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Chapter 5

Future Research

5.1 Introduction

This chapter describes future research that can improve the current hybrid method and extend it

to fracture studies in anisotropic crystals. Section 5.2 details improvements to the current method

that can reduce the error sources from the optics, from the analysis method, and from some basic

CGS assumptions. Section 5.3 describes the practical requirements for extending this method to

anisotropic crystals and demonstrates the need for further analysis by a preliminary investigation of

using the current hybrid method for stresses in a ferroelectric crystal, barium titanate.

5.2 Improvements to Experimental Method

5.2.1 Optics

The rotational misalignments of the polarization optics have a significant impact on both the CGS

and photoelasticity data, as described in Chapter 3. Simple alignment methods can be implemented

to reduce the errors, where the user does not rely on an axis labeled on each individual optic as the

reference, but relies on one optic as the reference optic to base all of the alignment. The objective is

to set the axes of these optics such that transmitted light is extinguished when the optics are properly

aligned. Either a CCD or a photodiode may be used to monitor the transmitted light. Firstly, the

first polarizer alignment must be fixed as the reference axis for the other optics. Ideally, this first
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polarizer is also aligned with the coordinates of the specimen, which may be achieved by assuring

that light is extinguished for a polarized crystal at the specimen plane with the first polarizer at

π/2 radians from the polarization of the crystal. Secondly, the second polarizer alignment is set to

π/2 radians from the first polarizer to extinguish transmitted light. Thirdly, the λ/4 plates, when

between the two crossed polarizers, should have light extinction when aligned with either of the

two polarization optics. Fourthly, a loaded test specimen should be used to test the alignment for

both photoelasticity and CGS by checking for the phase modulation errors in the wrapped ϕsum for

CGS and in the wrapped α for photoelasticity. Small alignment adjustments can be made before

a full experiment is conducted, which can especially reduce the errors in the isoclinic angle. In the

proof of concept studies for the polycarbonate and Homalite-100 specimens presented in this thesis,

the first three steps were taken for alignment, but not the fourth step, which can correct for the

last degree or two of misalignment. A small π/90 radians misalignment in just the first λ/4 plate,

such as those modeled in Sections 3.3.2.2, 3.3.2.3, and 4.2.4.2, can lead to significant errors (if not

corrected). This systematic alignment should minimize phase modulation in both techniques.

If a non-polarizing beamsplitter is used for this experimental method, purchasing one with Tx =

Ty and Rx = Ry coefficients eliminates the errors for the data. If this is not possible or prohibitively

expensive, obtaining these coefficients from the manufacturer will help to at least quantify the error.

These coefficients may easily be incorporated into the phase-shifting solution as detailed in Section

3.2.1, but incorporation of these coefficients into CGS requires rederiving the equations of intensity

from Chapter 2. Another option is to perform CGS on the beam after the beamsplitter that has

transmission/reflectance coefficients that are better matched and perform photoelasticity with the

other beam since the transmission/reflectance coefficients can be incorporated for photoelasticity.

5.2.2 Isoclinic Angle Determination

If rotational alignment of the polarization optics is not precise, then the analysis program should

be able to correct the errors in the wrapped isoclinic angle. The current manual methodology is

sufficient for these photoelastic cases since the form of α is expected to be slowly varying for most
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of the field, except in cases like that near the crack plane in Mode I–dominant fracture. Before

extending this method to materials where the isoclinic angle may be more complicated or even have

a new relationship to stresses due to the generalization of photoelasticity to anisotropic crystals,

a robust algorithm should be developed for correcting for errors in the wrapped α. Some helpful

features of this algorithm would be (i) removal of the errors even in the presence of other experimental

errors, in the spirit of the quality-guided PCG unwrapping algorithm, (ii) user’s ability to define

masks to prevent removal of physical boundaries, and (iii) user’s ability to define regions of high and

low confidence based on metrics detailed in Section 3.2.4.1.

5.2.3 CGS Phase Relationship with Stress

The error associated with assuming the CGS phases are related to the first derivatives of σ1 + σ2,

first characterized by Bruck and Rosakis (1992, 1993) for Mode I fracture and here in Chapter 4,

requires revisiting to provide a full picture for applications of mixed-mode fracture. As indicated in

the present study, small mode-mixity µSIF from −0.010 to 0.020 demonstrated increased error over

the field of view as mode-mixity increased, particularly for the shearing direction related to the x

derivative of σ1 + σ2. Since Mason et al. (1992) established that CGS can be applied to dynamic

mixed-mode applications using the x derivative with good KII/KI measurement agreement with

theory and finite elements, then possibly CGS studies with higher mode-mixity have acceptable

error. Determining if these conjectures are true requires careful theoretical and experimental study

with a wide range mode-mixity.

Beyond dealing with the error of the derivative assumption, another possible route to extracting

σ1 + σ2 from CGS data is to treat the CGS phase precisely as a finite difference, where

ϕsum =
2πCh

λ
[s(x + dshear/2, y)− s(x− dshear/2, y)] (5.1)

where s = (σ1 + σ2). Written in terms of pixel location, for L = dshear/[2 ∗ pixel resolution], the
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CGS phase for the i-shearing direction is

[ϕi
sum]i,j =

2πCh

λ
[si+L,j − si−L,j ]. (5.2)

This type of finite difference problem is a well defined concept in numerical methods called staggered

grids. Taking the data from both shearing directions allows for an inverse determination of σ1 + σ2,

still assuming that the “integration” of the finite difference data is a discrete Poisson equation. This

change only requires a modification to the current Poisson equation in Equation (3.12) by changing

the assumed resolution of the “derivative” from one pixel to the actual finite difference spacing of

2L, such that

(si+2L,j − 2si,j + si−2L,j) + (si,j+2L − 2si,j + si,j−2L)

=
[(ϕi

sumλ

2πCh

)

i+L,j
−

(ϕi
sumλ

2πCh

)

i−L,j

]
(2L)

+
[(ϕj

sumλ

2πCh

)

i,j+L
−

(ϕj
sumλ

2πCh

)

i,j−L

]
(2L), (5.3)

where ϕi
sum is the CGS phase in the i-shearing direction and ϕj

sum is the CGS phase in the j-shearing

direction. Solving this Poisson equation would require a new algorithm because the PCG algorithm

used in the current method is based on pixel distance as the finite difference spacing. This method

is a more direct way of determining σ1 + σ2 without requiring the derivative assumption, which

introduces the ε error discussed before. Previous fracture studies using CGS did not attempt to

integrate the data to determine σ1 + σ2 as in this study, but instead use the CGS phases directly to

make physical observations. The key to their studies is making the derivative assumption, giving the

interference phase physical meaning as opposed to a finite difference that is difficult to physically

interpret. The use of CGS to extract σ1 +σ2 lifts this need for a physical interpretation of the finite

difference and in turn can eliminate the error associated with the derivative assumption.
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5.3 Extensions of Method to Crystalline Materials

5.3.1 Development of Anisotropic Fracture Criteria

The phase-shifting CGS-photoelasticity experimental method has been demonstrated in stress-

induced birefringent materials that are otherwise isotropic, but the method cannot in general be

used for other types of materials in its current form. In order to extend the experimental method,

the following requirements for both the materials of interest and the method must be met:

1. The crystalline materials must be transparent and have a detectable photoelastic (stress-optic)

effect.

2. The appropriate photoelasticity governing equations are determined using the generalized the-

ory for photoelasticity in crystals (Narasimhamurty, 1981). The basics of this theory are

derived in Appendix C.

3. The governing equations for CGS in crystalline materials must be developed, utilizing the

generalized theory for photoelasticity and elasticity in crystals.

With these requirements met, appropriate modifications to the optical setup and analysis may be

developed to accommodate the new theory, if necessary. A full study of optically active ferroelectric

crystals may be started once this method is extended to general crystals. These ferroelectrics have

an additional challenge of spontaneous birefringence, discussed below.

Given the development of this hybrid method for transparent crystals with a detectable stress-

optic effect, evalutation of full-field stresses around a crack may allow for development of general

anisotropic fracture criteria. Experiments using crystals with different symmetries acting as model

anisotropic materials may quanitify how anisotropic fracture depends on crystal symmetry in addi-

tion to local stresses and energy-related values (σθθ, KI , KII , and G). For example, a crystal with

cubic symmetry may require different fracture criteria than a crystal with monoclinic symmetry.

Full-field stress determinination allows for calculation of the local crack tip stresses and energy-

related values so that different fracture criteria depending on θ (max-KI , KII = 0, max-σθθ, and



184

max-G) may be evaluated for each crystal symmetry. Determining fracture criteria for crystals that

are not active materials can serve as a good foundation for studying active materials that bring an

added level of complexity beyond crystal anisotropy.

5.3.2 Preliminary Investigation for Application to Ferroelectrics

Before investing in a full study of ferroelectric materials using this CGS-photoelasticity experimental

method, a logical first step is to blindly attempt to image a loaded single-crystal ferroelectric using

the current experimental method. The ferroelectric crystal used for this preliminary investigation is

barium titanate (BaTiO3), which is a tetragonal crystal at room temperature, meaning the crystal

structure is a square base with side length a and perpendicular rectangular sides with long side length

c (Jona and Shirane, 1993). BaTiO3 has a large c/a ratio of 1.06, which leads to 6% actuation strain

when electromechanically loaded. BaTiO3 is of particular interest for photonic microdevices due to

its high electro-optic nonlinearity. The spontaneous birefringence without stress is ∆n = −0.072

with no = 2.432 (Yariv and Yeh, 2007), which implies in a stressed BaTiO3 crystal, the birefringence

viewed by an optical method is due to both the spontaneous birefringence and the stress-induced

birefringence. The basis of the use of photoelasticity to study ferroelectric materials is if the crystal

has a large enough stress-induced birefringence that can be detected, especially when coupled with

a spontaneous birefringence.

The crystal used here is a single crystal with <001> orientation, meaning the long axis is aligned

with thickness of the crystal and with the optical axis of the light source (z axis). The crystal then has

two possible polarization states, along the +z or −z axis; a region with the same polarization state

is called a domain. The specimen is 5 mm × 5 mm and 1.01 mm thick. The loading configuration

is a distributed load by a wedge on the side of the crystal, which is clamped on the opposite side

by a specimen holder. The image field of view is 4.52 mm × 4.52 mm with 4.5 µm resolution. The

light source is a He-Ne laser with λ = 632.8 nm. The CGS parameters are the following: p = 1

mm/40, ∆̃ =8 .87 mm, and dshear = 226 µm. The phase-shifting methods in terms of the procedure

of changing the optics are the same as for the photoelastic materials, introduced in Chapters 2
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and 3, but the physical interpretations of the interference patterns are not necessarily applicable to

ferroelectrics. All three possible polarization configurations for CGS are employed.

Figure 5.1 shows the six photoelasticity images from the six combinations of polarization optic

angles in Table 3.1. The images that pertain only to the isochromatic phase in photoelastic materials,

I1 and I2, appear more complicated than usual, with breaks in continuity of the fringes along vertical

lines. These vertical lines are likely 180o domain walls, which are the boundaries between domains

with polarization state that are 180o different. Since the stresses in the crystal should be continuous

across these domain walls, the breaks in the interference fringes at these domain walls likely implies

that two adjacent domains affect the ∆n differently, modulating the stress-related ∆n term. The

other four images that usually pertain to both the isochromatic phase and the isoclinic angle do

appear different from each other and from I1 and I2. I4 and I6 are similar to I1 and I2 in structure,

but I3 and I5 only exhibit faint weak fringes and a crack in the crystal emanating from the load

application point. The presence of the crack appears to further complicate the interference patterns.

The next step in the experimental method is to try to determine the isoclinic angle and the

isochromatic phase using Equations 3.3 and 3.4. Using the BaTiO3 experimental images I1 through

I6 as if they originated from an ordinary photoelastic material yields the “wrapped isoclinic angle” in

Figure 5.2(a), which is then used without unwrapping to give an “ambiguous wrapped isochromatic

phase” in Figure 5.2(b). These wrapped phases do exhibit behavior consistent with the isoclinic

angle and isochromatic phase. Figure 5.2(a) has many phase discontinuities reminiscent of the false

phase discontinuities in α for the photoelastic materials that appear to correspond to the sine of the

phase in Figure 5.2(b) going to zero. Otherwise, this α-like phase does not have phase discontinuities

except near the crack. Ignoring the modulation by the δ-like phase, the α-like phase has mostly

values close to zero, implying that the principal axes of the crystal are aligned with the Cartesian

axes. Since this is a crystal, the principal axes will align with the crystal structure, so an α-like

quantity in a tetragonal crystal is likely to be close to zero or π/2. The wrapped δ-like phase in

Figure 5.2(b) has breaks in the phase discontinuities at the domain walls, illustrating the effect

of the spontaneous birefringence of different domains on the ∆n. The wrapped δ-like phase also
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has what appears to be ambiguous data near the crack, possibly due to the regions in the α-like

phase that require unwrapping. These conjectures require further investigation to determine the

physical meaning behind these phases and to determine if these are even the appropriate quantities

to consider. The interference patterns from the photoelasticity setup, though without quantified

relationships to stresses, do exhibit some change in refractive index related to stresses that is large

enough to detect using polarization optics. These images give hope to the idea that photoelasticity

can be used to investigate stresses in ferroelectric crystals.

The images from the phase-shifting vertical and horizontal shearing CGS for all three polarization

configurations introduced in Chapter 2 are presented in Figure 5.3. These images are complicated

for two main reasons: (i) the polarization of different domains lead to discontinuous ∆n, which

then produce discontinuous CGS phases, and (ii) the finite shearing distance leads to interference

of ∆S (optical path difference) from parts of the crystal that may have different domains, which

can also lead to discontinuous CGS phases. In this case, the least complicated images come from

the pure Ey ̂ input, which may have some polarization significance. Having acquired four phase-

shifted images for each case in Figure 5.3, the wrapped phase can be determined using the standard

arctan() formula that gives a range from (−π/2, π/2], as shown in Figure 5.4. These wrapped phases

have the discontinuous fringes at the domain walls, but the phase appears either continuous or has

the appropriate π phase discontinuity expected from wrapped CGS phases in vertical strips, which

implies that these phases could be unwrapped inside these vertical strips. The obvious first steps

are to determine the ∆S for a stresses ferroelectric and then determine the intensity relationship for

these interference patterns, because from first glance, interpreting these CGS images is nontrivial.

Fortunately, the stress-related optical effects and other optical effects in these ferroelectrics are well

characterized, so determination of the intensities is only a matter of careful analysis.

5.4 Conclusions

The future research for this CGS-photoelasticity experimental method pertains to two main avenues,

improving the current method and then extending it to investigate fracture in crystalline materi-
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als. Errors related to misalignment of optics and to the non-polarizing beamsplitter may easily be

mitigated by careful alignment procedures outlined above and by characterizing the quality of the

optics. Also, a robust algorithm should be developed to reduce errors due to corrections to the

wrapped isoclinic angle. To eliminate the inherent error in assuming that the CGS phase is related

to the derivative of σ1 + σ2, the CGS phase is to be treated as a finite difference, and then the

vertical and horizontal phase data are integrated using a new form of the discrete Poisson equa-

tion based on staggered grids. The extension of the experimental method to crystalline materials

depends mainly on a detectable photoelastic effect from the crystal and on extensive analysis on

the interference patterns in the individual experimental techniques. A preliminary investigation of

the ferroelectric BaTiO3 demonstrates that this crystal has a detectable photoelastic effect, but this

effect is confounded by the spontaneous polarization; further analysis is required to determine the

physical meaning of interference patterns from both photoelasticity and CGS for this ferroelectric.
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Figure 5.1: Experimental images from six-step phase-shifting photoelasticity for a side-loaded
BaTiO3 single crystal
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Figure 5.2: Experimental wrapped phases from six-step phase-shifting photoelasticity for a side-
loaded BaTiO3 single crystal
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(c) Vertical I1 from pure Ey ̂
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(d) Horizontal I1 from pure Ey ̂
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(e) Vertical I1 from circular polarization
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(f) Horizontal I1 from circular polarization

Figure 5.3: Experimental images I1 from the three polarization configurations for vertical and
horizontal shearing directions for a side-loaded BaTiO3 single crystal
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(b) Horizontal I1 from pure Ex ı̂
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(c) Vertical I1 from pure Ey ̂
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(d) Horizontal I1 from pure Ey ̂
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(e) Vertical I1 from circular polarization
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(f) Horizontal I1 from circular polarization

Figure 5.4: Experimental wrapped phases from the three polarization configurations for vertical and
horizontal shearing directions for a side-loaded BaTiO3 single crystal


