

Figure 4.40: Experimental and theoretical data for the derivatives of $\sigma_1 + \sigma_2$ and the experimental integrated $\sigma_1 + \sigma_2$ for specimen HomC1 for $K_I = 0.259$ MPa \sqrt{m} and $K_{II} = 5.0$ kPa \sqrt{m} with crack region masked in blue

Figure 4.41: Theoretical error for CGS approximating the derivatives of $\sigma_1 + \sigma_2$, assuming $K_I = 0.259$ MPa \sqrt{m} and $K_{II} = 5.0$ kPa \sqrt{m} for the 4.6 mm × 4.6 mm field of view and lateral shearing distance of $d_{shear} = 225 \ \mu m$ [Crack indicated in black]

Figure 4.42: Experimental and theoretical data for the principal stresses for specimen HomC1 for $K_I = 0.259 \text{ MPa}\sqrt{\text{m}}$ and $K_{II} = 5.0 \text{ kPa}\sqrt{\text{m}}$ with crack region masked in blue

Figure 4.43: Experimental and theoretical data for the Cartesian stresses for specimen HomC1 for $K_I = 0.259 \text{ MPa}\sqrt{\text{m}}$ and $K_{II} = 5.0 \text{ kPa}\sqrt{\text{m}}$ with crack region masked in blue

Figure 4.44: Experimental and theoretical data for the polar stresses for specimen HomC1 for $K_I = 0.259 \text{ MPa}\sqrt{\text{m}}$ and $K_{II} = 5.0 \text{ kPa}\sqrt{\text{m}}$ with crack region masked in blue

145

Figure 4.45: Experimental and theoretical data for σ_{yy} along $\theta = 0$ for specimen HomC1 for $K_I = 0.259 \text{ MPa}\sqrt{\text{m}}$ and $K_{II} = 5.0 \text{ kPa}\sqrt{\text{m}}$: The experimental data is slightly lower than the theoretical data, but with similar $r^{-1/2}$ dependence seen by the near -1/2 slope on the log-log plot of σ_{yy} versus r.