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3.3.2.4 Stress Determination

The isochromatic phase is converted to the σ1−σ2 fields using Equation (3.1). The two CGS phases

are converted to stress derivatives using Equation (2.26) and then integrated using the PCG method,

producing σ1 + σ2 + ci, where ci is a constant of integration. This constant may be determined by

using one of the traction-free boundary conditions along the notch edge, σθθ = 0 or σrθ = 0 for

θ = ±5π/6, where θ denotes the rotational polar coordinate. Utilizing the σ1 − σ2, σ1 + σ2 + ci,

and α fields, shown in Figures 3.15(a)–3.15(c), the σθθ = 0 condition gives a constant of integration

calculated by

ci = [(σ1 + σ2 + ci)− (σ1 − σ2) cos(2α− 2θ)]
∣∣
θ=±5π/6

. (3.13)

With this constant of integration, the σ1 + σ2 field is determined, as shown in Figure 3.15(d). The

experimental field is asymmetric across the x axis, unlike the theoretical field in Figure 3.15(e), but

this is due to an asymmetric x derivative of σ1 + σ2, just noticeable along the V-notch boundary

in the experimental unwrapped horizontal shearing ϕsum in Figure 3.14(a). Otherwise, the stress

concentration variation with r appears to generally agree with theory. With full-field σ1 + σ2 and

σ1−σ2, the principal stresses may be separated, as shown in Figure 3.16. The experimental principal

stresses compare well with theory, with the σ1 field with a single elliptical lobe symmetric about

the x axis and the σ2 field with a kidney bean shape again symmetric about the x axis. The

experimental σ1 is smaller in stress magnitude than the theoretical field, while the experimental

σ2 is larger in stress magnitude than the theoretical field; these differences are likely due to the

experimental σ1 − σ2 field being slightly larger in stress magnitude than the theoretical data.

The Cartesian stresses, σxx, σyy, and σxy, shown in Figure 3.17, are determined using the

separated principal stresses and the isoclinic angle as the angle of rotation for the coordinate trans-

formation. These and the polar stresses may also be written in terms of σ1−σ2, σ1+σ2, α, and θ (for

the polar stresses), as shown in Table 3.3 (derivation of these relationships and others concerning

stresses may be found in Appendix A); these formulas indicate how the in-plane stresses relate to the

fields from the two experimental methods. The experimental σxx field has the correct single elliptical
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lobe shape about the x axis as compared to the theoretical σxx. The kidney bean-shaped contour

appears in both the experimental and theoretical σyy. The interpolated regions in the isoclinic angle

visually appear to modulate the experimental σxy as compared to the theoretical σxy, but positive

stresses for (−x,+y) and (+x,−y) regions and negative stresses for (+x,+y) and (−x,−y) regions

are evident. The effect of α on this shear stress field is not surprising since σxy only depends on

the photoelastic data, as seen in the formula in Table 3.3, and thus the error in α is not diffused by

σ1 + σ2 for this field.

Stress Relationship to σ1 − σ2, σ1 + σ2, α, and θ

σxx
1
2 (σ1 + σ2) + 1

2 (σ1 − σ2)cos(2α)

σyy
1
2 (σ1 + σ2)− 1

2 (σ1 − σ2)cos(2α)

σxy
1
2 (σ1 − σ2)sin(2α)

σrr
1
2 (σ1 + σ2) + 1

2 (σ1 − σ2)cos(2θ − 2α)

σθθ
1
2 (σ1 + σ2)− 1

2 (σ1 − σ2)cos(2θ − 2α)

σrθ − 1
2 (σ1 − σ2)sin(2θ − 2α)

Table 3.3: In-plane stress components and their relationships to σ1 − σ2, σ1 + σ2, α, and θ

The polar stresses presented in Figure 3.18 are determined by transforming the Cartesian stresses

with a rotation matrix with θ as the angle of rotation. Similar to the Cartesian stresses, the

experimental polar stresses compare well with theoretical fields, with overall good shape comparison

and stress magnitude comparison despite modulation by the errors in the isoclinic angle. The

experimental σrr field is asymmetric about the x axis with larger stress magnitude for positive y

values. The experimental σθθ has the wide fan-like structure in front of the notch, though not all of

the σθθ data is going to zero along the notch mask boundary, requiring a choice of where to apply the

boundary condition for the constant of integration calculation. The portion of the boundary that

appears to be furthest in proximity from error sources like interpolated regions in α and far from

the cos ϕdiff → 0 boundaries is chosen for the constant of integration calculation. The experimental

σrθ is noticeably modulated by the isoclinic angle errors, but the overall asymetric stresses match

well with theoretical values, even better than the experimental σxy compares with theory. Since σrθ

depends on both α and θ in that σrθ = 1
2 (σ1−σ2)sin(2θ−2α), the θ contributions appear to diffuse
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the error associated with α, allowing for better agreement with theory for σrθ than for σxy.

In general, the stress fields appear to match well in magnitude for larger r, but the largest

difference between the theoretical and experimental stress fields is close to the notch tip. This

greater difference near the notch tip is expected because the finite resolution of the experimental

techniques and the 1/r1−λo character of the stress fields make the large fringe density near the notch

tip more difficult to measure. The slight asymmetry of the stress fields about the x axis, especially

along the notch edge, is evidence that the polycarbonate specimen is not perfectly uniformly loaded.

Another possible source of error in the data is due to the masking of the notch area, which obscures

the exact edge of the notch where the boundary conditions are applied and, hence, where the constant

of integration is calculated. The slightly higher stress concentration for σ1 − σ2 and slightly lower

stress concentration for σ1 + σ2 in the experimental data, as compared to the theoretical data, is

possibly due to the material constants used to convert the phases to stresses, given in Section 3.3.1.

Polymers tend to vary between manufacturers and between different batches of material, leading

to variable material properties. Since the material constants used are from published literature,

these may not exactly correspond to the material properties of the polycarbonate used in this study.

The constants in literature are good guidelines and a place to start for converting these phases to

stresses. The combination of these constants from literature may lead to an under-determination of

the stresses in σ1 + σ2, leading to a smaller choice of the fitting coefficient Cf , which is the reason

for the theoretical σ1−σ2 appearing too small. In future, to more accurately determine the stresses,

these material constants can be measured for the particular batch of polymer used for the specimens.

Given all of these considerations, the data fit remarkably well. One measure of the global error

is the root mean square deviation (RMSD) normalized by the range of data, denoted NRMSD. Only

data points not masked by notch mask are considered here. Table 3.4 reports the error analysis of

several fields. The fields with the lowest NRMSD are the stress derivatives and σ1−σ2, demonstrating

the effectiveness of the six-step phase-shifting photoelastic method and small effect of the Tx ≈ Ty

assumption and the e1 λ/4 plate misalignment error. Additionally, since the theoretical stress field

fitting factor Cf is calculated by comparison with the all of the experimental fields, the low error for
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both the stress derivatives and σ1 − σ2 fields that come from two separate experimental techniques

implies that these two techniques work well together to determine the full-field stress tensor.

The isoclinic angle has a higher NRMSD, though still reasonable at 7.5%, most likely due to the

interpolation across the regions near sin(δ) = 0, since 27% of the data points (excluding the masked

notch region) have been removed and interpolated across. Importantly, without this interpolation,

the isoclinic angle from this photoelastic data cannot be unwrapped properly with the presence of

many false discontinuities due to a nonzero tolerance in (Tx−Ty) and the e1 λ/4 plate misalignment

error. The interpolation method is a necessary step that makes the isoclinic angle into usable data to

combine with the stress fields, making the error introduced by the interpolated regions tolerable. An

error source in the stress fields employing the σ1 +σ2 field is the constant of integration calculation,

which is, first, dependent of the isoclinic angle, and, second, taken not precisely at θ = ±5π/6. Since

the notched area requires a mask to prevent corruption of the data near the edges during phase

unwrapping, then θ = ±5π/6 is obscured. Here, ci comes from θ = −2.54 rad. = −145o. Despite

these considerations, the experimental full-field stresses in principal, Cartesian, and polar coordinate

systems have acceptable NRMSD error, ranging from 3.3% to 9.7%, demonstrating that the combined

CGS-photoelasticity phase-shifting method successfully determines the in-plane tensorial stress for

photoelastic materials.
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(a) Experimental unwrapped α
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(b) Experimental σ1 − σ2
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(c) Experimental σ1 + σ2 + ci
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(d) Experimental σ1 + σ2
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(e) Theoretical σ1 + σ2

Figure 3.15: Combined principal stress fields for the compressed polycarbonate V-notch plate with
V-notch masks in blue
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(b) Theoretical σ1
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(c) Experimental σ2
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(d) Theoretical σ2

Figure 3.16: Experimental and theoretical separated principal stress fields for the compressed poly-
carbonate V-notch plate with V-notch masks in blue
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(a) Experimental σxx
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(b) Theoretical σxx

!"#$$%

&
"#
$
$
%

"

"

!' ( ' )

!'*+

!'

!(*+

(

(*+

'

'*+

#,-.%

!/( !)+ !)( !'+ !'( !+ (

(c) Experimental σyy
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(d) Theoretical σyy
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(e) Experimental σxy
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(f) Theoretical σxy

Figure 3.17: Experimental and theoretical Cartesian stress fields for the compressed polycarbonate
V-notch plate with V-notch masks in blue
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(a) Experimental σrr
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(b) Theoretical σrr
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(c) Experimental σθθ
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(d) Theoretical σθθ
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(e) Experimental σrθ
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(f) Theoretical σrθ

Figure 3.18: Experimental and theoretical polar stress fields for the compressed polycarbonate V-
notch plate with V-notch masks in blue
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Quantity Units RMSD Data NRMSD
(in Range (No

Units) (in Units) Units)
α rad. 0.17 2.25 0.075

∂(σ1 + σ2)/∂x MPa/mm 1.55 94.2 0.016
∂(σ1 + σ2)/∂y MPa/mm 1.31 110.0 0.012

σ1 + σ2 MPa 1.52 33.7 0.045
σ1 − σ2 MPa 1.62 42.1 0.038

σ1 MPa 1.28 17.3 0.074
σ2 MPa 0.99 30.1 0.033
σxx MPa 1.62 16.9 0.097
σyy MPa 1.17 29.8 0.039
σxy MPa 1.95 23.7 0.040
σrr MPa 1.14 13.4 0.085
σθθ MPa 1.41 34.6 0.041
σrθ MPa 1.26 23.1 0.055

Table 3.4: Error analysis for various experimental fields for the compressed polycarbonate V-notch
plate

3.4 Conclusions

The combined phase-shifting photoelasticity and CGS method presented in this study demonstrates

the full-field determination of the in-plane tensorial stress for photoelastic materials. A six-step

phase-shifting photoelasticity method gives σ1 − σ2 and the isoclinic angle, which requires some

careful consideration in regions where sin(δ) → 0 to minimize errors in phase unwrapping. Trans-

mission CGS for a photoelastic material requires a four-step phase-shifting method in conjunction

with polarization optics prior to the specimen to extract the desired phases related to x and y

derivatives of σ1 + σ2. A weighted PCG algorithm is used for both phase unwrapping and integra-

tion of the σ1 + σ2 derivatives. The σ1 + σ2 field is determined by using a boundary condition to

determine the constant of integration. The principal stresses are then separable from the σ1 + σ2

and σ1 − σ2 fields. The Cartesian and polar coordinate stress fields are also determined by simple

coordinate transformations using the isoclinic angle and the polar coordinate. The entire method is

demonstrated for a compressed polycarbonate plate with a side V-notch.

Possible error sources in the experimental method are identified as the transmission and re-
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flectance coefficients of the non-polarizing beamsplitter and rotational misalignment of the polariza-

tion optics. Theoretical data including these possible errors demonstrate the extent of their effect

on the data and identify the dominant error source in the experimental data as the misalignment

of the first λ/4 plate. Mitigation techniques, such as correction of the modulated wrapped isoclinic

angle and implementation of the PCG algorithm, a data quality-driven unwrapping algorithm, help

to minimize propagation of error through the data. Despite these errors, the experimental stresses

compare well with the theoretical stresses for the polycarbonate example. Establishing the use

of this hybrid experimental technique in a compressed plate with a V-notch is the foundation for

its application to determine the in-plane tensorial stress around a loaded crack in a photoelastic

material.


