
Phase-Shifting Full-Field Interferometric Methods for
In-Plane Tensorial Stress Determination for Fracture Studies

Thesis by

Sharlotte Lorraine Bolyard Kramer

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2009

(Defended April 15, 2009)



ii

c© 2009

Sharlotte Lorraine Bolyard Kramer

All Rights Reserved



iii

To my family, friends, and Heavenly Father who give me strength.



iv

Acknowledgments

I would like to begin my acknowledgements with my two advisors, Guruswami (Ravi) Ravichandran

and Kaushik Bhattacharya, for their practical and moral support during my five years at Caltech.

This dynamic advising duo helped me navigate the sometimes treacherous waters of the Ph.D. thesis,

always with some form of encouragement or useful prodding to get me to the finish. Ravi’s advice

to “just do it” and to “go for it” was not always easy for me, but usually proved to be the best

medicine for a problem. Kaushik’s enthusiasm for my progress kept my spirits up. They gave me

the freedom to work through problems without letting me lose track of the goals of my thesis.

I must acknowledge Ares Rosakis for his enthusiasm for my research that combines two of his

pet experimental methods and for this professional encouragement towards the end of my time

at Caltech. I would like to acknowledge the remaining members of my thesis committee, Nadia

Lapusta, Chiara Daraio, and Sergio Pellegrino, for their patience with schedules and for reading

through my thesis that at first appears long, but is quite full of figures. I thank Eann Patterson of

Michigan State University for his helpful discussions on photoelasticity. I would also like to thank

my undergraduate advisor, Iaonnis Chasiotis, who still is a big professional support.

I must acknowledge the practical support of the National Defense Science and Engineering Grad-

uate Fellowship program and the National Science Foundation Graduate Research Fellowship pro-

gram. I would also like to acknowledge the National Science Foundation Center for the Science and

Engineering of Materials at Caltech for their support of my research.

I also must acknowledge my friend and colleague, Michael Mello. He was responsible for teaching

me the practical side of optics and has been a wonderful person to discuss theory with. He is a

tremendous person to work with and be friends with. I would also like to acknowledge the members



v

of my research group who have been with me during the development of my research, providing

helpful comments and camaraderie. I would like to acknowledge Linda Miranda for help with

administrative issues and for her friendship. I must acknowledge the gentlemen of the Aeronautics

Machine Shop for their practical help in making my parts and specimens, always with a smile.

In addition to the friends and colleagues I have already mentioned, I would like to acknowledge

my many friends at Caltech that have been a great source of joy and strength, with special thanks

to Sally Bane, Shannon Kao, Lydia Ruiz, Nathalie Vriend, and Sam Daly. I must also acknowledge

my friends from afar, Emily Swafford and Crystal Cronan, who have helped me through it all over

the phone and by email.

I must acknowledge my family: Mom, Dad, Philip, and Deborah. They have always encouraged

me to work hard, strive to do well, and be a good person. Their love has been constant and

unwavering. I also must thank my new family by marriage, Pat, Mike, Jason, Granny, and Grandpa,

for their abundant enthusiasm and encouragement from across the globe in New Zealand.

I would like to state some special words of acknowledgement of my fabulous husband, Richard.

He has been a constant rock to lean on during our entire time at Caltech, from homework sets to

thesis writing. I can always trust in him for love, encouragement, practical help, a kind ear, and a

hug. Even if I had not gained anything from my experience at Caltech other than him as a husband,

I would still be eternally enriched and fortunate. The most important acknowledgement of them all

is to God, my Lord and Savior. He has been the true foundation and source of strength of all that I

do and all that I am. He has blessed me with many gifts. He presents me with challenges to teach

me perseverance and hope in Him. All the glory must ultimately be given to Him.



vi

Abstract

Fracture criteria of anisotropic materials can be established with understanding of full-field stresses

near a crack. The anisotropy of the stresses implies that the full in-plane tensorial stress is required,

but current experimental optical techniques only give the sum or difference of principal stresses, mo-

tivating the development of an experimental method that combines two experimental techniques to

determine all of the stress components. The proposed hybrid experimental method of phase-shifting

photoelasticity and transmission Coherent Gradient Sensing (CGS) can determine the full-field in-

plane tensorial stress around a crack. This thesis establishes this method for stress determination

around cracks in photoelastic materials, the foundation for future studies extending this method to

anisotropic materials.

The first step in developing this experimental method requires a new theory for the use of

CGS, a wavefront shearing interferometry technique, for photoelastic materials. The first analysis

and experimental verification of transmission wavefront shearing interferometry for photoelastic

materials are presented. These interferometers applied to optically isotropic materials produce a

single interference pattern related to one phase term, but when applied to photoelastic materials,

they produce the sum of two different interference patterns with phase terms that are the sum

and difference, respectively, of two stress-related phase terms. The two stress-related phase terms

may be separated using phase shifting and polarization optics. These concepts are experimentally

demonstrated using CGS in full field for a compressed polycarbonate plate with a side V-shaped

notch with good agreement with theoretical data derived from Williams’ solution for a thin plate

with an angular corner. The analysis may be applied to any wavefront shearing interferometer by

modifying parameters describing the wavefront shearing distance.
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The new method that combines phase-shifting photoelasticity and transmission CGS is first

developed to determine the tensorial stress field in thin plates of photoelastic materials. A six-step

phase-shifting photoelasticity method determines principal stress directions and the difference of

principal stresses. The transmission CGS method utilizes a standard four-step phase-shifting method

to measure the x and y first derivatives of the sum of principal stresses. These stress derivatives

are numerically integrated using a weighted preconditioned conjugate gradient (PCG) algorithm,

which is also used for the phase unwrapping of the photoelastic and CGS phases. With full-field

measurement of the sum and difference of principal stresses, the principal stresses may be separated,

followed by the Cartesian and polar coordinate stresses using the principal stress directions and the

polar angle. The method is demonstrated for in-plane tensorial stress determination for a compressed

polycarbonate plate with a side V-shaped notch with good comparison to theoretical stress fields.

The CGS-photoelasticity experimental method is applied to determine stresses around Mode I-

dominant cracks in Homalite-100. The cases presented here range in Mode I stress intensity factor,

KI , from about one-quarter to just below the fracture toughness and have small mode-mixity ratios

KII/KI . This experimental method demonstrates the calculation of mode-mixity ratios as small

as 0.0043 with a range of −0.010 to 0.020. The experimental stress fields have excellent agreement

with the full-field 2D asymptotic crack solution using the KI and KII values calculated from the

experimental data. With this foundation of stress determination around cracks in photoelastic

materials and with some future analysis, this experimental method can be extended to determine

stresses in anisotropic crystals for fracture studies.
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Chapter 1

Introduction

Active materials that have coupled responses to external stimuli, such as ferroelectric crystals that

exhibit electromechanical actuation and nonlinear optical properties, are advantageously used in

applications such as actuators, microdevices, and photonics. In order to improve fabrication tech-

niques that focus on making flat surfaces for these applications and to characterize device failure,

their fracture properties need to be determined. Such materials undergo anisotropic fracture, but

the criteria for anisotropic fracture are not well established. The commonly used fracture criteria

from isotropic fracture mechanics of maximum Mode I stress intensity factor (max-KI), zero Mode

II stress intensity factor (KII = 0), maximum hoop stress (max-σθθ), and maximum energy release

rate (max-G) lead to the same prediction of crack propagation path in isotropic materials, but not in

anisotropic materials (Goldstein and Salganik, 1974; Cotterell and Rice, 1980; Hodgdon and Sethna,

1993; Azhdari and Nemat-Nasser, 1998). A set of theoretical numerical, and experimental studies

of fracture in sapphire, a brittle anisotropic crystal, by Azhdari and Nemat-Nasser (1996, 1998) and

Azhdari et al. (1998) determined that a stress-based fracture criterion best determines the crack

kinking properties for this material. Such studies motivate determining anisotropic fracture criteria

by knowledge of the anisotropic stress field around a crack tip, allowing for calculation of quantities

such as KI , KII , σθθ, and G, which may be compared to determine what best predicts the crack

path and the critical conditions for crack initiation and propagation for a given anisotropic material.

In plane-stress problems for these materials, the anisotropy of the stress field implies that the

sum or difference of the in-plane principal stresses is not sufficient to determine fracture properties,
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as it is for linearly elastic isotropic materials. Therefore, the study of aniostropic fracture motivates

the development of experimental methods employing full-field techniques to determine the full-field

tensorial stress (i.e., σxx, σyy, and σxy) for fracture studies. This thesis presents the development

and experimental validation of a hybrid experimental method of phase-shifting photoelasticity and

transmission Coherent Gradient Sensing (CGS), a wavefront shearing interferometry technique, for

full-field in-plane tensorial stress determination around cracks in photoelastic materials, which serves

as the foundation for future work in extending this method for fracture studies in anisotropic crys-

talline materials.

1.1 Transmission Wavefront Shearing Interferometry for Pho-

toelastic Materials

Wavefront shearing interferometry is a well-established optical technique for measuring many optical,

material, and mechanical properties such as wavefront slope characterization (Murty, 1964), surface

deformation (Park et al., 2003), and even fracture of materials (Tippur et al., 1991a,b; Rosakis, 1993;

Krishnaswamy, 2000). Shearing interferometry essentially is the interference of a coherent wavefront

with a copy of itself “sheared” or translated by a lateral distance dshear; this technique is self-

referencing and hence is insensitive to rigid body motion (Park et al., 2003; Tippur et al., 1991a,b;

Rosakis, 1993). The general analysis of the interference pattern for standard wavefront shearing

interferometers depends only on the wavefront characteristics and the distance dshear. Once the

parameters for producing the sheared wavefront and interfering the two wavefronts are characterized

for a particular shearing method, then the analysis may be specified for that particular method. With

several methods to produce the wavefront shearing, the choice of shearing interferometer depends

on the requirements of the application, such as measurement sensitivity or compactness.

An important consideration to the analysis is how the wavefront is formed. For techniques

that involve transmission through a material of interest, the shape and optical properties of the

material are considered (e.g., spherical wavefront emanating from an optically isotropic plano-convex
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lens.) In the case of a deformed material that is originally planar, thickness and refractive index

variations in the material result in optical path differences that may be related to stresses. A general

analysis of the optical path difference in this case has previously been completed for the method

of caustics (Papdopoulos, 1993; Kobayashi, 1993; Shimizu et al., 1998). Though not a wavefront

shearing interferometry technique, the method of caustics, which has been used for large stress

gradient applications, does consider optical path differences due to a deformed material, resulting

in a shadow spot in the far field. The method of caustics only gives a point measurement, which

motivated the development of CGS that is capable of measuring full-field stress or displacement

gradients when used in transmission or in reflection, respectively (Tippur et al., 1991a,b). CGS is

a wavefront lateral shearing interferometer that achieves shearing by a pair of amplitude gratings;

sensitivity adjustment is achievable through choice of grating line density, separation between the

gratings, and light wavelength. Previously, CGS in transmission has been used only for optically

isotropic materials (Tippur et al., 1991a,b; Krishnaswamy, 2000). CGS in reflection has been used

for opaque isotropic materials (Tippur et al., 1991a,b), for materials with reflective coatings (Tippur

et al., 1991a,b; Lee et al., 2001), and for composite materials (Rosakis, 1993; Liu et al., 1998). No

previous studies have considered CGS in transmission for optically anisotropic materials.

Taking inspiration from the method of caustics applied to photoelastic materials, this study

presents the first general analysis of an initially planar wavefront transmitted through a photoelastic

material, in terms of electric field and optical path difference, for a general wavefront shearing

interferometer; the analysis is then specifically applied to CGS. The analysis may easily be modified

for any wavefront shearing interferometer by changing the experimental parameters related to the

distance dshear.

This study demonstrates that the resultant interference pattern is no longer a simple function of

a single phase term related to the sum of principal stresses, denoted ϕsum, as in the case of optically

isotropic materials. Due to the optical anisotropy from the stress birefringence, the interference

patterns from the x and y coordinates of the electric field, Ex and Ey, are no longer equivalent.

Considering the interference patterns along the orthogonal principal axes of the photoelastic spec-
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imen, denoted Iimage
1 and Iimage

2 , the phase terms of these distinct interference patterns, ϕ1 and

ϕ2, are ϕsum + ϕdiff and ϕsum − ϕdiff , respectively, where ϕdiff is related to the difference of

principal stresses. Thus, ϕdiff obscures the desired phase information, ϕsum, due to the optical

anisotropy of the material. ϕdiff is zero for an optically isotropic material, and therefore is not an

issue for isotropic materials. For a general incident electric field, wavefront shearing interferometry

for photoelastic materials results in an image that is the superposition of Iimage
1 and Iimage

2 , which

is too complicated to analyze by itself. The desired phase ϕsum may be recovered by using phase

shifting and polarization optics. These concepts are demonstrated using CGS for a compressed

polycarbonate thin plate with a V-shaped side notch with good agreement between experimental

and theoretical data.

1.2 Experimental In-Plane Tensorial Stress Determination

The analysis of various complex geometries and materials requires the full-field measurement of the

in-plane tensorial stress, but full-field optical interference techniques generally provide a linear com-

bination of stress or strain components. For example, standard photoelasticity yields the difference

of the principal stresses (σ1−σ2) and the principal directions, meaning the angle between the Carte-

sian and principal coordinate systems known as the isoclinic angle (Patterson et al., 1997; Siegmann

et al., 2005). Coherent Gradient Sensing (CGS) in transmission, on the other hand, provides a

spatial derivative of the sum of the principal stresses (σ1 +σ2) when applied to thin plate specimens

(Tippur et al., 1991a; Rosakis, 1993). Methods for the determination of the in-plane stress tensor

often combine either one experimental technique with a theoretical or numerical analysis component

or two experimental techniques. Among the single experimental and theoretical/numerical hybrid

methods are photoelasticity and a shear difference method, which calculates stress components on

a raster scan from initial values of stress determined by photoelastic parameters at the boundary

points (Haake et al., 1996; Greene et al., 2007), a hybrid photoelasticity and finite element method

technique (Berghaus, 1991), and a hybrid technique combining thermoelasticity, which relates to the

change in the sum of principal stresses with surface temperature, and both theoretical and numerical
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methods (Huang et al., 1990a,b). A double experimental hybrid technique utilizes reflection pho-

toelasticity as a strain witness and thermoelasticity (Barone and Patterson, 1996; Sakagami et al.,

2004); the opaque nature of photoelastic coatings in the infrared spectrum allows these techniques

to investigate the same surface of the specimen (Greene et al., 2007; Barone and Patterson, 1998).

Interferometric photoelasticity gives both the isochromatic phase, related to the difference of prin-

cipal stresses, and the isopachic phase, related to the sum of principal stresses; these two fields may

be separated using a Mach-Zehnder interferometer combined with a circular polariscope (Yoneyama

et al., 2005).

In this study, the proposed technique combines two full-field optical techniques, CGS in trans-

mission and photoelasticity, used simultaneously with the aid of phase-shifting diagnostics. The x

and y derivatives from the CGS data are numerically integrated to provide the sum of principal

stresses, which, when combined with the difference of principal stresses and principal stress direc-

tions derived from photoelasticity, yield full-field in-plane stresses in principal, Cartesian, or polar

coordinate systems. This method is the most similar to interferometric photoelasticity, given that

the sum and difference of principal stress fields both require phase shifting to extract phase infor-

mation and that both techniques are used in transmission. The proposed technique differs from

interferometric photoelasticity in that the sum of the principal stresses comes from stress gradient

measurements. Additionally, the CGS optic parameters, as described in Chapter 2, may be varied

to adjust the measurement sensitivity to optimize the fringe density. This study concentrates on

the hybrid technique in transmission; further analysis would be required to determine if this method

could be used in reflection, where the separation of the principal strains are considered. The use of

this method in reflection would be similar to the combined reflection photoelasticity/thermoelasticity

(Greene et al., 2007; Barone and Patterson, 1998), but in this case, a photoelastic coating would

affect the displacement derivative measurement on the same surface using reflection CGS.

This study demonstrates the combined experimental techniques for polycarbonate, a linear elastic

photoelastic material. The test configuration is a plate with a side V-shaped notch along the −x

axis, compressed uniformly along the y axis. A six-step phase-shifting photoelastic method based on
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Patterson et al. (1997) and Siegmann et al. (2005) utilizes a circular polariscope, except here a non-

polarizing beamsplitter is positioned after the specimen to split the light such that the transmitted

light travels through the remaining polariscope optics and the reflected light travels through the

CGS optics. The photoelastic data involve two phases, the isoclinic angle α and isochromatic phase

δ, related to the principal stress directions and the difference of principal stresses, respectively.

Phase shifting allows for the separation of these two phases, but produces “wrapped” data with a

limited range due to inverse trigonometric functions. The wrapped isoclinic angle and isochromatic

phase are both unwrapped using a global least square integration phase unwrapping algorithm called

weighted preconditioned conjugate gradient (PCG) method (Ghiglia and Romero, 1994; Baldi et al.,

2002). This robust method allows for discrete jumps in phase that may arise due to a free surface,

imperative to studying specimens with cracks or cutouts.

Since a transmission CGS interference pattern for a photoelastic material is a superposition of

two interference patterns, phase-shifting techniques combined with appropriate control of the input

polarization state prior to the specimen, achieved by the first two optics of the circular polariscope,

lead to the elimination of ϕdiff , leaving the desired phase ϕsum. The remaining phase is unwrapped

using the weighted PCG algorithm. The x and y derivatives of σ1 +σ2 from the CGS data from the

vertical and horizontal shearing directions are integrated using the PCG algorithm as well. With

the constant of integration identified by a boundary condition, the full-field sum and difference

of principal stresses allow for separation of the principal stresses, which may be transformed into

Cartesian or polar coordinate systems utilizing the isoclinic angle. Experimental data of the test

problem shows good agreement with theoretical data generated from an asymptotic solution derived

from Williams’ (1952) solution for a thin plate with an angular corner.

1.3 Full-Field Experimental Methods for Fracture Studies

Having established the use of the proposed hybrid experimental method for full-field tensorial stress

determination around a V-notch stress concentration in polycarbonate, the next stage in this study

is to demonstrate the method for full-field tensorial stress determination around a crack in a pho-
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toelastic material. To the author’s knowledge, the only study of full-field tensorial stress determi-

nation in a cracked material is by Sakagami et al. (2004), who used thermoelasticity and reflection-

photoelasticity applied to a mechanically loaded plate with a small central crack-like slit. This study

determines the full-field stresses for an aluminum alloy plate 450 mm×80 mm×6 mm in dimension

with a central crack-like slit through the thickness, 16mm in length and 0.2 mm in width. Their

field of view is 200 mm× 80 mm centered around the slit. Although qualitative comparison of their

full-field experimental tensorial stresses to their boundary element method simulation appears poor,

they report less than 5% error in their KI calculation as compared to theory. The study by Sak-

agami et al. (2004) does demonstrate the capability for tensorial stress determination using their

hybrid method for this situation, but for a large field of view, for a crack-like slit, and for an opaque

isotropic material.

This thesis is intended to demonstrate full-field tensorial stress determination using the proposed

hybrid transmission optical methods in photoelastic materials with an actual crack and for small

fields of view around 4.6 mm×4.6 mm, zoomed in very close around the crack. This study is the first

to use a hybrid experimental method for full-field tensorial stress determination around cracks in

photoelastic materials. The photoelastic material used here is Homalite-100, a brittle thermosetting

polyester, often used as a model material for dynamic linear elastic fracture studies (Bradley and

Kobayashi, 1971; Irwin et al., 1979; Dally, 1979; RaviChandar, 1982). Straight pre-cracks in the

Homalite-100 specimens are loaded via a wedge opening load, which simulates Mode I loading. Four

different load cases are presented, with calculated KI values ranging from about one-quarter to just

below the fracture toughness, the critical value of KI for crack propagation, of Homalite-100. The

experimental stress fields exhibit K-dominant stress behavior and show excellent comparison with

the 2D asymptotic crack solution for mixed-mode fracture using the calculated KI and KII values

from the experimental σxx and σyy. The experimental stresses indicate that the wedge loading is

not purely Mode I, but can have a slight Mode II component, with measured mode-mixity KII/KI

ranging from −0.010 to 0.020, demonstrating that this experimental method is sensitive enough to

capture slight mixed-mode fracture. Since these cases are for small fields of view, these experimental
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stress fields are for the local crack behavior, an important asset in studying small-scale specimens.

The current method does have some known local error sources that can be improved, as will be

discussed. This study of full-field tensorial stress determination around cracks in a photoelastic

material lays the foundation for future research in extending this hybrid experimental method for

determining fracture criteria in anisotropic crystals and in active materials like ferroelectric crystals.

1.4 Thesis Outline

This thesis is divided into four main chapters with a chapter for conclusions and three appendices of

supporting derivations. Chapter 2 presents the first analytical derivation of transmission wavefront

shearing interferometry applied to photoelastic materials and provides experimental verification of

the theory using CGS as the specific wavefront shearing interferometry technique, based on Kramer

et al. (2009a). Chapter 3 introduces six-step phase-shifting photoelasticity, describes how CGS

and photoelasticity are combined experimentally and how the data is analyzed, and demonstrates

the proposed phase-shifting full-field CGS-photoelasticty experimental method for in-plane tensorial

stress determination in a compressed polycarbonate plate with a side V-notch, based on Kramer

et al. (2009b). Chapter 4 demonstrates the proposed experimental method for in-plane tensorial

stress determination around Mode I–dominant cracks in Homalite-100. Chapter 5 describes future

improvements to the experimental method and possible extension of this method for fracture studies

in anisotropic materials. Chapter 6 provides concluding remarks for the thesis. Appendix A presents

the relationships between the principal, Cartesian, and polar in-plane tensorial stress components,

as well as relevant derivatives of stresses. Appendix B derives the 2D stress field for a plate with

a side V-notch under uniform normal loading used for the theoretical solution in the experimental

verification studies in Chapters 2 and 3. Appendix C presents details on the theory of phase-shifting

photoelasticity.
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Chapter 2

Transmission Wavefront Shearing
Interferometry for Photoelastic
Materials

2.1 Introduction

This chapter presents the first analysis of transmission wavefront shearing interferometry for photoe-

lastic materials and experimental verification of the theory. Section 2.2 describes the experimental

method and derives the interference pattern first for a general transmission wavefront shearing inter-

ferometer, and then specifically for Coherent Gradient Sensing (CGS), from a photoelastic material.

Section 2.2.3 describes how phase shifting and polarization optics allow for the determination of

the phase related to σ1 + σ2. Section 2.3 presents the experimental verification of the analysis for

a compressed polycarbonate plate with a side V-notch with good agreement with theoretical data

based on a 2D asymptotic solution derived from Williams (1952). The content of this chapter is

based on Kramer et al. (2009b), but with more details on the experimental verification.

2.2 Experimental Method and Full-Field Phase Analysis

2.2.1 Experimental Method

The CGS method starts with an incident plane wave of a collimated laser beam that transmits

through a transparent specimen or that reflects off an opaque specimen. The working principle of
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CGS to laterally shear an incident wavefront, shown in Figure 2.1 for horizontal shear, is the same

for both transmission and reflection. Tippur et al. (1991a,b) give a full description of the CGS

working principle. The main concept of CGS is that the dshear of the interfered wavefronts is due to

diffraction through a pair of Ronchi gratings, G1 and G2, each with pitch p, separated by distance ∆̃

such that the desired wavefronts E(0,±1) and E(±1,0) are separated by a lateral shearing distance

dshear = γ∆̃ in the x–z or y–z plane and propagate at the same angle γ relative to the z axis

upon leaving grating G2. The diffracted waves transmit through a filtering lens, which separate the

corresponding diffraction orders into horizontal diffraction spots at the focal plane of the filtering

lens. An aperture at this focal plane selects either the +1 or −1 diffraction order, meaning only

the wavefronts E(0,±1) and E(±1,0) propagate to the image plane. In Section 2.2.2, analysis of the

first-order diffraction shows how the interference pattern may be related to first x and y derivatives

of principal stresses based on assumption of a small dshear.

γ
∆̃

x

x

z

E(+1)E(0)

E(0,+1) E(+1,0)

Grating
G1

Grating
G2

Filtering
Lens

Filtering
Plane

dshear

γ

Wavefront

Figure 2.1: Working principle for horizontal shearing transmission CGS
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2.2.2 Analysis

2.2.2.1 Electric Field Description of the Transmitted Wavefront

Assuming a coherent plane wave of monochromatic light propagating along the z axis, the electric

field of the wavefront at z = zo is given by

Ein(x, y, t) = Ex(x, y, t)̂ı + Ey(x, y, t)̂ (2.1a)

Ex(x, y, t) = Ax exp[j(kzo − ωt + φx)] (2.1b)

Ey(x, y, t) = Ay exp[j(kzo − ωt + φy)] (2.1c)

where Ex and Ey are the amplitudes, Ax and Ay are constants, λ is the wavelength, k = 2π/λ is

the wave number, ω is the angular frequency, and φx and φy are arbitrary constant phase terms.

If the plane wave propagates through a transparent material with refractive index no and nominal

thickness h, then the resulting electric field magnitudes of this perturbed wavefront in the x and y

directions after the specimen material at z are

Especimen
x (x, y, t) = Ax exp[j(kz − ωt + φx + k(no − 1)h + k∆Sx(x, y))] (2.2a)

Especimen
y (x, y, t) = Ay exp[j(kz − ωt + φy + k(no − 1)h + k∆Sy(x, y))] (2.2b)

where ∆Sx(x, y) and ∆Sy(x, y) are the optical path differences at each point (x, y) along the x and

y directions, as further described in Section 2.2.2.2.

2.2.2.2 Photoelastic Effect in Transparent Materials

In general, a plane wave transmitted through a material experiences some change in optical path

length due to both variation in refractive index, ∆n(x, y), and variation in thickness, ∆h(x, y), in

the transmitting media. Along a given axis a, the optical path difference is expressed as

∆Sa(x, y) = h∆na(x, y) + (no − 1)∆h(x, y). (2.3)
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A full explanation of the optical path difference may be found in Papdopoulos (1993). These

variations from an initially uniform material can be related to stresses in the material. First, a

transparent material that experiences stress-induced birefringence, also known as the photoelastic

effect, has variations in refractive index along the three principal optical axes such that

∆n1 = n1 − no = Aσ1 + B(σ2 + σ3) (2.4a)

∆n2 = n2 − no = Aσ2 + B(σ1 + σ3) (2.4b)

∆n3 = n3 − no = Aσ3 + B(σ1 + σ2) (2.4c)

where σi, i = {1, 2, 3}, are the principal stresses and A and B are the two absolute photoelastic

constants of the transparent material. These equations are known as the Neumann-Maxwell stress

optic law (Coker and Filon, 1993; Frocht, 1941; Narasimhamurty, 1981). In this analysis, the p̂3

principal direction is assumed to be along the z axis. Second, the thickness change in a linear elastic

material is related to the principal stresses by Hooke’s Law:

∆h =
[σ3

E
− ν

E
(σ1 + σ2)

]
h, (2.5)

where E is the Young’s modulus, ν is the Poisson’s ratio, σ3 = 0 for plane stress, and ∆h = 0 for

plane strain.

Substituting Equations (2.4a), (2.4b), and (2.5) into Equation (2.3) results in the following two

equations for optical path length difference in along the p̂1 and p̂2 principal directions in terms of

the sum and difference of principal stresses:

∆S1(x, y) = Ch[(σ1 + σ2) + g(σ1 − σ2)] (2.6a)

∆S2(x, y) = Ch[(σ1 + σ2)− g(σ1 − σ2)] (2.6b)
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such that

C =
A + B

2
− ν

E
(no − 1) (2.7a)

g =
A−B

A + B − 2ν(no − 1)/E
(2.7b)

for plane stress, and

C =
A + B

2
+ νB (2.8a)

g =
A−B

A + B + 2νB
(2.8b)

for plane strain. For optically isotropic (nonbirefringent) materials, A = B, resulting in g = 0; thus,

in this case, ∆S1(x, y) = ∆S2(x, y) = ∆S(x, y). For optically anistropic (birefringent) materials,

A %= B; thus, ∆S1(x, y) %= ∆S2(x, y) in general.

2.2.2.3 Electric Field of the Transmitted Wavefront

The incident wavefront given in Equation (2.1) may be written in the orthogonal principal coordinate

system at each point (x, y), such that

Ein
p (x, y, t) = E1(x, y, t)p̂1 + E2(x, y, t)p̂2 (2.9a)

E1(x, y, t) = Ex(x, y, t) cos(α) + Ey(x, y, t) sin(α) (2.9b)

E2(x, y, t) = −Ex(x, y, t) sin(α) + Ey(x, y, t) cos(α) (2.9c)

p̂1 = cos(α)̂ı + sin(α)̂ (2.9d)

p̂2 = − sin(α)̂ı + cos(α)̂, (2.9e)

where α is the angle between the Cartesian and principal coordinate systems. The effect of trans-

mission through a birefringent plate is the gain of a phase of k∆S1,2 along the principal directions,
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resulting in a transmitted wavefront in the principal coordinate system of

Especimen
p (x, y, t) = E1(x, y, t) exp[jk∆S1(x, y)]p̂1 + E2(x, y, t) exp[jk∆S2(x, y)]p̂2. (2.10)

2.2.2.4 Analysis of Interference Pattern

As described in Section 2.2.1, the interference of wavefronts E(0,±1) and E(±1,0) is the interference

of two identical wavefronts E±1 that are separated by distance dshear, as written in Equation (2.11)

for the lateral shearing of the electric field in the x direction with the electric field in the principal

coordinate system:

Eimage
p (x, y) = Eimage

1 (x, y)p̂1 + Eimage
2 (x, y)p̂2 (2.11a)

Eimage
1 (x, y) = E±1

1 (x, y) + E±1
1 (x + dshear, y) (2.11b)

Eimage
2 (x, y) = E±1

2 (x, y) + E±1
2 (x + dshear, y) (2.11c)

E±1
1 (x, y) = A±1

x cos(α) exp[j(kz − ωt + φx + k∆S1(x, y))]

+ A±1
y sin(α) exp[j(kz − ωt + φy + k∆S1(x, y))] (2.11d)

E±1
2 (x, y) = −A±1

x sin(α) exp[j(kz − ωt + φx + k∆S2(x, y))]

+ A±1
y cos(α) exp[j(kz − ωt + φy + k∆S2(x, y))], (2.11e)

where constants A±1
x < Ax and A±1

y < Ay due to diffraction. The resulting irradiance (intensity) of

the interfered wavefronts, Iimage, in Equation (2.12), is the superposition of the irradiance of the E1

component, Iimage
1 , and the irradiance of the E2 component, Iimage

2 , since the principal directions

are orthogonal:

Iimage = 〈Eimage
1 Eimage∗

1 〉t + 〈Eimage
2 Eimage∗

2 〉t = Iimage
1 + Iimage

2 (2.12a)
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Iimage
1 = 2(A±1

x )2 cos2(α) + 2(A±1
y )2 sin2(α) + 4A±1

x A±1
y cos(α) sin(α) cos(φx − φy)

+ {2(A±1
x )2 cos2(α) + 2(A±1

y )2 sin2(α)} cos[k∆S1(x, y)− k∆S1(x + dshear, y)]

+ 2A±1
x A±1

y cos(α) sin(α){cos[φx − φy + k∆S1(x, y)− k∆S1(x + dshear, y)]

+ cos[φy − φx + k∆S1(x, y)− k∆S1(x + dshear, y)]} (2.12b)

Iimage
2 = 2(A±1

x )2 sin2(α) + 2(A±1
y )2 cos2(α)− 4A±1

x A±1
y cos(α) sin(α) cos(φx − φy)

+ {2(A±1
x )2 sin2(α) + 2(A±1

y )2 cos2(α)} cos[k∆S2(x, y)− k∆S2(x + dshear, y)]

− 2A±1
x A±1

y cos(α) sin(α){cos[φx − φy + k∆S2(x, y)− k∆S2(x + dshear, y)]

+ cos[φy − φx + k∆S2(x, y)− k∆S2(x + dshear, y)]}. (2.12c)

Therefore, the resultant image is the following:

Iimage = 2(A±1
x )2 + 2(A±1

y )2

+ {2(A±1
x )2 cos2(α) + 2(A±1

y )2 sin2(α) + 4A±1
x A±1

y cos(α) sin(α) cos(φx − φy)}

cos[k(∆S1(x, y)−∆S1(x + dshear, y))]

+ {2(A±1
x )2 sin2(α) + 2(A±1

y )2 cos2(α)− 4A±1
x A±1

y cos(α) sin(α) cos(φx − φy)}

cos[k(∆S2(x, y)−∆S2(x + dshear, y))]. (2.13)

The shearing distance is usually small compared to the field of view of the image (Lf ×W f ), so

the phase terms of Iimage
1 and Iimage

2 , denoted ϕ1,2(x, y), can be related to the derivatives of ∆S1,2.

For (dshear/{Lf , W f}) ( 1,

ϕ1,2 = k(∆S1,2(x, y)−∆S1,2(x + ∆x, y)) ≈ kdshear
∂∆S1,2(x, y)

∂x
. (2.14)

Substituting ∆S1,2 from Equations (2.6a) and (2.6b) into Equation (2.14) connects the phase terms
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of the interference patterns to stresses:

ϕ1,2 = kdshearCh
[∂(σ1 + σ2)

∂x
± g

∂(σ1 − σ2)
∂x

]
. (2.15)

The equation for the image may be written in terms of two phases, one related to σ1 + σ2 and the

other related to σ1 − σ2 as follows:

Iimage = Io + I1o cos[ϕsum + ϕdiff ] + I2o cos[ϕsum − ϕdiff ] (2.16a)

Io = 2(A±1
x )2 + 2(A±1

y )2 (2.16b)

I1o = 2(A±1
x )2 cos2(α) + 2(A±1

y )2 sin2(α) + 4A±1
x A±1

y cos(α) sin(α) cos(φx − φy) (2.16c)

I2o = 2(A±1
x )2 sin2(α) + 2(A±1

y )2 cos2(α)− 4A±1
x A±1

y cos(α) sin(α) cos(φx − φy) (2.16d)

ϕsum = kdshearCh
∂(σ1 + σ2)

∂x
(2.16e)

ϕdiff = kdshearChg
∂(σ1 − σ2)

∂x
. (2.16f)

Since the intensity contains a sum of two sinusoids with the same frequency k, then Equation (2.16a)

may be written as a single interference pattern with a phase that is the sum of ϕsum and a compound

phase ϕc:

Iimage = Io + Ic cos[ϕsum + ϕc] (2.17a)

Ic =
√

I2
1o + I2

2o + 2I1oI2o cos(2ϕdiff ) (2.17b)

ϕc = arctan
[ (I1o − I2o) sin(ϕdiff )
(I1o + I2o) cos(ϕdiff )

]
. (2.17c)

A similar result for the y direction shearing may be obtained from the previous analysis, except the

derivatives are with respect to y instead of x.

For the specific case of CGS, dshear is ∆̃λ/p, with k = 2π/λ, such that Equations (2.16e) and
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(2.16f) become the following:

ϕsum =
2π∆̃Ch

p

∂(σ1 + σ2)
∂x

(2.18a)

ϕdiff =
2π∆̃Chg

p

∂(σ1 − σ2)
∂x

. (2.18b)

For linearly elastic, optically isotropic materials with g = 0, then ϕdiff = 0, which leads to

the classic result for the image irradiance, Iisotropic = Io{1 + cos[ϕsum]}, where the phase term of

the interference pattern is related only to the derivative of the sum of principal stresses (Tippur

et al., 1991b). As shown above, unlike optically isotropic materials, photoelastic materials produce

complicated interference patterns that are difficult to interpret. Fortunately, phase shifting methods

in conjunction with incident polarized light allow for the recovery of ϕsum, and thus the x or y

derivative of σ1 + σ2, in full field.

2.2.3 Phase Separation and Interpretation

2.2.3.1 Four-Step Phase Shifting

The phase-shifting interferometry technique used for CGS in this study is a four-step technique

with π/2 phase steps, induced by a lateral shift of p/4 in one Ronchi grating in the direction of

the dominant lateral shearing, resulting in four phase-shifted interference patterns. For an optically

isotropic material, the resultant intensities, which are functions of a single phase term ϕ, are I1 =

Io(1 + cos(ϕ)), I2 = Io(1 + cos(ϕ + π/2)), I3 = Io(1 + cos(ϕ + π)), and I4 = Io(1 + cos(ϕ + 3π/2)).

The original phase map, ϕ, is related to these intensities by

ϕ = arctan
[I4 − I2

I1 − I3

]
= arctan

[ sin(ϕ)
cos(ϕ)

]
. (2.19)

This equation yields a “wrapped” phase map with discontinuities of height hd = 2π since the range

of an arctan() formula is 2π when the signs of the numerator and denominator are known. The full

range of ϕ is determined by unwrapping the phase term from the arctan() formula, as described in
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Section 2.3.

For optically anisotropic materials for a general initial electric field, from Equation (2.17), the

four phase-shifted images are

I1 = Io + Ic cos[ϕsum + ϕc] (2.20a)

I2 = Io + Ic cos[ϕsum + ϕc + π
2 ] (2.20b)

I3 = Io + Ic cos[ϕsum + ϕc + π] (2.20c)

I4 = Io + Ic cos[ϕsum + ϕc + 3π
2 ]. (2.20d)

The phase map of ϕsum + ϕc may be recovered using the typical arctan() formula similar to Equa-

tion (2.19) such that

ϕsum + ϕc = arctan
[I4 − I2

I1 − I3

]
= arctan

[ Ic sin(ϕsum + ϕc)
Ic cos(ϕsum + ϕc)

]
, (2.21)

but Equation (2.21) is indeterminate when Ic = 0, so this equation is only true for Ic %= 0. Specifically

polarized input electric fields allow for separation of ϕsum from ϕc, as discussed below.

2.2.3.2 Two Methods for Determination of the First Derivative of σ1 + σ2

The first method to recover ϕsum involves capturing images from a pure Ex ı̂ input electric field and

from a pure Ey ̂ input electric field. From Equation (2.17), for Ax = Ao and Ay = 0, and thus

A±1
x = A±1

o and A±1
y = 0, the image is

IEx = IEx
o + IEx

c cos[ϕEx] (2.22a)

ϕEx = ϕsum + ϕαd (2.22b)

IEx
o = 2(A±1

o )2 (2.22c)

IEx
c = IEx

o

√
1− sin2(2α) sin2(φdiff ) (2.22d)

ϕαd = arctan[cos(2α) tan(φdiff )] (2.22e)
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where ϕαd is a compound phase related to α and ϕdiff . Similarly, for Ax = 0 and Ay = Ao, and

thus A±1
x = 0 and A±1

y = A±1
o from Equation (2.17), the image is

IEy = IEy
o + IEy

c cos[ϕEy] (2.23a)

ϕEy = ϕsum − ϕαd (2.23b)

IEy
o = 2(A±1

o )2 (2.23c)

IEy
c = IEy

o

√
1− sin2(2α) sin2(φdiff ). (2.23d)

If phase-shifted images for these two configurations are taken for the same field of view for the same

deformation state in the specimen, then the ϕEx and ϕEy fields are calculated by Equation (2.21).

For both of these fields, Equation (2.21) does not hold for
√

1− sin2(2α) sin2(φdiff ) = 0, but this

is likely true for only a few points in the field of view. Since IEx
c and IEy

c are always nonnegative,

then Equation (2.21) can express the absolute signs of the numerator and denomiator separately for

each configuration, and the height discontinuity of the wrapped phases are hd = 2π, as explained

in Section 2.2.3.1. After unwrapping these fields, ϕsum may be separated from the other phase,

meaning ϕsum = (ϕEx + ϕEy)/2. Additionally, ϕαd = (ϕEx − ϕEy)/2 = arctan[cos(2α) tan(φdiff )].

Section 2.2.3.3 describes possible configurations of polarization optics to achieve this case.

Another possible method for determining ϕsum only requires one set of phase-shifted images. If

the input electric field is circularly polarized such that Ax = Ay = Ao/
√

2, φx = φy ± π/2, and con-

sequently A±1
x = A±1

y = A±1
o /

√
2 using polarization optics, then the image given in Equation (2.17)

may be simplified to

Icirc = Icirc
o + Icirc

c cos[ϕsum] (2.24a)

Icirc
o = 2(A±1

o )2 (2.24b)

Icirc
c = Icirc

o cos[ϕdiff ]. (2.24c)

If phase-shifted images for this configuration are analyzed using Equation (2.21), then ϕsum is
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determined by

ϕsum = arctan
[I4 − I2

I1 − I3

]
= arctan

[ sin(ϕsum) cos(ϕdiff )
cos(ϕsum) cos(ϕdiff )

]
. (2.25)

This equation is only true for (x, y) coordinates where cos(ϕdiff ) %= 0, since the argument of the

arctan() is indeterminate where cos(ϕdiff ) = 0. Since cos(ϕdiff ) is in the numerator and the

denominator, the argument to the arctan() formula in Equation (2.25) cannot express the absolute

signs of the numerator and denominator separately, so an arctan() algorithm that gives values

from −π/2 to π/2 should be used. Thus, the wrapped phase term from this formula should have

discontinuities of height hd = π instead of 2π. If the other arctan() algorithm that gives values from

−π to π is used, then the wrapped phase term is incorrect. After unwrapping, with the full range

of ϕsum from wavefront shearing in the x direction and Equation (2.18a), the full-field x-derivative

of σ1 + σ2 may be determined by

∂(σ1 + σ2)
∂x

=
p

2π∆̃Ch
ϕsum. (2.26)

2.2.3.3 Polarization Optics

Polarization optics, such as a linear polarizer, λ/2 plate, and λ/4 plate, allow for manipulation of

the input electric field. A general schematic of configurations useful here is shown in Figure 2.2. To

obtain pure Ex ı̂ or Ey ̂ fields with only a simple change required to switch between the two inputs, a

polarizer and a λ/2 plate are used; this combination of optics also gives the same range of intensity

for both input types, allowing for optimization of the intensity for the experimental equipment,

helping to prevent camera saturation. The objective is to start with either pure Ex ı̂ or Ey ̂ after the

polarizer at ρ = mπ/2, m integer, then maintain that field through the λ/2 plate with ξ = ρ for the

first image, and then obtain the opposite field by setting the λ/2 to ξ = ρ± (2n + 1)π/4, n integer.

To create circularly polarized light, the collimated laser beam passes through a polarizer with

polarization axis at angle ρ to the x axis and then through a λ/4 plate with fast axis at angle ξ to the

x axis with ρ− ξ = ±π/4. Other combinations of optics can produce the desired equal amplitudes
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Figure 2.2: Polarization optics before the transparent specimen: two configurations with either a
λ/4 or λ/2 plate before the specimen

of the Ex and Ey fields, but for clarity and simplicity, these two configurations are considered here.

Table 2.1 gives the specific polarization optic configurations used in this study, stating the angles

of the optics, the amplitudes of the electric field components, and the resultant phase term of the

interference pattern in Equation (2.17).

ρ of ξ of ξ of |Ex| |Ey| Phase
Polarizer λ/4 λ/2 Determined

Plate Plate
0 π/4 - Ax/

√
2 Ax/

√
2 ϕsum

0 - 0 Ax 0 ϕsum + ϕαd

0 - π/4 0 Ax ϕsum − ϕαd

Table 2.1: Polarization optic configurations used in this study

2.3 Experimental Verification

The experimental verification was performed on a 12.7 mm × 12.7 mm square plate with thickness

h = 1.0 mm and with a 60o V-notch cut out of the side of the plate, as shown in Figure 2.3.

The depth of the V-notch, d, is 6.35 mm, and the V-notch opening width, w, is 7.34 mm. The

plate is polycarbonate, which is a thermoplastic polymer that is highly photoelastic, with absolute

photoelastic constants A = −2.45×10−11 m2/N and B = −9.38×10−11 m2/N (Shimizu et al., 1998).

This plastic has a Young’s modulus of E = 2.3 GPa, Poisson’s ratio of ν = 0.36, and refractive index
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of no = 1.586. The photoelasticity-related constants used in calculating ϕsum and ϕdiff are therefore

C = 1.51 × 10−10 m2/N and g = 0.23. The specimen is from a polycarbonate sheet with residual

stress due to forming; for this specimen in the field of view, the through-thickness average residual

stresses are determined to be σresid
xx ≈ 1.59 MPa, σresid

yy ≈ −1.9 MPa, and σresid
xy ≈ −0.1 MPa. This

residual stress is assumed to be constant throughout the field of view. The procedure for determining

these residual stresses is explained in Section 3.3.

In the following example, the specimen is compressed by 14.5 N (1.14 MPa) along the y axis.

The experimental optical parameters are the following: the monochromatic CCD camera is the

IMPERX IPX-1M48-L with a 1000× 1000 pixel chip; the field of view is 3.77 mm × 3.77 mm; the

image resolution is 3.8 µm; the Ronchi grating pitch, p, is 1 mm/40; the grating separation, ∆̃, is

12.48 mm; the wavelength of light from the linearly polarized HeNe laser is 632. nm; and the lateral

shearing distance, dshear, is 313 µm.

Williams (1952) presented a derivation of the stress fields of a thin plate with an “angular corner”

cut out of it under uniaxial tensile load with various boundary conditions. This derivation most

commonly utilized for the derivation of the stress field of a Mode I crack, which is a corner of angle

0o, in a plate. Here, the derivation is applied to a thin plate with a 60o V-shaped notch under

uniaxial compression, as shown in Figure 2.3, and is detailed in Appendix B. The 2D stress solution

in polar coordinates is as follows:

σrr(r, θ) =
Cfσappd1−λo

(r)1−λo

{
− λo(λo + 1) cos[(λo + 1)θ]

+ λo(λo − 3)
cos[(λo + 1) ζ

2 ]
cos[(λo − 1) ζ

2 ]
cos[(λo − 1)θ]

}
, (2.27a)

σθθ(r, θ) =
Cfσappd1−λoλo(λo + 1)

(r)1−λo

{
cos[(λo + 1)θ]

−
cos[(λo + 1) ζ

2 ]
cos[(λo − 1) ζ

2 ]
cos[(λo − 1)θ]

}
, (2.27b)

σrθ(r, θ) =
Cfσappd1−λoλo

(r)1−λo

{
(λo + 1) sin[(λo + 1)θ]

− (λo − 1)
cos[(λo + 1) ζ

2 ]
cos[(λo − 1) ζ

2 ]
sin[(λo − 1)θ]

}
, (2.27c)
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where σapp is the far-field applied stress, λo = 0.512221 for a 60o V-notch, Cf is a fitting parameter

depending on specimen geometry, ζ = 5π/3 is material remaining after V-notch is cut out, and d is

the depth of the V-notch. A constant residual stress, as given above for this specimen, is added to

this theoretical stress field solution in Equations (2.27a)–(2.27c). For this particular example, the

applied stress σapp is −1.39MPa, and the fitting parameter Cf is 0.57, as determined by comparing

the experimental and theoretical in-plane stress fields. The equations for the x derivatives of σ1 +σ2

and of σ1 − σ2 in terms of the polar stresses, α and θ is provided in Appendix A.

x

y

r
θw d

L

L
30o

30o

Figure 2.3: Schematic of a compressed polycarbonate plate with a side V-notch

2.3.1 Images for Compressed Polycarbonate Specimen

Figure 2.4 shows the experimental and theoretical images of I1 for horizontal shear of the config-

uration shown in Figure 2.3. In Figures 2.4(a) and 2.4(c), the images for the pure Ex ı̂ and pure

Ey ̂ fields, respectively, have interference fringes with good fringe contrast because IEx
c and IEy

c

vary little in the field of view. The image in Figure 2.4(e) of the |Ex| = |Ey| fields using the λ/4

plate method shows discontinuous fringes, evidence of Icirc
c = Icirc

o cos(ϕdiff ) modulating cos(ϕsum).

Clearly, these interference patterns cannot yield the desired phase terms as they are, but require

phase shifting. Figures 2.4(b), 2.4(d), and 2.4(f) are the theoretical images for the pure Ex ı̂, pure

Ey ̂, and |Ex| = |Ey| input fields, which compare well to the experimental fields in shape and fringe

density. The residual stress may not be uniform near the V-notch cut-out because some of the

residual stress may be relieved during specimen preparation; since the theoretical field is based on a
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uniform residual stress assumption, then the theoretical and experimental α have slight differences

for |θ| > π/2, resulting in slight shape differences in comparing theoretical and experimental images

for |θ| > π/2. The slightly larger lobes near θ = 0 are mostly likely due to slightly higher applied

stress on this side because of nonuniform compressive loading. Despite these slight differences due

to experimental error and residual stress in the material, near θ = 0, the experimental image from

the pure Ex ı̂ input has the expected wider lobe, the experimental image from the Ey ̂ input has the

expected narrower lobe, and the experimental image from the |Ex| = |Ey| input field indicates the

same interference beading as the theoretical image. Figures 2.5, 2.6, and 2.7 show the sets of four ex-

perimental phase-shifted images for pure Ex ı̂ input, pure Ey ı̂ input, and circularly polarized electric

field input, respectively. The interference patterns within a set of phase-shifted images clearly are

slightly different, though they have the same fringe density and shape, indicating a constant phase

shift added to the interference pattern over the entire field between each subsequent phase-shifted

image. The part of the image with the V-notch cut-out clearly shows a uniform π/2 phase shift in

the intensity between the images since this part of the image comes from light passing through air,

which does not change with load like the intensity from the specimen does.



25

!"#$$%

&
"#
$
$
%

!' ( ' )

!'*+

!'

!(*+

(

(*+

'

'*+

(a) Experimental IEx

!"#$$%

&
"#
$
$
%

!' ( ' )

!'*+

!'

!(*+

(

(*+

'

'*+

(b) Theoretical IEx

!"#$$%

&
"#
$
$
%

!' ( ' )

!'*+

!'

!(*+

(

(*+

'

'*+

(c) Experimental IEy

!"#$$%

&
"#
$
$
%

!' ( ' )

!'*+

!'

!(*+

(

(*+

'

'*+

(d) Theoretical IEy

!"#$$%

&
"#
$
$
%

!' ( ' )

!'*+

!'

!(*+

(

(*+

'

'*+

(e) Experimental Icirc

!"#$$%

&
"#
$
$
%

!' ( ' )

!'*+

!'

!(*+

(

(*+

'

'*+
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Figure 2.4: Experimental and theoretical images for horizontal shear with good comparison: (a)
experimental IEx = IEx

o + IEx
c cos[ϕsum + ϕαd]; (b) theoretical IEx = IEx

o + IEx
c cos[ϕsum + ϕαd];

(c) experimental IEy = IEy
o + IEy

c cos[ϕsum − ϕαd]; (d) theoretical IEy = IEy
o + IEy

c cos[ϕsum −
ϕαd]; (e) experimental Icirc = Icirc

o + Icirc
o cos[ϕdiff ] cos[ϕsum]; and (f) theoretical Icirc = Icirc

o +
Icirc
o cos[ϕdiff ] cos[ϕsum] [Note: V-notch region masked in white in theoretical images]
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Figure 2.5: Experimental phase-shifted images from horizontal shearing CGS using pure Ex ı̂ input
for compressed polycarbonate V-notch plate
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Figure 2.6: Experimental phase-shifted images from horizontal shearing CGS using pure Ey ̂ input
for compressed polycarbonate V-notch plate
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Figure 2.7: Experimental phase-shifted images from horizontal shearing CGS using the λ/4 polar-
ization method for compressed polycarbonate V-notch plate



29

2.3.2 Image Analysis

Figure 2.8 includes the experimental and theoretical wrapped phase fields for ϕEx and ϕEy. The

general three-lobed shape in each experimental field compares well with the theoretical fields, though

the differences between the theoretical and experimental are most likely due to slightly nonuniform

compressive loading of the specimen. The experimental and theoretical wrapped phase field for

the ϕsum from Equation (2.25) from the λ/4 plate method and the theoretical cos(ϕdiff ) field

are shown in Figure 2.9. In Figure 2.9(a), the fringes have regions in a four-lobed clover leaf

pattern with greater noise and scatter, which corresponds to regions near cos(ϕdiff ) = 0 boundaries

found in Figure 2.9(c); the noise and scatter are expected since Equation (2.25) is indeterminate

for cos(ϕdiff ) = 0 and since the experimental data would be dominated by the division of small

numbers from cos(ϕdiff ) in the numerator and denominator. The theoretical wrapped ϕsum field

in Figure 2.9(b) does not have these poor contrast regions because the theoretical data has exact

cancellation of the cos(ϕdiff ) in the arctan() formula.

Ghiglia and Romero (1994) developed robust 2D phase unwrapping methods for interferometric

fringes with noise. The general phase unwrapping problem is equivalent to the solution to the Pois-

son’s equation with Neumann boundary conditions, which may be solved by fast cosine transform

(FCT) methods. With experimental data that may contain noise and measurement errors, the relia-

bility of the wrapped phase information at each pixel should be considered. Since the FCT method

cannot incorporate a weight function, a weighted phase unwrapping method based on preconditioned

conjugate gradient (PCG) numerical methods was developed. The PCG unwrapping method falls

under the category of global minimization, meaning the method attempts to minimize discontinu-

ities globally based on the assumption of a continuous function. If a discontinuity or isolated region

is physically allowed in the field as in the case of a regional boundary, then those regions may be

weighted such that the PCG algorithm is not required to meet the phase continuity constraint across

that region. PCG methods have the added benefit of robust convergence.

The weight function used in this study begins with a quality condition where phase jumps in

the wrapped phase of size hd or nearly zero are considered very reliable with weight of close to one,
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Figure 2.8: Experimental and theoretical wrapped phase maps (in radians) from horizontal shearing
CGS with V-notch masked in white: (a) experimental ϕEx = ϕsum + ϕαd; (b) theoretical ϕEx =
ϕsum + ϕαd; (c) experimental ϕEy = ϕsum − ϕαd; and (d) theoretical ϕEy = ϕsum − ϕαd
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Figure 2.9: Wrapped phase maps from λ/4 plate method (in radians) with V-notch masked in white:
(a) experimental ϕsum for cos(ϕdiff ) %= 0; (b) theoretical ϕsum; and (c) theoretical cos(ϕdiff ) field
with its four-lobed clover leaf pattern
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while jumps of hd/2 are considered unreliable with weight of zero. The following formula is applied

to each pixel to develop the weight function W, where ∆ψk is the wrapped phase difference between

the k-th nearest neighbor of the (i, j) pixel (Baldi et al., 2002):

Wi,j =
8∏

k=1

1
2
{cos(2π

∆ψk

hd
) + 1}. (2.28)

Additionally, physical boundaries and regions in the field with no photoelastic material, as with the

V-notch in the example, are given a weight of zero. Based on a priori knowledge of the experiment,

the weight of regions with high concentrations of fringes that cannot be resolved with the given pixel

resolution are also set to zero to reduce unwrapping errors near these regions.

Figure 2.10 shows the unwrapped ϕEx and ϕEy fields for experimental and theoretical data. The

PCG method successfully unwraps the phase discontinuities in these fields; the data from the air in

the V-notch region does not propagate into the polycarbonate data due to the weight function; the

unwrapped ϕEx and ϕEy, like the theoretical fields, have the general monotonic increase or decrease

as r → 0 towards the notch tip.

Figure 2.11(a) is the experimental ϕsum determined by the (ϕEx + ϕEy)/2, and Figure 2.11(b)

is the unwrapped experimental ϕsum from the λ/4 plate method. In comparison, qualitatively, the

ϕsum field from the λ/4 plate method does not agree with the theoretical field in Figure 2.11(c) as

well as the ϕsum from the pure Ex ı̂ and pure Ey ̂ fields agrees with the theoretical field; some minor

unwrapping errors are evident in Figure 2.11(b) near the cos(ϕdiff ) = 0 regions in the four-lobed

clover leaf pattern seen in Figure 2.9(c). Additionally, the experimental ϕαd in Figure 2.11(d) from

the (ϕEx−ϕEy)/2 has a four-lobed clover leaf pattern like the theoretical ϕαd field in Figure 2.11(e).

One measure of the global error is the root mean square deviation (RMSD) normalized by the

range of experimental data, denoted NRMSD. Only data points not masked by notch mask are

considered here. Table 2.2 reports the error analysis of several fields. The NRMSD is low for

each of the fields, with the largest error in the ϕEy at only 2.1%. As is evident in Figure 2.12(a)

and (b), which show the difference between the theoretical and the two experimental ϕsum fields,
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(b) Theoretical ϕEx
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(c) Experimental ϕEy
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(d) Theoretical ϕEy

Figure 2.10: Experimental and theoretical unwrapped phase term from the pure Ex ı̂ and pure Ey ̂
fields (in radians) from horizontal shearing CGS with V-notch masked in white

the greatest errors are close to the notch tip, which is understandable since the stress derivative

changes so rapidly near the notch tip that the small dshear assumption, which allows the phase to

be related to stress derivatives in Equation (2.15), breaks down. The unwrapping errors due to the

cos(ϕsum) = 0 regions are in the four-lobed clover leaf pattern in Figure 2.12(b), leading to a slightly

higher NRMSD for the ϕsum from the λ/4 plate method than for the ϕsum from the pure Ex ı̂ and

pure Ey ̂ fields data. Both methods of determining ϕsum give reasonable global error, though the

pure Ex ı̂ and pure Ey ̂ fields method does seem to better confine the error to near the notch tip and is

not affected by the cos(ϕdiff ) issue. Another benefit of the the pure Ex ı̂ and pure Ey ̂ fields method
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is the determination of ϕαd, which has low error as well; the difference between the theoretical and

experimental ϕαd is shown in Figure 2.12(c), confining the error to near the notch tip. The excellent

agreement of the experimental data with theoretical data in this example demonstrates that the

use of polarization optics and phase shifting can successfully extract phase data from complicated

interference images that have physical meaning in terms of stress in the photoelastic material, as

explained in the previous analysis in Section 2.2.2.

Phase RMSD Data Range NRMSD
(in rad.) (in rad.) (No units)

ϕEx 0.73 49.14 0.015
ϕEy 0.52 34.05 0.015
ϕsum 0.72 34.57 0.021

from λ/4
method
ϕsum = 0.57 38.94 0.015

(ϕEx + ϕEy)/2
method
ϕαd = 0.26 17.85 0.015

(ϕEx − ϕEy)/2
method

Table 2.2: Error analysis for various experimental fields for horizontal shear
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(e)

Figure 2.11: Experimental and theoretical phase maps of ϕsum and ϕdiff (in radians) from horizontal
shearing CGS with V-notch masked in white: (a) experimental ϕsum = (ϕEx + ϕEy)/2; (b) exper-
imental ϕsum from the λ/4 method (c) theoretical ϕsum; (d) experimental ϕαd = (ϕEx − ϕEy)/2;
and (e) theoretical ϕαd



36

!"#$$%

&
"#
$
$
%

"

"

!' ( ' )

!'*+

!'

!(*+

(

(*+

'

'*+

#,-.*%

!'( !+ ( + '( '+

(a)

!"#$$%
&
"#
$
$
%

"

"

!' ( ' )

!'*+

!'

!(*+

(

(*+

'

'*+

#,-.*%

!'( !+ ( + '( '+

(b)

!"#$$%

&
"#
$
$
%

"

"

!' ( ' )

!'*+

!'

!(*+

(

(*+

'

'*+

#,-.*%

!/ !) ( ) /

(c)

Figure 2.12: Difference between theoretical and experimental ϕsum and ϕαd (in radians) from hori-
zontal shearing CGS with V-notch masked in white: (a) comparison for ϕsum = (ϕEx +ϕEy)/2; (b)
comparison for ϕsum from the λ/4 method; and (c) comparison for ϕαd = (ϕEx − ϕEy)/2



37

2.4 Conclusions

Wavefront shearing interferometry, specifically coherent gradient sensing (CGS), is used to analyze

a wavefront transmitted through a photoelastic material. A detailed analysis of the transmitted

wavefront properties, of the lateral shearing, and of the resulting interference patterns depending

on the polarization of the electric field input to the photoelastic material is provided for a general

wavefront shearing interferometer, with some specialization for CGS. Phase information related

to stress gradients in a deformed photoelastic material may be extracted from the complicated

interference pattern by the use of polarization optics and phase shifting. This is experimentally

verified using CGS on a compressed polycarbonate plate with a V-notch. Using this general analysis,

stress information may be obtained in full field for photoelastic materials with input electric field

polarization control and any phase-shifting transmission wavefront shearing interferometry.
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Chapter 3

Phase-Shifting Interferometry and
Combined Methods

3.1 Introduction

The chapter describes the hybrid phase-shifting full-field experimental CGS-photoelasticity method

for in-plane tensorial stress determination and the experimental verification of the method. Section

3.2 presents the two experimental methods and how these are combined to determine the stress

fields, detailing phase-shifting photoelasticity, the hybrid optical setup, and phase analysis methods.

Section 3.3 describes the experimental verification of this method for stress determination in a

compressed polycarbonate plate with a side V-notch and provides comparison with theoretical stress

fields. This chapter is based on Kramer et al. (2009a), but provides more details of potential error

sources and of the experimental analysis. Also, the comparison of experimental and theoretical stress

fields has improved agreement upon further analysis after publication of the paper.

3.2 Phase-Shifting Interferometric Methods

3.2.1 Photoelasticity

Photoelasticity utilizes the stress-optic effect in certain materials that have a stress-induced bire-

fringence proportional to the difference of the in-plane principal stresses: n1 − n2 = co(σ1 − σ2),

where co is the relative stress-optic coefficient. A detailed derivation of this equation may be found
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in Appendix C. A photoelastic plate under stress acts as a linear retarder plate for polarized light

with linear retardation δ with a fast axis at angle α relative to the x axis. The change in refractive

index in the plane perpendicular to the optical axis is related to δ by the thickness of the plate h

and the wavelength λ: n1 − n2 = δλ/(2πh). Therefore, the governing equation, the Stress-Optic

Law, may be written as the following (Kobayashi, 1993; Narasimhamurty, 1981):

σ1 − σ2 =
δλ

2πcoh
=

Nλ

coh
, (3.1)

where N = δ/2π is the “fringe order”.

A circular polariscope used to view the photoelastic effect includes a polarizer with axis at angle

ρ, a λ/4 plate with fast axis at angle ξ, the photoelastic material, another λ/4 plate with fast axis

at angle φ, and a final polarizer with axis at angle β as shown in Figure 3.1.

α

z

x
y F

x
y

P ρ

Input
Polarizer

F
x

y
φ

-
Output

λ/4 Plate

x
y

F

-
Input

λ/4 Plate

x
y P

β

———-
Light
Source

Output
Polarizer

ξ

Specimen

Figure 3.1: Schematic of circular polariscope with fast axes of optics labeled

The six-step method either has the input polarizer set to ρ = π/2 and the input λ/4 plate set

to ξ = 3π/4 or has the input polarizer set to ρ = 0 and the input λ/4 plate set to ξ = π/4. The

intensity for this general polariscope, calculated using Mueller Calculus as explained in Appendix

C, is

I = Io[1 + cos(δ) sin(2(β − φ))− sin(δ) sin(2(α− φ)) cos(2(β − φ))]. (3.2)
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Image Intensity φ β

I1 Io[1 + cos(δ)] π/2 3π/4
I2 Io[1− cos(δ)] π/2 π/4
I3 Io[1− sin(δ) sin(2α)] π π

I4 Io[1 + sin(δ) cos(2α)] π/4 π/4
I5 Io[1 + sin(δ) sin(2α)] π/2 π/2
I6 Io[1− sin(δ) cos(2α)] 3π/4 3π/4

Table 3.1: Photoelasticity phase shifting: Angles refer to fast axes of optics

With six combinations of the φ and β, the six-step method produces two images including only δ

and four images including both δ and α, given in Table 3.1.

The isoclinic angle emerges from I3 through 16 in Equation (3.3) with wrapped phase range of

−π/4 ≤ α < π/4:

α =
1
2

arctan
(I5 − I3

I4 − I6

)
=

1
2

arctan
( sin(2α) sin(δ)

cos(2α) sin(δ)

)
. (3.3)

This wrapped α is only true for sin(δ) %= 0; regions near sin(δ) = 0 will falsely appear to have α close

to ±π/4 since the argument to the arctan() in Equation (3.3) will grow very large as sin(δ) → 0, as

will be discussed in Section 3.3.1. By definition, the isoclinic angle may represent the angle between

the reference axis and either σ1 direction or σ2 direction, a fact known as the isoclinic ambiguity

(Siegmann et al., 2005). From the arctan() function in Equation (3.3), the wrapped isoclinic angle has

π/2 discontinuities that are the boundaries between regions referring to σ1 and σ2. Unwrapping the

isoclinic angle by removing the π/2 discontinuities by adding ±π/2 to appropriate regions produces

a field that refers to only one of the principal stresses. These unwrapped isoclinic angles are allowed

to contain π discontinuities since these are consistent with a reference to only one principal stress.

The isochromatic phase in Equation (3.4) uses all six images and the unwrapped isoclinic angle,

producing a wrapped phase with range −π ≤ δ < π:

δ = arctan
( (I5 − I3) sin(2α) + (I4 − I6) cos(2α)

I1 − I2

)
. (3.4)

If the wrapped isoclinic angle is used in Equation (3.4), then the resulting isochromatic phase may
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be modulated (i.e., ambiguous), meaning some regions are related to σ1 − σ2 and other regions are

related to σ2 − σ1, evident in the wrapped phase by poor fringe contrast and a sudden change in

sign. This modulated/ambiguous isochromatic data is due to the isoclinic ambiguity such that α

relative to σ1 produces the σ1 − σ2 isochromatic regions and α relative to σ2 produces the σ2 − σ1

isochromatic regions. The isochromatic phase may be demodulated by a load stepping method, which

takes advantage of the change in δ at each point over three successive incremental loads (Ekman and

Nurse, 1998; Ramesh and Tamrakar, 2000), by an automated digital technique that identifies and

corrects the ambiguous zones before analysis (Ashokan and Ramesh, 2006), or by unwrapping the

isoclinic angle (Siegmann et al., 2005). The load stepping method is not useful in an experiment that

is sensitive to incremental loads as is the case with fracture, so it is not pursued for this proposed

hybrid experimental method. The automated digital technique can be prone to error when poor

quality data pixels are near the boundaries of the ambiguous zones, and this technique does not

unwrap the isoclinic angle. Unwrapping the isoclinic angle can be complicated by the sin(δ) ≈ 0

regions and by the allowance of π discontinuities such that careful choice in unwrapping algorithms

is required, as will be discussed in Section 3.2.4.1.

For the combined CGS-photoelasticity method, a non-polarizing beamsplitter is positioned after

the specimen to split the light for the two techniques, as further explained in Section 3.3. The

incident face of the beamsplitter is aligned to be perpendicular to the light, resulting in a transmitted

wavefront and a reflected wavefront that is perpendicular to the original propagation direction.

The effect of a beamsplitter on polarized light can be modeled as a partial linear polarizer with

transmission coefficients, Tx and Ty, and reflection coefficients, Rx and Ry, assuming the principal

axes of the beamsplitter are aligned with the Cartesian axes; a similar model is used in a simultaneous

capture phase-shifting photoelasticity technique developed by Patterson and Wang (1998). The

transmitted beam is used for photoelasticity, and, thus, Tx and Ty affect the intensity of the modified
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circular polariscope, calculated using Mueller calculus, as follows:

I = Io
2 [M1 + M2 cos(δ)−M3 sin(δ) sin(2α) + M4 sin(δ) cos(2α)] (3.5a)

M1 = (Tx + Ty) + (Tx − Ty) cos(2φ) cos(2(β − φ)) (3.5b)

M2 = 2
√

TxTy sin(2(β − φ)) (3.5c)

M3 = (Tx − Ty) + (Tx + Ty) cos(2φ) cos(2(β − φ)) (3.5d)

M4 = 2
√

TxTy sin(2φ) cos(2(β − φ)). (3.5e)

With the prescribed angles for the output λ/4 plate and polarizer given in Table 3.1, the six-step

phase-shifted images have intensities shown in Table 3.2.

Image Intensity

I1 (Io/2)[(Tx + Ty) + 2
√

TxTy cos(δ)− (Tx − Ty) sin(δ) sin(2α)]

I2 (Io/2)[(Tx + Ty)− 2
√

TxTy cos(δ)− (Tx − Ty) sin(δ) sin(2α)]

I3 IoTx[1− sin(δ) sin(2α)]

I4 (Io/2)[(Tx + Ty) + 2
√

TxTy sin(δ) cos(2α)− (Tx − Ty) sin(δ) sin(2α)]

I5 IoTy[1 + sin(δ) sin(2α)]

I6 (Io/2)[(Tx + Ty)− 2
√

TxTy sin(δ) cos(2α))− (Tx − Ty) sin(δ) sin(2α)]

Table 3.2: Photoelasticity phase-shifted images for a field transmitted through a beamsplitter placed
inbetween the specimen and the output λ/4 plate

Considering images I3 through I6 to obtain α, the argument of the arctan() function from

Equation (3.3) becomes

(I5 − I3

I4 − I6

)
=

(−(Tx − Ty) + (Tx + Ty) sin(δ) sin(2α)
2
√

TxTy sin(δ) cos(2α)

)
. (3.6)

If Tx = Ty, then (Tx+Ty) = 2
√

TxTy, which implies the images from the modified circular polariscope

in Table 3.2 give the same argument of the arctan() function as in Equation (3.3) for calculating the

isoclinic angle. With the isoclinic angle and the six images, the argument of the arctan() function
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in Equation (3.4) becomes

( (I5 − I3) sin(2α) + (I4 − I6) cos(2α)
I1 − I2

)
=

( [(Tx + Ty)sin2(2α) + 2
√

TxTy cos2(2α)] sin(δ)
2
√

TxTy cos(δ)

)

−
( (Tx − Ty) sin(2α)

2
√

TxTy cos(δ)

)
. (3.7)

Assuming Tx = Ty and (Tx +Ty) = 2
√

TxTy, the calculation for the isochromatic phase simplifies to

Equation (3.4). Perfectly aligned non-polarizing beamsplitters ideally have Tx = Ty, but usually have

a tolerance on (Tx− Ty), such that (Tx + Ty) ≈ 2
√

TxTy. Manageable error may occur where sin(δ)

is close to zero in the isoclinic angle since the numerator in Equation (3.6) will be a discrete number

larger than the small denominator, such that a false π/2 discontinuity may appear. These regions

are considered carefully to eliminate these false discontinuities, as explained in Section 3.2.4.1. The

potential for error in the isochromatic phase is smaller than in the isoclinic angle since the (Tx−Ty)

term in Equation (3.7) does not dominate the other term for the range of δ.

Another possible source of error is the rotational misalignment of the polarization optics in the

rotation optical mounts. If (i) the first polarizer is correctly aligned with the specimen coordinate

system, (ii) the misalignments of the first λ/4 plate, the second λ/4 plate, and the second polarizer

are e1, e2, and e3 in radians, respectively, and (iii) the beamsplitter is not in the polariscope, then

the general intensity for the polariscope with ρ = π/2 and ξ = 3π/4+e1 (or ρ = 0 and ξ = π/4+e1)

is

I = Io

(
1+ sin(2e1){sin(δ) sin[2(β − φ) + 2(e3 − e2)] sin(2α− 2e1)

+ cos(δ) sin[2(β − φ) + 2(e3 − e2)] cos[2(β − φ) + 2(e3 − e2)] sin(2α− 2e1)

+ cos[2(β − φ) + 2(e3 − e2)] cos[2(α− φ)− 2e2] cos(2α− 2e1)}

+ cos(2e1){cos(δ) sin[2(β − φ) + 2(e3 − e2)]

− sin(δ) cos[2(β − φ) + 2(e3 − e2)] sin[2(α− φ)− 2e2]}
)
. (3.8)

With the prescribed angles for the output λ/4 plate and polarizer given in Table 3.1 and considering
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images I3 through I6 to obtain α, the argument of the arctan() function from Equation (3.3) becomes

(I5 − I3

I4 − I6

)
=

(cos(2e1) sin(δ) sin(2α− 2e2) + sin(2e1) sin(2α− 2e1) cos(2α− 2e2)
cos(2e1) sin(δ) cos(2α− 2e2)− sin(2e1) sin(2α− 2e1) sin(2α− 2e2)

)
. (3.9)

The argument to the wrapped α equation does not depend on e3, the error of the output polarizer,

but only on the misalignment of the λ/4 plates. As will be demonstrated in the theoretical data

in the example in Section 3.3.2.2, the isoclinic angle is more sensitive to e1 than to e2 in terms

of development of false phase discontinuities near sin(δ) = 0, while error due to e2 results in a

shift in the values of α by e2. When sin(δ) = 0, Equation (3.9) should be indeterminate with

0/0, leading to a value of zero for arctan[(I5 − I3)/(I4 − I6)] in MATLAB!, but if e1 %= 0, then

Equation (3.9) is a small number divided by a different small number, leading to values close to ±π/2

for arctan[(I5−I3)/(I4−I6)]. When sin(δ) is close to zero and e1 %= 0, then Equation (3.9) will likely

be a small number divided by a different small number or 0/0 depending on the values for α and e2,

leading to a combination of false phase discontinuities and false zero-crossings in the wrapped α field,

which require correction before unwrapping. Methods for this correction are described in Section

3.2.4.1. Without correction, the unwrapping algorithm will incorrectly determine α, which will be

apparent in phase ambiguities in the wrapped δ data. Since the isoclinic angle is more sensitive to

e1 than e2, then e2 is assumed to be zero and e1 is a small number on the order of ±π/90 radians.

With the correction methods for the wrapped isoclinic angle, the resulting isoclinic angle data

appears to propagate only modest global error, as shown in the error analysis in Section 3.3.2,

indicating that the correction methods are successful and that assuming Tx ≈ Ty, e1 ≈ ±π/90, and

e2 ≈ 0 are reasonable assumptions.

3.2.2 Coherent Gradient Sensing

As described in Chapter 2, CGS in transmission applied to photoelastic materials is different from

CGS applied to optically isotropic materials, leading to interference patterns related to two phases

ϕsum and ϕdiff , not just one phase. Controlling the input electric field polarization and adding
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phase shifting allows determination of the desired phase ϕsum related to the spatial derivative of

σ1 + σ2. Using the same polarization optics for both control of the polarization input for CGS

and for the photoelasticity polariscope demonstrates how these two techniques may be combined

to investigate the same field of view of the specimen. Additionally, the same input optics for both

techniques simplifies the experimental setup. Therefore, using a polarizer and λ/4 plate prior to the

specimen allows for the circularly polarized light necessary for photoelasticity and for determining

ϕsum with only four phase-shifted CGS images per shearing direction.

Since the combined technique includes a non-polarizing beamsplitter after the specimen, then the

reflectance coefficients, Rx and Ry, should be considered in the CGS analysis. The intensity of the

image given in Equation (2.16a) is derived without consideration of Rx and Ry; the intensity is the

sum of the intensities from the E1 field and from the E2 field, and this sum advantageously cancels

several terms present in the individual intensities. With Rx and Ry modulating the amplitudes of

terms in these two orthogonal fields, many terms will not exactly cancel if Rx %= Ry; but, the relative

amplitudes of these uncanceled terms are small, on the order of (Rx −Ry), compared to that of the

terms given in Equation (2.16a). Assuming Rx ≈ Ry is reasonable since the global error is small, as

is evident in Section 3.3.2.

Another possible source of error in the CGS data is the misalignment of the first two polarization

optics. Since the photoelastic data is sensitive to the alignment of the first λ/4 plate, determining

the sensitivity of the CGS data to this misalignment is important as well. A misalignment of e1

radians for the first λ/4 plate leads to slightly elliptically polarized light as opposed to circularly

polarized light. Depending on which pair of angles used for the circularly polarized light from the

photoelasticity setup, whether ρ = 0 and ξ = π/4 + e1 or ρ = π/2 and ξ = 3π/4 + e1, the general

equation for the CGS images in Equation (2.16) becomes the following, where Ao is the amplitude

of the electric field after the first polarizer:

Iimage = Io + I1o cos[ϕsum + ϕdiff ] + I2o cos[ϕsum − ϕdiff ] (3.10a)

Io = 2(A±1
o )2 (3.10b)
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for ρ = 0 and ξ =
π

4
+ e1:

I1o = Io

{1
2

cos2(α)[1 + sin2(2e1)] +
1
2

sin2(α) cos2(2e2)

+ cos(α) sin(α) cos
[
arctan

[1− sin(2e1)
1 + sin(2e1)

]
+

π

4

]}
(3.10c)

I2o = Io

{1
2

sin2(α)[1 + sin2(2e1)] +
1
2

cos2(α) cos2(2e2)

− cos(α) sin(α) cos
[
arctan

[1− sin(2e1)
1 + sin(2e1)

]
+

π

4

]}
, (3.10d)

and for ρ =
π

2
and ξ =

3π

4
+ e1:

I1o = Io

{1
2

cos2(α) cos2(2e2) +
1
2

sin2(α)[1 + sin2(2e1)]

+ cos(α) sin(α) cos
[3π

4
− arctan

[1 + sin(2e1)
1− sin(2e1)

]]}
(3.10e)

I2o = Io

{1
2

sin2(α) cos2(2e2) +
1
2

cos2(α)[1 + sin2(2e1)]

− cos(α) sin(α) cos
[
arctan

[3π

4
− arctan

[1 + sin(2e1)
1− sin(2e1)

]]}
. (3.10f)

When rewriting this as a single interference pattern using Equation (2.17), the equation is not as

simple as that for the exactly circularly polarized electric field such that

Iimage = Io + Ic cos[ϕsum + ϕc] (3.11a)

Ic =
√

I2
1o + I2

2o + 2I1oI2o cos(2ϕdiff ) %= cos(ϕdiff ) (3.11b)

ϕc = arctan
[ (I1o − I2o) sin(ϕdiff )
(I1o + I2o) cos(ϕdiff )

]
%= 0. (3.11c)

The resulting wrapped phase from Equation (2.21) in this case is close to ϕsum since ϕc is small for

small e1, but in fact, the wrapped phase is ϕsum + ϕc. Additionally, the wrapped phase may have

some modulation by Ic where Ic = 0, since poor fringe contract occurs where cos(ϕdiff ) → 0, which

will be shown theoretically in the example below in Section 3.3.2.3. This e1 error will mainly result

in some unwrapping errors locally where cos(ϕdiff ) → 0 and will not greatly affect determining

derivatives of σ1 + σ2 from the phase maps because for these applications |ϕsum| >> ϕc. Despite

this error source, the resulting phase maps will generally be a good representation of ϕsum for each
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shearing direction, as shown in the example with small global error in Section 3.3.2.

3.2.3 Combined Experimental Setup

Experimentally, as shown in Figure 3.2, CGS and photoelasticity can be employed simultaneously

by sending a plane wave of coherent monochromatic light through the input polarizer, the input

λ/4 plate, and the specimen, after which the light is split by a non-polarizing beamsplitter into two

identical wavefronts sent along two separate sets of analyzing optics, one for CGS and the other

for photoelasticity. Identical imaging optics and CCD cameras are used to capture the same field

of view of the specimen for each technique. Another option for combining these techniques is to

replace the non-polarizing beamsplitter with a translating mirror at 45o to the incoming deformed

light after the specimen; to perform photoelasticity, the translating mirror is out of the beam path

to allow all of the light to pass through the remaining photoelasticity optics, and to perform CGS,

the translating mirror is moved into the beam path to turn the light to pass through the CGS optics.

The translating mirror option removes the errors associated with the non-polarizing beamsplitter.

The light is collimated using a spatial filter, consisting of a microscope objective and a pinhole,

and a collimating lens placed at one focal length of the collimating lens from the pinhole. The

polarizers and λ/4 plates are mounted in rotation stages with 1o markings, though the user must

align the fast axis fiducial marking on the optic casing with the rotation mount markings by hand.

Rotational alignment is achieved by first setting the first polarizer as the standard, and methods for

extinguishing the light detected on a CCD are used to set the alignment of the other polarization

optics. To obtain each of the six photoelasticity images, the output λ/4 plate and polarizer must be

adjusted manually. In order to induce the π/2 phase shift for the CGS data, the first Ronchi grating is

translated a distance of p/4 by 1D piezoelectric positioners, one for each shearing direction. To obtain

the two shearing directions for the same load of the specimen, one set of phase-shifted images for one

shearing direction is taken, and then the Ronchi gratings are rotated by π/2 and the imaging optics

and filter plane are adjusted to capture the phase-shifted images for the other shearing direction.

In the current configuration, the images for both shearing directions and photoelasticity cannot
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be obtained simultaneously, though this may be achieved with other optical solutions described in

Chapter 5.
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Figure 3.2: Combined CGS-photoelasticity experimental setup: (a) Schematic of the experi-
mental setup: LS=light source with collimation optics; M=mirror; P=polarizer; Q=λ/4 plate;
S=specimen; NPB=non-polarizing beamsplitter; G1,2=gratings 1&2; Lf=filtering lens; If=filtering
iris diaphragm; Li=imaging lens; and C=camera; and (b) image of experimental setup from side
view of photoelasticity optics

3.2.4 Full-Field Phase Unwrapping and Integration

The data analysis is performed using an analysis program written using MATLAB!. The 2D

phase unwrapping method for both photoelastic and CGS data is the PCG algorithm described in

Chapter 2. Phase unwrapping of the experimental isoclinic angle requires special care where, prior

to unwrapping by the PCG algorithm, the wrapped data is corrected for errors that are due to the
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non-polarizing beamsplitter and to alignment of the polarization optics as explained in Section 3.2.1.

The PCG algorithm may also be applied to numerically integrate the spatial derivatives of σ1 + σ2.

3.2.4.1 Phase Unwrapping for the Isoclinic Angle

In the wrapped isoclinic data from Equation (3.3), regions where sin(δ) = 0 are undefined. These

regions may be identified using the isochromatic data. Near sin(δ) = 0, both the numerator and

denominator of the isoclinic arctan() formula in Equation (3.3) are close to zero, but with slightly

different small numbers from the nonzero tolerance on (Tx−Ty) and misalignment of the polarization

optics. These regions ultimately may appear as false π/2 discontinuity regions in the wrapped

isoclinic angle. Additionally, regions where the numerator and the denominator of the arctan()

formula are zero, MATLAB! will return a value of zero for the arctan(), but these points may also

require correcting since the isoclinic angle is not necessarily zero at those locations.

With a user-defined threshold value, denoted thresh, then the data in zones where −thresh <

sin(δ) < thresh are identified as likely locations where the data needs correction. The δ used

here is the ambiguous wrapped isochromatic phase, described in Section 3.2.1, because this comes

from using wrapped α in the formula for wrapped δ in Equation (3.4). The ambiguous wrapped

isochromatic phase is a key tool to correcting the wrapped isoclinic angle because the ambiguous

wrapped δ should ideally have (i) good phase discontinuities of height 2π that require unwrapping,

(ii) continuous phase, or (iii) boundaries of the ambiguous data having opposite sign across the

boundaries (where the boundaries of σ1 − σ2 and σ2 − σ1 regions meet). Phase discontinuities of

height 2π and zero-crossings in the wrapped δ correspond to where sin(δ) ≈ 0, so these are precisely

where the isoclinic angle data has possible problems. The ambiguity boundaries in the wrapped δ

should coincide with the π/2 phase discontinuities in the wrapped α, which are true wrapped phase

discontinuities that must be preserved.

The following are some basic guidelines to correcting the isoclinic angle, but the user must apply

judgment, informed by the expected form of the wrapped α and δ, in cases where no single guideline

may be applied:
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• If the π/2 phase discontinuity in the wrapped α coincides with an ambiguity boundary in the

wrapped δ, then this discontinuity should be preserved and left alone.

• If both the wrapped α and wrapped δ are continuous, and if the wrapped delta is not near

where sin(δ) → 0, then this data should be left alone.

• If phase discontinuities from both wrapped α and wrapped δ coincide, then the phase discon-

tinuity in α should be interpolated across.

• If a true π/2 phase discontinuity in the wrapped α intersects the location of a wrapped δ

discontinuity, great care must be taken when interpolating across the false α discontinuity

while preserving the true α discontinuity.

• If a sin(δ) → 0 region coincides with a zero-crossing in the wrapped α, then this zero-crossing

is likely near where wrapped α is actually close to ±π/4. These types of zero-crossings are

often where both sin(δ) and cos(2α) are close to zero, leading to a 0/0 as the argument of

the α arctan() formula. The user can insert a phase discontinuity in this region. Another

indication for this case is that the ambiguous wrapped δ does not have a phase discontinuity,

but a change of direction about ±π; this change of direction should be a phase discontinuity

that connects to another phase discontinuity in the wrapped δ field.

• Phase discontinuities in α need to either connect or end on a boundary; they should not end

in the middle of the field.

Once false phase discontinuities are identified, then these are removed from the wrapped field

and replaced with data from 2D linear interpolation across those zones. Then the modified wrapped

isoclinic data is unwrapped using the PCG algorithm.

This unwrapped isoclinic angle is used in Equation (3.4) for the unambiguous wrapped isochro-

matic phase. The wrapped δ calculated from the unwrapped α should not contain phase ambiguities

and should only contain continuous phase or phase discontinuities of height 2π; if this is not the

case, then the wrapped isoclinic angle was not properly modified and requires correction.
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Since the sign of the numerator and of the denominator of the arctan() function in Equation (3.4)

are known separately, then the full four quadrants of arctan() phase space may be used, resulting in

an isochromatic wrapped phase with range −π ≤ δ < π. Having 2π phase discontinuities instead of π

discontinuities reduces the density of discontinuities in the entire field, reducing the computational

effort to unwrap the field. For both the isoclinic angle and the CGS phases, unwanted phase

information modulates the numerator and denominator, which implies the sign of the numerator

and denominator of the arctan() function are not known independently. Thus the arctan() formula

produces a phase with a range from −π/2 to π/2, giving wrapped phase ranges of −π/4 ≤ α < π/4

and −π/2 ≤ ϕsum < π/2.

3.2.4.2 Preconditioned Conjugate Gradient Method for Integration

Letting s = (σ1 +σ2), the solutions to the phase unwrapping for the horizontal and vertical shearing

directions result in ∂s/∂x and ∂s/∂y, which must be integrated to obtain s. This integration problem

is a discrete Poisson equation of the form:

(si+1,j − 2si,j + si−1,j) + (si,j+1 − 2si,j + si,j−1)

=
[( ∂s

∂x

)

i,j
−

( ∂s

∂x

)

i−1,j

]
∆x

+
[(∂s

∂y

)

i,j
−

(∂s

∂y

)

i,j−1

]
∆y, (3.12)

where ∆x and ∆y are the specimen distance per pixel. Assuming Neumann boundary conditions,

Equation (3.12) may be solved by the same PCG algorithm used for the phase unwrapping with a

weight function, W, that is the product of the quality weight functions from the unwrapping in the

horizontal and vertical directions.
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3.3 In-Plane Tensorial Stress Field Determination: CGS and

Photoelasticity

3.3.1 Experimental Verification Test Problem

The experimental verification test specimen is a 12.7 mm × 12.7 mm square plate with thickness

h = 1.0 mm and with a 60o V-notch cut out of the side of the plate, just as it is for the experimental

verification Chapter 2, shown in Figure 2.3. The depth of the V-notch, d, is 6.35 mm, and the V-

notch opening width, w, is 7.34 mm. The plate is polycarbonate, which is a thermoplastic polymer

that is highly photoelastic, with absolute photoelastic constants A = −2.45 ∗ 10−11 m2/N and

B = −9.38∗10−11 m2/N, and therefore the relative photoelastic constant is co = A−B = 6.93∗10−11

m2/N (Shimizu et al., 1998). This plastic has a Young’s modulus of E = 2.3 GPa, Poisson’s ratio

of ν = 0.36, and refractive index of no = 1.586. The photoelasticity-related constants used in

calculating ϕsum and ϕdiff are therefore C = 1.51×10−10 m2/N and g = 0.23. The specimen is from

a polycarbonate sheet with residual stress due to forming; for the field of view of the specimen, the

through-thickness averaged residual stresses are determined to be σresid
xx ≈ 1.9 MPa, σresid

yy ≈ −1.9

MPa, and σresid
xy ≈ −0.1 MPa. Prior to loading, the specimen is imaged using both photoelasticity

and CGS; the full-field residual stresses are determined from these measurements. The data field

are fairly uniform for the field of view, so the values stated above are assumed to be uniform for

the field of view for the theoretical solution. In this example, the specimen is compressed by 23.4

N along the y axis. The derivation of the stress field based on Williams (1952) presented in Section

2.3 is used as the theoretical stress field solution with the addition of the residual stress. For this

particular example, the applied stress σapp is −1.84 MPa, and the fitting parameter Cf is 0.76, as

determined by comparing the experimental and theoretical in-plane stress fields.

The monochromatic CCD cameras used in this study are IMPERX model IPX-1M48-L with a

1000 × 1000 pixel chip. The optical field of view imaged onto the sensor is 4.0 mm × 4.0 mm, and

the image resolution is 4.0 µm. For the CGS setup, the Ronchi grating pitch, p, is 1 mm/40; the

grating separation, ∆̃, is 13.40 mm; the wavelength of light from the linearly polarized HeNe laser
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is 632.8 nm; and the resulting lateral shearing distance, dshear, is 339 µm. The first polarizer and

λ/4 plate are set to ρ = π/2 and ξ = 3π/4.

3.3.2 Phase Analysis and Stress Determination

3.3.2.1 Image Data

The six experimental phase-shifted photoelastic images are shown in Figure 3.3. The origin is located

at the notch tip, acting as the reference to colocate the photoelasticity and CGS images. In this

experimental setup, due to small wedge angles in the output λ/4 plate and polarizer, the rotation

of these optics to obtain the six photoelastic images results in very small lateral translations of the

images relative to the CCD chip, on the order of 10 or fewer pixels. To mitigate errors due to this

translation, the notch tip and other spots, such as small dust particles on the surface of the specimen,

are used to colocate the six images. This operation slightly reduces the field of view on the order

of 3% or less because only pixels that can be colocated are used, but these lost points are only on

the edges of the field of view away from the region of interest. The slight rings in the photoelastic

images centered around the notch tip are due to interference of reflections from the front and back

faces of the specimen and are a by-product of the coherent monochromatic light source necessary for

CGS. These weak interference contours are known as Fizeau fringes and scale in frequency by the

thickness variation of the specimen (Hecht, 2002). An anti-reflective coating on the specimen can

reduce this effect. Prior to phase analysis, these photoelasticity images are lightly filtered using a

Wiener filter, which is a 2D adaptive noise-removal filter design to remove additive noise, of window

size [40× 40] to reduce these rings.

The experimental photoelastic images may be compared to the theoretical images in Figure 3.4,

defined by the stress fields from Equation (2.27), using the experimental σapp and the fitting coeffi-

cient, Cf , as described above. Generally, these images compare well with the correct shapes, though

the theoretical fields appear to be slightly less dense than the experimental images, as evident in

the slightly different locations of the dark fringes in I1 and I2. These slight differences are due to

two factors: (i) the upper compressive platen is designed to tilt as needed to align with the top of
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the plate by sitting against a spherical ball aligned with the center of vertical loading bar, but large

angles of misalignment between the specimen and platen led to slightly nonuniform loading of the

specimen along the x axis, and (ii) the fitting coefficient Cf is chosen by minimizing error for all the

experimental data, not just the photoelastic data, leading in this case to a smaller Cf than indicated

by the photoelastic data alone. Also, the experimental and theoretical I4 and I6 do not have quite

the same behavior near the notch edges, where the theoretical data seems to have poorer fringe

contrast than the experimental data. This difference is likely due to a difference in the experimental

and theoretical α, which is based on the assumption of uniform residual stresses. The specimen may

have some nonuniform residual stresses near the notch edges where the residual stresses may have

been relieved due to the cuts for specimen preparation, leading to a different experimental α near

the notch edges. Though with less fringe contrast than in the theoretical I3 and I5, the dark fringes

emanating from the notch tip for |θ| > π/2 in the experimental I3 and I5 have the correct shape and

location. The theoretical photoelastic images do not exhibit the rings centered around the notch

tip that are in the experimental images because the Fizeau fringes are not modeled here, showing

that these rings are not due to the photoelastic effect, which motivates the Wiener filtering of the

experimental images to reduce the effect of these fringes.

Figures 3.5–3.8 show the experimental and theoretical CGS images for the horizontal and vertical

shearing directions for the circularly polarized electric field input configuration. The experimental

horizontal shearing data in Figure 3.5 compare well with the theoretical data Figure 3.6 in shape,

fringe, density, and the interference beading (breaks in the fringe patterns due to superposition

of two interference patterns). The experimental vertical shearing data in Figure 3.7 also compare

well with the theoretical images in Figure 3.8, though due to the finite shearing distance, the two

lobes are slightly further apart than in the theoretical images. The experimental vertical images

have the expected interference beading. For both shearing directions, the π/2 phase shifts between

each successive image matches the expected behavior. The finite shearing distance is visible in the

doubling of the V-notch boundary. The theoretical images do not include this, but are purely based

on the derivatives of σ1 +σ2 with a mask for the V-notch that does not model the doubling of the V-
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notch. Due to the finite shearing distance, the vertical shearing images in Figure 3.7 cannot capture

the lobes on either side of the V-notch boundary prominent in the theoretical data in Figure 3.8.
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Figure 3.3: Experimental images from six-step phase-shifting photoelasticity for polycarbonate com-
pressed V-notch specimen
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Figure 3.4: Theoretical images from six-step phase-shifting photoelasticity for polycarbonate com-
pressed V-notch specimen
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Figure 3.5: Experimental phase-shifted images from horizontal shearing CGS using the λ/4 polar-
ization method for compressed polycarbonate V-notch plate
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Figure 3.6: Theoretical phase-shifted images from horizontal shearing CGS using the λ/4 polarization
method for compressed polycarbonate V-notch plate with the notch mask in black
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Figure 3.7: Experimental phase-shifted images from vertical shearing CGS using the λ/4 polarization
method for compressed polycarbonate V-notch plate
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Figure 3.8: Theoretical phase-shifted images from vertical shearing CGS using the λ/4 polarization
method for compressed polycarbonate V-notch plate with the notch mask in black
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3.3.2.2 Photoelasticity Phase Analysis

The V-notch region is masked in all the phase and stress fields to prevent unwrapping errors and

to eliminate the region in the field of view with no polycarbonate. The wrapped isoclinic angle

calculated using Equation (3.3), as shown in Figure 3.9(a), contains apparent π/2 phase jumps in

regions near sin(δ) = 0 throughout the field, most likely due to the nonzero tolerance of (Tx − Ty)

and e1 %= 0, but only a very small region on the notch edge near the notch tip actually requires

unwrapping. The ambiguous wrapped isochromatic phase based on this wrapped α is shown in

Figure 3.9(b), where the ambiguity appears only near the notch tip. This particular wrapped α field

does not have the false zero-crossings, but only has false π/2 discontinuities where the wrapped δ is

zero or ±π.

Figure 3.9(c) is the theoretical wrapped α that incorporated beamsplitter transmission coeffi-

cients Tx = 0.42 and Tx = 0.39, which are plausible coefficients for the beamsplitter used in this

study, based on manufacturer specifications and monitoring the voltage output from a photodiode

collecting the transmitted (and reflected) light from the beamsplitter with pure Ex ı̂ or Ey ̂ input.

The later method is a crude estimate of the transmission and reflectance coefficients. The modula-

tion of the wrapped data near where the theoretical sin(δ) → 0 is modest and does not reflect the

extent of the false phase discontinuities in the experimental data except near θ = 0. Figure 3.9(d)

is the theoretical wrapped α including the error in the first λ/4 plate of e1 = π/90 radians, which

is small but possible given the alignment procedure of the polarization optics and the quality of

the rotation mounts. This field has much greater modulation near sin(δ) → 0, and therefore the

misalignment of the first λ/4 plate is a more prominent source of error except near θ = 0, where the

beamsplitter Tx and Ty appear to dominate. Figures 3.9(d) and 3.9(f) are the theoretical wrapped

α fields including e2 = −π/90 radians with e1 = 0 and e1 = π/90 radians, respectively. The field

including only e2 error does not exhibit the false phase discontinuities, while the field with both e1

and e2 error has the false phase discontinuities and a slight shift of e2 radians in the entire field.

These theoretical fields demonstrate the types of errors that can occur, as described in Section 3.2.1,

and verify that e1 error has the greatest overall effect on the wrapped isoclinic angle.
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The identified false π/2 discontinuity regions in the experimental data are eliminated and in-

terpolated across as described in Section 3.2.4.1. The corrected wrapped isoclinic angle and the

resulting ambiguous wrapped isochromatic phase are shown in Figures 3.10(a) and 3.10(b); though

the ambiguous wrapped isochromatic phase does not look much different, the corrections to the

wrapped isoclinic angle did smooth the δ data near sin(δ) = 0. Figures 3.10(c) and 3.10(d) show the

theoretical wrapped isoclinic angle and the ambiguous isochromatic phase; the theoretical wrapped

α only has phase discontinuities near the notch tip, and the only ambiguities in the wrapped δ

field are near the notch tip, similar to the experimental fields. This good qualitative comparison

of the experimental and theoretical wrapped data demonstrates that the correction to the wrapped

isoclinic angle is acceptable. The main issue with the corrected wrapped isoclinic angle is that the

corrected regions still indicate some influence from the δ data, where the wrapped α is not as radially

smooth as the theoretical wrapped α. If more data points were removed and interpolated across

than the ∼ 27% of the data points (excluding the notch region) already corrected, then the overall

nature of the isoclinic angle may have been obscured. The experimental and theoretical unwrapped

isoclinic angle fields are shown in Figures 3.10(e) and 3.10(f), with good comparison except where

the experimental data appear to have residual errors in the shape of the isochromatic phase that

modulate the isoclinic data. For example, the experimental isoclinic angle is not as negative near

θ = −5π/6, but the regions of negative and positive α in the entire field correspond well. The

theoretical isoclinic angle data in Figure 3.10(c) show a slight lobe-like structure, which is present

due to the residual stresses. The isoclinic angle would only be a function of θ in a residual stress-free

material, demonstrating that the theoretical solution requires inclusion of these residual stresses to

compare well with the experimental data.

The experimental unambiguous wrapped isochromatic phase calculated using the unwrapped

isoclinic angle, shown in Figure 3.11(a), has distinct 2π discontinuities, allowing for fast unwrapping;

the resulting unwrapped isochromatic phase is given in Figure 3.11(c). The theoretical wrapped

and unwrapped isochromatic phase in Figures 3.11(b) and 3.11(d) are slightly different than the

experimental fields, where the wrapped data have different locations for the 2π phase discontinuities,
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and the theoretical unwrapped data are smaller near the notch. These differences are expected from

the theoretical images, as explained in Section 3.3.2.1. The overall shape of the isochromatic data

is correct, with the double lobes slightly bent away from the y axis towards θ = 0, which happens

to be due to the residual stress in the material. In a residual stress-free material, the lobes of the

isochromatic phase would be symmetric about the y axis.
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(a) Experimental wrapped α
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(b) Experimental ambiguous wrapped δ
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(c) Theoretical wrapped α with Tx = 0.42
and Ty = 0.39

!"#$$%

&
"#
$
$
%

"

"

!' ( ' )

!'*+

!'

!(*+

(

(*+

'

'*+

#,-.*%

!(*/ !(*0 ( (*0 (*/

(d) Theoretical wrapped α with e1 = π/90
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(e) Theoretical wrapped α with e2 = −π/90
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(f) Theoretical wrapped α with e1 = π/90
and e2 = −π/90

Figure 3.9: Photoelasticity wrapped isoclinic angle with possible error sources modeled for the
compressed polycarbonate V-notch specimen with V-notch region masked in blue
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(a) Experimental corrected wrapped α
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(b) Experimental ambiguous wrapped δ from
corrected wrapped α
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(c) Theoretical wrapped α
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(d) Theoretical ambiguous wrapped δ from
uncorrected wrapped α
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(e) Experimental unwrapped α
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(f) Theoretical unwrapped α

Figure 3.10: Photoelasticity corrected isoclinic angle analysis for the compressed polycarbonate
V-notch specimen with V-notch region masked in blue
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(d)

Figure 3.11: Photoelasticity isochromatic phase analysis with V-notch region masked in blue
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3.3.2.3 CGS Phase Analysis

Figures 3.12 and 3.13 present the experimental and theoretical wrapped ϕsum for the horizontal and

vertical shearing directions, respectively. The wrapped CGS phases in Figures 3.12(a) and 3.13(a)

have the expected shapes and phase discontinuity density, except where poor fringe contrast in a four-

lobed shape in each field disrupts the continuity of the dominant fringes. These four-lobed shapes are

where cos(ϕdiff ) is near zero in each field. Figures 3.12(c) and 3.13(c) show the theoretical cos(ϕdiff )

fields for the horizontal and vertical shearing directions, indicating the four-lobed shapes where

cos(ϕdiff ) is near zero. These regions in the experimental data are most likely due to the λ/4 plate

error e1, which would lead to slightly elliptical polarization of the input electric field, as discussed

in Section 3.2.2. These four-lobed poor fringe contrast regions are prominent in the wrapped phase

quality maps, indicated by values near zero in the four-lobed shapes of cos(ϕdiff ) = 0 in Figures

3.12(d) and 3.13(d). Due to these low-quality values in a closed shape, phase information about the

monotonically increasing or decreasing phase as r → 0 cannot easily pass accross the low-quality

boundary. The resulting unwrapping errors appear as local phase with good quality unwrapped phase

inside these four-lobed regions, but that does not have the expected either monotonically increasing

or decreasing behavior as r → 0. Theoretical wrapped phases assuming e1 = π/90 radians in Figures

3.12(e) and 3.13(e), as with the photoelastic field modeling above, show the poor fringe contrast

in the four-lobed shape consistent with cos(ϕdiff ) → 0 and exhibit similar phase modulation near

these boundaries as the experimental data. Figures 3.12(f) and 3.13(f) show the theoretical poor

wrapped data quality maps in the four-lobed shape for these theoretical wrapped phases including

the e1 error and show the good quality data inside the lobes away from cos(ϕdiff ) → 0 boundaries

as in the experimental wrapped data quality maps.

The experimental unwrapped phases in Figures 3.14(a) and 3.14(c) show the types of unwrapping

errors discusses above, as compared to the theoretical ϕsum fields that do not include e1 error in

Figures 3.14(b) and 3.14(d). The experimental data does not reach the same large phase values near

the notch tip because of these unwrapping errors. Despite these local errors, the theoretical and

experimental fields compare well in general shape and value away from the notch tip.
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(a) Experimental wrapped ϕsum
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(b) Theoretical wrapped ϕsum
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(c) Theoretical cos(ϕdiff )
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(d) Experimental phase quality map
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(e) Theoretical wrapped ϕsum with e1 =
π/90 rad.
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(f) Theoretical phase quality map for field
with e1 = π/90 rad.

Figure 3.12: CGS wrapped phase analysis for the horizontal shearing direction with V-notch region
masked in blue (or black)
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(a) Experimental wrapped ϕsum
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(b) Theoretical wrapped ϕsum

!"#$$%

&
"#
$
$
%

"

"

!' ( ' )
!)

!'*+

!'

!(*+

(

(*+

'

'*+

!' !(*+ ( (*+ '

(c) Theoretical cos(ϕdiff )
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(d) Experimental Phase Quality Map
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(e) Theoretical wrapped ϕsum with e1 =
π/90 rad.
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(f) Theoretical phase quality map for field
with e1 = π/90 rad.

Figure 3.13: CGS wrapped phase analysis for the vertical shearing direction with V-notch region
masked in blue (or black)
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(a) Experimental unwrapped ϕsum
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(b) Theoretical unwrapped ϕsum
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(c) Experimental unwrapped ϕsum
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(d) Theoretical unwrapped ϕsum

Figure 3.14: CGS wrapped phase analysis for the vertical shearing direction with V-notch region
masked in blue (or black)
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3.3.2.4 Stress Determination

The isochromatic phase is converted to the σ1−σ2 fields using Equation (3.1). The two CGS phases

are converted to stress derivatives using Equation (2.26) and then integrated using the PCG method,

producing σ1 + σ2 + ci, where ci is a constant of integration. This constant may be determined by

using one of the traction-free boundary conditions along the notch edge, σθθ = 0 or σrθ = 0 for

θ = ±5π/6, where θ denotes the rotational polar coordinate. Utilizing the σ1 − σ2, σ1 + σ2 + ci,

and α fields, shown in Figures 3.15(a)–3.15(c), the σθθ = 0 condition gives a constant of integration

calculated by

ci = [(σ1 + σ2 + ci)− (σ1 − σ2) cos(2α− 2θ)]
∣∣
θ=±5π/6

. (3.13)

With this constant of integration, the σ1 + σ2 field is determined, as shown in Figure 3.15(d). The

experimental field is asymmetric across the x axis, unlike the theoretical field in Figure 3.15(e), but

this is due to an asymmetric x derivative of σ1 + σ2, just noticeable along the V-notch boundary

in the experimental unwrapped horizontal shearing ϕsum in Figure 3.14(a). Otherwise, the stress

concentration variation with r appears to generally agree with theory. With full-field σ1 + σ2 and

σ1−σ2, the principal stresses may be separated, as shown in Figure 3.16. The experimental principal

stresses compare well with theory, with the σ1 field with a single elliptical lobe symmetric about

the x axis and the σ2 field with a kidney bean shape again symmetric about the x axis. The

experimental σ1 is smaller in stress magnitude than the theoretical field, while the experimental

σ2 is larger in stress magnitude than the theoretical field; these differences are likely due to the

experimental σ1 − σ2 field being slightly larger in stress magnitude than the theoretical data.

The Cartesian stresses, σxx, σyy, and σxy, shown in Figure 3.17, are determined using the

separated principal stresses and the isoclinic angle as the angle of rotation for the coordinate trans-

formation. These and the polar stresses may also be written in terms of σ1−σ2, σ1+σ2, α, and θ (for

the polar stresses), as shown in Table 3.3 (derivation of these relationships and others concerning

stresses may be found in Appendix A); these formulas indicate how the in-plane stresses relate to the

fields from the two experimental methods. The experimental σxx field has the correct single elliptical
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lobe shape about the x axis as compared to the theoretical σxx. The kidney bean-shaped contour

appears in both the experimental and theoretical σyy. The interpolated regions in the isoclinic angle

visually appear to modulate the experimental σxy as compared to the theoretical σxy, but positive

stresses for (−x,+y) and (+x,−y) regions and negative stresses for (+x,+y) and (−x,−y) regions

are evident. The effect of α on this shear stress field is not surprising since σxy only depends on

the photoelastic data, as seen in the formula in Table 3.3, and thus the error in α is not diffused by

σ1 + σ2 for this field.

Stress Relationship to σ1 − σ2, σ1 + σ2, α, and θ

σxx
1
2 (σ1 + σ2) + 1

2 (σ1 − σ2)cos(2α)

σyy
1
2 (σ1 + σ2)− 1

2 (σ1 − σ2)cos(2α)

σxy
1
2 (σ1 − σ2)sin(2α)

σrr
1
2 (σ1 + σ2) + 1

2 (σ1 − σ2)cos(2θ − 2α)

σθθ
1
2 (σ1 + σ2)− 1

2 (σ1 − σ2)cos(2θ − 2α)

σrθ − 1
2 (σ1 − σ2)sin(2θ − 2α)

Table 3.3: In-plane stress components and their relationships to σ1 − σ2, σ1 + σ2, α, and θ

The polar stresses presented in Figure 3.18 are determined by transforming the Cartesian stresses

with a rotation matrix with θ as the angle of rotation. Similar to the Cartesian stresses, the

experimental polar stresses compare well with theoretical fields, with overall good shape comparison

and stress magnitude comparison despite modulation by the errors in the isoclinic angle. The

experimental σrr field is asymmetric about the x axis with larger stress magnitude for positive y

values. The experimental σθθ has the wide fan-like structure in front of the notch, though not all of

the σθθ data is going to zero along the notch mask boundary, requiring a choice of where to apply the

boundary condition for the constant of integration calculation. The portion of the boundary that

appears to be furthest in proximity from error sources like interpolated regions in α and far from

the cos ϕdiff → 0 boundaries is chosen for the constant of integration calculation. The experimental

σrθ is noticeably modulated by the isoclinic angle errors, but the overall asymetric stresses match

well with theoretical values, even better than the experimental σxy compares with theory. Since σrθ

depends on both α and θ in that σrθ = 1
2 (σ1−σ2)sin(2θ−2α), the θ contributions appear to diffuse
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the error associated with α, allowing for better agreement with theory for σrθ than for σxy.

In general, the stress fields appear to match well in magnitude for larger r, but the largest

difference between the theoretical and experimental stress fields is close to the notch tip. This

greater difference near the notch tip is expected because the finite resolution of the experimental

techniques and the 1/r1−λo character of the stress fields make the large fringe density near the notch

tip more difficult to measure. The slight asymmetry of the stress fields about the x axis, especially

along the notch edge, is evidence that the polycarbonate specimen is not perfectly uniformly loaded.

Another possible source of error in the data is due to the masking of the notch area, which obscures

the exact edge of the notch where the boundary conditions are applied and, hence, where the constant

of integration is calculated. The slightly higher stress concentration for σ1 − σ2 and slightly lower

stress concentration for σ1 + σ2 in the experimental data, as compared to the theoretical data, is

possibly due to the material constants used to convert the phases to stresses, given in Section 3.3.1.

Polymers tend to vary between manufacturers and between different batches of material, leading

to variable material properties. Since the material constants used are from published literature,

these may not exactly correspond to the material properties of the polycarbonate used in this study.

The constants in literature are good guidelines and a place to start for converting these phases to

stresses. The combination of these constants from literature may lead to an under-determination of

the stresses in σ1 + σ2, leading to a smaller choice of the fitting coefficient Cf , which is the reason

for the theoretical σ1−σ2 appearing too small. In future, to more accurately determine the stresses,

these material constants can be measured for the particular batch of polymer used for the specimens.

Given all of these considerations, the data fit remarkably well. One measure of the global error

is the root mean square deviation (RMSD) normalized by the range of data, denoted NRMSD. Only

data points not masked by notch mask are considered here. Table 3.4 reports the error analysis of

several fields. The fields with the lowest NRMSD are the stress derivatives and σ1−σ2, demonstrating

the effectiveness of the six-step phase-shifting photoelastic method and small effect of the Tx ≈ Ty

assumption and the e1 λ/4 plate misalignment error. Additionally, since the theoretical stress field

fitting factor Cf is calculated by comparison with the all of the experimental fields, the low error for
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both the stress derivatives and σ1 − σ2 fields that come from two separate experimental techniques

implies that these two techniques work well together to determine the full-field stress tensor.

The isoclinic angle has a higher NRMSD, though still reasonable at 7.5%, most likely due to the

interpolation across the regions near sin(δ) = 0, since 27% of the data points (excluding the masked

notch region) have been removed and interpolated across. Importantly, without this interpolation,

the isoclinic angle from this photoelastic data cannot be unwrapped properly with the presence of

many false discontinuities due to a nonzero tolerance in (Tx−Ty) and the e1 λ/4 plate misalignment

error. The interpolation method is a necessary step that makes the isoclinic angle into usable data to

combine with the stress fields, making the error introduced by the interpolated regions tolerable. An

error source in the stress fields employing the σ1 +σ2 field is the constant of integration calculation,

which is, first, dependent of the isoclinic angle, and, second, taken not precisely at θ = ±5π/6. Since

the notched area requires a mask to prevent corruption of the data near the edges during phase

unwrapping, then θ = ±5π/6 is obscured. Here, ci comes from θ = −2.54 rad. = −145o. Despite

these considerations, the experimental full-field stresses in principal, Cartesian, and polar coordinate

systems have acceptable NRMSD error, ranging from 3.3% to 9.7%, demonstrating that the combined

CGS-photoelasticity phase-shifting method successfully determines the in-plane tensorial stress for

photoelastic materials.
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(a) Experimental unwrapped α
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(b) Experimental σ1 − σ2
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(c) Experimental σ1 + σ2 + ci
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(d) Experimental σ1 + σ2
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(e) Theoretical σ1 + σ2

Figure 3.15: Combined principal stress fields for the compressed polycarbonate V-notch plate with
V-notch masks in blue
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(a) Experimental σ1
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(b) Theoretical σ1
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(c) Experimental σ2
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(d) Theoretical σ2

Figure 3.16: Experimental and theoretical separated principal stress fields for the compressed poly-
carbonate V-notch plate with V-notch masks in blue
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(a) Experimental σxx
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(b) Theoretical σxx
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(c) Experimental σyy
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(d) Theoretical σyy

!"#$$%

&
"#
$
$
%

"

"

!' ( ' )

!'*+

!'

!(*+

(

(*+

'

'*+

#,-.%

!/ !0 !1 ( 1 0 / ')

(e) Experimental σxy
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(f) Theoretical σxy

Figure 3.17: Experimental and theoretical Cartesian stress fields for the compressed polycarbonate
V-notch plate with V-notch masks in blue
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(a) Experimental σrr
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(b) Theoretical σrr
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(c) Experimental σθθ
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(d) Theoretical σθθ
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(e) Experimental σrθ
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(f) Theoretical σrθ

Figure 3.18: Experimental and theoretical polar stress fields for the compressed polycarbonate V-
notch plate with V-notch masks in blue
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Quantity Units RMSD Data NRMSD
(in Range (No

Units) (in Units) Units)
α rad. 0.17 2.25 0.075

∂(σ1 + σ2)/∂x MPa/mm 1.55 94.2 0.016
∂(σ1 + σ2)/∂y MPa/mm 1.31 110.0 0.012

σ1 + σ2 MPa 1.52 33.7 0.045
σ1 − σ2 MPa 1.62 42.1 0.038

σ1 MPa 1.28 17.3 0.074
σ2 MPa 0.99 30.1 0.033
σxx MPa 1.62 16.9 0.097
σyy MPa 1.17 29.8 0.039
σxy MPa 1.95 23.7 0.040
σrr MPa 1.14 13.4 0.085
σθθ MPa 1.41 34.6 0.041
σrθ MPa 1.26 23.1 0.055

Table 3.4: Error analysis for various experimental fields for the compressed polycarbonate V-notch
plate

3.4 Conclusions

The combined phase-shifting photoelasticity and CGS method presented in this study demonstrates

the full-field determination of the in-plane tensorial stress for photoelastic materials. A six-step

phase-shifting photoelasticity method gives σ1 − σ2 and the isoclinic angle, which requires some

careful consideration in regions where sin(δ) → 0 to minimize errors in phase unwrapping. Trans-

mission CGS for a photoelastic material requires a four-step phase-shifting method in conjunction

with polarization optics prior to the specimen to extract the desired phases related to x and y

derivatives of σ1 + σ2. A weighted PCG algorithm is used for both phase unwrapping and integra-

tion of the σ1 + σ2 derivatives. The σ1 + σ2 field is determined by using a boundary condition to

determine the constant of integration. The principal stresses are then separable from the σ1 + σ2

and σ1 − σ2 fields. The Cartesian and polar coordinate stress fields are also determined by simple

coordinate transformations using the isoclinic angle and the polar coordinate. The entire method is

demonstrated for a compressed polycarbonate plate with a side V-notch.

Possible error sources in the experimental method are identified as the transmission and re-
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flectance coefficients of the non-polarizing beamsplitter and rotational misalignment of the polariza-

tion optics. Theoretical data including these possible errors demonstrate the extent of their effect

on the data and identify the dominant error source in the experimental data as the misalignment

of the first λ/4 plate. Mitigation techniques, such as correction of the modulated wrapped isoclinic

angle and implementation of the PCG algorithm, a data quality-driven unwrapping algorithm, help

to minimize propagation of error through the data. Despite these errors, the experimental stresses

compare well with the theoretical stresses for the polycarbonate example. Establishing the use

of this hybrid experimental technique in a compressed plate with a V-notch is the foundation for

its application to determine the in-plane tensorial stress around a loaded crack in a photoelastic

material.
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Chapter 4

Stress Analysis for Fracture

4.1 Introduction

This chapter describes the application of the hybrid phase-shifting full-field experimental CGS-

photoelasticity method to fracture studies in a photoelastic material. Section 4.2 presents the theo-

retical 2D asymptotic crack solution, which is the basis for determining the stress intensity factors

for the experimental stress fields, and four cases of stress determination around Mode I–dominant

cracks in Homalite-100. Section 4.3 provides some discussion on the use of this experimental method

for fracture studies based on the variety of cases presented in this chapter.

4.2 Stresses Around Cracks in Homalite-100

4.2.1 2D Asymptotic Crack Solution (Mode I and Mode II)

Assuming that the loaded crack has both symmetric and antisymmetric stress components and that

the stresses are characterized by singular terms with constant stress intensity factors KI and KII ,

the stress field is the sum of the Mode I and Mode II stress field components as follows (Anderson,

2005):

σxx =
KI√
2πr

cos
(θ

2

)[
1− sin

(θ

2

)
sin

(3θ

2

)]
− KII√

2πr
sin

(θ

2

)[
2 + cos

(θ

2

)
cos

(3θ

2

)]
(4.1a)

σyy =
KI√
2πr

cos
(θ

2

)[
1 + sin

(θ

2

)
sin

(3θ

2

)]
+

KII√
2πr

sin
(θ

2

)
cos

(θ

2

)
cos

(3θ

2

)
(4.1b)
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σxy =
KI√
2πr

sin
(θ

2

)
cos

(θ

2

)
cos

(3θ

2

)
+

KII√
2πr

cos
(θ

2

)[
1− sin

(θ

2

)
sin

(3θ

2

)]
. (4.1c)

4.2.2 Calculation of KI and KII for Mixed-Mode Fracture

The mixed-mode stress intensity factors KI and KII may be determined from the interference

patterns of both photoelasticity and CGS, assuming the field of view contains K-dominant points,

i.e., points where the stresses may be characterized by Equation (4.1). From inspiration from

Smith and Smith (1972), Sanford and Dally (1979), and Smith and Olaosebikan (1984), who used

photoelastic interference patterns, and from Mason et al. (1992), who used CGS interference patterns,

an iterative nonlinear least-squares approach using many points from both photoelastic and CGS

phase data has been developed for calculating KI and KII for the mixed-mode fracture presented

in this chapter.

Since the hybrid method presented in this thesis utilizes two interference techniques, the method

for calculating KI and KII naturally includes data from both techniques. The method starts with

relationships between the interference phases from both techniques and the variables KI , KII , r and

θ. Using Equations (3.1) and (4.1), the photoelastic isochromatic phase for mixed-mode K-dominant

fracture is

δ(r, θ) =
(2πcoh

λ

) 1√
2πr

√
[KI sin(θ) + 2KII cos(θ)]2 + [KII sin(θ)]2, (4.2)

and using Equations (2.18a) and (4.1), the CGS phases related to the x and y derivatives of the sum

of principal stresses for mixed-mode K-dominant fracture, ϕ∂x
sum and ϕ∂y

sum, respectively, are

ϕ∂x
sum(r, θ) =

(2π∆̃Ch

p

) 1√
2πr3

[
−KI cos

(3θ

2

)
+ KII sin

(3θ

2

)]
(4.3a)

ϕ∂y
sum(r, θ) =

(2π∆̃Ch

p

) 1√
2πr3

[
−KI sin

(3θ

2

)
−KII cos

(3θ

2

)]
. (4.3b)

The errors at any point i for the three phases are dimensionless so that the errors from different

types data are comparable and, therefore, may be used in the same nonlinear least-squares algorithm;

the errors are defined as the difference between the experimental phases and their theoretical values,
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normalized by the range of experimental data of the M points used in the algorithm for that phase,

similar to the NRMSD error measure described in Chapters 2 and 3:

εδ
i =

[
δ(ri, θi)−

(
2πcoh

λ

)
1√
2πri

√
[KI sin(θi) + 2KII cos(θi)]2 + [KII sin(θi)]2

]

(max[δ]−min[δ])
(4.4a)

ε∂x
i =

[
ϕ∂x

sum(ri, θi)−
(

2π∆̃Ch
p

)
1√
2πr3

i

[
−KI cos

(
3θi
2

)
+ KII sin

(
3θi
2

)]]

(max[ϕ∂x
sum]−min[ϕ∂x

sum])
(4.4b)

ε∂y
i =

[
ϕ∂y

sum(ri, θi)−
(

2π∆̃Ch
p

)
1√
2πr3

i

[
−KI sin

(
3θi
2

)
−KII cos

(
3θi
2

)]]

(max[ϕ∂y
sum]−min[ϕ∂y

sum])
. (4.4c)

The normalization is done by the range of the experimental data instead of the theoretical data in

order to avoid dividing the differences between the experimental and theoretical phases by zero.

Since the experimental phases used in the error calculations come from an unwrapping process

that incorporates a data-quality weight function given by Equation (2.28), the errors εδ
i , ε∂x

i , and ε∂y
i

are multiplied by the appropriate weight functions calculated for the PCG unwrapping algorithm

for every point i, such that the higher quality data points receive more weight in the least-squares

minimization algorithm. The weight functions for the isochromatic phase and the CGS phases

related to the x and y derivatives of σ1 + σ2 are denoted W δ
i , W ∂x

i , and W ∂y
i , respectively.

The iterative nonlinear least-squares algorithm minimizes the function f(KI , KII), which is a

vector function incorporating these error definitions and appropriate weight functions described

above, by iteratively choosing KI and KII values using the trust-region-reflective algorithm based

on the interior-reflective Newton method, which is a standard nonlinear least-squares algorithm; this

algorithm has been implemented in MATLAB!. The function f(KI , KII) and the minimization of

the squared L2 norm is as follows, for M points of δ, N points of ϕ∂x
sum, and P points of ϕ∂y

sum:

f(KI , KII) =
[

1√
2
W δ

1 εδ
1, . . . ,

1√
2
W δ

M εδ
M , 1

2W ∂x
1 ε∂x

1 , . . . , 1
2W ∂x

N ε∂x
N , 1

2W ∂y
1 ε∂y

1 , . . . , 1
2W ∂y

P ε∂y
P

]T
(4.5)
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min
KI ,KII
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2
= min

KI ,KII

(f2
1 + f2

2 + · · · + f2
M+N+P )

= min
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(W δ
i εδ

i )
2 +

1
4
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(W ∂x
j ε∂x

j )2 +
1
4
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k=1

(W ∂y
k ε∂y

k )2
)
. (4.6)

The constant coefficients in front of the elements of the vector function f in Equation (4.5) and the

constants in front of the summation symbols of Equation (4.6) are present to equally weight the

contributions of the two experimental techniques to the minimization algorithm since photoelasticity

gives only one stress-related phase and CGS gives two, i.e., the photoelasticity data set receives twice

the weight in the minimization algorithm as each of the CGS data sets.

Another consideration in the determination of KI and KII is the assumption of plane stress in

these specimens; the mixed-mode fracture stress fields in Equation (4.1) are only valid for plane stress

K-dominant regions. The stresses determined by transmission interference techniques are inherently

through-thichness averages of the stresses, so if the specimen is under plane stress, then the measured

stresses are constant through the theickness. Since the field of view is small in cases presented here,

a notable portion of the field of view of the interference patterns are subject to 3D (triaxial) stress

effects around the crack tip, meaning the stresses measured in this region vary through the thickness

and are not purely plane stress. According to Rosakis et al. (1990) and Krishnaswamy et al. (1991),

who studied 3D effects in elastodynamic crack problems, the extent of the 3D zone has a radius

around 0.4–0.5h. Using this as a general guideline for excluding points in the field of view that may

be subject to 3D effects, all of the points inside a circle of radius 0.5h centered around the crack tip

are excluded from the points used in calculating KI and KII . Additionally, all points that have been

excluded by a user-defined mask in the unwrapping algorithm are also excluded from consideration.

In the spirit of having full-field phase maps, all the points not excluded for the three phases in the

field of view are used in the nonlinear least-squares minimization algorithm to determine KI and

KII .
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4.2.3 Wedge Opening Experiments: Mode I–Dominant Cracks

The experimental loading configuration is a symmetric wedge with an angle 2χ = π/9 symmetrically

opening a straight notch of length a1 that is at the tip of a V-shaped notch and that has a sharp

crack of length a2 emanating from the straight notch tip, as shown in Figure 4.1(a). The sharp

crack is formed from two steps. First, a straight razor blade is pressed into the tip of the straight

notch, initiating two sharp, short, crack-like defects, one on each face of the specimen moving partly

through the thickness. Second, the loading condition for the experiments is used to gently and

slowly open the notch to fill in the crack through-thickness from these two defects as shown in

Figure 4.1(b); the crack generally propagates and then arrests a few millimeters from the straight

notch tip. Fast loading of this notch leads to sudden and complete fracture of the specimen, so

modest displacement rates of the wedge around 50 µm/s produces cracks that do not propagate the

length of the specimen. The specimen is then unloaded before the experimental loads to adjust the

specimen height such that the crack tip is in the field of view of the optical setup. This precracking

method is useful for brittle photoelastic materials, but may be less successful in ductile photoelastic

materials because the defects made by the razor blade do not coalesce when wedged open in ductile

materials.

θ
x

y

r

a1

a2

(a) Schematic (b) Pre-cracking Setup

Figure 4.1: Experimental loading configuration for wedge opening
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During experimental loading, the wedge can be slightly misaligned with the x axis, and therefore

the downward motion of the wedge can impart a slight Mode II load to the crack, evident in slight

asymmetry in the stress fields. Another possibility for a Mode II contribution to the stress field

is the symmetric Mode I loading of a crack with a slight angle βc to the x axis (Anderson, 2005).

With these experiments, the theoretical model is a straight crack along the x axis with superposed

dominant Mode I and slight Mode II loadings. The level of mode-mixity is characterized by the

stress intensity factor ratio µSIF = KII/KI . In these experiments, the translating mirror setup is

used instead of the non-polarizing beamsplitter to remove possible errors due to the transmission

and reflectance coefficients of the beamsplitter. Use of a beamsplitter with well-matched coefficients

should not change the applicability of this experimental method to fracture studies.

4.2.4 Crack with KI = 0.514 MPa
√

m and KII = 4.4 kPa
√

m

In specimen called HomC1, the material is Homalite-100, with thickness of h = 2.19 mm, outer

dimensions 25.48 mm × 25.48 mm, V-notch depth of 6.25 mm, straight notch length of a1 = 4.01

mm and crack length of a2 = 4.05 mm. The material properties of Homalite-100 are Young’s

modulus E = 4.55 GPa, refractive index no = 1.561, Poisson’s ratio ν = 0.31, photoelastic constants

A = −9.058 ∗ 10−11 m2/N, B = −1.143 ∗ 10−10 m2/N, C = −1.41 ∗ 10−10 m2/N, and g = −0.0844

(RaviChandar, 1982; Kobayashi, 1993). The optical field of view imaged onto the sensor is 4.60 mm

× 4.60 mm, and the image resolution is 4.6 µm. For this CGS setup, the Ronchi grating pitch is

p = 1 mm/40; the grating separation is ∆̃ =8 .87 mm; the wavelength of light from the linearly

polarized HeNe laser is λ = 632.8 nm; and the resulting lateral shearing distance is dshear = 225

µm. Figure 4.2.4 shows the specimen before loading with the experimental field of view indicated

on the specimen. The measured stresses in this small field of view indicate local through-thickness

average stress information around the crack tip.

KI and KII values of 0.514 MPa
√

m and 4.4 kPa
√

m are determined for this load case from

by using the least-squares algorithm described in Section 4.2.2. This specimen HomC1 has the

highest KI of all the loadings of similar configurations. The KII component is small with a stress
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FOV

Figure 4.2: Specimen HomC1 before loading with field of view (FOV) indicated

intensity factor ratio µSIF = 0.0085, so the dominant features of the stress field are Mode I, which

is symmetric about the x axis.

The static initiation fracture toughness KIc values for Homalite-100 vary in literature and can

vary for the same set of experiments. Bradley and Kobayashi (1971) reported fracture toughness

values ranging from 0.593 MPa
√

m to 0.690 MPa
√

m with an average of 0.636 MPa
√

m. Irwin

et al. (1979) and Dally (1979) state that Bradley and Kobayashi (1971) overestimates the initiation

fracture toughness and report a value of only 0.445 MPa
√

m. The calculated KI value for this load is

around the reported fracture toughness values; since the next load increment during this experiment

caused crack propagation, the measured KI value seems reasonable to be close to reported fracture

toughness values.

The experimental data is compared to theoretical data from the average KI and KII values. The

main differences arise from errors in the isoclinic angle, which is highly dependent on the alignment

of the polarization optics, as explained in Chapter 3, and due to the breakdown in the derivative

approximation of the CGS data near the crack tip where the fringe density is high.

Given the experimental configuration, the optical coordinate system is the π/2 rotation of the

conventional crack-plane coordinate system. Due to possible confusion, in this chapter, the x and

y axes refer to the crack-plane coordinate systems, the variables defined in the optical coordinate

system in previous chapters retain their original meaning in reference to the optical coordinate
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system (such as Exî is the optical-x component of the electric field, and vertical shearing CGS is

shearing in the optical-y axis), and any other possible confusion is clearly denoted as either relative

to the optical or specimen coordinate systems.

4.2.4.1 Experimental and Theoretical Phase-Shifted Interference Images

Figures 4.3 and 4.4 show the experimental and theoretical six phase-shifted photoelasticity images

for specimen HomC1. The features of the experimental images match remarkably well with the the

theoretical images, taking into account for the slightly Gaussian behavior of the background intensity

field Io in the experimental images as opposed to the uniform theoretical Io. The experimental images

also appear to have similar high-frequency, low-amplitude undulation on top of the underlying

photoelastic fringes as was present in the polycarbonate data in Figure 3.3 in Chapter 3. These

undulations are Fizeau fringes. This noise source is minimized using a Wiener filter with window

size of [25 × 25] pixels before processing the data. As expected, the high stresses at the crack tip

result in caustic shadows in the experimental images; these caustic shadows are not modeled in

the theoretical fields. The caustic shadows are present in all of the experimental images for both

experimental techniques in the data presented in this chapter because the imaging method used in

the experiment is unable to capture the divergent light rays at the crack tip for these cases.

Figures 4.5–4.10 are the experimental and theoretical image sets of four phase-shifted images for

vertical shear CGS for the pure Ex ı̂ input, pure Ey ̂ input, and circularly polarized electric field

input from the λ/4 polarization method. Since Homalite-100 has a modest value for g of −0.0844,

which dictates the relative strength of secondary CGS phase ϕdiff related to σ1 − σ2, then ϕsum

phase dominates the images for each of the different electric field inputs. The difference between

the images from the various polarization states of the input electric field are rather subtle. The

images from the circularly polarized field (Figures 4.9 and 4.10) have the dominant circular features

of ϕsum with some slight modulation of the intensity near the crack tip where cos(ϕdiff ) is close to

zero. (Figure 4.22(f) shows that the cos(ϕdiff ) field is fairly uniform and close to a value of 1 except

near the crack). Both the experimental and theoretical images from pure Ex ı̂ input (Figures 4.5
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and 4.6) are elongated along the vertical optical direction, while the images from the pure Ey ı̂ input

(Figures 4.7 and 4.8) are elongated along the horizontal optical direction, as compared to the images

from the circularly polarized input case in Figures 4.9 and 4.10). Overall, the experimental images

tend to be stretched along the shearing direction as compared to the theoretical images because the

experimental phases, which approximately relate to the derivatives of stress, cannot capture the large

changes in the derivatives of stress near the crack tip with a finite shearing distance dshear = 225 µm

that is 5% of the field of view. Despite this finite shearing distance, the experimental and theoretical

images compare well in fringe density, shape, and contrast.

Figures 4.11–4.16 are the experimental and theoretical image sets of four phase-shifted images

for horizontal shear CGS for the pure Ex ı̂ input, pure Ey ̂ input, and circularly polarized electric

field input from the λ/4 polarization method. As with the vertical shear, the experimental images

compare well with the theoretical images, with slight differences near the crack tip due to the

finite shearing distance issue described above. The circularly polarized light result in the expected

circular lobes to the side of the crack in Figures 4.15 and 4.16, while the pure Ex ı̂ and Ey ̂ inputs

result in slightly elongated fringes along the vertical and horizontal optical directions, respectively.

The finite shearing distance is visible in the horizontal shear; the crack appears to be doubled in

the experimental images. Data points between the crack are not reliable because these arise from

interference of light on opposite sides of the crack, and therefore this data is masked in the analysis.
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(f) I6 = Io(1− sin(δ) cos(2α))

Figure 4.3: Experimental mages from six-step phase-shifting photoelasticity for specimen HomC1
for KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m: Caustic shadows obscure the data at the crack tip

due to the stress concentration, and the weak high density fringes overlaying the photoelastic fringes
are due to the interference of the reflections from the front and back faces of the specimen.
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(f) I6 = Io(1− sin(δ) cos(2α))

Figure 4.4: Theoretical mages from six-step phase-shifting photoelasticity for specimen HomC1 with
KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m, where Io is uniform over the field of view, unlike the

experimental images, where the intensity is Gaussian in nature
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Figure 4.5: Experimental phase-shifted images from vertical shearing CGS using pure Ex ı̂ input for
specimen HomC1 for KI = 0.514 MPa
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Figure 4.6: Theoretical phase-shifted images from vertical shearing CGS using pure Ex ı̂ input for
specimen HomC1 for KI = 0.514 MPa
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Figure 4.7: Experimental phase-shifted images from vertical shearing CGS using pure Ey ̂ input for
specimen HomC1 for KI = 0.514 MPa
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Figure 4.8: Theoretical phase-shifted images from vertical shearing CGS using pure Ey ̂ input for
specimen HomC1 for KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m



97

!"#$$%

&
"#
$
$
%

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

(a) Icirc
1

!"#$$%
&
"#
$
$
%

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

(b) Icirc
2

!"#$$%

&
"#
$
$
%

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

(c) Icirc
3

!"#$$%

&
"#
$
$
%

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

(d) Icirc
4

Figure 4.9: Experimental phase-shifted images from vertical shearing CGS using the λ/4 polarization
method for specimen HomC1 for KI = 0.514 MPa
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Figure 4.10: Theoretical phase-shifted images from vertical shearing CGS using the λ/4 polarization
method for specimen HomC1 for KI = 0.514 MPa
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Figure 4.11: Experimental phase-shifted images from horizontal shearing CGS using pure Ex ı̂ input
for specimen HomC1 for KI = 0.514 MPa
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Figure 4.12: Theoretical phase-shifted images from horizontal shearing CGS using pure Ex ı̂ input
for specimen HomC1 for KI = 0.514 MPa
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Figure 4.13: Experimental phase-shifted images from horizontal shearing CGS using pure Ey ̂ input
for specimen HomC1 for KI = 0.514 MPa
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Figure 4.14: Theoretical phase-shifted images from horizontal shearing CGS using pure Ey ̂ input
for specimen HomC1 for KI = 0.514 MPa
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Figure 4.15: Experimental phase-shifted images from horizontal shearing CGS using the λ/4 polar-
ization method for specimen HomC1 for KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m



104

!"#$$%

&
"#
$
$
%

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

(a) Icirc
1

!"#$$%
&
"#
$
$
%

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

(b) Icirc
2

!"#$$%

&
"#
$
$
%

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

(c) Icirc
3

!"#$$%

&
"#
$
$
%

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

(d) Icirc
4

Figure 4.16: Theoretical phase-shifted images from horizontal shearing CGS using the λ/4 polariza-
tion method for specimen HomC1 for KI = 0.514 MPa
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4.2.4.2 Photoelastic Data Analysis

Figures 4.17 and 4.18 present the isoclinic angle analysis from photoelastic images I3 through I6.

As described in Chapter 3, the rotational alignment of the polarization optics relative to the first

polarizer has a prominent effect on the wrapped isoclinic angle data. Figures 4.17(a)–4.17(b) show

how the isoclinic angle measurement is sensitive to errors in the polarization alignment, particularly

to the misalignment of the first λ/4 plate, resulting in false discontinuities and regions that incorrectly

sweep through zero. These features, which are near regions where sin(δ) = 0, are not apparent in the

theoretical wrapped isoclinic angle from well-aligned optics in Figure 4.17(d). The theoretical field

in Figure 4.17(b) incorporates a small misalignment in the first λ/4 plate of π/180 from the ideal

position of ξ = π/4, resulting in similar error features as the experimental field in Figure 4.17(a).

The false discontinuities and regions that incorrectly sweep through zero are corrected manually,

as outlined in Section 3.2.4.1, focusing on regions near sin(δ) = 0 and the viewing the ambiguous

wrapped isochromatic phase generated from the wrapped isoclinic angle, given in Figure 4.17(e).

Regions in wrapped δ that correspond to phase ambiguities, obvious in the theoretical ambiguous

wrapped δ along lines near θ = ±2π/3 in Figure 4.17(f), should correspond to real π/2 discontinuities

in the wrapped α that will require unwrapping later, like those near θ = ±2π/3 in Figure 4.17(d).

False π/2 discontinuities in α lie where the ambiguous wrapped δ has good modulation, often near

sin(δ) = 0, such as near the lower parts of the lobes around x = 0.25 mm in Figure 4.17(e); these

false α discontinuities are interpolated across to remove the discontinuities. Regions in the wrapped

α where the angle sweeps through zero but corresponds to ambiguous wrapped δ or near broken 2π

δ discontinuities, such as on the upper parts of the lobes around x = −0.5 mm in Figure 4.17(e),

require careful consideration; a π/2 discontinuity is added to these regions, and the surrounding

data is smoothed appropriately.

All of these manual changes of the wrapped isoclinic angle are guided by some basic a priori

knowledge of the general trend of α, keeping in mind that α does not often have large gradients,

though the 2D asymptotic crack problem is unusual with a large gradient across the crack plane. The

crack problem is ideally radially symmetric, so the phase discontinuities should be radial in nature.
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The corrected wrapped α in Figure 4.17(c) is close to this expectation, with slightly more variance

from radial symmetry near the interpolated regions near the crack tip. The corrected wrapped α

in Figure 4.17(c) unwraps well, as shown in comparing the experimental and theoretical values in

Figures 4.18(a)–4.18(b) with the largest errors near regions where sin(δ) = 0. The experimental α

does not capture the large jump near θ = 0, but moves continuously through that region, evident

in the line plot of the theoretical and experimental wrapped and unwrapped α at x = 1.10 mm

in Figure 4.18(c). Since sin(δ) is close to zero in this region, the λ/4 plate error causes false

discontinuities emanating from the crack tip radially, as shown in Figures 4.17(a) and 4.17(b). This

affected region obscures the large jump in α near θ = 0. From the guidelines stated above for

correcting the wrapped α, the discontinuities near θ = 0 appear, upon first consideration, to be

real discontinuities with their radial behavior and their correspondence to ambiguous wrapped δ.

The only indication that these might be false discontinuities is that these are near regions with

sin(δ) = 0. Corrections to such discontinuities to mimic the theoretical wrapped data would be

difficult without knowing the exact behavior of α, which is not possible without knowing KI and

KII that are calculated after the phase analysis is complete. Fortunately, the false discontinuities in

this case lead to unwrapped α that loosely approximates the theoretical α in these Mode I–dominant

fracture cases, evident in Figure 4.18(c), such that the subsequent isochromatic data appears to be

reasonable, as discussed below; thus, these particular false discontinuities are not modified.

Figure 4.19 shows the experimental and theoretical wrapped and unwrapped isochromatic phase

with excellent agreement globally. Both experimental and theoretical fields are slightly rotated in

the −θ direction due to the slight Mode II component, have similar lobe shapes, and have similar

locations for the 2π phase discontinuities in the wrapped phase. Due to the slight error in the

isoclinic angle near θ = 0, the experimental field does not reach to the low values close to zero as

the theoretical field does in this region, but the general trend of smaller phase values does hold.
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Figure 4.17: Experimental and theoretical data for the isoclinic angle for specimen HomC1 for
KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m with crack region masked in blue
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Figure 4.18: Experimental and theoretical unwrapped isoclinic angle with crack region masked in
blue and comparison of experimental and theoretical wrapped and unwrapped α for x = 1.10 mm
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(d) Theoretical unwrapped δ

Figure 4.19: Experimental and theoretical data for the isochromatic phase for specimen HomC1 for
KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m with crack region masked in blue
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4.2.4.3 CGS Data Analysis

Figures 4.20 and 4.21 present the experimental and theoretical wrapped and unwrapped vertical

shearing CGS data from the pure Ex ı̂ and pure Ey ̂ inputs, respectively. The experimental and

theoretical wrapped data show similar lobe structures and fringe density, though the experimental

data seems to be slightly elongated behind the crack along the vertical shearing direction as explained

in Section 4.2.4.1 about the finite shearing distance. Figure 4.20(e) shows a map of the theoretical

amplitude IEx
c = IEy

c , which modulates the cos(ϕsum ± ϕαd) interference term of the intensity

expressions in Equations (2.22) and (2.23); the arctan() formula in Equation (2.21) does not hold

for IEx
c = IEy

c = 0, so those points are likely places for poor fringe quality. In this case, only small

regions near the crack tip have IEx
c = IEy

c values close to zero; since these points are collected

together and do not form a boundary of low-quality data points across which the unwrapping

program cannot pass information, the unwrapping algorithm can confine any error to those points.

Figure 4.22 shows the experimental and theoretical wrapped and unwrapped vertical shearing

CGS data from the circularly polarized electric field input from the λ/4 polarization method, the

ϕsum phase determined from (ϕEx + ϕEy)/2, and the cos(ϕdiff ) field that modulates the phase

from the λ/4 polarization method, as explained in Section 2.2.3.2. The experimental and theoretical

wrapped ϕsum from the circularly polarized electric field input data in Figures 4.22(a) and 4.22(b)

have similar fringe density and shape, though the lobes behind the crack tip of the experimental

data are slightly larger than the theoretical. The experimental fringes have slight errors in a four-leaf

clover pattern around the crack tip near where cos(ϕdiff ) is close to zero. As expected, data near

cos(ϕdiff ) = 0 is prone to higher error since the arctan() function for ϕsum in Equation (2.25) is

indeterminate at cos(ϕdiff ) = 0 and since these locations are where the misalignment of the first λ/4

plate can affect the CGS data, as discussed in Section 3.2.2. Since Homalite-100 has a small value

for the photoelasticity-related constant g = −0.0844, which is related to the magnitude of ϕdiff as

defined in Section 2.2.2.2, the effect of the ϕdiff phase is generally confined to very close to the crack

tip even for this case with significant KI loading; many of these errors are masked by the user-defined

crack tip mask, and therefore do not have large influence on the data. The unwrapped phase in
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Figure 4.22(c) and the ϕsum phase determined from (ϕEx+ϕEy)/2 in Figure 4.22(e) are comparable;

the experimental fields are able to capture the theoretical change in phase globally except that the

negative phase lobes are slightly further back from the crack tip than in the theoretical fields. Since

the cos(ϕdiff ) field is fairly uniform, the ϕsum from the circularly polarized electric field input has

few unwrapping errors and is thus a good measure for the derivative of stress, implying that the

only the single set of four phase-shifted images are required for Homalite-100 in this configuration.

In Figures 4.23 and 4.24, the experimental and theoretical wrapped and unwrapped horizontal

shearing CGS data from the pure Ex ı̂ and pure Ey ̂ inputs have similar fringe density and shape,

though in the experimental data the lobes ahead of the crack appear larger, and the lobes along

the crack appear smaller than in the theoretical data. The theoretical amplitude IEx
c = IEy

c in

Figure 4.25(f) is uniform over the field of view except just in front of the crack, which goes to zero;

this small area is masked to prevent unwrapping problems due to the poor fringe quality where the

arctan() formula for ϕEx and ϕEy is indeterminate. The experimental and theoretical wrapped and

unwrapped ϕsum data from the circularly polarized electric field input shown in Figure 4.25 again

compare well but with smaller lobes along the crack in the experimental data. The ϕsum fields from

the circularly polarized electric field input and from (ϕEx + ϕEy)/2 in Figures 4.25(c) and 4.25(e),

respectively, are nearly identical and nearly match the theoretical phase in Figure 4.25(d), except

on either side of the crack where the phase is rather large theoretically. Since cos(ϕdiff ) for the

horizontal shearing direction is only close to zero just in front of the crack, and the wrapped phase is

easily masked there to reduce unwrapping errors, the ϕsum data from the circularly polarized electric

field input gives as good comparison to the theoretical phase as the ϕsum data from (ϕEx +ϕEy)/2.

Like the vertical shearing, the horizontal shearing CGS for Homalie-100 in this configuration only

requires one set of phase-shifted images to determine ϕsum.

From the phase data from the pure Ex ı̂ and pure Ey ̂ inputs, Figure 4.26 shows the secondary

phases ϕαd from Equations (2.22) and (2.23) for the vertical and horizontal shearing directions. The

experimental ϕαd for the horizontal direction compares extremely well with the theoretical phase,

while the experimental ϕαd for the vertical direction does not compare as well. The rear lobes of the
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vertical ϕαd are larger and further from the crack in the experimental data than in the theoretical

data; the distance that the rear lobes are behind the predicted location is about half of the shearing

distance dshear = 225 µm. A larger shearing distance increases the fringe density of the images,

which improves the measurement for lower-stress regions, but also weakens the approximation of the

phase relating to a derivative of stress. Therefore, a careful balance of large enough fringe density

with a small enough shearing distance must be struck for quality data. In this case, the errors are

localized to the crack tip region of approximately r < dshear, most of which is lost due to caustic

shadows anyway. This CGS data shows that this method can well approximate the expected phase

to within a small distance from the crack tip.

Figure 4.27 shows the x and y derivatives of σ1 + σ2 maps and the integrated σ1 + σ2 + ci map,

where ci is the constant of integration that is determined by a traction-free boundary condition

along the crack. Calculated from Equation (2.26), the x and y derivatives of σ1 + σ2 come from

the vertical and horizontal shearing directions, respectively, for this specimen coordinate system.

The integrated σ1 + σ2 + ci has good symmetry across the crack, though the frontal lobe is slightly

skewed to the −θ direction due to the Mode II loading component.

The initial assumption for using CGS to determine derivatives of the principal stress sum is

that the shearing distance is small enough to approximate a finite difference as a first derivative.

Bruck and Rosakis (1992, 1993) considered the accuracy of this assumption for CGS in fracture

mechanics applications. They calculated the error of this assumption for a KI -dominant field for

both shearing directions around a loaded crack, using the following expression for the x direction

(with an equivalent expression for the y direction shear):

ε = 1−

∂(σ1(x, y) + σ2(x, y))
∂x[

(σ1(x + dshear
2 , y) + σ2(x + dshear

2 , y)− σ1(x− dshear
2 , y)− σ2(x− dshear

2 , y)
dshear

] . (4.7)

If the loading condition only has a KI component, as was the only case considered by Bruck and

Rosakis (1992, 1993), then the error field plots for the vertical and horizontal shearing directions

for the 4.6 mm × 4.6 mm field of view and lateral shearing distance of dshear = 225 µm are given
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in Figure 4.28. These plots indicate regions with error less than 1%, 1%–5%, and greater than 5%,

showing symmetry across the crack plane. The regions with greater than 5% error are concentrated

around the crack. Since these plots only include a KI component, then the value of KI does not

affect the error calculation in Equation (4.7) for a given dshear; therefore, these plots hold for any

KI -dominant field with pure KI loading.

Given mixed-mode loading conditions, the actual values of KI and KII play a role in the error

calculated with Equation (4.7). For this case where KI = 0.514 MPa
√

m and KII = 4.4 kPa
√

m, the

error plots for both shearing directions in Figure 4.29 show different behavior than for the KI -only

error plots, where the symmetry across the crack plane is lost, the error in the horizontal shearing

direction is very similar to the KI -only case, and the error in the vertical shearing direction is

larger behind the crack with more area with greater than 1% error. These plots indicate why the

experimental vertical shearing data appears to be different than the theoretical data behind the

crack in Figure 4.22. This error analysis shows the potential regions of higher error in the σ1 + σ2,

such as behind the crack and close to the crack tip, which may give rise to higher error in the

separated stresses in those regions. Fortunately, Figure 4.29 indicates that the majority of the field

should have less than 5% error (indicated by the yellow and green regions), so the CGS data may

confidently be used to determine the derivative of stress in a global sense.
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(a) Experimental wrapped vertical ϕEx
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(b) Theoretical wrapped vertical ϕEx
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(c) Experimental unwrapped vertical ϕEx
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(d) Theoretical unwrapped vertical ϕEx
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Figure 4.20: Experimental and theoretical ϕEx data for vertical CGS for specimen HomC1 for
KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m with crack region masked in blue
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(a) Experimental wrapped vertical ϕEy
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(b) Theoretical wrapped vertical ϕEy
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(c) Experimental unwrapped vertical ϕEy
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(d) Theoretical unwrapped vertical ϕEy

Figure 4.21: Experimental and theoretical ϕEy data for vertical CGS for specimen HomC1 for
KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m with crack region masked in blue
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(a) Experimental wrapped vertical ϕsum
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(b) Theoretical wrapped vertical ϕsum
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(c) Experimental unwrapped vertical ϕsum
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(d) Theoretical unwrapped vertical ϕsum
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(e) Experimental vertical ϕsum from ϕEx +
ϕEy/2
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(f) Theoretical vertical cos(ϕdiff )

Figure 4.22: Experimental and theoretical ϕsum data for vertical CGS from the circularly polarized
electric field input data and from the combined pure Ex ı̂ and Ey ̂ data for specimen HomC1 for
KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m with crack region masked in blue
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(a) Experimental wrapped horizontal ϕEx
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(b) Theoretical wrapped horizontal ϕEx
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(c) Experimental unwrapped horizontal ϕEx

!"#$$%

&
"#
$
$
%

"

"

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

#,-.*%

!/' !'0 !(1 !2 ) 2 (1 '0

(d) Theoretical unwrapped horizontal ϕEx
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Figure 4.23: Experimental and theoretical ϕEx data for horizontal CGS for specimen HomC1 for
KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m with crack region masked in blue
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(a) Experimental wrapped horizontal ϕEy
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(b) Theoretical wrapped horizontal ϕEy
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(c) Experimental unwrapped horizontal ϕEy
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(d) Theoretical unwrapped horizontal ϕEy

Figure 4.24: Experimental and theoretical ϕEy data for horizontal CGS for specimen HomC1 for
KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m with crack region masked in blue
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(a) Experimental wrapped horizontal ϕsum
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(b) Theoretical wrapped horizontal ϕsum
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(c) Experimental unwrapped horizontal
ϕsum
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(d) Theoretical unwrapped horizontal ϕsum
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(e) Experimental horizontal ϕsum from
ϕEx + ϕEy/2
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(f) Theoretical horizontal cos(ϕdiff )

Figure 4.25: Experimental and theoretical data for horizontal CGS for specimen HomC1 for KI =
0.514 MPa

√
m and KII = 4.4 kPa

√
m with crack region masked in blue
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(a) Experimental vertical ϕαd
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(b) Theoretical vertical ϕαd
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(c) Experimental horizontal ϕαd
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(d) Theoretica horizontal ϕαd

Figure 4.26: Experimental and theoretical data from vertical and horizontal CGS for the extra phase
term ϕαd for specimen HomC1 for KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m with crack region

masked in blue
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(a) Experimental ∂(σ1+σ2)
∂x

!"#$$%

&
"#
$
$
%

"

"

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

#,-./$$%

!0) !') ) ') 0) 1)

(b) Theoretical ∂(σ1+σ2)
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(c) Experimental ∂(σ1+σ2)
∂y

!"#$$%

&
"#
$
$
%

"

"

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

#,-./$$%

!0) !(+ ) (+ 0) 1+

(d) Theoretical ∂(σ1+σ2)
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(e) Experimental σ1 + σ2 + ci

Figure 4.27: Experimental and theoretical data for the derivatives of σ1 + σ2 and the experimental
integrated σ1 + σ2 + ci for specimen HomC1 for KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m with

crack region masked in blue
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(a) Error for vertical shearing direction
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(b) Error for horizontal shearing direction

Figure 4.28: Theoretical error for CGS approximating the derivatives of σ1+σ2, assuming KI loading
only for the 4.6 mm × 4.6 mm field of view and lateral shearing distance of dshear = 225 µm [crack
indicated in black]
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(b) Error for horizontal shearing direction

Figure 4.29: Theoretical error for CGS approximating the derivatives of σ1+σ2, assuming KI = 0.514
MPa

√
m and KII = 4.4 kPa

√
m for the 4.6 mm × 4.6 mm field of view and lateral shearing distance

of dshear = 225 µm [crack indicated in black]
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4.2.4.4 Stress Field Determination

With the photoelasticity and CGS analysis complete, the in-plane stress tensor may be determined.

Figure 4.30 shows the experimental and theoretical sum and difference of principal stress fields. The

σ1 − σ2 field is calculated from δ using the Stress-Optic Law in Equation (3.1); the experimental

σ1 − σ2 compares to the theoretical field just as the δ field compared. The constant of integration

ci is determined from the boundary condition of σθθ = 0 along θ = ±π, which requires α, σ1 − σ2,

and σ1 + σ2 + ci to calculate. In this case, the crack front has been masked to prevent unwrapping

errors across the crack plane; since the horizontal shearing direction data appears to spread the

crack region, the actual location of the crack front is under the mask. Therefore a pixel very close

to the crack, but a long distance from the crack tip away from error sources, just to the side of the

masked region, is chosen as the the location to apply the boundary condition. Here σθθ is taken

to be zero at (r, θ) = (2.06 mm,−3.08 rad.). The resulting experimental σ1 + σ2 in Figure 4.30(c)

matches the shape of the theoretical field, but does not quite reach as low in value along the crack

or as high in front of the crack tip. These errors are most likely due to the smaller experimental x

and y derivatives of σ1 + σ2 near the crack tip as compared to the theoretical derivatives and due

to the slightly smaller x derivative and larger y derivative along the crack.

In Figure 4.31, the experimental and theoretical separated principal stresses are comparable

with the same double lobe feature in σ1 that indents towards the crack tip near θ = 0 and similar

flame-like structure emanating for the crack tip in σ2. The experimental σ1 does not indent quite as

much as the theoretical case, the experimental σ2 is not quite as sharp along near θ = 0, and both

experimental fields have slightly different behavior approaching the crack behind the tip, but the

general structures are similar. These slight differences are due to the errors in those regions from

the isoclinic angle, the isochromatic phase, and the CGS phase data as discussed previously. From

the isoclinic angle and the principal stresses, the Cartesian stresses in Figure 4.32 are determined.

Though the experimental Cartesian stresses have some slight differences from the theoretical fields

near the crack tip, due to the error from interpolated points in the isoclinic angle, the experimental

fields have similar shape and values as the theoretical. The polar stresses in Figure 4.33 have the
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same error locations as the Cartesian stresses due to the isoclinic angle errors, but the experimental

polar fields again compare well with the theoretical fields a short distance from the crack tip. The

errors ahead and to the side of the crack tip in σrr and σθθ are along the line of the wrapped isoclinic

angle in Figure 4.17(a) corresponding to the false discontinuities that are removed by interpolation.

The errors just behind the crack tip in σrθ are from the isoclinic angle regions that falsely swept

through zero in Figure 4.17(a).

These errors propagated from the isoclinic angle demonstrate that the manual corrections to the

wrapped field are not perfect, but the generally good comparison of the stress fields demonstrates

that these manual corrections are close. New algorithms for correcting for errors in the isoclinic

angle data require development; currently, these and other related issues with the isoclinic angle

are the last hurdle in phase-shifting photoelasticity (Ramesh, 2009). Each individual user of phase-

shifting photoelasticity must determine methods to correct for isoclinic angle errors based on the

error sources of their system.

Despite the errors discussed above, the global agreement of the experimental and theoretical fields

is excellent, as seen in Table 4.1, which reports the root mean squared deviation (RMS) and the

normalized RMS. The low NRMSD values range from 0.012 to 0.051. The lower errors are generally

for the fields directly related to the experimental phases such as the derivatives of σ1 + σ2, α, and

σ1−σ2, with the higher errors in stress fields from combining different fields, like the Cartesian and

polar stresses. These higher errors are due to accumulation of errors locally around the crack tip

and along the x axis.

A measure of the comparison of the experimental data with the theoretical fracture model is to

consider σyy behavior versus r along the crack plane, since σyy = KI/(2πr) for θ = 0. Figure 4.34

shows the experimental and theoretical σyy versus r plot and the log(σyy) versus log(r) plot for

θ = 0. The experimental σyy is slightly smaller than the theoretical, implying a smaller KI value

of 0.442 MPa
√

m on average, but this is most likely due to the errors in the isoclinic angle near

θ = 0. The theoretical values fall around the upper error bar, which is σyy + RMSDσyy , showing

that this difference along θ = 0 is around the global difference. Despite the smaller absolute values,
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the experimental σyy has the correct r−1/2 behavior, evident in the nearly uniform −1/2 slope of the

experimental log(σyy) versus log(r) plot in Figure 4.34(b). This −1/2 slope also implies that most

of the field of view, excluding the masked regions, is in a KI -dominant region (Anderson, 2005).

Given the KI dominance for this field of view for this load condition, the error analysis in Section

4.2.4.3 is applicable to the CGS data. Figure 4.35 shows line plots of the experimental ∂(σ1+σ2)/∂xi

with ±RMSD lines and the theoretical ∂(σ1 +σ2)/∂xi along the y axis. These plots also indicate the

theoretical error ε regions given by Equation (4.7) for the CGS approximation of the derivatives of

the principal stress sum. For the x derivative from the vertical shearing direction in Figure 4.35(a),

the experimental and the theoretical values agree well for y > ±1 mm, with the theoretical values

within the ±RMSD bounds. The differences between the experimental and theoretical x derivative

grow as |y| → 0, as expected from the ε > 1% and ε > 5% error regions. For the y derivative from

the horizontal shearing direction in Figure 4.35(b), the experimental and theoretical values compare

well for almost all of y, except in the ε > 5% region for −y, with the theoretical values within the

RMSD bounds. In comparing the two shearing directions, the vertical shearing data has more error

than the horizontal shearing data, indicated by more of y being in the ε > 1% and ε > 5% regions,

the RMSD being larger, and a larger difference from the theoretical near the crack tip. The general

trend of higher error in the vertical shearing data as compared to the horizontal shearing data is

true here for this line data and globally as described in Section 4.2.4.3. Error along the crack plane

from the vertical shearing direction may explain the slightly higher error in the stress fields directly

behind the crack. Despite these errors near the crack, the behavior a short distance from the crack

are reasonable, and lead to good global comparison of experimental and theoretical stresses.

Another measure of the comparison of the experimental and theoretical data is the calculated

average values for KI and KII . Theoretical data based on poor KI and KII values would not compare

well globally with experimental data, especially data from two separate experimental methods. The

excellent comparison of all the experimental data, spanning two experimental methods, and the

theoretical data from the calculated KI and KII values validates the use of these hybrid experimental

methods to investigate stresses near cracks in photoelastic materials.
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(a) Experimental σ1 − σ2

!"#$$%
&
"#
$
$
%

"

"

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

#,-.%

) ' / 0 1 () ('

(b) Theoretical σ1 − σ2
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(c) Experimental σ1 + σ2
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(d) Theoretical σ1 + σ2

Figure 4.30: Experimental and theoretical data for σ1 − σ2 and σ1 + σ2 for specimen HomC1 for
KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m with crack region masked in blue
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(a) Experimental σ1
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(b) Theoretical σ1
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(c) Experimental σ2
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(d) Theoretical σ2

Figure 4.31: Experimental and theoretical data for the principal stresses for specimen HomC1 for
KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m with crack region masked in blue
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(a) Experimental σxx
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Figure 4.32: Experimental and theoretical data for the Cartesian stresses for specimen HomC1 for
KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m with crack region masked in blue
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(e) Experimental σrθ
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Figure 4.33: Experimental and theoretical data for the polar stresses for specimen HomC1 for
KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m with crack region masked in blue
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Figure 4.34: Experimental and theoretical data for σyy along θ = 0 for specimen HomC1 for KI =
0.514 MPa

√
m and KII = 4.4 kPa

√
m: The experimental data is slightly lower than the theoretical

data, but with similar r−1/2 dependence seen by the near −1/2 slope on the log-log plot of σyy

versus r.
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Figure 4.35: Experimental and theoretical data for ∂(σ1 + σ2)/∂xi vs. y for θ = ±θ for specimen
HomC1 for KI = 0.514 MPa

√
m and KII = 4.4 kPa

√
m: The ±RMSD error lines and the CGS

derivative-approximation error ε regions are indicated; the region near the crack tip is masked to
zero.
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Quantity Units RMSD Data Range NRMSD
(in Units) (in Units) (No Units)

α rad. 0.17 7.33 0.023
ϕvertical

αd rad. 0.21 4.10 0.051
ϕhorizontal

αd rad. 0.06 5.11 0.012
∂(σ1 + σ2)/∂x MPa/mm 1.53 87.8 0.017

from pure Ex and Ey

∂(σ1 + σ2)/∂y MPa/mm 1.30 63.3 0.021
from pure Ex and Ey

∂(σ1 + σ2)/∂x MPa/mm 1.47 80.8 0.019
from λ/4 plate method

∂(σ1 + σ2)/∂y MPa/mm 1.33 64.2 0.021
from λ/4 plate method

σ1 + σ2 MPa 0.60 20.1 0.030
σ1 − σ2 MPa 0.25 12.3 0.020

σ1 MPa 0.36 15.4 0.023
σ2 MPa 0.29 10.4 0.028
σxx MPa 0.48 10.5 0.046
σyy MPa 0.62 14.4 0.043
σxy MPa 0.30 10.7 0.028
σrr MPa 0.42 14.1 0.030
σθθ MPa 0.44 11.8 0.037
σrθ MPa 0.44 9.0 0.049

Table 4.1: Error analysis for various experimental fields for specimen HomC1 for KI = 0.514 MPa
√

m
and KII = 4.4 kPa

√
m

4.2.5 Crack with KI = 0.259 MPa
√

m and KII = 5.0 kPa
√

m

At a smaller displacement of the wedge that opens the crack in specimen HomC1, the load on the

crack causes a stress field with stress intensity factors of KI = 0.259 MPa
√

m and KII = 5.0 kPa
√

m.

This load is smaller in magnitude than the case presented above, but has a larger mode-mixity with

stress intensity factor ratio µSIF = KII/KI = 0.020 than the previous case with µSIF = 0.0085,

leading to more asymmetry about the crack plane in the higher mode-mixity case. The experimental

parameters are the same for this load case as in the case presented above.

As discussed in the previous case in Section 4.2.4.3, the circularly polarized electric field input for

CGS is sufficient for determining the derivatives of σ1 + σ2, with similar NRMSD errors presented

in Table 4.1 as the pure Ex ı̂ and Ey ̂ method for determining ϕsum. The data presented here and
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for subsequent cases only includes this circularly polarized electric field input case for CGS.

Figures 4.36–4.38 present the photoelasticity and the vertical and horizontal shear CGS images.

As expected, the fringe densities are smaller as compared to the larger KI = 0.514 MPa
√

m load

case for photoelastic I1 and I2 in Figures 4.36(a) and 4.36(a) and for the CGS images in Figures

4.37 and 4.38. To reduce the noise source of the weak Fizeau fringes from the interference of the

reflected light from the surfaces of the specimen, a Wiener filter with window size of [25× 25] pixels

is used on the photoelastic images before processing the data.

Before the presentation and discussion of the full-field data, Table 4.2 includes the RMSD values,

experimental data ranges, and NRMSD values for the data for this load case. Overall, the global

error (i.e., NRMSD) is low, ranging from 0.017 to 0.078, but higher for certain fields like σ1 +σ2, σxx

and σθθ than for the larger KI = 0.514 MPa
√

m load case shown in Table 4.1. The higher NRMSD

values are due to a smaller range of data; the RMSD values are comparable or even smaller for

this smaller KI = 0.259 MPa
√

m load case. Unfortunately, for this case, σθθ has one of the highest

errors, which diminishes confidence in the calculation of the constant of integration that uses σθθ

along the crack, which may lead to some nominal propagated error in fields that utilize the σ1 + σ2

field. Here, σxx has the highest NRMSD value at 0.078, which is still overall remarkably low for

data stemming from a hybrid experimental technique; most of the NRMSd values are under 0.05,

which is quite low.

The photoelastic images are processed in the same manner as previously described with the

correction of the wrapped isoclinic angle, the unwrapping of the isoclinic angle, the determination

of the unambiguous wrapped isochromatic phase, the unwrapping of the isochromatic phase, and

finally the determination of σ1 − σ2 field. The resulting photoelastic data, the isoclinic angle and

the σ1 − σ2 fields shown in Figure 4.39, have similar features to the higher load case, where α has

a radial symmetry and σ1 − σ2 is double lobed on either side of the crack tip. This lower load case

has more apparent asymmetry about the crack plane due to the higher mode-mixity, seen in the

larger rotation of the double lobes about the crack tip in the −θ direction. The experimental α

again does not have the large change in value near θ = 0 as found in the theoretical α, but exhibits
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Quantity Units RMSD Data Range NRMSD
(in Units) (in Units) (No Units)

α rad. 0.17 7.10 0.025
∂(σ1 + σ2)/∂x MPa/mm 1.28 49.8 0.026

from λ/4 plate method
∂(σ1 + σ2)/∂y MPa/mm 1.81 52.3 0.035

from λ/4 plate method
σ1 + σ2 MPa 0.70 12.2 0.058
σ1 − σ2 MPa 0.15 8.83 0.017

σ1 MPa 0.36 7.97 0.045
σ2 MPa 0.34 6.28 0.055
σxx MPa 0.47 6.05 0.078
σyy MPa 0.39 8.16 0.036
σxy MPa 0.17 6.41 0.026
σrr MPa 0.30 8.69 0.034
σθθ MPa 0.44 5.68 0.077
σrθ MPa 0.24 5.43 0.044

Table 4.2: Error analysis for various experimental fields for specimen HomC1 for KI = 0.259 MPa
√

m
and KII = 5.0 kPa

√
m

a smoothing effect through this region that approximates the large change, evident in the line plot

of the wrapped and unwrapped α for the experimental and theoretical data in Figure 4.39(c). This

approximation is due to modulation of the wrapped α by the polarization optic misalignment error

discussed in detail in Sections 3.2.1 and 4.2.4.2. The experimental σ1 − σ2 matches the theoretical

data well evident by the small RMSD of only 0.15 MPa, which is mainly due to the larger load

concentration near the crack tip in the theoretical field.

The experimental CGS data produce x and y derivatives of σ1 + σ2 that compare well with the

theoretical derivatives, shown in Figure 4.40, except very close to the crack tip, which has higher

stresses than the CGS method is likely to be able to detect with the shearing distance of 225 µm

used for this case. The theoretical range of data for the x derivative is more than twice of the range

captured by the experimental data, and the theoretical range for the y derivative is more than four

times the experimental range. Though these observations are stark, they are misleading about the

CGS data quality. Given a slightly larger mask around the crack tip with an added area of an

annulus of radius ∼ 200 µm, the data ranges would agree well. Visually, the x derivative has the



135

correct shape, and its values are mostly 25 MPa/mm or less as is the case for the theoretical data

except very close to the tip. The theoretical y derivative data is mostly between −20 MPa/mm and

20 MPa/mm, which is true for the experimental data as well.

The asymmetry of the experimental σ1 +σ2 compares well with that of the theoretical σ1 +σ2 for

+x values, but the experimental field has a different asymmetry for −x values, where the (−x,+y)

data points have a different curvature to the stress contour. This difference is most likely due to

limitation of the CGS phases to represent derivatives of stress. Figure 4.41 reports the ε error maps

due to the CGS assumption that the finite difference of σ1 + σ2 between two points divided by the

distance between those points can represent the derivative of σ1 + σ2, as described above in Section

4.2.4.3. The error maps for pure Mode I loading, given in Figure 4.28, do not change for the same

field of view and shearing distance, but the the addition of Mode II loading requires the calculation

of these error maps for each individual case. Comparing the CGS error maps for the two load cases

with µSIF = 0.0085 and µSIF = 0.020 in Figures 4.29 and 4.41, respectively, shows that the area

with ε > 5% is larger in the case with larger mode-mixity behind the crack in the vertical shearing

direction, but the error maps for the horizontal shearing direction are similar for the two cases.

These ε error maps do not show the actual error in the data, but show the regions where the data is

more likely to be suspect. For example, the higher ε error behind the crack in the vertical shearing

data corresponds to the greater difference between the experimental and theoretical σ1 +σ2. Despite

these error predictions, the CGS data and related fields have reasonable NRMSD values.

The experimental and theoretical in-plane tensorial stresses have good agreement in form and

stress concentration for most of the field. In Figure 4.42, the asymmetries due to the Mode II loading

component are apparent in front of the crack in σ1 and σ2, the latter of which exhibits the sharp

flame-like shape canted at an angle from θ = 0 just as in the theoretical field. Due to errors from

σ1 + σ2 behind the crack, σ2 behind the crack does not agree as well with theory, especially for

(−x,+y) locations. In Figure 4.43, the experimental Cartesian stresses exhibit the expected form

where σxx has a fish shape, σyy has a small kidney-bean shape, and σxy has a butterfly shape. The

theoretical σxx has less asymmetry across the x axis just behind the crack than the experimental
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σxx and a larger stress concentration, leading to the highest NRMSD error of 0.078 even though

the RMSD is only 0.47 MPa. The theoretical σyy has a slightly higher stress concentration on the

sides of the crack tip than the experimental field, and the experimental σyy for (−x,+y) is different

than predicted; yet, these differences only results in an NRMSD error of 0.036. The theoretical and

experimental σxy compare extremely well with one of the lowest RMSD at 0.17 MPa and NRMSD

at 0.026. The experimental polar stresses in Figure 4.44 have the correct form, but with local errors.

The experimental σrr field more asymmetric behind the crack tip, but has low RMSD and NRMSD

values. The experimental σθθ agrees well with theory in front of the crack, but not well behind the

crack, leading to a a larger NRMSD at 0.077. The experimental σrθ does not compare well near

the crack tip, most likely due to errors propagated from the isoclinic angle, but otherwise has good

comparison with theory with average RMSD and NRMSD.

Line plots of the σyy stress along the crack plane, shown in Figure 4.45, are used to verify that

the stress fields measured for this case are K-dominant stress fields that obey the 2D asymptotic

crack solution. The experimental σyy in Figure 4.45(a) again is slightly lower than the theoretical,

but the theoretical σyy is close to the RMSD bounds. The log-log plot of σyy versus r for θ = 0

establishes the r dependence of the field, i.e., the experimental data fits the −1/2 slope, indicating

that the data has the correct 1/
√

r behavior of a K-dominant stress field. The K dominance of

the experimental stress allows for confident comparison of the experimental data with the the 2D

asymptotic crack solution using the experimentally determined KI and KII values.

This lower load case for specimen HomC1 demonstrates that the hybrid CGS-photoelasticity

method successfully determines the in-plane tensorial stress for a moderate load with KI about half

of the fracture toughness of Homalite-100. Stress determination at loading conditions significantly

lower than the load condition required for crack propagation is necessary in fracture studies for

monitoring of stress development, establishing the type of loading asymmetries and possible crack

propagation directions in anisotropic materials. This lower load case, along with the higher load case,

establishes that this experimental method is sensitive enough for determination of small Mode II

contributions in Mode I–dominant stress fields, useful in future anisotropic material fracture studies.
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(f) I6 = Io(1− sin(δ) cos(2α))

Figure 4.36: Experimental mages from six-step phase-shifting photoelasticity for specimen HomC1
for KI = 0.259 MPa

√
m and KII = 5.0 kPa

√
m. Caustic shadows obscure the data at the crack tip

due to the stress concentration, and the weak high density fringes overlaying the photoelastic fringes
are due to the interference of the reflections from the front and back faces of the specimen.
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Figure 4.37: Experimental phase-shifted images from vertical shearing CGS using the λ/4 polariza-
tion method for specimen HomC1 for KI = 0.259 MPa

√
m and KII = 5.0 kPa

√
m
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Figure 4.38: Experimental phase-shifted images from horizontal shearing CGS using the λ/4 polar-
ization method for specimen HomC1 for KI = 0.259 MPa

√
m and KII = 5.0 kPa

√
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Figure 4.39: Experimental and theoretical unwrapped α and σ1 − σ2 with crack region masked in
blue and comparison of experimental and theoretical α for x = 1.10 mm
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(f) Theoretical σ1 + σ2

Figure 4.40: Experimental and theoretical data for the derivatives of σ1 + σ2 and the experimental
integrated σ1 + σ2 for specimen HomC1 for KI = 0.259 MPa

√
m and KII = 5.0 kPa

√
m with crack

region masked in blue
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Figure 4.41: Theoretical error for CGS approximating the derivatives of σ1+σ2, assuming KI = 0.259
MPa

√
m and KII = 5.0 kPa

√
m for the 4.6 mm × 4.6 mm field of view and lateral shearing distance

of dshear = 225 µm [Crack indicated in black]



143

!"#$$%

&
"#
$
$
%

"

"

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

#,-.%

) ' / 0 1 ()

(a) Experimental σ1

!"#$$%
&
"#
$
$
%

"

"

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

#,-.%

) ' / 0 1 ()

(b) Theoretical σ1

!"#$$%

&
"#
$
$
%

"

"

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

#,-.%

!( ) ( ' / 0 +

(c) Experimental σ2

!"#$$%

&
"#
$
$
%

"

"

!' !( ) ( '

!'

!(*+

!(

!)*+

)

)*+

(

(*+

'

#,-.%

!( ) ( ' / 0 +

(d) Theoretical σ2

Figure 4.42: Experimental and theoretical data for the principal stresses for specimen HomC1 for
KI = 0.259 MPa

√
m and KII = 5.0 kPa

√
m with crack region masked in blue
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(f) Theoretical σxy

Figure 4.43: Experimental and theoretical data for the Cartesian stresses for specimen HomC1 for
KI = 0.259 MPa

√
m and KII = 5.0 kPa

√
m with crack region masked in blue
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Figure 4.44: Experimental and theoretical data for the polar stresses for specimen HomC1 for
KI = 0.259 MPa

√
m and KII = 5.0 kPa

√
m with crack region masked in blue
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Figure 4.45: Experimental and theoretical data for σyy along θ = 0 for specimen HomC1 for KI =
0.259 MPa

√
m and KII = 5.0 kPa

√
m: The experimental data is slightly lower than the theoretical

data, but with similar r−1/2 dependence seen by the near −1/2 slope on the log-log plot of σyy

versus r.
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4.2.6 Crack with KI = 0.145 MPa
√

m and KII = 0.63 kPa
√

m

This specimen, called HomC2, is made of Homalite-100, but this specimen has thickness of h = 3.43

mm, outer dimensions 25.46 mm × 25.46 mm, V-notch depth of 6.25 mm, straight notch length

of a1 = 3.53 mm and crack length of s2 = 8.67 mm. The optical field of view imaged onto the

sensor is 4.57 mm × 4.57 mm, and the image resolution is 4.57 µm. For this CGS setup, the Ronchi

grating pitch, p, is 1 mm/40; the grating separation, ∆̃, is 8.84 mm; the wavelength of light from the

linearly polarized HeNe laser is 632.8 nm; and the resulting lateral shearing distance, dshear, is 224

µm. Figure 4.46(a) shows the specimen before loading with the experimental field of view indicated

on the specimen. Figure 4.46(a) shows the specimen in the load apparatus prior to loading; the

angled view of the specimen shows a very slight curvature to the crack tip through the thickness.

The image is from taken looking towards the light source. The measured stress intensity values are

KI = 0.145 MPa
√

m and KII = 0.63 kPa
√

m, which give a mode-mixity ratio of µSIF = 0.0043.

This load case has the lowest recorded KI for cracks in Homalite-100 during this study.

FOV

(a) Specimen with marked FOV

a2 =
8.67mm

(b) Specimen with marked a2

Figure 4.46: Specimen HomC2 before loading: (a) the small FOV is indicated; (b) the specimen is
in the loading apparatus with the crack length a2 indicated

Figures 4.47–4.49 present the photoelasticity and the vertical and horizontal shear CGS images.

The fringe densities in these images are small due to the small KI and KII . These images have
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similar fringe density as the KI = 0.259 MPa
√

m case in specimen HomC1 even with a smaller KI

because specimen HomC2 is 56% thicker than specimen HomC1, meaning the two interferometric

methods that scale by the specimen thickness can report similar fringe density for different loads.

To reduce the noise source of the weak Fizeau fringes from the interference of the reflected light

from the surfaces of the specimen, a Wiener filter with window size of [25× 25] pixels is used on the

photoelastic images before processing the data. In the images, a small dark ring is apparent on the

crack plane about 250 µm behind the crack tip; this ring is a second crack tip at one of the surfaces

of the specimen. As noted in Figure 4.46(b), the crack tip is not perfectly straight through the

thickness. The curvature does not appear to affect the shape of the interference patterns except for

blurring the data in the immediate vicinity of this back surface crack tip. Close observation of the

crack tip shape in Figure 4.46(b) shows that the tip is mostly straight, but curves up on one surface,

so the dominant stress concentration is at the crack tip identified by the origin. These blurred data

points are masked to prevent error propagation.

Table 4.3 presents the RMSD values, experimental data ranges, and NRMSD values for the

experimental fields of interest for this small load case. As expected for this case, the data ranges

are small. The RMSD values are also small for all of the fields, resulting in reasonably low NRMSD

values from 0.023 to 0.069. Good comparison for this case indicates that the experimental method

is sensitive enough to consider smaller stress fields that may be useful for high-cycle fatigue testing

in materials similar to Homalite-100 or to consider fracture in materials with smaller photoelastic

constants than Homalite-100.

As with the analysis previously presented, the photoelastic images are processed first by deter-

mination of the isoclinic angle, which requires some manual correction for error due to misalignment

of the polarization optics, and then the determination of the isochromatic phase, which is converted

to σ1 − σ2. Figure 4.50 presents the experimental and theoretical unwrapped isoclinic angle and

σ1 − σ2 fields, showing good qualitative agreement. The isoclinic angle has the errors common to

other isoclinic angle fields previously presented, such as the smoothing of the angle through the

region near θ = 0, as shown in Figure 4.50(c). With this small mode-mixity, the isoclinic angle is
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Quantity Units RMSD Data Range NRMSD
(in Units) (in Units) (No Units)

α rad. 0.21 6.69 0.031
∂(σ1 + σ2)/∂x MPa/mm 0.95 31.1 0.030

from λ/4 plate method
∂(σ1 + σ2)/∂y MPa/mm 0.78 34.5 0.023

from λ/4 plate method
σ1 + σ2 MPa 0.26 7.18 0.036
σ1 − σ2 MPa 0.14 3.89 0.035

σ1 MPa 0.13 5.14 0.026
σ2 MPa 0.15 3.74 0.040
σxx MPa 0.21 3.91 0.054
σyy MPa 0.16 5.26 0.031
σxy MPa 0.16 3.73 0.044
σrr MPa 0.14 5.39 0.026
σθθ MPa 0.24 3.48 0.069
σrθ MPa 0.14 3.68 0.038

Table 4.3: Error analysis for various experimental fields for specimen HOMC2 for KI = 0.145
MPa

√
m and KII = 0.63 kPa

√
m

behaving very close to that of a pure Mode I case, which would have a π/2 discontinuity at θ = 0 due

to the definition of the principal stresses; the larger principal stress changes between the eigenvalues

that correspond to the principal stresses when going from +y to −y, resulting in a π/2 change in

the angle corresponding to the larger principal stress. This α field has similar RMSD and NRMSD

as other presented experimental α fields, indicating consistency of the the error correction methods,

regardless of load level. The σ1 − σ2 field exhibits the correct shape and almost reaches the same

level of stress concentration near the crack tip as the theoretical field, with reasonable NRMSD at

0.035. The higher deviation regions for σ1 − σ2 are in front of the crack tip and behind the crack,

where the experimental values do not go as low as predicted due to the errors in α in those regions.

The wavy nature to the contours is the modulation by the weak interference of the reflected light

from the surfaces of the specimen. Since these Fizeau fringes scale up in frequency with increas-

ing thickness (Hecht, 2002), the thicker specimen would experience greater frequency of these weak

fringes than the thin specimen for a comparable load. If a heavier Wiener filter (larger window size)

had been used on this data, the real photoelastic data may have been obscured. The waviness to
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the contours further is one reason for the larger difference between the experimental and theoretical

photoelasticity-related fields.

The x and y derivatives of σ1 + σ2 and the integrated σ1 + σ2 fields from the CGS data are

presented in Figure 4.51. The derivatives of σ1 + σ2 have some of the lowest NRMSD values, which

corroborates the excellent qualitative comparison of the experimental and theoretical fields with the

correct shapes and values for most of the field. The region with most difference is at the usual

location near the crack tip, where the experimental stress concentration is not high enough. Also,

the x derivative field from the vertical shearing phase appears to be elongated in the −x direction

behind the crack. The resulting experimental σ1 +σ2 in Figure 4.51(f), which no longer includes the

constant of integration, has a similar shape to the theoretical field, but the stress concentration is

smaller at the crack tip, and the stresses for −x do not curve enough towards the crack tip. These

differences are directly due to the previously noted differences in the derivative fields. Even with

these errors, the experimental σ1 + σ2 has similar NRMSD as the σ1 − σ2 field.

The ε error related to the derivative assumption for CGS is lower for this case with modest

mode-mixity of µSIF = 0.0043, as indicated in the ε error maps in Figure 4.52. Similar to the

KI = 0.514 MPa
√

m case for HomC1, the largest error is located behind the crack in the vertical

shearing direction and around the crack tip for both directions, which is consistent with the noted

differences in the derivative fields. Interestingly, even though the CGS interference patterns for

this case are closer in density to that of the KI = 0.259 MPa
√

m case for HomC1 with its higher

mode-mixity of µSIF = 0.058, the ability of the CGS phases in this case to represent a derivatives

of σ1 + σ2 is closer to that of the high KI = 0.514 MPa
√

m case for HomC1 with its higher

µSIF = 0.0085, demonstrating that the level of mode-mixity has a significant effect on the CGS

data. Further quantitative investigation is required to characterize the error involved with using

CGS in mixed-mode loading configurations.

The experimental in-plane tensorial stresses all exhibit the same types of good agreement, with a

few local problem areas, as the previously discussed cases for HomC1, except the asymmetry in the

experimental fields in front of the crack is not as great as in the theoretical fields. In Figure 4.53,
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the principal stresses have the correct shapes, but they do not appear to shift toward −θ as much as

the theoretical field. The σ1 and σ2 fields have good NRMSD values at 0.026 and 0.40, respectively.

In Figure 4.54, the experimental Cartesian stresses presented compare well with theory, except σxx

is more negative for (−x,+y) points and more asymmetric about the x axis than the theoretical

case. The experimental polar stresses in Figure 4.55 have the correct shape, but σθθ does not reach

the same stress concentration as theory, resulting in a higher NRMSD value of 0.069. Since the

experimental σθθ is fairly uniform along the crack and appears to agree well with theory there, the

higher error does not appear to have affected the constant of integration calculation, leading to the

low error for σ1 + σ2.

Figure 4.56 shows two line plots for σyy along θ = 0. The first shows σyy versus r, where the

theoretical data is within the RMSD bound of the experimental data for r > 1 mm, but increases

faster than the experimental data near the crack tip. The second figure of the log-log plot of σyy

versus r shows the −1/2 slope of the experimental data for larger r, but the slope decreases for

smaller r, indicating either a loss of K dominance or large experimental error in this region of σyy.

K dominance near the crack tip is usually lost due to plasticity or 3D stress effects near the crack

tip, but plasticity is not likely for this small KI . The 3D stress effects, which is the breakdown

of the basic assumption of plane stress (Rosakis et al., 1990; Krishnaswamy et al., 1991), are the

likely culprit for larger error in this field, and the other stress fields, near the crack tip. Since

σyy = 1
2 (σ1 + σ2)− 1

2 (σ1 − σ2)cos(2α), all of the errors in σ1 + σ2, σ1 − σ2, and α conspire near the

crack tip to reduce σyy here. First, the value of σ1 + σ2 in front of crack is smaller; second, α is

closer to zero than in theory, leading to a larger value of cos(2α) than in theory; third, σ1 − σ2 is

slightly larger than theory; and fourth, the combination of a smaller σ1 + σ2 with a larger negative

− 1
2 (σ1 − σ2)cos(2α) results in an under-determination of σyy as compared to the theoretical plane

stress value. This type of error in this line plot prompts checking the 1/
√

r behavior along other

values of θ. Unfortunately, this is not a simple matter in the current implementation of the analysis

program in MATLAB!, since the stress fields are represented by a matrix, requiring interpolation

of the stress along a line for a given θ. Since the 3D stress effects are confined to near the crack
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tip, K dominance can be determined away from the crack tip, as shown in the 1/
√

r behavior for

larger r in the σyy plot. The thicker specimen appears to have greater variation in r behavior along

the θ = 0 plane than in the thinner specimen, which is expected given that the 3D effects scale

with the thickness of the specimen. The overall smaller σyy values in the experimental data along

the θ = 0 plane in the K-dominant regions in both HomC1 and HomC2 must be due to fields with

radial natures on θ = 0, which point to the errors in the isoclinic angle and in σ1 − σ2 due to the

polarization optic misalignment.

With the overall good comparison of the experimental data with the theoretical data and a few

identified errors, this KI = 0.145 MPa
√

m load case demonstrates the capability of this experimental

method to monitor small KI cases and also highlights some of improvements that can be made.

This KI is on the order of KIc/4, which is a useful load level for high cycle fatigue testing. The

modulation due to the Fizeau interference patterns on top of the photoelastic data needs further

mitigation beyond the Wiener filter, such as an anti-reflective coating on the specimen surfaces.

Also, the errors due to the rotational misalignment that lead to the local α errors on the crack

plane appear to affect the reported behavior of the stresses markedly in this low KI case, spurring

better alignment methods and wrapped α error correction methodologies for Mode I–dominant crack

applications.
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(f) I6 = Io(1− sin(δ) cos(2α))

Figure 4.47: Experimental mages from six-step phase-shifting photoelasticity for specimen HomC2
for KI = 0.145 MPa

√
m and KII = 0.63 kPa

√
m: Caustic shadows obscure the data at the crack

tip due to the stress concentration, and the weak high density fringes overlaying the photoelastic
fringes are due to the interference of the reflections from the front and back faces of the specimen.
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Figure 4.48: Experimental phase-shifted images from vertical shearing CGS using the λ/4 polariza-
tion method for specimen HomC2 for KI = 0.145 MPa

√
m and KII = 0.63 kPa

√
m
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Figure 4.49: Experimental phase-shifted images from horizontal shearing CGS using the λ/4 polar-
ization method for specimen HomC2 for KI = 0.145 MPa

√
m and KII = 0.63 kPa

√
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(d) Experimental σ1 − σ2
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(e) Theoretical σ1 − σ2

Figure 4.50: Experimental and theoretical unwrapped isoclinic angle with crack region masked in
blue and comparison of experimental and theoretical wrapped and unwrapped α for x = 1.10
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(f) Theoretical σ1 + σ2

Figure 4.51: Experimental and theoretical data for the derivatives of σ1 + σ2 and the experimental
integrated σ1 +σ2 for specimen HomC2 for KI = 0.145 MPa

√
m and KII = 0.63 kPa

√
m with crack

region masked in blue
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(b) Error for horizontal shearing direction

Figure 4.52: Theoretical error for CGS approximating the derivatives of KI = 0.145 MPa
√

m
and KII = 0.63 kPa

√
m for the 4.6 mm × 4.6 mm field of view and lateral shearing distance of

dshear = 225 µm [Crack indicated in black]
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(d) Theoretical σ2

Figure 4.53: Experimental and theoretical data for the principal stresses for specimen HomC2 for
KI = 0.145 MPa

√
m and KII = 0.63 kPa

√
m with crack region masked in blue
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(f) Theoretical σxy

Figure 4.54: Experimental and theoretical data for the Cartesian stresses for specimen HomC2 for
KI = 0.145 MPa

√
m and KII = 0.63 kPa

√
m with crack region masked in blue
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Figure 4.55: Experimental and theoretical data for the polar stresses for specimen HomC2 for
KI = 0.145 MPa

√
m and KII = 0.63 kPa

√
m with crack region masked in blue
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Figure 4.56: Experimental and theoretical data for σyy along θ = 0 for specimen HomC2 for KI =
0.145 MPa

√
m and KII = 0.63 kPa

√
m: The experimental data is slightly lower than the theoretical

data, but with similar r−1/2 dependence seen by the near −1/2 slope on the log-log plot of σyy

versus r.
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4.2.7 Crack with KI = 0.289 MPa
√

m and KII = −2.9 kPa
√

m

For this larger wedge displacement case in specimen HomC2, the experimental stress intensity factors

are KI = 0.289 MPa
√

m and KII = −2.9 kPa
√

m with a mode-mixity ratio µSIF = −0.010; thus

this example has a similar moderate-level KI as the KI = 0.259 MPa
√

m case for specimen HomC1,

but with smaller magnitude, negative mode-mixity. The experimental parameters are the same for

this load case as in the previous case.

Figures 4.57–4.59 present the photoelasticity and the vertical and horizontal shear CGS images.

Since this specimen is thicker than HomC1, the fringes are closer in density to the KI = 0.514

MPa
√

m case than the KI = 0.259 MPa
√

m case. The small blur due to notch tip on the surface

is still present in the images, but again do not appear to distort the field, and therefore a mask is

sufficient to remove its influence. The weak Fizeau interference patterns in the photoelastic images

are minimized used the Wiener filter with window size of [25× 25] pixels before processing the data.

Table 4.4 reports the RMSD values, data ranges, and NRMSD values for this KI = 0.289 MPa
√

m

case. The NRMSD values are good for all of the fields ranging from 0.0019 to 0.063, with the highest

value for σxx, which is still quite acceptable.

The isoclinic angle in Figure 4.60(a) for the KI = 0.289 MPa
√

m has the same form as the other

cases, with (i) the radial symmetry about the crack tip, (ii) the NRMSD of 0.033, (iii) higher local

errors where the wrapped α was manually corrected near the crack tip, (iv) the error of smoothing

the data through 0 around θ = 0, and (v) otherwise generally good comparison with theory. The

theoretical isoclinic angle in this case slightly differs from those of the other cases near θ = 0 due to

the negative mode-mixity, as seen in Figure 4.60(c). The experimental and theoretical σ1−σ2 fields

in Figures 4.60(d) and 4.60(e) have generally good agreement with NRMSD of 0.048, except the

stress concentrations at the crack tip are not as large in the experimental field, and the experimental

stresses do not go towards zero near θ = 0 as in the theoretical field.

The experimental and theoretical derivatives of σ1+σ2 in Figure 4.61 compare very well globally.

The experimental x derivative of σ1 +σ2 has the correct shape and stress concentration for the range

of −20 MPa/mm to 20 MPa/mm, leading to an NRMSD of only 0.021, but does not quite obtain
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Quantity Units RMSD Data Range NRMSD
(in Units) (in Units) (No Units)

α rad. 0.22 6.71 0.033
∂(σ1 + σ2)/∂x MPa/mm 1.04 48.6 0.021

from λ/4 plate method
∂(σ1 + σ2)/∂y MPa/mm 0.89 47.5 0.019

from λ/4 plate method
σ1 + σ2 MPa 0.71 12.5 0.056
σ1 − σ2 MPa 0.32 6.67 0.048

σ1 MPa 0.41 9.05 0.046
σ2 MPa 0.33 5.86 0.055
σxx MPa 0.41 6.49 0.063
σyy MPa 0.40 9.27 0.043
σxy MPa 0.25 6.14 0.040
σrr MPa 0.46 7.74 0.059
σθθ MPa 0.40 7.70 0.052
σrθ MPa 0.17 6.25 0.026

Table 4.4: Error analysis for various experimental fields for specimen HomC2 for KI = 0.289 MPa
√

m
and KII = −2.9 kPa

√
m

the localized higher stress concentration just behind the crack tip. The experimental y derivative

of σ1 + σ2 does a good job of reaching close to the stress concentration at the sides of the crack

tip, allowing for a good NRMSD of 0.019, though the derivative is a little small behind the crack

tip. These smaller experimental derivatives behind the crack tip lead to an experimental σ1 + σ2

in Figure 4.61(e) that does not decrease enough towards zero along the crack as compared to the

theoretical field in Figure 4.61(f). Elsewhere in the field, σ1 + σ2 matches theory well with a

good stress concentration level at the crack tip. These experimental derivative fields appear to

compare well because the CGS phase inherently better approximates the theoretical derivatives due

to the smaller mode-mixity µSIF = −0.010, evident in the lower ε error globally for the CGS fields

in Figure 4.62. The errors in both shearing directions, but particularly in the vertical shearing

direction, are markedly lower than for the highest mode-mixity case µSIF = 0.020 that has a similar

KI = 0.259 MPa
√

m, implying that for modest mode-mixity cases employing CGS, the shearing

direction related to the y derivative will most likely better represent a derivative than the other

shearing direction. This observation is restricted to these low mode-mixity cases because this may
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not be true for larger mode-mixity, as seen in a mixed-mode fracture study by Mason et al. (1992)

that demonstrated reasonable KII/KI calculation agreement with theory and finite elements.

The experimental and theoretical principal stresses in Figure 4.63 compare well in front of and

close to the crack, but the experimental σ2 is too large for (−x,−y) data points due to the errors in

σ1 + σ2 in that region, leading to the largest NRMSD for this case at 0.056. The Cartesian stresses

in Figure 4.64 all exhibit the correct behavior and stress levels globally. The higher stress levels in

the fish-shaped σxx extends further from the crack than predicted. The manually corrected regions

near the crack tip in α appear to spread the side lobes located along the y axis in σxy, and the

stresses seem higher in magnitude in the +x region. The σyy field agrees well visually except for

(−x,−y) data points along the crack. The polar stresses in Figure 4.65 have similar NRMSD values

as the Cartesian stresses, but appear to have more local errors. These visual differences are due to

the manually corrected regions in α that slightly distort the radial symmetry of the theoretical α.

Regardless of local errors, the experimental and theoretical polar stresses match well globally.

The σyy versus r line plots for θ = 0 in Figure 4.66 indicate reasonable agreement in behavior

with theory for r < 1.5 mm. The 1/
√

r behavior is excellent for r < 1.5 mm, but the slope of log σyy

versus log r slightly increases for r > 1.5 mm. This is most likely due to experimental error since this

is the opposite behavior from the smaller load case for the same specimen, but may be due to the

finite size of the specimen; far from the crack, the stress field is not K-dominant due to boundary

effects of a finite size specimen. The loss of K dominance far from the crack is usually indicated by

a decrease (in magnitude) in the slope of the log σyy versus log r plot for θ = 0, which is not the case

here; thus, the errors in σ1−σ2 and α are the likely error sources for σyy, since σ1−σ2 is larger than

predicted here. Given the reasonable agreement with 1/
√

r behavior of this case, the stress fields

are likely in a K-dominant region of the crack. This case demonstrates the experimental method

to determine full-field stresses for a moderate KI with low mode-mixity. The same error sources

appear in this case as with others, but these are well-characterized and possibly can be minimized

with some improvements. This case does not appear to show any new errors, but does add to the

range of capability of this experimental method.
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Figure 4.57: Experimental mages from six-step phase-shifting photoelasticity for specimen HomC2
for KI = 0.289 MPa

√
m and KII = −2.9 kPa

√
m. Caustic shadows obscure the data at the crack

tip due to the stress concentration, and the weak high density fringes overlaying the photoelastic
fringes are due to the interference of the reflections from the front and back faces of the specimen
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Figure 4.58: Experimental phase-shifted images from vertical shearing CGS using the λ/4 polariza-
tion method for specimen HomC2 for KI = 0.289 MPa

√
m and KII = −2.9 kPa

√
m
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Figure 4.59: Experimental phase-shifted images from horizontal shearing CGS using the λ/4 polar-
ization method for specimen HomC2 for KI = 0.289 MPa

√
m and KII = −2.9 kPa

√
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(e) Theoretical σ1 − σ2

Figure 4.60: Experimental and theoretical unwrapped isoclinic angle with crack region masked in
blue and comparison of experimental and theoretical wrapped and unwrapped α for x = 1.10
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(f) Theoretical σ1 + σ2

Figure 4.61: Experimental and theoretical data for the derivatives of σ1 + σ2 and the experimental
integrated σ1 + σ2 for specimen HomC2 for KI = 0.289 MPa

√
m and KII = −2.9 kPa

√
m with

crack region masked in blue
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Figure 4.62: Theoretical error for CGS approximating the derivatives of KI = 0.289 MPa
√

m
and KII = −2.9 kPa

√
m for the 4.6 mm × 4.6 mm field of view and lateral shearing distance of

dshear = 225 µm [Crack indicated in black]
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(d) Theoretical σ2

Figure 4.63: Experimental and theoretical data for the principal stresses for specimen HomC2 for
KI = 0.289 MPa

√
m and KII = −2.9 kPa

√
m with crack region masked in blue
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Figure 4.64: Experimental and theoretical data for the Cartesian stresses for specimen HomC2 for
KI = 0.289 MPa

√
m and KII = −2.9 kPa

√
m with crack region masked in blue
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Figure 4.65: Experimental and theoretical data for the polar stresses for specimen HomC2 for
KI = 0.289 MPa

√
m and KII = −2.9 kPa

√
m with crack region masked in blue
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Figure 4.66: Experimental and theoretical data for σyy along θ = 0 for specimen HomC2 for KI =
0.289 MPa

√
m and KII = −2.9 kPa

√
m: The experimental data is slightly lower than the theoretical

data, but with similar r−1/2 dependence seen by the near −1/2 slope on the log-log plot of σyy versus
r.



176

4.3 Discussion of Experimental Method for Fracture Studies

The four Mode I–dominant, mixed-mode crack cases presented above demonstrate the ability of the

hybrid experimental method to determine the in-plane tensorial stress around a crack in a photoe-

lastic material. The full analysis of the highest KI case establishes the validity of the experimental

method to determine stress near a crack close to initial crack propagation, with the others demon-

strating good quality data in a variety of cases. The different cases represent a significant range of

KI values for Homalite-100, whose fracture toughness is around 0.445 MPa
√

m to 0.636 MPa
√

m

(Bradley and Kobayashi, 1971; Irwin et al., 1979; Dally, 1979): KI = 0.145 MPa
√

m, KI = 0.259

MPa
√

m, KI = 0.289 MPa
√

m, and KI = 0.514 MPa
√

m, which are from about 0.25KIc to ∼ KIc.

Each of these cases demonstrate K-dominant stress behavior, allowing for excellent comparison to

the 2D asymptotic crack solution for a mixed-mode crack. This K dominance allows for calculation

of the Mode I and Mode II stress intensity factors from a nonlinear least-squares fitting algorithm,

excluding data points in the masked regions along the crack and a circle of radius 0.5h around the

crack tip to remove points that may have 3D stress effects. Even though the KI and KII values

come from full-field data from two different experimental techniques, these values lead to theoretical

data that compare well with all of the experimental data, implying that CGS and photoelasticity

are compatible for use in this hybrid method. If the KI and KII values only allowed for good agree-

ment in a few fields, then the experimental method would be suspect. Across all of these cases, the

NRMSD ranges from 0.012 to 0.078 with most of the fields below 0.05, indicating excellent global

error for all of these cases. This experimental method also allows for determination of not only KI

values, but small KII values as well, and therefore is able to detect small mode-mixity µSIF from

−0.010 to 0.020. These small mode-mixities have a noticeable affect on the stress fields, giving rise

to asymmetries in the stress fields that are apparent in the experimental data. Exclusion of KII

would lead to larger errors in the data by a few percent.

The four cases illuminate consistent error sources in the data. The rotational misalignment of the

polarization optics, particularly the first λ/4 plate, lead to false discontinuities and zero-crossings

that require manual correction. These corrections generally work, allowing for the determination of
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the isoclinic angle without detrimental and completely incorrect unwrapping. The isoclinic angle

is a key component to the experimental method, so the manual corrections to the wrapped α field

enable the method to work even with some localized errors in the subsequent stress fields. Obviously,

a robust algorithm for correcting these errors due to polarization optic misalignment would improve

confidence in the method, especially for fracture studies where the theoretical stress field solution is

not known. In the cases presented in this chapter, the experimental isoclinic angle has error along

the crack plane because the polarization optic misalignment leads to discontinuities near θ = 0 that

appear to be real discontinuities. Corrections here would not be simple and would require a variety

of experiences with this method; hence, leaving the discontinuities as they are leads to α fields with

known error sources, but with acceptable error levels. One way to reduce this need for corrections

in the first place is to introduce strict polarization optic alignment techniques. Another error source

in the data is the Fizeau fringes, but these are easily removed with anti-reflective coatings on the

specimen.

The CGS assumption that the phase is related to a stress derivative is pushed to its limit due

to three factors in this study: the small field of view, the finite shearing distance, and small mode-

mixity. The first two factors work together to push the limit of the derivative assumption in that

having a small field of view and requiring a reasonable phase sensitivity over a wide range of KI

cases requires a shearing distance that is a significant size relative to the field of view like the 5%

of the side of the field of view in the cases presented above. Evident in the ε error analysis in

Section 4.2.4.3, larger shearing distance produces more error in the derivative assumption over more

area of the field of view. Also, the addition of a small KII component appears to increase the ε

error, particularly behind the crack for the shearing direction related to the x derivative, as the

mode-mixity increases for the range of mode-mixity in this study. The effect of this on the stress

fields is higher error behind the crack, seen with increasing severity with increasing mode-mixity. A

full error analysis of the effect of mode-mixity on CGS derivative measurements is required if this

method is applied to mixed-mode fracture cases. Characterization of these error sources explains

the differences between experiment and theory in the cases presented here, but should not detract
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from the overall ability of this experimental method to determine full-field stresses around cracks in

a photoelastic material. The experimental data have remarkable agreement with theory and allow

for calculation of a range of stress intensity factors for Mode I–dominant cracks.

4.4 Conclusions

The hybrid CGS-photoelasticity experimental method is demonstrated for in-plane tensorial stress

determination around Mode I–dominant cracks in Homalite-100 for a range of stress intensity factors

for small fields of view, the first experimental study for full-field tensorial stress determination

around cracks in photoelastic materials. Four cases across a range of KI = 0.145 MPa
√

m to

KI = 0.514 MPa
√

m, which is near the fracture toughness of Homalite-100, show K-dominant

behavior, allowing for excellent comparison of the experimental stress fields with the 2D asymptotic

crack solution for mixed-mode loading; the global error is less than 5% for most fields and no greater

than 7.8%. The experimental method allows for calculation of KI and small KII values based on

experimental data derived from both CGS and photoelasticity, showing that the two techniques work

well together for stress determination. Common error sources over all four cases are characterized

and can be mitigated with careful experimentation and with improved analysis algorithms. Overall,

this experimental method successfully demonstrates the goal of stress determination near cracks in

optically anisotropic, but otherwise isotropic materials, which lays the foundation for extending this

method to studying stresses around cracks in anisotropic materials like crystals.
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Chapter 5

Future Research

5.1 Introduction

This chapter describes future research that can improve the current hybrid method and extend it

to fracture studies in anisotropic crystals. Section 5.2 details improvements to the current method

that can reduce the error sources from the optics, from the analysis method, and from some basic

CGS assumptions. Section 5.3 describes the practical requirements for extending this method to

anisotropic crystals and demonstrates the need for further analysis by a preliminary investigation of

using the current hybrid method for stresses in a ferroelectric crystal, barium titanate.

5.2 Improvements to Experimental Method

5.2.1 Optics

The rotational misalignments of the polarization optics have a significant impact on both the CGS

and photoelasticity data, as described in Chapter 3. Simple alignment methods can be implemented

to reduce the errors, where the user does not rely on an axis labeled on each individual optic as the

reference, but relies on one optic as the reference optic to base all of the alignment. The objective is

to set the axes of these optics such that transmitted light is extinguished when the optics are properly

aligned. Either a CCD or a photodiode may be used to monitor the transmitted light. Firstly, the

first polarizer alignment must be fixed as the reference axis for the other optics. Ideally, this first
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polarizer is also aligned with the coordinates of the specimen, which may be achieved by assuring

that light is extinguished for a polarized crystal at the specimen plane with the first polarizer at

π/2 radians from the polarization of the crystal. Secondly, the second polarizer alignment is set to

π/2 radians from the first polarizer to extinguish transmitted light. Thirdly, the λ/4 plates, when

between the two crossed polarizers, should have light extinction when aligned with either of the

two polarization optics. Fourthly, a loaded test specimen should be used to test the alignment for

both photoelasticity and CGS by checking for the phase modulation errors in the wrapped ϕsum for

CGS and in the wrapped α for photoelasticity. Small alignment adjustments can be made before

a full experiment is conducted, which can especially reduce the errors in the isoclinic angle. In the

proof of concept studies for the polycarbonate and Homalite-100 specimens presented in this thesis,

the first three steps were taken for alignment, but not the fourth step, which can correct for the

last degree or two of misalignment. A small π/90 radians misalignment in just the first λ/4 plate,

such as those modeled in Sections 3.3.2.2, 3.3.2.3, and 4.2.4.2, can lead to significant errors (if not

corrected). This systematic alignment should minimize phase modulation in both techniques.

If a non-polarizing beamsplitter is used for this experimental method, purchasing one with Tx =

Ty and Rx = Ry coefficients eliminates the errors for the data. If this is not possible or prohibitively

expensive, obtaining these coefficients from the manufacturer will help to at least quantify the error.

These coefficients may easily be incorporated into the phase-shifting solution as detailed in Section

3.2.1, but incorporation of these coefficients into CGS requires rederiving the equations of intensity

from Chapter 2. Another option is to perform CGS on the beam after the beamsplitter that has

transmission/reflectance coefficients that are better matched and perform photoelasticity with the

other beam since the transmission/reflectance coefficients can be incorporated for photoelasticity.

5.2.2 Isoclinic Angle Determination

If rotational alignment of the polarization optics is not precise, then the analysis program should

be able to correct the errors in the wrapped isoclinic angle. The current manual methodology is

sufficient for these photoelastic cases since the form of α is expected to be slowly varying for most
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of the field, except in cases like that near the crack plane in Mode I–dominant fracture. Before

extending this method to materials where the isoclinic angle may be more complicated or even have

a new relationship to stresses due to the generalization of photoelasticity to anisotropic crystals,

a robust algorithm should be developed for correcting for errors in the wrapped α. Some helpful

features of this algorithm would be (i) removal of the errors even in the presence of other experimental

errors, in the spirit of the quality-guided PCG unwrapping algorithm, (ii) user’s ability to define

masks to prevent removal of physical boundaries, and (iii) user’s ability to define regions of high and

low confidence based on metrics detailed in Section 3.2.4.1.

5.2.3 CGS Phase Relationship with Stress

The error associated with assuming the CGS phases are related to the first derivatives of σ1 + σ2,

first characterized by Bruck and Rosakis (1992, 1993) for Mode I fracture and here in Chapter 4,

requires revisiting to provide a full picture for applications of mixed-mode fracture. As indicated in

the present study, small mode-mixity µSIF from −0.010 to 0.020 demonstrated increased error over

the field of view as mode-mixity increased, particularly for the shearing direction related to the x

derivative of σ1 + σ2. Since Mason et al. (1992) established that CGS can be applied to dynamic

mixed-mode applications using the x derivative with good KII/KI measurement agreement with

theory and finite elements, then possibly CGS studies with higher mode-mixity have acceptable

error. Determining if these conjectures are true requires careful theoretical and experimental study

with a wide range mode-mixity.

Beyond dealing with the error of the derivative assumption, another possible route to extracting

σ1 + σ2 from CGS data is to treat the CGS phase precisely as a finite difference, where

ϕsum =
2πCh

λ
[s(x + dshear/2, y)− s(x− dshear/2, y)] (5.1)

where s = (σ1 + σ2). Written in terms of pixel location, for L = dshear/[2 ∗ pixel resolution], the
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CGS phase for the i-shearing direction is

[ϕi
sum]i,j =

2πCh

λ
[si+L,j − si−L,j ]. (5.2)

This type of finite difference problem is a well defined concept in numerical methods called staggered

grids. Taking the data from both shearing directions allows for an inverse determination of σ1 + σ2,

still assuming that the “integration” of the finite difference data is a discrete Poisson equation. This

change only requires a modification to the current Poisson equation in Equation (3.12) by changing

the assumed resolution of the “derivative” from one pixel to the actual finite difference spacing of

2L, such that

(si+2L,j − 2si,j + si−2L,j) + (si,j+2L − 2si,j + si,j−2L)

=
[(ϕi

sumλ

2πCh

)

i+L,j
−

(ϕi
sumλ

2πCh

)

i−L,j

]
(2L)

+
[(ϕj

sumλ

2πCh

)

i,j+L
−

(ϕj
sumλ

2πCh

)

i,j−L

]
(2L), (5.3)

where ϕi
sum is the CGS phase in the i-shearing direction and ϕj

sum is the CGS phase in the j-shearing

direction. Solving this Poisson equation would require a new algorithm because the PCG algorithm

used in the current method is based on pixel distance as the finite difference spacing. This method

is a more direct way of determining σ1 + σ2 without requiring the derivative assumption, which

introduces the ε error discussed before. Previous fracture studies using CGS did not attempt to

integrate the data to determine σ1 + σ2 as in this study, but instead use the CGS phases directly to

make physical observations. The key to their studies is making the derivative assumption, giving the

interference phase physical meaning as opposed to a finite difference that is difficult to physically

interpret. The use of CGS to extract σ1 +σ2 lifts this need for a physical interpretation of the finite

difference and in turn can eliminate the error associated with the derivative assumption.
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5.3 Extensions of Method to Crystalline Materials

5.3.1 Development of Anisotropic Fracture Criteria

The phase-shifting CGS-photoelasticity experimental method has been demonstrated in stress-

induced birefringent materials that are otherwise isotropic, but the method cannot in general be

used for other types of materials in its current form. In order to extend the experimental method,

the following requirements for both the materials of interest and the method must be met:

1. The crystalline materials must be transparent and have a detectable photoelastic (stress-optic)

effect.

2. The appropriate photoelasticity governing equations are determined using the generalized the-

ory for photoelasticity in crystals (Narasimhamurty, 1981). The basics of this theory are

derived in Appendix C.

3. The governing equations for CGS in crystalline materials must be developed, utilizing the

generalized theory for photoelasticity and elasticity in crystals.

With these requirements met, appropriate modifications to the optical setup and analysis may be

developed to accommodate the new theory, if necessary. A full study of optically active ferroelectric

crystals may be started once this method is extended to general crystals. These ferroelectrics have

an additional challenge of spontaneous birefringence, discussed below.

Given the development of this hybrid method for transparent crystals with a detectable stress-

optic effect, evalutation of full-field stresses around a crack may allow for development of general

anisotropic fracture criteria. Experiments using crystals with different symmetries acting as model

anisotropic materials may quanitify how anisotropic fracture depends on crystal symmetry in addi-

tion to local stresses and energy-related values (σθθ, KI , KII , and G). For example, a crystal with

cubic symmetry may require different fracture criteria than a crystal with monoclinic symmetry.

Full-field stress determinination allows for calculation of the local crack tip stresses and energy-

related values so that different fracture criteria depending on θ (max-KI , KII = 0, max-σθθ, and
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max-G) may be evaluated for each crystal symmetry. Determining fracture criteria for crystals that

are not active materials can serve as a good foundation for studying active materials that bring an

added level of complexity beyond crystal anisotropy.

5.3.2 Preliminary Investigation for Application to Ferroelectrics

Before investing in a full study of ferroelectric materials using this CGS-photoelasticity experimental

method, a logical first step is to blindly attempt to image a loaded single-crystal ferroelectric using

the current experimental method. The ferroelectric crystal used for this preliminary investigation is

barium titanate (BaTiO3), which is a tetragonal crystal at room temperature, meaning the crystal

structure is a square base with side length a and perpendicular rectangular sides with long side length

c (Jona and Shirane, 1993). BaTiO3 has a large c/a ratio of 1.06, which leads to 6% actuation strain

when electromechanically loaded. BaTiO3 is of particular interest for photonic microdevices due to

its high electro-optic nonlinearity. The spontaneous birefringence without stress is ∆n = −0.072

with no = 2.432 (Yariv and Yeh, 2007), which implies in a stressed BaTiO3 crystal, the birefringence

viewed by an optical method is due to both the spontaneous birefringence and the stress-induced

birefringence. The basis of the use of photoelasticity to study ferroelectric materials is if the crystal

has a large enough stress-induced birefringence that can be detected, especially when coupled with

a spontaneous birefringence.

The crystal used here is a single crystal with <001> orientation, meaning the long axis is aligned

with thickness of the crystal and with the optical axis of the light source (z axis). The crystal then has

two possible polarization states, along the +z or −z axis; a region with the same polarization state

is called a domain. The specimen is 5 mm × 5 mm and 1.01 mm thick. The loading configuration

is a distributed load by a wedge on the side of the crystal, which is clamped on the opposite side

by a specimen holder. The image field of view is 4.52 mm × 4.52 mm with 4.5 µm resolution. The

light source is a He-Ne laser with λ = 632.8 nm. The CGS parameters are the following: p = 1

mm/40, ∆̃ =8 .87 mm, and dshear = 226 µm. The phase-shifting methods in terms of the procedure

of changing the optics are the same as for the photoelastic materials, introduced in Chapters 2
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and 3, but the physical interpretations of the interference patterns are not necessarily applicable to

ferroelectrics. All three possible polarization configurations for CGS are employed.

Figure 5.1 shows the six photoelasticity images from the six combinations of polarization optic

angles in Table 3.1. The images that pertain only to the isochromatic phase in photoelastic materials,

I1 and I2, appear more complicated than usual, with breaks in continuity of the fringes along vertical

lines. These vertical lines are likely 180o domain walls, which are the boundaries between domains

with polarization state that are 180o different. Since the stresses in the crystal should be continuous

across these domain walls, the breaks in the interference fringes at these domain walls likely implies

that two adjacent domains affect the ∆n differently, modulating the stress-related ∆n term. The

other four images that usually pertain to both the isochromatic phase and the isoclinic angle do

appear different from each other and from I1 and I2. I4 and I6 are similar to I1 and I2 in structure,

but I3 and I5 only exhibit faint weak fringes and a crack in the crystal emanating from the load

application point. The presence of the crack appears to further complicate the interference patterns.

The next step in the experimental method is to try to determine the isoclinic angle and the

isochromatic phase using Equations 3.3 and 3.4. Using the BaTiO3 experimental images I1 through

I6 as if they originated from an ordinary photoelastic material yields the “wrapped isoclinic angle” in

Figure 5.2(a), which is then used without unwrapping to give an “ambiguous wrapped isochromatic

phase” in Figure 5.2(b). These wrapped phases do exhibit behavior consistent with the isoclinic

angle and isochromatic phase. Figure 5.2(a) has many phase discontinuities reminiscent of the false

phase discontinuities in α for the photoelastic materials that appear to correspond to the sine of the

phase in Figure 5.2(b) going to zero. Otherwise, this α-like phase does not have phase discontinuities

except near the crack. Ignoring the modulation by the δ-like phase, the α-like phase has mostly

values close to zero, implying that the principal axes of the crystal are aligned with the Cartesian

axes. Since this is a crystal, the principal axes will align with the crystal structure, so an α-like

quantity in a tetragonal crystal is likely to be close to zero or π/2. The wrapped δ-like phase in

Figure 5.2(b) has breaks in the phase discontinuities at the domain walls, illustrating the effect

of the spontaneous birefringence of different domains on the ∆n. The wrapped δ-like phase also
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has what appears to be ambiguous data near the crack, possibly due to the regions in the α-like

phase that require unwrapping. These conjectures require further investigation to determine the

physical meaning behind these phases and to determine if these are even the appropriate quantities

to consider. The interference patterns from the photoelasticity setup, though without quantified

relationships to stresses, do exhibit some change in refractive index related to stresses that is large

enough to detect using polarization optics. These images give hope to the idea that photoelasticity

can be used to investigate stresses in ferroelectric crystals.

The images from the phase-shifting vertical and horizontal shearing CGS for all three polarization

configurations introduced in Chapter 2 are presented in Figure 5.3. These images are complicated

for two main reasons: (i) the polarization of different domains lead to discontinuous ∆n, which

then produce discontinuous CGS phases, and (ii) the finite shearing distance leads to interference

of ∆S (optical path difference) from parts of the crystal that may have different domains, which

can also lead to discontinuous CGS phases. In this case, the least complicated images come from

the pure Ey ̂ input, which may have some polarization significance. Having acquired four phase-

shifted images for each case in Figure 5.3, the wrapped phase can be determined using the standard

arctan() formula that gives a range from (−π/2, π/2], as shown in Figure 5.4. These wrapped phases

have the discontinuous fringes at the domain walls, but the phase appears either continuous or has

the appropriate π phase discontinuity expected from wrapped CGS phases in vertical strips, which

implies that these phases could be unwrapped inside these vertical strips. The obvious first steps

are to determine the ∆S for a stresses ferroelectric and then determine the intensity relationship for

these interference patterns, because from first glance, interpreting these CGS images is nontrivial.

Fortunately, the stress-related optical effects and other optical effects in these ferroelectrics are well

characterized, so determination of the intensities is only a matter of careful analysis.

5.4 Conclusions

The future research for this CGS-photoelasticity experimental method pertains to two main avenues,

improving the current method and then extending it to investigate fracture in crystalline materi-
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als. Errors related to misalignment of optics and to the non-polarizing beamsplitter may easily be

mitigated by careful alignment procedures outlined above and by characterizing the quality of the

optics. Also, a robust algorithm should be developed to reduce errors due to corrections to the

wrapped isoclinic angle. To eliminate the inherent error in assuming that the CGS phase is related

to the derivative of σ1 + σ2, the CGS phase is to be treated as a finite difference, and then the

vertical and horizontal phase data are integrated using a new form of the discrete Poisson equa-

tion based on staggered grids. The extension of the experimental method to crystalline materials

depends mainly on a detectable photoelastic effect from the crystal and on extensive analysis on

the interference patterns in the individual experimental techniques. A preliminary investigation of

the ferroelectric BaTiO3 demonstrates that this crystal has a detectable photoelastic effect, but this

effect is confounded by the spontaneous polarization; further analysis is required to determine the

physical meaning of interference patterns from both photoelasticity and CGS for this ferroelectric.
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Figure 5.1: Experimental images from six-step phase-shifting photoelasticity for a side-loaded
BaTiO3 single crystal
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Figure 5.2: Experimental wrapped phases from six-step phase-shifting photoelasticity for a side-
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Figure 5.3: Experimental images I1 from the three polarization configurations for vertical and
horizontal shearing directions for a side-loaded BaTiO3 single crystal
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Figure 5.4: Experimental wrapped phases from the three polarization configurations for vertical and
horizontal shearing directions for a side-loaded BaTiO3 single crystal
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Chapter 6

Conclusions

This thesis has presented a hybrid full-field experimental method combining phase-shifting pho-

toelasticity and transmission Coherent Gradient Sensing for in-plane tensorial stress determination

for fracture studies. In order for this method to achieve its goals, a new analysis for transmission

wavefront shearing interferometry applied to photoelastic materials has been developed and ex-

perimentally verified for the specific wavefront shearing interferometer Coherent Gradient Sensing.

The hybrid experimental method has been developed and experimentally verified for photoelastic

materials by good comparison between experimental and theoretical stress fields for a compressed

polycarbonate plate with a side V-notch. The hybrid experimental method has also been validated

for full-field tensorial stress determination around Mode I–dominant cracks in photoelastic materi-

als, a study that is the first to achieve these goals, serving as the foundation for future research in

extending this method for fracture studies in anisotropic materials.

The new analysis of transmission wavefront shearing interferometry for photoelastic materials

derives an intensity expression Iimage for the complicated interference pattern that, in general, is the

sum of two interference patterns such that Iimage = Io +I1o cos[ϕsum +ϕdiff ]+I2o cos[ϕsum−ϕdiff ]

(Equation (2.16)); ϕsum is the phase related to σ1 + σ2 and is the only phase that results for these

interferometers applied to optically isotropic materials, ϕdiff is a phase related to σ1 − σ2, and

I1o and I2o are coefficients determined by the polarization of the input electric field. The control

of the input electric field polarization by polarization optics prior to the photoelastic specimen, in

addition to phase-shifting techniques, allow for determination of the desired ϕsum. This analysis
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has been verified using a compressed polycarbonate plate with a side V-notch using CGS with the

experimental phase maps comparing well with theory based on Williams (1952). This analysis serves

as the governing theory for determination of x and y derivatives of σ1+σ2 for the hybrid experimental

method presented in this thesis.

A six-step phase-shifting photoelasticity method has been presented utilizing different angles for

the polarization optics in a circular polariscope to obtain six images related to σ1 − σ2 and the

isoclinic angle, α, which is the angle between the Cartesian and principal coordinate systems. This

method allows for full-field determination of σ1 − σ2 and α. Since the first two polarization optics

of the circular polariscope, a polarizer and λ/4 plate set for circular polarization of the electric field

prior to the specimen, are also useful for determination of ϕsum from CGS, then a non-polarizing

beamsplitter or a translating mirror immediately after the sample allows for these two experimental

techniques to be combined to investigate the same field of view of a specimen. The phase-shifting

techniques produce “wrapped” phase fields that require unwrapping before the stress fields can be

determined, a task achieved by a data-quality–guided unwrapping algorithm by Ghiglia and Romero

(1994) based on preconditioned conjugate gradient (PCG) numerical methods used to solve discrete

Poisson equations. A slightly modified version of the algorithm has been implemented for integration

of the x and y derivatives of stress to determine σ1 + σ2 + ci, where the constant of integration ci

is determined by a traction free boundary condition. The in-plane tensorial stress components

can then be determined from full-field σ1 + σ2, σ1 − σ2, and α, as demonstrated for a compressed

polycarbonate plate with a side V-notch. Some potential error sources have been identified as

rotational misalignment of the polarization optics and transmission and reflectance coefficients of

the non-polarizing beamsplitter, and mitigation techniques have been developed to minimize error,

particularly in the isoclinic angle. Despite these error sources, the experimental and theoretical data

have good agreement. This experimental verification of the hybrid experimental method is the basis

for the application of the method for determination of the in-plane tensorial stress around a loaded

crack in a photoelastic material.

The first study to experimentally determine full-field in-plane tensorial stress around a crack in a
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photoelastic material has been presented. The hybrid method has been applied to Mode I–dominant

cracks in Homalite-100 for small fields of view, for a range of Mode I stress intensity factors from

around one-quarter to just below the fracture toughness of Homalite-100, and for a small range

of mode-mixity KII/KI from −0.010 to 0.020. The experimental stress fields show K-dominant

behavior, allowing for excellent comparison to full-field theoretical data based on the 2D asymptotic

crack solution using the experimentally calculated KI and KII values. These values have been

calculated from stress fields incorporating both CGS and photoelasticity data and allow for global

error less than 5% for most fields and no greater than 7.8%, showing that the two techniques work

well together for stress determination around cracks. Common error sources identified in Chapter

3 are characterized for this application and can be mitigated with careful experimentation and

with improved analysis algorithms. This study has successfully met the objective of this thesis: to

apply a hybrid experimental method for full-field in-plane tensorial stress determination suitable for

fracture studies in photoelastic materials with the ability to view local stresses around a crack for

small (mm-scale) fields of view for small specimens. This study is the foundation for future research

in extending this method for fracture studies in anisotropic materials.

Future research discussed in this thesis for the hybrid CGS-photoelasticity experimental method

involves improvements to the current method and then extension of it for fracture studies in

anisotropic materials, particularly crystalline materials. Errors associated with the rotational mis-

alignment of the polarization optics and to the non-polarizing beamsplitter may be mitigated with

careful alignment procedures and by characterizing the quality and tolerances of the optics. A robust

algorithm should be developed to improve the user-correction of any remaining errors due to these

sources in the isoclinic angle data. Since this experimental method ultimately uses the σ1 +σ2 stress

field data, then the derivative assumption relating the CGS phases to spatial derivatives of stresses

and the error associated with this assumption may be eliminated by treating the phases as finite

differences based on staggered grids. The vertical and horizontal phase data may be used in an

algorithm, which requires future implementation, to solve a discrete Poisson equation to determine

σ1+σ2. Extending the experimental method to crystalline materials requires (i) a detectable photoe-
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lastic effect from the crystal and (ii) extensive analysis of the interference patterns in the individual

experimental techniques. A preliminary investigation of the ferroelectric BaTiO3 has shown that

this crystal has a detectable photoelastic effect, but this effect is confounded by the spontaneous

polarization of the ferroelectric. Further analysis is required to determine the physical meaning of

interference patterns from both photoelasticity and CGS for this ferroelectric. Established theories

such as photoelasticity for crystals and the electro-optic effect serve as tools for new analyses that

extend the CGS-photoelasticity experimental method to meet its ultimate goal of full-field stress

determination for fracture criteria development for active anisotropic materials.
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Appendix A

Stress in Principal, Cartesian, and
Polar Coordinate Systems

A.1 Relations Between Stress Fields in Principal, Cartesian,

and Polar Coordinate Systems

A.1.1 Principal and Cartesian Coordinate Systems

Transforming the 2D stress tensor σ from Cartesian to the principal coordinate system and vice versa

requires the rotation matrix Rα, given in Equation (A.1), where α is the angle between the Cartesian

and principal coordinate systems, as shown in Figure A.1. Equation (A.2) shows transforming σ

from Cartesian to principal coordinates. Equation (A.3) shows transforming σ from principal to

Cartesian coordinates in terms of the sum and differences of the principal stresses.

Rα =





cos(α) − sin(α)

sin(α) cos(α)




(A.1)
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α

σ1
σ2

σxx

σyy

Figure A.1: Schematic of Cartesian and principal coordinate systems





σ1 0

0 σ2




= RT

α





σxx σxy

σxy σyy




Rα

= RT
α





σxx cos(α) + σxy sin(α) −σxx sin(α) + σxy cos(α)

σyy sin(α) + σxy cos(α) σyy cos(α)− σxy sin(α)





=





[σxx cos2(α) + σyy sin2(α)

+ 2σxy cos(α) sin(α)]

[(σyy − σxx) cos(α) sin(α)

+ σxy(cos2(α)− sin2(α))]

[(σyy − σxx) cos(α) sin(α)

+ σxy(cos2(α)− sin2(α))]

[σxxsin2(α) + σyy cos2(α)

− 2σxy cos(α) sin(α)]





=





[σxx

( 1+cos(2α)
2

)

+σyy

( 1−cos(2α)
2

)
+ σxy sin(2α)]

[(σyy − σxx)
( sin(2α)

2

)

+σxy cos(2α)]

[(σyy − σxx)
( sin(2α)

2

)

+σxy cos(2α)]

[σxx

( 1−cos(2α)
2

)

+σyy

( 1+cos(2α)
2

)
− σxy sin(2α)]





=





[ 12 (σxx + σyy) + 1
2 (σxx − σyy) cos(2α)

+σxy sin(2α)]

[− 1
2 (σxx − σyy) sin(2α)

+σxy cos(2α)]

[− 1
2 (σxx − σyy) sin(2α)

+σxy cos(2α)]

[ 12 (σxx + σyy)− 1
2 (σxx − σyy) cos(2α)

−σxy sin(2α)]





(A.2)
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



σxx σxy

σxy σyy




= Rα





σ1 0

0 σ2




RT

α

= Rα





σ1 cos(α) σ1 sin(α)

−σ2 sin(α) σ2 cos(α)





=





σ1 cos2(α) + σ2 sin2(α) (σ1 − σ2) cos(α) sin(α)

(σ1 − σ2) cos(α) sin(α) σ1 sin2(α) + σ2 cos2(α)





=





σ1

( 1+cos(2α)
2

)
+ σ2

( 1−cos(2α)
2

)
(σ1 − σ2)

( sin(2α)
2

)

(σ1 − σ2)
( sin(2α)

2

)
σ1

( 1−cos(2α)
2

)
+ σ2

( 1+cos(2α)
2

)





=





1
2 (σ1 + σ2) + 1

2 (σ1 − σ2) cos(2α) 1
2 (σ1 − σ2) sin(2α)

1
2 (σ1 − σ2) sin(2α) 1

2 (σ1 + σ2)− 1
2 (σ1 − σ2) cos(2α)





(A.3)

A.1.2 Polar and Cartesian Coordinate Systems

Transforming the 2D stress tensor σ from Cartesian to the polar coordinate system and vice versa

requires the rotation matrix Rθ, given in Equation (A.4), where θ is the angle between the Carte-

sian x-axis and the radius vector. Equation (A.5) shows transforming σ from Cartesian to polar

coordinates. Equation (A.6) shows transforming σ from polar to Cartesian coordinates. Since the

simplifications are similar to the equations in Section (A.1.1), not all the steps are shown.

Rθ =





cos(θ) − sin(θ)

sin(θ) cos(θ)




(A.4)
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



σrr σrθ

σrθ σθθ




= RT

θ





σxx σxy

σxy σyy




Rθ

=





[σxx cos2(θ) + σyy sin2(θ)

+σxy sin(2θ)]

[− 1
2 (σxx − σyy) sin(2θ)

+σxy cos(2θ)]

[− 1
2 (σxx − σyy) sin(2θ)

+σxy cos(2θ)]

[σxx sin2(θ) + σyy cos2(θ)

−σxy sin(2θ)]





(A.5)





σxx σxy

σxy σyy




= Rθ





σrr σrθ

σrθ σθθ




RT

θ

=





[σrr cos2(θ) + σθθ sin2(θ)

−σrθ sin(2θ)]

[ 12 (σrr − σθθ) sin(2θ)

+σrθ cos(2θ)]

[ 12 (σrr − σθθ) sin(2θ)

+σrθ cos(2θ)]

[σrr sin2(θ) + σθθ cos2(θ)

+σrθ sin(2θ)]





(A.6)

A.1.3 Polar and Principal Coordinate Systems

The 2D stress tensor σ may be transformed from Cartesian to the Polar coordinate system and vice

versa using the relations in Sections A.1.1–A.1.2. The stress components σrr, σrθ, and σθθ are given

in terms of the principal stresses, the principal direction (in terms of the angle α), and the angle θ,

as given in Equations (A.7)–(A.9). The principal stress components are given in terms of the σrr,

σrθ, and σθθ, the principal direction, and the angle θ, as given in Equation (A.10).
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σrr = [12 (σ1 + σ2) + 1
2 (σ1 − σ2) cos(2α)] cos2(θ)

+ [ 12 (σ1 + σ2)− 1
2 (σ1 − σ2) cos(2α)] sin2(θ) + 1

2 (σ1 − σ2) sin(2α) sin(2θ)

= 1
2 (σ1 + σ2) + 1

2 (σ1 − σ2) cos(2α)[cos2(θ)− sin2(θ)]

+ 1
2 (σ1 − σ2) sin(2α) sin(2θ)

= 1
2 (σ1 + σ2) + 1

2 (σ1 − σ2)[cos(2α) cos(2θ) + sin(2α) sin(2θ)]

= 1
2 (σ1 + σ2) + 1

2 (σ1 − σ2) cos(2θ − 2α)

(A.7)

σrθ = 1
2{[

1
2 (σ1 + σ2)− 1

2 (σ1 − σ2) cos(2α)]

− [ 12 (σ1 + σ2) + 1
2 (σ1 − σ2) cos(2α)]} sin(2θ) + 1

2 (σ1 − σ2) sin(2α) cos(2θ)

= − 1
2 (σ1 − σ2) cos(2α) sin(2θ) + 1

2 (σ1 − σ2) sin(2α) cos(2θ)

= − 1
2 (σ1 − σ2)[sin(2θ) cos(2α)− cos(2θ) sin(2α)]

= − 1
2 (σ1 − σ2) sin(2θ − 2α)

(A.8)

σθθ = [12 (σ1 + σ2) + 1
2 (σ1 − σ2) cos(2α)] sin2(θ)

+ [ 12 (σ1 + σ2)− 1
2 (σ1 − σ2) cos(2α)] cos2(θ)− 1

2 (σ1 − σ2) sin(2α) sin(2θ)

= 1
2 (σ1 + σ2)− 1

2 (σ1 − σ2) cos(2α)[cos2(θ)− sin2(θ)]

− 1
2 (σ1 − σ2) sin(2α) sin(2θ)

= 1
2 (σ1 + σ2)− 1

2 (σ1 − σ2)[cos(2α) cos(2θ) + sin(2α) sin(2θ)]

= 1
2 (σ1 + σ2)− 1

2 (σ1 − σ2) cos(2θ − 2α)

(A.9)
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σ1,2 = 1
2{[σrr cos2(θ) + σθθ sin2(θ)− σrθ sin(2θ)]

+ [σrr sin2(θ) + σθθ cos2(θ) + σrθ sin(2θ)]}

± 1
2{[σrr cos2(θ) + σθθ sin2(θ)− σrθ sin(2θ)]

− [σrr sin2(θ) + σθθ cos2(θ) + σrθ sin(2θ)]} cos(2α)

± [ 12 (σrr − σθθ) sin(2θ) + σrθ cos(2θ)] sin(2α)

= 1
2 (σrr + σθθ) ± 1

2 (σrr − σθθ)[cos2(θ)− sin2(θ)] cos(2α)− σrθ sin(2θ) cos(2α)

± 1
2 (σrr − σθθ) sin(2θ) sin(2α) ± σrθ cos(2θ) sin(2α)

= 1
2 (σrr + σθθ) ± 1

2 (σrr − σθθ)[cos(2α) cos(2θ) + sin(2α) sin(2θ)]

∓ σrθ[sin(2θ) cos(2α)− cos(2θ) sin(2α)]

= 1
2 (σrr + σθθ) ± 1

2 (σrr − σθθ) cos(2θ − 2α)∓ σrθ sin(2θ − 2α)

(A.10)

A.2 Important Stress Terms and Derivatives

A.2.1 Terms Involving the Sum of Principal Stresses

Coherent Gradient Sensing (CGS) involves the sum of principal stresses, so σ1+σ2 and its derivatives

must be developed in terms of Cartesian and polar coordinates. From Equations (A.3) and (A.10),

the sum of principal stresses may be written as

σ1 + σ2 = σxx + σyy = σrr + σθθ. (A.11)

Given Equation (A.11), the derivatives of σ1 + σ2 with respect to r and θ may be written as

∂σ1 + σ2

∂r
=

∂(σxx + σyy)
∂r

=
∂(σrr + σθθ)

∂r
, (A.12)

∂σ1 + σ2

∂θ
=

∂(σxx + σyy)
∂θ

=
∂(σrr + σθθ)

∂θ
. (A.13)



202

With Equations (A.11)–(A.13), the derivatives of σ1 + σ2 with respect to x and y are

∂σ1 + σ2

∂x
=

∂r

∂x

∂(σ1 + σ2)
∂r

+
∂θ

∂x

∂(σ1 + σ2)
∂θ

= cos(θ)
∂(σ1 + σ2)

∂r
− sin(θ)

r

∂(σ1 + σ2)
∂θ

= cos(θ)
∂(σxx + σyy)

∂r
− sin(θ)

r

∂(σxx + σyy)
∂θ

= cos(θ)
∂(σrr + σθθ)

∂r
− sin(θ)

r

∂(σrr + σθθ)
∂θ

,

(A.14)

∂σ1 + σ2

∂y
=

∂r

∂y

∂(σ1 + σ2)
∂r

+
∂θ

∂y

∂(σ1 + σ2)
∂θ

= sin(θ)
∂(σ1 + σ2)

∂r
+

cos(θ)
r

∂(σ1 + σ2)
∂θ

= sin(θ)
∂(σxx + σyy)

∂r
+

cos(θ)
r

∂(σxx + σyy)
∂θ

= sin(θ)
∂(σrr + σθθ)

∂r
+

cos(θ)
r

∂(σrr + σθθ)
∂θ

.

(A.15)

A.2.2 Terms Involving the Difference of Principal Stresses and Directions

Both photoelasticity and CGS for photoelastic materials involve the difference of principal stresses;

additionally, CGC for photoelastic materials involve the derivatives of σ1 − σ2 and of α. These also

must be written in terms of Cartesian and polar coordinates. The difference of principal stresses

may be written in the following manner using Equation (A.3) and (A.10):

σ1 − σ2 = (σxx − σyy) cos(2α) + 2σxy sin(2α)

= (σrr − σθθ) cos(2θ − 2α)− 2σrθ sin(2θ − 2α).
(A.16)

Taking the r and θ derivatives of σ1 − σ2 in terms of Cartesian coordinates produces equations

that involve the r and θ derivatives of α, but using tan(2α) = (2σxy/(σxx − σyy)) can eliminate the
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terms involving the derivatives of α.

∂(σ1 − σ2)
∂r

=
∂(σxx − σyy)

∂r
cos(2α) + 2

∂σxy

∂r
sin(2α)

+ 2
∂α

∂r
[2σxy cos(2α)− (σxx − σyy) sin(2α)]

=
∂(σxx − σyy)

∂r
cos(2α) + 2

∂σxy

∂r
sin(2α)

+ 2
∂α

∂r
[2σxy cos(2α)− 2σxy cos(2α)]

=
∂(σxx − σyy)

∂r
cos(2α) + 2

∂σxy

∂r
sin(2α)

(A.17)

∂(σ1 − σ2)
∂θ

=
∂(σxx − σyy)

∂θ
cos(2α) + 2

∂σxy

∂θ
sin(2α)

+ 2
∂α

∂θ
[2σxy cos(2α)− (σxx − σyy) sin(2α)]

=
∂(σxx − σyy)

∂θ
cos(2α) + 2

∂σxy

∂θ
sin(2α)

+ 2
∂α

∂θ
[2σxy cos(2α)− 2σxy cos(2α)]

=
∂(σxx − σyy)

∂θ
cos(2α) + 2

∂σxy

∂θ
sin(2α)

(A.18)

Writing these derivatives in terms of polar coordinates first requires determining r and θ deriva-

tives of σxx − σyy and σxy:

σxx − σyy = σrr(cos2(θ)− sin2(θ))− σθθ(cos2(θ)− sin2(θ))− 2σrθ sin(2θ)

= (σrr − σθθ) cos(2θ)− 2σrθ sin(2θ) (A.19)

∂(σxx − σyy)
∂r

=
∂(σrr − σθθ)

∂r
cos(2θ)− 2

∂σrθ

∂r
sin(2θ) (A.20)

∂(σxx − σyy)
∂θ

=
[∂(σrr − σθθ)

∂θ
− 4σrθ

]
cos(2θ)− 2

[∂σrθ

∂θ
+ (σrr − σθθ)

]
sin(2θ). (A.21)

With Equations (A.17), (A.18), (A.20), and (A.21), the r and θ derivatives of σ1 − σ2 may be
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written in terms of polar coordinates:

∂(σ1 − σ2)
∂r

=
∂(σrr − σθθ)

∂r
cos(2θ − 2α)− 2

∂σrθ

∂r
sin(2θ − 2α) (A.22)

∂(σ1 − σ2)
∂θ

=
∂(σrr − σθθ)

∂θ
cos(2θ − 2α)− 2

∂σrθ

∂θ
sin(2θ − 2α)

− 2(σrr − σθθ) sin(2θ − 2α)− 4σrθ cos(2θ − 2α). (A.23)

The x and y derivatives of σ1−σ2 in terms of Cartesian and polar coordinates are easily obtained

from Equations (A.17), (A.18), (A.22), and (A.23).

∂(σ1 − σ2)
∂x

= cos(θ)
∂(σ1 − σ2)

∂r
− sin(θ)

r

∂(σ1 − σ2)
∂θ

=
[
cos(θ)

∂(σxx − σyy)
∂r

− sin(θ)
r

∂(σxx − σyy)
∂θ

]
cos(2α)

+ 2
[
cos(θ)

∂σxy

∂r
− sin(θ)

r

∂σxy

∂θ

]
sin(2α)

(A.24)

∂(σ1 − σ2)
∂y

= sin(θ)
∂(σ1 − σ2)

∂r
+

cos(θ)
r

∂(σ1 − σ2)
∂θ

=
[
sin(θ)

∂(σxx − σyy)
∂r

+
cos(θ)

r

∂(σxx − σyy)
∂θ

]
cos(2α)

+ 2
[
sin(θ)

∂σxy

∂r
+

cos(θ)
r

∂σxy

∂θ

]
sin(2α)

(A.25)

∂(σ1 − σ2)
∂x

= cos(θ)
∂(σ1 − σ2)

∂r
− sin(θ)

r

∂(σ1 − σ2)
∂θ

=
[
cos(θ)

∂(σrr − σθθ)
∂r

− sin(θ)
r

(∂(σrr − σθθ)
∂θ

− 4σrθ

)]
cos(2θ − 2α)

− 2
[
cos(θ)

∂σrθ

∂r
− sin(θ)

r

(∂σrθ

∂θ
+ (σrr − σθθ)

)]
sin(2θ − 2α)

(A.26)

∂(σ1 − σ2)
∂y

= sin(θ)
∂(σ1 − σ2)

∂r
+

cos(θ)
r

∂(σ1 − σ2)
∂θ

=
[
sin(θ)

∂(σrr − σθθ)
∂r

+
cos(θ)

r

(∂(σrr − σθθ)
∂θ

− 4σrθ

)]
cos(2θ − 2α)

− 2
[
sin(θ)

∂σrθ

∂r
+

cos(θ)
r

(∂σrθ

∂θ
+ (σrr − σθθ)

)]
sin(2θ − 2α)

(A.27)
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The analysis for CGS for photoelastic materials requires determining the x and y derivatives of

α; this first requires the r and θ derivatives of α, which come from taking the r and θ derivatives of

tan(2α) = 2σxy/(σxx − σyy):

∂

∂r
[tan(2α)] =

∂

∂r

[ 2σxy

σxx − σyy

]

∂α

∂r

2
cos2(2α)

=
∂σxy

∂r

2
σxx − σyy

− ∂(σxx − σyy)
∂r

2σxy

(σxx − σyy)2

∂α

∂r
=

cos2(2α)
σxx − σyy

[∂σxy

∂r
− tan(2α)

2
∂(σxx − σyy)

∂r

]
, (A.28)

∂

∂θ
[tan(2α)] =

∂

∂θ

[ 2σxy

σxx − σyy

]

∂α

∂θ

2
cos2(2α)

=
∂σxy

∂θ

2
σxx − σyy

− ∂(σxx − σyy)
∂θ

2σxy

(σxx − σyy)2

∂α

∂θ
=

cos2(2α)
σxx − σyy

[∂σxy

∂θ
− tan(2α)

2
∂(σxx − σyy)

∂θ

]
. (A.29)

The x and y derivatives of α may be written as

∂α

∂x
= cos(θ)

∂α

∂r
− sin(θ)

r

∂α

∂θ

=
cos2(2α)
σxx − σyy

{
cos(θ)

[∂σxy

∂r
− tan(2α)

2
∂(σxx − σyy)

∂r

]

− sin(θ)
r

[∂σxy

∂θ
− tan(2α)

2
∂(σxx − σyy)

∂θ

]}
,

(A.30)

∂α

∂y
= sin(θ)

∂α

∂r
+

cos(θ)
r

∂α

∂θ

=
cos2(2α)
σxx − σyy

{
sin(θ)

[∂σxy

∂r
− tan(2α)

2
∂(σxx − σyy)

∂r

]

+
cos(θ)

r

[∂σxy

∂θ
− tan(2α)

2
∂(σxx − σyy)

∂θ

]}
.

(A.31)
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Appendix B

Derivation of Analytical Solutions
for Various Loading Conditions

B.1 V-Notch Stress Field Derivation

Williams (1952) presented a derivation of the stress fields of a thin plate with an “angular corner”

cut out of it under uniaxial tensile load with various boundary conditions. This derivation is most

commonly utilized for the derivation of the stress field of a Mode-I crack, which is a corner of angle

0o, in a plate. Here, the derivation is applied to a thin plate with a 60o V-shaped notch under

uniaxial compression, as shown in Figure B.1. β is the angle of the material about the notch tip

at the origin; therefore here β = 300o = 5π/3. The V-notch is symmetric about the x-axis, and

the compressive load is applied along the y-axis. The free-free boundary conditions are for the

edges of the corner and not the boundaries of the plate, since the solution is for an infinite plate:

σrθ = σθθ = 0 at θ = ±β/2.

The 2D stress field for this configuration may be derived using the following Airy stress potential:

φ(r, θ) = rλ+1F (θ), (B.1)

where F (θ) solves the differential equation

( d2

dθ2
+ (λ + 1)2

)( d2

dθ2
+ (λ− 1)2

)
F (θ) = 0. (B.2)
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Figure B.1: Schematic of compressed plate with a side V-notch

The general solution to Equation (B.2) is

F (θ) = A1 cos[(λ + 1)θ] + A2 sin[(λ + 1)θ] + A3 cos[(λ− 1)θ] + A4 sin[(λ− 1)θ]. (B.3)

The 2D stress components are the following in terms of r, F (θ), and λ:





σrr σrθ

σrθ σθθ




=





1
r

∂φ
∂r + 1

r2
∂2φ
∂θ

∂2φ
∂r

∂2φ
∂r − ∂

∂r

(
1
r

∂φ
∂θ

)





=





rλ−1[F
′′
(θ) + (λ + 1)F (θ)] −λrλ−1F

′
(θ)

−λrλ−1F
′
(θ) λ(λ + 1)rλ+1F (θ)




.

(B.4)

The F
′
(θ) and F

′′
(θ) are

F
′
(θ) =− (λ + 1)A1 sin[(λ + 1)θ] + (λ + 1)A2 cos[(λ + 1)θ] (B.5)

− (λ− 1)A3 sin[(λ− 1)θ] + (λ− 1)A4 cos[(λ− 1)θ]

F
′′
(θ) =− (λ + 1)2A1 cos[(λ + 1)θ]− (λ + 1)2A2 sin[(λ + 1)θ] (B.6)

− (λ− 1)2A3 cos[(λ− 1)θ]− (λ− 1)2A4 sin[(λ− 1)θ].

In light of the traction-free boundary conditions at θ = ±β/2 and the above equations for stress,
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the following equations involving λ emerge:

σθθ

∣∣
θ=+

β
2

= 0 = λ(λ + 1)rλ−1{A1 cos[(λ + 1)β
2 ] + A2 sin[(λ + 1)β

2 ] (B.7)

+ A3 cos[(λ− 1)β
2 ] + A4 sin[(λ− 1)β

2 ]}

σθθ

∣∣
θ=−β

2

= 0 = λ(λ + 1)rλ−1{A1 cos[(λ + 1)β
2 ]−A2 sin[(λ + 1)β

2 ] (B.8)

+ A3 cos[(λ− 1)β
2 ]−A4 sin[(λ− 1)β

2 ]}

σrθ

∣∣
θ=+

β
2

= 0 = −λrλ−1{−(λ + 1)A1 sin[(λ + 1)β
2 ] + (λ + 1)A2 cos[(λ + 1)β

2 ] (B.9)

− (λ− 1)A3 sin[(λ− 1)β
2 ] + (λ− 1)A4 cos[(λ− 1)β

2 ]}

σrθ

∣∣
θ=−β

2

= 0 = −λrλ−1{(λ + 1)A1 sin[(λ + 1)β
2 ] + (λ + 1)A2 cos[(λ + 1)β

2 ] (B.10)

+ (λ− 1)A3 sin[(λ− 1)β
2 ] + (λ− 1)A4 cos[(λ− 1)β

2 ]}.

Constants A1–A4 cannot be uniquely determined solely from the four boundary conditions be-

cause Equations (B.7)–(B.10) form a homogenous system of equations; therefore the determinant

of this system must go to zero. Williams (1952) determined the eigen-equation for this free-free

boundary condition:

sin(λβ) = ±λ
sin(β)

β
. (B.11)

Equation (B.11) determines the values of λ as a function of β. For continuity of displacements,

λ > 0. The min Re λ such that λ > 0 is chosen, which results in unbounded stresses near the

tip of the notch. For β = 5π/3, this λ is λo = 0.512221. Therefore, the Airy stress potential is

Equation (B.12) in terms of A1 and A2:

φ(r, θ) = rλo+1
[
A1

{
cos[(λo + 1)θ]−

cos[(λo + 1)β
2 ]

cos[(λo − 1)β
2 ]

cos[(λo − 1)θ]
}

A2

{
sin[(λo + 1)θ]−

sin[(λo + 1)β
2 ]

sin[(λo − 1)β
2 ]

sin[(λo − 1)θ]
}]

.

(B.12)

With uniaxial extension or compression along the y axis, only the symmetric portion of the Airy
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stress potential applies, as given in Equation (B.13).

φsym(r, θ) = A1r
λo+1

{
cos[(λo + 1)θ]−

cos[(λo + 1)β
2 ]

cos[(λo − 1)β
2 ]

cos[(λo − 1)θ]
}

. (B.13)

With Equations (B.4) and (B.13), the 2D stresses may be written in terms of the constant A1:

σrr(r, θ) =
A1

r1−λo

{
− λo(λo + 1) cos[(λo + 1)θ] (B.14)

+ λo(λo − 3)
cos[(λo + 1)β

2 ]
cos[(λo − 1)β

2 ]
cos[(λo − 1)θ]

}

σθθ(r, θ) =
A1λo(λo + 1)

r1−λo

{
cos[(λo + 1)θ]−

cos[(λo + 1)β
2 ]

cos[(λo − 1)β
2 ]

cos[(λo − 1)θ]
}

(B.15)

σrθ(r, θ) =
A1λo

r1−λo

{
(λo + 1) sin[(λo + 1)θ]− (λo − 1)

cos[(λo + 1)β
2 ]

cos[(λo − 1)β
2 ]

sin[(λo − 1)θ]
}

. (B.16)

The constant A1 is related to the applied stress in the far-field. Since the 2D stress field is in units of

N/m2, then A1 is linearly related to applied stress, σapp, and is related to the depth of the V-notch,

d, to the power 1− λo, such that

A1 = Cσappd
1−λo , (B.17)

where C is a fitting constant depending on specimen geometry. With this factor, the 2D stresses

become

σrr(r, θ) =
Cσappd1−λo

(r)1−λo

{
− λo(λo + 1) cos[(λo + 1)θ] (B.18)

+ λo(λo − 3)
cos[(λo + 1)β

2 ]
cos[(λo − 1)β

2 ]
cos[(λo − 1)θ]

}

σθθ(r, θ) =
Cσappd1−λoλo(λo + 1)

(r)1−λo

{
cos[(λo + 1)θ]−

cos[(λo + 1)β
2 ]

cos[(λo − 1)β
2 ]

cos[(λo − 1)θ]
}

(B.19)

σrθ(r, θ) =
Cσappd1−λoλo

(r)1−λo

{
(λo + 1) sin[(λo + 1)θ]− (λo − 1)

cos[(λo + 1)β
2 ]

cos[(λo − 1)β
2 ]

sin[(λo − 1)θ]
}

. (B.20)
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Appendix C

Phase-Shifting Photoelasticity

Pockels developed a mathematical theory for photoelasticity in crystals known as Pockels’ Phe-

nomenological Theory (Narasimhamurty, 1981). This theory can be used to develop the well-known

Stress Optic Law for photoelastic materials that are isotropic in structure and to develop stress-

related equations for refractive index change in crystalline materials. The basics of this theory,

based on (Narasimhamurty, 1981), are presented in this appendix, and the Stress Optic Law is

derived.

A flexible and comprehensive method for analysis of a polariscope is by the use of matrices

representing the action of each type of polarizing optic, i.e., using the matrix theory of photoelasticity.

Theocaris and Gdoutos (1979) presented the matrices for Jones matrix algebra, which assumes that

the incident light is polarized. The equations for the electric field after a polariscope result from Jones

matrix algebra. The intensity of the interference pattern may then be calculated. Another, more

general, method to determine the intensity of the images from a polariscope is Mueller calculus

with Stokes vectors. This method does not require that the incoming light be polarized. A full

treatment of Jones matrix algebra and Mueller calculus applied to the circular polariscope follows

in this appendix.

By using appropriate configurations of the circular polariscope elements, different interference

patterns related to the isoclinic angle and the isochromatic phase may be manipulated during analysis

of the patterns to separate these two quantities of interest. This type of phase shifting is unlike the

common methods that introduce a known phase shift, but capitalizes on the adaptability of the
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circular polariscope to achieve different trigonometric functions of the desired phases. The entire

derivation of the six-step method used in this research is provided below.

C.1 Photoelasticity of Crystals: Pockels’ Phenomenological

Theory

The impermeability tensor (1/K)ij is given by Bij = 1/n2
ij . The triaxial ellipsoid surface called

the optical index ellipsoid has the formula Bijxixj = 1. The optical properties of crystals are often

expressed in terms of the principal refractive indicies, by way of the refractive index ellipsoid, given

by

x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1. (C.1)

The assumptions used in this theory are the following:

1. In a homogeneously deformed solid, the effect of deformation is only to alter the optical

parameters of the optical index ellipsoid.

2. When the strain is within the elastic limits, the change of an optical parameter (polarization

constant) of the solid due to deformation can be expressed as a homogeneous linear function

of the nine stress components, σij , or nine strain components, εij .

C.1.1 Mathematical Formulation in Terms of the Photoelastic Constants

An undeformed crystal has an index ellipsoid of Bo
ijxixj = 1. A stressed crystal has an index ellipsoid

of Bijxixj = 1. Using the second assumption about linearity of the stress (strain)-impermeability

tensor, then

Bij −Bo
ij = −qijklσkl (C.2)

Bij −Bo
ij = pijklεkl. (C.3)
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The pijkl components are called the strain-optical or elasto-optic constants. The qijkl components

are called the stress-optical or piezo-optic coefficients

Assuming the ∆Bij , σkl, and εkl second-rank tensors are symmetric, then the 81 components of

the qijkl fourth-rank tensor reduce to 36 independent components (qijkl = qjikl and qijkl = qijlk),

and also the 81 components of the pijkl fourth-rank tensor reduce to 36 independent components

(pijkl = pjikl and pijkl = pijlk). The pijkl and qijkl tensors can be related by the elastic stiffness

constants, cijkl, and compliance constants, sijkl:

qijkl = pijmnsmnkl (C.4)

pijmn = qijklcklmn. (C.5)

The common notation uses two suffixes. The impermeability tensor Bij can be written as Bi

with i = 1 − 6 (B11 = B1, B22 = B2, B33 = B, B23 = B4, B31 = B5, and B12 = B6). The

stress and strain tensors adopt the same corresponding notation as the impermeability tensor. The

photoelastic coefficient tensors, pijkl and qijkl, are written as pij and qij with i, j = 1 − 6. The

governing photoelastic equations Equation (C.2) and Equation (C.3) become

Bi −Bo
i = −qijσj (C.6)

Bi −Bo
i = pijεj . (C.7)

With this two-suffix notation, the relationships between pij and qij are related by cij and sij with

i, j = 1− 6:

pij = qikckj (C.8)

qij = pikskj . (C.9)
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C.1.2 Considering Crystal Symmetry

The above mathematics applies most generally to triclinic crystals. The photoelastic coefficients

can be further simplified with higher crystal symmetry. The isotropic case reduces the photoelastic

tensors to two independent coefficients each:

pisotropic =





p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 1
2 (p11 − p12) 0 0

0 0 0 0 1
2 (p11 − p12) 0

0 0 0 0 0 1
2 (p11 − p12)





(C.10)

qisotropic =





q11 q12 q12 0 0 0

q12 q11 q12 0 0 0

q12 q12 q11 0 0 0

0 0 0 (q11 − q12) 0 0

0 0 0 0 (q11 − q12) 0

0 0 0 0 0 (q11 − q12)





. (C.11)

A cubic crystal systems in group 11, (Td, O, Oh (43̄m, 43, m3m)), reduce to three constants;
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magnesium oxide (MgO) has this symmetry.

pcubic−11 =





p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 p44





(C.12)

qcubic−11 =





q11 q12 q12 0 0 0

q12 q11 q12 0 0 0

q12 q12 q11 0 0 0

0 0 0 q44 0 0

0 0 0 0 q44 0

0 0 0 0 0 q44





. (C.13)

C.1.3 Connection to Linearized Theory

The isotropic case greatly simplifies the photoelastic equations:

B1 −Bo
1 = −(q11σ1 + q12σ2 + q12σ3) (C.14)

B2 −Bo
2 = −(q12σ1 + q11σ2 + q12σ3) (C.15)

B3 −Bo
3 = −(q12σ1 + q12σ2 + q11σ3) (C.16)

B4 −Bo
4 = −(q11 − q12)σ4 (C.17)

B5 −Bo
5 = −(q11 − q12)σ5 (C.18)

B6 −Bo
6 = −(q11 − q12)σ6. (C.19)
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For an isotropic material, Bo
1 = Bo

2 = Bo
3 = (1/(n2

o)), where no is the refractive index of the

unstressed material; also, Bo
4 = Bo

5 = Bo
6 = 0. By manipulating Equations (C.14)–C.16), the

following equations result:

1
n2

1

− 1
n2

2

= −(q11 − q12)(σ1 − σ2) (C.20)

1
n2

1

− 1
n2

3

= −(q11 − q12)(σ1 − σ3) (C.21)

1
n2

2

− 1
n2

3

= −(q11 − q12)(σ2 − σ3). (C.22)

If the quadratic refractive index term is ignored, then Bi−Bj terms can be simplified. For example,

1
n2

1

− 1
n2

2

=
n2

2 − n2
1

n2
1n

2
2

/ −(n1 − n2)(n1 + n2)
n4

o

/ −(n1 − n2)(2no)
n4

o

/ −(n1 − n2)
n3

o/2
,

(C.23)

assuming n2
1n

2
2 / n4

o and (n1 + n2) / 2no. Equations (C.20)–C.22) become the following:

n1 − n2 =
n3

o

2
(q11 − q12)(σ1 − σ2) (C.24)

n1 − n3 =
n3

o

2
(q11 − q12)(σ1 − σ3) (C.25)

n2 − n3 =
n3

o

2
(q11 − q12)(σ2 − σ3) (C.26)

The Maxwell equations for the photoelastic effect for isotropic materials are the above Equations

(C.24)–C.26, given (n3
o/2)(q11−q12) = (C1−C2) = C, where C is the relative stress-optic coefficient.

If the coordinate system is in the principal axes, then σ4 = σ5 = σ6 = 0, and σ1, σ2, and σ3 are the

principal stresses.

The cubic equations with three constants result in the same relations as the isotropic case. In the

plane stress case, σ3 is zero. If the third principal axis is the optical axis, then only Equation (C.24)
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needs to be considered experimentally.

C.1.4 Stress Optic Law

A photoelastic plate under stress acts as a linear retarder plate for polarized light with linear

retardation δ with a fast axis at angle α relative to the x axis. The change in refractive index in

the plane perpendicular to the optical axis is related to δ by the thickness of the plate h and the

wavelength λ,: n1 − n2 = δλ/(2πh). Therefore, the governing equation, the Stress Optic Law, may

be written as the following (Kobayashi, 1993; Narasimhamurty, 1981):

σ1 − σ2 =
δλ

2πcoh
=

Nλ

coh
, (C.27)

where N = δ/2π is the “fringe order”.

C.2 Matrix Theory of Photoelasticity and Circular Polar-

iscopes

C.2.1 Jones Matrix Algebra

A circular polariscope includes an incident collimated beam of light, followed by a linear polarizer at

angle ρ to the x axis, a 1/4 wave plate with fast axis at angle ξ to the x axis, a photoelastic material,

another 1/4 wave plate with fast axis at angle φ to the x axis, and a second linear polarizer at angle

ζ to the x axis, sometimes called the analyzer. Figure C.1 shows a schematic of the polariscope.

Assuming that the collimated laser beam is polarized, then Jones matrix algebra may be used to

analyze the electric field components incident to the sample (Theocaris and Gdoutos, 1979). Note:

Theocaris and Gdoutos (1979) employs reference axes such that the x and y are perpendicular to

the incident beam relative to the front of the optics. The reference axes x and y used in this research

are perpendicular to the light beam, which is along the +z axis, on the back of the optics, as shown
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Figure C.1: Polarization optics before the transparent sample

in Figure C.1. The electric field prior to the polarizer is given in vector form by Equation (C.28):

E =





Eoxexp[j(kz − ωt + ϕx)]

Eoyexp[j(kz − ωt + ϕy)]




. (C.28)

The Jones vector, a, represents the time-averaged x and y spatial amplitude and phase components

of the electric field, ax and ay. Thus the Jones vector of the collimated light in Equation (C.28) is

acollimated =





ax

ay




=





Eoxexp[j(kz + ϕx)]

Eoyexp[j(kz + ϕy)]




. (C.29)

After passing through a polarization optic, the electric field obviously changes, represented by

the multiplication of the Jones matrix of the the polarization optic and the Jones vector of the

incident electric field. Therefore, Jones matrix algebra is a compact way of determining the changes

in an initially linearly polarized electric field due to polarization optics. The Jones matrices for a

linear polarizer at angle ρ to the x axis and for a 1/4 wave plate with fast axis at angle ξ to the x
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axis are as follows:

Pρ =





cos2(ρ) −cos(ρ)sin(ρ)

−cos(ρ)sin(ρ) sin2(ρ)




(C.30)

Qξ =





j cos2(ξ) + sin2(ξ) (1− j)cos(ξ)sin(ξ)

(1− j)cos(ξ)sin(ξ) j sin2(ξ) + cos2(ξ)




. (C.31)

Generally, the electric field incident to the sample in Figure C.1 is given by Equation (C.32):

aincident = QξPρa
collimated. (C.32)

For example, if ρ = π/2 and ξ = 3π/4, then the electric field components have the same constant

Ao =
√

2Eoy/2, as shown in Equation (C.33):

aincident = Q 3π
4
Pπ

2
acollimated =

√
2Eoyexp[j(kz + ϕy)]

2





exp[j 3π
4 ]

exp[j π
4 ]





=





Aoexp[j(kz + φx)]

Aoexp[j(kz + φy)]




. (C.33)

A photoelastic material is modeled in terms of polarization optics as a linear retardation plate

with retardation δ (the isochromatic phase) with fast axis at angle α (the isoclinic angle) to the x

axis. The Jones matrix for such a linear retardation plate is as follows:

Rδ,α =





ejδ cos2(α) + sin2(α) (1− ejδ)cos(α)sin(α)

(1− ejδ)cos(α)sin(α) ejδ sin2(α) + cos2(α)




. (C.34)

The general full expression for the electric field after a circular polariscope with all five elements is
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as follows:

Eout = PζQφRδ,αQξPρE. (C.35)

The intensity of the resulting image is a result of taking the dot product of the final electric field

with its complex conjugate:

Iimage = Eout · Ẽout
= Eout

x Ẽout
x + Eout

y Ẽout
y . (C.36)

If ρ = π/2 and ξ = 3π/4, then the intensity of the image reduces to the following:

Iimage = 2E2
oy{1 + cos(δ) sin[2(ζ − φ)]− sin(δ) cos[2(ζ − φ)] sin[2(α− φ)]}. (C.37)

C.2.2 Mueller Calculus with Stokes Vectors

A Stokes vector, denoted S is another representation of the polarization of the electric field similar

to the Jones vector except the Stokes vector has four time-averaged parameters, as shown in Equa-

tion (C.38), where <> represents time averaging. The first Stokes parameter, so, is the intensity of

the electric field, making it a convenient parameter to find the intensity of an image.

S =





so

s1

s2

s3





=





< axãx + ayãy >

< axãx − ayãy >

< 20{axãy} >

< 21{axãy} >





. (C.38)

Mueller matrices describe how the polarization changes after the light passes through a polarization

optic, where the parameters of these matrices modify the Stokes vector representation of light polar-

ization. The Mueller matrices, given the coordinate convention in Figure C.1, for a linear polarizer
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at angle ρ to the x axis and for a 1/4 wave plate with fast axis at angle ξ to the x axis are as follows:

PM
ρ =





1 cos(2ρ) − sin(2ρ) 0

cos(2ρ) cos2(2ρ) − sin(2ρ) cos(2ρ) 0

− sin(2ρ) − sin(2ρ) cos(2ρ) sin2(2ρ) 0

0 0 0 0





(C.39)

QM
ξ =





1 0 0 0

0 cos2(2ξ) − sin(2ξ) cos(2ξ) sin(2ξ)

0 − sin(2ξ) cos(2ξ) sin2(2ξ) cos(2ξ)

0 − sin(2ξ) − cos(2ξ) 0





. (C.40)

The Mueller matrix of a linear retarder with retardation δ and fast axis α, the model for a photoelastic

material, is

RM
δ,α =





1 0 0 0

0 cos2(2α) + sin2(2α) cos(δ) − sin(2α) cos(2α)(1− cos(δ)) sin(2α) sin(δ)

0 − sin(2α) cos(2α)(1− cos(δ)) sin2(2α) + cos2(2α) cos(δ) cos(2α) sin(δ)

0 − sin(2α) sin(δ) − cos(2α) sin(δ) cos(δ)





.

(C.41)

The Stokes vector of a general circular polariscope, with two polarizers, two 1/4 wave plates, and

a photoelastic material, is the multiplication of the incident Stokes vector and the Mueller matrices
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of all the elements. The Stokes vector of the incident electric field is

Sincident =





E2
ox + E2

oy

E2
ox − E2

oy

2EoxEoy cos(ϕx − ϕy)

2EoxEoy sin(ϕx − ϕy)





. (C.42)

The general form of the Stokes vector for a circular polariscope is

Sout = PM
ζ QM

φ RM
δ,αQM

ξ PM
ρ Sincident. (C.43)

Given a circular polariscope with the first polarizer at angle ρ = π/2, the first 1/4 wave plate at

angle ξ = 3π/4, from Equation (C.43), the first Stokes parameter, the intensity of the electric field,

may be reduced to

Iimage = sout
o = 2E2

oy{1 + cos(δ) sin[2(ζ − φ)]− sin(δ) cos[2(ζ − φ)] sin[2(α− φ)]}, (C.44)

which is the same as the intensity determined by Jones matrix algebra in Equation (C.37).

C.3 Six-Step Phase Shifting

With the flexibility of the polariscope optics, many different combinations of intensities involving

the isoclinic angle and isochromatic phase are possible. Choosing a certain set of these intensities

allows for the separation of these two phases. The set of six images chosen for this research are

given in Table C.1, where the first two elements do not change angle (ρ = π/2 and ξ = 3π/4) and

the second 1/4 wave plate and second polarizer are at angles φ and ζ, respectively. The intensities

for these images come from Equation (C.44).



222

Image φ ζ

I1 = 2Eoy(1 + cos(δ)) π/2 3π/4
I2 = 2Eoy(1− cos(δ)) π/2 π/4

I3 = 2Eoy(1− sin(δ) sin(2θ)) π π

I4 = 2Eoy(1 + sin(δ) cos(2θ)) π/4 π/4
I5 = 2Eoy(1 + sin(δ) sin(2θ)) π/2 π/2
I6 = 2Eoy(1− sin(δ) cos(2θ)) 3π/4 3π/4

Table C.1: Photoelasticity phase shifting: Angles refer to fast axis of optics
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