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Abstract

A robust design process starts with modeling of the physical system and the uncer-
tainty it faces. Robust design tools are then applied to achieve specified performance
criteria. Verification of system properties is crucial as improvements on the modeling
and design practices can be made based on results of such verification. In this thesis,
we discuss three aspects of this closed-loop process.

First and the most important aspect is the possibility of the feedback from veri-
fication to system modeling and design. When verification is hard, what does it tell
us about our system? When the system is robust, would it be easy to verify so? We
study the relation between robustness of a system property posed as a decision prob-
lem and the proof complexity of verifying such property. We examine this relation in
two classes of problems: percolation lattices and linear programming problems, and
show complexity is upper-bounded by the reciprocal of robustness, i.e., fragility.

The second aspect we study is model validation. More precisely, when given a
candidate model and experiment data, how do we rigorously refute the model or
gain information about the consistent parameter set? Different methods for model
invalidation and parameter inference are demonstrated with the G-protein signaling
system in yeast to show the advantages and hurdles in their applications.

While quantification of robustness requirements has been well-studied in engineer-
ing, it is just emerging in the field of finance. Robustness specification in finance is
closely related to the availability of proper risk measures. We study the estimation
of a coherent risk measure, Expected Shortfall (ES). A consistent and asymptotically

normal estimator for ES based on empirical likelihood is proposed. Although em-
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pirical likelihood based estimators usually involve numerically solving optimization
problems that are not necessarily convex, computation of our estimator can be carried

out in a sequential manner, avoiding solving non-convex optimization problems.
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Chapter 1

Introduction

1.1 Motivation

The omnipresence of uncertainty makes robustness a necessary feature of almost all
natural and engineering systems around us. Biological systems exhibit astonishing
robustness to uncertainty arising from both their building blocks and the environ-
ment. This robustness is crucial for survival and growth of organisms. In engineering
design, from aircraft design to communication, building reliable systems robust to
uncertainty has always been the goal. Robustness is essential since, for one thing, the
mathematical model used to describe the underlying physical system is never perfect.
Past experience with financial market crashes as well as sudden fallings of banks also
urge individual investors and banks to invest with strategies that are robust to the
huge uncertainty in market.

This quest for robustness renders scientists and engineers constantly challenged
with the task of understanding and design robust performing systems. Fig 1.1 shows a
coarse depiction of the robust design process. Mathematical modeling of the physical
system, the uncertainty it is likely to face, and the performance criteria it should
achieve is the first step of this process. Robust design is then conducted based on the
model of the system with the aim of satisfying performance criteria in the presence of
the perturbations specified. Verification is a crucial step to check that the properties

designed are actually obtained. A necessary feature of this design process is that it
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be closed-looped. In other words, the result of verification gives information about

the previous steps and points to directions of improvement.

Y v Y
System Uncertainty Performance
Modeling Modeling Modeling
\J
Robust Design
Y
Verification

Figure 1.1: Robust design process

In this thesis, we discuss three aspects of the robust analysis and design process.
First, and the most important aspect, is the possibility of the feedback from verifica-
tion to system modeling and design. When verification is very hard, what does it tell
us about our designed system? When the system is robust, would it be easy to verify
this? Does there exist a fundamental relation between verification and robustness?
The second aspect is the construction of mathematical model of the physical system.
When we have data from experiments, how do we check the validity of a candidate
model structure? When the structure is valid, what can we say about its parame-
ters? The last, but in no means the least important, aspect is the quantification of
uncertainties the system is robust to, i.e., quantification of the robustness measure.

The properties or functionalities of a system are often investigated through posing
questions about the system. For example, a positive answer to the question “is it safe

for a Boeing 777 to fly in windy weather” is a desired property of the Boeing 777
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design. A negative answer to the question “does the running of the software cause a
computer to crash” would be a necessary requirement of a nice piece of software. Thus
a property is robust when its corresponding question is robust, i.e., the answer does
not incur qualitative change in the face of uncertainty. Its verification also reduces to
proving a solution to the posed question. While some questions are easy to answer,
others can be very hard. What does this hardness in proving a property tell us about
the underlying system?

In statistical physics, complexity has been associated with phase transition through
empirical examination of random systems. Studies of problems such as the satisfi-
ability (SAT) problem, show that the peak of average complexity occurs at phase
transition, see, e.g., [15,55,56]. The conclusion is then that problems are hard near
phase transition and easy away from this critical point. Although this is correct in an
average sense and corroborated by empirical data, it yields little information about
a particular instance. For example, unsatisfiable 3-SAT instances below phase tran-
sition can be significantly harder than a “typical” instance at phase transition [55].
Then what does complexity of an instance tell us, now that it is not bound with phase
transition?

Furthermore, biological and engineering systems are hardly ever random. The
structure and interactions of biological networks are results of millions of years of
natural selection. Engineers deliberately design their systems to be the way they are.
So the complexity of designed systems, especially those that are highly optimized to
be robust, rather than that of random systems, should be the focus of engineers in
the effort to understanding complexity.

As suggested by overwhelming evidences, this proof complexity reveals fragility of
the associated property to some uncertainty. Complexity is fundamentally linked to
robustness, rather than phase transition. A familiar example in robust control is the
structured singular value problem, where lack of short proof of robustness under time

invariant perturbations indicates fragility against certain time variant perturbations.
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We study the relation between verification complexity and robustness in detail
for two classes of problems, namely the percolation lattice problem and Linear Pro-
gramming (LP). The conclusion for these two case studies is that proof complexity
implies fragility. In other words, robust properties are necessarily easy to verify. Our
conjecture is that this fundamental relation holds for general systems.

The second aspect we discuss in this thesis is model invalidation and parameter
inference. Building a mathematical model of the natural or designed system is the
first step of robust design. The model should not be too simple to capture the essence
of the original system; nor should it be too complicated to work with. A good model
needs to be consistent with known knowledge, able to reproduce observed empirical
data, and robust to a reasonable degree of uncertainty. Uncertainties arise from
dynamics that are not reflected in the model, fluctuations in environment conditions,
as well as experiment errors.

For a specific ODE model, the traditional method of checking model validity
consists of carrying out computer simulations to see if experiment data can be re-
produced. Uncertainty from model parameters requires exhaustive search over the
parameter set, making this approach computationally virtually impossible. Invali-
dating a model with uncertainty is a co-NP problem, as it requires proving that no
parameter combination can result in a model consistent with observed data.

Barrier Method proposed by Prajna [69] is a solution to model validation with
uncertainty. Barrier function is conceptually similar to Lyapunov function, and is
implemented via SOSTOOLS [70,71]. While it is theoretically elegant and powerful,
its application to real systems, especially complex biological systems, is hindered by
computational limitations. We adopt a surface fitting approach [9,57] previously used
in chemical engineering to ease the computation load, at the price of introducing a
level of relaxation.

When a proposed model is not invalidated, can we infer information about possible

parameter combinations from data? Traditional methods concentrate on estimating a
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single best parameter and using this estimate to predict system outcome. For a given
set of experimental data, there is usually more than one parameter that is capable of
producing the observed data. Predictions using a single estimate are therefore limited,
even misleading. We study parameter inference with a different approach, where the
focus is on the whole set of parameters that are consistent with prior information,
e.g., reaction rates lying in certain range, and the data. Surrogate model method and
SOS relaxation are used to produce bounds on this consistent parameter set.

In biology, understanding of the mechanism through which complex networks of
interacting molecules achieve robust functionalities has to come first, before schemes
altering the biological system for pharmaceutical benefits can be designed. Proper
mathematical models often help in digging out essences of natural design. Because
of the complexity of biological systems, modeling is an important topic in system
biology. We study the model validation problem in G-protein signaling system in
yeast, a system that is biologically significant yet simple enough for us to see where
and how the different methods work and break.

The third aspect we study is the robustness measure. Robustness measure is
studied in the field of financial risk management, where quantification of robustness
measure is less straightforward than in engineering and is still developing. In problems
such as financial investing, or portfolio choice, robustness concern is implicit, but its
formulation is not agreed on.

This difficulty is mainly due to people’s different perception of risk: a situation
considered risky by one person can seem acceptable to another. The general concept
of risk in financial risk management is the exposure to uncertainty. Imposing different
measures of risk on an investment strategy specifies different uncertainties that the
strategy needs to be robust to. A “good” measure of risk should reflect rational
decision making under uncertainty. For example, it should explain and encourage
diversification that is widely observed in practice. This concept of “goodness” was

rather unclear until very recently, when the definition of coherent risk measure was
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introduced by Artzner et al. in 1999 [3] and that of convex risk measure by Follmer
and Schied in 2002 [27].

Risk measure is essential in guiding portfolio choice. The aim of portfolio choice is
to form a combination of available financial assets, possibly including bonds, stocks,
derivatives and other financial instruments, to obtain the maximum anticipated return
over a specific period of time while enduring the smallest risk. Here risk should be
roughly interpreted as the stochastic counterpart of robustness measure in control
system design. For example, in robust control, requiring p(M, Axr) < 1, where Ay
is the set of all block-diagonally structured time invariant perturbations within the
unit ball, guarantees that the nominal system M is robust against perturbations in
Ar1. Analogously, an investor imposing an upper bound, say 5%, on the probability
of monetary loss from the portfolio wants her investment to be robust to the best
95% of the market movements and considers the worst 5% fluctuations out of control.
Whether this is a wise choice of criterion is going to be discussed in Chapter 4.

In portfolio selection, portfolio weights are the decision variable to be determined
to achieve the return performance, while keeping undesirable outcome to a tolerable
level. It is commonly agreed on that the return performance of a portfolio is measured
by the expected return, or mean return. The appropriate measure of risk however
is less defined. Variance and quantile have been used as risk measures. However,
variance is inappropriate as a measure of risk for asymmetric returns, which is common
in financial returns. Quantile-based risk measure, in particular Value at Risk (VaR),
focuses on the tail distribution of the return, but it fails to explain diversification and
is thus not coherent.

We study a measure of risk called Expected Shortfall (ES), which is essentially the
average loss in the unwanted situations. ES is a coherent risk measure that encourages
diversification. It is also the candidate measure of credit risk that will potentially
be posed to banks by regulators. Determining the value of ES for a portfolio, i.e.,

estimation of ES, is therefore an important research topic with material practical
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impact. A semi-parametric estimation method based on empirical likelihood function
is proposed, where no assumptions on the return distribution are made. Asymptotic

properties and the computation of the estimator are examined.

1.2 Contributions and Outline

The contributions and outline of the thesis are as follows.

In Chapter 2, we study the relation between robustness of a system property
posed as a decision problem and the verification complexity of verifying such property.
We examine this relation in two classes of problems: percolation lattices and linear
programming (LP) problems. The decision problems are the determination of the
existence of a path in a lattice and a solution to a feasibility LP problem. Robustness
and verification complexity for both problems are defined. Complexity is shown
to be upper-bounded by the reciprocal of robustness, i.e., fragility, grounding the
harmony between robustness and verification in system design. We also illustrate
that this relation is more relevant in designed systems than the popular attribution
of complexity to criticality for percolation lattices. As percolation lattices and LP
are proper models for a variety of physical systems, what we study here is a first step
in understanding the fundamental link between robustness and complexity, followed
by similar explorations for problems that are in NP or are undecidable [63].

Chapter 3 is focused on the problem of model validation. More precisely, when
given a candidate model and experiment data, the task is to rigorously refute the
model or gain information about the consistent parameter set. Based on the SOS
methodology, invalidation is carried out using Barrier function [69] or surrogate ap-
proximation. Characterization of parameter correlation based on SOS methods is
proposed. These techniques are demonstrated with the G-protein signaling system in
yeast to show the advantages and hurdles in their application to system biology.

In Chapter 4, we study estimation of a particular risk measure, the Expected
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Shortfall. A maximum empirical likelihood estimator (MELE) for the joint estima-
tion of VaR and ES is proposed. Asymptotic properties of this estimator is developed.
In particular, we show that the estimator is consistent and asymptotic normal. In
general, a MELE is a solution to an optimization problem that is not necessarily
convex. Its implementation thus suffers from difficulties in solving non-convex opti-
mization problems. We show that the computation for our MELE can be carried out
in a sequential manner, where the first stage is a comparison of two evaluations and
the second stage is an algebraic calculation.

Chapter 5 concludes and gives future directions.



Chapter 2

Robustness and Complexity

Functionalities and their robustness are key properties in biological, economic and
engineering systems. Verifying these functionalities has been a long-standing effort
in a number of communities. Very often, certain questions are asked about a system
in the hope that by answering these questions, we can gain insight in understanding
properties of the system concerned. In this chapter, two classes of systems are ex-
plored to show that there is a relation between the hardness of answering a simple
but meaningful question about the system and the robustness of the system.

The two problems, percolation lattices and linear programming, have been studied
extensively in statistical physics and operation research, respectively. These two
problems are widely used as models for a variety of physical systems. They are neatly
formulated and simply solvable, yet at the same time capturing the essence of the
conceptual difficulty in comprehending the relation mentioned above. They provide
us with a natural starting point to investigate our conjecture: robust properties have
short proofs.

Before looking at these two problems, let us first remind ourselves of the different

notions of complexity.
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2.1 Notions of Complexity

In common language, a complex system is one with massive number of heterogenous
components interwoven together, possibly through complicated hierarchies, to achieve
what would not be possible by individual components. As complex systems are
studied in almost all research fields, unsurprisingly there are many definitions of
complexity. We briefly introduce the concept of computational complexity in contrast
with the verification complexity, or proof complexity, that we focus on.

The notion of complexity concerning hardness of problems is computational com-
plexity that came with the introduction of the Turing Machine. Here a problem is
a set of related questions. For example, “given an even number, find pairs of prime
numbers that sum up to it” is a problem and “find pairs of prime numbers that sum
up to 20” is an instance of this problem. Computational complexity describes how
the time needed to solve problem instances by the best algorithm scales with the size
of problem input.

Problems are categorized into classes by their worst-case complexity. Roughly
speaking, a problem is in complexity class P if there exists an efficient program that
solves all its instances in polynomial time. The class NP, here NP stands for non-
deterministic polynomial, consists of problems for which a candidate solution can be
checked in polynomial time. Problems posed as “does there exist an XYZ such that
condition ABC is satisfied?” are in NP if conditions ABC can be verified in polynomial
time. Problems complement to those in NP are in co-NP. For those problems, a no
answer can be proved by a counterexample.

The complexity we focus on will be proof complexity, i.e., proof length. For dif-
ferent questions, proofs will often be of different natures. For example, a Lyapunov
function is a proof of system stability in dynamical system analysis, whereas a factor-
ization of the integer 15 into factors 3 and 5 is a proof that 15 is not a prime number.

A consequence of this is that there is no universal definition of a proof length. The
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appropriate meaning of proof complexity will be clear from the system of interest and
the form of the proof. In the case of finding polynomial Lyapunov functions, the order
of the polynomial is the proof complexity. We know that for stable linear systems,
a quadratic Lyapunov function always exists. Therefore, in this sense, proving linear
stability is easy.

Proof complexity is our main focus because it is more revealing for engineering
design. As we show in the following two problems, percolation lattice and linear
programs, a long proof indicates fragility in the system and provides feedback to the

robust design process depicted in Figure 1.1.

2.2 Percolation Lattices

A percolation process is a mathematical model of the random spread of a fluid through
a medium, where both “fluid” and “medium” can be very broadly interpreted [35]. It
was first brought into mathematics by Broadbent and Hammersley in 1957 [11]. In
two dimensions, a typical percolation model involves the plane square point lattice
Z? and a real number p, 0 < p < 1. There are two kinds of percolation problems.
In site percolation, each site on the lattice, independent of all other sites, is occupied
with probability p and vacant with probability 1 — p, the vacant sites being thought
of as junctions that are blocked to the passage of fluid. Thus fluid can only pass
through occupied sites. In bond percolation, it is each bond that has a probability
p of being occupied and 1 — p of being vacant. In fact, every bond percolation may
be transformed into a site percolation problem. In this sense, site percolation models
are more general. We focus on the two-dimension site percolation model on a square
lattice.

Percolation is well-studied in statistical physics, as it is one of the simplest prob-
lems that exhibit phase transition. Physicists explore macroscopic properties of lat-

tices as functions of the order parameter p. One popular such property is the existence
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of an infinite path of occupied sites in different lattice instances and the critical phe-
nomenon related to it. Phase transition happens at critical probability p. [81]: when
p < p., infinite horizontal path almost never occurs in a random lattice; but when
P > pe, it is almost always observed. In physics, this sudden change is used to model
sudden change from one physical phase to another, as when steam turns into water
at the condensation temperature.

We are interested in particular lattice instances rather than random lattice real-
izations as an ensemble. In this case, p does not provide as much information as the
fraction of occupied sites in a lattice. This density is denoted by p. From this point
onward, by a lattice, we mean a site percolation model with a designated occupation
configuration, i.e., its occupied and vacant sites are already determined. Figure 2.1
shows a 20x 20 lattice, where the occupied sites are colored as black and vacant sites
are left as white. In what follows, we sometimes refer to occupied sites as black sites

and vacant sites as white sites.

Figure 2.1: A 20 x 20 site percolation lattice

Two-dimensional percolation lattices can be used as the model for various physical,
engineering and social systems. Examples include, among many others, forest fires

[12], electrical conductors and spread of epidemic diseases [81]. In the case of forest
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fire, we can think of each occupied site of a lattice as a tree planted and vacant sites as
non-planted land. Once a tree is on fire, it can ignite its neighbors. Suppose trees on
one boundary are ignited at the same time. Then for very small p, i.e., trees are very
sparsely planted, the fire will likely die out after several steps and the propagation of
fire is stopped by a barrier of unplanted land. But for large p, i.e., tress are densely

planted, it can propagate to the opposite boundary and percolation of fire happens.

(a) Vertical path (b) Horizontal path

Figure 2.2: Vertical and horizontal paths represent cascading failure events and bar-
riers that block these events, respectively

Cascading failure events in dynamical systems can sometimes lead to catastroph-
ical system failure. Therefore a great deal of resources in biological and engineering
systems are devoted to building barriers that prevent such cascading from happen-
ing or propagating. Percolation lattices can be borrowed as a simplified model to
illustrate some of the essence of the challenges involved in the analysis of these sys-
tems. The sites represent states of the systems: occupied sites are the states that
the system is impossible to be in and vacant sites are the feasible states. Transition
between two feasible states can happen only when the two corresponding sites in the
lattice are neighbors, i.e., they share an edge or a corner. For simplicity, suppose
the first row of the lattice represents initial states of the system and the bottom row
of the lattice are the states that cause failure of the system. Then the existence of

a series of cascading events leading to system failure is represented by the existence
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of a vertical path composed of feasible states. In the system modeled by the lattice
in 2.2(a), failure can happen through the vertical path colored in red. Building a
barrier to prevent failure is then essentially the same as using occupied sites to form
horizontal paths. In 2.2(b), the horizontal path plotted in yellow is a barrier that
guarantees that no vertical path exists. Existence of such a barrier means there is no
dynamically feasible series of states that leads the initial normal states to a failure.

To make it clear what we mean by neighbors and paths, we describe the problem

more formally.

2.2.1 Problem Description

First, some definitions similar to those in [89] are introduced. We place an N x N
lattice on a grid such that each site v is indexed by the two integer coordinates of its

center v = (7,,y,) € Z*, 1 < x,,y, < N.

Definition 2.1. Two occupied sites v and w are neighbors if ||v — w|y = 1. Two

vacant sites v and w are neighbors if ||v — w||y < V2.

That is, the neighbors of an occupied site are occupied sites one step horizontal
or vertical away from it. An occupied site has at most 4 neighbors. Vacant sites can
have neighbors that are one step away from it in a diagonal direction and can have as
many as 8 neighbors, as shown in Figure 2.3. Notice that an occupied site can never

be a neighbor of a vacant site.

Definition 2.2. A path in a square percolation lattice is a sequence of sites vy, -+ , Uy,

such that for allt=1,--- ,m — 1, v; and v;11 are neighbors.

Thus an occupied path is a sequence of occupied sites vy, --- ,v,, such that for
all i = 1,--- ;m — 1, ||v; — vi11]l2 = 1. Similarly, a vacant path is a sequence of
vacant sites vy, - -, v, such that for all i = 1,--- ,m — 1, |lv; — vis1]ls < V2. We

are interested in occupied paths that span horizontally from one end of the lattice
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(a) Occupied (b) Vacant

Figure 2.3: Neighborhood rules for occupied and vacant sites

to another and close paths that cross the lattice vertically. Such paths are called

crossings.

Definition 2.3. For a N x N square percolation lattice that contains all the sites v
with coordinate {(vy,v,) € Z* : 1 < vy,v, < N}, a horizontal cross is a path from

site v to w such that v, =1 and w, = N. A vertical crossing is defined similarly.

We are only interested in crossings. So hereafter, without ambiguity, an occupied
horizontal crossing is referred to as a horizontal path or a black path, corresponding
to our coloring of the occupied sites. Similarly, a vacant vertical crossing is called a
vertical path or a white path.

Clearly, the absence of vertical path can be shown to be equivalent to the existence
of a horizontal path!. Thus verifying that there is no white path leading to failure
is converted to showing the existence of a horizontal path. Such a horizontal path is

usually termed as safety proof in computer science.

IThis conclusion is a direct application of Proposition 2.2 in [40], where the occupied and vacant
paths are paths on a pair of matching graphs.
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2.2.2 Robustness and Complexity in Percolation Lattices

Following the previous example of cascading failure, white paths will represent dis-
aster events and black paths will be the designed barrier to block these disasters.
Even though mechanisms have been designed to prevent disasters from happening,
failures still occur sometimes due to changes in environment or malfunction of these
mechanisms. In the lattice setting, these changes or malfunction are associated with
perturbations to the lattice by changing the coloring of some lattice sites. Under
such perturbations, it is possible that a vertical white path appears in the resulting
lattice though no white path was present in the original lattice. Depending on their
structures, the minimum number of color changes needed to convert a lattice from
having no vertical path to having at least one such path varies greatly even among
lattices of the same black cell density. This amount captures how robust the sys-
tem functionality is towards perturbations modeled by changing in coloring of lattice
sites. Suppose the lattice is of size N x N. Let p be the density of black sites, i.e.,

the proportion of black sites. Robustness is defined as follows.

Definition 2.4. For an N x N square lattice without vertical path, the robustness of

the lattice is

R = B/(pN), (2.1)

where B is the minimum number of color changes in lattice sites to introduce a vertical

path. The fragility is the reciprocal of robustness, F = 1/R.

If we view black sites as resources to build barrier from, then the normalization by
pN implies that R is the relative robustness given available resources. Note that if we
call paths that do not share common sites as independent paths, then B is the number
of independent black paths. It is obvious that the maximum robustness is R = 1.
This is achieved by devoting all the available resources to building a thick purely
horizontal black strip, as the upper left two lattices shown in Figure 2.4. Obviously,

for a fixed p, it is harder for the system to experience failure when it is more robust.
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Another important concept is the verification complexity, i.e., proof length. For
systems that function without failure when unperturbed, this fact can be verified
through a safety proof, which is a black path in the lattice setting. To show a path
exists, there is no simpler way other than to trace out this path and mark all the sites
in it. It is then natural to define the verification complexity C as the length [ of the

shortest horizontal black path, normalized by the size of the lattice N.

Definition 2.5. For a N x N square site percolation lattice without vertical path, the

complexity for verifying the absence of vertical paths is

C =1/N, (2.2)

where [ is the length of the shortest horizontal path.

It is obvious that 1 < < N? and a tighter upper for [ approaches N?/2 when N
increases. The smallest complexity occurs when there exists a purely horizontal path
consisting occupied sites in the same row. It is intuitive that a shorter path is a less
complex verification of the system functionality.

Engineering designs have been aiming at finding systems with shortest proofs.
It turns out that this objective does not conflict with designing robustly functional

systems, as shown by the following theorem.

Theorem 2.1. For a given two-dimensional square lattice of size N x N without
vertical paths, let its verification complexity C' and robustness R as defined earlier.
Then,

Bl

Proof. The proof is straightforward from definition, noting that B is the number of
independent horizontal paths and p/N? is the total number of black sites in the lattice,

thus Bl < pN?2. U
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This means robustness and proof complexity are to some extent aligned. When
the system has high robustness, the proof complexity must be small. Therefore, it
is guaranteed that robust systems can be easily verified with a low-complexity proof,
as shown in Figure 2.4. On the other hand, when complexity is high, the system is
doomed to have low robustness, also illustrated in Figure 2.4. If we can not verify
with a simple proof that failures never happen, there is a reason to believe that the

system itself is fragile.

—/1

N

robust and easy

0| o | e

= 7

relatively fragile and easy  fragile and hard

=

2

@
Q

fragile and easy

Figure 2.4: The robustness—complexity picture for percolation lattices. Robust lat-
tices are at the upper-left corner of the admissible region, while as hard lattices are
necessarily located in the lower-right corner. Random lattices are relatively easy.
Fragile lattices can be easy as well.
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Various lattice examples with R and C'in the admissible region are shown in Figure
2.4. The colored region is excluded due to the R - C' < 1 relation. Four insights can
be obtained: (i) Biologically evolved and carefully designed engineering systems are
located in the upper-left corner of the region, possessing high robustness and short
verification proofs. (ii) The hardest lattices are located in the lower-right corner of the
region, being complex with only long verification proofs. (Notice that these instances
are almost never observed in randomly generated lattices.) (iii) Fragile lattices can
be located in the lower-left corner of the region. This means short verification proofs
do not imply robustness. Fragile systems can be easy to verify as well. (iv) Random
lattices sit in the middle of the region and are not the hardest instances.

So far, we have studied robustness and complexity for lattice models where vertical
paths represent failure events and the aim of robust design is to build horizontal path
as thick as possible to block failure from happening. In the cases where events modeled
by existence of horizontal paths are to be avoided, such as the forest fire example in the
beginning of the chapter, the presence of vertical paths is desirable. Robustness and
complexity is then defined accordingly to reflect the maximum number of independent
vertical paths and length of the shortest vertical path. It is an simple exercise to show

that Theorem 2.1 holds in these situations as well.

2.2.3 Structured and Random Lattices

A random lattice is a realization of the percolation problem introduced at the begin-
ning of Section 2.2.1, where sites are colored randomly according to certain probability
p. The density of black sites in the lattice is denoted as p as before. In random lattices,
p is the expected value of p, and p approaches p as the size of the lattice increases.
For random lattices, there are three situations regarding the hardness of finding a
barrier, as shown in Figure 2.5. When the density of black sites is very low, almost all
the random lattices do not have a horizontal black path and verifying this is always

easy. Whereas when the density approaches 1, there is almost always a black path
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and such a path can usually be found without difficulty. The transition from almost
never observing a black path to almost always having a barrier happens the critical
density around p = 0.593 [81,86]. For lattices around this density, a horizontal path
just appears or is just about to appear. It is in general hard to decide whether a

barrier exists and, when it does, it tends to be zigzagged and long.

(b) p = 0.59

Figure 2.5: Examples of random lattices with different density of black sites. Verifi-
cation of horizontal barriers in random percolation lattices are the hardest on average
when the lattices are placed near the critical density. Phenomenon like this has
convinced statistic physicists that the verification complexity is directly linked to
criticality.

This phase transition phenomena have been intensively studied in the statistical
physics literature. The easy-hard-easy transition around the critical density has lead
physicists to believe that the hardness in verifying the existence of a black path is
directly associated with phase transition. Consequently, huge amount of effort has
been devoted to lattices around phase transition and the systems modeled by these
lattices, as they are considered the complex and interesting ones. Failure is considered
obvious in systems sufficiently below phase transition and verification of robustness
is trivial for systems far above it.

Association of verification complexity with criticality is true in the probability
sense for random lattices. However, structured lattices do not observe this relation,
as shown by the examples in Figure 2.6. In Figure 2.6(a), a very long horizontal
path appears in the region that is below phase transition and is considered easy in

the random view. The lattice in Figure 2.6(c) does not have a horizontal barrier.
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(a) p=104 (b) p =0.59 (c) p=0.8

Figure 2.6: Examples of structured lattices with different density of black sites. Non-
random lattices are observed with long horizontal barriers at low density. They also
can have short horizontal paths at critical density, refuting the correlation between
verification complexity and criticality.

Although it is above phase transition at density p = 0.8, the absence of a black path
is not easy to see. In contrast, at the critical density, the lattice in Figure 2.6(b) is
robust and very easy.

Engineering and biological systems are purposeful processes that are very different
from being purely random. They are highly optimized to achieve robust resistance
to perturbations with limited resources. Lattices that are models of these designed
systems have rigorous structure. One such structure is to have black cells carefully
positioned to form a solid black strip, despite the low density of black cells. Although
the set of these lattices is of measure zero in the space of all lattices and is almost
never encountered by the random lattice generating process, they can be built by
deterministically choosing the coloring. Structured lattices are more suitable models
for engineering and biological systems, though they are mostly neglected from the
statistical physics perspective.

Random lattices at phase transition are not always hard. Even when they are, they
appear to be easy compared with structured hard lattices, as illustrated in Figure 2.7.
In Figure 2.8 we plot random lattices at phase transition on the admissible region

in C-R plane. We see that random lattices only occupy a very small area of the
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Figure 2.7: Complexity of random percolation lattice instances at different densities.
The average complexity, as well as the maximum complexity, of the 200 random
lattices peaks at near the critical density p = 0.593. However, the most complex
random lattice is easy when compared with some designed lattices even at noncritical
densities. Thus the relation between complexity and criticality is not revealing when
designed lattices are under study.
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region. The rest of the region is hardly visited by random lattices; however lattices
in this unvisited region are often models of structured systems. Therefore, random
lattices should not be the focus of engineers. The relationship C'- R < 1 is much more
fundamental and revealing than the popular phase transition view when designed

systems are of interest.
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Figure 2.8: The robustness—complexity picture of random lattice at phase transition.
1000 lattices of size 10 x 10 with density p = 0.593 are plotted as blue circles.

2.2.4 Percolation Lattice as Linear Programming

The lattice percolation problem can be stated as a feasibility linear programming (LP)
problem: a horizontal path exists if, and only if, some linear equalities and inequalities
are consistent. Thus, it is natural to ask if the relation between robustness and
complexity given in the previous section will hold for any general linear program. The
answer is positive. Before this is shown in section 2.3 using results on ill-conditioning

in linear programming from the numerical analysis literature, the LP formulation of
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percolation lattices is derived.

Consider a N x N lattice. We can assign a vertex to each site and two directed
edges in opposite directions to each pair of black neighbor sites. That is, a lattice
can be represented by a directed graph G = (V,T), where V is the set of all the
sites in the lattice and T is the set of all the connections among the sites allowed by
the neighbor rules and the specific coloring, i.e., the data. Then finding a horizontal
path in a lattice is equivalent to the problem of finding a path between two subsets
of the vertices, one corresponding to one boundary of the lattice and another to the
opposite boundary. These two sets of vertices are grouped as V; and V5 in Figure 2.9.
For simplification, two auxiliary vertices, along with 2N edges are added: a source
at left s; having edges incident to nodes in Vi, and a terminal at right ¢, with edges
pointing to it from nodes in V5. The shortest-length path from s; to ¢, corresponds

to the shortest horizontal barrier in the lattice.

data

Figure 2.9: The modeling of lattice problems by graphs for an example lattice. An
edge with arrows in both directions represents two directed edges in opposite direc-
tions. Finding a horizontal path is reduced to finding a path from s; to t,. in the
graph at right.

The path problem can be written as a flow problem. Assign a flow variable f;;
to the edge from vertex ¢ to vertex j. All we need to check is whether there exists

a legitimate flow from s; to t,.. A legitimate flow is such that for any node 7 other
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than s; and ¢,, > ; Jij = 0 where j runs through the neighbors of . This is a linear

constraint, therefore the horizontal path problem is written in the following LP in

feasibility form

Af =b
Ef <0
[ =0,

where A € RN*T2x2N@N-1) jq the incident matrix of all the edges allowed by the

neighbor rule for black sites if all the sites were black; Ef < 0 together with f > 0

sets to zero the flows that are blocked by the coloring. b is a vector with —1 for s, 1

for ¢, and zeros for all other sites.

e S
o o
«~>0 O
S tr Se
o o
o o
® 1

(a) horizontal

(b) vertical

Figure 2.10: The modeling of lattice problems by graphs for the example lattice in

Figure 2.9

Figure 2.10 shows the graph models for finding horizontal black path and vertical

white path for the lattice in Figure 2.9. Figure 2.10(a) is formed from the four-

neighbor rule through occupied (black) sites and is termed the primal graph. Figure

2.10(b) is obtained from the eight-neighbor rule through vacant (white) sites and is

called the dual graph. To make the two graphs, and in turn the two LPs, have similar

form, two more vertices are added to the graphs — the source on top s; and the
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terminal on bottom tp.

Determining paths in graphs can be written in LPs in feasibility form. The LP
for the primal graph in Figure 2.10(a) is called PH, standing for the primal LP of the
horizontal path problem. The Lagrange alternative of PH is written as DH. Similarly,
PV and DV come from the graph in Figure 2.10(b).

[ A = b [ Afe = b,
PH | Byf, < 0 PV I Ef, <0
. fh 2 0 . fo =20
[ AT\, + Ely, > 0 [ ATN, + BTy, > 0
DH WA = —1 DV WA, = —1
i v, > 0 i v, > 0

Ay and A, are the incident matrices determined by the 4-neighbor rule and the
eight-neighbor rule, respectively. Ej, and E, reflect the data in the primal and dual
lattices respectively. by, is a vector with —1 for the left source, 1 for the right terminal
and 0 for all the other vertices. Similarly, b, is a vector with —1 for the top source,
1 for the bottom terminal and 0 for all the other vertices. It is obvious that PV is

feasible if and only if DH has a solution.

2.3 Linear Programming

Consider the linear programming feasibility problem

find x € R"™ such that
Fd(A,b) : (2.4)
Ar <b,z>0,A € R™" h e R™.

Many engineering or biological systems can be described using this linear program-
ming feasibility problem. A set of design parameters that stabilize the system is

the feasible set of stability constraints and physical limitations posed on the system.
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The ranges of concentration of critical chemicals that guarantee the functionality of
certain biological systems are determined by algebraic inequalities among reaction
speed parameter, concentration of reactors and catalysts. Change in emptiness of the
feasible set at the presence of small changes in data is undesired in system design or

configuration.

2.3.1 Notation

The norm in R™ and R™ is the Euclidean 2-norm. We identify the space of linear
operators, L(R"™,R™) with the Euclidean space R™*". Endow R"*" with the operator
norm, i.e., if A € R™*" then ||A| := sup{||Az|| : x € R", ||z|| = 1} = 6(A), where
a(A) is the singular value of A. Note that for a linear functional defined on R", its
induced 2-norm reduces to the usual 2-norm. So, hereafter, the same notation || - |
is used for all the norms, with the norm it refers to clear from the context. Consider
the parameter space of D = R™*" x R" of all possible instances d = (A, b). Following
Renegar in [74], define the norm in D as ||d|| = max{||A]|, ||b]|}

Denote the set of consistent instances of Fdin D as

F ={(A,b) € D: 3 x satistying Az < b,z > 0}.

The complement of F is denoted by FC. FC consists of (A, b) pairs that render Fd

infeasible. The boundary between F and F¢ is denoted by

B=0F =0F° = cl(F)nc(F°),

where OF and cl(F) represent the boundary and the closure of the set F, respectively.
The boundary set B is the set of F'd instances such that arbitrary small changes in
the data can render them feasible or infeasible. Problems on the boundary are called

ill-posed since they are not robust to even the smallest change in data. Problems
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very close to the boundary are ill-conditioned. The further away a problem is from
the boundary, the bigger change the described system is able to endure before its
functionalities collapse. Normalization is important in comparing the distances to
boundary between systems, since two data sets (A, b) and (kA, kb) capture the same
feasible set whenever k is a positive constant.
By the theory of alternatives [10], there exists a linear programming feasibility

problem
find y € R™ such that

A1(Ab): ATy >0,bTy <0,y >0, (2.5)

AeR™" heR™
such that one and only one of Fd (A, b) and Al (A, b) is feasible given (A,b). This re-
lation between Fd and Al is a variant of the famous Farkas Lemma [64]. Alternatives
like Fd and Al are called strong alternatives. Consider another linear programming

feasibility problem

find y € R™ such that
A2<A7 b) : ATy 2 Q, bTy g _ﬂvy 2 07 (26)
AeR™™ beR" a e R", a>0,0>0
A2 and Fd are weak alternatives to each other, for at most one of them can be

feasible given (A, b) and it is possible that both of them are infeasible.

Rewrite A2 as

Ay < b
A2(A,b) : (2.7)
y > 0
where
_ —AT _ —«
- ) b - )
bT -0

and A, b, «, 3 are as in (2.6). AT is the adjoin operator of A and b is a functional
on R™. Note that ||AT|| = [|A], ||b7]| = ||b]]. A € RCFV*™ ig a function from R™ to

R™*!1 and its norm is defined as operator norm as well. Note that positive scaling of
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b does not alter the feasibility of A2 . Without loss of generality, o and 3 are picked

such that

L = (2.8)

in order for the instance to only depend on the original data d = (A, b).

2.3.2 Robustness and Complexity in LP

Suppose the problem F'd(A, b) is feasible. The robustness with respect to errors in the
data d = (A, b) can be measured by the smallest relative perturbation in the problem
data that renders the problem infeasible. This quantity is interpreted as the distance

of the given (feasible or infeasible) instance to the boundary B. Let
dist(d, B) = inf{||d — d|| : d € B}. (2.9)

The robustness of an F'd instance with data d is defined as

_ dist(d, B)

R= : (2.10)
1]

i.e., the distance to ill-posedness normalized by problem size. It is an easy exercise
to show that reformulating the system simply by positive scaling does not affect the
robustness of an F'd instance.

The fragility for this problem is F' = 1/R; it is exactly the condition measure
defined by Renegar [74,76]. Its properties have been studied in [22,23,30]. This is
an extension of the usual condition number of a matrix, associated with a system
of linear equations. It is known that the computational complexity of several LP
algorithms as measured by the number of iterations required for desired solution
accuracy is essentially bounded by a logarithmic function of fragility . For example,

see [75] for the analysis of an interior point method, and [30] for the ellipsoid method.
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Thus, generally speaking, these results indicate that if a large number of iterations
are required to find a feasible point, the problem must be ill-conditioned i.e., highly
fragile.
A solution z to the inequalities {Ax < b,x > 0} is enough to verify that the LP
instance F'd(A,b) is consistent. The size of this solution serves as a measurement
of the verification complexity of the LP instance. We define the primal verification

complexity.

Definition 2.6. Let the feasibility LP problem Fd(A,b) be given as in (2.4). The

primal complexity is the minimum norm of a solution to Fd
Cp, = inf{||z|| : Az <b,xz > 0}. (2.11)

We follow the convention and define the infimum of an empty set to be infinity.
That is, C, = oo when Fd(A,b) is inconsistent. Thus, the feasible point with the
smallest norm is taken to be the shortest proof that a solution exists. The relation
R-C <1 that we advocated in the percolation lattice problem can be shown to hold
in this setting using results already known in numerical analysis. Specifically, we use
Theorem 1.1(1) in [74] by Renegar. For completeness, a slightly modified version of

the theorem fitting our setup and notation is quoted here.

Theorem 2.2 (Renegar). Assume d = (A,b) € D. If d is feasible and satisfies
dist(d,B) > 0, then there exists a feasible solution x to F'd (A,b) such that

1]

< — .
2] < Jist(d. B) (2.12)

When Fd(A,b) is well-posed and consistent, application of Theorem 2.12 yields
the same relation as in the percolation lattices: R -C), < 1.
Now suppose d is such that Fd(A,b) is infeasible. Then d € F¢. The robustness

with respect to errors in data is still defined the same as in the case when F'd(A,b)
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is feasible, i.e., R = dist(d, B)/||d||. If the solutions to the set of inequalities in F'd
represent “disaster situations,” certainly not only is F'd(A,b) required to be inconsis-
tent in ideal circumstances, but it is desired to be inconsistent when perturbations in
(A,b) are present. In this setup, it is preferable that (A, b) is in the interior of F¢
and sits far away from the boundary B.

When F'd(A,b) is infeasible, there must exist at least one solution y to A1(A,b)
that can serve as a verification proof to the infeasibility of F'd(A,b). A solution to
A2(A,b) also qualifies as a proof. However, there are (A, b) pairs such that A1(A,b)
is consistent while A2(A,b) is not. What is interesting is that all the (A, b) instances
observing the gap between Al and A2 lie on B. In other words, when the infeasibility
of Fd(A,b) cannot be verified by providing a solution to A2(A,b), we can actually

conclude that the instance is on the boundary, i.e., it is ill-posed.

Lemma 2.1. If (A,b) is such that A1(A,b) is consistent and A2(A,b) is inconsistent,
then for every € > 0, there exists AA with ||[AA| < € such that A1(A+ AA,b) is

infeasible.

Proof. Let yo € {y : b'y < 0,y > 0}. It is obvious that yo # 0. Let A =
l[ai ax -+ a,), ie., a; is the ith column of A. Since A2(A,b) is inconsistent,
there exists index 72, 1 < 7 < n, such that aiTyo < 0 for otherwise ATy, > 0 and
A1(A,b) is feasible.

Let AA = [Aa; Aay -+ Aay) = —01,,xn, where § > 0 and 1,,4, is the
m x n matrix with all elements being 1. Choose ¢ such that [|[AA| < e. Since
Yo > 0,90 # 0, AAyy < 0. Now (a; + Aa;)Tys < 0. Since g, is arbitrarily chosen from
the set {y : bTy < 0,y > 0}, the emptiness of {(A + AA)Ty > 0,bTy < 0,y > 0}
follows. U

Lemma 2.1 tells us that we can look at A2(A,b) for verifying inconsistency of
Fd(A,b). If a proof does not exist, we know that the problem is fragile to even the

smallest perturbation. We define the alternative verification complexity.
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Definition 2.7. Let the feasibility LP problem Fd(A,b) be given as in (2.4). The

alternative complexity is the minimum norm of a solution to A2 .

Co = nf{[ly|| : Ay < b,y > 0,]b]| = []b]}- (2.13)

Again the infimum of an empty set is taken to be infinity. That is, if A2is
inconsistent, C, = oc.
When d is away from the boundary and A2 is consistent, applying Theorem 2.12

with some manipulation gives the relation R - C, < 1. We have the following lemma.

Lemma 2.2. When A2(A,b) is consistent and d is away from boundary,

R-C,<12

Consider a well-posed LP instance F'd(A,b), i.e., d ¢ B. When it’s feasible, a
solution = to F'd serves as a proof; otherwise, a solution to A2 proves infeasibility.

Thus, the verification complexity is defined as follows.

Definition 2.8. For an LP instance Fd(A,b), its verification complezity is

C =min{C,, C,}. (2.14)

When Fd(A,b) and A2(A,b) are both inconsistent, the verification complexity of
Fd(A,b) is co. As Lemma 2.1 shows, these instances are the ill-posed cases. The

main result is as follows.

Theorem 2.3. Let the feasibility LP instance Fd(A,b) as defined in (2.4) be well-
posed. Then
R-C<1. (2.15)

2See Appendix for proof.
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Theorem 2.3 follows directly from the previous discussions.

2.3.3 Some Examples

In this section we show some low-dimensional LP examples to illustrate by simple
pictures how the instances on the boundary B might look and how the complexity of
LP instances change as the parameters change.

Let S1={2z€R™:2>0}and S2={b— Az : 2 € R", 2 > 0}. Fd(A,b) has
a solution if and only if S; NSy # (. Geometrically, finding a solution to A1(A, b) is
essentially separating S; and S in R™ by a hyperplane with normal y. In this section,
we call R™ the primal space and R™ the alternative variable, since the solution to F'd

lies in R™ and the alternative solution to Al lies in R™.

-1 1 1
Example 2.1. A = b=
0 1 —1
‘XZ
y S1
P » X,
b L/
2 /
(a) alternative space (b) primal space

Figure 2.11: Finding separating hyperplane for the LP instance,—z; +xy < —1,25 <
7171'1 Z 071'2 2 0

This LP is infeasible since the two shaded areas S; and S, have no intersection, as

shown in Figure 2.11(a). The same instance is depicted in the primal space in Figure
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2.11(b). It is easy to see from the plot that an arbitrarily small disturbance
AA = :

with € > 0, can make the two shaded areas intersect at z; = oo. This perturbation
makes the zo < —1 region uplift at right and intersect with the other shaded region

at x1 — 0o. The resulting LP is ill-conditioned and has extremely high complexity.

1 -1 —1
Example 2.2. A = b=
-1 1 -1
Just as Example 2.1, this LP is infeasible. For arbitrarily small ¢ > 0, perturbation
—e 0
AA = leads the LP to feasibility with x1, x5 both at infinity. The instance
0 0

is shown in both alternative and primal space in Figure 2.12.

NE 78

N A

(a) alternative space (b) primal space

Figure 2.12: LP 1 — 29 < —1,—21 + 29 < —1,21 > 0,29 > 0 in dual and primal
spaces. As seen in the primal space, it is infinitely fragile.

Example 2.3. A = [ a; as } ,b=—1.

In this example, we illustrate how complexity of LP instances change in the pa-

rameter space. Obviously, F'd(A,b) is always trivially feasible with z; = x9 = 0 when
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b > 0, making these cases uninteresting. Therefore only the cases with b < 0 are
considered and they are normalized so that b = —1. The boundary between feasible
parameter sets and infeasible ones is the set {a; = 0,as > 0} U {a; > 0,a2 = 0}.
The LP is infeasible when a; > 0,a5 > 0, and feasible otherwise. As depicted in
Figure 2.13, the hard cases only happen around the boundary, confirming that high
complexity indicates ill-conditioning. Also note that not all LP instances near the
boundary have high complexity, emphasizing that “complexity implies fragility” is a

one-way relation.

complexity contour

Figure 2.13: Complexity of a1z + agrs < —1,21 > 0, x5 > 0 changes with a; and
as. Clearly, the set of inequalities is infeasible when a; > 0,a, > 0 and feasible
everywhere else. The figure shows that the complexity of the feasible instances blows
up when the instance approaches the boundary. But the complexity of the infeasible
ones is constant.

2.4 Conclusions and Discussions

We have looked at two classes of problems and examined their complexity and ro-
bustness. It has been shown that the verification complexity is upper bounded by
the fragility. This confirms that robust systems necessarily are easily verifiable and

systems that are hard to verify are fragile in the presence of certain perturbations.
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Note that two-dimensional percolation lattice, as a class of problems, is very spe-
cial since it observes symmetry in the sense that both failure events and barriers are
captured by paths. This symmetry breaks when higher-dimensional lattices or more
general LPs are considered. In the higher-dimensional lattice case, the barrier to a
path will be a connection of cells that resemble a hyperplane.

In LPs, the barrier to finding a feasible point in the primal space would be creating
a hyperplane in the dual space. It is still a feasibility LP problem. However, if we

relax the linear restriction and consider feasibility problem

find € R™ such that
Fd: (2.16)
fz(l’)ZO;Z:L;m,

where f; are general polynomials, then proving F'd infeasible is not easy any more
(unless all the polynomials are concave, in which case F'd is a convex problem and a
solution to its alternative serves as a proof of inconsistency, provided some technical
conditions hold). In the general case when f; may or may not be concave, Posi-
tivstellensatz needs to be applied to find a proof that F'd is infeasible. Finding such
certificate is a co-NP problem.

As our conclusion R-C < 1 shows, complexity implies fragility. This fragility can
come from a number of sources. Inappropriate design is obviously a possible source.
What is normally overlooked is the fact that fragility comes from formulation of the
problem, i.e., modeling, as well. For example, an LP instance with a single equation
4x = 12 can be rewritten as an equivalent instance with two-inequalities 42 > 12,
4x < 12. The first formulation is robust as a feasibility decision problem. At the same
time, the second formulation results in a system that is ill-posed: its consistency can

be altered by an arbitrarily small perturbation in data [75].
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Chapter 3

Model Validation of (G-protein
Signaling System in Yeast

3.1 Introduction

In this chapter, we consider a biological system for which a candidate model and
experimental data are available. Some a priori knowledge on the system parameters,
in this case reaction rates, has also been established. We then want to explore two
problems, as shown in Figure 3.1. The first one is to determine if the model can explain
the data at hand, especially when uncertainty exists in experiment observations and
the a priori understanding on reaction rates. If the reaction rates determined by the
data are not consistent with a priori knowledge, the model is invalidated, as the case
in Figure 3.1(a). This invalidation can be rooted in experiment error, discrepancy
between the model and real system, or our a priori knowledge.

When the model is actually valid, i.e., there exist parameter combinations that
both comply to former knowledge and explain the data at hand, we want to be able
to describe these parameter combinations. This can be very hard since the set of
such parameters are usually of unknown shape. One way through which we can gain
insight is to bound the parameter set as tightly as possible, in order to at least know
what parameters are definitely infeasible. This is the case in Figure 3.1(b).

The biological system we study is the heterotrimeric G-protein cycle which is the
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(a) Model invalidation (b) Parameter inference

Figure 3.1: Model invalidation and parameter inference from a priori knowledge and
experiment data. () is the set of parameters consistent with data and H is the set
of a priori known possible parameters. P = () N H is therefore the set of parameters
that are consistent with both prior knowledge and data.

vital component of a G-protein signaling pathway. Guanosine triphosphate-binding
protein (G-protein) signaling pathways comprise one of the most important groups
of cell-to-cell communication schemes in eukaryotes [49]. Many activities of the hu-
man body involve G-protein signaling pathways [13] and diseases such as cancer and
diabetes are thought to be related to errors occurring in pathways of this kind. An
estimated 50% of current prescription drugs target some factors along the G-protein
signaling pathway [13,21,38,50]. Understanding the G-protein signaling transduction
pathway quantitatively as well as qualitatively, therefore, can have great impact on
new drug discovery and improvements of existing drugs.

In Section 3.2, the general framework and methods for model validation are pre-
sented. The example biological system we study is described in Section 3.3, along
with the candidate model and experimental data. In Section 3.4, results of applying
methods in Section 3.2 to the biological system are reported, and the limitations to

these methods are discussed. Section 3.5 concludes.
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3.2 General Framework

3.2.1 Problem Setup

Let u € R, y € R denote the input and output vectors of a biological process, and let
p € R* be the vector of parameters, usually the reaction rates of interest. A model

of the system can often be described in the form of time-invariant ODEs

r = f(x,u,p), z(0) = o, (3.1)

y = g(v,u,p), (3.2)

where x € R"™ is the state vector, v C R™ is the input, y C R™ is the input and
p C R” is the constant parameter vector. We are interested in the output value at a
specific time T', y7, under constant input. In this setting, the relation between the
constant input u and output yr can be captured by a static mapping yr = M (u, p),
where M comes from numerical integration of equations (3.1)—(3.2) and in general
does not possess a closed-form expression. In the rest of the chapter, y is used instead
of yr for simplicity.

Each experiment e on the system provides a data point (v, de, d,,€.). ve is the
measurement of the input u, and d, is the measurement of the output y.. J. and €,
are the corresponding measurement uncertainties. They are vectors of appropriate

dimension such that

IN
8

(3.3)

[|ve — uell

lde —yell < e, (3.4)

where infinity norm is usually employed to bound measurement error on each input
and output element.

In many biological processes, some prior knowledge of the parameters is available
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either from separate experiments or literature. We assume the prior knowledge on

parameters can be expressed by [ polynomials. Thus, the prior parameter set is

H={peR": hi(p)<0,i=1,2,---,1}. (3.5)

In most cases, this knowledge is presented as relative changes along with nominal

value for each individual parameter. In these cases, H can be simplified to

where p; is the nominal value of parameter p;. Writing everything in vectors with

B=[p --- B ], then

H={pecR":—Bp<p—p<pBp} (3.7)

Such a prior parameter set is a hypercube in the parameter space RF.

The set of parameters that are consistent with m experiments is

P={peH:VYe=1,--- ,m,3u, with |Ju, — v|]| < ¢ s.t. [|M(te,p) — de| < €}.
(3.8)
The problem we consider is to either prove P is empty or describe P as precisely
as we can. If P is empty, we need to find a certificate such as the separating curve in
Figure 3.1(a). This certificate can be based on barrier method [69] or on the use of
surrogate models [29,82]. If not empty, P can be best characterized by solutions to

a series of optimization problems:

®* = min, P(p) (3.9)

st. peP.
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We choose ®(p) depending on the aspects of P we are interested in. For example,
®(p) = p; or ®(p) = —p; if we are interested in the minimum or maximum values of

the j-th parameter.

3.2.2 Model Invalidation

Difficulty of model invalidation arises when the proposed model such as that in (3.1)—
(3.2) comes with a set of possible parameter ranges. In this case, there are infinite
possible parameter combinations, making simulation methods impossible to carry out.
An invalidation method that deals with this difficulty is the barrier method, in which
a Lyapunov-like certificate is found [68]. In Section 3.2.2.1, the essence of this method
is reviewed. We will see in Section 3.4.1.1 that although this method is theoretically
powerful, it is not computationally scalable. Therefore we adopt an approximation
method that uses a static mapping, called a surrogate model, to replace the dynamical

relationship [93]. This method is discussed in Section 3.2.2.2.

3.2.2.1 Barrier Method

In this subsection, we review the barrier method developed in [68,69], where ODE
models with parameter and state uncertainties are invalidated against experimental
data. Barrier function methodology can directly work with system states. The essence
of the method is as follows.

For a state space model

&= f(z(t),u,p,t), (3.10)

where x € R" is the state vector, u € U C R™ is the constant input vector and
p € P C R* is the parameter vector. Suppose experiments are carried out which
imply that the initial state x(0) € & and the final state x(7') € Xp. We also assume
that z(t) € X for all ¢t € [0, T]. Then the following theorem holds.
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Theorem 3.1 (Prajna'). Let the model (3.10) and the sets P, Xy, Xr, X be given.
If there exists a function B : R™ x R™ x R¥ x R — R differentiable with respect to x

and t such that

B(zp,u,p,T) — B(zo,u,p,0) >0 (3.11)
Vor € Xr,x9 € Ap,u € U,p € P,

0B 0B

8_I(I7uap7t)f(xuu7pvt)+E(xau7put) SO (312)

Vee X,ueUpe Pitel0T].

Then the model (3.10) and its associated parameter set P are invalidated by { Xy, X1, X'}.

Such a function B is called a barrier certificate. It is a rigorous proof of inconsis-
tency between model and data. Note that in Theorem 3.1, only two pieces of data
concerning states at t = 0 and t = T are incorporated. Currently the only way to
handle three or more data is to increase the system size, adding n states for each
additional data point. See [68] for details and examples. Barrier functions are com-
puted by solving SOS programs [69]. This augmentation of state space quickly drives
the size of SOS programs to the extent that it can not be handled by optimization

solvers. As such, alternative methods need to be explored.

3.2.2.2 Invalidation with Surrogate Models

The lack of analytical form for the mapping y = M (u,p) corresponding to model
(3.1)—(3.2) makes it very hard to prove the consistent parameter set P defined in
(3.8) is empty. An indirect approach is to approximate M (u,p) by a static mapping
Se(u, p) in the region of interest, which is called a surrogate model of M (u,p) [82].
The subscript e in S, emphasizes the fact that for different region, the surrogate

model can be different. S, is usually picked to be a polynomial. When M is a

IThis is a variant of the theorem in [68]. See [68,69] for details.
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continuous mapping, the difference between M and S, can be made arbitrarily small
if the order of the polynomial S, is high enough?. Coefficients of the surrogate model
are determined through simulations of the dynamical system [28,29].

Suppose the approximation error is bounded on the region of interest by (, i.e.,

| M (e, p) — Se(te,p)|| < ey VD € P, ||tte — ve|| < Jeye=1,-+- ,m. (3.13)

Then the set P can be bounded by two sets,

where

Pr={peH:VYe=1, -+ m,Ju, with [|u. — v| < J
st [|Se(te, p) — de|| < € — (.}, (3.15)
Po={peH:VYe=1,--- ,m,Ju, with ||Jue — ve|| <

s.b. [|Se(te,p) —dell < €+ ¢} (3.16)

From (3.14), it is easy to see that Pp = () is a sufficient condition for inconsistency
among model, a priori parameter knowledge and data. Let us consider systems with
scalar input and output. That is, n, = n, = 1. Then the norm conditions in (3.16)
reduce to conditions on absolute values. For a set of experimental data (v, de, 0, €),
e = 1,---,m, Po consists of parameter points p that simultaneously satisfy the

following set of polynomial inequalities.

PO = {p € RkaKj(p) 2 07‘/6(,“’67])) 2 07W6(u67p) Z 07

Ze(ue) >0,5=1,--+ kye=1,--- ,m}, (3.17)

2This is possible because of the Stone-Weierstrass Theorem.
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where

Ki(p) = ((1+8)p; = ps) (p; — (1= 8,)py) (3.18)
Vo(te,p) = de— S(ue,p) + € + ¢, (3.19)
We(te,p) = —de+ S(te,p) + € + G, (3.20)

Ze(ue) = (tte = ve + 0c) (Ve + 0 — ). (3.21)

Here K; and Z. capture the uncertainty on parameters and input measurements.
V., and W, are the lower and upper bounds posed implicitly by the model M on
the output measurement d.. Pp is empty if, and only if, there exists a polynomial

h(ug, -+, Um,p) : R™ x RF — R such that

h=ho+ zr:qihi <0, (3.22)
i=1
where hg, hy,--- , h, are polynomials that can be expressed as sum of squares, and
¢, , g are finite products of the members of the set {K;, V., W., Z.,j =1,--- [k,e =
1,---,m}. This is a direct application of Positivstellensatz (see [65] for details).
Searching for h can be done using SOSTOOLS [67], in general with less computa-
tional cost than finding barrier certificates.
When quadratic surrogate models are deployed and the order of h is set to 2,

finding h is simplified to finding nonnegative multiplier \’s such that

m

k
Z )\KjKj(p) + Z ()\Vev;(ump) + )‘WeWe(ueap)) + AZeZe(ue) <0 (323)
j=1

e=1

for all values of u. and p. Such As constitute an invalidation certificate. If these
As can be found, their values provide useful information: constraints that have zero
multipliers do not contribute to invalidating the model and those associated with big

multipliers tend to have a strong impact to the invalidation. Directional information
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can also be obtained. For example, if AV, > 0, then we know that the e-th output

measurement is too small to match the prediction from the model.

3.2.3 Robust Parameter Inference

When a model structure is adequate, then an important task is to describe the model
as precisely as possible, essentially determining ranges of consistent parameters. Tra-
ditionally in chemical engineering and biology, focus has been put on searching for
a “best-fitting” parameter combination through local search methods [39,54]. For a
dynamical system described by ODE as in (3.1)—(3.2), a best-fitting parameter p* is

the optimal solution to the following optimization problem.

I e de 2
min ;(y )
s.t. Te = f(xe, Ve, ) (3.24)

ye:g<xeave>p)a 6217"' , T

where v, is the e-th input, assumed to be precise.

However, a big disadvantage of this approach is that the best-fitting parameter
does not give global information about the set P. It is also not robust to experiments,
i.e., the best-fitting parameter shifts around when additional experimental data are
available. To obtain information about P and reveal possible parameter correlation,
the optimization problem (3.9) can be studied.

Depending on the property of P we want to investigate, ® is set accordingly. For
example, when ® = p;, the optimal value of (3.9) is the minimum value p; can take
when other uncertainty factors, including parameters and data, vary through their
range. This is a measure that ignores parameter correlation and usually gives little
information of the feasible set P [28,93].

Correlations among parameters are often of interest to scientists. To study such

correlations, the ratio between them can be used. For example, for parameters p; and
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pj, we can find Yy and e, such that

— Di _ Dbi
'min — 1IN == mar — Max 5
! p P ! v P (3.25)
st. peP st. peP

Because P is described by the model M and can not be explicitly expressed, it is
virtually impossible to compute Vi, and Yp,qa.. Surrogate models can be used to find

bounds on these values. That is,

V;m'n < Ymin < Ymaz < V;naza (3.26)
where
— Di
A =min Lt
PP (3.27)
S.t. P I~ PO

and 7/ . is defined analogously.

(3.27) is a non-convex problem to which, fortunately, SOS relaxation can be ap-
plied. Let the surrogate models be polynomials such that Py is represented by a set
of polynomial inequalities. A lower bound v to ;,,, can be obtained by solving the
SOS relaxation [65] of the following equivalent problem of (3.27)

min —y
(3.28)
s.t. Pi Z YDy, Vp € Po.
Similarly an upper bound 7 on 7/, .. can be obtained by SOS relaxation.

Correlation between two parameters p; and p; can also be revealed by bounding the
feasible region on two-dimensional (p;,p;) plane by parallel lines calculated through
SOS relaxation of the following optimization problem.

min v

(3.29)
s.t. pp; +a <p; < ppj+a+7, Vp € Po.
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3.3 Model and Data

G-protein signaling pathways can be activated by a variety of ligands and induce
different responses, but they all share a similar signal-transducing pathway. The yeast
pheromone response pathway in yeast is one of the best studied G-protein signaling
pathways [88]. Each type of haploid yeast cells secrete a unique pheromone: a cells
secrete a-factor and « cells secrete « factor. The G-protein coupled receptors on cell

surface respond to the pheromone secreted by cells of opposite type and lead to the
Ken \

GDP

ZRLm Sst2
k
‘. FRET)
P
Vacuole kGdl

Figure 3.2: Schematic diagram of yeast heterotrimeric G-protein cycle. The blue
circle represents CFP and the yellow circle represents YFP.

yeast mating process.

- 88

A central part of this pathway is the heterotrimeric G-protein cycle. A schematic
diagram of this cycle in yeast is adapted from [94] and shown here in Figure 3.2.
The G-proteins consist of three subunits: G,, Gz and G,. In its inactive form,

the G, subunit is bound to Guanosine diphosphate (GDP) and is associated with
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Gg,. Ligand binding to the receptor activates the associated G-protein, leading to
substitution of the GDP associated with G, by GTP followed by the dissociation of
G-protein into G, and Gg, complexes. The activated G, or Gg, in turn activates or
inhibits several effector proteins, resulting in different cell responses. The intrinsic
GTPase activity of G, hydrolyzes the bound GTP to GDP, turning G, back to
its inactive state and resulting in the reassociation of G-protein. To quantitatively
characterize this process, Fluorescence Resonance Energy Transfer (FRET) was used
by Yi et al. [94] to trace the activation/deactivation cycle of G-protein, where Cyan
Fluorescent Protein (CFP) and Yellow Fluorescent Protein (YFP) are attached to
G, and Gg,, respectively, as in Figure 3.2.

We follow the model of the heterotrimeric G-protein cycle as in [94] where the
following processes are modeled: (1) the binding of ligand (L) to receptor (R); (2)
the synthesis and degradation of receptor; (3) the activation of G-protein; (4) the
deactivation of G-protein by the catalyst Sst2p and (5) the reassociation of G, and
Ggsy. Let x1 be the concentration of receptor, xs of ligand bound to receptor, x3 of
inactive heterotrimeric G-protein and x4 of activated G, i.e., x; = [R], 2 = [RL],

x3 = [G], x4 = [G4]. Then heterotrimeric G-protein cycle is modeled as

1 = —krrriu+ krpm®2 — krao®1 + kgs

Ty = kprtiu — kppm@2 — ka2

T3 = —kgaxoxs + ka1 (Gy — x3 — x4)(Gy — x3) (3.30)
Ty = kga2rs — kaxa

Yy = (Gt - $3)/Gt

where the input w is the concentration of the pheromone ligand a-factor and the
output is the normalized level of G,. G is the total number of G-protein. Parameter
nominal values p; are listed in Table 3.1. Note that p; through ps5 and py are measured

directly. pg and p7 are inferred from experiment data. pg is based on estimates in the
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literature.
parameter p; | physical meaning | nominal value p;

P1 krr, 10%mM st
D2 krim 0.01s7!
D3 krdo 0.0004s~!
D4 kra1 0.004s~1
D5 kps AmM s—!
D kaca 107°mM 1s~1
pr kca 0.1s71
Ps ke ImM st
Do Gy 10*mM

Table 3.1: Nominal values of parameters

The in vivo dynamics and regulation of the heterotrimeric G-protein cycle is mea-
sured in yeast using FRET [94]. The dose-response data at time ¢ = 60s are listed in
Table 3.2. In these experiments, the initial states of the system (3.30) are assumed

to be known as they are controlled.

experiment e | input v.(nM) | output d,
1 1 0.083
2 2 0.122
3 ) 0.240
4 10 0.352
) 20 0.384
6 50 0.397
7 100 0.400
8 1000 0.397

Table 3.2: Dose response data measured in vivo using FRET

3.4 Results and Limitations

3.4.1 Model Invalidation

In this section, model invalidation methods discussed in Section 3.2.2 are used on the

ODE model in (3.30) and the dose response data in Table 3.2.
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3.4.1.1 Barrier Method

In our application, the output y is directly a function of the state x3. A single dose-
response measurement gives information about the final state of the system. Theorem
3.1 is applied with the first measurement in Table 3.2 using SOSTOOLS [67]. In order
to find a barrier function computationally, only 4% uncertainty is allowed for pg and
pr and 5% uncertainty is allowed for the output measurement y = 0.083 with all
other parameters but pg fixed at their nominal values. pg is set to 1073, In addition
to these conditions, bounds on the state are also posed by estimates obtained through
simulation of the system. In such settings, a barrier certificate is found.

Note that we have to pose very stringent constraints on the system in order for
the computation to go through. When constraints are loosened, computational issues
arise, e.g., numerical errors are encountered. This makes the application of barrier
function to real systems restrictive. Another disadvantage of this approach is that the
size of the SOS program grows very fast with the number of measurements, making
implementation virtually infeasible with the computational capacity available so far.
The advantage of directly incorporating system dynamics becomes a disadvantage

computation-wise. We bypass this by using surrogate models.

3.4.1.2 Using Surrogate Models

In the G-protein system, when the measurement errors are assumed to be 10%, i.e.,
€. = 0.1d,, 6. = 0.1v, for all experiments, and uncertainty on parameters are taken
to be 30%, i.e., f; = 0.3 for all parameters, model (3.30) is invalidated by the 8
measurement points in Table 3.2. Furthermore, we are able to find an invalidation
certificate that has only three positive multipliers corresponding to output measure-
ments (measurement 1, 7 and 8): Ay, = 55.21, Ay, = 8.509, Ay, = 0.448.

The multipliers corresponding to measurements 1 and 7 are much bigger than
that for measurement 8, indicating the invalidation result is most sensitive to these

two data points. We are therefore tempted to invalidate the model using only mea-
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surements 1 and 7. Model (3.30) is indeed invalidated by these two measurements
with new multiplier values Ay, = 88.538, Ay, = 14.508. The nonzero multipliers Ay,
and Ay, give directional information: to be consistent with the model (3.30) and the
specified 30% parameter uncertainty around nominal values, the 1st output measure
should be lower than recorded and the 7th output should be higher.

When searching for h over lower-degree polynomials fails to render an invalidation
certificate, h can be set to higher order. In that case, a certificate is the set of
polynomials h;,i = 0,--- ,r. As long as h is searched over finite degree polynomials,
two relaxation steps are taken. The first one is proving emptiness for set Py instead
of for P through using surrogate models; the second one is using SOS relaxation to
show positiveness of a polynomial. Therefore the result is conservative compared to
that obtained from barrier function method. Thus, an invalid model can be deemed
as inconclusive.

Higher-order polynomial surrogate models can also be deployed to improve ap-
proximation precision. But both approaches usually cause the computation load to
grow quite rapidly. There are situations in which a non-polynomial surrogate model
might fit the physical model M better than polynomials, however care is needed since
proving the emptiness of Py using SOS methodology becomes less straightforward,
sometimes even impossible.

Independent of our work, Feeley et al. [25] proposed a measure of dataset consis-
tency which is the maximum decrease in absolute data uncertainty before a dataset
becomes inconsistent and the use of optimization techniques such as branch and bound
to compute the value of this measure. Their method faces the same challenge. That

is, examples can be inconclusive unless put through an almost exhaustive search.

3.4.2 Description of Feasible Parameter Set

Given that the model (3.30) is proved to be inconsistent with the dose response

data, synthetic data — simulated data contaminated by random error — are used to
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study the feasible parameter set P. Simulations are carried out at nominal parameter
values, i.e., d. = M (ue,p) + €., where ¢, ~ N (0,0.03y,). The data is shown in Table
3.3. pg and p; are the G-protein activation and deactivation rates. As they are our
main interest, in the following analysis, all but these two parameters are assumed to

be fixed at nominal values. We study the (pg, p7) set that is consistent with data in

Table 3.3.
experiment e 1 2 3 4 5 6 7
input v, 1 2 5) 10 20 50 100
output d. | 0.0354 | 0.0626 | 0.1397 | 0.2245 | 0.3326 | 0.4204 | 0.4359

Table 3.3: Synthetic data obtained by simulating model (3.30) at nominal parameter
values

In computing the “best-fitting” parameter, input measurements are considered
exact, i.e., u. = v.. We start with an initial guess, generate a surrogate models S, of

M in its neighborhood Ny and solve

min Z(de — S.(ue,p))*. (3.31)

If the minimizer py, is outside the neighborhood Ny, where the surrogate model is
built for, a new surrogate model is built in a neighborhood N; of py, to again solve
(3.31) until for some 7, py, falls inside N; [54]. Starting from ps = 2 x 107°, p; = 0.2,
the best-fitting parameter for data points 1-6 in Table 3.3 is pj = 8.1812 x 1079,
p: = 0.0788. When all 7 data points are used, p§ = 1.0689 x 107, p%* = 0.1048. These
are, of course, local minimums.

Note that in this approach, the input uncertainty is not taken into account. Now
suppose these are data from experiments and there is a 10% measurement error as-
sociated with both input and output values. Suppose the prior knowledge on (pg, pr)
is that they vary within 50% around nominal values, i.e., G5 = 37y = 0.5. As pointed

out earlier, bounding individual parameter gives little extra information. This em-



53
phasizes the importance of capturing parameter correlation. In the G-protein system,
the G-protein activation rate pg and deactivation rate p; are expected to exhibit a
positive correlation. Using SOS relaxation of (3.28) and (3.29), the feasible region is
bounded from outside as shown in Figure 3.3. Parameter combinations outside the
shaded region are not consistent with the simulated data. Using this approach, the
shaded region will shrink as more data are available, giving us more understanding

of the consistent parameter set.

0.3 T T T

— — — by parallel line

0.25 —— by cone
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Figure 3.3: (pg, pr) combinations consistent with data are inside the shaded region.

3.5 Conclusions

In this Chapter, we studied issues in linking data with model: invalidating candidate
model against data or getting information about consistent parameters from data.

Invalidation methods taking uncertainty into account include the barrier function
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method and invalidation using surrogate models. Barrier function gives a rigorous
and less conservative certificate, but the computation requirement is high and scaling
with the number of data points can not be handled efficiently. Invalidation using
surrogate models requires less computation effort, but the certificate is conservative.
This added conservativeness comes from the approximation error between the surro-
gate model and the ODE model. When the uncertainty on data and parameter is
high, i.e., the range over which surrogate model is built is big, the fitting error tends
to grow. Higher-order polynomial or other form of surrogate model can be employed,
with increased computation load for invalidation. Furthermore, in practice, this ap-
proximation error is obtained by first estimating the fitting error by random sampling
and then relaxing it, bringing in another level of conservativeness.

To study the consistent parameter set, a robust approach is proposed, where
parameter set is bounded from outside to reveal parameter correlation. In contrast
to the single-point fitting approach, where only local information is gained about
the feasible set, this robust approach eliminates parameter combinations that are
inconsistent with available data. Surrogate models and SOS relaxation are used,
therefore the bounds can be conservative: although parameters outside the bounds are
inconsistent, there usually are parameters inside the bounds that are also inconsistent.

Much work is needed to improve what we discussed here to handle more data
points and the conservativeness of using surrogate models. One possible way is to
divide the prior parameter set and work on the subsets individually. A proper division

scheme is then needed.
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Chapter 4

Estimation of Expected Shortfall —
A Risk Measure

4.1 Introduction

Risk measure is central to guiding portfolio choices as well as protecting financial
institutions from adverse market movements. In particular, banks are required by
regulators to set aside a certain amount of capital to insure solvency. This capital
amount is determined according to the risk of the bank’s portfolio. Therefore, the
definition, estimation and evaluation of a proper risk measure have been central topics
in the history of finance theory.

Until the middle of the last century, economists conceived of the financial invest-
ments as similar to gambling activities. Risk was discussed more from an intuitive
sense and investors were suggested to invest in the individual stock that gives the
highest discounted stream of expected future returns [90]. This view failed to explain
diversification. Expected Utility theory [6,87] was also proposed to describe preference
among uncertain payoffs. Different shape of utility functions represented different at-
titudes towards risk. For example, concave utility functions correspond to decision
making criterion of risk-averse investors. However, risk was still not quantified. The
implicit utility functions for different individuals can differ remarkably. Due to these

difficulties, while this representation and many later variants, e.g., [32,36,73,91], are
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the standard approach in microeconomics, they are difficult to use in practice to guide
portfolio choice.

It was first pointed out by Markowitz [51] that investors should care about risk as
well as return. He suggested that instead of constructing a portfolio from financial
assets with best future expected return, an investor should strike a balance between
anticipated portfolio return and risk.

Markowitz proposed using the variance as a measure of risk: a portfolio with less
variance is considered less risky. In his framework, risk is quantified by a number,
namely the variance of the portfolio. This is the foundation of Modern Portfolio
Theory. Starting from then, almost all return-risk models have used variance as
the measure of risk. The widely used Capital Asset Pricing Model [83] is one of its
descendants. As predominant as the mean-variance portfolio selection methodology,
the occurrence of asymmetric return distribution makes variance an unsatisfactory
measure of risk, as it treats equally the desirable upside and undesirable downside
variations.

The following example illustrates this point by comparing two independently dis-
tributed assets whose marginal probability density are shown in Figure 4.1. The
return of asset 1, X1, follows an Asymmetric Power Distribution! with symmetry
parameter 3 = 0.2 and decay parameter A = 1. The return of asset 2, X2, is nor-
mally distributed with the same mean and variance as that of asset 1. We see that
asset 1 performs better than asset 2 in both tails: it is thinner in the lower tail and
fatter in the upper tail. But since they have the same mean and variance, they are
indistinguishable to investors carrying out the mean-variance selection method.

Motivated by this lack of asymmetric treatment of return shifts by variance, var-

ious measures of risk based on the down-side tail distribution of the return was pro-

LAPD is a broad family of probability distributions indexed by a symmetry parameter 3 € (0, 1)
and a decay parameter A > 0. When 8 = 0.5, the probability density function is symmetric. The
distribution is fat-tailed when 0 < A < 2 and short-tailed when A > 2. See [46] for a detailed
discussion of the APD family.
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Figure 4.1: Returns from asset 1 and asset 2 have the same mean and variance,
yet they differ remarkably at tails. Solid line: return of asset 1 follows APD(0.2,1).
Dotted line: return of asset 2 follows A (u(X1),0%(X1)).

posed and studied. Among them, Value-at-Risk (VaR) is one of the most popular.
VaR as a risk measure was proposed by the Basel Committee on Banking Supervision
(BCBS) in 1996 [4]. Since then, it has become the industry standard for financial
risk measuring. a-VaR gives the magnitude of the worst loss in the best (1 —«)100%
of the scenarios. It is an attractive measure of risk in many aspects, including con-
ceptual simplicity, computational tractability and availability of various estimation
methods [1,44,45,53] and testing procedures [8,17,20, 34, 96].

However VaR has several shortcomings. It was pointed out by Artzner et al.
[3] that VaR is not a coherent risk measure. In particular, VaR does not satisfy
subadditivity, which means that the VaR of a combined portfolio can be bigger than
the sum of the VaRs of its component portfolios. Thus using VaR to guide risk
management can lead to risky asset allocation [31]. VaR has deficiencies other the
lack of subadditivity. By definition, VaR measures the risk of the return by a single

point and discards the whole tail distribution. Thus, VaR has a problem in providing
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information regarding the size of loss when the loss exceeds VaR. A portfolio with
smaller VaR can have bigger losses beyond VaR, a problem called “tail risk” [92].
Using VaR as the risk measure may lead a portfolio manager to make the non-sensible
decision of picking the more risky portfolio. Moreover, since VaR concerns only one
point on the return distribution, it is easy to manipulate using options [18].

Expected Shortfall (ES) was proposed as an alternative to VaR recently by Artzner
et al. [3] as a remedy for VaR’s lack of subadditivity. It has gained considerable in-
terest in the financial community since then. In financial terms, ES represents the
tail-loss in the market value of a given portfolio over a given time horizon. In mathe-
matical terms, ES at level « is the expected loss of the portfolio’s return in the least
favorable 100a% situations. It is a coherent risk measure, satisfying subadditivity
along with translation invariance, positive homogeneity and monotonicity. Although
VaR and ES both have tail risk under certain conditions, ES is less problematic in dis-
regarding distribution of fat tails [92]. Furthermore, because ES is subject to changes
in the tail distribution, it is impossible to manipulate the ES of a portfolio by simple
trading strategies such as buying and selling options.

There exists a long list of research works on risk assessment in economic models
that have emphasized the importance of ES in risk measurement. Examples include
axiomatic foundations of ES [3,27] and theoretical properties of different variants of
ES [2,78,84]. Triggered by the desirable properties of ES, models of optimal portfolio
choice based on ES have been studied by many authors (see [5,7,77,78]). Finally, the
link between the Choquet expected utility theory and ES was provided in [5], thus
grounding it within the framework of models of choice under uncertainty.

Unsurprisingly, the econometrics literature on ES has been rapidly growing. The
approaches to ES estimation offered by the current work can be divided into two
categories: fully parametric methods and non-parametric methods [26,52,79, 80].

Fully parametric methods are based on parametric assumptions on the return dis-

tribution. Parameters of this parametric distribution are then estimated, rendering
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estimates of the ES. The most naive approach is to assume normality. However, this
assumption often leads to underestimation of the lower-tail based risk measures, in-
cluding VaR and ES; since financial data are usually fat-tailed. It also fails to capture
the skewness of the return data. A partial fix to this is to use a t-distribution instead
of a Gaussian. t-distribution addresses the leptokurtosis, but leaves the asymmetry
in return unattended. To address this issue, several parametric models have been
proposed. Examples include multivariate normal inverse Gaussian distribution [1]
and APD family of distributions [46]. Fully parametric models are conceptually easy
and computationally straightforward, but are highly fragile to misspecification of the
return distribution.

To illustrate this, let us look at the example considered earlier in this section.
Suppose the true return X1 is as shown in Figure 4.1. Its 5%-ES is 1.4914. First we
assume the return is an APD random variable with A\ = 1 and we need to estimate
G. With an i.i.d. sample of 10000 observations, we obtain a maximum likelihood
estimate B = 0.1994 and compute an estimate of the 5%-ES as 1.4883 based on
B. Then suppose we do not know the distribution of X1 and naively assume it is
Gaussian. From the same sample, we estimate the mean and variance of the Gaussian
to be 1.8834 and 6.5443, respectively. The 5%-ES is then computed to be 3.3934 from
the estimated Gaussian distribution. While the parametric method is efficient in the
case of a correctly-specified model, its estimation error is large (128% in our example)
in the case of misspecification.

Nonparametric methods make no parametric assumptions on the return and use
kernel functions to estimate the whole distribution. While the result is robust to
distributional misspecification, the optimal choice of kernel functions and bandwidth
is in general not clear.

In this chapter, we propose an estimator based on empirical likelihood method
introduced by Owen [59-61]. The empirical likelihood method makes no assumptions

on the distribution of data, thus avoiding the problem of misspecification. The focus
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is put on the parameter of interest instead of the whole distribution by specifying cer-
tain moment conditions. The parameter value that maximizes this likelihood subject
to these moment conditions is defined as the maximum empirical likelihood estima-
tor (MELE) [61,72]. Since MELE has desirable properties comparable to parametric
likelihood methods, empirical likelihood and its variants [16,42] have gained substan-
tial interest in recent years, both for parameter estimation [43,95] and for hypothesis
testing [24,85]. A good survey on the theory and application of empirical likelihood
methods can be found in [41].

This chapter is structured as follows. In Section 4.2, we give mathematical def-
inition of the risk measures aforementioned, namely VaR and ES, and present the
advantages of ES over VaR. An estimator for ES based on empirical likelihood is
given in Section 4.3.2. The asymptotic properties of this estimator is presented in
Section 4.4. Section 4.5 presents simulation results of the estimator. Section 4.6

briefly concludes.

4.2 Financial Risk Measures

Let us assume that the economic outcomes, i.e., profit and loss, of financial activities
can be captured by random variables. Let such a real-valued random variable X :
) — R that represents the return of certain financial asset over a specific time period
be defined on a complete probability space (€2, 4 Py). Let P denote the probability
function of X. Denote by Fx(-) the cumulative distribution function of X such that
Fx(z) = P{X < z} and by fx(-) the corresponding probability density function.
In this chapter we restrict our focus to random variables satisfying the following

condition.

Assumption (A0) The cumulative distribution function Fy of the real-valued ran-
dom variable X is absolutely continuous such that the probability density function

fx w.r.t. the Lebesgue measure exists. fx is strictly positive and bounded on the
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support of X.

Definition 4.1 (Risk measure). Let X be a nonempty set of real-valued random vari-
ables defined on the probability space (2,4, Py). A mapping p : X — R is called a

risk measure.

A risk measure p assigns each X € X a real number p(X) which represents the

capital needed for X to guarantee solvency.

4.2.1 Definition of VaR and ES

To define VaR and ES, a careful definition of quantile of a random variable is needed.

Definition 4.2 (Quantile). Suppose X satisfies (A0). For o € (0,1), the a-quantile
of X 1is defined as
4 (X) = Fx'(a). (4.1)

Definition 4.3 (VaR). Suppose X satisfies (A0). For o € (0,1), VaR of X at level
a, or the a-VaR of X, is defined as

VaRo(X) = =a(X) = q1-a(=X). (4.2)

In words, VaR of X at level « is the biggest absolute loss in the best 100(1 — a)%
situations. Note that P{X + VaR,(X) < 0} < «, which means the probability of
default is less than « after allocating VaR,(X) worth of capital. This is illustrated
in Figure 4.2.

Denote by a~ the negative part of a, i.e., a= = —a for a < 0 and a= = 0 for
a > 0. Let 1(4) denote the indicator function: 14y = 1 when event A occurs and 0

otherwise.

Definition 4.4 (Expected Shortfall). Assume X satisfies (A0) and E[X~] < oc.



Figure 4.2: Fx_ vap,(x)() = Fx(z — VaR,(X)). As a result, the a-level VaR mea-
sures the minimum capital required to guarantee default happens with probability no
bigger than a: P{X + VaR,(X) < 0} = P{X < —VaR,(X)} < a.

Define the Expected Shortfall of X at level o € (0,1) as
ESa(X) = —a ' B[XL(x<q(x))]. (4.3)

Note that by the definition of ¢,

E[X]]'(XSQOL)]

ES.(X) = —
Sa(X) Ell(x<g]

(4.4)

which is the conditional expected value of —X conditioned on X falling below the
a-quantile of X. It is also called Tail Conditional Expectation (TCE or TailVaR [3]).
ES is nothing but the expected loss in the worst 100a% of scenarios. A conceptual
depiction of VaR and ES is shown in Figure 4.3.
A simple change of variable gives the following representation of ES that associates
it with VaR.
1

ES,(X) = o /a VaR,(X)du. (4.5)

An immediate consequence of expression (4.5) is that ES,, is monotonic decreasing in

«: the smaller the level «, the bigger the risk measured by ES, [2]. As an example,
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Figure 4.3: A depiction of VaR and ES. The area of the shaded region is a. —FES,, is
the conditional mean of the X values in the shaded region.

the manner in which the Expected Shortfall at level o changes as a varies for a
standard normally distributed random variable X ~ N(0, 1) is shown in Figure 4.4.

ES is also closely linked to the tick loss function well-studied in the setting of
quantile regression [44]. The tick-loss function L,(-) : R — [0,00) is defined as
L.(s) = E[(1(x<s) — a)(s — X)]. ES can then be represented as

1
ES,(X)=—F[X]|+ —min L,(s), 4.6
Sa(X) [X] + — min La(s) (4.6)
or equivalently,
ES,(X) = min o TE[Lix<q(s — X)] —s. (4.7)
se o

(4.6) enlightens the relation between ES and the regression quantile model pro-
posed by [44] and leads to an easy-to-implement portfolio allocation strategy based on
the mean-ES criterion (see [5]) when the distributions of all the assets in the portfolio
are available. The right hand side of (4.7) is also called Conditional Value-at-Risk
(CVaR) [77,78]. When ES is represented as the minimum of a convex optimization
function, as in (4.7), it is easy to compute and optimize ES under linear portfolio
constraints given that all the assets have known distributions.

Although we focus our attention on random variables that meet condition (A0),

it is worth mentioning the definitions of VaR and ES for general distributions as some
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% ES,(X)
VaR (X)
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Figure 4.4: ES,(X) for X ~ N(0,1). ES,, is monotonically decreasing as « increases.
Note that ES, reaches 0 when av = 1. This is because ES,(X) = E[X] when o = 1
and N (0, 1) is symmetrically distributed.

of the advantages of ES over VaR manifest themselves for random variables violating

(A0).

Definition 4.5 (Quantile for general distribution). For o € (0,1), the lower a-
quantile of X is defined as q,(X) = inf{z € R: Fx(x) > a} and the upper a-quantile
of X is defined as ¢*(X) = inf{x € R: Fx(z) > a}.

Definition 4.6 (VaR for general distribution). For a € (0,1), VaR of X at level «,
or the a-VaR of X, is defined as

VaR,(X) = —¢*(X) = g1_a(~X). (4.8)

Note that when (AO0) holds, g.(X) = ¢*(X). When (AO0) does not hold, ¢,(X)
may or may not equal ¢*(X). It is apparent that ¢,(X) < ¢*(X). In Figure 4.5(a)

where Fx is continuous but fy is not strictly positive, Fx(q,) = Fx(¢*) = « but
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7o(X) < ¢*(X); in Figure 4.5(b) where Fx is discontinuous, although ¢, = ¢°,

Fx(¢a) = Fx(q%) > a.

Fe () &
/,_/ aLCJp) S f——
al. . a ]

' | F(Q,)[-zzzzam

Figure 4.5: Lower and upper quantiles.

Definition 4.7 (Expected Shortfall for general distribution [2]). Assume E[X 7] <
oo. Define the Expected Shortfall of X at level a € (0,1) as

ESa(X) = —a™! | E[X1(xqa00y] + da(X) (@ = P{X < qa(X)})] S (49)

Expected Shortfall for general distribution is defined as the expected loss in the
a-tail. When (AO0) holds, (4.9) reduces to (4.3). The extra term M%(X)

deals with the case when the probability measure P has an atom at q,, i.e., P{X =

o} # 0.

4.2.2 Properties of ES

In this section, we present properties of VaR and ES to demonstrate ES’s superiority
to VaR. The first set of properties of ES is listed below. For derivation of these

properties, refer to [2] .

Proposition 4.1. Let ES,, be defined on the set of random variables X as in (4.3).

Fiz a € (0,1). It exhibits the following properties:
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(1) translation invariance: X € X, a € R = ES,(X +a) = ES,(X) —a;

(11) positive homogeneity: X € X, A > 0 = ES,(AX) = AES,(X);
(111) monotonicity: X,Y € X, X >Y = ES,(X) < ES,(Y);
() subadditivity: XY € X = ES,(X +Y) < ES,(X) + ES,(Y);

(v) comonotonic additivity: X,Y € X are comonotonic = ES,(X+Y) = ES,(X)+
ES,(Y);

(vi) law invariance: X,Y € X, P{X < a} = P{Y < a},Va € R = ES,(X) =
ES,(Y);

(vit) continuity w.r.t. c.
[84] summarized the basic properties of VaR, which we list below.

Proposition 4.2. Let VaR, be as defined in (4.2) for a fized o € (0,1). It has
the following properties: (i) translation invariance; (ii) positive homogeneity; (iii)

monotonicity; (iv) comonotonic additivity; (v) law invariance.

One important property that is missing for VaR is subadditivity, i.e., VaR(X +
Y) <VaR(X) +VaR(Y) for X,Y € X. Subadditivity of a risk measure provides
upper bound for the risk of a diversified portfolio and reflects the incentive for di-
versification in portfolio choice. Several authors have studied the non-subadditivity
of VaR. We illustrate it here with a simple example borrowed from [2]. For a
more realistic example, see [3] and [31]. Let X, X, be two random variables de-
fined on (2, A, P) where there are only three scenarios w;, ¢ = 1,2,3, in  with
P(wy) = P(w2) = 0.02. Suppose X;(w;) = —5 when ¢ = j and 0 otherwise. Then
we have VaRg5(X1) =VaRg5(X2) = 0 whereas VaRgo5(X1 + X3) = 5. If VaR at
5% level is used for monitoring risk, then the fund manager holding X; will report

no risk, so will the manager holding X,. However, the bank as a whole holding X;
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and X, at the same time does incur positive risk, which creates severe problem for
financial institutions.

By the definition introduced by Artzner et al. [3], a risk measure is coherent if it is
translation invariant, positively homogeneous, monotonic and subadditive. Therefore,
ES is a coherent risk measure, unlike VaR, which fails to be subadditive. Positive
homogeneity and subadditivity together imply that ES is convex, i.e., for X,Y € X,
a € (0,1) and X € (0,1), ESq(AX + (1 = A)Y) < AESL(X) + (1 = A)ES,(Y).

Subadditivity and comonotonic additivity together have a significant practical
meaning. Recall that two random variables X and Y defined on (€2, .4, P) are comono-
tonic if there is no pair wy,wy € Q such that X(w;) < X(ws) and Y (w;) > Y (wo)
(see [19]). Suppose X and Y are the random profits from two portfolios. By the
argument of subadditivity, the risk of the combined portfolio X + Y, if measured by
ES,, is upper bounded by the sum of the individual risks. And from comonotonic
additivity, we know that this bound is actually tight when the two portfolios move
with the same trend.

It has been pointed out that ES is the smallest coherent and law invariant risk
measure that dominates VaR at the same level, see, e.g., [3], [47] and [84]. Essentially,
being law invariant means that the risk measure can be estimated from only statistical
observations. Recall that VaR has the nice property that P{X +VaR,(X) < 0} < a.
The fact that ES dominates VaR is desirable because it means ES also possess this
property: the probability of default is below « after allocating the appropriate capital
amount determined by ES. This is apparent since VaR,, is the smallest loss when X
falls into the a-tail and ES, is the average of such loss.

Continuity with respect to a means that a small change in the confidence level will
not result in a big change in risk. This insensitivity to « is another advantage over
other risk measures including VaR, TCE and WCE [3], which in general can render
dramatic change in capital requirement when o undergoes a small change. The fact

that VaR is not continuous with a can be seen from Figure 4.5(a).



68
4.3 Maximum Empirical Likelihood Estimator of

ES

4.3.1 Empirical Likelihood Method

Empirical likelihood is a maximum likelihood inference procedure that is based on
the empirical likelihood function. To understand the concept, consider a series of
independent samples {X;, X; € R} | sharing an unknown distribution function Fp.
Denote the corresponding observation of X; by x;. Given a series of observations
{z;}1,, define the empirical likelihood function of a probability distribution function

F to be
L(F) =[] (F(a) - P7)), (4.10)

i=1
where F(z;) = lim, -, F'(z). Clearly, L(F) = 0 for continuous distribution func-
tions. The empirical distribution F), defined as F,,(z) = %Z?Zl L(s>a;), Where 1, is
the indicator function as defined before, is the nonparametric maximum likelihood
estimate (NPMLE) of Fy because F,, maximizes L(F).

If we further restrict F' to have support on {z;}",, i.e., F assigns probability p;

to x; with p; > 0, >, p; = 1, the empirical log likelihood function can be written as
INp(P1s -+ pn) = Zlnpi- (4.11)
i=1

This restriction is justified since the maximization of [yp(-) automatically pushes

towards the support specified by the data.? [yp is maximized when p; = 1/n, for

1 =1,---,n. Then the empirical log likelihood ratio function is
IR(p1, -+ pn) = Zln npi. (4.12)
i=1

2Suppose F' places probability p; on x; and L(F) > ro/n™. Lemma 2.1 in [62] shows that
1-3""  pi < (1/n)log(1/ro), which means as L(F) approaches the maximum (1/n)™, the probability

that F' puts on the sample goes to 1.
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Empirical likelihood works well for estimation of parameters in moment conditions.
Let g(x;,0) : R x © — R® be a vector of measurable functions, where © C R".

Consider the moment condition expressed as

where Fj denotes expectation w.r.t. the true probability distribution Fj and 6, € ©
is the unknown true value of the parameter that we wish to estimate. In the case
of estimating the mean of F, g(z,0) = x — 6 and 6 is the mean parameter. When
g(,0) = Lz<g) — o, 0 is the parameter of a-quantile of F. Maximum empirical
likelihood estimators (MELE) of 6, and Fj are obtained by maximizing [z under
the moment constraint. That is, (éEL,ﬁlEl, -+, Pnpr) is the optimal solution to the

following constrained optimization problem

n n n
9€®,Spl11,l~)~-,pn ;mnpi st. pi>0,i=1,---,n, ;pi =1, ;pig(azi,ﬁ) =0.
(4.14)
Here and afterwards, the implicit dependence of estimates on the sample size n is
omitted from notation for simplicity. Asymptotic properties tell us how the estimates
behave when the sample size increases.
The dimension of the optimization variable in (4.14) increases with the data size,
posing difficulty to its computation. Fortunately, it can be solved in two stages. First
fix # € © and solve (4.14) to get the profile empirical log likelihood ratio function

1(0) for 0. Since {p;}, is restricted to be on the standard n-simplex, the supremum

in (4.14) is achieved for fixed 6.
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Opr is just the parameter that optimizes this profile ratio function, i.e.,

01 = arg supl(0). (4.16)
0€6

Here and in the remaining of the chapter, we use “argsup” or “argmax” to mean any
maximizer of the objective function and allow a slight abuse of notation when the
maximizer is not unique.

The optimization problem (4.15) is convex. By Lagrangian multiplier method, its

solution is easily obtained:

1 1

pi0) =217 ANO)Tg(z:,0)

(4.17)

where \(6) is the Lagrangian multiplier for the moment constraint > | p;g(x;,0) =0

and satisfies

- 9(xi,0)
=0. 4.18
; 1+ X60)Tg(x;,0) (4.18)
That is,
— T )
A(0) = arg m}i\iX; In (1 + N g(ay, 9)) (4.19)

In general, A() can not be solved analytically. Therefore, from (4.15)—(4.19),

Opp = arg sup!(f) = arg sup min — Zln (1 + A g(z;, 9)) (4.20)
0€0 gco A =1

Note that although the inner optimization with respect to A is convex, the outer
optimization with respect to 6 in general is not convex, depending on the format of g.
Hence the implementation of MELE suffers from difficulties associated with solving
non-convex optimization problems.

Without posing the last constraint, the optimal solution to (4.15) is p; = 1/n, for
alli =1,--- ,n. In the case of mean estimation where g(z, ) = x — 6, this maximum

is achieved by setting = X = £ >°"  x; such that > | g(z;,0) = > [ (z;:—X) = 0.

T n
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Therefore the MELE of the mean of Fj is X.

4.3.2 Estimator for Expected Shortfall

In this section, the MELE of ES for the marginal distribution Fx of the real-valued
random variable X is developed. As before, let X;,i =1, ---, denote the i.i.d. samples
of X and let x; be the observation of X;. Fix o € (0,1). Assume condition (AO)
holds for X such that its quantile and ES at level « are as defined in (4.1) and (4.3),
respectively. Denote by qo and &, the true a-quantile and conditional expectation of
X below the a-quantile, i.e., go = Fyx'(a) and & = E[X|X < . VaR and ES of X
at level a are simply VaR,(X) = —qy, ES.(X) = —&. The dependence of ¢y and &
on « is suppressed for simplicity in notation.

To estimate &, the moment condition is expressed as E[g(X,6y)] = 0, where

0=(q,6)T €O CR?and g : R x © — R? is a vector of functions g = (g1, g2)” with

gi1(z,0) = Lu<g — o, (4.21)

G2(2,0) = Lg<g(r —£). (4.22)

We make the following assumption on ©.
Assumption (A1) © is a compact set and 6y is in the interior of ©.

From (4.14)-(4.16), the MELE for the true parameter 6y = (qo, )7 is

e, Epr) = arg  max ma " Innp, 4.23
(qEL7 fEL) ) (q7€)€X® {p: ?):(1 Zi:l P ( )

s.t. (i) p; >0, fori=1---.n

(ii) D= 1,

(i) Y. ey —al =0,
(v) Y Pl -9l =0.
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We mentioned in Section 4.3.1 that the implementation of MELE can be less
straightforward in general. Fortunately, the estimator for 6y defined in (4.23) can be
solved in a sequential fashion. To see this, consider the MELE for estimating just qq.
Let Q :={s: (s,t) € ©,t e R}, = :={t: (s,t) € ©,s € R}. The MELE ¢g, of the
a-quantile ¢y of X is defined as the maximizer of the profile empirical likelihood ratio

function

jpr = arg max max " In np; 4.24
drL g 260 (oo Zi:l P ( )
s.t. (i) p; >0, fori=1,---,n
(i) _pi=1
=1

(i) D Pl —al =0,

Notice that (4.24) and (4.23) share all but one constraints. The latter has one

extra constraint y ;" | p;[1(s,<q)(z; — &)] = 0. This constraint can be written as

D i Pil(z,<q)i
Z?:l pi]l(%é(]) 7

¢ = (4.25)

such that for each combination of ¢ € Q and {p;}!,, there exists a unique £ € =
satisfying the constraint. Hence the optimizer of (4.24) and (4.23) are linked through

the following lemma.

Lemma 4.1. Fiz « € (0,1). For a sample {x1,--- ,x,}, let Q = = be defined as
the convex hull of {xy,--- ,x,}. (pi, - .0k, q"), ¢ € Q, is an optimal solution to
the optimization problem in (4.24) if, and only if, there exists £&* € Z such that

(%, .05, q% &) is an optimizer of the optimization problem in (4.23).

Proof. Before we proceed, observe that if (p},---,pf,q" &) is a feasible solution to
(4.23), then so is (p},--- ,ph,q") to (4.24).
First we prove necessity. Let (pf,---,p},¢*) be an optimal solution to the op-

timization problem in (4.24). Let & = "% | pil(s,<gny@i/, then (p},---,pk, ¢*, &)
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is a feasible solution to (4.23). Now suppose there exists another feasible solution

(P1s- -+ 2 Pns @, &) to (4.23) such that > Inp; > >  Inp?. Since (p1,--- ,Pn,q) is a
feasible solution to (4.24), this leads to contradiction.

Sufficiency is proved similarly. Let (pf,---,p%,q*,&*) be an optimal solution to
(4.23). Then (pi,---,pk,q") is a feasible solution to (4.24). Suppose there exists
a feasible solution (py,- - ,P,,q) to (4.24) such that > Inp; > >  Inpf. Then
D1y s Pny @, €), where & = >0 Pilm<q@i/, is a feasible solution to (4.23) with
YoryInp; > % Inpf. This contradicts the optimality of (p},---,pk, ¢*, &) to
(4.23). O

A consequence of Lemma 4.1 is that the optimization problem in (4.23) can be
solved sequentially. That is, we can first solve (4.24) to obtain g7, and then compute

f pr, algebraically as

R 1 e— 1 1
§eL = o ;pz(qﬂ)ﬂ(misqm)xi = 7 1(Gar) Z Ya:i<or) Ti- (4.26)

Observe that nl(ggr) is exactly the number of observations that is smaller or equal
to the estimated quantile §g. Hence (4.26) is nothing but the sample average of the
truncated data truncated at the quantile estimate ggr..

We now look at the computation of §gr. Note that constraint (iii) in (4.24) requires
q to be inside the convex hull generated by observed data {z1,--- ,z,}. That is, if we
rearrange the observations into {x)}i_; such that xq) <z < - < 2, [T, T
is the feasible range for q.

Let us first fix a ¢ € QN[ (1), 2(»)| and consider the inner optimization with respect
to {p:}!, as in Section 4.3.1. Following the general procedure in Section 4.3.1, for
each ¢ € QN [zn), T, the maximizer of (4.24) can be obtained through Lagrange

multiplier method as

. 1 1
P T A g o] (20
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where A(q) is the Lagrange multiplier of constraint (iii) in (4.24). In the case of general
moment constraints, such as mean, the Lagrangian multiplier can not be expressed
analytically and has to be obtained through numerical computation. However, for

the case of quantile, the analytical form of A(q) is available as

Z?:l %[]lméq) —af o I(q) —a

Mg) = = 4.2
() 2l — o) a(l—a) (4.28)
where I(q) := >, t1(s,<q) is the proportion of observations that fall below ¢ [48].
Observe that I(g) = i/n when x4 < ¢ < z(;11) for some i € {1,--- ,n — 1}, and
I(:L’(n)) =1.

Taking (4.28) into (4.27) gives

, fore:x; <gq,
@ I (4.29)
fori:x; > q.

Therefore the profile empirical likelihood ratio function [(q) resulting from (4.24) does

not depend on either {p;}I, or A(q):

l(q) = —n([(q) IHLQ) + (1 -1(g)) In 1——1'(q)>

« 1l—«

Note that I(z(,)) = nlna. The MELE estimator ggy, of o is

pr = arg  max  [(q). (4.30)
a€QN([z(1),2(n)]

A couple of words on the computation of ¢g;, are in order. Difficulty arises when
solving (4.30) for ¢y, since the profile ratio function /(g) is discontinuous. Fortunately,
an easy computation of gy, exists due to the special structure of [(g). It is interesting
to observe that in (4.30), ¢ affects {(¢) only through I(q). I(q) is strictly concave in
I(q) and is maximized at I(¢) = a. As aresult, gz can be computed in the following

way:
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e When o < min{/(q) : ¢ € QN [z1), T(n)] }, der = min{q : ¢ € QN [Ty, zom)]};

e Otherwise, if o > max{I(q) : ¢ € QN [zq),zw]}, der = max{g : ¢ € QN

(2 ), 2w}

e Otherwise, find j € N, 1 < j < n — 1, such that I(z;)) < o < I(x(41)) and
z(j), T(j+1) € QN [z(1), ()], then g = z(), where k € {j,j + 1} is such that

() = min{l(z ), H(z11)}-

4.4 Asymptotic Properties

For each series of sample observations x1,--- ,z,, the MELE produces an estimate
(GrL, éEL) Since x1,--- ,x, are random, the estimate is a random variable for each
sample size n. Recall that an estimator B for some true parameter value (3, is called
consistent if B converges to [y in probability as the sample size n goes to infinity,
denoted as 3 2 Bo. That is, for every € > 0, 0 > 0, there exists Ny € N such that
P{||3, — Boll < €} > 1 —6 for all n > N,. The estimator is asymptotically normal
if for some increasing function v(n), usually taken to be v/n, v(n)(3 — (o) converges
in distribution to a zero mean Gaussian distribution as n — oo, i.e., v(n) (B — fo) KR
N(0,V). V is called the asymptotic variance matrix of the estimator B Let (3
be another consistent and asymptotically normal estimator of (3, with asymptotic
variance matrix U. If U—V is positive semidefinite, we say that B is more efficient than
(3. When B is estimated through some moment conditions, it is called asymptotically
efficient if its asymptotic variance matrix is at least as small as that of any other
estimator obtained by the same set of moment conditions [37].

MELE for smooth moment functions is shown to be consistent and asymptotically
efficient for i.i.d. data under certain regularity conditions [72]. That is, as the sample
size goes to infinity, its asymptotic variance matrix achieves the semi-parametric lower

bound proved by Chamberlian [14]. Unfortunately, the smoothness condition is not
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satisfied by the MELE defined in (4.23). We use the results in [95], which provide
asymptotic properties for MELE with possibly discontinuous moment constraint. The

following assumption is needed to establish consistency and asymptotic normality of

the MELE (pr,pr) in (4.23).

Assumption (A2) There exists 79 > 4 such that E[|X|"] < oc.

Theorem 4.1. Suppose the conditions in (A0)-(A2) hold. Let MELE (igr,pr)
be defined as in (4.23), then

(i) 02 0,;

(ii) /n(6 — 6y) <, N(0,V), where

a(l —a) (1 — a)(g0 — &)
vV — fx(q0)? fx(q)
(1 _?)28(;)— £o) E[jl(X<qo;(2X — &)’ 4 1 — a(qo . 50)2

The asymptotic variance for §gy, is ?}((1(;0(;%, which agrees with the optimal variance

matrix for quantile estimation proved in [58]. The asymptotic variance for f EL 1S

Bl (x<4)(X — &)? —
[Lex< )(2 &) 1 ® (do — €)%,
(6] o

which increases as a decreases. This means the more to the tail, the more data are
needed to estimate VaR and ES. Note also that the asymptotic variance of é EL 18

bigger when the tail of the distribution is flatter.

4.5 Simulation Results

In this section, small sample performance of the MELE (QEL,éEL) in estimating
VaR,(X) and ES,(X) of a random variable X is studied by a Monte Carlo ex-

periment. The level « is taken to be 0.01, 0.05 and 0.1 as these are the a levels
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of most interest in practice. For each value of «, 1000 replications of i.i.d. sample
{x1,--+ ,x,} are generated. Sample size n is chosen to be 100, 500, 1000, 5000. For
each sample, estimate of VaR and ES are obtained from the MELE: VaR, = —qEL,
ESa = ~p1.

The following tables report the mean value of VaR and ES estimates for X with
three different distributions. For ease of comparison, the VaR estimates are collected
in Table 4.1 and ES estimates are shown in Table 4.2. Distributions of X are taken to
be members of Asymmetric Power Distribution (APD) family, i.e., X ~ APD(3, \).
APD(0.5,2) is the normal distribution N'(0,1/2). A = 1 corresponds to a Laplace
distribution. The probability density function of the three distributions is shown in

Figure 4.6.

0.7

0.6

0.5

0.4r

0.31

021

0.1r

Figure 4.6: Probability density function of APD distributions. Solid line: N (0, 1/2);
Dash-dotted line: asymmetric Laplace distribution

As expected, mean values of MELEs converge to the true value for both VaR
and ES estimates at different a levels and for different distributions. Note that for
the same distribution, the estimate tends to converge faster for bigger o values. This
agrees with our intuition because more data is needed to gain information about lower

« tail of the distribution for smaller «.
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g A « VaR, | N =100 N =500 N =1000 N = 5000
0.5 2 0.01 1.6450 | 1.7801 1.6639 1.6558 1.6469
0.5 2 0.05 1.1631 | 1.1840 1.1700 1.1684 1.1643
05 2 0.1 09062 | 0.9221 0.9103 0.9085 0.9055
0.7 1 0.01 7.0808 | 8.0969 7.2223 7.1536 7.0949
0.7 1 0.05 4.3984 | 4.5356 4.4388 4.4276 4.4048
0.7 1 0.1 3.2432 | 3.3288 3.2641 3.2545 3.2406
0.2 4 0.01 0.8828 | 0.9343 0.8897 0.8870 0.8836
0.2 4 0.05 0.6014 | 0.6074 0.6046 0.6043 0.6021
02 4 0.1 0.3848 | 0.3914 0.3869 0.3861 0.3839

Table 4.1: Mean value of MELEs for VaR of APD-distributed random variables

g A « ES. N =100 N =500 N =1000 N = 5000
0.5 2 0.01 1.8846 | 1.7801 1.8563 1.8684 1.8825
0.5 2 0.05 1.4586 | 1.4184 1.4538 1.4565 1.4574
0.5 2 0.1 1.2410| 1.2218 1.2374 1.2398 1.2392
0.7 1 0.01 8.7475| 8.0969 8.5704 8.6415 8.7343
0.7 1 0.05 6.0651 | 5.8676 6.0437 6.0546 6.0578
0.7 1 0.1 49099 | 4.8313 4.8948 4.9054 4.9010
0.2 4 0.01 0.9857 | 0.9343 0.9721 0.9782 0.9847
0.2 4 0.05 0.7741 | 0.7453 0.7703 0.7726 0.7734
02 4 0.1 0.6317| 0.6126 0.6282 0.6304 0.6304

Table 4.2: Mean value of MELESs for ES of APD-distributed random variables

4.6 Conclusions

In this chapter, we have studied the coherent risk measure, Expected Shortfall, as an
alternative to the popular measure Value-at-Risk. An estimator based on empirical
likelihood is proposed and its asymptotic properties are established. Although in
general maximum empirical likelihood estimators are obtained by solving non-convex
optimization problems, the proposed estimator for ES can be computed in two steps.
The first step involves comparison of two function evaluations and the second step is

just an algebraic calculation.
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Chapter 5

Conclusions and Future Directions

In this thesis, we have studied three aspects of robust design process depicted in
Figure 1.1: relation between robustness and complexity, model validation and risk
assessment. By examining percolation lattices and linear programming problems, we
show that robust systems necessarily have short proofs and the nonexistence of a
short proof indicates fragility in the system. Therefore the existence of the feedback
information in Figure 1.1 is established. Model validation methods are examined
in the setting of a biological system to illustrate their associated advantages and
difficulties. Risk assessment is investigated in the field of finance where the proper
mathematical definition of risk is emerging. An estimator of Expected Shortfall is
proposed and is shown to have desirable asymptotic properties.

Following the study in this thesis, several research directions can be further pur-
sued. We outline them here.

While together with two other works [33,63], we have established the existence of
feedback in Figure 1.1, it is not yet clear how this feedback can more directly guide
system design. When verification is inevitably hard, we know the system property is
fragile. As mentioned in Section 2.4, this fragility can come from different sources,
including, but not limited to, system specification, modeling and design. It would
be extremely enlightening if the complexity of verification could indicate the source
and/or the properties of the fragility. One possible approach is to look at different

perspectives of the long proof. For example, when the proof is a polynomial, the
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order of the polynomial and the magnitude of the coefficients may lead us to different
source of fragility. Relaxation is of course useful in exploring fragility with respect to
assumptions.

For model validation, it would be interesting to be able to validate a model not
just against specific data, but against some overall properties of the system, e.g., the
system is stable. This would allow qualitative observations to be included. For linear
systems, this is relatively easy because properties such as stability can expressed as
a function of its parameters. A starting point can be nonlinear systems with special
forms, e.g., systems with polynomial vector fields.

In Chapter 4, a maximum empirical likelihood estimator for ES of a random
variable is proposed for i.i.d. data. Several immediate future directions follow. First,
it would be interesting to combine the proposed estimator with time series models,
such as the GARCH model, to examine how it performs on real financial data. Second,
an estimator is needed when the data is not i.i.d., e.g., when data are heterogeneously
distributed or when they are dependent or both. Third, we can study parameters in
the conditional ES models when the data is still i.i.d. and explanatory variables are

present.
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Appendix A

Proof of Lemma 2.2

Before proving Lemma 2.2, the following two lemmas are needed. As mentioned
earlier, positive scaling of b does not affect the feasibility of A2 . Thus the following

lemma is true.

Lemma A.1. Suppose the (A,b) pair given is such that A2 is consistent for a >
0,0 > 0. Then perturbation on only o and 3 does not change the feasibility. That is,
for any Aa € R™ and AB € R, there exist y € R™, y > 0 such that ATy > (a+ Aa),
by < —(B+ AB).

Proof. Let yo be a solution to A2(A,b), i.e.,

Alyy > «
by < —p3
Yo = 0

Denote the i component of a by a; and the i component of a + A« by (a + Aa);.

Let k = max{1, W, %} We have that

2

ko

v

o+ Ao

kB = B+Ap
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Thus y; = kyg > 0 satisty

ATy, > ka>a+ Aa
by < —kB < —(B+Ap)
OJ

Lemma A.2. A2(A,b) is defined as in (2.7) with ||b|| = ||b]|. Suppose d is well-posed
and A2(A,b) is feasible, then there exists a solution y to A2(A,b) such that

ol < =2
dist(d, B)

where d = (A, b) and dist(d, B) is as defined in section 2.3.2.

Proof. Applying Theorem 1.1(1) in [74] gives

1]
yl| <
lyll ¢
where
¢ = if o {max{||AA]|, [Ad]|}}
Fd(A+AAp+Ab) infeasible
= if o {[|AA]}
Fd(A+AAp) infeasible
> inf {max{[|AA], || Ab[[}}

A2(A+AAb+Ab) infeasible

The second equality follows from Lemma A.1 and the inequality is from the norm

definition, which gives
_ —AA
[AA[ = > max{||AA[, [[Ab]]}.
Ab

By Lemma 2.1, if A2(A+ AA, b+ Ab) is infeasible, then either F'd(A,b) is feasible
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or d is on the boundary B. Therefore,

£ > inf ~ {max{[|AA]],[|Ab|[}}
A2(A+AAb+Ab) infeasible
= inf . {max{[[AA], |[Ab]|}}
Fd(A+AAb+Ab) feasible
= dist(d, B)

This completes the proof that

Iyl < —— == o0
dist(d, B)
U

Proof of Lemma 2.2. By definition, C, < ||y|| for any solution y to A2(A,b). The

conclusion then follows from Lemma A.2. O
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Appendix B

Proof of Theorem 4.1

Recall that X is the random variable for which we wish to estimate quantile and ES.
Fx and fx are the cumulative and probability distribution function of X, respectively.

The moment constraint function g = (g1, 92)7 : R x © — R is

gi(z,0) = Liz<q) — @

g2(z,0) = ﬂ(mﬁq)<x_§)a

where 6 = (q,&)7.

Let 7o > 0 be a fixed constant. Before proving Theorem 4.1, the following lemmas
are needed.

From assumption (A2), there exists 79 > 4 such that E[|X]|] < oo. Then for
any 0 < v < 7, E[|X|"] < co. This follows from the fact that |z|” < |z|"° + 1 for
all z € R. A consequence of this is that E[(|X|+ 7n)?] < oo for bounded constant 7.

This is used several times in proving the lemmas below.

Lemma B.1. Fork=1,2,

E

sup |gx(z,0)]°| < 0.
0—60(|<ro
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Proof.

sup g1(z,0)° = sup  [Leg) — o <1
10—00[|<ro l0—60]|<r0

For a fixed x, when [|§ — 6y < 7o,

<) (@ = | < |z =& < o — &l + 70

Therefore,

E sup ga(z, 0)[" | < E(IX = &of +70)] < E[(|X] 4 [€of 4 70)7] < o0

16—00l<ro

O
Lemma B.2. Fork=1,2,
sup FE [gk(:v,ﬁ)ﬂ < 00.
l0—6o|<ro
Proof.
sup  E[gi(X,0)'] = sup E[(Iix<g—a)'] < sup E[l]=1.
10—00l|<r0 10—060[|<ro l0—6ol|<ro
Since
| Le<q)(x = &) < || 4 [Sol + 70, for z € R, [|6 — | < ro,
E [(Lix<g)(X =&)Y < B [(|2] + [l +m0)*]  for [0 — o] < ro.
Therefore,
sup F [gg(X, 9)4} <FE [(|X\ + |&o| + 7“0)4] < 0.
10—6oll<ro
O

Lemma B.3. E [¢(X,0)¢"(X,0)] is finite and its elements are continuous w.r.t. 6.

Furthermore, E [g(X, 00)g" (X, 90)} is positive definite.
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Proof.

B [¢(X.0)47(X,0)] — [ (1=20)E [Ix<g] +0a? (1= a)E [1x<y(X —&)] ] |

1-a)E[lx<(X = 8)]  E[Lx<p(X —&)?]

Assumption A (2) guarantees that the elements are finite and from assumption A (0),

it is easy to verify the continuity of F [g(X, 0)g" (X, 9)} w.r.t. 6.

E [9(X,00)9" (X, 00)] = [ o1 ~e) ! ] .

0 ELixzg)(X — &)
a(l —a) > 0 since @ € (0,1). E [Lix<g)(X —&)?] > 0 since X is absolutely

continuous distributed and fx (x) > 0 on its support. Positive definiteness follows. [

Lemma B.4. Fork=1,2,

OF |gx(X, 0)]
06

sup
[16—00[<ro

H<oo.

Proof.
OE [g1(X, 0 o
% = 9 (E [Lix<q] — @) = fx(9),
OE [¢1(X, 0 0
I (F [ixeg] —a) =0
Therefore,
wp || PELor(X.0)] H — x| _
10—60ll<ro 90 19~6oll<ro 0 ’

since fx(x) is bounded.

OF[92(X,0)] _ 9

2 = P [y (X = 9] = fx(a)a =€)

OE [g5(X.0)] O
% = 8_§E [Lix<-o] = —Fx(a).
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Therefore,
oE [gz(X,Q)]H fx(a
sup ||———"2| = sup
l6~6ol<ro 90 l0~6ol1<ro ~Fx(q
again because fx(z) is bounded and g — £ is bounded when || — 0| < ro. O

The next lemma is on the covering number of the sets of functions

Fg =19k, 0) [0 — O] < 7o}, kE=1,2.

Recall that for € > 0, the covering number of a set of functions, .%, is the smallest
number m of functions gy, - , g, (not necessarily in %) such that each member of
Z is within ¢ distance from some g¢;, 1 < j < m, where the distance is measured by
a metric p. Denote this covering number as N(g, 9,.%). For a sample {z, -, z,},

denote by P, the empirical distribution that puts mass probability 1/n on each x;.

Lemma B.5. For k=1,2, and e > 0,

N(e, o, ng) < B(P)e™",

where limsup,, E[B(F,)] < 0o and w is a positive constant.

Proof. Recall that the envelope of a class of functions .% is a function G such that
|Y] < G for all Y € F. %, has an envelope function G; = 1. .%,, has an envelope

function Gy = |z| + || + 70 as

Loy (= ) < [z =& < fa] + [¢] < |2] + [€o] + 7o,

for all 0 = (¢,&)7, ||0 — 6| < 7.
First we show that the graphs of functions in .#,, and .%,, form polynomial classes

of sets. Then we use the approximation lemma (Pe7 in [66]) to show the desired result.
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Recall that the graph of a real-valued function 1) on a set S is the set

Gy ={(s,t): 0 <t <(s) (or) o(s)<t<0}.

For a fixed 0 = (q,&)T, the graph of g;(-,6) and g¢s(-,0) are shown as the shaded

regions in Figure B.1.

1-a

g,(x.6)
9,(%60)

(a) Gy, (b) Gy,
Figure B.1: Graphs of g;(-,0) and ga(-,0) for a fixed 8 = (¢q,&)"

Clearly, graphs of functions in .#,, form a linear class of sets and graphs of func-
tions in .#,, form a quadratic class of sets. The approximation lemma (Lemma 25

in [66]) then tells us that for 0 < e < 1,

N(e, Li(P,), Z,,) Bie 2 < By

IN

N(e, Li(Po), ) < Bsy(Ep,[Gs))'e ™,

where B; and Bj are positive constants and Ep, [Gs] = % Yo Ga(wy).

For a sample {z1,--- ,x,}, there exist constants ¢;, j = 0,--- ,4 such that

(Bp,[G2))" = (% Z || + [0l + 7"0)

4 n J
-3 (%Zmo |
=0 i=1
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Because for each 7 =0,1,--- 4,

1
li E|| - i < 00,
i sup <n ; |z ]) 00

limsup E [B; (Ep, [GQDﬂ < 00.
The desired conclusion follows by letting B(P,) = max{Bj, BoEp,[Ga]}. O

Lemma B.6. For any sequence of constants 0 < pp1 < pno — 0, there exists a

constant ¢ such that

sup  [|E[g(X, 0)][| = com.

PnlSHG*GOHSPnQ

Proof. For any 0 < p,1 < pn2, let 0" = (qo, & — pn1)T. We have |0/ — 0y|| = pu1 < pn2,
E[gl(X, 9/)] =0,

Elg2(X,0)] = E[Lix<q)(X — & + pn1)] = E[L(x<q0)Pn1] = ¥pn1,

and
, 0
[E[g(X,0)]]| =
_apnl
Thus,
sup | E[g(X, 0]l > [|E[g(X, )]l = cpn-
pn1<]|0—600||<pn2
Let ¢ = o and the conclusion follows. [l

Lemma B.7. For k = 1,2, there exists a constant d such that
E|g(X,0) — gi(X, 60)*] < d]l6 — 6ol

for all |6 — 6y < rp.
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Proof. First prove for k = 1.

E Igl(X,G)—gl(Xﬁo)ﬂ = E[<1(X§q)_]l(XSQO))2

= Fx(max{q,q}) — Fx(min{q, qo}).

Let di = max{fx(q) : 0 = (¢,€)7,]|0 — || < 1o}, where fx is the probability
density function of X. The maximum is achieved as the set {0 : ||0 — 6| < 1o} is

compact and fy is bounded. Then,
B[lgu(X,6) — (X, 0] < dillg — aoll < dullo — 6o, for 0~ 6ol < 7o
Now look at the case when k = 2. Let ¥(0) = E[|92(X, 0) — go( X, 90)|2}, then

() = E[(ﬂ(xgq>(X — &) — Lix<q) (X — fo)ﬂ

= £ [1(ng) (X = &) + Lixza) (X = &0)* = 2x<q Lz (X — X - 50)} :

ov
B fx(@) (@ —=€)? = 2fx (@)L (g<q0) (@ — 0)(a — &),
oV ) 2B[lx<gl(€ = &), ¢<qo
% | 2BlxenE - X) 0> a0
T
It is an easy exercise to verify that 4 = <%—‘f]’, %—‘g) is bounded for all ||§—6y]|| < 7.
Let
ov
dy = sup —H ,
l6~6oll<ro 1| OF
then
1W(0) — W (o)l < daf|6 —boll,  for [|6 — bo|| < ro.

The conclusion is established by taking d = max{d;,d>}. O
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Proof of Theorem 4.1. We use Theorem 2 and 3 in [95] to show conclusion (i) and
(ii), respectively. These two theorems deal with empirical estimator for parameters
of conditional distributions. In our case, the marginal distribution is of interest. In
the setting of [95], this can be viewed as the case where the explanatory variable is
deterministic. Thus the conditional distribution of X with respect to the explanatory
variable reduces to the marginal distribution of X. The conditions concerning the
smoothness of g when the explanatory variable changes are therefore automatically
satisfied.

Our MELE estimator 6 g1, Mmaximizes Z?:l w; In np; under the moment constraints,
where w; = 1/n for all i = 1,--- ,n. Since the explanatory variable is fixed, this
corresponds to the choice of any kernel weights with K(||¢]]) = 1 when ||| = 0. The
bandwidth for the kernel weights can also be freely picked to meet the bandwidth
condition without altering the weights. Also, for each observation x € R of X, ¢ is
bounded for # in the compact set ©.

Lemma B.1-B.7 verify that the remaining conditions for Theorem 2 and 3 in [95]
are satisfied. We thus have that 0z, - By and \/(B — (o) 4 N(0,V) with

v - 9Flg a(éX', 0)) (E[Q(X’ 00)g" (X, 90)])—1 8E[9g§, 0o)]

fx(q0)* " (g0 — &0)*fx(q0)” —a(qo — &) fx(qo0)

a(l—a)  Ellix<g)(X —&)°] Ellx<e (X —&)7
—a(qo — &) fx(qo0) a?
EL(x<g)(X — &)’ EL(x<g)(X — &)°]

It is straightforward to check that

a(l —a) (1 —)(g0 — &)
V = fx(q0)* fx(qo0)
(1 _}.223(()))_ gO) E[]l(XSqO)OféX — §0) ] + 1 (_)z Oz(qo _ 50)2
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