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Abstract

We present a methodology for realistic compiler development in an existing formal methods frame-

work. Program transformations and analyses are implemented as term rewrites and inference rules,

and automated proof search techniques are used to drive the compilation process. This approach

allows the programmer to implement the compiler succinctly, declaratively, and modularly. We ex-

plain how our methodology separates trusted code, which can potentially corrupt compilation, from

untrusted code, which cannot. We present a case study in which we have used these techniques to

implement a compiler for a small ML-like programming language that produces x86 assembly code

as output. We give a detailed overview of several stages of the compiler, including type inference,

type checking, type erasure, CPS conversion, and closure conversion. We also describe the process

of extending the minimal core compiler to include features such as integers, Booleans, operators,

tuples, and recursive functions.
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Chapter 1

Introduction

Writing reliable software is proving to be one of the most vexing challenges of the computer age.

In particular, if we ever hope to build reliable software systems it is imperative that we have a

reliable infrastructure upon which to build. Compilers are at the heart of the modern software

infrastructure. Nearly every program in use today is itself compiled or relies on a program that is

compiled. Since they play such a vital role, we would like to have a high degree of confidence that

our compilers are reliable, always preserving the semantics of our programs as they are translated

from high-level languages to machine code. However, compilers are large software projects, typically

containing hundreds of thousands of lines of code. As in any project of such scale, errors are all

but inevitable. Unfortunately, if a compiler error causes compilations to be corrupted then the

effects can be widespread and the source of the problem can be hard to deduce. It therefore seems

worthwhile to invest effort in developing techniques for building reliable compilers.

Ideally, our compilers would be formally verified. This would provide the highest level of confi-

dence. Formal verification is no simple task, however. At the very least, verification requires a formal

semantics for both source and target languages, and although some source languages are amenable

to formal treatment very few machine architectures are. In many cases the cost of performing such a

verification is prohibitively high. The benefits of verification are great, however, so even if we choose

not to verify a compiler initially it would be advantageous to implement it in such a way that future

verification is feasible.

In the absence of formal verification we want to employ high-confidence techniques that have

been proven effective in reducing programmer errors. For example, we may want to implement our

compiler in a domain-specific language (DSL) rather than a general-purpose language. DSLs help

reduce errors in two ways: DSL solutions are generally more concise than general-purpose language

solutions, so there are fewer opportunities for error; and the semantics of a DSL are usually designed

such that concepts from the problem domain map directly to language constructs, reducing the

chances that a domain concept will be incorrectly translated into the programming language. The

latter advantage is further enhanced when a DSL is declarative—it allows the programmer to specify
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relationships rather than procedures. Two extremely successful examples of declarative DSLs in the

compiler domain are Lex [20] and Yacc [15], which have greatly reduced errors resulting from hand

coding lexical analysis and parsing routines.

Another useful concept for tackling software complexity is modularity. Modularity brings the

benefit of reducing the cognitive burden on the programmer, who only needs to understand a mod-

ule’s interface in order to use it. This can be critical when a project is being developed by more than

one programmer, as is often the case for compilers. In modular code it is also less likely that an error

in one module will cause problems in another unrelated module. Modularity is also beneficial when

introducing new programmers to the project, as the amount of code they need to learn is reduced

and the errors they make while learning are better isolated.

A related concept, trust, is a way of isolating the code that is critical to the success of the

compiler. We define trusted code as code that has the potential to cause the compiler to produce

incorrect output without generating a compile-time error, thus corrupting the compilation. This

definition may seem counterintuitive due to the positive connotations of the word “trust,” but in

our usage it should be understood that trusted code is not code that is trustworthy, it is code that

must be trusted if the compiler itself is to be trusted. In most compilers implemented using general-

purpose programming languages it is difficult to separate the trusted code from the untrusted code.

This is unfortunate, because if the trusted code in a compiler is verified then the compiler itself is

verified. If a compiler is implemented with a clear separation between trusted and untrusted code

then verification becomes much simpler. Making this distinction also isolates the code that must be

examined if a compilation-corrupting error is found.

With these principles in mind, we have developed a methodology for realistic compiler develop-

ment in a formal methods framework. We have also designed a compiler architecture that exploits

the framework in order to provide a compiler development environment with a high degree of mod-

ularity and reliability. We have used these techniques to implement a compiler for a small ML-like

programming language. Although we have not verified the compiler, we have developed it in a

manner such that it is amenable to future verification.

There are many benefits to developing compilers using our techniques:

• There is a net reduction in the size of the compiler compared to traditional techniques, which

reduces the opportunities for error.

• There is a clear separation between trusted and untrusted code.

• There is a dramatic reduction in the quantity of trusted code required in the compiler, allowing

for the possibility of verifying the compiler.

• The trusted portion of the compiler is written in a concise, declarative manner that reflects a
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textbook account of programming language semantics. The theorem prover effectively acts as a

declarative DSL for compiler construction.

• The compiler is modular—new features can easily be added to a source language without breaking

existing features.

• Due to the modularity of the compiler and the separation of trusted and untrusted code, the

compiler can be verified incrementally.

• The fact that the implementation environment is a formal toolkit places the compiler in a good

position for future verification efforts.

1.1 Traditional Methods

In this thesis we often mention “traditional methods” and “traditional compilers.” We use these

phrases to represent the techniques that are traditionally employed in production compilers such as

the Gnu Compiler Collection [5] or the INRIA OCaml compiler [19]. In particular, the following

properties are common to such implementations.

• They are implemented in procedural languages such as C, Java, or OCaml

• They are organized in terms of compiler stages

• Each compiler stage contains knowledge about every supported language feature

• They do not distinguish between trusted and untrusted code

We do not mean to imply that all existing compilers share these qualities. For example, object-

oriented compiler designs sometimes use classes to achieve compositionality of features. However,

we believe that most existing compilers possess at least one of these properties, and this is the way

that compiler construction is taught in most university curricula today.

1.2 Outline

The layout of this thesis is as follows:

1. A description of MetaPRL, the logical tool that we use to build the compiler, along with a

discussion of how its features are useful for compiler implementation

2. An account of the case study, including descriptions of the compiler architecture and algorithms

3. A presentation of the results of the case study

http://metaprl.org/
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4. A discussion of future directions for this research

5. A discussion of related work
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Chapter 2

The MetaPRL Term Language

We have developed our compiler using MetaPRL [10], an LCF-style tactic-based logical tool that uses

OCaml as its tactic implementation language. It defines a syntax, based on higher-order abstract

syntax (HOAS) [27], for the creation and manipulation of term trees with binding structure, which

are well suited for acting as the intermediate representation (IR) of a compiler. In this chapter we

discuss the following MetaPRL concepts and how they are useful for compiler implementation:

• MetaPRL Terms, which include bindings, for defining the IR term language

• Sequents, (sometimes called telescopes) for defining IR terms with unbounded arity

• Rewrite rules (or just rewrites) for performing code transformations

• Inference rules for defining code judgments

• Proof automation via tactics, which are strategies for deciding when and where to apply rewrite

and inference rules

Although we have used MetaPRL in this case study it is important to point out that any logical

framework with similar functionality could have been used. The techniques that we have developed

can be adapted to any sufficiently powerful logical platform.

2.1 Terms and Sequents

Every compiler needs an intermediate representation (IR) for programs as they are compiled. In

our compiler, MetaPRL terms are used for this purpose. A simple term has three components: 1) an

operator-name (like “sum”), which is a unique name identifying the kind of term; 2) an optional list

of integer or string parameters; and 3) an optional list of subterms, each with zero or more variable

bindings. We use the following notation to describe terms:

opname︸ ︷︷ ︸
operator name

[p1; · · · ; pn]︸ ︷︷ ︸
parameters

{−→v 1.t1; · · · ;−→v m.tm}︸ ︷︷ ︸
subterms

http://metaprl.org/
http://metaprl.org/
http://metaprl.org/
http://metaprl.org/
http://metaprl.org/
http://metaprl.org/


6

The −→v i are comma-delimited vectors of variable bindings. All the free occurrences of −→v i in ti are

bound by the operator. When n = 0 or m = 0, the corresponding brackets or braces may be omitted;

when −→v i is empty, the dot before ti is usually omitted. The parameters pi are constants.

Each operator has a fixed arity, which includes a fixed number of parameters, a fixed number of

subterms and a fixed number of bindings for each subterm. If two operators have different arities,

they are considered to be distinct even if they have the same opname.

The term language is untyped and terms carry only structural information. It is up to the

programmer to define the semantics of terms. Below are a few examples of terms that could be

used in a formalization of a simple typed lambda calculus, along with pretty-printed forms. (We

generally use pretty-printed forms for terms.)

Term Pretty-printed form

TyInt I

integer[1] 1

apply{’f; ’a} f(a)

lambda{’t; v. apply{’f; ’v}} λ v : t. f(v)

TyFun{’x; ’y} x→ y

The simplest terms, like TyInt, are just opnames. Numbers have a constant integer parameter. The

lambda term contains a binding occurrence: the variable x is bound in the subterm apply{’f; ’x}.

Variable references are preceded by an apostrophe to distinguish them from bare opnames. There

are two kinds of variables: first-order variables and second-order variables (sometimes abbreviated

FO and SO variables, respectively). First-order variables are created by explicit bindings, like x in

the example above. They represent simple, object-language-level variables.

Variables that appear unbound in a term are second-order variables [25]. Both of the variables

in TyFun{’x; ’y} are second-order. A term containing one or more second-order variables is a term

scheme—a pattern that can be matched to specific term instances. So, for example, TyFun{TyInt;

TyInt} is a term that matches the TyFun{’x; ’y} scheme. The pattern !v can be used instead of

’v to match a first-order variable instead of an arbitrary subterm.

The scope of first-order variables within term schema can be controlled by placing square brackets

after the second-order variables. If a first-order variable appears in the square brackets after an SO

variable it can appear free in the subterm matched by that SO variable. If it is left out of the square

brackets it is not allowed to appear free when matching that subterm. Omitting the square brackets

is equivalent to including empty brackets. For example, a generic term scheme for untyped function

definitions would be lambda{v. ’e[’v]}. If we mistakenly used lambda{v. ’e} instead then the

scheme would only match functions that never reference their arguments. We discuss matching

schema further in Section 2.2.

The term language as described so far is complete and quite useful, but the fixed arity requirement
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for terms can be a bit inconvenient. We may, for example, wish to define functions as having multiple

arguments that cannot be partially applied. We could use a curried representation, but it would

require some work to make sure that partial application was not possible. A better solution is to use

a type of term that supports variable arity. MetaPRL provides sequents (sometime called telescope

terms), which can contain a variable number of bindings. Although sequents are usually interpreted

as defining judgments, and indeed this is how they are used in the meta-language, this is not their

only possible interpretation, and we are free to exploit them in our IR.

The concrete and pretty-printed syntax for sequents is given below.

Concrete syntax Pretty-printed form

sequent [a]{ v1:t1; ... ; vn:tn >- c } a{| v1 : t1; . . . ; vn : tn ` c |}

The term c is the conclusion of the sequent and the terms ti are its hypotheses. Note that the

length of the hypothesis list can change, and it can be empty (n = 0). The variables vi introduce

binding occurrences; each vi is bound in all tj for j > i, and in c. Finally, the term a is the sequent

argument, which specifies what kind of sequent it is—the sequent argument plays essentially the

same role for sequents as the operator name plays for ordinary terms. The v: variable binding may

be omitted from a hypothesis if it is not used, and the >- c can also be omitted if the sequent

represents a simple list of terms. The ti terms are often, but not always, interpreted as the types

associated with the vi variables. Tuples are represented as tuple{| t1; . . . ; tn ` |}, for example.

Sequent schema [25] may also include context meta-level variables that stand for arbitrary lists

of hypotheses. For example, the sequent scheme

a{|Γ; v :T ; ∆[v] ` c[v] |}

(where Γ and ∆ are context variables and T , a, and c are second-order variables) matches any

sequent with at least one hypothesis. Note the square brackets after ∆; scoping of FO variables

within context variables is specified just as in SO variables. Context variables themselves are scoped

as well, but they are treated with the opposite assumption from first-order variables. That is, the

variables that are bound in the hypotheses that a context variable matches are allowed to appear

free in any subterm unless the programmer explicitly specifies otherwise. We do not describe the

syntax for writing such specifications because we do not need them in this thesis.

Using sequents, we can easily represent multi-argument functions. The untyped function of two

arguments λ(f, x).f(x) can be implemented as

λ{| f :Tu; x :Tu ` f(x) |}

where Tu is a type place holder for untyped terms. When defining the function type (T1, T2, T3)→ T

http://metaprl.org/


8

we can omit the variable bindings (assuming our type system is not dependent):

TyFun{|T1;T2;T3 ` T |}

When using sequents to represent terms with lists of bindings it is convenient to use vectors to

denote contexts. We also use more specialized pretty-printing for terms and types when they have

well-established notational conventions. Here are a few examples of our vector notation:

Sequent Notation Vector Notation

λ{|Γ ` e |} λ
−−→
v :T . e

TyFun{|Γ ` T |}
−→
T1 → T

Note that vector notation carries slightly more information than the generic context notation. We

specify whether the bound variables, the associated terms, or both are significant. However, it

is important to remember that the “variables” that appear in vectors are not first-order variable

bindings! The vector form
−−→
v :T in its entirety represents a single context variable. As mentioned

earlier, context variables are allowed to appear free in any subterm that doesn’t specify otherwise.

We sometimes mix vector and scalar notation to specify sequent schema that match terms with

a specific structure. For example, λ (v1 :T1,
−−→
v :T ). e[v1] matches any function with at least one

argument, binding the first argument to v1, its type to T1, and the rest of the argument list to
−−→
v :T .

Notice that −→v does not need to be listed explicitly in the square brackets after e.

2.2 Term Rewrites

A term rewrite specifies the bidirectional equivalence of two term schemas. Any term that matches

the left-hand-side of the rewrite (its redex ) can be replaced with the corresponding value of the right-

hand-side of the rewrite (its contractum), and vice-versa, in any context. For example, β-reduction

could be specified with the following rewrite.

(λx.e1[x]) e2 ← [beta]→ e1[e2]

By replacing e1[x] on the left-hand side with e1[e2] on the right hand side we have specified that the

rewrite should substitute e2 for all occurrences of x in e1. The rewriter α-renames e2 as necessary

to ensure that no variables are captured during this substitution. It is also possible to perform

simultaneous substitution of multiple variables:

(λ(x, y).e1[x, y]) (e2, e3)← [beta2]→ e1[e2, e3]

Rewrites can either be primitive or derived from other rewrites. Primitive rewrites are accepted
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by the rewriter as axiomatic—it is entirely up to the programmer to ensure their correctness. In

order to reduce opportunities for error, we would like to minimize the number of primitive rewrites.

For transformations that need not be axiomatic, derived rewrites are available. The programmer

can use the interactive MetaPRL environment to prove that derived rewrites can be expressed in

terms of other rewrites and then save these proofs so that they can be re-checked when revisions

are made to the code. Derived rewrites provide us with the ability to extend the compiler with

optimized transformations without increasing the size of the compiler’s trusted code base.

One advantage of using rewrites for code manipulation is that MetaPRL’s rewrite engine provides

protection against a variety of syntactic errors. For example, it is impossible to specify a rewrite that

introduces a free variable or causes a variable to be captured. While this is normally desirable, it

can be challenging to formulate certain code transformations without using temporary free variables

or exploiting variable capture. However, we have not had trouble working out suitable formulations

for the transformations we have investigated.

2.3 Judgments and Inference Rules

MetaPRL is a theorem prover, and as such it has strong support for specifying logical judgments and

inference rules. In our compiler we use these facilities to implement type checking and to drive the

overall compilation process.

The compilation process is expressed in MetaPRL as a judgment of the form Γ ` 〈〈e〉〉, which

states that the program e is compilable in the logical context Γ. The exact meaning of the 〈〈e〉〉

judgment is defined by the target architecture. A program e is compilable if it can be represented

by a sequence of valid assembly instructions e′. The compilation task is a process of proving that,

given the rules and rewrites we specify as primitive, the source program e can be rewritten to an

equivalent assembly program e′. Each stage of the compiler forms a phase of this proof. Different

stages define different judgments that must be satisfied for the proof to succeed.

For example, type checking defines a well-typed judgment Γ ` e ∈ T . To allow proofs of well-

typedness we define a logic of type checking rules, specified as meta-implications. The concrete

syntax for the lambda typing rule of a simply typed lambda calculus is:

sequent{ <H> >- ’ty_x = ’ty_arg } -->

sequent{ <H>; ’x in ’ty_arg >- ’e[’x] in ’ty_ret } -->

sequent{ <H> >- lambda{ ’ty_x; x. ’e[’x] } in TyFun{’ty_arg; ’ty_ret} }

where <V> is the concrete syntax for a context variable V . Here, MetaPRL sequents are employed

to represent logical sequents. In this setting, contexts represent type environments, which contain

bindings of variables to types (or, if you will, variable well-typedness propositions) and assertions

of type well-formedness. The concrete syntax above is equivalent to the following rule in traditional

http://metaprl.org/
http://metaprl.org/
http://metaprl.org/
http://metaprl.org/
http://metaprl.org/
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sequent calculus notation:
Γ ` tx = ta Γ;x ∈ ta ` e[x] ∈ tr

Γ ` λ x : tx. e[x] ∈ ta → tr

The judgment below the line is called the goal of the rule and those above the line are referred to

as its premises. Proofs are normally performed by backward-chaining of inferences—the proof tree

is built upwards from the goal. When applying an inference rule during a backward-chaining proof,

the premises introduce new subgoals that must be proven in order to prove the goal.

Like rewrites, inference rules can be primitive or derived from other rules. To keep the set of

rules sound it is desirable to use a minimal set of primitive rules and derive others as needed for

efficiency or expressiveness.

One important fact to understand about our compiler is that rewrites and inference rules are

the only mechanism by which code is modified. This means that if all of the rewrites and rules

in the compiler preserve semantics then the compiler itself must be correct! This clear separation

between trusted and untrusted code is a very powerful benefit derived from the formal framework.

Furthermore, the trusted code is written as fragments of declarative domain-specific code. Rules and

transformations are often short and simple enough, and close enough to their textbook equivalents,

that simple inspection is sufficient for one to believe that they are correct.

2.4 Tactics

Rewrites and inference rules are declarative tools for specifying transformations and logical implica-

tions, but they do not specify when or where they should be used. If we possessed a nondeterministic

machine on which we could run MetaPRL then this would not be a problem. We could simply specify

all the rules and rewrites of our system and nondeterministically try every possible compilation. As-

suming our rules and rewrites preserve the semantics of the language, we could choose any complete

compilation that suited us. Lacking such a machine, however, we need a way to specify which rules

and rewrites to apply, where to apply them, and in what order.

These decisions are handled by LCF-style tactics [6], or guidance code. MetaPRL uses OCaml as

its tactic language, providing a number of built-in proof automation tactics as well as the primitives

required for the user to build his own. For example, the following tactic might be employed to search

for redices in a program and β-reduce them:

let beta_reduce_all_subterms = rw (sweepDnC (repeatC beta)) 0

Assume that beta identifies the β-reduction rewrite from Section 2.2, and also note that rewrites

have type conv. A function that takes a conv and returns a conv is called a conversional. The other

elements of this tactic are provided by the system:

http://metaprl.org/
http://metaprl.org/


11

rw: conv -> int -> tactic A tactic that applies the given conversion to the subgoal

identified by the integer (subgoal 0 is the goal).

sweepDnC: conv -> conv A conversional that applies its argument to the current

term and then recursively applies itself to every subterm.

repeatC: conv -> conv A conversional that applies its argument repeatedly until

it either fails or reaches a fixed point.

In summary, this tactic starts at the outermost term of the current proof goal and repeatedly

applies the beta rewrite until it fails or makes no progress. Then it does the same on each subterm

recursively.

One very nice feature of MetaPRL relating to the implementation of tactics is that it allows us

to embed MetaPRL term syntax in OCaml tactic code. Terms can be constructed and destructed

using quotations and antiquotations respectively. Quotations build MetaPRL terms, potentially

using OCaml values, while antiquotations allow us to match terms and introduce their variables and

subterms into the OCaml environment. This example introduces their concrete syntax:

let x = 1 in
let term = <:con< Apply{’f; Integer[$x$]} >> in (* a quotation *)

match term with
<< Apply{’f; ’x} >> -> (* An antiquotation *)

let y = 10 + (int_of_mp_integer x) in
. . .

| << Lambda{ x. ’e } >> -> . . .

In our examples, we use pretty-printed syntax, underlining variable references in quotations. Also,

when we reference a variable defined in an antiquotation we use a mathematical typographic style

identical to the style within the antiquotation:

let x = 1 in
let term = . f(x ) / in (* a quotation *)

match term with
/ f(x) . -> (* An antiquotation *)

let y = 10 + (int_of_mp_integer x) in
. . .

| / λx.e . -> . . .

Note that it is not necessary to specify the scope of FO variables in quotations or antiquotations.

2.5 Trusted and Untrusted Code

Tactics are powerful, but their power is limited to the domain of proof guidance. In particular,

they can only affect the state of the compilation by invoking rewrites or proof rules. Tactics can

only transform the program within the space defined by the nondeterministic machine described

above. This limitation has consequences that are highly beneficial from the standpoint of reliability,

http://metaprl.org/
http://metaprl.org/
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for if our rewrites are semantics-preserving and our rules are semantically valid it is impossible for

tactic code to corrupt a compilation1. This means that if we are careful when writing our rules

and rewrites, our tactic code does not have to be trusted for the compiler to be trusted. There is

a clear separation between trusted and untrusted code: tactics are untrusted, while inference rules

and rewrites are trusted.

The desire to ensure that we write semantically valid rules and rewrites (and to keep them ob-

viously valid, wherever possible) is one of the primary design principles of our methodology, but in

this early version of the compiler we do not adhere to it in every case. We have sometimes compro-

mised on semantical validity when it would require significant effort to solve the semantic problem

satisfactorily. For example, because rewrites are bidirectional and context-free, strict semantics-

preservation requires us to preserve all information—all free variables that appear in the redex of a

rewrite must also appear in its contractum. This means that the näıve typed β-reduction rewrite is

not semantics preserving.

(λx :T.e1[x]) e2 ← [Beta-T]→ e1[e2]

The problem with Beta-T is that it could be applied in reverse with an arbitrary type provided

for T , creating an ill-typed term from a well-typed one. One way to solve this is to add a type

constraint to e2 in the contractum. This works, but the program would quickly become polluted

with type constraints. What we really want is a way to define unidirectional rewrites. Later versions

of MetaPRL have added this functionality, so this problem has been solved. However, it is exceedingly

unlikely that a programmer would accidentally use Beta-T in reverse, so it would not be a great

cause for concern to include such a rewrite until a better solution became available.

Although the inclusion of invalid rewrites weakens the separation between trusted and untrusted

code, it does not destroy it. The occurrences of such rewrites are few, well-understood, and limited

in impact. The use of these rewrites means that in this version of the compiler there is a small body

of tactic code that we must trust to uphold certain invariants. The invariants in question are very

simple, however. For example, we must trust that tactics do not apply rewrites in reverse, we must

trust that certain stages are applied in order, and we must trust that rewrites from one stage are

not applied during another stage. These invariants are unlikely to be accidentally violated. In more

recent versions of the compiler most of these invalid rewrites have been eliminated, so the separation

between trusted and untrusted code is almost completely clean.
1In this context, a corrupt compilation is one that appears to have succeeded but has actually produced output

that is not semantically equivalent to its input.

http://metaprl.org/
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2.6 Summary

Before we describe the application of these techniques to a real compiler, let us summarize the

concepts we have described in this chapter.

• We represent programs with MetaPRL terms, which contain first-order variable bindings.

• Term schema are patterns that match terms. Second-order variables are used to match arbitrary

subterms. When a first-order variable binding appears in a term scheme, its scope must be

explicitly specified for any subterms.

• Sequents are terms that contain a list of hypotheses (variable bindings and associated terms)

and a single goal. The list can have arbitrary arity.

• Context variables, which we represent as vectors, are patterns that match zero or more hypotheses

in a sequent.

• Term rewrites are used to transform one term to another. Rewrites represent bidirectional

equivalences, and are specified using pairs of term schema.

• Logical judgments and inference rules are used to define the compilation process and also to

perform analyses such as type checking.

• Rewrites and inference rules are the only mechanisms for program transformation in our compiler.

• Tactics are used to decide which rules and rewrites to apply, where to apply them, and in what

order.

• If the system’s rules and rewrites are semantically valid then it is impossible for tactic code to

corrupt a compilation, though errors in tactics can cause compilation to fail. Most, but not all,

of the rules and rewrites in the compiler we describe are semantically valid.

http://metaprl.org/
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Chapter 3

Case Study

In this chapter we describe the implementation of a compiler for a small ML-like language using the

primitives described in Chapter 2. We begin by describing the compiler’s architecture, then present

a more detailed description of the compiler stages. Finally, we discuss the language features we have

added as extensions to the core compiler.

3.1 Architectural Overview

Like most compilers, ours is divided into stages. Typical stages include type inference, continuation

passing style (CPS) transformation, closure conversion, and various optimizations. Unlike most

compilers, however, our compiler is structured as a minimal core compiler that can be extended to

support various language features. The core compiler supports compilation of a small polymorphic

lambda calculus that does not even include integers or Booleans. All additional functionality is

provided in extensions. A diagram of the architecture can be found in Figure 3.1. Note the shaded

boxes that illustrate file boundaries.

Each core compiler stage is implemented in one file. Extensions, on the other hand, generally

Recursive
Functions

Integers

Operators

Arrays

Type 
Inference

Type 
Checking

CPS 
Conversion

Closure 
Conversion

x86 Code 
Generation

Booleans

Core
Language

Figure 3.1: The Compiler Architecture. Shaded regions correspond to file boundaries.
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combine all of their code into one or two files. This compositional structure, which isolates features

from each other and the core compiler, has several nice properties for language experimentation.

To understand the basic functionality of a compositional stage one needs only to understand how it

operates on the core language. This learning process is simplified because there are no additional

features to distract the programmer. The architecture also simplifies the process of adding new

stages, as they can be developed and tested for the core language first and later extended with any

necessary feature support.

In addition, this layout makes it easy to understand how a given feature works, since the code

for that feature is isolated and contained in a small number of files. There are typically two files per

feature: one for the front end support and one for the back end support. This is possible because

each feature adds very little code to any one stage—often just one or two rewrites. Some features do

not need to add any code to some stages. For example, the recursive function extension is the only

feature that needs to extend the closure conversion stage. The number of files per extension will, of

course, increase as we begin to support more back ends, but all of the files will remain together in

their own directory, isolated from other features.

In contrast, consider a compiler organized by compiler stages. The code for each stage contains

references to every language construct. To understand any stage you must understand how it works

for the entire language, not just a minimal core language. In addition, if you want to add a new

feature to the language you usually end up editing almost every file in the compiler. To be fair, this

layout is potentially advantageous if the language being compiled does not undergo many changes

but new optimizations are frequently added. Our layout simplifies the process of adding language

features at the expense of making it slightly more complicated to add compiler stages. We feel that

this is a good design decision for a research compiler intended for language experimentation.

While there are obvious advantages to our type of layout, one may suspect that it may mask

troublesome interactions between features. This is a danger, but the logical toolkit makes it simple

to guarantee orthogonality of features. If an extension only refers to opnames that it defines then it

will be guaranteed to be compositional.

3.2 Stages of the Compiler

We now discuss the stages of the compiler, along with the languages and abstractions used to

represent the program being compiled during the various stages. The major stages of the compiler

and their corresponding languages are described in Figure 3.2.
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Compiler Stage Input language Output language
Parsing Source language AST
Type Inference AST Typed AST (TAST)
Type Checking TAST TAST
CPS Conversion TAST TAST
Closure Conversion TAST TAST
Code Generation TAST x86 assembly

Figure 3.2: Compiler Stages and Languages

e ::= v Variables
| let f(v1, · · · , vn) = e1 in e2 Function Definition
| f(e1, · · · , en) Function Application
| let v = e1 in e2 Let-Abstraction
| e : T Type Constraint

Figure 3.3: The Core Source Language

3.2.1 The Core Source Language

The specifics of the source language are not central to our work. We want to make sure that the

language is realistic in its demands from the compiler, but we are more interested in investigating

our compiler architecture than we are in creating a new language. Thus, we have chosen a source

language that is small but reasonably complete, derived from ML.

The source language is very similar to System F, but functions may take multiple arguments and

cannot be partially applied. The language is divided into a core language and extension features.

In this section we only discuss the core language. Extensions are described as they are introduced

in Section 3.3. The syntax of the core source language is described in Figure 3.3.

At first glance it may appear that we have oversimplified our language. It has no loops, no

recursion, and because type inference must be possible it is not possible to define the Y combinator.

Thus, our core language is not even Turing complete! However, this is only the core of the language.

All of these capabilities are added compositionally by extensions.

3.2.2 Parsing

The parser is responsible for converting the source language into an abstract syntax tree (AST). The

parser is implemented using the Phobos extensible parser tool [7], developed as part of the Mojave

project [14]. We do not go into detail about Phobos, referring the reader to the published literature.

The syntax for the untyped AST is described in figure 3.4. It is almost a one-to-one translation

of the source language, except that functions are represented as values without scope.
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e ::= v Variable
| λu

−→v . e Function Definition
| f(−→e )u Function Application
| letu v = e1 in e2[v] Let-Abstraction
| e : T Type Constraint

Figure 3.4: The Untyped Abstract Syntax Tree Language

e ::= v Variable
| λ

−−→
v :T . e Function Definition

| f(−→e :
−→
T ) Function Application

| let v :T = e1 in e2[v] Let-Abstraction
| Λ−→α . e Type Abstraction
| TyApply{e :Te;

−→
T } Type Application

| Constrain{e :T} Type Constraint

Figure 3.5: The Typed Abstract Syntax Tree Language

3.2.3 Type Inference

After parsing, the compiler must perform type inference on the untyped AST. The result is a typed

AST (TAST). The TAST syntax is given in Figure 3.5. The type system is a standard ML-style

system [9], defined by the grammar in Figure 3.6. Although it is the first stage we examine in detail,

type inference is exceptional in our compiler because its implementation is almost entirely informal.

The tactic portion of type inference is a compositional version of algorithm W [3] implemented in

OCaml. The algorithm takes five arguments as input:

infer A recursive reference to the inference function

tenv The set of type variables defined in this expression

venv The variable → type environment for this expression

s The substitution environment for this expression

e The expression whose type is to be inferred

It returns a triple: (e’, s’, T e’), where e’ is the typed version of e, s’ is the new substitution

environment, and T e’ is the type of e’.

For variables, the type is simply looked up in venv.

T ::= ⊥ Void type
| > Top type
| α Type variables
|
−→
T → T Multi-argument function types

| ∀−→α . T Universal abstraction

Figure 3.6: The Core Type System
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let infer_lambda infer tenv venv s / λu
−→v . e . =

let venv, tenv, args, argtypes =

Fold for each v in −→v :

let a = A fresh type variable in
let venv, tenv = Update environments with v:a in

venv, tenv, (v:a)::args, a::argtypes

in
let e’, s’, ty_e’ = infer tenv venv s e in

. λ args. e ′ /, s’, . argtypes → ty e ′ /

let infer_apply infer tenv venv s / f(−→e )u . =

let a = A fresh type variable in
let f’, s’, t_f = infer tenv venv s f in
let e_t, s’, types =

Fold for each e in −→e :

let e’, s’, t = infer tenv venv s’ e in
e’::e_t, s’, t::types

in
let s’ = unify s’ t_f (. types → a /) in

. f ′(e t : types) /, s’, . a /

Figure 3.7: Type inference for functions and applications. We use the informal notation Fold for
each x in −→x to represent the List.fold right function. List.fold right f [a1; ...; an] b is
equivalent to f a1 (f a2 (... (f an b) ...)).

let infer_var infer tenv venv s / !v . =

try let ty = SymbolTable.find venv v in
. v /, s, . ty /

with Not_found -> Raise an unbound variable exception

Type inference of Constrain terms is also simple. We infer the type of the constrained expression

and add the constraint to the substitution environment.

let infer_constrain infer tenv venv s / Constrain{e :T} . =

let e’, s’, t2 = infer tenv venv s e in
let s’ = Add constraint T=t2 to s’ in

. Constrain{e ′ :T} /, s’, .T /

To infer the type of a function, we create fresh type variables for each of its parameters, then infer

the type of its body. Inference of applications uses the unify function provided by MetaPRL, which

takes a substitution and two terms and extends the substitution to unify the terms (if possible). The

type of each function argument is unified with the corresponding parameter type in the function’s

type, and a fresh type variable is created to unify with the return type. The code for inference of

functions and applications appears in figure 3.7.

When inferring the type of a let expression, we generalize any free type variables. We anticipate

that the core language will be extended with imperative features, so we enact a value restriction—

we only generalize syntactic values. For now, our definition of syntactic value includes only lambda

expressions. This is overly restrictive, but known to be safe. In later versions of the compiler we have

http://metaprl.org/
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relaxed this definition. MetaPRL provides the free vars set function for calculating the set of free

variables in a term. Because HOAS requires many free-variable calculations, the implementation of

MetaPRL terms is designed to make this calculation efficient.

let infer_let infer tenv venv s / (letu v = e1 in e2) . =

let e1, s’, ty_e1 = infer tenv venv s e1 in
let e1, ty_e1 =

if not is_value a then
e1, ty_e1

else
let w = free_vars_set ty_e1 in
let w = Remove any free vars defined in s’ in
if is_empty w then

e1, ty_e1

else
(. Λw . e1 /), (.∀w . ty e1 /)

in
let venv = SymbolTable.add venv v ty_e1 in
let e2, s’, ty_e2 = infer tenv venv s’ e2 in

(. let v : ty e1 = e1 in e2 /), s’, . ty e2 /

Since type inference is a syntax-directed transformation, we can get special support from MetaPRL

for combining these individual functions into a unified type inference tactic. A MetaPRL resource

is a structure that has been designed to simplify this task. A resource is a tactic that dispatches

sub-tactics based on extensible pattern matching against terms. After declaring and initializing the

type inference resource typeinf we can build the tactic by specifying pairs of antiquotations and

tactics.

let resource typeinf +=

[/ e ., report_error;

/ !v ., infer_var;

/ Constrain{e :T} ., infer_constrain;

/ λu
−→v . e ., infer_lambda;

/ e1(e2)u ., infer_apply;

/ letu v = e1 in e2 ., infer_let]

When the typeinf tactic is applied to a term, the tactic corresponding to the best (most specific)

match in the table is applied. Because of the best-match semantics, the report error tactic is only

applied if no other pattern in the table matches. New match cases can later be added by extensions,

and the antiquotations in the table can include nested terms if necessary.

The formal portion of type inference is defined by a single judgment:

` 〈〈Constrain{e :T}〉〉
` 〈〈erase{e}〉〉 C-Infer

This judgment may appear somewhat backwards, since it mentions type erasure (erase{e}, described

in Section 3.2.4) and type constraint but not type inference. This rule defines equivalence between

typed and untyped programs. It says that a typed program is equivalent to an untyped one (in

http://metaprl.org/
http://metaprl.org/
http://metaprl.org/
http://metaprl.org/
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erase{Constrain{e :T}}
← [E-constrain]→

Constrain{erase{e} :T}

erase{let v :T = e1 in e2[v]}
← [E-let]→

letu v = erase{e1} in erase{e2[v]}

erase{f(−→e :
−→
Te)}

← [E-apply]→
f(erase{−→e })u

erase{λ
−−→
v :T . e}

← [E-λ]→
λu
−→v . erase{e}

erase{Λ α1, . . . , αn. e[α1, . . . , αn]}
← [E-Λ]→

erase{e[>, . . . ,>]}

erase{TyApply{e :Te;
−→
T }}

← [E-tyapply]→
erase{e}

erase{!v} ← [E-var]→ !v

Figure 3.8: Type Erasure Rewrites

the sense of the compilability judgment) if 1) the typed program is well-typed, and 2) erasing the

types from it yields the untyped program. This rule does not specify how the typed program was

produced—it could have been produced by an oracle, or even by hand. Rather than trusting the

entity that gave us the typed program to produce valid output, we validate the program for any

properties that we care about.

But how do we actually use the C-Infer rule? Parsing yields an untyped expression eu that

we wish to compile. In other words, we want to prove the judgment ` 〈〈eu〉〉. To do this, we first

execute the informal type inference algorithm to produce a typed expression ei and its type Ti. We

then apply a logical cut rule to insert 〈〈erase{ei}〉〉 into our proof.

〈〈erase{ei}〉〉 ` 〈〈eu〉〉 ` 〈〈erase{ei}〉〉
` 〈〈eu〉〉

Cut(〈〈erase{ei}〉〉)

Note that this is not a new axiom, but an application of an existing axiom. If erasing the types of

ei yields eu then the first subgoal is proved. We then can attempt to prove the second subgoal by

applying the C-Infer rule.

The use of an informal type inference algorithm runs somewhat counter to our goal of using

declarative implementation as much as possible. We have chosen to validate a typed program from

an untrusted source instead of producing the program with trusted code in the first place. Our

motivation for taking this route was a belief that the complexity of a formal type inference imple-

mentation would likely outweigh the benefits it would bring. We do believe a formal implementation

would be possible, however, so we may attempt one in the future.
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3.2.4 Type Erasure

As we have seen, type inference relies a great deal on informal code. We need to verify that this step

has not changed the program in any way other than adding type information. By referencing erase{e}

instead of eu directly, the C-Infer rule forces the compiler to verify that erasing the types from e

yields a term that is alpha-equivalent to eu. The erase{} term itself is a meta-language operator

that must be eliminated by the end of the erasure stage. Introducing meta-language constructs

into programs in order to transform them is one of the principle techniques used in our compiler.

Type erasure and many other transformations are sweep-down transformations. In a sweep-down

transformation the meta-operator is introduced at the top level of the program. For any given term

the operator is applied to the term itself and then recursively applied to its subterms. When the

operator hits a leaf (variable) term it is discarded.

One might wonder what would happen if a meta-operator such as erase{} was left in a program,

perhaps because of a faulty tactic. It may appear that this is a way for a tactic to corrupt a

compilation. This is not the case, however. Later stages of the compiler will not have any rules or

rewrites that deal with the meta-operator. The code generation stage, for example, will not have

any rules for generating code from an erase{} operator. As soon as such a stage is reached the

compilation will fail. Thus, an error of this sort can cause the compiler to fail, but cannot cause the

compilation to be corrupted.

The rewrites for type erasure are given in figure 3.8. Before discussing the semantics of the

rules there is a notational issue that should be mentioned. We use vector notation in this thesis to

present the large-step semantics of various stages. The actual implementations of vector rewrites are

generally more fine-grained. For example, the E-λ rule in figure 3.8 is actually composed of three

rules:

erase{λ
−−→
v :T . e}

← [E-λ-start]→

Erase{| ` λ
−−→
v :T . e |}

Erase{|−→v1 ` λ (v :T,
−−−→
v2 :T2). e[v] |}

← [E-λ-cons]→

Erase{|−→v1 ; v ` λ
−−−→
v2 :T2. e[v] |}

Erase{|−→v ` λ (). e |} ← [E-λ-nil]→ λu
−→v . erase{e}

This is a common idiom for processing sequents in sweep-down transformations such as erase{}. The

sequent being transformed is first wrapped in an outer sequent with a temporary sequent argument

(in this case, Erase). Each hypothesis of the inner sequent is processed and its binding is moved to

the outer sequent. When the inner sequent has no more hypotheses it is discarded, the outer sequent

is replaced by the transformed version of the inner sequent (in this case λu), and the transformation

recurses into the conclusion.

For the most part, the erase{} stage is quite simple. Typed terms are just replaced by their

untyped counterparts, or discarded if there are no such counterparts. Constrain{e : T} is the
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exception, since any type constraints appearing in e must have been put there by the programmer.

The whole transformation is syntax-directed so we use a MetaPRL resource to dispatch the rewrites.

The E-Λ rewrite is worth examining in a bit more detail. This is a case where HOAS constrains

us somewhat. We would like to simply write erase{e} on the right-hand side and forget about the

type variables since we know that they are all about to be erased anyhow. However, HOAS forces us

to account for them at all times and prevents us from leaving them as free variables. Our solution is

to iterate through the list of bindings and substitute > for each of them. Another possible approach

to E-Λ is the following two rewrites:

erase{Λ−→α . e} ← [E-Λ]→ erase{Λ′−→α . erase{e}}

erase{Λ′−→α . e[]} ← [E-Λ′]→ e[]

In other words, we first erase{} the body of the Λ term, then discard the variable bindings when

there are no references to them. This is a bit more satisfying, since we do not need to perform

semantically suspicious substitutions or even treat each binding individually (the vector notation

isn’t hiding anything in E-Λ′). However, this approach would require revisiting the Λ terms after

processing their subterms, which would complicate the tactic code somewhat. We have opted for

the simpler solution in our compiler.

3.2.5 Type Checking

Type checking, represented by the judgment Γ ` e ∈ T , is implemented formally, using inference

rules. The set of rules, given in figure 3.9, is typical for a specification of an ML-style type system.

In the T-tyapply rule we have used the notation T1[
−→
T2/
−→α ] to denote the substitution of the types

−→
T2 for the variables −→α in type T1. Type checking is syntax-directed, so we can once again employ a

MetaPRL resource for dispatch.

The type checking rules use two related judgments. We use a kind system which currently only

contains one kind, Ω. For each primitive type T in the type system we define a well-formedness

judgment ` T ∈ Ω. Well-formedness rules for composite types are inductively defined. In addition,

we define a type equality judgment Γ ` T1 = T2, which tests for structural equality. In our current

type system type equality is the same as alpha-equivalence, but we anticipate extending the type

system with features that do not maintain this invariant.

The typed AST carries some redundant type information in order to make type checking simpler.

For example, in a minimal TAST, an Apply term wouldn’t need to carry any types at all. However,

type checking would require a type environment to supply the types of the function arguments.

Alternately, a Typeof{e} type could be used, at the expense of computing the type of e multiple

times. This is another case where we have chosen a less efficient implementation for the sake of

simplicity.

http://metaprl.org/
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Γ;
−−→
v :T1 ` e ∈ T2

Γ ` λ
−−→
v :T1. e ∈

−→
T1 → T2

T-λ

Γ ` −→e ∈
−→
T1 Γ ` f ∈

−→
T1 → T2

Γ ` f(−→e :
−→
T1) ∈ T2

T-apply

Γ ` e1 ∈ T1 Γ; v :T1 ` e2[v] ∈ T2

Γ ` let v :T1 = e1 in e2[v] ∈ T2
T-let

Γ;−→α ∈ Ω ` e ∈ T

Γ ` Λ−→α . e ∈ T
T-Λ

Γ ` e ∈ ∀−→α . T1 Γ;` T1[
−→
T2/
−→α ] = T3

Γ ` TyApply{e :∀−→α . T1;
−→
T2} ∈ T3

T-tyapply

Γ ` e ∈ T1 Γ ` T1 = T2

Γ ` Constrain{e :T1} ∈ T2
T-constrain

Γ; v :T ;∆[v] ` !v ∈ T
T-var

Figure 3.9: Type checking rules for the core TAST

It should be noted that there are two known flaws in the type checking rules described here.

First, they do not verify the value restriction that was introduced in the type inference section.

This means that if an error in the type inference algorithm was to generate a program that violated

the value restriction, the type checker would not detect it, and the output of the compiler could be

corrupted. This is just the kind of scenario we were trying to avoid by using formal methods! Later

versions of the compiler have corrected this oversight by verifying the value restriction during type

checking.

An additional flaw is that type well-formedness is not verified in most of the rules. This is a less

serious problem, since there are many parts of the compiler that will fail if a type is malformed. It is

extremely unlikely that a program containing such a type could be compiled, so this problem would

probably only lead to failed compilations, not corrupted ones. Nonetheless, we have corrected the

problem in more recent versions of the compiler.

3.2.6 CPS Conversion

The implementation of CPS conversion is a good illustration of our methodology. We wish to

demonstrate both that 1) the formal definition of the compiler transformations is natural, and 2)

that the methodology is compositional. We present a very straightforward implementation based on

the ability of the framework to combine the meta-language and the object language.

We use a higher-order variant of Danvy and Filinski’s approach to CPS conversion [4]. We start

by adding a new term to the meta-language, let cps v = [[e : T ]] in c[v], where e is the expression
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that is being converted, T is the type of that expression and c is the meta-continuation of the CPS

process. In other words, c is the rest of the program and v marks the location where the CPS of

e should go. The semantic brackets around e and T signify that these expressions must be CPS-

transformed before being substituted into c. Note that we use meta-language notation in place of

Danvy and Filinski’s “static” operators @ and λ.

The following rule specifies CPS for variables.

let cps v = [[(!x) :T ]] in c[v]← [CPS-var]→ c[!x]

In this rule, the meta-continuation is consumed. The rewrite puts the variable into the appropriate

location and returns the whole expression.

In the rule for let expressions, a new meta-continuation is created.

let cps v2 = [[(let v1 :T1 = e1 in e2[v1]) :T2]] in c[v2]

← [CPS-let]→

let cps v3 = [[e1 :T1]] in

let v1 :TyCPS{T1} = v3 in

let cps v2 = [[e2[v1] :T2]] in c[v2]

TyCPS is a meta-term that is used to specify the CPS conversion for types, in a similar way to how

the let cps term is used to specify the CPS conversion for expressions. It is quite simple, since the

only modification that needs to be made is the addition of an extra continuation type to function

types. Here is the rewrite for that step:

TyCPS{
−→
T → Tr}

← [TyCPS-tyfun]→

((Tr → ⊥), TyCPS{
−→
T })→ ⊥

The rule for the CPS of applications could be specified the following way:

let cps v = [[f(−→e :
−→
Te) :T ]] in c[v]

← [CPS-apply]→

let cps f ′ = [[f :
−→
Te → T ]] in

let cps ve = [[−→e :
−→
Te]] in

let c′ : (TyCPS{T} → ⊥) = λ v :TyCPS{T}. c[v] in

f ′((c′, ve) : ((TyCPS{T} → ⊥), TyCPS{
−→
Te}))

The function and its arguments are CPS-converted, and a new continuation c2 is created that can
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take the result of the application and pass it to the original continuation. The application is then

rewritten to use pass c2 as the first argument (the continuation argument) of vf .

However, in our implementation we add a meta-let operation (with the usual semantics) to the

meta-language.

meta let v = e1 in e2[v]← [meta let]→ e2[e1]

Using this operation, the CPS-apply rule is written as follows.

let cps v = [[f(−→e :
−→
Te) :T ]] in c[v]

← [CPS-apply]→

let cps f ′ = [[f :
−→
Te → T ]] in

let cps ve = [[−→e :
−→
Te]] in

meta let T ′ = TyCPS{T} in

meta let Tc′ = T ′ → ⊥ in

let c′ :Tc′ = λ v :T ′. c[v] in

f ′((c′, ve) : (Tc′ , TyCPS{
−→
Te}))

This is more efficient because the reduction tactic for CPS only needs to compute the types once,

instead of three times. Again, the ability to combine the object language with meta-language can

yield very compact, straightforward, and precise formal code.

The ability to manipulate the meta-continuations also helps make the rules for the conversion of

the argument lists very concise. Notice that the list is built from the outside in and does not need

to be reversed!

let cps v = [[() : ()]] in c[v]

← [CPS-args-nil]→

c[()]

let cps v = [[(e1 :: −→e ) : (T1 ::
−→
T )]] in c[v]

← [CPS-args-cons]→

let cps v1 = [[e1 :T1]] in

let cps vr = [[−→e :
−→
T ]] in

c[(v1 :: vr)]

In addition to the basic CPS transformation, we use optimized rewrites to prevent CPS from

generating a superfluous continuation for function calls in tail positions. When transforming the

body of a function definition, we add the extra continuation parameter and use a tail cps term

instead of let cps.

let cps v = [[(λ
−−→
v :T . e) : (

−→
T → Te)]] in c[v]

← [CPS-λ]→

c[λ (c′ : (TyCPS{Te} → ⊥),
−−−−−−−−→
v :TyCPS{T}).

tail cps c′([[e : Te]])]
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tail cps c([[f(−→e :
−→
Te) : T ]])

← [CPS-apply-tail]→
let cps f ′ = [[f :

−→
Te → T ]] in

let cps ve = [[−→e :
−→
Te]] in

meta let Tc = TyCPS{T} → ⊥ in
let c′ :Tc = c in
f ′((c′, ve) : (Tc, TyCPS{

−→
Te}))

tail cps c([[let e1 :T1 = v in e2[v] : T2]])
← [CPS-let-tail]→

let cps w = [[e1 :T1]] in
let v :TyCPS{T1} = w in
tail cps c([[e2[v] : Te]])

Figure 3.10: Tail-optimized CPS rewrites

The CPS-Λ rule also uses tail cps to transform its body for the same reason.

The CPS-let-tail rule is a modified version of the normal CPS-let rule that passes the

tail cps through to the tail position, using the normal CPS transformation for the value being

bound. If an application is found in tail position, the CPS-apply-tail rule is used to process it

without creating an extra continuation. These rewrites are shown in figure 3.10. Notice that this

rule is essentially the same as CPS-apply, the only difference being the definition of c′. One might

wonder why c′ is defined at all in CPS-apply-tail since it’s just an alias for c and it only appears

once in the rest of the program. The reason is that CPS-apply-tail is a derived rewrite. The let

definition is left in to make it easier to formally prove that CPS-apply-tail can be derived from

CPS-apply. (The binding itself will be optimized away in a later stage.) In fact, CPS-let-tail

is also a derived rewrite, based on the CPS-let rule. To prove these derivations, however, we also

need provide the definition of tail cps in terms of let cps. This is done in the CPS-tail rewrite.

tail cps c([[e : T ]])

← [CPS-tail]→

let cps v = [[e :T ]] in c(v : TyCPS{T})

This definition and an η-expansion rewrite suffice to prove the derived rewrites. In addition to

aiding us in our proofs, CPS-tail allows the compiler to fall back to the unoptimized case if there

is no match for tail cps c([[e : T ]]) in the cps resource for some specific expression e. This will

happen, for example, when a function does not end with a tail call or an extension fails to provide

a tail-optimized version of its CPS transformation.

3.2.7 Closure Conversion

Closure conversion is a stage to which HOAS brings both advantages and disadvantages. The notions

of closed terms and free variables are primary in HOAS, which makes much of the closure process

trivial to express. On the other hand, HOAS prevents capturing substitution, which is normally an
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advantage but can be a hindrance during closure conversion.

In closure conversion we wish to transform every function in the program so that it contains no

free variables. This is accomplished in three stages. First, each function definition is transformed to

be the application of a closure abstraction. The corresponding rewrite is:

λ
−−→
v :T . e← [add frame]→ (λc (). λ

−−→
v :T . e)(() : ())c

We define a new lambda form, λc
−−→
v :T . e, to represent closure abstraction. The corresponding ap-

plication form, c(−→e :
−→
Te)c, represents allocation of the environment and construction of the closure.

Initially each function is defined with an empty closure applied to no expressions.

During the second stage, each free variables in the function is re-bound immediately above the

closure definition. We introduce a special type of let expression for this stage and apply an inverse-

beta reduction rewrite:

e[!v]← [beta inverse]→ letc x :T = !v in e[x]

Clearly this rewrite cannot be applied in an automated fashion. For any given term it would not

be clear which free variable v would refer to. More troubling, semantically speaking, is the type T ,

which does not appear on the left side of the rewrite. The context-free nature of rewrites implies

that the rewrite is valid for any choice of T , which is clearly not true1. This is an example of a

rewrite that is not generally semantics-preserving. Because of this, we must trust the tactic code

that drives the closure conversion stage to perform a type check afterwards.

In order to apply the beta inverse rewrite, an informal tactic must be written that specifies !v and

T by providing the contractum of the rewrite. We must be careful in writing this tactic, however,

because the type T that it provides must be correct or the compilation can be corrupted. The

tactic itself is straightforward. For each free variable in each closure, the tactic applies beta inverse

with the closure application as e. A type environment is used to provide the correct type T . Thus,

eventually each closure looks like:

letc x1 :T1 = v1 in
...

letc xn :Tn = vn in

(c[x1 . . . xn])(() : ())c

The third and final stage is to put each letc-bound variable into the closure. This is straightfor-
1Later versions of the compiler have addressed this weakness by using a sweep tactic to formally collect the

necessary type information.
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e += AtomUnop{o; e} Unary Operator Atom
| AtomBinop{o; e1; e2} Binary Operator Atom
| AtomRelop{o; e1; e2} Relational Operator Atom

o ::= Unop[opname]{T → Tr} Unary Operator Prototype
| Binop[opname]{(T1, T2)→ Tr} Binary Operator
| Relop[opname]{(T1, T2)→ Tr} Relational Operator

Figure 3.11: Operator extension additions to the Typed AST

ward and can be done with a simple resource-driven rewrite:

letc x :Tx = vx in (λc
−−→
w :T . e[x])(−→y [x] :

−→
Ty)c

← [add to frame]→

(λc (wx :Tx,
−−→
w :T ). e[wx])((vx,−→y [wx]) : (Tx,

−→
Ty))c

In order to validate the type introduced in the beta inverse rewrite, and in order to catch potential

programming errors in the other rewrites as well, the output of closure conversion is type checked

before being passed to the backend.

3.2.8 The x86 Backend

The author was not involved in the design or implementation of the x86 backend. Accounts of this

work can be found in [11] and [12].

3.3 Compiler Extensions

In Section 3.1 we gave an overview of the compiler’s architecture, describing the separation of the

compiler core from the extensions used to implement most language features. Here we describe the

implementation of several of the extensions to the core compiler.

3.3.1 Operators

The operator extension provides the ability to define and use unary, binary, and relational operators.

It does not define any specific operators, but provides prototypes that can be specialized by other

extensions. This allows the type inference and type checking rules to be implemented once, in the

operator extension, and then reused by all other extensions that need to create operators.

The operator extension augments the typed AST as described in figure fig-op-extension. Relops

are relational operators such as the integer operations < and <=. They are kept separate from

ordinary Binops as a convenience for the backend, where they need to be treated differently from

regular binary operators.



29

Type inference and checking rules are extended to include the new expressions. For example, the

following rule is added to type check unary operators.

Γ ` e ∈ T1 Γ ` t = T2 Γ ` IsOp{Unop[n]{T1 → T2}}
Γ ` AtomUnop{Unop[n]{T1 → T2}; e} ∈ t

The Γ ` IsOp{o} judgment asserts the validity of the operator o. The following code to support

unary operators is added to the type inference tactic.

let infer_unop infer tenv venv s / AtomUnop{Unop[op]{T→ Tr}; e} . =

let e’, s, ty_a = infer tenv venv s e in
let s = Add the constraint T=ty a in

. AtomUnop{Unop[op]{T→ Tr}; e ′} /, s, . Tr /

The code for binary operators and relational operators is analogous. Note that the typed and

untyped representations of an operator are the same—ad-hoc polymorphism is not supported. The

operator stores the expected types of its operands and its return type, even in the untyped AST.

This information is used to automate the type inference and checking rules.

This design makes it extremely simple for an extension to add a new operator. Only two additions

are required: an addition to the parser, and an IsOp{} rule. In return, type checking and type

inference come for free. For example, the integer extension defines the following IsOp{} rule for

multiplication.

Γ ` IsOp{Binop[“*”]{(I, I)→ I}}

If an erroneous Binop (say Binop[“*”]{(string, I)→ I}) appeared in the program, perhaps because

of a parser error, it would be caught as a type error because there would be no corresponding IsOp{}

rule.

3.3.2 Unit, Booleans, Integers, and String Literals

It is very easy to extend the compiler with new base types. The unit extension, which provides the

unit literal and unit type, is probably one of the smaller extensions imaginable, weighing in at just

51 lines of code.

The Boolean extension provides the true and false literals, if / then / else expressions, and

the Boolean type B. Logical operations on booleans are also provided by building on the operator

extension.

The integer extension provides integer values, types and operations. We use a 31-bit represen-

tation of integers, setting the least-significant bit to 1 in order to distinguish integer values from

word-aligned pointers for the garbage collector. The entire extension is about 190 lines of code.

The string extension supports the use of string literals in programs. Useful operations such as
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subscripting, concatenation, and copying are not supported, but adding them would be straightfor-

ward.

3.3.3 Tuples and Arrays

The tuple and array extensions add composite types to the compiler. The tuple extension provides a

tuple constructor, tuple subscript operator, and product type. The array extension adds a mutable

array type to the language. Operations are provided for creating arrays and getting and setting

array elements. In this version of the compiler, arrays and tuples are the only composite types.

Later versions also include reference cells and existential types.

When imperative features such as arrays are added to the language, knowing the language’s

order of operation becomes important for understanding its semantics. The order of operation in

the current compiler is not modularly defined. It is established as a side-effect of the rules for the

CPS transformation stage. This is an area that future versions of the compiler could improve upon.

3.3.4 Recursive Functions

Recursive functions are provided by a fixpoint operator. For this reason the extension is called the

fix extension. The source-level syntax for recursive functions is

e ::= let rec f(v1, · · · , vn) = e in e

where f is in scope in both subexpressions. In order to give the function’s body access to its

name, recursive functions are represented as taking an extra parameter. This is the untyped AST

representation:

e ::= λur(−→v , f). e[f ]

The representation is similar in the rest of the compiler, essentially mirroring the account of ordinary

functions. Many of the rewrites and inference rules we have described for typed and untyped

functions are parameterized over the kind of function, which can be either standard, closure, or

recursive. This allows us to reuse any rules that are truly generic and only override those that need

to be customized. The only non-standard step for recursive functions is type inference, in which

care must be taken to treat the f parameter properly.

let infer_lambda_rec infer tenv venv s / λur(
−→v , f). e . =

let a = A new type variable in
let venv, tenv = Update environments with f:a in
let f_t, s, ty_f = infer tenv venv s (. λu(−→v ). e /) in
(match f_t with

/ λ (−→vt ). et . ->

let s = Add the constraint a=ty f in
. λr (−→vt , f : ty f ). et /, s, . ty f /)
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The fix extension is very simple (110 lines of code) but it only provides single-recursion. This is

sufficiently general for a proof of concept but not ideal for a production language. In later versions

of the compiler we have implemented mutual recursion using a declarations/definitions scheme.
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Chapter 4

Results

In this thesis we have presented a new methodology for compiler construction along with a case

study. The compiler we have created is primitive but complete, in that it can compile simple

programs to valid x86 assembly. Our goal was to develop techniques that would enhance reliability

and modularity. Our methodology has several desirable properties when compared to traditional

techniques:

1. Isolation of trusted code: The trusted core of the compiler is kept small and isolated from the un-

trusted portion. Although this was not fully realized in early versions of the compiler, the trusted

core is normally implemented using formal rules and rewrites, which are generally concise and

easy to reason about. Furthermore, the formal framework makes a number of syntactic guaran-

tees about rewrites that help minimize implementation errors. In compilers implemented using

traditional general-purpose languages there is normally no such isolation of trust or protection

from erroneous transformations.

2. Declarative syntax: Another advantageous property of the trusted core is that it is implemented

in a declarative syntax that allows the programmer to express code transformations in a manner

that closely mirrors textbook accounts. In many cases the implementation of a transformation

is a one-to-one translation of a formal description of its operational semantics. This is clearly

not the case with compilers implemented using general-purpose languages.

3. Compositionality: This property is achieved by judicious use of MetaPRL resources for extensible

pattern matching. Orthogonal features can be easily be added and removed from the source

language. The framework also provides tools for managing non-orthogonal features, including

allowing dependencies between extensions. The source code files for extensions are self-contained,

allowing anybody reading the code to quickly understand the semantics of each extension. In

many traditional compilers, language feature implementations are intertwined throughout the

entire code base.

http://metaprl.org/
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Although it is difficult to draw conclusions based on code size, it is encouraging to note that

the size of our compiler is quite small. According to David A. Wheeler’s “SLOCCount” tool, our

compiler contains about 7900 physical lines of code, with about 4900 of those coming from the x86

backend. This distribution is not surprising since the backend required a much larger proportion

of informal code. One large source of informal code was the register allocator, which accounted

for about 1600 lines of code. Others were the pretty-printer for the x86 assembly code and various

utilities to determine the set of operands and variables used in a given block.

This leaves about 3000 lines of code to implement the front end of the compiler. Previous

experience [13] in our group suggests that this is about a factor of 10 fewer lines of code than would

be required to implement a similar compiler in OCaml using traditional methodologies. It could

be argued that we should include the size of MetaPRL in our calculations, but that would not be

appropriate. MetaPRL is a general-purpose logical framework that was not conceived as a compiler-

writing toolkit—in fact, its primary design purpose was completely unrelated to compilation.

Our goal in this work was not to produce a verified compiler. There are those who argue that

verification is the only worthwhile goal in the formalization of programs. While we agree that

verification is an important application of formal methods and highly desirable, we disagree that it

must be an all-or-nothing affair. Complete formalization places a heavy burden on the programmer,

and in many (if not most) cases the benefits of formalization will not outweigh the costs. By pursuing

development in the “semi-formal” style that we have outlined in this thesis, the programmer can

derive many of the benefits of formal development (improved reliability and declarative specification,

for example) without needing to push the formalization into every corner of the compiler.

However, we do not want to close the door on verification, so our techniques have been designed

to produce artifacts that are amenable to verification. It is interesting to note that only 236 rewrites

were required to implement the compiler. Thanks to the separation of trusted and untrusted code,

these rewrites are nearly the only parts of the compiler that would need to be verified if full ver-

ification was desired. There are few enough of them that such a task seems feasible. Also, if full

verification is not required but an added degree of confidence is needed then partial verification is

possible.

http://metaprl.org/
http://metaprl.org/
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Chapter 5

Future Work

This thesis describes what was essentially the first working version of our compiler. Since then there

have been many improvements made to the compiler. Some of these are:

• Most of the invalid rewrites in the compiler have been eliminated, strengthening the separation

between trusted and untrusted code.

• A type system has been added to MetaPRL which adds (meta-)types to the term language. This

has helped us to detect and eliminate a large number of bugs.

• MetaPRL theories can now define custom, modular grammars that enable us to specify our

rewrites and rules in a syntax very similar to the pretty-printed syntax we use in this thesis.

This has made the rules much more concise than their original raw MetaPRL term syntax imple-

mentations.

• All functions are now treated as recursive, and true mutual recursion is possible. A list of

mutually recursive functions is represented using two nested sequents, with the outer sequent

acting as a list of declarations and the inner sequent acting as a list of definitions.

• Several optimizations have been implemented, including direct-call optimization, inlining, and

dead-code elimination.

• Several new imperative extensions have been added to the compiler, including reference cells,

sequencing, call/cc, and loops.

There is still work to be done, however. We would like to explore more challenging code movement

optimizations such as partial redundancy elimination [22]. Formalizing code motion is difficult in

HOAS, particularly in the presence of imperative features.

Our research group has explored the benefits of speculative execution to simplify programming

for distributed systems. As part of this work we would like to add speculations [31] to our compiler

http://metaprl.org/
http://metaprl.org/
http://metaprl.org/
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as a language primitive. This will require some runtime support, but should be quite simple because

speculations are very simple, semantically.

Finally, now that we have established techniques for writing a compiler in a formal toolkit we

would like to start proving properties of the compiler, preferably with a high degree of automation.

We have begun to explore reflection as a means for meta-reasoning about formal artifacts [26]. We

expect that reflection will provide a generic mechanism for automatically internalizing the artifacts

specified in a prover.
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Chapter 6

Related Work

FreshML [29] adds to the ML language support for straightforward encoding of variable bindings

and alpha-equivalence classes. Our approach differs in several important ways. Substitution and

testing for free occurrences of variables are explicit operations in FreshML, while MetaPRL provides

a convenient implicit syntax for these operations. Binding names in FreshML are inaccessible, while

only the formal parts of MetaPRL are prohibited from accessing the names. Informal portions—such

as code to print debugging messages to the compiler writer, or warning and error messages to the

compiler user—can access the binding names, which aids development and debugging. FreshML is

primarily an effort to add automation; it does not address the issue of validation directly.

Liang [21] implemented a compiler for a simple imperative language using a higher-order abstract

syntax implementation in λProlog. Liang’s approach includes several of the phases we describe here,

including parsing, CPS conversion, and code generation using a instruction set defined using higher-

abstract syntax (although in Liang’s case, registers are referred to indirectly through a meta-level

store, and we represent registers directly as variables). Liang does not address the issue of validation

in this work, and the primary role of λProlog is to simplify the compiler implementation. In contrast

to our approach, in Liang’s work the entire compiler was implemented in λProlog, even the parts of

the compiler where implementation in a more traditional language might have been more convenient

(such as register allocation code).

Lerner et. al. have implemented a framework for compiler experimentation [17, 18] where new

compiler optimizations are proven correct automatically. In their method the programming language

must stay fixed, so their approach, while great for experimenting with compiler optimizations, is not

appropriate for programming language experimentation.

Hannan and Pfenning [8] constructed a verified compiler in LF (as realized in the Elf programming

language) for the untyped lambda calculus and a variant of the CAM [2] runtime. This work

formalizes both compiler transformation and verifications as deductive systems, and verification is

against an operational semantics.

Previous work has also focused on augmenting compilers with formal tools. Instead of trying

http://metaprl.org/
http://metaprl.org/
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to split the compiler into a formal part and a heuristic part, one can attempt to treat the whole

compiler as a heuristic adding some external code that would watch over what the compiler is doing

and try to establish the equivalence of the intermediate and final results. For example, the work of

Necula and Lee [23, 24] has led to effective mechanisms for certifying the output of compilers (e.g.,

with respect to type and memory-access safety), and for verifying that intermediate transformations

on the code preserve its semantics. Pnueli, Siegel, and Singerman [30] perform verification in a

similar way, not by validating the compiler, but by validating the result of a transformation using

simulation-based reasoning.

Semantics-directed compilation [16] is aimed at allowing language designers to generate compilers

from high-level semantic specifications. Although it has some overlap with our work, it does not

address the issue of trust in the compiler. No proof is generated to accompany the compiler, and

the compiler generator must be trusted if the generated compiler is to be trusted.

Boyle, Resler, and Winter [1], outline an approach to building trusted compilers that is similar

to our own. Like us, they propose using rewrites to transform code during compilation. Winter

develops this further in the HATS system [32] with a special-purpose transformation grammar. An

advantage of this approach is that the transformation language can be tailored for the compilation

process. However, this significantly restricts the generality of the approach, and limits re-use of

existing methods and tools.

An example of a systematic but informal approach to programming language exploration can be

found in the interpreters that accompany Pierce’s book [28]. Written in OCaml, these interpreters

provide implementations of assorted lambda calculi presented in the book. They are very useful

for language experimentation, but suffer from various shortcomings typical of tools created using

traditional techniques. Features are not compositional, implementation transparency is poor, and

there is no hope of reasoning about the implementation.
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