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Chapter I 

 
 

Introduction 
 
 
Enzymes are awesome 

Enzymes are extremely efficient catalysts, accelerating chemical reaction rates up 

to 1019 times that of the uncatalyzed reaction.1  In addition to the large rate enhancements 

that can be observed, enzymes can also carry out reactions with extreme regio- and 

stereospecificity, eliminating the need for protecting groups and reliably producing a 

single product.2,3  In the face of concern over the environmental impact of chemical 

synthesis, enzymes have emerged as attractive alternatives to chemical catalysts because 

they work under mild, aqueous conditions, reducing the generation of hazardous wastes 

that are often associated with organic synthesis.2  The enzymes themselves are, of course, 

biodegradable and can usually be produced in large quantities via recombinant expression 

in bacteria or fungi. 

Despite their promise, significant challenges prevent the widespread use of 

enzymes as industrial catalysts.  The applicability of enzymes can be limited by their 

instability in conditions appropriate for industrial processes, including high temperatures, 

extreme pHs, and organic solvents.2  In addition, the scope of reactions that can be 

catalyzed by enzymes is limited to those found in natural metabolic pathways, although 

some enzymes, including lipases, have been shown to be somewhat promiscuous in their 

substrate specificity.4  Directed evolution has been used to improve stability, optimize 

efficiency, and modify the substrate specificity of many enzymes.5-7  However, this 
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method requires existing activity toward the reaction of interest, so it cannot be used to 

introduce truly novel chemistries.5  

Catalytic antibodies have shown promise in the catalysis of a wide variety of 

chemical transformations including stereoselective and novel reactions.8  However, the 

catalytic efficiencies of antibodies have traditionally been modest due in part to selections 

that are based on binding to a synthetic transition state analog instead of on enzymatic 

turnover.8,9  Reactive immunization has been used to overcome these limitations, 

producing catalytic antibodies with reaction rates approaching those of the wild-type 

enzyme, but this method can only be applied to reactions whose transition states are 

known and can be readily mimicked with a reactive transition state analog that is 

accessible by current synthetic methods.10,11  In addition, Xu et al. has suggested that the 

immunoglobulin scaffold itself may limit the scope of reactions amenable to catalysis 

with antibodies.8 

While directed evolution and catalytic antibodies have both been successfully 

used for enzyme engineering, both have features that keep them from being applied 

generally for the engineering of novel enzymatic activities.  In contrast, computational 

protein design does not suffer from these limitations, and can be envisioned as a solution 

to many complex synthetic organic chemistry problems. 

 

Computational protein design 

Computational protein design has shown great promise for developing novel 

functions in proteins.  The general approach to solving a computational design problem is 

cyclic (Figure 1-1).  Beginning with the backbone coordinates of a high-resolution 
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protein crystal structure, an optimization algorithm is used to search through 

combinations of side-chain identities and conformations for the sequence and geometries 

of amino acids that will best stabilize the protein fold.12,13  The extent to which a 

particular sequence might stabilize the desired fold is evaluated through a force field 

scoring function, which calculates an energy for the sequence that should correlate to the 

protein’s free energy of folding.  The sequence and conformation of amino acids that will 

best stabilize the backbone structure (i.e., fold into the desired conformation) is assumed 

to be the one with the lowest energy.  This global minimum energy conformation 

(GMEC) must then be experimentally validated by structural and/or thermodynamic 

comparison of the designed sequence to that of the native protein.12-14  Information 

gained from evaluating the deviations of theory from experiment can then be used to 

readjust the force field parameters, thus completing the design cycle.12 

For a small 59-residue protein, there are about 1077 possible sequences (assuming 

that all 20 amino acids are allowed at all positions).  If a single molecule of each of these 

sequences were to actually be synthesized, their combined mass would be approximately 

7.6 × 1056 g, which according to some estimates, approaches the mass of the observable 

universe.  When the conformational flexibility of the side chains is also taken into 

account, the number of possible solutions explodes even further.  To reduce the 

combinatorial complexity of the problem to a reasonable size, we limit our designs to use 

a library of discrete sidechain conformations called rotamers, which represent the 

statistically significant amino acid sidechain conformations found in protein crystal 

structures.15  In results described later in this text, we used rotamer libraries based on 
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those developed by Dunbrack and Karplus,16 as well as sidechain conformer libraries 

developed in the Mayo lab.17 

The ORBIT (Optimization of Rotamers By Iterative Techniques) software suite is 

a computational protein design package developed in the Mayo lab.13  Standard 

implementations of ORBIT use a scoring function based on physical principles and apply 

the DREIDING force field,18 which incorporates four empirically based potential 

functions to calculate the total energy (Etotal) of a structure:  

   Etotal = Evdw + Eh-bond + Eelect + Eas  . 

(1) A van der Waals (VDW) interaction energy (Evdw) is calculated for each pair of 

rotamers using a Lennard-Jones 12-6 potential.18 

(2)  A hydrogen bond potential (Eh-bond) is used that is angle-, distance-, and 

hybridization-dependent.19 

(3) Electrostatic interactions (Eelect) are calculated based on Coulomb’s Law 

incorporating a distance-dependent dielectric of 40r, where r is the interatomic 

distance.19 

(4) A solvation term (Eas) is used that employs a solvation potential based either on 

the protein’s surface area or the occlusion of one atom by another.  Both of these 

solvation models give an energy benefit to buried nonpolar regions of the protein 

and penalize exposed nonpolar and buried polar regions.20,21 

The optimization algorithms provided by ORBIT apply a variety of methods to 

establish the optimal sequence or set of sequences to stabilize a given fold.  Algorithms 

based on the Dead-End Elimination theorem (DEE)22-25 are used to quickly identify and 

remove amino acid rotamers and pairs of rotamers that cannot exist in the GMEC.  
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ORBIT also supplies stochastic methods of sequence optimization such as those based on 

the Fast and Accurate Side-Chain Topology and Energy Refinement (FASTER) 

algorithm15 and Monte Carlo26,27 either alone or in combination with DEE to both 

decrease calculation time and to sample sequence space around the GMEC. 

ORBIT has been used to design proteins in a wide variety of systems.  Successful 

implementations include the full sequence design of a protein that adopts a zinc finger 

fold independent of zinc binding,28 the redesign of calmodulin to increase its binding 

specificity for a single target peptide,29 and the de novo design of a protein-protein 

interface.30 

 

Computational enzyme design 

Promisingly, ORBIT has also been used to design an enzyme with modest 

catalytic activity.31  This “protozyme” with p-nitrophenol acetate hydrolysis activity with 

a kcat/kuncat of 102 was one of the first examples of a de novo computationally designed 

enzyme.  Other labs have also employed computational tools to design enzymes, 

including transplanting reactive metalloenzyme active sites into inert proteins.32,33  In 

addition, computational enzyme design methodologies have been used to switch the 

specificity of existing enzymes.34,35  More recent dramatic successes from one of these 

labs include the de novo design of retroaldolases as well as enzymes that catalyze the 

Kemp elimination, a reaction for which no natural enzyme exists.36,37 

The promise of computational enzyme design has been clearly established.  

However, the generalizability of these methods for other chemical transformations has 

not yet been demonstrated.  In addition, while some of the enzymes designed so far have 
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had impressive catalytic activity, the computational design of enzymes with true native-

like efficiency still presents a challenge.36,37  The goal of engineering “designer enzymes” 

for any reaction remains extremely attractive as it will allow the scope of enzymatic 

reactions to extend beyond the limits of natural cellular metabolism, broadening the range 

of possible substrates and products, especially those with stereogenic centers.  Once this 

challenge has been met and the generality of computational protein design techniques has 

been established, rapid, on-demand engineering of enzymes will be possible for many 

important chemical reactions. 

Towards this goal, my work has focused on the introduction and evaluation of 

new enzyme design capabilities both in ORBIT and in a related program, Phoenix.  Force 

field parameterization in protein design has historically been carried out with respect to 

protein stability and overall fold without regard to specific function.  In the case of 

ORBIT, parameters for the DREIDING force field were optimized through the sequence 

design of a small protein and the subsequent experimental evaluation of changes in 

overall thermodynamic stability.12,38  The resulting parameters were weighted to 

emphasize VDW contacts and buried hydrophobic surface area.  While these parameters 

were successfully used to design many hyperstable proteins, they are not necessarily well 

suited for designing enzymes because most natural enzymes are not evolved for optimum 

stability.39,40 

According to the transition state theory, enzymes achieve such large rate 

enhancements through specific tight binding and stabilization of the reaction transition 

state (TS).41  Computational simulations of enzyme active sites have suggested that polar 

and nonpolar residues that contact the TS but are not directly involved in the reaction 
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chemistry can provide additional stabilization to the TS through electrostatics and VDW 

interactions, thus promoting catalysis.42  To design an effective enzyme de novo, we must 

first determine the nature of the interactions between the protein and the rate limiting TS 

that promote catalysis; information about these interactions (e.g., sidechain functional 

groups and contact geometries) can be gained from ab initio calculations, analogy to 

existing enzymes, or chemical intuition.17,43  These protein-TS contacts can then be 

incorporated into the scoring function.17,44 

The major changes made to ORBIT to accommodate enzyme design include the 

introduction of a geometry biasing term that allows an energetic benefit to be added to 

those sequences that can make specified stabilizing contacts to a TS model present in the 

active site.  In addition, we have implemented various methods for the creation of 

libraries of transition state poses within the active site that can be sampled during the 

sequence search.17 

Chapter II of this thesis is a journal article that I co-authored describing our 

computational enzyme design methodology in detail.  Here, our methods were evaluated 

through recapitulation of the active site configurations of three natural enzymatic/binding 

protein systems: Escherichia coli chorismate mutase, Saccharomyces cerevisiae 

triosephosphate isomerase, and Streptomyces avidinii streptavadin.  

As a result of our previous de novo design experience, we chose to focus on a 

well-studied chemical system: the general base-catalyzed Kemp elimination (KE) of 5-

nitrobenzisoxazole (Figure 1-2). The KE has been used since the 1970s as a physical 

organic model for proton transfer from carbon45,46 and more recently as a model system 

for enzymatic proton transfer reactions.47-49  Other attractive features of this reaction are 
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that it is irreversible with a single transition state and that it has a product that can be 

observed spectrophotometrically (λmax = 405 nm).45  In addition, multiple catalytic 

antibodies have been created that can catalyze this reaction with rate accelerations up to 

106 times faster than the background reaction.50,51  The crystal structure of one of these 

antibodies has given us clues as to how transition state stabilization can be achieved for 

this reaction (Figure 1-3).52  In this catalytic antibody, stabilization occurs through a 

combination of a carboxylate general base, extensive π-stacking above and below the 

plane of the ring system, and hydrogen bond contacts to the base.  In addition, there is 

precedent for the amenability of this reaction to computational enzyme design 

methodologies, as Röthlisberger et al. were able to computationally introduce catalytic 

activity for the KE into three separate inert scaffolds, creating multiple active enzymes.37  

In Chapter III, the computational and experimental details of this system are 

described and one of the resulting inactive designs is discussed.  In the protein design 

cycle (Figure 1-1), the design procedure cannot be adjusted without some information 

from the initial inactive design indicating the possible cause of inactivity.  To complete 

the design cycle, we first had to determine why this initial design was inactive.  This 

chapter also includes details of crystallographic analysis carried out in collaboration with 

the Molecular Observatory at Caltech and molecular dynamic (MD) simulation studies 

carried out in collaboration with Ken Houk’s lab at the University of California, Los 

Angeles that were used to analyze the inactive design.  The X-ray crystal structure of this 

inactive design confirmed that the actual active site of the design was very similar to the 

predicted structure.  Thus, the inactivity was not due to gross misplacement of the active 

site residues or disruption of the overall protein fold.  MD analysis of the design helped 
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us to determine possible causes of the inactivity including an active site that was too 

flexible and solvent exposed. 

The lessons learned from our first KE designs pointed us in the direction of more 

buried, less polar active sites.  Using the same scaffold as the initial design, we moved 

the active site away from the natural, solvent-exposed active site and located it farther 

into the barrel of the protein.  In Chapter IV, I discuss this new design, HG-2, which was 

predicted to have activity by the blind MD simulations due to the drier, less flexible 

active site.  This activity was confirmed by experimental characterization of this enzyme, 

also discussed in Chapter IV. 

Because of the expense and time associated with experimental evaluation of 

designed enzymes, strategies for the a priori differentiation of active designs from 

inactive ones are needed to make the process of enzyme design more efficient.  In 

Chapter IV, additional designs are described which were carried out using two scaffolds 

that have been used to produce successful KE designs in David Baker’s lab at the 

University of Washington.37  Of the six enzymes synthesized, four showed activity and 

three of these resulted from the evaluation our enzyme design methods through 

redesigning the active site of scaffolds used in the active KE designs from the Baker lab.  

The fourth active design is unique.  In most cases, blind MD analysis of these designs 

was successful in distinguishing active designs from inactive ones.  MD analysis could 

thus serve as an important tool in the computational design procedure, providing an initial 

screen of sequences predicted by the design procedure to help us determine the designs 

on which to focus our experimental efforts. 
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Appendix A describes an early attempt at de novo design of enzymatic activity.  

Here, our goal was to design an enantioselective enzyme for the kinetic resolution of of 

N-benzoyl-L-phenylalanine through the selective hydrolysis of L-2-phenyl-4-

benzylphenyloxazolin-5-one (FOX).  Lessons learned from this first unsuccessful attempt 

at enzyme design led us to focus on less flexible scaffolds and chemical systems that 

have a smaller background reaction rate.  In addition to the de novo enzyme design 

project that has spanned my entire graduate career, I have had the opportunity to work on 

other computational design projects related to enzymes and binding proteins.  In 

Appendix B, I discuss our ongoing efforts to alter the specificity of an existing 

thermophilic xylanase.  Appendix C presents computational efforts toward changing the 

specificity of an androgen receptor as part of a collaboration with the Fletterick lab at the 

University of California, San Francisco.  Appendix D is the first description of the 

recombinant over-expression and purification of a thermophilic xylanase from 

Thermoascus aurantiacus (TAX).  A recombinant version of this enzyme was necessary 

to allow genetic manipulation in the creation of new designs and TAX was used as the 

scaffold for the initial inactive KE design and one of the subsequent active designs.  

Because of its ease of expression, thermostability, and ability to tolerate multiple 

mutations, this enzyme proved to be a useful scaffold for computational design.   

In sum, the work presented in this thesis shows that by iterative structural and 

theoretical evaluation of active and inactive designs, adjustment of our enzyme design 

procedure, and subsequent redesign, we can identify and address deficiencies in our 

design methodology, resulting in de novo designed enzymes with significant activity for 

the reaction of interest.  The field of de novo computational enzyme design is extremely 
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promising and the work presented here is a significant step towards the goal of a general 

method for the computational design as enzymes in the Mayo lab.  This work will serve 

as the foundation for future studies, which will be undertaken to obtain reaction rate 

accelerations and efficiencies comparable to those of natural enzymes and to generalize 

these methods for a wide variety of chemistries. 
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Figure 1-1.  The protein design cycle.  After design, the sequences predicted by the 
algorithm are synthesized and experimentally evaluated for their desired characteristics.  
The correlation of experiment and theory is used to adjust the design procedure for future 
designs.  Adapted from Dahiyat et al. 1996.12 
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Figure 1-2.  The Kemp elimination of 5-nitrobenzisoxazole. 
 
 
 
 
 
 
 
 
 

 

 
 
Figure 1-3.  Kemp elimination catalytic antibody 34E4.52   The co-crystallized hapten 
is shown in pink, the general base is shown in cyan along with two supporting contacts.  
Hydrogen bonds are indicated with dotted lines. 
 
 
 


