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Chapter 4

Stress Analysis for Fracture

4.1 Introduction

This chapter describes the application of the hybrid phase-shifting full-field experimental CGS-

photoelasticity method to fracture studies in a photoelastic material. Section 4.2 presents the theo-

retical 2D asymptotic crack solution, which is the basis for determining the stress intensity factors

for the experimental stress fields, and four cases of stress determination around Mode I–dominant

cracks in Homalite-100. Section 4.3 provides some discussion on the use of this experimental method

for fracture studies based on the variety of cases presented in this chapter.

4.2 Stresses Around Cracks in Homalite-100

4.2.1 2D Asymptotic Crack Solution (Mode I and Mode II)

Assuming that the loaded crack has both symmetric and antisymmetric stress components and that

the stresses are characterized by singular terms with constant stress intensity factors KI and KII ,

the stress field is the sum of the Mode I and Mode II stress field components as follows (Anderson,

2005):
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4.2.2 Calculation of KI and KII for Mixed-Mode Fracture

The mixed-mode stress intensity factors KI and KII may be determined from the interference

patterns of both photoelasticity and CGS, assuming the field of view contains K-dominant points,

i.e., points where the stresses may be characterized by Equation (4.1). From inspiration from

Smith and Smith (1972), Sanford and Dally (1979), and Smith and Olaosebikan (1984), who used

photoelastic interference patterns, and from Mason et al. (1992), who used CGS interference patterns,

an iterative nonlinear least-squares approach using many points from both photoelastic and CGS

phase data has been developed for calculating KI and KII for the mixed-mode fracture presented

in this chapter.

Since the hybrid method presented in this thesis utilizes two interference techniques, the method

for calculating KI and KII naturally includes data from both techniques. The method starts with

relationships between the interference phases from both techniques and the variables KI , KII , r and

θ. Using Equations (3.1) and (4.1), the photoelastic isochromatic phase for mixed-mode K-dominant

fracture is
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and using Equations (2.18a) and (4.1), the CGS phases related to the x and y derivatives of the sum

of principal stresses for mixed-mode K-dominant fracture, ϕ∂x
sum and ϕ∂y

sum, respectively, are
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The errors at any point i for the three phases are dimensionless so that the errors from different

types data are comparable and, therefore, may be used in the same nonlinear least-squares algorithm;

the errors are defined as the difference between the experimental phases and their theoretical values,
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normalized by the range of experimental data of the M points used in the algorithm for that phase,

similar to the NRMSD error measure described in Chapters 2 and 3:
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The normalization is done by the range of the experimental data instead of the theoretical data in

order to avoid dividing the differences between the experimental and theoretical phases by zero.

Since the experimental phases used in the error calculations come from an unwrapping process

that incorporates a data-quality weight function given by Equation (2.28), the errors εδ
i , ε∂x

i , and ε∂y
i

are multiplied by the appropriate weight functions calculated for the PCG unwrapping algorithm

for every point i, such that the higher quality data points receive more weight in the least-squares

minimization algorithm. The weight functions for the isochromatic phase and the CGS phases

related to the x and y derivatives of σ1 + σ2 are denoted W δ
i , W ∂x

i , and W ∂y
i , respectively.

The iterative nonlinear least-squares algorithm minimizes the function f(KI , KII), which is a

vector function incorporating these error definitions and appropriate weight functions described

above, by iteratively choosing KI and KII values using the trust-region-reflective algorithm based

on the interior-reflective Newton method, which is a standard nonlinear least-squares algorithm; this

algorithm has been implemented in MATLAB!. The function f(KI , KII) and the minimization of

the squared L2 norm is as follows, for M points of δ, N points of ϕ∂x
sum, and P points of ϕ∂y

sum:
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The constant coefficients in front of the elements of the vector function f in Equation (4.5) and the

constants in front of the summation symbols of Equation (4.6) are present to equally weight the

contributions of the two experimental techniques to the minimization algorithm since photoelasticity

gives only one stress-related phase and CGS gives two, i.e., the photoelasticity data set receives twice

the weight in the minimization algorithm as each of the CGS data sets.

Another consideration in the determination of KI and KII is the assumption of plane stress in

these specimens; the mixed-mode fracture stress fields in Equation (4.1) are only valid for plane stress

K-dominant regions. The stresses determined by transmission interference techniques are inherently

through-thichness averages of the stresses, so if the specimen is under plane stress, then the measured

stresses are constant through the theickness. Since the field of view is small in cases presented here,

a notable portion of the field of view of the interference patterns are subject to 3D (triaxial) stress

effects around the crack tip, meaning the stresses measured in this region vary through the thickness

and are not purely plane stress. According to Rosakis et al. (1990) and Krishnaswamy et al. (1991),

who studied 3D effects in elastodynamic crack problems, the extent of the 3D zone has a radius

around 0.4–0.5h. Using this as a general guideline for excluding points in the field of view that may

be subject to 3D effects, all of the points inside a circle of radius 0.5h centered around the crack tip

are excluded from the points used in calculating KI and KII . Additionally, all points that have been

excluded by a user-defined mask in the unwrapping algorithm are also excluded from consideration.

In the spirit of having full-field phase maps, all the points not excluded for the three phases in the

field of view are used in the nonlinear least-squares minimization algorithm to determine KI and

KII .
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4.2.3 Wedge Opening Experiments: Mode I–Dominant Cracks

The experimental loading configuration is a symmetric wedge with an angle 2χ = π/9 symmetrically

opening a straight notch of length a1 that is at the tip of a V-shaped notch and that has a sharp

crack of length a2 emanating from the straight notch tip, as shown in Figure 4.1(a). The sharp

crack is formed from two steps. First, a straight razor blade is pressed into the tip of the straight

notch, initiating two sharp, short, crack-like defects, one on each face of the specimen moving partly

through the thickness. Second, the loading condition for the experiments is used to gently and

slowly open the notch to fill in the crack through-thickness from these two defects as shown in

Figure 4.1(b); the crack generally propagates and then arrests a few millimeters from the straight

notch tip. Fast loading of this notch leads to sudden and complete fracture of the specimen, so

modest displacement rates of the wedge around 50 µm/s produces cracks that do not propagate the

length of the specimen. The specimen is then unloaded before the experimental loads to adjust the

specimen height such that the crack tip is in the field of view of the optical setup. This precracking

method is useful for brittle photoelastic materials, but may be less successful in ductile photoelastic

materials because the defects made by the razor blade do not coalesce when wedged open in ductile

materials.

θ
x

y

r

a1

a2

(a) Schematic (b) Pre-cracking Setup

Figure 4.1: Experimental loading configuration for wedge opening
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During experimental loading, the wedge can be slightly misaligned with the x axis, and therefore

the downward motion of the wedge can impart a slight Mode II load to the crack, evident in slight

asymmetry in the stress fields. Another possibility for a Mode II contribution to the stress field

is the symmetric Mode I loading of a crack with a slight angle βc to the x axis (Anderson, 2005).

With these experiments, the theoretical model is a straight crack along the x axis with superposed

dominant Mode I and slight Mode II loadings. The level of mode-mixity is characterized by the

stress intensity factor ratio µSIF = KII/KI . In these experiments, the translating mirror setup is

used instead of the non-polarizing beamsplitter to remove possible errors due to the transmission

and reflectance coefficients of the beamsplitter. Use of a beamsplitter with well-matched coefficients

should not change the applicability of this experimental method to fracture studies.

4.2.4 Crack with KI = 0.514 MPa
√

m and KII = 4.4 kPa
√

m

In specimen called HomC1, the material is Homalite-100, with thickness of h = 2.19 mm, outer

dimensions 25.48 mm × 25.48 mm, V-notch depth of 6.25 mm, straight notch length of a1 = 4.01

mm and crack length of a2 = 4.05 mm. The material properties of Homalite-100 are Young’s

modulus E = 4.55 GPa, refractive index no = 1.561, Poisson’s ratio ν = 0.31, photoelastic constants

A = −9.058 ∗ 10−11 m2/N, B = −1.143 ∗ 10−10 m2/N, C = −1.41 ∗ 10−10 m2/N, and g = −0.0844

(RaviChandar, 1982; Kobayashi, 1993). The optical field of view imaged onto the sensor is 4.60 mm

× 4.60 mm, and the image resolution is 4.6 µm. For this CGS setup, the Ronchi grating pitch is

p = 1 mm/40; the grating separation is ∆̃ =8 .87 mm; the wavelength of light from the linearly

polarized HeNe laser is λ = 632.8 nm; and the resulting lateral shearing distance is dshear = 225

µm. Figure 4.2.4 shows the specimen before loading with the experimental field of view indicated

on the specimen. The measured stresses in this small field of view indicate local through-thickness

average stress information around the crack tip.

KI and KII values of 0.514 MPa
√

m and 4.4 kPa
√

m are determined for this load case from

by using the least-squares algorithm described in Section 4.2.2. This specimen HomC1 has the

highest KI of all the loadings of similar configurations. The KII component is small with a stress
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FOV

Figure 4.2: Specimen HomC1 before loading with field of view (FOV) indicated

intensity factor ratio µSIF = 0.0085, so the dominant features of the stress field are Mode I, which

is symmetric about the x axis.

The static initiation fracture toughness KIc values for Homalite-100 vary in literature and can

vary for the same set of experiments. Bradley and Kobayashi (1971) reported fracture toughness

values ranging from 0.593 MPa
√

m to 0.690 MPa
√

m with an average of 0.636 MPa
√

m. Irwin

et al. (1979) and Dally (1979) state that Bradley and Kobayashi (1971) overestimates the initiation

fracture toughness and report a value of only 0.445 MPa
√

m. The calculated KI value for this load is

around the reported fracture toughness values; since the next load increment during this experiment

caused crack propagation, the measured KI value seems reasonable to be close to reported fracture

toughness values.

The experimental data is compared to theoretical data from the average KI and KII values. The

main differences arise from errors in the isoclinic angle, which is highly dependent on the alignment

of the polarization optics, as explained in Chapter 3, and due to the breakdown in the derivative

approximation of the CGS data near the crack tip where the fringe density is high.

Given the experimental configuration, the optical coordinate system is the π/2 rotation of the

conventional crack-plane coordinate system. Due to possible confusion, in this chapter, the x and

y axes refer to the crack-plane coordinate systems, the variables defined in the optical coordinate

system in previous chapters retain their original meaning in reference to the optical coordinate
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system (such as Exî is the optical-x component of the electric field, and vertical shearing CGS is

shearing in the optical-y axis), and any other possible confusion is clearly denoted as either relative

to the optical or specimen coordinate systems.

4.2.4.1 Experimental and Theoretical Phase-Shifted Interference Images

Figures 4.3 and 4.4 show the experimental and theoretical six phase-shifted photoelasticity images

for specimen HomC1. The features of the experimental images match remarkably well with the the

theoretical images, taking into account for the slightly Gaussian behavior of the background intensity

field Io in the experimental images as opposed to the uniform theoretical Io. The experimental images

also appear to have similar high-frequency, low-amplitude undulation on top of the underlying

photoelastic fringes as was present in the polycarbonate data in Figure 3.3 in Chapter 3. These

undulations are Fizeau fringes. This noise source is minimized using a Wiener filter with window

size of [25 × 25] pixels before processing the data. As expected, the high stresses at the crack tip

result in caustic shadows in the experimental images; these caustic shadows are not modeled in

the theoretical fields. The caustic shadows are present in all of the experimental images for both

experimental techniques in the data presented in this chapter because the imaging method used in

the experiment is unable to capture the divergent light rays at the crack tip for these cases.

Figures 4.5–4.10 are the experimental and theoretical image sets of four phase-shifted images for

vertical shear CGS for the pure Ex ı̂ input, pure Ey ̂ input, and circularly polarized electric field

input from the λ/4 polarization method. Since Homalite-100 has a modest value for g of −0.0844,

which dictates the relative strength of secondary CGS phase ϕdiff related to σ1 − σ2, then ϕsum

phase dominates the images for each of the different electric field inputs. The difference between

the images from the various polarization states of the input electric field are rather subtle. The

images from the circularly polarized field (Figures 4.9 and 4.10) have the dominant circular features

of ϕsum with some slight modulation of the intensity near the crack tip where cos(ϕdiff ) is close to

zero. (Figure 4.22(f) shows that the cos(ϕdiff ) field is fairly uniform and close to a value of 1 except

near the crack). Both the experimental and theoretical images from pure Ex ı̂ input (Figures 4.5
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and 4.6) are elongated along the vertical optical direction, while the images from the pure Ey ı̂ input

(Figures 4.7 and 4.8) are elongated along the horizontal optical direction, as compared to the images

from the circularly polarized input case in Figures 4.9 and 4.10). Overall, the experimental images

tend to be stretched along the shearing direction as compared to the theoretical images because the

experimental phases, which approximately relate to the derivatives of stress, cannot capture the large

changes in the derivatives of stress near the crack tip with a finite shearing distance dshear = 225 µm

that is 5% of the field of view. Despite this finite shearing distance, the experimental and theoretical

images compare well in fringe density, shape, and contrast.

Figures 4.11–4.16 are the experimental and theoretical image sets of four phase-shifted images

for horizontal shear CGS for the pure Ex ı̂ input, pure Ey ̂ input, and circularly polarized electric

field input from the λ/4 polarization method. As with the vertical shear, the experimental images

compare well with the theoretical images, with slight differences near the crack tip due to the

finite shearing distance issue described above. The circularly polarized light result in the expected

circular lobes to the side of the crack in Figures 4.15 and 4.16, while the pure Ex ı̂ and Ey ̂ inputs

result in slightly elongated fringes along the vertical and horizontal optical directions, respectively.

The finite shearing distance is visible in the horizontal shear; the crack appears to be doubled in

the experimental images. Data points between the crack are not reliable because these arise from

interference of light on opposite sides of the crack, and therefore this data is masked in the analysis.


