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Abstract

The experiments discussed in this thesis focus on the interaction of a single trapped

atom with the single mode of a high-finesse optical cavity, in the regime of strong

coupling.

Chapter 1 gives a brief introduction, after which Chapter 2 describes our recent

measurements of the transmission spectrum of the atom-cavity system. The spectrum

exhibits a clearly resolved vacuum-Rabi splitting, in good quantitative agreement with

theoretical predictions. A new Raman scheme for cooling atomic motion along the

cavity axis enables a complete spectrum to be recorded for an individual atom trapped

within the cavity mode, in contrast to all previous measurements of this type that

have required averaging over 103 − 105 atoms.

Chapter 3 discusses our observations of photon blockade for the transmitted light

in the presence of one trapped atom. Excitation of the atom-cavity system by a first

photon blocks the transmission of a second one, thereby converting an incident Pois-

sonian stream of photons into a sub-Poissonian, anti-bunched stream, as confirmed

by measurements of the photon statistics of the transmitted field. The intensity cor-

relations of the cavity transmission also reveal the energy distribution for oscillatory

motion of the trapped atom.

Chapter 4 details a set of simple but necessary measurements of relevant exper-

imental parameters such as cavity geometry, linewidth, mirror properties, birefrin-

gence, and detection efficiency. The thesis concludes with Appendix A, describing

the efficient laser setup we use for our magneto-optical traps.
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Chapter 1

Introduction

1.1 Brief overview of the experiment

The cavity QED system consists of an atom coupled to a single mode of the elec-

tromagnetic field in a cavity. This system is interesting for a number of reasons.

To start with, it is a simple quantum mechanical entity, reduced to elementary con-

stituents: atoms and photons; thus, it is often possible to predict its behavior with

an easily manageable theoretical model. Also, in the regime of strong coupling, the

rate of interaction between the atom and the field is the dominant parameter in the

problem, meaning that dissipative mechanisms do not wash out the coherent evolu-

tion of the system. In addition, the cavity output consists of a well-defined, single

spatial mode, allowing the photon detection efficiency to be far superior to that in

free-space, hence making cavity QED an ideal platform for the study of quantum

optics. This system also lends itself well to the conversion of stationary qubits of

quantum information, as encoded in long-lived atomic states, into “flying” qubits,

represented by easily-transported photonic states. This makes it an attractive setup

for the implementation of quantum networking and of other quantum information

science protocols.

Our experiment studies the interaction of a single Cesium atom with the quantized

mode of an optical cavity. The heart of the experimental apparatus is the physics

cavity, a 42 µm-long high-finesse Fabry-Perot resonator (see Fig. 1.1). The atom is

localized within the cavity mode by means of an intra-cavity far-off-resonance trapping
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Figure 1.1: Cartoon representation of our experiment, showing the atom and the
cavity, as well as the various laser beams illuminating them.

(FORT) beam, essentially forming “optical tweezers” for the atom. The geometry of

the cavity, the quality of its dielectric mirrors, and the FORT parameters are such that

the rate g of coherent interaction between the atom and the cavity field far exceeds

all relevant loss rates due to dissipation. These losses are the cavity decay rate κ,

the spontaneous emission rate γ, and the atom loss rate 1/T due to a finite trapping

lifetime. For our experiment, typical values are g = 2π × 34 MHz, κ = 2π × 4 MHz,

γ = 2π × 2.6 MHz, and T = 2− 3 s, thus g � (κ, γ, 1/T ). This parameter regime is

known as strong coupling.

The cavity is locked to a fixed length by monitoring the transmission of a locking

beam, which is, like the FORT field, resonantly coupled to the cavity and far detuned

from any Cesium transitions, but too weak to alter significantly the trapping potential.

Cold atoms are delivered to the intra-cavity FORT by being dropped from a magneto-

optical trap (MOT) above the cavity. The falling velocity of the atoms is cooled by

two pairs of beams in a σ+σ− optical lattice configuration, which illuminate from the

side (i.e., transversely to the cavity axis) the space between the mirrors. Once an
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atom is loaded in the FORT, we use lasers to drive the cavity QED system in order

to study the atom-field interaction, as inferred from the output photon stream. The

driving field can address either the atom, by illuminating the system from the side

with lattice or linearly polarized beams, or the cavity, usually by way of a linearly

polarized probe beam coupled to one of the longitudinal cavity modes, and near-

resonant with a Cesium transition (usually at 852 nm). Scattering the driving field

photons typically heats the atom, so in order to maintain a long trapping lifetime,

we counteract this effect with various cooling beams. Radial cooling is achieved by

the lattice beams, whereas axial cooling is done in a Raman sideband configuration

involving a separate beam coupled off-resonantly to the same longitudinal cavity mode

as the FORT. The light emerging from the cavity as a Gaussian beam is coupled into

a fiber beam splitter, which leads to two single photon avalanche photo-detectors

(APDs). The APD pulses signalling photon detection events are time-stamped and

recorded by a computer data acquisition card. The experimental timing is set with

the help of a computer-controlled programmable multi-channel TTL pulse generator.

For more details on the lab setup, please see Ref. [1], Chapter 2, and references

within.

1.2 Recent progress: A summary

Before joining the cavity lab in 2002, I worked for three years in what is now known

as the atomic ensemble lab, which at the time was being built from the ground up by

Dave Boozer, with the help of Christoph Nägerl, Jason McKeever, Ron Legere, Win

Goh, Kaiwen Xu, and myself. We implemented a number of useful techniques, some

of which ended up being adapted for the cavity lab or for the collective enhancement

experiment in the ensemble lab. Here are a few examples: we phase locked two

diode lasers separated in frequency by the Cesium ground state hyperfine splitting

(∼ 9.2 GHz) and used them to drive Raman transitions in cold atomic clouds. With

this Raman setup, we detected Ramsey fringes, Rabi flopping, and Zeeman spectra as

a way of determining the population distribution among ground state sublevels, and
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hence of measuring the ambient magnetic fields in situ. We also loaded a running-

wave optical trap from a MOT and saw significant atom-survival probabilities after

a few seconds. In addition, we were able to load a MOT from the background gas

in one vacuum chamber, then push the atoms up against gravity with a resonant

beam into a different chamber at much lower pressure, where they were caught into

a second MOT. This setup was intended for loading a long-lifetime optical trap, in

which Raman sideband cooling would eventually be studied.

In the meantime, however, people in one of the two cavity QED labs in our

group had been working hard trying to improve the lifetime of their intra-cavity

FORT. The breakthrough [2] came when Jason McKeever and Joe Buck switched to

a wavelength that provides nearly equal trapping potentials for the ground and excited

state of the cavity QED transition, and that is not plagued by heating mechanisms

associated with high cavity finesse. The first experiment they did using this long-

lifetime, state-insensitive trap involved continuously probing the atom-cavity system

near resonance, and inferring the number of atoms in the trap from the detected

probe transmission [3]. It was around this time that Joe graduated, Dave joined the

cavity QED experiment as a theorist, data analysis guru, and all-around big-picture

guy, and I became Jason’s apprentice in the cavity lab. We proceeded to implement

the one-atom laser in the strong coupling regime [4]. This experiment consisted of

driving the atom and observing the photon stream emerging from the cavity, which

exhibited thresholdless emission and non-classical statistics. We were then joined by

Russ Miller in the lab, and together used a pulsed pumping scheme for driving the

atom, which enabled deterministic single-photon generation with near-unit inferred

production efficiency [5]. For more information on these experiments, please refer to

Jason’s thesis [1].

To summarize: at this point, our lab had the capability of keeping atoms in the

trap for 2 − 3 s “in the dark,” i.e., in the absence of near-resonant driving; also, we

knew how to measure the number of atoms interacting with the cavity QED field.

But no attempt had been made at controlling the magnetic sublevel of the atomic

state, or at the related issue of controlling the polarization of photons emerging from
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the cavity. When continuously driving the atom, the radial cooling beams would

significantly decrease the trapping lifetime, and we did not know whether this was

due to a residual magnetic field adversely affecting the Sisyphus cooling, or to axial

heating. We had never obtained a convincing signature of the atomic motion within

the trap, nor had we tried to cool the axial temperature, or to measure the atomic

energy distribution. Finally, we had no way of telling “which well” the atom was

loaded in, i.e., what the strength of the cavity QED interaction was at the atomic

location.

We were joined at this point by Kevin Birnbaum, who left his own cavity lab to

become a theorist and take over much of the numerical modeling for our experiment.

In the lab, with Jason away writing his thesis, we started working on a scheme de-

signed by Dave, which was promising to solve most, if not all, of the above-mentioned

problems.

The scheme involved driving Raman transitions between the atomic ground states,

using the intra-cavity FORT in conjunction with another beam off-resonantly coupled

to the same cavity mode. The results obtained to date with the Raman approach are

described in detail in Dave’s thesis [6]. In brief, thanks to the Raman transitions,

we are now able to control precisely the magnetic fields at the location of the atom

within the cavity, including the inhomogeneous pseudo-field due to imperfections in

the FORT polarization. With these stray bias fields properly nulled, the radial cool-

ing beams no longer significantly reduce the trapping lifetime. We can also measure

the population in each ground state magnetic sublevel; we have verified that we can

optically pump the atomic population into a single such sublevel with good efficiency,

meaning that we have a better handle than ever before on the atomic internal state.

Furthermore, we have observed Rabi oscillations between the F = 3 and F = 4

ground hyperfine levels, which promise the ability to synthesize arbitrary superposi-

tions of the two atomic ground states in the near future. Most importantly, we have

some preliminary evidence of axial Raman sideband cooling, allowing for lifetimes

comparable to those in the dark even in the presence of short pulses of resonant or

near-resonant probing.



6

This latter capability enabled us to do the vacuum-Rabi experiment [7], which

consisted of driving the cavity with a probe of varying detuning from the atomic

transition, and recording the resulting transmission spectrum for each atom. This

measurement allowed us to determine the atom-cavity coupling strength g on an

atom-by-atom basis, which means that, for that particular experimental protocol, we

have solved the “which-well” problem. The data indicate that we can select those

atoms which are well coupled to the cavity QED field, and which populate only the

bottom tenth of the trapping well. Chapter 2 elaborates on this topic.

Our next experiment was the photon blockade [8], which further investigated the

Jaynes-Cummings ladder of atom-cavity eigenstates. While quantifying the vacuum-

Rabi spectrum was only concerned with the lowest excitation manifold, the photon

blockade measurement explored what happens when one tries to climb the ladder by

probing the system resonantly on one of the vacuum-Rabi sidebands. Due to an-

harmonicity of the level structure, population in the two-excitation manifold is sup-

pressed, so that the coherent-state probe is converted by the atom-cavity system into

a sub-Poissonian, anti-bunched photon stream. We used motion-induced modulation

on the probe transmission to make another temperature estimate, the result of which

was consistent with the previous one mentioned above. Chapter 3 describes these

measurements in much more detail, while Chapter 4 dwells on estimating a few lab

parameters relevant for both the vacuum-Rabi and the photon blockade experiments.

The near-future outlook for our lab is to focus on perfecting the various prelim-

inary results involving Raman transitions. We have concrete plans to eliminate the

technical noise which we suspect now constitutes the limitation on these techniques.

We would then expect to be able to optimize and characterize fully the axial side-

band cooling, and to synthesize arbitrary superpositions of the ground states. We

should also work on improving the efficiency of our optical pumping, since a useful

starting point for experiments is with all the atomic population being in a known,

single magnetic sublevel. With the problems of cooling and state preparation solved,

we would be in the enviable position of having control over both the internal and the

motional state of our atom, in addition to the already-existing ability to measure its
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interaction with the cavity mode.

From that point on, the sky is the limit. There have been numerous proposals

to implement diverse quantum information science protocols in cavity QED. These

include reversible conversion of a stationary qubit, as encoded in the atomic state, into

a flying qubit, given by the polarization or number state of a photon [9]; atom-photon

entanglement [9]; quantum non-demolition measurement of a single photon, as well

as single and two-qubit gates for computation [10]; teleportation of an atomic state

into a photon and vice-versa; and ultimately quantum networking, with high-finesse

optical cavities at the nodes, and optical fibers as interconnects [11, 12].
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Chapter 2

Vacuum-Rabi experiment

This chapter includes a couple of very basic theoretical models relevant to the vacuum-

Rabi spectrum of a strongly coupled atom-cavity system, as well a discussion of the

experiment we did for measuring this spectrum on an atom-by-atom basis.

2.1 Jaynes-Cummings Hamiltonian

A two-level stationary atom interacting with a single mode of the electromagnetic

field is described by the Jaynes-Cummings Hamiltonian [13] (after setting � = 1, and

in the rotating wave approximation):

H = ωAσ+σ− + ωCa†a + g(a†σ− + aσ+) . (2.1)

The atomic raising and lowering operators are

σ+ =
1

2
(σx + iσy) = |e〉〈g| and σ− =

1

2
(σx − iσy) = |g〉〈e| , (2.2)

where |g〉 and |e〉 are the atomic states, separated by ωA, and σx,y are the Pauli spin

matrices,

σx = |e〉〈g| + |g〉〈e| and σy = −i|e〉〈g| + i|g〉〈e| . (2.3)
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The field, thought of as a single mode of an ideal cavity, is taken to be at frequency

ωC , and its raising and lowering operators are a† and a, with matrix elements between

Fock states given by

〈n − 1|a|n〉 =
√

n and 〈n + 1|a†|n〉 =
√

n + 1 . (2.4)

The first term of the Hamiltonian in (2.1) represents the atomic internal energy,

the second term describes the energy in the field excitation, and the third term

governs the interaction between the atom and the cavity field, with strength given by

the coupling constant g.

Let us choose a basis made up of tensor products of atomic and Fock states,

{|g, 0〉, |g, 1〉, |e, 0〉, |g, 2〉, |e, 1〉, . . .}, which diagonalizes the uncoupled Hamiltonian,

obtainable from (2.1) by setting g = 0. The coupled Hamiltonian with g > 0 is

block-diagonal in this basis, being made up of 2× 2 blocks (except for the 1× 1 block

corresponding to 〈g, 0|H|g, 0〉) along the diagonal of H, of the type:

Hn =

(
ωCn g

√
n

g
√

n ωA + ωC(n − 1)

)
, (2.5)

and with zeros everywhere else. The Hn block corresponds to n total excitations

shared by the atom and the field, i.e., to the states {|g, n〉, |e, n − 1〉}, and can be

easily diagonalized, yielding eigenvalues and corresponding eigenvectors

En± =
1

2

(
2nωC − δCA ±

√
4g2n + δ2

CA

)

|±〉n ∝
(

δCA ±
√

4g2n + δ2
CA

)
|g, n〉 + 2g

√
n|e, n − 1〉 , (2.6)

which are all eigenenergies and respectively eigenstates of the original Hamiltonian

H as well; here we defined the detuning between the field and the atom to be δCA =

ωC − ωA. For n = 1, depending on the sign of δCA, one of the |±〉1 dressed states

will have a larger coefficient for |g, 1〉, making it the “cavity-like” state, in the sense

that the excitation resides primarily in the field, whereas the other will have a larger
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Figure 2.1: Jaynes-Cummings ladder of states.

|e, 0〉 component, making it the “atom-like” state, with most of the excitation stored

in the atom’s internal state.

If the cavity is tuned to the atomic resonance ωC = ωA = ω, so that δCA = 0, we

get the Jaynes-Cummings ladder shown in Fig. 2.1, with energies and states given by

En± = nω ± g
√

n

|±〉n =
1√
2

(|g, n〉 ± |e, n − 1〉) . (2.7)

Note that this ladder is anharmonic, in the sense that neither {|+〉n} nor {|−〉n}
are evenly spaced sets of states, since levels En± are separated from the harmonic

ladder level corresponding to n uncoupled excitations by ±g
√

n. If we limit ourselves

just to the first excitation, the separation between the dressed states is 2g, known as

the vacuum-Rabi splitting.

We can already get some intuition about how the system would behave if the

cavity mode were to be driven with a probe field at frequency ωP , even though this
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drive is not yet included in the Hamiltonian. Namely, we would expect the cavity to

show high transmission when driven near a resonance, i.e., near an eigenstate of H.

Thus we expect that in the absence of coupling to an atom, the probe transmission

will be high near the uncoupled states at ωP = ωC , whereas in the presence of the

atom, we should get high transmission near the |±〉1 levels at ωP = ωC ± g.

2.2 Master equation and the weak driving limit

One step away from the idealized Jaynes-Cummings picture and closer to reality

would be to include the effects of dissipation due to atomic spontaneous emission and

to cavity decay, as well as a drive term in the Hamiltonian. This leads us to the

master equation for ρ, the density operator of the system [14]:

dρ

dt
= −i[H, ρ] + κ(2aρa† − a†aρ − ρa†a) + γ(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−)

= Lρ , (2.8)

where κ is the cavity field decay rate, γ is the amplitude spontaneous emission rate,

L is the Liouvillian superoperator governing the density matrix dynamics, and the

interaction-picture Hamiltonian is

H = δAP σ+σ− + δCP a†a + g(a†σ− + aσ+) + (Ea† + E∗a). (2.9)

Here the detunings are defined as δAP = ωA − ωP between the atomic resonance and

the probe laser, and δCP = ωC−ωP between the cavity field and the probe. As before,

the first two terms in (2.9) represent the energy stored within the free atom and field,

and the third term represents their interaction. The last term describes the drive of

the cavity mode, with E proportional to the amplitude of the coherent-state probe

at optical frequency ωP .

One can use the master equation to derive equations of motion for the relevant

operators and their expectation values (ensemble averages). For instance, let the



12

lowering operators’ expectation values be 〈a〉 = α and 〈σ−〉 = β. Then it follows that

α̇ = Tr[aρ̇], and β̇ = Tr[σ−ρ̇]. (2.10)

One can imagine plugging the expression for ρ̇ from the master equation (2.8) into

(2.10), and using the cyclic property of the trace

Tr[ABC] = Tr[BCA] = Tr[CAB] , (2.11)

together with the commutator and anticommutator relations

[a, a†] = 1

[a, σ±] = 0 (2.12)

{σ+, σ−} = 1 ,

to simplify things a bit. However, the resulting expressions for α̇ and β̇ will still be

rather complicated, involving the expectation values of operators other than just a

and σ−. In general, the operator equations of motion will not form a closed system,

and one will need to make approximations to obtain a solution.

One such approximation, when the steady-state solution can be found analytically,

is the weak driving limit. The assumption in this limit is that there is at most one

excitation in the system, thus we can truncate the state space to {|g, 0〉, |g, 1〉, |e, 0〉}.
In this basis,

a2 = σ2
− = aσ− = 0 , (2.13)

so that the equations of motion become simply:

α̇ = −(κ + iδCP )α − igβ − iE

β̇ = −igα − (γ + iδAP )β . (2.14)

The steady state solution can be found by setting α̇ = 0 and β̇ = 0, and gives for the
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Figure 2.2: Vacuum-Rabi spectrum in the weak driving limit, plotted for g = 2π ×
34 MHz, κ = 2π × 4 MHz, γ = 2π × 2.6 MHz, and δCA = 0.

cavity field amplitude:

αss =
−iE(γ + iδAP )

g2 + (γ + iδAP )(κ + iδCP )
. (2.15)

The steady state intracavity photon number expectation value is nss = 〈a†a〉ss, which

in the weak driving limit is simply given by |αss|2. For fixed ωC and ωA, nss is propor-

tional to the cavity-atom system’s transmission spectrum as a function of the probe

frequency, which is normalized to 1 for the uncoupled cavity driven on resonance:

T = nss(κ
2/|E|2) =

κ2(γ2 + δ2
AP )

(g2 − δAP δCP + γκ)2 + (γδCP + κδAP )2
. (2.16)

As shown by the “atom present” curve in Fig. 2.2, when the cavity is tuned to

the atomic resonance δCA = δCP − δAP = 0, the probe spectrum is double-peaked and

symmetric about δAP = 0. The peak separation is 2g, recovering the vacuum-Rabi
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Figure 2.3: Vacuum-Rabi spectrum in the weak driving limit, plotted for g = 2π ×
34 MHz, κ = 2π × 4 MHz, γ = 2π × 2.6 MHz, and δCA = 2π × 25 MHz.

splitting we saw in the Jaynes-Cummings Hamiltonian picture. The two peaks are

well resolved in the regime where g � (κ, γ), known as strong coupling, when their

half widths are approximated by (γ + κ)/2. For g = 0, the transmission spectrum

from (2.16) reduces to the familiar Lorentzian centered at δCA = 0, with half width

at half maximum κ, shown in Fig. 2.2 as the “empty” (i.e., uncoupled) cavity curve.

If the cavity is tuned away from the atomic resonance, as shown in Fig. 2.3, the

vacuum-Rabi spectrum is no longer symmetric about δAP = 0, nor about δAP = δAC ,

and it recovers the atom-like / cavity-like structure of the eigenstates in Eqn. 2.6.

The vacuum-Rabi sidebands are now separated by (4g2 + δ2
CA)1/2, and the empty

cavity peak is also shifted by δCA from the atomic resonance, as expected.
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Figure 2.4: Cesium level structure for the D2 line.

2.3 Lab numbers: What to expect

How do these simple models relate to the situation we have in the lab? There will be

several deviations from the two-level atom, single-mode models of Secs. 2.1 and 2.2,

many of which are taken into consideration in a rigorous fashion in the simulations

presented in Kevin Birnbaum’s thesis [9] and in Sec. 2.5. The present section only

attempts to list the necessary extensions to the simplest model, and hopefully to give

us some intuitive understanding of what to expect from the lab data.

Take first the two-state atom assumption. The atom we work with is Cesium,

which has many more states than just two. If we were to tune our probe and cavity

near the F = 4 → F ′ = 5′ transition within the D2 line at λD2 = 852 nm (see

Fig. 2.4), we could imagine ignoring any of the levels not directly involved in this

transition. Still, if we count in all the Zeeman sublevels, that leaves nine ground

states and eleven excited states which should be included in the Hamiltonian and

master equation, if a quantitative prediction of the vacuum-Rabi spectrum is to be

made.

As for the strong coupling regime, we should start by estimating the rate of

coherent interaction set by g, in order to compare it to the known dissipation rates

κ 	 2π × 4 MHz and γ = 2π × 2.6 MHz. Since g is the strength of the dipole

interaction between the atom and the quantized field, one can show that:

g(4,mF → 5,mF + q) = 2π × 〈F = 4,mF ; 1, q|F = 5,mF + q〉µ0

√
2c

ε0hV λ
, (2.17)

for a particular pair of levels within the F = 4 and the F ′ = 5′ manifolds. Here
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function of the mF quantum number.

q = 0,±1 for field polarization π, σ± respectively, V = πw2
0leff is the mode volume

associated with mode waist w0 and effective cavity length leff (see Secs. 4.1 and

4.2), λ is the electromagnetic field’s wavelength, and µ0 = 3.167 ea0 is the electric

dipole matrix element for the D2 transition, with e the electron charge and a0 the

Bohr radius. The largest Clebsch-Gordan coefficient, hence the biggest g, occurs

for circularly polarized light driving a closed transition, with 〈4, 4; 1, 1|5, 5〉 = 1 and

g(4, 4 → 5′, 5′) = 2π × 33.8 MHz. However, for technical reasons it is convenient

to use a linearly polarized probe in the lab, with the highest matrix element being

〈4, 0; 1, 0|5, 0〉 =
√

5/3, and g(4, 0 → 5′, 0′) = 2π × 25.2 MHz. Either of these values

for g satisfies the g � (κ, γ) condition, so our system is well within the strong coupling

regime. Therefore, we expect the vacuum-Rabi spectrum to exhibit two well-resolved

peaks.

Now let us consider the single-mode assumption. Our cavity is a Fabry-Perot

resonator of very high finesse, for which the linewidth κ at λD2 is much smaller

than either the transverse or the longitudinal mode spacings (see Secs. 4.1, 4.2 and

4.3). This would seem to indicate that the single-mode picture is correct. However,

the cavity supports two orthogonally polarized, nondegenerate modes (see Sec. 4.6),
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Figure 2.6: Axial registration: due to different mode numbers, the FORT and the
cavity QED pancake structures in the cavity do not normally overlap.

both of which should be accounted for in the model. A master equation calculation

[9] will show that even in the absence of a birefringent splitting or of any AC Stark

shifts due to the trapping potential, the vacuum-Rabi spectrum of a multi-level atom

coupled to two independent cavity modes will be qualitatively quite different from

that obtained with a single-mode model. The most significant difference is that the

spectrum, though still symmetric about δAP = 0, now has not two, but four peaks.

The atomic population is redistributed by the probe among the various sublevels,

each of which couples to each of the two cavity modes with a potentially different

matrix element, which leads to the more complex spectrum.

An added complication is introduced by the dipole trap. Our FORT wavelength

λFORT = 936 nm was carefully chosen so that the ground F = 4, 6S1/2 and excited

F ′ = 5′, 6P3/2 states are nearly equally shifted by the dipole potential. However,

the emphasis here is on “nearly.” Though all the mF sublevels of the ground state

experience equal AC Stark shifts in a linearly polarized trap, the excited states do have

a residual quadratic dependence on the magnetic quantum number. This dependence

was calculated by Jason McKeever et al. in Ref. [2], and is shown in Fig. 2.5.

As a consequence, each sublevel will have a different effective atom-cavity detuning

δAC , which in conjunction with the probe’s optical pumping of the atomic population

among the various mF -levels should lead to an asymmetric vacuum-Rabi spectrum,
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Figure 2.7: Measured probability of counting a “stop”, given a trigger, for the P7888
data acquisition card, as a function of the input RF frequency.

as suggested by Fig. 2.3.

One also needs to consider the effects of the imperfect registration between the

FORT and the probe sinusoidal patterns inside the cavity. The mode order at λFORT

is even (see Sec. 4.1), so that the spatial dependence of the FORT depth on the axial

coordinate z is sin2(2πz/λFORT), where we took the cavity center to be located at

z = 0. At λD2 however, the mode order is odd, so that the strength of the CQED

interaction g goes like cos(2πz/λD2), as shown in Fig. 2.6. Thus if the FORT and

the cavity QED start out overlapped at some point on the cavity axis, they will

come completely out of registration after only a few wavelengths. Different FORT

wells that the atom might get loaded into will have potentially different couplings

to the cavity field, hence different transmission spectra as set by |g| in Eqn. (2.16).

We expect this inhomogeneity to lead to a broadening of the vacuum-Rabi peaks,

to a shift of their peak centers towards the origin, i.e., towards smaller |g|, and to

increased on-resonance transmission reminiscent of the empty-cavity curve in Fig.

2.3. But even an ideally coupled atom, i.e., one with maximal g at the bottom of

its well, will move around within this well and experience a distribution of g values
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Figure 2.8: Electronics setup for digitizing the probe frequency in situ.

depending on the temperature (wider for the hotter atoms), which should further

broaden the vacuum-Rabi sidebands.

2.4 Experimental details

The main challenge to measuring the vacuum-Rabi spectrum of one-and-the-same

atom is being able to hold on to the said atom for long enough to obtain quantitative

information about it, in spite of heating induced by the probe. Two major advances

in our lab have made this possible. The first was extending the trapping lifetime

“in the dark,” i.e., in the absence of any near-resonant light, to 2 − 3 s, which was

enabled by the state-insensitive dipole trap, and which is discussed in detail by Jason

McKeever in his thesis [1]. The second was cooling the atomic motion, which is done

with blue-Sisyphus [15] near-resonant light for the radial direction, and via a Raman

sideband mechanism involving the FORT and another far detuned beam, for the axial

direction. David Boozer talks about this axial cooling scheme in detail in his thesis

[6], so I will not elaborate on this topic here. The vacuum-Rabi experiment was an

opportunity to demonstrate the capabilities of this new axial cooling method, before

even attempting to fully characterize it.
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from atomic resonance.

One remaining technical challenge involved scanning the probe frequency in a

controllable way. In order to cover a ∼ 140 MHz range around the atomic resonance,

we needed to scan the RF supply to one of the double-passed AOMs that the probe

goes through, in a range roughly from 135 to 205 MHz. Since we wanted the option of

doing that scan several times a second, we decided for a POS-200 voltage-controlled

oscillator (VCO) as the RF source, because VCOs can cover a large frequency range

of 100 MHz or more, and they can do it fast, albeit not quite linearly with the input

voltage. We used the P7888 pulse counting card that does our data acquisition to

measure the VCO frequency in situ. As shown in Fig. 2.7, when connected to our

2.8 GHz Pentium IV computer, the card can count the pulses in an RF signal of up

to 15 MHz with less than 1% error, but it drops a significant fraction of the triggers

for larger input frequencies1. To bridge the gap between the VCO frequency and the

computer card, we employed a ÷32 frequency divider chip, as shown schematically in

Fig. 2.8. Note that we only acquire the divided frequency during those intervals when

the probe is on (see Fig. 2.10), which gives the P7888 card enough time in between

to write the pulses to the hard drive. Both the physics cavity and the probe are

independently locked to Cesium, which means that once the probe AOM frequency

1Measured on 9/8/04.
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Figure 2.10: Timing diagram for the vacuum-Rabi experiment.

is known, so are the cavity-probe and atom-probe detuning.

Another issue is related to the AOM resonance curve, which makes the input

power to the cavity change as the probe frequency is being scanned. In addition, as

the frequency changes, so does the probe beam alignment after the AOM, hence its

coupling efficiency to the cavity. Both these effects can be however easily taken into

account by acquiring a calibration curve, analogous to that from Fig. 4.3, and using

it to normalize all probe spectra. At each point, for a particular probe detuning from

the D2 line, the cavity is tuned to be in resonance with the light, and its transmission

is recorded with the avalanche photodetectors. The calibration curve2 we took for

the vacuum-Rabi experiment is shown in Fig. 2.9.

For acquiring the vacuum-Rabi spectrum3 of Sec. 2.5, the probe, the FORT and

the locking laser all have the same linear polarization, perpendicular to that of the

Raman beam, all set by the glan-laser polarizer angle at the cavity input. The probe

polarization is close to one of the birefringent axes, namely to the one with the higher

resonance frequency (the “blue” mode). The λ/2 waveplate at the cavity output is

set so as to maximize the empty cavity (i.e., no atom present) probe transmission on

2Measured on 9/29/04.
3Measured on 9/28/04.
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Figure 2.11: Empty cavity data acquired with the probe scanning protocol of Sec.
2.5. Fit yields κ = 2π × 4.1 MHz.

resonance. After each trap loading attempt, we scan the probe frequency, while at

the same time shuttering it on and off, in order to intersperse the cooling intervals.

The timing diagram for the experiment is shown schematically in Fig. 2.10, and will

be described in more detail in the next section. During each 100 µs probing interval,

both the probe and its repumper are turned on. We chose the F = 3 → F ′ = 4′

transition frequency for the repumper, because it has no dark states, hence it is an

effective way to maximize the time the atom spends in the cavity-coupled, hence

useful F = 4 state. Shuttering for all beams is done with RF switches at the AOM

inputs. The FORT beam is on all the time.

One might notice that some of the values for the experimental parameters quoted

in Sec. 2.5 (e.g., the various efficiencies, mode waists, and κ) are slightly different

from those given in Chapter 4. In all cases the values cited in the paper [7] and

repeated in Sec. 2.5 below were those we thought to be correct at the time. Most of

the discrepancies are insignificant and would not modify the theoretically predicted

spectra in any noticeable way. The only difference worth mentioning is that of κ =
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2π×3.3 to 3.6 MHz in Chapter 4, as opposed to 4.1 MHz in Sec. 2.5. The latter value

was determined by fitting a Lorentzian to empty cavity data obtained in the same

manner as the vacuum-Rabi spectrum data, as shown in Fig. 2.11. More specifically,

the probe frequency was scanned linearly over the ∼ 137 MHz range eight times in

1.2 s, and the resulting transmission spectra were averaged, then normalized by the

curve shown in Fig. 2.9. The fit gives κ = 2π × (4.08± 0.03) MHz for the Lorentzian

half-width.

2.5 Observation of the vacuum-Rabi spectrum for

one trapped atom

This section is reproduced almost verbatim from Ref. [7].

A cornerstone of optical physics is the interaction of a single atom with the elec-

tromagnetic field of a high quality resonator. Of particular importance is the regime

of strong coupling, for which the frequency scale g associated with reversible evolution

for the atom-cavity system exceeds the rates (γ, κ) for irreversible decay of atom and

cavity field, respectively [16]. In the domain of strong coupling, a photon emitted by

the atom into the cavity mode is likely to be repeatedly absorbed and re-emitted at

the single-quantum Rabi frequency 2g before being irreversibly lost into the environ-

ment. This oscillatory exchange of excitation between atom and cavity field results

from a normal mode splitting in the eigenvalue spectrum of the atom-cavity system

[13, 17, 18], and has been dubbed the vacuum-Rabi splitting [17].

Strong coupling in cavity QED as evidenced by the vacuum-Rabi splitting provides

enabling capabilities for quantum information science, including for the implemen-

tation of scalable quantum computation [19, 10], for the realization of distributed

quantum networks [11, 12], and more generally, for the study of open quantum sys-

tems [20]. Against this backdrop, experiments in cavity QED have made great strides

over the past two decades to achieve strong coupling [21]. The vacuum-Rabi splitting

for single intracavity atoms has been observed with atomic beams in both the optical
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[22, 23, 24] and microwave regimes [25]. The combination of laser cooled atoms and

large coherent coupling has enabled the vacuum-Rabi spectrum to be obtained from

transit signals produced by single atoms [26]. A significant advance has been the

trapping of individual atoms in a regime of strong coupling [27, 2], with the vacuum-

Rabi splitting first evidenced for single trapped atoms in Ref. [27] and the entire

transmission spectra recorded in Ref. [28].

Without exception these prior single atom experiments related to the vacuum-Rabi

splitting in cavity QED [22, 25, 23, 24, 26, 27, 2, 28] have required averaging over trials

with many atoms to obtain quantitative spectral information, even if individual trials

involved only single atoms (e.g., 105 atoms were required to obtain a spectrum in Ref.

[25] and > 103 atoms were needed in Ref. [28]). By contrast, the implementation

of complex algorithms in quantum information science requires the capability for

repeated manipulation and measurement of an individual quantum system, as has

been spectacularly demonstrated with trapped ions [29, 30] and recently with Cooper

pair boxes [31, 32].

With this goal in mind, we describe here measurements of the spectral response of

single atoms that are trapped and strongly coupled to the field of a high finesse opti-

cal resonator. By alternating intervals of probe measurement and of atomic cooling,

we record a complete probe spectrum for one and the same atom. The vacuum-Rabi

splitting is thereby measured in a quantitative fashion for each atom by way of a

protocol that represents a first step towards more complex tasks in quantum infor-

mation science. An essential component of our protocol is a new Raman scheme for

cooling atomic motion along the cavity axis, that leads to inferred atomic localization

∆zaxial 	 33 nm, ∆ρtransverse 	 5.5 µm.

A simple schematic of our experiment is given in Fig. 2.12 [1], showing a single

atom trapped inside our optical cavity in the regime of strong coupling by way of an

intracavity far-off-resonance trap (FORT) driven by the field EFORT. The transmission

spectrum T1(ωp) for the atom-cavity system is obtained by varying the frequency

ωp of the probe beam Ep and recording the output with single-photon detectors.

Cooling of the radial atomic motion is accomplished with the transverse fields Ω4,
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Figure 2.12: Schematic of the vacuum-Rabi experimental setup.

while axial cooling results from Raman transitions driven by the fields EFORT, ERaman.

An additional transverse field Ω3 acts as a repumper during probe intervals.

After release from a magneto-optical trap (MOT) located several mm above the

Fabry-Perot cavity formed by mirrors (M1,M2), single Cesium atoms are cooled and

loaded into the intracavity FORT and are thereby strongly coupled to a single mode

of the cavity. Our experiment employs the 6S1/2, F = 4 → 6P3/2, F
′ = 5′ transition of

the D2 line in Cesium at λA = 852.4 nm, for which the maximum single-photon Rabi

frequency is 2g0/2π = 68 MHz for (F = 4,mF = ±4) → (F ′ = 5′,m′
F = ±5). The

transverse decay rate for the 6P3/2 atomic states is γ/2π = 2.6 MHz, while the cavity

field decays at rate κ/2π = 4.1 MHz. Hence our system is in the strong coupling

regime of cavity QED g0 � (γ, κ) [16].

The intracavity FORT is driven by a linearly polarized input field EFORT at λF =

935.6 nm, resulting in nearly equal AC-Stark shifts for all Zeeman states in the

6S1/2, F = 3, 4 manifold [33]. At an antinode of the field, the peak value of the
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trapping potential for these states is U0/h = −39 MHz for all measurements presented

in this section. Zeeman states of the 6P3/2, F
′ = 5′ manifold likewise experience a

trapping potential, albeit with a weak dependence on m′
F [2]. Birefringence in the

mirrors leads to two nondegenerate cavity modes with orthogonal polarizations l̂± and

mode splitting ∆νC1 = 4.4 ± 0.2 MHz at 852 nm. The fields EFORT and ERaman are

linearly polarized and aligned close to the two orthogonal polarizations l̂+ and l̂− of

the higher, respectively the lower frequency mode. The cavity length is independently

stabilized to length l0 = 42.2 µm such that a TEM00 mode at λC1 is resonant with

the free-space atomic transition at λA and another TEM00 mode at λC2 is resonant

at λF . At the cavity center z = 0, the mode waists are wC1,2 = {23.4, 24.5} µm at

λC1,2 = {852.4, 935.6} nm.

As illustrated in Fig. 2.12, we record the transmission spectrum T1(ωp) for a weak

external probe Ep of variable frequency ωp incident upon the cavity containing one

strongly coupled atom. T1(ωp) is proportional to the ratio of photon flux transmitted

by M2 to the flux |Ep|2 incident upon M1, with normalization T0(ωp = ωC1) ≡ 1 for the

empty cavity. Our protocol consists of an alternating sequence of probe and cooling

intervals. The probe beam is linearly polarized and is matched to the TEM00 mode

around λC1 . Relative to l̂±, the linear polarization vector l̂p for the probe field Ep is

aligned along a direction l̂p = cos θl̂+ + sin θl̂−, where θ = 13◦ for Fig. 2.13; however,

the theoretical model we will discuss below maintains that the spectrum is relatively

insensitive to θ for θ � 15◦. The probe field Ep illuminates the cavity for ∆tprobe =

100 µs, and the transmitted light is detected by photon counting. The efficiency

for photon escape from the cavity is αe2 = 0.6 ± 0.1. The propagation efficiency

from M2 to detectors (D1, D2) is αP = 0.41 ± .03, with then each detector receiving

half of the photons. The avalanche photodiodes (D1, D2) have quantum efficiencies

αP = 0.49 ± 0.05. During each probing interval a repumping beam Ω3, transverse to

the cavity axis and resonant with 6S1/2, F = 3 → 6P3/2, F
′ = 4′, also illuminates the

atom. In successive probe intervals, the frequency ωp is linearly swept from below

to above the common atom-cavity resonance at ωA 	 ωC1 . The frequency sweep for

the probe is repeated eight times in ∆ttot = 1.2 s, and then a new loading cycle is
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Figure 2.13: Transmission spectrum T1(ωp) for six randomly drawn atoms, and
steady-state solution to the master equation, for comparison.

initiated.

Following each probe interval, we apply light to cool both the radial and axial

motion for ∆tcool = 2.9 ms. Radial cooling is achieved by the Ω4 beams consisting of

pairs of counter-propagating fields in a σ± configuration perpendicular to the cavity

axis, as shown in Fig. 2.12. The Ω4 beams are detuned ∆4 	 10 MHz to the blue of

the 4 → 4′ transition to provide blue Sisyphus cooling [15] for motion transverse to

the cavity axis.

To cool the axial motion for single trapped atoms, we have developed a new

scheme that employs EFORT and an auxiliary field ERaman that is frequency offset by

∆Raman = ∆HF + δ and phase locked to EFORT. Here, ∆HF = 9.192632 GHz is the

hyperfine splitting between 6S1/2, F = 3, 4. The fields EFORT, ERaman drive Raman
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transitions between the F = 3, 4 levels with effective Rabi frequency ΩE ∼ 200 kHz.

By tuning δ near the ∆n = −2 motional sideband (i.e., −2ν0 ∼ δ = −1.0 MHz, where

ν0 is the axial vibrational frequency at an antinode of the FORT), we implement

sideband cooling via the F = 3 → 4 transition, with repumping provided by the Ω4

beams. The Raman process also acts as a repumper for population pumped to the

F = 3 level by the Ω4 beams. Each cooling interval is initiated by turning on the

fields Ω4, ERaman during ∆tcool and is terminated by gating these fields off before the

next probe interval ∆tprobe.

Fig. 2.13 displays normalized transmission spectra T1 and corresponding intra-

cavity photon numbers 〈n(ωp)〉 for six randomly drawn individual atoms, acquired

via our protocol of alternating probe and cooling intervals. In each case, T1(ωp) is

obtained for one-and-the-same atom, with the two peaks of the vacuum-Rabi spec-

trum clearly evident. The error bars reflect the statistical uncertainties in the number

of photocounts. Also shown is the predicted transmission spectrum obtained from

the steady-state solution to the master equation for one atom strongly coupled to

the cavity, as discussed below. The quantitative correspondence between theory and

experiment is evidently quite reasonable for each atom. Note that mF -dependent

Stark shifts for F ′ = 5′ in conjunction with optical pumping caused by Ep lead to the

asymmetry of the peaks in Fig. 2.13 via an effective population-dependent shift of the

atomic resonance frequency. The AC-Stark shifts of the (F ′ = 5′,m′
F ) states are given

by {m′
F , Um′

F
} = {±5, 1.18U}, {±4, 1.06U}, {±3, 0.97U}, {±2, 0.90U}, {±1, 0.86U},

and {0, 0.85U}.
To obtain the data in Fig. 2.13, Nload = 61 atoms were loaded into the FORT in

500 attempts, with the probability that a given successful attempt involved 2 or more

atoms estimated to be Pload(N ≥ 2) � 0.06. Of the Nload atoms, Nsurvive = 28 atoms

remained trapped for the entire duration ∆ttot. The six spectra shown in Fig. 2.13

were selected by a random drawing from this set of Nsurvive atoms. Our sole selection

criterion for presence of an atom makes no consideration of the spectral structure of

T1(ωp) except that there should be large absorption on line center, T1(ωp = ωC1) ≤
Tthresh ≈ 0.2. Transmission spectra T1(ωp), T̄1(ωp) are insensitive over a range of
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Figure 2.14: Individual transmission spectra T1(ωp) (dots), their average T̄1(ωp) (thick
trace), and the steady-state solution to the master equation (thin trace).

selection criteria 0.02 ≤ Tthresh ≤ 0.73. Note that an atom trapped in the FORT in

the absence of the cooling and probing light has lifetime τ0 	 3 s, which leads to a

survival probability p(∆ttot) 	 0.7.

In Fig. 2.14 we collect the results for T1(ωp) for all Nsurvive = 28 atoms, and

display the average transmission spectrum T̄1(ωp), as well as a scatter plot from the

individual spectra. Also shown for comparison is the steady-state solution to the

master equation, already displayed in Fig. 2.13. The only free parameters in the

theory are the temperature and the range of FORT antinodes; the vertical scale is

absolute. This comparison demonstrates that the vacuum-Rabi spectrum observed

for any particular atom represents with reasonable fidelity the spectrum that would

be obtained from averaging over many atoms, albeit with fluctuations due to Poisson

counting and optical pumping effects over the finite duration of the probe. The total

acquisition time associated with the probe beam for the spectrum of any one atom is
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only 40 ms.

We have also acquired transmission spectra T1(ωp) for operating conditions other

than those in Figs. 2.13 and 2.14, including intensities |Ep|2 varied by factors of 2, 1
2
,

and 1
4
, and atom-cavity detunings ∆AC = ωA − ωC1 = ±13 MHz. We will describe

these results elsewhere.

The full curves in Figs. 2.13, 2.14 are obtained from the steady state solution of

the master equation including all transitions (F = 4,mF ) ↔ (F ′ = 5′,m′
F ) with their

respective coupling coefficients g
(mF ,m′

F )
0 , as well as the two nearly degenerate modes

of our cavity. For the comparison of theory and experiment, we reemphasize that

the parameters (g
(mF ,m′

F )
0 , γ, κ, ∆AC , ωp − ωA, ∆νC1 , |Ep|2, U0) are known in absolute

terms without adjustment. However, we have no a priori knowledge of the particular

FORT well into which the atom is loaded along the cavity standing wave, nor of the

energy of the atom. The FORT shift and coherent coupling rate are both functions

of atomic position r, with

U(r) = U0 sin2(kC2z) exp(−2ρ2/w2
C2

), (2.18)

g(mF ,m′
F )(r) = g

(mF ,m′
F )

0 ψ(r), (2.19)

where g
(mF ,m′

F )
0 = g0GmF ,m′

F
with Gi,f related to the Clebsch-Gordan coefficient for

the particular mF ↔ m′
F transition. Here

ψ(r) = cos(kC1z) exp(−ρ2/w2
C1

), (2.20)

where ρ is the transverse distance from the cavity axis z, and kC1,2 = 2π/λC1,2 .

As discussed in connection with Fig. 2.15 below, for the theoretical curves shown

in Figs. 2.13, 2.14, we have chosen only the 30 out of 90 total FORT wells for which

|ψ(rFORT)| ≥ 0.87 , where rFORT is such that U(rFORT) = U0. Furthermore, for these

wells we have averaged T1(ωp) over a Gaussian distribution in position r consistent

with a temperature kBT = 0.1U0 (∼ 200 µK). Since all parameters are known except

for those that characterize atomic motion, the good agreement between theory and
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Figure 2.15: Theoretical plots for T1(ωp): (a) zero temperature, spectrum dependence
on probe-FORT registration; (b) perfect registration, dependence on temperature.

experiment allows us to infer that our cooling protocol together with the selection

criterion Tthresh = 0.2 results in individual atoms that are strongly coupled in one of

the “best” FORT wells (i.e., |ψ(rFORT)| � 0.87) with “temperature” ∼ 200 µK. In

Figs. 2.13 and 2.14, the discrepancy between experiment and the steady-state theory

for T̄1(ωp) around ωp ∼ 0 can be accounted for by a transient solution to the master

equation which includes optical pumping effects over the probe interval ∆tprobe. Also,

although the spectra are consistent with a thermal distribution, we do not exclude a

more complex model involving probe-dependent heating and cooling effects.

In support of these assertions, Fig. 2.15 (a) explores the theoretical dependence

of T1(ωp) on the set of FORT wells selected, and hence on the distribution of values

for |ψ(rFORT)| in the ideal zero-temperature case T = 0. The transmission T1(ωp)
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predicted by the steady-state solution of the master equation is calculated from an

average over various FORT antinodes along the cavity axis, with the inset showing

the associated distribution of values for |ψ(rFORT)|. Extending the average beyond

the 30 “best” FORT wells leads to spectra that are inconsistent with our observations

in Figs. 2.13 and 2.14. Fig. 2.15 (b) likewise investigates the theoretical dependence

of T1(ωp) on the temperature T for an atom at an antinode of the FORT with optimal

coupling (i.e., |ψ(r)| = 1). Now T1(ωp) is computed for various temperatures from

an average over atomic positions within the well. For temperatures T � 200 µK, the

calculated spectra are at variance with the data in Figs. 2.13 and 2.14, from which we

infer atomic localization ∆z 	 33 nm in the axial direction and ∆x = ∆y 	 3.9 µm

in the plane transverse to the cavity axis. Beyond these conclusions, a consistent

feature of our measurements is that reasonable correspondence between theory and

experiment is only obtained by restricting |ψ(r)| � 0.8.

Our experiment represents an important advance in the quest to obtain single

atoms trapped with optimal strong coupling to a single mode of the electromagnetic

field. The vacuum-Rabi splitting is the hallmark of strong coupling for single atoms

and photons, and all measurements until now have required averaging over many

atoms for its observation. By contrast, we are able to observe spectra T1(ωp) on an

atom-by-atom basis with clearly resolved normal-mode splittings. These spectra con-

tain detailed quantitative information about the coherent coupling g(r) and FORT

shifts for each atom. This information indicates that the coupling g is in a narrow

range of near-maximal values. Our observations are made possible by the imple-

mentation of a new scheme to cool both the radial and axial atomic motion. The

capabilities demonstrated by this experiment should provide the tools necessary to

implement diverse protocols in quantum information science [19, 10, 11, 12, 20].
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Chapter 3

Dark-mode up-goers and photon
blockade

This chapter describes our recent experiment studying the photon statistics of light

transmitted by the atom-cavity system when driven on the red vacuum-Rabi side-

band. We start by introducing a simple theoretical model justifying the non-classical

character of the emitted light field, and then we describe the experimental protocol

and data analysis method in detail. We conclude by discussing the experimental re-

sults, including the observation of sub-Poissonian and anti-bunched photon statistics,

as well as motional effects leading to an estimate of the atomic temperature.

3.1 Master equation, revisited

Let us go back to the simple theoretical model describing a two-level atom strongly

coupled to a single cavity mode (see Sec. 2.1 and 2.2). Recalling the Jaynes-

Cummings picture in Fig. 2.1, we see that the |±〉1 states are separated by 2g,

whereas the |±〉2 splitting is 2
√

2g. Now suppose that the probe laser frequency

is tuned to resonance with one of the vacuum-Rabi sidebands, say the red one at

ωP = ωA − g. If the system is excited to the |−〉1 state, then the anharmonicity of

the ladder will make it difficult for another excitation to occur, since the probe light

is detuned from state |−〉2 by (2 −
√

2)g, which, for strong coupling, is much greater

than the state’s linewidth. Since two-excitation atom-cavity states are unlikely to be

populated, the probability of the cavity emitting two photons at the same time is sup-
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pressed. One can think of this as a “photon blockade,” in the sense that absorption

of the first photon from an incoming Poissonian stream will block the absorption of a

second one, leading to sub-Poissonian statistics in the output field. It can be shown

(see e.g., Ref. [34], Sec. 12.10.3) that if the photon statistics for a light field are

sub-Poissonian, the state of that field cannot be described by a classical probability

functional. Hence, this state is interesting, from a quantum optics perspective.

For a more quantitative description of what is going on, let us consider the corre-

lations between pairs of photons transmitted by the driven atom-cavity system. We

will compute here the zero-delay second-order intensity correlation function g(2)(0),

in the case of weak driving. Obviously the truncated three-state basis of Sec. 2.2 is

insufficient for observing coincidences, so we will enlarge the state space to allow for

two quanta of energy as well: {|g, 0〉, |g, 1〉, |e, 0〉 |g, 2〉, |e, 1〉}. The Hamiltonian and

master equation are still those from Eqns. (2.8) and (2.9), which we used in Chapter

2 to derive the vacuum-Rabi spectrum.

In this five-state basis, the only non-zero matrix elements for the relevant operators

are:

〈g, 1|a†σ−|e, 0〉 = 〈e, 0|aσ+|g, 1〉 = 1

〈g, 2|a†σ−|e, 1〉 = 〈e, 1|aσ+|g, 2〉 =
√

2

〈e, 0|σ+σ−|e, 0〉 = 〈e, 1|σ+σ−|e, 1〉 = 1 (3.1)

〈g, 1|a†a|g, 1〉 = 〈e, 1|a†a|e, 1〉 = 1

〈g, 2|a†a|g, 2〉 = 2 .

Also, for weak driving E/κ � 1, the density operator for the atom-cavity system

is of the form

ρ = |ψ〉〈ψ|, (3.2)

that is, despite dissipation, the system can be described by a pure state [35, 36]:

ψ = |g, 0〉 + a1|g, 1〉 + a2|e, 0〉 + a3|g, 2〉 + a4|e, 1〉 , (3.3)
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where the single and double excitation components scale linearly and quadratically,

respectively, with the drive strength:

a1, a2 ∝
E

κ
a3, a4 ∝

(
E

κ

)2

, (3.4)

so that |ψ〉 is normalized to first order in the drive strength. We can now use the

master equation for ρ to derive equations of motion for the a1−4 coefficients. From

the first column of the Liouvillian, keeping only terms to leading order in the drive

parameter E/κ, we have:

ȧ1 = −(κ + iδCP )a1 − iga2 − iE

ȧ2 = −iga1 − (γ + iδAP )a2

ȧ3 = −i
√

2Ea1 − 2(κ + iδCP )a3 − i
√

2ga4 (3.5)

ȧ4 = −iEa2 − i
√

2ga3 − (γ + iδAP )a4 − (κ + iδCP )a4 .

Note that the first two equations in (3.5), describing the evolution of a1 and a2, are

identical to Eqns. (2.14) for α = 〈a〉 and β = 〈σ−〉, which is not surprising since to

first order in E/κ, α = a1 and β = a2.

If all we are interested in is computing g(2)(0), then we only need the steady state

solution, which we get by setting the left hand side of all equations in (3.5) to zero:

ass
1 =

−iEγ̃

g2 + κ̃γ̃

ass
2 =

−Eg

g2 + κ̃γ̃

ass
3 =

E2(g2 − γ̃(κ̃ + γ̃))√
2(g2 + κ̃γ̃)(g2 + κ̃(κ̃ + γ̃))

(3.6)

ass
4 =

iE2g(κ̃ + γ̃)

(g2 + κ̃γ̃)(g2 + κ̃(κ̃ + γ̃))
,

where we have defined κ̃ ≡ κ + iδCP and γ̃ ≡ γ + iδAP . Note that all a1−4 coeffi-

cients have the correct scaling with the driving strength, consistent with Eqn. (3.4).

Armed with this steady state solution, we can readily compute expectation values of
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Figure 3.1: g(2)(0) as a function of probe detuning from the atomic resonance.

operators.

The second-order normalized intensity correlation function at zero delay is by

definition given by

g(2)(0) =
〈a†2a2〉
〈a†a〉2 , (3.7)

where the expectation value is to be taken in the steady state |ψ〉ss as set by Eqns.

(3.6). Given the known scaling with the drive parameter from Eqn. (3.4), we find:

g(2)(0) =
2|ass

3 |2
(|ass

1 |2 + 2|ass
3 |2 + |ass

4 |2)2
	 2|ass

3 |2
|ass

1 |4 , (3.8)

which for small E is independent of the driving strength.

This derivation was done with the help of Mathematica [37], and in the most part

following Refs. [35, 36], which deal with the more general, many-atom case, and with

delayed coincidences. These papers also have a different phase convention for a and

a†, and a somewhat less algebra-intensive way of obtaining the steady-state solution,

namely by first setting δCP = δAP = 0 in the Hamiltonian, and then only for the final

result making the formal substitutions κ → κ̃ and γ → γ̃ (note the typo in Eqn. (38)

of Ref. [36]).

Now we can evaluate g(2)(0), by plugging experimentally relevant parameter values

into Eqns. (3.6) and (3.8). Fig. 3.1 shows the dependence of g(2)(0) on the probe’s
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detuning from atomic resonance, for g = 2π × 34 MHz, κ = 2π × 4.1 MHz, γ =

2π × 2.6 MHz, and δCP = δAP . Note in the region near δCP = δAP = ±g, the

curve dips below the dashed line at unity, i.e., g(2)(0) < 1, reaching a minimum of

g(2)(0) 	 0.27. This means that if we drive the atom-cavity system on either of the

two vacuum-Rabi sidebands (recall Fig. 2.2), the emerging photon stream will exhibit

sub-Poissonian statistics. This is precisely what we implied in the intuitive discussion

at the beginning of this section.

Fig. 3.1 also shows the result of a numerical Matlab [38, 39] calculation1, using

Kevin Birnbaum’s jaynescummings w suffix.m script [9]. The code uses a truncated

six-state space {|g〉, |e〉} ⊗ {|0〉, |1〉, |2〉}, and a drive strength of E/κ = 0.01 (empty

cavity photon number on resonance (E/κ)2 = 10−4). Note that the two curves in Fig.

3.1 represent nearly the same weak-field approximation, so not surprisingly they are

very close (almost indistinguishably so in the log-scale figure), differing by at most

5% over the entire range of possible detunings.

The experimental results we present in Sec. 3.6 show that the photon stream

emerging from our real-life atom-cavity system also has manifestly non-classical statis-

tics near the red vacuum-Rabi sideband, as evidenced by the sub-Poissonian and anti-

bunched character of the detected light. The model which quantitatively predicts a

value for g(2)(0) consistent with what we observe in the lab is rather complicated [9].

However, our simple model presented above is sufficient to predict the qualitative

behavior of the system, namely the non-classical character of the photon statistics at

the cavity output.

1This curve also appears in Sec. 3.6 Fig. 3.16 (a), for slightly different parameters g = 2π ×
33.9 MHz and E/κ = 0.1. Please also see discussion therein.
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(a) (b)

Figure 3.2: Second-order normalized intensity correlation function for (a) a constant
signal; (b) a square pulse.

3.2 Turning coincidences into g(2)(τ )

The normalized second-order intensity correlation function corresponding to a classi-

cal field of intensity I(t) is defined as

g(2)(t, τ) =
〈I(t)I(t + τ)〉
〈I(t)〉〈I(t + τ)〉 , (3.9)

where the 〈 〉 brackets denote ensemble averages. Often one deals with stationary

processes, for which the ensemble averages do not depend on the origin of time,

making g(2)(t, τ) is a function of τ alone. Also, the field is usually ergodic, meaning

that ensemble averages can be replaced by averages over all time:

〈I(t)I(t + τ)〉 = lim
T→∞

1

T

∫ T/2

−T/2

I(t)I(t + τ) dt

〈I(t)〉 = 〈I(t + τ)〉 = lim
T→∞

1

T

∫ T/2

−T/2

I(t) dt . (3.10)

For times long compared with the coherence time of the signal, the numerator in Eqn.

(3.9) factorizes, so that the normalized intensity correlation function asymptotes to

unity:

〈I(t)I(t + τ)〉 = 〈I(t)〉〈I(t + τ)〉 =⇒ g(2)(τ → ∞) = 1. (3.11)

As an example, let us consider a constant signal, I(t) = I0 for all time. Then

trivially from Eqns. (3.9, 3.10), we find g(2)(τ) = 1 identically.
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The trouble with this picture is that one cannot sample a signal for all time;

rather, one would typically measure it for a finite interval of length T0, and construct

signal averages in the following way:

〈I(t)I(t + τ)〉T0 =
1

T0

∫ T0/2

−T0/2

I(t)I(t + τ) dt

〈I(t)〉T0 = 〈I(t + τ)〉T0 =
1

T0

∫ T0/2

−T0/2

I(t) dt, (3.12)

where the corresponding normalized correlation function is

g
(2)
T0

(τ) =
〈I(t)I(t + τ)〉T0

〈I(t)〉2T0

. (3.13)

Here |τ | < T0, and I(t) is assumed to be non-zero only in the interval [−T0/2, T0/2].

How is this g
(2)
T0

(τ) related to the correlation function for the stationary process that is

being sampled, i.e., to g(2)(τ) evaluated in the interval τ ∈ [−T0, T0]? The example of

constant intensity we considered above now becomes a square pulse, with I(t) = I0 for

|t| < T0/2, and zero elsewhere. From (3.13), we find that the finite-interval correlation

function is

g
(2)
T0

(τ) = 1 − |τ |/T0. (3.14)

Thus the finite sampling time has the effect of putting a triangular shape on an

inherently constant correlation function, as shown in Fig. 3.2. Because of that, one

will often compensate for this triangle effect, by multiplying a measured correlation

function by the factor T0/(T0 − |τ |). The result then has the asymptotic behavior

one would expect from a stationary process (see Eqn. 3.11), albeit with increasing

fluctuations as we near |τ | = T0 where the multiplication factor diverges.

So far we have dealt with analog, continuous signals. In the lab, however, we

have single-photon counters, which give us a time stamp for each photon arrival at

the detectors. If we have the time record corresponding to a single light pulse of

duration T0, we can divide T0 into N bins of duration δ each. Now let the number

of clicks recorded in the kth bin be ak, with k = 1, . . . , N , and let τ = j δ, with
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j = −N + 1, . . . , N − 1. The discretized version of Eqn. (3.12) is:

〈I(t)I(t + τ)〉N =
1

N

N∑
k=1

akak+j

〈I(t)〉N = 〈I(t + τ)〉N =
1

N

N∑
k=1

ak , (3.15)

with normalized intensity correlation function given by

g
(2)
N (τ) =

〈I(t)I(t + τ)〉N
〈I(t)〉2N

. (3.16)

Ideally one single-photon detector would suffice for measuring the autocorrelation

of the incoming light field. However, real detectors have non-trivial autocorrelations

(see Sec. 2.3.1 of Ref. [1]). First, there is the dead time: after recording a photocount,

our detectors take about τDT = 53 ns to recover before they can detect the next

photon. This means that if one is interested in correlations for times shorter than the

dead time |τ | < τDT , one needs two detectors. Secondly, there is the problem of after-

pulsing, whereby about 1.2% of the time, the detector records not one, but two counts

per incoming photon. This means that, for accurate field intensity autocorrelation

measurements, one should only consider the cross-correlation of the click times coming

from two different detectors, and ignore those coincidences corresponding to one and

the same detector.

By extension of the single-detector picture, let the number of clicks in the kth

bin coming from each of the two detectors be ak and bk. Then Eqn. (3.15) can be

updated for the two-detector, cross-correlation case:

〈IA(t)IB(t + τ)〉 =
1

N

N∑
k=1

akbk+j

〈IA(t)〉 =
1

N

N∑
k=1

ak (3.17)

〈IB(t)〉 =
1

N

N∑
k=1

bk .
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Then the normalized correlation function becomes

g(2)(τ) =
〈IA(t)IB(t + τ)〉
〈IA(t)〉〈IB(t)〉 = N

∑
akbk+j

(
∑

ak)(
∑

bk)
= N

C(τ)

AB
, (3.18)

where we have defined the total number of clicks recorded by each detector in the T0

interval, and the coincidences in the jth bin, as:

A =
∑

k

ak B =
∑

k

bk C(jδ) =
∑

k

akbk+j , (3.19)

respectively. So there are three main ingredients in g(2)(τ). First is the number of bins

N into which we have chosen to divide the T0 interval. Then, there are the “raw”

coincidences, i.e., the unnormalized correlation function, C(τ) = C(jδ). Finally,

there is the product AB, a normalization constant representing the total number of

coincidences in the data set (ignoring triangle effects as discussed around Eqn. (3.2)),

i.e., C(τ) integrated over all values of τ :

∑
j

C(jδ) =
N−1∑

j=−N+1

N∑
k=1

akbk+j =
N∑

k=1

ak

N−k∑
j=1−k

bk+j =
N∑

k=1

ak

N∑
i=1

bi = AB . (3.20)

One can always pick δ small enough that each bin contains at most one click from

each detector. For instance, since our detectors produce no clicks in the dead time

interval, for any δ < τDT , we know that ak and bk can only take the values 0 or 1.

In this case, the coincidence function C(jδ) is just a histogram of time separations

between clicks in the two channels, which makes it easier to compute in data analysis

(see Sec. 3.5).

Often the recorded counts come not only from the field for which we are inter-

ested in measuring the correlation function, but also from some additional background

signal. In that case, one might wish to extract the correlation function g
(2)
s (τ) cor-

responding to the underlying signal from the measured coincidences C(τ). This can

be easily done if the background comes in at a constant rate, without nontrivial cor-

relations, as is the case with, for instance, detector dark counts. If the background
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is responsible for Ab and Bb clicks in the interval T0 from each of the two detectors,

evenly distributed among the N bins, then in terms of the measured counts ak and

bk, the expected counts associated with the signal are:

as
k = ak −

Ab

N
bs
k = bk −

Bb

N
. (3.21)

For notational simplicity, let us for the moment restrict ourselves to τ = 0, so that

the desired normalized correlation is

g(2)
s (0) = N

Cs(0)

(
∑

as
k)(

∑
bs
k)

, (3.22)

where Cs(0) =
∑

as
kb

s
k gives the coincidences associated with the underlying signal

alone, in the absence of background. Then if the measured, raw coincidences from

the recorded counts are given by C(0) =
∑

akbk, using (3.21) we find:

Cs(0) = C(0) − Ab

N

∑
k

bk −
Bb

N

∑
k

ak + N
Ab

N

Bb

N

= C(0) − 1

N
(AbB + ABb − AbBb) (3.23)

=
1

N
(NC(0) − Cb).

Here we have defined the quantity Cb = AbB + BbA − AbBb, which is related to the

contribution background counts have to the measured correlations. Again with the

help of (3.21), we can rewrite the denominator of g
(2)
s (0) as follows:

(
∑

k as
k) (

∑
k bs

k) = (A − Ab)(B − Bb) = AB − Cb . (3.24)

Putting together the results from (3.23) and (3.24) into (3.22), and generalizing to

non-zero delays, we now know how to compensate for the background contribution

to the correlation function. We get that the normalized correlation function g
(2)
s (τ)

corresponding to the signal alone, inferred from the measured coincidences including
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background C(τ), is:

g(2)
s (τ) =

NC(τ) − Cb

AB − Cb

. (3.25)

Note that if we set Ab = Bb = 0, then Cb = 0 as well, and we recover the expression

for the normalized second-order correlation function of the recorded clicks, in the

absence of any background compensation, consistent with (3.18).

It is easy to show, based on (3.25) and (3.18), that the following must hold true:

g(2)(τ) = 1 =⇒ g(2)
s (τ) = 1

g(2)(τ) < 1 =⇒ g(2)
s (τ) < g(2)(τ) (3.26)

g(2)(τ) > 1 =⇒ g(2)
s (τ) > g(2)(τ).

In other words, removing the contribution of a Poissonian background does not change

the value of g(2) when the latter corresponds to uncorrelated statistics. However, the

sub- and super-Poissonian character of the statistics are enhanced after the back-

ground correlations are compensated for.

So far we have dealt with a single data record of duration T0, which in our ex-

periment would correspond to a single probe trial, typically on the order of 500µs

long. The counting rates per trial are rather low, typically a few kHz per detector,

meaning only a few counts per pulse. Thus to obtain a statistically significant g(2),

we would need to take data for many such probe pulses, and somehow average them

all up. How would one go about computing the correlation function, based on many

uncorrelated trials?

One proposed way of solving this problem, suggested by Jeff Kimble, would be to

formally concatenate all the pulses into one long time record. So if we have Np square

pulses of length T0 each, we would obtain one interval of length NpT0, and go about

computing g(2) as outlined above in Eqn. (3.25). I have not yet used this method for

analyzing the data in Sec. 3.6, though it sounds like a reasonable thing to try in the

near future.

Another possibility, suggested by Kevin Birnbaum, would be to compute a sepa-
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rate normalized g(2)(τ) for each of the Np trials, and then average the results. Ignoring

background for the moment, let the number of clicks in the kth bin in the ith trial

from the two detectors be ai
k and bi

k. Then the unnormalized correlation function for

the ith interval is Ci(τ = jδ) =
∑

k

ai
kb

i
k+j, whereas the normalized correlation for

that same interval is, as in Eqn. (3.18)

g
(2)
i (τ) =

NCi(τ)

AiBi

, (3.27)

where we have defined the total number of clicks in each interval as Ai and Bi:

Ai =
∑

k

ai
k Bi =

∑
k

bi
k . (3.28)

Then the normalized correlation function for the entire data set made up of Np trials

would be computed as

g(2)(τ) =
1

Np

Np∑
i=1

g
(2)
i (τ) . (3.29)

The problem with doing this is that, due to the sparsity of the count record, for

each of the correlation functions g
(2)
i (τ) to be averaged, we take the ratio of two

small numbers: Ci(τ) and AiBi, hence the fluctuations will be large, washing out the

interesting signal in g(2)(τ).

An alternative would be to first compute the unnormalized correlation function

for each of the Np intervals, add them all up, and only then divide by an appropriate

normalization constant. The coincidences for the entire data set are given by

C(τ) =

Np∑
i=1

Ci(τ) . (3.30)

As for the normalization constant, the discussion around Eqn. (3.18) suggests that

we should use the total number of coincidences that get histogrammed by the various

Ci(τ) functions, or equivalently the integral of C(τ) over all values of τ , which is
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Figure 3.3: g(2)(τ) on a long time scale for dark-mode up-goer data, where the asymp-
totic value is used as a check of the normalization method.

∑
i AiBi. Then the normalized correlation function is given by

g(2)(τ) = N
C(τ)∑
AiBi

. (3.31)

There is a different, but equivalent way of arriving at the above formula (3.31). We

start out with the normalized intensity correlation functions g
(2)
i (τ) for each of the Np

intervals, defined in (3.27). But instead of doing an unweighted average as in (3.29),

we can weigh each g
(2)
i by the total number of coincidences in the ith trial, namely

AiBi. Since more weight is given to those trials that have more data, we don’t run

into the problem of large fluctuations any more. The normalized correlation function

for the entire data set, obtained through this weighted averaging, is:

g(2)(τ) =

∑
AiBi g

(2)
i (τ)∑

AiBi

, (3.32)

which one can easily check is the same as the expression in (3.31).
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Figure 3.4: g(2)(τ) on a long time scale, for flashlight data, with the asymptotic value
used as a check of the normalization method.

One way to confirm that the above-outlined normalization does indeed make sense

is to check that the asymptotic value of g(2)(τ) is 1. As an example, Fig. 3.3 shows

g(2)(τ) computed for the data set2 discussed in Sec. 3.6. The bin size used here is

δ = 40 ns, and the trial duration is T0 = 500 µs. The correlation function has been

adjusted for the finite trial duration effect, by multiplying it by a T0/(T0 − |τ |) factor

– see Eqn. (3.14). For the purposes of this section, we are not interested in how

exactly the data was acquired, or in the structure around τ = 0; instead, we want to

check that g(2)(τ) → 1 as τ → ∞. And indeed, for the displayed data, the average

value of g(2)(τ) over the interval τ = 100 − 200 µs is 1.000 ± 0.002, consistent with

the expected value of unity.

Another example, for a quieter light source, is shown in Fig. 3.4. The detectors

were illuminated by a flashlight3, which for the purposes of this discussion is a thermal

light source of extremely short correlation time. The bin size is δ = 10 ns, and again

we compensated for the triangle effect. Perhaps more convincingly than in Fig. 3.3,

g(2)(τ) asymptotes to unity, with the long-timescale value, as given by the average

between τ = 200 µs and τ = 300 µs, being 1.0000 ± 0.0004.

We are now in the position to subtract the contribution of a Poissonian background

2Measurement date: 3/10/05.
3Measurement date: 1/24/05.
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in the many-trial case. As before, we can assume that the number of clicks recorded

in the ith trial by each of the two detectors is Ai and Bi; however, part of those are

background counts, which are assumed to be recorded by each detector at constant

rates Ab and Bb per trial. We are interested in the normalized intensity correlation

function g
(2)
s associated with the underlying signal, whose contribution in the ith trial

is As
i = Ai − Ab and Bs

i = Bi − Bb clicks per detector. We know from (3.23) that

for each individual trial, the unnormalized correlation function Ci
s(τ) for the signal

is given by NCi
s(τ) = NCi(τ) − Ci

b, where Ci
b = AbBi + AiBb − AbBb. Thus, from

(3.31):

g(2)
s (τ) =

N
∑

Ci
s(τ)∑

As
iB

s
i

=

∑
(NCi(τ) − Ci

b)∑
(AiBi − Ci

b)

=
NC(τ) − Cb∑

AiBi − Cb

, (3.33)

where we have identified the quantity

Cb =

Np∑
i=1

Ci
b = Ab

Np∑
i=1

Bi + Bb

Np∑
i=1

Ai − NpAbBb (3.34)

as the background contribution to the coincidences.

The error bars on g(2)(0) can be computed using standard error-propagation tech-

niques [40]. If we denote by σx the standard deviation associated with the random

variable x, then in general, for uncorrelated u and v, we have the following:

σ2
u+v = σ2

u + σ2
v

σs
uv = σ2

uv
2 + σ2

vu
2 (3.35)

σ2
u/v = (u/v)2((σu/u)2 + (σv/v)2) .

For instance, from Eqn. (3.31), the normalized correlation function at zero delay,
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without any background corrections, is given by

g(2)(0) =
NC(0)∑

AiBi

, (3.36)

so by applying rules (3.35) several times, we get:

(
σg(2)(0)/g

(2)(0)
)2

=
1

C(0)
+

∑
AiBi(Ai + Bi)

(
∑

AiBi)2
, (3.37)

where we have assumed that C(0), Ai, and Bi are Poisson variables, hence with

σ2
C(0) = C(0), σ2

Ai
= Ai, and σ2

Bi
= Bi, and that they are all statistically indepen-

dent. This latter assumption means that the calculated value of σg(2)(0) is only a

first-order approximation, where a more careful treatment would also be taking into

consideration the correlations between Ai and Bi.

If we now take into consideration the background contribution to the coincidences,

and assume that at each detector, the measured background rate is γA = Ab/T0 and

γB = Bb/T0 counts per second, then the error bar on Cb is, from (3.34) and (3.35):

σ2
Cb

= T 2
0 (γA(

∑
Bi)

2 + γ2
A

∑
Ai + γB(

∑
Ai)

2 + γ2
B

∑
Ai

+N2
p T 2

0 γAγB(γA + γB)) . (3.38)

As for the normalized correlation function at zero delay with background contribution

removed, we see from (3.33) that it is given by:

g(2)
s (0) =

NC(0) − Cb∑
AiBi − Cb

, (3.39)

so by repeated application of relations (3.35), we find:

(
σ

g
(2)
s (0)

/g(2)
s (0)

)2

=
N2C(0) + σ2

Cb

(NC(0) − Cb)2
+

∑
AiBi(Ai + Bi) + σ2

Cb

(
∑

AiBi − Cb)2
. (3.40)

The final result for g
(2)
s (τ) in Eqn. (3.33), together with the error estimate in

(3.40), are what we use in the data analysis program in Sec. 3.5 for computing the
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Figure 3.5: Cartoon representation of: (a) cavity eigenmode polarizations; (b) output
polarizer axes; (c) beam polarizations at the cavity input.

normalized second order intensity correlation function and its standard deviation, as

cited in Sec. 3.6.

3.3 Experimental protocol

Our cavity supports two independent eigenmodes with orthogonal polarization axes

(also see Sec. 4.6), both of which couple to the atom within, but only one of which

we select for detection with the output polarization optics. We refer to this detected

mode as the “bright” mode, since when the empty cavity is on resonance, we detect

a lot of light. We often speak of the orthogonal mode as the “dark” mode, since the

polarizer at the cavity output prevents the empty cavity transmission in this mode

from reaching the detectors. Fig. 3.5 shows an on-axis view of our cavity, including

the directions of polarization for the various beams which get coupled into the cavity.

To start with, since the cavity is locked in transmission, the locking laser needs to

go through the cavity and past the output polarizer, so we always align the locking

beam’s polarization with that of the bright mode. A second beam we use is a cavity

QED probe on resonance with the F = 4 → F ′ = 5′ atomic transition, i.e., with

δAP = 0. This beam drives the bright cavity mode, hence we have dubbed it the

bright-mode probe. The cavity is locked in such a way as to maximize the bright-mode
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probe transmission, therefore the cavity is also resonant with the atomic transition.

In addition to the bright-mode probe, we use a second probe beam, typically red-

detuned from 4 → 5′ by δAP = 2π × 34 MHz, and polarized so as to drive the

orthogonal mode, hence referred to as the dark-mode probe. Finally, as shown in

panel (c), the trapping and the Raman beams have polarizations orthogonal to one

another. What do we expect the transmission of our atom-cavity system to be, when

driven by either of the probe beams?

Recalling the Jaynes-Cummings model shown in Fig. 2.2, we see that for δAP = 0

the presence of an atom in the cavity makes the probe transmission go down drasti-

cally compared with the empty-cavity value. This is why in cavity QED jargon we

call this phenomenon a “down-goer.” From Eqn. (2.16) it follows that for a two-level,

single-mode system, the contrast between the transmission for the empty cavity with

g = 0, and that when an atom is present, with g �= 0, is (1 + g2/κγ)2, which for

g � (κ, γ) is a large number. Thus a probe tuned to the down-goer setting, such as

our bright-mode probe, is a good atom detector for our system.

If instead the probe were to be tuned near either of the vacuum-Rabi sidebands

at δAP = ±g, its transmission in the presence of an atom would increase significantly

compared to the empty-cavity value, hence the name “up-goer.” Since the location of

the vacuum-Rabi peaks depends on the value of the coupling strength g, the cavity

transmission for a probe tuned for an up-goer is quite sensitive to changes in g. In

particular, as the atom rolls around in the intra-cavity trap, it experiences a changing

coupling constant (see Fig. 2.6), which will manifest itself as an amplitude modulation

on the cavity output. So up-goers are a good way of sensing the atomic motion. In

addition, as we saw in Sec. 3.1, this probe detuning is good for creating non-classical

states of the light field via photon blockade.

So far in this chapter we have only considered a single-mode cavity, but as we shall

see in Secs. 3.4 and 3.6, all the above features related to the up-goer setting still hold

in a real, two-mode cavity. In addition, the predicted g(2)(0) value corresponding to

driving one cavity mode and detecting the other is much lower than that correspond-

ing to either a single-mode cavity, or to a two-mode cavity driven and detected in the
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bright probe: 4 5'
AP = 0 MHz

repump: 3 4'
0.1 ms

cooling:
radial: 4 4'
axial: Raman

1.4 ms

dark probe: 4 5'
AP = 34 MHz

repump: 3 4'
0.5 ms

repeat 150 times

...

...

...

t=0

Figure 3.6: Typical timing diagram for a dark-mode up-goer experiment.

same mode [8]. The sub-Poissonian character of the photon statistics is hence much

more robust in the former case, which is why, for our up-goer probe, we use the dark

mode.

A typical timing scheme for the experiments outlined in this chapter is shown

schematically in Fig. 3.6. We use brief 100 µs intervals of bright probing as a way of

testing for down-goers, i.e., for atomic presence, throughout the observation period.

Each bright-mode interval is called a “trial,” which is considered successful if in data

analysis it is determined that an atom was present during the trial (more on this topic

below). The bright-mode pulses alternate with longer intervals of dark-mode probing,

of duration T0 = 0.5 − 5 ms, from which we extract photon statistics to construct

the g(2)(τ) function. Since all these probing intervals are likely to heat the atom, we

try to compensate by cooling it both axially and radially, using the same scheme as

in Ref. [7]. The particular timing diagram in Fig. 3.6 corresponds to the settings in

Sec. 3.6; the most notable variations from one data set to another in this chapter,

as far as the timing scheme is concerned, consist of omitting the interval devoted to
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cooling, and leaving the dark probe on for longer, up to 5 ms.

We define t = 0 as the time when the P7888 data acquisition card in our computer

is triggered to start counting incoming pulses. In addition to the pulses from the

two single-photon detectors, we also use the P7888 to acquire a time stamp at the

beginning of each dark-mode probing interval, in order to compensate for any drifts

between the computer time and that of the rest of the experiment, the latter of which

is set by the ADwin system.

The first bright-mode pulse starts at t = 0 and is used for determining the loading

rate, i.e., the probability that one or more atoms are loaded into the trap each time

the lower MOT is dropped onto the cavity. We sometimes call each such loading

attempt a “drop.” We have had some evidence [5, 3] that the loading process is

Poissonian, in which case if the average number of atoms loaded per attempt is n̄,

then the probability to load n atoms is given by:

pn =
n̄n

n!
e−n̄. (3.41)

If the loading probability is α, then

α = 1 − p0 = 1 − e−n̄ =⇒ n̄ = − ln(1 − α), (3.42)

from which we find the probability to load n atoms, in terms of the loading rate α:

pn = (1 − α)
(− ln(1 − α))n

n!
. (3.43)

In order to illustrate our method for deciding whether a particular trial was suc-

cessful or not, we show in Fig. 3.7 two examples4 of click histograms for the bright-

mode probing interval. For each total number of counts that has been detected by

the two APDs over a 100 µs pulse, the histogram shows how many times that number

of counts actually occurred throughout the given data set. For panel (a), the loading

rate was later determined to be α = 0.098, whereas for (b), α = 0.865. Note first that

4Measurement date: 2/3/05.
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Figure 3.7: Histogram of counts per bright-mode probing pulse for (a) low and (b)
high loading rate.

for the low loading rate case in (a), there are two well-resolved peaks, a taller one

centered at about 40 counts per 100 µs, and another smaller one at about 4 counts

per 100 µs. We identify the former as corresponding to the empty-cavity bright-

mode probe transmission, and the latter to the coupled atom-cavity transmission.

Clearly for this data set we can set an atom-detection threshold at about 25% of the

empty-cavity transmission: if for a particular trial, and for all preceding trials within

that drop, the transmission dipped below the threshold, the trial is considered to be

successful, and the dark-mode interval following it is considered useful cavity QED

data. This same threshold is subsequently used to determine the loading rate quoted

above for panel (a), from which one can infer based on Eqn. (3.43) that about 9.3%

of loading attempts result in a single atom being loaded, about 0.5% are two-atom
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Figure 3.8: Clicks recorded by the P7888 card for channels A and B, given a laser
pulse input for the fiber coupler.

loading events, and all other atom numbers are negligible. In panel (b) we notice the

same separation between the empty and the full cavity, enabling us again to set a

threshold for determining successful trials. However in this case the peak correspond-

ing to low transmission has some structure, presumably associated with multi-atom

events, which according to Eqn. (3.43) constitute almost 60% of all loading attempts.

The width of the empty-cavity peak in the histogram, as given by its best Gaussian

fit, is somewhat larger than what one would expect from Poissonian statistics in the

number of clicks per bright-mode trial. For instance, in Fig. 3.7 (a), the standard

deviation is ∼ 7.5, whereas the square root of the mean is about 6.3. This discrepancy

is probably due to a slow drift in probe power at the cavity input, or in alignment

of the cavity output into the detectors. Either way, this drift is taken into account

by the data analysis program, which computes an average empty cavity transmission

at least as often as once every 200 drops, for the purpose of setting atom-presence

thresholds.

A technical issue worth mentioning here is a measured apparent delay between the

two detectors, which needs to be taken into consideration in order to correctly set the
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time axis on correlation functions. For a given incoming light pulse at the input of the

fiber coupler leading to the single photon detectors A and B, the two corresponding

channels of the P7888 pulse counting card will not record simultaneous time stamps.

This offset is partly due to electronic delay in the cables leading from the detectors

to the computer, and partly to a counting card offset between different channels. As

shown in Fig. 3.8, the measured5 overall apparent delay between detectors A and B

is ∆τ = +10 ± 1 ns, with the A clicks coming in later than the B clicks. Our data

analysis program computes correlations based on a histogram of the time separations

between clicks in A versus B, which means that a feature occurring at τ = 0 delay,

in fact appears in our acquired data at τ = ∆τ . We compensate for this effect in our

plots of correlation functions over small time scales, and for citing the value of g(2)(0)

in Sec. 3.6.

For the purpose of extracting the value of g
(2)
s (0) for the underlying signal coming

from the atom-cavity system, in the manner outlined around Eqn. (3.33), we need

to know the background counting rates due to the 3 → 4′ repumper and the detector

dark counts. We measured6 these total background rates to be γA = 398 ± 20 cps

for detector A, and γB = 292± 17 cps for B, where the error bars assume Poissonian

statistics. These numbers are used for computing the Ab and Bb rates per probing

trial, which enter the background contribution to coincidences, from Eqn. (3.34).

3.4 Up-goer data as a motion detector for the atom

The spatial dependence of the AC-Stark shift caused by the FORT in our cavity is

given by the Gaussian beam standing-wave profile:

U(z, ρ) = −2π� U0 sin2

(
2πz

λ

)
exp

(
−2ρ2

w2
0

)
, (3.44)

where z and ρ are the axial and the radial dimension respectively, λ = λFORT =

935.6 nm and w0 = 24.8 µm are the FORT wavelength and waist, as determined in

5Data taken on 3/24/05.
6Data taken on 3/25/05.
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Secs. 4.1 and 4.2, and U0 is the maximum trap depth in MHz, which in Sec. 4.5

is shown to be 40.9 MHz per mW of measured FORT cavity output power. The

maximum trap depth is reached for z an odd multiple of z0 = λ/4, and for ρ = 0.

Both the axial and the radial components of the trapping potential are anhar-

monic, with the spacing between the quantum levels, hence the vibrational frequen-

cies, getting smaller as we ascend in energy. Since there are a finite number of levels,

there is also a finite range that the vibrational frequencies are bounded by, with a

largest frequency ν0 at the bottom of the trap, and a smallest frequency νmin near the

top.

For the axial direction, we can easily compute the upper bound frequency νax
0 by

making the harmonic approximation for small-amplitude motion at the bottom of the

trap, as follows:

νax
0 =

1

2π

√
1

m

∂2U(z, 0)

∂z2

∣∣∣∣
z=z0

=

√
4π�U0

mλ2
, (3.45)

where m = 2.207 × 10−25 kg is the mass of a Cesium atom. For typical parameters

in our experiment, νax
0 is about 500 kHz.

Similarly, for the radial direction, the highest oscillation frequency νrad
0 is given

by:

νrad
0 =

1

2π

√
1

m

∂2U(λ/4, ρ)

∂ρ2

∣∣∣∣
ρ=0

=

√
2�U0

mπw2
0

, (3.46)

which for us is typically about 5 kHz.

As mentioned before in Sec. 3.3, while the atom oscillates in the trap, so does the

strength |g| of its coupling to the cavity QED field. Axially, if the FORT and the

probe mode are out of registration (see Fig. 2.6), then the modulation on |g| that the

atom experiences is predominantly at the same frequency as its oscillatory motion,

as shown in Fig. 3.9 (a). Radially however, the two fields are always registered, since

they are both radially symmetric, hence the atom will experience a particular value

of |g| twice in each period of oscillation, as shown in Fig. 3.9 (b). Thus the coupling

strength modulation will occur at twice the frequency of the atom’s radial motion.
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Figure 3.9: Modulation of the CQED coupling strength due to the (a) axial and (b)
radial motion in the trapping potential.

As shown in Fig. 3.10, we were able to observe both these types of modulation7

when driving the cavity with a dark-mode probe detuned 2π × 34 MHz to the red

from the atomic resonance. The figure shows the Fourier transform of the click record

corresponding to dark-mode probe pulses in the presence of an atom. The experiment

is done as explained in Sec. 3.3; there is no cooling, the dark-mode pulses are 5 ms

long each, the output FORT power is measured to be P = 823 µW, the loading

rate is about 65%, and the bright-mode transmission threshold for determining atom

presence is set at 35% of the empty-cavity value. The dashed line in panel (a) indicates

the predicted axial cutoff frequency νax
0 	 481 kHz, obtained from Eqn. (3.45), which,

as expected, bounds the peak on the right. For a smaller frequency resolution, we are

also able to see the peak corresponding to the radial motion, as shown in panel (b).

The dashed vertical line now denotes the predicted highest modulation frequency

corresponding to radial motion, based on the known FORT parameters and Eqn.

(3.46), namely 2 νrad
0 = 8.2 kHz, where again the shown peak has a sharp edge on the

high-frequency side, as expected.

Oscillation evidencing the trap frequencies can be seen in the time domain as well.

Fig. 3.11 shows the raw coincidences, calculated based on Eqn. (3.30), corresponding

to the data from Fig. 3.10. For panels (a) and (b) the bin size used for calculating

C(τ) is δ = 40 ns, whereas for panel (c) it is δ = 4 ns. For the top panel only, the raw

7Measurement date: 1/18/05.
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Figure 3.10: Fourier transform of the cavity transmission, showing modulation due
to the (a) axial motion, near νax

0 ; and (b) radial motion, near 2 νrad
0 .

coincidences were multiplied by a T0/(T0−|τ |) factor, with T0 = 5 ms the probe pulse

duration, in order to compensate for the finite-pulse triangle effect outlined around

Eqn. (3.14). Clearly evident in the (a) panel is the slow oscillation corresponding to

the radial peak in Fig. 3.10 (b). Zooming in on the central region of C(τ), we see

in the middle panel the oscillations associated with the axial peak in Fig. 3.10 (a).

Finally, on an even faster time scale, we notice the dip in coincidences near τ = 0.

This latter feature is known as photon anti-bunching, and can be shown (see Ref.

[34], Sec. 14.7.3) to be a purely quantum effect.
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Figure 3.11: Un-normalized correlation function on three different time scales, show-
ing (a) radial motion; (b) axial motion; (c) photon antibunching.
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Figure 3.12: Fourier transform of the correlation function, showing a peak corre-
sponding to axial motion for (a) full; (b) half FORT depth.

The observed non-classical character of the light is what Sec. 3.6 focuses on, so we

will not dwell on this topic here. Rather, we will continue with our discussion of the

motion-induced effects, as shown this time by the Fourier transform of the correlation

function. Figs. 3.12 (a) and 3.13 (a) show the Fourier transform of the coincidences

in Fig. 3.11, displaying the axial and the radial peaks. It is hard to understand

quantitatively the exact shape of the correlation function Fourier transform, but by

comparing with Fig. 3.10 we see that qualitatively it is very similar to the Fourier

transform of the cavity transmission. For all the dark-mode up-goer data we have

taken, it is in general true that the correlation function Fourier peak will tend to

have better signal-to noise than its corresponding probe transmission peak, which is
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Figure 3.13: Fourier transform of the correlation function, showing a peak corre-
sponding to radial motion for (a) full; (b) half FORT depth.

why we will usually prefer it to the click-record Fourier transform, for the purpose of

making comparisons between different data sets.

In order to confirm the fact that the Fourier peaks in Figs. 3.12 (a) and 3.13 (a) do

indeed correspond to motion-induced modulation on the cavity transmission, rather

than some technical noise happening to be at just the right frequency, we decided

to check that the peak location scales correctly with the trap depth. From Eqns.

(3.45) and (3.46), we see that both the radial νrad
0 and the axial νax

0 cutoff frequencies

should scale like the square root of the FORT depth U0. Thus if we were to reduce

the FORT power from the original intensity corresponding to P = 823 µW at the

cavity output, to about half that, we would expect the motional peaks to move to the
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Figure 3.14: Fourier transform of the correlation function, showing the axial vibra-
tional peak with and without cooling.

left, to frequencies reduced by approximately
√

2. Figs. 3.12 (b) and 3.13 (b) show

the Fourier transform of the coincidence record obtained with such a reduced trap

depth8. The experimental settings were all the same as in the (a) panels, except for

the loading rate, which was 45%, and the measured FORT power at the cavity output,

which in this case was P = 405 µW, leading to predicted axial and radial maximum

frequencies of νax
0 	 337 kHz and 2 νrad

0 	 5.7 kHz. As before, these independently

determined cutoff frequencies are indicated on the graphs by vertical dashed lines.

The good agreement between the prediction and the data reassures us that we know

how to correctly compute the trap depth, confirming that the observed peaks are

indeed caused by atomic motion.

Our lab has already shown that tuning the Raman system to the red vibrational

sideband achieves an increase in trap lifetime [6]. However, since the Raman beam

also acts as a repumper for the radial cooling achieved by the 4 → 4′ lattice beams,

one could argue that this increase is only due to extremely efficient radial cooling,

8Data taken on 1/19/05.
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rather than to the radial and axial cooling working together. One way to settle this

argument would be to somehow measure the axial temperature with and without

Raman cooling. Since the Fourier peak shapes in the up-goer data depend on the

energy distribution that the atom occupies within the potential well, one can in

principle use them as a thermometer. Colder atoms will be closer to the bottom of

the well, with little population in the higher-energy levels which correspond to lower

vibrational frequencies. Thus the lower the atomic temperature, the narrower should

the Fourier transform peak become, but without change in the cutoff frequency at

the trap bottom.

We have some preliminary data which, based on the above argument, suggests

that the effect of the Raman beam is indeed axial cooling. Fig. 3.14 shows the

Fourier transform of coincidences obtained in two separate data sets. In the first9,

there is neither axial, nor radial cooling, and the dark-mode probe intervals are 5 ms

long each, alternating with 100 µs long bright-mode probe pulses. In the second10,

the dark-mode probe is about twice as strong, but it is on in shorter intervals of

500 µs each. The bright-mode pulses are still 100 µs long, and the cooling pulses

last 1.4 ms (see Fig. 3.6). Both data sets have loading rates of about 10%, and

the same trap depth, hence the same maximal vibrational frequency, as is evident in

Fig. 3.14. However, the widths of the two peaks are quite different: as expected, it

seems that cooling makes the atomic population distribution narrower, and pushes

it towards the bottom of the trap (i.e., towards the maximal vibrational frequency).

The caveat is that, for the data set with cooling, it is possible that the stronger dark-

mode probe might have kicked out of the trap those atoms which were hot before they

got the chance to contribute significantly to the data, thus leading to the narrower

distribution. Alternatively, the longer probe duration for the data without cooling

would mean that there is also more heating, making the comparison unfair again. It

ought to be easy to rule out both these scenarios in the near future, by taking cooling

and no-cooling data with identical probe parameters.

9Measurement date: 1/19/05.
10Measurement date: 2/03/05.
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3.5 C code for analyzing dark-mode data

The P7888 pulse counting card we use in our lab takes up to four inputs, and stores

the pulse arrival times in a specA*.lst file, where the * denotes a four-digit integer.

Each “stop” trigger is stored in this file as a 32-bit number, in the following format:

the two most significant bits encode the input channel number, and the 30 least

significant bits encode the time stamp, in units of the card’s resolution. When the

card is operating in single- or two-channel mode, its resolution is 1 ns, whereas when

it is in three- or four-channel mode, the card resolution will be 2 ns. Recently, we

have been operating the card in a three-channel mode, hence with a 2 ns resolution:

one channel to acquire the pulses from each of the two APDs, and a third channel

for acquiring the beginning of each dark-mode probe pulse. Every time it receives

a “start” trigger, the P7888 resets its time stamp to zero; this happens once per

experimental cycle, or “drop.”

As a warm-up example, the following simple program called all_clicks.c takes

a series of consecutive specA*.lst files and writes the time stamps corresponding to

clicks from detectors A and B to two separate output files. The heart of the program

is the get_click() function, written by David Boozer, which decomposes each data

point acquired by the P7888 into a channel number and a time stamp expressed in

ns. To compile the program, one can use for instance the JFE & GCC file editor and

compiler combination [41], which upon pressing Ctrl+F9 will produce the executable

all_clicks.exe. Here is the code for all_clicks.c, with comments in between the

\* and */ signs. Whenever in doubt of what a pre-defined function does, please check

the on-line manual pages, by typing man <function_name> at any ITS Unix prompt,

or look it up in a textbook, such as the classic Ref. [42].

#include <stdio.h> /* library of input-output functions */

/* define constants */
#define A 0 /* card channel corresponding to detector A */
#define B 1 /* card channel for B */

/* global variables, shared by all functions */
FILE *input_file; /* current specA*.lst file */
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FILE *outputA_file; /* time stamps for channel A */
FILE *outputB_file; /* time stamps from B */

/**************************************************************************
get_click() function:

turns next line in the input file into
1) a channel number, from 0 to 3, and
2) a time stamp in ns, assuming 2ns card resolution

function arguments are pointers, so they can be written to
**************************************************************************/

void get_click (int *channel, unsigned long int *time) {

char buffer[128]; /* stores a line from the input file */
char *ptr;
unsigned long int t; /* time stamp */
int fields;

ptr = fgets (buffer, 128, input_file);
if (ptr != NULL) {

fields = sscanf (buffer, "%lu\n", &t);
if (fields != 1) {

fprintf (stderr, "Error: format error in input file\n");
exit (0);

}
/* efficient left << and right >> bit shift operators used below */
*channel = (int) (t>>30); /* divide by 2^30 */
/* t modulus 2^30, then multiply by card resolution, i.e. 2 ns */
*time = (t % (1<<30)) << 1;

}
else { /* end of file reached, or error */

*channel = -1;
*time = 0;

}
}

/**************************************************************************
process_file() function:

writes all time stamps in channel A to outputA.txt
writes all time stamps in channel B to outputB.txt

**************************************************************************/

void process_file (char *filename) {

unsigned long int t, t_old;
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int channel;
char buffer[128];

input_file = fopen (filename, "r");
if (input_file == NULL) {

fprintf (stderr, "Error: cannot open file %s\n", filename);
exit (0);

}

/* skip text at beginning of *.lst file */
do fgets (buffer, 128, input_file); while (buffer[0] != ’[’);
get_click (&channel, &t);

while (channel != -1) {
do { /* do-while loop processes one drop, i.e. one card trigger */

if (channel == A) fprintf (outputA_file, "%lu\n", t);
else if (channel == B) fprintf (outputB_file, "%lu\n",t);

t_old = t; /* t_old is time when most recent click occurred */
get_click (&channel, &t);

/* 1e6 offset: rare glitches when card appears to go back in time */
} while (t + 1e6 > t_old && channel != -1);

}

fclose (input_file);
}

/**************************************************************************
main() function:

syntax: all_clicks specA<num_start>.lst specA<num_end>.lst
analyzes data in specA*.lst files with consecutive numbers

between <num_start> and <num_end>
**************************************************************************/

int main (int argc, char *argv[]) {

char filename[20];
int spec_num, spec_num_start, spec_num_stop;

if (argc != 3) {
printf ("Error: wrong number of arguments");
exit (0);

}
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outputA_file = fopen ("outputA.txt", "w");
if (outputA_file == NULL) {

fprintf (stderr, "Error: cannot open outputA.txt file\n");
exit (0);

}

outputB_file = fopen ("outputB.txt", "w");
if (outputB_file == NULL) {

fprintf (stderr, "Error: cannot open outputB.txt file\n");
exit (0);

}

sscanf(argv[1],"specA%d.lst",&spec_num_start);
sscanf(argv[2],"specA%d.lst",&spec_num_stop);
spec_num = spec_num_start;

while (spec_num <= spec_num_stop) { /* loop through all the files */
sprintf(filename, "specA%d.lst\0",spec_num);
printf ("processing file %s\n", filename);
process_file(filename);
spec_num++;

}

fclose (outputA_file);
fclose (outputB_file);

}

The next C program, called dark_mode.c, is what we used for analyzing the dark-

mode up-goer data in Sec. 3.6. Here is a broad outline of how the program works:

for each specA*.lst file in the data set, based on a conservative estimate of which

drops contain no atoms, the transmission() routine computes an average value for

the empty-cavity transmission of the bright-mode probe. A threshold is then set

as a fixed percentage of that value, which the probes() function uses to determine

which of the trials do contain atoms. Once the code knows how to extract the trials

with useful data, it uses them for incrementing various statistics for the entire data

set, including the correlation function and its normalization, standard deviation, and

background contribution.

I should also mention that this program is perhaps the ugliest quick and dirty C

code I’ve ever written, its only redeeming virtue being that it seems to work. If one

would wish to use it in the future, here is my advice: one should make the program
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much more modular, with many functions each doing a small part, hence making

it easy to leave out those which are not needed for a particular application. On

a related note, those variables which are unnecessarily global should become local.

Repeated code should be replaced by multiple calls to a simple function. Some of the

constants, such as DROPS and TRIALS, should no longer be required from the user,

since the program can extract them itself from the data. Finally, memory should be

allocated dynamically, for instance for the tA and tB variables. Bearing the above

words of caution in mind, here is the code:

#include <stdio.h> /* declares input-output functions */
#include <math.h> /* needed by e.g. the floor() function */

/* constants; customize according to the particular timing scheme,
probe strength, background rates, etc. */

#define MIN_LIFE 0 /* minimum number of trials an atom must survive
to be counted in for G correlation function */

#define TRIALS 150 /* a trial is one bright probe turn-on; not counting
the first one, there are TRIALS trials per drop */

#define DROPS 200 /* number of loading attempts, i.e. of card
triggers per file */

#define PROBE_DURATION 5e5 /* dark-mode probe pulse duration in ns */
#define TRANS_THR 20 /* conservative (i.e., chosen rather high) threshold

for transmission() function */

#define GAMMA_A (397.9 * PROBE_DURATION * 1e-9) /* number of background
counts per trial in channel A */

#define GAMMA_B (291.8 * PROBE_DURATION * 1e-9) /* number of background
cts per trial in channel B */

#define ALPHA .35 /* percent of empty cavity bright probe transmission
below which a trial is considered successful, i.e.
an atom was present during previous dark trial */

#define GTIME 1000000 /* tau axis range in ns, for correlation function */
#define BINSIZE 6 /* resolution for correlation function, aka delta */
#define GSIZE (GTIME/BINSIZE) /* bandwidth for correlation function, i.e.

size of the G array */

#define A 0 /* P7888 channel number for detector A */
#define B 1 /* P7888 channel number for detector B */
#define C 2 /* P7888 channel for time stamps at the beginning

of each dark-mode probe pulse */
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#define MAXCLICKS 1000 /* size of tA and tB arrays in probes() function,
i.e. max number of cts per dark trial per detector */

FILE *input_file; /* current specA*.lst file being analyzed */

int G[GSIZE]; /* array storing coincidences */
int counts[TRIALS+1][DROPS]; /* number of counts for each bright-mode probe

trial (0 to TRIALS) for a given a file */
int dcounts[TRIALS+1][DROPS]; /* number of counts for each dark-mode trial

(from 1 to TRIALS) in a file */

/* variables storing totals for all analyzed files */
float good_trials_total = 0; /* number of trials with atom present */
float good_counts_totalA = 0; /* clicks in channel A corresponding to

atom-present data */
float good_counts_totalB = 0; /* clicks in channel B corresponding to

good data, i.e. in the presence of an atom */
int num_loaded_total = 0; /* total number of atoms loaded */
int num_survived_total = 0; /* total number of atoms which survived the

entire observation interval */
float background_countsA = 0; /* counts from detector A in the absence of

any atoms */
float background_countsB = 0; /* background counts, i.e. with no atom

present, from detector B */
float background_trials = 0; /* number of trials which we know for sure

contain no atoms */

float click_prods_total = 0; /* sum of Ai Bi over all trials, used for
normalizing the correlation function */

float click_errs_total = 0; /* sum of Ai^2 Bi + Ai Bi^2, which is
sigma^2 of click_prods_total */

/*************************************************************************
get_click() function:

turns next line in the input file into
1) a channel number, from 0 to 3, and
2) a time stamp in ns, assuming 2ns card resolution

function arguments are pointers, so they can be written to
*************************************************************************/

void get_click (int *channel, unsigned long int *time) {
char buffer[128], *ptr;
unsigned long int t;
int fields;

ptr = fgets (buffer, 128, input_file);
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if (ptr != NULL) {
fields = sscanf (buffer, "%lu\n", &t);
if (fields != 1) {

fprintf (stderr, "Error: format error in input file\n");
exit (0);

}
*channel = (int) (t>>30);
*time = (t % (1<<30)) << 1;

}
else {
*channel = -1;
*time = 0;

}
}

/*************************************************************************
transmission() function:

returns average bright probe empty cavity transmission for one file,
which is useful for alignment-drift compensation

loads up the counts[] and dcounts[] arrays, which contain the number
of clicks for each bright and dark trial, respectively

writes the number of clicks in each bright trial to the
bright_histo.txt file, which can be inported to Igor for making
a histogram; helpful for deciding the value of constant ALPHA

**************************************************************************/

double transmission (char *filename, double threshold) {

unsigned long int t, t_C, t_old;
int k, channel;
int trial_num, drop_num;
int num_noatoms, counts_probe;
char buffer[128];
FILE *bhisto_file;

input_file = fopen (filename, "r");
if (input_file == NULL) {

fprintf (stderr, "Error: cannot open file %s\n", filename);
exit (0);

}

bhisto_file = fopen ("bright_histo.txt", "a");
if (bhisto_file == NULL) {

fprintf (stderr, "Error: cannot open bright_histo.txt file\n");
exit (0);

}
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/* skip text at beginning of *.lst file */
do fgets (buffer, 128, input_file); while (buffer[0] != ’[’);
get_click (&channel, &t);

num_noatoms = 0; /* number of drops with no atoms loaded, used for
averaging empty cavity transmission */

counts_probe = 0; /* bright-mode counts when no atom was loaded,
used for averaging empty cavity transmission */

drop_num = 0; /* current loading attempt */

while (channel != -1) {

if (drop_num >= DROPS) {
printf ("error: more drops than DROPS\n");
exit(0);

}

for (k = 0; k <= TRIALS; k++) { /* initializations for next drop */
counts[k][drop_num] = 0;
dcounts[k][drop_num] = 0;

}
trial_num = 0; /* current trial */
t_C = t; /* time when most recent click occurred in channel C */

do { /* do-while loop processes one drop */
if (channel == C) {

trial_num++;
t_C = t;

}
else /* count bright and dark probe clicks for each trial */

if (trial_num > 0 && trial_num <= TRIALS) {
if (t > t_C + PROBE_DURATION &&

t <= t_C + PROBE_DURATION + 1e5)
/* bright probe pulses last 100 us = 1e5 ns */
counts[trial_num][drop_num]++;

else if (t > t_C && t <= t_C + PROBE_DURATION)
dcounts[trial_num][drop_num]++;

}
else /* trial 0: "did we load?" bright pulse only */

if (trial_num == 0 && t <= 1e5) counts[0][drop_num]++;

t_old = t; /* t_old is time when most recent click occurred */
get_click (&channel, &t);

} while (t + 1e6 > t_old && channel != -1);
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if (trial_num == TRIALS) { /* done with this drop */
if (counts[0][drop_num] > threshold) {

num_noatoms++;
for (k = 0; k <= TRIALS; k++)

counts_probe += counts[k][drop_num];
}
for (k = 0; k <= TRIALS; k++)

fprintf (bhisto_file, "%d\n", counts[k][drop_num]);
drop_num++;

}
else fprintf (stderr, "glitch after trial %d\n", trial_num);

}

fclose (input_file);
fclose (bhisto_file);
return ((double) counts_probe/((TRIALS+1.0)*num_noatoms));

}

/*************************************************************************
probes() function:

loads into the G[] array the histogram of time separations
writes all time stamps corresponding to an atom being present

to the fft.txt file, which can be loaded into Matlab for
computing the Fourier transform of the probe transmission

writes the cavity transmission for each dark-mode trial when an
atom was present to the dark_histo.txt file, which can be used
by Igor to make a histogram of dark probe transmission

writes the trial number, for each drop when an atom was loaded,
into the file atom_left.txt, which can be loaded into Igor to
make a histogram and infer a lifetime

measures loading & survival probability
measures background rates, i.e. click rate in the absence of

an atom, as derived from the data (not to be confused with
separately measured rates GAMMA_A and GAMMA_B)

**************************************************************************/

void probes(char *filename, double threshold) {

unsigned long int t, t_C, t_old;
int channel, i, j, k, m, n;
int trial_num, drop_num;
char buffer[128];
int clicksA = 0, clicksB = 0; /* how full the tA and tB arrays are */
int num_loaded, num_survived;
unsigned long int tA[MAXCLICKS], tB[MAXCLICKS];
int atom_left[DROPS]; /* for each loading attempt, stores the first
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trial number without an atom */
int noatom[DROPS]; /* TRUE if no atom was loaded in that attempt,

FALSE otherwise */
FILE *fft_file, *dhisto_file, *atomleft_file;

input_file = fopen (filename, "r");
if (input_file == NULL) {

fprintf (stderr, "Error: cannot open file %s\n", filename);
exit (0);

}

fft_file = fopen ("fft.txt", "a");
if (fft_file == NULL) {

fprintf (stderr, "Error: cannot open fft.txt file\n");
exit (0);

}

dhisto_file = fopen ("dark_histo.txt", "a");
if (dhisto_file == NULL) {

fprintf (stderr, "Error: cannot open dark_histo.txt file\n");
exit (0);

}

atomleft_file = fopen ("atom_left.txt", "a");
if (atomleft_file == NULL) {

fprintf (stderr, "Error: cannot open atom_left.txt file\n");
exit (0);

}

for (k = 0; k < DROPS; k++) {

j = 0;
while (j <= TRIALS && counts[j][k] < threshold) {

if (j > 0) fprintf (dhisto_file, "%d\n", dcounts[j][k]);
j++;

}
atom_left[k] = j; /* present during trial j-1, gone during j */
if (j>0) fprintf (atomleft_file, "%d\n", j);
if (j > MIN_LIFE) good_trials_total += (float) j-1;

j=0;
while (j <= TRIALS && counts[j][k] > threshold) j++;
if (j == TRIALS+1) { /* no atom was loaded */

background_trials += (float) TRIALS;
noatom[k] = 1; /* this is a flag: no atom in this drop */

}
else noatom[k] = 0;
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}

do fgets (buffer, 128, input_file); while (buffer[0] != ’[’);
get_click (&channel, &t);

num_loaded = 0;
num_survived = 0;
drop_num = 0;

while (channel != -1) {

trial_num = 0;
t_C = t;

do { /* do-while processes one drop */
if (channel == C) { /* new dark trial coming up next */

t_C = t;
trial_num++;

/* now process data accumulated during previous trial */
click_prods_total += (float) clicksA*clicksB;
click_errs_total +=

(float) clicksA*clicksB*(clicksA+clicksB);
good_counts_totalA += (float) clicksA;
good_counts_totalB += (float) clicksB;
for (i = 0; i < clicksA; i++) {

/* does nothing if e.g. clicksA=0 */
for (j = 0; j < clicksB; j++) {

/* update histogram of time separations */
m = (int) tA[i] - tB[j] + GTIME/2;
n = (int) floor ((double) m/BINSIZE);
if (n >= 0 && n < GSIZE) G[n]++;

}
}
clicksA = 0; /* counts clicks in channel A for current

dark trial */
clicksB = 0; /* counts clicks from B for current

dark-mode probe trial */
}

else if (t > t_C && t <= t_C + PROBE_DURATION &&
trial_num > 0) {

if (trial_num < atom_left[drop_num] &&
atom_left[drop_num] > MIN_LIFE) {

if (channel == A && clicksA < MAXCLICKS)
tA[clicksA++] = t;

else if (channel == B && clicksB < MAXCLICKS)
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tB[clicksB++] = t;
fprintf(fft_file, "%lu\n", t);

}
else if (noatom[drop_num]) {

if (channel == A) background_countsA += 1.0;
else if (channel == B) background_countsB += 1.0;

}
}
t_old = t;
get_click (&channel, &t);

} while (t + 1e6 > t_old && channel != -1);

if (trial_num == TRIALS) { /* done with this drop */
if (counts[0][drop_num] < threshold) {

num_loaded++;
if (atom_left[drop_num] == TRIALS+1) num_survived++;

}
drop_num++;

}
else fprintf (stderr, "glitch after trial %d\n", trial_num);

}

num_loaded_total += num_loaded;
num_survived_total += num_survived;
printf ("%d loaded, %d survived\n", num_loaded, num_survived);
fclose (input_file);
fclose (fft_file);
fclose (dhisto_file);
fclose (atomleft_file);

}

/**************************************************************************
main() function:

syntax: dark_mode specA<num_start>.lst specA<num_end>.lst
analyzes data in specA*.lst files with consecutive numbers

between <num_start> and <num_end>
writes data statistics both to the standard output, and to the file

output_stats.txt
writes the unnormalized correlation function to file corr.txt
writes the normalized correlation function, with no background

contribution taken into account, to file g2_1.txt
writes normalized correlation function, with background contribution

subtracted, to file g2_2.txt
***************************************************************************/
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int main (int argc, char *argv[]) {

double trans;
char filename[20];
int k, spec_num, spec_num_start, spec_num_stop;
double gammaA, gammaB, RA, RB, g2_background, g2_norm, T;
FILE *corr_file, *g2_file1, *g2_file2, *out_file;
double background_prods;

if (argc != 3) {
printf ("Error: wrong number of arguments");
exit (0);

}

out_file = fopen ("output_stats.txt", "w"); /* various statistics,
compiled for the entire data set */

if (out_file == NULL) {
printf ("Error: cannot open output_stats.txt file.\n");
exit (0);

}

corr_file = fopen ("corr.txt", "w"); /* unnormalized coincidences */
if (corr_file == NULL) {

printf ("Error: cannot open corr.txt file.\n");
exit (0);

}

g2_file1 = fopen("g2_1.txt", "w"); /* no background subtraction */
if (g2_file1 == NULL) {

printf ("Error: cannot open g2_1.txt file.\n");
exit (0);

}

g2_file2 = fopen("g2_2.txt", "w"); /* background subtracted */
if (g2_file2 == NULL) {

printf ("Error: cannot open g2_2.txt file.\n");
exit (0);

}

sscanf(argv[1],"specA%d.lst",&spec_num_start);
sscanf(argv[2],"specA%d.lst",&spec_num_stop);
spec_num = spec_num_start;

for (k = 0; k < GSIZE; k++) G[k] = 0;

while (spec_num <= spec_num_stop) {
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sprintf(filename, "specA%d.lst\0",spec_num);
printf ("processing file %s\n", filename);
trans = transmission(filename, TRANS_THR);
printf ("bright transmission %4.2f clicks per 100us\n", trans);
probes (filename, ALPHA * trans);
spec_num++;

}

fprintf (out_file, "\n\n%d total loaded, %d total survived out of "
"%d drops\n", num_loaded_total, num_survived_total,
(spec_num_stop-spec_num_start+1)*DROPS);

printf ("\n\n%d total loaded, %d total survived out of %d drops\n",
num_loaded_total, num_survived_total,
(spec_num_stop-spec_num_start+1)*DROPS);

fprintf (out_file, "%4.3f trials average lifetime\n",
(double) good_trials_total/num_loaded_total);

printf ("%4.3f trials ave lifetime\n",
(double) good_trials_total/num_loaded_total);

fprintf(out_file, "%4.2f good trials, %4.2f good counts A, "
"%4.2f good counts B\n",
good_trials_total, good_counts_totalA, good_counts_totalB);

printf("%4.2f good trials, %4.2f good counts A, %4.2f good counts B\n",
good_trials_total, good_counts_totalA, good_counts_totalB);

fprintf (out_file, "%4.3f A cts per trial, %4.3f B cts per trial\n",
(double) good_counts_totalA/good_trials_total,
(double) good_counts_totalB/good_trials_total);

printf ("%4.3f A cts per trial, %4.3f B cts per trial\n",
(double) good_counts_totalA/good_trials_total,
(double) good_counts_totalB/good_trials_total);

fprintf (out_file, "no atom data A: %4.3f cts/trial, B: "
"%4.3fcts/trial\n", (double) background_countsA/background_trials,
(double) background_countsB/background_trials);

printf ("no atom data A: %4.3f cts/trial, B: %4.3fcts/trial\n",
(double) background_countsA/background_trials,
(double) background_countsB/background_trials);

T = good_trials_total * PROBE_DURATION * 1.0e-9;
fprintf (out_file, "total data time:\n\t%4.2fs\n", T);
printf ("total data time:\n\t%4.2fs\n", T);

gammaA = (double) background_countsA/
(background_trials*PROBE_DURATION*1.0e-9);

gammaB = (double) background_countsB/
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(background_trials*PROBE_DURATION*1.0e-9);
fprintf (out_file,"average rate when no atom is present:\n"

"\t%4.2fcps in A, %4.2fcps in B\n", gammaA, gammaB);
printf ("average rate when no atom is present:\n"

"\t%4.2fcps in A, %4.2fcps in B\n", gammaA, gammaB);

RA = (double) good_counts_totalA/T - gammaA;
RB = (double) good_counts_totalB/T - gammaB;
fprintf (out_file, "average signal rate (detected, minus average"

" background):\n\t%4.2fcps in A, %4.2fcps in B\n", RA, RB);
printf ("average signal rate (detected, minus average background):\n"

"\t%4.2fcps in A, %4.2fcps in B\n", RA, RB);

g2_background = (RA*gammaB + RB*gammaA + gammaA*gammaB)/(RA*RB);
g2_norm = RA*RB*T*BINSIZE*1.0e-9;
fprintf(out_file, "based on averaged rates:\n\tg2_norm = %4.2f, "

"g2_bkgnd = %4.2f\n", g2_norm, g2_background);
printf("based on averaged rates:\n\tg2_norm = %4.2f, g2_bkgnd=%4.2f\n",

g2_norm, g2_background);

fprintf (out_file, "%4.4f old-school normalization factor\n",
(double) good_counts_totalA * good_counts_totalB * BINSIZE/
(good_trials_total * PROBE_DURATION));

printf ("%4.4f old school normalization factor\n",
(double) good_counts_totalA * good_counts_totalB * BINSIZE/
(good_trials_total * PROBE_DURATION));

fprintf (out_file, "Ai*Bi sum, aka click_prods_total:\n\t%4.2f\n",
(float) click_prods_total);

printf ("Ai*Bi sum, aka click_prods_total:\n\t%4.2f\n",
(float) click_prods_total);

fprintf (out_file, "Ai*Bi*(Ai+Bi) sum, aka click_errs_total:\n"
"\t%4.2f\n", (float) click_errs_total);

printf ("Ai*Bi*(Ai+Bi) sum, aka click_errs_total:\n\t%4.2f\n",
(float) click_errs_total);

background_prods = GAMMA_A*good_counts_totalB +
GAMMA_B*good_counts_totalA - GAMMA_A*GAMMA_B*good_trials_total;

fprintf (out_file, "backgrnd products: %4.2f, click products: %4.2f\n",
background_prods, click_prods_total);

printf ("backgrnd products: %4.2f, click products: %4.2f\n",
background_prods, click_prods_total);

for (k = 0; k < GSIZE; k++) {
fprintf (corr_file, "%d\n", G[k]);
fprintf (g2_file1, "%4.4f\n",
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(double) G[k]*PROBE_DURATION/(click_prods_total*BINSIZE));
fprintf (g2_file2, "%4.4f\n", (double) (G[k]*PROBE_DURATION/BINSIZE

- background_prods)/(click_prods_total-background_prods));
}

fclose (corr_file);
fclose (g2_file1);
fclose (g2_file2);
fclose (out_file);

}

3.6 Photon blockade in an optical cavity with one

trapped atom

This section is reproduced almost verbatim from Ref. [8].

Sufficiently small metallic [43] and semiconductor [44] devices at low temperatures

exhibit “Coulomb blockade,”whereby charge transport through the device occurs on

an electron-by-electron basis. For example, a single electron on a metallic island of

capacitance C can block the flow of another electron if the charging energy e2/2C �
kBT and the tunneling resistance R � h/4e2. In 1997, Imamoḡlu et al. proposed

that an analogous effect might be possible for photon transport through an optical

system by employing photon-photon interactions in a nonlinear optical cavity [45].

In this scheme, strong dispersive interactions enabled by electromagnetically induced

transparency (EIT) cause the presence of a “first” photon within the cavity to block

the transmission of a “second” photon, leading to an ordered flow of photons in the

transmitted field.

After resolution of an initial difficulty [46], subsequent work has confirmed that

such photon blockade is indeed feasible for a single intracavity atom by way of a

multi-state EIT scheme [47, 48, 49]. Photon blockade is possible in other settings,

including in concert with Coulomb blockade [50] and via tunneling with localized

surface plasmons [51]. Photon blockade has also been predicted for a two-state atom

coupled to a cavity mode [52, 36, 53].

As illustrated in Fig. 3.15, the underlying mechanism is the anharmonicity of the
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Jaynes-Cummings ladder of eigenstates [13, 54]. Panel (a) shows the level diagram

corresponding to the lowest energy states for a two-state atom of transition frequency

ωA coupled (with single-photon Rabi frequency g0) to a mode of the electromagnetic

field of frequency ωC , with ωA = ωC ≡ ω0 [13]. Resonant absorption of a photon of

frequency ω− = ω0 − g0 (arrow) to reach the state |1,−〉 (where |n, +(−)〉 denotes

the higher (lower) energy eigenstate with n excitations) “blocks” the absorption of a

second photon at ω− because transitions to |2,±〉 are detuned from resonance. Thus

two-photon absorption is suppressed for the probe field, leading to g(2)(0) < 1 [53].

Scattering from a single atom in free space also provides a fundamental example

of photon blockade [55], albeit with the fluorescent field distributed over 4π and the

flux limited by the rate of spontaneous decay γ. By contrast, cavity-based schemes

offer the possibility for photon emission into a collimated spatial mode with high

efficiency and at a rate set by the cavity decay rate κ, which can be much larger than

γ. Achieving photon blockade for a single atom in a cavity requires operating in the

regime of strong coupling, for which the frequency scale g0 associated with reversible

evolution of the atom-cavity system exceeds the dissipative rates (γ, κ) [16].

In this section, we report observations of photon blockade in the light transmitted

by an optical cavity containing one atom strongly coupled to the cavity field. For

coherent excitation at the cavity input, the photon statistics for the cavity output

are investigated by measurement of the intensity correlation function g(2)(τ), which

demonstrates the manifestly nonclassical character of the transmitted field. Explicitly,

we find g(2)(0) = (0.13 ± 0.11) < 1 with g(2)(0) < g(2)(τ), so that the output light

is both sub-Poissonian and anti-bunched [34]. We find that g(2)(τ) rises to unity at

a time τ = τB 	 45ns, which is consistent with the lifetime τ− = 2/(γ + κ) = 48

ns for the state |1,−〉 associated with the blockade. Over longer time scales, cavity

transmission exhibits modulation arising from the oscillatory motion of the atom

trapped within the cavity mode. We utilize this modulation to make an estimate of

the energy distribution for the atomic center-of-mass motion and infer a maximum

energy E/kB ∼ 250 µK.

The schematic of our experiment in Fig. 3.15(c) illustrates the Fabry-Perot cavity
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Figure 3.15: Level diagram for (a) a two-state atom and (b) the 4 → 5′ transition in
Cesium, coupled to a single cavity mode; (c) simple schematic of the experiment.

formed by mirrors (M1,M2) into which single optically cooled Cesium atoms are

loaded. The physical length of the cavity is 42.2 µm and the finesse is 4.3 × 105.

The cavity length is independently stabilized such that a TEM00 longitudinal mode

at λC1 is resonant with the free-space atomic transition at λA and another TEM00

mode at λC2 is resonant at λF . At the cavity center x = 0, the mode waists wC1,2 =

{23.4, 24.5} µm at λC1,2 = {852.4, 935.6} nm. Atoms are trapped within the cavity

by a far-off-resonance trap (FORT) which is created by exciting a TEM00 cavity

mode at λF = 935.6 nm [2]. To achieve strong coupling, we utilize the 6S1/2, F =

4 → 6P3/2, F
′ = 5′ transition of the D2 line in Cesium at λA = 852.4 nm, for

which the maximum rate of coherent coupling is g0/2π = 34 MHz for (F = 4,mF =

±4) → (F ′ = 5′,m′
F = ±5). The transverse decay rate for the 6P3/2 atomic states is



82

γ/2π = 2.6 MHz while the cavity field decays at rate κ/2π = 4.1 MHz.

A variety of factors make our atom-cavity system more complex than the simple

situation described by the Jaynes-Cummings eigenstates, including most significantly

that (1) the cavity supports two modes ly,z with orthogonal linear polarizations (ŷ, ẑ)

near λA = 852.4 nm and (2) a multiplicity of Zeeman states are individually coupled

to these modes for transitions between the manifolds (F = 4,mF ) ↔ (F ′ = 5′,m′
F ).

An indication of the potential for this system to achieve photon blockade is provided

in Fig. 3.15 (b), which displays the actual eigenvalue structure for the first two excited

manifolds obtained by direct diagonalization of the interaction Hamiltonian. As for

the basic two-state system, excitation to the lowest energy state in the one-excitation

manifold “blocks” subsequent excitation because the transitions to the two-excitation

manifold are out of resonance.

To substantiate this picture quantitatively, we present in Fig. 3.16 theoretical

results from the steady-state solution to the master equation in various situations.

All calculations shown are for the case of coincident atomic and cavity resonances

ωA = ωC1 ≡ ω0 for parameters (g0, κ, γ)/2π = (33.9, 4.1, 2.6) MHz, and the probe

strength is such that the intracavity photon number on resonance without an atom

is 0.05. The blue dotted lines indicate Poissonian statistics. Beginning with the ideal

setting of a two-state atom coupled to a single cavity mode, we display in Fig. 3.16

(a) results for the probe transmission spectrum T (ωp) and the intensity correlation

function g(2)(0) of the field Et transmitted by mirror M2 for excitation by a coherent-

state probe Ep of variable frequency ωp incident upon the cavity mirror M1. T (ωp)

is proportional to the ratio of photon flux 〈E†
t Et〉 transmitted by M2 to the flux |Ep|2

incident upon M1, and normalized such that a cavity without an atom has a resonant

transmission of unity, i.e., T (ωp = ωC1) = 1. For a field with intensity operator Î(t),

g(2)(τ) ≡ 〈: Î(t)Î(t + τ) :〉/〈: Î(t) :〉〈: Î(t + τ) :〉, where the colons denote time and

normal ordering [34].

Clearly evident in T (ωp) are two peaks at ωp = ω± ≡ ω0 ± g0 associated with

the vacuum-Rabi splitting for the states |1,±〉. At these peaks, Ep is detuned for

excitation |1,±〉 → |2,±〉, resulting in g(2)(0) < 1 for Et. The Poissonian photon



83

0.3

0.2

0.1

0.0

T

-1.0 0.0 1.0
( p- 0)/g0

0.12

0.08

0.04

0.00

T
zz ,
T
yz

-1.0 0.0 1.0
( p- 0)/g0

10-1

101

103

g(2
) (0

)

10-1

101

103
g
zz (2)(0),

g
yz (2)(0)

 zz
 yz

(a) (b)

Figure 3.16: Theoretical results for the transmission spectrum and intensity correla-
tion functions: (a) T (ωp), g(2)(0); (b) Tzz(ωp), g

(2)
zz (0) (dashed) and Tyz(ωp), g

(2)
yz (0).

statistics of the incident probe are thereby converted to sub-Poissonian statistics for

the transmitted field by way of the photon blockade effect illustrated in Fig. 3.15 (a).

For strong coupling in the weak-field limit, g(2)(0) ∝ (κ + γ)2/g2
0 for ωp = ω± [36],

hence the premium on achieving g0 � (κ, γ). By contrast, for ωp = ω0 ± g0/
√

2, Ep is

resonant with the two-photon transition |0〉 → |2,±〉, resulting in super-Poissonian

statistics with g(2)(0) � 1. For ωp = ω0, there is extremely large bunching due to

quantum interference between Ep and the atomic polarization [36, 35].

In Fig. 3.16 (b) we examine the more complex situation relevant to our actual

experiment, namely a multi-state atom coupled to two cavity modes with orthogonal

polarizations ŷ, ẑ. Most directly related to the simple case of Fig. 3.16 (a) is to excite

one polarization eigenmode with the incident probe, taken here to be Ez
p , and to detect

the transmitted field Ez
t for this same polarization, with the transmission spectrum

and intensity correlation function denoted by Tzz(ωp), g
(2)
zz (0), respectively. Included
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in the model are all transitions (F = 4,mF ) ↔ (F ′ = 5′,m′
F ) with their respective

coupling coefficients g
(mF ,m′

F )
0 , as well as the two cavity modes ly,z here assumed to be

degenerate in frequency. Even for this full multiplicity of states, Tzz(ωp) displays a

rather simple structure, now with a multiplet structure in place of the single vacuum-

Rabi peak around ωp 	 ω0 ± g0. For a probe frequency tuned to the eigenvalues

ωp = ω0 ± g0, g
(2)
zz (0) 	 0.7, once again dropping below unity as in Fig. 3.16 (a).

An alternate scheme is to detect along ẑ, but excite along orthogonal polariza-

tion ŷ, with the respective transmission and correlation functions Tyz(ωp), g
(2)
yz (0) also

shown in Fig. 3.16 (b). Similar to Tzz(ωp), Tyz(ωp) exhibits a multiplet structure in

the vicinity of ωp 	 ω0 ± g0 due to the nature of the first excited states of the atom-

cavity system. At the extremal ωp = ω0 ± g0, g
(2)
yz (0) reaches a value g

(2)
yz (0) = 0.03

much smaller than for either g(2)(0) in (a) or g
(2)
zz (0) in (b) for the same values of

(g0, κ, γ). Our preliminary hypothesis is that this reduction relates to the absence of

the superposed driving field Ey
p for the transmitted field Ez

t with orthogonal polariza-

tion ẑ [56]; photons in the mode lz derive only from emissions associated with the

atomic components of atom-field eigenstates.

Tuning the probe to ωp = ω0 ± g0 has the additional benefit of reducing sensi-

tivity to atomic position, which varies experimentally due to atomic motion and the

multiplicity of trapping sites within the cavity [7]. The atomic position affects the

transmission via the position dependence of the coupling g = g0ψ(�r), where ψ is the

TEM00 spatial mode at λC1 with maximum |ψ| = 1 and �r is the position of the atom.

Since Tyz(ωp) is small when |ωp − ω0| � g, atoms which have a lower than expected

value of g will have a reduced contribution to the photon statistics.

An important step in the implementation of this strategy is our recent measure-

ment of the vacuum-Rabi spectrum Tzz(ωp) for one trapped atom [7]. In that work we

obtained quantitative agreement on an atom-by-atom basis between our observations

and an extension of the theoretical model employed to generate the various plots in

Fig. 3.16 (b). The extended model incorporates ac-Stark shifts from the FORT as

well as cavity birefringence.

The TEM00 longitudinal mode for the FORT is driven by a linearly polarized
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input field EFORT , resulting in nearly equal ac-Stark shifts for Zeeman states in the

6S1/2, F = 3, 4 manifold. At an antinode of the field, the peak value of the trapping

potential for these states is U0/h = −43 MHz for all our measurements. Zeeman

states of the 6P3/2, F
′ = 5′ manifold experience a similar trapping potential, but with

a weak dependence on m′
F [2]. Stress-induced birefringence in the cavity mirrors

leads to a mode splitting ∆ωC1/2π = 4.4± 0.2 MHz of the two cavity modes ly,z with

orthogonal linear polarizations (ŷ,ẑ). EFORT is linearly polarized and aligned along ẑ,

the higher frequency mode. The extended model predicts that corrections to g
(2)
yz (0)

due to these effects are small for our parameters.

With these capabilities in hand, we now report measurements11 of g
(2)
yz (τ) for the

light transmitted by a cavity containing a single trapped atom. We tune the probe Ey
p

to (ωp − ω0)/2π = −34 MHz, near −g0, and acquire photoelectric counting statistics

of the field Ez
t by way of two avalanche photodiodes (D1, D2), as illustrated in Fig.

3.15(c). From the record of these counts, we are able to determine g
(2)
yz (τ) by way

of the procedures discussed in Ref. [5]. The efficiency for photon escape from the

cavity is αe2 = 0.6± 0.1. The propagation efficiency from M2 to detectors (D1, D2) is

αP = 0.41± .03, with then each detector receiving half of the photons. The avalanche

photodiodes (D1, D2) have quantum efficiencies αP = 0.49 ± 0.05.

Data are acquired for each trapped atom by cycling through probing, testing, and

cooling intervals (of durations ∆tprobe = 500 µs, ∆ttest = 100 µs and ∆tcool = 1.4 ms,

respectively) using a procedure similar to that of Ref. [7]. The test beam is polarized

along ẑ and resonant with the cavity. All probing/cooling cycles end after an interval

∆ttot = 0.3 s, at which point a new loading cycle is initiated. We select for the

presence of an atom by requiring that Tzz(ωp 	 ωC1) � 0.35 for the test beam. We

employ only those data records associated with probing intervals after which the

presence of an atom was detected. The intracavity photon number in mode ly due to

the probe field Ey
p on resonance, in the absence of an atom, is 0.21, and the polarizing

beam splitter at the output of the cavity (PBS in Fig. 3.15(c)) suppresses detection

of this resonant light by a factor of ∼ 94. A repumping beam transverse to the cavity

11Data presented here was taken on 3/10/05.
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axis and resonant with 6S1/2, F = 3 → 6P3/2, F
′ = 4′ also illuminates the atom during

the probe and test intervals. This beam prevents accumulation of population in the

F = 3 ground state caused by the probe off-resonantly exciting the F = 4 → F ′ = 4′

transition.

Fig. 3.17 presents an example of g
(2)
yz (τ) determined from the recorded time-

resolved coincidences at (D1, D2), for incident excitation with polarization along ŷ and

detection with orthogonal polarization ẑ. In Fig. 3.17 (a), the manifestly nonclassical

character of the transmitted field is clearly observed with a large reduction in g
(2)
yz (0)

below unity, g
(2)
yz (0) = (0.13±0.11) < 1, corresponding to the sub-Poissonian character

of the transmitted field, and with g
(2)
yz (0) < g

(2)
yz (τ) as a manifestation of photon

antibunching [34]. The intensity correlation function g
(2)
yz (τ) displayed in Fig. 3.17

is shown with a resolution of 6 ns for panel (a), and 12 ns for (b), and has been

corrected for background counts due to detector dark counts and scattered light from

the repumping beam. Absent this correction, g
(2)
yz (0) 	 (0.18±0.10) is directly derived

from the recorded counts. We find that g(2)(τ) rises to unity at a time τ = τB 	 45ns,

which is consistent with a simple estimate τ− = 2/(γ + κ) = 48 ns based upon the

lifetime for the state |1,−〉.
Although for small |τ | our observations of g

(2)
yz (τ) are in reasonable accord with

the predictions from our theoretical model, there are significant deviations on longer

time scales. Evident in Fig. 3.17 (b) is a pronounced modulation that is not present

in the model and which arises from the center-of-mass motion of the trapped atom.

In support of this assertion, Fig. 3.17(c) displays the Fourier transform g̃(f) of

g
(2)
yz (τ) which exhibits a narrow peak at frequency f0 	 535 kHz just below the

independently determined frequency ν0 	 544 kHz for harmonic motion of a trapped

atom about an antinode of the FORT in the axial direction x, which is indicated by

one of the vertical dotted lines . This modulation is analogous to that observed in

Ref. [57] for g(2)(τ) for the light from a single ion, which arose from micro-motion of

the ion in the RF trap. Here, U(�r) = U0 sin2(2πx/λC2) exp(−2ρ2/w2
C2

) is the FORT

potential, which gives rises to an anharmonic ladder of vibrational states with energies

{Em}. There are 	 100 bound states in the axial dimension for radial coordinate
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ρ ≡
√

y2 + z2 = 0. The anharmonicity leads to the observed offset f0 < ν0 due to

the distribution of energies for axial motion in the FORT well. Indeed, the frequency

νmin = (Emmax − Emmax−1)/h at the top of the well is approximately half that at the

bottom of the well, ν0 = (E1 − E0)/h. By comparing the measured distribution of

frequencies exhibited by g̃(f) with the calculated axial frequencies {νm}, we estimate

that those atoms from which data was obtained are trapped in the lowest lying axial

states m � 10, which corresponds to a maximum energy E/kB ∼ 250 µK. This

energy estimate is consistent with other measurements of g
(2)
yz (τ) that we have made,

as well as the Fourier transform of the record of the transmitted intensity and the

transmission spectra of Ref. [7].

We have demonstrated photon blockade for the transmission of an optical cavity

strongly coupled to a single trapped atom [45, 46, 47, 48, 52, 36, 53]. The observed

nonclassical photon statistics for the transmitted field result from strong nonlinear

interactions at the single-photon level, in analogy with the phenomena of Coulomb

blockade for electron transport [43, 44, 58]. Extensions of our work include operation

in a pulsed mode as was analyzed in Ref. [45], thereby realizing a source for single

photons “on demand.” As we improve the effectiveness of our cooling procedure, we

should be able to explore the dependence of g
(2)
yz (τ) on probe detuning, ωp − ω0, as

well as to move to higher levels of excitation to increase the output flux.
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Chapter 4

Simple auxiliary measurements

This chapter lists the few basic measurements which determine some of the parameters

relevant to our experiment. The values given here are the most recently measured

ones.

4.1 Cavity length

Knowing the separation between the mirrors that form our physics cavity is important

for being able to predict the mode orders of the various beams, as well as their

associated mode structure. The mode orders, in turn, set the axial registration,

i.e., the degree of overlap between the “pancake” structures of fields with different

wavelengths, such as the FORT and the cavity QED field.

To determine the length l of a Fabry-Perot optical cavity, one usually measures

the frequency spacing between consecutive longitudinal modes, also known as the free

spectral range νFSR (see Ref. [59], Sec. 11.5). In practice, this amounts to finding the

frequencies of a few axial modes that come into resonance at the same cavity length.

For an ideal cavity, the wavelength λn associated with mode order n is related

to the physical mirror separation l by the simple relation l = n(λn/2), whereas its

frequency νn is an integer multiple of the free spectral range: νn = nνFSR = n(c/2l).

These relations become only approximately true for real mirrors, with the approxi-

mation getting worse the farther we get from the wavelength λC with optimal mirror

reflectivity, also known as the center of the coating curve, in our case specified at
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λ [nm] νn [THz] n laser

827.685 362.206 102 locking

835.750 358.711 101 locking

852.357 351.722 99 probe

935.586 320.433 90 FORT

Table 4.1: Measured cavity resonances, and inferred mode orders.

λC 	 850 nm. The free spectral range is no longer independent of wavelength, since

dispersion in the mirror coatings introduces frequency dependent phase shifts on the

light. For each pair of consecutive modes, the frequency separation νFSR between

them is given by νFSR = c/(2leff). Here leff is an effective, “measured” cavity length

derived from the free spectral range, and larger than the actual physical separation

between the mirrors since some light penetrates the first few dielectric layers of the

coatings. Near the coating curve center, where the free spectral range variation with

wavelength is slow, the physical mirror separation l and the effective length leff are

related by [60]:

l 	 leff − λC

2(nH − nL)
	 leff − 1.633

λC

2
, (4.1)

where nH and nL are the high and low index materials of the dielectric stacks that

form the mirrors, in our case nH = 2.0564 and nL = 1.4440.

To find the cavity resonances, we first tune the probe laser as usual to the F = 4 →
F ′ = 5′ line. We then adjust the FORT and locking lasers’ frequencies so that their

cavity transmission peak centers overlap with that of the probe, while keeping track

of all the wavelengths on a Burleigh WA-10 wavemeter. The dominant source of error

here is the wavemeter precision, of about 450 MHz. Note that the only laser in our

lab with enough tunability to scan over an entire free spectral range is the locking

laser, a Newfocus 6227 diode, which we normally use for cavity length stabilizing.

Table 4.1 lists the measured wavelengths, and their associated frequencies.1

The first two rows of Table 4.1 represent consecutive modes, so their frequency

1Measured on 8/25/04 and 9/22/04.
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Figure 4.1: Measured cavity resonances and their respective mode orders

separation is actually the free spectral range at or near those wavelengths, νFSR(λ 	
832 nm) = 3495.3 GHz. Since the next two frequencies are separated by nearly twice

that number, we infer that they must be two mode orders apart, and that the free

spectral range in that region is νFSR(λ 	 844 nm) = 3494.5 GHz. Hence the effective

cavity length is leff(λ 	 844 nm) 	 leff(λ = λC) = 42.895± 0.007 µm, where the error

bars come from the wavemeter resolution. Plugging this number into (4.1), we arrive

at the physical mirror separation l = 42.201 ± 0.007 µm. Now the frequencies in the

second column are close to integer multiples of c/2l, which integers we infer to be the

associated mode orders, and we list in the third column.

Fig. 4.1 shows a linear fit to the measured mode frequencies, versus their inferred

mode numbers. The good agreement between the fit and the data shows that the free

spectral range νFSR and the effective cavity length leff do not vary significantly over

the range of our measurement.

A more careful estimation of the cavity length and mode orders is done by Kevin

Birnbaum in his thesis (Ref. [9], Appendix A). Using the same data, he finds l =

42.207 ± 0.005 µm, and the same mode orders as those listed in Table 4.1.
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4.2 Cavity mode waist

To estimate the intensity of cavity-coupled light at the atom’s location, for instance

for calculating the maximal FORT depth or atom-cavity coupling, it is important to

know what the mode spot size is. The mode waist w0 for a particular wavelength λ is

completely determined by the cavity geometry, since the boundary condition at the

mirror surface enforces a match between the radius of curvature of the mirror and

that of the Gaussian wavefront. For a symmetric cavity of length l and with mirror

radius of curvature R, the waist spot size at the cavity center is (Sec. 19.2 of [59]):

w0 =
4

√
l

2

(
R − l

2

)(
λ

π

)2

. (4.2)

The cavity length l (and the associated leff) can be figured out from the free spectral

range, as in Sec. 4.1 above, while the mirror curvature R can be estimated from a

measurement of the transverse mode spacing νT ([59], Sec. 19.3):

R =
leff

1 − cos(2πνT leff/c)
. (4.3)

This expression comes from evaluating the phase that a transverse mode accumulates

as it propagates through the cavity, including the part of the mode volume which

lives within the mirror coatings. Hence, we use here the effective length, rather than

the physical separation between the mirrors ([61], Sec. 7.5).

For a probe beam that is properly aligned, modes with odd spatial symmetry or

with a high mode index have low coupling efficiency, so in order to determine the

transverse mode spacing it is easiest to measure the frequency spacing 2νT between

the TEM00 and the TEM02 modes. The probe is tuned to the F = 4 → F ′ = 5′

transition at λp = 852.356 nm, which at first is on a TEM00 mode. We lock the

cavity length as usual to the locking laser’s blue sideband, νs1 above the carrier,

whose wavelength λ1l is measured with a wavemeter. Next, we adjust the locking

laser wavelength so that the cavity length, when locked, now comes into resonance

with the probe’s TEM02 mode. If the new carrier-to-sideband spacing and locking
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laser λ [nm] w0 [µm]

locking 836 23.5 ± 0.2

probe 852 23.7 ± 0.2

FORT 936 24.8 ± 0.2

Table 4.2: Estimated mode waists at cavity center.

laser wavelength are νs2 and λ2l, then the transverse mode spacing is

νT =
1

2

λ1l

λp

(
c

λ1l

+ νs1 −
c

λ2l

− νs2

)
. (4.4)

For λ1l = 835.749 nm, νs1 = 505.7 MHz, λ2l = 835.858 nm, and νs2 = 622.7 MHz2,

(4.4) gives νT = 22.9 ± 0.4 GHz, where the uncertainty comes from the wavemeter

resolution of 1 pm. Now to compute the mirror radius of curvature we can use Eqn.

(4.3) to find R = 20.3± 0.8 cm. Note that the specified radius of curvature is 20 cm,

with error bars of a few percent (but less than 10%) according to the manufacturer,

REO. Finally, Eqn. (4.2) leads to our estimate of the mode waist, for each of the

wavelengths we are interested in, shown in Table 4.2.

Alternatively, one could use the measurement result for νT as a different way of

estimating the cavity length leff , considering R = 20 cm to be a given, known quantity

([61], Sec. 7.5). We have to invert Eqn. (4.3), i.e., to solve for leff in

νT =
c

2πleff
cos−1

(
1 − leff

R

)
	 c

π
√

2leffR
, (4.5)

where the approximation is valid for leff/R � 1, giving leff = 43.5 ± 1.6 µm. Note

that this result is consistent with the value obtained from the free spectral range

measurement in Sec. 4.1.

2Measured on 9/2/04.
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Figure 4.2: Cavity transmission as a function of the locking laser detuning from its
value on resonance. Fit yields κ = 2π × 3.3 MHz.

4.3 Cavity linewidth

The cavity linewidth κ at the probe wavelength is an essential parameter for the

master equation describing our system. Also, knowing the finesse of our cavity at

the FORT and locking laser wavelengths is important for estimating the AC Stark

shifts that these beams create. There are several different ways one can determine

the linewidth in the lab [61], of which we will see a few examples below.

First, let us consider measuring the cavity linewidth at 852 nm, the probe wave-

length. To see a simple Lorentzian transmission profile of the cavity versus detuning

from resonance, it is important to excite only one of the two orthogonal cavity modes

(see Sec. 4.6), so the probe needs to be polarized along one of the birefringent axes.

Then one can keep the probe at a fixed frequency, and detune the cavity by a known,

variable amount. We do this by changing the carrier-to-sideband spacing for our

locking laser. While the carrier stays locked to a fixed frequency with respect to the

probe and to Cesium, the cavity tracks along with the locking laser’s movable side-

band. For each value to which the sideband frequency is incremented, we record the

cavity transmission, as measured in clicks from the photon counters. A Lorentzian fit
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Figure 4.3: Normalization curve for cavity transmission.

to the probe transmission averaged over the two detectors, versus the locking laser’s

sideband frequency, will have half width at half maximum (κ/2π)(λp/λl).

Fig. 4.2 shows the result of such a measurement3, where each point represents the

sum over 50 sweeps, about 330 ms per sweep. We get κ = 2π × (3.27 ± 0.04) MHz,

where the error bars reflect a 68% confidence interval for the fit.

A different way of measuring κ at this wavelength is to keep the cavity at a fixed

length, and vary the probe detuning. This is complicated by the fact that to change

the probe beam detuning, we use an AOM, the efficiency and steering of which, even

when double-passed, will depend on the frequency. So one would have to readjust both

the RF power going to the AOM, and the probe alignment into the cavity, for each

probe detuning. Or instead, to make things easier, one can obtain a normalization

curve, reflecting how the transmission changes due to the varying cavity alignment

and input power alone, decoupled from the effect of the cavity-probe detuning.

Fig. 4.3 shows such a calibration curve4. The probe beam frequency was varied

with a double-passed, down-shifting AOM resonant at 200 MHz, and for each point

the cavity was retuned to be in resonance with the probe. The AOM frequency of 168

MHz corresponds to the F = 4 → F ′ = 5′ transition. As the AOM gets closer to its

3Measured on 10/12/04.
4Measured on 6/21/04.
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Figure 4.4: Lorentzian fit to the calibrated cavity transmission as a function of probe
detuning, yielding κ = 2π × 3.6 MHz.

center frequency, it outputs more optical power for the same RF input power, leading

to the positive slope evident in the figure. Given this calibration data (circles), we

can linearly extrapolate (line) a normalization factor for any frequency in its range.

The next step is to vary the probe frequency again, this time keeping the cavity

locked in resonance with the F = 4 → F ′ = 5′ atomic line. The resulting transmission

versus frequency, as recorded with the APDs, needs to be divided by the normalization

extracted from a curve of the type in Fig. 4.3, before fitting a Lorentzian to it.

Such a measurement5 is shown in Fig. 4.4, and the corresponding fit gives κ =

2π × (3.56 ± 0.06) MHz.

We have so far shown measurements of κ done by detuning the cavity and keeping

the probe at a fixed frequency, or by detuning the probe and keeping the cavity at

fixed length; yet another type of measurement, similar to the latter, is described in

Sec. 2.4. Depending on how they were measured, the different values for κ can differ

by as much as 20%, but we do not have any good explanation for this inconsistency.

5Measured on 6/10/04.
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A candidate culprit was the possibility that those measurements which appear to

yield a larger κ are done with the input polarization tilted away from the intended

birefringent axis (see Sec. 4.6). Indeed, if the input angle θi is about 30◦ off axis,

the output line shape still gives a good fit to a Lorentzian, with linewidth greater

than the real κ by about 10%. However, a larger discrepancy in linewidth cannot

be explained away in this fashion, as it would give blatantly non-Lorentzian output

shapes.

As for the cavity linewidth at the FORT wavelength λFORT = 936 nm, one easy

way of estimating it is by using the λl = 836 nm locking laser’s sidebands as yardsticks.

One can scan the cavity and watch both the FORT and the locking laser transmission

peaks on the same oscilloscope. The locking laser’s sidebands will be separated by

a known frequency 2νs, which on the scope will correspond to a time delay ts. This

effectively calibrates the time axis in frequency units, assuming that the piezo scan

is roughly linear over the voltage range relevant for the measurement. If the FORT

half-maximum points are separated by a time delay t1/2, then the cavity decay rate

is (λl/λFORT)(νs/ts) t1/2. We used 2νs = 1.0 GHz and got ts = 4.25 ± 0.25 ms and

t1/2 = 7.50 ± 0.25 ms for our particular scanning speed, where the uncertainty is the

smallest time division for the chosen scope setting6. So the cavity decay rate (half

width at half maximum) is 0.79 ± 0.07 GHz at the FORT wavelength.

4.4 Mirror transmission and losses

The finesse F of a cavity is given by

F ≡ νFSR

2(κ/2π)
=

2π

T1 + T2 + A1 + A2

, (4.6)

where νFSR is the cavity’s free spectral range, κ is the linewidth, T1 and T2 are the

two mirror transmission coefficients, and A1 and A2 are the losses associated with

absorption and scattering by the mirror coatings. For nominally identical mirrors,

6Measured on 1/10/04.
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Figure 4.5: Setup for measuring the ratio of absorption to transmission for our physics
cavity mirrors.

such as those in our physics cavity, the finesse is simply given by F = π/(A + T ),

where A and T are the loss and the transmission coefficients per mirror.

Thus our previous measurements of the free spectral range (Sec. 4.1) and of

the cavity linewidth (Sec. 4.3) are sufficient to specify the sum of the losses and

transmission:

A + T =
κ

νFSR

. (4.7)

If κ = 2π × 3.6 MHz for the probe, and νFSR = 3.495 THz, we get a finesse of about

485000, hence A + T = 6.5 10−6 = 6.5 ppm. For the FORT, the 0.79 GHz linewidth

implies a finesse of about 2200.

However, knowledge of A and T individually, or equivalently of their ratio, is also

needed, for instance for the purpose of estimating the cavity escape efficiency, and

hence of inferring the intracavity photon number from a given detection rate.

Fig. 4.5 schematically depicts the setup one can use for measuring the A/T ratio,

which basically duplicates the one used for Ref. [60]. The probe beam polarization is

set with a half wave plate to match one of the two birefringent cavity axes (see Sec.

4.6), and the light is coupled into the cavity as usual with a mode-matching lens.

The combined transmission coefficient of the lens and waveplate is ε1, which can be
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independently measured. The vacuum chamber window and the mirror substrate have

a combined unknown transmission coefficient ε2, one on each side of the cavity. The

mode matching efficiency ε to the cavity is also unknown at this stage. For measuring

a calibrated fraction of the power reflected by the cavity, one can place on the input

side a non-polarizing beam splitter of known reflectivity Rcube. Furthermore, assume

Pin is the input power to the cavity right outside the vacuum chamber; Pt is the

height of the cavity transmission peak on resonance; and the power reflected back by

the cavity and the non-polarizing cube is P off
r off resonance, and P on

r on resonance

at the bottom of the reflection dip.

The cavity transmission and reflection coefficients on resonance can be expressed

in terms of the mode matching ε and the ratio of losses to transmission (see Refs.

[60] and [59] Sec. 11.4):

Tcav =
ε

(1 + A/T )2
(4.8)

Rcav =
ε(A/T )2

(1 + A/T )2
+ (1 − ε), (4.9)

whereas the reflection coefficient off resonance is 1. The reflected and transmitted

powers can thus be related to the input power as follows:

P on
r = Pinε1ε

2
2RcavRcube (4.10)

P off
r = Pinε1ε

2
2Rcube (4.11)

Pt = Pinε2
2Tcav . (4.12)

From (4.11) we get ε2 =
√

P off
r /Pinε1Rcube, so we just need to solve Eqns. (4.10) and

(4.12), for ε and A/T as the two remaining unknowns, yielding

ε =
(P off

r − P on
r + PtRcubeε1)

2

4P off
r PtRcubeε1

, (4.13)

A

T
=

P off
r − P on

r − PtRcubeε1

2PtRcubeε1

. (4.14)
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In a measurement of this type7, we got Rcube = 0.48, Pin = 3.87 µW, Pt = 0.74 µW,

P off
r = 1.71 µW, and P on

r = 0.97 µW. All these values are measured with fluctuations

of about 1%, which we will take to be the uncertainty. We assume ε1 = 0.99 since both

the lens and the waveplate are anti-reflection coated. We then get ε2 = 0.96 ± 0.02,

ε = .49 ± 0.10 and A/T = 0.55 ± 0.21.

Since we already know the sum A+T = 6.5 ppm, we can now estimate the loss and

transmission coefficients at the probe’s wavelength, A = 2.3 ppm, and T = 4.2 ppm.

4.5 Ground state AC Stark shifts

Of the dipole-allowed transitions connecting the Cesium ground state to its excited

states, the most relevant ones for our experiments are the D2 line, 6S1/2 → 6P3/2 at

λD2 = 852.3 nm, and the D1 line, 6S1/2 → 6P1/2 at λD1 = 894.6 nm. Considering

only these two transitions, the AC Stark shift of the atomic ground state in a linearly

polarized, far detuned light trapping field of intensity I0 and wavelength λ is well

approximated by [33, 62]:

U0 =
(γ/2π)2I0

6Isat

(
1

δD1

+
2

δD2

)
, (4.15)

where γ = 2π×2.6 MHz is the D2 linewidth, Isat = 8π3
�c(γ/2π)/3λ3

D2 = 1.1 mW/cm2

is its saturation intensity, and

δD1,2 =
c(λ − λD1,2)

λλD1,2

(4.16)

are the frequency detunings of the trapping field with respect to the two relevant

transitions. If the light at λ is coupled to a cavity mode with waist w0, then for an

optimally coupled input power P , the peak intracavity intensity is

I0 =
8P

πTw2
0

, (4.17)

7Measured on 12/21/03.
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Figure 4.6: Relevant dipole transitions for the Cesium ground state; wavelengths
shown for the FORT and locking laser, for comparison (not to scale).

where as before T denotes the transmission coefficient per mirror, at wavelength λ.

As an example, let us compute the ground state potential depth of our FORT,

knowledge of which is important for predicting and cooling the atomic motion in the

trap. Suppose we measure the height of the FORT transmission peak on resonance

right outside our chamber window, at the FORT wavelength, to be P = 1.0 mW,

a value typical of what we use in the lab. A separate measurement8 of the power

transmission through two consecutive vacuum chamber windows, bypassing the cavity,

yielded 92% at λ = λFORT = 935.6 nm, which as an aside we should note that it is the

same as the value for (ε2)
2 at 852 nm found in Sec. 4.4. This means that the cavity

output power inside the chamber is Pt = P/ε2 	 1.04 mW. From this, we need to

infer the quantity εPin, which is the useful part of the input power that gets coupled

into the cavity (note that we need to find neither ε nor Pin separately). Since we

are far from the mirror coating curve center, we can assume that at this wavelength

the mirror transmission far exceeds the losses caused by absorption and scattering,

so that the finesse F = π/(T + A) 	 π/T , which for F = 2200 (see Sec. 4.4) implies

T = 1.4× 10−3. From (4.8) we see that Pt = εPin/(1 + (A/T )2) 	 εPin for T � A; in

other words, far from the coating curve optimum the output power nearly equals the

8Measured on 10/8/04.
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mode-matched power. Sec. 4.2 gives the FORT waist w0 = 24.8 µm, so from (4.17)

we can obtain the intracavity intensity, a toasty I0 = 3.0 × 108 mW/cm2! Finally,

(4.15) gives our estimate of the trap depth per mW of cavity output power measured

outside the chamber, namely U0 = 40.9 MHz, or about 2 mK.

Another wavelength of interest is that of the locking laser, which ideally should

not significantly affect the atom’s trapping potential. Since λl �= λFORT, this laser

adds a bump, out of axial registration with the trapping potential wells. Note that

we are talking about a repulsive potential “bump” as opposed to an attractive “dip,”

because the locking laser is blue detuned from both the D1 and the D2 lines (see Fig.

4.5). Is this extra potential energy significant?

If the locking laser’s carrier transmission peak height is Pc, and the carrier-to-

sideband power ratio is k, then the sideband power coupled into the cavity is P =

(Pc/k)(1+(A/T )2), from (4.8). We have no measurement of A/T at this wavelength,

so let us assume, pessimistically, that the transmission is only slightly larger than

at 852 nm, and that the losses stayed roughly the same, so that we would roughly

estimate A/T ∼ 0.5 at 836 nm. We measure Pc = 0.39 µW at the cavity output9, and

k = 25.0 from the voltage output ratio given by the photodetector we normally use

for locking the cavity, assuming voltage to power linearity. Then we can use (4.15) to

find U0 	 −650 kHz, in this worst case scenario. So the potential bump created by the

locking laser’s sideband is only at most about 1.5% of the typical FORT well depth.

Note that the carrier is completely negligible, since it is separated from the sideband,

and hence from the cavity resonance, typically by about ∆ = 2π × 500 MHz; so the

cavity resonance profile suppresses it by a factor of the order (∆/κ)2 	 1.5 × 104.

Much more information about the various AC Stark shifts the Cesium levels expe-

rience in a dipole trap, including the excited states and the effects of elliptical FORT

polarization, can be found in Jason McKeever’s and David Boozer’s theses ([6, 1]).

9Measured on 8/24/04.
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4.6 Cavity birefringence

Our physics cavity supports two orthogonal, non-degenerate modes. The difference

between their resonance frequencies is called the birefringent splitting, and is pre-

sumably due to stress on the dielectric coatings, caused by the glue used for holding

down the mirror substrates.

If we pick polarization basis vectors parallel to the two birefringent axes:

u1 =
(

1
0

)
, and u2 =

(
0
1

)
, (4.18)

then the cavity response to an incoming field of frequency ν (relative to the center of

the cavity resonance feature) and of arbitrary polarization is given by the matrix

Mc =

⎛
⎝

κ1

iκ1 − δB − ν
0

0
κ2

iκ2 + δB − ν

⎞
⎠ . (4.19)

Here κ1,2 are the linewidths of the two modes, and δB is half the birefringent splitting.

One can easily see that, if the input to the cavity is along one of the birefringent axes,

the output power spectrum, given by the absolute value squared of the electric field,

will be a Lorentzian of half width κ1 (κ2) centered at ν = −δB (ν = +δB).

The birefringent splitting is a parameter needed for precise predictions of the cav-

ity output spectrum [7]. There are several different ways to measure the birefringence,

and Theresa Lynn mentions many of them in her thesis [61]. Here I will give two

examples.

First, let us consider the case when the input to the cavity is linearly polarized

light, tilted at an angle θi with respect to birefringent axis u1. Suppose we look at

the cavity output through an analyzer, which selects out the polarization component

tilted at an angle θf with respect to that same axis. The electric field coming out of

this system will then be:

El ∼ P1Rθf
McRθi

u1, (4.20)
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Figure 4.7: Setup for measuring birefringence by injecting linearly polarized light to
the cavity.

where P1 is the projection onto u1, and Rθ is a polarization rotation by angle θ:

P1 =
(

1 0
0 0

)
, Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. (4.21)

Putting Eqns. (4.18 – 4.21) together, we get the following expression for the

output spectrum:

| El |2 ∼ κ2
1 cos2 θf cos2 θi

κ2
1 + (ν + δB)2

+
κ2

2 sin2 θf sin2 θi

κ2
2 + (ν − δB)2

−

κ1κ2 sin(2θf ) sin(2θi)(ν
2 − δ2

B + κ1κ2)

2(κ2
1 + (ν + δB)2)(κ2

2 + (ν − δB)2)
. (4.22)

Note that the first two terms recover the familiar Lorentzians associated with the

modes u1,2 and centered at ∓δB, whereas the third term is an interference of the two.

One can measure such a spectrum with the setup shown schematically in Fig.

4.7. As a first step, one should identify one of the birefringent axes. This amounts

to finding one of the two input axes for which the cavity output is closest to linear

polarization. A convenient measure of polarization is the ellipticity ε, which reflects

the maximum contrast one can obtain from light of given polarization:

ε =
Pmax − Pmin

Pmax + Pmin

, (4.23)

where Pmax and Pmin are the maximum and minimum power obtained after passing
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Figure 4.8: Example of a probe spectrum obtained for linearly polarized light at the
cavity input.

the light through a rotatable polarizer, such as the one formed by the λ/2f waveplate

and the PBSf polarizer in the figure. One can easily show that perfectly linear light

has ε = 1, whereas circularly polarized light has ε = 0. In our lab, the best measured

ellipticity for 852 nm light coming out of the cavity was ε 	 0.995, with the rule of

thumb being that the input polarization needs readjustment if the ellipticity drops

below 0.97.

Now once the angle settings for the input and output waveplates which give the

maximal elipticity have been determined, one sets the polarizer and analyzer to dif-

ferent, but known angles. The resulting spectrum for the probe emerging from the

cavity can be then used to infer the birefringent splitting 2δB. An example10 is shown

in Fig. 4.8, which plots the cavity transmission versus the carrier-to-sideband fre-

quency separation for our locking laser (see Sec. 4.3 for an analogous measurement

of κ). The solid curve shows a fit to the data with expression (4.22), up to a propor-

tionality constant, with the constraint κ1 = κ2, and with the known output angle set

10Measured on 10/12/04.
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Figure 4.9: Example of a probe spectrum obtained for circularly polarized light at
the cavity input.

to θf = −54◦. Unfortunately, the input angle was not independently measured for

this example, so θi becomes an additional fit parameter. After adjusting by the usual

λl/λp factor, the fit yields κ = 2π × 3.3 ± 0.1 MHz, and 2δB = 2π × 4.6 ± 0.1 MHz.

As a second example, let us see what happens when the input light is circularly,

rather than linearly polarized. The analog of (4.20) for this case is:

Ec ∼ P1Rθf
Mcu+, (4.24)

where u+ is the vector representing σ+ circularly polarized light,

u+ =
(

1
i

)
. (4.25)
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The power at the output is then proportional to

| Ec |2 ∼ κ2
1 cos2 θf

κ2
1 + (ν + δB)2

+
κ2

2 sin2 θf

κ2
2 + (ν − δB)2

+

κ1κ2 sin(2θf )(ν(κ2 − κ1) + δB(κ1 + κ2))

(κ2
1 + (ν + δB)2)(κ2

2 + (ν − δB)2)
. (4.26)

The setup for measuring the birefringence in this configuration is very similar to the

one in Fig. 4.7, the only difference being that the input half waveplate λ/2i is replaced

by a quarter waveplate. An example of the spectrum measured this way11 is shown

in Fig. 4.9, where as before we varied the locking laser’s sideband, and monitored the

transmission. Fitting expression (4.26) to the data, with κ1 = κ2 as before, yields

κ = 2π × 3.4 MHz and 2δB = 2π × 4.0 MHz.

The two measurements we talk about here were made some four months apart,

and we think that the cavity birefringence might be slowly drifting over that kind

of timescale. This would explain the ∼ 15% discrepancy between the two different

values of δB given above, though at this point we have not looked into the issue

carefully enough to be sure.

4.7 Detection efficiency

Knowing the detection efficiency for photons emitted from the cavity is necessary

for inferring from the detected rates the intracavity photon number, which governs

the atom-cavity evolution. There are several different factors that contribute to the

overall efficiency, i.e., to the probability that an intracavity photon eventually gets

recorded by the P7888 card which acquires the pulses from our avalanche photodetec-

tors (APDs). The cavity escape efficiency αe is the probability that a photon created

within the cavity will be transmitted out through one of the two mirrors. Also, the

fact that we have a symmetric cavity means that photons can leave through either

mirror, whereas we monitor the output on one side only, leading to another cut in

efficiency, α2s = 0.5. There are also losses on the path from the cavity output to the

11Measured on 6/7/04.
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name symbol value

escape αe 0.65 ± 0.09

two-sided α2s 0.5

propagation αp 0.40 ± 0.03

detector αd 0.53 ± 0.05

total α 0.068 ± 0.015

Table 4.3: Efficiencies associated with probe propagation and detection.

inputs of the APDs, which we will call the propagation efficiency αp. Finally, the

detectors have a measurable quantum efficiency αd.

To start with, let us consider the escape efficiency αe. Of the photons within the

cavity mirrors, a fraction proportional to the losses coefficient A will be scattered

or absorbed, whereas a fraction proportional to the transmission coefficient T will

escape to the outside world. So the escape efficiency is simply

αe =
T

A + T
=

1

1 + A/T
= 0.65 ± 0.09 , (4.27)

where we have used the A/T value found in Sec. 4.4.

Let us now turn to the “propagation” efficiency, i.e., the efficiency with which

probe light just outside the output cavity mirror makes it to the two outputs (A and

B) of the fiber coupler. The light attenuation along this path is mostly due to coupling

from free space into the fiber mode, though the other optics also have non-trivial

efficiencies. It is easier to make this measurement with much more probe power than

we would normally use while running the whole experiment, say about 1 µW at the

cavity input; the fiber coupler output powers PA and PB can then be measured with a

sensitive power meter, such as the Newport 1830-C/818-SL, with the cavity locked on

resonance with the probe. Now for the power right at the cavity output Pc, if we place

a power meter against the chamber window, we will block the locking laser’s path to

its detector, so we will no longer be able to lock the cavity. But the transmitted probe
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power can still be measured accurately, by turning the cavity scan off, and manually

tuning the cavity in and out of resonance. The on- and off-resonant levels are most

easily monitored on an oscilloscope connected to the calibrated analog output of the

detector. Doing all that12, we measured Pc = 32.7 ± 0.5 nW, PA = 6.8 ± 0.5 nW,

and PB = 6.6 ± 0.4 nW. The error bars reflect fluctuations in the detected power

level, which are much greater after the fiber beam splitter, presumably due to an

interference effect with light reflected off of the fiber input surface. We should also

adjust the efficiency by the non-unity value for the window and substrate transmission

coefficient ε2 found in Sec. 4.4. The propagation efficiency is thus:

αP = ε2
PA + PB

Pc

= 0.40 ± 0.03 . (4.28)

Once the photon has emerged from either fiber coupler output, what is the proba-

bility that our computer will register that event? We call this the detector efficiency,

which incorporates any losses at the fiber connection to the APD, as well as the

detector’s quantum efficiency. The manufacturer (Perkin Elmer) specifies the typi-

cal detector efficiency for the SPCM-AQR-13-FC to be 0.5 at 830 nm. The trick to

measuring this number is bridging the gap between the lowest power that a typical

calibrated detector will go to, and the highest power the APDs will accept before sat-

uration effects come into play. Specifically, our power meter has 100 fW resolution,

whereas the APDs saturate at 106 counts/s (cps), which at 852 nm is about 230 fW.

The solution is to first use a power meter to measure a relatively high power PA at one

of the fiber outputs, and then attenuate it by a known factor k before measuring the

counting rate RA with the APDs and the P7888. Upon doing such a measurement13,

we got PA = 4.5 ± 0.4 nm, k = (68 µW)/(3.4 nW) = 20000, and RA = 513 kcps.

Thus the detector efficiency is:

αAPD =
RAk

PA

hc

λ
= 0.53 ± 0.05 . (4.29)

12Measured on 10/6/04.
13Measured on 6/3/03.
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The various efficiencies are summarized in Table 4.3, which also includes the overall

efficiency, α = αeα2sαpαd = 0.068 ± 0.015.
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Appendix A

Current MOT setup

Over the past few years, several upgrades have been made to the cavity lab, in our

continuing effort to make it more and more user-friendly, robust and customizable,

hence able to withstand the increasing level of complexity in the experiments we

needed to do. To enumerate a few of these new and improved components: the

ADwin timing controller; the phase-locked Raman diode laser and the associated

axial sideband cooling setup; the switchable bias coil power supplies for magnetic field

nulling at the cavity location; and the robust injection-locked laser setup providing

trapping light1 for both MOTs in our experiment. This appendix focuses on the

latter.

A.1 Brief note on magneto-optical traps

The magneto-optical trap (MOT), first realized experimentally in 1987 [63], has since

become the standard source of cold atoms for our field. It is robust and relatively

easy to set up, and it captures atoms from a room-temperature cloud, bringing them

down close to the Doppler temperature, which for Cesium is �Γ/2kB = 125µK. We

deliver atoms to our cavity by collecting about 105 of them in a MOT, from which

the atoms are cooled to sub-Doppler temperatures, and then allowed to fall under

gravity towards the slit between the cavity mirrors.

1In this appendix, “trapping” will refer to the MOTs above the cavity, not to be confused with
the dipole-force intra-cavity trap mentioned elsewhere in the thesis.
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A MOT is made of an inhomogeneous magnetic field and three intersecting pairs of

counter-propagating trapping beams, one along each of three independent directions

in space [64]. The magnetic field gradient can be provided by a pair of coils in an

anti-Helmholtz configuration, with a magnetic zero in the region of overlap of the

six beams, and linear variation close to the trap center, along all three axes. The

trapping light is usually tuned about 1-2 natural linewidths below resonance with

a cycling atomic transition, i.e., one for which the dipole selection rules prevent the

atom from escaping to levels other than the two which form the transition. The closed

transition we use is at λ = 852.356 nm, between the 6S1/2, F = 4 and 6P3/2, F
′ = 5′

levels of the D2 line of Cesium (see Fig. 2.4). In addition to the trapping light, a

repumping beam is also needed, to ensure that in the rare event (about one excitation

in 1000) that an atom decays to F = 3, it is returned to the useful F = 4 ground

state in resonance with the trapping light. Our MOT repumper is tuned to the

6S1/2, F = 3 → 6P3/2, F
′ = 3′ transition at λ = 852.335 nm.

Since the trapping light is red-detuned, atoms moving towards an incoming laser

beam are Doppler-shifted into resonance with it. Hence, the atoms will preferentially

scatter light which opposes their motion, which leads to cooling. In addition to this

damping mechanism known as “optical molasses,” a MOT also provides, through its

magnetic component, a position-dependent restoring force which holds the atoms in

place. Namely, if the two beams in each trapping pair have opposite circular polariza-

tions of appropriate handedness, the selection rules enforce preferential absorption of

those photons which kick the atoms towards the trap’s center. For more information

on how a MOT works, please read Refs. [63, 65], for instance.

For obtaining sub-Doppler temperatures, the laser cooling technique that is most

natural to use after having already collected the atoms in a MOT cloud is Sisyphus

cooling in the σ+σ− configuration. As an atom moves through the polarization gradi-

ent formed by the beam pair, the population gets distributed among its ground state

sublevels in such a way that the atom scatters more counterpropagating than coprop-

agating photons, leading to an unbalanced radiation pressure and hence to cooling. A

good description of this polarization gradient (PG) cooling mechanism can be found
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in Ref. [66]. Operationally, it merely amounts to turning off the magnetic fields,

turning down the power in the trapping beams, and detuning them farther to the red

from resonance than they were in the MOT.

So to make cold atoms, one needs magnetic field gradients and trapping and

repumping light. Prior to my joining the cavity lab, the magnetic coils were working

well enough, however all but one of the lasers providing the light were unreliable. A

lot of time was wasted on maintenance on a daily basis just to keep them close to the

necessary wavelength. There were four different diode lasers for providing the 40 mW

of trapping light and 10 mW of repumping light in the two MOTs: three masters,

each of them independently locked to Cesium, and one injection-locked slave, which

nevertheless also had its own external cavity. Considering that each SDL-5421 laser

diode can provide about 100 mW of power if grating-stabilized, and 150 mW when

free-running, one can tell that the old setup was highly inefficient, even if taking into

account the various propagation losses.

The MOT laser setup was then greatly simplified. We kept the only working laser

to provide all the repumping light for both MOTs as well as the F = 3 lattice light.

As for the trapping light, as well as the F = 4 lattice light, it is now all provided by

just one laser: an injection-locked slave to the probe laser.

A.2 Injection locking

For a detailed treatment of injection locking, please see Ref. [59], Chapter 29. From a

black-box point of view, injection locking can be thought of as just a way of effectively

amplifying the power in an existing laser beam. More specifically, if one injects a small

amount of light from a master laser into a free-running slave laser diode, the slave

will begin lasing at the same frequency and phase as the injected light, provided

that it is close enough to the free-running slave in frequency and spatial mode shape.

For locking the 852 nm laser diodes we have tested in our lab, the capture range is

hundreds of MHz, while the injected power can go as low as 1 µW and as high as a

few hundred µW. An injection lock easily lasts for months without any adjustments,
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Figure A.1: Injection lock setup for delivering trapping light to our MOTs.

making it one of the few painless ways to provide a lab with moderate amounts of

laser light. If a few hundreds of mW are ever needed in a lab, at an already available

frequency, I would highly recommend several injection-locked slaves as a preferable

alternative to a single high-power system such as a Ti-Saph, which typically requires

weekly maintenance and at least daily locking.

An injection-locked slave is also the ideal power source for a system that requires

the light to be shifted between several different frequencies without a change in align-

ment. Such a system is our MOT, which requires the trapping beams to stay put,

while their frequency is shifted from the small detuning associated with the MOT

loading, to the larger detuning for PG cooling. Frequency shifting of optical beams is

usually done with acousto-optic modulators (AOMs), with the side effect of steering

the beams more for larger drive frequencies, which in our case would lead to misalign-

ment. The solution to this problem is illustrated in Fig. A.1, which depicts a type of

system first set up by David Boozer for the atomic ensemble lab, then replicated by

me for the cavity lab.

The basic idea is to use to our advantage the fact that an injection lock, though

quite sensitive to the alignment of the input light, has a large dynamic range in input

power. We start out with the master laser, which also provides the light for our cavity

QED probe, and which is normally locked to the 4 − 5 crossover of the F = 4 line,

i.e., to a frequency midway between F = 4 → F ′ = 4′ and F = 4 → F ′ = 5′, hence

125.5 MHz red detuned from the F = 4 → F ′ = 5′ transition (see Fig. 2.4). For
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shifting the light between the MOT and PG frequencies, we use AOM #1, which has

a large 25 MHz bandwidth and is double passed to minimize beam steering and hence

maximize fiber throughput. For the MOT setting, AOM #1 up-shifts the light by

2 × 114.15 MHz, and for the PG cooling by 2 × 99.0 MHz. The single-mode fiber

converts the change in alignment between the two settings to a change in power, to

which the injection lock is highly insensitive. To minimize feedback, we couple the

light through the rejection port belonging to the output polarizer of the slave’s optical

isolator. The amount of light reaching the slave can be varied with a polarization

rotator. AOM #2, down-shifting by 110 MHz, switches the trapping beams on and

off, and turns down the power for the PG setting. The overall detunings thus achieved

are about −7 MHz for the MOT, and −35.5 MHz for PG cooling. Note that all the

frequency tuning is done on the injection beam, whereas all the power adjustments

are made on the slave’s output beam.

It is convenient to monitor the slave’s saturated absorption signal while scanning

the master’s piezo across the Cesium transition. A locked slave will track along with

the master, hence a clean absorption signal from the slave is a good indication that

locking has been achieved. Another useful monitor for the lock is a beatnote between

the master and its slave, which is significantly narrower and higher up above the noise

floor when the slave is locked, as opposed to free-running.

A small fraction of the slave’s light is used for the lattice beams’ F = 4 → F ′ = 4′

component. Specifically, we pick off some light before AOM #2, and put it through a

third AOM (not shown in the figure) downshifting by 344 MHz, which for the MOT

setting of AOM #1 leads to a blue detuning of +10 MHz from 4 → 4′.

Replacing the light source for the MOT and side beams was done while maintain-

ing their alignment at the vacuum chamber, hence with a minimum of down time for

the experiment. This was made possible by the fact that the MOT light source on

the one hand, and the beams at the chamber on the other, are decoupled from one

another by single-mode fibers. Thus our MOT setup comes close to being ideal as

far as robustness and easy upgradability. The one improvement I would suggest for

the future would be to couple the repumper into the fiber that delivers the trapping
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light to the chamber, thus eliminating the now-frequent problem of MOT-repumper

misalignment.
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