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Chapter 3

Phase-Shifting Interferometry and
Combined Methods

3.1 Introduction

The chapter describes the hybrid phase-shifting full-field experimental CGS-photoelasticity method

for in-plane tensorial stress determination and the experimental verification of the method. Section

3.2 presents the two experimental methods and how these are combined to determine the stress

fields, detailing phase-shifting photoelasticity, the hybrid optical setup, and phase analysis methods.

Section 3.3 describes the experimental verification of this method for stress determination in a

compressed polycarbonate plate with a side V-notch and provides comparison with theoretical stress

fields. This chapter is based on Kramer et al. (2009a), but provides more details of potential error

sources and of the experimental analysis. Also, the comparison of experimental and theoretical stress

fields has improved agreement upon further analysis after publication of the paper.

3.2 Phase-Shifting Interferometric Methods

3.2.1 Photoelasticity

Photoelasticity utilizes the stress-optic effect in certain materials that have a stress-induced bire-

fringence proportional to the difference of the in-plane principal stresses: n1 − n2 = co(σ1 − σ2),

where co is the relative stress-optic coefficient. A detailed derivation of this equation may be found
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in Appendix C. A photoelastic plate under stress acts as a linear retarder plate for polarized light

with linear retardation δ with a fast axis at angle α relative to the x axis. The change in refractive

index in the plane perpendicular to the optical axis is related to δ by the thickness of the plate h

and the wavelength λ: n1 − n2 = δλ/(2πh). Therefore, the governing equation, the Stress-Optic

Law, may be written as the following (Kobayashi, 1993; Narasimhamurty, 1981):

σ1 − σ2 =
δλ

2πcoh
=

Nλ

coh
, (3.1)

where N = δ/2π is the “fringe order”.

A circular polariscope used to view the photoelastic effect includes a polarizer with axis at angle

ρ, a λ/4 plate with fast axis at angle ξ, the photoelastic material, another λ/4 plate with fast axis

at angle φ, and a final polarizer with axis at angle β as shown in Figure 3.1.
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Figure 3.1: Schematic of circular polariscope with fast axes of optics labeled

The six-step method either has the input polarizer set to ρ = π/2 and the input λ/4 plate set

to ξ = 3π/4 or has the input polarizer set to ρ = 0 and the input λ/4 plate set to ξ = π/4. The

intensity for this general polariscope, calculated using Mueller Calculus as explained in Appendix

C, is

I = Io[1 + cos(δ) sin(2(β − φ))− sin(δ) sin(2(α− φ)) cos(2(β − φ))]. (3.2)
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Image Intensity φ β

I1 Io[1 + cos(δ)] π/2 3π/4
I2 Io[1− cos(δ)] π/2 π/4
I3 Io[1− sin(δ) sin(2α)] π π

I4 Io[1 + sin(δ) cos(2α)] π/4 π/4
I5 Io[1 + sin(δ) sin(2α)] π/2 π/2
I6 Io[1− sin(δ) cos(2α)] 3π/4 3π/4

Table 3.1: Photoelasticity phase shifting: Angles refer to fast axes of optics

With six combinations of the φ and β, the six-step method produces two images including only δ

and four images including both δ and α, given in Table 3.1.

The isoclinic angle emerges from I3 through 16 in Equation (3.3) with wrapped phase range of

−π/4 ≤ α < π/4:

α =
1
2

arctan
(I5 − I3

I4 − I6

)
=

1
2

arctan
( sin(2α) sin(δ)

cos(2α) sin(δ)

)
. (3.3)

This wrapped α is only true for sin(δ) #= 0; regions near sin(δ) = 0 will falsely appear to have α close

to ±π/4 since the argument to the arctan() in Equation (3.3) will grow very large as sin(δ)→ 0, as

will be discussed in Section 3.3.1. By definition, the isoclinic angle may represent the angle between

the reference axis and either σ1 direction or σ2 direction, a fact known as the isoclinic ambiguity

(Siegmann et al., 2005). From the arctan() function in Equation (3.3), the wrapped isoclinic angle has

π/2 discontinuities that are the boundaries between regions referring to σ1 and σ2. Unwrapping the

isoclinic angle by removing the π/2 discontinuities by adding ±π/2 to appropriate regions produces

a field that refers to only one of the principal stresses. These unwrapped isoclinic angles are allowed

to contain π discontinuities since these are consistent with a reference to only one principal stress.

The isochromatic phase in Equation (3.4) uses all six images and the unwrapped isoclinic angle,

producing a wrapped phase with range −π ≤ δ < π:

δ = arctan
( (I5 − I3) sin(2α) + (I4 − I6) cos(2α)

I1 − I2

)
. (3.4)

If the wrapped isoclinic angle is used in Equation (3.4), then the resulting isochromatic phase may
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be modulated (i.e., ambiguous), meaning some regions are related to σ1 − σ2 and other regions are

related to σ2 − σ1, evident in the wrapped phase by poor fringe contrast and a sudden change in

sign. This modulated/ambiguous isochromatic data is due to the isoclinic ambiguity such that α

relative to σ1 produces the σ1 − σ2 isochromatic regions and α relative to σ2 produces the σ2 − σ1

isochromatic regions. The isochromatic phase may be demodulated by a load stepping method, which

takes advantage of the change in δ at each point over three successive incremental loads (Ekman and

Nurse, 1998; Ramesh and Tamrakar, 2000), by an automated digital technique that identifies and

corrects the ambiguous zones before analysis (Ashokan and Ramesh, 2006), or by unwrapping the

isoclinic angle (Siegmann et al., 2005). The load stepping method is not useful in an experiment that

is sensitive to incremental loads as is the case with fracture, so it is not pursued for this proposed

hybrid experimental method. The automated digital technique can be prone to error when poor

quality data pixels are near the boundaries of the ambiguous zones, and this technique does not

unwrap the isoclinic angle. Unwrapping the isoclinic angle can be complicated by the sin(δ) ≈ 0

regions and by the allowance of π discontinuities such that careful choice in unwrapping algorithms

is required, as will be discussed in Section 3.2.4.1.

For the combined CGS-photoelasticity method, a non-polarizing beamsplitter is positioned after

the specimen to split the light for the two techniques, as further explained in Section 3.3. The

incident face of the beamsplitter is aligned to be perpendicular to the light, resulting in a transmitted

wavefront and a reflected wavefront that is perpendicular to the original propagation direction.

The effect of a beamsplitter on polarized light can be modeled as a partial linear polarizer with

transmission coefficients, Tx and Ty, and reflection coefficients, Rx and Ry, assuming the principal

axes of the beamsplitter are aligned with the Cartesian axes; a similar model is used in a simultaneous

capture phase-shifting photoelasticity technique developed by Patterson and Wang (1998). The

transmitted beam is used for photoelasticity, and, thus, Tx and Ty affect the intensity of the modified
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circular polariscope, calculated using Mueller calculus, as follows:

I = Io
2 [M1 + M2 cos(δ)−M3 sin(δ) sin(2α) + M4 sin(δ) cos(2α)] (3.5a)

M1 = (Tx + Ty) + (Tx − Ty) cos(2φ) cos(2(β − φ)) (3.5b)

M2 = 2
√

TxTy sin(2(β − φ)) (3.5c)

M3 = (Tx − Ty) + (Tx + Ty) cos(2φ) cos(2(β − φ)) (3.5d)

M4 = 2
√

TxTy sin(2φ) cos(2(β − φ)). (3.5e)

With the prescribed angles for the output λ/4 plate and polarizer given in Table 3.1, the six-step

phase-shifted images have intensities shown in Table 3.2.

Image Intensity

I1 (Io/2)[(Tx + Ty) + 2
√

TxTy cos(δ)− (Tx − Ty) sin(δ) sin(2α)]

I2 (Io/2)[(Tx + Ty)− 2
√

TxTy cos(δ)− (Tx − Ty) sin(δ) sin(2α)]

I3 IoTx[1− sin(δ) sin(2α)]

I4 (Io/2)[(Tx + Ty) + 2
√

TxTy sin(δ) cos(2α)− (Tx − Ty) sin(δ) sin(2α)]

I5 IoTy[1 + sin(δ) sin(2α)]

I6 (Io/2)[(Tx + Ty)− 2
√

TxTy sin(δ) cos(2α))− (Tx − Ty) sin(δ) sin(2α)]

Table 3.2: Photoelasticity phase-shifted images for a field transmitted through a beamsplitter placed
inbetween the specimen and the output λ/4 plate

Considering images I3 through I6 to obtain α, the argument of the arctan() function from

Equation (3.3) becomes

(I5 − I3

I4 − I6

)
=

(−(Tx − Ty) + (Tx + Ty) sin(δ) sin(2α)
2
√

TxTy sin(δ) cos(2α)

)
. (3.6)

If Tx = Ty, then (Tx+Ty) = 2
√

TxTy, which implies the images from the modified circular polariscope

in Table 3.2 give the same argument of the arctan() function as in Equation (3.3) for calculating the

isoclinic angle. With the isoclinic angle and the six images, the argument of the arctan() function
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in Equation (3.4) becomes

( (I5 − I3) sin(2α) + (I4 − I6) cos(2α)
I1 − I2

)
=

( [(Tx + Ty)sin2(2α) + 2
√

TxTy cos2(2α)] sin(δ)
2
√

TxTy cos(δ)

)

−
( (Tx − Ty) sin(2α)

2
√

TxTy cos(δ)

)
. (3.7)

Assuming Tx = Ty and (Tx +Ty) = 2
√

TxTy, the calculation for the isochromatic phase simplifies to

Equation (3.4). Perfectly aligned non-polarizing beamsplitters ideally have Tx = Ty, but usually have

a tolerance on (Tx− Ty), such that (Tx + Ty) ≈ 2
√

TxTy. Manageable error may occur where sin(δ)

is close to zero in the isoclinic angle since the numerator in Equation (3.6) will be a discrete number

larger than the small denominator, such that a false π/2 discontinuity may appear. These regions

are considered carefully to eliminate these false discontinuities, as explained in Section 3.2.4.1. The

potential for error in the isochromatic phase is smaller than in the isoclinic angle since the (Tx−Ty)

term in Equation (3.7) does not dominate the other term for the range of δ.

Another possible source of error is the rotational misalignment of the polarization optics in the

rotation optical mounts. If (i) the first polarizer is correctly aligned with the specimen coordinate

system, (ii) the misalignments of the first λ/4 plate, the second λ/4 plate, and the second polarizer

are e1, e2, and e3 in radians, respectively, and (iii) the beamsplitter is not in the polariscope, then

the general intensity for the polariscope with ρ = π/2 and ξ = 3π/4+e1 (or ρ = 0 and ξ = π/4+e1)

is

I = Io

(
1+ sin(2e1){sin(δ) sin[2(β − φ) + 2(e3 − e2)] sin(2α− 2e1)

+ cos(δ) sin[2(β − φ) + 2(e3 − e2)] cos[2(β − φ) + 2(e3 − e2)] sin(2α− 2e1)

+ cos[2(β − φ) + 2(e3 − e2)] cos[2(α− φ)− 2e2] cos(2α− 2e1)}

+ cos(2e1){cos(δ) sin[2(β − φ) + 2(e3 − e2)]

− sin(δ) cos[2(β − φ) + 2(e3 − e2)] sin[2(α− φ)− 2e2]}
)
. (3.8)

With the prescribed angles for the output λ/4 plate and polarizer given in Table 3.1 and considering
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images I3 through I6 to obtain α, the argument of the arctan() function from Equation (3.3) becomes

(I5 − I3

I4 − I6

)
=

(cos(2e1) sin(δ) sin(2α− 2e2) + sin(2e1) sin(2α− 2e1) cos(2α− 2e2)
cos(2e1) sin(δ) cos(2α− 2e2)− sin(2e1) sin(2α− 2e1) sin(2α− 2e2)

)
. (3.9)

The argument to the wrapped α equation does not depend on e3, the error of the output polarizer,

but only on the misalignment of the λ/4 plates. As will be demonstrated in the theoretical data

in the example in Section 3.3.2.2, the isoclinic angle is more sensitive to e1 than to e2 in terms

of development of false phase discontinuities near sin(δ) = 0, while error due to e2 results in a

shift in the values of α by e2. When sin(δ) = 0, Equation (3.9) should be indeterminate with

0/0, leading to a value of zero for arctan[(I5 − I3)/(I4 − I6)] in MATLAB!, but if e1 #= 0, then

Equation (3.9) is a small number divided by a different small number, leading to values close to ±π/2

for arctan[(I5−I3)/(I4−I6)]. When sin(δ) is close to zero and e1 #= 0, then Equation (3.9) will likely

be a small number divided by a different small number or 0/0 depending on the values for α and e2,

leading to a combination of false phase discontinuities and false zero-crossings in the wrapped α field,

which require correction before unwrapping. Methods for this correction are described in Section

3.2.4.1. Without correction, the unwrapping algorithm will incorrectly determine α, which will be

apparent in phase ambiguities in the wrapped δ data. Since the isoclinic angle is more sensitive to

e1 than e2, then e2 is assumed to be zero and e1 is a small number on the order of ±π/90 radians.

With the correction methods for the wrapped isoclinic angle, the resulting isoclinic angle data

appears to propagate only modest global error, as shown in the error analysis in Section 3.3.2,

indicating that the correction methods are successful and that assuming Tx ≈ Ty, e1 ≈ ±π/90, and

e2 ≈ 0 are reasonable assumptions.

3.2.2 Coherent Gradient Sensing

As described in Chapter 2, CGS in transmission applied to photoelastic materials is different from

CGS applied to optically isotropic materials, leading to interference patterns related to two phases

ϕsum and ϕdiff , not just one phase. Controlling the input electric field polarization and adding
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phase shifting allows determination of the desired phase ϕsum related to the spatial derivative of

σ1 + σ2. Using the same polarization optics for both control of the polarization input for CGS

and for the photoelasticity polariscope demonstrates how these two techniques may be combined

to investigate the same field of view of the specimen. Additionally, the same input optics for both

techniques simplifies the experimental setup. Therefore, using a polarizer and λ/4 plate prior to the

specimen allows for the circularly polarized light necessary for photoelasticity and for determining

ϕsum with only four phase-shifted CGS images per shearing direction.

Since the combined technique includes a non-polarizing beamsplitter after the specimen, then the

reflectance coefficients, Rx and Ry, should be considered in the CGS analysis. The intensity of the

image given in Equation (2.16a) is derived without consideration of Rx and Ry; the intensity is the

sum of the intensities from the E1 field and from the E2 field, and this sum advantageously cancels

several terms present in the individual intensities. With Rx and Ry modulating the amplitudes of

terms in these two orthogonal fields, many terms will not exactly cancel if Rx #= Ry; but, the relative

amplitudes of these uncanceled terms are small, on the order of (Rx −Ry), compared to that of the

terms given in Equation (2.16a). Assuming Rx ≈ Ry is reasonable since the global error is small, as

is evident in Section 3.3.2.

Another possible source of error in the CGS data is the misalignment of the first two polarization

optics. Since the photoelastic data is sensitive to the alignment of the first λ/4 plate, determining

the sensitivity of the CGS data to this misalignment is important as well. A misalignment of e1

radians for the first λ/4 plate leads to slightly elliptically polarized light as opposed to circularly

polarized light. Depending on which pair of angles used for the circularly polarized light from the

photoelasticity setup, whether ρ = 0 and ξ = π/4 + e1 or ρ = π/2 and ξ = 3π/4 + e1, the general

equation for the CGS images in Equation (2.16) becomes the following, where Ao is the amplitude

of the electric field after the first polarizer:

Iimage = Io + I1o cos[ϕsum + ϕdiff ] + I2o cos[ϕsum − ϕdiff ] (3.10a)

Io = 2(A±1
o )2 (3.10b)
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for ρ = 0 and ξ =
π

4
+ e1:

I1o = Io

{1
2

cos2(α)[1 + sin2(2e1)] +
1
2

sin2(α) cos2(2e2)

+ cos(α) sin(α) cos
[
arctan

[1− sin(2e1)
1 + sin(2e1)

]
+

π

4

]}
(3.10c)

I2o = Io

{1
2

sin2(α)[1 + sin2(2e1)] +
1
2

cos2(α) cos2(2e2)

− cos(α) sin(α) cos
[
arctan

[1− sin(2e1)
1 + sin(2e1)

]
+

π

4

]}
, (3.10d)

and for ρ =
π

2
and ξ =

3π

4
+ e1:

I1o = Io

{1
2

cos2(α) cos2(2e2) +
1
2

sin2(α)[1 + sin2(2e1)]

+ cos(α) sin(α) cos
[3π

4
− arctan

[1 + sin(2e1)
1− sin(2e1)

]]}
(3.10e)

I2o = Io

{1
2

sin2(α) cos2(2e2) +
1
2

cos2(α)[1 + sin2(2e1)]

− cos(α) sin(α) cos
[
arctan

[3π

4
− arctan

[1 + sin(2e1)
1− sin(2e1)

]]}
. (3.10f)

When rewriting this as a single interference pattern using Equation (2.17), the equation is not as

simple as that for the exactly circularly polarized electric field such that

Iimage = Io + Ic cos[ϕsum + ϕc] (3.11a)

Ic =
√

I2
1o + I2

2o + 2I1oI2o cos(2ϕdiff ) #= cos(ϕdiff ) (3.11b)

ϕc = arctan
[ (I1o − I2o) sin(ϕdiff )
(I1o + I2o) cos(ϕdiff )

]
#= 0. (3.11c)

The resulting wrapped phase from Equation (2.21) in this case is close to ϕsum since ϕc is small for

small e1, but in fact, the wrapped phase is ϕsum + ϕc. Additionally, the wrapped phase may have

some modulation by Ic where Ic = 0, since poor fringe contract occurs where cos(ϕdiff )→ 0, which

will be shown theoretically in the example below in Section 3.3.2.3. This e1 error will mainly result

in some unwrapping errors locally where cos(ϕdiff ) → 0 and will not greatly affect determining

derivatives of σ1 + σ2 from the phase maps because for these applications |ϕsum| >> ϕc. Despite

this error source, the resulting phase maps will generally be a good representation of ϕsum for each
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shearing direction, as shown in the example with small global error in Section 3.3.2.

3.2.3 Combined Experimental Setup

Experimentally, as shown in Figure 3.2, CGS and photoelasticity can be employed simultaneously

by sending a plane wave of coherent monochromatic light through the input polarizer, the input

λ/4 plate, and the specimen, after which the light is split by a non-polarizing beamsplitter into two

identical wavefronts sent along two separate sets of analyzing optics, one for CGS and the other

for photoelasticity. Identical imaging optics and CCD cameras are used to capture the same field

of view of the specimen for each technique. Another option for combining these techniques is to

replace the non-polarizing beamsplitter with a translating mirror at 45o to the incoming deformed

light after the specimen; to perform photoelasticity, the translating mirror is out of the beam path

to allow all of the light to pass through the remaining photoelasticity optics, and to perform CGS,

the translating mirror is moved into the beam path to turn the light to pass through the CGS optics.

The translating mirror option removes the errors associated with the non-polarizing beamsplitter.

The light is collimated using a spatial filter, consisting of a microscope objective and a pinhole,

and a collimating lens placed at one focal length of the collimating lens from the pinhole. The

polarizers and λ/4 plates are mounted in rotation stages with 1o markings, though the user must

align the fast axis fiducial marking on the optic casing with the rotation mount markings by hand.

Rotational alignment is achieved by first setting the first polarizer as the standard, and methods for

extinguishing the light detected on a CCD are used to set the alignment of the other polarization

optics. To obtain each of the six photoelasticity images, the output λ/4 plate and polarizer must be

adjusted manually. In order to induce the π/2 phase shift for the CGS data, the first Ronchi grating is

translated a distance of p/4 by 1D piezoelectric positioners, one for each shearing direction. To obtain

the two shearing directions for the same load of the specimen, one set of phase-shifted images for one

shearing direction is taken, and then the Ronchi gratings are rotated by π/2 and the imaging optics

and filter plane are adjusted to capture the phase-shifted images for the other shearing direction.

In the current configuration, the images for both shearing directions and photoelasticity cannot
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be obtained simultaneously, though this may be achieved with other optical solutions described in

Chapter 5.
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Figure 3.2: Combined CGS-photoelasticity experimental setup: (a) Schematic of the experi-
mental setup: LS=light source with collimation optics; M=mirror; P=polarizer; Q=λ/4 plate;
S=specimen; NPB=non-polarizing beamsplitter; G1,2=gratings 1&2; Lf=filtering lens; If=filtering
iris diaphragm; Li=imaging lens; and C=camera; and (b) image of experimental setup from side
view of photoelasticity optics

3.2.4 Full-Field Phase Unwrapping and Integration

The data analysis is performed using an analysis program written using MATLAB!. The 2D

phase unwrapping method for both photoelastic and CGS data is the PCG algorithm described in

Chapter 2. Phase unwrapping of the experimental isoclinic angle requires special care where, prior

to unwrapping by the PCG algorithm, the wrapped data is corrected for errors that are due to the
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non-polarizing beamsplitter and to alignment of the polarization optics as explained in Section 3.2.1.

The PCG algorithm may also be applied to numerically integrate the spatial derivatives of σ1 + σ2.

3.2.4.1 Phase Unwrapping for the Isoclinic Angle

In the wrapped isoclinic data from Equation (3.3), regions where sin(δ) = 0 are undefined. These

regions may be identified using the isochromatic data. Near sin(δ) = 0, both the numerator and

denominator of the isoclinic arctan() formula in Equation (3.3) are close to zero, but with slightly

different small numbers from the nonzero tolerance on (Tx−Ty) and misalignment of the polarization

optics. These regions ultimately may appear as false π/2 discontinuity regions in the wrapped

isoclinic angle. Additionally, regions where the numerator and the denominator of the arctan()

formula are zero, MATLAB! will return a value of zero for the arctan(), but these points may also

require correcting since the isoclinic angle is not necessarily zero at those locations.

With a user-defined threshold value, denoted thresh, then the data in zones where −thresh <

sin(δ) < thresh are identified as likely locations where the data needs correction. The δ used

here is the ambiguous wrapped isochromatic phase, described in Section 3.2.1, because this comes

from using wrapped α in the formula for wrapped δ in Equation (3.4). The ambiguous wrapped

isochromatic phase is a key tool to correcting the wrapped isoclinic angle because the ambiguous

wrapped δ should ideally have (i) good phase discontinuities of height 2π that require unwrapping,

(ii) continuous phase, or (iii) boundaries of the ambiguous data having opposite sign across the

boundaries (where the boundaries of σ1 − σ2 and σ2 − σ1 regions meet). Phase discontinuities of

height 2π and zero-crossings in the wrapped δ correspond to where sin(δ) ≈ 0, so these are precisely

where the isoclinic angle data has possible problems. The ambiguity boundaries in the wrapped δ

should coincide with the π/2 phase discontinuities in the wrapped α, which are true wrapped phase

discontinuities that must be preserved.

The following are some basic guidelines to correcting the isoclinic angle, but the user must apply

judgment, informed by the expected form of the wrapped α and δ, in cases where no single guideline

may be applied:
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• If the π/2 phase discontinuity in the wrapped α coincides with an ambiguity boundary in the

wrapped δ, then this discontinuity should be preserved and left alone.

• If both the wrapped α and wrapped δ are continuous, and if the wrapped delta is not near

where sin(δ)→ 0, then this data should be left alone.

• If phase discontinuities from both wrapped α and wrapped δ coincide, then the phase discon-

tinuity in α should be interpolated across.

• If a true π/2 phase discontinuity in the wrapped α intersects the location of a wrapped δ

discontinuity, great care must be taken when interpolating across the false α discontinuity

while preserving the true α discontinuity.

• If a sin(δ)→ 0 region coincides with a zero-crossing in the wrapped α, then this zero-crossing

is likely near where wrapped α is actually close to ±π/4. These types of zero-crossings are

often where both sin(δ) and cos(2α) are close to zero, leading to a 0/0 as the argument of

the α arctan() formula. The user can insert a phase discontinuity in this region. Another

indication for this case is that the ambiguous wrapped δ does not have a phase discontinuity,

but a change of direction about ±π; this change of direction should be a phase discontinuity

that connects to another phase discontinuity in the wrapped δ field.

• Phase discontinuities in α need to either connect or end on a boundary; they should not end

in the middle of the field.

Once false phase discontinuities are identified, then these are removed from the wrapped field

and replaced with data from 2D linear interpolation across those zones. Then the modified wrapped

isoclinic data is unwrapped using the PCG algorithm.

This unwrapped isoclinic angle is used in Equation (3.4) for the unambiguous wrapped isochro-

matic phase. The wrapped δ calculated from the unwrapped α should not contain phase ambiguities

and should only contain continuous phase or phase discontinuities of height 2π; if this is not the

case, then the wrapped isoclinic angle was not properly modified and requires correction.
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Since the sign of the numerator and of the denominator of the arctan() function in Equation (3.4)

are known separately, then the full four quadrants of arctan() phase space may be used, resulting in

an isochromatic wrapped phase with range −π ≤ δ < π. Having 2π phase discontinuities instead of π

discontinuities reduces the density of discontinuities in the entire field, reducing the computational

effort to unwrap the field. For both the isoclinic angle and the CGS phases, unwanted phase

information modulates the numerator and denominator, which implies the sign of the numerator

and denominator of the arctan() function are not known independently. Thus the arctan() formula

produces a phase with a range from −π/2 to π/2, giving wrapped phase ranges of −π/4 ≤ α < π/4

and −π/2 ≤ ϕsum < π/2.

3.2.4.2 Preconditioned Conjugate Gradient Method for Integration

Letting s = (σ1 +σ2), the solutions to the phase unwrapping for the horizontal and vertical shearing

directions result in ∂s/∂x and ∂s/∂y, which must be integrated to obtain s. This integration problem

is a discrete Poisson equation of the form:

(si+1,j − 2si,j + si−1,j) + (si,j+1 − 2si,j + si,j−1)

=
[( ∂s

∂x

)

i,j
−

( ∂s

∂x

)

i−1,j

]
∆x

+
[(∂s

∂y

)

i,j
−

(∂s

∂y

)

i,j−1

]
∆y, (3.12)

where ∆x and ∆y are the specimen distance per pixel. Assuming Neumann boundary conditions,

Equation (3.12) may be solved by the same PCG algorithm used for the phase unwrapping with a

weight function, W, that is the product of the quality weight functions from the unwrapping in the

horizontal and vertical directions.


