v, and an unknown signal w. The latter signal may be
interpreted as a disturbance. It is assumed that the plant transfer function mapping
u and w to the output ¥ is stable, but that the dynamics governing the evolution of
the disturbance w contain a pole at 1, which is necessary to allow the disturbance to
assume different steady state values. Therefore, the systems considered herein have

the form:

z(k+1) = Axz(k)+ Byu(k) + Byw(k) + Byv(k),
wk+1) = w(k)+vy(k),
y(k) = Cra(k)+ Cpw(k) + vy (k). (5.2)

where the eigenvalues of A lie within the unit circle, and v, vy, and v, are determinis-
tic innovations which are nominally zero. Special cases of this model structure include
output step disturbances (B, = 0, C,, = I) and input step disturbance (B, = By,
Cy =0).

In order to simplify the discussion, it will be convenient to consider the case where

u is zero, giving the simplified system

z(k+1) = Ax(k)+ Byw(k) + Byv,(k),
wk+1) = wlk)+ v,(k),
y(k) = Cxz(k)+ vy (k). (5.3)

Extensions to the case where u is nonzero can be found in Section 5.5.
It will also be useful to denote by £(k) the augmented system state [z(k)*, w(k)']’,

and similarly by v¢(k) the augmented innovation, [v,(k)*, vy (k)!]* and by (Ag, Be, Ce)
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the state space matrices for &:

A By
0 I

B, 0
AE:
0

€= ,C§=[Cx Cw]. (5.4)

In terms of these augmented variables, (5.3) becomes

g(k} + 1) = Ag&(k)) + Bg’l)g(k),
y(k) = Cel(k) + vy (k). (5.5)

5.3 Moving Horizon Estimation

In this section, a brief description of the Moving Horizon Estimation scheme for the
system (5.3) is presented, and previous stability results are discussed.

The fundamental concept of Moving Horizon Estimation has recently appeared in
several articles [76, 77, 92, 69, 68]. Although both linear and nonlinear formulations
were presented in the cited references, we will focus on a linear formulation, as our
goal is to guarantee stability for linear systems with constraints. Consider a horizon
of length p corresponding to the p most recent time instances, [k + 1 — p, k]. Given
an estimate of the system state at the beginning of the horizon, éo(k) ~&(k+1—p),
smoothed and filtered states are obtained by solving on-line the following fixed interval

smoothing problem:

k k-1
. ~ /. 2 ~ /- 2 N . 2
o iz%Zl_p |9y (21K -1 +i=k+§;_p (106 (8[E) [ g1 + | AE (R + 1 = p)|I5-1, (5.6)
subject to
Ek+1-plk) = &(k)+Aé(k+1—p), (5.7)
E(ilk) = A(i—1k) + Beoe(i — 1k), i=k+2—p,...k, (5.8)

8y (ilk) = () — Cel(ilk). (5.9)
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Various formulations which appeared in the literature may be viewed as special
cases of the above problem. For example, in the special case where p = k 4+ 1, or in
other words the horizon corresponds to time [0, k], the problem of batch estimation
is obtained. Although stability is guaranteed in this case even with the addition of
constraints on the states and innovations [76], as new data become available the size
of the optimization problem to be solved grows, and on-line computation becomes
inhibitive. In order to obtain an optimization whose size does not increase with time,
it is desirable to restrict p to be a constant. In this case, stability of the estimation
scheme depends upon the procedure for updating the state at the beginning of the
horizon, &(k), from the previous value &(k — 1).

In order to circumvent choosing an initial state estimate, éo(k), one approach is
to allow £(k 4+ 1 — p|k) to vary freely, which corresponds to £ = co. Michalska and
Mayne [68] presented a scheme in which the only decision variable involved in the
optimization is éo(k). This can be considered as a limiting case corresponding to
) = 0. As this formulation does not allow for non-zero values of the variables 7,
when model errors exist or disturbances are present, large estimation errors may often
result.

Muske and Rawlings [77] have noted that in the unconstrained case, allowing
éo(k‘) to vary freely guarantees stability, and that in the constrained case, by relaxing
some of the constraints, stability can also be achieved. This is not surprising since
a free choice of £(k + 1 — plk) is equivalent to a time invariant FIR filter in the
unconstrained case and a time varying FIR filter in the constrained case, and it is well
known that FIR filters have built-in Bounded Input/Bounded Output stability (see
for example [58]); however, several shortcomings exist in this approach. First, none
of the information about the system which is obtained from the data on the horizon
[0,k — p] is used in forming the smoothed and estimated states. This is unfortunate,
since typically a quite accurate estimate of £(k+ 1 —p) can be obtained from the data
up to time k —1. By neglecting data on the horizon [0, k — p], short horizons will lead
to very poor behavior of the filtered state. For example, in the limiting case of p = 1,

the filtered estimate £(k|k) will simply correspond to the projection of y(k) onto
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the state space: &(k|k) = arg ming |ly(k) — C¢||. Although better filtered estimates
§(k|k) will be obtained by lengthening the horizon, the smoothed states £ (k+i—p|k),
especially for ¢ near 1, will depend almost entirely on future data rather than on both
past and future data. Also, in the constrained case, the smoothed states may not
satisfy the a priori system information since the constraints may have to be relaxed.

Robertson et al. [92] suggest that the initial state éo(k) be chosen as the one-step
ahead predicted state, é(k-{— 1—plk—p) = Agg(k —plk—p). In addition, the weighting

matrix 2 would be updated according to the Riccati difference equation
S(k+1) = A (Z(k) ~ S(k)CE (CE(k)CE + ) cgz(k)) A+Q. (5.10)

This choice is motivated by a stochastic interpretation. For the case where v¢ and v,
are white noise processes, the matrix L(k — p) and vector ¢ (k — plk — p) capture all
the information contained in the data on the horizon [0, & — p]. In the unconstrained
case, the filtered state £(k|k) obtained from this MHE is identical to that obtained
from the Kalman filter, so that in the nominal linear unconstrained case there is no
advantage in using a MHE formulation. Therefore, the primary advantage of MHE
over the Kalman filter lies in its ability to incorporate prior knowledge in the form of
constraints; however, in the constrained case, stability is not guaranteed independent
of p for the above choice of ¥ and éo.

In the constrained case, one straightforward way to guarantee stability would be
to choose éo(k) as the state £€5(k + 1 — p) of an unconstrained observer with known
stability properties !. While this clearly yields a stable smoothing and filtering algo-
rithm, many of the advantages gained by including constraints will be compromised.
Since in this approach there is no guarantee that ¢ satisfies the constraints, it may
not be feasible from this initial state to obtain smoothed and filtered states which
satisfy the constraints, thereby necessitating that the constraints be temporarily re-
laxed. More significantly, one goal of implementing constraints is to increase the

performance of the smoother/filter when the model is uncertain or the measurements

1J. H. Lee, personal communication
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are faulty. Under these circumstances, it is possible that the unconstrained estimate
¢5 deviates significantly from the true system state. By using such an fo as the initial
state in the optimization, the advantages gained by incorporating constraints will be
compromised. '

The smoothed state £(k 4+ 1 — p|k — 1) presents another choice for the state at
the beginning of the horizon, éo(k). Intuitively, this choice has the appeal that it
represents the best estimate of the state £(k + 1 — p) given all the currently available
measurements. Additionally, for the constrained case stability results are more easily
derived using the smoothed state since, in the MHE framework, the relationship
between &(k+1—plk —1) and £(k +2 — p|k) is simpler than the relationship between
E(k|k — 1) and £(k + 1|k). In the algorithms presented in this chapter, the smoothed
state f(k + 1 — plk — 1) is therefore used as the beginning horizon state go(k).

By choosing & (k) = £(k+1— plk — 1), the weighting matrix ¥ obtained from the
Riccati equation (5.10) may not provide stability in the unconstrained case. Since
€(k+1 —plk — 1) represents a better estimate of the true state than Ek+1—plk—
p) due to the additional knowledge of the system obtained from the measurements
y(k+1—p),...,y(k — 1), one would expect that a larger penalty on A{(k + 1 — p)
(smaller £) should be used in the objective function when &; is £(k+1—p|k —1) than
when it is £ (k+1—plk —p). Given the weights @ and R and the horizon length p, a
constant matrix ¥ which guarantees stability of the MHE in the unconstrained case
can be calculated by solving an algebraic Riccati equation, as will be shown next.

For convenience define the concatenated measurement vector Y(k + 1 — p, k) as

follows:

Vk+1-pk)= {yt(k +1-p),y"(k+2~0p),.. .,yt(k)]t. (5.11)

Also, define V, (k+1—p, k), %(k—i—l——p, k), Ve(k+1—p,k—1), and f)g(k-{—l——p, k—1)
similarly for the variables v, (-), 0,(-|k), ve(-) and 0¢(:|k) respectively.

It can easily be shown that in the unconstrained case the optimal choice of the
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decision variables is given by

: _ | -1
CaskEL=n) BT 0 e BltR e, B]| (6, D) B0
Vek+1—p,k—1) A%
_ (=0 ) €, D]" x
0 @
-1
= |[C,D] ( > 0 ) [C,D]"+R| k) (5.12)
0 @
where V°(k) is calculated from the data and initial state:
Yk) =V(k+1—p,k)— Cé(k+1—plk - 1), (5.13)

and that this solution relates £(k + 2 — p|k) to £(k + 1 — p|k — 1) through:

~

§k+2—plk) = Ac(€(k+1—plk—1)+Aé(k+1-p)) + BVe(k — 1,p),
= (A= LC)&(k+1—plk— 1)+ LY(k +1 - p,k), (5.14)

where
- . [ 0 0 .0
Ce
CeBe 0 .0
_ CeAe _
C= . , D=| C¢A¢Be CeBe ... 0 |, (5.15)
CﬁAIg“l . 2 3
- b C’gA?_ B C’gA?‘ Be ... C¢Bg
B =[B,0,...,0], R=diag[R,R,...,R], Q =diag[Q, @, ...,Q]. (5.16)

L=(AxC +8)(CC' +R) ™, (5.17)

R=DQD!+ R, (5.18)
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S=|0 B:QBIC' B;QBLA'C' ... BgQBg(Ap—Q)tCt]. (5.19)

From (5.14) one can see that the unconstrained least squares procedure results
in a Luenberger observer for updating &, and that the stability of this observer is
determined by the eigenvalues of A; — LC. For any value of the weights R and Q,
it is possible to choose ¥ so that stability is ensured as long as the system satisfies
certain detectability conditions. One such choice of ¥ can be obtained by considering

solutions of the following algebraic Riccati equation (ARE)
Y o= S - UnCHCECt + R)TICSV + B.QB — SRT'SY,  (5.20)

with ¥ = A, — SR™'C. If (C, Ag) is detectable, then there exists a solution to the
ARE such that the matrix

V(I +2CRIC) = A~ LC (5.21)

is stable [72]. Using this estimator, the state error, é — &, evolves as

~

§k+2-plk) —€(k+2-p) = (A —LOYE(k+1—plk—1)—£(k+1-p))
+LV,(k+1—p,k)
+(LD = B) Ve(k+1-p,k—1) (5.22)

so that for the case wherein v, (k) and v¢(k) approach zero asymptotically, the esti-
mation error also approaches zero asymptotically.
Let us now collect the equations describing this Moving Horizon Estimator to

define the estimation scheme MHE 1:

MHE 1 Given the estimate £(k+1— plk — 1), form the updated estimates according
to:
Initial Error Update:

Ek+1—plk) = Ek+1—plk—1)+Aék+1-p), (5.23)
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Data update, fori=k+2—p,....k:

E@ilk) = Af(i — 1]k) + Bete(i — 1]k), (5.24)

where AE(k + 1 — p) and ¢ (i|k) minimize the following quadratic program:

min J(k,p), (5.25)
A& (k+1—p), ¢ (ilk)
i 2 u 2 -
Pkop) = >0 No@R)z-+ Do e(ilk) G- + 1ALk + 1 = p)|[5-1, (5.26)
i=k+1-p i=k+1-p

and with ¥ the solution to the ARE
5= ISPt — UECHCECt + R)TICL¥ 4 B.QBt — SRS, (5.27)

where ¥ = A, — SR™'C.
Use the estimate £(k + 2 — p|k) in the nest step.

Remark 6 When X is calculated as above, the dynamics of the system which gener-
ates E(k+1—plk —1) from Y(k+1—p, k) is equivalent to the dynamics of the steady

state Kalman filter for the augmented system

x(k+1) = Aex(k)+ ve(k),
y(k) = Cx(k)+v,(k), (5.28)

with non-zero correlation between the process noise and measurement noise, that is

()5

The Kalman filter for this system is given by [1]:

BQB: S

St R

(5.29)

%(klk) = %(klk—1)+2C" (CEC*+R) ™ (v(k) - Cx(kk — 1),
R(k+1[k) = Ak(klk)+ SR (y(k) — Ck(k|k)) . (5.30)
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5.4 Constrained Moving Horizon Estimation

5.4.1 Constrained formulation

Now consider the case where the state estimates and innovations variables must satisfy

certain linear constraints of the form:

Geb(k+i—plk) < he, i>1,
GAgAé(k+1“p) < hag
Gyoe(k+i—plk) < hy, 1<i<p-—1. (5.31)

The constraints on é require that not only the smoothed and filtered states, but also
the predicted state trajectory satisfy the a priori system information. We shall see
that by enforcing the constraints on the predicted state trajectory, it will always be
possible to find a feasible solution to the optimization problem. As the predicted state
trajectory constraints form an infinite set, we first show how to obtain a finite number
of constraints which if satisfied guarantee that the infinite predicted trajectory lies
within the feasible region.

The predicted state trajectory is obtained from the filtered state é (k|k) according

to:

E(k +ilk) = AL (k). (5.32)

Asymptotically, £(k + i|k) converges to a constant value £ = limj_ o A%é (k|k), or

() — [ z* (k) J _

equivalently

(5.33)

w* (k) w(klk)

(I — A B (k|k) J

Using the asymptotic state £*(k), the predicted state trajectory may be expressed as

E(k+ilk) = &(k)+ AL (§(klk) — (k) (5.34)
_ [m*(k) Ai(@(k;k)_m))] 5.59
w*(k) 0
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If a linear observer of the form
E(k+ 1k +1) = A(klk) + L (y(k + 1) — Ce AL (Klk)) (5.36)

were used to estimate the state £(k|k), then £*(k) corresponds to the value that the
observer state would converge to under the condition that the predicted output error
were identically zero for all time after time k.

Lemmas 1 and 2 use the asymptotic state £* to show that under mild assumptions,
only a finite number of constraints for é need to be considered. In addition, a method
is established for determining off-line this finite set of constraints which will guarantee

that all constraints are met over the infinite trajectory.

Lemma 1 Let G¢ =[Gy, Gy). Consider the following mazimization problem:

max G ;A"
st Go A<, 1=0,...,n—1, (5.37)

where G, ; denotes the j™* row of G,. If there exists ann > 0 such that the mazimum

is less than or equal to 1, and £*(k) satisfies G¢ j€*(k) < he j, then the constraints
Ge€(k 4 ilk) < he,; (5.38)

are satisfied for all i if they are satisfied fori=20,...,n — 1.
Proof See appendix.

Lemma 2 Suppose, in addition to the constraints in (5.87), it is required that |||
be bounded. Then there exists a finite n such that with the additional constraint on

ICIl the mazimization (5.37) is bounded above by one.

Proof See appendix.
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Remark 7 When ||| is not bounded, it may not be possible to find an n such that

the condition of Lemma 1 is satisfied. Consider the following example:
q, = [ 11 ] . A = diag(A1, ), (5.39)

with 1 > Ay > Ay, Then

If (o > (4 > 0, then the right-hand side is non-positive whenever n satisfies

< log (M1/22)

n= log (¢2/¢1)’ (541)

and strictly positive otherwise. Clearly, for any n it is possible to find {1 and {5 such

that G;A™( < 0 for m < n, but G;A™C is arbitrarily large.

Remark 8 The condition that the constraints impose a bound on the ||C|| are not very
restrictive in practice. Recall from the proof of Lemma 1 that ¢ represents Z(k|k) —
z*(k). Suppose bounds of the form | < C¢€ < u are imposed, where (A¢, Ce) form an
observable pair. Then it follows that ||Z(k|k) — z*(k)|| must be bounded. If not, there

exists an arbitrarily large vector z = [(Z(k|k) — z*(k))*, 0]" such that

- - - - - .

A C '

4 CeA u

= A S : (5.42)
U] | Cedp | v

where u' = u— Ce&*(k) and I = 1 — Ce&*(k). But this can only hold if the matriz has
linearly dependent columns, which contradicts the observability assumption. There-

fore, in this case, the constraints (5.31) impose a bound on Z(k|k) — z*(k) for any

finite £ (k).
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Define F to be the set of feasible steady state measurements,

F=A{yly = Cel", Al™ = 7, Gc£™ < hel, (5.43)

or in other words, y(k) € F if there exists a corresponding £* which satisfies the
constraints (5.31) and constitutes an equilibrium point. If a measured y(k) does not

lie within J, then one of several possibilities exist:
1. The constraints are too restrictive for the physical behavior of the system.
2. The dynamic system is in transient.
3. The measurement y(k) is too inaccurate.

For the first case, it would be necessary to gain further insight into the system,
and use this new information to reformulate the constraints so they are physically
meaningful. In this chapter, we assume that the constraints are valid, so that when
y(k) lies outside the set F asymptotically, it is due to inaccurate measurements. One
of the primary motivations for including constraints in an estimation scheme is to

improve performance when inaccurate measurements are obtained.

5.4.2 Stability

Now that we have shown that by enforcing a precalculated finite number of con-
straints, all future predictions can be guaranteed to satisfy these constraints, let us
consider the stability properties of constrained MHE. In Section 5.6.1, it is demon-
strated through an example that the formulation MHE 1 can result in an unstable
estimator when constraints are imposed. Therefore, this algorithm must be modified
to ensure stability.

From results in MPC, one can get ideas on how to stabilize constrained MHE.
In MPC, one uses control errors in the objective function and extends the prediction
horizon to the infinite future [91]. This makes the objective function a Lyapunov

function and allows one to prove stability. The dual problem in MHE would be to
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consider the state estimation error in the objective function and to extend the horizon
to the infinite past. Two difficulties arise in this approach. First, the state estimation
error is not known. If it were known, the state would also be known, and therefore
the need for an estimator would be eliminated. Second, by extending the problem to
the infinite past, the problem size grows at each step and soon becomes intractable.
Instead of the infinite past, consider modifying the MHE objective by extending

the output error terms to the infinite future, resulting in an objective of the form:

o0}

Pkp) = 3 8kl
T Dl LXC O P RS NP

To evaluate the terms of this objective function, one must assume the future behav-
ior of the system. Assuming that disturbances remain constant in the future gives
D¢ (i]k) = 0 for ¢ > k. Next, consider the terms 9,(i|k) which contain measurements
y(4) which for ¢ > k have not yet been made. One possibility is to replace these values
with the predicted values; however, in this case 0,(i|k) = 0, and the objective func-
tion remains unchanged. We assume instead that the future measurements remain

constant, that is y(i) = y(k) for ¢ > k, or equivalently
B, (ilk) = y(k) — C¢&(i|k) for i > k. (5.45)

With this modification, the objective function remains bounded if and only if there

exists an £*(k) satisfying (5.35) as well as the relation

y (k) = y(k), y"(k) = Ce&*(k). (5.46)

In this case, the first term in the objective function becomes

[e%s) k—1

> MoyGRR-r = > Ny () = CE(R) 7 + lle™ (k) — (kR 5,  (5.47)

i=k+1—p i=k+1—p
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where P is given by

P=Y A'C'R™'CA= A'PA+ C'RC. (5.48)

=0

Because the measurement y(k) may not lie within the set F, the constraint (5.46)
may not be feasible. This constraint can be relaxed in order to guarantee feasibility
of the optimization problem by removing the constraint and penalizing the objective

function when this equality is violated by including a term of the form

ly(k) = Ce€ (k)3 (5.49)

where A is any positive definite matrix [114].
By modifying the objective function as described above, the following algorithm

results.

MHE 2 Given the estimate é(k%- 1—plk—1), form the updated estimates according
to:

Initial Error Update:
Ek+1-plk) = E(k+1—plk—1)+AEK+1-p), (5.50)
Data update, fori=k+2—p,... k:
E(ilk) = Acl(i—1|k) + Beoe(i — 1]k). (5.51)
where AE(k +1 — p) , Ue(ilk), and z*(k) solve the following quadratic program:

. min o(k,p), (5.52)
AL(k+1-p),0¢ (ilk),z* (k)

k-1
*(kp) = > N05GlR) IR + 2" (k) — 2(kIR)IE + ly(k) — Ce& (R)II3

i=k+1-p
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k-1 A
+ 2 %GR)IG- + ALk + 1~ p) I3 (5.53)

i=k+1-p

subject to the constraints (5.31) as well as

2*(k) = Az*(k)+ Buw(k|k), (5.54)
or(ilk) = (i) — Cel(ilk). (5.55)

Use the estimate £(k + 2 — plk) in the next step.

In the following, it is shown that MHE 2 with P chosen as the solution to the
Lyapunov inequality:

A'PA—- P+ C'R™IC <0, (5.56)

has desirable convergence properties. Lemma 3 establishes that for asymptotically
constant signals y, the estimate £(k 4+ 1 — p|k) converges to values determined by £*.
Lemmas 4 and 5 establish similar convergence results for the estimates £(k + i — plk)
for 7 > 1. Finally, these preliminary results are used in Theorem 3 to establish the

convergence of £*(k).

Lemma 3 Assume that the signal y(k) converges to a constant value yo such that

>~ (i) = ool < (5.57)

Then for any positive definite matrices R, Q), and X, and for any horizon length p and
positive constant A the estimator MHE 2 with P satisfying (5.56) has the following

asymptotic convergence properties as k — oo:

Cel(k+1—plk) = y'(k+1-p) (5.58)
Afk+1-p) — 0 (5.59)
de(k+1—plk) — 0 (5.60)

v'k+1-p)—y*(k—p) — 0. (5.61)
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Proof See appendix.

Lemma 4 Suppose that the pair (Ce, A¢) is observable, and that the convergence
results (5.58)-(5.61) hold. Then

Ek+2—plk) = E(k+1—plk—1). (5.62)

Proof See appendix.

Lemma 5 Under the assumptions of Lemmas &8 and 4,
Ek+i—plk) = Ek+1—plk—1), i>1. (5.63)

Proof See appendix.

Theorem 3 Fory as in (5.57), the estimates £(i|k) for i € [k + 1 — p, k] obtained
using MHE 2 with the matriz P satisfying (5.56) converge asymptotically to a state
£*(i) which satisfies

) = argcrfrgenfﬂcsf —y(@)|. (5.64)

Proof Lemma 3 through 5 imply that £(i|k) converges to some value £*(i) such that
Ce&* € F. It remains to show that £* satisfies (5.64). Lemma 5 implies that every
term in the objective ® approaches zero asymptotically, with the possible exception
of the term ||y(k) — Ce€*(k)||A. Let e%(k) denote this term. Letting z denote the

optimization variables:
2= [A&(k+1—p), Vik+1—p k-1, (5.65)
and denoting Az* = z*(k) — z*(k — 1), the objective ® can be written as

®* = [2,Az*)'M[z, Az*] + [z, Az*]tf + €2(k), (5.66)
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where M is a positive definite matrix and f converges to zero. The constraints may

be abbreviated as

AlzZ + Alel'* S b17 (567)
AQZZ + AQZA.’E* = (. (568)

with b; > 0. One feasible solution to the above problem is z = 0, Az* = 0. Suppose
this is the optimal feasible solution. Then the constraints do not change for the next
step, and it follows that £*(k+1¢) = £*(k) for all ¢ > 0. From Lemma 5 it follows that
Ceé(k + i — p|k) converges to Ce&*(k) for all ¢ > 0, so that each of the constraints
on & (k + 1 — p|k) are satisfied asymptotically if and only if C¢£*(k) lies in the set F.
Therefore, £*(k) is an optimal feasible solution to the problem (5.64).

Suppose the solution [z, Az*] = 0 is not optimal. For this suboptimal solution,

the objective function has the value
@ = [ly(k) — Ce&™(k — D13 (5.69)
Since this solution is a suboptimal, there exists a 2, AZ* such that
(2, A2 M[2, AZ") + [2, Az"]'f + ||y (k) — Ce€(R)IIR < lly(k) — Ce&*(k = D)3 (5.70)
The left-hand side is bounded below by the term
112, Az"]|Pa (M) — [z, AZ*IF1l + lly (k) — Ce€™ ()13 (5.71)

Since || f|| — 0, for sufficiently large k, the first two terms are greater than zero. This
implies that
ly(k) = Ce&™ (B)R < lly(k) — Cet*(k = 1)I13. (5.72)

Together with the convergence of y, this implies that ||y(k) — C¢£*(k)||3 approaches a
limit and therefore AE*(k) = [Az*(k)?, vy(k|k)!]* = 0, which in turn implies z — 0,



117
so that the above argument can be used to show that £* converges to the specified

value. [ |

5.5 Extension to nonzero input u

The algorithms developed can easily be extended to the case where u is non zero by

transforming the system so that Au(k) = u(k) — u(k — 1) is considered as the input:

A B, B, B, 0 B,
Ek+1) = 0 I 0 |&k)+| 0 I|vk)+]| 0 |Auk),

0 0 I 0 0 I
[y(k)} _ |G Y| O Au(k)+[vy] (5.73)
u(k) 0 0 1 I 0

Redefining Ag, B, and By, as the matrices multiplying £(k), ve, and Aw, the update

equations become

~ ~

Ek+1—plk) = Ek+1—-pk—1)+ Aé(k+1—p) (5.74)

E(ilk) = Agf(i — 1|k) + Bebe(i — 1|k)
+B Au(i—1), i=k+2—p, ...k (5.75)
Ek+ilk) = AL(klk), i> 0. (5.76)

In choosing f*(k), 1t is again required that this auxiliary state vector correspond
to an equilibrium position of the systems, and it can easily be seen that f*(k) =

lim; o Aéé (k|k) corresponds to the following conditions:

(I = A)~ (Buib(k|k) + Byu(k))
& (k)= W(k|k) . (5.77)
u(k)
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5.6 Examples

5.6.1 Instability via constraints

This example is designed to demonstrate that the estimation scheme MHE 1 can be-
come unstable if constraints are enforced in the minimization of the objective J(k, p).
Consider a dynamic system consisting of a linear plant G and a controller C operating
in closed loop. The plant and controller are given by:

_10z3—171 o Q 0= 1023 — 822 2z
1024 —-87 T 1—PQ’ Y —1123+1022—1

(5.78)

A disturbance w is introduced at the plant input. Three separate estimation tech-
niques are used to estimate the system states and input disturbance. The first method
corresponds to the constrained MHE with stability guarantee MHE 2, the second
method to MHE 1 with the addition of constraints, and the third method to an un-
constrained linear Kalman filter. The MHE methods both used a horizon of p = 5,
and weights R = 0.01, Q = 1, A =1, and ¥ as in (5.20). The constraints enforced
were as follows: v

0<w<1, |9 <05, |AZ| < 0.05. (5.79)

The disturbance w, as well as the estimated disturbances for each of the three
methods, is shown in Figure 5.1. Because the constraints will not allow the estimate
w to fall below zero, the constrained method with stability guarantee, MHE 2, reflects
the disturbance more accurately than the Kalman filter. When constraints are added
to MHE 1, the disturbance estimate does not converge asymptotically, although it
does not diverge due to the constraints on 1. By relaxing these constraints while

leaving the others unchanged, the estimate can be made to diverge.

5.6.2 Chemical reactor

This example demonstrates how including constraints can increase the robustness of

fault detection using linear models. The detection of faulty operation for a chemical



119

Disturbance Estimate

) 1 i
50 100 150 200 250
time

Figure 5.1: Disturbance estimates. Solid line — actual disturbance w, dashed line -
MHE 2 (guaranteed stability), dash-dot line — MHE 1 (no stability guarantee), dotted
line — unconstrained Kalman filter

reactor is considered. Since the reactor is nonlinear, one expects that by using a
nonlinear model rather than a linear model, better estimates would be obtained;
however, in contrast to this simple example, frequently a nonlinear model based on
first principles is not available, and one must rely upon a linear input /output model
obtained from identification experiments. In this example, a linear model obtained
from linearization about the nominal operating point will be used in the estimation
schemes. It will be shown that for this example, constrained estimation using a linear
model is significantly more robust to model uncertainties due to nonlinearities than
the linear Kalman filter.

Consider a continuous stirred tank reactor (CSTR) in which chemical species A

is converted to species B through an irreversible first order liquid phase reaction
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Parameter | Value

La 0.5
Tin 208
T 373

~AHC
‘(’JCX 10

proAT 0.92
Ay 2.4el13
Ag 1 .063,

Table 5.1: Parameter Numerical Values

as shown in Figure 5.2. The reactor temperature is regulated by passing a heat
transfer fluid at temperature T, through a jacket. Assume that the reactor volume V
is maintained constant by appropriately adjusting the outlet, and that the physical
properties (molar concentration C, heat capacity C,, density p) of the inlet and outlet
streams are the same. An energy and material balance leads to the following governing

differential and algebraic equations:

T - () @-n+ (T ke () @D,
%%A- = Fén(1~x,4)-—k(T)xA,
K(T) = Alexp(_;b), (5.80)

where T is the reactor temperature, 4 the mole fraction of A in the reactor, k(T')
the Arrhenius reaction constant, Fj, the inlet volumetric flow rate, AH the heat of
reaction, and U A the heat transfer coefficient times area. The parameter values used
for this example are given in Table 5.1, which results in the steady state operating
condition T = 350, and x4 = 0.051.

Imagine that two types of faulty performance frequently affect the system. Fault
1, fi, corresponds to the clogging of the inlet pipe so that the inlet flow rate Fj,
decreases from its nominal value of 0.5V. Fault 2, f, is related to the heat transfer
fluid. This fluid is normally maintained at constant temperature T, = 373K by being

passed through an external heater. When the heater is not functioning properly, the
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temperature of the heat transfer fluid to the reactor jacket drops, that is T, < 373.
Each of the two faults may be modeled by decreases in one of the system variables
F,, or T..
By linearizing the system equations about the nominal operating point, and defin-

ing the states z = [AT, Aza)t, w = [ALia AT,]*, the following linear system is ob-

tained:
C ] [ 10325 932043 —51.9334 09200 | [z, ] [0 o]
d| e | | 00388 —9.8204  0.9491 0@ | [00]|u
dt | o, 0 0 0 0| w 10| v
| wy | i 0 0 0 0__w2J _0 1_
(5.81)

By discretizing this model, a system in the form of (5.3) with z = [AT, Az4] and

w = [AE“;&, AT.] is obtained. The constraints which should be enforced include
wy < 0, Wo < O, —w; < 05, ] (582)

-1z < 0.051, zo < (1 —0.051). (5.83)

The first two constraints imply that Fj, and 7T, can only decrease from their
nominal values. The third constraint implies that F}, must be positive, and the final
two express the requirement that the mole fraction of A is in the interval [0, 1].

For the objective function, the outputs y = [AT, Az,] and the innovations v
must be scaled. One approach to choosing the scaling consists of finding diagonal
matrices Dy and D; such that the steady state values of || Dyy|| and || Dow]| are close
to the same when a step in w (or an impulse in v) occurs. Let P, be the steady state

value of the impulse response matrix for the system (5.81). Then at steady state,

Diy = (D1PyD;") Dyw, (5.84)
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which gives the bounds
o (DR D) | Dyw|| < || Dyyll < & (D1PoD;Y) || Do (5.85)

The gap between the upper and the lower bound is as small as possible when the
condition number of D;PyD;' is minimized. The condition number is independent
of constant scaling, so it is possible to further specify ||DyPyD3!|| = 1. This mini-

mization is easily calculated [15], and for this example results in
D, = diag(1,189), D, = diag(0.0139, 0.8719). (5.86)

This scaling is implemented in the objective function by letting R = D72, Q = D32,

For each disturbance, three detection schemes were implemented: Constrained
MHE 2 using a linear model, with horizon p = 5 and weighting matrix A = 57;
Unconstrained linear Kalman filter based on the model linearization at the fault free
operating point; and the Unconstrained Extended Kalman filter. For the schemes
requiring a linear model, the model (5.81) was transformed to a discrete difference
equation using a zero order hold transformation.

The results for a step fault in the input flow rate (f;) are shown in Figures 5.3
and 5.4. Two different size steps were simulated using the full nonlinear model. The
simulated output was sampled at a rate of 0.1 sec™. For the step of magnitude 0.01 (a
2% decrease in the flow), each detection scheme correctly estimates Fault 1; however,
the Kalman and Extended Kalman filters have larger errors in the estimation of Fault
2 than the MHE estimator. Of particular concern is the fact that the Kalman filter
results in a non-zero asymptotic estimate of Fault 2. For the larger fault of magnitude
0.25 (a 50% decrease in the flow), both the MHE 2 and the Extended Kalman filter
adequately diagnose the failure. The Extended Kalman filter has a larger transient
error for Fault 2 than the MHE 2, but the MHE 2 has steady state offset. This
offset is due to inaccuracies in the model used in the MHE which may be ascribed

to nonlinearities, but does not affect the proper diagnosis of Fault 1. The Kalman
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filter is also affected by the same modeling errors, but because the constraints are
not enforced, the estimated faults result in a poor diagnosis, incorrectly assigning the
majority of the poor performance to Fault 2. Since the EKF uses the full nonlinear
model, there are no modeling errors for this case. For this example, it is clear that
MHE 2 with constraints is more robust to modeling errors than is the Kalman filter.

Figures 5.5 and 5.6 show the results of applying the same detection schemes to
step faults in the heating temperature T, (f2) of 0.5 and 10 degrees respectively. The
results are similar to those for Fault 1.

From the basis of steady state offset, only the Extended Kalman filter gives error
free estimation of the disturbance for large disturbances; however, if the cause of the
fault is of more interest than its magnitude, one may argue that the performance
of MHE 2 is comparable. In addition, the method MHE 2 achieves this level of
performance while using a simpler, local linear model, which would be more easily

identified from process data.

Fin , Tin .

W

AD B
AH

T9 XA

Figure 5.2: Continuously stirred tank reactor
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Figure 5.3: Fault estimation for f = —0.01f;. Solid — MHE 2 scheme, dashed —
unconstrained linear Kalman filter, dash-dot — unconstrained extended Kalman filter

5.7 Conclusions

Moving Horizon Estimation (MHE) provides a framework for dynamic estimation of
system states and parameters wherein constraints on disturbances and states can be
implemented. Including process information in the form of constraints can improve
the robustness to model error for estimation schemes. Although under the assump-
tions which render the Kalman filter optimal the MHE scheme is suboptimal, MHE
may outperform “optimal” estimation schemes when the assumptions such as Gaus-
sian distributed white noise do not hold by constraining the estimates to lie within a
given region. For the unconstrained MHE, stability can be guaranteed by properly se-
lecting the initial state error weighting matrix ¥; however, the addition of constraints

can lead to an unstable estimator.
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Figure 5.4: Fault estimation for f = —0.25f;. Solid — MHE 2 scheme, dashed —
unconstrained linear Kalman filter, dash-dot — unconstrained extended Kalman filter

For the case of constrained MHE, several modifications to the estimation scheme
were needed to guarantee stability. First, the set of infinite state constraints must be
replaced by a finite set which covers the same space. Under fairly mild assumption
on the form of the state constraints, this substitution will be possible as was shown in
Lemmas 1 and 2. With the constraints extended over the infinite prediction horizon,
it was shown that stability can be guaranteed by including in the MHE objective
function an additional penalty on the difference between the final estimated state
and an auxiliary state £*, and it was shown how £* can be chosen to guarantee
asymptotic convergence of the output estimation error.

Two examples demonstrated the use of the new MHE algorithm. The first example
showed that the algorithm MHE 2 maintains a stable estimate on a sample system

for which previous versions of constrained MHE diverge. A second example illus-
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Figure 5.5: Fault estimation for f = —0.5f;. Solid — MHE 2 scheme, dashed —
unconstrained linear Kalman filter, dash-dot — unconstrained extended Kalman filter

trated how incorporating constraints on estimated variables can improve robustness
to modeling errors.

In Chapter 6, it will be shown how constrained estimation can be used to explicitly
account for model uncertainty in fault detection problems and thereby provide further

improvements in detection performance.

Appendix: Proof of Lemmas

Proof Lemma I The proof is by induction. Suppose G, ;A™¢ < 1 for all ¢ ‘satisfying

the first n constraints. Assume the claim holds for all < m where m > n, and
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Figure 5.6: Fault estimation for f = —10f;. Solid — MHE 2 scheme, dashed -

unconstrained linear Kalman filter, dash-dot — unconstrained extended Kalman filter

consider the maximization

m(a,x Gx,jAm“(

st G ;AC<1,1=0,...,m. (5.87)

By removing the constraint corresponding to [ = 0, an upper bound may be achieved.

Substituting 7 = A(, the bounding problem becomes

max G, ;A™n
s.t. Gz,jAlngl,l::O,...,m——l

n € Range A, (5.88)
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which is bounded above by the problem obtained by removing the constraint that n
lie in the range of A. This is exactly the linear program corresponding to i = m,
which is less than one by induction. It follows that GzyjAm“{ <1.

Now suppose the bound 1 is replaced by h}, where A} > 0. Then it follows that
G AT < h; for all i given that it holds for 4 < n. This holds for any h; > 0, and in

particular for A} given by
W; = hej — Gojz* — Gy jw*
Finally, by using (5.35), note that
Ge j€(k +ilk) = Gp 2" (k) + Gy yw* (k) + Go ;A (E(k|k) — *(k)), (5.89)
which completes the proof. |
Proof Lemma 2 Since A is stable, there exists a positive definite X such that
AXA-X+T=0, X>1I (5.90)

Using this X, it follows that

t At _ oty R
CAXM—CXCCCSG 5@ngg (5.91)

Defining \? = (1 — 71-)—6) and repeating the above procedure, it follows that
[A™C]" X [A™¢] < X*"¢PXC (5.92)
Now by using the fact that

a(X)IICI* < ¢'Xx¢ < a(X)¢l?,
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[A™C]] < A"/ w(X)IICH, (5.93)

where x(X) is the condition number 7(X)/a(X) and A is strictly less than 1. Now

it follows that

consider the following inequalities:

GogA™ < |GogA™, (5.94)
< 5(Gag)l Al (5.95)
< 5 (Gag)yRX)NMC]. (5.96)

Since A < 1, there exists an n such that the right-hand term is less than one as long

as ||C|| is bounded. ]

Proof Lemma 3 Suppose at time k, the objective function is minimized by
AE(k+1—p),0c(k+1—plk), ..., 0k —1|k), z*(k) (5.97)

and that this solution is used to update £(k+1—p|k — 1) to £(k +2— p|k). Consider

the following feasible solution at time & + 1

Aé(k+2—p) = 0 (5.98

)

Ue(ilk +1) = 0e(ilk), i=k+2—p,... k=1 (5.99)
Oe(klk+1) = 0, (5.100)
zk+1) = z*(k). (5.101)

The minimum value ®(k + 1, p), ®(k+ 1, p), is bounded above by the value obtained

from this feasible solution:

*(k+1,p) < 3 Noy(alR) 7 + NIz (k) — 2k + 1R

i—kt2—p
+lly(k) — Ce&*(k) + y(k + 1) — y(k)[13
+ 3 I%ilR) 1B (5.102)

i=k4+2-p
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< % k,p) — U(k+1—plk)
+2ly(k) — Ce&™(R)||ally(k + 1) — y(k)||a
Hly(k +1) = y(B)I3 (5.103)

where U’(i|k) is given by
V(ilk) = [AEDIE- + 10yl 1ms + 19 (1R IR (5.104)

In going from (5.102) to (5.103), the facts that &(k+1|k) —z*(k) = A(Z(k|k) —z*(k))
and A'PA+ C*R™1C < P were used. By defining the nonnegative quantity ¥*(k)

. - 1/2
(k) = B(k,p) — (8(k,p) - Wk +1-plk)”, (5.105)
the triangle inequality together with the fact that
* 2 I 1/2
ly(k) — Ce&*(k)lla < (@(k,p) — ¥'(k + 1 - p|k))
imply that
®(k +1,p) < 2(k,p) = (k) + [ly(k + 1) — y(K)l|a- (5.106)
Now denote by & the quantity
=0+ llyk+j+1) —yk+7)lla (5.107)

=0

which is guaranteed to be finite by the convergence properties of y. It then follows
that
®'(k+1,p) + (k) < ¥ (k,p), (5.108)

which implies that @' is a non-increasing sequence bounded below, and thus must

converge to a limit. Therefore,

T*(k) — 0, (5.109)

but this can only be the case when (5.58)-(5.60) hold. Since (5.59)-(5.60) imply that
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-~

&(k + 1 — plk) converges to a constant value, ¥*(k) can only approach zero if y*(k)
also approaches a constant value, which establishes the limit (5.61) and completes

the proof. u

Proof Lemma 4 Since £(k+1 —plk) = E(k+1—plk— 1) + Aé(k + 1 — p), (5.59)
implies that for any e there exists a K such that for all £ > K

~ ~

E(k+1—plk)=E(k+1—plk—1)+O(e). (5.110)
Combining (5.110) with (5.60) and (5.61) implies that
Cel(k+2 —plk) = Ceb(k+ 1 — plk — 1) + O(e) (5.111)

which in turn implies that

~ ~

E(k+2—plk)=¢k+1-plk—1)+0(e) + N(k), (5.112)

where C¢N (k) = 0. It now suffices to show that N(k) must converge to zero. The
convergence (5.59) and (5.60) along with (5.111) imply that for large enough k > K,

~

Ek+3—plk+1) = Al(k+2—plk)+0(e), (5.113)
= AZ(k+1-plk—-1)+AN(k)+0(e) (5.114)
= #(k+2—plk) + AN (k) + O(e). (5.115)

By evaluating (5.111) at time k4 1 and substituting (5.115) for £(k+3 —p|k+1) on
the left-hand side, it follows that

Cea(k+2 — plk) + CeAeN (k) = Cea(k + 2 — plk) + O(e), (5.116)
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which implies that Ce AcN(k) = O(e). Repeating this procedure,

Ce

C’*‘flﬁ N(k) = O(e). (5.117)

| CeAp™ |

Observability of (C¢, A¢) implies the matrix on the left has linearly independent
columns so that N(k) — 0. |

Proof Lemma 5 The proof is by induction. In the previous proof, it was established

that
Ek+1—plk) — Ek+1—plk—1), (5.118)
Ek+2—plk) — Ek+1-plk-1). (5.119)
In addition, the limit
Ek+2—plk) = Ek+2—plk—1) (5.120)

follows directly from the fact that

~

Ek+2—plk) = Af(k+1—plk—1)+ AAE(k+1—p) + Beve(k+ 1 — plk)

A~

= £(k+2—plk—1)+0(e), (5.121)
which implies that
Eh+i—plk) = Ek+i—plk—1), i <2. (5.122)

Now assuming (5.63) and (5.122) hold for ¢ < j, and substituting k& + 1 for %k into
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these two relations yields

Ek+1+j—pk+1) = E&k+2—plk)

Eh+1+j—plk+1) = Ek+1+7—plk)
which together with (5.119) imply that
E(k+(j+1) —plk) > €(k+1—plk — 1),

so that the claim holds for j + 1.

(5.123)

(5.124)

(5.125)
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Chapter 6 Application of Moving
Horizon Estimation to Robust Fault

Detection

Summary

For a class of model uncertainty descriptions, plant/model mismatch can be directly
incorporated into a model based fault detection scheme using Moving Horizon Esti-
mation. The model uncertainty is represented by a set of bounded parameters which
can be used to alter the dynamics of the model through injection of the measured
output as well as inputs. The uncertainty class includes gain uncertainty as well as
uncertainty in pole locations. Using a bank of filters, detection of exclusive fault
scenarios can be accomplished. The proposed method is compared to other methods
employing an adaptive threshold, and is demonstrated on a simulation example of a

cold tandem steel mill.

6.1 Introduction

One approach to fault detection and isolation in dynamical systems consists of using
linear observers or Kalman filters to estimate the system state [110]. Information
about the normal operating behavior of the system can be used along with the state
estimate to deduce faulty operation. Methods for deriving linear observers assume
an accurate representation of the system, including models for nominal disturbances.
Although detection schemes using such observers work very well when the model ex-
actly describes the system, small inaccuracies severely limit the performance. For

example, in Chapter 4 it was shown that for some small model perturbations which
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would have little effect on control performance, linear observer based detection meth-
ods will perform poorly. As mathematical descriptions of physical processes rarely
provide a precise description of the system behavior, the use of linear observers in
fault detection has its limits.

Traditionally, fault detection is divided into a two step approach. The first step
involves generating residual signals which are small when the process is operating
normally. These residual signals are often obtained from the output prediction error
derived from an observer as described above. Then a decision algorithm based on
sequential probability ratio tests, such as CUSUM, is used to determine whether
the residual is different enough from zero to indicate a fault. Attempts at robust
fault detection have usually focused on either one or the other of these steps, as is
evident from the review articles [85]. [35], [62], and [18] address the issue of robust
residual generation by choosing linear combinations of the output variables which
are insensitive to modeling uncertainties. Recently, an optimal residual decoupling
method has appeared [41]. One significant drawback to these approaches lies in the
fact that frequently a reduction in the sensitivity to model uncertainty can only be
accomplished with a high loss in sensitivity to faults.

In the decision phase, the methods of robustness which have received the most
attention are based on the use of adaptive thresholds [33, 29, 19, 44, 46, 108]. In this
approach, the threshold becomes a function of a measurable quantity, usually either a
reference signal or control moves. The threshold for each residual is varied according
to the measured variables.

In Chapter 5, estimation of dynamic states and parameters using Moving Horizon
Estimation was discussed. In particular, modifications to previous algorithms were
proposed in order to guarantee stability of the estimation scheme. In this chapter,
an alternative approach to achieving robustness in fault detection is pursued using
the MHE framework. Following a traditional approach, a potential fault is modeled
by including auxiliary states which represent possible faults. Then process measure-
ments are used to estimate the states by minimizing a weighted sum of the fault

vectors and errors between estimated and measured outputs using Moving Horizon
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Estimation. Unlike other state observers, the Moving Horizon Estimator has the ad-
vantage of being able to incorporate constraints. This feature is used to enhance the
robustness of the fault detection scheme by defining the model sets via constraints,
and thereby minimizing the Moving Horizon Estimation objective over the entire set
of models. For a class of uncertainty descriptions, the resulting optimization problem
is a quadratic program. Although this approach could be interpreted as an adaptive
threshold selection technique, in contrast to previously proposed methods, the fault
estimates are not generated independently of the threshold selection process as the
on line optimization couples the two problems.

The proposed robust fault detection scheme is illustrated through a simulation

example on a cold tandem steel mill.

6.2 Robust fault detection

In this Section, model based fault detection for uncertain process models is consid-
ered. The general approach can be summarized as follows. Using a process model to
represent a dynamical system, an estimator is used to form estimates of the system
state and possible faults from output measurements. The estimator attempts to keep
output errors small by introducing when necessary non-zero fault signals. In the case
of a single, precise model describing the system and no measurement noise, in the
no-fault case the estimator should be able to exactly match the measured output
without introducing any non-zero fault signals. On the other hand, when a fault
which affects the output enters the system, the estimator can no longer match the
output without introducing a fault signal. By using a single nominal model in the
case wherein plant/model mismatch occurs, even in the no-fault case the estimator
will often introduce non-zero fault estimates in order to account for discrepancies
between the modeled output and the measured output.

In order for the estimation scheme to be able to account for mismatch between
the process and the model, this approach must be modified. Rather than using a

single process model, let us assume that the physical process can be well modeled
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by some model lying within a bounded set of models II. Then, given the initial
state of the system zy and measurements up to some time 7" — 1, an estimator is
used to minimize the output error. As before, the estimator can use non-zero fault
signals to reduce the output error, but unlike the single model case, the estimator
performs the minimization not only over possible fault signals but also over the set
of possible models. Letting gx(zo, u, w, P) denote the function which maps the initial
state, inputs u, and fault w through the model P to the output y(k), the estimator

performs the following minimization:

T-1
min > [ly(i) — gi(wo, ug, wp, PV + llvw ()]l (6.1)
Pell *=°
weW
where || - ||y denotes the weighted Euclidean norm
2]l = 2"V, (6.2)

vy (1) denotes changes in w, w(i) —w(i—1), u* denotes the sequence of input variables
uﬁ? = [u(tl)T7 seey u(t2>T]Ta (63)

and wﬁf is defined analogously to ufj

This approach is similar to the time domain robust model validation techniques
introduced by Poola et al.[86]. In their work, tests are developed to determine if some
model within a given set of models is consistent with the input/output data. These
tests are based on determining the smallest perturbation from a nominal model which
would account for the observed behavior. In the current approach, the set of models
is fixed, and the detection scheme attempts to minimize a weighted sum of the output
error and fault value by choosing some model within the model set.

Although, in general, the above optimization will be difficult to carry out, for a

certain class of uncertainty structures it can be recast as a quadratic programming



138
problem. Consider the case where the set of models can be represented in state space

by the following equations:

s 1) = As(h) + Bou(h) + Bow(k) + 30 (Fulh) + G(k)  (64)

=1

y(k) = Cz(k)+ Dyu(k) + Dyw(k), (6.5)
where 8; are scalar variables satisfying the bounds
16;] < 1. , (6.6)

When the system can be described by a model of this form, the mapping g is bilinear
in the variables 6; and the pair [u,y]. Since at any given time, all past values of u and
y are known, the mapping g is a time varying linear function in the decision variables
6, and therefore the optimization (6.1) has a quadratic objective.

The uncertainty description (6.4) can be considered a special case of the more
general linear fractional transformation uncertainty which has been widely used in

control design:

z(k+1) = Az(k)+ Bu(k)+ Gp(k) (6.7)
y(k) = Cuz(k) (6.8)
q(k) = Cyz(k)+ Dgu(k) (6.9)

6.10)

lp(B)II < lla(R)l (6.10

with the restrictions that the rows of C, are linear combinations of the rows of C , and
that the relation between p and ¢ are structured according to the structure imposed
by the 6 variables. Although the uncertainty description (6.4) is less general, it is
still useful for a wide range of problems. For example, this uncertainty structure can
account for gain uncertainty through the terms involving u, as well as uncertainty in
the poles through the terms involving y.

To implement the above algorithm in real time, the size of the optimization prob-
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lem grows as the number of measurements increase, and soon becomes computation-
ally intractable. To circumvent this difficulty, a moving horizon estimation (MHE)
scheme is employed [92]. In the moving horizon scheme, the horizon length p does
not change, but rather as a new measurement becomes available, the starting point of
the horizon moves forward one step. At time k, the state at the start of the horizon
can be obtained from a smoothed state Z(k — p+ 1]k — 1). Since this smoothed state
is not precise, it is advantageous to modify the optimization to allow for deviations
from this value by introducing an additional decision variable AZ.

Let us consider the overall structure of the model for the system driven by both
known signals v and y and unknown faults. Since the system is linear, let us divide
it into two components with states z, and z,,. The state x, represents the position
of the state due to the inputs u and the model uncertainties 6, whereas the state
T, represents the position of the state due to faults and errors in the initial state

estimate. Then there exist mappings g* and g* such that

y(j) = g;‘(a:u(k —p+ 1)’1‘1’{:——17-{-17 yi::)+1’ 6) + 9;U<33w(k —-p+1), wi—p+1)' (6.11)

Here, yttf is defined in an analogous fashion to uif Since z, and z,, are generally
unknown, they must be estimated. In the MHE framework, the estimated states %,

and z,, are updated according to

Zu(k—p+1) = AZu(k—p)+ Buu(k —p)
+ i@' (Fiu(k — p) + Giy(k — p)) (6.12)

g==1

Tu(k—p+1lk) = A,(k—plk—1)+ AAZ + Byw(k — plk), (6.13)
and the smoothed fault estimate obeys the update relation

Wk —p+ 1|k) =k — plk — 1) + 9 (k — p). (6.14)
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The following optimization problem is then solved:

min 3 (lly() - 64(0) — g7 (A%, 8,)II} + [6u(DIB) + 14315 (6.15)

j=k—p+1

subject to the constraints

10;] < 1. (6.16)

Here, for simplicity in notation, the dependence of g on the non-decision variables
Zu(k—p+1), 2,k —p+1k—1), W(k —p+ 1|k — 1), yf_,y, and uf_,,, has been
neglected.

For stable systems, since the input signals v and the measured outputs y are
bounded, the state estimate Z, remains bounded for any bounded values of 8. There-
fore, the overall stability of the state updates depends on the stability for updating
Zw. In the case wherein no constraints are applied to the decision variables Az or 0y,
this can be accomplished by properly selecting the weighting matrix P after speci-
fying V and Q. If constraints are enforced on these decision variables, the objective
function should be modified as described in Chapter 5. Although it is convenient to
visualize the process by breaking down the state into z, and z,,, the algorithm may

easily be implemented using only the combined state z = (z, + y).

6.3 Fault detection using a bank of robust MHE
filters

In the case where there is zero initial state error, ie., z(k —p+1) = &, (k —p+
1) + &y(k — p+ 1|k — 1), no disturbances, no measurement noise, and the physical
system is exactly modeled by some model in the set II, one of two situations arises. If
there is no-fault, then the objective function used in the MHE problem can be made
identically zero by properly choosing the parameters # while keeping the decision
variables corresponding to faults zero. When a fault is present in the system, a non-

zero value of the fault variables will result in a smaller objective. Therefore, in this
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idealized case, faults are successfully diagnosed.

In reality, the idealized conditions described above do not hold. Measurement
noises will be present, random disturbances will affect the system, and the smoothed
state estimate Z,, may be inaccurate. In this situation, rather than determining if
some non-zero fault reduces the output error, one wishes to determine if the amount
which the residual would be decreased by such a fault is significant considering the
measurement noise and the uncertainty in the initial state. To address this problem,
an alternative approach is taken using a bank of MHE filters.

Banks of filters have been employed for detection of faults for over two decades.
Willsky [110] provides a description of the general approach, as well as an early survey
of applications of Kalman filter banks in fault detection. Generally, the bank of filters
consists of a filter for each fault type, including the no-fault case, and for each possible
failure time. Therefore, for a system with r possible faults and T' measurements, there
would be (r + 1)7 filters, each one corresponding to a particular failure occurring at
a particular time. Since this general formulation leads to an exponential growth in
the number of filters, a number of approximate techniques have been proposed. One
of the most common involves assuming that shifts between the various faults occurs
only once every N steps. At the end of the N steps, one of the fault scenarios is
accepted, typically using sequential probability ratio tests (SPRT), and the state of
each of the r + 1 filters is set to the state of the filter corresponding to the accepted
fault scenario. Frank [34] discusses more recent filter bank approachés, including the
dedicated observer scheme and the generalized observer scheme. Recent methods and
applications using banks of filters have also appeared [20, 21, 36, 82].

The detection procedure using a bank of MHE filters follows. Minimally, there
must be two filters, one corresponding to the no-fault case, and one corresponding to
the faulty case. For the no-fault case, a filter is used which allows for changes in the
initial state Z,,(k — p+ 1) but not for changes in the fault from its starting value of
w(k—p+1). Therefore, the no-fault case does not actually correspond to no-fault, but
rather to no change in the fault. The no-fault MHE filter uses an objective function as

in (6.15), but in this case the minimization is performed with the additional equality
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constraints 9, = 0 so that only errors in the initial state estimate are considered.

In the two filter case, the second filter corresponds to the original MHE fault de-
tection filter. If a bank of several filters is used, then the individual filters correspond
to the optimization problem (6.15) with a subset of the variables ¥, constrained to be
zero. For example, if a separate filter is used for each fault type, then the filter cor-

responding to fault ¢ would solve the optimization problem subject to the constraint
Uw; = 0,7 # 1, (6.17)

while #,,; would be free to vary.

To implement the bank of filters, at each time step, an optimization of the form
(6.15) is performed for each of the individual filters. If r filters are used, this results
in r possible update equations of the from (6.12) through (6.14). In order to decide
which update procedure to implement, the output errors, i.e., the first term in (6.15)
will be used to determine how well each filter fits the system. Some filters may
use more decision variables than others. In particular, the no-fault filter will always
use fewer parameters than any of the filters which allows for faults. Because of the
added degrees of freedom, the faulty filters will always give a smaller value of the
overall objective and therefore a smaller value of the output error norm. Therefore,
rather than directly comparing the value of the output variance for each filter, the
performance of each filter should be determined using an information based criterion
which adds penalties for extra parameters, such as Akaike’s information criterion
(AIC) [94]. This criterion can be considered to be an asymptotic approximation to a

cross-validation test (see for example [98]), and is given by
AIC = NlogV + 2n,, (6.18)

where N = nyp is the number of scalar output variables in the estimation horizon (n,

is the number of measurements made at each sampling time), V is the output error
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term

k
V=35 lly(G) —g50) — g7 (AZ, 0|} (6.19)
k—p+1

j=
and n, is the number of free variables (those not constrained to zero) over which the
objective in (6.15) is minimized. This approach is closely related to model structure
determination. Given the data within the considered horizon, the no-fault case can be
considered as a data model which only includes parameters for model uncertainty (6)
and initial state error (AZ). On the other hand, the other filters in the bank include
these parameters as well as additional parameters to describe changes in the value of
faults (0y,). A change in the fault structure is concluded only when the difference in
the residuals is large enough to warrant using the additional parameters.

By implementing a bank of MHE filters, one optimization problem must be solved
at each time step for each of the filters. Although this increases the computational
cost, each of the resulting optimization problems is smaller than one corresponding
to a MHE filter which includes each of the faults. Because each of the optimizations
is independent of the others, this procedure can easily be implemented in a parallel
architecture, with one processor for each sub-filter. In this fashion, although more
hardware is required, the computational time for a bank of MHE filters will be less
than for a single MHE with more possible faults.

In summary, in the presence of noises, disturbances, and uncertain initial condi-
tions, a fault detection procedure based on robust MHE consisting of the following

steps is proposed:

1. Divide the faults into classes. Perform the optimization step of MHE for each

class of faults, as well as for the no-fault case.
2. Compute AIC for each of the MHE filters in the bank.

3. Update the initial conditions according to (6.12) - (6.14) using the decision

variables from the optimization which produces the smallest AIC.

4. Move the horizon forward one step.
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6.4 Comparison to adaptive threshold methods

The use of an adaptive threshold for fault detection residuals has been proposed by
several researchers. Clark [19] employed an empirical adaptive law. Horak [44] used
a bounded parameter uncertainty description to calculate at every time instant the
extremal values of the parameters which would maximize and minimize the residual.
Using these values, a range of outputs was determined such that the residual can be
completely explained by parameter uncertainty only if it lies within the determined
range. Similarly, the threshold selection method of Emami-Naeini et al. [33] character-
ized the set of detectable faults as those whose smallest possible effect on the residuals
exceeds the largest possible effects due to noise and uncertainty. Isaksson [46] and
Ding and Frank [29] used similar concepts based on frequency domain uncertainty
descriptions. A time domain approach using a convolution kernel whose frequency
domain counterpart bounds model uncertainty was proposed by Weiss [108].

In each of these approaches, an adaptive threshold which varies with the control
action must be calculated for each time step. In most of the approaches, this threshold
calculation is carried out by performing an optimization over the model uncertainty.
In this sense, the threshold selection is similar to the proposed MHE filter scheme,
which also performs an optimization over the model uncertainty. However, unlike
the other schemes, the fault signal generated by MHE is directly affected by the
uncertainty.

One way to view the MHE scheme is as a multi-hypothesis testing problem. Each

hypothesis can be stated as follows:

The data yf_,,, were generated from the initial condition £, + &, and the

input uﬁ,_p +1 by some model P € II and some non-zero value of fault i.

Each MHE filter in the bank corresponds to a different value of ¢, including the
no-fault case, the AIC criterion is employed to decide which hypothesis is accepted,
and the initial state z,, + z, is updated accordingly. On the other hand, the previous
approaches using adaptive thresholds have the following interpretation. Suppose there

exists a relationship among the measured variables which is nominally zero. Given
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that this relationship is non-zero, can this possibly be due to noise and plant/model
mismatch? A fault is detected whenever this question cannot be answered in the
affirmative.

A significant shortcoming of previous adaptive threshold methods lies in the fact
that although the threshold level is computed for the residual, the residual is usually
processed via a SPRT to decide if a fault has occurred. For example, if the residual
comes from a Kalman filter, it should ideally be zero-mean white noise. To determine
if a fault is present, a SPRT which tests for changes in the mean and autocorrelation
of the residual should be used. This approach is much more reliable then simply con-
sidering bounds on the residual. However, the adaptive threshold approaches merely
compute bounds which when exceeded indicate the residual cannot be described by
noise and model uncertainty alone. By contrast, the multi-bank scheme proposed
in this chapter produces an estimated fault by incorporating the model uncertainty
within an information based criterion, AIC. The fault is non-zero only when the

information measure calculated by including the model uncertainty so indicates.

6.5 Tandem cold rolling mill example

Cold tandem rolling is an important process in steel manufacturing. In a cold tandem
rolling mill, a series of rollers is used to decrease the thickness of a sheet of steel, as
depicted in Figure 6.1. In the simulation example, a mill with five stands is used
as shown in the figure. Fundamental equations describing the tandem roller can be
found in the reference [70]. Variable definitions are summarized in Table 6.1. For
each variable, a subscript identifies the stand number so that, for example, h; denotes
the exit thickness from the i*" stand. The sheet thickness at the exit is determined
by the roll gap and the rolling force:

B
=S+ = 2
h S+K (6.20)
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The rolling force is given by the implicit relationship
Fo(P;, Hy, H;, by, iyt p1s) = 0. (6.21)
The strip velocity is determined by the roll velocity and the forward slip coefficient:
v = (1+ fi) Ve (6.22)

The tension is governed by differential equation

ifi = % ('Ub(z‘+1) - Ufi) (6.23)

where E is Young’s modulus, L is the distance between stands, and v, is related to

vy through the material balance

hi
Uy = —H—Ufz (624)

The implicit rolling force function F}, is determined by the following set of equa-

tions

Fp = R - W/‘CZEZ\IR;(HZ - hz)Dm (625)

(a — 1)§bi +ip

ki = 1— o (6.26)
ki = a(f+6) (6.27)
D, = 1.08+41.79r:v/1 1 \/—%‘" — 1.02r; (6.28)
r o= HI;h  (6.29)
N 1_% (6.30)
Tro= 1—2—2 (6.31)

R, = RL-<1+—————¥——_—) (6.32)
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Symbol | Physical Meaning
h Exit thickness
H Entry thickness
S Roll gap

P Rolling force

K Elastic constant
ty Back tension

iy Forward tension
p

k

w

K

R/

R

Coefficient of friction

Mean resistance to deformation
Strip width

Defined by (6.26)

Deformed roll radius

Roll radius

D, Defined by (6.28)

T Reduction in thickness

Th Total reduction of in-going strip
Tf Total reduction of outgoing strip
f Forward slip

On Neutral angle

5f Yield stress at entry

Sp Yield stress at exit
vy Strip velocity at exit
Up Strip velocity at entry

Vg Peripheral roll velocity

Table 6.1: Meaning of Variables

_ Tfi fori=1,
0.47ry; +0.6ry; fori>1

The forward slip is governed by
2 B

=t (6:34)

where

(6.35)

hi Hm'
¢ni = —{tan< —R_,/L 5 )
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tgi

Hy; 1 H; 1= EL
H, = - — 2 6.36
2 2uilog<hi1—§§§ (6.36)
spp o= a(ry+6)7 (6.37)
Sy = (Tbi -+ ,3)7 (638)

|R! T
;= - - . 6.39
Hy, 2 7 arctan ( T Ti) (6.39)

In the above, a, (3, v, and a are material dependent parameters.

6.5.1 Steady state solution

At steady state, the equation governing tension becomes
hi’Ufi - hi+1’l}f(i+1) = O, (640)

which can be viewed as a material balance. In addition, the entry and exit strip
thickness are related by
Hi+l = hi, (641)

whereas the forward and back tension are related as follows:

Using the physical parameters found in [70] for strip width, roll radius, elastic con-
stant, and friction coefficient, a rolling schedule with positive gap width at each
stand was found as follows. Using (6.41) and (6.42), H; and t;; are eliminated for
¢t = 2,..,5. Next the input and output thicknesses, H; and hs, the back tension
for the first stand, #;;, and the velocity from the last stand vss are specified. Then
a solution hy, S;, B, , vy, ty; to the fundamental equations (6.20), (6.21), and (6.40),
which satisfies the constraints S; > 0 and k41 < h; is sought. Since this system is

under-determined, sequential quadratic programming was used to find the solution
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Parameter Stand 1 | Stand 2 | Stand 3 | Stand 4 | Stand 5
H; (mm) 3.20 2.50 1.79 1.50 1.33
h; (mm) 2.50 1.79 1.50 1.33 1.20
ty; (kg/mm?) 0 26.2 26.2 26.2 26.2
tr (kg/mm?) 26.2 26.2 26.2 26.2 26.2
R; (mm) 273 273 292 292 292
i (=) 0.0714 0.0714 0.0714 0.0714 0.0714
K (10° kg/mm) 470 470 470 470 470
S; (mm) 0.89 0.46 0.36 0.35 0.24
Vis (104 mm/sec) | 0684 | 1.07 1.27 1.44 1.60
Vi (10* mm/sec) | 0.784 1.10 1.31 1.47 1.63
P,/K (mm) 1.61 1.33 1.14 0.98 0.96

Table 6.2: Steady State Operating Point for Tandem Mill

which also minimized the following objective:

5 4

J =3 (Pi= Pia)" + 3 (b — tya-n)” + thz + 1002

1=2 =2 =1

—0.5R)%  (6.43)
Then the roll velocity Vg; is found from (6.22) and (6.34).

Data for the steady state operating point is found in the Table 6.2. In addition,
the values of the physical parameters were taken from [70] as o = 84.6, § = 0.00817,
v = 0.3, and a = 3.0, which reportedly corresponds to low-carbon steel (C = 0.08%),
and the strip width and spacing between stand were taken as W = 930 mm and
' The value £ =

L = 4600 mm respectively. 21000 kg/mm? is used for Young’s

modulus.

6.5.2 Dynamic solution

The following dynamic relations exist between the variables. The entry thickness

at a given stand is related to the exit thickness at the previous stand through the
transport delay:
Hii1(t) = hi(t —

Diit1) (6.44)



150
where D; ;41 is the time required for the strip to travel the distance between the two

stands:

L
Di,i+1 == . (645)
Uri

Assume that the transport delay for the tension is negligible, so that the steady state
relation (6.42) between forward and back tension holds. Finally, assume that the roll
velocity Vg; and the roll gap S; can be manipulated by inputs us; and u,; according

to the following dynamics:

: 1

S; = T (Si — Us) (6.46)
Usi = Ug ( 7)
. 1
Ve = T (Vri — Uws) (6.48)
Ui = Uy (6.49)

where the nominal time constants Ty and T, used in the simulation were specified as
0.3 and 0.6 seconds respectively. These equations assume that the response of S; is
independent of the rolling pressure. In reality, as the rolling force increases, a larger
force will be needed to make changes in S;. One way to account for this phenomenon
will be to consider it as a source of model uncertainty, and will be represented by
multiplying ug; by a gain (1 + 6;). Variations in Ty from its nominal value will also
be considered as a source of plant/model mismatch. It will be assumed that Vg5 is
used to control the strip velocity vys at its setpoint, and is therefore not used to reject
disturbances. For this reason, from this point on Vg5 will not be considered as a free
variable. .

Because the tension responds much faster to changes than do S; and Vpg;, the
dynamic model can be simplified by assuming that the forward tension is always in
equilibrium. In this situation, the relation (6.40) can be used. Now the state of the
system is completely determined by the controlled variables S; and Vg;, and by the
values of H; which are easily related to past values of h;. Given these quantities, h;,

P;, vg;, and tg; can be determined from Equations (6.20), (6.21), (6.22), and (6.40)
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given the boundary values ty, tss, vss, and H;.

6.5.3 Linearization

A local linearization of the nonlinear tandem rolling model was used to carry out the
fault detection and to design a feedback controller. This linearization was based on
the linear state equation model (6.46)-(6.49) and a linear approximation to the output
equations. In addition to the command signals u,; and u,;, the friction coefficients p;
were considered as input variables in the linearization in order to be able to detect
faults corresponding to changes in these parameters. In addition, the signals H; were
considered as inputs to form the linearization.

Using (6.20) and (6.22) to eliminate h; and vy;, an implicit function for t¢; and F;
can be obtained from (6.21), (6.34), and (6.40). Letting y = [tf1, ..., tf1, P1, ... Ps5), x =
(VRL, s VRa, S1y ooy S5], 0 = [Ust, -y Uss, Uty oy Upa, Hi, ooy Hs], and w = [, ..., ],

the implicit function has the form
Fly,x,u,w) = 0. (6.50)

Then, using the implicit function theorem, the linearization about the steady state

operating point is given by
Ay = CAx + DyAu+ Dy,Aw, (6.51)

where

2" ()
- -(E)'(%)
5 e

A denotes change from steady state values, and F /0z represents the Jacobian matrix
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of F with respect to the variables z evaluated at the steady state operating point.

The linearization for h; is then given by

1
Ahz = ASZ -+ —I‘{‘ (CpiAX + Dv’piAu -+ Dw,PiAW) ’ (655)

where Cp, is the row of C corresponding to the output £, etc.

To simulate closed loop behavior of the system, a feedback controller was designed
using H design methods. A third order Padé approximation was used for the trans-
port delays relating H;;; to h; in the dynamic model used for the controller design.
The controller used measurement of ty; and h; to calculate values of u and u,; which
would regulate ty; and h; to their nominal values.

In order to account for changes in w, corresponding integrating states were added
to the linear state model (6.46). Letting A and B be the state space matrices corre-
sponding to the the system (6.46), the augmented linear system can now be described

in state space as:
A0 B 0

0 0 0 I | (6.56)
C D, | D, 0

For small changes in p;, this local linear model will be valid. Note that the dynamic
state equations (6.46) are globally valid since they are linear.

The linear model was transformed using the Tustin bilinear approximation with
a sampling time of 0.1 seconds to obtain a discrete time description of the system.

Denote the discrete version of (A4, B) by (a, b).

6.5.4 Robust fault detection

For the cold tandem steel rolling process, consider faults which are manifest by
changes in value of the frictional coefficients p;. This type of fault could repre-
sent either wear in the roll or contamination. In five separate simulations, a fault
corresponding to a 10% decrease in each coefficient p; was introduced at time ¢t =1

which corresponded to sample k = 10. In each case, the data was generated using the
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nonlinear model and the Runge-Kutta fifth order method. Measurement noise was
added, resulting in a signal to noise ratio of approximately 10.

Using the procedure described in Section 6.3, a bank of two MHE filters was
implemented with a horizon length 10. The first filter corresponded to the no-fault
case, whereas the second allowed for any fault. A second detector was implemented
using a bank of six MHE filters, one for each fault type as well as the no-fault case. For
both filter bank architectures, the measured variables were taken to be ¢4y, ..., 174 and
hi, ..., hs. Delayed versions of h; were used as the inputs H;.;. A diagonal matrix V'
was used in each MHE filter. Since a fault of the type considered in the simulations
introduced a considerably smaller magnitude change in h; than ty;, elements of V
weighting h; were set to 100, whereas elements weighting t;; were set to 1. The
matrix ) was set to the identity, and P was calculated using the appropriate Riccati
equation to guarantee stability [102]. The fault detection results are shown for in
Figures 6.2 and 6.3.

To examine the false alarm robustness properties, the system was simulated in
open loop using the control moves which would be obtained from a step decrease
in u;, but without changing u;. This situation simulates the case of no-fault, but
changing operating conditions. Plant/model mismatch was introduced in two sepa-
rate fashions. First, an uncertainty in the gain of a subset of manipulated variables
was introduced. The uncertainty in the model gain was incorporated in the detection
scheme by introducing five parameters 6;, one corresponding to each of the manipu-
lated variables u,;. Letting a and b denote the discrete time state space matrices for
the linearized process, and denoting by bs; and b,; the columns of b corresponding to

ug; and u,; respectively, the uncertain dynamic model becomes

t=1

In the simulations, the uncertainty parameters assumed the values 6#; = 0.2, 6, =
—0.2, and §; = 0 for ¢« > 2. Robust fault detection was carried out using the above

algorithm with bounds |6;] < 0.2, and the results were compared to the nominal case
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in which no parameter uncertainties were used in the fault detection scheme.
In a separate simulation, uncertainty in the time constant 7, was considered. The

discrete time difference equation for the gap width is given by

where a;; = exp(——ﬁi). Uncertainty in the first order time constant can be built in

to the MHE fault detection filter by introducing factors 6;:

Although S; is not directly measured, the readout matrix C' corresponding to mea-
surements of ty; and h; has full row rank. Therefore, when no fault is present it is
possible to express S; as a linear combination of the measured quantities and obtain a
difference equation of the form (6.4). Since the measurements do depend directly on
the fault through the term D,,, S; cannot be obtained explicitly from known quanti-
ties when a fault occurs. Therefore, if the estimated fault is non-zero, one obtains an
estimate of S; from the known quantities, ¢y and h;, and the estimate of the fault ;.
Using the same control moves as above, the no-fault case was simulated with plant
model mismatch by changing a;; and as; from their nominal values of 0.7165 to 0.85
and 0.6, respectively. These values corresponded to #; = 0.186 and ¢, = —0.1626.
The bound |6;] < 0.2 was used in the MHE filter. The results for both the gain

uncertainty and the pole uncertainty cases are shown in Figure 6.4.

6.5.5 Discussion

From Figures 6.2 and 6.3, the reader sees that both the two bank MHE filter and the
six bank MHE filter give correct diagnosis in each fault case, although there is a small
offset in the magnitude of the fault. Since the algorithm will attempt to compensate
as much as possible using the uncertainty parameters 8, one should anticipate such an

offset. However, when the primary goal is isolation of the fault rather than estimation
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of its magnitude, this offset error will not be important. For the two bank MHE filter,
the detection scheme indicated small but non-zero values of the absent faults. This is
to be expected because the two bank scheme attempts to find the best combination
of faults using a quadratic objective which includes penalties for changes in the fault
estimate. On the other hand, as the six bank filter considers the presence of various
faults independently and then chooses only one non-zero fault change at each time
step in the MHE algorithm, estimates for absent faults are zero.

In the no-fault but significant model uncertainty cases shown in Figure 6.4, the
reader sees that when the MHE optimization does not consider uncertainty parame-
ters 8, the two bank MHE algorithm mistakenly ascribe a fault to the model uncer-
tainty. However, including § parameters in the MHE calculations results in correct
no-fault diagnosis. Therefore, by explicitly accounting for model uncertainty through
the parameters 0, the false alarm rate can be decreased. Similar results were obtained

using a six bank MHE algorithm.

6.6 Conclusions

A new methodology for robust fault detection for a class of bounded uncertainties has
been presented. This method uses Moving Horizon Estimation with constraints on
f-variables which are used to represent the model uncertainty. Due to the presence of
constraints, the MHE filters are nonlinear. Because the MHE filter explicitly accounts
for the model uncertainty at each step, a fault detection scheme which is less prone
to false alarms caused by model mismatch can be formulated.

The robustness improvements attainable with a MHE fault detection filter are not
cost free. Implementation of the MHE scheme requires on-line solution of quadratic
programming problems, whereas Kalman filter schemes can be implemented with
simple linear filters. In the case where a bank of MHE filters is employed, computation
time can be decreased by using a parallel architecture.

Using a model of a complicated physical system, the cold tandem steel mill, the

capabilities of the MHE detection scheme have been demonstrated. In particular, the
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case study showed improved robustness to modeling uncertainty using the proposed

MHE scheme with uncertainty parameters.
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Figure 6.1: Cold tandem steel mill
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Chapter 7 Likelihood Ratio Detection

using Nonlinear Filtering

Summary

This chapter presents a statistical framework for general change detection problems.
A two-model approach is used, wherein signals and parameters subject to change
are modeled by Brownian motion for the faulty case and by constant values in the
nominal case. A detection algorithm using likelihood ratio testing is implemented
through the use of recursive dynamic filtering. In the case of change in mean of a
Gaussian sequence, a detailed analysis of the detection scheme reveals that for fixed
error rates, there exist optimal filtering parameters which minimize the detection rate.
For non-linear and non-Gaussian change detection, approximate filtering algorithms
based on Bayes’ law can be employed in the present framework. A computational
filtering algorithm based on Bayes’ law, probability grid filtering, is reviewed. The
proposed framework combined with probability grid filtering is compared to the lo-
cal asymptotic approach through an example containing non-linear dynamics. The

proposed method’s performance is vastly superior to the latter’s.

7.1 Introduction

In Chapter 4, the design of filters which are sensitive to certain fault classes was
considered. It was seen that the use of linear filters for this purpose can yield un-
satisfactory false alarm rates, especially when the detection scheme is coupled with
a controlled process. In Chapters 5 and 6, constrained Moving Horizon Estimation
was used to directly account for a class of model uncertainties.

An alternative approach to detection problems which has been used extensively
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consists of filtering observations through a whitening filter and testing the filter inno-
vations for deviations from the white noise hypothesis. The whitening filter can either
be known, such as in the cases of tests based on banks of Kalman filters [111] and on
local tests [80], or identified as in the Generalized Likelihood Ratio test. A second
approach uses a two-model structure. Traditional two-model approaches identify two
dynamic models using different subsets of the signal and then compare the identified
models using conventional distance measures [7].

In this chapter, we present a general statistical approach to the detection of
changes in dynamic systems which uses a two-model structure and combines like-
lihood ratio testing with non-linear Bayesian filtering. This framework is capable of
encompassing parameter change detection [48] as well as sensor and actuator failure
detection [34] for a wide class of systems. As compared to other two-model approaches
such as found in [7], the proposed method contains a significant difference: the model
corresponding to faulty operating conditions represents by Brownian motion those
parameters and signals whose changes correspond to faults.

This chapter is organized as follows. In Section 7.2, the general framework is
outlined, and the fundamental result of Neyman-Pearson is reviewed. Next, compu-
tational methods for non-linear filtering, an important component of the proposed
method, are discussed in Section 7.3. Section 7.4 contains an in-depth analysis of
detection properties for the proposed method in the basic case of change in mean of
a Gaussian sequence. In Section 7.5, an alternative approach for detecting changes
in non-linear systems, the local asymptotic approach, is reviewed, and a case study

is presented in Section 7.6 to compare the two methods.

7.2 Framework for detection

In this work, we will only discuss problems of detection; however, the methods de-
veloped could easily be applied to model validation problems as well. One approach
which has proven to be efficacious for solving detection and diagnosis problems con-

sists of casting them in a hypothesis testing framework, in which the null hypothesis
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H,o corresponds to the situation in which no fault has occurred. The fault detection
problem is then the problem of deciding whether to accept or reject Hy. For diag-
nosis problems, a multiple hypothesis testing approach is used where from a set of
hypotheses {Ho, H1, ..., Hn} one is chosen.
In this chapter we shall consider processes which can be described as controlled
semi-Markov processes. A sequence (yi) is a controlled semi-Markov process with

control parameter 0, if (y;) if it can be expressed in the form

P{& € Gl€hr, Ehony ...} = /G 7o, (€x—1, d),
ue = h(&), (7.1)

where 7y, (€, dz) is the transition probability of a Markov chain & depending on the
parameter 6,. Furthermore, assume that the changes to be detected correspond to
changes in the value of the control parameter .. Suppose that a change occurs in
the parameter 0, at time r. In other words, there exists a time r such that (yx)
is controlled by the parameter 8, = 6, for k& < r and by the parameter 6, = 6,
for £ > r. The detection problem consists of determining from a record yo,...,yn -
whether a change has occurred, i.e., whether r < N.

In the sequel, we will consider the case where the probability law (7.1) can be
described as the solution to a stochastic difference equation with parameter 6,. Let
us partition the Markov parameter ¢ as ¢ = [z, u?], where the parameter u is known
precisely (or delta distributed). In practical applications, u will represent a known

process variable, such as a manipulated input. The process (y,) will be described as

the output of the stochastic difference equation

Trr1 = f(zg, g, 0) + wy,

where wy and v; are random variables with distributions p,, and p,. By specifying

the probability distribution functions p, and p, along with an initial distribution
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for zg, the probability of a sequence YV = {vo,%1,...,yn} is determined for a fixed
value of the control parameter §,.. This model is quite general, and encompasses two
important classes, additive faults and multiplicative faults in linear systems. For a

linear system of the form

Tpr1 = Az, + Bwg + Fpg, (73)
yr = Cxp+ Du, + Hpyg, (7.4)

additive faults correspond to 8, = p, whereas multiplicative faults refer to the case
where 0, = {A,C}. This nomenclature is derived from the fact that for additive
faults the parameter subject to changes is added to the state, whereas in the case of
multiplicative faults, the parameter multiplies the state.

Consider the problem of determining a change in the control parameter 8, from 6,
to 01, and let H, and H; be the hypotheses corresponding to each of these parameter
values. Let g be a decision function with domain Y¥ and range {Ho, H1}. Two
properties which are used to quantify the performance of a test g are the size a,
which measures the probability of a false detection, and the power 3, which measures
the probability of correctly diagnosing a change. These quantities are formally defined

as follows:

a = P (Q(YON) = 7{1]7{0) ) (7.5)
B = P(g(¥3") =),
= 1-P (Q(YBN) = HOW"I) - (7.6)

An effective test g should have a small size, and a power near one; however, there
exists inherent tradeoffs between these measures. By increasing the test power, the
size is usually also increased. A fundamental result, the Neyman-Pearson lemma,
states that a test is optimal in the sense of maximizing the power for a fixed size if

and only if it is based upon the likelihood ratio. In this case, the decision function g
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is given by:
1 (VY

Ho, when p——%vl < Ay

9(¥5") = Pt ) - (7.7)
H,, when 2857 > ),
pO(Yo )

where p; is the probability distribution function obtained from the difference equation
(7.2) with 0, = 6;. A test satisfying the optimality criterion of the Neyman-Pearson

lemma is said to be the Most Powerful test with size «, where « is defined by

(YY)
a=P (pO(YE,N) Z Ad?‘[o) . (78)

The problem of devising an “optimal” decision function g therefore reduces to one of
evaluating the probability functions p;(Y{).
Often, for computational purposes it is convenient to replace the probability ratio

with its logarithm. Let us define the Sy as the log likelihood ratio,

_ oY)
SN =In po(}/ON)' (79)

To evaluate Sy, we first expand the probability function in terms of conditional

probabilities:

pi(Ys) = pilyn| Y& Hp(Y),

= pilyn Y )i (yn—1 Y )i (Y ),

. N
= (H Pz‘(yklybk—l)> Pi(Yo)- (7.10)

k=1

Now, by taking the logarithm, the product is transformed to a sum so that Sy can

be calculated by

Sy = In(p(¥5")/mo(¥y)),
= Sn-1+sn, (7.11)
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where s is given by
_ (el Y& 1)
= In —————=.
po(yk|Yo ™)

Therefore, to recursively calculate Sy, a probability distribution for y; conditioned

(7.12)

on past values Yy~ ! must be available for each value of 6.
For on-line detection of changes, a sequential probability ratio test (SPRT) is
practical. An SPRT is a decision function together with a stopping time T of the

form

7‘[0 when ST S —a
9(Yy) = : (7.13)
Hi; when St > A

T= min k. (7.14)
Sp2AlJ Se<—a

Although one can with a reasonable degree of certainty assume that the parameter
value 0y before change is known (it can always be estimated from a set of test data),
more often than not, the value of 6, after a change is completely unknown. For sim-
ple detection problems, several methods exist to account for an unknown parameter
value after change. In the case of change in mean of a scalar Gaussian process, one
can specify a minimum change magnitude v, and use two parallel tests, one corre-
sponding to a change of +v and the other to a change of —v, yielding the so called
“two-sided” test [6]. An alternative approach is to replace the posterior parameter
with its maximum likelihood estimate, resulting in the Generalized Likelihood Ratio
(GLR) approach. For multi-dimensional 6,, the two sided approach cannot easily be
extended as there exists a continuum of directions in which the change could occur.
On the other hand, the GLR approach can be extended in a straightforward fashion
to multivariate problems. For problems which can be reduced to changes in the mean
of Gaussian processes, the GLR approach can be applied with an explicit optimiza-
tion for estimating 6;. For more complicated processes, optimization over 6; becomes
impractical, and the local asymptotic approach, which essentially approximates the
problem at hand by a simpler change in mean problem, is often the only alternative.
A brief description of this method is contained in Section 7.5.

In this work, a new approach to specifying the parameter after the change is pur-
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sued. As before, the no-fault case will be modeled by a system with fixed parameter
value 0y; however, rather than modeling the failure case by using the same model with
a different parameter value 6;, a different stochastic difference equation will be used.
In this second model, the parameter subject to change will be modeled as a Brownian
motion. Thus, whereas (7.2) with 6, = 6, will be used to generate the distribution
po corresponding to no-fault, the distribution p; will be generated by the difference

equations

Tir1 = flzk, vk, Ok) + W,
Oks1 = Ok + qx,

Ye = h(zk, pr) + vk, (7.15)

where g is a zero mean white noise process with given covariance. In this frame-
work, rather than representing faults by abrupt changes in the parameter, the faulty
situation is modeled by a drift of the parameter with the rate of the drift determined
by the variance of q. Because the model (7.15) allows the parameter to drift, the
resulting distribution function p; will be more spread out than the distribution py.
Consequently, when the parameter 6, accurately describes the system dynamics, the
expected value of s; will be non-positive. On the other hand, when a change has
occurred in the dynamics, the model (7.15) will better describe the process behavior
since it allows §; to change, whereas 6, remains fixed in (7.2). In this case, s is
expected to be positive.

The framework is now laid for the general detection problem. A two model ap-
proach is used, with the “no-fault” model and its accompanying probability distri-
bution function p, determined by the stochastic difference equation (7.2), and the
“faulty” model and its distribution p; determined by (7.15). For both models, the
problem remains of solving the conditional probabilities needed to calculate the log
likelihood terms sy in (7.12). For the case of linear dynamics with additive faults and
Gaussian distributions for p,,, p,, and p,, this is accomplished by using the appropri-

ate Kalman filter [1]. In this case, the probability measure p;(yx|Yy"™!) corresponds
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to a normal distribution with mean Ci};, , and covariance CX,CT + R, where Thik_1
is the Kalman filter state prediction and ¥} is the variance of zj — a‘:}'ﬂ x—1 Which can
be calculated from an appropriate Riccati equation for Model . To calculate s, two
Kalman filters should be run in parallel, and the results are used to evaluate the
SPRT (7.13). At first glance, this approach seems to be related to the likelihood
ratio test where the parameter value 0; after the change is replaced by its Kalman
filter estimate; however, this is not the case. Even in the simplest case where y is a
Gaussian white noise sequence whose mean is subject to change, the distributions pg
and p; do not differ only in mean; p; has a larger variance. This case is examined in
more detail in Section 7.4.

For more general problems, no closed form solution exists for calculating the condi-
tional probabilities needed in (7.12), and one must resort to approximate methods. A

very useful approach based upon Bayesian estimation is discussed in the next section.

7.3 Nonlinear probability grid filters

Given a method for calculating p;(yx|YF™), the conditional probability distribution
function associated with the difference equations (7.2) and (7.15), an efficient SPRT
can be obtained using the result of Neyman-Pearson. As mentioned in the previous
section, in the case of linear dynamics and Gaussian disturbances the resulting dis-
tribution is normal and can be calculated recursively using a Kalman filter. When
these restrictions do not hold, alternative methods must be used. In this section, the
Bayesian estimation approach is reviewed along with an approximate implementation,
probability grid filtering (PGF).

An in-depth discussion of the Bayesian approach to nonlinear filtering can be found
in [49]. The results will be briefly summarized here. The Bayesian approach provides
a recursive procedure for updating the prediction density. Given the conditional

distribution p(a:k[YOk_l) and a new measurement yi, the distribution is updated to
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obtain p(x;|Y{) by using Bayes’ law

_ plukler)p(@e] Yo )
p(zp|Yy) = P VET) (7.16)
where
p(yel Yo' /p Ye|z)p ~Hdz. (7.17)

and the distribution p(yx|z) is given by p,(yx — h(z)). This step is commonly referred
to as the measurement update step. Next, in the dynamic update step the prediction
density is calculated from the updated distribution and the state transition probabil-
ity:

pral¥s) = [ plal¥)p(oeslo)dz, (7.18)

where the transition density p(zg+1|zx) is obtained from the dynamics and p,,. The
equations (7.16) and (7.18) give the complete solution to the filtering problem. When
the dynamics are linear and the distributions p,, and p, are Gaussian, the Bayesian
approach yields the Kalman filter [1]. For the general case, a closed form recursion
cannot be obtained and approximate numerical methods must be used.

Applied to problems of estimation and filtering, a noted weakness of the Bayesian
approach is that rather than producing a finite-dimensional description of the vari-
ables that are estimated, it produces a function, the posterior distribution. Although
this is considered a weakness in filtering and estimation, for change detection prob-
lems it becomes a strength as the Neyman-Pearson test must evaluate the distribution.
By applying the Bayesian recursion formula to the data, the conditional probability
p(yr|YF™) can be calculated at each time step.

A large number of methods for the numerical evaluation of the Bayesian recursion
relations have been proposed. The interested reader is referred to the works [95], [53],
[54], [96], and references found therein. In this work, we will not attempt to provide a
comprehensive discussion of these methodé, but rather will present a short description
of one such algorithm with the intent of demonstrating the fundamental concept. The

various methods have the common characteristic of defining a grid of points in the



170
probability space on which the approximations are based. Because a finite number of
points are used, the grid is restricted to a finite region of state space. When choosing
the grid, it is important to assure that the probability mass is non-significant outside
this region. Proper grid selection is an important consideration in the algorithm, but
will not be discussed here.

The extended Kalman filter (EKF) uses a single grid point and linearizes the
functions f and h around this grid point. The posterior density obtained from the
EKF is Gaussian. The EKF has found wide use in nonlinear filtering problems because
of its simplicity and efficiency, especially for processes which operate near a steady
state and thereby mitigate linearization errors. However, when considering dynamic
change detection, the situation arises where the density may not be well approximated
by a Gaussian distribution which would assign negligible probability mass to points
corresponding to changing dynamics. The EKF can give very poor results because the
probability density will necessarily be small away from the grid point. Extensions to
the EKF which retain second-order and higher terms in the expansion of the system
functions f and h exist [49]. The EKF and its extensions can be considered as local
methods as the resulting distributions are most accurate within a neighborhood of
the single grid point. In all local methods, the use of a single point to form the
approximation presents a disadvantage.

Due to the recognized weaknesses of local methods, in the late 1960’s, global ap-
proximate methods were introduced to deal with nonlinear filtering problems. Bucy
[16] proposed a general approach, the point mass method, but due to the computa-
tional limits of the day, few applications were forthcoming. Although since that time
a variety of global methods have appeared, all specific global methods must provide

solutions to the following sub-problems as noted by Sorenson [96]:
1. An initial grid must be defined.

2. A procedure must be given for defining the grid at each subsequent sampling

time.

3. A method for carrying out the Bayes’ rule calculations on the grid must be
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specified.

The specific method discussed below is the “p-Vector” approach [96], which derives its
name from the fact that the algorithm calculates at each step a vector of probability
values py ; corresponding to grid points 7 ;.

Assume that the one-step prediction density is known. For the initial step, this
density must be specified by the user, and for subsequent steps, it is available as the
output of the previous step. Let 7, ; denote the location of i** grid point during the k*
step of the algorithm. Similarly, let py ; denote the value of the conditional distribution

p(zk|Y¢ ™) evaluated at the 5™ grid point, that is z; = 7y ;. The measurement update

is given by
k 1 k—1
p(mealYy) = ap(nk,itYo )P (YE|8,3) (7.19)
1
= o PPy (Yx — h(Mr4)) (7.20)

where ¢ = p(yx|YF ') is given by (7.17) and can be approximated numerically using

the grid points 7 ; and the densities py ;:

cp N Zaipk,ipv (yx — h(r4)) (7.21)

and a; are constants depending upon the numerical integration routine. The normal-
ization factor ¢ gives the conditional probability value needed to calculate s; for the
likelihood ratio test. Once the measurement update has been performed, the dynamic
update equations are used to obtain the one-step prediction densities.

Given the grid points 7, ;, define new grid points as the one-step dynamic evolution

of these points:

M = f (i, Uk, 0)- (7.22)

Next, let J denote the Jacobian of the inverse of f, J = 8f~'/0x'. Then p(7; ,|Y)
can be calculated [49]:

P ilYS) = (el Vi) det (J(n},,)) - (7.23)
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If there is no system noise (wx = 0), then this relation determines the prediction
density at the grid points 7. In the more general case of system noise, the prediction
density is determined by convolving the update density with the noise density as in

(7.18). Numerically, these values may be calculated using the grid points 7':

Tk

P13l Ye) = D p(mi s [YE)Pw (o1 — k) (7.24)

J=1

Since the noise density p,, is known, the density can be evaluated for any grid location
Me+1- This convolution presents the largest computational burden. In the event that
the grid points are equally spaced, fast Fourier transform (FFT) can be utilized; how-
ever, the dynamic update (7.22) will destroy constant spacing. Kramer and Sorenson
[54] have proposed an alternative algorithm using piece-wise constant approximations
which has the property that constant spacing can be preserved; however, their algo-
rithm contains other computationally expensive steps. Which algorithm performs
better will often depend on the specific application. The purpose of this section is
to provide the reader the fundamental concept of probability grid filtering and not
to furnish a critical review of the various implementations. The reader interested in
comparing implementations of probability grid filters is referred to the citations above
and the references found therein.

For practical implementation, an important consideration is the choice of new grid
points 11, From (7.24) it is clear that if 741, is much different from T4 Where
difference is measured by the probability p,,, then py.1; may become negligibly small
due to the approximations used in the calculation. Evidently there is a strong relation

between the density p,, and the choice of new grid points 7, ;.

7.4 Unknown change in mean of Gaussian sequence

Let us analyze the properties of the change detection scheme for the special case of
a change in the mean of a random Gaussian sequence. Using the method outlined

above, we consider the likelihood ratio for each of the following two models:
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Model 0
Yo = po+ Uk E[vi] =R (7.25)

Model 1
pen = e+ wy, Blwi] =Q, 1(7.26)
Yk = pk+ v, ElUi] =R, (7.27)

The probability distribution functions for each of the models are given by:

po(uel &™) = \/;T—Rexp (Jﬂ%éf_@_), (7.28)

plulYE™h) = M) : (7.29)

27(S + R) P (m 2(Z+ R)

where fi; is the Kalman filter prediction based upon the data Y{™! and satisfies the

following recursion relation

fi1r = fue + K (Yo — fir) (7.30)

where K is the Kalman filter gain, K = (X + R)7}, and ¥ is related to Q by
@ = X*(Z 4+ R)™!. The log-likelihood ratio therefore satisfies the relationship

s = In (pl(yklyokd» In (po (wel¥5™) 1)

-;—<ln(R) (s 4+ R) + Y=ol (= f ’“)2>. (7.31)

I

R Y+ R

Now let us consider the properties of this change detection algorithm. In partic-
ular, we will consider the mean delay for detection Ty and the mean time between
false alarms L for the case of a step change in the mean from pg to p;. For efficient
detection, L should be large and T) small.

Consider an SPRT as in (7.13) and (7.14) with lower limit a = 0. Let P, be the
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probability that the SPRT algorithm stops by hitting its lower boundary of 0 given
that it starts as zero, and let T" be the stopping time associated with this SPRT. The
expectation E;(T), i € {0,1} denotes the average sample number (ASN) before the
algorithm terminates at either the lower boundary 0 or the upper boundary A, with
the subscript ¢ indicating which model is used to carry out the expectation. With

this notation, the mean time between alarms is given by

_ Ey(T)
L=1"% (7.32)

In the case of stationary increments s; and negligible excess over the boundary (i.e.,

E(Sr|Sr > A) = A), Wald’s approximation for L can be used (see [9]):

1 “woA — ]
L~ (h n 3———) , (7.33)

Eo(Sk) Wo

where wy is unique non-zero root of the equation Fy(e~*°%) = 1. In order to calculate
wp, we remark that y, and fi; are independent Gaussian sequences with mean pg and

variance R and —2%% respectively. Then Ey(e”*°%) can be calculated by evaluating

1 /2—-K .
Eg(e_wosk) = 57‘; ——I—(——/dy/dll, X

the integral

y—m)®  (p— u1)2>
exp (——wosk - - , (7.34)
o

(X +2)(X + 1)worD) 2
(wo+1)X2+ (34 wo — wd)X +2 ’

(7.35)

where X = X R™'. The equation Ey(e~™0%) = 1 is satisfied for wo € {0, —1}. Evalu-

ating a similar integral, Ey(s;) can also be calculated:

Eo(sy) = % (1 —In(1 4+ X) - 3?"2?5) . (7.36)

Substituting wo = 1 and Ey(sk) into Wald’s approximation for L yields the final



175

expression:
er—A—-1

w5 +(1+X) -1

L=2 (7.37)

We see that the mean time between false alarms L depends not only upon the thresh-
old A but also upon the parameter X. The denominator of L is a monotonically
increasing function of X. Therefore, to avoid a high false alarm rate, it is desirable
that X should be small; however, the smaller X, the slower ji will respond to changes
in the mean of y. Intuitively, this suggests that for smaller X the delay for detec-
tion will be increased. Similarly, as A increases, L will increase as will the delay for
detection.

Now let us consider the delay for detection. In the case of a step change in p from
Lo to p1 at time zero, the random variable i, will again be Gaussian with constant

variance KR(2 — K)™! and with time varying mean [i; given by
i = iy + (1= K (a0 — ). (7.38)

Using this distribution and defining the signal to noise ratio snr = (ug — p1)2R71,

the expectation Fj(sy) is given by the time varying expression

Ak (7.39)

1 X
El(sk) = 5[—ln(1+X)+m+snr _X+1

2
where v = (1 — K)? = (y%) . Since 0 < v < 1, for large k, F1(si) approaches a

constant value given by the first term on the right-hand side of (7.39). If this term is
negative, then the expectation satisfies F)(sg) < 0 for all k after the change, and the
probability that St reaches A before it reaches 0 becomes minutely small. Therefore,
changes in the mean will be correctly diagnosed with high probability only when the
first term is positive or, in other words, when the following relation between snr and

X holds:
X

snr > In(l1+ X) — X1

(7.40)

Even when this relation is satisfied, F;(sx) may be negative for small values of k.
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Since Fj(sg) is a monotonically increasing function of k, this will occur only when
E4(so) is negative, or equivalently:

“X+1
X+2

1
snr < In(1+ X) (7.41)

Since Fj(sy) is time varying sequence, Wald’s approximation cannot be employed
to estimate the mean delay for detection. Instead, we will use a different approxima-
tion. Assume the SPRT terminates at time 7”. If we also assume that with probability
1 the SPRT terminates by crossing the lower boundary 0 whenever Ej(s7v) < 0 and
by crossing the upper boundary whenever E;(s7v) > 0, then Ty can be estimated by

solving E1(St,) = A, where F;(S7) is given by

T
Ei(St) =Y _ max{0, E1(sx)}- (7.42)

k=0

This assumption will be valid in the limit of large threshold A. Let k = T} be the last
time at which E,(s;) < 0. Tp is non-zero only when (7.41) is satisfied, in which case

it is given by

Ty = 1—1— {ln(X +1) —In(snr) +In (

oy ~In(1+ X) + sm‘>] L (1.43)

X+2

By substituting the expression (7.39) for E;(s;) into (7.42), E1(St) can be related to

X and snr:

[ I+ X) omr] 4 (77 - 1),
B, (Sp) = (7.41) violated, (7.44)
o L [Y);{Tz —In(1+X)+ snr] [(T -To)+ 1% (’Y(T”T") - 1)} : .

(7.41) satisfied.

\

Letting F(T, X, snr) denote the right-hand side of (7.44), the approximate mean

delay for detection Ty as a function of X and snr is determined by equating A and
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El(ST,\)I
A= F(T), X, snr). (7.45)

In Figure 7.1, curves corresponding to constant mean delay for detection are shown
as a function of X and snr for a fixed value of L = 1000. Since the mean time between
false alarms L is held constant, different threshold levels A\ apply for each value of X.
For large values of X, smaller changes result in F;(sx) < 0 and the algorithm fails to
detect the changes. As the magnitude of the parameter change increases, the delay
for detection decreases as expected. The shape of the curves indicates that for a fixed
value of snr, there exists a value of X which minimizes the delay for detection for
constant L.

In Figure 7.2, the dependence of mean delay for detection T on the tuning pa-
rameter X is depicted for a fixed signal to noise ratio snr = 1. As this figure shows,
for a given false alarm rate L, there exists a value of X which minimizes the detection
delay. This can be explained by noting that for small values of X, the filter gain
K is close to zero. With a small gain K, jix4; obtained from (7.30) responds slowly
to changes in the mean of y;. Therefore, many samples are needed before the esti-
mated fi changes significantly from pg to provide a more accurate description of the
distribution. On the other hand, for X large, the variance of distribution function
p1 in (7.29) is large and the estimate [ is strongly affected by the measurement ;.
In this situation, a larger threshold A is required to keep L large, and a larger value
of A results in a longer delay for detection T). Since the mean delay for detection
increases in the limit of small X as well as large X, there exists an intermediate value

which optimizes the algorithm’s performance for a fixed signal to noise ratio.

7.5 Local asymptotic approach

To gain a deeper understanding of the advantages of the proposed change detection
algorithm consisting of likelihood ratio testing together with probability grid filtering,

let us compare the proposed algorithm to an alternative method, the local asymptotic
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undetectable

Figure 7.1: Delay for detection T} as a function of signal to noise ratio snr and tuning
parameter X for fixed mean time between false alarms L = 1000

approach. In this section, a brief review of the local asymptotic approach based upon
recursive identification algorithms is presented following the references [80], [12], [113],
and [9]. The summary given here is meant to give the reader the necessary background
to understand the comparisons which follow, and the reader interested in applying the
local approach should refer to the cited references. An off-line description of the local
approach is first presented, followed by modifications for on-line implementation.
Consider semi-Markov process as in (7.1). Suppose 8 is identified via an adaptive

algorithm of the form

O = 01 + 6,2 (r_1; yn)- (7.46)
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Figure 7.2: Delay for detection T} as a function of mean time between false alarms L
and tuning parameter X for fixed signal to noise ratio snr =1

Also, assume there exists a nominal model 8, = 6,. In practice, this nominal model is
chosen by the user. Also, assume that the true system is controlled by 6, = z, where

z is related to the nominal model through the relation

VN

In other words, as the data record grows, the deviation between the nominal model
and the true system converges to zero at a rate which is inversely proportional to

the square root of the record length. The nomenclature “local asymptotic approach”
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is derived from this assumption as it states that in the asymptotic limit of infinite
data record, the change becomes infinitely small [26]. This behavior permits the
distribution of the cumulative sum to be specified asymptotically. The following two

results describe this behavior for the hypotheses H, and #H;:
g Hoi df = 0.

e H): there exist 7 € [0, 1] such that:

dd = O0for k <7TN,
dd # OforTN <k<N.

Theorem 4 [12] Behavior under the hypothesis Hy. Define the cumulative sum

Dy, as follows:
Dy (6o, df) = \/— Z Z(00; Y.
o In the limit N — oo the cumulative sum Dy, is normally distributed with

mean 0 and covariance R(6y), where R(8) is given by

R(#) = Z covag [Z(8;yx), Z(6; y0)] - (7.48)

k=—00

where covg g denotes the covariance with respect to the probability law obtained

when the true system and the nominal model are both equal to 6.

o Forte|0,1], set
Dy (60, d6) = Dy (60, d8) where m = [Nt]. (7.49)

Then the process { Dy (6o, 0) }o<i<1 converges weakly to the process RY/? (60)(Bt)o<t<1,

where (By) is a Brownian motion.

Theorem 5 [12/ Behavior under the hypothesis H}. Let 7 € [0, 1] be given. Let

ZZHO7yk m:[Nﬂ

k=1

DNt(907 d(9 7'

EIH
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where (yi) is a controlled semi-Markov process with control parameter 6, given by

0. = 6 for k < min(m, [N7]),
0. = 6o+ N"Y2dp for k > min(m, [NT]). (7.50)

Then when N tends to infinity, the process { Dn (6o, df, T) }o<i<1 converges weakly to-

wards the process Dy which is the solution to the linear stochastic differential equation
dD; = —1>, - (hedd) dt + R*dB,, (7.51)

where R = R(f) and hy = limy_,s, 222 Zago;yN -

These two theorems can be interpreted as follows. Consider the random variables
C(8o) defined by (p(6o) = Z(6o;yx). If a change of magnitude N~1/2 occurs at time
r, and for large enough N, then if the random variables (; were independent and

distributed according to the following law:

Ce(Bo) =~ N(0,R(6)) for k <,
Ce(0o) =~ N (—hg(6)db, R(6y)) for k >, (7.52)

where NV (z,%) denotes a normal distribution with mean z and variance X, then the
asymptotic behavior described in Theorem 5 would result. The fundamental idea in
the asymptotic approach is therefore to replace the original testing problem of H,
against H| by the asymptotically equivalent problem of detecting a change in the
mean of independent Gaussian (i as in (7.52). In this case, the log likelihood ratio

between the hypotheses H, and H; is given by

N

SY(do) = I;c;;’“R‘lck-g«r(hedm)TR—l(ck——(hed@)),
N

= 23 (TR (hedf) — (N — 1+ 1)(hedd)" R (hedd).  (7.53)
k

=r

Since the change parameter df is unknown both in magnitude and direction, a GLR
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approach is used by replacing df by its most likely value:

SN = max SY(df) = (AY)TRH(AY), (7.54)
where
N
AN =(N=-r+1)7123 " ¢. (7.55)
k=r

To summarize, given an adaptive identification algorithm, the asymptotic local
approach for detection of change in the identified parameters at time r consists of
first calculating the random variables (; = Z(6y; yx) for each observation yq, ..., yn.
Note that the value of ¢; calculated does not correspond to the increments for the
identification algorithm since the nominal model 6, is always used in the calculation
rather than the updated estimate ék_l. Next, the variables (; are used to calculate
the GLR statistic SY. Since the change time is also unknown, the stopping rule is

obtained by maximizing S over 7 to obtain the statistic G defined below:
Gy = max SN, (7.56)

In the asymptotic limit, the sequence SV is distributed according to a central X2 law
with d degrees of freedom, where 8 € R?¢. Therefore, X? tables can be used to choose
a threshold with a specified false alarm rate.

In the algorithm outlined above, it is implicitly assumed that the true system can
be parameterized by some model within the model set, that the adaptive identification
procedure is unbiased, and that the nominal model 6, is identified using the same
identification algorithm on a training set. When these assumptions do not hold, it
is still possible to apply the local asymptotic approach, but slight modifications to
the algorithm are needed. For a detailed discussion of this approach, the interested
reader is referred to [113].

The formulas (7.55) and (7.56) define the local test and their practical applica-
tion does not depend on the asymptotic approximation. Therefore, although the

asymptotic assumption was used in deriving the test, and the test has the theoretical
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optimal property of being uniformly most powerful when the asymptotic assumption
holds, the implementation is independent of asymptotic considerations. However, as
the length of the data record increases, detection of a given change will become easier.
Although the above exposition has been presented in an off-line framework, it can
easily be implemented on-line by calculating Gy for each time k; however, in an on-
line implementation, performing the optimization in (7.56) over all r € [1, k] becomes
prohibitive as more data become available. To address this problem, Willsky [111]
suggested using a sliding window of possible change times, in which optimization
over 7 is carried out over a fixed length subinterval M of the range [1, k], for example

My = [k — ny, k — ny] with ny > no, yielding the statistic:
G, = max S, (7.57)
The constants n; and ns should be chosen in a manner such that n, time steps after
a change, enough data is available that a decision may be made with reasonable
accuracy, and that after n; time steps the decision accuracy is scarcely improved by
more data. For high accuracy, both n; and n, should be large, but the facts that
larger ny leads to larger detection delay and that larger ny increases the computational
burden present a tradeoff which frequently can only be addressed through trial and

error.

7.6 DBatch reactor example

As a case study, consider the application of the proposed detection method consisting
of Likelihood Ratio plus PGF (LR+PGF) testing to a batch chemical reactor in which
feed stock A is converted to desired product B. This example is taken from [100].
The decomposition of A to B is governed by second order dynamics. In addition, B
decomposes to an inert species via a first order reaction. The measurement quantity
depends quadratically on both component A and B. Due to change in the catalyst,

the rate constant governing the decomposition of A to B is prone to change during
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the course of the reaction. Therefore, the goal of the detection scheme is to detect
from the available measurement changes in this reaction rate. The system dynamics

and detection objective are stated below:

e System Dynamics:

dlA]  _ 2
—[d—t—]- = —K,l[A] s
d|B 9
7 = Iil[A] *HQ[B],
y = 5[A]* + 10[B]* + v. (7.58)

e Detect changes in rate constant ;.

The method based upon likelihood ratio testing using PGF (LR+PGF) was com-
pared to an alternative algorithm implementing the local asymptotic approach based,
using an extended Kalman filter (LA+EKF) for recursive estimation of the combined
state and parameter k; to provide the statistics (x. This was carried out first by
obtaining an approximate discrete time model of the system using an Euler approx-
imation for the system dynamics. Denoting the state vector z = ([4], [B], ;)7 the

discretized dynamics are given by

T1k+1 Ty — T3 pTs pdt 0
T2 k41 = | To — (mgkxfk — KoZog)dt | +1 0 | Gk, (7.59)
T3,k+1 T3k 1

= [(zx) + Gax, (7.60)

where g, was modeled by a zero-mean, Gaussian noise with variance ¢? = 2.5e—5, and
dt = 1.0. To apply the local asymptotic method, the statistic s should be calculated
based upon the nominal model. Therefore, although the EKF for the combined state
and parameter estimation problem was used to update the state estimates of [A] and

[B], the estimate of x; was held constant at its nominal value of 0.02. The equations
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governing this modified version of the EKF are given by

T = Zgp—1 + Ki (yk—h(ﬂ?klk)), (7.61)
Zope = 0.02, (7.62)
iy = [(@xk), (7.63)
K, = EkHl’{ [HkaH;{—I—Rk]_l, (764)
Y = O (Sk — K Hi Xg) F + GG o2, (7.65)
0
d, = 5£ , (7.66)
=Lk
Oh
Hy = (7.67)
T=Zp |k
(7.68)

For both the PGF and the EKF it is necessary to specify an initial distribution.
For the EKF, this distribution is restricted to be normal, and is specified by the initial
mean Zo and covariance Xg. For each of the simulations, this initial distribution was

specified as:

0.999 le —2 0 0
N 0.001 |, 0 2.5e — 3 0
0.02 0 0 le—4

For ease of comparison, the identical initial distribution was used for the PGF.

For implementing the PGF, the p-vector approach of Sorenson [96] was used.
An initial grid consisting of 20 points for each state for a total of 8000 points was
employed to cover the Cartesian product z; € [%;0 — 304,20 + 30;] for i = 1,2 and
zg € [0,0.1] where og; = \/53::; The initial grid points were equally space. In the
p-vector approach, the grid evolves according to the system dynamics, so the uniform
spacing is subsequently lost except for the variable x3. However, as the absence of
process noise affecting z; and z, results in the fact that the convolution step only

involves z3, the convolution can be carried out using FFT methods.
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For both the LR4+PGF and LA+EKF methods, detection performance criteria
were evaluated using Monte Carlo simulatioin. In each simulation the initial conditions
were [A] = 1,[B] = 0, the terminal time for the batch was ¢ = 250, and measurement
noise with variance 0.04 was added to the simulation output. For sequential detection,
the relevant performance criteria are mean delay for detection, 73, and mean time
between false alarms. However, because the batch operation dictates a finite run
length for the detection scheme, these criteria must be modified slightly. In the case
of the former criterion, if the threshold is significantly large it is possible that the
change is not detected prior to the end of the batch run. Let £, denote the batch
run time, t. the time at which the change occurs, t4 the time at which the change is
detected, and P; the probability that a detection occurs prior to the end of the batch
(Py = P(ty < t.|H}) where H] is changing value hypothesis). Then the mean delay

for detection is given by

Ty = E(tg—ttq <t;)Py+ E(tg — telta > t.)(1 — Py), (7.69)

> Bty — tolta < t.)Pa+ (t, — t)(1 — Py). (7.70)

When P; # 1, Ty cannot be estimated directly from the results of the Monte Carlo
simulations since no estimate of E(t; — t.|ty > t,) is available; however, the lower
bound and T} can always be estimated from the simulation runs. In the following, this
lower bound will be used when the Monte Carlo simulations indicate that P; < 1. For
the latter criterion, difficulties arise estimating the mean time between false alarms in
the case where fewer than two false alarms occur during a batch run. For this reason
the mean number of false alarms per unit time will be calculated instead. These two
measures are related as the mean time between false alarms can be considered as the
reciprocal of the mean number of false alarms per unit time.

In order to evaluate the delay for detection T), simulation runs incorporated a
change in x; from its nominal value of 0.02 to 0.05 at time ¢. = 100. Simulation runs
used in determining the mean time between false alarms maintained a constant value

of k3 = 0.02 throughout the run. In the case of the LA+EKF algorithm, G}, as in
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(7.57) was calculated using a growing data window M = [1,k — 20]. In Figure 7.3
the mean number of false alarms per unit time is shown as a function of the mean
delay for detection (or its lower bound). The estimation error in Ty for LR+PGF
method is 1.0%, for LA+EKF 1.3%. As is clearly evident, for a fixed false alarm
rate, the detection performance of the proposed method LR+PGF gives substantially
improved detection performance. For practical considerations the frequency of false
alarms must be kept small. Otherwise, the operating personnel will fail to heed the
warnings generated by the alarm. (This situation is very similar to that of the classic
fairy tale “The Boy Who Cried Wolf.”) If the goal is to maintain the average number
of false alarms per batch below 1 (1 false alarm per 250 samples), using the LR+PGF
method this can be accomplished with a mean detection delay of approximately 25,
and 100% detection prior to batch termination. On the other hand, imposing a
similar performance criterion on the LA+EKF method results in 63% of changes going
undetected prior to batch termination, and a lower bound on the mean detection delay
of approximately 110.

The test LA+EKF can also be viewed as an off-line test, in which case the relevant
performance measures are the power § and the size a. In Figure 7.4, power is plotted
as a function of size for this test. The values for the power and size used in this plot
were estimated from the results of the Monte Carlo simulation runs. As can be seen
from this ﬁg‘ure, using this test a high likelihood of detection can only be achieved

with a substantial false alarm rate. This confirms the on-line results discussed above.

7.7 Summary and conclusions

A new approach for change detection problems which encompasses a wide class of
problems, including additive and multiplicative faults as well as general parame-
ter changes, has been presented. The approach uses two dynamic models.” In the
first model, system parameters remain fixed at their predetermined, nominal values,
whereas in the second model they are modeled by Brownian motion. When the nom-

inal parameter values accurately describe the system, the first model will result in
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a higher likelihood than the second due to the diffusive nature of Brownian motion;
however, when a change occurs, the second model will provide a higher likelihood. For
each of the two models, the probability of each new measurement conditioned on pre-
vious measurements and the model is calculated and used to form a Neyman-Pearson
test based on likelihood ratios.

The proposed two model structure allows for arbitrary dynamics as well as system
changes of arbitrary magnitude and direction in the parameter space. By contrast,
using a GLR approach in the case of unknown parameter value following the change,
the optimization of post-change parameter values is usually impractical except in the
case of linear dynamics in which case the optimization can be carried out explicitly.
This feature presents a significant advantage for the proposed framework over the
latter method.

For linear problems including additive faults on linear systems, the method can
be applied by running two Kalman filters, one for each model type. In Section 7.4 the
properties of the proposed method were evaluated for the problem of change in mean
of a Gaussian sequence. For this basic problem, the performance depends on two
parameters, the threshold level A and the ratio X = ¥/R. Choosing the threshold
A 80 as to result in a constant mean time between false alarms L, there exists an
optimal value of X which minimizes the mean delay for detection for a fixed change
size. This suggests the following approach for tuning the algorithm. First, determine
an acceptable level for the mean time between false alarms L. Next, specify the
magnitude snr, of the minimum change for which detection is desired. Using these
settings, determine the value of X which minimizes the mean delay for detection. For
system changes with magnitude larger than snr,, the mean delay for detection will
be decreased without changing the mean time between false alarms. Therefore, this
approach will result in an algorithm which minimizes the worst case mean delay for
detection where worst case is taken with respect to all changes such that snr > snr,.

Although it is not possible to carry out an in-depth analysis of the performance
properties for a general non-linear change detection problem, the analysis for the sim-

plified scenario provides insight into tuning the algorithm for the general case. The
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parameter X depends upon the system to measurement noise ratio @)/ R, suggesting
that in the general case, the system noise distribution law p,, will affect the detection
performance in a similar fashion. Although in some cases it may be possible to deter-
mine p,, from historical process data, in many instances it will be necessary to view
Dw as a tuning parameter. Restricting p, to be a zero mean Gaussian distribution,
one would expect that the covariance matrix (J,, associated with p,, will play a similar
role as in the change in mean detection problem. Initially increasing the elements @y,
from small values will decrease the detection delay, but further increases will result
in longer detection delays and ultimately undetectability. Although in general it is
doubtful analytical relations expressing the effect of @), on detection performance can
be derived, often Monte Carlo simulations can be employed during the tuning phase
to obtain good values.

Since analytical expressions for recursively updating the conditional probabilities
which are needed to evaluate the likelihood ratio test are not available for non-linear
problems or problems with non-Gaussian stochastic dynamics, approximate methods
must be used. The Bayesian approach, which is consistent with Kalman filtering for
the linear case, can be used to obtain computational procedures for evaluating the
necessary distributions. The class of algorithms known as probability grid filtering
can be used to obtain a global approximation to the conditional probability density.
Although these algorithms carry a high computational cost, as computational power
continues to increase, implementation for larger systems will become feasible.

The case study in Section 7.6 reveals that the LR+PGF approach to change detec-
tion can provide significant improvement over methods based on the local asymptotic
approach. Considering the result of Neyman-Pearson, this is not surprising. The most
powerful test is based upon a likelihood ratio test, and when the approximations as-
sociated with the non-linear filtering algorithm are valid and changes are accurately
modeled by Brownian motion, the proposed test should provide an excellent approx-
imation to the likelihood ratio. By contrast, the assumptions used to derive the local
asymptotic test are more restrictive, requiring a large data record and a small change.

On the other hand, the local asymptotic approach provides a theoretical foundation
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for selecting detection thresholds, whereas in the proposed method, threshold selec-
tion must be made through simulation studies or on line tuning; however, for problems
in which a limited data record is available or rapid detection is necessary, the inferior
performance of the local asymptotic method outweighs any potential benefit derived

from simpler threshold selection.
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Chapter 8 Propositional logic in control

and monitoring problems

Summary

By using linear constraints on integer variables, logical inference can be incorporated
within Model Predictive Control and model based detection problems resulting in
mixed integer quadratic or mixed integer linear programming problems. Qualitative
knowledge can be used to prioritize control objectives, or to improve performance of
detection schemes. This chapter demonstrates some capabilities of combining logic

using integer variables with quantitative models.

8.1 Introduction

The vast majority of modern control methods implement in one fashion or another
a model of a system. Some methods, such as model predictive control (MPC), use
the model directly to calculate control moves from measured data. Other methods,
such as LQG, H, and p-based control use the model to synthesize a linear time
invariant control law. It has been widely recognized by the control community that
an inherent limitation in model based designs lies within the problem of robustness
to model uncertainty. Namely, due to differences between the mathematical model
and the real physical system, methods based upon an imprecise model may perform
unsatisfactorily. In the area of monitoring and detection, this is especially true. For
example, in the area of fault detection, there exists no satisfactory method to date to
design model based detection schemes in the presence of model uncertainty.

In addition to the quantitative models used to describe a system, often other in-

formation is available about the behavior of the system. Such qualitative information



193
may exist in the form of relationships which are implied when other relationships
hold. In addition, practical control objectives are often qualitative. For example, an
operator may desire that the feed to a chemical reactor remain near a set-point when
the reactor pressure is low, but when the reactor pressure is high, the throughput
should be used to reduce the pressure. Current control methods are inadequate at
incorporating such qualitative features.

In the area of process monitoring, qualitative information can often be useful
in diagnosing failures. Initial approaches attempting to incorporate qualitative and
quantitative models have typically focused on using a quantitative model to generate
a residual signal which should be nominally zero. Then qualitative methods are used
to diagnose the residual. See for example [56], [55], and [104]. Although this approach
reportedly helps improve robustness to modeling errors, it is lacking in the fact that
the qualitative knowledge cannot be used to generate the residuals.

In this chapter, a systematic method for incorporating qualitative information in
control and monitoring problems is presented. The method consists of first stating
qualitative information in terms of propositional logic. Then, using integer variables,
the propositions are translated into linear constraints. For control problems, the
qualitative knowledge may easily be incorporated within the Model Predictive Control
framework by appending the constraints to the control calculation problem. Similarly,
qualitative knowledge can be used in fault detection problems by estimating faults
while enforcing the logical constraints.

In Section 8.2, previous results are outlined which demonstrate how to convert
logical propositions into linear constraints and how to pose logical inference as an
integer programming problem. In Section 8.3, alternative approaches to translating
propositions to constraints which may affect the complexity of the ensuing optimiza-
tion problem are discussed. In Section 8.4, control and monitoring problems using
combined qualitative and quantitative information are presented. Optimization tech-
niques for the solution of the type of mixed integer programming problems resulting

from these control and monitoring problems are outlined in Section 8.5.
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8.2 Representation of logic

Cavalier et al. [17] and Post [87] have shown how propositional logic can be represented
by formulating linear constraints on integer variables. In this framework, reasoning
or logical inference can be shown to be equivalent to solving an integer programming
(IP) problem. More recently, Raman and Grossman [90] have used this framework in
process synthesis to combine qualitative reasoning and quantitative models to obtain
mixed integer mathematical programs. In the area of design, this approach is very
useful as qualitative approaches have been successful for preliminary design consider-
ations, whereas quantitative approaches are better suited for analyzing interactions
between variables and arriving at an optimal configuration.

In this section, we will briefly review the representation of propositional logic using
linear constraints. The building block of propositional logic is the literal, a variable
which can assume the value of true or false. With each literal £, we can associate
another literal, =L, the negation of £, such that the proposition £V L is tautological.
A proposition is formed by combining literals with the operators AND (A), OR (V),
and IMPLIES (=). An important result in propositional logic is that any proposition

can be reduced to conjunctive normal form, consisting of a conjunction of clauses [67]:

CiACyA...NC, (8.1)

where each clause C; is a disjunction of literals of the form
LiV LV . ..V Ly, (8.2)

The conjunctive normal form can be obtained systematically by applying the following

rules:

1. Replace implications with the equivalent disjunction:

(L1 = L3) becomes (—L; V L3) (8.3)
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Table 8.1: Propositional Logic Constraints

Logical Relation | Expression Linear Inequalities
OR LINVLN .. NVNL, |+ l+.. . +1,>1
AND LiNLoA ALy, |21 0>1; .. 50,>1
= L= Ly L—-0b<0
= ,Cl <~ £2 ll - lg = O
XOR £1®£2®@£n l1+l2++ln:1

2. Use DeMorgan’s Theorem to distribute negation:

_'(L:l A £2) becomes (""ﬁl vV “1£2) (84)
—(L1V L) becomes (=L A-Ly) (8.5)

3. Distribute OR over AND using the tautologies

(L1 A L2) V L3] becomes [(L£1V L3) A (Lo V L3)]. (8.6)

To convert propositions into mathematical expressions, we first define an integer
variable [; € {0, 1} associated with each literal £;. If £; is true, then [; = 1, otherwise
l; = 0. Clearly, negation can be represented by (1 — ;). Additionally, disjunction
of several literals is equivalent to constraining the sum of the corresponding integers
to exceed or equal 1. For example, £; V L, is equivalent to l; + Iy > 1. Finally,
conjunction can be expressed as a set of inequality constraints, i.e., £; A £, becomes
[y > 1, I > 1. By associating integer variables with each literal and combining
the rules for negation, disjunction, and conjunction, any proposition in conjunctive
normal form can be expressed as a set of linear inequality constraints. Table 8.1
summarizes linear inequality relations for the most important logical relations.

The framework outlined above is suitable for describing hard logical facts about a
system. However, frequently the system knowledge is in the form of heuristics or rules
of thumb. In this case, it is possible that the knowledge is violated, but our experience

tells us that it usually is not. Post [87] allows for uncertain knowledge of this type by
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introducing a new variable which represents violation of the heuristic. Therefore, if
C; is a logical clause corresponding to a heuristic, a new literal V; is introduced which

corresponds to violation of the heuristic, leading to the new proposition:
G,V V. (8.7)

Letting v; denote the integer variable associated with V;, corresponding linear inequal-
ities can be established. In order to discriminate between strong rules and heuristic
rules, penalties are associated with the violation of each heuristic. The penalty w;
associated with v; should be a nonnegative number whose magnitude reflects the
level of uncertainty associated with the heuristic. Thus, small values of w; indicate
that the corresponding heuristic is relatively weak, whereas large values correspond
to a stronger hypothesis. Clearly, the selection of penalties is an important design
consideration.

Using the framework described above, logical inference with uncertain knowledge
can be formulated as an IP problem whose objective is to find a feasible point which

minimizes the violation of heuristics. Formally, the IP is given by

min Z W;V;
s.t. éll + v > Hy; (heuristic knowledge)
Gsl > Hs; (hard knowledge)
1€ {0,1}", v >0, (8.8)

where G; and H; are appropriately dimensioned matrices and vectors respectively.
In applications in control and monitoring, the situation will arise in which the value of
process variables and measurements, represented by continuous variables, will deter-
mine the value of a literal. For example, consider the case where distillation column
pressure is monitored. When the pressure exceeds a certain limit, action must be
taken to relieve it. Let P denote the measured pressure, Pr the upper threshold,

Lp the literal corresponding to “high pressure,” and lp the corresponding integer
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variable. We would like to implement a constraint such that the following relation
holds:
(P> Pr)= Lp. (8.9)

In the case where a priori upper and lower bounds for P are known, which will be
the case for any physical quantity, this relation can be implemented by the following

constraint:

(P—Pr)—Ulp <0, (8.10)

where U is an upper bound for (P — Pr). Raman and Grossman [90] have suggested
that any constraint of the form f(z) < 0, where z varies continuously and where
f(z) € [Lf,Uy], can be associated with a binary variable I; through the following
inequality:

Lflf-f—éf_f(l‘) SUf(l—lf), (8.11)

where ¢ is a small positive tolerance. Thus, if f(z) < 0 is satisfied, the variable [f
assumes the value of 1. Conversely, when f(z) > €, Iy = 0. Since a constraint of
the form f(z) = 0 can be considered as a combination of f(z) < 0 and —f(z) < 0,
equality constraints can also be cast into the present framework. This is done by
introducing one binary variable [_ corresponding to the former inequality, another
variable [, corresponding to the latter, and a third binary variable {_ which are

related through the following proposition:
el N (8.12)

Integer variables can also be used to represent functions which may be defined in

a pilecewise manner. For example, suppose that a function ¢(z) is given by

( fi(z); ze Xy

¢(z) = fle) o€ X , (8.13)

fulz); z€ X,
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where X; are disjoint polyhedra. Each region X; can be described by a set of linear
constraints G'z < H', and we associate a binary variable /; with each region X;

through the proposition
reX; ;=1 (8.14)

Since only one region may be valid, the variables [; also must satisfy the following
XOR relation:
L+lb+...+1,=1. (8.15)

Let G% and HY represent the j*™ row of G* and H' respectively. One way to formulate

the relation (8.14) would be as follows:
(Giz — H)) — M(1—1;) <0,Vi,j (8.16)

where M is a suitably large positive constant. These constraints combined with (8.15)
will guarantee that /; = 1 if and only if z € X;.

The function ¢(z) can now be represented by the following set of constraints:
Li(l-0L)<¢— filz) <U;(1-1) (8.17)

where L; and U; are lower and upper bounds on the ¢ — f;(z). For practical prob-
lems, such bounds will always exist. If [; = 1, then the above constraint requires
¢ = fi(z), whereas if [; = 0, the constraint is automatically satisfied. By relating con-
tinuous quantities such as ¢ in (8.17) and P in (8.10) to the value of integer variables

representing logical propositions, mixed integer programming problems are obtained.

8.3 Constraint formulation and complexity

An important issue affecting the complexity of the integer programming problem
which must be solved involves the formulation of the logical constraints. More often
than not, there exist many different ways to formulate equivalent conditions. As an

example, consider the proposition £; < L5 A L£3. Two equivalent formulations are
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given by
Lb+ls—0 <1
lo+1l3 -2, =2 0 (8.18)
and
Lb+l3—- <1
-4 > 0
Is—10; > 0. (8.19)

Rather than using conjunctive normal form, Williams [109] has suggested a substi-
tution method for forming sets of constraints corresponding to logical propositions.
In this approach, new variables are introduced to represent conjunction and disjunc-
tion. Thus, in the above, the variable £; would be substituted for the conjunction
Lo A L3 via the constraint (8.19). For disjunctions, £; < (£, V L3) is enforced via

the constraints on the corresponding binary variables:

l2 + l3 — ll > 0
Lh—-1; <0
Iz—1;, < 0. (8.20)

The constraint sets (8.19) and (8.20) can then be used as building blocks to form
more elaborate propositions.

As noted by Cavalier et al. [17], whether conjunctive normal form is more advanta-
geous than the substitution method depends upon the type of knowledge considered.

For example, production rule type logic statements of the form
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can be expressed in conjunctive normal form using n + 1 variables and n constraints.
By contrast, the substitution method leads to a set of constraints requiring 2n vari-

ables and 3n — 2 constraints. On the other hand, a clause of the form
(LyNL)V(L3ALYV ...V (L1 ALy) (8.22)

requires 3n/2 variables and 3n/2 + 1 constraints using the substitution method
whereas the conjunctive normal form requires n variables and 2™? constraints. From
these examples, we can conclude that the better modeling approach depends upon
the structure of the clause.

Cavalier et al. [17] also addressed the issue of preprocessing the constraints in order
to remove redundant constraints and obtain a more concise and efficient formulation
of the problem. The following results are based on conjunctive normal form. Every
constraint in conjunctive normal form can be expressed in binary variables in the

form

SL=>Y L>1-1J| (8.23)

iel jeJ
where | J| denotes the cardinality of the index set J. Using this expression, the follow-
ing result may be used to reduce the complexity of constraints posed in conjunctive

normal form.

Theorem 6 The constraint (8.23) dominates any constraint of the form

D L= L =1—|N]| (8.24)

ieM JEN

for any sets M 2O I and N 2 J. In particular, the constraint
L > (8.25)

dominates any constraint of the form (8.24) when M and N are disjoint and i € M
and j € N.
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8.4 Application to control and detection

In the previous sections, it was shown how integer variables and linear constraints can
be used to represent any relationship which can be expressed in propositional logic.
In addition, it was shown how propositions which depend on continuous variables
can be related to these variables through linear constraints. In the remainder of this
chapter, we will demonstrate several applications of this method for incorporating
qualitative information in problems in the area of control and detection. In particular,
we consider incorporating logical constraints within the Model Predictive Control
(MPC) [73] and Moving Horizon Estimation (MHE) [92] frameworks.

Many formulations of MPC algorithms exist. To review the relevant literature
in this area is beyond the scope of the present work; however, all MPC algorithms
have in common the feature that control moves are calculated by solving on-line an
optimization problem. This optimization consists of minimizing the predicted output
trajectory subject to constraints on the control inputs and predicted output. In this
work, we will consider the following optimization problem which can be related to an

MPC problem:

wetl (1K) 21 k+ilk) — 2 (k + 1)) R[£(k + ilk) — 2" (k + i) +u(k+i—1) Qu(k+i-1).
(8.26)

The variable z* is a known reference state. The region U is determined by linear

constraints of the form:

Guuttf + G,i(k|k) < H, (8.27)

and ul*" = [u(k),...,u(k + P)], and &(k + i|k) satisfies the dynamic constraints:
z(k+jlk)=Az(k+j—1lk)+ Bulk+j—1), 7> 1. (8.28)

It is possible to include constraints on the control increments Awu, but for our discus-

sion, the above formulation suffices. In MHE, dynamic state estimates are obtained
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by solving a similar optimization problem:

min Az(k—p+1)S'AZ(k—p+1)

+ >0 @ —9CR) R [y(0) — 93ilk)] + w(ilk) Q@ w(ilk) (8.29)

i=k—p+1

subject to the constraints

tk—p+1k) = 2k—p+1lk—1)+A%(k—p+1) (8.30)
Tt +1k) = Az(ilk)+ Byw(ilk), i=k—p+1,.,k—1 (8.31)
9(ilk) = Cz(ilk), i=k—p+1,.,k—1, (8.32)

where o is interpreted as a disturbance estimate and AZ as the error in the initial state
estimate. Since the objective is quadratic and the constraints are linear for both of
these problems, the optimization corresponds to a standard quadratic programming
problem. Alternative implementations employ an [; or I, norm in the objective
functions and result in linear programming problems.

By formulating logic propositions as linear integer constraints, it is possible to in-
corporate logic based control decisions within the MPC and MHE frameworks. The
resulting optimization problem belongs to the class of mixed integer quadratic pro-
gramming (MIQP), or mixed integer linear programming (MILP), depending on the
type of objective function used. Many commercial optimization packages are capable
of solving mixed integer optimization problems [75]. One algorithm for solving MIQP
problems by iterating between quadratic programming (QP) and MILP subproblems
is described in Appendix 8.5. Ding and Sargent [27] have recently developed an effi-
cient branch and bound algorithm for MIQP’s. Therefore, the class of optimization
problems resulting from incorporating logical constraints can be solved by a variety
of readily available methods.

With the addition of logic based constraints, the class of schemes which can be
formulated as MPC and MHE problems is enlarged. In the following sections, several

examples of the capabilities of this approach are enumerated. In Section 8.4.1, it is
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shown how problems in which the control objective depends on the operating region
can be formulated. In Section 8.4.2, the prioritization of multiobjective control prob-
lems is addressed. In Section 8.4.3, fault detection using combined qualitative and

quantitative information is formulated in the current framework.

8.4.1 Logic dependent objective

In many practical control applications, the objective that the controller should address
is dependent upon the operating characteristics. This situation can be handled by
formulating a problem in which the objective that the controller seeks to meet depends
upon the satisfaction of certain logical conditions. The following instructive example
serves to clarify this application.

Consider a semi-batch reactor equipped with a cooling jacket. In order to maxi-
mize conversion, the feed addition rate F' should be maintained at the set point F' = 1.
In addition, for performance and safety considerations the reactor temperature should
be regulated at T, = T™*. The steady state reactor temperature may be related to the

feed rate F' and the coolant flow rate @) through the linearized relations:

oT _ or
T=S5F+ 550+ T, (8.33)

where T' =T, — T™*. To simplify the discussion, we will consider the case wherein this
linear relationship holds, the partial derivatives are constant, and the variables are
scaled such that %;‘f—, =1 and g% = —1. The manipulated variables F' and @ are each
constrained to lie within the range [0, 1]. The value T}, can be viewed as a disturbance
load.

With the manipulated variables F' and @ constrained to lie between 0 and 1, the
reactor can operate at its optimal feed rate and temperature only when the load Tj
lies within the range [—1,0]. For smaller values of Ty, the reactor will necessarily run
cold. For larger values of T, the reactor can operate at the optimal temperature only
by decreasing the feed rate below its optimal point. For Ty > 1, the reactor will run

hot even when the feed rate is reduced to 0.
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Table 8.2: Objective J = (1 — F)? + aT?

To Q F T J
To < -1 0 1 T+T,  a(l+ 1)
~1<THh<0 |To+1 1 0 0
0<To<l+z| 1 1-T =T = T¢
1< Ty 1 0 To—1 1+o(Ty—1)

If this system were controlled with a conventional MPC algorithm, the control
moves dF and d@) would be calculated by minimizing an objective containing terms

of the form

SN Jk+35)=> (1= F(k+7)*+aT(k+ jlk)* (8.34)

j=1 j=1
In steady state, the values of F' and () would then be determined by the solution to
the quadratic program

min (1 — F)? 4 oT? (8.35)
Fel0,1],Q€[0,1]

Substituting 7' = F — @ + Tp, the steady state solution can be determined using
the Kuhn-Tucker criteria. This solution is shown in Table 8.2. When the load T <
0, the steady state behavior is as desired for any choice of «; however, when the
load is positive, T" is small in steady state only when « is large. When @ is not
saturated, a large value of « results in F' deviating significantly from 1 for extended
time. Therefore, using a traditional objective one can guarantee small steady state
temperature offset when () saturates only at the expense of poor response in F for
all times.

By including simple logic into the controller, this problem can be remedied. The
logic should reflect the fact that when @) saturates, the manipulated variable F should
be used to control the temperature. Otherwise, F' should be kept near its optimal
value of 1 and @) should control the temperature. We will therefore consider a logic

based objective of the following form:

1. If Q is not saturated, minimize (1 — F)? + oT".

2. If @ saturates, minimize 37°2.
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Using integer variables, this objective can be implemented through the following

constraints:
LO-I)—e< Xi(k)<UQ-I,)

L(1 —I;) — € < Xa(k) — /BT (k) < U1 - )
LI, — e < Xy(k) — (1 — F(k)) < UI,
LI, — ¢ < X,y (k) — aT(k) < UI,
Qsat(ly — 1) < Q(k) — Quat + € < €l

The last constraints require that I, = 1 if and only if Q(k) is within ¢, of the
saturation level Qs,;. The first four constraints require that X; and X, assume the

following values:

X\(k) = 0 fo=1 (8.36)
Tl a=Fw), L=o0 '

Xo(k) = {*/BT(’C)’ fo=1 (8.37)

VaT(k), I,=0

By replacing the objective term (8.34) with terms of the form J = X2 + X2, and
incorporating the above constraints involving I, a MIQP is obtained with the desired
logic based objective. The solution satisfying these constraints can be calculated by
using Kuhn-Tucker criteria for each of the two cases I, = 0 and I, = 1. The solution
for I; = 0 is the same as in Table 8.2. For I, = 1, the optimal solution is shown in
Table 8.3. The MIQP optimum is shown in Table 8.4.

A dynamic simulation with a control and prediction horizon of 5 was conducted
for both the MIQP based control and the traditional MPC controller. First order

temperature dynamics are used:

0.5z 0.2z
T = — . .
=05 zoos? T (8:38)




206

Table 8.3: Objective J = 8T2%, Q =1

T 0 F T 7
To<0 |1 1 T, BT2
O<TOS]- 1 1—T0 0 0
1< Ty 1 0 T —1 ﬂ(T()—l)z

Table 8.4: MIQP, a < f < a(1 + «)

Ty Q F T J

TQ < -1 0 1 1+T0 a(1+T0)2
-1 <13 <0 T0+1 1 0 0
0<Tp<1 1 1—Tp 0 0

0<To<1+1] 1 0 0  B(Tp—1)?

1+1<T 1 0 To—1 B(Ty—1)?

For both controllers, the control action was rate limited by |dF| < 0.1 and |dQ| < 0.1.
For the MIQP controller, & = 0.1 and 8 = 0.105, whereas for the traditional MPC
controller o = 10 which is necessary for small steady state temperature offset when
() saturates. The simulation results are shown in Figures 8.1 and 8.2.

For the MIQP based controller, the flow rate remains close to F' = 1 even when
significant changes occur in the load as long as @ does not saturate. At time 100 the
load T exceeds 0 and F' must decrease in order to provide zero steady state offset in
T.

For the traditional MPC controller, each change in the load Tj results in a sig-
nificant deviation in F' from its nominal value. This is due to the large weight on
T in the objective function and the fact that T responds more rapidly to F than to
(). When the load exceeds 0 after time 100, the feed rate F decreases, but there
remains a small steady state offset in the temperature 7. This offset can be reduced

by increasing a at the expense of deteriorated flow control.
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MIQP Controller

1.5 T L T T T T
1 \/\(f
JARY
I =
! \
/ .
L 1\ \} S |
0.5 /\____( v :
N - :
/ / s :
A’ :
, S -
—_————— i
Ob-coooe o D ) ' ..................... _
: !
_________ - i
l ! i
! . i ---T0
—05}) : ..... T _
o F
T - --Q
________ I
-1 i 1 ! L i 1
0 20 40 60 80 100 120 140

Figure 8.1: Simulation for MIQP based controller

8.4.2 Multiobjective prioritization

An engineer designing a multivariate control system is essentially faced with a mul-
tiobjective optimization problem [89]. The control system should achieve process
safety by maintaining all necessary variables within safe limits, optimize economic
considerations such as production levels and product quality, and ensure environ-
mental regulations are met. In general, the various objectives of the control system
do not have equal priority. For example, the most significant objective may be to
maintain the process within safe operating limits, at the expense of profitability if
necessary. If large fines are imposed when environmental regulations are violated,
satisfying regulatory demands will take preference over productivity.

In order to quantify process control requirements, they are commonly stated as

either optimization objectives or as constraints. An example of the former would be to
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Traditional MPC Controller
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Figure 8.2: Simulation for traditional MPC controller

minimize the integral square error of a measured variable from its set-point, whereas
the latter would correspond to maintaining the variable within a specified range.
Constraints can be considered to be either hard or soft [114]. Hard constraints refer
to those constraints which cannot be violated and usually correspond to physical
limitations of the system. For example, hard constraints can be used to represent
limitations in the capacity or in the rate of change of an actuator. Soft constraints
are those which can be temporarily relaxed if operating conditions so dictate and
are most frequently used to describe objectives on output variables. Imposing a soft
upper bound on a temperature, for example, can be interpreted as requiring that the
temperature remain below the bound if at all possible, where the realm of possibility
is defined by the hard constraints.

The vast majority of the previous literature for multivariate, multiobjective con-
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trol problems has relied upon constructing a single utility function which seeks to
incorporate each of the objectives. The most common approach has been to set the
utility function equal to a weighted sum of the multiple objectives [89, 74, 88]. Soft
constraints are transformed to hard constraints through the introduction of slack vari-
ables v, for example the soft constraint z < z, becomes = < z, + v, and a weighted
norm on the slack variables is included in the utility function. The weights of the
various objectives comprising the overall utility function must be chosen by trial and
error, through numerical simulations, or via other ad hoc approaches in order that
more important objectives are given higher priority. The design of weights is an arbi-
trary procedure, guided by the heuristic that larger weights should be used for more
important objectives, and there is no guarantee that a choice of weights will result in
the desired prioritization of objectives for all operating conditions. Although the use
of a single utility function has led to a useful framework for theoretical analysis of
control systems as well as a plethora of successful industrial applications, it lacks the
ability to address in a systematic and effective manner the design tradeoffs among
conflicting objectives.

Let us formalize the criteria that a designer wishes to satisfy for a multiobjective
control algorithm. We will assume that there exist N objectives, each of which can
be expressed via constraints on the output variables. The i*" constraint is expressed

as

G'y < HY, (8.39)

where y is the vector of process measurements, G* is an appropriately dimensioned real
vector, and H* is a real number. Set point tracking objectives can be formulated in this
framework using constraints of the form |y, —r;| < €, where € is a small tolerance. The
objectives are ordered according to their relative priorities, with objective i receiving
a higher priority than objective ¢+ 1. The goal of the controller is to satisfy as many
objectives as possible while requiring that objectives with higher priority are met
first. If all objectives can be satisfied, the goal is achieved; otherwise, the controller

should minimize the amount by which the highest non satisfied objective is violated.
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Meadowcroft et al. [66] introduced the Modular Multivariate Controller to address
the problem of multivariate multiobjective control. This approach incorporated lez-
icographic goal programming. The fundamental concept of this approach is to solve
sequentially a set of optimization problems, with each problem corresponding to min-
imizing the slack variable associated with violating a performance objective. The
highest priority objective is solved first, and the optimal value of the slack variable
associated with this objective is used to form a bound on acceptable performance for
the first objective. A constraint corresponding to this bound is then enforced while at-
tempting to minimize the second objective. The procedure is repeated until as many
objectives as possible have been satisfied. In each step of the procedure, a primary
manipulated variable is specified, and one attempts to meet the performance criteria
using only this variable while constraining the other variables to predetermined val-
ues. If the objective cannot be met using the primary manipulated variable, a second
manipulated variable is added to the search space, and so on. At each step of the
algorithm, all primary variables for higher priority objectives must be recalculated.

Although the Modular Multivariate Controller addressed the issue of prioritization
of objectives, the algorithm used is confusing and can be quite complicated for large
dimensioned systems with a high number of objectives. In the following, it is shown
that the constraint prioritization problem posed above can easily be solved through
the use of integer variables. First with each objective, associate an integer variable [;,
t=1,...,N. When [; = 1, the constraint corresponding to the concomitant objective
must be satisfied; otherwise, the constraint may be violated. This condition can be

expressed in the form of the following modified constraint:
Gy < H'+ M'(1-1,), (8.40)

where M* is a (conservative) upper bound on G*y — H* which ensures that the con-
straint is always satisfied when [; = 0. The term M*(1 — ;) can be thought of as a
slack when [; = 0. Often, a single integer variable I; can be used for more than one

constraint. This will be true when the constraints involved cannot be simultaneously
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violated. For example, in the case where the constraints form upper and lower bounds
(u; and v;) on an output y;, at least one of the upper and lower bounds will be met

all the time. The modified constraints can be written as

If G* is viewed as a 2 row matrix and H® by a 2-vector, and M* a 2-vector with equal
elements, these constraints can be expressed in the form of (8.40). For generality, we
consider priority constraints of this form (8.40) where G* is a matrix, H' a vector,
and M a vector with equal elements, and the structure of G* and H* are such that
only one row of the inequality can be violated at a time.

By specifying constraints of the form (8.40), the designer ensures that objective i
is met whenever [; = 1. We now address the issue of prioritization. Prioritization of
objectives implies that objectives 1 through ¢ must be satisfied before attempting to
satisfy objective 7 + 1. In other words, if constraint 7 + 1 is enforced with zero slack,
then constraint ¢ must also be enforced with zero slack. This condition can be easily

expressed through the following constraints on the integer variables I:

The following mixed integer programming problem can then be used to satisfy the

multiobjective criteria:
N
min (—- > li> subject to (8.40) and (8.42). (8.43)
i=1

Now suppose that due to the operating regime it is not possible to meet each perfor-
mance objective simultaneously. Let ¢; denote the index of the first priority which
failed. In this situation, we desire that the controller come as close as possible to

meeting objective ¢y. This can be done by introducing a slack variable ¢ satisfying
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the following system of constraints:
Gy<H'+¢+M |(i—-1)+1L—=> l;|,i=1,.,N. (8.44)
j=1
Consider the following objective function:
N
min (—M¢Zli + f(gb)) subject to (8.40) and (8.42) and (8.44) (8.45)
i=1

where f is a positive strictly increasing function and My denotes a strict upper bound
on f. Since M, forms an upper bound on f, the objective can always be made smaller
by increasing the number of non-zeros I’s than by decreasing ¢. Once as many I’s
are one as possible, ¢ will be minimized. Since I; = 1 for each ¢ < 4s, the constraint
(8.44) will be automatically satisfied for i < i; for any value of ¢. For ¢ = i;, the
term multiplying M* in (8.44) is zero, whereas for i > 4 #, this term is greater than 1.
Therefore, the only active constraint involving ¢ corresponds to is, and the minimal
¢ is equal to the slack in objective is, and the solution of this problem satisfies the
| multiobjective criterion.

The nature of the above optimization problem depends upon the relationship
between the manipulated variables v and the output y involved in the constraints, as
well as the function f. For the case of linear input-output systems, the constraints
will all be linear in the manipulated variables u. Therefore, if f is a linear function of
¢, a MILP is obtained. For f a quadratic function in ¢, a MIQP results. Although it
is possible to extend the approach above to the case where ¢ is not a scalar, when ¢
is a positive scalar, the identical solution is obtained whether f(@) = ¢ or f(¢) = ¢°.
Due to the fact that MILP’s can typically be solved more efficiently than MIQP, the
former criterion is preferred.

In some cases, particularly for large systems, the situation may arise where, for
example, objectives 1,...,7; — 1 may be met, objective i; cannot be satisfied, but after
minimizing the slack associated with iy, it is possible to meet objectives with lower

priority than ¢y. In such a situation, it is clearly desirable that the control algorithm
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yield such a solution. In this case, the optimal multiobjective solution can be found by
repeated application of the above optimization. After each iteration, the bound Hs
is increased by ¢ and the minimum is recomputed. By increasing H'/, the subsequent
solution is guaranteed to satisy /;, = 1. The iteration may be terminated when there
are no degrees of freedom left in the manipulated variables, or when i = N — 1.

In order to apply the above procedure to MPC, two alternatives exist. In the first
alternative, a separate value [;(k + j) is used for each time in the prediction horizon.
In addition, each of the constraints (8.40), (8.42), and (8.44) are formulated for each
time in the horizon using the forecast model for y. Such a method results in a total
of N % P integer variables and a large number of constraints, and for large problems
this method may become computationally intractable for on-line implementation. By
using blocking strategies, the computational demand may be decreased, but for large
enough systems computational limits will again be reached.

The second alternative uses only steady state relations between the inputs and the
outputs in formulating the priorities. Using a cascade structure, the multiobjective
optimization problem is then solved for a steady state solution in the outer loop, and
the resulting values of the outputs and inputs are then passed as reference signals to
the inner loop which calculates the dynamic control output for the desired reference.

To illustrate this approach consider the system with two inputs and three outputs
whose step response is shown in Figures 8.3 and 8.4. The steady state response of

this system is given by the following equation:

U1 0 1 dl
U

y2 | =110 + | ds |, (8.46)
Uz

Y3 11 d3

where the vector d corresponds to a disturbance which is either measured or estimated.

The performance criteria in order of decreasing importance are given as follows:
1. max; |y;| <2

2. Iyz——rgl SE
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3. Jysl <1

4. |lyy —r1| <e

The first objective states that all of the outputs should be kept within 2 measurement
units of 0. When this can be satisfied, y, should then be controlled to its set-point
r9. Once this goal has been met, it is desirable to keep the magnitude of y; below
1. Finally, y; should be controlled to its set-point 7;. In the following, we will
assume throughout that r; = 7, = 0. In addition to the output objectives, the hard
constraints |u;| < 1 must be enforced at all times. Table 8.5 expresses the constraints
which need to be enforced in the current framework to achieve the multiobjective

optimal solution.

1.2 T i T T T

_0'2 | 1 ] I} i
0 5 10 15 20 25 30

Step response to input 1

Figure 8.3: Step response to input 1 for dynamic system

The proposed multiobjective method was compared to a traditional approach

using a single utility function consisting of a weighted sum of squares of the individual
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Table 8.5: Constraints for Multiobjective Controller

ug +dy <2+10(1—h)
Iyl < 2 —upy —dy < 241001 — 1)
o up +dy <2+10(1 - 1)
Objective 1 || < 2 —uy —dy < 241001 — 1))
lys] < 2 up +ug +d3 <2+10(1 - 1y)
— uy +dy < e+10(1 — ly)
Objective 2 ly2] <€ —uy; —ds < e+ 10(1 = 1p)
. uy +up +ds < 14 10(1 = I3)
Objective 3 lys| <1 —uy —uy — dg < 14 10(1 —I3)
— uy +dp < e+ 10(1 —1y)
Objective 4 | < e —up —d; < e+ 10(1 — ly)
up +d; <2+ ¢+ 10
—uy —dy <24 ¢+ 10
u+dy <2+ ¢+ 104
—uy —dy < 2+ ¢ + 104
ur +ug +dz <2+ ¢+ 104
i —u; —us —ds < 2+ ¢+ 10

’Uq+d2§€+¢+10(1-ll+lg)
—Ul—d2S€+¢+10(1—l1+l2)
U1+U2+d3§1+¢+10(2—l1—12+13)
"*Ul—’u,g—-dgé1+¢+10(2—l1—l2+l3)
Up+dy <e+op+10B8—-1 -l — I3+ 1)
—uy—dy < e+ ¢+10(3 =1l — Iy — Ig + 1y)

Integer Constraints lie{0,1}, i=1,..,4
Prioritize kL =0
Objectives “ls Al 20
: ~l+13>0
objectives and slack variables. First, for the disturbance d = [-0.5,1,2.5] weights

for the traditional method were obtained through trial and error in order to yield
a response which was close to the optimal multiobjective method. The results for
both methods are shown in Figures 8.5 and 8.6. The optimal steady state solution
corresponds to u = [-0.5,—1] and y = [-1,0,1]. If the same weights are used for
a second disturbance d = [—0.5,—0.5,2.5], the responses shown in Figures 8.7 and
8.8 result. Here the optimal multiobjective solution is given by w = [0.5, —1] and

y = [—1.5,0,2]. Although the integer variable method gives the proper response, the
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_0.5 1 i I3 1
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Step response to input 2

Figure 8.4: Step response to input 2 for dynamic system-

traditional approach does not work well using the previous weights. Because of the
large weight associated with the goal |ys| < 1, reference tracking of y, is sacrificed.
Choosing weights for the traditional method such that the performance is satisfactory
in both cases is an unwieldy task. For the first disturbance, the first two objectives
assist each other. By driving y» to the origin, the magnitude of y3 is also reduced.
By contrast, for the second disturbance, y2 can only be driven to zero at the expense
of increasing the magnitude of ys.

We note that the semi-batch reactor control problem posed in Section 8.4.1 could
also be formulated as a multiobjective problem. In this case, the top priority would
be to maintain the temperature at its set-point, with the second priority to maximize

the flow rate.
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Integer method, d = [-0.5,1,2.5]

3 T T T T T
ot .
— vyl
1 _L'W._ ............................. e
o+ B DU B REPER y3
-1 -A—L—LL'_J__I—’/_——\
_2 L i i i 1
0 5 10 15 20 25 30
Measured variables
— u1
-— T —--u2

5 10 15 20 25 30
Manipulated variables

Figure 8.5: Integer method controller. Response to d = [—0.5, 1, 2.5].

8.4.3 Symptom aided detection

In the area of process monitoring, the goal is to determine why a process is not
behaving normally. Although the model based approach works well when there are
minimal modeling errors or when the process is not operating in closed loop, when
feedback control is used to rectify failures and the model between the control action
and the measurement is uncertain, model based approaches are susceptible to high
false alarm rates. An alternative approach is based on symptoms. For example,
in an exothermic reactor coupled with a cooling jacket, excessive temperature may
be symptomatic of failure in the cooling jacket. Symptoms may be represented by
binary variables, and combined with models to yield a detection scheme which is both
symptom and model driven.

This approach is perhaps best illustrated through an example. We consider here
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Traditional method, d = [-0.5,1,2.5]}

3 T T T T T
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Measured variables
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5 L £
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Manipulated variables

Figure 8.6: Single object MPC controller. Response to d = [—0.5,1,2.5].

fault detection in a cold tandem steel mill. A detailed description of the process can
be found in [101]. In this process, nine measurements are made, corresponding to four
tensions tfy,...,ts4 and five thicknesses hi, ..., hs. The process failures considered
manifest themselves as changes in the friction coefficient p of one of five different
rollers. Let F;" and F; denote respectively the literals corresponding to an increase
and a decrease in value of the friction coefficient y; associated with roller 7, and f;"
and f;” the corresponding integer variables. With each of the five faults, there exists
a pattern of changes in the measured variables, as shown in Table 8.6. In this table,
T denotes an increase in the variable of interest, whereas | denotes a decrease.

Here, we assume that it is improbable for multiple faults to occur simultaneously.
The rules state that if a fault F; has occurred, a certain pattern must follow in

the measurements. Let us define binary variables 7; and 7; to correspond to the
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Integer method, d = [-0.5,~0.5,2.5]
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Figure 8.7: Integer method controller. Response to d = [-0.5, —0.5, 2.5].

literals ty; | and h; |. The symptoms ty; 1 and h; 1 then correspond to (1 — 7;)
and (1 — ;). The value of 7; and 7; are determined by the sign of the mean of the
respective variables over the optimization horizon. Then the rules in Table 8.6 may
be expressed in terms of linear constraints on the integer variables. For example, the

- rule involving F]” may be written as

—fi+n 2 0 (8.47)
—fi+m =2 0 (8.48)
-fi —m = -1 (8.49)

In the case where the fault patterns represent heuristic knowledge which may be

violated, an integer variable v; should be added to the left-hand side of each of
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Traditional method, d = [-0.5,-0.5,2.5]
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Figure 8.8: Single objective MPC controller. Response to d = [—0.5, —0.5, 2.5].

the three constraints. Then, if the fault F]~ occurs, either the associated pattern is
observed, or the heuristic is violated (v; = 1).

We would now like to combine the knowledge representation of the system with
a model in order to detect faults. Let us assume that the relationship between the
measurements y, the manipulated variables u, and the faults p can be expressed via

a dynamical input/output system of the form
y= Py xu+ B, *p. (8.50)

Thus, we assume that the effect of the manipulated variables u and the faults u
are uncoupled. The knowledge system described above is based upon the model
P,. Consider the case wherein the system operates in closed loop. In this situation,

whenever a fault occurs the control system generates a signal u which attempts to



221

Table 8.6: Fault Patterns

Fault Pattern Fault Pattern
Fooltpd b het)| | Ga Tkt he )
Fy | (tndhmThd) | B | tathdhe?)
Fy |tz b ha M had) | F5 | (2 D ha L hs D)
Fr | (s b hsToha ) | Ff | (trs T ha Lha 1)
Fo | (tpadhat hsl) | F5 | ((ga T hal,hs )

compensate for the change in the friction coefficient. Thus, the closed loop response
typically will not conform to the rules based on open loop performance. However,
when a model P, of the system P, is available, we can consider the signal Ay given

by

A

Ay = y—PFP,xu
= Poxp+ (Puxu—Puoxu). (8.51)
The term in brackets represents modeling error. In the case of perfect modeling,
the signal Ay will exactly correspond to the response from the faults. However, as
modeling error is inevitable, Ay will be corrupted whenever u is not identically zero.
One goal of including information on the fault pattern is to be able to distinguish
between the faults and modeling errors. We assume that the modeling errors do not
result in consistent patterns in the outputs; if they did, we could use this information
to obtain a better model. Thus, if Ay is significantly different than zero and matches
one of the fault patterns, then we postulate that the non-zero value of Ay is due to
a fault, but if the pattern is inconsistent with any of the faults, model errors are to
blame.
Let us now consider fault detection using the quantitative model. In particular,
we consider the model Ay = P, * u. One approach involves modeling u as a random
walk and using moving horizon estimation to estimate the value of u from the mea-

surements y. Denoting w; as the increments for the variables p;, we estimate p by
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solving the following optimization:

k
min Y [|Ay(7) — Ay()I* + w1, (8.52)
j=k—p+1

where Ay(j) represents the measurements minus the model output, Ay( J) represents
the output from the model P, % 4, and || - || a is vector norm. For the case wherein
the norm is a weighted [; norm, i.e., ||zl = 3, rilz;],, 7 > 0, the combined qual-
itative/quantitative model based detection problem becomes a mixed integer linear
program. When a Euclidean norm is employed, a mixed integer quadratic program
is obtained.

To integrate the qualitative and quantitative approach, one needs to relate the
binary fault variables f; to the increments w;. Since F;' corresponds to an increase
in the value of y;, we know that if w; is positive, then F;" must be true. On the other
hand, if F;t is true, then w; must be positive. Similarly, F;~ should be true if and
only if w; is negative. These relationships can be incorporated through the following

set, of constraints:

~Ufi —wi(j) = -U (8.53)
Lff +wi(j) 2 L (8.54)

b —wi(j) > 0 (8.55)

bi +wi(j) > 0 (8.56)

Uff +UffF—b > 0, (8.57)

where L is a lower bound for w; and U is an upper bound on the magnitude of w;.
The first constraint requires that w;(j) is negative for all j whenever F;~ is true. The
second constraint requires that w;(j) is positive whenever F;" is true. Together these
two constraints prohibit f;" and f;” from both being true at the same time. The third
and fourth constraints state that b; is an upper bound for the magnitude of w;(;) over
the horizon. The final constraints state that if b; is positive, then either F;" or F,” must

hold. The constraints do not prevent b; from attaining a non-zero value even when
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w; = 0. By including b; multiplied by a small positive weight in the objective function,
we can be certain that this scenario does not happen since for any w; the objective will
be minimized by choosing b; to be the smallest upper bound. Therefore, if b; is non-
zero, w; is non-zero, and F; must be true. The mixed quantitative/qualitative fault
detection problem corresponds to solving the mixed integer program (either MILP or
MIQP) consisting of minimizing the objective (8.52) subject to the logic constraints
implied by the patterns in Table 8.6 and the constraints (8.53) thru (8.57).

Let us now consider a numeric example consisting of a step decrease of 10% is
the second friction coefficient at time 10. The linear model described in [101] is used
to carry out the detection performance. Model uncertainty was introduced by using
+20% and —20% errors in the first and second input gains respectively. In addition,
the full nonlinear model was used in the simulation whereas the local linearization
was employed for the detection computations. A quadratic error objective was used,
resulting in a MIQP. The optimization was run on a window corresponding to the
first 10 samples following the introduction of the fault. In the case where no heuristic
violations were allowed, the resulting solution for the logic variables was f; = 1, f; =
1 with all other F's zero. The quantitative estimates for the changes in the friction
coefficients were Ap, = —0.10 and Apy = 0.0006, yielding an optimal objective value
of 0.27.

To consider the effects of allowing heuristic violation, the MIQP was solved re-
peatedly while forcing heuristic violation for each of the zero valued logical fault
variables, one at a time. The resulting decrease in the objective function indicates
the maximum magnitude by which the violation variable V' could be weighted. The
results are shown in Table 8.7. For example, by allowing the rule corresponding to
F3 to be violated, the objective would decrease by —0.0007. If the weight on the
heuristic violation variable v3 were larger than 0.0007, the MIQP would be minimized
by enforcing the heuristic. By choosing a weight smaller than 0.0007, the designer
effective places very little confidence in this heuristic.

When neither sufficient data or quantitative models are available to generate fault

symptoms, qualitative simulation can be used. A significant literature exists on the
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Table 8.7: Change in Objective Value from Allowing Heuristic Violation

Fault Type | A Objective
Fr 0.00
Fy -0.0007
EFr -0.0006
s -0.0006
F -0.0013
F3t 1.28
Ft 0.00
Fgr 0.00

use of qualitative modeling in detection problems. In qualitative simulation, the
effects of faults are causally propagated from one variable to another, ultimately
satisfying steady-state process constraints. The qualitative representation of these
relations can be expressed using confluence equations [23]. Oyeleye and Kramer [84]
have used confluence equations in developing a qualitative model based detection
scheme. Sign directed graphs [45, 71, 42, 106] have also been proposed as useful tools
for qualitative process modeling. Confluence equations as well as sign directed graphs
can be easily converted to a series of if-then statements, and therefore recast into the
mixed integer optimization framework developed in this paper. Future research will

address the efficacy of this approach.

8.5 Optimization methods

In this section, solution methods for mixed integer quadratic programming are con-
sidered. In Section 8.5.1 a general procedure for solving mixed integer problems, the
generalized Benders decomposition, is reviewed. Section 8.5.2 follows with the specific
application of this decomposition to quadratic programming problems. The resulting

MIQP algorithm consists of iterations between MILP and QP problems.
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8.5.1 Generalized Benders decomposition

Mixed integer programming problems can be efficiently solved using the generalized
Benders decomposition (GBD). In this section, a brief description of the method and
the underlying theory will be presented.

The GBD can be used to solve mathematical programming problems of the form

L3 f(z,y) subject to G(z,y) <0, (8.58)

where y is a vector of complicating variables in the sense that the above optimization
is a much easier problem in z when y is considered fixed, and f(z,y) and G(z,y) are
convex on X for fixed values of y. The key idea of the GBD is to exploit computational
efficiencies which can be achieved by considering the problem in y-space rather than

in zy-space. This is done by projecting the original optimization onto y-space as

follows:
myin v(y) subject toy € Y NV, (8.59)
where
v(y) = 12}f( f(z,y) subject to G(z,y) <0 (8.60)
and
V ={y:G(z,y) <0 for some z € X} . (8.61)

One can easily see that v(y) is the optimal value of the original problem (8.58) for
fixed y. For the GBD to be an efficient solution algorithm, evaluating v(y) should
be much easier than solving (8.58) itself. The set V' constitutes those values of y for
which the right-hand side of (8.60) is feasible.

Geoffrion [39] has shown that problem (8.58) and problem (8.59)-(8.61) are equiv-
alent in the sense that (8.58) is infeasible or has an unbounded optimal value if and
only if the same is true for (8.59)-(8.61), and if (z*,y*) is optimal in (8.58) then
y” is optimal in (8.59)-(8.61) and z* achieves the infimum in (8.60). Therefore, the

optimal zy solution can be found by focusing on the projection onto y. In order to



226
solve this problem in y space, duality theory is employed. First, the region V' can be
characterized by its dual representation in terms of the intersection of a collection of
regions that contain it. Geoffrion [40] has shown that a point § € Y is also in the set

V if and only if § satisfies the infinite system of constraints

[ inf XG(z, y)] <0,¥A €A (8.62)
where A is the set defined by

A={,\:/\izo,ZAi=1}. (8.63)

Next, under the assumption that whenever v(g) is finite, an optimal multiplier vector

u exists for the infimum in (8.60), the optimal value equals that of its dual on Y NV

v(y) = sup in)f(f(a:,y) +u'G(z,y)]| . (8.64)

u>0 TE

By defining o to be the least upper bound implied by the supremum operation, these
manipulations can be used to formulate the following problem which is equivalent to
(8.59)-(8.61)

i 8.65
min g (8.65)

subject to the infinite set of constraints

Yo > 12)f( [f(:z:, y) + utG(x,y)] , all u >0, (8.66)
: t
inf \G(z,y)] <0, all A€ A. (8.67)

Geoffrion [40] has developed an efficient routine for the problem (8.65)-(8.67)
based upon relaxation. This is done by first solving (8.65) ignoring all but a few
of the constraints (8.66)-(8.67). If the resulting solution satisfies all of the ignored
constraints, then an optimal solution has been found. Otherwise, one or more violated

constraints should be generated and added to the relaxed problem. This procedure is
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repeated until all the constraints are satisfied or until a solution of acceptable accuracy
has been found. Geoffrion shows how the solution of the subproblem associated with
the infimum on the right-hand side of (8.60) can be used to test for feasibility and to
generate an index of violated constraints using the multipliers. If (¢, 4o) is a solution

to the relaxed problem, a violated constraint index is a vector @ > 0 such that
do < inf [f(z,§) + @G (z,7)| (8.68)
rzeX
if (8.66) is violated or a vector A € A such that

. 3t ~
zlél)f( {)\ G(:I:,y)] >0 (8.69)

if (8.67) is violated. Geoffrion notes that virtually all modern algorithms yield such a
A when the problem is infeasible, or an optimal multiplier & when a feasible solution

exists.

The solution by the relaxation method can now be stated. First, for reference

define the following functions

L'(y,u) = inf [f(z,y) +u'G(z,y)] (8.70)
L.(y,\) = inf [\'G(z,y)] (8.71)

The Generalized Benders Decomposition consists of the following steps:

1. Let g in Y NV be a known point. Calculate v(§) as in (8.60) and obtain an
optimal multiplier ' as well as the function L*(y,u!). Put p = 1, ¢ = 0,

UBD = v(g). Choose a convergence tolerance parameter € > 0.

2. Solve the current relaxed master problem

> Ly uf) j=1,.,
min yo subject to W2 Ly,w) g P (8.72)

yeTe L.(y,¥) <0, j=1,...q

by any applicable algorithm. Let (g,¢o) be the optimal solution; g, is a lower
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bound on the optimal value in (8.58) since it is a lower bound to the dual
problem (8.65)-(8.67), and the dual forms a lower bound on the primal (8.58).
If §o > UBD — ¢, terminate.

3. Solve the revised problem associated with v(§). One of the following cases will

occur:

(a) The quantity v(g) is finite. If g > v(§) — ¢, terminate. Otherwise, deter-
mine an optimal multiplier vector @ and the function L*(y, ). Increase p
by 1 and put w? = 4. If v(§) < UBD, put UBD = v(§). UBD is an upper
bound on the optimal value of (8.58). Return to Step 2.

(b) The problem associated with evaluating v(§) is infeasible. Determine A € A
satisfying (8.69) and the function L.(y, A). Increase g by 1 and put A\? = A.
Return to Step 2.

Geoffrion [40] has shown that when Y is a finite discrete set, X is a non-empty
convex set, G is convex on X for each fixed y € Y, and that v(y) possesses an opti-
mal multiplier vector whenever v(y) is finite, the generalized Benders decomposition
terminates in a finite number of steps for any given € > 0 including € = 0. Therefore,
for mixed integer quadratic programs, convergence is guaranteed in a finite number

of steps.

8.5.2 MIQP algorithm

In this section, the implementation of the generalized Benders decomposition to MIQP

problems will be set forth. In particular, problems of the form
s 1 t t t 8 73
min 5z Qz + g, + g,y (8.73)

subject to

Gez+Gyy—H <0, ye{0,1}", z € R™ (8.74)
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will be considered. The symbol @ denotes an n; X n; real positive semi-definite
matrix; gz, gy, and H denote real vectors of dimension n;, ng, and m respectively;
G, and Gy denote real matrices of dimensions m X n; and m x ny respectively. In
this form, the objective function can depend quadratically on the variables z but
only linearly on y. This is consistent with the interpretation of y as logic variables
which may correspond to heuristics. In addition, the computation of v(y) in (8.60)
can be easily accomplished using quadratic programming. By using a dual method,
the optimal multiplier vector can easily be obtained.

Now let us consider the function L*(y,u). By substituting (8.73) for f(z,y) and
(8.74) for G(z,y) into the (8.70), the function L*(y,u) becomes

* : 1
L*(y,u) = inf bxth + gtz + ghy + ut (Goz 4+ Gy — H)] (8.75)
1
= (utGy + gé) y + inf [—2-$th + (gi + uth) T — utH} . (8.76)
The first term on the right-hand side is linear in y, whereas the second term is a

constant whose value is obtained from the evaluation of v(§). Denote this value by

C(z,u). Then the first constraint in (8.72) assumes the form
Yo — ((uj)tG’y + 9;) y > C(z?,u?). (8.77)
Now consider the function L*(y, A), which is obtained by

Ly, \) = inf [X(Goz + Gy — H)] (8.78)
= NGy — NH +inf NG,z (8.79)

The infimum on the right-hand side must be bounded below for if it were not, then the
condition (8.69) could not hold. The minimal value of A'G,z can easily be obtained

as the solution to a linear program. Denoting this value by D(A), the second equation
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in (8.72) can be expressed as
(M)'Gyy < (W)'H — D(N). (8.80)

For the special case of the MIQP problem (8.73)-(8.74), the constraints in (8.72)
are linear and are given by the equations (8.77) and (8.80). Therefore, the relaxed
master problem from Step 2 can be solved using a MILP algorithm. With the integer
variables fixed at g, v() can be evaluated by solving a QP problem. Therefore, in the
special case of an MIQP as in (8.73)-(8.74), the generalized Benders decomposition
presented in Section 8.5.1 results in an algorithm with iteration between a MILP in

Step 2 and a QP in Step 3.

8.6 Conclusions

This chapter has investigated the capabilities of integer variables and linear con-
straints to represent heuristic process knowledge. Any relationship which can be
expressed as propositional logic can be translated into this framework. In particular,
we see that many possible applications of this approach exist in the area of control
and detection.

In the area of control, by including integer variables representing logic proposi-
tions, it is possible to combine logic based control decisions within the MPC frame-
work. This allows innovative control strategies which are capable of prioritizing con-
straints as well as altering the control objective depending upon the positions of
control inputs. By implementing such a strategy, controller performance can be im-
proved. The examples in Section 8.4.1 and 8.4.2 showed that for multivariable systems
wherein saturation of one of the manipulated variables prevents all objectives from
being met, integer constraints can be used to improve performance and prioritize the
objectives.

Integer variables can be used in detection problems to represent the occurrence of

symptoms which are indicative of classes of failures. In applications where uncertain
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models must be used, false alarms due to uncertainty can be reduced by combining
quantitative fault estimation with symptom based fault estimation. When residuals
are primarily due to modeling uncertainty, the use of logic variables corresponding to
symptoms will prevent erroneous fault alarms.

This chapter has demonstrated how qualitative and quantitative models can be
combined using integer variables and linear constraints. Future work in this area
should study the properties of such control and detection strategies and determine
methods for tuning this type of control algorithm. For example, in the system con-
sidered in Section 8.4.1, the controller had the desired properties only for a < 8 <
a(l + a). In more general situations, determining the proper relationship between
weights may not be as straightforward and more general methods are needed. By
contrast, the only design parameters needed for the prioritization problem of Section

8.4.2 are bounds on the variables of interest.
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Part IV

Conclusion
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Chapter 9 Summary

9.1 Summary of contributions

In this thesis, a variety of problems in system monitoring have been investigated,
including controller performance monitoring, fault detection, and estimation. In this
chapter, original contributions to this field which are contained in the present work

are summarized.

Controller performance monitoring Previous results for testing whether a con-
troller achieves minimum variance control and for estimating this theoretical limit
using routine closed loop data were restricted to stable systems whose only non-
invertible behavior consisted of process delays. As many industrial systems exhibit
inverse response, the results using the previous theory could be arbitrarily conser-
vative. The minimum variance monitoring philosophy was extended to provide a
general theory which could be applied to arbitrary linear systems, including unstable
and nonminimum-phase systems. As the new theory indicated that such a perfor-
mance evaluation requires knowledge of the location of all non-invertible process zeros,
an analysis of the effect of errors in these values on the estimated variance limit was
provided.

Because minimum variance control is seldom an industrial control objective, a
new controller performance monitoring technique was developed. This technique is
capable of addressing any performance objective which can be specified in terms of
constraints on the impulse response coefficients. Using likelihood ratio testing, an
algorithm for verifying that the performance objective is achieved was developed.
This algorithm can be implemented by fitting two time series models to the closed
loop operating data. In the first model, the closed loop behavior is freely estimated

within a class of models, whereas in the second model, the closed loop is constrained
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to satisfy the performance objective.

Estimation For the first time, an implementation of constrained Moving Horizon
Estimation which guarantees stability of the estimator was presented. Previous imple-
mentations of Moving Horizon Estimation can be destabilized by including constraints
on estimated variables and innovations. As the primary motivations for implement-
ing such an estimation scheme for linear systems lies in its ability to incorporate

constraints, the contribution in this area is fundamental.

Fault detection For systems operating in closed loop, it had been previously recog-
nized that there exists strong interactions linking the design of control and diagnostic
components. Although a framework for studying such problems, the four degree of
freedom controller, had been previously proposed, no efficient method for designing
such integrated control and detection systems existed for processes with uncertain lin-
ear models. In this work, it was shown how the previously proposed four parameter
control framework could be reconfigured as a special case of a general interconnection
structure for which a rich synthesis theory exists. Despite the fact that designing a
control and diagnostic system in this framework allows for optimal tradeoffs between
control and monitoring objectives, in many cases small model errors will require the
control performance to be sacrificed in favor of satisfactory diagnostics. Therefore,
the effective use of linear filters for detection purposes is limited.

Two alternative approaches to fault detection were developed. In the first method,
a constrained estimation scheme was used to allow for certain types of model uncer-
tainty to be directly incorporated within the detection scheme. The proposed detec-
tion method can be implemented using Moving Horizon Estimation in order to keep
the size of the problem from growing as more data become available. By using a
bank of such estimators with one for each fault type considered, fault diagnosis can
be accomplished. A case study involving an important industrial process, the cold
tandem steel mill, demonstrated the benefits in detection robustness which can be

obtained using this method.
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In the second method, a likelihood ratio based detection algorithm was used.
According to the Neyman-Pearson lemma, algorithms based on such tests satisfy
certain optimality criteria. Unlike the other detection methods presented in this
thesis, this method is capable of addressing multiplicative faults as well as additive
faults. A new framework for detection of changes in parameters and signals was
introduced in which two models are used. In the first model, parameters and signals
subject to change are modeled using nominal values, whereas in the second model,
Brownian motion is used to describe these terms. Approximate nonlinear global
filtering is proposed to estimate the likelihood of the observations under each of
the two models. Substantial improvement over detection methods based on local

approximations were shown.

Qualitative modeling using propositional logic For many systems, much of
the known process information can be expressed in terms of propositional logic. Pre-
vious researchers have shown how propositional logic can be translated into linear
constraints on zero-one integer variables. In this work, it has been shown how this
concept can be applied to problems in monitoring as well as control. In the area of
monitoring, symptoms can be included in model based detection schemes through
the use of integer variables. Multiobjective and region dependent performance cri-
teria which are difficult to implement using traditional approaches can be easily for-
mulated using constraints on logic variables. Detection and control algorithms can
be implemented using this framework by solving mixed integer linear and quadratic

programming problems.
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