

Figure 4.11: Experimental phase-shifted images from horizontal shearing CGS using pure $E_x \hat{\imath}$ input for specimen HomC1 for $K_I = 0.514$ MPa \sqrt{m} and $K_{II} = 4.4$ kPa \sqrt{m}

Figure 4.12: Theoretical phase-shifted images from horizontal shearing CGS using pure $E_x \hat{i}$ input for specimen HomC1 for $K_I = 0.514$ MPa \sqrt{m} and $K_{II} = 4.4$ kPa \sqrt{m}

Figure 4.13: Experimental phase-shifted images from horizontal shearing CGS using pure $E_y \hat{j}$ input for specimen HomC1 for $K_I = 0.514$ MPa \sqrt{m} and $K_{II} = 4.4$ kPa \sqrt{m}

Figure 4.14: Theoretical phase-shifted images from horizontal shearing CGS using pure $E_y \hat{j}$ input for specimen HomC1 for $K_I = 0.514$ MPa \sqrt{m} and $K_{II} = 4.4$ kPa \sqrt{m}

Figure 4.15: Experimental phase-shifted images from horizontal shearing CGS using the $\lambda/4$ polarization method for specimen HomC1 for $K_I = 0.514$ MPa \sqrt{m} and $K_{II} = 4.4$ kPa \sqrt{m}

Figure 4.16: Theoretical phase-shifted images from horizontal shearing CGS using the $\lambda/4$ polarization method for specimen HomC1 for $K_I = 0.514$ MPa \sqrt{m} and $K_{II} = 4.4$ kPa \sqrt{m}