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Abstract

In this work, we describe a method to achieve fault tolerant measurement based quan-
tum computation in two and three dimensions. The proposed scheme has an threshold
of 7.8 x 1073 and poly-logarithmic overhead scaling. The overhead scaling below the
threshold is also studied. The scheme uses a combination of topological error correc-
tion and magic state distillation to construct a universal quantum computer on a qubit
lattice. The chapters on measurement based quantum computation are written in re-
view form with extensive discussion and illustrative examples.

In addition, we describe and analyze a family of entanglement purification protocols
that provide a flexible trade-off between overhead, threshold and output quality. The
protocols are studied analytically, with closed form expressions for their threshold.
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Chapter 1

Introduction

As the components of computers have gotten smaller and smaller, quantum mechanical
effects have begun to play an increasingly important role in the process. Traditionally,
these quantum effects are classified as noise and efforts are made to minimize their ef-
fects on the computation. However, in recent years it has been realized that exploiting
these quantum effects can allow us to do a number of surprising and useful things, both
in computation and communication.

1.1 Computation Powered By Quantum Mechanics

A classical computer (defined loosely as a computer that regards quantum effects as
noise) represents data as bits, that is, as two level systems whose two levels are labeled
by 0 and 1. Classical data consists of bit strings, sequences of 0 and 1. The fundamental
(and only) operation that a classical computer can perform on a single bit is to flip it. If
there are two or more bits, the classical computer can in addition calculate their product
or their sum. It is on this simple foundation that classical computation is built.

A quantum computer, on the other hand, represents data as qubits. A qubit is also
a two level system, except that it is a quantum system. This means, in particular, that it
can be in a superposition of 0 and 1. For a given set of n bits, a classical computer can
put them into only a single state out of the 2" possible states, whereas in a quantum
computer they can be in a superposition of all 2" states at once. This is what gives
quantum computers their power. Examples of qubits include: the spin of an electron,
where the 0 and 1 states correspond to the up and down states of the electron spin along
some predefined axis; photon polarization, where the 0 and 1 states correspond to left
and right circularly polarized light; etc.

A qubit, which in general is in a superposition of 0 and 1 is represented by a state vec-
tor: a|0) + (|1); where a, f are complex numbers satisfying the relation |a|*> +|(]*> = 1.
A quantum computer has a much broader range of single qubit operations available to
it than a classical computer. It can perform arbitrary rotations on qubits. Since the co-
efficients of the state vector are complex, the rotation operators are unitary (members
of the group SU(2)). In addition, when more than one qubit is present, the quantum
computer can create entanglement between them. While a precise definition of entan-
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glement is difficult to achieve, roughly speaking, two quantum systems are said to be en-
tangled when the state of the combined system cannot be described in terms of only the
states of its two parts. Entanglement leads to correlations between physically measur-
able quantities of the two systems that are stronger than anything that can be achieved
classically [Bel64]. Entanglement and the strong correlations it generates turn out to be
essential to the functioning of quantum computers.

So what can these quantum computers do? One large category of problems where
quantum computers achieve a significant speed up over their classical counterparts is
unstructured search. This involves searching for a particular item in an unstructured col-
lection of items. The collection of items could be the solution space for some problem,
or a list of unrelated items like telephone numbers or passwords. As long as the items
are not related to each other in any way and it takes the same amount of time to test if
a given item is the desired item, Grover’s algorithm [Gro01], or slight modifications of it,
can achieve a quadratic speedup over the best classical algorithms. If the collection has
N items, the best classical algorithm requires on average N/2 tries to find the desired
item. Grover’s algorithm can do it in v/N tries on average. This technique can provide a
dramatic speedup when trying to solve NP-complete problems using brute force search.

Another famous quantum algorithm is Shor’s algorithm, for factoring large num-
bers or calculating discrete logarithms [Sho97]. It is a polynomial time algorithm, which
means that for a composite number of size N, it requires a number of steps that grows
only polynomially with the size of N, O(log® N), to find its factors. In contrast, the best
known classical algorithm, the general number field sieve [Pom96], requires a time close
to exponential in the size of the number, O (elogl/sN ) This implies that most modern
cryptography schemes like RSA [RSA78] whose security is ultimately based on the diffi-
culty of factoring large numbers are vulnerable to attack by quantum computers.

Since the simulation of natural quantum systems is prohibitively expensive on clas-
sical computers (because of superposition, one has to keep track of 2V variables when
simulating a system with NV degrees of freedom), a working quantum computer would
prove to be an efficient means of simulating the quantum dynamics of such systems, al-
lowing for the numerical investigation of their properties. Since most such systems have
very many degrees of freedom, analyzing them analytically often proves intractable and
numerical analysis plays a very important role in our understanding of such systems.

1.1.1 A Working Quantum Computer?

The quantum algorithms described above all assume that all quantum operations are
perfect. This is obviously not true in the real world. In fact, because qubit implemen-
tations are often based on microscopic systems, it is particularly difficult to isolate the
components of a quantum computer from noise. In addition, the state of a qubit is
specified by continuous variables, as opposed to the binary 0 or 1 in a classical com-
puter. Thus, noise in a quantum computer can have subtle effects that have no classical
analogue.

Nonetheless, one of the seminal achievements of quantum information science is
the development of fault tolerant methods for quantum computation. The keystone of
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fault tolerance is the Threshold Theorem (see Aside , which basically states that as
long as the noise is “bounded,” it is always possible to perform a quantum computation
with arbitrary accuracy and reasonable overhead.

In most discussions of quantum fault tolerance, a stochastic error model is used,
as is the case for this work. For such an error model, the requirement that the noise be
bounded, translates to an error rate threshold, that is, a maximum error rate affecting all
noisy operations/qubits. Errors can typically affect all parts of the computation, such as
storage, gates, measurement and preparation. Threshold theorems exist for more gen-
eral error models as well, including adversarial and non-Markovian noise [AP09; TB05a].
In this work, we assume a stochastic noise model and use it to arrive at estimates for the
fault tolerance threshold.

The technique that most proposals use to achieve fault tolerance is the use of a quan-
tum error correcting code. Recall that in a classical computer, you only have bit flip er-
rors. In a quantum computer, states are in superpositions of classical states and you can
have general unitary errors. In addition, any measurement will collapse the superpo-
sition into a single classical state. Most interactions of qubits with their environment
act like partial measurements of the qubit, destroying these superpositions. This phe-
nomenon is known as decoherence.

Decoherence is what makes the world classical at large scales. It is also a big problem
for quantum computers, since if it is not controlled, they will behave just like classical
computers. It turns out that correcting decoherence is a special case of correcting gen-
eral unitary errors. Any single qubit unitary can be expanded as

U=al+BX+yY+6Z,

where X, Y, Z are the Pauli matrices, [ is the identity and «, ..., 0 are complex numbers
that are constrained by the relation U~! = U' (unitarity condition). Since Y = iXZ, an
error correcting code that corrects only X and Z errors is sufficient. The conceptually
simplest quantum error correcting code is the repetition code. The classical repetition
code simply encodes 0 — 000 and 1 — 111. This code can correct any single error by a
majority vote. For example, if a single error affects 000 making it 010, a majority vote
would conclude that the logical bit should be still be 0. The quantum repetition code
however has to protect against both bit flip X and phase flip Z errors. Phase flips affect
the signs (phases) in a superposition. The encoding for the quantum code uses nine
qubits for a single logical qubit

0) — (/000) +[111))(|000) +|111))(|000) +|111))
1) — (1000) —[111))(]000) —111))(|000) — [111)).

By comparing qubits within blocks of three, we can correct X errors, just as for the clas-
sical code. By comparing the signs of the three blocks and using majority voting again
we can correct single Z errors.

The repetition code is the simplest to understand but far from the most effective.
Many other codes and fault tolerance schemes based on them exist. For example, the
“Fibonacci scheme” of [AP09] uses a four qubit code that is capable of only detecting the
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presence of an error, but not correcting it to achieve a fault tolerant quantum computer
with threshold 6.7 x 10~4.

In addition to the threshold, another important consideration when designing a
quantum computer is its overhead, that is, the amount of extra resources needed to
perform the computation fault tolerantly. For example, one of the benefits of a quan-
tum computer is that, using Shor’s algorithm, it can factor large integers in polynomial
time. Now if we were to build a fault tolerant version of the computer that required ex-
ponentially many resources to perform Shor’s algorithm, this benefit would be lost. For
instance, the Fibonacci scheme mentioned above uses an error-detection code, which
means that it must post-select (i.e., throw away all instances that have detected errors).
This typically leads to an exponential scaling of the overhead requirements. You will
see an example of post-selection and the four qubit code at work, albeit in a different
context, in Chapter[4]

In this work, we present a novel scheme for fault tolerance based on two ideas:
measurement based quantum computation and topological error correcting codes, de-
scribed in the following sections. This scheme has a very high estimated threshold (for
the stochastic error model) and also has a poly-logarithmic scaling of the overhead with
the size of the computation.

1.1.2 Measurement Based Qquantum Computation

The motivation for measurement based computing is that in the traditional circuit based
model, you need to perform two qubit interactions between arbitrary qubits at arbitrary
times during the computation. This is typically worked around by performing succes-
sive SWAP gates to bring the target qubits next to each other before performing each two
qubit interaction. By contrast, a measurement based computation has all the two qubit
gates performed in a translationally invariant manner, in a single time step, right at the
start of the computation. For certain architectures, that have a natural translational in-
variance, such as optical lattices, this is a big advantage. Once the two qubit gates are
performed, the actual computation is carried out by only single qubit measurements.
Two qubit gates are tricky to perform experimentally, because they suffer from a basic
contradiction. In a quantum computer, you want to isolate your qubits from the envi-
ronment and each other as much as possible so as to lessen decoherence. But, in order
to perform a two qubit gate, qubits must interact with each other. As a result, two qubit
gates are often the most difficult element to perform in a physical implementation of a
quantum computer. This makes the measurement based model particularly well suited
to experimental implementation.

Measurement based computation is based on the properties of certain multi-qubit
quantum entangled states. When a part of such a state is measured, the state of the
remainder depends both on the basis chosen for the measurement as well as the ran-
dom measurement result. Given an entangled multi-qubit state, by choosing the right
basis and compensating for the randomness of the measurement results, it is possible
to drive an arbitrarily complex quantum computation entirely by single qubit measure-
ments. Measurement based computation is described in more detail in the first part of
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1.1.3 Topological Error Correcting Codes

Topological error correction is motivated by the observation that in many physical sys-
tems, noise processes are local. That is, the noise that affects one part of the system is
uncorrelated with noise that affects another part. Typically, noise correlations fall off ex-
ponentially with distance. This means, that if we can store information in the large scale
structure of a system, this information should have a high degree of natural robustness
against local noise processes. Mathematically, “the large scale structure” of a system is
described by its topology [All02].

This idea has been explored for quantum computers by designing so called, topolog-
ical quantum computers [Nay+08]. In these systems, qubits are represented by anyons
and quantum logic is carried out by braiding these anyons around each other. Anyons
are a special class of quasiparticle in a two dimensional space. For example, anyons are
formed by the excitations in an electron gas in a very strong magnetic field, and carry
fractional units of magnetic flux in a particle like manner. This phenomenon is called
the fractional quantum Hall effect [TSG82; Lau83].

Anyons, like fermions cannot occupy the same quantum state. If you consider the
space time diagram of anyons, then their world lines never intersect. Braiding refers to
winding the anyon world lines around each other. The combined state of the anyons
(i.e. the state of the quantum computer) depends only on how the anyons have been
wound around each other, i.e., on the topology of the braid pattern. Two qubit quantum
gates are performed by winding a pair of anyons about each other and measurements
can be performed by annihilating a pair of anyons.

Fraction Hall effect computation schemes have their own difficulties, which center
around the problems of isolating and controlling individual anyons. An alternative way
to introduce topology into quantum computation is to use a topological error correct-
ing code [SA98;|Den+02a]. Introduced by Kitaev, these codes live on lattices of ordinary
qubits. The anyons are once again quasiparticles formed from the excitations of the
qubits (strictly speaking from the excitation of the check operators of the topological
code). In such a system, controlling anyons is no more difficult than controlling ordi-
nary qubits. Indeed, when combined with measurement based computation, all that’s
needed to control the anyons is single qubit measurements.

When used as the basis of a quantum computer, the anyons of a topological error
correcting code suffer from a limitation. The anyons are Abelian, and so they cannot be
used to perform the full set of required gates to make the quantum computer univer-
sal. This can be worked around in two ways. One way is to use magic state distillation
[BKO5a] to prepare ancilla states that can be used to complete the set of gates. This is the
approach used in this work. Another technique is to use a more complicated lattice that
supports non-Abelian anyonic excitations [LWO05]. The disadvantage of this approach is
that such lattices typically have very complex Hamiltonians, making experimental im-
plementation difficult.

Toplogical error correcting codes and their use in a fault tolerant quantum computer



are discussed in detail in Chapter[2}

The fault tolerance scheme we present using these concepts has an
estimated threshold of 7.8 x10~3 and an overhead that scales poly-
logarithmically as log® N, where N is the number of gates in the
ideal circuit.

1.2 Quantum Mechanics in Communication

Quantum mechanics, via Shor’s algorithm, can be used to breach the security of modern
data encryption and transport protocols. However, what it takes with one hand, it gives
back with the other. The phenomenon of quantum entanglement can be used to es-
tablish secret, shared randomness between parties that hold parts of an entangled state
[Stu+-02]. This shared randomness can then be used in encryption schemes like the one-
time pad for secure, encrypted communication. Shared entanglement has many other
uses as well, such as quantum teleportation [Ben+93| and super dense coding [BW92].

All these applications depend on the creation of high quality entanglement between
(possibly widely) separated parties. One way to create high quality entanglement be-
tween remote parties is purification. This is applicable in a scenario where the parties
share a number of low quality entangled states and need to create a single high quality
state from them. Also since each party holds only one part of each copy, the operations
they can perform are limited to local operations between the same part of all the copies.
We allow each party to make partial measurements on their parts and communicate
the results to each other via classical channels. It is important to note that whatever
purification operations are performed, they will themselves be noisy and therefore it is
impossible to use this technique to create absolutely noise free states.

In Chapter 4, we present a new family of protocols for the purification of multi-
party entangled states. This family of protocols allows for tunable amounts of involved
post-selection. This allows for designing protocols that have a desired tradeoff between
threshold, output quality and overhead. Here overhead is the number of noisy states
needed, on average, to produce a single pure state. Output quality is the “pureness” of
the output state and threshold refers to the minimum quality of the input noisy states.

1.3 Structure

This work is structured as follows: Chapter 2] contains an introduction to measurement
based computation in general and a description of our fault tolerant measurement based
quantum computer. Chapter[3|has a detailed analysis of the threshold and overhead re-
quirements of the fault tolerant quantum computer. Chapter[4]contains the description
of several new families of purification protocols that can be used to purify large multi-
qubit states.

The next section has a brief note on the notation used throughout this work.



1.4 Notation

Qubit operators are represented by upper case Roman and Greek characters. For multi-
partite states, the individual part being operated upon is indicated by a subscript. Thus,
the expression O;M; denotes the operators O and M acting on the i and j parts of the
state, respectively. Some of the more commonly used operators are listed below.

Table 1.1 — Notation for common qubit operators

Notation Meaning

X ((1) (1)) (Pauli-X matrix)

1 0 . .
Z ( ) (Pauli-Z matrix)

0 -1

0 —i . .
Y (i 0 ) (Pauli-Y matrix)
H L (1 1) (Hadamard matri

7l -1 (Hadamard matrix)

o) Logical (encoded) version of operator O
AX) Control-NOT gate
AZ) Control-PHASE gate
A(U) Control-U gate, where U is any unitary
K; the graph operator acting on qubit j and its neighbors
|£) The %1 eigenstates of the X operator

|0),|1) The £1 eigenstates of the Z operator




Chapter 2

Measurement Based Quantum
Computing

2.1 Introduction

In this chapter, we will describe a scheme for fault tolerant measurement based quan-
tum computation. The scheme is implemented on a translation invariant qubit lattice
using only single qubit measurements. In Chapter [3|we will see that this scheme has a
very high error threshold of ~ 7.8 x 1073.

In this section, we introduce measurement based quantum computation in general,
and in the next, we describe our specific proposal to make measurement based quan-
tum computation fault tolerant. In Section[2.3} there is a brief note on how to implement
the scheme in two physical dimensions. In the final section, we present an overview of
the proposed scheme. It may be a good idea to read this first and keep it in mind as you
read the rest of the chapter.

2.1.1 Computation as correlation

Normally, we think of computation as a process that takes some input, does some pro-
cessing using the input, and outputs some results. Typically, the input consists of the
actual input data as well as some ancillary bits that are “erased,” that is, set to some
standard state. Once the computation completes, the output is stored in the ancillary
bits. Ideally, at the end of the computation, the input bits have not been disturbed. This
is represented schematically in Figure

Computation can be re-interpreted as the process of creating correlations between
the input and output. As an illustration, consider a very simple computation, with in-
put a € {0, 1} that simply copies the input to the output. Equivalently, this computation
can be described as exactly correlating the output and input bits. Classical and quan-
tum circuits that implement this computation are shown in Figure[2.2] For more general
computation, the output bits will be exactly correlated with some function of the input
bits. In the above, trivial example, the function is the identity function. In the circuit
model of computation, both classical and quantum, (for example, Figure, this func-
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Figure 2.2 - The COPY operation using classical and quantum circuits. In the quantum circuit,
the output qubit has to be measured in the computational basis to get the value of
the a bit.
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tion on the input bits is defined by the pattern of gates in the circuit. In other models of
computation the function may be defined differently. For example, in the Turing model,
the function being computed is encoded as a sequence of instructions that have to be
followed by the Turing machine.

Here, we are interested in the measurement based model of quantum computing.
In this model, the correlation function is described by a sequence of measurements on
individual qubits.

2.1.2 Measurement Based Quantum Computation

When a part of an entangled quantum system is measured, the state of the unmeasured
portion depends on the initial state of the whole system, as well as the basis chosen for
measurement (it also depends on the random measurement outcome, but this can be
compensated for). Since a computer works by manipulating the state of bits, we can
exploit this property of measurement to design a “measurement based quantum com-
puter.” Such a computer consists of two parts; a pre-entangled “resource” state that
starts out in some standard, highly entangled state, and a measurement pattern. The
measurement pattern describes the algorithm (circuit) being implemented. In order to
make our computer as simple to implement as possible, we would like to restrict our-
selves to “local measurements,” i.e., to the measurement of only individual qubits.
Such a scheme was first described by Raussendorf and Briegel in [RBO1]. The par-
ticular resource state they chose, is the 2D cluster state, which is a state consisting of a
number of qubits arranged in a simple 2D square lattice. The qubits are all entangled
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Aside 2.1: The Stabilizer Formalism

The stabilizer formalism [Dan97] can be used to represent multi-qubit states in terms
of the operators under which they are invariant. Since the description of the space of
such operators is exponentially smaller than the description of the space of states they
represent, the stabilizer formalism is a powerful tool for analyzing such spaces.

An operator K stabilizes a subspace ., when V|y) € .,

Klyp)=1y.

The stabilizer formalism is particularly useful when the space of operators considered is
a Hermitian subset of the Pauli group.

Given a subspace of states, if a unique group of stabilizer operators can be found that
stabilize the subspace such that there is no state outside the subspace that is stabilized
by the group, then the group is known as the stabilizer of the subspace. The stabilizer
group can be represented fully by its generators (¢). For a N element stabilizer, the
generator has log, N elements, yielding a compact description of the stabilizer group.

The action of unitaries in the stabilizer formalism can be easily represented by noting
that UK U stabilizes U |y),

UKU'U[Y)=UK ) =Uly).

Thus, the action of unitary U on |¢) is equivalent to the action of U-U" on the generators
9.

Measurement in the Pauli basis can also be treated easily in the stabilizer formalism.
Pauli measurements map stabilizers to new stabilizers. The effect of the measurement
of Pauli operator P on the stabilizer generator ¢ can be calculated as follows:

e If P commutes with all generators g € ¥, the stabilizer is unchanged.
¢ Suppose P anti-commutes with the generators g3,..., g,. Then, the new generator

set ¢’ is obtained by replacing g, by cP and g,..., 8- by g182,..., 818, where
¢ = =1 is the measurement outcome.

It can be easily checked that ¢’ generates the stabilizer of the post-measurement state.

Example: Consider the Bell state |¢) = ‘/%(IOO) +[11)). It has the stabilizer generator
Y = (X1X,, Z1Z,). Suppose we apply the Hadamard operator (H) to the first qubit, then
the new generator is ¥’ = (X12,, Z;X;). If we now measure the X; X, operator on our
transformed state, we get a new generator ¥” = (cX; X, 1 V5).

For a more leisurely discussion of the stabilizer formalism, see [MI100].
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Figure 2.3 — a)The 2D cluster state consists of qubits at the vertices of a two dimensional grid. It
is the +1 eigenstate of the K; = X; | [, Z; operators, one at each vertex. It can be
created by starting with qubits in the |+) state and performing A(Z) gates along the
edges of the lattice. b) A single qubit embedded in a larger cluster. The cluster is
one example of a graph of degree four.

with their neighbors. The cluster state is an example of a graph state (see Aside of
degree 4. See Figure for a schematic visualization of a 2D cluster state. The clus-
ter state can be constructed by starting with all qubits in the |+) state and performing a
A(Z) gate along every edge in the cluster. The A(Z) gates all commute, so their order is
unimportant.

For the purpose of performing measurement based quantum computing alone, a2D
graph state while sufficient, is not necessary. A simpler state could be used. Its choice is
dictated by the fact that it is highly regular and easy to create experimentally, in a single
time step, for example, in an optical lattice [Mar+02b; Mar+4-02a; Man+03a; Man+-03b].

Let’s look at the effects of measuring qubits in cluster states. Since we want to keep
things simple for the sake of experimental implementation, we will only consider only
single qubit measurements.

Measurement in the Pauli basis. Since the cluster state in Figure is a graph state
with stabilizer {K; }f’:l, we can use the stabilizer formalism (see Aside to easily de-
duce the effect of measuring qubit 0 (from Figure[2.3p) in the Pauli basis. In particular,
the measurement in the X and Z bases has a nice interpretation, shown in Table

Measurement in a rotated basis. Measuring cluster qubits in a rotated basis allows us
to create arbitrary correlations between input and output qubits. Recall that a cluster
state is created by performing A(Z) gates between qubits prepared in the |+) state. Now
consider a slightly modified two qubit cluster state, in which the first qubit starts out in
the state [y)) = a|0) + B |1). The cluster state is then,

1
V2

Now suppose that the first qubit is measured in the rotated basis \/iz{lo) +ei?|1)}. The
measurement has two possible outcomes denoted by —1”; m < {0,1}. The measure-

2.1) (@]0) [+) + B [1)[=)).
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Table 2.1 — Measuring a cluster qubit in the Pauli basis

Measurement basis Result Interpretation

. The measured qubit is removed from the
cluster with all its connections

- The measured qubit is removed from the
cluster, but its connections are “bridged.”
The actual state is the shown graph up to a
Hadamard gate on qubit 1.

ment leaves the second qubit in the state
2.2) al+)+(=1)"e'?f|-)=X"HU; () i)).

Here, U,(¢) = exp(i¢Z) is a rotation about the z-axis of the Bloch sphere. We see that
the second qubit is left in a state equal to the first qubit, but rotated by the angle ¢
about the z-axis. In other words, the state of the second (output) qubit is correlated to
the state of the first (input) qubit. Note that the angle of rotation ¢ is set by the choice
of measurement basis. However, because of the randomness of quantum measurement,
we are left with an extra factor of X, that depends on the measurement outcome, m.
These extra factors, called by-product operators are an unavoidable side effect of trying
to perform gates by measurement, and have to be compensated for when performing
measurement based computation. Fortunately, as we will see, this is not difficult.

Performing arbitrary single qubit gates. By chaining measurements in different ro-
tated bases, it becomes possible to implement arbitrary single qubit gates by measure-
ments alone. Consider the following sequence of qubits each measured in a different
rotated basis

(o} ¢2 o3 output
Q—— 0 — 90— 90

Using Eq. (2.2) we see that this sequence of measurements performs the following
unitary on the output qubit

(2.3) U=HZ"U, (¢s) HZ™ U, (¢2) HZ™ U, (¢1) .
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Where m, 3 are the three measurement outcomes. Using the identities

(2.4) HZH=X
HU, (¢) H="Ux ()
XU, (¢)=U.(-¢)X
ZUy (¢) =U: (-9) Z,

we can rewrite U as,
(2.5) U=X"7Z"X""HU, (r) U, ([3) U, (a).

Where a = ¢, B =(—1)"¢,, v =(—1)"2¢3. First note that this expression has exactly
the same form as Eq. (2.2). It is a rotation followed by a by-product operator that de-
pends on the measurement outcomes. Thanks to Euler’s rotation theorem, we know that
an arbitrary 3D rotation can be decomposed as a rotation about the z-axis, followed by
a rotation about the x-axis followed by another rotation about the z-axis. Thus, U is an
arbitrary single qubit unitary operator. Note that the choice of ¢,, ¢3; depends on the
measurement outcomes of measuring qubits 1 and 2 respectively. Thus, a time-ordering
is imposed on our measurement pattern.

The by-product operators that remain at the end of the measurements are unimpor-
tant. They need never be physically applied as they can always be accounted for when
interpreting the measurement of the output qubits. For example, if the output qubit
has to be measured in the computational basis, any extra Z by-product operators have
no effect on the measurement outcome and any X by-product operators simply flip the
measurement outcome. When multiple single qubit operations are applied, all the by-
product operators can be commuted through using Eq. to appear on the left where
they can be absorbed into the interpretation of the final measurement outcome.

Two qubit gates. While we now know how to perform arbitrary single qubit operations
by measurement (and thereby create correlations between the input, and their corre-
sponding output, qubits), we still need to be able to create correlations between differ-
ent input qubits. This can be achieved by implementing a simple two qubit gate, the
controlled-NOT (A(X)) gate, defined, in the computational basis, as

(2.9 AX)|c)|t)=]|c)|c+t mod?2).

A A(X) gate can be implemented by the construction shown below. Suppose qubits
1 and 4 were in the states |£) and |c) respectively, before the qubits were entangled. After
the entangling operation, qubits 1 and 2 are measured in the X basis, leaving qubits
3 and 4 in the state XJ"*"*"' 2" |c + ¢ mod 2)|c); where m,, m, are the measurement
results. Thus, we have performed a A(X) between qubits 1 and 4, up to the by-product

operator X"z,
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Aside 2.2: Graph States

Graph states are a class of multiparticle entangled states that can be represented by
mathematical graphs (collections of vertices connected by edges). The vertices repre-
sent qubits, and the edges, entanglement between the qubits. A N qubit graph state |)
is defined as the state that obeys the N eigenequations

2.6) Kilyy=l);  j=1...N.

Where the operators K; are defined as

(2.7) k=X |] 2.

ieN(j)

N(j) is the neighborhood of the j qubit, i.e., the neighborhood of the j vertex in the
graph of the state. This is shown in the example below.

7z x A graph state, showing
one stabilizer operator
K;.

Bi-colorable graph states are a special class of graph states that we will encounter
repeatedly. A bi-colorable graph is a graph whose vertices can be “colored” with two col-
ors so that every vertex is connected only to vertices of a different color. Some examples:

[ 4

Anevencycle A 1D clusterstate  An odd cycle. This is not
bi-colorable.

Errors in a graph state. Graph states have the nice property that any error can be rep-
resented in terms of chains of Z operators. Recall that any single qubit operator can be
expanded as sum in terms of Pauli operators and the identity. Now consider a X error
on qubit j. It anti-commutes only with the stabilizer generators {K;}, where i runs over
the neighbors of j. Thus, it will affect only these operators. However, the error chain
consisting of Z operators acting on every neighbor of qubit j also anti-commutes with
only these operators and thus is exactly equivalent to a single X; error. This gives us the
identities,

(2.8) =Rz =22z z=2.

i




15

single qubit gate

t v ]t s

t ot

(]

— > —»> —>
(]

—» —>

mdino

input qubits

t 1

network time

Figure 2.4 — Schematic representation of a measurement based computer. Vertical arrows
represent measurement in the X basis, dots represent measurement in the Z basis
and slanting arrows represent measurement in a rotated basis. Computation
proceeds from left to right, with the output being obtained from the measurement
results of the right most qubits. Each yellow stream represents the path of a
“logical” qubit, as it moves from left to right. This computer operates on three

logical qubits.
4
controlI
. 1 2 3
target in target out

With the CNOT gate and arbitrary single qubit unitaries, we have a universal set of
gates and can perform any desired quantum computation [Bar+95]. We can combine
these elements (single qubit operations and A(X) gates) into a full fledged measurement
based quantum computer. For a schematic representation of a measurement based
computer, see Figure

While the quantum computer we have described will work very well in the absence
of noise, in the real world, we must deal with noise and the impossibility of performing
perfect quantum operations. Schematically, a measurement based computer works as
follows:

e A 2D cluster state is prepared

e The qubits of the cluster state are measured column-by-column from left to right.
The basis of measurement depends on the measurement outcomes from previ-
ous measurements. (Strictly speaking, there is no need to proceed column-by-
column, as long as the time ordering imposed by the single qubit gates is pre-
served.)
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e The output is obtained by correctly interpreting the measurement results of the
rightmost column, keeping in mind the by-product operators from previous mea-
surements.

e Both the input data as well as the algorithm to be performed are encoded in the
measurement pattern. We could instead have put the input data into the left most
column of qubits before creating the cluster state, but encoding it in the measure-
ment pattern gives us a consistent interpretation of a computer as something that
takes classical data (a measurement pattern) as input and outputs classical data,
in the form of measurement results, as well.

e We can think of the computer as operating on a register of “logical” qubits. At each
time step (column), every logical qubit is represented by a single physical qubit. At
the final time step the logical qubit is measured by measuring the physical qubit
that encodes it.

The last item above points to a straightforward technique for making measurement
based computers tolerant to noise. Rather than representing logical qubits by single
physical qubits, we can instead encode a logical qubit into several physical qubits. How-
ever, the naive approach of doing this directly, by using an error correcting code, such as
the Steane code [Ste96], has certain drawbacks. The principal ones being that it will no
longer be possible to implement the computation via single qubit measurements and
creating a 2D cluster state between logical qubits is much harder to do experimentally.

An alternative approach, described in [AL06], is to implement the fault tolerant ver-
sion of the ideal circuit on the measurement based computer. Fault tolerance is thus
achieved automatically, by the circuit construction itself. While this approach undoubt-
edly works, it is abstract, and does not care what type of computer it is being imple-
mented on. By using a fault tolerance scheme that directly leverages the architecture
of the measurement based computation model, we can hopefully achieve better perfor-
mance. Such a scheme is described in the next section. If you would like a more in depth
treatment of the measurement based computation paradigm than presented above, see
[DH06).

2.2 Fault Tolerant Measurement Based Quantum Compu-
tation

In the previous section, we saw that in the measurement based quantum computer,
each logical qubit is represented by a single physical qubit at every timestep. In order to
modify the measurement based computer to make it fault tolerant (see Aside2.3), the
first step is to use a quantum error correcting code to encode logical qubits. We must
chose this code carefully to be compatible with the measurement based paradigm (i.e.,
an easy to prepare initial state with only single qubit operations to follow).

A good choice for such an error correcting code turns out to be the surface code
(see Aside [2.4). Looking at the schematic of the measurement based computer (Fig-
ure[2.4), we see that the input qubits require one dimension and computation proceeds
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Aside 2.3: Fault tolerance

In general terms, when we say that we want a computer to be fault tolerant, we mean
that it should be somehow “resistant to noise.” In other words as long as the noise af-
fecting the computation is somehow bounded, we should be able to design a computer
that computes with arbitrary accuracy, without too much overhead.

This requirement is formalized in the context of quantum computation via the
Threshold Theorem.

Theorem 1. Ifthe noise per elementary operation is below a constant non-zero threshold
then an arbitrarily long quantum computation can be performed with arbitrary accuracy
and small operational overhead.

This theorem has been proven for the circuit model of computation [AGP06] and it
applies, as well, to the measurement based model, via the mapping in [ALO6].

While the threshold theorem shows that there must exist an implementation of the
computer that is fault tolerant, it is silent on how to construct one. In this chapter and
the next, we present a design of a fault tolerant measurement based quantum computer
that has a very high threshold and whose overhead requirements scale well with increas-
ing circuit size.

o b)

7 /

Figure 2.5 - The cubic lattice used for fault tolerant measurement based computation. a) The
elementary cell of the lattice. It has 18 qubits and is tiled in 3D to build the lattice.
The solid lines indicate entanglement between the qubits. The lattice is a
bi-colorable graph state of degree 4. b) The dual cell (qubits suppressed for clarity),
shown inside a section of the lattice with eight primal cells. The dual lattice is
obtained by translating from the primal lattice by the vector %(a, a,a), where a is
the side of the primal cell.
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Table 2.2 — The duality transforms in two and three dimensions. The transforms are symmetric

((x*)" =x).

dimension primal dual mapsto

vertex cube The dual cube centered at the primal vertex
edge face The dual face through which the primal edge passes

3D face edge  The dual edge that passes through the primal face
cube  vertex The dual vertex at the center of the primal cube
vertex face The dual face with the primal vertex at its center
2D edge edge  The dual edge intersecting the primal edge

face vertex The dual vertex at the center of the primal face

along the other dimension, from left to right. Surface codes are two dimensional, so a
measurement based computer with its qubits encoded in a surface code, will be three
dimensional. The 3D structure we use is a cubic lattice (.£) with qubits on the faces
and edges of the elementary cell (see Figure[2.5). Hereafter, the computer based on this
lattice will be referred to as the €5p.

If we define the elementary cell to have a side of length 2 units, then, we can identify
two sub-lattices within the full lattice. Call these sublattices primal (.%,) and dual (%£;).
Each sub-lattice is a cubic lattice, but now only with qubits on its edges. The vertices of
these lattices are located at the co-ordinates:

%,=(elven],e,e)
Y%, = (oldd],o0,0).

%, is dual to £, under the symmetric mapping ()%, defined in Table[2.2]

The sub-lattices are important as all the structures we eventually introduce for quan-
tum computation belong on one or the other of these sub-lattices, and the way they in-
teract depends on which sub-lattice they belong to. Furthermore, throughout this work,
we adopt the convention that logical qubits are encoded on the primal sub-lattice while
the dual sub-lattice is used to encode correlations between the logical qubits. The oppo-
site convention of using the dual lattice to encode logical qubits is also possible. Indeed,
the two conventions can even be mixed to an extent. However, for the sake of clarity and
standardization, we will stick to the first convention.

The first stage in defining €5, is to define the encoding of the logical qubits, which
we will address in the next section.

2.2.1 The Logical Qubit

In the measurement based computer (Figure [2.4), the computation could be divided
into timesteps with each logical qubit being encoded into a single physical qubit at every
time step. Similarly, for €;p, the computation can be divided into timesteps. At each
timestep, the logical qubits are encoded in the surface code on a single 2D plane. When
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Aside 2.4: Surface codes

Surface codes [SA98; Den+02a], are a way of encoding quantum information (states) into
the topology of a lattice of qubits. The simplest (and most directly relevant) example is to use
a 2D lattice with the qubits living on the edges of the lattice. Such a state is a stabilizer state
(see Aside 2.1), with two types of stabilizer generators (plaquette and site). If all the stabilizers
are enforced, then the stabilized subspace consists of a single state, the +1 eigenstate of all the
stabilizers. By itself, this state is not very interesting, but if we relax one of the constraints (i.e.,
no longer require a particular generator to have eigenvalue +1), then the stabilized subspace
has dimension two. We can interpret the new state as carrying a localized excitation at the site
of the relaxed generator, or a quasi particle. In the diagram below, we see an example of such
quasi-particles, called “holes.”

X
X

X
X

Z Z ]
z - -
[ plaquette operator —— Z chain 0 “hole”
+ site operator === X chain Oz --x

In this diagram, we see the various structures defined on the lattice. First, the stabilizer genera-
tors, of two types, plaquette and site. It is easy to see that they commute with each other. Errors
on the lattice can be either Z chains, or X chains. A X chain consists of the X operator acting on
all edges that intersect the dashed blue line, while Z chain consists of Z operators acting along
the thick red line. Error chains anti-commute only with plaquette and site operators at their ends
and thus leave syndrome only at their ends (syndrome consists of the results from measuring the
plaquette and site operators at all locations on the lattice).

Encoding logical qubits. In the third diagram, we see an example of using a pair of quasi
particles to encode a logical qubit. The logical Z operator is defined as any closed loop of Z
operators that encircles one of the holes, while the logical X operator is defined as any chain of X
operators stretching between the two holes. A similar set of definitions exists for a pair of holes
made up of site operators.

Error correction. First note that any closed loop that does not enclose a hole is equivalent to
the logical identity operation, since it is in the stabilizer of the state and commutes with the X
and Z operators. Since error chains leave a syndrome only at their ends, we just have to match
all positive syndrome locations into pairs using a chain matching algorithm. We then apply the
appropriate chain of operators between each pair to convert the error chains into trivial closed
loops. If we make sure our holes are well separated and that each hole is “thick” (i.e., made by
tiling several adjacent plaquettes), then the only error chains that will be misinterpreted by our
error correction procedure and thus become logical errors, will have to be long. For a local error
model, the probability of such chains is exponentially suppressed in their length, leading to a
robust encoding of logical qubits.
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code plane for surface code

3D cubic lattice

network time 14

Figure 2.6 — The schematic €3p. Logical qubits are encoded in the surface code on a 2D plane.
At each timestep, the left most plane is measured, and the logical qubits move onto
the next plane. The output is obtained when the rightmost plane is measured.

Ky X
z |
Kd*{Z X Z L X Z
V4 .\ B
é.
> B
—o—1—o =

Z

o dual qubit o primal qubit

Figure 2.7 — A 2D slice of £, showing a logical qubit. The stabilizer generators of the full 3D
lattice when projected onto the slice are of two types, K, and K. The logical X
operator consists of X acting on every edge intersected by the dashed line. Z
consists of Z operators acting on all the edges marked by the thick red line.

the plane is measured, the logical qubits move onto the next plane, and so on, until
they are finally measured on the output plane at the right. By correctly interpreting this
measurement result (keeping in mind the results from measuring previous planes), we
get the result of the computation. This idea is represented schematically in Figure[2.6|

Just as was the case for the surface code (Aside , logical qubits in the &5p are
made up of pairs of “holes.” By convention, the holes live on 2D slices of .Z,. We saw
in the case of the surface code that a hole introduces a degree of freedom, raising the
dimension of the stabilized subspace from one to two. A hole has exactly the same effect
here. Consider Figure[2.7} which shows a 2D slice of ,,. The stabilizer generators of the
full 3D lattice, when projected onto the slice, are of the form K, and K;. We can define a
site operator (analogous to the site operator of the traditional surface code in Aside,
as shown in the figure. By relaxing the requirement that the plaquette operator have
eigenvalue +1, we introduce a degree of freedom, or a hole.

At first sight, the slice does not look much like a surface code. It has qubits on both
edges and faces and the stabilizer generators K, K; are not directly compatible. How-
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Figure 2.8 - The mapping from slice to surface code. See the discussion in the text.

ever, by measuring the face qubits in the X basis, we can convert the slice to a surface
code. When the measurement pattern for £ is described, we will see that the face qubits
are indeed measured in the X basis. To understand the mapping from slice «— surface
code, we consider the 2D lattice dual to the slice (see Table and Figure. The dual
lattice has qubits on edges and vertices. The K, stabilizers are associated with the edges
of the dual lattice and the K,, stabilizers with the vertices. By multiplying four K, sta-
bilizers, we get a plaquette operator consisting of the X operator acting on the edges of
the plaquette. Each edge is shared by two faces, thus there are two edges per face and
therefore two K, operators per face. One of these can be replaced by the plaquette op-
erator. When the vertex qubits are measured in X, the other K, is replaced by a single
X operator, associated with the corresponding vertex. By multiplying this operator with
K, we are left with a site operator consisting of Z acting on the arms of the site. Thus,
the stabilizer after measurement consists of plaquette and site operators, just as for the
surface code in Aside (except that the roles of the X and Z operators are reversed).
Since the dual lattice supports a surface code, the primal lattice also supports the dual
of the same code.

A pair of primal holes supports a single qubit. The logical X operator is a loop of X
operators around either one of the primal holes in the pair, just as for the surface code.
The logical Z operator is a chain of Z operation connecting the two primal holes. The
choice of a particular loop or chain is immaterial as they all have the same eigenvalue.
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Table 2.3 — Notation for the components of the sub-lattices %), £,

Feature %, %y

vertex v v=¢qg*
edge e e=f*
face f f=e*
cube q q=v*

This is a property of the surface code, and is easy to check. Since the loop and chain
must intersect in an odd number of edges, it is easy to see that [X,Z] = —1. Thus, by
adding pairs of holes to the slice, we can encode as many logical qubits as needed.

Remember that a hole is really just a location on the lattice where the corresponding
stabilizer is not enforced. In the context of a measurement based computer, where slices
are measured destructively (rather than measuring stabilizers directly, individual qubits
are measured and the value of the stabilizers is computed by combining the measure-
ment results), this means that when interpreting the measurement results, the value of
the missing stabilizers must not be computed. For €;p, this is automatically ensured
by the construction of the lattice and the measurement pattern. What this means will
become clear in the next section, where we define in detail the various components of
¢3D-

2.2.2 The Topology of It

In order to understand precisely how the computation proceeds in €3, we will first have
to identify and define the various structures that make it up. We have already defined
the cubic lattice ., along with the two sub-lattices .Z,, £, that are dual to one another
(see Table[2.2).

The sub-lattices £, £, are made up of vertices, edges, faces and cubes. These will
be referred to by the notation defined in Table The various components are related
to each other, by the boundary operator (0). The boundary of a cube is the set of six
faces, the boundary of a face is the set of four edges and the boundary of an edge is two
vertices.

Intuitively, the boundary operator is quite clear. For example the boundary of four
adjacent faces would be the eight edges on the “outside” of the faces. However, the
boundary operator is really a topological operator and to make its definition precise,
we need to set up a chain complex [All02] on £. This is done in Aside With the
precise definitions out of the way, we can enumerate the various objects that live in €;,.

Qubits. Qubits in . come in two flavors, primal or dual. Primal qubits are located on
edges of £, or conversely, faces of Z;. Dual qubits are located on the edges of £, or
conversely the faces of Z,.
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Figure 2.9 - Examples of correlation operators. On the left is a correlation operator in 2D with X
acting on the faces and Z on the boundary. On the right is a special type of
correlation operator, the syndrome operator. It consists of X acting on the six faces
of a cube.

Correlations. A correlation is defined as a collection of faces, or formally, a 2-chain ¢,
(see Aside[2.5). It is not strictly necessary for a correlation to be made up of contiguous
faces, but all the correlations we will encounter in this work will be contiguous. Associ-
ated with every correlation c;, is a correlation operator, defined as

2.10) K(e)=Q)X(f)Z(2f).

fec

In words, a correlation operator consists of the X operator acting on the face qubits and
the Z operator acting on the qubits in the edges that form the boundary of the faces.
Correlations can be either primal or dual. A primal correlation has X acting on dual
qubits, with Z acting on primal qubits, while a dual correlation is the converse. Some
examples are in Figure[2.9]

Correlations are used to move logical qubits forward with time and also to mediate
interactions between logical qubits.

Errors. Recall in Aside we saw that for a graph state, any error can be represented
as a chain of Z operators. So it is natural to define errors as sets of edges. The edges
need not be connected. Formally, an error is a 1-chain ¢, (see Aside . Associated
with every error is an error operator, defined as

2.11) E(c))==Q)Z(e).

eec)

In words, an error operators consists of the Z operator acting on the qubits in a set of
edges. Errors can also be either primal or dual. A primal error operator is Z acting on
primal qubits, while a dual error operator is Z acting on dual qubits.

Syndrome. Syndrome is extracted from the measurement results. It is used to detect
the presence and type of errors that are affecting the computation. In the case of &;p
that means locating the error chains. Syndrome is located at the vertices of £, and .Z;.
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Figure 2.10 — Error chains leave syndrome at their ends.

Recall from Table |2.2| that every vertex is dual to a cube. This tells us what the operator
that has to be measured to yield the syndrome at a vertex should be. It is the correlation
associated with the faces of the cube dual to that vertex. The syndrome operator is

(2.12) Sw):= Q) X(f)-

feov*

This follows from Eq. and the observation that 82q =0 (see Aside[2.5). In words, a
syndrome operator is the X operator acting on the six faces of a cube. See Figure[2.9/for
an example. Note that when restricted to a 2D slice, the syndrome operator becomes a
site operator, as expected.

Syndrome and errors. Primal syndrome detects primal error chains while dual syn-
drome detects dual error chains. Let ¢, be an error chain, g be a dual cube correspond-
ing to primal vertex v = (q)*. The error operator E(c;) anti-commutes with the syn-
drome operator S(v) only if v € dc;. Thus, error chains show syndrome only at their
ends, just as for the surface code. This is shown in Figure[2.10]

Correlations and errors. Primal correlations are affected by dual error chains and dual
correlations are affected by primal error chains. This is easy to see when you remember
that error operators are made up of Z operators on edges, while correlation operators
have X acting on face qubits. A primal correlation has X acting on primal faces, which
are also dual edges. Thus, only a dual error operator can anti-commute with a primal
correlation operator.

Furthermore, an error chain will only affect a correlation if it intersects the corre-
lation an odd number of times. This follows from the the observation, E(c;)K(c,) =
(=1)tente K(c;)E(c;). If the number of intersections, |{c;} N {2}, is odd, the correla-
tion is conjugated to —K(c;) by the error, otherwise it is left unchanged.

Defects. Defects are line like objects that are used to give ¢ an internal structure.
When associated with logical qubits, defects can be thought of as extensions of holes
into the network time direction. The logic of the quantum circuit being implemented is
encoded in the topology of the defects (i.e., how they wind around each other). This will
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Aside 2.5: Homology on &

Define the chain groups as follows (where z € Z,)

object  Chain group Basis

vertices Co=1{co:co= Zk zivrt  B(Co) = {vy :vertices in £}
edges CI:{clzclzzkzkek} AB(C,):={ei:edgesin Z,}
faces ng{czzcgzzkzkfk} RB(C,) = {fr :facesin L)}
cubes  Cy={cz:cs= 2, zrqk} B(C3):={q:cubesin £}

The groups {C;}_, are Abelian under componentwise addition. For example, ¢; + c) =

Zk Zrer + Zk zier= Zk(zk +z})ex. For each i =1...3, there exists a homomorphism
0; mapping C; to C;_,, with the composition J;_; o ; = 0. With these definitions,

6 = {CO; Cl; C27 C3}’

is a chain complex [All02] and J is a boundary operator that maps the chain c; to its
boundary which is a chain ¢;_;. Similarly, the dual chain complex, ¢*:= {C}, C7, C;, C;}
can be defined on .%;.

We are now ready to define homology. Two chains ¢, ¢/, € C, are said to be homo-
logically equivalent if there exists some ¢, 4, € Cy,41, such that ¢/, = ¢,,41+ 0 ¢,41. In other
words, ¢/ =, ¢, if they differ by the boundary of a chain of the next higher dimension.
The concept of homology encapsulates the property of surface codes that an error chain
has syndrome only at its end-points (i.e., only at its boundary), and that we can correct
such a chain by applying any chain that has the same end points.

Of particular interest to us, is the concept of relative homology. Suppose a chain
complex is defined on a space 2 and there exists a sub-space 2 C 2. Two chains are
equal w.r.t relative homology, ¢/ =, c,, if there exists some ¢, € C,11(X) and d,, €
Cu(2) such that ¢/, = ¢, + d ¢p11 + d . This formalizes the idea that in a surface code, an
error chain can start and end on a pair of defects (holes), and that the effect of the chain
on the logical qubit is the same irrespective of the actual shape of the chain.

become clear as we progress. Formally, a defect d is defined as a connected set of edges
and the faces they “contain,”

(2.13) d:={e:ecdu{f:{0find=10f}}.

In words, a defect is a set of edges alongwith the faces the set of edges contains. A face is
contained by a set of edges if its boundary is in the set of edges. Defects are either primal
or dual, depending on whether they contain primal or dual edges and faces.

Singular qubits. Singular qubits (S-qubits) are single qubits located at widely sepa-
rated locations in .Z. They are used to initialize ancillary logical qubits in states that are
used to perform non-Clifford gates.
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The measurement pattern. Since €5, follows the measurement based quantum com-
puter paradigm, all measurements are single qubit measurements. The basis in which
a particular qubit is measured depends on what part of €5, it belongs to. The different
parts that have different measurement patterns are listed below.

e Singular qubits. These qubits are measured in a basis rotated about the z-axis
(0) +exp(i¢)[1)). The value of ¢ depends on the type of ancilla we are trying to
create with the singular qubit.

e Defect qubits. Recall that defects are made up of two types of qubits, edge qubits
and face qubits. Edge qubits are measured in the Z basis, while face qubits are
measured in the X basis. This is true for both primal and dual defects.

e Bulk qubits. All the remaining qubits are measured in the X basis.

Now that we have specified the measurement pattern, we can see how it interacts
with the surface code on a 2D slice of .Z,. Recall that “holes” on the surface code are
simply locations where the corresponding site operator is not enforced. A hole is really
the projection of a defect that extends in the time direction onto the slice. Therefore,
the edges of L, that extend in the time direction from the vertex at which a hole is lo-
cated are defect edges. But primal edges are dual faces, so these two edges are also two
faces of a dual cube centered at the vertex. Normally, the syndrome associated with the
vertex would have been obtained by measuring the six faces of the dual cube in the X
basis. Now however, because two of the faces are defect edges and therefore measured
in the Z basis, the syndrome bit associated with the vertex is lost, and thus the stabilizer
associated with it is not enforced. Note that since .Z is a graph state and all errors on
it are Z chains, the plaquette operators of the surface code (that consist of Z acting on
the edges of a plaquette) are automatically enforced. The site operators are enforced
using the syndrome obtained from the measurement of the dual cubes centered at each
primal vertex.

Correlations and defects. In a primal defect, edges in the boundary of a primal 2-chain
are measured in the Z basis. Recall that a primal correlation consists of X operators
on primal face (dual edge) qubits and Z operators on primal edge qubits. Therefore, a
primal correlation can “end on” a primal defect. By “end on,” we mean that it can have a
primal defect as its boundary. Similarly, dual correlations can only end on dual defects.
Similarly, primal correlations can wrap around dual defects and dual correlations can
wrap around primal defects. This is analogous to having chains encircling holes in the
surface code. In this manner, defects can be used to “guide” correlation surfaces.

Syndrome and defects. In the discussion of the measurement pattern, we saw that
syndrome at holes is lost. This is a specific example of a more general phenomenon. For
a given primal defect d, define the set G :={v € de : e € d}. G is the set of vertices as-
sociated with the defect. Then, the syndrome operators {S(v*): v € G} do not commute
with the measurement pattern. Thus the syndrome at all the vertices associated with a
defect is lost.
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Table 2.4 — Relationships between correlations, syndrome, defects and errors. “A bounds B” is
synonymous with “B ends in A.” The displayed objects do not interact with
themselves. The relations are symmetric.

to this one | This object does...

dual corr. primal defect dual defect primalerr. cyc. dualerr. cyc.
primal corr. nothing  bound repel nothing affect
dual corr. repel bound affect nothing
primal defect encircle pairwise end encircle
dual defect encircle pairwise end
primal err. cyc. nothing

However, for each defect d, there will be one syndrome bit associated with the defect
as awhole. This is because there is a correlation surface (2-chain) that wraps around the
defect as a whole. Since it wraps around the defect, it is closed, has no boundary and is
of the form ), X;. When the qubits in the bulk region are measured in the X basis, this
correlation yields an extra syndrome bit.

Errors and defects. A primal error chain can end in a primal defect. This is because,
primal syndrome is lost at a primal defect, as discussed above. Similarly, dual error
chains can end in dual defects. However, there is a syndrome bit associated with the
defect as a whole and this detects an error chain ending in the defect if the number of
intersection between the correlation surface and the chain is odd. Thus error chains can
pairwise end in defects.

The relationships between correlations, syndrome, defects and errors is summarized
in Table

2.2.3 Initialization and Measurement of Logical Qubits

The first step in performing a computation is preparing logical qubits in a known state.
In the following discussion, the preparation and measurement of states in the X, Z bases
is shown using defects made up of single edges. This is for clarity and ease of presen-
tation. In an actual fault tolerant construction, the defects would be thick, as will be
explained subsequently. The initialization in the rotated states however, requires the
use of single qubits and cannot be topologically protected. These logical qubits must
therefore be distilled before being used. The distillation will also be discussed later.

Initialization in an eigenstate of Z. In order to create alogical qubit thatis in an eigen-
state of the Z operator, we use the construction shown in Figure The qubits on the
blue edges are measured in the Z basis, while all other qubits are measured in the X
basis. The logical qubit is created on the right side of the lattice, with the shown logical
operators. To see that the logical qubit is in an eigenstate of the Z operator, focus on the
correlation operator K; = ®?= ; Xi ®]1.i52 i. Kz is compatible with (commutes with) the
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Figure 2.11 - Initializing a logical qubit in the Z eigenbasis on %),. The a, c, e slices belong to
%), while the b, d slices are in .Z,;. See discussion in text for how the initialization
works.

measurement pattern. After slices a, b, c and d are measured, we can multiply it by the
resulting stabilizers of qubits 1...10 to reduce it to (_1)221%211212, where m; € {0,1}
are the results of measuring qubits 1...10. But, 7 = 7Z1Z1». Thus, the logical qubit on
slice e is initialized to either |0) or |1), depending on the known measurement results
from measuring slices a, b, c and d. In the language of measurement based computing,
we have created the state |0) up to the by-product operator X2 ™

Initialization in an eigenstate of X. In order to create a logical qubit that is in an
eigenstate of the X operator, we use the construction shown in Figure The qubits
on the blue edges are measured in the Z basis, while all other qubits are measured in the
X basis. The logical qubit is created on the right side of .Z,, as before. To see that the
logical qubit is in an eigenstate of the X operator, the important correlation operator is
carried on the eight shaded faces of the two dual cells. It has the form Kx = ®?:1 X;. This
operator commutes with the measurement pattern. After slices a,b are measured, Kx
reduces to the site operator on slice c. But the site operator is also the X operator, thus,
we have prepared an eigenstate of X on slice c. Whether the state is the £1 eigenstate
depends on the known measurement outcomes from the previous slices.

Measurement of the X, Z operators. Measurement of these operators can be per-
formed by simply time-reversing the preparation procedure, as shown schematically in
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Table 2.5 — Preparation and measurement of X, Z. Time flows from left to right.

Basis Preparation Measurement

Z
X

Table It is easy to see that the measurement pattern imposed by the shape of the
defects, allows for the measurement of the logical operators.

Initialization in a rotated state. A rotated state is a state of the form |£y) :=|0)£e? |1).
If we define the rotation operator Uz(60) = e~'%Z, then, up to a global phase, |+£g) =
Uz(0)|£). To prepare a logical qubit in such a rotated state, the construction shown in
Figure[2.13]is used. The red qubit is a singular qubit and is measured in the the rotated
basis {|+¢)}. This results in a logical qubit encoded in the |£4) state on the right most
slice.

To understand how this works, first define Ry as the operator whose eigenstates are
|£¢). Now suppose that we choose a particular ring of X operators as the logical operator
X =X,...X, and a chain of Z operators as the logical operator Z=2p...Znim. The ring
and chain intersect at the n'" qubit (i.e., at the singular qubit). Remember that this is a
surface code, so the particular choice of the ring, chain and singular qubit doesn’'t matter
as long as the topology is preserved. In this case that means that the ring must encircle
one hole and the chain must start and end at the two holes. Also they must intersect an
odd number of times and one of those intersections must be the singular qubit. Now it
is easy to see that Ro=X1...Xno1R0 0 Zns1 - Znsm.

The next step is to remember that we can inject arbitrary states into a graph state.
Ordinarily, a graph state is created by performing the A(Z) gate between qubits initial-
ized to the |+) state. However, if one of the qubits is initially in the arbitrary state [y)
before the A(Z) gates are performed and if all but one of the qubits in the resulting graph
state are measured in the X basis, the remaining qubit will be in the [') state (up to some
by-product operators). This follows from Eq. (2.2), by setting ¢ =0.

Now realize that measuring the singular qubit in the |+4) basis is the same as rotat-
ing it by U,(—80) and then measuring it in the X basis. But, U,(—8) commutes with A(Z),
so this is equivalent to rotating the qubit before the entangling operations. In other
words, by measuring Ry, we are effectively injecting the state |t), into the larger lattice.
Whether the + or — state is injected depends on the measurement outcome. In particu-
lar, if after the preceding slices have been measured, we were to measure Ry on the right
most slice, we would always get the eigenstate indicated by the preceding measurement
results.

This technique can be used to initialize logical qubits in any state of the form |+).
However, two such states are of particular interest to us; the eigenstates of the A = )%Y
and Y operators. These are used as ancillas to perform certain quantum gates. It should
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Figure 2.13 - Initialization of logical qubits in the |+4) state. Slices a, ¢ belong to .£),. The slice ¢
shows the logical operator Ry. See discussion in text.

be emphasized that while the preparation of the eigenstates of the X and Z operators
can be made fault tolerant simply by thickening the defects and making sure they are far
apart, this does not work for initializing logical qubits in a rotated state, because of the
need to use a singular qubit. As a result, these states must be distilled before being used
in the computation.

2.2.4 Error Correction

Now that we are familiar with the various parts of &€;p, let’s discuss how errors are cor-
rected. Error correction proceeds similarly to error correction in the surface code, except
for two differences:

¢ In the surface code measurements are non destructive. Measurement results are
used to determine what correction operators to apply. In €3, measurements are
destructive and error correction involves processing the measurement results to
determine the measurement pattern on future slices.

e In &;p there are two independent topological error correcting codes. A primal
code that lives on %, and a dual code that lives on .Z;. They are independent
in the sense that primal errors leave only primal syndrome and can end only in
primal defects and vice versa for dual errors.

Just as for the surface code, error chains leave syndrome only at their ends. The task
of the error correction algorithm is to correctly pair up all the locations that have non-
trivial syndrome. See Figure for an example. Once the pairing up is performed, the
error represented by each pair is corrected. This is done by choosing a chain (typically
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A C
B D
Figure 2.14 — Two error chains that leave syndrome at their ends. If the error correction
algorithm correctly pairs up (A4, B) and (C, D), the error will be corrected. However,

if it pairs up (4, C) and (B, D), there will be an error anti-commuting with the
shown correlation surface, leading to a logical error in the computation.

the shortest chain) that runs between the syndrome locations and flipping the X mea-
surement results on all qubits along that chain. If the pairing up of syndrome locations
was done correctly, the updated measurement results will give a computation result that
is the same as if no errors had occurred.

Note that in €3, measurement results are used fwice. The first time, they are pro-
cessed to calculate the syndrome. This is done by multiplying the measurement results
on the faces of every cube in the primal and dual lattices. Once that is done, the syn-
drome is used to update the original measurement results. These updated measurement
results are then interpreted to get the result of the computation. The details of the error
model and algorithm used for pairing up syndrome locations as well as a corresponding
threshold estimate are in Chapter 3]

2.2.5 Gates

In order to implement universal quantum computation, we need a set of gates that can
be implemented fault tolerantly and that constitute a universal set. The gates we choose
are: Z-preparation, X-preparation, Z-measurement, X-measurement, A(X), exp(i$Z2),
exp(i;X) and I. We have already seen how to perform X,Z preparation and measure-
ment. We now discuss the remaining gates.

The identity gate. The identity gate is mediated by the two correlation operators Ky
and K, discussed previously for the preparation of states in the X and Z bases. They
are shown schematically in Figure Label the left most and right most slices I and
O. Then, Kx|uo = X; ® Xo and Kz|;u0 = Z; ® Zo. These correlation operators are com-
patible with the measurement pattern between the input and output slices. Thus, after
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Aside 2.6: Quantum correlations = gate action

In &3p, logical gates (gates on logical qubits) are mediated by correlation operators.
To see precisely what this means, consider a lattice . that supports logical qubits on
its left and right most slices. The left most slice is the input slice and the right most
slice is the output slice. Divide the lattice into three regions, I, M,0O. I, O refer to the
input and output slices respectively and M is the lattice between the two slices (INM =
ONM =1N0=g). Let [1) ¢) be the quantum state of the lattice and |y ), be the state
restricted to the input and output slices. By convention, the input and output slices are
primal slices. For simplicity, we assume there is only a single logical qubit whose state
on the input and output slices is denoted by IE) ; and @)O, respectively. Note that IE) I
refers to the state of the logical qubit on the input slice before measurement.

Now suppose that all qubits in the region M are individually measured in the X or
Z basis as specified by the pattern of defects in M. Further suppose that after the mea-
surement, the state [ ¢), , obeys the eigenequations,

(2.14) X/ ® (ﬁoﬁf) 12 100=1" 1Y 2) 00

(2.15) Z® (ﬁoﬁT) 12 10=1"" [ 2) 100

Where Ay, € {0,1} depend, in general, on the measurement results from measuring M.
Now, if the qubits on the input slice are measured, it follows from Theorem 1 of [RBB03]
that the state of the logical qubit on the output slice is,

|E)o =UUs, |$>1 .
Where Uy is a by-product operator given by

—X+Ax—=Az

UZ:Z X

Here x € {0, 1} is the result of measuring X;, which is automatically measured when the
qubits on the input slice are measured.

Thus, the correlations of Equations are equivalent to performing the gate
U on the logical qubit. In ¢35 these correlations are simply the projections of the corre-
lation operators K(c,) onto slices of the primal lattice.
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Figure 2.15 — Correlation surfaces for the identity gate.

all qubits between the input and output slices are measured, the remaining state [{)
obeys the eigenequations

)_(I ®)_(O |¢>IUO =% |¢>IUO
Z1®Zo 1Y) 100 =E 1Y) 100 -

Comparing with Equations (2.14} |2.15), we see that this construction implements the
identity gate. The £ on the right hand side of these equations depends on whether there
are any error chains affecting the correlation operators or not.

The A(X) gate. The A(X) gate maps control and target operators as

XC — XCX[ X[ - Xt
Z.— 2, VARV AVAS

Then the correlator eigenequations for the A(X) gate must be

Xe, ®Xeo Xio V) 100 =14 100 X0, ® X1, 1) 100 =E1¥) 100
ZC! ®ZCO |¢)IUO = i|¢)1uo Ztl ®ZCOZIO |¢>IUO = i|¢>luo .

The correlation operators that enforce these eigenequations are shown in Figure[2.16]

The non-Clifford gates. The gates exp(i £ Z), exp(i’Z) and exp(i 7 X) are implemented
with the help of the ancilla states |A) := (IO) +eli |1)) /v2 and |Y) == (|0)+i[1))/V2,
eigenstates of the A = % and Y operators respectively. Recall that we discussed how to
initialize a logical qubit in one of these states. The initialization procedure is not fault
tolerant, due to the use of singular qubits. As a result, the logical qubit must be distilled.
This is discussed in the next section. Once we have nice, distilled ancilla states, we can
use the circuits shown in Figure[2.17|to perform the gates. The defect configurations are
the simplest possible that still yield the correct correlations. Checking this is left as an
exercise to the reader.

The circuit for exp(i $Z) is probabilistic and succeeds with probability 1/2. On fail-
ure, the gate exp(—i3Z) is applied instead. This can be corrected for by a subsequent ap-
plication of the exp(i %Z ), which is deterministic. Thus, on average, one logical exp(i %Z )
and 1/2 alogical exp(i %Z ) have to be performed for every exp(i %Z ) in the ideal circuit.
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Figure 2.16 - The correlation surfaces for the A(X) gate. The upper two primal defects
constitute the control qubit. The lower primal defect is the target qubit. The dual
defect mediates correlations between the control and target qubits, as shown.
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a)
|A),1Y) exp (i%Z) ,exp(i%Z) 1P) |A),1Y)
) D—z In I Out
b)
1Y) i exp (i2X) 19) 1Y)
9) x In Out

Figure 2.17 — Circuits to perform non-Clifford gates. a) Circuit for exp(i %Z ) and exp(i %Z ). b)
Circuit for exp(i 7 X).

State distillation The ancilla states used to perform non-Clifford gates are noisy and
need to be distilled. We use a variant of the magic state distillation circuit described in
[BKO5a], adapted to €3p. The circuits for the distillation of |A) and |Y) states are shown
in Figure The circuits use only topologically protected gates (X,Z measurement
and A(X)). At each level of distillation, |A) distillation requires 15 |A) states at the lower
level and |Y) distillation requires 7 |Y) states at the lower level.

2.2.6 Making It Fault Tolerant

So far the discussion has been restricted to describing the logical structure of €3, and
explaining how the quantum gates work. We have not really talked about fault tolerance.
Indeed, the structures defined in previous sections are not fault tolerant. This is because
the involved defects are thin and close together. We saw in Section[2.2.4]that error chains
leave syndrome at their ends. However, an error chain that ends in a pair of defects will
leave no syndrome. Similarly, an error chain that forms a closed loop around a defect
has no ends and thus leaves no syndrome. Both these types of error chains lead to logical
errors, as illustrated in Figure

To make ;) fault tolerant, we rescale the elementary cell to a logical cell made up
of A x A x A elementary cells. The cross-section of a defect with the perpendicular slice
becomes an area of d x d elementary cells (see Figure[2.19). The building block of our
computer is now this logical cell. Each gate is composed of a number of logical cells. For
example, in Figure[2.21} we see a CNOT gate made up of logical cells. This construction
guarantees a distance of 2(A — d) between neighboring defects as well as a minimum
length of 2(d + 1) for chains that circle defects (this is because the error correction pro-
cedure can turn a chain of length 2(d + 1) into a loop encircling a defect). For near-local
error models, this means an exponential suppression oflogical error probability in these
lengths. A detailed analysis of the overhead imposed by this fault tolerance scheme can
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a) b)

*—o—0

elementary cell
ﬁ O—O—0
o—o—0

efect] Jj dl A

Figure 2.19 — a) The logical cell. It is rescaled from the elementary cell of the lattice by a factor
of A in each direction. The defects have cross-section d x d. The elementary cell
can be either a primal or a dual cell, corresponding to the type of defect being
considered. b) The measurement pattern associated with a defect. Blue edges are
measured in the Z basis. The blue dots indicate that the edges perpendicular to
the slice at those locations are also measured in the Z basis, creating “holes.”

Figure 2.20 — Error chains leading to logical errors, affecting an identity gate. The first chain
leads to a logical Z error, while the second leads to a logical X error. Because these
chains have no endings (the second chain ends in a defect), they leave no
syndrome and cannot be corrected.
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be found in Chapter|[3]

2.3 Mapping To A Two Dimensional System

So far, we have discussed computation on a three dimensional lattice. The 3D nature of
¢sp is dictated by the need to use two dimensions to encode the logical qubit. While this
cannot be got around, it is possible to implement the three dimensional computation
on a 2D physical lattice. The 2D lattice is not a slice of the full 3D lattice. Instead it has
qubits on faces, edges and vertices. It can be thought of as a body-centered-cubic lattice
half a cell thick.

In the 3D version, we use |[+) preparation and A(Z) gates for the creation of ¥ and
subsequently perform local measurements in the X, Y, Z and X+ Y bases. These opera-
tions can be mapped to the 2D lattice as follows. Note that this mapping does not affect
information processing. In particular, error correction and gate logic are still the same
as in €3p. The temporal order of operations is shown in Figure[2.22]

1. Space-like edges (primal and dual). For each such edge, group together the |+)
preparation, measurement and trailing time like oriented A(Z) gate, and denote
the combination by {|+), A(Z), P}. P denotes the measurement of the space-like
edge. If the measurement on the trailing end of the trailing time-like A(Z) gate is
in the Z basis, then

(2.16a) {+), A(Z), P} — P,
otherwise,

(2.16¢) {l+), A(Z), Pxiy}— He's?,
(2.16d) {l+), AZ), Py}—> He'i%,
(2.16e) {+), A(Z), P;} — Px.

2. Time-like edges (primal and dual). For each such edge, group together the prepa-
ration and measurement, and denote the combination by {|+), P}. P denotes the
measurement of the time-like edge. Then,

(2.17a) {+), Pd—1,

3. Space-like oriented A(Z) gates.

(2.18) ANZ)— A(Z)
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Figure 2.22 — Temporal order of operations in the bulk of the lattice (away from any defects or
singular qubits), for the 2D version of the €3p. Shown is the elementary cell of .
with one axis converted to time. The labels on the edges denote the time steps at
which the corresponding A(Z) gate is performed. The labels at the syndrome
vertices denote measurement and (re-)preparation times [y, tp], and the labels
() denote times for Hadamard gates. The pattern is periodic in space, and in
time with period six.



42

Note that under the 2D mapping, no qubit in the scheme is ever idle between prepa-
ration and measurement. The identity in Eq. can be replaced by the single qubit
completely depolarizing channel without affecting the computation, as it will be re-
initialized prior to its next use. For a physical realization, it may be preferable to use a
double layer 2D structure instead of a single layer. The advantage then is that all qubits
within one layer, including the singular qubits, can be read out simultaneously. One
‘clock cycle’ consists of the following steps: 1) Ising interaction/A(Z) gates between all
pairs of nearest neighboring qubits in the lattice; 2) Simultaneous measurement of all
qubits in layer a, re-preparation of all qubits in layer a; 3) Same as 1); 4) Same as 2), with
a«—b.

2.4 Summary

We can summarize the structure of €5, as:
e A 3D cubic lattice with qubits on edges and faces.
e Logical qubits are encoded on 2D slices of this lattice.

e Logical qubits are encoded by “holes.” These holes extend in the third dimension
to become “defects.”

e Primal defects encode the logical qubits, while dual defects encode correlations
between them (by winding around the primal defects).

¢ Most of the qubits in the lattice are measured in the X basis. These measurements
teleport logical qubits from one slice to the next.

e Qubits in the defects are measured in the Z basis. These measurements relax site
operators, creating quasi-particles or “holes.”

e Defects also serve as boundaries for correlation surfaces and error chains, thereby
giving the lattice a non-trivial topology.

e Logical qubits can be fault tolerantly initialized in the |0) and |+) states. They can
also be initialized in rotated states (|0)+e? |1)) via measurements in rotated bases,
but they need to be subsequently distilled.

e The following gates can be performed fault tolerantly on logical qubits, just by
using the appropriate defect configurations: I, (X, Z)-preparation/measurement
and A(X).

e This set of gates is sufficient to perform magic state distillation, to create pure
logical ancilla qubits in rotated states.

e These rotated states can, in turn, be used to perform the non-Clifford gates, com-
pleting a universal set.
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¢ In order for the gates to be fault tolerant, it is necessary for the defects to be thick.

e The scheme can be physically implemented on a 3D lattice, two 2D layers or even
asingle 2D layer.
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Chapter 3

Analyzing the Performance of the Fault
Tolerant Computer

We analyze the performance of the fault tolerant computer by comparing its operational
overhead with the ideal computer (i.e., the computer that operates in the absence of
noise). The are two parameters of interest; the threshold and the overhead. The thresh-
old is a noise rate below which the fault tolerant computation succeeds with high prob-
ability. In this work, we consider only stochastic error models, so the noise rate is simply
the probability of an elementary (physical) operation failing. For an ideal computer, the
threshold is 0. For ¢5p, the threshold is 7.8 x 1073.

The overhead is a measure of the extra operations that need to be performed, on av-
erage, per operation in the corresponding ideal computation. Another, less precise mea-
sure, of overhead is the number of qubits the fault tolerant computer requires to fault
tolerantly implement a given ideal circuit. For €3, the overhead scales poly-logarithmically
with the size (number of gates) of the ideal circuit.

Section[3.1]has a discussion of the error model and its corresponding threshold esti-
mate. Section discusses the overhead of our scheme, and finally, Sectionpresents
a more detailed description of some of the numerical techniques used to arrive at the
threshold results.

3.1 Threshold

Error Model In order to arrive at an estimate of the threshold, we must first specify an
error model. We assume the following:

1. Erroneous operations are modeled by perfect operations preceded/followed by a
partially depolarizing single- or two-qubit error channel

T,=(1 —pl)[1]+%([X]+[Y]+ 2])

T,=(1 —pz)m+%([Xuxb]+---+[zazb]).
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2. The error sources are

Faulty preparation of individual qubit states |+), with error probability pp,

Noisy Hadamard gates with error probability p; (Hadamard gates are used in
the 2D modification in place of A(Z) gates in the time-like direction),

Noisy A(Z) gates with error probability p,, and

¢ Noisy measurement with error probability p,.

Note that in the modified scheme there is no storage error as no qubit is idle be-
tween preparation and measurement (see Figure [2.22).

3. Classical processing is instantaneous.

When calculating a threshold, we assume all error sources to be equally strong, p; =
p2=pm = pp = p, so that the noise strength is described by a single parameter p.

Error correction. When estimating the threshold, two key facts about error correction
in the cluster state must be noted:

e The error correction in the bulk region of the cluster state is topological. It can
be mapped to the random plaquette 7., -gauge model (RPGM) in three dimensions
[Den+02b]. If there are non-trivial error chains of finite smallest length [ then,
below the error threshold, the probability of error &, is

(3.1) E1op ~ €Xp(—K(p)]).

k(p) is some function of the error rate p that depends on the details of the error
model. For a simple model of purely local, independent errors on each qubit of
the lattice, we can calculate x(p). Consider a defect of circumference u and length
I. An error chain winding around the defect has weight at least u +4 ~ u, and
there are N such minimum weight chains. Thus, the probability &;,,(u, N) for a
logical error due to these types of chains is, to lowest contributing order,

ul In4 1
(3.2) gtop(uyl):N@qszeXp( zqu)

—.
,/zu

Where g is the local error probability. Here, x(p) = —ln%. For the mildly non-local
error model described above, we can estimate x(p) numerically (see Eq. (3.16)).

e Topological error correction breaks down near the singular qubits. This results
in an effective error on the singular qubits that needs to be taken care of by an
additional correction method, namely magic state distillation. This effective error

is localbecause the singular qubits are well separated from one another, as we saw
in Section
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Figure 3.1 — Numerical simulation for the topological threshold. The curves are best fits taking
into account finite size effects of the lattice size /. Beyond the smallest lattices,
these finite size effects quickly vanish, and the curves intersect in a single point to a
very good degree of accuracy. The value of p at the intersection gives the threshold.

The fault tolerance threshold associated with the RPGM is about 3.2 x 10~2 [Ohn+04;
'TNO4], for a strictly local error model with one source. The threshold estimates given in
this section are based on the minimum weight chain matching algorithm [Edm65] for
error correction. This algorithm yields a slightly smaller threshold of 2.9% [WHPO03] but
is computationally efficient. For details see Section3.3]

We now consider the singular qubits (S-qubits). They are used to create the noisy
ancilla states p4 ~ |A) (A],p" ~ |Y) (Y] encoded via the construction displayed in Fig-
ure |A), |Y) states are the eigenstates of the % and Y operators, respectively.
See Section for a discussion of the creation of ancilla states. Due to the effec-
tive error on the singular qubits, these ancilla states before distillation carry an error

el =1—(A|pAA), &) :=1—(Y|p"|Y) given by
(3.3) ed=¢¥ =6p.

The 6p term depends on the error model, and is calculated by counting the shortest
chains in the vicinity of a singular qubit. It is accurate to lowest order in p. For a purely
local error model consisting of only Z errors acting independently at each qubit, the
lowest order term would be of order p?, with a different coefficient.

Threshold. There are two types of threshold within the cluster, namely the topological
one in the bulk of the lattice, far away from the singular qubits and thresholds from
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|A) and |Y) state distillation. An estimate ptvh for the topological threshold is found in
numerical simulation of finite-size lattices to be

(3.4) p,=7.8x107"

The results of the numerical simulation are shown in Figure (see Section for de-
tails).

The recursion relations for state distillation, in the limit of negligible topological er-
ror, are to lowest contributing order &7, = 35(¢;')* (c.f. [BKO5b]) and ¢,,, = 7(¢]). The
circuits for state distillation are shown in Figure The corresponding distillation
thresholds expressed in terms of the physical error rate p are

1o L 28x10? pt =L ~63x1072
Pin 6 \/ﬁ : » Pen 6 \/7 : :
This threshold is the physical error rate below which the distillation would always suc-
ceed, provided the gates used in the distillation circuit were ideal. The physical error rate
is calculated by solving the recursion relations above, and then calculating the physical
error rate that would yield an effective error, on the logical qubits, at the lowest level, that
is just below the distillation threshold. Since the topological threshold is much smaller
than the distillation threshold, below the topological threshold, the (topologically pro-
tected) gates used in the distillation circuits are indeed ideal. Therefore the topological
threshold sets the overall threshold for fault tolerant quantum computation.

3.2 Overhead

We would like to analyze the resource requirements for this scheme. For the analysis, the
metric we use is the operational cost per gate, O;. It is defined as the number of physical
operations that need to be performed per logical gate in a circuit of size N, (i.e., a circuit
that has N gates of type G).

The fault tolerant construction is discussed in detail in Section[2.2.6] Logical opera-
tions are realized by twisting defects around each other. If there is no noise, it would be
sufficient to have line like defects. Then, the elementary cells, Figure would be the
building blocks from which gates are constructed. However, in the presence of noise,
there will be short error cycles wrapping around the cells, leading to logical errors with
high probability. In order to achieve fault tolerance, we have to rescale the elementary
cell to a cube of A x A x A. The cross section of the defect with the plane perpendicular
to the time direction becomes a square of area d x d (see Figure [2.19). Remember that
as per Eq. errors are suppressed exponentially in the length of the shortest chain.

The gate length L is the total length of defect within a gate in units of the rescaled
cell. The gate volume V; is the number of rescaled cells the gate G occupies. Each
rescaled cell consists of A3 elementary cells and each elementary cell is built with 12
operations. The number of two qubit operations per elementary cell for a 3D lattice is
(6 x 4)/2 =12. For the 2D modification, this number is 8, so we will use 12, as an upper
bound.



48

Let €,0,(G, A, d) be the probability of failure of a topologically protected gate, such
as the A(X) gate. It is a function of the layout (i.e., defect structure) of the gate, defect
thickness d and scale factor A. The operational overhead O;(G) is then

(3.5) 03(G)=min122°\;; exp (£10p(G, 2, d)NG).

The exponential factor comes from the expected number of repetitions for a circuit com-
posed of N gates G. For a given Ng, the overhead should be minimized by choosing
A(Ng) and d(Ng).

3.2.1 C(lifford Gates

The overhead analysis is simplest for Clifford gates (i.e., gates that do not involve singu-
lar qubits and thus do not need distillation). To perform the minimization in Eq. (3.5),
we need the gate error ¢,,, as a function of G,A,d. The error chains leading to gate
failure can be either cycles wrapping around defects or chains that start and end on de-
fects (relative cycles). The probability of gate failure is exponential in the length of the
shortest such chain and proportional to the number of such chains.

For a given defect thickness d, the minimal cycle length is 4(d + 1) and the number
of such cycles is ALg; where L is the gate length. The minimal length of a relative cycle
leading to an error is A — d. It stretches between two neighboring defect segments one
logical cell apart. The number of such relative cycles is at most 2LsA(d + 1). There are
shorter relative error cycles near junctions, but they are equivalent to the identity oper-
ation. This can be easily verified with the help of the appropriate correlation surfaces,
as discussed in Chapter[2] Schematically,

w =90 ="1

Thus, by Eq. (3.1), the gate failure rate is,
(3.7) €10p(G, A, d)=ALg (exp(—4x(d +1))+2(d +1)exp(—k(A — d))) .

In Eq. , K= ln%. However, for non-local error models, k must be estimated numeri-
cally, by simulation on finite sized lattices (see Figure. In addition, Eq. predicts
a polynomial correction [~'/2 to £:0p, for local noise. The numerical simulation finds a
polynomial correction /=98 for the non-local error model proposed above. We neglect
the polynomial correction in our estimate of the overhead in Eq. (3.7). This is safe as in-
cluding it would only reduce the overhead. We can now use this expression to perform
the minimization in Eq. (3.5). For example, the overhead for the A(X) gate is plotted in

Figure
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Figure 3.2 — The dependence of x on the error rate p below the threshold. The curve is the best
fit to the data points that come from numerical simulation on finite sized lattices.

3.2.2 Non-Clifford Gates

Non-Clifford gates require the use of singular qubits to prepare the ancilla states needed
to perform the gates via gate teleportation. Remember that this preparation in not fault
tolerant. So we must use magic state distillation to purify the ancilla. The gates used in
the distillation procedure are all Clifford gates and thus are topologically protected as
above. However, the distillation procedure is concatenated. At each level of concatena-
tion, the optimal A and d that minimize the overhead in Eq. are different. Thus, the
minimization is over the larger set of parameters, A = {{A¢, do, A1, d1, ..., A1, A1 b Linaxd

In addition, there are now two types of error. First, the previously discussed error
from non-trivial error cycles far away from the singular qubits. Second, the error as-
sociated with the singular qubits themselves, in whose neighborhood topological error
correction breaks down, due to the presence of short error chains. The singular qubits
are used for the distillation of |A) and |Y) states, the eigenstates of the )% and Y opera-
tors, respectively.

Distillation of |A) and |Y) states is performed using the circuits shown in Figure[2.18)
of volumes Vj, Vi and length L, Ly (see Table . Let pf'y be the probability of suc-
cess for the distillation at level [ of |A),|Y). On success, there will be a residual error
at level / denoted by ef’y for |A),|Y), respectively. The performance of the distillation
scheme is shown in Table The expressions for success probability and residual er-
rors hold to leading order in the contributing error probabilities 7, ¢). Further, a gate
error cannot simultaneously lead to termination of the circuit and to a residual distil-
lation error. Thus, we overestimate both error probabilities by adding the full weight
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Table 3.1 — Performance of magic state distillation

state at "eduired
level ] states at level performance
[—1
|A> 15|A> pf:1_156;‘_1_Etop(LArAl—lydl—l)
8;1 = 35(8;4_1)3 + gtop(LArAl—l! dl—l)
|Y) 7|Y> pIY:]-_78[Y_1_Etop(LY’Al—l)dl—l)

EIY = 7(811/_1)3 +€top(LY’ Al—l; dl—l)

Table 3.2 — The gates sizes for various gates and sub-circuits

gate volume length

A(X) Figure[2.21b V=16 L,=20

exp(zng) Fi.gure V.=2 L,=3
exp(i 7 X) Figure Vix=4 Li,=4

|A) distillation circuit V, =168 L, =266
|Y) distillation circuit =60 Ly=94

€rop(L, Aj—1,d ;1) to them.
The operational overheads for state distillation at level /, ng, and ng , are given by
the recursion relations

1
A A
0, = o (1503J_1 + 127@_1%)

1
(3.8) o), = o7 (70),_, +1223_ ).
1

The recursion relations for pf'y,ef'y are given in Table The initial conditions are

04, =0y, =12 and Eq. .

The distillation outputs states |A) and |Y) at level /,,,,. One such state |A) and, on
average, 1/2 state |Y) is used to implement the exp(i%Z ) gate via the construct displayed
in Figure[2.17} of volume V{ ; and length L, ;. Its overhead is

1
/8 __ A Y 3
(3.9) Og - (O&lmax + §O3Jmax + 18)leax I/I’Z) X

exp (¢ +&] +&0p(Lres At i, )Ne).
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Figure 3.3 - Operational overhead as a function of the circuit size at p = %. The kinks in the

curves correspond to increasing levels of concatenation /.

Similarly, the overhead for the exp(i 7 X) gate is

(310) O§/4 = (O;lmax + IZA?max ‘/1'x) X eXp ((Ell:rmx + StoP(Ll’x’ Al’"”x dlm”x ))NG) ’

The operational overhead must be minimized over the parameter set A. This has been
done numerically[BLN95], and the result is shown in Figure[3.3]

3.2.3 Overhead Scaling

The overhead for a given gate depends on two main parameters; the circuit size N; and
the underlying error probability p. In this section, we examine the behavior of the over-
head with respect to each of these parameters.

3.2.3.1 The Large N; Limit

For Clifford gates, first notice that the residual topological error €;,, in Eq. (3.7) is min-
imized when both exponentials fall off equally fast, i.e., d,;n = A, /5 for large d, A.
Further, the overhead Os in Eq. (3.5) is minimized near

Then, A,,in» ~InNg/x, and

lIl3 NG
(3.12) Oy~ 2.
K

For non-Clifford gates, we first compare the two contributions to s{‘ (see Table i ,



52

35(3?{1)3 and &;0p. If £, is much larger than 35(8;471)3, it inhibits the convergence of
ancilla distillation, forcing the use of additional distillation rounds, which are the most
expensive component. On the other hand, if ¢;,, becomes much smaller than 35(824_1)3,
it blows up the size of the logical cell. Therefore, for optimal operational resources,
both contributions should be comparable. Then, in the large size limit, Ine! =3Ine¢ |,
A1 =3A;1, d; = 3d,-,. Further, the success probabilities plA’Y for ancilla distillation
quickly approach unity with increasing distillation level /. Therefore, in the large size
limit, for the point of minimal operational resources, the recursion relations Eq.
can be replaced by

(04) (15 0 12V, \ [ 04
oY 0 7 12 oY
23 0 0 27 23
(3.13) g | = 3 !
Ine4 3 Ine4
\Ine?/J, -\ 3) \Ine*J, |

Thus, 0} ~27!,In¢"" ~3!. Then, with £ ~ 1/Ng (Eq. (3.11)),
(3.14) O ~In® Ng.

Note that the distillation operations, for the case of perfect Clifford gates, are asso-
ciated with the more favorable scaling exponents log, 15 ~ 2.46 and log,7 ~ 1.77, re-
spectively. However, in our case the topological error protection of Clifford gates must
keep step with the rapidly decreasing error of state distillation, by adjusting the scale
factor A. This leads to a scaling exponent of 3 for the Clifford operational resources (c.f.
Eq. (3.12)), which dominates the resource scaling of the entire state distillation proce-

dure, yielding Eq. (3.14).
Thus, we have poly-logarithmic scaling of the overhead with circuit size

(3.15) 03N1n3 NG-

3.2.3.2 Behavior Below Threshold

In the previous discussion, we saw that the large N;; scaling of the overhead is very good.
However, the co-efficients are quite large and this leads to very high actual overheads
near the threshold. For example, see Figurefor overhead numbers at an error rate of
pin/3.

Since the threshold Eq. of the scheme is very high, it may make sense to run
the computation at an error rate significantly below the threshold, thereby saving on
overhead. In order to study the behavior of the overhead below the threshold, we need to
find the behavior of k as a function of p by numerical simulation on finite sized lattices
(See Figure[3.2). The best fit for « is

(3.16) Kk =(—0.85+0.02)Inp +(—4.1£0.15).
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Figure 3.4 - The behavior of the operational overhead below threshold. The overhead decreases
by four orders of magnitude at %.
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Figure 3.5 — Qubit cost to achieve a desired logical gate failure rate. Note that there are 6 qubits
per elementary cell of . The kinks in the curves correspond to increasing levels of
distillation .

Using this result, we can estimate the behavior of the overhead below the threshold,
as shown in Figure[3.4] The overhead is reduced by four orders of magnitude at p;;/10.
Comparing this equation to Eq. (3.2), we see that for the non-local error model, chains
of weight greater than the minimum weight also play a role in the threshold.

3.2.3.3 Overhead As A Function of Logical Gate Quality

Another interesting way to analyze the overhead is to calculate the overhead as a func-
tion of the desired logical gate failure rate. This is shown in Figure Note that the
y -axis shows the qubit cost rather than the operational overhead. There are 6 qubits per
elementary cell (each face qubit is shared by two cells and each edge qubit by four) of
%, thus the qubit cost is half the operational overhead. We see that the rise in overhead
is slow for increasing logical gate quality, except when an additional level of distillation
is required.

3.3 Numerically Estimating the Threshold

The error model described in Section including gate error for one and two qubit
gates, preparation and measurement, effectively results in Z-errors on individual edges

and correlated Z errors on two edges of .2, and .Z,;. The location of correlated errors is
shown in Figure
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horizontal vertical time like

Figure 3.6 — The correlated errors (same for £, and .£;). Shown are horizontal, vertical and

time like faces.

The effective error channels, after mapping all errors to Z chains (see Aside can
be derived easily. Every term in the error channel maps to a different Z chain and by
using the graph stabilizer operators, they can be reduced to three independent effective
error channels.

1. Time like edges

2.

3.

8 8 °2 2 2
3.17) F, = ((1_ Epz) [It]+1_5p2[Zt]) o ((1_§pP) [It]+§pP[Zt]) o
2 2
((1—§pM) [It]+§pM[Zt]) :

Space like edges (horizontal and vertical)

8 8 °3 2 2 2
(3.18) g.l,s = ((1 - 1_5’92) (L] + EPZ[ZS]) ° ((1 - gpl) (1] + §P1[Zs]) .

Correlated errors (see Figure

8 8
(3.19) T, = ((1—1—5102) [Iab]+Ep2[Zab])-

The threshold is estimated by performing a Monte-Carlo simulation on finite sized
lattices of different size /. A size [ lattice has [ x [ x [ elementary cells. We impose
periodic boundary conditions on the lattice. The algorithm is as follows:

1.

Since error correction proceeds independently on each sub-lattice, we can restrict
attention to £, without loss of generality.

Flip the qubits at every location in .Z,, in accordance with the above error model.

Now calculate the syndrome at the vertices of the lattice. Pair up the syndrome
using minimum weight chain matching.

Flip the qubits along the chains identified in the previous step.

Consider the three boundary faces of the lattice in the x, y and ¢ directions. If the
number of error chains intersecting any of these faces is odd, the error correction
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has failed. A chain intersects a given boundary face if the qubit on an edge per-
pendicular to the face is flipped. To count the number of intersections, we simply
count the number of such flipped qubits.

This algorithm is repeated a large number of times (~ 10°) for a given lattice size
I and error rate p to get an estimate of the failure rate for topological error correction
€:10p(l, p). The threshold is an intensive property. Plotting the failure curves for different
lattice sizes (see Figure [3.1), the threshold is given by the point of intersection of the
curves.

It is important to note that the weights used in the minimum weight matching al-
gorithm depend on the error model. Since our error model is different for the time like
and space like edges, different weights are used for them. In addition, the presence of
correlated errors is handled by adding diagonal edges to the lattice.

3.3.1 Raising the Threshold

The above algorithm can be improved by using more intelligence when assigning weights
to the edges of the lattice. While it is true that error correction on %, and £, proceed
independently, error chains on the two sub-lattices are correlated. This is illustrated in
Figure[3.7} The amount of correlation depends on the error model.

This correlation can be used to adjust the weights that are input into the minimum
weight matching algorithm. First the above algorithm is performed on £, and ;. Then
the identified primal chains are used to update the weights of the corresponding dual
edges and vice versa. The chain matching is then redone with the updated weights. This
process can be concatenated infinitely, but the relative improvement in threshold after
each round falls off very quickly.

The actual improvement in threshold that this procedure achieves is highly depen-
dent on the error model. For the strongly correlated error model of a ZZ error follow-
ing every ideal two-qubit gate, the improvement for a single round of concatenation is
~ 25%. For the error model used above the improvement for a single round is ~ 5%. The
threshold result of 7.8 x 1073 in this work is obtained by using the improved algorithm at
one level of concatenation.

3.4 Summary

We have seen that €3, has a very high threshold of 7.8 x 103 and overhead require-
ments that scale poly-logarithmically with the size of the ideal circuit. The high thresh-
old comes from the fact that topological error correction is very good at correcting local
and near local errors, since the information is encoded in “global” structures. It’s also
useful to remember that the overhead falls off very rapidly below the threshold, so when
designing a physical implementation, it may make sense to trade some threshold for
overhead.

The overhead requirements for the non-Clifford gates are much higher than for the
A(X) gate. This points to a direction for future work — using a topological measurement
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Figure 3.7 — Correlated primal and dual error chains on a lattice with periodic boundary
conditions. These error chains can be caused by three Y errors on the edges
between B and C. There are two bits of primal syndrome located at B and C. With
uniformly weighted edges, the minimum weight matching algorithm would
incorrectly identify the chain as B— A - D - C, leading to a logical error. However,
there are 6 bits of syndrome available in the dual lattice and these can be used to
correctly identify this error.

based scheme on a lattice that supports non-Abelian anyons. The lattice .£ supports
only Abelian anyons and thus needs the non-Clifford ancillas to perform universal com-
putation. A lattice supporting non-Abelian anyons would be able to perform these op-
erations by simple braiding and therefore the whole operation would be topologically
protected. A few such lattices are described in [LW05)].
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Chapter 4

Purification of Large Bi-colorable Graph
States

The known protocols in quantum information processing require a certain degree of
quantum-mechanical entanglement to achieve an advantage over their classical coun-
terparts. Often, this quantum-mechanical “essence” is provided in terms of in-advance-
prepared quantum states. For example, Bell states are used in a well-known protocol
for quantum cryptography [Eke91], and schemes for multiparty cryptographic tasks us-
ing Greenberger-Horne-Zeilinger (GHZ) states and other Calderbank-Shor-Steane (CSS)
states have been devised [CLO4]. Further, in quantum computation, multiparticle entan-
gled states can be used to streamline the execution of gates and subcircuits via gate tele-
portation [GC99], and cluster states represent a universal resource for quantum compu-
tation, as we saw in the previous chapters.

In most realistic scenarios the quality of entangled resource states is degraded by
the effects of decoherence and methods of error detection or correction are required to
counteract this process. One such method is state purification where a (close to) perfect
copy of a quantum state is distilled out of many imperfect ones. Purification was first
described for Bell states [Ben+96b; Ben+96a; LC99] and subsequently generalized to
bi-colorable graph states and CSS states [DAB03; ADB05; HDMO05]. Recently, a protocol
for the purification of W states was presented in [MBO05]. State purification is used, for
example, to establish a perfect quantum channel between two parties [Ben+96b], to
efficiently create long-range entanglement via quantum repeaters [Diir+99] or to render
certain schemes for topological fault-tolerant quantum computation universal [Bra05].

Imperfect initial states are not the only sources of error for realistic state purifica-
tion. With the exception of certain schemes of topological quantum computation such
as [Bra05], errors in the gates for purification also need to be taken into account.

What can we expect to gain from an imperfect purification procedure? In the pro-
cess of purification the errors of the initial state are replaced by the errors of the purifying
gates. Thus, the amount of error may be reduced if the quality of the initial states is low
compared to the quality of the gates for purification (but above threshold). Further, pu-
rification can be used to condition the error of a quantum state. For example, imperfect
Bell-state purification can be used to establish a perfectly private if imperfect quantum
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channel [AB02]. In a multiparty scenario, for some protocols the purification gates act
locally on each copy of the state to purify, resulting in a local or close to local error model
for the final state. This feature attains relevance in the context of fault-tolerant quantum
computation. Threshold theorems have been established for increasingly general types
of error including coherent and long-range errors [TB05b; AGP06] but there are realistic
scenarios in which standard error correction appears to fail [KF05]. In such a situation,
state purification may be used to turn the error model into a more benign one.

The focus of this chapter is purification of bi-colorable graph states by imperfect
means, a subject that has previously been studied in [ADB05; Diir+-05; Kru+05]. We are
interested in the interplay between threshold and overhead. Specifically, we seek proto-
cols that, (I) work with erroneous purification gates, (II) have a high threshold and good
quality of the output state, (III) scale efficiently, and (IV) are analytically tractable.

Hashing [CL04; Ben+96a; HDMO05] protocols have a high threshold in the error of
the initial state and require only a minimal resource overhead, but they break down as
soon as the purification gates become slightly imperfect[[] Recursive protocols such as
[DABO3] also have a high threshold for error in the initial states and furthermore work
with imperfect purification gates, but they are exponentially inefficient in the number
of particles.

Our protocols are resistant to initial as well as purification errors and are computa-
tionally efficient. As a bonus, our protocols are analytically tractable for a wide class of
errors. Specifically, our base protocol described in Section |4.2| can be analyzed for ar-
bitrary input states and general probabilistic Pauli errors in the purification gates. This
fact arises through a special locality property. So far, the exponential increase of param-
eters in the description of n-particle mixed states—even mixed stabilizer states—has
been found to be an obstacle to analytic discussion, and only severely restricted error
models have been treated in the literature.

In Section[4.1]we briefly review the protocol [DAB03] for purification of bi-colorable
graph states. In Sections[4.2]and [4.3.3|we describe our purification protocols and char-
acterize them in terms of purification threshold, output quality, and overhead. We con-
clude with a discussion of our results in Section[4.4l

4.1 BriefReview

Consider a graph G(V, E) with vertex set V and edge set E. G(V, E) is bi-colorable if V
can be partitioned into two disjoint subsets A and B such that every edge in E connects
a vertex in A with a vertex in B. E defines a neighborhood relation on elements of V;
N(j)=1{i € V:(i j)€ E}. Define the correlation operators

4.1) k=X [] z
e (j)

1For hashing, all N copies are included from the beginning. Each qubit of the state copies which are
later measured is acted upon by a large number of noisy CNOT-gates. The error-correction procedure is
applied only after the CNOTs have acted, such that their errors accumulate. Thus in the large N limit no
matter how small the gate noise, the output state will be severely affected and the protocol will fail.
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Figure 4.1 - Action of MCNOT in the graph basis. The arrows represent the direction of
syndrome (or Z error) flow (i.e., the action of the MCNOT on the stabilizer)

where X, Y, and Z are the Pauli matrices. A graph state is a |V|-qubit state |u) (u €
10,1}V that satisfies the eigenvalue equations

4.2) K lu) = (=1 ), Vj=1,...,|V].

The states {|u)} form a basis of the Hilbert space of |V|-qubit states called the graph
basis.

We now briefly discuss the post-selection protocol of [DAB03]. The protocol works by
taking two identical copies of a bi-colorable graph state and performing multiple CNOTs
(MCNOT) between them, in a definite pattern as illustrated in Figure Relabeling
states in the graph basis to reflect the partition into colors A and B (i.e., |u) = |ua, Us)),
the effect of the MCNOT is [DABO3]

(4.3) |tta, UB) |Va, V) = |Ua, U +VB) [Va+Ua,VE),

where + is elementwise addition modulo 2. Notice that information about 1, has been
copied into state 2 and information about vz has been copied into state 1. We then mea-
sure the local observables X and Z on copy 2, and reconstruct from the measurement
outcomes the eigenvalues of all K; with j € A. Suppose we get -1 at the kth qubit. Then
we know that either u; or v, was 1, but we do not have enough information to decide
which one, so we throw away the states and start again. We keep doing this until all mea-
surements are clear. By this procedure we correct, to lowest order, errors in the qubits
of color A. In the next round we interchange the roles of colors A and B and so purify
the B qubits. We can concatenate this procedure to achieve desired levels of purity. Be-
cause we are post-selecting states on the basis of a global measurement outcome, this
protocol is inefficient for large states. This inefficiency can be addressed by using error
correction instead of post-selection, to which we now turn.

4.2 Three-copy Protocol

The simplest way to get enough information to perform error correction is to do the
MCNOT on three copies instead of two. The three-copy protocol consists of two sub-
protocols. We use three identical copies of the state in each subprotocol. The output of
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the first subprotocol is used as input for the next. Thus, we need nine copies to run a
single round. Let the three identical copies be p®, pW, and p®. Subprotocol 1 (P1):

i. Partition the graph into two colors A and B (V=V,U Vg and V, N V3 =©).

ii. Perform the MCNOT between copies p(® and p™ and p© and p® such that in-
formation about qubits of color A flows from p©® — p® and p© — p@. As a side
effect information about B will flow from p®, p@ — p(©. See Figure[4.3|(a), below.

iii. Measure qubits of color A in the X basis and qubits of color B in the Z basis in
states p(V) and p@. This is a measurement of K; for j € A. If the measurement of
K; gives +1 (—1) we get a syndrome of 0 (1). Thus, for each j € A we have two bits
of syndrome 0?) and 05-2).

o.g@

iv. Apply the correction [, Z;’ 7 to pO,

For subprotocol P2 the roles colors A and B are interchanged.

First, we will analyze this protocol with ideal CNOT gates. This will allow us to derive
simple closed-form recursion relations characterizing the behavior of the protocol, as
well as analytical estimates of the threshold and efficiency. In Section[4.2.2we generalize
to noisy gates. The analysis is restricted to density matrices that are diagonal in the
graph basis (i.e., probabilistic mixtures of graph states). At the end of Section[4.2.2} we
will show that our results are valid for arbitrary density matrices.

4.2.1 Ideal Gates
Equation[4.3|implies that the effect of the MCNOT on p©, p), and p®

(4.4) s ) = ), )+ )+ )
IMEP,M%)> = Iy + i)
(4.5) D, 1Dy = 1w+l u) .

Equation[4.2)implies that the effect of the correction is

(0)

(4.6) Y, 1y + o, 1Dy,

R € ) [ -3 : ;
where g;:=0;"-0;". By measuring p" and p®), we get two bits of syndrome for each

qubit of color A in p®. The syndrome is conclusive; it allows us to identify, to lowest
order in the error probability on which state the error occurred. We can thus do error
correction instead of post-selection. This will make the protocol scale efficiently in the
size of the states. The price is a reduction of the threshold value.

We now derive a recursion relation for the expectation values (K;), j €1,...,N. They
yield a necessary and sufficient condition for purification. For the moment we assume
that the initial state p is diagonal in the graph basis—i.e., p is a probabilistic mixture. It
is then safe to consider error probabilities. This assumption is not necessary, however.
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It is removed in Section Define Pj(p) as the probability to find the eigenvalue —1
in the measurement of K; on p as

@.7) P(p):=Tr [I_ij] L),

Consider subprotocol P1. In order to analyze this protocol we make use of the fact that
the error correction operation is local. It only uses information about (K;) in each copy
to apply a correction to the jth qubit in p©. Thus, (K;) should have nice decoupled
recursion relations. We will later derive the recursion relations for the expectation value
of arbitrary stabilizer elements, which in general are more complex.

First consider qubits of color B. From Eq. |i , ug-o) — ,ug-o)—l—,ugl) +u5-2). Since our copies
are identical, we have P;(p¥) = P;(p(V) = Pj(p¥) = P;. Then, P; — Pj3 +3P(1-P)% In
terms of expectation values,

4.8) (K;)' =(K;)°.

Under concatenation of P1 with itself, qubits of color B are polluted with (Kj)p(o) -
<Kj>1 =0.

Turning our attention to qubits of color A we note that error correction fails if u; =1
for more than one copy. Thus, P; — P} +3P?(1 — P;). In terms of expectation values

(4.9) (K;) = % (83— (K;)*) (K;).

Under concatenation of P1 with itself, qubits of color A are purified with (K;) o0
(K)o = 1

Subprotocol P2 is identical to P1 except that the roles of A and B are interchanged
and the three copies are the output states from running P1 3 times. The three-copy
protocol is the composition of P2 with P1. Let P = P2 o P1; then Egs. and
imply that under the action of P

(4.10) <K.>/_{%(3—<KJ>Z)S<K]~)3 if j €A,
. Y =

1(3—(K)°)(K;)* ifjeB.

The recursion relations (4.10) have, for each color, a unique repulsive fixed point in
the interval (0, 1) which separates the basins of attraction for the trivial fixed point at 0
and the nontrivial fixed point at 1 (See Figure[4.2). The upper fixed point corresponds to
the perfect graph state. Thus, the stated protocol purifies a graph state if and only if

(Kj)>0.7297forall j in A
(4.11) (Kj)>0.9003 for all j in B.

We can compare these thresholds to the thresholds for the post-selection protocol of
[DABO3]. For this protocol, it is not known how to derive a threshold for general noise
or even probabilistic Pauli noise. However, for the particular case where only indepen-
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Figure 4.2 — Recurrence curves for the three-copy protocol. These simple curves fully
encapsulate the behavior of the protocol with ideal gates. The point of intersection
with (K;)" = (K;) gives the threshold. If the gates are too noisy, the protocol breaks
down, as indicated by the lowest curve.
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Figure 4.3 —- The MCNOT for subprotocol P, in (a) The 3-copy protocol, (b) The band-aid
protocol and (c) The conditional bandaid protocol. The dotted lines in c) indicate
that the bandaids are applied only if there is an ambiguous syndrome at that
location. Here we show graphs of degree 2, but these protocols can be applied to
graphs of any degree.

dent local phase flip errors are assumed for the initial states, recursion relations can be
derived even for post-selection. Then, the P1 (post-selection) recursion relation for (Kj)

with j € Bis (K;) = (K;)* and for j € Ais (K;)' = 2<(II<<’)2
are (K;), = 0.2956 for j € A and (K;),, = 0.5437 for j € B.

Returning to our protocol, it is possible to derive recursion relations for the expecta-
tion values of arbitrary stabilizer elements. They are not in general decoupled, but there
is still a notion of locality. The generalized relation allows us to compute the recursion

relations for stabilizers with small support efficiently. Define

The resulting threshold values

|Val | VBl

(4.12) Kap _l_[K“’l_[K
i=1

where a € {0,1}%l and b € {0,1}/"sl. The factors in the first product are the stabilizer
generators for qubits of color A, while those in the second product are for qubits of color
B. Then (see Section[4.5.1) under the action of subprotocol P1,

(4.13) (Kap) = Z( 1% (Kata, asb) (Kayb) (Ka),

a1 a<ka

where f < giff f; = 0 whenever g; = 0. Equations (4.9) and (4.8) are special cases for
(Kap) = (K;) with j € A, B respectively. An 1nterest1ng feature of this equation is that it
relates a correlator of weight w = |a| + |b| to correlators of weight no more than w. This
makes it feasible to calculate the recursion relations for correlators of small weight.

In order to discuss the behavior of this protocol under concatenation with itself, it is
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useful to switch back to probability variables. Then Eq. (4.10) implies that if the protocol
is concatenated with itself k times,

2k
@.14) B(p(k) < (M)
Pn

where P, is the threshold error probability. The k-concatenated protocol requires 3%
identical copies, thus, the protocol is exponentially efficient under concatenation. The
reduction of error, Eq. (4.14), is not conditioned on a particular post-selected syndrome.
The overhead in number of required initial states is independent of the size N of the
graph state. We conclude that under concatenation the protocol reaches the reference
state |0) with efficient use of resources. Contrarily, for the post-selection protocol [DABO3]
the overhead acquires a dependence exp(aN), with some a > 0, due to post-selection of
a particular syndrome.

4.2.2 Noisy Gates

Now we investigate what happens to this protocol when the CNOT gates themselves are
noisy. In the three-copy protocol CNOT gates act on the same qubit in two states p (")
and p. We model a noisy two-qubit gate as an ideal gate followed by the two-qubit
depolarizing channel [i.e., the SU(4)-invariant channel]

4

*) (1 _ p2 (k,m) o k)
(4.15) T® .= (1 pg)[I]+162[Di ® D],

i,j=1

where D; j €{I,X,Y,Z} and k is the qubit index. D™ acts on the kth qubit of p™). The
Z gates applied in the error-correction steps and the measurement of the syndrome are
assumed to be noiseless. This is natural since the Pauli phase flips Z may be omitted as
physical operations and instead accounted for in the classical syndrome processing. We
will include the effect of measurement errors in the analysis when we consider the more
sophisticated protocols, which have higher thresholds than the three-copy protocol. If
we consider the effect of T®) only on (K;) in state p®, then using Eq. we can reduce
the noise to an effective error. Forevery ke V: ke A/ (j)U{j}

(4.16) T(ellif’j)(p(o)): (1 _ %) [I] + %[Z](O)]

If k ¢ A/ (j)uij} then Tgf’j Vis just the identity map. Since every error channel commutes
with every CNOT, we can model the noisy MCNOT as the ideal MCNOT followed by | V|
noise channels.

The error channel Eq. is local (i.e., it acts only on qubit k in p(™ and p™). Also
the error operators are Pauli operators, which map graph states to graph states, keeping
p diagonal in the graph basis. Thus we can expect the noisy recursion relations to have
the same form as Eq. (4.10). Considering only subprotocol P1, the jth qubit in p© is
affected by 2(d + 1) error channels. For simplicity, we assume all vertices of the graph
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have the same degree d. If this is not the case, then there would be a different set of
recursion relations for each degree. We can then choose d to be the maximum degree,
in which case the recursion relations will be lower bounds for all other degrees. The

total probability that the jth qubit is flipped by an error is HI_+Z)Z(M. Thus, for qubits
of color B,
(4.17) (K;)' =a*(K;)?,

where a = (1 — p,)4+D,

The situation is a little more complex for qubits of color A as the error in the MC-
NOT between p©® and p is propagated by the MCNOT between p(© and p® (see Fig-
ure[4.3|(@)). However, the form of the recursion relation remains the same. We get

2
(4.18) (K;) = % (2+a™' = (K;)*) (K;).

For a derivation see Section 4.5.1.2] Composing subprotocols P1 and P2 we get the re-
cursion relations for the three-copy protocol with noisy gates

(4.19) (K.)'_{%B(2+a_1_(Kj)2)3(Kj)3 ifj €A,
. Y =

< (2+a ' —a*(K))°)(K;)® ifjeB,

Here, qubits of color A behave worse. Solving the recursion relations for fixed points, we
find that there are two non-trivial positive fixed points (see Section[4.5.2) for a > 0.9902.
Consider the interval [0, 1]. It has at most three fixed points 0= f, < f; < f> < 1. fyand f>
are attractive while f; is repulsive. Thus f, will be a stable fixed point for @ > 0.9902 and
(Kj).niia > J1- This gives a threshold for the noise affecting the gates that scales inversely
proportional to the graph degree d,

9.8x1073

4.20 ~
( ) Pth d+1

Specifically for degrees 2 and 4 we obtain

0.328 % ford =2,
(4.21) Pn=

0.197 % for d = 4.

This is a rather low value, but it will be substantially improved when we consider more
sophisticated protocols.

We now show that the recursion relations Eq. are valid regardless of whether
or not the considered states are diagonal in the graph basis. To see this, let us define
a depolarization operator 2 which converts an arbitrary n-qubit mixed state p into an
n-qubit mixed state pp = Zp that is diagonal in the graph basis. 2 takes the form

(4.22) . (I_[ 1]+ Z[Ka,()]) (I_I 1]+ Z[Ko,b]) |
b

a
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where a and b are vectors in a basis of {0, 1}/l and {0, 1}"4l respectively.
We only consider P1, the first round of the protocol. It is associated with a transfor-
mation P1: p — p’=R (p®%). R and 2 commute-i.e.,

(4.23) R((2p)*)=20°R(p®),

for any p. For a proof see Section[4.5.3]
Consider a recursion relation of the form

(4.24) (Kap(p))) = fan ({(Kij(pp))}),
with f,5 some function depending on a,b as in Eq. (4.13). Now,

(Kan(p}p) =Tt [KanR (29)%)]

=Tr[KapZoR (p®°)] [by Eq. (4:23)]
=Tr [@T(Ka,b)p’] (trace cyclicity)
= (Kap(p'))- 2'=9)

Similarly, (Ki;(pp)) = (Ki;j(p)), such that

(4.25) (Kan(p) = fap ({(Kij(0))}) -

Thus, a recursion relation of the form of Eq. (4.24) such as Eq. (4.19) holds for all states
p and not just for diagonal states pp = %p.

4.3 Improved Protocols

4.3.1 Error Model

In the following, we consider a scenario where graph states are created locally from
product states, then distributed to several parties and subsequently purified. Errors oc-
cur in each of these steps—specifically, the following

e There is a two-qubit error T, Eq. (4.15), associated with each controlled-PHASE
gate in the creation of the graph state, with probability p,.

e A local depolarizing error with probability p; occurs on each graph state qubit
during transmission.

e Every CNOT gate used in purification carries a two-qubit error, Eq. (4.15), with
error probability p,. Every measurement is modeled by a one-qubit depolarizing
channel with error probability p, followed by a perfect measurement.
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4.3.2 Bandaid Protocol

In order to raise the threshold of the three-copy protocol, we will try to combine the
strategies of error correction and post-selection (which has a higher threshold). One
way to do this is to use small highly purified GHZ states-i.e., bandaids, to purify the
graph one vertex at a time. The usual MCNOT is performed between the bandaid and
the large graph state as shown in Figure[4.3|(b). This copies information about the central
vertex into the bandaid which is then measured to give a syndrome. Since the bandaid is
highly purified (for example, by post-selection), it does not pollute the large state much.
It is important to note that the error correction is still local, and we expect the recursion
relations to be decoupled as in the case of the three-copy protocol.
The bandaid protocol also has two subprotocols. The first one P1 is the following.

i. Partition the graph into two colors A and B (V =V, U Vg and V, N V3 = Q).

ii. The bandaids are placed over the large state such that each central qubit of the
bandaid is over a vertex of qubit A for all qubits of color A. Perform the MCNOT as
shown in Figure[4.3|(b).

iii. Measure the central qubit of each bandaid in the X basis and the other qubits in
the Z basis. For each bandaid multiply the measured eigenvalues. If the product
is (-1) +1 then the syndrome bit o; is (1) 0.

caZ; ' to the large state.

iv. Apply the correction [ | ; z7

P2 is the same as P1, with the roles of colors A and B reversed.

Consider subprotocol P1. For qubits of color B the argument is very similar to the
three-copy protocol, except that each qubit is affected by two gates from each of d
bandaids. Thus,

(4.26) (K;) =(1—p2) (K;) (K})

where (K;), is the constant initial purity of the bandaid.
For qubits of color A, first suppose that the CNOT gates are ideal. Then, a simple
transfer of purity occurs:

4.27) (K;) =(K;), -

If the gates are noisy, Eq. is multiplied by a noise factor of the form (1— p,)/(@ as in
the case of the three-copy protocol. There is a subtlety involving the temporal ordering
of the bandaids. The bandaids do not all commute with each other. There are 1+d(d —1)
bandaids that affect qubit j. One of them is the bandaid that is used to purify the qubit.
On average k = @ of the rest will be applied before the purifying one. Any effect from
the k prior bandaids will be erased by the purifying bandaid [see Eq. (4.27)]. The puri-
fying bandaid has d + 1 noisy CNOTs affecting (K;); since the noisy MCNOT is modeled
as an ideal MCNOT followed by noise, no information about the noise is propagated to

the bandaid. Thus, the noise will commute with the error correction procedure. Since a
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measurement error that flips the central qubit of the bandaid will cause us to apply the
wrong error correction operator, it can also be reduced to an effective error as given by
Eq. (4.16). Thus, f(d)=2(d + 1)+ k and we have

d(d+3)+4

(4.28) (KjY=(1-p2) = (K}),-

Combining subprotocols P1 and P2, we get the recursion relations for the bandaid pro-
tocol with noisy gates as well as noisy measurements

d(d+7)+4
2

(Kj)i*' forjeA,
(Kj), for j € B.

(1—p2)
(1-p2)

d(d+3)+4
2

(4.29) (K;)' = {

The behavior of qubits of color A is worse, and we will use their purity as the final purity
of the large state.

As per our error model in Section the noisy CPHASE, CNOT and measurement
gates are parametrized by p,. The noisy transmission channel is parametrized by p;. For
the final result, we need to know the quality of the bandaids. We assume that these are
also created locally, then transmitted and purified. The bandaids, however, are of fixed
size and may thus be purified by the post-selection protocol [ADB05] with the higher
threshold. The output quality of the purified bandaids is, to leading order in p,

(4.30) (K]-)b =1—-(d+1)p,,
such that

1-d(3d+11)+6
4.31) (Kj)y=1- 5 P2,

for small p, [from Egs. (4.29) and (4.30)]. As Eq. shows, with increasing graph
degree the effect of errors in the purification process is strongly enhanced. One may
therefore ask the question whether it is useful to purify at all or whether the transmit-
ted state should be used right away. To decide this we compute (K;) after graph-state
creation and transmission,

d(d+1)

(4.32) (Ky=(1—-p2) 2 (1—p)*™.

See Section [4.5.4]for a derivation. We compare this expression with Eq. and find
that there is indeed a parameter region where it makes sense to purify. This region is
displayed for graphs of degree d = 4 in Figure It is bounded from above and right
by the curve which indicates the breakdown of the bandaid purification according to
the post-selection protocol [ADB05]|. If we use post-selection to obtain bandaids of high
purity, then the threshold of the bandaid protocol for degree d graph states equals the
threshold for purification of a d +1-qubit GHZ state with the post-selection protocol [8].
However, the output purity of the bandaid protocol is smaller. Only above the ascending
curve is it advantageous to purify.
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Figure 4.4 — Trade-off curves for the bandaid and conditional bandaid protocols (d =4). The
decreasing curves represent the breakdown of the post-selection protocol, when
there is too much error. The increasing curves demarcate the region where the final
purity of the purified states is higher than the purity of the unpurified states. It
makes sense to purify in the shaded regions.
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4.3.3 Conditional Bandaid Protocol

In order to correct the d? dependence of the fixed point in the bandaid protocol, we will
combine it with the three-copy protocol. The hybrid protocol, called the conditional
bandaid protocol, sacrifices in threshold to improve the fixed point. The fixed-point
behavior, at least to linear order in gate noise, is almost as good as that of the post-
selection protocol.

This protocol proceeds in the same fashion as the three-copy protocol, except that
two copies are used per round, and wherever a measurement of K; yields eigenvalue —1
(i.e., an error), a post-selected bandaid is applied to purify qubit j (see Figure. For
small gate noise, we expect to have to apply only a few bandaids per round, nonetheless,
the threshold is set by the qubits to which we have to apply bandaids. Locations where
a measurement of K; yields 1 are error free to lowest order. Once again, we have two
subprotocols, P, and P, each purifying a different color.

The analysis is similar to that used in arriving at Eq. for the three-copy pro-
tocol. However, the situation is complicated by the fact that the bandaids are applied
conditioned on the results of measuring p". As a result, the recursion relations for the
one point correlators are no longer completely decoupled. We can, however, find a sim-
ple lower bound on them.

Define (K}) to be the minimum purity of the post-selected bandaid. It is a constant.
For simplicity we assume that all qubits in the bandaid have this purity. As before, we
assume that the graph of the large state is translationally invariant, i.e., all vertices have
the same degree. The definition 8 =(1— p,)? (K},) will be useful. Consider qubits of color
A in subprotocol P}, then, by a derivation similar to Eq. (4.18),

(4.33) (Ky) =5 (20 (Kj)+(Kn) = a (Ko (K;)7),

where a = (1 — p,)4*! as before.

So far, we have been exact. Now consider subprotocol P,. Again focus on qubits of
color A. Break P, down into two steps. In step one, we apply the MCNOT to p©® and
pW. Tt can be readily verified that (K;) — a (K j)z. In step two, bandaids conditioned
on the measurement outcome are applied to qubits of color B. Let y € {0,1}¢ be the
measurement results for the neighbors of qubit j. A measurement result of one means a
bandaid must be applied at that location. If a bandaid is applied to a neighbor of j, (K;)
is affected by the errors on the bandaid, characterized by (K},) and by two noisy CNOTs.
Thus (K;) — 8 vl (K;). Summing over measurement outcomes and including step one,
we get

d

(4.34) (K =a| X | DB | | (&),

EAVE

where gy is the probability of measurement outcome y. Unfortunately, gy is a function
of the general stabilizer expectation values (K,p), so we will resort to finding a lower
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bound. Since gy =1— Zy o 9y» We can rewrite the above equation as

d
(K =aq | (1= a)+ > > aB* | (K;)?

V0 k>0 |y|=k

>a|1-(1-D a5 | (K;),

y#0

using B <1 to arrive at the inequality.

Now, ¢y is just the probability that no error is detected on any of the neighbors of
Jj. Let p; be the probability of detecting an error on site j. Then, by definition, (K;) =
1-23% . dy- This implies that 3, qy < >, ,;) 1_(2K"> . Putting this into the above
inequality,

(4.35) <Kj>’2a(1—2(1—/5‘1)(1—(1@))) (K;)?,

where (K;) is the purity of qubits of color B from the previous round.
Solving for the fixed point, we get, to leading order in gate noise p,,

(4.36) (Kj)=1-=2(d +1)p..

Comparing this to Eq. (4.30), we see that the fixed-point scaling with degree is almost as
good as in the post-selection protocol. We now apply the conditional bandaid protocol
to the same situation-of a graph state being shared among widely separated parties, as
for the bandaid protocol. The results for a degree four state are plotted in Figure
We see that the threshold (upper) curve is worse, whereas the fixed-point (lower) curve
is better for this protocol, as compared to the bandaid protocol. The total purifiable
area is smaller, indicating that it breaks down faster. In some sense, we have traded
threshold for fixed point. These conclusions hold for arbitrary degree, and the curves
are independent of the size of the state, making this protocol eminently suitable for the
purification of large bi-colorable graph states.

4.4 Conclusion

We have described novel purification protocols for bi-colorable graph states and dis-
cussed their performance. The criteria for our protocols are that they do not breakdown
in the presence of small amounts of noise in the purification process, that they have a
high purification threshold and good output quality, scale efficiently, and be analytically
tractable.

Our final protocol can, for relevant graph states of degree 4, tolerate 1% gate or 20%
local transmission error. These are about 1/3 and 2/3 of the respective values for the
post-selection protocol [ADB05; DAB03]. However, in contrast to this reference protocol,
our protocol scales efficiently with the graph size.
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All our protocols can be treated analytically. In particular, for the three-copy protocol
we derive closed, exact one-dimensional recursion relations in the appropriate observ-
ables, irrespective of the size of the state.

We would like to comment on the influence of the graph degree for the purification
threshold. First note that for the three-copy protocol of Section[4.2} in the case of per-
fect purification gates, the recursion relations (Eq. (4.10)) are completely independent
of the graph structure, and so are the thresholds (Eq. ). This behavior changes if
noise is included in the purification. The critical noise level per purification gate—at
which the protocol breaks down—scales inversely proportional with the graph degree.
The unfavorable dependence on the graph degree is present in all three protocols we
discuss. Thus, the lesson we learn for the case of noisy purification is to beware of large
graph degrees. Large graph degrees occur, for example, in graph states corresponding to
codewords of concatenated CSS codes.

We would also like to comment on the structure of the nontrivial fixed point in our
protocols. In the case of erroneous purification gates, the nontrivial fixed point is not
completely specified by the lowest order expectation values (K;) and it remains to be
discussed which error correlations are removed by the purification protocol. As a first
result in this direction, for the three-copy protocol discussed in Section we have
shown (in Section that correlations of stabilizer expectation values located on
non-overlapping supports are not introduced by the purification procedure if they are
absent initially. This implies that such correlations are absent in all purified states which
end up at the same fixed point as the perfect state. We show in Section[4.5.2|that the fixed
point for two-generator correlations with distinct support is unique, which is enough to
establish the result that all states at the fixed point obey the relation (K;K;) = (K;) (K;)
for such correlations.

A question of further interest is whether the nontrivial fixed point of the protocol is
unique at all levels of correlations. This would imply (Ki;) = (K;) (Kj) for all correlations
with distinct supports.

Another question of further interest is whether the described or related protocols
may be used to boost the threshold value for fault-tolerant quantum computation [NDO5;
DHNO06; |AL06; VBR05; RHGO5|] based on graph states.

4.5 Appendix

4.5.1 Generalized Recursion Relations

We now derive the generalized recursion relations [Eq. (4.13)] for the three-copy proto-
col. While the method used for this derivation is less intuitive, it yields recursion rela-
tions for arbitrary stabilizer elements and can handle noisy gates easily.

4.5.1.1 Noiseless Gates

In order to derive Eq. (4.13) we work in the stabilizer basis. Because p(© is diagonal and
the set {(Kap)} where a € {0,1}"],b € {0, 1}4l forms a complete set of observables, we



74

) . _ 1
can write an expansion p© = AR Za,b (Kap) Kap-

Consider subprotocol P;, which purifies the A subgraph. The initial state is p© ®
pW® p@, which can be rewritten as a sum over a, b of terms of the form

(4.37)  (Kyo0 po) (Kam pn) (Ka@ p2) X

K0 50 Ky po Ky@ p@.

The protocol is linear, so we track the evolution of each term separately. Performing
step (ii), this term becomes

(4.38)  (Kyo po) (Ko p) (Kg@ p@) X

K04 20122 p© Ka) )4 500 Ko@) po)p2).

Now consider step (iii). Suppose we get measurement outcomes AV, A?) for the sta-
bilizers in subgraph A on copies p", p®. Then the resultant state is given by applying
the projector

[Va|

(4.39) - H[I e (11+ (-0 k") @ (11 +(-1% k).
i

All the single-site operators involved commute, so this term is a product of stabilizers in

b and terms of the form “

(1m0 ) (k)

Here k = 1,2. Discarding p™, p®, we perform a partial trace over these systems (recall-
ing that K, are all traceless except Koo = I). In the above term, only the coefficient of

(k) (k)
[I] contributes, which is (—1)% % . Including the stabilizer operator, we are left with

(1).(1)42(2).5(2)
(_1)& all)+22).a

(4.40) 5b[°),b(1)6b(1],b(2) 22\‘/A|

Ky0 a0 122 po),

where 0,4 is the Kronecker delta on each component of p,q. Note that we must have
b©® =b) =b® or the term is zero.

Now examine the action of the Pauli [Z] operator in this basis. [Z]Kyp = ZKapZ =
—1¥K,p, where k = 0 iff Z and K, commute. Effectively, Z is a diagonal matrix with
entries =1. Identical reasoning applies to X and Y. This will make it very easy to add gate
noise into the analysis. It also allows us to say that the net effect of the error-correction
step iv is to multiply Eq. by a factor of (—1)A"*A*)@+aV+a?) where (pxq); = p;-q;-
To simplify the notation, change the basis to a=a® +a¥ +a®, b =b©®, Then the term

becomes
(— 1))L(l).a(l)+A(2).a(2)+(g(1) xA@)a

Opb®Op b2 Kap.

22/ V4l

In this notation and ignoring the delta functions, the original coefficient in Eq. (4.38)
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is (Karaw1a@p) (Kaw p) (Kaop). We will now get conditions under which this term con-
tributes to the coefficient of K.
Summing over measurement outcomes, the coefficient of K, , is

(Ka+a(1>+a(2J,b> (Ka(ll,b> (Ka(2),b> X

2 2).a@+(AMx2@).a
o 2 ) -

l(l 7L(2
The sum can be re-expressed as

1

| Val
(1) (2) 1)4(2)
I I +7L +7tj Aj aj.

?t

If a; =0, then the jth factor is zero unless ag.l) = ag.z) =0, in which case it is 4. Hence, for
the term (Ky; 40102 p) (Kawp) (Ka@ p) to survive the procedure, we must have a),a® < a.

If this holds, then an overall factor of 4/4-1al comes out. If a; =1, then a straightforward

calculation shows that the jth factor contributes a factor of 2(— 1) The overall nu-
merical factor is thus 5. To get the new value of (K, 1,), we simply sum over a®,a® since
these and only these will contribute to the support of K, under P1. This gives Eq. (4.13).
4.5.1.2 Noisy Gates

Adding noise to the gates requires very little additional work. We can rewrite the depo-
larizing channel on qubit j of copy k as

((11+ X1 [p]

N |~

D" lp]= ([I] +121)")
= pg “pgh.

It was shown above that [X], [Z] have £1 on the diagonal. Thus writing the noise channel
in this form illustrates how the noise components act as projectors Pg), P)((';) . If a specific

ket is affected by noise on site j of copy k, it will be an eigenvector of Dﬁ.k ) with zero
eigenvalue.
The noise from a CNOT at site j between copies i and k is

(4.41) BN = (1= pa)+ pa(Py) P))E Py,

If a ket K, is affected by any of these noise terms (that is, if the noise anticommutes
with K, ), it will be projected to zero and thus acquire a (1 — p,) multiplier overall.
The noise from the first MCNOT is Ey; = ]_[]. EE.O)’(” and from the second MCNOT is

Ep = ]_[ E; (0,(2) . Clearly the overall multiplier is independent of the measurement out-
comes, SO the analy31s for Eq. (4.39) still holds. The recursion relations are then similar in
structure to Eq. (4.13), except that coefficients dependent on (1 — p,) are inserted before
each term.
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We illustrate this by calculating the recursion relations for (Kj). If j € B, there is no
sum in Eq. , and (K;) — E; (K j)3. The only noise terms that anticommute with K;
[and hence give factors of (1 — p,)] are those in j UN;. There are 2(d + 1) of these (since
there are two sets of noisy gates), so (K;) — (1 — p)24+tD(K;)*, which is Eq. .

Now suppose j € A. Letj=(0,...,0,/,0,...,0). Our sum is over alV),a® € {0,j}, and
b = 0. Since we are interested only in (K;), our effective noise model is [X]; — [Z];Vk €
N; and [X]; — [I]. All other noise terms do not affect the state. Then

. L qd+l
(4.42) Ey; — [(1 — )+ pZPZ(],O)PZ(J.l)]

A similar replacement holds for Ep,. Ep; acts on terms Kj, 504420 Kam ¢ and gives a factor

of 1iffj+alV +a® =0,aV) =0= j=a®,a)) =0, and a factor of (1 — p,)?¢*! otherwise.
Performing the MCNOT between p(©® and p®, the noise channel Ey, acts on the kets

K;a,0 Koo, which gives a factor of 1 iff j+-a) = 0,a(® = 0 and (1—p)?*! otherwise. Putting

: n @ :

in each of the four cases a;’, a;” € {0, 1} gives us Eq. l)

4.5.1.3 Behavior of correlations

If we take two qubits j, k such that A (j)N .4/ (k)= @, then the noise terms on sites in
A (k)Uk do not affect terms involving j and vice versa. Hence the sum over terms in the
recursion relation for (Kj) will factor into (Kj) (K). If initially (K; Ki) = (K;) (K ), then
the three-copy protocol will not generate any new correlations between these regions.

4.5.2 Uniqueness of the Fixed Point

Here we show that the three-copy protocol has a unique fixed point for stabilizer ele-
ments (K, p) with weight w = |a|+|b| < 2. The recursion relations for stabilizer elements
of weight w > 1 [see Eq. (4.13)] depend only on stabilizer elements whose weight is at
most w. Thus, we can use an inductive argument. If all the stabilizer elements of weight
less than w have reached a fixed point, they become constants and then the recursion
relation for elements of weight w will have the same form as those for weight one (i.e.,
they will depend only on stabilizer elements of weight w). First consider the case when
|al, |b|] < 1. For this case, the three-copy recursion relations Eq. have the form

f(z)=az+bz*
g(z)=cz+dz?,

with a,c > 0 and bd < 0. The presence of noise does not change the form of the re-
cursion relations, it only multiplies each term by a number between 0 and 1 (see Ap-

pendix|4.5.1.2). Let y =z% and x =dy + c¢. Define

p(x):=f(g(z))/z—1=bx*—bcx*+adx—d.
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The signature of p(x) is

px):—++—,
pl=x):————.

Then by Descartes’ rule of signs [SL54], p(x) has at least two complex roots. Thus the re-
cursion relation f(g(z))= z has at most two positive fixed points. The recursion relation
g(f(z)) = z can be analyzed identically. It was already argued in Section that this
means that there is a unique attractive fixed point.

Now consider the case |a|] =2 and |b| = 0. The recursion relations now have the form

f(z)=az’+bz+c
g(z)=dz>.

It is easily checked that a, ¢, and d are positive. The sign of b is harder to fix, but we note
that for there to be a fixed point at all, b must be negative. The case f(g(z)) =z is easily
analyzed, as above, to show that there are at most two positive roots. Let p(z) = g(f(z)).
To conclude the proof we need two technical results. (i) If the smallest support expec-
tation value (K,) has reached its fixed point value (K,);, then the physically allowed
values for (K,./) form the interval I = [2(K,)¢, — 1,1]. (ii) f(z) = 0 for all z € I. Proof
of G (@) z allowed => z € I: P= %%, with a # a’, is a projector, hence (P) > 0.
Thus z = (Kaya) = (Ka) + (Ko7) — 1 (). Evaluate (*) at fixed point (K,)g,. z < 1 is ob-
vious. (b) z € I = z allowed: For an initial state of the protocol, interpolate between
P1={(Ka)p p+++(1—(Ka)p)/2(p+-+p-+) and p» = (Ko )gp p+++(1—(Ka)pp)p--. (The signs
“+” refer to the eigenvalues of K, and K, respectively.) Proof of (ii). Be (Kq), , (Kp)g, >0
and z € I. Assume as an hypothesis f(z) < 0. Apply (*) to the state after application of
P1, at the fixed point (K,)g,, Va € A. Hence 0 > f(z) = 2(Kj)¢, — 1. (Under P1 the fixed
point value (K,), for a € A is mapped to (Kp)g, for b € B, assuming all vertices have the
same degree.) Thus, (Kp)g, < 1/2. But then (Kj)g, = 0, which is a contradiction. Hence
f(z)=0.

Now, p”(z) = g"(f(2))f(z)> + g'(f(2)) f”(z) such that, with (ii), p” > 0 for all z € I.
Thus, p(z) is convex on I. With (i), I is a single interval such that p(z) and z intersect at
most twice in I. At most one of these fixed points is attractive.

4.5.3 The Depolarizing Operator

In order to prove that the depolarizing operator & defined in Eq. commutes with
the evolution operator R =Tr(; ) M o & o U, we note that the protocol step P1 consists of
a unitary part U, an error channel & comprising probabilistic Pauli errors, and a mea-
surement Tr(; ») M, where M is a projector. U consists of a set of transversal CNOT-gates
and acts on the stabilizer as

(0) (1) £-(2)
Ka,b Ka,OK

a,b a0’
(4.43) Ky Ky Ko
(2) (2) -(0)
Ka,b Ka,b Ko,b'
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Figure 4.5 — Creation of a degree (d =4) bi-colorable graph state. The figure will have the same
local structure for other degrees and topologies as long as its edges are d colorable
and its vertices are bi-colorable.

[11+[Kop Kon) +Kgp) Ky Kol [I+[Kgy] 14+ [Kgp] [1+KG)

2 D ) 5 > S etc., such that

Now note that

(4.44) Uo 2090 g@ — 0 ggR .

The operations 2021 %? and & commute because both are linear combinations of
Pauli superoperators,

(4.45) &0 905l — gglig@, g

The measurements comprising Tr; ») M are of stabilizer operators K(()Ig, K(()Zg on the states
pW, p@, respectively. They are performed via one-qubit measurements and classical
post-processing. K((,‘ll)), K((),zg commute with the Kraus operators in Eq. || such that

Tt Mo 7V9W9® = Tr 909W9® o M
(1,2)

(1,2)

(4.46) =900 Tr M.
(1,2)

Egs. (4.44), (4.49), and (4.46) yield Eq. (4.23)

4.5.4 Creation of a Bi-colorable Graph State

Here we discuss the noise structure of a bi-colorable graph that is created using noisy
CPHASE gates. The noisy gates are modeled as the ideal gate followed by two-qubit
depolarizing noise as defined in Eq. (4.15). The graph state is created by performing
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CPHASE gates between qubits in the |+) state. The noise structure of the final state
depends on the temporal ordering of these gates. If we assume that the underlying graph
has constant degree d and that its edges are d colorable, then the N-qubit graph state
can be created in d time steps with Nd CPHASE gates. At each time step all the gates
corresponding to edges of a particular color are performed. Thus, at every time step
t €{l,...,d}, each qubit is affected by an error channel of the form of Eq. .

We are interested in the value of (K;), so we focus on the neighborhood of qubits j in
the larger graph. Since the graph is bi-colorable, it contains no three cycles and one can
draw a diagram of the form of Figure The gates are represented by both solid as well
as dashed lines. The noise channels corresponding to the solid lines each contribute an
effective error Te as defined in Eq. to qubit j. Now consider the qubit k which is a
neighbor of the central qubit j. Each dashed line also contributes an effective error Tes
to qubit j, but only if the CPHASE gate corresponding to the solid line between k and j
was performed in a previous timestep. This is because Z; errors commute with K; and
X errors would be propagated by the CPHASE to X Z; errors, which also commute with
K;. Thus there are a total of @ +d= @ noise channels affecting the qubit j. This
gives

d(d+1)

(4.47) (Kj)=(1-ps)°7 .
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