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Aspects of Topological String Theory

by

Paul L.H. Cook

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

Two aspects of the topological string and its applications are considered in this thesis.

Firstly, non-perturbative contributions to the OSV conjecture relating four-dimensional ex-

tremal black holes and the closed topological string partition function are studied. A new

technique is formulated for encapsulating these contributions for the case of a Calabi-Yau

manifold constructed by fibering two line bundle over a torus, with the unexpected property

that the resulting non-perturbative completion of the topological string partition function is

such that the black hole partition function is equal to a product of a chiral and an anti-chiral

function. This new approach is considered both in the context of the requirement of back-

ground independence for the topological string, and for more general Calabi-Yau manifolds.

Secondly, this thesis provides a microscopic derivation of the open topological string holo-

morphic anomaly equations proposed by Walcher in arXiv:0705.4098 under the assumption

that open string moduli do not contribute. In doing so, however, new anomalies are found

for compact Calabi-Yau manifolds when the disk one-point functions (string to boundary

amplitudes) are non-zero. These new anomalies introduce coupling to wrong moduli (com-

plex structure moduli in A-model and Kähler moduli in B-model), and spoil the recursive

structure of the holomorphic anomaly equations. For vanishing disk one-point functions,

the open string holomorphic anomaly equations can be integrated to solve for amplitudes

recursively, using a Feynman diagram approach, for which a proof is presented.
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Chapter 1

Introduction

String theory has wide-ranging applications in both physics and mathematics. As a proposal

for a theory of quantum gravity, string theory offers the possibility of realising a “theory of

everything,” unifying general relativity and quantum field theory. There are good reasons

to expect that a theory of quantum gravity should require a substantial change in how we

think of the nature of space and time. In particular, the holographic principle, as embodied

in, for example, the AdS/CFT correspondence [1], suggests that spacetime can carry far less

information than would be naively expected — the information content scales by a dimension

less than that of the volume of spacetime.

Black holes present an ideal test environment for studying quantum gravity and the

holographic principle, as the Bekenstein-Hawking entropy of a (classical) black hole scales

with black hole surface area rather than volume. There now exist many string theory con-

structions which realise spacetime black holes from sufficiently dense collections of strings or

branes, and which reproduce at leading order the Bekenstein-Hawking entropy. A complete

microscopic description of general black holes is, however, still lacking. In its absence, a

natural question arises: are there simpler theories that are still “stringy,” and which can

be used to describe subclasses of general black holes? Just such a theory, topological string

theory, will form the backdrop of this thesis.

Topological string theory describes a sub-sector of full string theory. It is still a confor-

mal field theory describing mappings of a string propagating through time (giving a two-

dimensional worldsheet) into a target space, which could be spacetime plus some compactifi-
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cation manifold. The key ingredient, however, is the application of a topological twist, which

removes dependence on the (worldsheet) metric from calculations, even before one sums over

such metrics during coupling to gravity. As we review below, this yields a much simplified

theory which admits exact solution in some cases. Furthermore, being topological, it has no

dynamics and is thus sensitive only to details of the topology of the target space — precisely

the details of relevance in black hole partition functions.

Indeed, in a major step towards a complete microscopic description of black holes, the

OSV (Ooguri-Strominger-Vafa [2]) conjecture posits a correspondence between the partition

function of supersymmetric (extremal) black holes, and a product of the partition function

of topological string theory on the same space and its complex conjugate; schematically,

ZBH = ψψ. (1.1)

We will review the precise form of the conjecture in Section 2.2.

Chapter 2 will use a specific realisation of an extremal black hole, due to Vafa [3], which

provides successful explicit tests of the OSV conjecture at large black hole charge N . Non-

perturbative (small N) effects, however, strongly suggest [4] that the appropriate gravita-

tional object to which the OSV conjecture refers is not a single black hole, but rather the sum

of multi-centre gravitational solutions, with the charges of the centres (classical singularities)

summing to the total charge. In the near horizon limit, these centres are “baby universes,”

so the OSV conjecture can be viewed as a statement in a “third quantised” framework,

involving sums over states with different numbers of universes.

An alternate and novel approach to handling non-perturbative corrections to the OSV

conjecture for this system will be presented in Section 2.5. The key difference is that while

the existing approach mixes the holomorphic topological string partition function and its

conjugate at each order in the non-perturbative corrections, the new approach maintains

the factorised form of the right-hand side of the OSV relation (1.1). Consequently, this

approach can be thought of as providing a non-perturbative completion of the topological

string partition function itself, which can be expressed in terms of the perturbative topo-

logical string partition function using a “chiral” recursion relation. Furthermore, since the
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topological string partition function can be viewed as a wavefunction for the universe [5],

this new approach manifestly maintains quantum coherence under tunnelling to multiple

baby-universe states. We also briefly describe attempts to generalise the result beyond the

setup of [6], and discuss the complications introduced by our use of non-compact Calabi-Yau

target spaces as the background.

A deeper puzzle results from the wavefunction interpretation of the topological string

partition function ψ[7]. The function ψ depends on a choice of background, or values for

the parameters of the target space of the topological string. One would expect these choices

not to affect physical observables, and indeed the variation of ψ and ψ cancel as the choice

of background is modified. The chiral recursion relation complicates the interpretation of

background independence, as discussed in Section 2.6, as it is not manifest that the proposed

non-perturbative completion of the topological string partition function has the expected

transformation properties under change of background.

Taking a step back, the wavefunction interpretation of the topological string depends on

the holomorphic anomaly equations of BCOV [8], which form the backdrop to the second half

of this thesis. The holomorphic anomaly equations capture the anomalous dependence of the

topological string partition function on anti-holomorphic Calabi-Yau (target space) moduli.

In addition to a relation to the wavefunction interpretation of the topological string, the

anomaly equations allow efficient calculation of the partition function, in terms of a genus-

by-genus recursion relation, up to a holomorphic function (the holomorphic ambiguity) at

each genus. Fixing these requires additional data. One source thereof makes use of the

wavefunction interpretation to change polarisation, or choice of background, for the topolog-

ical string. A particularly useful choice gives a partition function that is holomorphic, but

suffers from a modular anomaly (since, as we will see, the complex structure that defines

holomorphicity is related to a choice of three-cycles on the manifold, and hence to mon-

odromies around points in moduli space where three-cycles shrink). The interplay between

holomorphicity and modularity has been used to fix the holomorphic ambiguity to very high

genus using conditions from special points in moduli space [9, 10, 11]. These computations

are also of interest mathematically, as they allow the extraction of topological invariants,

such as Gromov-Witten invariants, that count the number of maps of various kinds from
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Riemann surfaces into Calabi-Yau manifolds.

Recently Walcher [12, 13] proposed extended holomorphic anomaly equations for the open

topological string (that is, in the presence of D-branes), under the assumptions that open

string moduli are absent and that the disk one-point functions (i.e., closed strings ending

on branes) vanish. A detailed microscopic derivation of the extended holomorphic anomaly

equations will be presented in Chapter 3, confirming the conjectured result. This is followed

by an analysis of the decoupling, or lack thereof, of moduli from the “wrong” model — that

is, moduli which should be irrelevant for the topological twisting under consideration. For

both the anti-holomorphic and wrong model moduli we demonstrate, as reported in [14],

that additional anomalies are present unless the disk one-point functions vanish.

Armed with the extended holomorphic anomaly equations, Chapter 4 provides a proof

of a recursive solution for open topological string amplitudes genus-by-genus in terms of

Feynman diagrams, as reported in [15]. The proof makes use of the analogous approach for

solving for closed string topological string amplitudes recursively.

The remainder of this chapter will provide a brief review and definition of the topological

string and associated mathematical objects. Chapter 2 is concerned with the chiral recur-

sion relation in the context of the OSV conjecture relating black holes and the topological

string. Chapter 3 covers the extended holomorphic anomaly equations for open topologi-

cal string theory, and the new anomalies that are present for non-vanishing disk one-point

functions. Chapter 4 presents and proves a method for solving the open string holomorphic

anomaly equations recursively. Appendix A provides some calculations used in Section 2.7,

for extending the results of Chapter 2 to more general target manifolds.

1.1 Calabi-Yau manifolds

String theory, and especially topological string theory, is often considered on a background

that is a Calabi-Yau manifold, a manifold that preserves an unusually large amount of sym-

metry. Usually Calabi-Yau three-folds (that is, having six real dimensions) are considered,

and we will soon restrict our attention to this case. In physical string theory, three-folds

allow dimensional reduction from ten dimensions to the four dimensions of spacetime, while
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preserving some unbroken supersymmetry. Furthermore, topological string theory has the

richest mathematical structure on a Calabi-Yau three-fold.

In essence, a Calabi-Yau manifold is a Kähler manifold with vanishing first Chern class.

We unpack aspects of this definition below; more details can be found in [16] or any of the

canonical texts. We start with a complex n-fold, which is an orientable 2n-dimensional man-

ifold with a complex structure, allowing the consistent definition of holomorphic coordinates

zi and anti-holomorphic coordinates z̄ ī, i = 1, · · · , n. Manifolds may have many complex

structures, or indeed none. A metric compatible with the complex structure satisfies

gij = gīj̄ = 0. (1.2)

Such a metric is termed Hermitian, and defines the Kähler form

ω =
i

2
gij̄dzi ∧ dz̄j̄ . (1.3)

The metric is termed Kähler if dω = 0, in which case one can locally find a function K,

called the Kähler potential, satisfying

ω ≡ 2i∂∂̄K, (1.4)

where ∂i ≡ ∂
∂zi . ω is a global (1, 1) form, and defines a cohomology class in H1,1(M), termed

the Kähler class. A complex manifold with Kähler metric is a Kähler manifold. It has

the important property that the Levi-Civita connection vanishes for mixed indices, so that

holomorphic vectors remain holomorphic under parallel transport, thereby restricting the

holonomy to a U(n) subgroup of SO(2n, R).

The Calabi-Yau condition for a manifold can be expressed in a number of equivalent

forms. Amongst them are:

• The first Chern class vanishes, c1(M) = 0.

• There exists a unique (up to rescaling), nowhere vanishing global holomorphic (n, 0)

form, Ω. The volume of the manifold is then
∫

M Ω ∧ Ω.
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• There exists a unique metric such that the Ricci tensor vanishes — and hence the

manifold is a solution to the vacuum Einstein equations, admits covariant-constant

spinors, and so preserves some spacetime supersymmetry after compactification.

• The manifold has SU(n) holonomy.

Consider now Calabi-Yau three-folds in particular. The above definitions imply that for a

given topology, choosing a Kähler class and complex structure uniquely determine a Calabi-

Yau manifold. The space of such choices is termed the moduli space M of the Calabi-Yau,

with Kähler and complex structure moduli as coordinates on the moduli space. The term

“Calabi-Yau manifold” is frequently used to refer to the entire class of manifolds of given

topology but arbitrary moduli.

The moduli space is intimately related to the cohomology classes of the manifold. Define

the Hodge numbers hp,q = dim Hp,q(M) as the dimensions of the cohomology classes of the

manifold. The following properties can be shown:

hp,q = hq,p, hp,q = hn−p,n−q, (1.5)

h1,0 = h2,0 = 0. (1.6)

The existence of the unique holomorphic top form Ω implies h3,0 = 1, and of course h0,0 =

h3,3 = 1, so the only unfixed Hodge numbers are h1,1 and h2,1. The Kähler class (1.3) can

be deformed by the addition of arbitrary elements of H1,1(M), and so locally the Kähler

moduli space is isomorphic to H1,1(M), with dimension h1,1. The volumes of 2p-cycles C2p

of the manifold are calculated as ∫

C2p

ω ∧ · · · ∧ ω,

where there are p factors of ω. That all volumes be positive constrains the moduli to the

Kähler cone, with boundaries corresponding to singular degenerations of the Calabi-Yau.

Complex structure deformations are best studied through their effects on the unique

holomorphic top-form Ω = f(z)dz1 ∧ · · · ∧ dzn. Deformations mix holomorphic and anti-

holomorphic coordinates,

zi → ai
jz

j + bi
j̄ z̄

j̄ .
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Infinitesimally, then, complex structure deformations transform Ω to a (3, 0) + (2, 1)-form.

It can be shown that the tangent space of infinitesimal complex structure deformations is

indeed isomorphic to H2,1(M), with dimension h2,1. In Chapter 2 we will need coordinates on

this moduli space, which can be defined as follows: From the above discussion and Poincaré

duality,

dim H3(M) = h3,0 + h2,1 + h1,2 + h0,3 = 2h2,1 + 2 = dim H3(M).

We can choose a canonical basis for the group of three-cycles H3(M) as a set of 2h2,1 + 2

three-cycles AI , BJ , (I, J = 0, ..., h2,1). In six dimensions three-cycles generically intersect

at points, so by choosing signs according to orientation the basis has intersection numbers

AI ∩AJ = 0, BI ∩BJ = 0,

AI ∩BJ , = δI
J . (1.7)

From these define coordinates,

XI =

∫

AI

Ω, FI =

∫

BI

Ω, (1.8)

and a dual basis αI , βJ for H3(M),

∫

AI

αJ = δI
J ,

∫

BI

αJ = 0, (1.9)

and likewise for βI . Now a theorem by de Rham shows that Ω is completely determined by

its integrals over this basis of three-cycles, so

Ω = XIαI + FIβ
I , (1.10)

with Einstein summation assumed. There are more variables XI and FI than complex

structure moduli. Indeed, it can be shown that the FI are dependent variables,

FI = ∂IF0, (1.11)



8

where F0 = 1
2X

JFJ is termed the prepotential. Lastly, recall that Ω is defined only up to

rescaling by a complex number, which defines a complex line bundle L on the moduli space

of complex structures. The XI are therefore homogeneous coordinates on the projective

space of complex structures. F0 is homogeneous of degree two in the XI , and so is a section

of L2.

There is a natural metric on the moduli space of complex structures, the Weil-Petersson

metric,

Gij̄ =

∫
χi ∧ χj̄∫
Ω ∧ Ω

, (1.12)

where χi and χj̄ are (2, 1) and (1, 2) forms, respectively. This metric is itself Kähler (that

is, both the Calabi-Yau and its moduli space are Kähler manifolds), with Kähler potential,

K = − log i

∫
Ω ∧ Ω = − log i

(
XI∂IF0 −X

I
∂IF0

)
, (1.13)

where bars are complex conjugation. It follows that

e−K =

∫
Ω ∧ Ω (1.14)

has the natural structure of an inner product or metric on the line bundle L identified in the

previous paragraph.

1.2 Topological string theory

String theory can be treated by considering the quantum field theory living on the worldsheet

of the string, the two-dimensional Riemann surface that the string traverses in spacetime.

Since the choice of coordinates on the worldsheet is arbitrary, the theory is a two-dimensional

conformal field theory, coupled to two-dimensional gravity. Conformal field theories are in

addition topological if their correlators are independent of the worldsheet metric, before

the path integral is performed. Coupling a topological field theory to gravity produces a

topological string theory. These turn out to be much simpler than physical string theories,

and can in some cases be exactly solved. This section will very briefly review the construction
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of a topological string theory, from a topological field theory of the cohomological or “Witten”

type. More detail can be found in the reviews [16, 17, 18, 19].

The theory starts as a non-linear sigma model, a quantum field theory of maps of the

string worldsheet Σ (locally C), into a target space manifold M . The mapping is

X : Σ→ M.

X = X i can be treated as a bosonic field on the worldsheet, taking values in the target space,

with i running over the dimension of the target space. Supersymmetry can be included by

adding “fermionic” directions to the worldsheet, such that the worldsheet fields are now su-

perfields. Taylor expanding these with respect to the fermionic directions gives a finite set of

bosonic and fermionic fields, as the anti-commuting nature of fermionic variables truncates

the Taylor expansion. Bosonic fields at order great than zero in the Taylor expansion are

auxiliary and can be integrated out, so supersymmetry can be handled by just introducing

fermionic fields ψi on the worldsheet. We will be interested in specifically N = (2, 2) super-

symmetric nonlinear sigma models, which have four supercharges on the worldsheet. Moving

to a light-cone gauge on the worldsheet distinguishes left- and right-moving operators and

fields, so there are two supercharges in each sector, denoted G± and G±, respectively. These

obey the commutation relations

{G±, G
±} = 0, [G±, HL] = 0,

{G+, G−} = 2T, {G+
, G

−} = 2T , (1.15)

where T and T are the left- and right-moving energy-momentum charges, related to the

Hamiltonian and momentum by H = T +T and P = T −T , respectively. Supercurrents G±
z

and G
±
z̄ corresponding to the supercharges can be defined,

G+ =

∮
dz G+

z (z), G
+

=

∮
dz G

+
z̄ (z),
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and likewise for G−, G
−
. The action is

S =

∫
d2z
(gij̄

2
(∂ z̄X

i∂zX
j̄ − ∂zX

i∂ z̄X
j̄) +

i

2
gij̄ψ

i
+Dz̄ψ

j̄
+ +

i

2
gij̄ψ

i
−Dzψ

j̄
− +

1

4
Rij̄kl̄ψ

i
+ψ

j̄
+ψk

−ψ
l̄
−

)
, (1.16)

where gij̄ is the metric on the target space, i, j̄ = 1, 2, 3 are holomorphic and anti-holomorphic

indices on the target space, ψi
± and ψī

± are left- and right-moving fermionic fields, respec-

tively, Dz is the (pulled-back) covariant derivative and Rij̄kl̄ is the Riemann tensor.

Requiring N = (2, 2) supersymmetry and worldsheet superconformal symmetry restricts

the manifold M to be not only Kähler, but Calabi-Yau; and as discussed above, the three-fold

is the most interesting case. For physical superstring theory, in particular type IIA and IIB

theories, the total target space is ten dimensional: a Calabi-Yau compactification manifold

fibred over a non-compact (3, 1)-dimensional spacetime. Four dimensional effective field

theories follow from taking the former to be small. The physics depends on the geometry of

the Calabi-Yau, thus we will be interested in the dependence of the topological string theory

on the Calabi-Yau moduli.

To construct a topological field theory, we want a global supercharge on the worldsheet,

but this requires covariantly constant spinors, and therefore a flat worldsheet. This restriction

can be circumvented by topologically twisting the theory. By suitably modifying the Lorentz

group, this produces fermionic fields that transform as scalars, as required. The Lorentz

group of the worldsheet, in Euclidean signature, is SO(2) = U(1)E . The action (1.16) has

two U(1)R R-symmetries (where the terminology reflects that these symmetries commute

with the supersymmetry), referred to as the axial and vector R-symmetries. The charge

assignments of the supercharges are shown in Table 1.2. In the connection, replacing U(1)E

with the diagonal subgroup U(1)′E of U(1)E × U(1)R changes the transformation properties

of the supercharges such that, depending on the choice of U(1)R, two of the supercharges

become (anti-commuting) scalars, and the other two become vectors. Twisting with U(1)V

produces the so-called A-twist, and U(1)A the B-twist. Each case has a scalar combination
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Before twisting A-twist B-twist

U(1)V U(1)A U(1)E L U(1)′E L′ U(1)′E L′

G+ 1
2

1
2 −1

2

√
K 0 C 0 C

G− −1
2 −1

2 −1
2

√
K −1 K −1 K

G
+ −1

2
1
2

1
2

√
K 0 C 1 K

G
− 1

2 −1
2

1
2

√
K 1 K 0 C

Table 1.1: Charges of the supercharges before and after twisting. U(1)V and U(1)A are the axial

and vector R-symmetries and U(1)E is the Lorentz group. L is the bundle of which the supercharges

are sections, where K is the canonical bundle and C is the trivial bundle.

of left- and right-moving supercharges:

A-twist: QA = G+ + G
+
,

B-twist: QB = G+ + G
−
. (1.17)

In the following we choose Q = QA, but by a simple change of notation the statements

hold equally for the B-twist. The supercurrents G+
z and G

+
z̄ are now holomorphic and anti-

holomorphic one-forms, respectively, and supercurrents G−
zz and G

−
z̄z̄ are two-forms (or rather

tensors with two cotangent holomorphic and anti-holomorphic indices, respectively).

The theory is now a cohomological topological quantum field theory, with operator Q as

the cohomology charge. This statement has four requirements. Firstly, there must exist a

fermionic symmetry operator satisfying

Q2 = 0. (1.18)

From (1.15), Q is such an operator. This construction is similar to the Faddeev-Popov

method of gauge fixing, for example in the bosonic string, in which case Q is termed a BRST

operator. Secondly, physical operators Oi are defined to be closed under the action of Q,

{Q,Oi} = 0. (1.19)
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Thirdly, vacua of the theory should not spontaneously break the Q symmetry, Q|0〉 = 0.

This implies

Oi ∼ Oi + {Q,Λ}, (1.20)

where Λ is any operator, and here and in the following the anti-commutator is used to

represent both commutator and anti-commutator, as appropriate. This relation follows from

noting that in an expectation value, (1.19) means that Q can be anti-commuted past any

other operators in the expectation value to annihilate the vacuum. The physical operators

are thus Q-cohomology classes.

The fourth requirement for a cohomological theory is that the energy-momentum tensor

is Q-exact,

Tαβ ≡
δS

δhαβ
= {Q, Vαβ}, (1.21)

for some operator Vαβ . It is this condition that makes the theory topological: as long

as the operators Oi are independent of the metric, the only source of metric dependence

in the path integral is the action. Now, however, (1.21) implies that such dependence is

Q-exact, and the Q can be anti-commuted using (1.19) to annihilate the vacuum. Metric

invariance has the useful implication that we can freely deform the worldsheet, or equivalently

move operator insertions around the worldsheet, without affecting correlators. This will be

particularly useful in Chapter 3 when worldsheet deformations will be used to dramatically

simplify calculations. A second key benefit of topological theories follows from restoring !

dependence in the action. Consider an unnormalised expectation value,

〈O〉 =

∫
Dφ O exp

(
i

!S(φ)

)
, (1.22)

where φ represents the set of fields of the theory. An easy way to satisfy (1.21), which turns

out to be possible for our theories, is to write S = {Q, V } for some operator V . Then

the ! derivative of (1.22) is a correlator including {Q, V }, which vanishes as above. Thus

semi-classical calculations are exact.

The topological field theory constructed above can be upgraded to a topological string

theory by coupling to gravity — that is, by making the worldsheet metric a dynamical field,
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and integrating over it, to give the (vacuum) amplitude at worldsheet genus g, Fg. The

moduli space of a genus g Riemann surface has complex dimension mg = 3(g − 1), which

can be thought of as specifying the locations of the endpoints and the period matrix of

each handle, with the first handle not contributing moduli but merely fixing the remaining

symmetry of the sphere. Integrating over this moduli space requires a measure that is

invariant under coordinate transformations of both the worldsheet and moduli space. In two

dimensions, conformal transformations correspond to holomorphic transformations, so the

worldsheet moduli space corresponds to changes of the complex structure on the worldsheet.

These can be parametrised by holomorphic one-forms with anti-holomorphic vector indices,

termed Beltrami differentials, defined by

dz -→ dz + εµz
z̄(z)dz̄. (1.23)

The indices of µz
z̄ are not suitable for integration. The resolution can be motivated by, for

instance, analogy with the very similar structures in bosonic string theory [20], and it is to

contract with the supercurrent G−
zz. Thus the integration over the worldsheet moduli space

is ∫

Mg

3g−3∏

a=1

(
dmadm̄a

∫

Σ

G−
zz(µa)

z
z̄

∫

Σ

G
−
z̄z̄(µ̄a)

z̄
z

)
. (1.24)

The factors of G− and G
−

introduce axial and vector U(1)R charge into the measure. This

turns out to be desirable, as this charge exactly absorbs the fermion zero modes corresponding

to zero eigenvalues of the twisted covariant derivative appearing in the action in terms of

the form ψi
+Dz̄ψ

j̄
+, that would otherwise result in vanishing fermionic integrals in the path

integral (recalling that
∫

dψ = 0, while
∫

dψ ψ = 1). In order to track charge, it is convenient

to define generators for left- and right-moving U(1)R symmetries,

FL = FA + FV , FR = FA − FV , (1.25)

where FA and FV are the generators of the axial and vector U(1) symmetries, respectively.
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Consulting Table 1.2 gives the charge assignments,

G+ : (+1, 0), G
+

: (0, +1), G− : (−1, 0), G
−

: (0,−1). (1.26)

Any additional insertions in the amplitudes must maintain the overall charge (3g−3, 3g−3)

of the amplitude. Note that g = 0 and g = 1 are special cases, where additional insertions

(three for g = 0 and one for g = 1) are required in order to fix the remaining rotational

symmetry of the worldsheet — the vacuum amplitude Fg vanishes.

As in physical string theory, the genus g amplitude comes with 2g − 2 powers of the

string coupling λ. Including worldsheets of all genus produces the topological string partition

function,

Z = exp

(
∞∑

g=0

λ2g−2Fg

)
. (1.27)

We are interested in the dependence of the amplitudes Fg on the moduli of the Calabi-Yau

target space. Furthermore, we would like to understand the physical operators that may be

inserted into the vacuum amplitudes. It turns out that studying the latter question provides

insight into the former, as described in the next section.

1.3 Chiral rings

The invariance of the theory under worldsheet metric deformation allows a very explicit

realisation of the operator-state correspondence. Inserting a physical operator φI on a hemi-

sphere gives a definite ground state on the boundary by stretching out the hemisphere to be

infinitely long. This ground state can be identified with the operator inserted,

|I〉 = φI |0〉. (1.28)

The appropriate physical operators are, as discussed above, those satisfying

{G+, φI} = 0, {G+
, φI} = 0. (1.29)
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The range of the index I will become clear below. These operators form a ring, termed

the (c, c) chiral ring, with natural multiplication either as operators or as states by “gluing”

two long hemispheres together and taking the path integral over the resulting “cigar.” This

defines the topological metric,

ηIJ = 〈J |I〉. (1.30)

The conjugate operators also form a ring, called the (a, a) or anti-chiral ring, satisfying

{G−, φĪ} = 0, {G−
, φĪ} = 0.

Since the chiral rings correspond to the same set of vacua, there must be a change of basis

transformation relating the two, which defines the Hermitian metric,

gIJ̄ = 〈J̄ |I〉. (1.31)

The ring is such that

φIφJ = CK
IJφK + {Q,Λ}, (1.32)

where the CK
IJ are the structure constants. From the operator-state correspondence it follows

that CIJK = 〈φIφJφK〉 is the three-point function or Yukawa coupling, and it can be shown

to be holomorphic. By choosing the other twisting (1.17), one can also form the twisted chiral

(c, a) and twisted anti-chiral (a, c) rings, swapping the right-moving commutation properties

above.

To construct the chiral primary operators explicitly, it is convenient to rename the world-

sheet fermions to better indicate the bundles to which they belong, after twisting:

ψi
+ ≡ ψi ∈ X∗(T (1,0)M)

ψī
+ ≡ ψ

ī ∈ X∗(T (0,1)M)

ψi
− ≡ ηi ∈ Ω1,0 ⊗X∗(T (1,0)M)

ψī
− ≡ η ī ∈ Ω0,1 ⊗X∗(T (0,1)M), (1.33)

where “∈” means “is a section of,” and X∗ is the pullback of the map from worldsheet to
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target space. To satisfy (1.29), φI may not include factors of η or η. Thus a general (local)

(c, c) chiral ring operator is

φI = ωi1···ip,j̄1···j̄q
ψi1 · · ·ψipψ

j̄1 · · ·ψj̄q
, (1.34)

where anti-symmetry of the target space indices imply that

0 ≤ p, q ≤ 3,

where (p, q) corresponds to the (left,right) U(1)R charge of the operator. Non-local chiral

operators can be constructed using the descent equations. For our purposes, we can construct

a two-form operator using the one-form supercharges,

φ(2)
I = {G−, [G

−
, φI ]}. (1.35)

The chiral operators with charge (1, 1) are particularly important, and we denote them

φi, and φ(2)
i for the two-form descendant. These descendants have vanishing overall U(1)R

charge, and so can be inserted into the correlator. Indeed, these operators are termed

marginal, as they generate marginal deformations of the conformal field theory. Explicitly,

we can add to the action the term

δS = ti
∫

Σ

φ(2)
i . (1.36)

To determine the physical effects of these deformations, note that the anti-commuting

fermions give the chiral primaries (1.34) the structure of (p, q) forms, with Q identified

as the de Rham cohomology operator. Their relation with forms on the target space M

depends on the choice of twist, giving so-called A- and B-model topological string theory, as

follows:

• A-model: Charge (p, q) chiral primaries are identified with Hp,q(M). Marginal oper-

ators correspond to H1,1(M) cohomology elements, and thus generate deformations of

the Kähler form. A-model is therefore sensitive to Kähler moduli (“volume” moduli)
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of the Calabi-Yau, and is independent of complex structure moduli.

• B-model: Charge (p, q) chiral primaries are identified with Hp
∂̄
(M,∧qTM), that is

(0, p) forms with values in the antisymmetrised product of q tangent spaces. On a

Calabi-Yau there is a unique holomorphic top-form Ω (three form in our case), which

can be contracted with the vector indices to map to the cohomology class H3−q,p(M).

Marginal operators thus correspond to H2,1(M) cohomology elements, and so generate

deformations of complex structure. B-model is therefore sensitive to complex structure

moduli (“shape” moduli) of the Calabi-Yau, and independent of Kähler moduli.

The above statements of course need proof, for which we refer to the references, particularly

[8, 16]. In particular, the statements that A-model is independent of complex structure

moduli and B-model of Kähler moduli (henceforth termed “wrong” moduli) follows naively

from demonstrating that deformations of the form (1.36), but with operators from the chiral

rings (c, a) and (a, c), are BRST trivial (that is, Q-exact), and so are zero in the correlator.

A more careful analysis confirms this intuition, but reveals further structure in the case of

(a, a) chiral ring insertions, corresponding to the addition to the action of the term

δS ′ = t̄ī
∫

Σ

φ
(2)
ī . (1.37)

This insertion is BRST trivial, but [8] showed that non-zero contributions arise at the bound-

aries of moduli space. Thus A-model depends anomalously on anti-holomorphic Kähler

moduli and B-model on anti-holomorphic complex structure moduli, through the so-called

holomorphic anomaly equations,

∂

∂t̄ī
Fg =

1

2
C

jk
ī

[
g−1∑

r=1

DjFrDkFg−r + DjDkFg−1

]
, (1.38)

where Dj is the natural covariant derivative on the vacuum bundle, or the space of theories

under variation of the Calabi-Yau moduli, and C
jk
ī is the anti-topological Yukawa coupling,

with indices raised using the topological metric. We discuss the derivation of this result, or

rather its extension to the open string case, in Chapter 3; and briefly discuss the interpreta-

tion of the anomaly in Section 2.6.
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The above discussion has shown a close relation between marginal chiral primary fields

and forms (equivalently moduli) on the Calabi-Yau target space. Indeed, the chiral primary

topological metric restricted to marginal operators, when appropriately normalised, is exactly

the Weil-Petersson metric on the Calabi-Yau moduli space (1.12),

gij̄

〈0̄|0〉
= eKgij̄ = Gij̄. (1.39)
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Chapter 2

Non-perturbative topological strings and

black holes

One of the more remarkable applications of the topological string is the conjectured relation-

ship, the OSV conjecture [2], between the statistical partition function of four-dimensional

BPS black holes constructed by compactifying type II superstrings on Calabi-Yau three-

folds, and the topological string partition function on the same Calabi-Yau three-fold. The

conjecture takes the schematic form

ZBH = |ψtop|2, (2.1)

where ZBH is the partition function of the black hole, calculated using the grand canonical

ensemble for electric charges and the microcanonical ensemble for magnetic charges, and

ψtop is the topological string amplitude.

Explicit tests of this correspondence have not yet been performed for compact Calabi-

Yau manifolds. However, adapting the conjecture to the case of non-compact Calabi-Yau

manifolds allows explicit calculation of both the gravity and topological string sides. This

was first done [6] for a toric Calabi-Yau three-fold, constructed as the sum of two complex

line bundles over a torus T 2. As we review below, the black hole partition function reduces to

that of the two-dimensional Yang-Mills theory on T 2. At large N , this partition function can

be decomposed into chiral and anti-chiral components, which can be identified as topological

string amplitudes.
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An obvious follow-up question is how to address non-perturbative corrections to the OSV

conjecture, that is, small N effects. In the above system, the black hole partition function is

exactly computable, but the topological string amplitudes at finite N over-count the states.

However, these topological string amplitudes are only defined perturbatively, and so we can

use this mismatch in counting to investigate the non-perturbative implications of the OSV

conjecture. This was done in [4] for the T 2-based target space, and extended in [21] to

somewhat more general toric Calabi-Yau manifolds. In their approach, discussed in Section

2.4, the overcounted states were systematically removed by subtracting terms with additional

factors of |ψtop|2. The full black hole partition function ZBH is then equivalent to a sum over

multi-centred black hole solutions, each interpretable as a “baby universe,” with charges

summing to the overall ZBH charge.

In Section 2.5, we propose an alternate scheme for including the non-perturbative cor-

rections in the OSV conjecture. This approach also yields a sum over terms with arbitrary

numbers of factors, with charges summing to the overall black hole charge. However, in

contrast to the previous scheme, the topological string side of the OSV conjecture is still

in the form of a product of chiral and anti-chiral functions. Specifically, we define a new

quantity Ψ, which satisfies the following conditions:

1. Ψ = ψtop in the large N limit;

2. The appropriate form of the OSV conjecture using Ψ (schematically ZBH = |Ψ|2) is

exact non-perturbatively; and

3. Ψ is expressible as an infinite sum of positive powers of ψtop, using a recursion relation.

As a result, we will call Ψ the non-perturbative completion of the topological string partition

function for the system we consider. This approach also raises interesting questions related

to background independence of the topological string, and quantum coherence of the baby

universes, which we discuss in Section 2.6.

One can attempt to extend this approach to more general classes of Calabi-Yau — in

particular, replacing the base T 2 with an arbitrary genus G surface. For these systems, we

find a chiral function satisfying the first two of the above conditions. For the third condition,
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we find qualitative behaviour that is suggestively similar to other approaches to the problem

[21]. In particular, the non-compact Calabi-Yau forces the introduction of representations

coupling the various partition functions, due to “ghost” branes manifesting the presence of

non-normalisable Kähler moduli corresponding to boundary conditions at asymptotic infinity

in the Calabi-Yau. We find, in agreement with [21], two classes of such representations: P-

type representations coupling the Ψ and Ψ factors; and S-type representations coupling the

factors in the expansion of Ψ in terms of (perturbative) topological string amplitudes ψtop.

Less helpfully, the quantitative matching of classical prefactors in the recursion relation fails.

These prefactors are in general somewhat ambiguous in non-compact manifolds, so further

progress may require concrete models involving compact Calabi-Yau manifolds.

This chapter is organised as follows. Section 2.1 reviews the construction of four-

dimensional black holes in type IIB string theory, allowing the OSV conjecture to be precisely

stated in Section 2.2. Section 2.3 describes an explicit test system for the OSV conjecture.

Sections 2.4 and 2.5 describe the two approaches to handling non-perturbative corrections,

the former breaking chiral factorisation and the latter maintaining it. A challenge to the

interpretation of the latter results is outlined in Section 2.6, having to do with the wavefunc-

tion interpretation of the topological string and background independence. Finally, Section

2.7 and Appendix A describe progress towards extending our treatment to somewhat more

general Calabi-Yau manifolds.

2.1 Black holes from type IIB string theory

Superstring theory can produce “black” objects (black holes as well as black strings, rings,

and so forth) in many different ways — with excellent agreement with classical predictions

like the Bekenstein-Hawking entropy. In this section we review the construction of four-

dimensional supersymmetric black holes in the context of type IIB superstring theory, by

wrapping D-branes on cycles in a small Calabi-Yau. Type IIB is chosen for convenience here,

and in Section 2.3.2 we will see a type IIA construction.

Type IIB superstring theory has odd D-branes. Since we want a black hole localised

in Lorentzian space and extended in time, the branes must wrap odd cycles in the Calabi-
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Yau — and more specifically, three-cycles, as one- and five-cycles are homologically trivial in

Calabi-Yau manifolds. Using the basis of three-cycles defined in Section 1.1, wrap a D3-brane

on the three-cycle,

C = qIA
I − pJBJ ,

where qI and pJ are the wrapping numbers which count wrapping multiplicity for each cycle.

The D3-brane is at a point in non-compact space, with the D-brane configuration preserving

N = 2 supersymmetry in spacetime, producing a four-dimensional black hole. In fact, it

is a Reissner-Nordström (charged, non-rotating) black hole: D3-branes couple to four-form

gauge fields, which become one-form gauge fields in spacetime after compactification (three

indices are along the internal directions of the D-brane worldvolume), so the black hole is

charged, with charges qI and pJ , under the gauge group U(1)h2,1+1. The q and p charges are

dual through Hodge duality of the forms dual to the cycles AI and BJ , so we term the qI

electric and the pJ magnetic charges. The preservation of supersymmetry implies that the

black hole is extremal, i.e., it has the least mass among black holes of the same charge, or

equivalently the inner and outer horizons of the Reissner-Nordström solution coincide. This

means the black hole emits no Hawking radiation, as such radiation would lower the mass but

not the charge. From the supersymmetry perspective, the black hole is BPS, and the lack of

Hawking radiation corresponds to the fact that supersymmetric solutions are necessarily of

lowest possible energy. The microscopic entropy of the black hole is the Boltzmann entropy:

the logarithm of the number of BPS states of the given brane configuration. It is one of the

major successes of string theory that the leading order of this entropy exactly matches the

Bekenstein-Hawking entropy for macroscopic black holes.

The mass of the black hole is the energy required to “stretch” the D-brane over the

volume of this cycle, motivating the result that the BPS mass is

M2
BPS = eK |Q|2, Q =

∫

C
Ω = qIX

I − pIFI . (2.2)

The Bekenstein-Hawking entropy is

SBH =
π

4

∫

CY

Ω ∧ Ω. (2.3)
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We know, however, that Ω depends on the values of the complex structure moduli, so these

need to be fixed — and their values should only depend on the parameters (mass and charge)

of the four-dimensional black hole. Luckily, the moduli are indeed fixed by the charges of

the black hole, through the attractor equations [22, 23]: minimising the mass (2.2) gives that

at the event horizon,

Re(λ−1XI) = pI , Re(λ−1FI) = qI . (2.4)

These 2h2,1 + 2 real equations fix all complex structure moduli, and hence Ω. Physically,

the charges of the black hole fix the geometry (or more precisely, the complex structure) of

the Calabi-Yau at the location of the black hole, independent of the values of the moduli at

spatial infinity.

So far we have not considered Kähler moduli. Upon compactifying type IIB on the

Calabi-Yau, the moduli become the lowest components of supersymmetry multiplets. The

dictionary is

Vector multiplets ↔ h2,1 complex structure moduli,

Graviphoton multiplet ↔ rescaling of Ω,

Hypermultiplets ↔ h1,1 Kähler moduli.

The hypermultiplets decouple in the effective action, as we expect from noting that the black

hole does not depend on the volume of the two cycles. The decoupling of the Kähler moduli

is suggestive of a link with the B-model topological string, as will be realised below.

String theory predicts corrections to the classical Einstein solution. These are encoded

in higher-order terms in the effective action, that include the graviphoton multiplet (the

highest component of which is the Riemann tensor). The relevant terms are F-terms of the

form ∫
dx4

∫
d4θFg(X

I)(W2)g), (2.5)

where W is the Weyl multiplet, and Fg(XI) turns out to be exactly the genus g B-model

topological string amplitude, written in terms of the vector multiplets XI .
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2.2 The OSV conjecture

The suggestive connections between four-dimensional BPS black holes in type IIB superstring

theory, and the B-model topological string, were made explicit in [2]. The first step is to

introduce the imaginary part of XI as

λ−1XI = pI +
i

π
φI , (2.6)

where φI will be interpreted as a chemical potential for the electric charges qI . The black

hole partition function can now be written,

ZBH(φI , pI) =
∑

qI

Ω(pI , qI)e
−φIqI , (2.7)

where Ω(pI , qI) is the number of states (or to be precise, the Witten index) for a BPS black

hole of the given charges.1 ZBH is thus a mixed ensemble partition function — microcanonical

for the fixed magnetic charges, and grand canonical for the electric charges. The separa-

tion of electric and magnetic charges arises naturally on the topological string side from

considerations of background independence, to which we return below.

For the topological string, the full partition function can be written as a genus expansion,

ψtop(λ, ti) = exp
∑

g≥0

λ2g−2Fg(t
i), (2.8)

where Fg(ti) is genus g amplitude or “free energy,” at the values of the moduli ti, where

ti = X i/X0, i = 1, ..., h2,1(X). The statement of the OSV conjecture is

ZBH(φI , pI) =
∣∣ψtop(λ, ti)

∣∣2 , (2.9)

at the attractor point, which sets

ti =
pi + iφi/π

p0 + iφ0/π
, λ =

4π

p0 + iφ0/π
. (2.10)

1Note that Ω(pI , qI) is not related to the holomorphic top form Ω on the Calabi-Yau!
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It is worth emphasising the distinction between the two sides of (2.9): the black hole partition

function is related to the counting of microstates of a four-dimensional extremal black hole,

while the topological string partition function is a path integral of a sigma model with Calabi-

Yau target space. The parameters of the two sides are matched by fixing the moduli of the

Calabi-Yau at the values provided by the attractor equations from the black hole charges.

The derivation of the OSV conjecture in [2] is perturbative in higher-order corrections

to the Riemann tensor, or equivalently in large charges (i.e., large black holes). Certainly

the black hole partition function should have a non-perturbative definition, and so the non-

perturbative implications of (2.9) are of interest. A major difficulty is that most existing

tools for calculating the topological string partition function use genus expansions of the form

(2.8). In the rest of this chapter, we will consider a setup where it is possible to see some

hints of what the non-perturbative implications of (2.9) are. The OSV conjecture has been

tested in other systems [24, 25], and several general proofs have been presented [26, 27, 28].

2.3 Realising the OSV conjecture

In this section we describe a specific compactification due to [6] in which both the black

hole and topological string partition functions can be explicitly calculated in terms of free

fermions moving on a circle. The process is illustrated in Figure 2.1.

2.3.1 Topological strings

Consider the A-model topological string, with target space the non-compact toric Calabi-

Yau,

X = O(m)⊕O(−m) → T 2. (2.11)

Here O(m) is a degree m complex line bundle over the base T 2, that is, a holomorphic section

of this bundle has a divisor of degree m on T 2 which denotes the zeros of the corresponding

holomorphic section. O(−m) is the inverse bundle, such that each meromorphic section of

the bundle has m poles.

The topological string partition function ψtop on this space is a function of the string



26

Topological vertex

Topological string:

(perturbatively)

Black hole:

|ψtop|2 = ZBH

with one Fermi surface with two Fermi surfaces
1d free fermions

2d gauge theory

D-brane worldvolume theory

1d free fermions

Figure 2.1: Realising the OSV conjecture explicitly

coupling λ, as well as the cohomology class t ∈ H1,1(T 2) of the complexified Kähler form

k on T 2. Dependence on the non-compact two-cycle drops out as their Kähler moduli are

infinite. The exact expression can be found using the topological vertex [29]. The details

are beyond the scope of our discussion, but the essence is that topological vertex provides

rules for extracting the topological string partition function from a toric diagram, which in

turn is a line diagram with trivalent vertices, encoding the degeneration loci of a fibration.

For the geometry (2.8) the toric diagram is a simple line connected to itself on a periodically

identified plane, the T 2. Toric diagrams have an additional ambiguity associated with each

edge, referred to as a choice of “framing,” which in this case is identified with the degree

m of the bundles in (2.8). The result is that the perturbative topological string partition

function is

ψtop = ψ0

∑

R of U(∞)

qmκR/2e−t|R|,

κR = 2
∑

! of R

(i(!)− j(!)), (2.12)

where q = e−λ; R is a Young diagram with arbitrary number of rows, all of positive or

zero length, that is, a representation of (S)U(∞); i(!) and j(!) are the row and column,
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respectively, of the box in the Young diagram; and |R| is the total number of boxes in the

Young diagram. ψ0 contains the classical contributions (constant maps in A-model) at genus

zero and one, as opposed to the higher genus worldsheet instanton contributions captured in

(2.12). The classical contributions are somewhat ambiguous for a non-compact target space,

but in this case the appropriate choice for the topological string–black hole correspondence

is [6]

ψ0 = exp

(
F0(t)

λ2
+ F1(t)

)
= exp

(
− t3

6m2λ2
+

t

24

)
. (2.13)

2.3.2 Black holes and two-dimensional Yang-Mills theory

In Section 2.1 we considered type IIB string theory; here we need type IIA string theory

so as to make contact with the A-model results of the previous section. Type IIA has Dp-

branes, with p even, which can be wrapped on even cycles of the Calabi-Yau to form a

four-dimensional BPS black hole. Considering the Calabi-Yau X (2.11), wrap N D4-branes

on O(m) → T 2. Then consider bound states which have in addition N2 D2-branes wrapping

the T 2, and N0 D0-branes scattered on the D4-branes. The D6-brane charge is set to zero,

as are the charges of the two- and four-cycles not already mentioned. The results of Section

2.1 go through, once we identify the wrapping numbers of zero- and two-cycles as electric

and those of four- and six-cycles as magnetic.

As noted above, the black hole partition function should be calculated in the mixed

ensemble: fix the magnetic charge N , and sum over the electric charges N2 and N0, describing

a gas of D2- and D0-branes. To proceed, we consider the gauge theory on the D4-brane

worldvolume C4, as considered in [6]; see also a generalisation in [3]. It is a topologically

twisted N = 4 U(N) Yang-Mills theory, as considered in [30]. The D2- and D0-brane gas

can be modelled by turning on observables,

S4d =
1

2λ

∫

C4

trF ∧ F +
θ

λ

∫

C4

trF ∧K, (2.14)

where K is the unit volume form on T 2. These observables correspond to turning on chemical
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potentials for the D0- and D2-branes, respectively, of

φ0 =
4π2

λ
, φ1 =

2πθ

λ
. (2.15)

This theory can be reduced to a two-dimensional theory on the T 2. Consider the holon-

omy of the gauge theory around the circle at infinity in the fibre, over a point z in the base

T 2,

Φ(z) =

∫

S1
z,|w|=∞

A, (2.16)

where w is the coordinate in the fibre. With some assumptions on the reasonableness of the

gauge configuration, it follows that

∫

fiber

Fww̄(z, w) dw dw̄ = Φ(z),

and hence that the action (2.14) reduces to

∫

T 2

(
1

λ
TrFΦ +

θ

λ
TrΦ

)
. (2.17)

Recall, however, that the fibre has m zeroes. At these points we have additional massless

states, which should manifest as topological point-like observables on the reduced theory.

As argued in [6], this adds to the action (2.17) the term

∫

T 2

m

2λ
TrΦ2.

Integrating out Φ and the fermions from this topologically twisted theory gives two-

dimensional bosonic U(N) Yang-Mills on a torus, with action [31]

S2d = −
∫

T 2

1

g2
YM

(
1

2
TrF 2 + θTrF

)
, (2.18)

where the coupling constant is identified as

g2
YM = mλ. (2.19)
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This theory has been exactly solved [32, 33, 34, 35, 36]. The partition function is

ZBH = α(λ, θ)
∑

R of U(N)

exp

(
−1

2
g2

YMC2(R) + iθC1(R)

)
, (2.20)

where C1(R) and C2(R) are the first and second Casimirs of representation R, which can be

related to the quantities in (2.12),

C1(R) = |R|,

C2(R) = κR + N |R|, κR =
N∑

i=1

Ri(Ri − 2i + 1). (2.21)

The normalisation α(λ, θ) of (2.20) has ambiguities, coming in part from the choice of regu-

larisation. The appropriate choice for our purposes is [3],

α(λ, θ) = exp

(
− 1

24
mλ(N3 −N) +

Nθ2

2mλ

)
. (2.22)

Making the identification

t =
1

2
mλN − iθ, (2.23)

gives the partition function of the charge N black hole in this setup,

ZBH = qm(N3−N)/24eNθ2/2mλ
∑

R of U(N)

qmκR/2e−t|R|. (2.24)

Note that (2.24) is nearly (2.12). There is one key difference besides the prefactor: the

representations R of U(∞) in (2.12) are unlimited in their number of rows, while represen-

tations R of U(N) in (2.24) have at most N rows, but they can have negative length.

2.3.3 One-dimensional free fermions

Two-dimensional bosonic U(N) Yang-Mills on a torus has an illuminating reformulation in

terms of N non-relativistic free fermions moving on a circle [37, 38]. Representations R

of U(N) are in one-to-one correspondence with fermion configurations, as follows: Denote
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the momenta of the fermions by pi ∈ 1
2 + Z, i = 1, · · · , N , with each momentum state

containing at most one fermion. Let the empty Young diagram correspond to the ground

state configuration, with fermion states from p = −N
2 + 1

2 to N
2 −

1
2 filled, so that for a general

young diagram R with row lengths Ri (which may be negative),

pi =
1

2
− i + Ri. (2.25)

For simplicity we henceforth assume that N is even — the generalisation is straightforward.

The Casimirs in (2.21) have a simple interpretation as the total momentum and energy of a

configuration,

C1(R) = P =
N∑

i=1

pi,

C2(R) = E − E0 =
N∑

i=1

1

2
p2

i −E0,

E0 =
1

24
(N3 −N). (2.26)

where E0 is the energy of the ground state configuration.

The topological string partition function ψ(t), equation (2.12), can likewise be interpreted

as a system of non-relativistic fermions on a circle — but infinitely many, as we started with

U(∞) Yang-Mills. As will become clear below, the appropriate “ground” state corresponding

to trivial representation R is all fermion states with momenta p ≤ N
2 −

1
2 filled. This state

is stable only perturbatively, as the addition of momentum greater than N allows fermions

from the infinite sea of negative momentum (but positive energy) to lower their energy by

filling states of positive momentum. The classical contribution (2.13) contains the zero-point

energy, regulated by treating the negative momentum states as zero energy when filled. For

the conjugate partition function ψ(t̄), the sign of the θ-dependent term is reversed, and so

the fermion momenta change sign.
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p = 0

ZBH

p

⊗

p

ψtop

p

ψtop

Figure 2.2: The (perturbative) OSV relation in terms of free fermions, understood as a decoupling

of Fermi surfaces

2.3.4 Perturbative OSV

The OSV relation follows from the free fermion description. As shown in Figure 2.2, small

deviations from the ground state of the black hole can be thought of as fermion excitations at

the two Fermi surfaces, one each for positive and negative momentum states. The topological

string partition functions ψ and ψ, on the other hand, have a single Fermi surface each, at

positive and negative momenta, respectively. Thus the OSV relation is simply the decoupling

of the two Fermi surfaces. In this section we make this statement rigorous, by specifying

how to split a representation R describing a black hole state into two representations R+

and R− describing holomorphic and anti-holomorphic topological string states, respectively.

The first complication is that Young diagrams R for U(N) may have negative length

rows, so there exists a “shift” operation for the black hole, where all the rows of the Young

diagram are lengthened or shortened by a unit, or equivalently the centre of mass of the

fermion distribution is shifted in momentum space. To fix this degree of freedom, define

integer −N
2 ≤ l ≤ N

2 as in Figure 2.3 to be the edge of the largest square that can be

inserted between the boundary of the Young diagram R and the point (N
2 , 0) (that is, row

N
2 , column zero). Explicitly,
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R–

R+

l

N/2

0

N/2

0

-l

R–

R+

Figure 2.3: Decomposition of a U(N) representation R corresponding to a black hole microstate

into an SU(N/2+l) representation R+ and an SU(N/2−l) representation R−. The longest vertical

line (dotted) is the zero of row length. The left diagram is a case with negative l, and the right has

positive l. The diagonal striped region is in R but not in either R+ or R−.

• If RN/2 ≥ 0, let l ≥ 0 be the largest number such that RN/2+l ≥ l;

• If RN/2 < 0, let l < 0 be the smallest number such that RN/2−l ≤ l.

Now define representation R+ of SU(N
2 + l) as the rest of the first N

2 + l rows of R,

starting at column l; and R− of SU(N
2 − l) as the conjugate of the remaining N

2 − l rows,

starting at column l. That is,

R+
i = Ri − l, i = 1, · · · ,

N

2
+ l,

R−
i = l − RN+1−i, i = 1, · · · ,

N

2
− l.

The reverse map takes N
2 ≤ l ≤ N

2 , R+ of SU(N
2 + l) and R− of SU(N − l), to R of U(N),

as follows: Fill the first l columns of the Young diagram of R. Then add the diagram of

R+ to complete the first l rows, and subtract R− from the remaining rows, as shown in

Figure 2.3, to complete R. This completes the definition of a one-to-one map between R

and (l, R+, R−).
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Using this decomposition, the quantities in the black hole partition function (2.24) can

be rewritten as follows:

∑

R

→
N/2∑

l=N/2

∑

R+,R−

,

|R| = Nl + |R+| −| R−|,

κR = κR+ + κR− + 2|R+|l + 2|R−|(N − l) + Nl2 −N2l, (2.27)

where the last result follows most easily from an alternate expression for κR, κR =
∑

i Ri(Ri−

2i + 1). Thus (2.24) can be written

ZBH = qm(N3−N)/24eNθ2/2mλ
∑

l,R+,R−

q
m
2 [κR++κR−+(N+2l)|R+|+(N−2l)|R−|+Nl2]eiθ(Nl+|R+|−|R−|).

(2.28)

To treat the factors free of representation dependence, use the identities

qm(N3−N)/24eNθ2/2mλ = exp

(
−(t3 + t̄3)

6m2λ2
+

(t + t̄)

24

)
,

q
m
2 Nl2eiθNl = exp

(
−(t2 − t̄2)l

2mλ
− (t + t̄)l2

2

)
. (2.29)

The second line above may be absorbed into the first, at the cost of substituting t → t+mλl

and t̄ → t̄ − mλl in the first line. Indeed, this choice of variables can be used throughout

(2.28), to yield

ZBH =
N/2∑

l=−N/2

ΨN/2+l(t + mλl)ΨN/2−l(t̄−mλl), (2.30)

Ψk(t) = e−t3/6m2λ2+t/24
∑

R of SU(k)

qmκR/2e−t|R|, (2.31)

where we have defined the chiral function Ψk(t). Note that the subscript k, denoting the

maximum number of rows of the representations in the sum, is included for clarity only, since

it is exactly k = Re(t)/mλ.

This definition is identical to the (perturbative) topological string partition function ψ,
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equation (2.12), except that the sum over representations R includes only those with at most

k = N
2 + l rows. This difference is non-perturbative in N : terms with l of order N

2 or −N
2 are

exponentially suppressed by the t3 term in the prefactor exponential, so any perturbatively

significant k is of order N . Then, however, a box in row (k +1) in a Young diagram requires

all boxes in the first column up to row k to be present, so |R| > k is order N , which gives

exponential suppression from the e−t|R| factor. Thus up to non-perturbative corrections,

ZBH =

N/2∑

l=−N/2

ψ(t + mλl)ψ(t̄−mλl), (2.32)

which is a statement of the OSV conjecture, up to sum over l.

The sum over l merits further discussion. The literature differs in the limits of the l

summation: [3, 6] sum over l ∈ Z, while the restricted range of (2.32) appears in [4]. The

difference is due to there being different ways to decompose the black hole representation R

of (2.24). The technique used above yields representations R+ of SU(N/2 + l) and R− of

SU(N/2−l), with finite summation range. One can also define l as the length of row RN/2, R+

as the rest of the first N
2 rows, starting at column l, and R− as the conjugate of the second N

2

rows starting at column l. This gives representations R+ and R− of SU(N/2), and infinite

summation range for l. Both techniques yield decompositions that give the perturbative

topological string partition function (2.12), and so the choice is arbitrary for perturbative

results. For our purposes, however, the classical prefactors in the chiral recursion relation

derived below, equation (2.46), match only for our chosen decomposition. The summation

over l in (2.32) was interpreted in [6] in terms of RR-fluxes through the base T 2, which would

of course appear in a physical black hole constructed by compactification on the manifold

(2.11).

The perturbative OSV relation (2.32) follows from decoupling of the two Fermi surfaces of

the black hole. Allowing non-perturbative corrections, or equivalently “deep” excitations (a

finite fraction of N fermions below the Fermi surfaces), spoils the decoupling. For example, as

shown in Figure 2.4, an excitation deep within the black hole Fermi tower can be interpreted

as an excitation of either Fermi surface, and therefore be associated with either of the

topological string Fermi towers. The right-hand side of (2.32) thus overcounts this state.
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p

Figure 2.4: Overcounting in the per-

turbative OSV relation (2.32): excita-

tions deep in the black hole Fermi sea

can be associated with either Fermi sur-

face.

⊗

p p p

≈

Figure 2.5: Removing overcounted states: a black

hole with deep excitations is the product of two black

holes without deep excitations, the latter (in dark

grey) composed of holes rather than fermions.

Furthermore, excitations more than N fermions down in the topological string Fermi sea

have no corresponding states on the black hole side. The rest of the this chapter will develop

techniques to handle these non-perturbative corrections.

2.4 Non-chiral baby universes

In this section we review an approach to handling the overcounting, due to [4], that replaces

the left-hand side of (2.32) with a sum over all collections of black holes with the same overall

charge as the single black hole considered previously. A different approach to subtracting

the overcounted states is presented in Section 2.5, where we will interpret (2.32) as providing

the correct way to define the non-perturbative completion of the topological string partition

function.
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2.4.1 A non-chiral recursion relation

The approach of [4] is grounded in the intuition shown in Figure 2.5. Overcounted states

are exactly those with holes deep within the black hole Fermi sea. These excitations can be

viewed as a sea of holes within the sea of fermions, and so treated as a black hole Fermi sea

of holes superimposed on a black hole Fermi sea without deep excitations. This motivates

the relation

ZN =
N/2∑

l=−N/2

ψN/2+lψN/2−l −
∞∑

n=1

ZN+nZ−n, (2.33)

where the subscripts on the black hole partition functions Z indicate the number of fermions

in the Fermi sea, and Z−n is a partition function of n holes. The first term on the right

is the perturbative result, and the second term subtracts overcounted states, that is, those

with one or more deep excitations. A hole is the absence of a fermion with the given energy

and momentum, so from the above definitions it follows that

Z−n(θ, λ) = Zn(−θ,−λ). (2.34)

Z−n is clearly unstable, so by a process of analytic continuation, (2.33) can be written as [4]

ZN =
N/2∑

l=−N/2

ψN/2+lψN/2−l −
∞∑

n=1

ZN−nZn, (2.35)

where this expression can be trusted when all subscripts are large, that is N 5 1, |l| 6 N

and n 5 1.

Equation (2.35) is a recursion relation, which can be expanded to give

ZN =
∞∑

n=1

(−1)n−1Cn−1

∑

N+
1 +...+N+

n +N−
1 +...+N−

n =N

ψN+
1
...ψN+

n
ψN−

1
...ψN−

n
(2.36)

where Cn = (2n)!
n!(n+1)! is a Catalan number, capturing the combinatorics of the expansion [4].
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2.4.2 Gravitational interpretation

We return now to the counting of BPS states of the black hole. ψN can be Laplace trans-

formed with respect to the chemical potentials for the electric charges,

ψN,N0,N2(θ, λ) = exp

(
2π2N0

λ
+

N2πθ

λ

)
ψ(ti, λ), (2.37)

with ti fixed by the attractor equations (2.4), and N2 and N0 the electric charges for this

system. Then from (2.7) and (2.9) it follows [4] that the number of microstates of the

extremal black hole is

Ω(N, N2, N0) =

∫
d

(
1

λ

)
d

(
θ

λ

)
|ψN,N2,N0|

2 . (2.38)

Each pair ψN+
i
ψN−

i
thus corresponds to a black hole of magnetic charge N+

i + N−
i , and so

(2.36) is a statement that the full non-perturbative black hole partition function is a sum

over multiple black hole configurations with charges summing to the total black hole charge

N . This section will develop this intuition from the gravity side.

Starting with a single-centred solution, a static spherically symmetric black hole has

metric [4]

ds2 = − π

S(r)
dt2 +

S(r)

π

∑

a=1,2,3

(dxa)2 + ds2
CY, (2.39)

where r = |x|, and ds2
CY is the metric of the Calabi-Yau, which depends on r through the

attractor mechanism. The asymptotic (near horizon) behaviour of S(x) is

S(x) ∼ S(0)
BH(P, Q)

|x|2
, x → 0, (2.40)

where S(0)
BH(P, Q) is the semi-classical entropy of the solution, with charge vectors P and Q.

From (2.3) and the attractor equations (2.4), S(0)
BH is fixed in terms of the charges.

The key point is that the geometry (2.39) is not the only solution with the given charges

which preserves the requisite supersymmetry. Multi-centre solutions partition the charges

between multiple black holes locally, but have the same behaviour at spacial infinity as the
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single-centre solution. More precisely, the charges are partitioned,

P I =
n∑

i=1

pI
i , QI =

n∑

i=1

qiI , (2.41)

where I labels the charges (or equivalently the homologically distinct cycles in the Calabi-

Yau), and i labels the n distinct centres. Let us specialise to the case of a single electric

charge. Define a scalar function,

S(x) = π

(

c +
n∑

i=1

qi

|x− xi|

)2

, (2.42)

where all the charges qi are assumed positive. Inserting this into the metric (2.39) gives a

solution which near a given “centre,” at xi, behaves as

S(x) ∼ πq2
i

|x− xi|2
, x → xi,

but towards spacial infinity goes as

S(x) ∼ π

(
c +

Q

|x|

)2

, |x| → ∞.

Thus this solution looks like a single black hole of charge qi near xi, but like a black hole

of total charge Q at spacial infinity. Indeed, by Wick rotating (2.39) and interpreting S(x)

as the Euclidean time, one can interpret this [39] in terms of tunnelling from a single-

centred solution at S → 0 to a multi-centred solution at S → ∞. The Euclidean action is

proportional to the difference in entropy of the configurations, and thus to the square of the

charges, leading to exponential suppression at large charge.

The solution can be generalised to the case with multiple charges [40, 41], with two

complications: firstly, the locations xi of the centres are no longer arbitrary, as it costs energy

for the scalar fields corresponding to the Calabi-Yau moduli to interpolate between their

values at each horizon. Secondly, the magnetic charges need to have the same sign, which

is conveniently satisfied by the gauge theory result (2.36). Taking these considerations into
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account, stable supersymmetric solutions still exist, with qualitatively similar behaviour to

the example above. The implication of the non-perturbative result (2.36) is thus: the square

of the topological string partition function calculates the partition function of not just a

single-centred black hole, but rather the partition function of all gravitational solutions that

preserve the appropriate supersymmetry and have the given total charges at spacial infinity.

Taking the low energy near horizon limit, in the style of the AdS/CFT correspondence,

splits the geometry (2.39) into multiple near horizon regions, or baby universes. An ensemble

of all possible numbers of universes is thus dual to a single gauge theory. The near hori-

zon limit is particularly relevant in the light of the interpretation [5] of ψtop (or rather its

transform ψP,Q) as the Hartle-Hawking wavefunction of the universe in the mini-superspace

sector of string theory, which describes BPS (supersymmetry-protected) quantities. These

wavefunctions are the ground states of the theory, after long time evolution, which implies

the near-horizon limit. We return to the wavefunction interpretation in Section 2.6.

Summing over universe number seems to imply a loss of quantum coherence for the Hartle-

Hawking state for a given universe, due to the coupling of the wavefunctions of different

universes through the overall charge conservation. This conclusion is perhaps unnecessarily

strong: measuring the charges (or equivalently coupling constants) of one universe determines

the wavefunction of that universe as a pure state, in agreement with arguments [42] about

quantum coherence in situations with baby universe creation.

2.5 Chiral completion of the topological string

We turn now to a novel approach to treating the overcounting identified in Section 2.3.4.

This approach has the merit that the results are exact for all values of the parameters — no

large charge assumptions are required. The result will provide a non-perturbative statement

of the OSV relation for the system described in Section 2.3, but with the topological string

side still in the form of a product of a chiral and anti-chiral function. This motivates the

interpretation that these functions, denoted Ψ and Ψ, are the non-perturbative completion

of the topological string partition function. Furthermore, these functions will be related to

the perturbative topological string partition function ψ by a recursion relation similar to the
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p

⊗=

pp

Figure 2.6: The black hole partition function (on left) equals two modified topological string par-

titions functions Ψ and Ψ (on right). The hashed regions may not contain holes.

chiral (or anti-chiral) part of (2.36).

Recall that the non-perturbative corrections to (2.32) are excitations deep within the

black hole Fermi sea, as such excitations can be assigned to either of the topological string

partition functions. Rather than systematically subtract the overcounted states as in the

previous section, however, the topological string partition function can be modified to allow

excitations only to a given depth, so that each black hole excitation is assigned unambigu-

ously to either the chiral or anti-chiral partition function, as illustrated in Figure 2.6. The

derivation in Section 2.3.4 used exactly this approach: equation (2.30) is an exact result,

and so Ψ(t) defined by (2.31) is the candidate non-perturbative completion of the topological

string partition function ψ(t).

To support this interpretation, we need a relation between ψ(t) and Ψ(t). The two differ

by the presence in ψ of “deep” excitations, which are forbidden in Ψ. These, however, can

be described using an inverted tower of holes, as shown in Figure 2.7. To make this concrete,

consider an arbitrary U(∞) representation R, as shown in Figure 2.8. There is a one-to-

one correspondence between such representations and pairs of representations (R1, R2) of

SU(k + r) and SU(r), respectively, as follows: Define r to be the largest number such that a

rectangle of width r and height k + r (the hashed region in Figure 2.8) fits within the Young

diagram. Remove the rectangle. The remainder of the first (k + r) rows is R1; while the



41

Ψ−rΨk+r

p

⊗

p p

=

ψk

Figure 2.7: Decomposing the perturbative topological string partition function ψ into non-

perturbative completions thereof, Ψ, in terms of free fermions. The hashed region is inaccessible to

excitations, and the darker (non-hashed) region represents holes (negative energy fermions).

rest of the diagram is the transpose of R2. Conversely, such a pair of representations, along

with the number r, uniquely defines representation R. With this definition, let |R1| = n,

|R2| = m, and so |R| = n + m + (k + r)r. Furthermore,

κR = (κR1 + 2rn)− (κR2 + 2(k + r)m) + κ(k+r)×r

= κR1 − κR2 + 2(rn− km− rm)− k2r − kr2, (2.43)

where the minus sign before κR2 follows from using the transpose of the representation.

Using the above decomposition, and neglecting the prefactor ψ0, we can write

ψk(t) =
∑

r

∑

R1,R2

q
1
2m(κR1−κR2+2(rn−km−rm)−k2r−kr2)e−( 1

2mλk−iθ)(n+m+(k+r)r)

=
∑

r

e−( 1
2mkλ−iθ)r(k+r)Ψk+r(t + mrλ)Ψ−r(t−m(k + r)λ),

where the non-perturbative partition function for holes is defined as

Ψk<0(t) = e−t3/6m2λ2+t/24
∑

R of SU(|k|)

q−mκR/2e−t|R|, (2.44)
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(R2)t

R1

r

k+r

Figure 2.8: Decomposing a U(∞) representation into an SU(k + r) representation R1 and a

(transposed) SU(r) representation R2.

where the sign preceding κR follows from (2.12) by treating the representation R as trans-

posed, which interchanges fermions and holes. Note that the momentum of the fermions is

also sign-flipped, and so Ψ−r above is indeed chiral, as opposed to anti-chiral. The prefactors

from classical maps satisfy

ψ0

(
t =

1

2
mkλ− iθ

)
= ψ0 (t + mrλ) ψ0 (t−m(k + r)λ) e(

1
2mkλ−iθ)r(k+r)eiθ3/6m2λ2

eiθ/24.

Including the prefactor gives

ψk(t) = Θ
∞∑

r=0

Ψk+r(t + mrλ)Ψ−r(t−m(k + r)λ), (2.45)

Θ = eiθ3/6m2λ2
eiθ/24,

where Θ is pure imaginary and so cancels between topological and anti-topological partition

functions. It owes its existence to the difference between ψ0 and the naive zero-point energy

of the topological string partition function fermion tower.

Equation (2.45) gives a recursion relation for Ψ(t) in terms of ψ(t). The factor Ψ−r(t −

m(k + r)λ) above, for r = 0, is just Ψ0(t−mkλ) = Θ, as the representation sum ranges over
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representations with zero rows, i.e., only the trivial representation. We can thus write

Ψk(t) = ψk(t)−Θ
∞∑

r=1

Ψk+r(t + mrλ)Ψ−r(t−m(k + r)λ). (2.46)

As an example, expanding each factor of Ψ once gives

Ψk(t) = ψk(t)−Θ
∞∑

r=1

[

ψk+rψ−r −Θ ψ−r

(
∞∑

u=1

Ψk+r+uΨ−u

)

−Θ ψk+r

(
∞∑

v=1

Ψ−r−vΨv

)

+ Θ2

(
∞∑

u=1

Ψk+r+uΨ−u

)(
∞∑

v=1

Ψ−r−vΨv

)]

.

The corresponding anti-chiral recursion relation follows immediately by replacing ψ → ψ,

Ψ→ Ψ, Θ→ Θ.

The recursion relation (2.46) is chiral (contains only factors of ψ, not ψ), in contrast to

the factorisation in Section 2.4. Substituting (2.46) into (2.30) gives

ZN =
∞∑

n,l=1

(−1)n+lCn−1Cl−1

∑

N+
1 +...+N+

n +N−
1 +...+N−

l =N

ψN+
1
...ψN+

n
ψN−

1
...ψN−

l
, (2.47)

where the charges in the sum have arbitrary sign, except that at least one of the N+
i is

positive, and if n > 1 then at least one is negative; and likewise for the N−
i charges. Note

that the appearance of negative charges is natural [21]: they can be interpreted as D4-branes

in child universes wrapping the opposite choice of four-cycle in the manifold X. This four-

cycle has negative intersection number with the base T 2, giving negative effective D4-brane

charge.

2.6 Background independence

The proposal (2.47) raises some puzzles related to the question of background independence,

to which we now turn. The A- and B-model topological strings (and indeed type IIA and IIB

physical string theory) are related through mirror symmetry. As discussed in detail in [16],

the A-model topological string on a Calabi-Yau manifold X is dual to the B-model topological
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string on a different Calabi-Yau manifold X̃. Since A-model depends on Kähler moduli and

B-model on complex structure moduli, this implies that h1,1(X) = h2,1(X̃) and h2,1(X) =

h1,1(X̃). Recall from Section 1.1, however, that Kähler structure deformations are exactly

elements of H1,1(X), while the correspondence between complex structure deformations and

H2,1(X) arises from considering infinitesimal deformations of the holomorphic top form Ω.

Thus the complex structure moduli space (but not, apparently, the Kähler moduli space) is

defined relative to a choice of background, or reference complex structure.

This apparent contradiction was resolved in [7]. The Lagrangian of the untwisted N = 2

supersymmetric theory can be written

L = L0 − ti
∫

Σ

φ(2)
i − t̄ī

∫

Σ

φ
(2)
ī , (2.48)

where all terms other than those involving the chiral primaries are in Lo. After twisting, as

discussed in Section 1.3, the last term becomes BRST-trivial. Deformations of the theory

with marginal operators modify only the holomorphic moduli, ti → ti + ui. Naively, then,

amplitudes depend on ti + ui, and the original choice of ti is irrelevant. The holomorphic

anomaly equations (1.38), however, show that the last term in (2.48) is not completely

irrelevant, and the theory still depends on t̄ī — from which one can recover ti. Thus both A-

and B-model depend on the initial choice of a background point. Standard calculations in

A-model do not show this dependence, but in fact these calculations are implicitly performed

with background t̄ī →∞ [7, 8].

A quantum theory of gravity should, however, be independent of the background. Luckily,

a more sophisticated version of background independence is indeed present [7]. Consider

quantum mechanics formulated on the phase space of conjugate position and momentum

variables. The wavefunction is expressed in terms of half of these variables, usually either

positions or momenta, giving the phase space a natural symplectic structure. Changing

the symplectic structure does not affect the physical wavefunction, but its functional form

undergoes a Bogoliubov transformation. The topological string also requires the choice

of a symplectic structure, the complex structure on the Calabi-Yau, through the choice of

decomposition H3(X) = H3,0(X)⊗H2,1(X)⊗H1,2(X)⊗H0,3(X). The holomorphic anomaly
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equations (1.38) for the amplitudes can be rewritten as equations for the partition function

(1.27), (
∂

∂t̄ī
− λ2

2
C

jk
ī DjDk

)
Z = 0, (2.49)

with genus one contributions suppressed for simplicity. Equation (2.49), however, is exactly

the Bogoliubov transformation for a wavefunction Z with phase space H3(X) [7]! Thus the

physical wavefunction (which we have denoted ψ) is independent of the background.

Returning to the OSV conjecture, the modifications of ψ and ψ under change of back-

ground cancel, such that ZBH is left invariant. The result (2.47) now presents a puzzle: since

powers of ψ and ψ are not required to match, is this result still background independent?

The calculations in this chapter were performed for a particular choice of background, so one

possibility is that this choice renders trivial some additional contribution to (2.47), which

order-by-order transforms in such a way as to restore background independence.

A related issue is the interpretation of (2.47) in terms of physical black holes, along

the lines of the discussion in Section 2.4.2. Recall that the near-horizon limit of a four-

dimensional black hole is the space AdS2×S2. AdS2 is unique amongst anti-de-Sitter spaces

for having two independent boundaries, and so it is tempting to interpret the topological

string partition function as the dual gauge theory living on one of the boundaries. The result

(2.47) then suggests universe-creating instantons which split just one of the AdS2 boundaries,

leaving baby universes which “share” the other boundary.

To consider these questions further, it would be useful to have results for somewhat more

general Calabi-Yau target spaces, to which we turn in the next section. However, the local

(non-compact) nature of the Calabi-Yau manifolds under discussion, while necessary for the

application of topological vertex techniques, makes the derivation of further results difficult

and ultimately inconclusive.

In any event, the chiral factorisation has interesting implications for the question of

quantum coherence of the wavefunction of the universe, as discussed at the end of Section

2.4.2. The structure ZBH = ΨΨ includes all contributions regardless of the number of the

universes, so tunnelling to a multi-centre (multi-universe) configuration does not destroy

quantum coherence. The universe (and each baby universe) remains in a pure state, without
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the need to measure the local charges.

2.7 Extension to other genus target spaces

A natural extension of the work above is to consider more general Calabi-Yau target spaces.

In particular, (2.11) can be generalised to

XG = O(m + 2g − 2)⊕O(−m) → ΣG, (2.50)

where ΣG is a genus G surface (with G distinct from the genus g of the worldsheet), and the

degrees of the line bundles are chosen to give overall vanishing first Chern class. The OSV

conjecture in this setup was considered in [3], and a non-chiral baby universes interpretation

in the style of Section 2.4 was proposed in [21]. We seek a chiral, non-perturbative realisation

of the OSV conjecture.

Unfortunately, while there is such a realisation, with chiral partition functions Ψ that

are perturbatively the topological string partition function ψtop, the chiral recursion relation

between ψtop and Ψ suffers from a mismatch in classical prefactors. Below we will demon-

strate the former statement, and attempt to motivate the latter. The chief complication

arising is that, in addition to the sum over l that appears in (2.32), the chiral and anti-chiral

topological string partition functions are coupled by a sum over representations, referred to

as (P-type) “ghost brane” representations. Physically, these can be interpreted as boundary

conditions at infinity of the non-compact Calabi-Yau. In the chiral recursion relation we

will need to account for two sets of representations which couple the decomposed partition

functions: one set (S-type) come from decomposing the chiral topological string partition

function itself; the other set (P-type) come from decomposing the P-type ghost brane repre-

sentations we found while decomposing the black hole. These will be interpreted physically

below.
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2.7.1 Realising the OSV conjecture

The topological string partition function on the space (2.50) can be derived by starting with

simple annulus, pants and caps diagrams, ending on stacks of D-branes. More complicated

worldsheets can then be constructed by gluing the boundaries together. The result is [3]

Ztop(q, t) = Z0(q, t)
∑

R of U(∞)

(
1

dq(R)

)2G−2

q(m+G−1)κR/2e−t|R|,

Z0(q, t) = M(q)1−G exp

(
− t3

6m(m + 2G− 2)λ2
+

(m + 2G− 2)t

24m

)
, (2.51)

where M(q) =
∏∞

n=1(1− qn)−n is the McMahon function, and Z0 captures the contributions

from constant maps. Compared to the result for G = 1, equation (2.12), the major new

ingredient above is the quantum dimension dq(R) of the symmetric group representation

corresponding to the Young diagram R (with arbitrary column lengths),

dq(R) =
∏

!∈R

1

[h(!)]q
, (2.52)

where h(!) is the hook length of the corresponding box in the Young diagram, that is the

number of boxes directly below the box, but in the same column, plus those directly to the

right of the box, but in the same row, plus one. The q-analogue [x]q is defined as

[x]q = qx/2 − q−x/2. (2.53)

This partition function can still be interpreted as that of a sea of fermions on a circle, however

the fermions are now interacting due to the presence of the quantum dimension.

On the black hole side, the additional subtlety is that the holonomy Φ of the gauge theory

around points on the base ΣG, as defined by equation (2.16), is periodic, so it is only eiΦ

that is a good variable.

Taking this into account, the black hole partition function is [3]

ZBH = α(λ, θ)
∑

R of U(N)

S2−2G
0R qmC2(R)/2eiθC1(R), (2.54)
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with

α(λ, θ) = q
(m+2G−2)2

2m

“
N3

12 − N
12

”

q
(2G−2)

“
N3

12 − N
24

”

e
Nθ2

2mλ ,

which reduces to the results of Section 2.3.2 for G = 1. S0R is a quantity best known in

Chern-Simons theory, related to entries of the S-matrix of the U(N)k WZW model (for

non-integer level k). It is related to the quantum dimension for finite N ,

S0R

S00
= dimq(R) =

∏

1≤i<j≤N

[Ri − Rj + j − i]q
[j − i]q

, (2.55)

where Ri is the length of the ith row of the Young diagram, and S00 is the denominator on

the right. It is worth emphasising the difference between dq(R) and dimq(R): the Young

diagram R is treated as having infinitely many rows (most of them empty) for the former,

but only N rows for the latter. Taking N to infinity makes them equal.

To find the appropriate value for the Kähler modulus t, we need to consider the wrapping

more carefully. Consider the following divisors:

D = O(m + 2G− 2) → ΣG, D′ = O(−m) → ΣG. (2.56)

The N D4-branes are wrapped on D, giving an effective magnetic charge proportional to the

intersection number of D with the two-cycle wrapped by the (electric) D2-branes, ΣG. The

intersection number is

#(D ∩ ΣG) = m + 2G− 2,

so that the Kähler modulus should be fixed to be

t =
1

2
(m + 2G− 2)Nλ− iθ. (2.57)

The black hole partition function (2.54) can be decomposed as in Section 2.3.4 and Figure

2.6. The factors of S0R complicate the mathematics significantly; the derivation can be found
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in Appendix A. The result, equations (A.7) and (A.8), is

ZBH(Σg) =
N/2∑

l=−N/2

∑

P1,...,P|2−2G|

ΨN/2+l
P1,...,P|2−2G|

(t + mlλ)Ψ
N/2−l
P1,...,P|2−2G|

(t̄−mlλ), (2.58)

with both holomorphic and anti-holomorphic chiral partition functions given by

Ψk
P1,...,P|2G−2|

(t) = Ẑ0(q, t) exp

(
−

t(|P1| + · · ·+ |P|2G−2||)
m + 2G− 2

)

×
∑

R of SU(k)

(
1

dq(R)

)2G−2

q(m+G−1)kR/2e−t|R|
|2G−2|∏

n=1

sPn(qRi+
1
2−i), (2.59)

except for G = 0, where the anti-holomorphic chiral partition function is

Ψ
k
P1,P2

(t̄) = (−1)|P1|+|P2|Ψk
P t

1 ,P t
2
(t).

The prefactor is Ẑ0(q, t) = Z0(q, t)ηt(2G−2)/(m+2G−2)λ.

The most noteworthy aspect of (2.58) is the sum over representations Pn coupling the

two chiral partition functions. These have a physical interpretation: the additional factors

in (2.59) compared to (2.51) are exactly those required to describe open topological strings

ending on |2G − 2| stacks of D-branes in the fibre above the base ΣG [3]! As described in

the next chapter, these branes must wrap Lagrangian three-cycles, so they meet the D4-

branes in a circle in the fibre, and wrap the other fibre, O(−m). A similar phenomenon was

interpreted in [21], as follows. The topological string is sensitive to the choice of boundary

conditions of the non-compact Calabi-Yau. In particular, as discussed in [43], there are

infinitely many (non-normalisable) Kähler moduli not supported by compact two-cycles,

which we should integrate over. They can be viewed as the eigenvalues of representations

of U(∞) corresponding to open strings ending on branes — that is, the variation of the

geometry captured by the Kähler moduli is given by the backreaction of stacks of branes.

These moduli are present on the topological string side, but not on the black hole side, since

there we consider only the D4-brane worldvolume gauge theory. We label the additional

branes as P-type “ghost” branes. There are |2 − 2G| such branes due to there being that
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many invariant points on the base of the divisor D.

The definition (2.59) is, after taking into account the ghost branes, perturbatively equiv-

alent to the perturbative topological string partition function, as the only difference is the

restriction on the height of the Young diagram R. The height restriction, however, means

that the OSV relation (2.58) does not suffer from overcounting, and Ψ is thus a candidate

non-perturbative completion of the topological string partition function.

2.7.2 The chiral recursion relation

To interpret Ψ as the non-perturbative completion of the topological string partition function,

it would be useful to have a chiral recursion relation like (2.46), which in turn used the

result (2.45). Since we want the lowest-order expansion of ψtop to be Ψ with |2G− 2| ghost

representations, we should start with a perturbative topological string partition function with

|2G− 2| ghost representations, namely (2.59) without restriction on R, and then decompose

both the representation R and the ghost representations. That is, we wish to show

ψk
P1,...,P|2G−2|

(t) ∼
∞∑

r=0

Ψk+r
P a

1 ,...,P a
|2G−2|

(t′)Ψ−r
P b

1 ,...,P b
|2G−2|

(t′′), (2.60)

with t′, t′′ to be found. The P-type representations on the left and right should be related,

and there may be a prefactor depending on iθ.

The quantum dimension dq(R) and the Schur function sPn(qRi+
1
2−i) can indeed be decom-

posed as desired, as shown in Appendix A, Section A.2. The prescription for decomposing Pi

to P a
i and P b

i is that we should sum over all representations P a
i and P b

i giving non-vanishing

Littlewood-Richardson coefficients NPi

P a
i P b

i
. Note that this implies |Pi| = |P a

i | + |P b
i |. Turn-

ing to dq(R), decomposing the representation R introduces a sum over a second type of

ghost branes, expressing additional correlations between Ψk+r and Ψ−r. The chiral recursion
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relation is thus schematically of the form

ψk
P1,...,P|2G−2|

(t) ∼
∞∑

r=0

∑

S1,...,S|2G−2|

∑

P a
1 ,...,P a

|2G−2|

P b
1 ,...,P b

|2G−2|

Ψk+r
P a

1 ,...,P a
|2G−2|,S1,...,S|2G−2|

(t′)

×Ψ−r
P b

1 ,...,P b
|2G−2|,S1,...,S|2G−2|

(t′′). (2.61)

The S-type ghost branes can be physically interpreted [21] as the insertion of non-compact

D2-branes wrapping the fibre of the divisor D wrapped by the D4-branes. The original black

hole setup had trivial boundary conditions at infinity for the non-compact D4-branes, and

D2-branes wrapping only the compact base. When creating baby universes, however, the

non-compact D2-brane charge may be non-zero in each universe, as long as the sum of the

charges vanishes. The S-type representations express the presence of these non-compact D2-

branes, with the coupling between universes due to the overall charge cancellation constraint.

In closed string language, the eigenvalues of the S-type representations are the values of

infinitely many non-normalisable Kähler moduli for the boundary conditions at infinity of

the D4-branes.

We need now to find the values of the Kähler modulus t′ and t′′ on the right. The

only dependence on |Pi| in (2.59) appears in the exponential prefactor, so recalling that

|Pi| = |P a
i |+ |P b

i |, it follows that t = t′+t′′. Taking into account all the additional prefactors,

however, one can show that with this constraint the classical factors Ẑ0(q, t) on left and right

of (2.61) do not match — and the mismatch does not cancel between the holomorphic and

anti-holomorphic partition functions.

One can attempt other approaches to realising a chiral recursion relation, or even modified

definitions of Ψ that are perturbatively equivalent to ψtop, but there remain mismatches in the

classical prefactors. The one-dimensional fermion system provides an intuitive understanding

of the mismatch, as follows: The OSV relation relates the topological string and black hole

partition functions, equations (2.51) and (2.54), respectively. The factors corresponding to

the energy of the free fermions are, respectively, q(m+G−1)κR/2 and qmC2(R)/2, with C2(R) =

κR + N |R|. The fermion energies are multiplied by different factors, (m + G− 1) versus m,

implying that the process of splitting the black hole rescales the energies of the fermions.
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The effective Kähler modulus on the right-hand side of (2.58) is

t + mlλ =
1

2
(m + 2G− 2)Nλ + mlλ, (2.62)

thus the classical prefactor Z0 given by (2.51) no longer calculates a simple zero-point energy

as it did in the G = 1 case, as the fermions do not have a uniform energy scaling.

That the classical prefactors no longer map to simple zero-point energies is the heart

of the difficulty in finding a chiral recursion relation. As illustrated in Figure 2.7, for the

G = 1 case the chiral recursion relation follows from a simple mapping of fermions and holes,

including the zero-point energies, between ψtop and Ψ2. For example, in equation (2.46),

either replacing m with (m + 2G − 2), or leaving it unchanged, will introduce mismatches

elsewhere, since the effective Kähler modulus (2.62) does not have a single scaling factor.

2.7.3 Outlook

For the more general Calabi-Yau (2.50), we have found a realisation of the OSV conjecture,

(2.58), that is correct non-perturbatively, and for which the chiral partition function Ψ is

perturbatively the topological string partition function. It is thus tempting to label Ψ the

non-perturbative completion of the topological string partition function. However, there

does not seem to be a natural chiral recursion relation for expressing Ψ in terms of the

perturbative topological string partition function. Our results therefore do not shed much

light on the questions of background independence or of tunnelling to baby universes that

were raised earlier.

There are, however, suggestive partial successes in realising the chiral partition function

— the representations decompose appropriately, as shown in Section A.2. More to the point,

the core difficulty is the presence of ghost branes corresponding to non-normalisable Kähler

moduli of the non-compact Calabi-Yau. It is thus possible that a proper understanding of

the results of the G = 1 case will be achieved only with an explicit realisation of the OSV

conjecture, at the non-perturbative level, on a compact Calabi-Yau manifold.
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Chapter 3

Anomalies in open topological string theory

The BCOV [8] holomorphic anomaly equations (1.38) for the closed topological string have

already appeared in the previous chapter as crucial ingredients in the wavefunction interpre-

tation of the topological string partition function, and hence in background independence

of the partition function and its use as the Hartle-Hawking wavefunction of the universe in

the mini-superspace sector. In the next chapter, the holomorphic anomaly equations will be

used to calculate higher-genus amplitudes by direct integration.

This chapter takes a step back, and considers the anomalies themselves. Section 1.2

discussed how naive BRST arguments indicate that A-model topological string amplitudes

are independent of anti-holomorphic Kähler moduli, as well as all complex structure mod-

uli; and B-model amplitudes are independent of anti-holomorphic complex structure moduli,

and all Kähler moduli. The BCOV holomorphic anomaly equations capture the anomalous

dependence of A- and B-model amplitudes on their anti-holomorphic but still “right” moduli

(that is, Kähler for A-model, and complex structure for B-model), but confirmed indepen-

dence from “wrong” moduli — thus showing decoupling of two models. Walcher [13] recently

proposed an extension of the BCOV holomorphic anomaly equations to the open topological

string case (that is, in the presence of D-branes), under the additional assumptions that

open string moduli do not contribute to factorisations in open string channels, and that disk

one-point functions (closed string states terminating on a boundary) vanish.

The novel material presented in this chapter, and reported in [14], is a careful derivation

on the worldsheet of Walcher’s proposed holomorphic anomaly equations (3.23) for the open
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string, under the assumption that open string moduli do not contribute and that disk one-

point functions vanish. Relaxing the second assumption, however, leads us to find a new

set of anomalies: non-vanishing disk one-point functions on compact Calabi-Yau manifolds

generate new terms (3.24) and (3.29) in the holomorphic anomaly equations and spoil their

recursive structure, and moreover can lead to string amplitudes developing dependence on

the wrong moduli.

Some salient facts about open topological string theory are presented in Section 3.1.

In Section 3.2, the holomorphic anomaly equations for the open string are derived, and the

existence of new anomalies when disk one-point functions are non-vanishing is demonstrated.

In Section 3.3, the dependence of amplitudes on wrong moduli is investigated, leading to

further new anomalies. Finally, the relevance and consistency of the new anomalies with

existing results, particularly matrix models and large N duality, is discussed in Section 3.4.

3.1 The open topological string

From the worldsheet perspective, open topological string theory adds boundaries or holes to

the theory discussed in Section 1.2, such that worldsheet topologies are classified by both

genus g and hole number h, with vacuum amplitudes Fg,h. The boundaries correspond

to attachment points to D-branes in the target space. The Dirichlet boundary conditions

identify the left- and right-moving sectors of the string theory, and hence the supercharges.

In order to preserve the supersymmetry Q = Q+ + Q
+
, the appropriate boundary condition

is Q|B〉 = 0, where |B〉 is the boundary. In terms of the supercurrents, this is

(G+
z dz + G

+
z̄ dz̄)|∂Σ = 0, and (G−

zzχ
zdz + G

−
z̄z̄χ̄

z̄dz̄)|∂Σ = 0, (3.1)

where χ is a holomorphic vector along the boundary direction.

A careful analysis of these boundary conditions [44] can be used to constrain the al-

lowed D-brane configurations consistent with supersymmetry. The result is that A-model

requires D-branes wrapping special Lagrangian sub-manifolds, of three (real) dimensions,

while B-model requires D-branes wrapping even-dimensional holomorphic cycles. This re-
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sult is somewhat surprising: 3-cycles are dual to 3-forms, which are related to complex

structure deformations, as discussed in Section 1.2. A-model (closed) string theory should,

however, be independent of complex structure moduli. Conversely, 2- and 4-cycles are dual to

(1, 1) forms, which are related to Kähler structure deformation, of which the B-model should

be independent. Thus we may be concerned that boundaries could spoil the decoupling of

moduli in the two models — and indeed this chapter will identify anomalies that match this

expectation, in compact manifolds with non-vanishing D-brane topological charge (that is,

non-cancelling winding numbers around non-trivial cycles).

Since boundaries identify the left- and right-moving sectors, the U(1)R charge constraints

identified in Section 1.3 reduce to a single constraint. The form of this constraint can be

determined using a doubling construction: take two copies of the Riemann surface Σg,h and

glue the matching boundaries of the copies together, to form a closed surface Σ′
2g+h−1,0, with

the boundaries of Σg,h on the fixed plane of a Z2 involution of Σ′
2g+h−1,0. The combined

worldsheet must have total charge p = q + q̄ = 12g − 12 + 6h, so on Σg,h the constraint for

the total charge of all insertions is

∑

i

pi =
∑

i

(qi + q̄i) = (6g − 6 + 3h). (3.2)

Recall that the term (1.36) in the action represents marginal deformations. In the pres-

ence of boundaries, however, this term may not be supersymmetry invariant, due to (world-

sheet) boundary terms. This is termed the Warner problem. To resolve this problem, one

can add a boundary term to the action, such that the total contribution corresponding to ti

variation is

δS = ti
(∫

Σ

{G−, [G
−
, φi]} −

∫

∂Σ

ψ(1)
i

)
, (3.3)

where the first term corresponds to φi insertion in the bulk, and the second term is a one-

form descendant of an open string state. To find ψi, consider the supersymmetric variation
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of the first term,

δQ

(
ti
∫

Σ

φ(2)
i

)
= ti
∫

Σ

[G+ + G
+
, φ(2)

i ]

= ti
∫

Σ

(
2T [G

−
, φi] + [G−, 2Tφi]

)
,

where we have used (1.15), and two-form descendant φ(2)
i defined in (1.35). T and T can be

replaced in the path integral by worldsheet partial derivatives, so applying Stokes theorem

gives

δQ

(
ti
∫

Σ

φ(2)
i

)
= ti
∫

∂Σ

[G− + G
−
, φi]. (3.4)

This term must be cancelled by the supersymmetric variation of the second term in (3.3).

That is,

φ(1)
i

∣∣∣
∂Σ

= [Qbndry, ψ(1)
i ]
∣∣∣
∂Σ

, (3.5)

where Qbndry is the boundary part of the supercharge.

By the operator-state correspondence, ψ(1)
i corresponds to an open string state, and so

the second term in (3.4) corresponds to variation of open string moduli, that is deformations

of the D-brane. There are two cases, as argued in [13]: open string moduli with relations

like (3.5) are cases where the D-brane deforms with the bulk — bulk and boundary moduli

are not independent. On the other hand, open string moduli not fixed by relations like

(3.5) can be lifted (made massive) by small bulk deformations. Thus [13] argues that open

string moduli are either lifted for generic values of the bulk moduli, or do not appear as

independent moduli, and so they drop out of Fg,h. We will not argue this further, but will

take as assumed that open string moduli need not be considered — and so there are no

marginal (p = 1, 2) open string states.
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3.2 Extended holomorphic anomaly equations

3.2.1 Boundaries of moduli space

Our starting point is to generalise the integration over worldsheet moduli, expression (1.24),

for the open topological string amplitude at genus g and with h boundaries. The vacuum

amplitude is [13]

Fg,h =

∫

Mg,h

[dm][dl]

〈
3g−3+h∏

a=1

∫
µaG

−
∫

µ̄aG
−

h∏

b=1

∫
(λbG

− + λ̄bG
−
)

〉

, (3.6)

where the worldsheet indices have been suppressed. Each handle is associated with the

integration of three supercurrents (i.e., G− or G
−
), folded with Beltrami differentials µa. For

thin handles, these moduli can be interpreted as the endpoints of the handle on the Riemann

surface, plus the period matrix describing the shape of the handle. Each hole has a complex

modulus specifying its location on the worldsheet, as well as an additional real modulus l

specifying its boundary circumference, corresponding to the integration of the supercharge

combination (G− + G
−
) that is preserved at the boundary, folded with a real differential λb

that has support near the boundary.

Variation of the correlation function with respect to the anti-holomorphic moduli t̄ī cor-

responds to inserting a BRST trivial operator,

∫

Σ

φ
(2)
ī =

∫

Σ

{G+, [G
+
, φ̄ī]}. (3.7)

Following the approach of [45], it will often be convenient to phrase arguments in terms of

the supercurrents defined by (1.16), rather than the supercharges. For example, (3.7) can

be written ∫

Σ

∮

Cw

G+
z

∮

C′
w

G
+
z̄ φī(w), (3.8)

where Cz and C ′
z are contours around the point z. The contours can then be deformed

using the standard techniques of complex analysis. In the following, the identification of

supercharge commutators and supercurrent contours is assumed.

An immediate obstacle to deforming the contours in (3.7) is that G+ and G
+

do not
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annihilate the boundary. We thus rewrite the insertion as

− 1

2

∫

Σ

{G+ + G
+
, [G+ −G

+
, φī]}. (3.9)

The outer contour can now be deformed around the worldsheet, picking up contributions

from the commutation relationships (1.15) when crossing insertions of G− or G
−
. Explicitly,

∂̄t̄īFg,h = −
∫

Mg,h

[dm][dl]

[
3g−3+h∑

c=1

〈∫
φ

(1)
ī

(
2

∫
µcT

∫
µ̄cG

−
+ 2

∫
µcG

−
∫

µ̄cT̄

)
×

×
∏

a)=c

∫
µaG

−
∫

µ̄aG
−

h∏

b=1

∫
(λbG

− + λ̄bG
−
)

〉

+
h∑

c=1

〈∫
φ

(1)
ī

∫
2
(
λcT + λ̄cT̄

)
×

×
3g−3+h∏

a=1

∫
µaG

−
∫

µ̄aG
−∏

b)=c

∫
(λbG

− + λ̄bG
−
)

〉]
, (3.10)

where we have defined

φ
(1)
ī =

1

2
[G+ −G

+
, φ̄ī]. (3.11)

The Beltrami differentials µi parametrise the change in the Kähler metric under infinites-

imal change of the coordinates on the moduli space, through the definition (1.23). Recalling

that

Tαβ =
∂S

∂hαβ
,

one arrives at the following “chain rule:”

µiT =
∂S

∂mi
. (3.12)

Thus the combinations µiT and µ̄iT̄ can be converted into derivatives with respect to the

moduli m, m̄ and l. By Cauchy’s theorem, this restricts the integral to the boundaries of

the moduli space, with boundaries corresponding to degenerations of both the complex and

real moduli, that is, both open and closed string degenerations.

To enumerate all the moduli space boundaries, a useful technique is to consider the
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(a) Case A: A handle pinches off (b) Case B: An equator pinches off

(c) Case C: A boundary shrinks

Figure 3.1: Moduli space boundaries resulting from the degeneration of a closed one-cycle on the

Riemann surface Σg,h.

Case Description

A A handle shrinks to zero diameter (pinches off), leaving Σg−1,h plus a degenerating

thin tube.

B An equator shrinks to zero diameter (pinches off), splitting the Riemann surface

into two non-trivial daughter surfaces Σr,s and Σg−r,h−s, joined by a degenerating

thin tube. Both daughter surfaces have 2g + h ≥ 2.

C A cycle around a boundary shrinks, that is, the boundary closes off. Conformally

this is a boundary on the end of a degenerating thin tube attached to the remaining

surface Σg,h−1.

Table 3.1: Moduli space boundaries resulting from the degeneration of a closed one-cycle on the

Riemann surface Σg,h.
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(a) Case D: A boundary expanding

around a handle

(b) Case E: A surface splitting by a boundary ex-

panding around an equator

(c) Case F: Two boundaries merging

Figure 3.2: Moduli space boundaries resulting from the degeneration of an open one-path on the

Riemann surface Σg,h.

Case Description

D A path from a boundary, around a handle, and back to the same boundary, degen-

erates to leave Σg−1,h+1, with the two child boundaries joined by a degenerating

thin strip.

E A path from a boundary, around an equation, to the same boundary, degenerates

to leave two surfaces Σr,s and Σg−r,h−s+1, with the two daughter surfaces joined by

a degenerating thin strip. Both daughter surfaces have 2g + h ≥ 2.

F A path between two different boundaries degenerates, leaving Σg,h−1, with a de-

generating thin strip across the newly joined boundary.

Table 3.2: Moduli space boundaries resulting from the degeneration of an open one-path on the

Riemann surface Σg,h.
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degeneration, in turn, of all closed one-cycles, and open one-paths with endpoints on (possibly

distinct) boundaries, as described in [46]. The cases resulting from degenerations of closed

one-cycles are shown in Table 3.1 and Figure 3.1, and those of open one-cycles are shown

in Table 3.2 and Figure 3.2. Degenerations which split the surface have the constraint that

2g + h ≥ 2 on each daughter surface. This follows from the fact that genus zero and one

amplitudes vanish due to unfixed translational invariance on the worldsheet unless enough

additional points are fixed on the surface — three for the sphere and one for the torus.

Boundaries each fix a point, and as we will see the degenerations also leave a point fixed.

The key ingredients in all of these cases are tubes which shrink to zero diameter, or strips

which shrink to zero width, or boundaries which shrink. In the next three subsections, we

consider these cases, before putting it all together to get the extended holomorphic anomaly

equations.

3.2.2 Degenerating tubes

Consider the case where, at the boundary of the moduli space, a closed string tube becomes

infinitely long and narrow. This is the case that was considered in [8], and our results are the

same, though our arguments are arranged slightly differently. The three complex moduli,

(τ, v, w) corresponding to the handle can be identified as follows (see Figure 3.3): v and w

are the attachments points of the end of the tube to the remainder of the Riemann surface.

The Beltrami differentials localise to the attachment points, giving, for example,

∫
µwG−

∫
µ̄wG

− →
∮

Cw

G−
∮

C′
w

G
−

(3.13)

where w is the insertion point of one of the ends of the handle and Cw and C ′
w are contours

around w. The third complex modulus, τ , parametrises the shape of the handle, such that

τ →∞ at the boundary of moduli space. The twist of the handle remains as a real modulus,

represented by the insertion of ∫
(µτG

− − µ̄τG
−
). (3.14)

The tube’s infinite length projects all intermediate states to closed string ground states at
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G−, G
−

∫
φ

(1)
ī

∫
(µτG

−−µ̄τG
−
)

G−, G
−

vw

Figure 3.3: The operators on a degenerating tube, for t̄ī derivative. The supercurrent combination

around φī may now be anti-commuted past the supercurrents folded with Beltrami differentials.

the end of the handle, and so each of the attachment points of the handle can be replaced with

a complete set of ground states,
∑

I,J̄ |I〉gIJ̄〈J̄ |. The currents (3.13) around the endpoints

annihilate |I〉 unless it is an operator φI in the (c, c) chiral ring with charge at least (1, 1).

Recall from Section 1.3, however, that operators inserted on the worldsheet must be neutral

with respect to the U(1)R charge. The operators (3.13) contribute q = −2, so φI = φi must

be exactly charge (1, 1), i.e., marginal. 〈J̄ | = 〈j̄| is thus a charge (−1,−1) state from the

(a, a) chiral ring. Such states will be annihilated by (3.14) on the tube unless the insertion

φ̄(1)
ī is on the tube.

Inserting another complete set of ground states
∑

k̄i |k̄〉gk̄i′〈i′| at the other end of the

tube, we can write the amplitude near the middle of the tube as

∫
d2z〈j̄|[G+ −G

+
, φī(z)]

∫
(µτG

− − µ̄τG
−
)|k̄〉

=

∫
d2z〈j̄|φī(z)

∫
2(µτT − µ̄τ T̄ )|k̄〉

=
∂

∂ Im τ

∫
d2z〈j̄|φī(z)|k̄〉,

where the absence of boundaries has allowed us to deform the contour of (G+−G
+
), picking

up commutators as per (1.15), which were transformed into derivatives with respect to the

moduli using (3.12). As we are already at the boundary of moduli space, the additional

derivative is in the direction normal to the boundary, namely Im τ . In the limit τ →∞, the

volume of the domain of the integral of φī is Im τ , which cancels the derivative. Thus the
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total contribution from the handle is equivalent to the insertion of

φig
ij̄〈j̄|φī|k̄〉gk̄i′φi′ = C̄īj̄k̄e

2KGj̄iGk̄i′φiφi′, (3.15)

with the marginal operators φi and φi′ surrounded by integrals (3.13), which can be identified

as the descendants φ(2)
i in equation (1.35).

3.2.3 Degenerating thin strips

A narrow strip, or propagating open string state, is associated with three real moduli (r, s, l),

identifiable as the location of the two endpoints r and s of the strip on the boundary, and the

length l of the strip. At the boundary of moduli space l → ∞. The Beltrami differentials

corresponding to moduli r and s are localised near the respective endpoints of the strip,

leaving these points surrounded by the contour integral,

∫

Cr

(G− + G
−
). (3.16)

The attachment points of the long strip can be replaced with complete sets of open string

ground states,
∑

α |α〉〈α| and
∑

β |β〉〈β|. However, as discussed in Section 3.1, we assume

there are no marginal open string states, leaving only charge p = 0, 3 states. The moduli

at the endpoints annihilate charge 0 states, and charge 3 states violate the overall charge

constraint. Thus this case gives zero contribution, regardless of the location of the insertion

φ̄(1)
ī .

3.2.4 Shrinking boundary

The last closed 1-cycle degeneration, case C, covers the case when a hole shrinks, or equiva-

lently becomes separated from the Riemann surface by a long tube. This case arises from the

second term in (3.10). That such a degeneration is part of the boundary of moduli space can

be seen from the doubling method discussed in Section 3.1: the pinching off of a Σ′
2g+h−1,0

handle which crosses the Z2 fixed plane is equivalent to a shrinking boundary in Σg,h.

A worldsheet boundary is associated with three real moduli insertions, specifying the
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location of the boundary and its length, so after degeneration there are two supercharges

localised to the attachment point of the tube, as per (3.13), with the boundary at the other

end of the tube. The absence of additional supercharges corresponding to moduli on the tube

itself distinguishes this class from the closed string factorisation class above, and furthermore

allows the remaining insertion φ̄(1)
ī , as defined by (3.11), to be anywhere on the worldsheet.

Firstly, φ
(1)
ī may nevertheless be on the tube. The degeneration τ → ∞ projects the

intermediate states on both sides of the insertion to ground states, which are annihilated by

supercharges. Thus the (G+ −G
+
) part of φ

(1)
ī annihilates the ground states, so this case is

zero.

Secondly, φ
(1)
ī may be near the shrinking boundary. As in Section 3.2.2, considerations on

the rest of the Riemann surface mean that the tube is replaced with a complete set of closed

string marginal ground states,
∑

j,j̄ |j〉gij̄〈j̄|. The correlator of the degenerating region is

then

eKGjj̄〈j̄|φ̄(1)
ī |B〉, (3.17)

where B is the boundary. We choose coordinates on the disk where 〈j̄| = φ̄j̄ is at r = 0, and

the boundary is at r = 1. φ̄(1)
ī is a worldsheet 1-form, so the amplitude is explicitly

eKGjj̄

∫ 1

o

dr〈φ̄(1)
ī (r)φ̄j̄(0)〉 = ∆j

ī , (3.18)

namely the anti-topological disk two-point function.

Lastly, φ
(1)
ī may be inserted somewhere else on the Riemann surface, as shown in Figure

3.4. The tube is again replaced with a complete set of ground states
∑

I,J̄ |I〉gIJ̄〈J̄ |. To avoid

annihilation by the supercurrents G− and G
−

localised as per (3.13) to the tube attachment

point, |I〉 must be in the (c, c) chiral ring and have qI , q̄I 7= 0. Furthermore, φ
(1)
ī is a state

with total U(1)R charge p = 1, and the tube end-point supercurrents contribute charge

(−1,−1), so |I〉 is required to be charge p = 3 — specifically, a charge (1, 2) or (2, 1) state

to avoid annihilation by the supercurrents at the end-points. We denote these ωa, index a

running over charge (1, 2) and (2, 1) chiral primaries. Note that the ωa are not associated

with marginal deformations of the topological string in question; they are associated with

deformations of the opposite model. In the A-model, as discussed in Section 1.3, they
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ω̄ā

gaā

{G−, [G
−
, ωa]}

G−, G
−

[G+−G
+
, φ̄ī] [G+−G

+
, φ̄ī]

Figure 3.4: Riemann surface for the shrinking boundary degenerating for t̄ī derivative, with the

insertion φ
(1)
ī located away from the shrinking boundary. On the right we have replaced the tube

with a sum over states ωa of charge (1, 2) and (2, 1), rendering the near-boundary region a disk

one-point function.

correspond to target space 3-forms, and hence to complex structure deformation, and in the

B-model they are (1, 1) forms, and so correspond to Kähler deformations. Near the shrinking

boundary the resulting amplitude is the disk one-point function,

gaāC ā = gaā〈ω̄ā|B〉. (3.19)

Thus this contribution represents a new anomaly, if the disk one-point functions do not

vanish.

3.2.5 Putting it together

We can now return to the degenerations enumerated in Tables 3.1 and 3.2. Cases A and B

appear in [8]. Case A is a handle degenerating, leaving the surface Σg−1,h plus two closed

string insertions φ(2)
i corresponding to the remnants of the handle. The handle contribution

is given by (3.15). The amplitude of the Riemann surface is thus

C̄īj̄k̄e
2KGj̄jGk̄k

∫

Mg−1,h

[dm′][dl]

〈∫
φ(2)

j

∫
φ(2)

k · · ·
〉

,
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where the dots are the integrals of G− and G
−

folded with Beltrami differentials that were

left unaffected by the degeneration, as shown in (3.10). This amplitude should be integrated

over the remaining moduli m′ and l at the boundary of the moduli space, and the locations

of the insertions φ(2)
j and φ(2)

k , with a factor 1
2 to take account of the interchange symmetry of

the endpoints of the tube. Being marginal, the insertions
∫
φ(2)

j and
∫
φ(2)

k generate deforma-

tions corresponding to infinitesimal change of moduli, so they can be replaced by covariant

derivatives Dj and Dk of the amplitude without insertions, Fg−1,h [8]. The contribution of

degenerations to Σg−1,h is thus

1

2
C̄īj̄k̄e

2KGj̄jGk̄kDjDkFg−1,h. (3.20)

In case B the Riemann surface splits into components Σr,s and Σg−r,h−s, where r and

s count how many of the handles and boundaries are located in each of the respective

“daughter” Riemann surfaces. The two components are joined by a narrow tube of the sort

in Section 3.2.2. The resulting contribution is

1

2
C̄īj̄k̄e

2KGj̄jGk̄k
g∑

r=0

h∑

s=0

∫

Mr,s

[dm′][dl′]

〈∫
φ(2)

j · · ·
〉∫

Mg−r,h−s

[dm′′][dl′′]

〈∫
φ(2)

k · · ·
〉

=
1

2
C̄īj̄k̄e

2KGj̄jGk̄k
g∑

r=0

h∑

s=0

DjFr,sDkFg−r,h−s (3.21)

where the sets of moduli m′ and m′′, and l′ and l′′ correspond to the remaining moduli on

each of the daughter surfaces, and DjFg,h = 0 for 2g + h < 2. The insertions φ(2)
j and

φ(2)
k are integrated over the surfaces on which they are respectively inserted, and have been

converted to covariant derivatives. The overall factor 1
2 comes from the Z2 symmetry of the

sum generated by simultaneously taking r → (g − r), s → (h− s) and j ↔ k.

The last non-zero degeneration is case C, discussed in Section 3.2.4. Consider first van-

ishing disk one-point functions. The insertion of |j〉 on the remainder of the Riemann surface

can be written as a covariant derivative, so the Riemann surface amplitude is,

−∆īj̄e
KGj̄jDjFg,h−1. (3.22)
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Putting all the pieces together and using the metrics to raise indices, we arrive at the

extended holomorphic anomaly equations, subject to the assumptions of vanishing disk one-

point functions and the absence of open string moduli,

∂̄īFg,h =
1

2
C

jk
ī

[
g∑

r=0

h∑

s=0

DjFr,sDkFg−r,h−s + DjDkFg−1,h

]

−∆j
īDjFg,h. (3.23)

If, on the other hand, the disk one-point functions do not vanish, equation (3.19) means that

an additional anomalous term is present:

gābC ā

∫

Mg,h−1

[dm][dl]
〈
{G−, [G

−
, ωb]} [G+ −G

+
, φ̄ī]
〉

Σg,h−1

. (3.24)

This term, shown in Figure 3.4, represents an anomalous coupling to wrong moduli through

the charge (2, 1) or (1, 2) chiral primary operator ωb. Furthermore, since neither insertion

is marginal, (3.24) cannot be written as a recursion relation on lower genus amplitudes.

We will consider the implications of the anomaly further in Section 3.4. Note finally that

the torus and annulus amplitudes are special cases, as the worldsheets contain residual

unfixed rotational symmetry, and so the vacuum amplitudes vanish. The amplitudes with

insertions are non-zero and have holomorphic anomaly equations, equations (4.4) and (4.5),

respectively. Their derivations require the consideration of propagating zero modes, as there

are not enough moduli to provide localised Beltrami differentials folded with supercurrents,

which normally kill the zero modes. The derivations can be found in [8, 13].

3.3 Decoupling of moduli from the other model

As discussed in Section 1.3, we expect that wrong moduli (that is, Kähler moduli in B-

model and complex structure moduli in A-model) should decouple from topological string

amplitudes. In this section we show that this is indeed the case for the open topological

string, under the assumptions that open string moduli are absent and that the disk one-

point functions vanish; but if the latter condition is not satisfied, a new anomaly is present.

Consider the dependence of the amplitude Fg,h on wrong moduli ya — results for the
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moduli ȳā can be obtained by complex conjugation. The derivative with respect to ya

corresponds to inserting the operator

∫

Σ

{G+
, [G−, ϕa]} + 2

∫

∂Σ

ϕa, (3.25)

where ϕa is a charge (1,−1) marginal operator from the (c, a) ring. The second term is the

boundary term required to resolve the Warner problem, introduced in Section 3.1. By the

commutation properties of the supercharges, 2
∫
∂Σ ϕa =

∫
Σ{G

+, [G−, ϕa]}, and so (3.25) can

be rewritten as ∫

Σ

{G+ + G
+
, [G−, ϕa]}. (3.26)

The outer contour can now be deformed past boundaries on the worldsheet, producing terms

corresponding to all possible degenerations of the Riemann surface, as for the t̄ī derivative

in the previous section. For each degeneration, there remains the insertion

∫

Σ

[G−, ϕa], (3.27)

located somewhere on the worldsheet.

As in the previous section, consider the three building-block degenerations:

1. Degenerating tube (Cases A and B): The tube degeneration vanishes if the insertion

(3.27) is not on the tube. If it is on the tube, then the amplitude of the tube is

− 〈j̄|[G−, ϕ̄ā]

∫
(µτG

− − µ̄τG
−
)|k̄〉, (3.28)

where the second integral is due to the remaining modulus of the tube. Recall that 〈j̄|

and |k̄〉 are charge (−1,−1) operators, and so we are working in the anti-topological

twist. This means that G− as a supercurrent is a worldsheet one-form, so the con-

tour can be deformed. G− annihilates charge (−1,−1) states and commutes with the

remaining modulus integral, so (3.28) vanishes.

2. Degenerating strip (Cases D, E and F): As in the previous section, the vanishing

of these contributions follows from the assumption that open string moduli do not
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[G−, ϕa]

〈j̄| = φ̄j̄

Figure 3.5: The near-boundary region

of the shrinking boundary degeneration

for ya derivative, with insertion (3.27)

near the boundary. This amplitude van-

ishes, as described in the text.

{G−, [G
−
, ωa]}

[G−, ϕa]

ω̄ā

gaā

Figure 3.6: Riemann surface for the shrinking

boundary degeneration for ya derivative, with in-

sertion (3.27) elsewhere on the Riemann surface.

This is non-zero unless the disk one-point func-

tion vanishes.

contribute.

3. Boundary shrinking (Case C): As previously, the boundary is attached to the Rie-

mann surface with the complete set of marginal ground states
∑

j,j̄ |j〉gjj̄〈j̄|, with inser-

tion (3.27) near the boundary or elsewhere on the Riemann surface. The former case is

shown in Figure 3.5. Near the boundary the theory is anti-topologically twisted, mak-

ing G− and G
−

dimension one as supercurrents, and so allowing contour deformation.

Using the properties of the chiral rings, (3.27) can be written
∫

Σ[G− + G
−
, ϕa], which

annihilates both 〈j̄| and the boundary, so this case is zero by contour deformation.

Secondly, (3.27) may be elsewhere on the Riemann surface, as shown in Figure 3.6. As

in the t̄ī case, the near-boundary amplitude is the disk one-point function,

gaāC ā = gaā〈ω̄ā|B〉,

and on the rest of the worldsheet |a〉 = ωa is a charge (1, 2) or (2, 1) state.

The only potentially non-vanishing contribution is the final case, which is non-zero if the
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disk one-point functions C ā are non-zero. In this case, then,

∂

∂ya
Fg,h = gābC ā

∫

Mg,h−1

[dm][dl]
〈
{G−, [G

−
, ωb]} [G−, ϕa] · · ·

〉

Σg,h−1

. (3.29)

Note that the G− and G
−

contours around ωb and ϕa cannot be deformed as they are

dimension 2 as supercurrents. Equation (3.29) represents an anomalous coupling of the

amplitude to wrong moduli. Furthermore, as the insertions are not marginal operators,

(3.29) cannot be written in the form of a recursion relation for lower genus amplitudes.

3.4 Implications of the new anomalies

The previous sections have uncovered the existence of new anomalies of the open topological

string, terms (3.24) and (3.29), in addition to the usual anti-holomorphic anomaly (3.23).

The new anomalies are present when the disk one-point functions are non-zero, and they

introduce coupling to wrong moduli, in such a way that the resulting anomaly cannot be

expressed as a recursion relation with respect to worldsheet genus. In this section, we point

out some connections between these new anomalies and existing results.

If overall D-brane charge vanishes, then contributions to the disk one-point function will

cancel, removing the contribution of the new anomalies. Evidence for the presence of the

new anomalies is provided by the observation that D-brane charge cancellation appears to be

required for the successful counting of the number of BPS states in M-theory using the topo-

logical string partition function. In [47], it was conjectured that the partition function of the

closed topological string can be interpreted as counting BPS states in M-theory compactified

to five dimensions on a Calabi-Yau manifold. This conjecture was extended to cases with

D-branes in [48, 49]. In [50] Walcher applied the formulae of [48] to examples of compact

Calabi-Yau manifolds and found that the integrality of BPS state counting can be assured

only when the topological charges of the D-branes were cancelled by introducing orientifold

planes [50], such that the disk one-point functions vanish. Our result gives a microscopic ex-

planation of this observation. Furthermore, in [13], Walcher considered compensating stacks

of D-branes and anti-D-branes wrapping homologically equivalent cycles, such that the disk
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one-point functions vanished, and found integral Gromov-Witten invariants without new

anomalies.

Large N duality, at its simplest, is the observation that an open string theory with

U(N) gauge group, N large, should be dual to a closed string theory. This idea has many

realisations, notably the AdS/CFT correspondence. In topological string theory a key ex-

ample is the geometric transition, where open topological string on a deformed conifold

with D3-branes is dual to closed topological string theory on a resolved conifold, that is,

with singularity blown up by the presence of the fluxes left from the back-reaction of the

D-branes. The absence of the new anomalies appears to be a prerequisite for large N duality.

Specifically, duality implies that topological string amplitudes in both theories should obey

the same equations, notably the holomorphic anomaly equations, and should not depend on

the wrong moduli. In the next chapter, indeed, we will see that the holomorphic anomaly

equations (3.23) are similar to that for the closed string, after appropriate shifts of closed

string moduli by amounts proportional to the ’t Hooft coupling. Conversely, the presence

of the new anomalies is correlated with the breakdown of large N duality. For compact

Calabi-Yau manifolds, the conifold geometric transition requires homology relations among

vanishing cycles [51, 52]. For example, if a single three-cycle of non-trivial homology shrinks

and the singularity is blown up, the resulting manifold cannot be Kähler. Thus, the presence

of D-branes with non-trivial topological charge implies a topological string theory without

closed string dual — and simultaneously the disk one-point functions do not vanish, and so

the new anomalies are present.

The derivation of the anomalies may not seem to distinguish between compact and non-

compact Calabi-Yau target spaces. In fact, the anomalies need only appear in the compact

case, as we demonstrate by example in the next paragraph. Beforehand, note that this agrees

with our expectations: D-branes wrapped on cycles in compact Calabi-Yau manifolds and

filling spacetime (or perhaps even two directions in spacetime [50]) give an inconsistent setup

unless there are sinks for the topological D-brane charges. Simultaneously, these sinks cancel

the disk one-point functions, and so the appearance of the new anomalies is correlated with

invalid spacetime constructions.

Furthermore, the standard results of the Chern-Simons gauge theory and matrix models
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as open topological field theories are not affected by the new anomalies. Consider, for

example, N D-branes wrapping the S3 of the space T ∗S3, again giving C ā 7= 0. The total

space of T ∗S3 is Calabi-Yau and non-compact, with the S3 radius as the complex structure

modulus. It is well known that open topological string theory on this space is the U(N)

Chern-Simons theory, which is topological and should be independent of the S3 radius. To

resolve this apparent contradiction, consider embedding T ∗S3 in a compact space containing

a second 3-cycle in the same homology class as the base S3, wrapped by N anti-D-branes.

The boundary states of the two stacks combine to give C ā = 0, and the new anomalies do

not appear. Now take the limit where the second 3-cycle moves infinitely far away from

the base S3 to recover an anomaly-free local Calabi-Yau construction. The point is that in

non-compact Calabi-Yau manifolds, the new anomalies can be removed by an appropriate

choice of boundary conditions at infinity.
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Chapter 4

Solving for amplitudes using Feynman rules

The extended holomorphic anomaly equations of the previous chapter express the anti-

holomorphic derivatives of amplitudes at worldsheet genus g and boundary number h in terms

of amplitudes with lower genus and/or boundary number, plus insertions corresponding to

insertions of marginal closed string states, or equivalently covariant derivatives. Integrating

these equations thus allows the recursive solving of amplitudes, up to a holomorphic function

(integration constant) at each order. This chapter will develop and prove a technique for

doing so, using a set of rules which take the form of Feynman rules. Note that we assume the

vanishing of disk one-point functions throughout, so the new anomalies identified in the last

chapter are not present — indeed, as they do not admit a recursive structure, the approaches

in this chapter require their absence.

The Feynman rule approach for solving closed string amplitudes was described in [8]. [13]

conjectured a Feynman rule approach for the open topological string, that is, in the presence

of worldsheet boundaries. The novel material in the following treatment, first reported in

[15], is a proof of form of the open string Feynman rules. The key insight is that the open

string Feynman rules follow directly from the closed string treatment by shifting the closed

string moduli by amounts proportional to the ’t Hooft coupling. An interpretation of this

result in terms of background independence of the topological string partition function was

proposed in [53], to which we will return at the end of this chapter.

In Section 4.1 we formulate the holomorphic anomaly equations for correlation functions,

that is, amplitudes containing closed string insertions. Section 4.2 describes the Feynman
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rules, which are then proved for the closed string in Section 4.3, and for the open string in

Section 4.4. Section 4.4 concludes with some discussion on the implications of the simple

relationship between the proofs of the open and closed string rules.

4.1 Holomorphic anomaly equations of correlation func-

tions

In order to iterate the holomorphic anomaly equation (3.23), we need a holomorphic anomaly

equation for amplitudes of genus g boundary number h worldsheets, with n marked points

(corresponding to covariant derivatives or marginal closed string states), denoted F (g,h)
i1···in . This

requires two modifications to the holomorphic anomaly equation: firstly, when a Riemann

surface splits after degenerating, the marked points are restricted to one of the daughter

surfaces — requiring a sum over possible assignments of marked points to daughter surfaces.

The first term of (3.23), which expresses the worldsheet-splitting degenerations, can thus be

written
1

2

g∑

r=0

h∑

s=0

C
jk
ī

∑

p,σ

1

p!(n− p)!
F (r,s)

jiσ(1)···iσ(p)
F (g−r,h−s)

kiσ(s+1)···iσ(n)
, (4.1)

where σ is a permutation of the n marked points, and the factorials correct for overcounting

due to permutations within each daughter surface.

Secondly, a new class of moduli space boundaries exist in addition to those listed in

Tables 3.1 and 3.2, corresponding to deforming the contour integral of (G+ − G
+
) past a

marked point. Recall that the marked points are insertions of the form φ(2)
i = {G−, [G

−
, φi]},

so by the standard arguments the supercurrent commutators give a total derivative. The

boundary of the moduli space is the collision of the remaining operators, φ(1)
i and φ̄(1)

ī ,

corresponding to the marked point and the deformation insertion (3.11), respectively. The

resulting contribution was found in [8],

− (2g − 2 + h + n− 1)
n∑

s=1

GīisF
(g,h)
i1···is−1is+1···in. (4.2)
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Using (4.1) and (4.2), the holomorphic anomaly equation for correlation functions is thus

∂

∂t̄ī
F (g,h)

i1···in =
1

2

g∑

r=0

h∑

s=0

C
jk
ī

∑

p,σ

1

p!(n− p)!
F (r,s)

jiσ(1)···iσ(p)
F (g−r,h−s)

kiσ(s+1)···iσ(n)
+

1

2
C

jk
ī F (g−1,h)

jki1···in

−∆j
ī F

(g,h−1)
ji1···in − (2g − 2 + h + n− 1)

n∑

p=1

Gip īF
(g,h)
i1···ip−1,ip+1···in . (4.3)

This equation is valid for (2g − 2 + h + n) > 0, except for F (1,0)
i and F (0,2)

i , which we write

separately below. Note that by definition Cijk = F (0,0)
ijk .

The holomorphic anomaly equation for the torus with one marked point, F (1,0)
i , is [45]

∂

∂t̄ī
F (1,0)

j =
1

2
C

kl
ī Cjkl −

( χ

24
− 1
)

Gīj . (4.4)

The first term is the expected contribution from (4.3), due to the handle degenerating. The

second part of the second term, Gīj = C
k0
ī Cjk0, is due to the unique state of charge (0, 0)

propagating in the degenerating handle. Normally, as discussed in Section 3.2.2, the zero

charge state is annihilated by the supercurrent insertions G− and G
−

integrated around the

handle endpoints, but the sphere three-point function has no additional moduli and hence no

such supercurrent insertions, so this state is not removed. The final contribution, − χ
24Gīj, is

a contact term resulting from collision of the holomorphic and anti-holomorphic insertions,

with χ the Euler characteristic of the Calabi-Yau manifold target space.

The annulus with one marked point was considered in [13], giving

∂

∂t̄ī
F (1,0)

j = −∆jk∆
k
ī +

N

2
Gīj. (4.5)

The first term is expected from (4.3), and corresponds to the annulus pinching off with one

insertion point near each boundary. The annulus pinching off with both insertion points

near the same boundary leaves a disk one-point function for the other boundary, which gives

an anomaly of the sort discussed in the previous chapter, which we neglect by assuming

vanishing disk one-point functions. The last term in (4.5) is due to factorisation in the

open string channel. The boundaries colliding produce a thin strip, but the annulus has no
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remaining moduli to provide supercurrents integrated around the endpoints of the thin strip,

so the arguments of Section 3.2.3 are insufficient to eliminate charge 0 open string states. N

is the number of such states.

4.2 The Feynman rules

The holomorphic anomaly equations for the correlation function, (4.3), can in principle be

integrated as-is to solve for the correlation function to all genus and hole number, up to the

holomorphic ambiguity, namely a holomorphic function at each genus and hole number. In

practice, however, it would be useful to have an algorithm that automates the integration of

the holomorphic anomaly equations. In this section we describe such an algorithm, which

gives Fg,h by summing Feynman diagrams, with propagators, terminators (sources) and

vertices depending on the properties of the target space. This approach was developed for

the closed string in [8], with open string extension proposed in [13] and proven in [15].

The starting point for integrating the holomorphic anomaly equation is the Yukawa

coupling, C īj̄k̄ ∈ Sym3T ⊗ L−2, where L is the line bundle corresponding to rescaling of Ω,

identified in Section 1.11. The Yukawa coupling is symmetric in its indices, and satisfies a

tt∗ equation [8],

DīC j̄k̄l̄ = Dj̄C īk̄l̄.

It can be integrated locally to give

Cīj̄k̄ = e−2KDīDj̄∂k̄S, (4.6)

where S is a local section of L2, and derivatives are with respect to the moduli t̄ī. From S

we define,

Sī = ∂̄īS, Sj
ī = ∂̄īS

j ,

Sj = Gjj̄Sj̄, Sjk = Gjj̄Gkk̄Sj̄k̄, (4.7)

1Note that L is the dual bundle to the L of [8].
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which gives, for example,

C
jk
ī = C īj̄k̄e

2KGjj̄Gkk̄ = ∂̄īS
jk. (4.8)

On the open string side, since Dī∆j̄k̄ ∈ Sym3T ⊗L−1 is symmetric in all three indices, it

can be locally integrated to give

∆īj̄ = e−KDīDj̄∆, (4.9)

with ∆ ∈ L. Using this,

∆j
ī = eKGj̄j∆īj̄ = ∂̄īG

k̄j ∂̄k̄∆ = ∂̄ī∆
j , (4.10)

∆j = Gj̄j ∂̄j̄∆.

Using (4.8) and (4.10) in the anomaly equations (4.3), and then integrating the right-

hand side by parts, yields a right-hand side which is the sum of a total anti-holomorphic

derivative and terms with anti-holomorphic derivatives acting on correlation functions with

lower (2g − 2 + h + n). The same process can now be applied on the latter terms, and the

final result after repeated iteration is a total anti-holomorphic derivative on the right-hand

side. See [8, 13] for further details and examples; as a sample the result for F (1,1) is [13]

F (1,1) =
1

2
Sjk∆jk − F (1,0)

j ∆j +
1

2
CjklS

kl∆j −
( χ

24
− 1
)
∆ + f(t), (4.11)

where f(t) is the holomorphic ambiguity. Thus result can be interpreted as a sum of Feynman

diagrams, as shown in Figure 4.1, with S, Sj and Sij as propagators, ∆ and ∆j as terminators

(tadpoles), and F (g,h)
i1···in as loop-corrected vertices. The interpretation of the term involving

∆ follows from (4.4), and will be made more exact below.

Let us make the statement more exact (with proof in the next section). The dotted lines

in Figure 4.1, corresponding to the presence of S, Sj, ∆ or ∆j , can be interpreted as the

dilaton propagating [8], as opposed to the solid lines which represent marginal (c, c) fields.
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=
1

2
− +

1

2
− + hol. amb.

Figure 4.1: Feynman diagram expansion of F (1,1). Compare to equation (4.11). The dotted line

indicates an absent index, or propagating dilaton.

To formalise this, define new propagators and terminators,

Kij = −Sij , Kiϕ = −Si, Kϕϕ = −2S,

T i = −∆i, T ϕ = ∆. (4.12)

Vertices are given by

F̃ (g,h)
i1···in = F (g,h)

i1···in , F̃ (g,h)
i1···in,ϕm = 0 for (2g − 2 + h + n + m) ≤ 0,

F̃ (0,2)
ϕ =

N

2
, F̃ (1,0)

ϕ =
χ

24
− 1,

F̃ (0,1)
ij = ∆ij , F̃ (0,0)

ijk = Cijk,

F̃ (g,h)
i1···in,ϕm+1 = (2g − 2 + h + n + m)F̃ (g,h)

i1···in,ϕm otherwise. (4.13)

For the amplitude F (g,h), the diagrams that contribute are all those such that g equals the

number of loops in the Feynman diagram plus the sum of the genera of all vertices; and

h equals the number of terminators plus the sum of the boundaries in all (non-terminator)

vertices. Then using the standard Feynman rules, including symmetry factors, produces

integrated expressions for topological string amplitudes, as we will prove in the next section.

For example, (4.11) can be written

F (1,1) =
1

2
F̃ (0,1)

jk Kjk + F̃ (1,0)
j T i +

1

2
F̃ (0,0)

jkl KklT j + F̃ (1,0)
ϕ T ϕ + f(t),

with all other terms zero.

To use these formulae, explicit expressions for the propagators and terminators are re-
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quired. The former follows from special geometry [8], specifically the relation

∂̄ī

(
SjkCklm

)
= ∂̄ī

(
∂lKδj

m + ∂mKδj
l + Γj

lm

)
, (4.14)

where K is the Kähler form and Γj
lm the Christoffel connection. Integrating this and inverting

Cklm gives an expression for Sjk, and Sj and S follow from integrating (4.7). The terminators

follow from the holomorphic anomaly of the disk amplitude [13],

∂̄ī∆jk = −Cjkl∆
l
ī, (4.15)

which can be integrated as Cjkl is pure holomorphic. Inverting Cjkl gives an expression for ∆j

in terms of the disk amplitude ∆jk, and integrating (4.10) gives ∆. Thus the propagators can

be calculated in terms of the geometry of the Calabi-Yau moduli space and the terminators

depend additionally on the boundary conditions, up to a holomorphic ambiguity in both

cases.

4.3 Proof of closed string Feynman rules

The statements in the previous section are most easily proved for the closed string case first,

as the open string case follows by a shift of variables. Following [8], define the generating

function for the holomorphic anomalies of F (g)
i1···in ,

Ŵ (x, ϕ; t, t̄) =
∑

g,n

1

n!
λ2g−2F (g)

i1···inxi1 · · ·xin

(
1

1− ϕ

)2g−2+n

+
( χ

24
− 1
)

log

(
1

1− ϕ

)
, (4.16)

where the sum is over g, n ≥ 0 such that (2g − 2 + n) > 0 and λ is the topological string

coupling constant. Ŵ satisfies

∂

∂t̄ī
e

cW (x,ϕ;t,t̄) =

(
λ2

2
C

jk
ī

∂2

∂xj∂xk
−Gījx

j ∂

∂ϕ

)
e

cW (x,ϕ;t,t̄), (4.17)

with expansion order-by-order in λ, x and ϕ yielding (4.3) and (4.4) (with h = 0).

There exists another function of xi and ϕ which satisfies almost the same equation as
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(4.17), namely

Ŷ (x, ϕ; t, t̄) = − 1

2λ2

(
Θijx

ixj + 2Θiϕx
iϕ + Θϕϕϕ

2
)

+
1

2
log

(
detΘ

λ2

)
. (4.18)

Here Θ (denoted ∆ in [8]) is the inverse of the propagator K defined in (4.12),

KIJΘJK = δI
K , (4.19)

where capital indices are the corresponding lower case indices plus ϕ. From (4.7) it can be

shown that
∂

∂t̄ī
e

bY (x,ϕ;t,t̄) =

(
−λ2

2
C

jk
ī

∂2

∂xj∂xk
−Gījx

j ∂

∂ϕ

)
e

bY (x,ϕ;t,t̄). (4.20)

Now consider the integral

Z =

∫
dxdϕ exp(Ŷ + Ŵ ). (4.21)

Treating x and ϕ as dynamical variables, the expansion of Z can be evaluated as a per-

turbation expansion in λ, using the the usual Feynman rules. The result is the Feynman

diagram solutions for F (g) described in the previous section. For example, F (2) is given (up

to holomorphic ambiguity) by the order λ2 terms in the expansion of Z, the first few of

which are

F (2) − 1

2
SijF (1)

ij − 1

2
F (1)

i SijF (1)
i − 1

8
SjkSmnF (0)

jkmn + · · · .

F (3) is given by the λ4 terms, and so forth. Formulating it this way, however, provides a

means of proof for all g. Using (4.17) and (4.20),

∂

∂t̄ī
Z =

∫
dxdϕ

(
e

bY ∂

∂t̄ī
e

cW + e
cW ∂

∂t̄ī
e

bY
)

=

∫
dxdϕ

(
λ2

2
C

jk
ī

[
∂

∂xj

(
e

bY ∂

∂xk
e

cW
)
− ∂

∂xj

(
e

cW ∂

∂xk
e

bY
)]

−Gīj
∂

∂ϕ

[
e

bY +cW
])

.

The right-hand side of this equation is a total derivative with respect to xi and ϕ. All the
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integrals are Gaussian, and integration by parts gives

∂

∂t̄ī
Z = 0. (4.22)

This proves that ∂
∂t̄ī

F (g) is the anti-holomorphic derivative of all the other terms in the

Feynman rule expansion of Z at order λ2g−2 — and thus that the Feynman rules give F (g)

up to an arbitrary holomorphic function, the holomorphic ambiguity.

4.4 Extension to open strings

Following the approach of the previous section, and as reported in [15], define the generating

function for open topological string amplitudes,

W (x, ϕ; t, t̄) =
∑

g,h,n

1

n!
λ2g−2µhF (g,h)

i1···inxi1 · · ·xin

(
1

1− ϕ

)2g−2+h+n

+

(
χ

24
− 1− N

2
λ−2µ2

)
log

(
1

1− ϕ

)
, (4.23)

where the sum is over g, h, n ≥ 0 such that (2g − 2 + h + n) > 0 and µ is the ’t Hooft

coupling constant, namely λ times the topological string Chan-Paton factor. The last term

contributes to the torus and annulus holomorphic anomalies, (4.4) and (4.5), respectively.

The generating function W satisfies an extension of (4.17) by a µ-dependent term, namely,

∂

∂t̄ī
eW (x,ϕ;t,t̄) =

(
λ2

2
C

jk
ī

∂2

∂xj∂xk
−Gījx

j ∂

∂ϕ
− µ∆j

ī

∂

∂xj

)
eW (x,ϕ;t,t̄), (4.24)

which reproduces the open topological string holomorphic anomaly equation (4.3) for each

genus and boundary number.

The key result is that equation (4.24) can be rewritten in the same form as the closed

topological string analogue, equation (4.17), by shifting

xi → xi + µ∆i, ϕ→ ϕ + µ∆. (4.25)
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After this shift equation (4.24) becomes

∂

∂t̄ī
eW (x+µ∆,ϕ+µ∆;t,t̄) =

(
λ2

2
C

jk
ī

∂2

∂xj∂xk
−Gījx

j ∂

∂ϕ

)
eW (x+µ∆,ϕ+µ∆;t,t̄), (4.26)

which is exactly (4.17). This result follows from a straightforward application of the chain

rule: recalling that ∂̄ī∆
j = ∆j

ī , the shift (4.25) produces two new terms on the left,

(
µ∆j

ī

∂

∂xj
+ µ∆ī

∂

∂ϕ

)
eW . (4.27)

The first is the additional µ-dependent term on the right of (4.24). Using Gīj∆
j = ∆ī, the sec-

ond term combines with the second term on the right of (4.26) to give −Gīj(x
j +µ∆j) ∂

∂ϕeW ,

which is required for matching powers of x+µ∆ in the expansion of the generating function.

We have thus reproduced the open topological string holomorphic anomaly equations from

the closed topological string holomorphic anomaly equations, simply by a shift of variables.

A proof of the open string Feynman rules follows immediately. Since the shifted W

satisfies the closed string differential equation (4.17), the proof of the closed string Feynman

rules presented in Section 4.3 applies here too. The shift has indeed an elegant interpretation

in terms of the Feynman rules — in field theory language, the shift effectively generates the

vacuum expectation values 〈xi〉 = ∆i and 〈ϕ〉 = ∆, and so terms containing ∆i and ∆

correspond to diagrams with tadpoles, as we saw in Figure 4.1.

The shift we use above is, strictly speaking, a shift of the variables x and ϕ, rather than

the closed string moduli t and λ. However, the two sets of variables are simply related.

Firstly, from equation (4.23) one can see that a shift of ϕ is equivalent to a re-scaling of λ

and x. Secondly, equation (3.18) in [8] is

[
∂

∂ti
+ Γk

ijx
j ∂

∂xk
+

∂K

∂ti

(
χ

24
− 1− λ

∂

∂λ

)]
e

cW =

(
∂

∂xi
− ∂F1

∂ti
− 1

2λ2
Cijkx

jxk

)
e

cW . (4.28)

This equation encodes the fact that

F (g)
i1···in = Di1 · · ·DinF (g),
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as well as the low genus result (4.4). We can now adopt Kähler normal coordinates. As

explained in Section 2.6 of [8], we can choose coordinates of the closed string moduli space

and a section of the vacuum line bundle so that, at a given point (t0, t̄0),

∂i1 · · ·∂inΓ
k
ij = 0, ∂i1 · · ·∂inK = 0. (4.29)

This removes all but the first term on the left of equation (4.28). On the right of equation

(4.28), the second and third terms contribute at low genus only, and can be absorbed by

redefining the sum in equation (4.23) to have only the restrictions g ≥ 1 and n ≥ 0. With

these choices,
∂

∂ti
Ŵ =

∂

∂xi
Ŵ , (4.30)

that is, Ŵ = Ŵ (t + x; t̄).

An elegant and computationally more efficient reformulation of the closed string Feynman

rules for calculating topological string amplitudes was provided by [54]. Subsequent work

by [55, 56] has provided a similar reformulation of the above open string Feynman rules.

Neitzke and Walcher [53] noted that the shift (4.25) for W does not give a generating

function which satisfies equation (4.28). This fact does not affect the proof of the open

string Feynman rules. However, they provide a slightly different shift, and absorb a factor

appearing at genus 1 into the topological string partition function, to give a shifted W which

satisfies both (4.17) and (4.28). This is then interpreted as the statement that the open

string partition functions are boundary-condition dependent states in the Hilbert space of

Witten’s picture of background independence of the topological string, as discussed in Section

2.6. Recall that the closed topological string partition function was identified as a single

wavefunction on the phase space H3(X). The open topological string partition function is

thus a different wavefunction on this phase space for each choice of worldsheet boundary

conditions (encoded in the form of the terminator ∆).

It would be interesting to develop a better understanding of the holomorphic ambigui-

ties of the open string amplitudes, along the lines of the powerful techniques that are now

available [10] for the closed string. Furthermore, the open-closed relationship demonstrated

by the shift (4.25) is reminiscent of large N duality, where the background is shifted by
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an amount proportional to the ’t Hooft coupling. It would be interesting to explore the

implications of this for the Gromov-Witten and Gopakumar-Vafa topological invariants.
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Appendix A

Chiral non-perturbative OSV at other genus

This appendix supplements Section 2.7. We derive results of use in realising the OSV con-

jecture on the non-compact genus G Calabi-Yau manifold X defined by equation (2.50).

Useful in these derivations will be the Schur functions sR(x), which are completely sym-

metric functions (polynomials) of n (possibly infinite) variables x. The function is determined

by the row lengths of the Young diagram R. For details refer to, e.g., [57]; properties we will

use include

∏

i,j

(1−Qxiyj) =
∑

P

(−1)|P |Q|P |sP (x)sP t(y)

∏

i,j

1

(1−Qxiyj)
=
∑

P

Q|P |sP (x)sP (y)

dq(R) = qκR/4sR(qj− 1
2 ) = (−1)|R|q−κR/4sR(q

1
2−j), (A.1)

where if the indices i, j run to infinity, then the representation P is a U(∞) representation;

else it is a representation of SU(k), where k = min (max(i), max(j)). Q is an arbitrary

factor, and the superscript in P t denotes the transposed Young diagram (which has arbitrary

column lengths, and so is a U(∞) representation). In the last equation, qj− 1
2 denotes the set

of variables generated by the range of the index j.
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A.1 Decomposition of the black hole partition function

Our first result is the decomposition of the black hole partition function (2.54). We start by

decomposing the (finite N) quantum dimension,

dimq(R) =
∏

1≤i<j≤N

[Ri − Rj + j − i]q
[j − i]q

= dim
(N

2 +l)
q (R+) dim

(N
2 −l)

q (R−)




N
2

+l∏

i=1

N
2
−l∏

j=1

[R+
i + R−

j + N + 1− j − i]q
[N + 1− j − i]q



 , (A.2)

where the notation dim(k)
q (R) means that R should be treated as a Young diagram of a U(k)

representation, and so dq(R) = dim(∞)
q (R). Recalling that the row lengths of R+ and R− are

non-negative, the last term in (A.2) can be rewritten

( ∞∏

i,j=1

[R+
i + R−

j + N + 1− j − i]q
[N + 1− j − i]q

)


N
2 +l∏

i=1

R+
i∏

j=1

1

[N
2 + l + j − i]q








N
2 −l∏

j=1

R−
j∏

i=1

1

[N
2 − l + i− j]q



 ,

where the last two factors required the use of “telescoping factors” — all other values of the

indices give cancelling contributions between numerator and denominator. These last two

factors are, however, exactly the ratios dq(R+)/ dim
(N

2 +l)
q (R+) and dq(R−)/ dim

(N
2 −l)

q (R−).

Recalling that [x]q = qx/2 − q−x/2, the first factor in the above expression can be rewritten

using the first of the identities (A.1) as

∞∏

i,j=1

q−(R+
i +R−

j )/2

(
qR+

i +R−
j +N+1−j−i − 1

qN+1−j−i − 1

)

= q−
N
2 (|R+|+|R−|)

∑

P

(−1)|P |qN |P |sP (qR+
i + 1

2−i)sP t(qR−
j + 1

2−j)
∞∏

i,j=1

(
1

1− qN+1−j−i

)
. (A.3)

Finally, we have the identity [3]

q
N3

12 − N
24 S00 = M(q)ηN (q)

∞∏

i,j=1

(
1− qN+1−j−i

)
, (A.4)
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where M(q) is the McMahon function and η(q) the Dedekind eta function. Putting this

together, and recalling S0R = S00 dimq(R),

q
N3

12 − N
24 S0R = M(q) η(q) dq(R

+) dq(R
−) (−1)|R

+|+|R−|q−
N
2 (|R+|+|R−|)q−

1
4 (κR++κR−)

×
∑

P

(−1)|P |qN |P |sP (qR+
i + 1

2
−i)sP t(qR−

j + 1
2−j). (A.5)

This result is useful for G = 0. For G ≥ 2, we can use the second of the identities (A.1)

instead of the first in equation (A.3), giving

q
N3

12 − N
24 S0R = M(q) η(q) dq(R

+) dq(R
−) (−1)|R

+|+|R−|q−
N
2 (|R+|+|R−|)q−

1
4 (κR++κR−)

×
∑

P

q−N |P |
(
sP (qR+

i + 1
2−i)sP (qR−

j + 1
2−j)
)−1

. (A.6)

We can now decompose the black hole partition function (2.54) into topological string

partition functions. The approach is that of Section 2.3.4, though the additional prefactors

for G 7= 1 require modifying the result (2.29). It is now

q
(m+2G−2)2

2m

“
N3

12 − N
12

”

e
Nθ2

2mλ = exp

(
− t3 + t̄3

6m(m + 2G− 2)λ2
+

(m + 2G− 2)(t + t̄)

24m

)
,

q
m
2 Nl2eiθNl = exp

(
− (t2 − t̄2)l

2(m + 2G− 2)λ
+− m(t + t̄)l2

2(m + 2G− 2)

)
,

where the second line can be absorbed into the first by taking t → t+mλl and t̄ → t̄−mλl.

Putting it all together,

ZBH(Σg) =
N/2∑

l=−N/2

∑

P1,...,P|2−2G|

ΨN/2+l
P1,...,P|2−2G|

(t + mλl)Ψ
N/2−l
P1,...,P|2−2G|

(t̄−mλl), (A.7)

where the Pi are U(∞) representations, and the non-perturbative completion of the topo-
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logical string partition function is

Ψk
P1,...,P|2G−2|

(t) = Ẑ0(q, t) exp

(
−

t(|P1| + · · ·+ |P|2G−2||)
m + 2G− 2

)

×
∑

R of SU(k)

(
1

dq(R)

)2G−2

q(m+G−1)kR/2e−t|R|
|2G−2|∏

n=1

sPn(qRi+
1
2−i), (A.8)

where Ẑ0(q, t) = Z0(q, t)ηt(2G−2)/(m+2G−2)λ, Z0(q, t) defined in equation (2.51). As noted

in [3], the eta function contributes only at genus zero and perturbatively, hence we need

not worry that it did not appear in the perturbative Ztop. The anti-holomorphic partitions

function Ψ is also given by (A.8), except for the G = 0 case, where the representations are

transposed:

Ψ
k
P1,P2

(t̄) = (−1)|P1|+|P2|Ψk
P t

1 ,P t
2
(t). (A.9)

A.2 The chiral recursion relation

We now wish to express (A.8) in terms of the perturbative topological string partition func-

tion, (2.51), as discussed in Section 2.7.2 and illustrated in Figure 2.8. Starting with the

quantum dimension of a U(∞) representation R,

dq(R) =
∏

!∈R

1

[h(!)]q

= dq(R
1)dq(R

2)
k+r∏

i=1

r∏

j=1

1

[R1
i + r − j + R2

j + k + r − i + 1]q

= dq(R
1)dq(R

2)(−1)r(r+k)q
1
2 (r|R1|+(k+r)|R2|)q

1
4 r(k2+3kr+2r2) (A.10)

×
∑

S of U(r)

q(2r+k)|S|s̃S(qR1
i + 1

2−i)s̃S(qR2
i + 1

2−i), (A.11)

where in the last line, the tilde on the Schur functions s̃S(qR1
i + 1

2−i) denotes that there are

only finitely many variables for the function, since the indices on the product above range

only over finite values.

The second result is for the interaction with the ghost brane coupling the chiral and
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anti-chiral Fermi surfaces, sP (qRi−i+ 1
2 ), where i runs over all positive integers. The set of

variables xi = qRi−i+ 1
2 can be split up as

qRi−i+ 1
2 =





qR1

i +r−i+ 1
2 i ≤ k + r

q(R2)t
i−k−r−i+ 1

2 i > k + r.

We can now use an identity [57] for Schur functions of disjoint sets of variables,

sP (qRi−i+ 1
2 ) =

′∑

Pa,Pb

NP
PaPb

sPa(q
(R2)t

i−i−k−r+ 1
2 )sPb

(qR1
i +r−i+ 1

2 )

=
∑

Pa,Pb

NP
PaPb

q−(k+r)|Pa|+r|Pb|sPa(q
(R2)t

i−i+ 1
2 )sPb

(qR1
i −i+ 1

2 ),

where the sum runs over partitions satisfying P ⊃ Pb ⊃ Pa, where Pb ⊃ Pa requires that all

the rows of Pb are at least as long as the corresponding rows of Pa, i.e., Pb,i ≥ Pa,i for all i.

Furthermore, the Littlewood-Richardson coefficients NP
PaPb

vanish unless |P | = |Pa| + |Pb|.
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