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Abstract

This thesis proposes a novel credit risk model which deals with incomplete information on the firm’s as-

set value. Such incompleteness is due to reporting bias deliberately introduced by insider managers and

executives of the firm and unobserved by outsiders.

The pricing of corporate securities and the evaluation of default measures in our credit risk framework

requires the solution of a computationally unfeasible nonlinear filtering problem. We propose a polynomial

time-sequential Bayesian approximation scheme which employs convex optimization methods to iteratively

approximate the optimal conditional density of the state on the basis of received market observations.

We also provide an upper bound on the total variation distance between the actual filter density and our

approximate estimator. We use the filter estimator to derive analytical expressions for the price of corporate

securities (bond and equity) as well as for default measures (default probabilities, recovery rates, and credit

spreads) under our credit risk framework. We propose a novel statistical calibration method to recover the

parameters of our credit risk model from market price of equity and balance sheet indicators. We apply the

method to the Parmalat case, a real case of misreporting and show that the model is able to successfully

isolate the misreporting component. We also provide empirical evidence that the term structure of credit

default swaps quotes exhibits special patterns in cases of misreporting by using three well known cases of

accounting irregularities in US history: Tyco, Enron, and WorldCom.

We conclude the thesis with a study of bilateral credit risk, which accommodates the case in which both

parties of the financial contract may default on their payments. We introduce the general arbitrage-free

valuation framework for counterparty risk adjustments in presence of bilateral default risk. We illustrate

the symmetry in the valuation and show that the adjustment involves a long position in a put option plus a

short position in a call option, both with zero strike and written on the residual net value of the contract at

the relevant default times. We allow for correlation between the default times of each party of the contract

and the underlying portfolio risk factors. We introduce stochastic intensity models and a trivariate copula

function on the default times exponential variables to model default dependence. We provide evidence

that both default correlation and credit spread volatilities have a relevant and structured impact on the

adjustment. We also study a case involving British Airways, Lehman Brothers, and Royal Dutch Shell,

illustrating the bilateral adjustments in concrete crisis situations.
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1

Chapter 1

Introduction

1.1 Background

Credit risk is the risk of default or of reductions in market value caused by changes in the credit quality of

issuer or counterparties. The distribution of credit losses is complex. At its center is the probability of default,

by which we mean any type of failure to honor a financial agreement. The estimation of the probability

of default requires specifying a model of investor uncertainty, a model of the available information and its

evolution over time, and a model for the default event. However, default probabilities alone would not be

sufficient to price credit-sensitive securities. We would need to know how much the marketplace charges for

holding risky assets, meaning assets subject to risk of default. This in turn requires the specification of a

model of recovery upon default, and most importantly a model of the premium that investors require as

compensation for bearing credit risk.

Although credit denotes the extension of access to any liquid assets today in return for a promise to pay

in the future, when we think of credit we typically think of the debt that one party owes to another and

this will also be the case for this thesis. In a debt transaction, there is usually a lender and a borrower. A

common form of credit is a bond, which is an interest-bearing certificate issued by a government or business

promising to pay the holder a specified sum on a specified date.

Bonds can be issued by the government, the so called Treasury bonds, or by corporations, thereby named

corporate bonds. Treasury bonds are typically assumed to be risk-free in countries with stable economies,

and this is supported by the fact that the government can always either raise taxes or print out more money

as a last resort to pay back debt. Under the simplest assumptions and using semi-annual compounding, the

price of a treasury coupon paying bond with face value 100 dollars would be given by

Btreas =
2T∑
n=1

c/2
(1 + y

2 )n/2
+

100
(1 + y)T

(1.1.1)

where c is the paid coupon and y the treasury yield. Corporate bonds instead are exposed to a default risk

with magnitude depending on the financial health of the particular issuer and its ability to raise revenue.

Under the same scenario as above, the price of a corporate coupon paying bond is given by:
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PV

C/2

0 Time (Years)
Maturity

Coupons

Principal
(from Borrower)

Principal
(from Lender)

0.5 1 1.5 2 2.5 3 3.5 4

C/2 C/2 C/2 C/2 C/2 C/2

C/2

P

Coupon

Figure 1.1: Schematic diagram of a bond’s cash flow

Bcorp =
2T∑
n=1

c/2
(1 + y+s

2 )n/2
+

100
(1 + y+s

2 )T
(1.1.2)

It appears from Eq. (1.1.1) and Eq. (1.1.2) that the price difference between the two bonds depends on

the term s, which is called the credit spread. The larger the credit spread, the smaller the relative price of

corporate bond with respect to treasury bond. The credit spread is a key concept and denotes the additional

compensation that the holders of risky assets are demanding for bearing the default risk. If no additional

compensation is offered to holders of the corporate bonds, then they would be better off buying the treasury

bond.

Intuitively, we can decompose the yield spread into the three categories, see Figure 1.2. The default risk

is the risk due to the potential loss associated with a single default and depends on the amount recovered. If

the default time and recovery value were known, then it would be possible to diversify the risk and construct

a portfolio consisting of names having specified likelihood of losses which guarantees on average the risk-free

rate. In years when default did not occur, the bond would return a little more due to the expected loss

premium. However, in the event of default, it would return much less. Since an investor could obtain the

risk-free base rate not just “on average”, but all the time by buying the risk free bond, the risky bond must

provide additional compensatory return. This indicates that there is an amount of nondiversifiable credit

risk and that the market provides compensation for this unavoidable risk bearing. Such component is called

risk premium and includes uncertainty regarding default timing, recovery value, and accuracy of revealed

information for which investors ought to be compensated. The final source of risk is liquidity risk, and refers

to the chance that the company may have insufficient cash flow to meet its obligations due to the lack of

marketability of an investment that cannot be bought or sold quickly enough by the company to fulfill its

obligation.
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Yield

Default Risk

Liquidity Risk

Risk Premium

Maturity

Figure 1.2: Credit risk decomposition

Much research is devoted to separate out the effects of all of these variables when computing the spread

of corporate bond yields to US Treasury. Default modeling is becoming a major problem nowadays due

to the credit crunch crisis which we are experiencing, and it is also an important tool which is daily used

for hedging credit exposures. This importance is confirmed by Figure 1.3 which shows the distribution of

defaulted debt as a percentage of the total amount of outstanding debt.

It is evident from Figure 1.3 that defaulted debt accounts for more than 5% of the total outstanding

debt, thus motivating the enormous amount of academic and industrial research devoted to this topic.

1.2 Summary of Contributions and Overview of the Thesis

The main contributions of this thesis are

• Development of a novel credit risk model. Such model accounts for the possibility that the firm is

misrepresenting its accounting data. This model adds to the branch of credit risk literature focusing

on the role of incomplete information on pricing. The level of incompleteness derives from the fact

that the true asset value observed by outsiders may be biased and thus needs to be filtered out from

market- available information. We provide analytical expressions for corporate security prices and

default measures under the proposed modeling framework. These results are presented in Chapter

3 and have been published in the finance journal International Journal of Theoretical and Applied

Finance (see Capponi and Cvitanić, 2009).

• Development of a stochastic Bayesian filtering algorithm for jump linear jump systems with state-

dependent transitions. The mathematical framework of our credit risk model turns out to be a Hidden

Markov model, and more specifically a Markovian jump linear system with state-dependent transitions.
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Figure 1.3: Defaulted bonds as a percentage of face value outstanding. Source: E. Altman and S. Jha.
Market Size and Investment Performance of Defaulted Bonds and Bank Loans: 1987-2006. NYU Salomon
Center Publication, 2006.

We show that the problem of evaluating the optimal filtering density is computationally intractable and

then propose a polynomial time approximation method with guaranteed error bound to compute the

density. These results are presented in Chapter 5 and have been published in the journal Automatica

(see Capponi, 2009a).

• Development of a novel calibration algorithm for structural models of credit risk with incomplete

information. The algorithm combines maximum likelihood estimation methods along with option

price inversion approaches to recover drift, volatility, accounting noise variance, and reporting bias.

These results are presented in Chapter 4 and have been published in the proceedings of the IEEE

Conference on Computational Intelligence for Financial Engineering, where they were granted with

the best student paper award (see Capponi, 2009b).

• Framework for bilateral counterparty risk valuation. We introduce the general arbitrage-free valuation

framework for counterparty risk adjustments in presence of bilateral default risk, including default of

both investor and her counterparty. We show that the adjustment involves a long position in a put

option plus a short position in a call option, both with zero strike and written on the residual net value

of the contract at the relevant default times. We then specialize our analysis to Credit Default Swaps

and show the impact of credit spread volatility and default correlation on the bilateral credit risk value

adjustment. These results are presented in Chapter 6. A subset of these results has been submitted

for peer review publication to Risk magazine (see Brigo and Capponi) and a more extended version of

the work is currently in preparation for Finance and Stochastics.

Chapter 7 draws conclusions and discusses future problems of interest. More results and technical proofs

are provided in the appendices.
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Chapter 2

Preliminaries and Definitions

In this chapter we provide notation and terminology which will be heavily used in the remainder of this

thesis. We also briefly describe the general taxonomy of credit risk models which is needed to understand

the results of this thesis. Those include structural models which use option pricing theory to evaluate credit

risk, reduced-form models using term structure theory to explain credit spread behavior and models with

incomplete information which provide a trade-off between the two. This is not intended to be a complete

survey and the interested reader is referred to books on the topic (see Lando, 2004).

2.1 Notation and Terminology

This section presents the basic notation and terminology.

• n(x;µ, σ): Gaussian density with mean µ and standard deviation σ

• n(x;µ,Σ): multivariate Gaussian density with mean µ and covariance Σ

• D(t, T ): price of a risk-free zero coupon bond maturing at T , as seen at time t

• B(t, T ): price of a defaultable zero coupon bond maturing at T , as seen at time t

• τ := T − t: time to maturity

• y(t, T ): yield of a corporate zero coupon bond maturing at T , as seen at time t

• r: risk-free rate

• CS(t, T ) := y(t, T ) − r: credit spread at maturity T as seen at time t. It is defined as the difference

between the yield of a defaultable zero coupon bond and a corresponding risk-free zero coupon bond

• ς: the default time indicator

• PD(t, T ): probability of defaulting at T as seen at time t

• RR(t, T ): recovery rate at time T as seen at time t
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• BScall(t,Xt,K, T, σ): time t price of a Black Scholes call option with strike price K, volatility σ,

maturity T , and initial asset vale Xt

• BSput(t,Xt,K, T, σ): time t price of a Black Scholes put option with strike price K, volatility σ,

maturity T , and initial asset vale Xt

• λi,j(y) = P (θk = j|θk−1 = i,xk = y): mode switching probabilities

• λj(y) = P (θ0 = j|x0 = y): prior mode probability

• p(x|y, l) = P (xk = x|θk−1 = l,xk−1 = y): mode dependent transition density

• p(x) = P (x0 = x) : the initial density on x0

• plk|k(x) := P (xk = x, θk−1 = l|F z
k ): the joint state-mode posterior hybrid density

• plk,k(x) := P (xk = x, θk−1 = l,F z
k ): the unnormalized posterior density

• pk|k(x) = P (xk = x|F z
k ): the posterior density

• Llk|k(x) = p(zk|xk = x, θk−1 = l): the mode conditioned measurement likelihood

• Ef [g] =
∫
Rn f(w)g(w)dw: the expectation of g with respect to the density f , where f and g are

functions

• F x
k = σ(x1, x2, . . . , xk): the filtration generated by the state process x up to time k

• F z
k = σ(z1, z2, . . . , zk): the filtration generated by the observation process z up to time k

• x̂l|k := E[xl|F z
k ]: the conditional expectation of x at time l given the observation filtration at time k

• σ2
l|k := E[(xl − x̂l|k)2|F z

k ] l > k: the conditional variance of x at time l given the observation

filtration at time k

2.2 Structural Models

In structural models, corporate liabilities are evaluated by decomposing their pay-offs in linear and nonlinear

products, and using standard option pricing theory to price them. Those models make explicit assumptions

about the dynamics of a firm’s assets and its capital structure, which are then used to determine the

occurrence of default. The literature on structural models goes back to Merton (1974), where the firm

defaults if, at the time of servicing the debt, its assets are below its outstanding debt. A more general

approach was introduced by Black and Cox (1976) who relax the Merton’s assumption and model default as

the first passage time of the firm’s asset value below a certain threshold. Further generalizations treat coupon

bonds, the effect of bond indenture provisions (see Geske, 1977), stochastic interest rates (see Longstaff and

Schwartz, 1995, Collin-Dufresne et al., 2004), and endogenous default barriers optimally triggered by equity

owners when the asset fall to a sufficiently low level (see Leland and Toft, 1996). Since this thesis builds
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Assets Bonds Equity
No default VT ≥ K K VT −K

Default VT < K VT 0

Table 2.1: Payoffs at maturity in Merton model

upon the Merton model, we present it in some detail in this section and refer the interested reader to the

above references for a complete overview of structural models.

2.2.1 The Merton Model

Merton assumes that the firm is financed by equity and a zero coupon bond with face value K and maturity

date T . The firm’s contractual obligation is to repay the amount K to the bond investors at time T . Debt

covenants grant bond investors absolute priority: if the firm cannot fulfill its payment obligation, then bond

holders will immediately take over the firm. The payoff to equity and bond holders are summarized in Table

2.1.

If the asset value VT exceeds or equals the face value K of the bond, the bond holders will receive their

promised payment K and the shareholders will get the remaining VT −K. However, if the value of assets

VT is less than K, the ownership of the firm will be transferred to the bondholders, who lose the amount

K − VT . Equity is worthless because of limited liability. The asset value of the firm is assumed to follow a

log-normal diffusion process

dVt = µVtdt+ σVtdWt (2.2.1)

where µ is a drift parameter, σ > 0 is a volatility parameter, and Wt is a standard Brownian motion. Setting

m = µ− 0.5σ2, Ito’s lemma implies that

Vt = V0e
mt+σWt (2.2.2)

Figure 2.1 depicts the situation graphically. The bond payoff in Table 2.1 can be rewritten as

B(T, T ) = K −max[K − VT , 0] (2.2.3)

thus implying that the value of the defaultable zero coupon bond at any time t is given by

B(t, T ) = Ke−r(T−t) −BSput(t, Vt,K, T, σ) (2.2.4)

where r denotes the risk-free discount factor. The BSput(.) is also referred in the literature as the default

put option, since it measures the default risk of the bond.

As for equity, it follows from Table 2.1 that the final payoff can be expressed as

E(T, T ) = max[VT −K, 0] (2.2.5)
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Figure 2.1: The asset paths in the figure represent the uncertain future states of the firm’s assets, with the
distribution shown at time T representing the density of final asset states at that time. The probability of
default, PD, is given as the density of the distribution below the level of the debt (i.e., the proportion of
states in which the firm is insolvent at time T).
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thus implying that the equity value at any time t is given by

E(t, T ) = BScall(t, Vt,K, T, σ) (2.2.6)

Since WT is normally distributed with mean zero and variance T , the probability PD(t, T ) of defaulting

at time T as seen at time t is given by

PD(t, T ) = P (VT < K)

= P (σ(WT −Wt) < L−mτ)

= N

(
L−mτ

σ
√
τ

)
(2.2.7)

where L = log(KVt
), and τ = T − t denotes the time to maturity.

Structural models are particularly elegant and informative, mainly because they impose an arbitrage

relationship between equity and debt. From this point of view, they provide a natural guideline for relative

value trades between the stock market and the credit derivatives market which is of utmost practical interest.

Moreover, models are forward looking and allow incorporating investors expectations of a firm’s future

performance. Unfortunately, these models result in a generally poor fit to market data due to several

limitations, some of which are outlined next.

• Typically, reasonable values for leverage of the firm and volatility of assets produce lower credit spreads

than those observed on the market.

• Undervaluation is particularly relevant for short term maturities: a typical credit term structure in

structural models shows a hump and zero intercept.

• Undervaluation is particularly relevant for high credit standing obligors.

• Bond prices play no role in estimating the value of the firm.

The first two items above represent an important concern for all structural models and have motivated a

lot of research, including this thesis. Those concerns arise from the fact that all structural models are based

on the assumption that the firm’s dynamic is regulated by a diffusion process and that the value of the firm

can be observed directly. Since diffusion processes have continuous sample paths and default is the first

hitting time of a barrier, then default is a predictable stopping time, and this leads to an underestimation of

the short-term credit spread as outlined above. From a mathematical point of view, this can be explained

using a key result from diffusion theory (see Karatzas and Shreve, 1995), stating that for any diffusion

process Xt

lim
h→0

P (|Xt+h −Xt| ≥ ε)
h

= 0 (2.2.8)
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We next show why this fact implies zero spread in the short term. Let us consider a risky zero coupon bond

paying the fact value K at time T if the issuing firm does not default, and zero otherwise. Differently from

the bond in the Merton model, such bond does not pay anything in case of default, thus it must have a lower

price and consequently a higher yield than the corresponding bond in the Merton model. The price of such

bond is obtained as

B(t, T ) := e−r(T−t)E[K1VT>K ]

= Ke−r(T−t)P (VT > K) (2.2.9)

The yield at time t of a bond maturing at T with principal K is defined as

y(t, T ) =
1

T − t
log
(

K

B(t, T )

)
(2.2.10)

and since r is the yield of a zero-coupon risk free bond, we obtain that the time t credit spread for a bond

maturing at t+ h is given by

CS(t, t+ h) = − 1
h

log
B(t, t+ h)

K
− r (2.2.11)

If we start at time t from a non-default state (Vt > K), then we have that

lim
h→0

CS(t, t+ h) = − 1
h

logP (Vt+h > K|Vt > K)

≈ − 1
h

(P (Vt+h > K|Vt > K)− 1)

=
1
h
P (Vt+h ≤ K|Vt > K) (2.2.12)

Using Eq. (2.2.8), we can conclude that

lim
h→0

CS(t, t+ h) = 0 (2.2.13)

2.3 Actual versus Risk-Neutral Default Probabilities

The default probability given in Eq. (2.2.7) has been derived under historical measure, but it can be combined

with an equilibrium model of underlying expected returns to produce estimates of expected returns. We

can express an interesting relationship between the physical and risk-neutral world via the the capital asset

pricing model (CAPM). The premium over the risk-free rate that an investor should require to invest in

a risky asset depends on its holding period, volatility, and the current market price of risk. The CAPM
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framework states

µ− r = β(µM − r)

=
cov(µ, µM )

σ2
M

(µM − r)

=
cov(µ, µM )

σMσ

µM − r

σM
σ

(2.3.1)

where µM is the market return and β is the covariance of the asset’s return with the market return relative

to the variance of the market. If we denote by ρ the correlation between the return of the asset and the

market return and

λ =
µM − r

σM
(2.3.2)

we can express the excess market return as:

µ− r = λρσ (2.3.3)

The parameter λ is called the market price of risk. It measures the tradeoffs between risk and return that

are made for securities depending on the asset values Vt. For an intuitive understanding of Eq. (2.3.3) notice

that the variable σ can be interpreted as the quantity of risk present in the asset value. On the right-hand

side, we are therefore multiplying the quantity of risk with its price, weighted by the correlation between

asset return and market return (the larger such correlation, the larger the potential gain resulting from the

investment in the risky asset Vt). The left-hand side is the expected return in excess of the risk-free interest

rate that is required to compensate for this risk. In other words, the term λρσ measures the extent that

the excess return required by investors on the firm’s securities is affected by the dependence on the asset. If

λρσ > 0, investors require a higher expected return to compensate for this risk; if λρσ < 0, the dependence

of the security on the firm’s asset value causes investors to require a lower return; if λρσ = 0, then the

investor does not require any extra compensation, which would imply that he is not taking any risk, thus its

return should be the same as investing at the risk-free rate r. When this is the case (i.e., µ = r, then we say

that we are in a risk-neutral world, and this is the framework assumed by the modern asset pricing theory

to determine the price of securities.

2.4 Reduced Form Models

Reduced form models go back to Artzner and Delbaen (1995), Jarrow and Turnbull (1995), and Duffie and

Singleton (1999). Unlike structural models, they do not argue why a firm defaults, but model default as a

Poisson-type event which occurs completely unexpectedly. The default time is defined as

ς = inf
{
t :
∫ t

0

λsds ≥ Exp(1)
}

(2.4.1)
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where Exp(1) denotes an exponentially distributed random variable with parameter 1. The process λs is a

stochastic process called the intensity process. It is an ad-hoc combination of financial variables often fit to

market spreads and is exogenously related to the the firms dynamics.

Eq. (2.4.1) implies immediately that the probability of non defaulting up to time T is given by

P (ς > T ) = e−
R T
0 λsds (2.4.2)

which leads to the pricing formula for the bond

B(t, T ) := e−r(T−t)E[K1ς>T ]

= Ke−r(T−t)P{ς > T}

= Ke−r(T−t)e−
R T

t
λsds (2.4.3)

If λs becomes constant, then Eq. (2.4.3) simplifies to

B(t, T ) = e−(r+λ)(T−t) (2.4.4)

and thus the credit spread is given by the constant λ.

The nice feature of reduced form model is that as t → T , the credit spreads do not approach zero,

but stay positive; we have seen an example above for the case when the intensity is constant. Therefore,

they remove the disturbing feature of zero-credit spreads in the short term. However, as evident from Eq.

(2.4.1), there is no natural link of defaults to the underlying dynamics of the firm‘s cash flows and financial

statements, thus those models are often criticized because they lose the micro-economic interpretation of the

default time.

2.5 Incomplete Information Models

The incomplete information framework attempts to unify structural and reduced form models under a

common perspective by taking the advantages of both methods. Underlying all credit models is the default

process. In traditional structural models default can be anticipated, and as seen in Section 2.2, there is no

short-term credit risk that would require compensation. In reduced form models, it is assumed that default

cannot be anticipated, so there is short-term credit risk by assumption, see Section 2.4. The default process

is parameterized through an intensity λ and model default probabilities and security prices are immediately

implied by the exogenous intensity dynamics. Instead of focusing on the default intensity and making ad-

hoc assumptions about its dynamics, incomplete information models specify the trend based on a model

definition of default. There are mainly two approaches to introduce short-term uncertainties into structural

models. The first possibility is to include jumps in the firm value, see Zhou (2001). In this situation, there is

always a chance that the firm value jumps below the default barrier, and thus default cannot be anticipated.
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However, there is also a chance that the firm diffuses to the barrier, as in traditional structural models, and

in this case default can be anticipated. Thus, depending on the state of the world, there may or may not

be short-term credit risk. There is another approach which guarantees that default cannot be anticipated

and thus produces short-term credit risk. This approach is obtained after reconsidering the informational

assumptions underlying the traditional structural credit risk models which assume that the information used

to calibrate and run the model is observed perfectly. Such information includes the firm value process along

with its parameters, and the default barrier. In the incomplete information framework, we assume that the

information about these quantities is imperfect; this means that we are not sure either of the true value of

the firm or of the condition of the firm that will trigger default and consequently default becomes a complete

surprise. Several models with incomplete information have been proposed in the literature, some of which

are discussed next. Cetin et al. (2004) and Guo et al. (2009) propose an approach in which the market

is assumed to only partially observe, and possibly with a lag, relevant information concerning the state of

the firm. Brody et al. (2007) and Brody et al. (2008) derive bond pricing formulas in an economic model

where information about the actual cash flows of the debt obligation are obscured to market participants

by a Gaussian noise process which vanishes when the time of each required cash flow is reached. Giesecke

and Goldberg (2004) add incompleteness to structural models by assuming that the default barrier is a

stochastic process, thus investors cannot deduce the distance to default from the firm’s fundamentals as

in Merton or Black-Cox models. Frey and Runggaldier (2007) consider a model in which the intensity is

driven by unobserved state processes, and the calculation of measures of risk such as default probability

leads to a nonlinear filtering problem. In all these cases, default becomes an inaccessible stopping time for

the market, thus yielding a reduced form credit risk model. Duffie and Lando (2001) propose a model with

endogenous default threshold, but in which the market only observes noisy or delayed accounting reports

from which investors have to draw inference of the true asset value of the firm. This model creates a nonzero

instantaneous hazard rate of default, thus implying a nonzero short- term credit spread. Even further, they

prove that structural models with incomplete information are fully consistent with intensity models in the

sense that the instantaneous hazard rate of default is the intensity of the default indicator process with

respect to the information set observed in the market (noisy accounting reports), and not by the firm (true

state). We next report a sketch of the main results obtained in Duffie and Lando (2001), being those highly

related to the ones presented in this thesis, and we will provide a more detailed comparison in Chapter 3.

Their assumption is that the firm’s value is observed up to additive noise, namely Yt = Vt + Ut where Ut is

a white noise sequence. Let

ς = inf{t : Vt ≤ K} (2.5.1)

and denote by f(x) the density on the initial asset value of the firm. Then we have

lim
h→0

1
h

∫ ∞

0

P (ς ≤ h|V0 = x)f(x)dx =
1
2
σ2f ′(K) (2.5.2)
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as opposed to the case when the initial asset value of the firm is known with certainty, in which case, using

the result in Eq. (2.2.8), we would obtain that PD(0, h) = 0.
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Chapter 3

Credit Risk Modeling With
Misreporting

3.1 Introduction

In a statement released in 2007, the US Treasury Secretary complained about the huge number of accounting

data revisions in the US market. He claimed that some 1500 firms revise their balance sheet figures every

year, and that means, he claimed, that there must be something wrong with the system. So, the debate

on accounting transparency that arose at the beginning of the century is still open. Recent literature has

focused on the impact of these events on the evaluation of corporate liabilities, namely equity and bonds. On

theoretical grounds, Duffie and Lando (2001) was the first attempt to model the impact of accounting noise

on the credit spread term structure. On empirical grounds, Yu (2005) proved that accounting noise is actually

priced in the market: a risk premium is charged to the credit spreads of firms that adopt less transparency.

Fraud events that took place both in the US (Worldcom, Tyco, Enron, etc.) and in Europe (Cirio, Marconi,

Parmalat, etc.) in the first years of the century raised the issue of distinguishing between unbiased noise

due to measurement errors and cases of deliberate fraud. Inspired by these cases Cherubini and Manera

(2006) model the effect of deliberate misreporting on accounting statements through the introduction of

a probability of fraud which the market updates whenever new information about balance sheet is issued.

Brigo and Morini (2006) consider the effect of accounting reliability by modeling the ratio between the

level of default barrier and the value of company assets as a random variable, where pessimistic scenarios,

possibly corresponding to fraud in accounting, are associated with larger values of this ratio. None of the

above studies models explicitly the dynamics of misreporting.

We introduce a credit risk framework which incorporates the misreporting event as an intrinsic feature,

and is estimable using market and accounting data. We explicitly model the misreporting dynamics and

also calibrate a simple version of our model to the data for the Parmalat company around its bankruptcy.

The results indicate that the amount of misreporting was not negligible, and that by ignoring it, the model

would have resulted in a large overestimation of the firm’s volatility.

Misreporting may only arise if the market has incomplete knowledge of the manager’s objective function,

since then he may be better off with the option to misreport, see Fisher and Verrecchia (2000). If instead the
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market is assumed to have rational expectations and perfect knowledge of manager’s objective, then it can

back out perfectly misreporting in equilibrium. We work under the incomplete knowledge assumption since

the exact nature of the manager’s compensation, his time horizon, and his litigation risk and reputation

costs associated with biased reporting are often unavailable to the market.

Although it is not easy to estimate the managerial risk of misreporting, recent studies have started

addressing this issue. For example, Wang (2007) proposes a bivariate probit model to recover the probability

of committing fraud from the probability of detected fraud. The rest of the chapter is organized as follows.

Section 3.2 describes and applies the Wang model to Tyco, a major case of misreporting. Section 3.3 describes

the components of the proposed model which deals with misreporting. Section 3.4 gives explicit formulas

for bond and equity prices under a Merton framework. Since such formulas are not directly computable, we

provide in Section 3.5 computable expressions for bond and equity prices. Section 3.6 provides formulas for

the default measures under our credit risk framework.

3.2 Estimating Risk of Misreporting

The objective of this section is to explain that it is possible to estimate the risk of misreporting from

financial and accounting data. Therefore, using appropriate calibration methodologies, it would be possible

to use the credit risk model proposed in the following sections in industrial contexts to estimate the amount

of misreporting and separate it from the effect of asset volatility. As an example, we present here the

methodology proposed by Wang (2007) which recovers the amount of fraud from a set of financial and

balance sheet indicators. More specifically, she considers a bivariate-probit model as follows. Let F ∗i denote

firm i’s potential to commit fraud, and D∗
i the firm’s i potential of getting caught conditional on the event

that the fraud has been committed. Then

F ∗i = zF,iβF + ui

D∗
i = zD,iβD + vi (3.2.1)

where zF,i is a row vector with elements explaining the firm’s i potential to commit fraud, and zD,i contain

elements explaining the firm’s i potential to get caught, and ui, vi are Gaussian random variables with

correlation coefficient ρ.

Since undetected fraud is (by definition) unobservable, they define the random variables

Fi = 1F∗
i >0

Di = 1D∗
i>0

Qi = FiDi (3.2.2)
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Here Qi = 1 if the firm has committed fraud and has been detected, while Qi = 0 if the firm has not

committed fraud or has committed fraud but it has not been detected.

Using a sample of firms belonging to a heterogeneous number of sectors (see Wang, 2007), they recover

the parameters βF and βD of their model by maximization of the following likelihood function

L(βF , βD) =
∑
qi=1

log[P (Qi = 1)] +
∑
qi=0

log[P (Qi = 0)] (3.2.3)

where P (Qi = 1) = φ(zF,i, βF , zD,i, βD, ρ) for a given function φ (see Wang, 2007).

We take the model coefficient estimates as computed by their procedure, and report their values in Table

3.1.

Predictors βF

Return on Asset (ROA) 1.72 (2.46)
Growth in External Financing (EFG) 3.64 (4.89)
Research and Development (R&D) 5.28 (3.05)
Investing cash flow (ICF) 1.42 (1.71)
Outsider ownership 1.21 (1.03)
(Outsider ownership)2 1.45 (0.76)
Board size -0.02 (-0.35)
Log asset value (Log-Ass) 0.09 (0.65)
Age 0.01 (1.78)
Technology 0.09 (0.21)
Service -0.32 (-0.52)
Trade 0.88 (-1.28)

Table 3.1: Model predictors

The predictors Technology, Service, and Trade represents the percentile of the business involved in

technology, service, and trade respectively. The ICF predictor is the amount of money spent in investing

over the book value of assets. Outsider ownership is calculated as the ratio of the inside directors over the

total number of directors.

We next report the time series of predictors calculated for the firm Tyco, a well-known case of misreporting

in United States history. The data used to compute those predictors have been taken from the Edgar database

on a three-month basis for the period ranging from January 2001 to December 2003. Such time frame includes

the misreporting period which covers the years 2001 and 2002. The tech component of Tyco was 100%, with

service and trade accounting for 0 %. The board consisted of 11 directors, 8 of which came from outside.

Thus, for the period of interest the value for the board size predictor was 11, while the value for the outside

ownership predictor was 73%.

The other predictor values are reported in Table 3.2

The above predictors are all expressed in percentile, except for the log-asset value which is expressed

in million of dollars, and age which is expressed in years. We can now use Eq. (3.2.1) for each date, and

calculate the probability of committing fraud for Tyco across time. This is reported in Figure 3.1, which

shows a probability of misreporting (around 80%) during the time when misreporting did occur.

The discussion above further supports our argument that it is worth considering misreporting risk as an
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Figure 3.1: The probability of fraud as a function of time obtained for Tyco using the model 17 proposed in
Wang (2007)

additional risk factor in credit models (besides volatility risk and accounting noise) since it would be possible

to recover it from accounting data using appropriate models such as the one shown in this section.

3.3 Model Definition

We consider a probability space (Ω,F,P) with the following system of stochastic difference equations, a

generalized version of a Hidden Markov Model:

Vk = exk (3.3.1)

xk = xk−1 + (µ(θk−1)− 0.5σ(θk−1)2)∆k + σ(θk−1)vk (3.3.2)

θk = Γ(θk−1, xk, %, wk) (3.3.3)

zk = xk + h(θk−1) + ν(θk−1)uk (3.3.4)

Here, Vk describes the evolution of the asset value of the firm and is modeled as a discretized geometric

Brownian motion, with xk being the log-asset value process, and x0 = N(µ0, σ
2
0), and drift µ and volatility

Dates ROA EFG ICF Log-Ass Age
3/31/2001 5.2% 23.7% 12% 10.9 41
6/30/2001 5.2% 24.6% 8% 11.6 41.3
9/30/2001 5.2% 23.9% 0.01% 11.2 41.6
12/31/2001 5.2% 24.5% 1% 11.6 41.9
3/31/2002 -10% 3.7% 2.2% 11.7 42
6/30/2002 -10% 5.3% 4% 11.2 42.3
9/30/2002 -10% 5.5% 4.3% 11.1 42.6
12/31/2002 -10% 5.5% 1.6% 11.1 42.9
3/31/2003 -1.6% 2% 2.5% 11.1 43
6/30/2003 1.6% 2% 3.5% 11.1 43.3
9/30/2003 1.6% 1.9% 3.6% 11.1 43.6
12/31/2003 1.6% 1.9% 0.2% 11 43.9

Table 3.2: Values of predictors
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σ both depending on the parameter θ. Moreover, zk describes the released observation to the outsiders,

with ∆k denoting the time between consecutive observations, typically associated with release of balance

sheet reports which often occurs on a quarterly basis. We assume that {vk}, {wk}, {uk} are independent

sequences of i.i.d. Gaussian random variables with zero mean and unit variance.

Moreover, Θ = {θ(1) = 1, θ(2) = 2, . . . , θ(m) = m} is a finite set of integer modes of cardinality m, Γ is a

measurable mapping Θ×R×R→M, and h is a measurable mapping Θ → R assumed to be time-invariant

for notational simplicity only.

The interpretation is as follows. We can think of θ as a random variable which designates the report

model used by the manager of the firm to release the observations to the investors. Such report model affects

both the future evolution of the actual asset value, see Eq. (3.3.1), and the value released to the outsiders

by the manager of the firm, see Eq. (3.3.4). More precisely, the released log-asset value zk depends on

the report model θk−1 in place during the time interval [tk−1, tk] through the function h which models the

amount of misreporting associated with a given report model. Depending on whether h(θk−1) is positive or

negative, an overstatement or an understatement of the actual performance of the firm will occur when the

report model θk−1 is selected by the manager. The situation of no distortion occurring can be modeled by

having h(θk−1) = 0. The parameter ν(θk−1) captures the variance of accounting noise associated with the

report model θk−1.

The set of report models is assumed to be finite. Eq. (3.3.3) models the choice of the current report

model θ used by the firm’s manager as dependent on the last report model, the state of the firm at the time

immediately preceding the release of the observation and other factors affecting misreporting represented by

the vector %. Such factors can be the quality of corporate governance, the litigation and reputation costs

associated with getting caught, or the manager bonus triggering threshold. As already mentioned in the

introduction, outsiders do not always have a perfect knowledge of managerial objectives. We model this lack

of information with a Gaussian random variable wk, and assume that the market estimates the model θ used

by the manager using the function Γ which depends on the optimal manager’s choice of the report model.

Such choice is the solution of an optimization problem, where the manager maximizes his expected utility

function of misreporting, typically depending on the manager’s stock ownership and equity compensation

minus his disutility of getting caught. Such optimization problem depends on the true state xk, the previous

report model θk−1 and wk. The dependence on the previous report model is introduced in our model to

denote the fact that the misreporting event also depends on the past managerial behavior.

3.4 Structural Model with Misreporting

3.4.1 The Pricing Framework

Assuming a Merton-type structural model, we propose a valuation framework in which bond and equity

prices can be calculated as risk-neutral conditional expectations, i.e., assuming that the investor is neutral

with respect to risk, as explained in Section 2.3. We assume a fixed maturity T of the debt, and that the

default event can only occur at maturity, which happens if the actual asset value is below the nominal value
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of the debt, assumed to be constant. We define the random variable

ς =

 T if VT ≤ K

∞ if VT > K
(3.4.1)

and denote by F z,ς
t = F z

t ∨ σ(s ∧ ς, s ≤ t) the sigma algebra generated by the observations enlarged with

the information generated by the default indicator random variable ς. Before proceeding with the analysis,

we state a useful result from Jeanblanc and Rutkowski (2000).

Proposition 3.4.1 (Projection Formula). Let A be a bounded, F z
T -measurable random variable. Then for

every t ≤ T :

E[1ς>TA|F z,ς
t ] = 1ς>t

E[1ς>TA|F z
t ]

P (ς > t|F z
t )

(3.4.2)

We apply the pricing methodology proposed in Coculescu et al. (2008) to our credit risk framework. Let

us denote by P ∗ the pricing risk-neutral probability, i.e., the probability measure under which the investor

is neutral with respect to risk. We define the risk-neutral estimate of the variable VT as the F z
T measurable

random variable

V̂T =
1
ZT

EP
∗
[1V (T )>KVT |F z

T ] (3.4.3)

where ZT = P ∗(VT > K|F z
T ), and define a defaultable contingent claim as an integrable, F z

T measurable

random variable of the form:

dT = 1VT>Kf(V̂T ) + 1VT≤Kg(VT ) (3.4.4)

The main difference with the complete information models is that the defaultable claims are assumed to be

evaluated using the estimate V̂T when the firm is not in the default state and the true value is only observed

at default. The price of a defaultable claim is then computed in Coculescu et al. (2008) as

dt = e−r(T−t)EP
∗
[1VT>Kf(V̂T ) + 1V (T )≤Kg(VT )|F z,ς

t ] (3.4.5)

In our case, if the defaultable claim is a bond, f(x) = K, g(x) = x, with K being the nominal value of the

debt. Therefore, we get that the time t-price of the bond is:

B(t, T ) = e−r(T−t)EP
∗
[K1VT>K + 1VT≤KVT |F

z,ς
t ]

= e−r(T−t)(K − EP
∗
[(K − VT )+|F z

t ]) (3.4.6)

If the defaultable claim is equity, f(x) = (x−K) and g(x) = 0. Therefore, we obtain that the time t price

of the equity is:

E(t, T ) = e−r(T−t)EP
∗
[(V̂T −K)1VT>K |F

z,ς
t ] (3.4.7)
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We have:

1VT>K(V̂T −K) = 1VT>K

(
EP

∗
[1VT>KVT |F z

T ]
P ∗(VT > K|F z

T )
−K

)
= EP

∗
[1VT>KVT |F

z,ς
T ]− 1VT>KK (3.4.8)

where the first equation is obtained using definition (3.4.3), while the second equation follows from the

projection formula (3.4.2). Therefore,

E(t, T ) = e−r(T−t)EP
∗
[EP

∗
[1VT>KVT |F

z,ς
T ]|F z

t ]− EP
∗
[1VT>KK|F z

t ]

= e−r(T−t)EP
∗
[(VT −K)+|F z

t ] (3.4.9)

We next discuss the choice of the pricing measure P ∗. Our market is incomplete since the measurement

equation of our filtering model exhibits jumps of m possible different sizes, where m is the number of report

models used by manager. Assuming that the released log-asset value zk is the only traded asset, this means

that the jump risk cannot be hedged away. In addition, we have a discrete-time model with continuously

valued normally distributed noise. The specific measure P ∗ has to be inferred from market prices, either via

modeling of the market price of risk or of the dynamics of the Radon-Nikodim derivative (see Runggaldier,

2004).

3.4.2 Exact Filtering

The calculation of the equity and bond prices requires the computation of a conditional expectation, which

means that the time T filtering density pT |t(x) of our filtering model given by Eq. (3.3.2–3.3.4) needs to be

evaluated. This in turn requires the calculation of the time t filtering density pt|t(x). Such calculation will

be developed in Chapter 5, Section 5.2. Here, we report the final result which is given by

pt|t(x) =
∑m
l=1 p

l
t,t(x)∫

R

∑m
r=1 p

r
t,t(y)dy

(3.4.10)

where plt,t(x) is recursively defined as

plt,t(x) = Llt|t(x)
m∑
r=1

∫
R

λr,l(y)p(x|y, l)prt−1|t−1(y)dy (3.4.11)

3.4.3 Equity and Bond Prices

In order to simplify the exposition, the pricing formulas derived in this section assume a filtering model in

which µ(i) = µ, σ(i) = σ, i.e., the expected return rate and the volatility of the asset is not affected by the

report model used. We follow an argument similar to the one used in Merton jump diffusion model, i.e.,

replace µ with r, thus assuming that the investor becomes risk neutral if the expected short-term return

yields the same as the risk-free rate, see also Section 2.3 for more details. We assume that the biases h(i)

and the accounting risks ν(i) are the same under the historical and risk neutral measure. This is because
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the bias in the released log-asset value depends on the vector including factors specific to the executive such

as the reputation and litigation costs associated with misreporting. Such risk is “non-systematic” risk and

cannot be diversified away, thus we assume the same form under both measures.

Let us denote τ = T − t and introduce functions d1(x) and d2(x) as

d1(x) =
x− log(K) + (r + 0.5σ2)τ

σ
√
τ

d2(x) = d1(x)− σ
√
τ (3.4.12)

Moreover, notice that since the mode process {θk} take values in a finite set and Γ is a mapping into Θ,

Eq. (3.3.3) induces state-dependent mode transition probabilities as follows:

λi,j(x) := P (θk = j|θk−1 = i, xk = x)

=
∫
R

P (wk, θk = j|θk−1 = i, xk = x)dwk

=
∫
R

P (θk = j|θk−1 = i, wk, xk = x)f(wk)dwk

=
∫
R

1{j=Γ(i,x,wk)}f(wk)dwk (3.4.13)

The price of the bond is given by the following proposition, proved in Appendix A.

Proposition 3.4.2. The time t price of a bond maturing at T is given by:

B(t, T ) = Ke−rτ − Ept|t [Ke
−rτN(−d2(Y ))− eyN(−d1(Y ))] (3.4.14)

where pt|t is the density computed as described in Chapter 3, Eq. (5.2.5), Y is a random variable with density

pt|t, and the functions d1 and d2 are defined in Eq. (3.4.12).

Similarly, the equity price E(t, T ) is given by

Proposition 3.4.3. The price of the equity at time t is given by:

E(t, T ) = Ept|t [e
YN(d1(Y ))−Ke−rτN(d2(Y ))] (3.4.15)

3.5 Bond and Equity Price Computation

Although the filtering density (3.4.11) can be explicitly obtained, it is not amenable to an efficient imple-

mentation. First of all, the recursive expression (3.4.11) shows that an exponentially increasing number of

terms have to interact to obtain the unnormalized density at time tk. Additionally, it involves the evaluation

of non-Gaussian integrals due to the appearance of the terms λj,l, and such integrals may in general be

computationally expensive to evaluate. Furthermore, the normalization step required to obtain the posterior

density in Eq. (3.4.10) involves an evaluation of m spatial integrations, thus increasing the computational
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burden even further. This makes it therefore practically impossible to compute exactly bond and equity

prices in our credit risk framework, since they both require taking expectation with respect to the actual

filtering density. In Chapter 5, Section 5.3, we describe a filtering scheme which is used to approximate the

density (3.4.10). Such scheme approximates the true density with a Gaussian mixture. Let us indicate with

{x̂jt|t, σ̂
j
t|t, µ

j
t} (3.5.1)

the means, variances, and weights of the components of the such mixture density for the log-asset value at

the initial time. Then approximate formulas for equity and bond prices are given in Section 3.5.1.

3.5.1 Approximate Bond and Equity Prices

We provide a directly implementable expression for the price of equity and debt in our proposed model.

The formulas will be given as equalities, although they are to be considered as approximations due to the

filtering density of the initial log-asset value being approximated by a Gaussian mixture in our nonlinear

filtering model. We now state an obvious result as a lemma which will be extensively used hereafter:

Lemma 3.1. Let Z be a random variable having a density of the form

fZ(z) =
n∑
i=1

wifZi
(z),

n∑
i=1

wi = 1 (3.5.2)

where fZi
(z) is the pdf of a measurable random variable Zi. Then the expectation of a function f of Z may

be expressed in terms of the expectations of the function f of the component random variables Zi, each of

them taken with respect to the probability density fZi

E[f(Z)] =
n∑
i=1

wiE[f(Zi)] (3.5.3)

For reading purposes, we denote the variance (σ̂jt|t)
2 of the j-th mixture component as σ̂2,j

t|t . It follows,

from Eq. (3.3.2) and from the assumptions made in Section 3.4.3 that both drift and volatility are mode

independent, that the conditional density of the log-asset value xT at maturity has a Gaussian mixture

density specified by

p̂T |t(x) =
∑
j

µjtn(x; x̂jT |t, σ̂
j
T |t) (3.5.4)

where x̂jT |t = x̂jt|t + (r − 0.5σ2)τ and σ̂jT |t =
√
σ̂2,j
t|t + σ2τ .

Using Lemma 3.1 we have:

E[e−rτ (K − VT )+|F z
t ] = e−rτ

∑
j

µjtE[(K − V jT |t)
+] (3.5.5)

where V jT |t is the exponential of a Gaussian random variable with mean x̂jT |t and standard deviation σ̂jT |t as
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defined above. Moreover, let

dj1 =
x̂jt|t − log(K) + (r + 0.5σ2)τ√

σ̂2,j
t|t + σ2τ

, dj2 = dj1 −
(√

σ̂2,j
t|t + σ2τ

)
(3.5.6)

Then the price of the bond is given by the following proposition, proved in Appendix B

Proposition 3.5.1. The price of the bond at time t is given by:

B(t, T ) = Ke−rτ −
∑
j

µjt (Ke
−rτN(−dj2)− e

x̂j
t|t+0.5σ̂2,j

t|t N(−dj1)) (3.5.7)

A similar calculation can be done for the equity price E(t, T ) leading to

Proposition 3.5.2. The price of the equity at time t is given by:

E(t, T ) =
∑
j

µjt (e
x̂j

t|t+0.5σ̂2,j
t|t N(dj1)−Ke−rτN(dj2))

3.6 Computation of Default Measures

Credit risk models have in common the goal of explaining two quantities, default probability and loss given

default, whose product can then be used to compute the credit spread. In the next subsections we give closed

form expressions for conditional default probability, recovery rate, and credit spreads under our framework,

and assuming that the proposed filtering approximation scheme is used to approximate the density of the

initial asset value.

3.6.1 Default Probability

The default may occur only at time T , and it occurs if VT ≤ K. We define the default probability as

PD(t, T ) = P(VT ≤ K|Vt > K,F z
t ) (3.6.1)

A calculation presented in Appendix D shows that the default probability in our model is given by a weighted

sum of conditional default probabilities, where each weight w is proportional to the weight of the Gaussian

density in the mixture and the distance to default of the asset value estimated using the mean of such density.

Proposition 3.6.1. The probability of default at time T as seen at time t is given by:

PD(t, T ) =
∑
j

wjtP(Yj ≤ −d2(x̂
j
t|t)|Xj ≤ ddjt ) (3.6.2)

where wjt =
µjtN(ddjt )∑m
i=1 µ

i
tN(ddit)

, ddjt =
x̂jt|t − log(K)

σ̂jt|t
, d2 is defined in Eq. (3.4.12) and (Xj , Yj) has a bivariate
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normal distribution function with positive correlation ρXjYj :

µXj
= µYj

= 0, σ2
Xj

= 1, σ2
Yj

= 1 +
σ̂2,j
t|t

σ2τ
, ρXjYj

=
σ̂jt|t√

σ2τ + σ̂2,j
t|t

(3.6.3)

We can think of Xj and Yj as two positively correlated random variables, where Xj is measurable using

the information available by time t and reveals information about the distance to default of the current asset

value estimated using the mean of the j-th Gaussian density in the approximation, while Yj is measurable

using the information available at maturity T and denotes a default event if it is smaller than the default

threshold.

The default probability computed using our model reduces to the Merton default probability as the

uncertainty around the true value xt gets to zero, and the conditional pdf p(xt|F z
t ) approaches a sum of

delta functions
∑
j δ(xt − x̂jt|t). Then we obtain

PD(t, T ) =
∑
j

wjt lim
σ̂j

t|t→0
P(Yj ≤ −d2(x̂

j
t|t)|Xj ≤ ddjt )

=
∑
j

wjt lim
σ̂j

t|t→0
P(Yj ≤ −d2(x̂

j
t|t))

=
∑
j

wjtP(Y ≤ −d2(xt))

= N(−d2(xt)) (3.6.4)

where the second line follows because Yj becomes uncorrelated from Xj as σ̂jt|t → 0 since ρXjYj → 0. The

last line of Eq. (3.6.4) corresponds to the probability of default in the standard Merton model.

3.6.2 Expected Recovery Rate

When default occurs, the recovery rate RR(t, T ) is given by the ratio of the asset value to the nominal value

of the debt, VT /K. However, this is true only if VT < K, otherwise no default happens and no recovery can

be observed. More formally, the expected recovery rate, RR(t, T ), in Merton model is defined as:

RR(t, T ) = E

[
VT
K

∣∣∣∣VT < K

]
(3.6.5)

Altman et al. (2000) give an explicit expression of the recovery rate in terms of the ratio of two standard

Gaussian probability functions, i.e.,

RR(t, T ) =
Vt
K
erτ

N(−d1(log(Vt))
N(−d2(log(Vt)))

(3.6.6)
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In our model, we have to condition on the set of received observations, thus leading to the following definition

of recovery rate at default:

RR(t, T ) = E

[
VT
K

∣∣∣∣Vt > K,VT < K,F z
t

]
(3.6.7)

The detailed calculation is presented in Appendix E. Here, only the final result is stated:

Proposition 3.6.2. The recovery rate at time T as seen at time t is given by:

RR(t, T ) = erτ
∑
j

wjt
exp{x̂jt|t + 0.5σ̂2,j

t|t }
K

P(ξj ≤ ddjt , ψj ≤ −d1(x̂
j
t|t)

P(Xj ≤ ddjt , Yj ≤ −d2(x̂
j
t|t))

(3.6.8)

where

wjt = µjt
P(Xj ≤ ddjt , Yj ≤ −d2(x̂

j
t|t))∑m

i=1 µ
i
tP(Xi ≤ ddit, Yi ≤ −d2(x̂it|t))

(3.6.9)

and (ξj , ψj) is a bivariate Gaussian with negative correlation coefficient ρξjψj :

µξj
= −σ̂jt|t, µψj =

σ̂2,j
t|t

σ
√
τ
, σ2
ξj

= 1, σ2
ψj

= 1 +
σ̂2,j
t|t

σ2τ
, ρξjψj

= −
σ̂jt|t√

σ2τ + σ̂2,j
t|t

(3.6.10)

while (Xj , Yj) is the bivariate defined in Eq. (3.6.3)

As already pointed out in Section 3.6.1, when the model consists only of Eq. (3.3.2), σ̂t|t = 0 and the

conditional pdf p(xt|F z
t ) becomes the delta function δ(xt − x̂t|t). Moreover, both (X,Y ) and (ξ,ψ) become

uncorrelated pairs since their correlation coefficient is zero. Therefore, the cumulative distribution function

of X cancels the cumulative distribution function of ξ, and both Y and ψ converge in distribution to a

standard Gaussian. Hence, we recover the expected default rate in the standard Merton model given by Eq.

(3.6.6).

3.6.3 The Term Structure of Credit Spreads

The bond price B(t, T ) can be expressed as

B(t, T ) = e−rτE[K1{VT>K} + VT1{VT≤K}|F
z
t ] (3.6.11)

From the definition of credit spread

CS(t, T ) = −1
τ

log
(
B(t, T )
Ke−rτ

)
(3.6.12)

it follows immediately using Eq. (3.6.11) that

CS(t, T ) = −1
τ

log(1− PD(t, T )LGD(t, T )) (3.6.13)

where LGD(t, T ) := 1−RR(t, T ) is the loss given default. Using the previously derived results, we obtain:
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Proposition 3.6.3. The credit spread at time T as seen at time t is given by:

CS(t, T ) = −1
τ

log
[
1−

∑
j µ

j
tP(Xj ≤ ddjt , Yj ≤ −d2(x̂

j
t|t))∑m

i=1 µ
i
tN(ddit)

+

∑
j µ

j
t exp{rτ + x̂jt|t + 0.5σ̂2,j

t|t }P(ξj ≤ ddjt , ψj ≤ −d1(x̂
j
t|t))

K
∑m
i=1 µ

i
tN(ddit)

]
(3.6.14)

where (Xj , Yj) is the bivariate Gaussian defined in Eq. (3.6.3) and (ξj , ψj) is the bivariate Gaussian defined

in Eq. (3.6.10).

Differently from Merton model, the credit spread for short maturities does not approach zero in our

credit risk framework, but is given by

lim
τ→0

CS(t, τ) =
σ2

2

∑
j µ

j
tn
j
t∑

i µ
i
tN(ddit)

(3.6.15)

where

njt =
1√

2πσ̂2,j
t|t

exp

{
−

(log(K)− x̂jt|t)
2

2σ̂2,j
t|t

}
(3.6.16)

Eq. (3.6.15) can be easily derived by taking the limits of Eq. (3.6.14) as τ → 0. Eq. (3.6.15) may be

rewritten as:

lim
τ→0

CS(t, τ) =
σ2

2

∑
j

wjt
njt

N(ddjt )
(3.6.17)

where

wjt =
µjtN(ddjt )∑
i µ

i
tN(ddit)

(3.6.18)

We next want to evidence the similarity and differences between the short-term credit spread of our model

and the one resulting from Duffie and Lando (2001). As it can be checked by comparing our formula in

Eq. (3.6.17) and their formula in Eq. (2.5.2), the only difference lies in the term multiplying σ2

2 . In their

framework such term is f ′(K), which can intuitively interpreted as follows. If the asset value is close to

the default threshold, and the density is very steep at that threshold, then the asset value is more likely to

slide below the default threshold in the short term. However, they do not put any economic structure on

their density. On the contrary, our short-term credit spread is determined by the different reporting models

which can be potentially used across time by managers. This is highlighted in Eq. (3.6.17) which has the

functional form of a weighted sum of instantaneous hazard rates on the default threshold, with each term
njt

N(ddjt )
being the ratio of the survival density conditioned on the j-th Gaussian density being the actual

density of the log-asset value and the corresponding survival probability. If at the current default threshold

K the firm did not default, then the probability that default would occur when the default threshold is

increased by an amount ∆K is given by ∆K
njt

N(ddjt )
, when x̂jt|t is believed to be the initial log-asset value

mean and σ̂2,j
t|t the initial log-asset value variance.

In this context, each term
njt

N(ddjt )
can be thought as a quantitative measure of the likelihood that the
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asset value falls below K in the short term if the estimate x̂jt|t is believed to be the correct log-asset value

estimate, and such estimate corresponds to a particular reporting path followed by the manager.
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Chapter 4

Empirical Analysis of misreporting:
Model Calibration and Statistical
Analysis

4.1 Introduction

In this chapter we present an empirical analysis of misreporting. Section 4.2 presents a novel calibration

scheme for a simple version of the general model presented in Chapter 3 and applies it to the Parmalat case, a

well-known case of deliberate misreporting, around the time of its bankruptcy. Many calibration approaches

in literature for structural models have been proposed in the literature, see Leland (2004), Huang and Huang

(2003), and Eom et al. (2003) for some relevant references. However, they would not be applicable to our

case since they assume complete information on the firm’s asset value. Our approach can be thought of as a

generalization of Duan approach, which is briefly reported in Section 4.2.1. Section 4.3 uses CDS quotes for

a sample of U.S. companies involved in misreporting and bootstraps the default probabilities. The findings

show an inversion of the CDS term structure curve at around the time when misreporting was discovered.

4.2 Statistical Calibration

4.2.1 Estimation Procedure for Merton Model

We briefly report the calibration procedure for the Merton model proposed in Duan (1994) and Duan (2000).

Since the asset value in the Merton model is assumed to evolve according to Eq. (2.2.1), we have that the

conditional density of Vi given Vi−1 = vi−1 is

φ(vi|vi−1) =
1√

2πσ
√
ti − ti−1

exp
(
− log vi − log vi−1 − (µ− 0.5σ2)(ti − ti−1)2

2σ2(ti − ti−1)

)
1
vi

(4.2.1)

The asset value being unobserved, it is implied from the equity price using the fact that in the Merton

model equity is a call option on the asset value as evidenced in Eq. (2.2.6). Letting
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vi(ei) = BS−1
call(i, ei,K, Ti, σ) (4.2.2)

where ei denotes the equity price at time ti and K the amount of debt due at maturity Ti. This allows us

to write the likelihood function in terms of the equity price as

L(e1, e2, . . . , en|e0) =
n∏
i=1

φ(vi(ei)|vi−1(ei−1))
1

∂BScall(t,vi(ei),K,Ti,σ)
∂v

(4.2.3)

and therefore the maximum likelihood estimator can be applied using available equity data.

4.2.2 Estimation Procedure for the Proposed Model

We consider a simple case of our model in Eq. (3.3.1–3.3.4) where at any time, the manager can either report

the log-asset value correctly or bias it by a fixed amount h. We further assume constant drift µ and volatility

σ in Eq. (3.3.2) and constant variance ν in the measurement eq. (3.3.4). Since we are assuming the same

distortion throughout the period, we do not have the model selection eq. (3.3.3) under this framework. Let

us denote by ∆k = tk − tk−1 the time between consecutive observations. The filter density is then Gaussian

with mean x̂k|k and variance σ2
k|k given by the Kalman filter as

(x̂k|k, σ2
k|k) = KF(x̂k|k−1, σ̂

2
k|k−1, zk, h, ν) (4.2.4)

where

x̂k|k−1 = x̂k−1|k−1 + (µ− 0.5σ2)∆k (4.2.5)

σ̂2
k|k−1 = σ̂2

k−1|k−1 + σ2∆k (4.2.6)

G =
σ̂2
k|k−1

σ̂2
k|k−1 + ν2

(4.2.7)

x̂k|k = x̂k|k−1 +G · (zk − x̂k|k−1) (4.2.8)

σ̂2
k|k = (1−G)σ̂2

k|k−1 (4.2.9)

Moreover, it is easily seen that under these assumptions the price of equity E(t, T ) in Eq. (3.4.15) reduces

to

E(t, T ) = ex̂t|t+0.5σ̂2
t|tN(d1(x̂t|t))−Ke−rτN(d2(x̂t|t)) (4.2.10)

We next describe a maximum likelihood estimator procedure which recovers the system parameters from

a time series of market prices of equity. Differently from Duan (1994, 2000), who implies the exact asset

values from equity prices, we imply the reported values from equity prices. Let us first assume that a sample

of released observations z1, . . . , zn was observed on the market at discrete dates {t1, t2, . . . , tn}. Eq. (3.3.4)
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implies that the log-likelihood function is given by:

LL(z1, z2, . . . , zn) = −n
2

log(2π)−
n∑
i=1

log(ν̂i|i−1)−
n∑
i=1

(zi − ẑi|i−1)2

2ν̂2
i|i−1

(4.2.11)

where ẑi|i−1 and ν̂2
i|i−1 are given by

ẑi|i−1 = x̂i|i−1 + h ν̂2
i|i−1 = σ̂2

i|i−1 + ν2 (4.2.12)

However, when we do not directly observe zi, we need to imply it from equity data and this is done using

the approach described next. Eq. (4.2.10) shows that the equity price at time ti for a maturity Ti can be

expressed as

E(ti, Ti) = f(x̂i|i, σ̂2
i|i, µ, σ, h, ν, r)

= g(zi, x̂i|i−1, σ̂
2
i|i−1, µ, σ, h, ν, r) (4.2.13)

where f and g are two deterministic functions. The latter equation follows from the updating step of the

Kalman filter given in Eq. (4.2.8) and Eq. (4.2.9).

Expressing the equity at time ti in terms of zi is particularly convenient because it would allow implying

zi through inversion of g, in case g is invertible. This turns out to be the case, since the first-order derivative

of g with respect to zi
∂g(yi, x̂i|i−1, σ̂

2
i|i−1, µ, σ, h, ν)

∂zi
= ex̂i|i+0.5σ̂2

i|iN(di3)G (4.2.14)

with di3 defined by

di3 =
log(x̂i|i/Ki) + (r + 0.5σ2)τi − σ̂2

i|i√
σ̂2
i|i + σ2τi

(4.2.15)

is positive. Here τi is the difference Ti − ti and Ki represents the amount of outstanding debt at time ti.

Therefore, we can recursively imply the observations zi from the market prices of equities e1, . . . , ei, where

ej denotes the equity price at time tj , using the three-step procedure described next:

(1) Predict the mean and variance of the true log-asset value using the time propagation formulas of the

Kalman filter given in Eq. (4.2.5) and Eq. (4.2.6).

(2) Imply zi from g, i.e., numerically compute

zi = g−1(ei; x̂i|i−1, σ̂
2
i|i−1, µ, σ, h, ν, r) (4.2.16)

where the notation g−1(ei; x̂i|i−1, σ̂
2
i|i−1, µ, σ, h, ν, r) indicates that in the inversion we are considering

g as a function only of the variable zi and keeping the remaining parameters fixed.

(3) Update the mean and variance of the true log-asset value using the correction formulas of the Kalman

filter given in Eq. (4.2.8) and Eq. (4.2.9).
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Let pi = (x̂i|i−1, σ̂
2
i|i−1, µ, σ, h, ν). Then we can rewrite the log-likelihood function as

LL(e1, e2, . . . , en) = −n
2

log(2π)− n log(ν̂i|i−1)−
n∑
i=1

(g−1(ei; pi)− ŷi|i−1)2

2ν̂2
i|i−1

−

n∑
i=1

log(G ·N(di3))−
n∑
i=1

(x̂i|i + 0.5σ̂2
i|i) (4.2.17)

where ẑi|i−1 is computed using Eq. (4.2.12) in step (1) of the above procedure. The value zi = g−1(ei; pi) is

implied from step (2), while x̂i|i and σ̂2
i|i are computed in step (3) along with di3.

4.2.3 Application to the Parmalat Case

We apply the above methodology to estimate h, µ, σ, ν2 for the case of Parmalat, an Italian food firm which

experienced a crisis during the years 2002–2003 and resulted in the largest bankruptcy in European history.

We chose Parmalat since this has been already investigated in the credit risk literature, see (see Brigo and

Morini, 2006, Cherubini and Manera, 2006), and therefore it allows us to make a comparison of our results

with theirs.

During those two years Parmalat was repeatedly announcing issuance of bonds despite its balance sheet

statements reporting huge amount of available cash liquidity that was not used. On December 8, 2003, it

was suddenly discovered that its claimed liquidity of four billion Euros did not exist, and that eight million

Euros in bonds of investors’ money had evaporated as well. An illustration of Parmalat financial distress is

reported in Figure 4.1 using CDS, equity and debt data.

In Figure 4.1 the default risk is estimated as the difference between the quasi-debt, i.e., the value of debt

discounted with the risk-free rate, and the fair value of debt, computed discounting debt with the risk-free

rate plus the five-year CDS spread. The bottom plot of Figure 4.1 shows that the crisis was announced by a

decline in the stock price combined with a simultaneous increase of the default risk. Moreover, the top plot

shows a steep increase of the credit spread curves at around the time of default.

We collected the daily stock data from January 1, 2002 to December 1, 2003 and computed the daily

value of equity multiplying the number of outstanding shares by the stock price. At each time ti, we

assume that the outstanding debt Ki has five-year maturity and proxy it with the long-term debt recovered

from the balance sheet statements. We use the five-year treasury yield as the discount factor. We run

the calibration procedure using our method and compare the parameter estimates with the ones obtained

by running the maximum likelihood estimation procedure by Duan (1994, 2000) on the standard Merton

model. The estimates reported in Table 4.1 show that the hidden parameter h plays an important role in the

specification of the model. If it were omitted, as it happens for the Merton model, then the reduced value

of the firm due to accounting misreporting would simply be explained by an increase of the asset volatility

which rises to 17%. Our estimate of asset volatility of 11% matches closely with the estimates of asset

volatility found by different calibration procedures, (see Brigo and Morini, 2006, Cherubini and Manera,

2006). Our estimate 0.2052 of the distortion factor recalls the findings of Cherubini and Manera (2006), who

perform a historical analysis of risk-neutral probabilities of fraud via a modification of Merton model and
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Figure 4.1: Parmalat crisis

MLE Estimates
Parameters Proposed Model Merton Model

µ -1.3% (0.0055) -0.8% (0.054)
σ 11.2% (0.0022)% 17% (0.007)
h 0.2052 (0.0024)
ν 0.002 (0.0002)%

Table 4.1: Parameter estimates
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Figure 4.2: Schematic illustration of a CDS contract

extract an implied probability of fraud of about 0.2. Although there are differences in the assumptions and

analysis between our work and theirs, making it hard to compare, using the simplest version of our model

we find qualitatively similar results to the ones they obtain with the full power of their model.

4.3 Empirical Analysis of Misreporting

We present a statistical analysis of the term structure of the credit default swap curve (CDS) as well as of

the default probabilities bootstrapped from CDS data. Section 4.3.1 briefly recalls the definition of a CDS

instrument. Section 4.3.2 explains the bootstrapped procedure used in implying the default probabilities.

Section 4.3.3 applies the above procedure to three known cases of occurred misreporting and draws inferences

about the information content of those financial instruments in misreporting situations.

4.3.1 CDS Contracts

The credit default swap is the most liquid credit derivative instrument. A CDS is an agreement between two

parties to exchange the credit risk of an issuer called reference entity. The buyer of the CDS pays a periodic

fee to the seller until the maturity of the swap contract or the occurrence of the default event (whichever

comes earlier). The seller of the CDS faces the obligation, until maturity of the swap, to pay the losses

incurred by the protection buyer as a result of the credit event. Such credit event can be bankruptcy, failing

to pay outstanding debt obligations, etc. A schematic illustration of a CDS contract is reported in Figure

4.2.

When a credit event occurs, the protection seller has to make up for losses on general exposures to the

name under the contract. There are several settlement agreements between the buyer and seller on how

to deal with the occurred credit event. The most popular is physical delivery. Under this agreement the

protection buyer is allowed to deliver whatever debt obligation issued by the name and typically the natural
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choice is to deliver the cheapest one.

We next describe the payments of buyer and seller. For simplicity, we assume that payments occur at

the end of the each period. The payment from the protection seller at the end of any coupon period (time

ti) can be represented as

1ti−1≤ς≤tiLGD (4.3.1)

where 1ti−1 is the indicator function taking value 1 if default occurs between time ti−1 and time ti, while

LGD is the loss given default paid by the protection seller to the protection buyer at the occurrence of the

default event. At time ti the protection buyer will pay instead

s1ς>ti−1 (4.3.2)

i.e, the premium s conditional on the reference entity having survived up to time ti−1. It is assumed that if

the name defaults in a period the contract ends in that period.

We next explain how to evaluate the payments of buyer and seller. Denote Q(t) = P (ς > t) the survival

probability of the issuer up to time t under the risk-neutral measure. The present value of the payment done

at time ti by the protection seller is obtained by taking the expectation of the risky cash flow in Eq. (4.3.1).

Using simple survival analysis, it is easily seen that this is given by

e−r(t−ti)[Q(ti−1)−Q(ti)]LGD (4.3.3)

where [Q(ti−1) − Q(ti)] is the probability of a default event occurring between ti−1 and ti, in which case

the protection seller will have to pay the promised LGD. By a similar argument, the present value of the

payment done by the protection buyer at time ti is

e−r(t−ti)Q(ti−1)s (4.3.4)

where Q(ti−1) is the probability that no default event has occurred before ti−1, in which case the protection

buyer will have to pay the premium s at time ti. The running premium s is the break-even value, i.e.,

the value which makes the present value of the protection buyer cash-flow equal to the present value of the

protection seller cash-flow. For a n-year CDS contract, which thus consists of n payment periods, the spread

s, as seen at time t, will have to satisfy the following equation

n∑
i=1

e−r(ti−t)Q(ti−1)s =
n∑
i=1

e−r(ti−t)[Q(ti−1)−Q(ti)]LGD (4.3.5)

4.3.2 CDS-Implied Default Probabilities

The CDS instruments allow to investigate the term structure of the default probability for the case of obligors

on which CDS contracts are quoted for several maturities. In this case, it is possible to bootstrap the term
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structure of the default probability in a very similar manner to that by which we usually back out the zero-

coupon factor curve from swap rates. More precisely, assume that a CDS spread s1 is quoted for protection

over a one year horizon. For the sake of simplicity, assume that the spread is paid in one instance at the end

of the year, and it is paid even if the name has defaulted. Moreover, assume that before time t1 no default

has occurred yet. Using Eq. (4.3.5) with n = 1, we obtain

s1 = [1−Q(t1)]LGD (4.3.6)

from which we can immediately imply

Q(t1) = 1− s1
LGD

(4.3.7)

The value for Q(t1) can then be plugged into Eq. (4.3.5) applied to a 2 year CDS contract, thus obtaining

2∑
i=1

e−r(ti−t)Q(ti−1)s2 =
2∑
i=1

e−r(ti−t)[Q(ti−1)−Q(ti)]LGD (4.3.8)

from which we can back out Q(t2), since we have Q(t1) and s2 which is the 2 year CDS quote observed on the

market. We can continue iterating this process until extracting the survival probabilities for all maturities.

4.3.3 Signals of Misreporting Inferred from CDS

We report the results of an empirical investigation which evidences the impact of misreporting and financial

distress on the term structure of the CDS curve and the resulting bootstrapped default probabilities. We

found that the misreporting event is typically announced by an inversion of the term structure of the CDS

spread curve. We next report the results of this analysis on three major cases of misreporting in United

States history, namely on Enron, WorldCom, and Tyco, and make some comments about them. We start

presenting the results for the Tyco case. On March 13, 2001, Tyco announced a 9.2 billion cash and stock

deal to take over the CIT group, a commercial finance company. This CIT deal led to sudden discovery of

management misconduct. Tyco shares dropped sharply at the end of January 2002, as a proxy report was

filed with the Securities and Exchange Commission disclosing that the Tyco CFO received a 10 million fee

on conclusion of the CIT Group deal, and that another $10 million went to a charity where he was a director.

The crisis at the end of January 2002 is evidenced very clearly from Figures 4.3 and 4.4. The shape of the

term structure curve was inverted, so that the 3 year CDS contract was quoting on average about 100 basis

points (bps) less than the 1 year contract, and the 5 year contract was quoting about 190 bps lower. The

inverted shape persisted across all of year 2002 and was only reversed in late 2003. An inverted structure

of the CDS spread is indeed typical of periods of particular financial distress. This means that the market

prices a very high probability of default in the first year, while the probability is lower for the years further

in the future. The rational behind is that if the company survives this initial period, then it will be in better

shape and less likely to (conditionally) default over subsequent periods. All this is confirmed from data of

the cumulative default probability which are displayed in Figure 4.4. The 1 year default probability was

about 1.39% on average in the last quarter of 2001; 5 year default probability was about 5 times larger, i.e.,
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Figure 4.3: 1 year, 3 year, and 5 year CDS of Tyco
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Figure 4.4: 1 year, 3 year, and 5 year CDS implied default probability of Tyco
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Figure 4.5: 1 year, 3 year, and 5 year CDS of WorldCom

7.51%. This means that the market was attributing good financial health to the firm and was not suspecting

fraud. In the first quarter of 2004, the 1 year default probability climbed to 9.56%, while the 5 year default

probability grew up to 22.90%. Since the 3 year default probability was 21%, thus very close to the 5 year

default probability, the market was implying a probability of default between years 2005 and 2007 of about

1.90%. This is close to the 1 year default probability in the pre-crisis situation, meaning that the market

was believing that either the company would have defaulted three years from now, or not defaulted at all.

We next report the same figures for WorldCom, the biggest corporate bankruptcy in the history of the

United States. WorldCom was a giant leading the telecommunication industry at the end of last century

and was handling 50% of the US internet traffic and 50% of e-mail worldwide. The fraud began when it

was discovered that the former chief financial officer at WorldCom had directed employees to falsify balance

sheets to hide more than $3.8 billion of expenses. The fraud was discovered in March 2002, when the internal

audit found accounting irregularities consisting of $400 million that had been set aside to boost WorldCom’s

income. After asking for documents supporting capital expenditures and discovering that no supporting

accounting standards existed, the Internal audit explained irregularities to the Audit Committee on June

20, 2002, and on July 21, 2002, WorldCom filed for bankruptcy.

Figure 4.5 reports the CDS term structure in the year of crisis. The CDS spreads climbed up about at

the same time as the Tyco crisis. At the end of the January, the spreads increased substantially, and the

term structure of the spread became inverted. Two months later, the 1 year CDS quoted 608 basis points

on average, and the 3 and 5 year maturities respectively quoted 147 and 194 basis points less than that.

Again, this corresponds to a massive increase of the default probability in the first year horizon that does

not seem to spread out to the following years. In January, the average 1 year default probability was 2.30%,

the 3 year default probability was 6.30%, and the 5 year default probability was 12.60%. In the following

two months the crisis caused an increase of the 1 year default probability to more than 10%, while the 3
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Figure 4.6: 1 year, 3 year, and 5 year CDS implied default probability of WorldCom

and 5 year default probability climbed to 22.66% and 27.95%, respectively. From this, it can be implied

that the implied probability of defaulting between third and fifth year was about 5.30%, even less than in

the pre-crisis period. Again the market was believing that, if had the company had defaulted, it would have

done so in the next three years. This is confirmed from facts since WorldCom was only part of stock market

history three years later.

We conclude this empirical investigation with the well-known Enron case, a large player in the natural

gas and energy supply. Enron was raising off balance sheet debt by resorting to almost a thousand special

purpose entities funded by banks and outside investors. This practice allowed Enron to exploit a loophole in

the US Generally Accepted Accounting Standard (US GAAP) to circumvent the principle of consolidation.

Under the GAAP, the balance sheet of a special purpose entity needs not be consolidated with the originator

if two conditions hold: outside investors must supply at least 3% of the funds, and the originator cannot

control the disposition of the assets under control of the entity. This technique enables increasing leverage

in the assets of Enron, without reporting this stock of debt in the company accounting data. This leverage

effect boosted growth of the company when the fundamentals of its business were good, but by the same

token accelerated the crisis when the market turned against Enron, which happened between 2000 and 2001.

Signals of crisis began on October 17, 2001, when Enron announced a downward revision of its third

quarter results by more than 1 billion dollars, mainly due to investment losses. This triggered a series

of events leading to Moody’s downgrading of Enron credit to junk and the subsequent filing of Enron for

Chapter 11 which occurred on December 2, 2001.

Even in this case the crisis was announced by the inversion of the CDS spread term structure, which

took place in mid-October 2001 when the first signals of crisis started appearing. It was the first time

when inversion of the CDS term structure took place, and the one year CDS climbed higher than 500 basis

points. The 1 year default probability remained between 1.6% and 2.4%, the 3 year default probability
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Figure 4.7: 1 year, 3 year, and 5 year CDS of Enron
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Figure 4.8: 1 year, 3 year, and 5 year CDS implied default probability of Enron
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stayed between 6% and 8%, and the 5 year default probability between 10% and 12%. This means that the

probability of defaulting between three and five year from that time was roughly 4%. On the day of the crisis,

October 22nd, the one year default probability climbed to 8.47%, the 3 year default probability jumped to

20.8% and the 5 year one jumped to 24.94%, thus without any increase on the probability of defaulting

between 3 and 5 years from now. Again, the market was believing that if the company had defaulted, it

would have done so in the next three years. This was actually the case, since Enron did not manage to

survive until the end of the year.

Hence, this empirical investigation showed that cases of misreporting have similarities. They all manifest

a steepness of the credit spread curve, with short maturity spreads getting larger than long maturity spread.

They all exhibit an increase of the probability of defaulting in the short term, leaving the probability of

defaulting in the next years roughly the same as in the pre-crisis situation.
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Chapter 5

Stochastic Filtering For Jump
Systems

This chapter is devoted to the presentation of an approximate filtering scheme used to compute the filtering

density needed for pricing securities of our credit model in Chapter 3.

We recall, from the previous chapter, that the system presented in Eq. (3.3.1–3.3.4) is a jump linear

system with state dependent transition probabilities. Even if an analytical expression for the optimal filtering

density may be provided (see Section 5.2), it turns out to be computationally prohibitive to evaluate the

density on a given input. To this purpose, we develop an approximation method, which allows evaluating

the conditional density of a given state in polynomial time. Although the filtering problem associated with

our credit risk model given in Eq. (3.3) is one dimensional, we study the filtering problem in the multi-

dimensional case, namely allowing both the state and the observation to be n-dimensional vectors. When

both the state and the observation are scalar, the developed procedure would return the filtering density

used to price bonds in Eq. (3.4.14) and equity in Eq. (3.4.15).

The output of the proposed scheme is an approximation of the true unnormalized posterior density

with a mixture of Gaussian densities. Such densities are selected as the solution of a convex programming

problem aiming at finding the sparsest possible expansion in terms of Gaussian densities, which is as close

as possible to the actual unnormalized density. Our proposed scheme is validated on both theoretical and

empirical grounds. From a theoretical point of view, we provide an upper bound on the total variation

distance between the true filter density and the approximation density returned from our scheme. Such

upper bound may be on-line computed using the system parameters, the received observations, and the

constraints imposed on the convex optimization problem, without any recourse to Monte-Carlo simulations.

Therefore, the developed bound would allow the user efficiently control the propagation of the approximation

error introduced by the method over time. On empirical grounds, we compare the proposed method to the

IMM and GPB2 estimators of Bar-Shalom et al. (2002), two widely used heuristic procedures used to deal

with Markovian jump systems. We show that the estimation quality is superior at the expenses of an increase

in computational burden, which tends to be a bottleneck for high-dimensional state space systems. This

happens because the proposed method is based on a gridding of the state space and has complexity growing

exponentially with the size of the state space. However, this is not a major concern for us since the state
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space model associated with our credit risk framework consists of one-dimensional state and observation

equations.

The rest of the chapter is organized as follows. Section 5.1 introduces the general state and observation

model along with the state transition process. Section 5.2 develops the exact recursive Bayesian filter. Section

5.3 describes the approximation approach and develops a bound on the quality of the density estimator.

Section 5.4 presents numerical experiments to empirically validate the proposed procedure.

5.1 Setup and Problem Formulation

The dynamics of the state are modeled by the jump linear switching system

xk = A(θk−1)xk−1 + Q(θk−1)wk (5.1.1)

where xk is the n dimensional state of the system at time tk, and θk is the mode switching process. We

assume that θk is a discrete time finite state process taking values in {1, . . . , d}. For any 1 ≤ r ≤ d, A(r)

is a square n dimensional matrix governing the dynamics associated to mode r. The noise process wk is a

n′ dimensional Gaussian vector consisting of n′ independent Gaussian random variables with zero mean and

unit covariance matrix, while Q(r) is a mode dependent n × n′ positive semi-definite matrix. We assume

that the pair (xk, θk) is a homogeneous Markov chain with transition matrix P∆ defined as

P∆(x, j,y, i) := P (xk = x, θk = j|xk−1 = y, θk−1 = i)

= P (θk = j|θk−1 = i,xk = x) ·

· P (xk = x|xk−1 = y, θk−1 = i) (5.1.2)

and prior distribution on the chain

π(u, j) := P (x0 = u, θ0 = j)

= P (x0 = u)P (θ0 = j|x0 = u) (5.1.3)

where the initial density P (x0 = u) is assumed to be Gaussian with mean µ0 and covariance matrix Σ0.

It is clear from Eq. (5.1.2) and Eq. (5.1.3) that the mode switching process θk is statistically dependent on

the state xk. In the special case that it is not, then the mode switching process θk becomes a Markov chain

and we recover the mode dependent state transition probabilities as in classical Markov jump linear systems.

Such systems have been extensively studied and techniques for computing the filtering density have been

provided, such as the IMM estimator introduced by Blom and Bar-Shalom (1988), see also Li and Jilkov,

2005, for an excellent survey. Other approaches include particle filtering methods, see (see Doucet et al.,

2001).

We next discuss the structure of the observation model. The measurement zk produced at time tk is
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described by the following equation

zk = H(θk−1)xk + R(θk−1)vk (5.1.4)

The observation matrix H is a mode dependent m×n matrix. The measurement noise vk is a m′ dimensional

vector consisting of m′ independent Gaussian random variables with zero mean and unit covariance matrix,

while R is a mode dependent m ×m′ matrix. For notation simplicity, both the design matrix H and the

transition matrix A are assumed to be time invariant.

Our goal is to develop an efficient algorithm to recover the unnormalized posterior density

plk,k(x) := P (xk = x, θk−1 = l,F z
k ), l = 1, . . . , d (5.1.5)

where F z
k = {z1, . . . , zk} denotes the set of observations received up to and including sampling time tk. Eq.

(5.1.5) then allows obtaining the joint state-mode posterior hybrid density, and the posterior density of the

state through normalization.

5.2 Exact Filter Derivation

We use a recursive expression for the unnormalized posterior density, instead of working directly with its

normalized counterpart, following the approach presented in Blom and Bloem (2007), Theorem 1.

Such density is obtained through an interaction of d Bayesian filters, with each filter being an unnormal-

ized posterior density

plk,k(x) := P (xk = x, θk−1 = l,F z
k ), l = 1, . . . , d (5.2.1)

The unnormalized prediction density is defined as

plk,k−1(x) := P (xk = x, θk−1 = l,F z
k−1) (5.2.2)

and can be developed as

∫
Rn

d∑
r=1

P (xk = x,xk−1 = y, θk−1 = l, θk−2 = r,F z
k−1)dy

=
d∑
r=1

∫
Rn

λr,l(y)p(x|y, l)prk−1,k−1(y)dy (5.2.3)

where p(x|y, l) is a Gaussian density with mean A(l)y and covariance Q(l)Q(l)′. The above decomposition

steps follow from straightforward application of Bayes rule. The unnormalized joint state-mode posterior
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density may then be obtained as

plk,k(x) = Llk|k(x)plk,k−1(x) k ≥ 2

pl1,1(x) = Ll1|1(x)
∫
Rn p(x|u, l)π(u, l)p(u)du

(5.2.4)

where the correction term Llk|k(x) is a Gaussian density with mean H(l)x and covariance R(l)R(l)′ due to

the structure of the observation equation (5.1.4).

From the above derivations, we can see that the filters interact with each other according to fundamental

Bayesian rules, leading to the recursive expression given in Eq. (5.2.4) for the unnormalized density. It is

important to notice that such recursion is linear. The linearity of the recursion allows provision of an upper

bound for the error committed by our method at any sampling time tk.

The posterior density may then be obtained from the interacting bayesian filters through normalization

as

pk|k(x) =

∑d
l=1 p

l
k,k(x)∫

Rn

∑d
l=1 p

l
k,k(x)dx

(5.2.5)

5.3 The Filter Approximation Scheme

The filter described in Section 5.2 cannot be implemented efficiently. First of all, the recursive expression

(5.2.4) shows that an exponentially increasing number of filters have to interact to obtain the unnormalized

density at time tk. Additionally, Eq. (5.2.3) involves the evaluation of non-Gaussian integrals due to the

appearance of the terms λj,l(y) in plk,k−1(x), and such integrals are computationally expensive to evaluate.

Furthermore, the normalization step required to obtain the posterior density in Eq. (5.2.5) involves an

evaluation of d spatial integrations, thus increasing the computational burden even further. In order to

deal with these computational issues, we propose an approach which at every step k approximates the

unnormalized density using a restricted set of Gaussian densities, selected from a prescribed base set. The

number of densities and the weight of each density are recovered as the solution of a convex second-order

cone programming problem.

5.3.1 The Approximation Method

Let p(x) be the density which we wish to approximate. Let I and J be two set of indices. We construct a

base set of multivariate Gaussian densities

B = {ni,j(x)}i∈I,j∈J (5.3.1)

where ni,j(x) stands for the multivariate Gaussian density with mean µi and covariance Σj . Moreover, we

require

µi1 6= µi2 , ∀i1 6= i2

Σj1 6= Σj2 ∀j1 6= j2 (5.3.2)
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meaning that the means and the covariances of the Gaussian densities in B are all different. We choose a

training set

X = (x1,x2, . . . ,xq) (5.3.3)

of size q containing vectors in Rn. Let us define the matrix

Φ(X) =


n1(x1) n2(x1) . . . n|I|(x1)

n1(x2) n2(x2) . . . n|I|(x2)
...

...
. . .

...

n1(xq) n2(xq) . . . n|I|(xq)

 (5.3.4)

where ni(xl) = (ni,1(xl), ni,2(xl), . . . , ni,|J|(xl)), i.e., a row vector whose j-th entry is the multivariate

Gaussian density in B with mean µi and covariance Σj evaluated at xl.

Moreover, we assume that q < |I| × |J |, i.e., the size of the training set, is strictly smaller than the

cardinality of the base set B. Let p = (p(x1), . . . , p(xq))′. The linear system

p = Φz (5.3.5)

is solvable and overdetermined being q < |I|×|J |. Although we could solve the system and then approximate

the density p(x) with φz(x), we notice that such approach would require propagating a number of Gaussian

densities equal to the size q of the training set, and therefore it would scale linearly with the size of the

training set, making a real time implementation computationally intensive. Our goal is to approximate

p using a short linear combination of Gaussian densities and at the same time minimize the introduced

approximation error. Therefore, we look for the sparsest representation of p(x) in the following sense:

min ||υ||0 subject to ||p−Φυ||2 ≤ ι (P1)

(P1) is a mathematical programming problem with decision variables υ, and ||υ||0 denotes the number of

nonzero entries of the vector υ, i.e.,

||υ||0 = |{(i, j) : υ(i,j) 6= 0}| (5.3.6)

where υ(i,j) is the entry of the |I| × |J | dimensional vector υ multiplying the Gaussian density ni,j . If υ∗

is the solution of (P1), we would approximate p(x) with φυ∗(x). However, this is of little practical use,

since (P1) is non-convex and easy to solve only in the special case when the system p = Φυ admits a

unique solution (see Donoho and Elad, 2003). In all other cases, its solution usually requires an intractable

combinatorial search. In order to overcome this computational burden, basis pursuit (see Chen et al., 2001)

has become the most widely used numerical shortcut to approximate the solution to (P1). Such method

replaces the l0 norm with its closest convex penalty function, the l1 norm, and solves
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min ||$||1 subject to ||p−Φ$||2 ≤ ε (P2)

with decision variable $. The problems (P1) and (P2) differ only in the choice of the objective function,

with the latter using an l1 norm as a proxy for the sparsity count. However, unlike (P1), (P2) is a convex

second-order cone programming problem. This can be seen by rewriting the problem (P2) in the following

form

min1Tũ subject to− ũ ≤ $ ≤ ũ ||p−Φ$||2 ≤ ε (P3)

where we added the slack optimization variable ũ. In the above formulation 1 is a vector of ones and the

vector inequality $ ≤ ũ means component-wise, i.e., wi ≤ ũi for all i. Being a convex programming problem,

(P2) can be solved efficiently using standard optimization algorithms. Therefore, we will approximate the

actual density p as

p(x) ≈ Φ$(x) (5.3.7)

5.3.2 Sparsity of the approximation

In this section, we discuss the relation between the approximation errors ι and ε resulting from the solution

of problems (P1) and (P2) and the sparsity of the corresponding solutions. Let Λ ⊆ I × J denote a generic

subset. We define the inner product between two vectors as their dot product, i.e.,

< x,y >=
∑
i

xiyi (5.3.8)

and denote by

ni,j(X) = (ni,j(x1), ni,j(x2), . . . , ni,j(xq)) (5.3.9)

the vector obtained evaluating the Gaussian density ni,j at all points of the training set X. We define the

cumulative coherence as

c(s) = max
|Λ|=s

max
(i,j)/∈Λ

∑
(u,v)∈Λ

| < ni,j(X), nu,v(X) > | (5.3.10)

which measures how much a collection of fixed densities resembles a fixed, distinct density, with the con-

vention that c(0) = 0. The maximum correlation of the density vector p with the set of base densities B is

defined as

maxcor(p) = max
(i,j)∈I×J

| < p, ni,j(X) > |
||p||2

(5.3.11)

We now report the following result from citetTropprelax, as:

Lemma 5.1. Let aopt = Φυ∗ where υ∗ is an optimal solution to the mathematical programming problem

(P1) with tolerance ι. If ||υ∗||0 = s, and c(s) ≤ 1
3 , and we select

ε ≥ ι
√

1 + 6s maxcor(p− aopt)2 (5.3.12)
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then the solution $∗ to (P2) with tolerance ε is at least as sparse as the solution υ∗, i.e.,

||$∗||0 ≤ ||υ∗||0 (5.3.13)

In words, the above lemma states that if our base set B has a sufficiently high degree of independence,

namely, c(s) ≤ 1
3 , then we do not lose sparsity by using the l1 norm instead of the l0 norm in the programming

problem, although this happens at the expenses of an increase in the approximation error ε which will depend

upon the sparsity of the solution of (P1) and the correlation of the residual of (p− aopt) with the base set

B.

5.3.3 The Filter Approximation

We describe how to construct an approximation to the actual unnormalized density plk,k(x) at time tk from

an existing set of approximations to the unnormalized density {prk−1,k−1(y)}r=1,...,d available from time tk−1.

For any r = 1, . . . , d, let us denote by p̂rk−1,k−1(y) such an approximation which would have been computed

in the previous step of the approximation procedure. Let

Ωlk = {(i, j) ∈ I × J : [$l
k](i,j) 6= 0} (5.3.14)

where $l
k is the solution of (P2) obtained when approximating plk,k(x), i.e.,

p̂rk−1,k−1(y) ≈
∑

(i,j)∈Ωr
k−1

[$r
k−1](i,j)ni,j(y) (5.3.15)

In Eq. (5.3.15), we want to highlight that we are only propagating from time tk−1 to time tk the Gaussian

densities in B with nonzero weight. Our goal is to approximate the actual filter density plk,k(x) at time tk

given by Eq. (5.2.4). This is done in two separate steps. The output of the first step is an approximate

density p̌lk,k(x) computed as follows:

p̌lk,k(x) := Llk|k(x)
d∑
r=1

∫
Rn

λr,l(y)p(x|y, l)p̂rk−1,k−1(y)dy (5.3.16)

≈ Llk|k(x)
d∑
r=1

∫
Rn

λr,l(y)p(x|y, l)prk−1,k−1(y)dy

= plk,k(x)

where the approximation step consists in replacing each term prk−1,k−1(y) with its previously computed

approximation p̂rk−1,k−1(y). Plugging Eq. (5.3.15) into Eq. (5.3.17), we obtain

p̌lk,k(x) = Llk|k(x)
d∑
r=1

∑
(i,j)∈Ωr

k−1

[$r
k−1](i,j)

·
∫
Rn

λr,l(y)p(x|y, l)ni,j(y)dy (5.3.17)
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Eq. (5.3.17) shows that we have obtained an approximation density p̌lk,k(x) for plk,k(x) consisting of

·
∑d
r=1 |Ωrk−1| components. Moreover, p̌lk,k(x) is no longer a mixture of Gaussians due to the appearance of

the state-dependent mode transition term λr,l(y). To this purpose, we approximate p̌lk,k(x) further before

propagating it to the next step sampling time tk+1. This is the second step of our methodology, which is

described next. We first compute the mean and standard deviation of the unnormalized density p̌lk,k(x).

These can be efficiently computed by rewriting the integral as a sum of expectations, each one taken with

respect to two independent random variables, one being a Gaussian and another being a Gaussian mixture.

For computing the mean, we proceed as follows:

x̌lk,k =
∫
Rn

p̌lk,k(x)xdx

=
d∑
r=1

||$r
k−1]||1EX,Yr [xL

l
k|k(x) λr,l(y)] (5.3.18)

where X and Yr are dependent vectors from which samples are drawn as follows. We first sample y from

Yr according to the Gaussian mixture distribution with density given by

Yr ∼
∑

(i,j)∈Ωr
k−1

[$r
k−1](i,j)

||$r
k−1||1

ni,j(y) (5.3.19)

We next sample x from a Gaussian distribution with density given by

X ∼ n(x;A(l)y,Q(l)) (5.3.20)

Monte-Carlo methods can be applied to efficiently approximate the above expectation. A similar argument

can be followed to approximate the covariance matrix of p̌lk,k(x), let us call it Σ̌l
k,k. We then choose an

n-dimensional ellipsoid G ∈ Rn defined as

(x− x̌lk,k)
′(Σ̌l

k,k)
−1(x− x̌lk,k) (5.3.21)

Both the training points in X and the means of the Gaussian densities in B are selected to be on an equally

spaced grid covering the ellipsoid G. The covariances of the densities in B are defined by specifying the

standard deviation of each state space component σi, i ∈ 1, . . . n, and the correlation factors between them,

ρi,j , i, j ∈ 1, . . . , n. For each covariance matrix, σi = σ, i.e., the standard deviation is assumed to be the

same for each component. The σ values decay exponentially from σmax to σmin to capture the behavior of

the Gaussian density which exhibits exponential tails. The correlation factors ρi,j are equally spaced in the

interval (−1, 1). We next evaluate the density p̌lk,k(x) on the points in X, thus obtaining a vector

p̌lk,k = (p̌lk,k(x1), . . . , p̌lk,k(xq)) (5.3.22)

Let εlk be the smallest component of the vector p̌lk,k. Then we solve the optimization problem (P2) as follows:



50

Previous unnormalized posterior pdfs m
kkkk pp 1,1

1
1,1 ˆ,...,ˆ −−−−

AGGREGATION-APPROXIMATION

APPROXIMATION 
USING L1 NORM METHOD

… FILTER
Fm

FILTER
F1

Updated unnormalized posterior pdfs m
kkkk pp ,

1
, ,..., ((

meas. 
mode θ1

kz meas. 
mode θm

kz

New gaussian mixture approximations for m
kkkk pp ,

1
, ˆ,...,ˆ

Figure 5.1: One cycle of the estimator

min ||$l
k||1 subject to ||p̌lk,k −Φ$l

k||2 ≤ εlk (P4)

If $l,∗
k denotes the optimal solution to (P4), the approximation density propagated to step k + 1 is

p̂lk,k(x) =
∑

(i,j)∈Ωl
k

[$l,∗
k ](i,j)ni,j(x) (5.3.23)

We summarize the whole procedure with a block diagram of the estimator in Figure 5.1. It is clear from

Figure 5.1 that the mode conditional densities are approximated right after the mixing step.

5.3.4 Distance between Approximate and Optimal Filter

We provide an upper bound on the total variation distance between the actual density plk,k(x) and the

approximate density p̂lk,k(x) obtained using our method. Let us denote

p̃lk,k(x) := plk,k(x)− p̂lk,k(x) (5.3.24)

The total variation distance between plk,k(x) and p̂lk,k(x) is defined as

||p̃lk,k||1 :=
∫
Rn

|p̃lk,k(x)|dx (5.3.25)

Let ρ be the distance between two vectors in the training set X. If those vectors are chosen using the

methodology described in Section 5.3.3, it is reasonable to assume that

plk,k(y) ≈ 0,y /∈ G (5.3.26)

In words, plk,k(x) concentrates most of its probability mass inside X.
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Since our approximation scheme finds the sparsest possible approximation of the density with a guaran-

teed error bound ε, the mass of the approximate density p̂lk,k(x) recovered by (P2) would also be negligible

on the region Rn−G. This is because the selection of any Gaussian component whose mean lies outside the

grid would increase the l1 norm of the optimal weight vector without reducing the approximation error any

further since the training set does not contain any vector outside the grid. Therefore, the recovered solution

would not be optimal. This justifies the following approximation for the l1 norm

||p̃lk,k||1 ≈
∫
G

|p̃lk,k(x)|dx (5.3.27)

We next state the final result under the form of two theorems, one for the density approximation at initial

time, and one for the approximation at a generic sampling time. The detailed proofs are reported in Appendix

G and H, respectively.

Define

C(l) = sup
x∈Rn

||∇Llk|k(x)||∞
(2π)

n
2 det(Q(l))

1
2

+ sup
x∈Rn

||∇p(x|y, l)||∞
(2π)

m
2 det(R(l))

1
2

(5.3.28)

where

∇Llk|k(x) = −e
− 1

2 (zk−H(l)x)′R(l)−1(zk−H(l)x)

(2π)
m
2 det(R(l))

1
2

· R(l)−1(zk −H(l)x)

∇p(x|y, l) = −e
− 1

2 (x−A(l)y)′Q(l)−1(x−A(l)y)

(2π)
n
2 det(Q(l))

1
2

· Q(l)−1(x−A(l)y)

(5.3.29)

Notice that Llk|k(x) is independent of the time step k due to the time invariant assumption on the design

matrix H made in Section 5.1. Let

Ck = sup
(j,h)∈Ωl

k

sup
x∈Rn

||∇nj,h(x)||∞ (5.3.30)

and recall that $l,∗
k is the optimal solution recovered when using (P4) to approximate plk,k(x).

Theorem 5.1. The total variation distance between the actual density and the approximation density at t1

is

||p̃l1,1||1 ≤ q(el,21 + el,31 + el,41 ) ∀l = 1, . . . , d (5.3.31)

where
el,21 := 1

2C
(l)nρn+1En(µ0,Σ0)[λ

l]

el,31 := εl1ρ
n

el,41 := C1nρ
n+1 · ||$l,∗

1 ||1

(5.3.32)

Let us denote by S(l) = HQ(l)HT +R(l) the mode conditioned measurement prediction covariance matrix.
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Theorem 5.2. Suppose

||p̃rk−1,k−1||1 ≤ δr ∀r = 1, . . . d (5.3.33)

Then, the total variation distance at time tk is

||p̃lk,k||1 ≤ el,1k + q(el,2k + el,3k + el,4k ) (5.3.34)

for any l = 1, . . . , d, where

el,1k :=
1

(2π)
n
2 det(Sl)

1
2

d∑
r=1

sup
y∈Rn

λr,l(y)δr

el,2k :=
1
2
C(l)nρn+1

d∑
r=1

∑
(i,j)∈Ωr

k

[$r,∗
k−1](i,j)Eni,j [λ

r,l]

el,3k := εlkρ
n

el,4k := Cknρ
n+1 · ||$l,∗

k ||1 (5.3.35)

In case when the transition matrix of the chain P∆ is state independent, then λr,l(y) becomes independent

on y and the terms el,1k and el,2k given in Theorem 5.2 take the following form

el,1k =
1

(2π)
n
2 det(Sl)

1
2

d∑
r=1

λr,lδr

el,2k =
1
2
C(l)nρn+1

d∑
r=1

λr,l||$r,∗
k−1||1 (5.3.36)

5.3.5 Computational Requirements

In this section we compare the computational complexity of our methodology with the one of the IMM

estimator (see Blom and Bar-Shalom, 1988), a widely used heuristic to compute the filter density of a jump

linear system. The IMM consists of two major steps:

• Interaction step. The initial condition for the filter matched to a certain mode is obtained by mixing

the state estimates of all filters at the previous time under the assumption that this particular mode

is in effect at the current time. This stage has complexity O(d2).

• Filtering step. The prediction and update steps are performed for each mode using the newly received

measurement along with the initial condition matched to the same mode and computed earlier. This

is done using a Kalman filter and thus has complexity O(n3), with n being the dimension of the state

space.

Therefore, the overall complexity of the method is O(d2 + n3). Our approach has higher computational

complexity than the IMM approach due to the amount of time needed to set up and solve the second order

cone programming problem (P2). Before solving the optimization problem, it is required to compute p̌lk,k
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for any mode l and this has complexity O(d2|I||J |q). This is because p̌lk,k(x) in Eq. (5.3.17) may be written

as

p̌lk,k(x) =
d∑
r=1

∑
(i,j)∈Ωl

k

[$r
k−1](i,j) Eni,j [L

l
k|k(x)λr,l(Yi,j)p(x|Yi,j , l)] (5.3.37)

where Yi,j is a Gaussian random vector with mean µi and covariance Σj . For each x ∈ X in the training

set, it is required to compute d|I||J | Gaussian integrals which can be done in constant time using Hermite

polynomials. This has to be repeated for each mode, thus the total complexity is O(d2q|X||I||J |). Then the

optimization problem needs to be solved for each mode, and this can be done in time O((|I||J |)2q) using the

algorithm proposed by Lobo et al. (1998).

Thus the complexity of the approach grows quadratically with the size of the base set and the number

of modes, and linearly in the size of the training set. This makes the approach slower than the IMM

estimator for high dimensional systems where a larger base set and training set would be required to have

good approximation quality. However, the approach would be very efficient for low-dimensional systems.

5.3.6 Quantitative Evaluation of the TVD

We perform a quantitative evaluation of the total variation distance upper bound derived in Section 5.3.4.

This is done by means of a simple experiment considering a one-dimensional bimodal state space system

defined as
xk = xk−1 +Q(l)wk

zk = xk +Rvk
(5.3.38)

where wk is a white noise sequence with variance depending on the mode in place at time k, while the

measurement noise vk is assumed to be mode-independent. The two-mode dependent process noises are

zero-mean and only differ in the choice of the standard deviation which is set to Q(1) = 0.7ms2 for mode 1,

and to Q(2) = 4ms2 for mode 2. The standard deviation of the measurement noise is R = 2ms2 . The duration

of each sampling period is 1.5 seconds.

The mode transitions are assumed to be state independent with transition matrix given by

λi,j =

 0.6 0.4

0.3 0.7

 (5.3.39)

and initial mode distribution given by the vector [0.95, 0.05]. The true trajectory is simulated for 14 sampling

times using a single process noise sequence having standard deviation 0.5ms2 and zero mean for all times except

for the sampling times from k = 3 to k = 7 where

E[w3] = 10ms2 E[w4] = 9ms2 E[w5] = 8ms2

E[w6] = 7ms2 E[w7] = 6ms2

The target is assumed to start at x = 0. The approximation accuracy ε in the programming problem (P2) is

set to 10−5. The set of µs used in the base set of Gaussian densities consists of equally spaced values ranging
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Figure 5.2: The top graph reports the total variation distance upper bound for the density p1
k,k(x), k =

1, . . . , 14. The bottom graph reports the number of nonzero components selecting from the programming
problem (P2) in the approximation p̂1

k,k(x), k = 1, . . . , 14.

from µmin = −80 m to µmax = 80 m, with distance 1m between consecutive µs. The standard deviations of

the base densities are chosen to be exponentially decaying, with the largest being σmax = 1, and σj = 1
1.3j ,

for j = 1, . . . , 10. This results in a base set of 1771 Gaussian densities. The training set of points x is chosen

to be equally spaced from −120 m to 120 m, with distance 1 m from each other.

We perform a number of one-hundred Monte-carlo runs. The scale of values taken by the actual unnor-

malized density is on the order of 10−2 − 10−3.

Figures 5.2 and 5.3 illustrate the behavior of the total variation bound for the unnormalized density

p1
k,k(x) and p2

k,k(x), and also report the number of nonzero weights selected in the programming problem

(P2). The total variation distance upper bound plotted in the figures is recursively on-line computed for each

sampling time using formula (5.3.34). As evident from Eq. (5.3.34), the evaluation of the bound requires

knowing the weights contributing to the density approximations p̂1
k,k(x) and p̂2

k,k(x) at each time k. Those

weights are recovered as the solution of the two convex programming problems P2, one for each mode.

We solve them using CVX, an efficient convex optimization solver (see Grant and Boyd, 2008) It appears

from the graphs that, after an initial setup period, the total variation distance between the actual and the

approximation densities becomes on the order of 10−3 − 10−4, a quite satisfactory result if we consider that

the order of magnitude of the density is about 10−3. Moreover, the number of needed Gaussian components

in the approximation stabilizes at four, after an initial setup period where the number of approximation

densities reaches a peak of 7.91 (for the first mode) and 12.25 (for the second mode). This means that

few components are needed in each approximation step. Moreover, it appears that the approximation error

introduced by the method is kept low and has an overall tendency to decrease over time.
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Figure 5.3: Total variation distance upper bound for the density p2
k,k(x), k = 1, . . . , 14. The bottom graph re-

ports the number of nonzero components selecting from the programming problem (P2) in the approximation
p̂2
k,k(x), k = 1, . . . , 14.

5.4 A Target Tracking Example

We evaluate the prediction accuracy and the computational power of our scheme on a target tracking

problem. The considered scenario consists of an aircraft flying in the (x1, x2) plane at an initial velocity

[0, 120ms ], along the vertical direction. The aircraft is supposed to execute a 90◦ right turn (with turn rate

of 3◦

s ) when the trajectory change point (TCPP ) is reached, see Figure 5.4 for an illustration. The sensor

sampling period is 10 seconds. After the turn, the aircraft continues straight along the horizontal direction.

However, in practice it can turn earlier at a difference trajectory change point (TCPA) and we assume that

the distance dPA is Gaussian with zero mean and standard deviation
√

10 meters.

TCPP

TCPA

Planned Flight Path

Actual Flight Path
dPA

Figure 5.4: Actual versus expected trajectory of the aircraft
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This scenario is challenging because the deviation from non-manoeuvering motion is very large, while the

duration of the manoeuver is short. The second-order system for this motion, with position-only measure-

ments is:

xk+1 = diag(A,A)xk + diag(Γ,Γ)wk

zk = diag(H,H)xk + vk (5.4.1)

where

xk = [x1
k ẋ

1
k x

2
k ẋ

2
k]
′ zk = [z1

k z
2
k]
′

A =

 1 T

0 1

 Γ =
[

1
2T

2
]

H = [1 0]

The transition probability from the straight mode (mode “1”) to the maneuvering mode (mode “2”), here

denoted as λ1,2(x), is defined as

λ1,2(x) := λ1,2(x, y) = α1,2 + β1,2n([x, y], [0,TCPP],M) (5.4.2)

From Eq. (5.4.2), we see that the probability of turning is only dependent on the (x, y) aircraft position

and is independent of the other state components. For this experiment, we set α1,2 = 0.03, β1,2 = 16π,

and M = 10m · I2, where I2 denotes the 2 × 2 identity matrix. Here α1,2 is modeling the probability that

the aircraft turns at a different point than TCP, while β1,2 models the probability that the aircraft turns at

the expected TCP. The two process noise sequences assumed in the model are zero-mean and only differ in

the choice of the process noise covariance Q, which is set to a two-dimensional diagonal matrix with equal

entries. For the straight mode (also referred to as mode 1) such entries are set to (0.3ms2 )2, and for the

maneuvering mode (also referred to as mode 2) such entries are set to (6ms2 )2. The covariance matrix of the

measurement noise is two dimensional with diagonal entries set to (100m)2 and is the same for both modes.

For the true dynamics, the process noise covariance is assumed to be a two-dimensional diagonal matrix

having both entries equal to (0.4ms2 )2. The maneuver is obtained by changing the mean of the process noise

E[wk] from time tk = 7 to tk = 9 to E[w7] = E[w9] = (6,−1.61)′m/s2 and E[w8] = (4.39,−4.39)′m/s2. At

all other times E[wk] = 0. The base set B consisted of about 700 Gaussian densities and the training set X

of about 50 points for each time step.

We compare our method with the IMM and GPB2 estimator and the reported results consist of an

average across one-hundred Monte-Carlo runs. The transition probability function used within IMM and

GPB2 is

λ(E[xk|F z
k−1]) (5.4.3)

i.e., the function λ in Eq. (5.4.2) evaluated at the state predicted at time k on the basis of the observations

F z
k−1. The results in Figures 5.5–5.6 show that our method outperforms both IMM and GPB2 in terms of

estimation accuracy. Our method has generally a better estimation performance than IMM and GPB2, with

GPB2 sometimes coming closer to our method, especially for the estimation of velocity components. This
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Figure 5.5: Coordinate-combined position estimation error
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Figure 5.6: Coordinate-combined velocity estimation error
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Figure 5.7: The number of nonzero Gaussian components used in the density approximations p̂1
k,k(x) and

p̂2
k,k(x)

may be attributed to the fact that our method always propagates more than two densities at each sampling

step, whereas the IMM always propagates only two per time step. Our method also exhibits a slightly better

tracking performance during the manouevering stage which may be explained by the fact that is considering

actual state-dependent transitions (using Eq. (5.4.2)), whereas IMM and GPB2 consider estimated state

dependent transitions (using Eq. (5.4.3)).

With respect to the computational time, our method is slower. For each Monte Carlo run, we took the

average time needed to compute the state estimate over all sampling times. We then averaged out those

times across all runs. Times are measured on a 2.20 GHz processor with 4 Gb of RAM. The times required

by IMM, GPB2 and the proposed method are, respectively, 5.0 msec, 10 msec, and 150 msec, showing that

our method is slower than IMM by a factor of 30 and slower than GPB2 by a factor of 15.
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Chapter 6

Bilateral Counterparty Risk Valuation

6.1 Introduction

It has been reported by Canabarro and Duffie (2004) that the volume of outstanding over-the-counter

derivatives has grown exponentially over the past 15 years. More specifically, market surveys conducted by

the International Swaps and Derivatives Association (ISDA) show notional amounts of outstanding interest

rate and currency swaps reaching 866 billion US dollars in 1987, 17.7 trillion US dollars in 1995, and 99.8

trillion US dollars in 2002; an astonishing compounded growth rate of 37.2% per year. Over-the-counter

contracts are traded (and privately negotiated) directly between the two parties, without going through an

exchange or other intermediary. Such contracts include, for example, credit default swaps, forward rate

agreements, and interest rate swaps see (see Brigo and Mercurio, 2006). Since they are not traded on an

exchange, there is no central clearinghouse that insures against the default risk of both parties, therefore

both parties of the contracts are exposed to counterparty risk, namely the risk that one party defaults on its

payment obligation.

Correct modeling and valuation of counterparty risk has become even more relevant in recent years as

some protection sellers such as mono-line insurers or investment banks have witnessed increasing default

probabilities or even default events, the case of Lehman Brothers being a clear example. Moreover, regula-

tory issues related to the IAS 39 framework encourage the inclusion of counterparty risk into the contract

valuation.

In this chapter we introduce a general arbitrage-free valuation framework for bilateral counterparty

default risk and assume absence of guarantees such as collateral. We call the two parties of the contract

the investor and her counterparty. By ‘bilateral’ we intend to point out that the default of the investor is

included into the framework, contrary to earlier works. This brings about symmetry, so that the price of

the position including counterparty risk to the investor is exactly the opposite of the price of the position to

the counterparty. This is clearly not the case if each of the two parties computes the present value assuming

itself to be default-free and allowing for default of the other party only. This asymmetry would not matter in

situations where financial investors had high credit quality and counterparties rather low one. Indeed, in such

a case both parties would consider the investor as default-free and the counterparty as defaultable, so that

inclusion of the investor default would be pointless, given that it happens in almost no scenario. However,
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recent events show that it is no longer realistic to take the credit quality of the financial institution for

granted and to be highly superior to that of a general counterparty, no matter how prestigious or important

the financial institution.

This chapter generalizes to the bilateral symmetric case the asymmetric unilateral setting proposed

in Brigo and Chourdakis (2008), Brigo and El-Bachir (2008), Brigo and Masetti (2005), and Brigo and

Pallavicini (2007), where only the counterparty is subject to default risk, while the investor is assumed

to be default free. We provide a general formula that gives the bilateral risk credit valuation adjustment

(BR-CVA) for portfolios exchanged between a default risky investor and a default risky counterparty. Such

formula shows that the adjustment to the investor is the difference between two discounted options terms, a

discounted call option in scenarios of early default time of the counterparty minus a discounted put option

in scenarios of early default times of the investor, both options being on the residual net present value of the

portfolio at the relevant default times and having zero strike. The BR-CVA seen from the point of view of

the counterparty is exactly the opposite. We allow for correlation between default of the investor, default of

the counterparty and underlying portfolio risk factors, and for volatilities and dynamics in the credit spreads

and in the underlying portfolio, all arbitrage free.

We then specialize our analysis to Credit Default Swaps (CDS) as underlying portfolio, generalizing the

work of Brigo and Chourdakis (2008) who deal with unilateral and asymmetric counterparty risk for these

contracts. Featuring a CDS as underlying, a third default time enters the picture, namely the default time

for the reference credit of the CDS. We therefore assume that all three entities are subject to default risk

and that the default events of investor, counterparty and reference credit are correlated. We then propose a

numerical methodology to evaluate the resulting BR-CVA formula. We investigate the impact of both credit

spread volatility and default correlation on the credit valuation adjustment. Most of previous approaches on

CDS counterparty risk only focus on unilateral counterparty risk. One exception is Duffie and Huang (1996)

who considers the bilateral setting under a much simpler static model of counterparty exposure, which is

calculated on average across a market. Moreover, most of the existing studies ignore the effect of volatility

on the adjustment and mainly focus on default correlation. Hull and White (2000) study the counterparty

risk problem by resorting to barrier correlated models. Collin-Dufresne et al. (2004) model default intensities

as deterministic constants using default indicators of other names as feeds. The need for explicitly modeling

credit spread volatility is even more pronounced in the case of CDS if the underlying reference contract is

itself a CDS, as the credit valuation adjustment would involve CDS options and it is very undesirable to

model options without volatility in the underlying asset.

We analyze the impact of credit spreads volatility and default correlation through some numerical ex-

amples and find significant sensitivity to credit spreads volatility, especially under scenarios of large default

correlation.

The rest of the chapter is organized as follows. Section 6.2 gives the general BR-CVA formula and

refers to the appendix for the mathematical proof. Section 6.3 defines the underlying framework needed for

applying the above methodology to credit default swaps, including the stochastic intensity model and the

trivariate copula function for correlating defaults. Section 6.4 develops a numerical method to implement



61

the formula in the case when the underlying contract is a CDS and gives the pseudo code of the algorithm

used to run numerical simulations. Section 6.5 present numerical experiments on different default correlation

scenarios and changes in credit spread volatility. Section 6.6 presents a specific application for computing

the mark-to-market value of a CDS contract agreed between British Airways, Lehman Brothers, and Royal

Shell.

6.2 Arbitrage-Free Valuation of Bilateral Counterparty Risk

We refer to the two names involved in the financial contract and subject to default risk as

investor → name “0”

counterparty → name “2”

In cases where the portfolio exchanged by the two parties is also a default sensitive instrument, we

introduce a third name referring to the reference credit of that portfolio

reference credit → name “1”

If the portfolio is not default sensitive then name “1” can be removed.

We denote by τ0, (τ1), and τ2, respectively the default times of the investor, (reference credit), and

counterparty. We place ourselves in a probability space (Ω,G,Gt,Q). The filtration Gt models the flow of

information of the whole market, including credit and Q is the risk neutral measure. This space is endowed

also with a right-continuous and complete sub-filtration Ft representing all the observable market quantities

but the default event, thus Ft ⊆ Gt := Ft ∨Ht. Here, Ht = σ({τ0 ≤ u}(∨{τ1 ≤ u}) ∨ {τ2 ≤ u} : u ≤ t) is

the right-continuous filtration generated by the default events, either of the investor or of his counterparty

(and of the reference credit if the underlying portfolio is credit sensitive).

Let us call T the final maturity of the payoff which we need to evaluate and let us define the stopping

time

τ = min{τ0, τ2} (6.2.1)

If τ > T , there is neither default of the investor, nor of his counterparty during the life of the contract and

they both can fulfill the agreements of the contract. On the contrary, if τ ≤ T then either the investor or her

counterparty (or both) defaults. At τ , the Net Present Value (NPV) of the residual payoff until maturity is

computed. We then distinguish two cases:

• τ = τ2. If the NPV is negative (respectively positive) for the investor (defaulted counterparty), it

is completely paid (received) by the investor (defaulted counterparty) itself. If the NPV is positive

(negative) for the investor (counterparty), only a recovery fraction REC,2 of the NPV is exchanged.

• τ = τ0. If the NPV is positive (respectively negative) for the defaulted investor (counterparty), it

is completely received (paid) by the defaulted investor (counterparty) itself. If the NPV is negative
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(positive) for the defaulted investor (counterparty), only a recovery fraction REC,0 of the NPV is

exchanged.

Let us define the following (mutually exclusive and exhaustive) events ordering the default times

A = {τ0 ≤ τ2 ≤ T} E = {T ≤ τ0 ≤ τ2}

B = {τ0 ≤ T ≤ τ2} F = {T ≤ τ2 ≤ τ0}

C = {τ2 ≤ τ0 ≤ T}

D = {τ2 ≤ T ≤ τ0} (6.2.2)

Let us call ΠD(t, T ) the discounted payoff of a generic defaultable claim at t and CASHFLOWS(u, s) the net

cash flows of the claim without default between time u and time s, discounted back at u, all payoffs seen

from the point of view of the investor. Then, we have NPV(τi) = Eτi{CASHFLOWS(τi, T )}, i = 0, 2. Let us

denote by D(t, T ) the price of a zero coupon bond with maturity T . We have

ΠD(t, T ) = 1E∪FCASHFLOWS(t, T )

+1C∪D
[
CASHFLOWS(t, τ2) +D(t, τ2)

(
REC,2 (NPV(τ2))

+ − (−NPV(τ2))
+
)]

+1A∪B
[
CASHFLOWS(t, τ0) +D(t, τ0)

(
(NPV(τ0))

+ − REC,0 (−NPV(τ0))
+
)]

(6.2.3)

This last expression is the general price of the payoff under bilateral counterparty default risk. Indeed, if

there is no early default, this expression reduces to risk neutral valuation of the payoff (first term on the

right-hand side). In case of early default of the counterparty, the payments due before default occurs are

received (second term), and then if the residual net present value is positive only the recovery value of the

counterparty REC,2 is received (third term), whereas if it is negative it is paid in full by the investor (fourth

term). In case of early default of the investor, the payments due before default occurs are received (fifth

term), and then if the residual net present value is positive it is paid in full by the counterparty to the

investor (sixth term), whereas if it is negative only the recovery value of the investor REC,0 is paid to the

counterparty (seventh term).

Let us denote by Π(t, T ) the discounted payoff for an equivalent claim with a default-free counterparty,

i.e., Π(t, T ) = CASHFLOWS(t, T ). We then have the following

Proposition 6.2.1. (General bilateral counterparty risk pricing formula). At valuation time t, and

conditional on the event {τ > t}, the price of the payoff under bilateral counterparty risk is

Et
{
ΠD(t, T )

}
= Et {Π(t, T )}

+LGD0 · Et
{
1A∪B ·D(t, τ0) · [−NPV(τ0)]

+
}

−LGD2 · Et
{
1C∪D ·D(t, τ2) · [NPV(τ2)]

+
}

(6.2.4)



63

where LGD = 1−REC is the Loss Given Default and the recovery fraction REC is assumed to be deterministic.

It is clear that the value of a defaultable claim is the value of the corresponding default-free claim plus a

long position in a put option (with zero strike) on the residual NPV giving nonzero contribution only in

scenarios where the investor is the earliest to default (and does so before final maturity) plus a short position

in a call option (with zero strike) on the residual NPV giving nonzero contribution in scenarios where the

counterparty is the earliest to default (and does so before final maturity),

Proposition 6.2.1 is stated in Brigo (2008) without a proof. Here, we provide a mathematical proof in

Appendix J. The adjustment is called bilateral counterparty risk credit valuation adjustment (BR-CVA) and

it may be either positive or negative depending on whether the counterparty is more or less likely to default

than the investor and on the volatilities and correlation. The mathematical expression is given by

BR-CVA(t, T,LGD0,1,2) = LGD2 · Et
{
1C∪D ·D(t, τ2) · [NPV(τ2)]

+
}

−LGD0 · Et
{
1A∪B ·D(t, τ0) · [−NPV(τ0)]

+
}

(6.2.5)

where the right-hand side in Eq. (6.2.5) depends on T through the events A,B,C,D, and LGD012 =

(LGD0,LGD1,LGD2) is shorthand notation to denote the dependence on the loss given defaults of the three

names.

Remark 6.2.1. (Symmetry versus Asymmetry). With respect to earlier results on counterparty risk

valuation, Eq. (6.2.5) has the great advantage of being symmetric. This is to say that if “2” were to compute

counterparty risk of her position towards “1”, she would find exactly −BR-CVA(t, T,LGD0,1,2). However, if

each party computed the adjustment by assuming itself to be default-free and considering only the default of

the other party, then the adjustment calculated by “0” would be

LGD2 · Et
{
1τ2<T ·D(t, τ2) · [NPV(τ2)]

+
}

whereas the adjustment calculated by “2” would be

LGD0 · Et
{
1τ0<T ·D(t, τ0) · [−NPV(τ0)]

+
}

and they would not be each one the opposite of the other. This means that only in the first case the two

parties agree on the value of the counterparty risk adjustment.

Remark 6.2.2. (Change in sign). Earlier results on counterparty risk valuation, concerned with a default-

free investor and asymmetric, would find an adjustment to be subtracted that is always positive. However,

in our symmetric case even if the initial adjustment is positive due to

LGD2 · Et
{
1C∪D ·D(t, τ2) · [NPV(τ2)]

+
}
> LGD0 · Et

{
1A∪B ·D(t, τ0) · [−NPV(τ0)]

+
}

the situation may change in time, to the point that the two terms may cancel or that the adjustment may
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change sign as the credit quality of “0” deteriorates and that of “2” improves, so that the inequality changes

direction.

6.3 Application to Credit Default Swaps

In this section we use the formula developed in Section 6.2 to evaluate the BR-CVA in credit default swap

contracts (CDS). Section 6.3.1 recalls the general formula for CDS evaluation. Section 6.3.2 introduces the

copula models used to correlate the default events. Section 6.3.3 recalls the CIR model used for the stochastic

intensity of the three names. Section 6.3.4 applies the general BR-CVA formula to calculate the adjustment

for CDS contracts.

6.3.1 CDS Payoff

We assume deterministic interest rates, which leads to independence between τ1 and D(0, t). Our results

hold also true for the case of stochastic rates independent of default times. The receiver CDS valuation,

for a CDS selling protection LGD1 at time 0 for default of the reference entity between times Ta and Tb in

exchange of a periodic premium rate S1 is given by

CDSa,b(0, S1,LGD1) = S1

[
−
∫ Tb

Ta

D(0, t)(t− Tγ(t)−1)dQ(τ1 > t)

+
b∑

i=a+1

αiD(0, Ti)Q(τ1 > Ti)
]

+LGD1

[∫ Tb

Ta

D(0, t)dQ(τ1 > t)

]
(6.3.1)

where γ(t) is the first payment period Tj following time t. Let us denote by

NPV(Tj , Tb) := CDSa,b(Tj , S,LGD1) (6.3.2)

the residual NPV of a receiver CDS between Ta and Tb evaluated at time Tj , with Ta < Tj < Tb. Eq.

(6.3.2) can be written similarly to Eq. (6.3.1), except that now evaluation occurs at time Tj and has to be

conditioned on the information set available to the market at Tj . This leads to

CDSa,b(Tj , S1,LGD1) = 1τ1>Tj CDSa,b(Tj , S1, LGD1)

:= 1τ1>Tj

{
S1

[
−
∫ Tb

max{Ta,Tj}
D(Tj , t)(t− Tγ(t)−1)dQ(τ1 > t|GTj )

+
b∑

i=max{a,j}+1

αiD(Tj , Ti)Q(τ1 > Ti|GTj
)
]

+LGD1

[ ∫ Tb

max{Ta,Tj}
D(Tj , t)dQ(τ1 > t|GTj )

]}
(6.3.3)
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6.3.2 Default Correlation

We consider a reduced form model that is stochastic in the default intensity for the investor, counterparty

and CDS reference credit. The default correlation between the three names is defined through a dependence

structure on the exponential random variables characterizing the default times of the three names. Such

dependence structure is modeled using a trivariate copula function. A brief overview of copula functions is

provided in Appendix I. For additional information about the subject, the reader is referred to Nelsen (2006)

and Cherubini et al. (2004).

Let us denote by λi(t) and Λi(t) =
∫ t
0
λi(s)ds, respectively, the default intensity and cumulated intensity

of name i evaluated at time t. We recall that i = 0 refers to the investor, i = 1 refers to the reference

credit and i = 2 to the counterparty. We assume λi to be independent of λj for i 6= j, and assume each of

them to be strictly positive almost everywhere, thus implying that Λi is invertible. We stress the fact that

independence of λs across names does not mean that the default event of one name does not change the

default probability or intensity of other names, as discussed in Brigo and Chourdakis (2008), Section 4. We

place ourselves in a Cox process setting, where

τi = Λ−1
i (ξi), i = 0, 1, 2 (6.3.4)

with ξ0, ξ1, and ξ2 being standard (unit-mean) exponential random variables whose associated uniforms

Ui = 1− exp{−ξi} (6.3.5)

are correlated through a Gaussian trivariate copula function

CR(u0, u1, u2) = Q(U0 < u0, U1 < u1, U2 < u2) (6.3.6)

with R = [ri,j ]i,j=0,1,2 being the correlation matrix parameterizing the Gaussian copula. Notice that a

trivariate Gaussian copula implies bivariate Gaussian marginal copulas. We show it for the case of the

bivariate copula connecting the reference credit and the counterparty, but the same argument applies to

the two other bivariate Gaussian copulas. Let (X1, X2, X3) be a standard Gaussian vector with correlation

matrix R and let ΦR be the distribution function of a multivariate Gaussian random variable with correlation

matrix R. For any pair of indices i 6= j, 0 ≤ i, j ≤ 2, we denote by Ri,j the 2 · 2 submatrix formed by the

intersection of row i and row j with column i and column j. We then have

Lemma 6.1. A trivariate Gaussian copula with correlation matrix R induces marginal bivariate Gaussian

copulas.

Proof. We prove that the bivariate Gaussian copula C1,2(u1, u2) connecting the reference credit and the

counterparty is obtained from the trivariate Gaussian copula by taking the submatrix R formed by the
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intersection of rows 1 and 2 with columns 1 and 2. We have

Q(U1 < u1, U2 < u2) = Q(U1 < u1, U2 < u2, U3 < 1)

= CR(u1, u2, 1)

= lim
b→1−

ΦR(Φ−1(u1),Φ−1(u2),Φ−1(b))

= lim
b→1−

Q(X1 < Φ−1(u1), X2 < Φ−1(u2), X3 < Φ−1(b))

= Q(X1 < Φ−1(u1), X2 < Φ−1(u2)) ·

lim
b→1−

Q(X3 < Φ−1(b)|X1 < Φ−1(u1), X2 < Φ−1(u2))

= ΦR1,2(Φ
−1(u1),Φ−1(u2))

:= C1,2(u1, u2) (6.3.7)

By a similar calculation, the bivariate copula connecting the investor and the reference credit is given by C0,1

with associated correlation matrix R0,1 and the bivariate copula connecting the investor and the counterparty

is given by C0,2 with associated correlation matrix R0,2.

6.3.3 CIR Stochastic Intensity Model

We use the CIR process (see Cox et al., 1985) to model the default intensity of the investor, reference credit

and counterparty. We do not introduce correlation between the three intensity processes, but model default

correlation through a trivariate copula function on the exponential triggers of the default times. This is

because typically spread correlation has a much lower impact on dependence of default times than default

correlation. The correlation structure underlying the trivariate copula function may be estimated by the

implied correlation in the quoted indices tranches markets such as i-Traxx and CDX or calculated from the

asset correlation of the names. We assume the following stochastic intensity model Brigo and Alfonsi (2005),

Brigo and El-Bachir (2008) for the three names

λj(t) = yj(t) + ψj(t;βj), t ≥ 0, j = 0, 1, 2 (6.3.8)

where ψ is a deterministic function, depending on the parameter vector β (which includes y0), that is

integrable on closed intervals. We assume each yj to be a Cox Ingersoll Ross (CIR) process (see Brigo and

Mercurio, 2006) given by

dyj(t) = κj(µj − yj(t))dt+ νj

√
yj(t)dZj(t) + JMt,jdMj(t), j = 0, 1, 2 (6.3.9)

where Js are i.i.d. positive jump sizes that are exponentially distributed with mean χj , and Mj are Poisson

processes with intensity mj measuring the arrival of jumps in the intensity λj . The parameter vectors are

βj = (κj , µj , νj , yj(0), χj ,mj) with each vector component being a positive deterministic constant. We relax

the condition of inaccessibility of the origin 2κjµj > ν2
j so that we do not limit the CDS implied volatility

generated by the model. We assume the Zj to be standard Brownian motion processes under the risk-neutral
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measure. We define the following integrated quantities which will be extensively used in the remainder of

the paper

Λj(t) =
∫ t

0

λj(s)ds, Yj(t) =
∫ t

0

yj(s)ds, Ψj(t;βj) =
∫ t

0

ψj(s;βj)ds (6.3.10)

Here, we focus on intensities without jumps, i.e., mj = 0. Brigo and El-Bachir (2008) consider in detail the

tractable model with jumps, and this extension will be applied in future work.

6.3.4 Bilateral Risk Credit Valuation Adjustment for Receiver CDS

We next proceed to the valuation of the BR-CVA adjustment for the case of CDS payoff given by Eq. (6.3.1).

We state the result as a proposition.

Proposition 6.3.1. The BR-CVA at time t for a receiver CDS contract (protection seller) running from

time Ta to time Tb with premium S is given by

BR-CVA-CDSa,b(t, S,LGD0,1,2) = LGD2 · Et
{
1C∪D ·D(t, τ2) ·

[
1τ1>τ2CDSa,b(τ2, S, LGD1)

]+}
−LGD0 · Et

{
1A∪B ·D(t, τ0) ·

[
−1τ1>τ0CDSa,b(τ0, S, LGD1)

]+}
(6.3.11)

Proof. We have

Et
{
1C∪D ·D(t, τ2) · [NPV(τ2)]

+
}

= Et
{
1C∪D ·D(t, τ2) · [CDSa,b(τ2, S,LGD1)]

+
}

= Et
{
1C∪D ·D(t, τ2) ·

[
1τ1>τ2CDSa,b(τ2, S,LGD1)

]+}
(6.3.12)

where the first equality in Eq. (6.3.12) follows by definition, while the last equality follows from Eq. (6.3.3).

Similarly, we have

Et
{
1A∪B ·D(t, τ0) · [−NPV(τ0)]

+
}

= Et
{
1A∪B ·D(t, τ0) · [−CDSa,b(τ0, S,LGD1)]

+
}

= Et
{
1A∪B ·D(t, τ0) ·

[
−1τ1>τ0CDSa,b(τ0, S,LGD1)

]+}
(6.3.13)

The proof follows using the expression of BR-CVA which is given by Eq. (6.2.5).

To summarize, in order to compute the counterparty risk adjustment, we determine the value of the CDS

contract on the reference credit “1”, at the point in time τ2 at which the counterparty “2” defaults. The

reference name “1” has survived this point and there is a bivariate copula C1,2 given by Eq. (6.3.7) which

connects the default times of the reference credit and the counterparty “2”. Similarly, in order to compute

the investor risk adjustment, we determine the value of the CDS contract on the reference credit “1” at the
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point in time τ0 at which the counterparty “0” defaults. The reference name “1” has survived this point and

there is a bivariate copula C0,1 given by the analogous of Eq. (6.3.7) which connects the default times of

the reference credit and the investor “0”. It is clear from Eq. (6.3.3) that the only terms we need to know

in order to compute (6.3.12) and (6.3.13) are

1τ1>τ2Q(τ1 > t|Gτ2) (6.3.14)

and

1τ1>τ0Q(τ1 > t|Gτ0) (6.3.15)

In the next section, we generalize the numerical method proposed in Brigo and Chourdakis (2008) to

calculate quantities (6.3.14) and (6.3.15) for the bilateral counterparty case.

6.4 Monte-Carlo Evaluation of the BR-CVA Adjustment

We propose a numerical method based on Monte-Carlo simulations to calculate the BR-CVA for the case of

CDS contracts. Section 6.4.1 specifies the simulation method used to generate the sample paths of the CIR

process. Section 6.4.2 gives a method to calculate (6.3.14), while Section 6.4.3 gives the complete numerical

algorithm for calculating the BR-CVA in (6.2.4).

6.4.1 Simulation of CIR Process

We use the well-known fact (see Brigo and Mercurio, 2006) that the distribution of y(t) given y(u), for some

u < t is, up to a scale factor, a noncentral chi-square distribution. More precisely, the transition law of y(t)

given y(u) can be expressed as

y(t) =
ν2(1− e−κ(t−u))

4κ
χ′d

(
4κe−κ(t−u)

ν2(1− e−κ(t−u))
y(u)

)
(6.4.1)

where

d =
4κµ
ν2

(6.4.2)

and χ′u(v) denotes a noncentral chi-square random variable with u degrees of freedom and non-centrality

parameter v. In this way, if we know y(0), we can simulate the process y(t) exactly on a discrete time grid

by sampling from the noncentral chi-square distribution.

6.4.2 Calculation of Survival Probability

We state the result in the form of a proposition. Such result will be used in Section 6.4.3 to develop a

numerical algorithm for computing the BR-CVA.
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Proposition 6.4.1.

1τ1>τ2Q(τ1 > t|Gτ2) = 1Ā + 1t<τ21τ1>τ2

∫ 1

U1

FΛ1(t)(− log(1− u1))dC1|2(u1;U2)

where

Ā = {t < τ2 < τ1}

C1|2 =
f(u, v)− f(U1, v)

1− f(U1, v)

U1 := 1− exp{−Y1(τ2)−Ψ1(τ2;β1)}

f(u, v) = Φ

Φ−1(u)− r1,2Φ−1(v)√
1− r21,2

 (6.4.3)

and FΛ1(t) denotes the cumulative distribution function of the cumulative (shifted) intensity of the CIR

process which can be retrieved inverting the characteristic function of the integrated CIR process. The proof

of the proposition is reported in Appendix K.

6.4.3 The Numerical BR-CVA Adjustment Algorithm

We give the pseudo code of the numerical algorithm used to calculate the BR-CVA for the CDS payer and

receiver. In the pseudo code below, the variable αi represents the time elapsing between payment period ti−1

and ti measured in years, the variable ∆ represents the fineness of the grid used to evaluate the integral of the

survival probability in Eq. (6.4.3) and the variable δ represents the fineness of the time grid used to evaluate

the integral in Eq. (6.3.3). The variable xmax represents the maximum x value for which the cumulative

distribution function is implied from the characteristic function. The expression CDF(xk) corresponds to a

subroutine call which calculates the cumulative distribution function at xk. This can be done by inversion

of the characteristic function of the integrated CIR process using fractional Fourier transform methods such

as in Chourdakis (2005). The inputs to the main procedure Calculate Adjustment are the number N

of Monte Carlo runs and the market quote S1 of the 5 year CDS spread of the reference entity.

6.5 Numerical Results

We consider an investor (name “0”) trading a five-years CDS contract on a reference name (name “1”)

with a counterparty (name “2”). Both the investor and the counterparty are subject to default risk. We

experiment on different levels of credit risk and credit risk volatility of the three names, which are specified

by the parameters of the CIR processes in Table 6.1. We recall that the survival probabilities associated

with a CIR intensity process are given by

Q(τi > t) := E[e−Yi(t)]

= PCIR(0, t,βi) (6.5.1)
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Algorithm 1 [BR-CVA R,BR-CVA P] = Calculate Adjustment (N, S)
for i = 1 : N do

Generate τ0, τ1, and τ2 using Eq. (6.3.5) and Eq. (6.3.6).
if τ2 < τ0 and τ2 < Tb then

if τ1 > τ2 then
[BR-CVA R 2, BR-CVA P 2] = CDSAdjust(Tγ(τ2), S, LGD1, 2)
CUM BR-CVA R = CUM BR-CVA R + LGD2· BR-CVA R 2
CUM BR-CVA P = CUM BR-CVA P + LGD2· BR-CVA P 2

end if
end if
if τ0 < τ2 and τ0 < Tb then

if τ1 > τ0 then
[BR-CVA R 0, BR-CVA P 0] = CDSAdjust(Tγ(τ0), S, LGD1, 0)
CUM BR-CVA R = CUM BR-CVA R - LGD0· BR-CVA R 0
CUM BR-CVA P = CUM BR-CVA P - LGD0· BR-CVA P 0

end if
end if

end for
BR-CVA R = CUM BR-CVA R / N
BR-CVA P = CUM BR-CVA P / N

Algorithm 2 [CDSR, CDSP ] = CDSAdjust(Tj , S, LGD1, index)
Term1 = Term2 = Term3 = 0
tstart = max(Ta, Tj)
Qprev = ComputeProb(tstart, Tj , index)
for t = tstart + δ : δ : Tb do
Qcurr = ComputeProb(t, Tj , index)
Term1 = Term1 +D(Tj , t− δ)(t− δ − Tγ(t−δ)−1)(Qcurr −Qprev)
Term3 = Term3 +D(Tj , t− δ)(Qcurr −Qprev)
Qprev = Qcurr

end for
for ti = tstart + αi : αi : Tb do
Qcurr = ComputeProb(ti, Tj , index)
Term2 = Term2 + αi ·D(Tj , ti) ·Qcurr

end for
CDSval = S · (Term2 − Term1) + LGD1 · Term3

if index == 2 then
CDSR = D(t, Tj) ·max(CDSval, 0)
CDSP = D(t, Tj) ·max(−CDSval, 0)

end if
if index == 0 then
CDSR = D(t, Tj) ·max(−CDSval, 0)
CDSP = D(t, Tj) ·max(CDSval, 0)

end if

Credit Risk Levels y(0) κ µ Credit Risk volatilities ν

low 0.0001 0.9 0.001 low 0.01
middle 0.01 0.80 0.02 middle 0.2
high 0.03 0.50 0.05 high 0.5

Table 6.1: The credit risk levels and credit risk volatilities parameterizing the CIR processes

where PCIR(0, t,βi) is the price at time 0 of a zero coupon bond maturing at time t under a stochastic interest

rate dynamics given by the CIR process with βi = (yi(0), κi, µi, νi) being the vector of CIR parameters,
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Algorithm 3 Qi = ComputeProb(t, Tj , index)
Uindex = 1− exp{−Yindex(Tj)−Ψindex(Tj ;βindex)}
Ū1 = 1− exp{−Y1(Tj)−Ψ1(Tj ;β1)}
for xk = 0 : ∆ : xmax do
pk = CDF(xk)
uk = 1− exp{−xk − ψ1(t)}
Compute fk = C1|2(uk;Uindex) using Eq. (K.0.5) and Eq. (K.0.6)

end for
Qi =

∑
(uk,pk,fk):uk>Ū1

pk(fk+1 − fk)

Maturity Low Risk Middle Risk High risk
1y 0 92 234
2y 0 104 244
3y 0 112 248
4y 1 117 250
5y 1 120 251
6y 1 122 252
7y 1 124 253
8y 1 125 253
9y 1 126 254
10y 1 127 254

Table 6.2: Break-even spreads in basis points generated using the parameters of the CIR processes in Table
6.1. The first column is generated using low credit risk and credit risk volatility. The second column is
generated using middle credit risk and credit risk volatility. The third column is generated using high credit
risk and credit risk volatility.

i = 0, 1, 2. Such price may be computed in close form (see Brigo and Mercurio, 2006) and is given by

PCIR(0, t,βi) = A(t, T )e−B(t,T )r(t) (6.5.2)

where

A(t, T ) =

[
2hie(hi+κi)(T−t)/2

2hi + (κi + hi)
(
ehi(T−t)/2 − 1

)]2κiµi

B(t, T ) =
2
(
ehi(T−t) − 1

)
2hi + (κi + hi)

(
ehi(T−t)/2 − 1

)
hi =

√
κ2
i + 2ν2

i (6.5.3)

and rt denotes the risk-free interest rate at time t. We report in Table 6.2 the break-even spreads zeroing

(6.3.3) in S, with survival probabilities given by Eq. (6.5.1) and CIR parameters βlow, βmiddle, βhigh

obtained from Table 6.1.

The evaluation time t and the starting time Ta of the CDS contract are both set to zero. The end

time Tb of the contract is set to five years. It is assumed that payments are exchanged every three months.

The loss given defaults of the low, middle, and high risk entity are, respectively, set to LGDlow = 0.6,

LGDmiddle = 0.65, LGDhigh = 0.7. We assume that the spreads in Table 6.2 are the spreads quoted in
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the markets for the three names under consideration. We recover the integrated shift Ψ(t;β) which makes

the model survival probabilities consistent with the market survival probabilities coming from Table 6.2

whenever we change the CIR parameters. In mathematical terms, for any i = 0, 1, 2, we impose that

Q(τi > t)model := E[e−Λi(t)]

= Q(τi > t)market (6.5.4)

The market survival probability for name “i” is bootstrapped from the market CDS quotes reported in

Table 6.2. Such bootstrap procedure is performed assuming a piecewise linear hazard rate function. From

the definition of the integrated process Ψj(t;βj) given in Eq. (6.3.10), we can restate Eq. (6.5.4) as

Ψi(t;βi) = log
(

E[e−Yi(t)]
Q(τi > t)market

)
= log

(
PCIR(0, t,βi)

Q(τi > t)market

)
(6.5.5)

where the last equality in Eq. (6.5.5) follows from Eq. (6.5.1). We first study a case where the quoted

market spreads of the investor has a low credit risk profile (βlow), the reference entity has high credit risk

profile (βhigh), while the counterparty has middle credit risk (βmiddle). We vary the correlation between

reference credit and counterparty as well as the credit risk volatility ν1 of the reference credit. Since the

focus is mostly on credit spreads volatility, we calculate the implied CDS volatility produced by the choice

of parameters β1 = (y0(1), µ1, κ1, ν1) for a hypothetical CDS option, maturing in one year and in case of

exercise entering into a four year CDS contract on the underlying reference credit “1”. The objective of the

experiments is to measure the impact of correlation and credit spreads volatility on the BR-CVA. The triple

(x, y, z) represents the correlation of the trivariate Gaussian copula, with x denoting the correlation between

the investor and reference credit, y denoting the correlation between the investor and the counterparty and

z denoting the correlation between the reference credit and the counterparty. The values BR-CVA P and

BR-CVA R are respectively the Monte Carlo estimates of the CDS payer and receiver counterparty risk

adjustments. The theoretical formula for payer risk adjustment is given by

LGD2 · Et

{
1C∪D ·D(t, τ2) · [−NPV(τ2)]

+
}

−LGD0 · Et

{
1A∪B ·D(t, τ0) · [NPV(τ0)]

+
}

(6.5.6)

which follows from adapting the formula in Eq. (6.2.4), given for the receiver counterparty adjustment, to

the case of the payer counterparty adjustment. Tables 6.3 and 6.4 report the results obtained.

The scenarios considered in Table 6.3 and 6.4 assume an investor with an extremely low credit risk profile

and thus are similar to those considered in Brigo and Chourdakis (2008), where the investor is assumed to

be default-free. Therefore, it is not surprising that we find similar results. Similarly to them, we can see

that as the correlation between counterparty and reference credit increases, the BR-CVA decreases, except

for large correlation values where the BR-CVA goes down. This is the case because if the reference credit
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(r01, r02, r12) Vol. parameter ν1 0.01 0.10 0.20 0.30 0.40 0.50
CDS Implied vol 1.5% 15% 28% 37% 42% 42%

(0, 0, -0.99) BR-CVA P 0.0(0.0) 0.0(0.0) -0.0(0.0) -0.0(0.0) -0.0(0.0) -0.0(0.0)

BR-CVA R 28.6(1.3) 28.8(1.3) 28.7(1.3) 28.8(1.3) 28.7(1.3) 28.7(1.3)

(0, 0, -0.90) BR-CVA P 0.0(0.0) 0.0(0.0) -0.0(0.0) -0.0(0.0) 0.0(0.0) 0.1(0.1)

BR-CVA R 28.7(1.3) 28.8(1.3) 28.7(1.3) 28.8(1.3) 28.8(1.3) 28.6(1.3)

(0, 0, -0.60) BR-CVA P 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.2(0.1) 0.2(0.1) 0.7(0.3)

BR-CVA R 26.5(1.3) 26.5(1.3) 26.0(1.3) 25.3(1.2) 24.8(1.2) 24.6(1.2)

(0, 0, -0.20) BR-CVA P 0.0(0.0) 0.4(0.1) 1.2(0.2) 2.4(0.4) 2.5(0.4) 2.2(0.4)

BR-CVA R 9.5(0.6) 9.8(0.6) 10.8(0.6) 11.4(0.7) 12.0(0.7) 12.2(0.7)

(0, 0, 0) BR-CVA P 5.7(0.3) 6.0(0.4) 6.2(0.5) 7.3(0.7) 7.1(0.8) 5.1(0.6)

BR-CVA R -0.0(0.0) 0.4(0.1) 1.8(0.2) 3.3(0.2) 4.3(0.3) 5.0(0.3)

(0, 0, 0.20) BR-CVA P 26.0(1.4) 25.5(1.4) 22.6(1.4) 19.8(1.4) 17.0(1.4) 14.5(1.3)

BR-CVA R -0.0(0.0) 0.0(0.0) 0.2(0.0) 0.4(0.0) 0.5(0.1) 0.6(0.1)

(0, 0, 0.60) BR-CVA P 76.3(4.6) 76.7(4.6) 66.6(4.1) 56.0(3.6) 48.9(3.2) 45.1(2.9)

BR-CVA R -0.0(0.0) -0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

(0, 0, 0.90) BR-CVA P 75.6(6.0) 76.5(6.0) 77.3(5.7) 65.9(5.0) 64.6(4.6) 62.6(4.4)

BR-CVA R -0.0(0.0) -0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

(0, 0, 0.99) BR-CVA P 0.0(0.0) 12.5(2.6) 40.6(4.3) 40.8(4.1) 54.9(4.5) 62.0(4.7)

BR-CVA R -0.0(0.0) -0.0(0.0) 0.0(0.0) 0.1(0.0) 0.1(0.0) 0.0(0.0)

Table 6.3: BR-CVA in basis points for the case when ν2 = 0.01 and ν0 = 0.01; numbers within round
brackets represent the Monte-Carlo standard error. The CDS contract on the reference credit has a five-
years maturity.

(r01, r02, r12) Vol. parameter ν1 0.01 0.10 0.20 0.30 0.40 0.50
CDS Implied vol 1.5% 15% 28% 37% 42% 42%

(0, 0, -0.99) BR-CVA P 0.0(0.0) 0.0(0.0) -0.0(0.0) -0.0(0.0) -0.0(0.0) 0.1(0.1)

BR-CVA R 29.0(1.3) 28.7(1.3) 28.1(1.3) 28.8(1.3) 28.3(1.3) 29.1(1.3)

(0, 0, -0.90) BR-CVA P 0.0(0.0) 0.0(0.0) -0.0(0.0) -0.0(0.0) 0.1(0.1) 0.0(0.0)

BR-CVA R 29.8(1.4) 28.0(1.3) 27.7(1.3) 28.7(1.3) 27.6(1.3) 28.4(1.3)

(0, 0, -0.60) BR-CVA P 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.3(0.1) 0.4(0.2) 0.5(0.2)

BR-CVA R 27.1(1.3) 24.8(1.2) 25.8(1.2) 24.6(1.2) 23.7(1.2) 24.1(1.2)

(0, 0, -0.20) BR-CVA P 0.0(0.0) 0.5(0.1) 1.7(0.3) 2.0(0.3) 3.1(0.5) 2.7(0.4)

BR-CVA R 9.3(0.6) 9.5(0.6) 10.9(0.6) 11.1(0.6) 11.3(0.7) 12.0(0.7)

(0, 0, 0) BR-CVA P 6.3(0.3) 5.3(0.4) 6.7(0.6) 6.7(0.7) 6.6(0.8) 6.0(0.7)

BR-CVA R -0.0(0.0) 0.3(0.0) 2.2(0.2) 3.4(0.2) 4.1(0.3) 4.9(0.3)

(0, 0, 0.20) BR-CVA P 25.8(1.4) 23.5(1.4) 21.3(1.3) 19.2(1.4) 16.8(1.4) 14.1(1.2)

BR-CVA R -0.0(0.0) -0.0(0.0) 0.3(0.0) 0.5(0.1) 0.7(0.1) 0.7(0.1)

(0, 0, 0.60) BR-CVA P 71.9(4.4) 70.2(4.4) 65.2(4.1) 55.1(3.6) 46.4(3.1) 42.4(2.9)

BR-CVA R -0.0(0.0) -0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

(0, 0, 0.90) BR-CVA P 77.3(5.9) 82.6(6.2) 77.9(5.8) 66.4(5.0) 63.6(4.5) 61.9(4.3)

BR-CVA R -0.0(0.0) -0.0(0.0) 0.0(0.0) 0.1(0.0) 0.0(0.0) 0.0(0.0)

(0, 0, 0.99) BR-CVA P 43.0(4.8) 49.8(5.1) 56.1(5.2) 50.2(4.5) 57.7(4.5) 62.3(4.7)

BR-CVA R 0.0(0.0) 0.1(0.0) 0.2(0.1) 0.3(0.1) 0.3(0.1) 0.3(0.1)

Table 6.4: BR-CVA in basis points for the case when ν2 = 0.2 and ν0 = 0.01; numbers within round brackets
represent the Monte-Carlo standard error. The CDS contract on the reference credit has a five-years maturity.
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(r01, r02, r12) Base Scenario Risky Counterparty Risky Investor Risky Ref Safe Ref

(0, 0, 0) 6.2(0.4) 3.6(0.2) -0.8(0.1) -0.0(0.0) 5.5(0.4)

(0, 0, 0.1) 15.1(0.9) 11.9(0.5) -0.7(0.1) 0.0(0.0) 13.8(0.8)

(0, 0, 0.3) 36.6(2.1) 35.1(1.4) -0.5(0.2) 0.2(0.0) 35.0(2.0)

(0, 0, 0.6) 72.7(4.4) 88.2(3.8) -0.8(0.0) 0.7(0.1) 69.7(4.4)

(0, 0, 0.9) 75.2(5.9) 194.2(8.2) -0.8(0.0) 1.4(0.4) 71.0(5.8)

(0, 0, 0.99) 25.3(3.7) 281.2(11.5) -0.8(0.0) 1.9(0.7) 19.6(3.3)

(0, 0.1, 0) 5.9(0.4) 3.5(0.2) -0.8(0.1) -0.0(0.0) 5.0(0.4)

(0, 0.3, 0) 6.2(0.4) 3.5(0.2) -0.8(0.0) -0.0(0.0) 5.1(0.4)

(0, 0.6, 0) 5.9(0.4) 3.2(0.2) -0.8(0.0) -0.0(0.0) 4.4(0.3)

(0, 0.9, 0) 5.2(0.3) 3.4(0.2) -0.8(0.0) -0.0(0.0) 4.0(0.3)

(0, 0.99, 0) 5.1(0.3) 3.2(0.2) -0.8(0.0) -0.0(0.0) 3.5(0.3)

(0.1, 0, 0) 6.1(0.4) 3.6(0.2) -0.1(0.0) 0.0(0.0) 5.8(0.4)

(0.3, 0, 0) 6.2(0.4) 3.6(0.2) -0.0(0.0) 0.0(0.0) 5.8(0.4)

(0.6, 0, 0) 6.0(0.4) 3.6(0.2) 0.0(0.0) 0.0(0.0) 5.8(0.4)

(0.9, 0, 0) 6.0(0.4) 3.6(0.2) -0.0(0.0) -0.1(0.0) 6.0(0.4)

(0.99, 0, 0) 6.2(0.4) 3.6(0.2) -1.7(0.1) -0.1(0.0) 6.1(0.4)

Table 6.5: BR-CVA under five different riskiness scenarios. The CIR volatilities are set to ν0 = ν1 = ν2 = 0.1.
The correlation triple has only one nonzero entry

and the counterparty are 99% correlated, then the exponential triggers ξ1 and ξ2 are almost identical; if we

consider the scenario where ν1 = ν2 = 0.01, then the intensity of both processes are almost deterministic,

with λ1 > λ2 having the name “1” high credit risk and name “2” middle credit risk. Thus, to a first

approximation τ1 = ξ1
λ1

is higher than τ2 = ξ2
λ2

, and consequently the reference credit always defaults before

the counterparty, resulting in no adjustment. Table 6.4 has qualitatively a similar behavior although the

larger value of the counterparty volatility ν2 = 0.2 tends to smooth out the negligible BR-CVA obtained

in Table 6.3 for small values of reference credit volatility and high default correlation between counterparty

and reference credit.

Tables 6.5, 6.6 and 6.7 report the BR-CVA adjustments for the Payer CDS under a set of five different

riskiness scenarios. The assignments of credit risks in Table 6.1 to the three names determine the scenario

in place. We have:

• Scenario 1 (Base Scenario). The investor has low credit risk, the reference entity has high credit risk,

the counterparty has middle credit risk

• Scenario 2 (Risky Counterparty). The investor has low credit risk, the reference entity has middle

credit risk and the counterparty has high credit risk.

• Scenario 3 (Risky Investor). The counterparty has low credit risk, the reference entity has middle

credit risk, while the investor has high credit risk.

• Scenario 4 (Risky Reference entity). Both investor and counteparty have middle credit risk, while the

reference entity has high credit risk.

• Scenario 5 (Safe Reference entity). Both investor and counterparty have high credit risk, while the

reference entity has low credit risk.
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(r01, r02, r12) Base Scenario Risky Counterparty Risky Investor Risky Ref Safe Ref

(0, 0.5, 0.5) 54.8(3.5) 62.7(2.8) -0.6(0.2) 0.5(0.0) 47.8(3.3)

(0, 0.2, 0.9) 72.9(5.8) 183.0(8.0) -0.8(0.0) 1.3(0.4) 64.5(5.6)

(0, 0.9, 0.2) 21.0(1.3) 20.3(0.8) -0.8(0.0) 0.1(0.0) 15.2(1.2)

(0.5, 0, 0.5) 64.3(3.7) 67.9(2.9) -0.0(0.0) 0.6(0.0) 61.7(3.7)

(0.2, 0, 0.9) 81.8(6.2) 193.4(8.2) -0.1(0.0) 1.5(0.4) 79.8(6.1)

(0.9, 0, 0.2) 27.0(1.5) 23.4(0.9) 0.0(0.1) 0.1(0.0) 26.3(1.4)

(0.5, 0.5, 0) 6.6(0.4) 3.4(0.2) -0.0(0.0) 0.0(0.0) 6.2(0.4)

(0.2, 0.9, 0) 5.5(0.3) 3.5(0.2) -0.1(0.0) 0.0(0.0) 4.3(0.3)

(0.9, 0.2, 0) 7.0(0.4) 3.5(0.2) -0.0(0.0) -0.0(0.0) 6.1(0.4)

Table 6.6: BR-CVA under five different riskiness scenarios. The CIR volatilities are set to ν0 = ν1 = ν2 = 0.1.
The correlation triple has two nonzero entries

(r01, r02, r12) Base Scenario Risky Counterparty Risky Investor Risky Ref Safe Ref

(0.8, 0.5, 0.2) 25.9(1.4) 23.3(0.9) 0.2(0.1) 0.1(0.0) 25.1(1.4)

(0.8, 0.2, 0.5) 60.9(3.6) 65.9(2.9) 0.3(0.2) 0.5(0.0) 60.1(3.6)

(0.5, 0.8, 0.2) 24.1(1.4) 22.5(0.9) 0.0(0.1) 0.1(0.0) 19.9(1.3)

(0.5, 0.2, 0.8) 89.0(6.0) 142.3(6.2) -0.0(0.0) 1.1(0.2) 84.0(5.8)

(0.2, 0.5, 0.8) 75.1(5.5) 133.1(6.0) -0.1(0.0) 0.9(0.2) 62.2(5.1)

(0.2, 0.8, 0.5) 51.7(3.4) 59.3(2.7) -0.1(0.0) 0.4(0.0) 38.5(3.0)

(0.2, 0.2, 0.2) 25.2(1.4) 22.5(0.9) 0.1(0.1) 0.1(0.0) 22.8(1.3)

(0.5, 0.5, 0.5) 58.2(3.6) 64.4(2.8) 0.4(0.3) 0.5(0.0) 53.7(3.5)

(0.8, 0.8, 0.8) 79.5(5.7) 132.0(6.0) -0.0(0.0) 0.8(0.2) 69.8(5.3)

Table 6.7: BR-CVA under five different riskiness scenarios. The CIR volatilities are set to ν0 = ν1 = ν2 = 0.1.
The correlation triple has all nonzero entries

Tables 6.5, 6.6, and 6.7 show the important role played by default correlation. For example, if one looks

at the second column of those tables, one notices that as the correlation between counterparty and reference

credit gets larger, the BR-CVA increases due to the copula contagion coming from the default of the reference

credit and to the large riskiness level of the counterparty. If the only correlation is between reference credit

and counterparty, then the adjustment is the largest, while when correlation starts manifesting also between

all other pairs (see second column of Tables 6.6 and 6.7), then the adjustment tends to decrease, since the

default contagion induced by investor tends to reduce the number of times when the risky counterparty is

the earliest to default.

An interesting pattern emerges from the first two columns and five rows of Table 6.5. Although the

counterparty is riskier in Scenario 2, we have that the copula contagion effect starts kicking in as the

correlation becomes larger than 60% and makes the BR-CVA adjustment in Scenario 2 significantly larger

than the corresponding adjustment in Scenario 1. Unlikely from Tables 6.3 and 6.4, we see that low credit

risk volatility values have the opposite effect and amplify the adjustment; this is because for 99% correlation

between reference credit and counterparty, we now have that the counterparty always defaulting earlier is

riskier.

Consistently with the results in Table 6.3 and 6.4, no BR-CVA takes place in scenario Risky Reference

Entity due to the fact that the reference entity has the highest credit risk profile and being the credit risk

volatilities of the three names relatively low (0.1), the reference entity always tends to be the first to default,

thus resulting in no adjustment taking place.
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6.6 Application to a Market Scenario

We apply the methodology to calculate the mark-to-market price of a five-year CDS contract between British

Airways (counterparty) and Lehman Brothers (investor) on the default of Royal Dutch Shell (reference

credit). We consider two CDS contracts. In the first contract Lehman Brothers buys 5-year protection

on Shell from British Airways on January 5, 2006. In the second contract, Lehman Brothers sells 5-year

protection on Shell to British Airways on January 5, 2006. In both contracts, British Airways computes the

mark-to-market value of the contract on May 1, 2008. We consider different correlation scenarios among the

three names. The CDS quotes of the three names on those dates are reported in Tables 6.8 and 6.9.

Maturity Royal Dutch Shell Lehman Brothers British Airways
1y 4 6.8 10
2y 5.8 10.2 23.2
3y 7.8 14.4 50.6
4y 10.1 18.7 80.2
5y 11.7 23.2 110
6y 15.8 27.3.3 129.5
7y 19.4 30.5 142.8
8y 20.5 33.7 153.6
9y 21 36.5 162.1
10y 21.4 38.6 168.8

Table 6.8: Market spread quotes in basis points for Royal Dutch Shell, Lehman Brothers, and British Airways
on January 5, 2006

Maturity Royal Dutch Shell Lehman Brothers British Airways
1y 24 203 151
2y 24.6 188.5 230
3y 26.4 166.75 275
4y 28.5 152.25 305
5y 30 145 335
6y 32.1 136.3 342
7y 33.6 130 347
8y 35.1 125.8 350.6
9y 36.3 122.6 353.3
10y 37.2 120 355.5

Table 6.9: Market spread quotes in basis points for Royal Dutch Shell, Lehman Brothers and British Airways
on May 1, 2008

The procedure used for the mark-to-market value valuation is detailed next:

(a) We take the CDS quotes of British Airways, Lehman Brothers, and Royal Dutch Shell on January 5,

2006, and calibrate the parameters of the CIR processes associated to the three names assuming zero

shift and inaccessibility of the origin. The results obtained from the calibration are reported in Table

6.10.

(b) We calculate the value of the five year risk-adjusted CDS contract starting at Ta = January 5, 2006,
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Credit Risk Levels y(0) κ µ Credit Risk volatilities ν

Lehman Brothers (name “0”) 0.0001 0.036 0.0432 low 0.0553
Royal Dutch Shell (name “1”) 0.0001 0.0394 0.0219 middle 0.0192
British Airways (name “2”) 0.00002 0.0266 0.2582 high 0.0003

Table 6.10: The CIR parameters of Lehman Brothers, Royal Dutch Shell, and British Airways calibrated to
the market quotes of CDS on January 5, 2006

and ending five years later at Tb = January 5, 2011, as

CDSDa,b(Ta, S1,LGD0,1,2) = CDSa,b(Ta, S1,LGD1)− BR-CVA-CDSa,b(Ta, S1,LGD0,1,2) (6.6.1)

where S1 = 120 bps is the five-year spread quote of Royal Dutch Shell at time Ta, CDSa,b(Ta, S1,LGD1)

is the value of the equivalent CDS contract which does not account for counterparty risk given by Eq.

(6.3.1), and the loss given default of the three names are taken from a market provider and equal to

0.6.

(c) Let Tc = May 1, 2008, be the time at which British Airways calculates the mark to market value of the

CDS contract. We keep the CIR parameters of British Airways, and Royal Dutch Shell at the same

values calibrated in (a). We vary the volatility of the CIR process associated to Lehman Brothers,

while keeping the other parameters fixed. We take the market CDS quotes of Lehman Brothers, British

Airways and Royal Dutch Shell and recompute the shift process as

Ψi(t;βi) = log
(

E[e−Yi(t) ]
Q(τi > t)market

)
= log

(
PCIR(0, t,βi)

Q(τi > t)market

)
(6.6.2)

for any Tc < t < Td, where Td = May 1, 2013. Here the market survival probabilities Q(τi > t)market,

are stripped from the CDS quotes of the three names at the date, May, 1, 2008, using a piece-wise linear

hazard rate function. We compute the value CDSDc,d(Tc, S1,LGD1) of a risk- adjusted CDS contract

starting at Tc and maturing at Td, where the five year running spread premium, as well as the loss

given defaults of the three parties, are the same as in Ta. We have

CDSDc,d(Tc, S1,LGD0,1,2) = CDSc,d(Tc, S1,LGD1)− BR-CVA-CDSc,d(Tc, S1,LGD0,1,2) (6.6.3)

where CDSc,d(Tc, S1,LGD1) is the value of the equivalent CDS contract which does not account for

counterparty risk, and BR-CVA-CDSc,d(Tc, S1,LGD1) is the adjustment for the period [Tc, Td] calcu-

lated at time Tc.

(d) We calculate the mark-to-market value of the CDS contract as follows:

MTMa,c(S1,LGD0,1,2) = CDSDc,d(Tc, S1,LGD0,1,2)−
CDSDa,b(Ta, S1,LGD0,1,2)

D(Ta, Tc)
(6.6.4)
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Table 6.11 reports the MTM value of the CDS contract between British Airways and Lehman Brothers on

default of Royal Dutch Shell under a number of correlation scenarios. The CDS contract agreed on January

5, 2006, is marked to market on May, 1, 2008 by British Airways using the four-step procedure described

above. We check the effect of the increasing riskiness of Lehman Brothers by varying the volatility of the

CIR process associated to Lehman. Table 6.11 reveals large sensitivity of the BR-CVA to default correlation

(r01, r02, r12) Vol νLeh 0.01 0.10 0.20 0.30 0.40 0.50
CDS Implied vol 1.5% 15% 28% 37% 42% 42%

(-0.3, -0.1, 0.7) (LEH Pay, BAB Rec) -56.0(5.6) -55.7(5.7) -55.6(5.6) -55.6(5.6) -55.8(5.6) -55.6(5.7)
(BAB Pay, LEH Rec) 84.2(0.0) 84.2(0.0) 84.2(0.0) 84.2(0.0) 84.2(0.0) 84.2(0.0)

(-0.1, -0.3, 0.8) (LEH Pay, BAB Rec) -41.6(9.1) -41.7(9.1) -41.7(9.1) -41.6(9.1) -41.7(9.1) -41.6(9.1)
(BAB Pay, LEH Rec) 83.8(0.1) 83.8(0.1) 83.8(0.1) 83.7(0.1) 83.8(0.1) 83.8(0.1)

(0, 0, -0.5) (LEH Pay, BAB Rec) -84.2(0.0) -84.2(0.0) -84.2(0.0) -84.2(0.0) -84.2(0.0) -84.2(0.0)
(BAB Pay, LEH Rec) 86.3(0.5) 86.3(0.5) 86.2(0.5) 86.2(0.5) 86.2(0.5) 86.2(0.5)

(0, 0, 0.6) (LEH Pay, BAB Rec) -62.2(3.9) -62.4(3.9) -62.4(3.9) -62.3(3.9) -62.6(3.9) -62.3(3.9)
(BAB Pay, LEH Rec) 82.8(0.2) 82.8(0.2) 82.7(0.2) 82.7(0.2) 82.7(0.2) 82.7(0.2)

(0, 0, 0.9) (LEH Pay, BAB Rec) -32.4(10.9) -31.7(10.9) -31.4(10.9) -31.6(10.9) -32.8(10.9) -32.5(10.9)
(BAB Pay, LEH Rec) 82.9(0.2) 82.8(0.2) 82.8(0.2) 82.8(0.2) 82.8(0.2) 82.8(0.2)

(0, 0.7, 0) (LEH Pay, BAB Rec) -81.9(0.3) -82.0(0.3) -82.0(0.3) -82.0(0.3) -82.0(0.3) -82.0(0.3)
(BAB Pay, LEH Rec) 83.1(0.2) 83.1(0.2) 83.0(0.2) 83.0(0.2) 82.9(0.2) 83.0(0.2)

(0, 0.7, 0.7) (LEH Pay, BAB Rec) -53.9(6.8) -54.0(6.8) -53.4(6.8) -53.7(6.8) -53.6(6.8) -54.1(6.8)
(BAB Pay, LEH Rec) 83.0(0.2) 83.0(0.2) 83.0(0.2) 82.9(0.2) 83.0(0.2) 83.0(0.2)

(0.1, 0.3, 0.8) (LEH Pay, BAB Rec) -54.6(6.4) -53.6(6.6) -54.5(6.4) -53.6(6.6) -53.8(6.6) -53.7(6.6)
(BAB Pay, LEH Rec) 81.5(0.5) 81.5(0.5) 81.4(0.5) 81.4(0.5) 81.5(0.5) 81.4(0.5)

(0.25, 0.25, 0.9) (LEH Pay, BAB Rec) -39.5(10.8) -39.0(10.9) -38.6(10.9) -38.8(10.9) -40.3(10.8) -39.7(10.8)
(BAB Pay, LEH Rec) 79.0(1.0) 79.0(1.0) 78.9(1.0) 78.9(1.0) 78.9(1.0) 78.9(1.0)

(0.3, 0.1, 0.7) (LEH Pay, BAB Rec) -58.7(4.6) -59.1(4.6) -58.9(4.6) -58.9(4.6) -59.3(4.6) -58.8(4.6)
(BAB Pay, LEH Rec) 77.9(1.2) 77.9(1.2) 77.8(1.2) 77.9(1.2) 77.9(1.2) 77.8(1.2)

(0.5, 0.5, 0.5) (LEH Pay, BAB Rec) -68.7(2.7) -68.8(2.7) -68.7(2.7) -68.8(2.7) -69.0(2.7) -68.9(2.7)
(BAB Pay, LEH Rec) 74.0(2.3) 74.0(2.3) 73.9(2.3) 74.1(2.3) 73.9(2.3) 73.9(2.3)

(0.7, 0, 0) (LEH Pay, BAB Rec) -81.3(0.3) -81.3(0.3) -81.3(0.3) -81.4(0.3) -81.2(0.3) -81.3(0.3)
(BAB Pay, LEH Rec) 63.9(4.4) 64.0(4.4) 63.8(4.4) 64.2(4.4) 64.0(4.4) 63.9(4.4)

(0.7, 0, 0.7) (LEH Pay, BAB Rec) -49.6(6.5) -49.6(6.5) -49.6(6.5) -49.8(6.5) -50.0(6.5) -49.8(6.5)
(BAB Pay, LEH Rec) 63.4(4.4) 63.5(4.4) 63.3(4.4) 63.8(4.4) 63.4(4.4) 63.4(4.4)

(0.9, 0.9, 0.9) (LEH Pay, BAB Rec) -44.6(9.1) -44.8(9.0) -44.5(9.1) -44.7(9.1) -44.4(9.1) -44.7(9.1)
(BAB Pay, LEH Rec) 53.5(7.1) 53.4(7.1) 53.6(7.1) 53.8(7.1) 54.1(7.0) 53.8(7.1)

Table 6.11: Value of the CDS contract between British Airways and Lehman Brothers on default of Royal
Dutch Shell agreed on January 5, 2006, and marked to market by British Airways on May 1, 2008. The pairs
(LEH Pay, BAB Rec) and (BAB Pay, LEH Rec) denote respectively the mark-to-market value when British
Airways is the CDS receiver and CDS payer. The mark-to-market value of the CDS contract without risk
adjustment when British Airways is respectively payer (receiver) is 84.2(-84.2) bps, due to the widening of
the CDS spread curve of Royal Dutch Shell.

and very small sensitivity to credit risk volatility of Lehman.

When Lehman is negatively correlated or uncorrelated with Royal Dutch Shell and British Airways,

which are instead positively correlated, then the likelihood of Lehman being the first to default tends to

decrease. Moreover, the value of the CDS contract at the default time is very likely to be negative because

of the copula contagion effect of Royal Dutch Shell on British Airways and of the increased five-year spread

quotes of Shell. Therefore, when Lehman is the CDS receiver, the above considerations and Eq. (6.2.4) show

that the Lehman BR-CVA becomes negligible and consequently the mark-to-market value of the contract

equals its non-risk-adjusted counterpart. Conversely, when Lehman is the payer, then the default of British

Airways is associated with a positive CDS contract value for Lehman at the default time. Eq. (6.2.4)

thus implies that the value of the CDS contract for the investor Lehman gets reduced and consequently the

mark-to-market value of the CDS contract for British Airways gets increased.

We next invert the role of Lehman Brothers and Royal Dutch Shell, hence Royal Dutch Shell becomes

the investor and Lehman Brothers the reference entity. This is a natural case to examine in that the CVA
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entails an option on the underlying asset, i.e., an option on the Lehman CDS now. Since a CDS option

depends strongly on the spread volatility, we are now able to examine this aspect directly.

We consider the following two CDS contracts. In the first contract Royal Dutch Shell buys 5 year

protection on Lehman from British Airways on January 5, 2006. In the second contract, Royal Dutch Shell

sells 5 year protection on Lehman to British Airways on January 5, 2006. As in the earlier case, British

Airways computes the mark-to-market value of the two CDS contracts on May 1, 2008.

We consider again the effect of Lehman’s volatility on the mark-to-market value of the CDS contract for

British Airways on May 1, 2008, under the same correlation scenarios as above. The results are reported in

Table 6.12.

(r01, r02, r12) Vol νLeh 0.01 0.10 0.20 0.30 0.40 0.50
CDS Implied vol 1.5% 15% 28% 37% 42% 42%

(-0.3, -0.1, 0.7) (RDSPLC Pay, BAB Rec) -448.5(11.9) -433.6(13.2) -422.6(14.1) -403.7(15.7) -387.1(16.6) -364.1(17.8)
(BAB Pay, RDSPLC Rec) 527.0(0.7) 526.3(1.0) 525.2(1.2) 524.9(1.3) 523.5(1.6) 522.0(2.1)

(-0.1, -0.3, 0.8) (RDSPLC Pay, BAB Rec) -440.3(12.6) -427.1(13.9) -417.3(14.7) -393.2(16.7) -381.2(17.2) -352.7(18.9)
(BAB Pay, RDSPLC Rec) 528.6(0.2) 528.3(0.3) 527.6(0.5) 527.4(0.5) 526.5(0.7) 525.4(1.0)

(0, 0, -0.5) (RDSPLC Pay, BAB Rec) -502.0(3.4) -495.7(4.1) -486.7(4.8) -473.2(5.9) -460.7(6.8) -440.7(8.5)
(BAB Pay, RDSPLC Rec) 526.2(1.2) 525.4(1.7) 525.2(1.7) 524.5(1.9) 523.5(2.3) 522.6(2.6)

(0, 0, 0.6) (RDSPLC Pay, BAB Rec) -529.2(0.0) -529.0(0.1) -528.1(0.4) -527.0(1.0) -524.3(0.8) -513.6(2.0)
(BAB Pay, RDSPLC Rec) 534.2(0.5) 533.2(0.6) 531.8(0.7) 530.2(0.6) 528.1(0.8) 526.8(1.2)

(0, 0, 0.9) (RDSPLC Pay, BAB Rec) -523.6(0.5) -519.8(1.0) -514.9(1.4) -510.1(1.6) -500.4(2.5) -489.7(3.1)
(BAB Pay, RDSPLC Rec) 529.0(0.1) 528.8(0.1) 528.7(0.2) 528.4(0.3) 527.9(0.5) 527.4(0.7)

(0, 0.7, 0) (RDSPLC Pay, BAB Rec) -485.6(6.2) -476.5(7.0) -466.1(8.0) -450.8(9.5) -434.9(10.7) -417.7(11.7)
(BAB Pay, RDSPLC Rec) 528.9(0.1) 528.6(0.3) 528.4(0.3) 528.2(0.4) 527.7(0.6) 527.1(0.8)

(0, 0.7, 0.7) (RDSPLC Pay, BAB Rec) -523.6(0.5) -520.1(0.8) -514.6(1.4) -508.7(1.8) -499.9(2.3) -488.5(3.0)
(BAB Pay, RDSPLC Rec) 521.3(3.0) 519.7(3.7) 518.8(3.8) 518.1(4.1) 516.6(4.6) 515.3(5.0)

(0.1, 0.3, 0.8) (RDSPLC Pay, BAB Rec) -459.7(9.2) -447.5(10.3) -436.1(11.5) -415.1(13.2) -399.3(14.1) -374.0(15.8)
(BAB Pay, RDSPLC Rec) 529.1(0.0) 528.8(0.1) 528.3(0.3) 528.1(0.3) 527.4(0.4) 526.2(0.8)

(0.25, 0.25, 0.9) (RDSPLC Pay, BAB Rec) -473.5(8.1) -463.7(9.2) -453.3(10.0) -436.6(11.6) -421.2(12.6) -398.2(14.1)
(BAB Pay, RDSPLC Rec) 528.1(0.3) 527.6(0.5) 526.9(0.7) 526.6(0.7) 525.6(1.0) 524.4(1.4)

(0.3, 0.1, 0.7) (RDSPLC Pay, BAB Rec) -481.6(6.3) -472.6(7.2) -461.5(8.2) -443.4(10.2) -430.2(10.6) -408.2(12.2)
(BAB Pay, RDSPLC Rec) 529.2(0.0) 529.2(0.0) 529.1(0.1) 529.1(0.0) 528.8(0.1) 527.8(0.4)

(0.5, 0.5, 0.5) (RDSPLC Pay, BAB Rec) -481.3(6.4) -471.3(7.3) -459.7(8.3) -445.3(9.7) -429.6(10.7) -407.2(12.2)
(BAB Pay, RDSPLC Rec) 526.5(0.8) 525.7(1.2) 524.5(1.5) 524.1(1.5) 522.6(1.9) 521.0(2.3)

(0.7, 0, 0) (RDSPLC Pay, BAB Rec) -484.2(6.1) -474.1(6.9) -463.6(8.1) -449.9(9.1) -429.0(11.3) -415.8(11.6)
(BAB Pay, RDSPLC Rec) 520.8(3.0) 519.0(3.8) 518.0(3.9) 517.0(4.2) 515.2(4.8) 513.6(5.2)

(0.7, 0, 0.7) (RDSPLC Pay, BAB Rec) -434.9(12.5) -418.9(14.0) -403.7(15.1) -384.4(16.5) -362.5(17.7) -338.6(19.3)
(BAB Pay, RDSPLC Rec) 528.0(1.2) 528.0(1.2) 528.0(1.2) 528.0(1.2) 528.0(1.2) 528.0(1.2)

(0.9, 0.9, 0.9) (RDSPLC Pay, BAB Rec) -495.6(4.0) -487.8(4.7) -479.0(5.4) -458.5(7.7) -448.5(7.6) -430.4(8.9)
(BAB Pay, RDSPLC Rec) 529.2(0.0) 529.2(0.0) 529.1(0.0) 529.2(0.0) 529.2(0.0) 528.0(0.4)

Table 6.12: Value of the CDS contract between British Airways and Royal Dutch Shell on default of Lehman
Brothers agreed on January 5, 2006, and marked to market by British Airways on May 1, 2008. The pairs
(RDSPLC Pay, BAB Rec) and (BAB Pay, RDSPLC Rec) denote respectively the mark-to-market value
when British Airways is the CDS receiver and CDS payer. The mark-to-market value of the CDS contract
without risk adjustment when British Airways is respectively payer (receiver) is 529(-529) bps, due to the
widening of the CDS spread curve of Lehman Brothers.

Unlike the previous case, we observe significant sensitivity of the BR-CVA to both correlation and credit

spread volatility of the reference entity Lehman when BA is the CDS receiver. The widening of the CDS

curve of Lehman makes the value of the CDS contract negative for the receiver BA. However, the highest

default rate of BA, given by the widening of its CDS curve, translates into a negative adjustment for the

investor Royal Shell (whose CDS contract value is positive) as seen from Eq. (6.2.4), and consequently into

an increasing mark-to-market value of the CDS contract for BA.

As the riskness of Lehman increases (larger CIR Lehman volatilities), we can see from Table 6.12 that

the value of the CDS contract for British Airways increases. This is a consequence of our formula in Eq.

(6.2.4) which shows that the adjustment involves a short position in a call option on the residual net value
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of the Lehman CDS portfolio evaluated at the time when BA defaults and a long position in a default put

option on the residual net value of the Lehman CDS portfolio evaluated at the time when Shell defaults.

Given that options increase with volatility and that the event of BA defaulting is more likely than the event

of Shell defaulting because of the wider BA CDS term structure, we have that the short position in the call

option is the driving factor of the adjustment, and it lowers the value of the risk-adjusted CDS contract for

Shell as the underlying Lehman CIR volatility increases.

6.7 Conclusions

In this chapter we have provided a general arbitrage-free framework for calculating the bilateral counterparty

credit valuation adjustment (BR-CVA) for payoffs exchanged between two parties, an investor and her

counterparty. First, we have provided a general formula for computing the BR-CVA of financial contracts

which are traded over-the-counter. Then, we have specialized our analysis to the case where also the

underlying portfolio is sensitive to a third credit event, and in particular to the case where the underlying

portfolio is a credit default swap on a third entity. We have then developed a Monte-Carlo numerical scheme

to evaluate the formula and thus compute the BR-CVA in the specific case of credit default swap contracts.

The Monte-Carlo scheme combines Fourier transform methods with filtration switching formulas and provides

an efficient algorithm for numerically evaluating the adjustment. We have provided a case study in Section

6.5, and experimented with different levels of credit risk and credit risk volatilities of the three names as

well as with different scenarios of default correlation. The results obtained confirm that the adjustment

is sensitive to both default correlation and credit spreads volatility, having richly structured patterns that

cannot be captured by rough multipliers. This points out that attempting to adapting the capital adequacy

methodology (Basel II) to evaluating wrong-way risk by means of rough multipliers is not feasible. Our

analysis confirms that also in the bilateral-symmetric case, wrong-way risk —namely the supplementary risk

that one undergoes when the correlation assumes the worst possible value— has a structured pattern that

cannot be captured by simple multipliers applied to the zero correlation case.
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Chapter 7

Conclusions

7.1 Concluding Remarks

This thesis extends the credit risk literature along two main directions

• Credit Risk Modeling: It proposes a new credit risk framework for modeling deliberate distortion of

the reported firm’s asset values. The distortion is applied by insiders of the firm such as managers,

and is not directly observable by the outside market which can only infer it from available data. The

amount of distortion depends on the current performance of the firm and it also has implications on

the future management of the firm.

• Counterparty risk valuation: It provides a general framework for calculating the bilateral counterparty

credit valuation adjustment (BR-CVA) for payoffs exchanged between two parties, an investor and her

counterparty, both bearing risk of default.

After an introduction to credit risk modeling and basic preliminaries presented in Chapters 1 and 2,

Chapter 3 presents the theory underlying the proposed credit model. It describes its building blocks and

derives explicit and computable expressions for bond and equity prices, conditional default probability,

recovery rate, and credit spreads.

The estimate of the log-asset value of the firm in the proposed model is a crucial quantity for determining

the price of corporate securities. The mathematical framework of our credit model, namely a jump linear

system with state-dependent transition probabilities, leads to solving a nonlinear filtering problem evaluating

the conditional density of the asset value. The problem is computationally untractable since the conditional

log-asset value filter density would require an exponentially increasing number of terms. In order to deal

with the exploding computational complexity, we have proposed in Chapter 5 a novel methodology which

approximates the actual log-asset value density with a Gaussian mixture. Such methodology selects the

smallest possible number of Gaussian components which approximate the true density within a desired level

of accuracy through the solution of a second-order cone programming problem.

Chapter 4 shows the power of the proposed model in dealing with real situations of misreporting. It

first introduces a novel estimation procedure for a simplified version of our model and then applies it to

the Parmalat case. Such estimation procedure implies the market observations of the reported log-asset
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value, instead of the actual log-asset value which is only known to insiders, from equity prices. The obtained

results are in line with the existing findings in the literature, and (a) confirm the importance of modeling

accounting distortion in credit risk models, and (b) evidence that its omission may result in exaggeratedly

large estimates of asset volatility.

Chapter 6 addresses the problem of bilateral risk evaluation in over-the-counter contracts. It develops a

general arbitrage-free framework and specializes the analysis to the case where also the underlying portfolio

is sensitive to a third credit event, and in particular to the case where the underlying portfolio is a credit

default swap on a third entity. It develops a Monte-Carlo numerical scheme to evaluate the formula and

computes the BR-CVA in the specific case of credit default swap contracts. It proposes case studies to

measure the impact of both default correlation and credit spreads volatility on the adjustment, and shows

that they both have a significant impact on the adjustment evaluation, thus adding to the existing literature,

which only measures the impact of default correlation on the adjustment.

7.2 Future Work

There are several directions which we can follow to extend and improve the results of this thesis. We next

outline some of them.

• Model endogenization. It would be interesting to define an optimal level of debt K∗ and an equity

maximizing bankruptcy trigger B < K∗ at which shareholders’s incentives to continue operating the

firm’s assets vanish.

• Dynamic consequences of accounting transparency. We could look at the dynamic implications of

misreporting on the future evolution of asset value. This would require formulating misreporting

as an optimal controlled diffusion problem with partial information. The bias to the asset value

added by the managers would be optimally chosen in such a way as to maximize their utility function

at some time horizon. Although some work on analytical methods for controlled diffusion process

with partial information has been done, see Bjork et al. (2008) and Haussmann and Sass (2004),

those techniques would not be able to handle our credit risk framework. There would be a need to

develop efficient numerical methods combining statistical Bayesian filtering with utility maximization

methods.Additional challenges would be posed by the calibration of those models. Currently, all

calibrations use a constant and exogenous value for asset volatility and reporting bias, thus a new

calibration methodology would be needed to handle the new scenario.

• Hedging of credit risk. The problem of credit risk hedging is very relevant and important nowadays

due to the high numbers of credit rating downgrading or even default events being experienced. The

challenge would be the construction of an appropriate model in which a family of options written on

credit- sensitive instruments can be valued and hedged. Some efforts, although at a very abstract level

start appearing Bielecki et al. (2008).
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Appendix A

Chapter 3: Bond and Equity Prices

We recall from Section 3.4 that the time t price of a bond with maturity T is given by

B(t, T ) = e−rτ (K − EP
∗
[(K − VT )+|F z

t ]) (A.0.1)

Following the assumptions made in Section 3.4.3 the probability measure P ∗ is obtained replacing µ with

r and assuming that the biases h(i) and the accounting risks ν(i) are the same under the historical and

risk-neutral measure. We then have

E[e−rτ (K − VT )+|F z
t ] = e−rτ

∫
R

∫
R

P (xT = x|xt = y)pt|t(y)(K − ex)+dydx

= e−rτ
∫
R

pt|t(y)
∫
R

P (xT = x|xt = y)(K − ex)+dxdy (A.0.2)

where we have used the assumption made in Section 3.4.3 that the volatility risk σ(l) is mode independent.

The inner integral can be explicitly computed since P (xT = x|xt = y) is a Gaussian density with mean

µy = y + (r − 0.5σ2)τ and variance σ2τ , thus

∫
R

P (xT = x|xt = y)(K − ex)+dx = Enµy,σ2τ
[(K − eX)+] (A.0.3)

where nµy,σ2τ denotes the Gaussian density with mean µy and variance σ2τ and X is a random variable

with density nµy,σ2τ .

We have

Enµy,σ2τ
[(K − eX)+] = Enµy,σ2τ

[K1{K≥eX}]− Enµy,σ2τ
[eX1{K≥eX}]

:= I1 − I2 (A.0.4)

It is easy to see that I1 is given by:

I1 = KN(−d2(y))
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where d2(y) =
µy − log(K)

σ
√
τ

. We compute I2 as:

I2 =
∫ −d2(y)

−∞
exp{µy + σ

√
τz}n(z)dz

= ey+rτ
1√
2π

∫ −d2(y)

−∞
exp{−0.5(z − σ

√
τ)2}dz

= ey+rτN(−d1(y)) (A.0.5)

where d1(y) = d2(y) + σ
√
τ . Therefore,

En(x;µy,σ2τ)[(K − ex)+] = KN(−d2(y))− ey+rτN(−d1(y)) (A.0.6)

Thus, we have that

E[e−rτ (K − VT )+|F z
t ] = Ept|t [Ke

−rτN(−d2(Y ))− eYN(−d1(Y ))] (A.0.7)

where Y is a random variable with density pt|t and the price of the bond is then given by

B(t, T ) = Ke−rτ − Ept|t [Ke
−rτN(−d2(Y ))− eyN(−d1(Y ))] (A.0.8)
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Appendix B

Chapter 3: Approximate Bond and
Equity Prices

We recall from Section 3.5.1 that the price of the bond at time t is given by

B(t, T ) = e−rτ

K −
∑
j

µjtE[(K − V jT |t)
+]

 (B.0.1)

where V jT |t is the exponential of a Gaussian random variable with mean x̂jT |t = x̂jt|t + (r − 0.5σ2)τ and

standard deviation σ̂jT |t =
√
σ̂2,j
t|t + σ2τ . We have

E[(K − V jT |t)
+] = E[K1{K≥V j

T |t}
]− E[V jT |t1{K≥V j

T |t}
]

:= Ij1 − Ij2 (B.0.2)

It is easy to see that Ij1 is given by:

Ij1 = KP

N(0, 1) ≤
log(K)− x̂jt|t − (r − 0.5σ2)τ√

σ̂2,j
t|t + σ2τ


= KN(−dj2) (B.0.3)

where dj2 =
x̂jt|t − log(K) + (r − 0.5σ2)τ√

σ̂2,j
t|t + σ2τ

. The expression for Ij2 is given by:

Ij2 =
∫ −dj

2

−∞
exp

{
x̂jt|t + (r − 0.5σ2)τ +

√
σ̂2,j
t|t + σ2τz

}
n(z)dz

= exp{x̂jt|t + 0.5σ̂2,j
t|t + rτ} 1√

2π

∫ −dj
2

−∞
exp

{
−0.5

(
z −

√
σ̂2,j
T |t + σ2τ

)2
}
dz

= exp{x̂jt|t + 0.5σ̂2,j
t|t + rτ}N(−dj1) (B.0.4)

where dj1 = dj2 +
√
σ̂2,j
t|t + σ2τ . Thus

E[e−rτ (K − V jT |t)
+] = Ke−rτN(−dj2)− exp{x̂jt|t + 0.5σ̂2,j

t|t }N(−dj1) (B.0.5)
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Therefore, plugging Eq. (B.0.5) into Eq. (B.0.1), we have that the bond price is given by

B(t, T ) = Ke−rτ −
∑
j

µjt (Ke
−rτN(−dj2)− exp{x̂jt|t + 0.5σ̂2,j

t|t }N(−dj1)) (B.0.6)
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Appendix C

Chapter 3: Bivariate Integrals

It is possible to establish a relation between integrals of the form

∫ xL

−∞
eaxN(bx+ c)n(x)dx (C.0.1)

for some constants a, b, c and the bivariate normal distribution function. This is done as follows:

∫ xL

−∞
eaxN(bx+ c)n(x)dx

=
∫ xL

−∞

∫ c

−∞
eaxn(bx+ y)n(x)dydx

=
e0.5a

2

2π

∫ xL

−∞

∫ c

−∞
e−

(1+b2)(x−a)2

2 − (y+ab)2

2 −b(y+ab)(x−a)dydx (C.0.2)

This can be related to the bivariate normal distribution as follows:

B(a, b, c) :=
∫ xL

−∞
eaxN(bx+ c)n(x)dx = e0.5a

2
P(X ≤ xL, Y ≤ c) (C.0.3)

where (X,Y ) has a bivariate normal distribution with

µX = a, µY = −ab, σ2
x = 1, σ2

j = 1 + b2, ρ = − b√
1 + b2

(C.0.4)
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Appendix D

Chapter 3: Probability of Default

Set l = r − 0.5σ2. Then, we have

PD(t, T ) = P(VT ≤ K|Vt ≥ K,F z
t )

=
P(VT ≤ K,Vt ≥ K|F z

t )
P(Vt ≥ K|F z

t )

=
P(XT ≤ log(K), Xt ≥ log(K)|F z

t )
P(Xt ≥ log(K)|F z

t )

=
P(lτ + σN(0, τ) ≤ −Xt + log(K), Xt > log(K)|F z

t )
P(Xt ≥ log(K)|F z

t )
(D.0.1)

where the last equality follows because we can decompose XT = Xt + N(lτ, σ2τ) as it can be easily checked.

Denote ddjt =
x̂jt|t − log(K)

σ̂jt|t
. Developing the probability (D.0.1) using the associated density functions, we

obtain that the denominator is given by:

P(Xt ≥ log(K)|F z
t ) = 1−

m∑
j=1

µjtN(−ddjt ) =
m∑
j=1

µjtN(ddjt ) (D.0.2)

while the numerator P(lτ + σN(0, τ) ≤ −Xt + log(K), Xt > log(K)|F z
t ) can be computed as follows:

=
∫ ∞

log(K)

( m∑
j=1

µjtn(x; x̂jt|t, σ̂
2,j
t|t )
)(∫ −x+log(K)

−∞
n(y; lτ, σ2τ)dy

)
dx

=
m∑
j=1

µjt

∫ ∞

log(K)

n(x; x̂jt|t, σ̂
2,j
t|t )N

(
−x+ log(K)− lτ

σ
√
τ

)
dx

=
m∑
j=1

µjt

∫ ∞

log(K)

σ̂jt|tn

(
x− x̂jt|t

σ̂jt|t

)
N

(
−x+ log(K)− lτ

σ
√
τ

)
dx

=
m∑
j=1

µjt

∫ ddj
t

−∞
n(y)N

(
yσ̂jt|t − x̂jt|t + log(K)− lτ

σ
√
τ

)
dy (D.0.3)
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where the last line follows from a change of variable y =
x̂jt|t − x

σ̂jt|t
. Using the result in Appendix C, we can

conclude that the numerator is a convex combination of bivariate cumulative distribution functions, i.e.,

P(VT ≤ K,Vt ≥ K|F z
t ) =

m∑
j=1

µjtP(Xj ≤ ddjt , Yj ≤ −d2(x̂
j
t|t)) (D.0.4)

where ddjt =
x̂jt|t − log(K)

σ̂jt|t
, d2 is the function defined in Eq. (3.4.12), and (Xj , Yj) has a bivariate normal

distribution function with positive correlation ρXjYj
:

µXj = µYj = 0, σ2
Xj

= 1, σ2
Yj

= 1 +
σ̂2,j
t|t

σ2τ
, ρXjYj

=
σ̂jt|t√

σ2τ + σ̂2,j
t|t

(D.0.5)

Defining wjt =
µjtN(ddjt )∑m
i=1 µ

i
tN(ddit)

, we obtain

PD(t, T ) =
∑
j

wjtP(Yj ≤ −d2(x̂
j
t|t)|Xj ≤ ddjt ) (D.0.6)
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Appendix E

Chapter 3: Recovery Rate

Set l = (r − 0.5σ2), Zτ = lτ + σN(0, τ). We have

RR(t, T ) :=
1
K
E[VT |VT < K,Vt > K,F z

t ]

=
1
K
E[eXt+Zτ |Xt > log(K), Zτ < log(K)−Xt,F

z
t ]

=

∫∞
log(K)

ex
∫ log(K)−x
−∞ elτ+σ

√
τyn(y)dy

∑m
j=1 µ

j
tn(x; x̂jt|tσ̂

2,j
t|t )dx

P(Xt + Zτ < log(K), Xt > log(K)|F z
t )

(E.0.1)

The denominator can be decomposed as follows:

P(Xt + Zτ < log(K), Xt > log(K)|F z
t ) = PD(t, T )P (Xt > log(K)|F z

t ) (E.0.2)

where both of the quantities above have been computed in Appendix D. The numerator in the last line of

Eq. (E.0.1) can be written as:

= erτ
m∑
j=1

µjt

∫ ∞

log(K)

exn(x; x̂jt|t, σ̂
2,j
t|t )N

(
log(K)− x− lτ − σ2τ

σ
√
τ

)
dx (E.0.3)

= erτ
m∑
j=1

µjte
x̂j

t|t

∫ ddj
t

−∞
e
−yσ̂j

t|tn(y)N
(−x̂jt|t + yσ̂jt|t + log(K)− lτ − σ2τ

σ
√
τ

)
dy

where ddjt =
x̂jt|t − logK

σ̂jt|t
. The last line of the derivation above follows from the change of variable y =

x̂jt|t − x

σ̂jt|t
. Using the result in Appendix C, we obtain that the numerator is again a convex combination of

bivariate Gaussian cumulative distribution functions given by

erτ
m∑
j=1

µjte
x̂j

t|t+0.5σ̂2,j
t|t P(ξj ≤ ddjt , ψj ≤ −d1(x̂

j
t|t)) (E.0.4)
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where d1 is the function defined in Eq. (3.4.12), and (ξj , ψj) is a bivariate Gaussian with negative correlation

coefficient ρξjψj :

µξj = −σ̂jt|t, µψj =
σ̂2,j
t|t

σ
√
τ
, σ2
ξj

= 1, σ2
ψj

= 1 +
σ̂2,j
t|t

σ2τ
, ρξjψj = −

σ̂jt|t√
σ2τ + σ̂2,j

t|t

(E.0.5)

Defining wjt =
µjtP(Xj ≤ ddjt , Yj ≤ −d2(x̂

j
t|t))∑m

i=1 µ
i
tP(Xi ≤ ddit, Yi ≤ −d2(x̂it|t))

, we obtain

RR(t, T ) = erτ
m∑
j=1

wjt
e
x̂j

t|t+
σ̂
2,j
t|t
2

K

P(ξj ≤ ddjt , ψj ≤ −d1(x̂
j
t|t))

P(Xj ≤ ddjt , Yj ≤ −d2(x̂
j
t|t))

(E.0.6)
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Appendix F

Chapter 5: Facts about Lipschitz
Functions

The lp norm of an n dimensional vector x is defined as follows:

||x||p =


[∑

i |xi|p
] 1

p

1 ≤ p <∞

maxi=1,...n |xi| p = ∞

Lemma F.1. Let f : Rn → R. ∀x1,x2 it holds that

|f(x1)− f(x2)| ≤ Cp||x1 − x2||q (F.0.1)

where Cp = supx ||∇f(x)||p, ∇f(x) = ( ∂f∂x1
, . . . , ∂f∂xn

) and 1
p + 1

q = 1, 1 ≤ p, q ≤ ∞.

We next state an obvious result as a lemma. Such result states that the product of two bounded Lipschitz

functions is a bounded Lipschitz function.

Lemma F.2. Let f : Rn → R and g : Rn → R. Let Cf,p,Mf , Cg,p,Mg constants such that for all

x1,x2 ∈ Rn, we have

|f(x1)− f(x2)| ≤ Cf,p||x1 − x2||p

|g(x1)− g(x2)| ≤ Cg,p||x1 − x2||p (F.0.2)

and

|f(x)| ≤Mf

|g(x)| ≤Mg (F.0.3)

Then,

|f(x1)g(x1)− f(x2)g(x2)| ≤ (MfCg,p +MgCf,p)||x1 − x2||p (F.0.4)
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Appendix G

Chapter 5: Total Variation distance
at initial time

Using approximation (5.3.27), we can write

||pl1,1(x)− p̂l1,1(x)||1 ≈
∫
G

|pl1,1(x)− p̂l1,1(x)|dx (G.0.1)

Since the vectors in the training set are equally spaced in G, we can partition G into n-dimensional cubes

and denote by Gi the n-dimensional cube in the partition having xi as the bottom left vertex of the cube.

Using the triangular inequality, we have

∫
G

|pl1,1(x)− p̂l1,1(x)|dx

=
q∑
i=1

∫
Gi

|pl1,1(x)− p̂l1,1(x)|dx

≤
q∑
i=1

∫
Gi

|pl1,1(x)− pl1,1(xi)|dx

+
∫
Gi

|pl1,1(xi)− p̂l1,1(xi)|dx

+
∫
Gi

|p̂l1,1(xi)− p̂l1,1(x)|dx (G.0.2)

Next, we analyze separately the three terms in Eq. (G.0.2). The first term is upper bounded as follows

∫
Gi

|pl1,1(x)− pl1,1(xi)|dx

=
∫
Gi

∣∣∣∣ ∫
Rn

P (x0 = y)λl(y)

·(Ll1|1(x)p(x|y, l)− Ll1|1(xi)p(xi|y, l)dy)
∣∣∣∣dx

≤
∫
Rn

P (x0 = y)λl(y)

·
∫
Gi

|Ll1|1(x)p(x|y, l)− Ll1|1(xi)p(xi|y, l)|dxdy

:= el,21 (G.0.3)
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where the last step in Eq. (G.0.3) follows from application of Fubini’s theorem which allows exchange of the

order of the integrations. Both Ll1|1(x) and p(x|y, l) are multivariate Gaussian densities. We consider both

of them as functions of x, thus treating y as a constant in p(x|y, l). We have that the l∞ norms of their

gradients are both finite. Notice that although p(x|y, l) is dependent on y, being its mean a function of y,

the l∞ norm of its gradient is independent of y because the mean of a Gaussian density does not affect the

l∞ norm of the gradient.

Moreover,

Ll1|1(x) ≤ 1
[2π]

m
2 det[R(l)]

1
2

p(x|y, l) ≤ 1
[2π]

n
2 det[Q(l)]

1
2

(G.0.4)

We can then apply Lemma F.1 setting p = ∞ and q = 1 along with Lemma F.2 to obtain

∫
Gi

|pl1,1(x)− pl1,1(xi)|dx

≤ C(l)

∫
Rn

P (x0 = y)λl(y)
(∫

Gi

||x− xi||1dx
)
dy

≤ 1
2
C(l)nρn+1En(µ0,Σ0)[λ

l] (G.0.5)

where C(l) is computed as indicated in Lemma F.2 and given by

C(l) = sup
x∈Rn

||∇Ll1|1(x)||∞
(2π)

n
2 det(Q(l))

1
2

+ sup
x∈Rn

||∇p(x|y, l)||∞
(2π)

m
2 det(R(l))

1
2

(G.0.6)

Here, we recall that ρ denotes the side length of each cube in the partition of G.

The second term in Eq. (G.0.2) can be upper bounded as

∫
Gi

|pl1,1(xi)− p̂l1,1(xi)|dx ≤ ερn := el,31 (G.0.7)

which follows from the l2 norm of the error in the programming problem (P2) being bounded by ε.

We now provide an upper bound for the third term in Eq. (G.0.2).

∫
Gi

|p̂l1,1(xi)− p̂l1,1(x)|dx

=
∫
Gi

∣∣∣∣ ∑
(j,h)∈Ωl

1

[$l
1](j,h)[nj,h(xi)− nj,h(x)]

∣∣∣∣dx
≤

∫
Gi

∑
(j,h)∈Ωl

1

[$l
1](j,h)|nj,h(xi)− nj,h(x)|dx

≤
∫
Gi

∑
(j,h)∈Ωl

1

[$l
1](j,h)Cj,h||x− xi||1dx

≤ 1
2
Cnρn+1 · ||$l

1||1 := el,41 (G.0.8)
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where Cj,h = supx∈Rn ||∇nj,h(x)||∞ and C1 = max(j,h)∈Ωl
1
Cj,h. The inequalities above follow from applica-

tion of the Lipschitz property of the multivariate Gaussian density, after using the approximation (5.3.27)

introduced in Section 5.3.4.

Combining Eq. (G.0.5), (G.0.7), and (G.0.8), we can conclude that

||p̃l1,1||1 ≤ q(el,21 + el,31 + el,41 ) (G.0.9)
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Appendix H

Chapter 5: Total Variation Distance
at Time k

It holds that

||plk,k − p̂lk,k||1 ≤ ||plk,k − p̌lk,k||1 + ||p̌lk,k − p̂lk,k||1 (H.0.1)

We start providing an upper bound for the first term

||plk,k − p̌lk,k||1 =
∫
Rn

|plk,k(x)− p̌lk,k(x)|dx (H.0.2)

We have

∫
Rn

|plk,k(x)− p̌lk,k(x)|dx

=
∫
Rn

Llk|k(x)
∣∣∣∣ d∑
r=1

∫
Rn

λr,l(y)p(x|y, l)p̃rk−1,k−1(y)dy
∣∣∣∣dx

≤
∫
Rn

Llk|k(x)
d∑
r=1

∫
Rn

λr,l(y)p(x|y, l)|p̃rk−1,k−1(y)|dydx

=
d∑
r=1

∫
Rn

λr,l(y)|p̃rk−1,k−1(y)|
(∫
Rn

Llk|k(x)p(x|y, l)dx
)
dy

:= el,1k (H.0.3)

The inside integral evaluates to a Gaussian density

∫
Rn

Llk|k(x)p(x|y, l)dx = n(zk,ml,y,Sl) (H.0.4)

where
ml,y = H(l)A(l)y

Sl = HQ(l)HT + R(l)
(H.0.5)
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Therefore, we can rewrite Eq. (H.0.3) as

d∑
r=1

∫
Rn

λr,l(y)|p̃rk−1,k−1(y)|n(zk,ml,y,Sl)dy

≤ 1
(2π)

n
2 det(Sl)

1
2

d∑
r=1

sup
y∈Rn

λr,l(y)
∫
Rn

|p̃rk−1,k−1(y)|dy

≤ 1
(2π)

n
2 det(Sl)

1
2

d∑
r=1

sup
y∈Rn

λr,l(y)δr (H.0.6)

where the first step follows form the monotonicity property of an integral after bounding both λr,l(y) and

n(zk,ml,y,Sl) from above, while the last step follows from the assumption of the theorem.

Next, we provide an upper bound for the second term in the inequality (H.0.1) which is approximated

according to Eq. (5.3.27) as

||p̌lk,k − p̂lk,k||1 ≈
∫
G

|p̌lk,k(x)− p̂lk,k(x)|dx (H.0.7)

We first give an upper bound for the integral in Eq. (H.0.7) using the triangular inequality

∫
G

|p̌lk,k(x)− p̂lk,k(x)|dx

=
q∑
i=1

∫
Gi

|p̌lk,k(x)− p̂lk,k(x)|dx

≤
q∑
i=1

(∫
Gi

|p̌lk,k(x)− p̌lk,k(xi)|dx

+
∫
Gi

|p̌lk,k(xi)− p̂lk,k(xi)|dx

+
∫
Gi

|p̂lk,k(xi)− p̂lk,k(x)|dx
)

(H.0.8)

and then analyze separately the three terms in Eq. (H.0.8). The first term in Eq. (H.0.8) is upper bounded

as follows

∫
Gi

|p̌lk,k(x)− p̌lk,k(xi)|dx

=
∫
Gi

∣∣∣∣ d∑
r=1

∫
Rn

p̂rk−1,k−1(y)λr,l(y)

·
(
Llk|k(x)p(x|y, l)− Llk|k(xi)p(xi|y, l)dy

)∣∣∣∣dx
≤

d∑
r=1

∫
Rn

p̂rk−1,k−1(y)λr,l(y)

·
(∫

Gi

|Llk|k(x)p(x|y, l)− Llk|k(xi)p(xi|y, l)|dx
)
dy

:= el,2k (H.0.9)

where the last inequality in (H.0.9) follows from bringing the absolute value inside the integral and then
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applying Fubini’s theorem to exchange the order of integration. Applying Lemma F.1 setting p = ∞ and

q = 1 along with Lemma F.2, we obtain

∫
Gi

|p̌lk,k(x)− p̌lk,k(xi)|dx

≤ C(l)
d∑
r=1

∫
Rn

p̂rk−1,k−1(y)λr,l(y)(
∫
Gi

||x− xi||1dy)dx

= C(l)ρn||xi+1 − xi||1
d∑
r=1

∫
Rn

p̂rk−1,k−1(y)λr,l(y)

=
1
2
C(l)nρn+1

d∑
r=1

∑
(i,j)∈Ωr

k

[$r
k−1](i,j)Eni,j [λ

r,l] (H.0.10)

where C(l) is the same Lipschitz constant given in Eq. (G.0.6), the transition matrix A, the design matrix

H, and the mode dependent noise covariance matrices all being time invariant. We recall that ρ denotes the

side length of each cube in the grid G. The last equality in Eq. (H.0.10) just follows from the definition of

p̂rk−1,k−1(y) which is a weighted sum of Gaussian densities.

The second term in Eq. (H.0.8) is upper bounded as

∫
Gi

|p̌lk,k(xi)− p̂lk,k(xi)|dx ≤ ερn := el,3k (H.0.11)

which follows from the fact that the l2 norm of the error in the programming problem (P2) is bounded from

above by ε.

Using the exact same argument as in Appendix G, we can upper bound the third term in Eq. (H.0.8) as

∫
Gi

|p̂l1,1(xi)− p̂l1,1(x)|dx

≤ Cknρ
n+1 · ||$l

k||1 := el,4k (H.0.12)

where Ck = max(j,h)∈Ωl
k
Cj,h and Cj,h = supx∈Rn ||∇nj,h(x)||∞.

Combining Eq. (H.0.6), (H.0.10), (H.0.11), and (H.0.12), we can conclude that

||p̃lk,k|| ≤ el,1k + q(el,2k + el,3k + el,4k ) (H.0.13)
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Appendix I

Chapter 6: Brief Overview of Copula
Functions

Copula functions represent a general and flexible tool to measure association among probabilities. Association

is a more general concept than correlation, encompassing both linear and nonlinear relationships among

variables. While correlation measures linear relationships between variables, copula functions are invariant

to any linear or nonlinear transformation of the variables. The basic idea is based on the principle of

probability integral transformation. Consider variables X and Y with marginal distributions FX and FY .

The principle states that transformations u ≡ FX(X) and v ≡ FY (Y ) have uniform distribution in [0, 1].

Marginal distributions can be inverted, and if they are continuous such inverse is unique. Consider now the

joint distribution H(X,Y ). This can be written as

H(X,Y ) = H(F−1
X (u), F−1

Y (v)) ≡ C(u, v) (I.0.1)

where C(u, v) is called the copula function representing association between X and Y . So, every joint

distribution can be written as a function taking the marginal distributions as arguments. On the contrary,

one can prove that if C(u, v) satisfy appropriate requirements, then plugging univariate distributions into

it generates a joint distribution. The requirements for C(u, v) are summarized in what is known as Sklar’s

theorem, and are reported below.

Definition I.0.1. A copula function C(u, v) has domain in the two-dimensional unit hypercube and range

in the unit interval and satisfies the following requirements:

1. Groundedness: C(u, 0) = C(0, v) = 0

2. Identity of marginals: C(u, 1) = v, C(1, v) = u

3. 2-increasing: C(u1, v1)− C(u1, v2)− C(u2, v1) + C(u2, v2) ≥ 0, with u1 > u2,v1 > v2 .



105

Appendix J

Chapter 6: Proof of the General
Counterparty Risk Pricing Formula

Proof. We have that

Π(t, T ) = CASHFLOWS(t, T )

= 1A∪BCASHFLOWS(t, T ) + 1C∪DCASHFLOWS(t, T ) + 1E∪FCASHFLOWS(t, T ) (J.0.1)

since the events in Eq. (6.2.2) form a complete set. From the linearity of the expectation, we can rewrite

the right-hand side of Eq. (6.2.4) as

Et{Π(t, T ) + LGD0 · 1A∪B ·D(t, τ0) · [−NPV(τ0)]
+ − LGD2 · 1C∪D ·D(t, τ2) · [NPV(τ2)]

+} (J.0.2)

We can then rewrite the formula in Eq. (J.0.2) using Eq. J.0.1 as

= Et[1A∪BCASHFLOWS(t, T ) + (1− REC,0)1A∪BD(t, τ0)[−NPV (τ0)]+

+1C∪DCASHFLOWS(t, T ) + (REC,2− 1)1C∪DD(t, τ2)[NPV (τ2)]+

+1E∪FCASHFLOWS(t, T )]

= Et[1A∪BCASHFLOWS(t, T ) + (1− REC,0)1A∪BD(t, τ0)[−NPV (τ0)]+]

+Et[1C∪DCASHFLOWS(t, T ) + (REC,2− 1)1C∪DD(t, τ2)[NPV (τ2)]+]

+Et[1E∪FCASHFLOWS(t, T )] (J.0.3)

We next develop each of the three expectations in the equality of Eq. (J.0.3).

The expression inside the first expectation can be rewritten as

1A∪BCASHFLOWS(t, T ) + (1− REC,0)1A∪BD(t, τ0)[−NPV (τ0)]+

= 1A∪BCASHFLOWS(t, T ) + 1A∪BD(t, τ0)[−NPV (τ0)]+ − REC,01A∪BD(t, τ0)[−NPV (τ0)]+

(J.0.4)
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Conditional on the information at τ0, the expectation of the expression in Eq. (J.0.4) is equal to

Eτ0
[
1A∪BCASHFLOWS(t, T ) + 1A∪BD(t, τ0) (−NPV (τ0))

+ − REC,01A∪BD(t, τ0)[−NPV (τ0)]+
]

= Eτ0 [1A∪B [CASHFLOWS(t, τ0) +D(t, τ0)CASHFLOWS(τ0, T ) +D(t, τ0) (−Eτ0 [CASHFLOWS(τ0, T )])+

−REC,0D(t, τ0)[−NPV (τ0)]+]]

= 1A∪B [CASHFLOWS(t, τ0) +D(t, τ0)Eτ0 [CASHFLOWS(τ0, T )] +D(t, τ0) (−Eτ0 [CASHFLOWS(τ0, T )])+

−REC,0D(t, τ0)[−NPV (τ0)]+]

= 1A∪B [CASHFLOWS(t, τ0) +D(t, τ0) (Eτ0 [CASHFLOWS(τ0, T )])+ − REC,0D(t, τ0)[−NPV (τ0)]+]

= 1A∪B [CASHFLOWS(t, τ0) +D(t, τ0) (NPV (τ0))
+ − REC,0D(t, τ0)[−NPV (τ0)]+]

where the first equality in Eq. (J.0.5) follows because

1A∪BCASHFLOWS(t, T ) = 1A∪B [CASHFLOWS(t, τ0) +D(t, τ0)CASHFLOWS(τ0, T )] (J.0.5)

with the default time τ0 is always smaller than T under the event A ∪B. Conditioning the obtain result on

the information available at t, and using the fact that Et[Eτ0 [.]] = Et[.] due to t < τ0, we obtain that the

first term in Eq. (J.0.3) is given by

Et
[
1A∪B

[
CASHFLOWS(t, τ0) +D(t, τ0)(NPV (τ0))+ − REC,0D(t, τ0)(−NPV (τ0))+

]]
(J.0.6)

which coincides with the expectation of the third term in Eq. (6.2.3).

We next repeat a similar argument for the second expectation in Eq. (J.0.3). We have

1C∪DCASHFLOWS(t, T ) + (REC,2− 1)1C∪DD(t, τ2)[NPV (τ2)]+

= 1C∪DCASHFLOWS(t, T )− 1C∪DD(t, τ2)[NPV (τ2)]+ + REC,21C∪DD(t, τ2)[NPV (τ2)]+

(J.0.7)

Conditional on the information available at time τ2, we have

Eτ2
[
1C∪DCASHFLOWS(t, T )− 1C∪DD(t, τ2) (NPV (τ2))

+ REC,21C∪DD(t, τ2)[NPV (τ2)]+
]

= Eτ2 [1C∪D[CASHFLOWS(t, τ2) +D(t, τ2)CASHFLOWS(τ2, T )−D(t, τ2) (Eτ2 [CASHFLOWS(τ2, T )])+

+REC,2D(t, τ2)[NPV (τ2)]+]]

= 1C∪D[CASHFLOWS(t, τ2) +D(t, τ2)Eτ2 [CASHFLOWS(τ2, T )]−D(t, τ2) (Eτ2 [CASHFLOWS(τ2, T )])+

+REC,2D(t, τ2)[NPV (τ2)]+]

= 1C∪D
[
CASHFLOWS(t, τ2)−D(t, τ2) (Eτ2 [−CASHFLOWS(τ2, T )])+ + REC,2D(t, τ2)[NPV (τ2)]+

]
= 1C∪D

[
CASHFLOWS(t, τ2)−D(t, τ2)(−NPV (τ2))+ + REC,2D(t, τ2)[NPV (τ2)]+

]
(J.0.8)
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where the first equality follows because

1C∪DCASHFLOWS(t, T ) = 1C∪D[CASHFLOWS(t, τ2) +D(t, τ2)CASHFLOWS(τ2, T )] (J.0.9)

with the default time τ2 always smaller than T under the event C ∪D. Conditioning the obtain result on

the information available at t < τ2, we obtain that the second term in Eq. (J.0.3) is given by

Et
[
1C∪D

[
CASHFLOWS(t, τ2) +D(t, τ2)REC,2(NPV (τ2))+ −D(t, τ2)(−NPV (τ2))+

]]
(J.0.10)

which coincides exactly with the expectation of the second term in Eq. (6.2.3).

The third expectation in Eq. (J.0.3) coincides with the first term in Eq. (6.2.3), therefore their expecta-

tions ought to be the same. Since we have proven that the expectation of each term in Eq. (6.2.3) equals

the expectation of the corresponding term in Eq. (J.0.3), the desired result is obtained.
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Appendix K

Chapter 6: Proof of the Survival
Probability Formula

Proof. We have

1τ1>τ2Q(τ1 > t|Gτ2) = 1t<τ2<τ1 + 1τ2<t1τ1≥τ2E[Q(Λ1(t) < ξ1|Gτ2 , ξ1)|Gτ2 , {τ1 > τ2}]

= 1Ā + 1τ2<t1τ1≥τ2E[FΛ1(t)−Λ1(τ2)(ξ1 − Λ1(τ2))|Gτ2 , {τ1 > τ2}] (K.0.1)

The last step, following from the fact that the Λ1(t) < ξ1 is the same as Λ1(t) − Λ1(τ2) < ξ1 − Λ1(τ2) and

the right-hand side ξ1 −Λ1(τ2), becomes known once we condition on ξ1 and Gτ2 . Here by FΛ1(t)−Λ1(τ2), we

indicate the cumulative distribution function of the integrated (shifted) CIR process Λ1(t) − Λ1(τ2). Since

ξ1 = − log(1− U1) and τ1 = Λ−1
1 (ξ1), we can rewrite Eq. (K.0.1) as

1Ā + 1τ2<t1τ1≥τ2E[FΛ1(t)−Λ1(τ2)(− log(1− U1)− Λ1(τ2))|Gτ2 , {ξ1 > Λ1(τ2)}] =

= 1Ā + 1τ2<t1τ1≥τ2E[FΛ1(t)−Λ1(τ2)(− log(1− U1)− Λ1(τ2))|Gτ2 , {− log(1− U1) > Λ1(τ2)}]

= 1Ā + 1τ2<t1τ1≥τ2E[FΛ1(t)−Λ1(τ2)(− log(1− U1)− Λ1(τ2))|Gτ2 , U1 > 1− exp(−Λ1(τ2)})]

(K.0.2)

Let us denote Ū1 = 1− exp(−Λ1(τ2)). Then we can rewrite Eq. (K.0.2) as

1Ā + 1τ2<t1τ1≥τ2

∫ 1

0

FΛ1(t)−Λ1(τ2)(− log(1− U1)− Λ1(τ2))dQ(U1 < u1|Gτ2 , U1 > Ū1)] =

= 1Ā + 1τ2<t1τ1≥τ2

∫ 1

0

FΛ1(t)(− log(1− U1))dQ(U1 < u1|Gτ2 , U1 > Ū1)]

= 1Ā + 1τ2<t1τ1≥τ2

∫ 1

Ū1

FΛ1(t)(− log(1− U1))dQ(U1 < u1|Gτ2 , U1 > Ū1)] (K.0.3)

We next need to provide a methodology to compute the conditional distribution

C1|2(u1;U2) := Q(U1 < u1|Gτ2 , {τ1 > τ2}) (K.0.4)

Eq. (K.0.4) may be rewritten as
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C1|2(u1;U2) = Q(U1 < u1|U2, U1 > U1)

=
Q(U1 < u1|U2)−Q(U1 < U1|U2)

1−Q(U1 < U1|U2)

=
∂C1,2(u1,U2)

∂u2
− ∂C1,2(U1,U2)

∂u2

1− ∂C1,2(U1,U2)
∂u2

(K.0.5)

Notice that U2 is explicitly known once we condition on Gτ2 and is given by 1−exp(Λ2(τ2)). The expressions

in Eq. (K.0.5) may be computed in closed form for the Gaussian copula and are given Schonbucher (2003)

by

∂C(u, v)
∂u

= Φ

 x− r1,2y√
1− r21,2

 (K.0.6)

where x = Φ−1(u) and y = Φ−1(v), and r1,2 is the correlation between the reference credit and the counter-

party.

A similar methodology can be repeated to compute Eq. (6.3.15) and is not reproduced here.
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