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Abstract

For since the nature of our intellect is to abstract the essence of material things from
matter, anything material residing in that abstracted essence can again be made
subject to abstraction; and as the process of abstraction cannot go on forever, it must
arrive at length at some immaterial essence, absolutely without matter; and this
would be the understanding of immaterial substance.

St. Thomas Aquinas, Summa Theologica, I, 88, 2.

We address in this thesis two primary questions aimed at improving our ability to calculate

reliably in the Standard Model of particle physics and probing possible new particles which

may exist beyond it.

First, we embark on an attempt to account for the abundance of matter in the present

Universe if earlier in its history matter and antimatter were equally abundant. We explore

whether baryogenesis at the electroweak phase transition could successfully account for the

observed density of baryons in the Universe, using the closed-time-path (CTP) formalism

of quantum field theory to calculate the buildup and relaxation of particle densities during

the phase transition. For our model of the new particles and sources of CP violation

necessary to account for the baryon asymmetry of the Universe, we adopt the Minimal

Supersymmetric Extension of the Standard Model (MSSM). We look for regions of the

parameter space in the MSSM that could give rise to sufficiently large baryon asymmetry

without violating constraints on these parameters from existing experiments, in particular,

constraints on masses of Higgs and supersymmetric particles from accelerator searches and

precision electroweak tests, and on CP -violating parameters of the MSSM from searches

for electric dipole moments of elementary particles.

Next, we explore how to get around our ignorance of the dynamics of strongly interact-

ing particles in the nonperturbative regime of Quantum Chromodynamics (QCD) by the

clever use of effective field theories. Two applications are explored: the decay of Z bosons

to hadronic jets using soft-collinear effective theory (SCET) and the radiative decays of
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quarkonia to light hadrons using SCET and non-relativistic QCD (NRQCD). These tools

facilitate the proof of factorization of decay rates into perturbatively-calculable and nonper-

turbative parts. Universality of the latter among different observables provides predictive

power even in our ignorance of the details of the nonperturbative physics.



ix

Contents

Acknowledgements v

Abstract vii

1 Introduction 1

1.1 Probing New Physics with Baryogenesis and Electric Dipole Moments . . . 2

1.1.1 Baryon Number Violation . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 More CP Violation from Supersymmetry . . . . . . . . . . . . . . . 7

1.1.3 Transport Equations for Electroweak Baryogenesis . . . . . . . . . . 8

1.1.4 Combining Constraints from BAU and EDMs . . . . . . . . . . . . . 9

1.2 Effective Field Theories for Strong Interactions . . . . . . . . . . . . . . . . 11

1.2.1 Nonperturbative Effects in Hadronic Jets . . . . . . . . . . . . . . . 11

1.2.2 Reliable Predictions for Radiative Upsilon Decay . . . . . . . . . . . 15

1.3 A Look Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Plan of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Constraints on Supersymmetric Electroweak Baryogenesis 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Non-equilibrium Transport: CTP Formulation . . . . . . . . . . . . . . . . . 24

2.2.1 Quantum Transport Equations from CTP Formalism . . . . . . . . . 26

2.2.2 Power Counting of Physical Scales . . . . . . . . . . . . . . . . . . . 28

2.2.3 Green’s Functions at Nonzero Temperature and Density . . . . . . . 30

2.3 Source Terms for Quantum Transport . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Massive Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3 Chiral Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



x

2.4 Quantum Transport Equations and ρB . . . . . . . . . . . . . . . . . . . . . 46

2.4.1 Solving the Diffusion Equations . . . . . . . . . . . . . . . . . . . . . 46

2.4.2 The Baryon Density ρB . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Baryogenesis and Electroweak Phenomenology within the MSSM . . . . . . 53

2.5.1 Dependence of the BAU on MSSM Parameters . . . . . . . . . . . . 53

2.5.2 SUSY-induced EDMs . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5.3 Combining Constraints from the BAU and Electric Dipole Moments 58

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.A Appendix: Propagators at Finite Temperature and Density . . . . . . . . . 64

2.A.1 General Structure of Fermion Propagators . . . . . . . . . . . . . . . 64

2.A.2 Bosonic Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.A.3 Tree-Level Propagators . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.A.4 One-Loop Corrections to Massless Fermion Propagators . . . . . . . 67

2.B Appendix: Expanded Source Terms for Quantum Transport . . . . . . . . . 68

2.B.1 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.B.2 Massive Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.B.3 Chiral Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.C Appendix: Residues of Thermal Distribution Functions . . . . . . . . . . . 72

2.D Appendix: Towards the Yukawa Source . . . . . . . . . . . . . . . . . . . . 75

3 Effective Theories of Strong Interactions 78

3.1 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Example: Heavy Quark Effective Theory . . . . . . . . . . . . . . . . . . . . 80

3.3 Soft-Collinear Effective Theory . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.1 Effective Theory for Inclusive Decays—SCETI . . . . . . . . . . . . 83

3.3.2 Decoupling Ultrasoft Fields . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.3 Effective Theory for Exclusive Decays—SCETII . . . . . . . . . . . . 89

3.3.4 Reparametrization Invariance . . . . . . . . . . . . . . . . . . . . . . 91

3.4 Non-Relativistic QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Exclusive Radiative Decays of Υ 96

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Power Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



xi

4.2.1 Inclusive Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.2 Exclusive Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Complete Basis of Color-Singlet Matching Coefficients . . . . . . . . . . . . 102

4.4 Decay Rates & Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.1 Two-Body Decay: Υ→ γf2 . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.2 Three-Body Decay: Υ→ γππ . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.A Appendix: Power Counting of States in NRQCD . . . . . . . . . . . . . . . 112

4.B Appendix: Nonperturbative Matrix Elements and Light-Cone Wave Func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.C Appendix: Spin-2 Polarization Tensors . . . . . . . . . . . . . . . . . . . . 116

5 Enhanced Nonperturbative Effects in Z Decays to Hadrons 117

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Operator Product Expansion For The Two Jet Energy Distribution . . . . 120

5.3 Enhanced Nonperturbative Corrections to Event Shape Variables . . . . . 129

5.3.1 Thrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.2 Jet Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3.3 Jet Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.4 C Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.5 Energy-Energy Correlation and Jet-Cone Energy Fraction . . . . . . 136

5.3.6 Classes of Observables . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.7 Model-Dependent Relations Among Event Shape Variables . . . . . 139

5.3.8 Comparison with the Data . . . . . . . . . . . . . . . . . . . . . . . 140

5.4 Perturbative corrections to dΓ/dEJ . . . . . . . . . . . . . . . . . . . . . . 141

5.4.1 Two Jet Decay Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4.2 Differential Decay Rate dΓ2-jet/dEJ . . . . . . . . . . . . . . . . . . 144

5.4.3 First Moment of the Jet Energy Distribution . . . . . . . . . . . . . 148

5.4.4 Perturbative Corrections in the Effective Theory . . . . . . . . . . . 148

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.A Appendix: Properties of Wilson Lines . . . . . . . . . . . . . . . . . . . . . 151

5.A.1 Relations Between Triplet and Anti-triplet Wilson Lines . . . . . . . 151



xii

5.A.2 O1 in Terms of the Gluon Field Strength . . . . . . . . . . . . . . . 152

6 Summary and Outlook 154

Bibliography 157



xiii

List of Figures

1.1 BBN and CMB constraints on the BAU . . . . . . . . . . . . . . . . . . . . . 3

1.2 Baryon number current anomaly in SU(2) . . . . . . . . . . . . . . . . . . . . 5

1.3 Topological transitions at high temperature. . . . . . . . . . . . . . . . . . . 6

1.4 Combined constraints on CP -violating phases from baryon asymmetry and

electric dipole moments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Thrust distribution in e+e− annihilation. . . . . . . . . . . . . . . . . . . . . 13

1.6 Color-octet and color-singlet channels in radiative Υ decay. . . . . . . . . . . 15

1.7 Endpoint region in photon spectrum in inclusive radiative Υ decay. . . . . . 16

2.1 Closed time path integration contour. . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Contributions to the relevant self-energies from scattering of particles from the

spacetime varying Higgs vevs. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Contributions to the relevant self-energies from Yukawa interactions. . . . . 36

2.4 Representative contributions to self-energies from (super)gauge interactions. 37

2.5 Higgsino CP -violating source and relaxation rate . . . . . . . . . . . . . . . . 54

2.6 Higgsino and squark contributions to baryon asymmetry . . . . . . . . . . . . 55

2.7 Allowed band in the | sinφµ|–|µ| plane, obtained by requiring successful elec-

troweak baryogenesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.8 SUSY loop graphs inducing quark EDM. . . . . . . . . . . . . . . . . . . . . 57

2.9 SUSY loop graph inducing quark chromo-EDM . . . . . . . . . . . . . . . . . 58

2.10 Allowed bands in the φµ–φA plane implied by consistency with limits on EDMs

and baryogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.11 Choices for MSSM parameters ruled out by EDM constraints and requiring

successful electroweak baryogenesis . . . . . . . . . . . . . . . . . . . . . . . . 61

2.12 Analytic structure of integrand in source terms . . . . . . . . . . . . . . . . . 73



xiv

3.1 Feynman rules involving collinear quarks in SCETI. . . . . . . . . . . . . . . 86

4.1 Matching onto operators in the effective field theory with one and two gluons

in the final state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Matching from SCETI to SCETII. . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Sterman-Weinberg jets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Two-gluon matrix element of O1 at one-loop order. . . . . . . . . . . . . . . . 129

5.3 Determination of the thrust axis. . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4 Experimental fit for model of nonperturbative power corrections to event shape

variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5 First moment M1(f) of the jet energy distribution. . . . . . . . . . . . . . . . 149



1

Chapter 1

Introduction

Staunen kann nur, wer noch nicht das Ganze sieht; Gott staunt nicht.

Josef Pieper, Glück und Kontemplation

Amazement is only possible for one who does not yet see the whole; God cannot be
amazed.

Josef Pieper, Happiness & Contemplation

Today physicists eagerly anticipate the discovery of new phenomena beyond those already

discovered in the Standard Model of particle physics. We await with high hopes the un-

veiling of new particles and phenomena at the Large Hadron Collider, or perhaps even the

Tevatron, within the decade. Meanwhile, we aim our current efforts at the improvement of

the precision and reliability of both theoretical calculations and experimental tests of the

properties of particles, not only those currently within the realm of speculation, but also

of those within the Standard Model itself. On the one hand, to be able to extract evi-

dence for new physics from future accelerator data, we must first calculate the predictions

of the Standard Model as accurately and precisely as possible, in order to be able to find

in the data deviations therefrom. On the other hand, we can already search for signatures

of new physics in experimental data today, in high-precision low-energy experiments or in

cosmological observations.

In this thesis, we focus both on tests of models of new physics and improvement of our

ability to calculate reliably in the Standard Model. First, we consider how extra sources

of CP violation beyond those in the Standard Model (for example, in its supersymmetric

extensions) might account for the baryon asymmetry of the Universe and how experimental

tests, especially searches for electric dipole moments of elementary particles, constrain such

possibilities. Then, backing up to the Standard Model, we attempt to improve calculations
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of observables involving the strong interactions by use of effective field theories of Quantum

Chromodynamics, studying the radiative decays of heavy quarkonia and the hadronic decays

of Z bosons, attempting to understand the nonperturbative contributions to observables in

these processes. Understanding hadronic jet production will be vital to the separation of

QCD backgrounds at the LHC from signals of new physics, while heavy quarkonia provide

a useful testing ground for the validity of the effective theories we use, establishing their

reliability for other applications.

1.1 Probing New Physics with Baryogenesis and Electric

Dipole Moments

Already today, suggestive evidence for physics beyond the Standard Model exists outside of

accelerators, in the baryon asymmetry of the Universe (BAU)—the survival of more matter

than antimatter in the Universe’s early evolution. Big Bang Nucleosynthesis (BBN) and

measurements of the cosmic microwave background tell us that:

η ≡ nB
nγ

=

⎧⎪⎨⎪⎩
3.4− 6.9 × 10−10, BBN [1]

5.9− 7.3 × 10−10, CMB [2]
(1.1)

where the number density of baryons nB is normalized to the number density of photons nγ .

(An updated version of these constraints from Ref. [3] is displayed graphically in Fig. 1.1.)

The Standard Model is unable to account for the (large!) size of these numbers, assuming

the Universe begins in a symmetric state (〈B〉 = 0). Even if we assume a primordial excess

of matter at the Big Bang, we could not easily account for its survival during the subsequent

inflation, which would have diluted it nearly to zero, and which we must postulate to account

for the flatness and uniformity of the Universe [4] and the density perturbations1 therein.

To start in a matter-antimatter symmetric state and generate a baryon asymmetry requires,

as pointed out by Sakharov [7], three conditions:

• Baryon number violation—otherwise, the Universe would never depart from 〈B〉 = 0.

• C and CP violation—otherwise, even with B violation, particles and their antiparti-

cles are produced in equal amounts.
1Which, of course, can be augmented after inflation [5, 6], too.
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Figure 1.1: BBN and CMB constraints on the BAU, as analyzed in Ref. [3]. The abundances
of helium-4 (Y ), deuterium, helium-3, and lithium-7 can be used to deduce the baryon
density ΩB, or, equivalently, the baryon-to-photon ratio η. The various curves are the BBN
predictions for these abundances as functions of the baryon density, which are constrained
by observations to lie in the outlined boxes. The combination of the constraints from BBN
and from WMAP measurements of the CMB is shown as the yellow, vertical band. (Figure
courtesy of R. Cyburt.)
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• Departure from thermal equilibrium—otherwise, the thermal average

〈B〉 =
Tr (e−H/TB)

Tr e−H/T
, (1.2)

never departs from zero, since

Tr [e−βHB] = Tr [e−βH(CPT )(CPT )−1B]

= Tr [(CPT )e−βH(CPT )−1B]

= −Tr [e−βH(CPT )−1(CPT )B] = −Tr [e−βHB]

⇒ Tr [e−βHB] = 0,

(1.3)

assuming CPT invariance2 ([H,CPT ] = 0), and using cyclicity of the trace and the

oddness of B under a CPT transformation.

These three conditions may have been realized in electroweak baryogenesis3, in which the

BAU is generated during the electroweak phase transition—if it is strongly-enough first-

order and there is enough CP violation in the electroweak sector of Nature. Neither of

these conditions is satisfied in the Standard Model. The phase transition is not found to be

strongly-enough first-order given present limits on the Higgs mass, and the complex phase

in the CKM matrix is too small to account for the BAU.

Before considering how to overcome the inability of the Standard Model to satisfy the

last two Sakharov criteria, let us begin by examining how it satisfies the first.

1.1.1 Baryon Number Violation

Baryon number violation is already present in the Standard Model. Although B is conserved

in all perturbative processes, there are nonperturbative topological transitions of gauge fields

at high temperature which generate baryon and lepton number violation through triangle

anomalies [13]. The baryon number current,

jµB =
1
NC

∑
i,a

q̄ai γ
µqai , (1.4)

2We do not consider the possibility that CPT invariance may be broken by, for instance, Lorentz violation,
perhaps spontaneously [8, 9, 10]. Mechanisms violating CPT spontaneously have also been used to account
for baryogenesis [11].

3This and other scenarios for baryogenesis are reviewed in Ref. [12].
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�jµB
W a
ν

W b
λ

Figure 1.2: Baryon number current anomaly in SU(2).

summed over the nF quark flavors i and NC colors a, is not conserved at the quantum level

in the Standard Model, due to the diagram shown in Fig. 1.2:

∂µj
µ
B = −nF g

2
2

32π2
W a
µνW̃

aµν , (1.5)

where W µν is the SU(2) gauge field strength tensor, and W̃ µν = 1
2ε
µναβWαβ. The right

hand side of this equation is minus the divergence of a topological current, −∂µKµ, where

[14]:

Kµ =
g2
2

8π2
εµναβTr

(
Wν∂αWβ − 2ig2

3
WνWαWβ

)
, (1.6)

where W µ is the SU(2) gauge field. Integrating ∂µKµ over all space, we obtain the topo-

logical charge,

nCS = −
∫
d3xK0, (1.7)

called the Chern-Simons number. Different vacuum configurations of gauge fields having

the same energy can have different values of nCS. These vacua correspond to gauge field

configurations of the form:

Wµ =
i

g2
Ω∂µΩ−1, (1.8)

where Ω is a function from four-dimensional space into the gauge group SU(2). As SU(2)

is topologically equivalent to the three-sphere S3, the index nCS is essentially the winding

number of the map Ω onto S3 [15].

Transitions between these topologically distinct vacua induce a change in the baryon

number, due to the anomaly equation (1.5), as illustrated in Fig. 1.3. The lepton number

current has the same anomaly. Thus, B + L is violated while B − L is conserved. These

vacua are separated by barriers corresponding to solutions of the field equations called

sphaleron configuratoins with energy Esph. The rate of tunneling between vacua is negli-
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Figure 1.3: Topological transitions at high temperature. When SU(2) gauge fields tunnel
from one vacuum configuration to another, characterized by different values of the Chern-
Simons number, baryon and lepton number are violated through the quantum anomaly
in the baryon and lepton number currents. The unstable solutions to the field equations
between the vacua are called sphaleron configurations, whose energy is Esph. The rate of
the tunneling reactions is Γsph.

gible below the temperature of the electroweak phase transition, the rate suprressed by a

factor of exp(−8π2/g2
2) ∼ 10−170 [16]. However, at higher temperatures, the tunneling is

unsuppressed, and the sphaleron transitions induce a change in baryon number through the

equation:

∂tρB(x)−Dq∇2ρB(x) ∝ −nFΓsph[nL(x) +RρB(x)], (1.9)

where Dq is the diffusion coefficient for baryons, nF is the number of families, Γsph is the

rate of weak sphaleron transitions, R is a relaxation coefficient for baryon number, and nL

is the number density of left-handed weak-doublet fermions. The latter quantity appears

because SU(2) gauge bosons couple directly only to left-handed fermions.

We imagine a picture in which bubbles of the broken electroweak symmetry phase nu-

cleate in the previously electroweak symmetric Universe. At or near the bubble boundaries,

the generation of a nonzero nL due to CP violation in regions where weak sphaleron transi-

tions are active leads to a nonzero baryon density ρB , which, if it ends up inside the region

of broken electroweak phase where sphalerons no longer change baryon number, is frozen

in and survives until the present day in the Universe. The goal within this framework is to

derive an equation for nL dependent on the amount of CP violation present and solve for

the final baryon density. The generation of nL, which tends to occur much faster than the

sphaleron transitions themselves, is governed by another set of equations, involving both
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CP -violating sources generating nonzero nL and CP -conserving reactions which tend to

cause relaxation of nL back towards zero. The presence of a nonzero nL then drives the

weak sphaleron transitions to generate nonzero baryon number.

We will consider the equations for nL in more detail after examining where we might

find enough CP violation beyond the Standard Model to account for the observed size of

the BAU.

1.1.2 More CP Violation from Supersymmetry

Supersymmetric extensions of the Standard Model4 are popular for their touted ability to

resolve the hierachy problem (by canceling large corrections to the Higgs mass from heavy

particle loops), achieve gauge coupling unification around 1016 GeV, and provide candidate

particles for the dark matter. What interests us is that they may provide a whole new

set of CP violating parameters that may help account for the BAU. These may generate

large enough nL and, thus, through Eq. (1.9), ρB. Indeed, the Minimal Supersymmetric

Extension of the Standard model (MSSM) by itself contains more than 100 free parameters

including dozens of CP -violating phases. Adopting a specific model for supersymmetry

breaking can reduce this menagerie to a more tractable set. In the minimal supergravity

model, for instance, which we adopt in thesis, the only independent CP -violating phases

remaining are the phase φµ of the µ-parameter in the superpotential:

WMSSM ⊃ µ(H+
u H

−
d −H0

uH
0
d) + · · · , (1.10)

where µ = |µ| eiφµ , and the phases in the triscalar couplings in the soft SUSY-breaking

terms in the Lagrangian:

Lsoft ⊃ −
(
˜̄uauQ̃Hu − ˜̄dadQHd − ˜̄eaeL̃Hd

)
+ c.c., (1.11)

where the matrices au = Au0yu, ad = Ad0yd, and ae = Ae0ye are proportional to the

corresponding matrices of Yukawa couplings. Assuming that Au0 = Ad0 = Ae0 ≡ A0 at the

scale of SUSY breaking, there is just one new CP -violating phase, φA, where A0 = |A0| eiφA .

These two CP -violating phases φµ and φA may be large enough to account for the baryon

4We refer to Ref. [17] for details and notation.
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asymmetry. They cannot, however, be so large as to conflict with constraints from precision

tests searching for permanent electric dipole moments (EDMs) in electrons, neutrons, and

atomic systems. These can possess an EDM only if time-reversal (T ) symmetry, and,

therefore, by the CPT theorem, CP symmetry, is violated in Nature. So far, no experiment

has found a measurable EDM, thus placing stringent constraints on the size of any new

sources of CP -violation beyond the Standard Model.

Our task is to calculate the baryon density that could be generated from CP -violating

phases small enough not to conflict with EDM constraints.

1.1.3 Transport Equations for Electroweak Baryogenesis

With this particular model for particles which can participate in the generation of the

baryon asymmetry at the electroweak phase transition, we can write equations governing the

generation of left-handed weak doublet fermions nL entering Eq. (1.9) for ρB, as introduced

by Cohen, Kaplan, and Nelson [18] and Huet and Nelson [19]. For example, the number

density of left-handed third-generation quarks and squarks Q is governed by an equation of

the form:

∂tQ−Dq∇2Q = Γm

(
T

kT
− Q

kQ

)
+ Γy

(
T

kT
− H

kH
− Q

kQ

)
+ S

CP�
Q + . . . , (1.12)

where T is the density of right-handed third-generation quarks and squarks, H is the density

of Higgs and Higgsinos, kT,Q,H are statistical factors, SCP�Q is the CP -violating source for

left-handed squarks, and Γm,Γy are the relaxation rates for the quantities in parentheses

induced by interactions of quarks and squarks with the Higgs vacuum expectation value

and with real Higgs particles, respectively. In this framework, supergauge interactions are

assumed to be much faster, keeping superpartners in chemical equilibrium with each other,

accounting for our use of combined particle and sparticle densities T,Q, and H. Equations

similar to Eq. (1.12) for T and H round out a set of coupled equations whose solution gives

the density nL which enters the equation for baryon density (1.9).

In Refs. [18, 19] semi-classical techniques were adopted to estimate the size of the coeffi-

cients like Γm,y and sources SCP�. Riotto [20] introduced into this framework the closed time

path (CTP) formulation of quantum field theory, which incorporates finite-temperature

and nonequilbrium effects, to derive from quantum field theory the sources SCP�, but kept
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the standard derivations of Γm,y. He discovered large enhancements (of the order of 103)

over previous calculations of SCP� in certain regions of MSSM parameter space, namely,

where certain particle masses (such as Higgsinos and Winos or left- and right-handed stops)

become degenerate.

In Ref. [21] and Chap. 2 of this thesis, we continue Riotto’s endeavor by deriving other

terms appearing in the diffusion equations like (1.12) using the same CTP formalism as

for the CP -violating sources. We discover similar enhancements in the coefficient Γm, and

expect similar results for Γy, which has not yet been calculated with the CTP formal-

ism. Enhancement of these rates tends to reduce the final baryon asymmetry compared to

Riotto’s result, but still leaving a significant enhancement of ρB . Beyond these enhance-

ments, we also discover entirely new terms in Eq. (1.12) and its cousins with different linear

combinations of the various particle densities.

These findings, although still quite preliminary, make evident the importance of a fully

consistent, quantum-field-theoretic calculation within the CTP formalism of all the terms

entering the transport equations for particle densities. Each new application of this formal-

ism to a different set of terms in the transport equations (e.g., by Riotto and by us) has

significantly affected the size of the BAU predicted by these equations. The prospect of

more powerful and more precise experiments that will constrain the parameters in models

of new physics in the next several years make imperative the task of making as complete

and reliable as possible these theoretical predictions. The work in this thesis, focusing at-

tention just on a few of the terms in the transport equations within only the MSSM, lays

the groundwork for future calculations, which ought also to extend to other extensions of

the SM to prepare for the various possibilities for the new physics that may be discovered

within the decade.

1.1.4 Combining Constraints from BAU and EDMs

In Fig. 1.4, we illustrate the present status of BAU and EDM constraints on φµ and φA

in the MSSM within the mSUGRA scenario for supersymmetry breaking, for a particular

choice in the MSSM parameter space. Our choices are informed by precision electroweak

constraints [22] combined with numerical simulations of the strength of the electroweak

phase transition [23], which tell us that, in the MSSM, we must have a light right-handed

top squark t̃R and heavy left-handed t̃L. We also choose degenerate Higgsino and SU(2)-



10

-0.04 -0.02 0 0.02 0.04

-1.5

-1

-0.5

0

0.5

1

1.5

�

dn

de

EWB

φµ

φA

Figure 1.4: Combined constraints on CP -violating phases from baryon asymmetry and
electric dipole moments. The colored bands pick out the region in the φµ-φA plane required
for successful electroweak baryogenesis, based on WMAP (green) and BBN (green+blue)
observations of the BAU. The wider white bands are limits placed on the size of these phases
by electron EDM (de) and neutron EDM (dn) searches. There exists a region of overlap
where BAU requirements are consistent with current EDM constraints. The narrow lines
inside those bands denote the sensitivity of proposed searches for these EDMs at future
experiments at Los Alamos National Laboratory [24, 25] and Yale [26].

gaugino masses |µ| = M2, which we find maximizes the BAU that can be generated from

the phases φµ, φA of a given size (here we chose |µ| = M2 = 200 GeV).

We are on the verge of new EDM experiments in the next few years which will achieve

sensitivites of two or more orders of magnitude greater than the present limits illustrated

in Fig. 1.4. Further null results may succeed in ruling out the simplest scenarios of super-

symmetric electroweak baryogenesis entirely. Indeed, achieving the situation illustrated in

Fig. 1.4 already places the fairly stringent constraint of near-degeneracy between Higgsino

and gaugino masses to generate a large enough BAU from the small phases implied by the

EDM searches. Meanwhile, with the LEP-II constraint on the Higgs mass of mH � 114 GeV

[27], only a small window remains for a strongly first-order electroweak phase transition,

requiring mH � 120 GeV (see Ref. [28] and references therein). These constraints, however,
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become relaxed with simple extensions of the MSSM5, to which we would turn if future ex-

periments rule out the minimal scenario. More optimistically, discoveries of nonzero EDMs

may pinpoint masses of superpartners that are indeed consistent with the BAU generated

through electroweak baryogenesis (by picking out phases within the colored band in Fig. 1.4,

for instance), even before their possible discovery at LHC.

All the data combined together would provide a powerful test of the scenario of elec-

troweak baryogenesis in the MSSM, ruling it out for good (and leading us to consider

extensions of the MSSM or other models of new physics) or perhaps even confirming it in

a dramatic way.

1.2 Effective Field Theories for Strong Interactions

Before we can reliably analyze the data from experiments like those at the LHC, we have

much work to do establish reliable calculations within the Standard Model itself, especially

in the sector of strong interactions. The theory describing these interactions, Quantum

Chromodynamics (QCD), possesses the important property of asymptotic freedom which

makes the interactions between quarks at high energies amenable to relatively simple per-

turbative theoretical calculations. However, at low energies, where quarks interact strongly

and bind together to make hadrons, calculations are almost impossible, except numerically

using lattice QCD.

1.2.1 Nonperturbative Effects in Hadronic Jets

One way to make progress analytically in the nonperturbative domain of QCD is to approx-

imate the full theory with an effective field theory (EFT) which simplifies the separation

of perturbative and nonperturbative effects. Given a particular class of physical processes

to study, we can identify the relevant sector of the full theory which describes them. By

integrating out degrees of freedom in the full theory which do not propagate for long times

or distances and identifying small parameters characterizing the physics in which we can

expand the full theory, we can form the appropriate EFT, which often possesses, at a
5For example, Ref. [29] found that in the NMSSM (Next-to-Minimal Supersymmetric Extension of the

Standard Model)—which contains an extra gauge singlet chiral superfield—a strongly first-order electroweak
phase transition can be achieved with heavy squarks and Higgs masses heavier than the MSSM limit of 120
GeV.
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given level of approximation, extra symmetries or other technical features facilitating the

separation of perturbative and nonperturbative contributions to physical observables.

One application of this strategy is to event shape variables in e+e− annihilation or Z

decay to hadrons. Most events in these processes produce two or more jets of hadrons

arising from the underlying partonic sub-processes. A number of variables conventionally

used characterize the “jettiness” of an event. For example, in Z decay, the energy of a

produced jet EJ is very close to MZ/2 for an event with two back-to-back jets. Another

popular variable is the thrust:

T =
1
MZ

max
t̂

∑
i

∣∣t̂ · pi∣∣ , (1.13)

the sum of the projections of the three-momenta of all particles i in the final state onto

an axis t̂, chosen to be the axis which maximizes this sum. (For exactly back-to-back jets,

T = 1.) The distribution of events in thrust can be calculated in perturbation theory

at the parton level, but hadronization effects will introduce additional nonperturbative

contributions to this observable. In Fig. 1.5, taken from Ref. [30], we find a comparison of

a prediction of the thrust distribution dσ/dT in e+e− annihilation in perturbation theory

(the red dotted line) to experimental data from LEP-II. The prediction does not quite

match the data, especially near the kinematic endpoint 1− T ≈ 0 where two-jet-like events

are found, until nonperturbative contributions are included, giving the black solid line.

Of course, the nonperturbative contributions are not calculable; they are modeled using

unknown parameters, which are merely fitted to the data. It would seem that no predictive

power is truly gained.

However, the nonperturbative contribution to these observables can often be expressed

as the matrix element of some operator in QCD or an effective theory which approximates

it, giving us some possibly useful information. For example, the total decay rate of Z to

hadrons is given by:

Γ(Z → hadrons) =
1

6MZ

∑
ε

ε∗µεν
∫
d4x eipZ ·x〈0|Jµ(x)Jν∗(0) |0〉 , (1.14)
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Figure 1.5: Thrust distribution in e+e− annihilation. The dotted curve is a perturbative
prediction for the thrust distribution, while the solid curve is a fit to the data in a model
including the nonperturbative power corrections. (Figure from Ref. [30].)

summed over Z polarizations ε, and where the current mediating the Z decay is:

Jµ =
∑
i,a

q̄ai (gV γ
µ + gAγ

µγ5)qai . (1.15)

Using the operator product expansion, we find that the product of currents can be expressed:

Jµ(x)J∗
ν (0) = C1

µν(x)Tr 1 +CG
2

µν (x)TrGαβGαβ + · · · , (1.16)

C1 ∼M6
Z , CG

2 ∼M2
Z , and the higher-order terms are suppressed by more powers of 1/MZ .6

The first term gives rise to the purely perturbative prediction for the decay rate, while the

second encodes the leading-order nonperturbative physics, in the matrix element:

〈0|TrGαβGαβ |0〉 ∼ Λ4
QCD. (1.17)

Thus the nonperturbative contribution to the total hadronic decay rate of the Z is sup-

pressed relative to the perturbative contribution by a factor of order ∼ (ΛQCD/MZ)4, or

6This power counting would, of course, differ in six spacetime dimensions [31].
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∼ 10−9. This means that the perturbative calculation should be highly accurate; on the

other hand, it would be extremely difficult to extract the value of the matrix element (1.17)

from a measurement of Γ(Z → hadrons).

Two features of an observable would enhance our predictive power. First, its leading

nonperturbative contribution should be large enough that its effect would be measurable in

an experiment while being small enough not to overwhelm the perturbative contribution.

Second, the nonperturbative contribution should be characterized as the matrix element of

operator which also contributes to a different physical observable. This way, its extracted

value in one experiment could be used to predict the results of another.

The attempt to obtain these desirable features is the goal of our use of effective field

theory to analyze event shape variables in hadronic Z decay. We use an EFT designed to de-

scribe those processes involving strongly-interacting particles moving with large energy com-

pared to their invariant mass, as in the hadronic jets produced in these events. In the soft-

collinear effective theory (SCET), we expand QCD in a small parameter λ ∼√
ΛQCD/MZ ,

the typical transverse momenta of particles inside a jet of hadrons, and keep only lightlike

(collinear) and soft degrees of freedom. At leading order in λ, the direct couplings in the

Lagrangian between soft and collinear particles can be made to disappear in the effective

theory by clever field redefinitions. This facilitates immensely the proof of factorization of

event shape variables into hard and soft contributions. The latter are expressed as matrix

elements of operators in the effective theory, and so we embark on the search for such matrix

elements which are universal among different event shape variables.

In Ref. [32], Bauer, Manohar, and Wise showed, at leading order in SCET, that the en-

ergy EJ of a single observed jet depends on no more than two nonperturbative parameters,

regardless of the number of jets in the event. In Ref. [33] and in this thesis, the non-

perturbative contributions to other event shape variables are similarly analyzed (and the

calculation in Ref. [32] of the jet energy distribution in two-jet events is extended to O(αs)

in perturbation theory.) Simple relations for different variables were proposed by Dokshitzer

and Webber in Ref. [34]. Our analysis suggests, unfortunately, that only two of the several

commonly-used event shape variables—thrust and jet mass sum (see Sec. 5.3.2)—receive

the same nonperturbative contributions, while those for the other variables are unrelated.

The Dokshitzer-Webber model was tested by the DELPHI collaboration [35], whose results

are summarized in Fig. 5.4 and appear to be consistent with our claims.
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1.2.2 Reliable Predictions for Radiative Upsilon Decay

Similar strategies can be pursued to analyze particular exclusive decays instead of inclusive

or semi-inclusive processes like Z decays to hadrons. The appearance of universal nonper-

turbative quantities in different exclusive decays would allow us to predict the branching

ratios for particular decay channels once the nonperturbative contributions are measured

in any one of them.

In this thesis we apply SCET and non-relativistic QCD (NRQCD) to decays of the Υ

meson to a photon and one or more light hadrons. While SCET is appropriate to describe

the final hadronic state, NRQCD is required to describe the heavy quark-antiquark pair

inside the Υ.

In NRQCD, the Υ decay rate can be split into several different contributions arising from

the possible spin and color configurations of the inital bb̄ pair. To leading approximation, the

bb̄ can be considered to be in a color-singlet, spin-triplet 3S1 configuration which dominates

the total Υ decay rate. For example, the photon energy spectrum in inclusive radiative Υ

decay depends on the sum of matrix elements:

dΓ
dEγ

(Υ→ γX) ∼
∑
n

Cn〈Υ|On |Υ〉 , (1.18)

for operators On with various spin and color quantum numbers. In the approximation of

the color singlet model, only one operator contributes:

dΓ
dEγ

(Υ→ γX) ∼ 〈Υ|χ†
−pσψp · χ†

−pσψp |Υ〉 . (1.19)

This approximation is inadequate for some regions of the photon energy spectrum. Roth-

bb̄(8,1 S0)� bb̄(1,3 S1)�
Figure 1.6: Color-octet and color-singlet channels in radiative Υ decay. The photon energy
is more peaked near Eγ = MΥ/2 in the color-octet channel and may need to be included
for a reliable prediction of the decay rate in this kinematic region.
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Figure 1.7: Photon spectrum in inclusive radiative Υ decay. This plot of the number of
events Nγ with a photon energy Eγ = MΥz/2 from Ref. [37] compares data from CLEO
[38] (the boxes) with predictions including only the color singlet contribution [39] (the blue
dashed line) and including both color singlet and octet contributions [37] (the one solid
and two dot-dashed lines). These latter three lines correspond to different choices for the
renormalization scale µ. The predictions which include the color octet contributions have
significantly improved agreement with data.

stein and Wise [36] pointed out that color octet channels, for example,

〈Υ|χ†
−pT

Aψpχ
†
−pT

Aψp |Υ〉 , (1.20)

could be equally important as the color singlet near the kinematic endpoint Eγ ∼ MΥ/2.

As illustrated in Fig. 1.6, while the color-singlet configuration must decay to at least two

gluons, the color-octet can decay to just one. The photon energy will be peaked closer to

MΥ/2 when recoiling against one gluon instead of two.

In Fig. 1.7, we see that the color-singlet contribution is inadequate to account for the

experimentally observed photon energy spectrum. Inclusion of the color-octet pieces are

necessary to fit the data. Bauer, Fleming, et al. in Ref. [40] and Fleming and Leibovich

in Refs. [39, 41] added SCET to the NRQCD analysis of radiative Υ decay, successfully

introducing the collinear degrees of freedom necessary to analyze the dynamics near the

kinematic endpoint Eγ = MΥ/2 in the photon energy spectrum.

In Ref. [42] and this thesis, we extend these analyses to the case of exclusive decays

Γ(Υ→ γH) for a light hadronH. We show that the color-octet channel is in fact suppressed

relative to the color-singlet even though we are in the region of large recoiling photon energy.

The extra suppression comes from inclusion of interactions necessary to turn the single gluon
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produced in the color-octet decay into a color-singlet hadron in the final state. Then, having

thus dropped the color-octet contribution, we predict the sizes of the decay rates of the Υ

to different hadrons in the final state. Working only to leading order in the effective theory

and using its various symmetries, we deduce the operators which contribute dominantly to

the radiative decays of the Υ and which hadrons those operators could produce in the final

state. We find at leading order that the Υ should radiatively decay dominantly to the flavor-

singlet, parity-even f2(1270). Furthermore, the appearance of universal nonperturbative

parameters for various quarkonia decays to the f2 allows us to make predictions for the

ratios of branching fractions such as

B(Υ→ γf2)
B(J/ψ → γf2)

= 0.13− 0.18, (1.21)

whereas experimentally this ratio is 0.06± 0.03 [1]. Although experimental and theoretical

uncertainties are still fairly large to make robust comparisons of these ratios, no evidence

has yet been found for any exclusive radiative decays of Υ to anything other than the f2.

The observation of this channel before any others reassures us about the reliability of our

prediction, whose further experimental scrutiny must await future data7.

1.3 A Look Beyond

New experiments promise an exciting era of particle physics in the coming decades, when

we may verify current guesses about the nature of the physics that lies just beyond the

Standard Model or find entirely other surprises. These prospects make imperative the im-

provement of theoretical calculations in the Standard Model and more reliable calculations

of the predictions of its extensions for baryogenesis, EDMs, and other such experimental

observables. With luck, the LHC and EDM searches will begin producing relevant data

within a few years. With hard work, the theoretical calculations will prepare scenarios

such as supersymmetric electroweak baryogenesis for subjection to the rigorous and reliable

scrutiny of those data. This thesis is an effort to make progress in these directions so as

to be ready for any new, exciting physics that the next era of theory and experiments may

reveal!
7Which appear to be forthcoming very shortly after the submission of this thesis [43]. Stay tuned!
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1.4 Plan of the Thesis

We begin our investigations beyond the Standard Model in Chap. 2, and calculate the

baryon asymmetry of the Universe generated in electroweak baryogenesis in the MSSM and

address the consistency of these results with constraints on CP violation in the MSSM from

experimental searches for elementary particle EDMs. Much, though not all, of the material

in this chapter was published in Ref. [21].

Then, returning to the Standard Model, in Chap. 3 we review the essential features of

effective field theories in QCD, namely, soft-collinear effective theory and non-relativistic

QCD, which will be applied to the radiative decays of Υ mesons in Chap. 4 (much of which

was published in Ref. [42]) and the hadronic decays of Z bosons in Chap. 5 (much of which

was published in Ref. [33]), leading to the conclusion and future outlook in Chap. 6.



19

Chapter 2

Constraints on Supersymmetric
Electroweak Baryogenesis

In principio creavit Deus cælum et terram.
Terra autem erat inanis et vacua et tenebræ super faciem abyssi et spiritus Dei ferebatur
super aquas.

Genesis 1:1–2

We begin our investigations beyond the Standard Model, considering the constraints that

currently available data, especially the baryon density of the Universe and limits on electric

dipole moments of elementary particles, might place on the parameters of the speculative

but popular Minimal Supersymmetric Extension of the Standard Model, which we adopt

as a theoretical testing ground for the application of the closed-time-path formalism of

quantum field theory to the calculation of the baryon density generated in electroweak

baryogenesis. (Much of this chapter appeared in Ref. [21].)

2.1 Introduction

The origin of the baryon asymmetry of the Universe (BAU) remains an important, un-

solved problem for particle physics and cosmology. Assuming that the Universe was matter-

antimatter symmetric at its birth, it is reasonable to suppose that interactions involving

elementary particles generated the BAU during subsequent cosmological evolution. As

noted by Sakharov [7], obtaining a nonzero BAU requires both a departure from thermal

equilibrium as well as the breakdown of various discrete symmetries: baryon number (B)

conservation, charge conjugation (C) invariance, and invariance under the combined C and
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parity (P ) transformations1. The Standard Model (SM) of strong and electroweak inter-

actions satisfies these conditions and could, in principle, explain the observed size of the

BAU:

YB ≡ ρB
s

=

⎧⎪⎨⎪⎩
(7.3± 2.5) × 10−11, BBN

(9.2± 1.1) × 10−11, WMAP
(2.1)

where ρB is the baryon number density, s is the entropy density of the universe, and

where the values shown correspond to 95% confidence level results obtained from Big Bang

Nucleosynthesis (BBN) [1] and the Wilkinson Microwave Anisotropy Probe (WMAP) [2],

respectively. In practice, however, neither the strength of the first-order electroweak phase

transition in the SM nor the magnitude of SM CP -violating interactions are sufficient to

prevent washout of any net baryon number created by B-violating electroweak sphaleron

transitions during the phase transition.

The search for physics beyond the SM is motivated, in part, by the desire to find new

particles whose interactions could overcome the failure of the SM to explain the BAU.

From a phenomenological standpoint, a particularly attractive possibility is that masses

of such particles are not too different from weak scale and that their interactions both

strengthen the first-order electroweak phase transition and provide the requisite level of CP -

violation needed for the BAU. Precision electroweak measurements as well as direct searches

for new particles at the Tevatron and Large Hadron Collider may test this possibility,

and experiment already provides rather stringent constraints on some of the most widely

considered extensions of the SM. In the Minimal Supersymmetric Standard Model (MSSM),

for example, present lower bounds on the mass of the lightest Higgs boson leave open

only a small window for a sufficiently strong first-order phase transition, although this

constraint may be relaxed by introducing new gauge degrees of freedom (see, e.g., [44, 45]).

Similarly, limits on the permanent electric dipole moments (EDMs) of elementary particles

and atoms imply that the CP -violating phases in the MSSM must be unnaturally small (∼
10−2). Whether such small phases (supersymmetric or otherwise) can provide for successful

electroweak baryogenesis (EWB) has been an important consideration in past studies of

this problem.

In order to confront phenomenological constraints on the parameters of various elec-
1Allowing for a breakdown of CPT invariance relaxes the requirement of departure from thermal equi-

librium.
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troweak models with the requirements of EWB, one must describe the microscopic dynamics

of the electroweak phase transition in a realistic way. Theoretically, the basic mechanism

driving baryogenesis during the phase transition is well-established. Weak sphaleron tran-

sitions that conserve B − L but change B and L individually are unsuppressed in regions

of spacetime where electroweak symmetry is unbroken, while they become exponentially

suppressed in regions of broken symmetry. Net baryon number is captured by expanding

regions of broken symmetry (“bubbles”). Given sufficiently strong C and CP -violation as

well as departure from thermal equilibrium, the non-zero B generated outside the bubble

cannot be entirely washed out by elementary particle interactions that occur at the phase

boundary. The baryon number density, ρB , is governed by a diffusion equation of the form:

∂tρB(x)−D∇2ρB(x) = −ΓwsFws(x)[nL(x) +RρB(x)] , (2.2)

where D is the diffusion coefficient for baryon number, Γws is the weak sphaleron transition

rate, Fws(x) is a sphaleron transition profile function that goes to zero inside the regions

of broken electroweak symmetry and asymptotically to unity outside, R is a relaxation

coefficient for the decay of baryon number through weak sphaleron transitions, and nL(x)

is the number density of left-handed doublet fields created by “fast” chirality changing

processes (see, e.g., [46]). Thus, in order to obtain nonzero ρB inside the bubble of broken

electroweak symmetry, the left-handed density nL must be non-vanishing in the plasma at

the phase boundary and possibly beyond into the region of unbroken symmetry.

In effect, nL(x) acts as a seed for the B-changing weak sphaleron transitions, and its

spacetime profile is determined by the CP -violating sources and the quantum transport of

various charges in the non-equilibrium environment of the plasma. Typical treatments of

these dynamics involve writing down a set of coupled quantum transport equations (QTEs)

for the relevant charges, estimating (or parameterizing) the relevant transport coefficients,

and solving the system of equations under the appropriate boundary conditions.

Among the developments in the past decade or so which have made significant impacts

on this program, we identify two that form the basis of our investigation in this work.

First, the authors of Ref. [18] noted that diffusion of chiral charge ahead of the advancing

phase transition boundary into the region of unbroken symmetry could enhance the impact

of baryon number-changing sphaleron processes, thereby leading to more effective EWB.
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The second, perhaps less widely-appreciated, development has been the observation by

the author of Ref. [20] that the application of equilibrium quantum field theory (QFT) to

transport properties in the plasma is not necessarily appropriate. In contrast to equilibrium

quantum dynamics, the time evolution of quantum states during the phase transition is non-

adiabatic. Consequently, scattering processes that drive quantum transport are no longer

Markovian, but rather retain some memory of the system’s quantum evolution. Using the

closed time path (CTP) formulation of non-equilibrium QFT [47] to compute the CP -

violating source terms in the plasma for the MSSM, the author of Ref. [20] found that

these “memory effects” may lead to significant resonant enhancements (of order 103) of

the sources over their strength estimated in previous treatments (see, e.g., Ref. [19] and

references therein). The authors of Ref. [48, 49] subsequently found that performing an

all-orders summation of scattering from Higgs backgrounds reduces the size of the CP -

violating sources to some extent, but that the resonant enhancements nonetheless persist.

Taken at face value, these enhancements would imply that successful EWB could occur

with significantly smaller CP -violating phases than previously believed, thereby evading

the present and prospective limits obtained from EDMs.

To determine whether or not such conclusions are warranted, however, requires that one

treat the other terms in the transport equations in the same manner as the CP -violating

sources. Here, we attempt to do so, focusing on the terms that, in previous studies, have

governed the relaxation of nL(x). In particular, chirality-changing Yukawa interactions

with the Higgs fields and their spacetime varying vacuum expectation values (vevs) tend to

wash out excess nL(x). In earlier studies—including those in which non-equilibrium QFT

has been applied to the CP -violating sources—these relaxation terms were estimated using

conventional quantum transport theory [19, 20, 48, 49]. However, if the memory effects that

enhance the CP -violating sources have a similar effect on these Yukawa terms, then the net

effect on ρB may not be as substantial as suggested in Refs. [20, 48, 49].

The goal of the present study is to address this question by developing a more compre-

hensive treatment of EWB using the CTP formulation of non-equilibrium QFT. In doing

so, we follow the direction suggested in Ref. [20] and compute the transport coefficients of

the chiral charges using the CTP formalism. To make the calculation more systematic, we

identify the relevant energy and time scales that govern finite temperature, non-equilibrium

dynamics and develop a power counting in the ratios of small to large scales (generically
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denoted here as ε). As we show below, both the CP -violating sources and the driving relax-

ation terms first arise at O(ε2), and we truncate our analysis at this order. In contrast to

the computation of the CP -violating sources, the derivation of the relaxation terms requires

the use of finite density Green’s functions. Given the resulting complexity, we consider here

only the terms in the transport equations that previous authors have considered the domi-

nant ones, and use our analysis of these terms to illustrate a method for obtaining a more

comprehensive treatment of the QTEs. To make the phenomenological implications con-

crete, we focus on the MSSM, realizing, however, that one may need to include extensions

of the MSSM in order to satisfy the requirements of a strong first-order phase transition.

Finally, we also attempt to identify the different approximations that have entered previ-

ous treatments of EWB, such as the implicit truncation at a given order in ε and outline

additional calculations needed to obtain a comprehensive treatment.

Based on our analysis, we find that under that same conditions that lead to resonant

enhancements of the CP -violating sources, SCP�, one also obtains a similar, resonant en-

hancement of the driving chirality-changing transport coefficient, Γ̄. Since YB ∼ SCP�/
√

Γ̄,

resonant relaxation counteracts the enhanced sources, though some overall enhancement

of EWB still persists. Consequently, it will be important in future work to study the

other transport coefficients whose impact has been considered sub-leading, since they may

be enhanced under conditions other than those relevant for the leading terms. From the

standpoint of phenomenology, we also illustrate how the implications of EDM searches for

EWB depends in a detailed way on the electroweak model of interest as well as results from

collider experiments and precision electroweak data.

In presenting our study, we attempt to be somewhat pedagogical, since the methods are,

perhaps, not generally familiar to either the practitioners of field theory or experimentalists.

Most of the formal development appears in Sections 2.2–2.4. In Section 2.2 we review the

CTP formalism and its application to the QTEs and discuss in detail the formulation of

density-dependent Green’s functions. In Section 2.3 we compute the CP -violating source

terms, providing a check of Ref. [20], as well as the transport coefficients of the chiral charge

densities. Here, we also enumerate the approximations used to obtain a set of coupled, linear

differential diffusion equations, discuss their limits of validity, and identify additional terms

(usually assumed to be sub-leading) that we defer to a future study. In Section 2.4 we solve

these equations for the baryon density. A reader primarily interested in the phenomenologi-
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cal implications may want to turn directly to Section 2.5, which gives illustrative numerical

studies using the parameters of the MSSM. A discussion of the implications for EDMs also

appears here. Section 2.6 contains a summary and outlook, while several technical details

appear in the Appendices.

2.2 Non-equilibrium Transport: CTP Formulation

In what follows, we treat all CP -violating and non-topological chirality-changing interac-

tions perturbatively2. In contrast to zero-temperature, equilibrium perturbation theory,

however, the perturbative expansion under non-equilibrium, T > 0 conditions requires the

use of a more general set of Green’s functions that take into account the non-adiabatic

evolution of states as well as the presence of degeneracies in the thermal bath. Specifically,

the matrix element of any operator O(x) in the interaction representation is given by:

〈n|S†
intT{O(x)Sint}|n〉 , (2.3)

where

Sint = T exp
(
i

∫
d4xLint

)
(2.4)

for an interaction Lagrangian Lint, T is the time-ordering operator, and |n〉 is an in-state.

Inserting a complete set of states inside Eq. (2.3), we obtain:

∑
m

〈n|S†
int |m〉 〈m|T{O(x)Sint} |n〉 . (2.5)

In ordinary, zero-temperature equilibrium field theory, the assumptions of adiabaticity and

of non-degeneracy of the states |n〉 imply that only the single state m = n contributes to

this sum, so the only impact of S†
int is the introduction of an overall phase, allowing one to

rewrite Eq. (2.5) as:
〈n|T{O(x)Sint}|n〉
〈n|Sint|n〉 . (2.6)

This simplification is no longer valid for non-equilibrium T > 0 evolution, and one must

take into account the action of S†
int appearing to the left of O(x) in (2.3). Doing so is

2Sphaleron transitions, however, are manifestly non-perturbative, and we parameterize their effects in
the standard way.
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Figure 2.1: Closed time path integration contour. Fields φ are distinguished according to
their placement on the forward (φ+) or backward (φ−) portions of the contour.

facilitated by giving every field in Sint and S†
int a “+” and “−” subscript respectively. The

matrix element in (2.3) then becomes:

〈n|P
{
O(x) exp

(
i

∫
d4x L+ − i

∫
d4x L−

)}
|n〉 , (2.7)

where the path ordering operator P indicates that all “+” fields appear to the right of all

“−” fields, with the former being ordered according to the usual time-ordering prescription

and the latter being anti-time-ordered [here, O(x) has been taken to be a “+” field]. Note

that the two integrals in the exponential in (2.7) can be written as a single integral along a

closed time path running from −∞ to +∞ and then back to −∞:

∫ ∞

−∞
dt

∫
d3x(L+ − L−) =

∫
C
dt

∫
d3xL, (2.8)

where the time t on the right-hand side is integrated over the contour C shown in Fig. 2.1.

Perturbation theory now proceeds from the matrix element (2.7) along the same lines

as in ordinary field theory via the application of Wick’s theorem, but with the more general

P operator replacing the T operator. As a result, one now has a set of four two-point

functions, corresponding to the different combinations of “+” and “−” fields that arise

from contractions. It is convenient to write them as a matrix G̃(x, y):

G̃(x, y) =

⎛⎝ Gt(x, y) −G<(x, y)

G>(x, y) −Gt̄(x, y)

⎞⎠ (2.9)
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where

G>(x, y) = 〈φ−(x)φ†+(y)〉 (2.10a)

G<(x, y) = 〈φ†−(y)φ+(x)〉 (2.10b)

Gt(x, y) = 〈T{φ+(x)φ†+(y)
}〉 = θ(x0 − y0)G>(x, y) + θ(y0 − x0)G<(x, y) (2.10c)

Gt̄(x, y) = 〈T̄{φ−(x)φ†−(y)
}〉 = θ(x0 − y0)G<(x, y) + θ(y0 − x0)G>(x, y) , (2.10d)

and where the 〈 〉 denote ensemble averages,

〈O(x)〉 ≡ 1
Z

Tr [ρ̂O(x)] . (2.11)

Here ρ̂ is the density matrix containing information about the state of the system, and

Z = Tr (ρ̂). In thermal equilibrium ρ̂ is time-independent and is given by ρ̂ = e−β(H−µiNi) for

a grand-canonical ensemble. Note that the matrix G̃(x, y) may be written more compactly

as:

G̃(x, y)ab = 〈P
{
φa(x)φ

†
b(y)

}
〉(τ3)bb . (2.12)

The presence of the τ3 factor is a bookkeeping device to keep track of the relative minus

sign between the L+ and L− terms in Eq. (2.7).

The path-ordered two-point functions satisfy the Schwinger-Dyson equations:

G̃(x, y) = G̃0(x, y) +
∫
d4w

∫
d4z G̃0(x,w)Σ̃(w, z)G̃(z, y) (2.13a)

G̃(x, y) = G̃0(x, y) +
∫
d4w

∫
d4z G̃(x,w)Σ̃(w, z)G̃0(z, y) , (2.13b)

where the “0” superscript indicates a non-interacting Green’s function and where Σ̃(x, y) is

the matrix of interacting self energies defined analogously to the G̃(x, y). An analogous set

of expressions apply for fermion Green’s functions, with an appropriate insertion of −1 to

account for anticommutation relations.

2.2.1 Quantum Transport Equations from CTP Formalism

The Schwinger-Dyson Eqs. (2.13) are the starting point for obtaining the transport equa-

tions governing nL(x). To do so, we follow Ref. [20] and apply the Klein-Gordon operator
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to G̃(x, y). Using

(
�x +m2

)
G̃0(x, y) =

(
�y +m2

)
G̃0(x, y) = −iδ(4)(x− y) (2.14)

gives

(
�x +m2

)
G̃(x, y) = −iδ(4)(x− y)− i

∫
d4z Σ̃(x, z)G̃(z, y) (2.15a)(

�y +m2
)
G̃(x, y) = −iδ(4)(x− y)− i

∫
d4z G̃(x, z)Σ̃(z, y) . (2.15b)

It is useful now to consider the (a, b) = (1, 2) components of these equations:

(
�x +m2

)
G<(x, y) = −i

∫
d4z

[
Σt(x, z)G<(z, y)− Σ<(x, z)Gt̄(z, y)

]
(2.16a)(

�y +m2
)
G<(x, y) = −i

∫
d4z

[
Gt(x, z)Σ<(z, y)−G<(x, z)Σt̄(z, y)

]
. (2.16b)

Subtracting Eq. (2.16b) from Eq. (2.16a) and multiplying through by i gives

i (�x −�y)G<(x, y)
∣∣
x=y≡X = i∂Xµ

(
∂µx − ∂µy

)
G<(x, y)

∣∣
x=y≡X . (2.17)

However,

(∂µx − ∂µy )G<(x, y)
∣∣
x=y≡X = −ijµφ(X) , (2.18)

where jµφ(x) = i〈: φ†(x)
↔
∂µφ(x) :〉 ≡ (nφ(x), jφ(x)), since the “+” and “−” labels simply

indicate the order in which the fields φ†(y) and φ(x) occur and may be dropped at this

point. Finally, expressing Gt,t̄(x, y) and Σt,t̄(x, y) in terms of θ-functions as in Eqs. (2.10),

we obtain from Eq. (2.17):

∂nφ
∂X0

+ ∇·jφ(X) =
∫
d3z

∫ X0

−∞
dz0

[
Σ>(X, z)G<(z,X) −G>(X, z)Σ<(z,X)

+G<(X, z)Σ>(z,X) − Σ<(X, z)G>(z,X)
]
.

(2.19)

Following similar steps, but taking the sum rather than the difference of the components of

the Schwinger-Dyson equations involving the S>(x, y) component on the LHS, one obtains
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the analogous continuity equation for Dirac fermions:

∂nψ
∂X0

+ ∇·jψ(X) = −
∫
d3z

∫ X0

−∞
dz0 Tr

[
Σ>(X, z)S<(z,X) − S>(X, z)Σ<(z,X)

+S<(X, z)Σ>(z,X) −Σ<(X, z)S>(z,X)
]
,

(2.20)

where

jµψ(x) = 〈: ψ̄γµψ(x) :〉, (2.21)

and

S>αβ(x, y) = 〈ψ−α(x)ψ̄+β(y)〉 (2.22a)

S<αβ(x, y) = −〈ψ̄−β(y)ψ+α(x)〉 , (2.22b)

displaying explicitly the spinor indices α, β. Note that the overall sign of the RHS of

Eqs. (2.19, 2.20) differs from that in Ref. [20] since the definition of our Green’s functions

G(x, y) and S(x, y) differ by an overall factor of −i.
In many extensions of the SM, one encounters both chiral and Majorana fermions,

which carry no conserved charge. It is useful, therefore, to derive the analogous continuity

equation for the axial current jµ5(x) = 〈ψ̄(x)γµγ5ψ(x)〉. Doing so involves multiplying the

Schwinger-Dyson equations by γ5, performing the trace, and taking the difference rather

than the sum of the components involving S>(x, y) on the LHS. The result is:

∂n5

∂X0
+ ∇·j5(X) =2imP (X) (2.23)

+
∫
d3z

∫ X0

−∞
dz0Tr

{[
Σ>(X, z)S<(z,X) + S>(X, z)Σ<(z,X)

− S<(X, z)Σ>(z,X) − Σ<(X, z)S>(z,X)
]
γ5

}
,

where P (x) = 〈ψ̄(x)γ5ψ(x)〉 and m is the fermion mass. In principle, one could evaluate

P (x) using path-ordered perturbation theory as outlined above.

2.2.2 Power Counting of Physical Scales

Evaluating the various terms in Eqs. (2.19, 2.20) leads to a system of coupled quantum

transport equations for the charges that ultimately determine nL(x). On the LHS of these
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equations, it is conventional to parameterize j = −D(∇n), in terms of the diffusion coef-

ficient D (whose expressions we take from Ref. [50]). The RHS involves integrating the

products of various Green’s functions and self-energies over the entire history of the system.

In practice, this integral depends on the various time and energy scales associated with

non-equilibrium dynamics at finite temperature and density. Here, we observe that there

exists a hierarchy among these scales that leads to a natural power counting in their ratios

(generically denoted here as ε) and that provides for a systematic expansion of the RHS of

the transport equations (2.19, 2.20, 2.23).

The changing geometry associated with the expanding region of broken symmetry and

the spacetime variation of the Higgs vevs leads to a decoherence of states that have, initially,

precise energy and momentum. The effect is analogous to the quantum mechanical evolution

of a particle in a box of side L. If the value of L is changed to L + ∆L in some time

interval ∆t, a state that is initially a stationary state for the original box will become an

admixture of the stationary states of new box. The shorter the interval ∆t or the greater the

wavenumber k of the initial state, the smaller the probability will be of finding the particle

in the state with the same wavenumber in the new system. The time scale that characterizes

this decoherence, τd, is naturally given by τd ∼ 1/vk, where v = ∆L/∆t is the velocity of

expansion of the box and k = p/�. In the present case, the relevant velocity is just vw, the

expanding bubble wall velocity, the relevant effective wave number k depends on |k| and

the wall thickness, Lw. The smaller the velocity or the longer the wavelength, the more

adiabatic the dynamics of the expanding bubble become and the longer the decoherence

time. Equilibrium dynamics are approached in the adiabatic limit: τd → ∞. The need to

employ the CTP formalism follows from being in a situation with vw > 0, or τd <∞.

A second time scale that one encounters in quantum transport at the phase boundary

arises from the presence of degeneracies among states in the thermal bath that vanish in

the T → 0 limit. At finite T , for example, a single, on-shell fermion may be degenerate

with another state involving an on-shell fermion-gluon pair—a situation that is forbidden

at T = 0. Interactions of strength g that cause mixing between such degenerate states

give rise to thermal—or plasma—widths Γp of order αT with α = g2/4π, and transitions

between the degenerate states take place on a plasma time scale τp of order ∼ 1/Γp. Again,

the use of the CTP formalism is necessitated when τp <∞ or T > 0.

A third time scale, which we denote τint, is associated with the intrinsic frequency ωk of
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the quasiparticle states that characterize the plasma dynamics. This time scale is naturally

given by τint ∼ 1/ωk. In the present case, we note that although the decoherence and

plasma times are finite, they are typically much larger than τint. For example, τint/τd =

vwk/ωk ≤ vw/c. Numerical studies indicate that vw/c � 1. Similarly, τint/τp = αT/ωk.

Since quasiparticle thermal masses are of order gT or larger, one also has that the latter

ratio is smaller than unity. Thus, one is naturally led to expand the RHS of the transport

equations in these ratios:

0 < τint/τd � 1 (2.24a)

0 < τint/τp � 1 . (2.24b)

Finally, we observe that the generation of baryon number takes place in an environment

of finite, but small particle number (or chiral charge) densities ni that are associated with

chemical potentials µi. For the temperatures and densities of interest here, one has |µi|/T �
1, so that the latter ratio also provides for a natural expansion parameter. Denoting each of

the ratios3 in Eq. (2.24) and µi/T by ε, we show below that both the CP -violating sources

and the relaxation term first arise at O(ε2), and we truncate our analysis at this order. We

note that doing so introduces some simplifications into the evaluation of the RHS of the

transport equations. For example, both the self energies Σ≷ and the Green’s functions G≷,

etc. depend on thermal distribution functions f(T, µi) that differ, in general, from their

equilibrium values, f0(T, µi). The difference δf ≡ f(T, µi) − f0(T, µi) that characterizes

the departure from equilibrium will be at least of O(ε), since it must vanish in the vw → 0

limit. We find below that the effect of having δf �= 0 contributes at higher order in ε than

we consider here, so that we may use the equilibrium distribution functions in the Green’s

functions and self-energies.

2.2.3 Green’s Functions at Nonzero Temperature and Density

The computation of the various components of G̃(x, y) and Σ̃(x, y) appearing in Eqs. (2.19,

2.20) at nonzero temperature and density requires knowledge of (T, µi)-dependent fermion

and boson propagators. The T -dependence of propagators has been studied extensively
3For our purposes, it is not necessary to distinguish a hierarchy among the different scale ratios, as we

work to leading nontrivial order in ε.
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(see, for instance, Ref. [51] and references therein), while the µi-dependence of fermion

propagators has been studied in Refs. [52]. Here we summarize the features of (T, µi)-

dependent propagators which are important for our subsequent application of the real-time,

CTP formalism of Sec. 2.2, and give some more technical details in Appendix 2.A.

For pedagogical purposes, we provide here a brief derivation of the non-interacting

fermion propagator but only give final results for the case of interacting fermions and

bosons. To do so, we start from the mode expansions for the field operators appearing

in the free Dirac Lagrangian, ψ(x) and ψ̄(x):

ψ(x) =
∫

d3k

(2π)3
1

2ωk

∑
α=1,2

[
aαku

α(k)e−ik·x + bα†k vα(k)eik·x
]

(2.25a)

ψ̄(x) =
∫

d3k

(2π)3
1

2ωk

∑
α=1,2

[
aα†k ū

α(k)eik·x + bαk v̄
α(k)e−ik·x

]
, (2.25b)

where kµ = (ωk,k), ωk =
√
|k|2 +m2, the mode operators satisfy:

{
aαk, a

β†
k′
}

=
{
bαk, b

β†
k′
}

= (2π)3δ(3)(k− k′)2ωkδ
αβ , (2.26)

and

〈aα†k aβk′〉 = f(ωk, µi)(2π)3δ(3)(k− k′)2ωkδ
αβ (2.27a)

〈bα†k bβk′〉 = f(ωk,−µi)(2π)3δ(3)(k− k′)2ωkδ
αβ , (2.27b)

with f(ω, µi) being the non-equilibrium Fermi distribution function. For our purposes,

the relative change δf(ω, µi)/f0(ω, µi) enters the transport equations multiplying explicit

factors of Γp and either vw or µ, so that in working to second order in ε we may replace

f by the equilibrium distributions f0(ω, µi) = nF (ω − µi) = [e(ω−µi)/T + 1]−1. Using

the mode expansion (2.25) it is straightforward to show that S>(x, y) = 〈ψ(x)ψ̄(y)〉 and

S<(x, y) = −〈ψ̄(y)ψ(x)〉 can be expressed as:

S≷(x, y) =
∫

d4k

(2π)4
e−ik·(x−y)g≷

F (k0, µi)ρ(k0,k) (k/+m) (2.28)
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in terms of the free particle spectral density:

ρ(k0,k) =
i

2ωk

[(
1

k0 − ωk + iε
− 1
k0 + ωk + iε

)
−
(

1
k0 − ωk − iε −

1
k0 + ωk − iε

)]
. (2.29)

and the functions:

g>F (k0, µi) = 1− nF (k0 − µi) (2.30a)

g<F (k0, µi) = −nF (k0 − µi) . (2.30b)

The propagators St,t̄(x, y) can now be constructed from the Sλ(x, y) as in Eqs. (2.10).

In the presence of interactions (characterized by a generic coupling g), the fermion

propagator becomes considerably more complicated than given by Eq. (2.28). In particular,

single fermion states can mix with other multiparticle states in the thermal bath, leading

to the presence of additional poles (the “hole” modes) in the fermion propagator [53, 54].

The general structure of the fermion propagator arising from these effects has been studied

extensively at zero density [55]. In Appendix A we generalize to the case of non-zero µi.

For massless fermions, the resulting propagators are given by:

S≷(x, y;µi) =
∫

d4k

(2π)4
e−ik·(x−y)g≷

F (k0, µ)

[
γ0 − γ ·k̂

2
ρ+(k0,k, µi) +

γ0 + γ ·k̂
2

ρ−(k0,k, µi)

]
,

(2.31)

where k̂ is the unit vector in the k direction, and

ρ+(k0,k, µi) = i

[
Zp(k, µi)

k0 − Ep(k, µi) −
Zp(k, µi)∗

k0 − Ep(k, µi)∗

+
Zh(k,−µi)∗

k0 + Eh(k,−µi)∗ −
Zh(k,−µi)

k0 + Eh(k,−µi) + F (k∗0 , k, µi)
∗ − F (k0, k, µi)

]
,

(2.32)

and

ρ−(k0,k, µi) = [ρ+(−k∗0,k,−µi)]∗ . (2.33)

Here, Ep(k, µi) and −Eh(k,−µi)∗ are the two (complex) roots (in k0) of the equation:

0 = k0 − k +D+(k0, k, µi) + iε (2.34)



33

where iD±(k0, k, µi) are contributions to the inverse, retarded propagator proportional to

(γ0 ∓ γ · k̂)/2 arising from interactions. The function F (k0, k, µi) gives the non-pole part

of the propagator, and k = |k|. We find that the resonant contributions to the particle

number-changing sources arise from the pole parts of the propagators, so from here on we

neglect the terms containing F (k0, k, µi).

In the limit g → 0, one has Zh → 0 and Zp → 1, recovering the form of the propagator

given in Eq. (2.28). For nonzero g, however, Zh is not of order g2 since the particle and

hole modes arise from mixtures of degenerate states. In particular, at k = 0 one has

Zp = Zh = 1/2. As k becomes large (of order the thermal mass or larger), Zh/Zp � 1, and

the particle dispersion relation is well-approximated by E2
p = |k|2+m2(T, µi), wherem(T, µi)

is the thermal mass. In our particular application to the MSSM, the gaugino Mi masses

will typically be taken to be of order several hundred GeV, and for the SU(2)L×U(1)Y

sector, thermal effects do not induce substantial mass corrections. We find that the gaugino

contributions to the RHS of Eqs. (2.19, 2.20) are dominated by momenta of order Mi, so

that the hole contributions to the gaugino S≷(x, y) can be neglected. In contrast, for quarks

we find non-negligible contributions from the low-momentum region, so we retain the full

structure given by Eqs. (2.31-2.33) in computing their contributions.

It has been noted in previous studies of quark damping rates that the one-loop thermal

widths Γp,h = ImEp,h(k, µ) are gauge-dependent (see Ref. [56] and Ref. [3] therein), whereas

the thermal masses m(T, µ) entering Ep,h are gauge-independent to this order. Gauge-

independent widths can be obtained by performing an appropriate resummation of hard

thermal loops (HTLs) [51, 56, 57]. The latter are associated with momenta k0, k ∼ gT ,

for which the one-loop functions D±(k0, k, µ) are of the same order in g as the tree-level

inverse propagators. In what follows, we will estimate the widths Γp,h based on existing

computations of damping [58, 59, 60], deferring a complete computation of the gauge-

invariant, µi-dependent contributions in the MSSM to a future study. In general, the

residues Zp,h also carry a gauge-dependence, and at this time we are not aware of any

HTL resummation that could eliminate this dependence. In principle, elimination of this

gauge-dependence requires inclusion of one-loop vertex corrections in the computation of

the Σ≷(x, y) and S≷(x, y) appearing on the RHS of Eqs. (2.19, 2.20), and we again defer a

complete one-loop computation to a future study.

The derivation of the finite-density scalar propagators proceeds along similar lines.
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Starting from the mode expansion of the free scalar field φ(x) in terms of plane-wave solu-

tions to the Klein-Gordon equation and following analogous arguments as for fermions, one

arrives at the following scalar Green’s functions:

G≷(x, y) =
∫

d4k

(2π)4
e−ik·(x−y)g≷

B(k0, µi)ρ(k0,k), (2.35)

where the equilibrium distribution functions are:

g>B(ω, µ) = 1 + nB(ω − µi) (2.36a)

g<B(ω, µ) = nB(ω − µi) , (2.36b)

with nB(x) = 1/(ex/T − 1) and ρ(k0,k) given by Eq. (2.29). As with fermions, one may

include the effect of thermal masses and widths by replacing m2 → m2(T, µi) and iε →
iε+ iΓ(T, µi).

2.3 Source Terms for Quantum Transport

The expressions for G≷(x, y) and S≷(x, y) now allow us to compute the perturbative contri-

butions to the source terms on the RHS of Eqs. (2.19,2.20) starting from a given electroweak

model Lagrangian. Here, we work within the MSSM as an illustrative case, but emphasize

that the methods are general. The Feynman rules giving the relevant interaction vertices in

the MSSM are taken from Ref. [17], and in what follows, we only write down those relevant

for the computations undertaken here. It is useful, however, to place our calculation in a

broader context by considering the various classes of graphs that generate different terms

in the QTEs. The simplest topologies are those involving scattering of particles and their

superpartners from the spacetime varying Higgs vevs (generically denoted v) in the plasma

[Fig. 2.2]. These graphs give rise to both the CP -violating source terms discussed in Ref.

[20] as well as terms proportional to chiral charge. The latter involve the number densities

of at most two different species, such as the left- and right-handed top quarks [Fig. 2.2(a)]

or their superpartners [Fig. 2.2(b)]. For purposes of illustration, we follow Ref. [20] and

work in a basis of mass eigenstates in the unbroken phase, treating the interactions with

the Higgs vevs perturbatively. This approximation should be reasonable near the phase

transition boundary, where both the vevs and their rate of change are small, but it clearly
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Figure 2.2: Contributions to the relevant self-energies from scattering of particles from the
spacetime varying Higgs vevs.

breaks down farther inside the bubble wall, where the vevs become large (of order the phase

transition temperature, Tc). In general, one would like to perform a resummation to all or-

ders in the vevs, possibly employing the approximation scheme proposed in Refs. [48, 61].

We postpone a treatment of this resummation to a future study4.

Yukawa interactions involving quarks (squarks) and Higgs (Higgsinos) are illustrated in

Fig. 2.3 (the self-energies Σ≷(x, y) are obtained by amputating the external legs).

These interactions cause transitions such as f ↔ fH, f̃ ↔ f̃H, and f ↔ f̃ H̃. Con-

tributions from gauge interactions appear in Fig. 2.4. The latter induce transitions of the

type f ↔ fV , f̃ ↔ f̃V , and f ↔ f̃ Ṽ . In general, one expects the Yukawa and gauge

interactions involving three different species to depend on sums and differences of the cor-

responding chemical potentials, as in µf − µf̃ − µṼ for the supergauge interactions. In

previous studies, it has been assumed that the gauginos Ṽ are sufficiently light and the

coefficients of the corresponding terms in the QTEs sufficiently large than one has µṼ ≈ 0

and µf ≈ µf̃ . Although the quantitative validity of this assumption could be explored using

our framework here, we defer that analysis to a future study and take µṼ ≈ 0, µf ≈ µf̃ .

Consequently, one may, as in Ref. [19], define a common chemical potential for SM particles

(including the two Higgs doublets) and their superpartners.
4The authors of Ref. [48] find that carrying out such a resummation reduces the resonant enhancements

of the CP -violating sources, but they did not consider the CP -conserving, chirality-changing terms that are
our focus here. The consistency of the proposed approximate resummation with our power counting remains
to be analyzed.
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Figure 2.3: Contributions to the relevant self-energies from Yukawa interactions.

In previous studies, it has also been assumed—based largely on simple estimates (see,

for instance, Ref. [19])—that the Yukawa interactions of Fig. 2.3 are sufficiently fast that

they decouple from the set of QTEs, leading to relations between the chemical potentials for

the Higgs (Higgsino) fields and those for matter fields. For example, Yukawa interactions

that couple the Higgs doublet fields H with those of the third generation SU(2)L doublet

quarks, Q with the singlet top quark supermultiplet field, T , generate terms of the form:

ΓY (µQ − µT + µH) . (2.37)

To the extent that ΓY is much larger than the other transport coefficients appearing in

Eqs. (2.19,2.20), one has µQ = µT − µH plus terms of O(1/ΓY ). The remaining terms in

the QTEs will involve the CP -violating sources, sphaleron terms, and terms that couple

left- and right-handed chiral charges, such as ΓM (µQ − µT ). Again, this assumption could

be tested using the current framework, but the computation of ΓY is considerably more

arduous than those discussed below, where we focus on the CP -violating sources and the

ΓM -type terms that are generated by the diagrams in Fig. 2.2.

2.3.1 Bosons

We consider first the scalar interactions in Fig. 2.2(a). The largest contributions involve the

L and R top squarks, t̃L,R owing to their large Yukawa coupling, yt. In the basis of weak
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Figure 2.4: Representative contributions to self-energies from (super)gauge interactions.

eigenstates, the relevant interaction Lagrangian is:

L = ytt̃Lt̃
∗
R(Atvu − µ∗vd) + h.c. , (2.38)

where vu,d are the vevs of H0
u,d, and we take v ≡

√
v2
u + v2

d and tan β ≡ vu/vd. Note that in

Eq. (2.38) we allow the vu,d to be spacetime-dependent. In the region of broken electroweak

symmetry and stable vevs, we have mt = ytvu.

Using the Feynman rules for path-ordered perturbation theory, it is straightforward to

show that the diagrams in Fig. 2.2(a) generate contributions to Σ̃R(x, y) of the form:

Σ̃R(x, y) = −g(x, y)G̃0
L(x, y), (2.39)

where

g(x, y) = y2
t

[
Atvu(x)− µ∗vd(x)

][
A∗
t vu(y)− µvd(y)

]
. (2.40)

Substituting Eq. (2.39) into Eq. (2.19) leads to:

∂µt̃
µ
R(x) = St̃R(x) (2.41)

for right-handed top squarks, where t̃µR is the corresponding current density and the source
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St̃R(x) is

St̃R(x) = −
∫
d3z

∫ x0

−∞
dz0

{
[g(x, z) + g(z, x)] Re

[
G>L (x, z)G<R(z, x) −G<L (x, z)G>R(z, x)

]
+i[g(x, z) − g(z, x)] Im[

G>L (x, z)G<R(z, x)−G<L (x, z)G>R(z, x)
]}

,

(2.42)

where the L,R subscripts indicate the propagators for the L and R top squarks.

The first term in the integrand of St̃R(x) is CP -conserving and leads to the ΓM -type

terms discussed above, while the second term in the integrand provides the CP -violating

sources. We concentrate first on the former. Expanding g(x, z) about z = x it is straightfor-

ward to show that only terms involving even powers of derivatives survive in g(x, z)+g(z, x).

Under the assumptions of gentle spacetime dependence of the vi(x) near the phase boundary,

we will neglect terms beyond leading order and take g(x, z) + g(z, x) ≈ 2g(x, x). Conse-

quently, the CP -conserving source is:

SCP
t̃R

(x) ≈ −2g(x, x)Re
∫
d3z

∫ x0

−∞
dz0

[
G>L (x, z)G<R(z, x) −G<L (x, z)G>R(z, x)

]
(2.43)

= −2g(x, x)Re
∫
d3z

∫ x0

−∞
dz0

∫
d4k

(2π)4

∫
d4q

(2π)4
e−i(k−q)·(x−z)ρL(k0,k)ρR(q0,q)

× [g>B(k0, µL)g<B(q0, µR)− g<B(k0, µL)g>B(q0, µR)
]
,

with

g(x, x) = y2
t

[|µ|2v2
d(x) + |At|2v2

u(x)− 2vd(x)vu(x)Re(µAt)
]
. (2.44)

Note the simplification

g>B(k0, µL)g<B(q0, µR)− g<B(k0, µL)g>B(q0, µR) = nB(q0 − µR)− nB(k0 − µL). (2.45)

Performing the d3z integral leads to a δ function in momentum space. After carrying out

the d3q integral, we perform the k0, q0 integrals by contour integration5, expand to first
5Here and in subsequent equations, we show only the terms arising from picking up the residues of the

poles in the spectral functions such as ρL(k0,k), ρR(q0,q). A careful calculation would also include the
residues from the poles in the thermal distribution functions such as nB(k0), hB(k0), etc. We relegate these
to Appendix. 2.C, where we find their contribution to the final numerical results to be unimportant compared
to the terms retained in the main text.
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order in µL,R/T , and obtain:

SCPt̃R (x) = − 1
T

NCy
2
t

2π2
|Atvu(x)− µ∗vd(x)|2

∫ ∞

0

dk k2

ωLωR

× Im
{
µLhB(EL)− µRhB(E∗R)

EL − E∗R
+
µRhB(ER)− µLhB(EL)

EL + ER

}
,

(2.46)

where

ω2
L,R = |k|2 +M2

t̃L,R
(2.47a)

EL,R = ωL,R − iΓL,R (2.47b)

hB(x) = − ex/T

(ex/T − 1)2
, (2.47c)

and Mt̃L,R
,ΓL,R are the thermal masses and widths for the t̃L,R, and the factor of NC comes

from summing over the colors. Note that, in arriving at Eq. (2.46), we have neglected the µi-

dependence of the pole residues Z(T, µL,R), thermal frequencies, ωL,R(T, µL,R), and widths,

ΓL,R(T, µL,R). The effect on SCP
t̃R

(x) of the µi-dependence of the residues and thermal

frequencies is sub-leading in the gauge and Yukawa couplings, whereas the effect from the

thermal widths occurs at leading order. The µi-dependence of ΓL,R(T, µL,R) is simply not

known, however, so we do not include it here. A more explicit expression for the dependence

of SCP
t̃R

(x) on the thermal frequencies and widths is given in Eqs. (2.128-2.130) of Appendix

2.B.

For purposes of future analysis, it is useful to rewrite Eq. (2.46) as:

SCP
t̃R

= Γ+
t̃
(µL + µR) + Γ−

t̃
(µL − µR) , (2.48)

where

Γ±
t̃

= − 1
T

NCy
2
t

4π2
|Atvu(x)− µ∗vd(x)|2

∫ ∞

0

dk k2

ωRωL
Im

{
hB(EL)∓ hB(E∗R)

EL − E∗R
− hB(EL)∓ hB(ER)

EL + ER

}
.

(2.49)

Before proceeding with the CP -violating source, we comment briefly on the structure

of Eqs. (2.48-2.49). In particular, we note that

(i) Terms of the type Γ+
t̃

are absent from the conventional QTEs for EWB. It is straight-

forward to see that in the absence of interactions that distinguish between t̃L and t̃R,



40

Γ+
t̃

= 0, as the integrand of Eq. (2.49) is antisymmetric under L ↔ R interchange.

In contrast, the transport coefficient Γ−
t̃

is nonzero in the limit of exact t̃L ↔ t̃R

symmetry. This term corresponds to the usual damping term in the QTEs associated

with scattering from the Higgs vevs.

(ii) In the absence of thermal widths ΓL,R, the quantity in brackets in Eq. (2.49) is purely

real, and so the damping term would be zero.

(iii) The structure of the energy denominators implies a resonant enhancement of the

integrand for M2
t̃L
∼M2

t̃R
. A similar effect was observed to occur for the CP -violating

sources (see below) in Refs. [20, 62]. The expression in Eq. (2.49) makes it clear that

the relaxation terms display a resonant behavior as well. The resulting quantitative

impact of this resonance on the baryon asymmetry is discussed in Sect. 2.5.

Properties (ii) and (iii) are shared by all source and damping terms, we discuss below. Note

that the explicit factors of µL,R/T and property (ii) imply that, away from the resonance

region, SCP
t̃R

is O(ε2).

The computation of the CP -violating source, given by the second term in Eq. (2.42),

proceeds along similar lines. In this case, the coefficient [g(x, z)−g(z, x)] vanishes for x = z,

so we must retain terms at least to first order in the expansion about x = z:

g(x, z) − g(z, x) = 2iy2
t Im(µAt) [vd(x)vu(z)− vd(z)vu(x)]

= 2iy2
t Im(µAt)(z − x)λ [vd(x)∂λvu(x)− vu(x)∂λvd(x)] + · · · ,

(2.50)

where the + · · · indicate higher order terms in the derivative expansion that we neglect for

the same reasons as discussed previously. When the linear term in Eq. (2.50) is substi-

tuted in Eq. (2.42), only the time component yields a nonzero contribution. The spatial

components vanish due to the spatial isotropy of the spectral density: g≷
B(k0, µ)ρ(k0,k) ≡

g
≷
B(k0, µ)ρ(k0, |k|). We may then make the replacement:

g(x, z) − g(z, x)→ 2iy2
t Im(µAt) [vd(x)v̇u(x)− v̇d(x)vu(x)] (z − x)0

= 2iy2
t Im(µAt)v(x)2β̇(x) (z − x)0 .

(2.51)

In general, we expect β̇ to be of order vw/c, so that the CP -violating source is first-order

in one of the small expansion parameters discussed earlier. Consequently, when evaluating
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this term, we may neglect the µL,R-dependence of the g≷
B(k0, µ). After carrying out the

(k0,q0) contour integrals and performing the time integration, we obtain:

S
CP�
t̃R

=
NCy

2
t

2π2
Im(µAt)v(x)2β̇(x)

∫ ∞

0

dk k2

ωRωL
Im

{
nB(E∗R)− nB(EL)

(EL − E∗R)2
+

1 + nB(ER) + nB(EL)
(EL + ER)2

}
.

(2.52)

Again, property (ii), in conjunction with the factor of β̇ ∝ vw, implies that SCP�
t̃R

is O(ε2).

An expression giving a more explicit dependence on the widths and frequencies appears Eq.

(2.131) of Appendix 2.B, which we note agrees with that of Ref. [20] except for a different

relative sign in front of the cos 2φ term of that equation and the overall factor of NC .

2.3.2 Massive Fermions

The computations for fermions proceed along similar lines. We consider first the source

terms for Higgsinos. We recall that it is useful to redefine the Higgsino fields to remove the

complex phase from the Higgsino mass term:

Lmass
H̃

= µ
(
ψH0

d
ψH0

u
− ψH−

d
ψH+

u

)
+ µ∗

(
ψ̄H0

d
ψ̄H0

u
− ψ̄H−

d
ψ̄H+

u

)
(2.53)

via

ψH0,−
d
→ H̃0,−

d ψH0,+
u
→ e−iφµH̃0,+

u (2.54)

leading to:

Lmass
H̃

= |µ|
(
H̃0
dH̃

0
u − H̃−

d H̃
+
u

)
+ |µ|

(
H̃0†
d H̃

0†
u − H̃−†

d H̃+†
u

)
. (2.55)

Defining the four component spinors,

ΨH̃+ =

⎛⎝ H̃+
u

H̃−†
d

⎞⎠ ΨH̃0 =

⎛⎝ −H̃0
u

H̃0†
d

⎞⎠ (2.56)

for the Higgsinos, and

Ψ
W̃+ =

⎛⎝ W̃+

W̃−†

⎞⎠ Ψ
W̃ 0 =

⎛⎝ W̃ 3

W̃ 3†

⎞⎠ Ψ
B̃

=

⎛⎝ B̃

B̃†

⎞⎠ (2.57)
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for the gauginos, leads to the Higgsino-gaugino-vev interaction:

Lint = −g2Ψ̄H̃+

[
vd(x)PL + vu(x)eiφµPR

]
Ψ
W̃+

− 1√
2
Ψ̄H̃0

[
vd(x)PL + vu(x)eiφµPR

] (
g2ΨW̃ 0 − g1ΨB̃

)
+ h.c.,

(2.58)

where

PL,R =
1∓ γ5

2
, (2.59)

while the mass terms (2.55) in the Higgsino Lagrangian become:

Lmass
H̃

= − |µ| (Ψ̄H̃0
ΨH̃0

+ Ψ̄H̃+ΨH̃+). (2.60)

Note that the spinors Ψ
H̃0 and Ψ

H̃+ satisfy a Dirac equation with Dirac mass |µ|, even

though the H̃0
d,u are Majorana particles. The Ψ

W̃± are Dirac particles of mass M2, whereas

the Ψ
W̃ 0 and ΨB̃0 are Majorana particles with Majorana masses M2 and M1, respectively.

We also note that the construction of the Dirac spinor Ψ
H̃0 allows one to define a vector

charge and corresponding chemical potential, µH̃0 , for the neutral Higgsinos, even though

they are Majorana particles. In contrast, there exists no such vector charge for the Ψ
W̃ 0 and

ψ
B̃0 . One may, however, study the quantum transport of the axial charge of the Majorana

fermions using Eq. (2.23). An attempt to do so for the neutral Higgsinos was made in Ref.

[48], though only the CP -violating sources were evaluated using non-equilibrium methods.

The impact of the corresponding axial charge density on the baryon asymmetry was found

to be small. We will return to this issue in a future study, and consider only the vector

densities below.

The most straightforward computation is that of the H̃± source terms. For notational

convenience, we rewrite the chargino interactions in Eq. (2.58) as:

−g2Ψ̄H̃+ [gL(x)PL + gR(x)PR] Ψ
W̃+ + h.c. (2.61)

In this case, the self-energy generated by Fig. 2.2(a) is:

Σ̃H̃±(x, y) = −g2
2 [gL(x)PL + gR(x)PR] S̃

W̃±(x, y) [gL(y)∗PR + gR(y)∗PL] . (2.62)
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Defining:

gA(x, y) ≡ g2
2

2
[gL(x)gL(y)∗ + gR(x)gR(y)∗] (2.63a)

gB(x, y) ≡ g2
2

2
[gL(x)gR(y)∗ + gR(x)gL(y)∗] , (2.63b)

we obtain for the RHS of Eq. (2.20):

S
H̃±(x) =

∫
d3z

∫ x0

−∞
dz0

∑
j=A,B

{
[gj(x, z) + gj(z, x)] Re Tr

[
S>
W̃±(x, z)S<

H̃±(z, x)− S<
W̃±(x, z)S>

H̃±(z, x)
]
j

+i[gj(x, z) − gj(z, x)] Im Tr
[
S>
W̃±(x, z)S<

H̃±(z, x) − S<
W̃±(x, z)S>

H̃±(z, x)
]
j

}
,

(2.64)

where the subscripts “A” and “B” on the traces denote the contributions arising from the

�k and m terms, respectively, in the spectral function in Eq. (2.28) (an overall factor of 1/2

due to the presence of the chiral projectors PL,R has been absorbed in the definition of the

gA,B).

As in the case of the scalar fields, the leading density-dependent, CP -conserving contri-

bution to S
H̃±(x) arises from the term in Eq. (2.64) containing the x↔ z symmetric factors

[gj(x, z)+gj(z, x)]. To lowest order in vw, we may set x = z in these factors. Using the spec-

tral representation of the S≷(x, y) given in Eq. (2.28), including gauge-invariant thermal

masses and widths, and expanding to first order in µi/T , we obtain the chirality-changing

source term:

SCP
H̃±(x) = Γ+

H̃±
(
µ
W̃± + µH̃±

)
+ Γ−

H̃±
(
µ
W̃± − µH̃±

)
, (2.65)

where

Γ±
H̃± =

1
T

g2
2

2π2
v(x)2

∫ ∞

0

dk k2

ωH̃ωW̃
Im

{[
E
W̃
E∗
H̃
− k2 +M2 |µ| cosφµ sin 2β

] hF (E
W̃

)∓ hF (E∗
H̃

)

E
W̃
− E∗

H̃

+
[E
W̃
EH̃ + k2 −M2 |µ| cosφµ sin 2β

] hF (E
W̃

)∓ hF (E
H̃

)
E
W̃

+ E
H̃

}
,

(2.66)
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where the definitions of ω
H̃,W̃

and E
H̃,W̃

are analogous to those given in Eqs. (2.47) and

hF (x) =
ex/T

(ex/T + 1)2
. (2.67)

Also, the factor of cos φµ is very nearly 1 for the region of small φµ in which we find ourselves

in subsequent sections. The explicit dependence of Γ±
H̃± on thermal frequencies and widths

is given in Eq. (2.132) of Appendix 2.B.

In the present case, we follow Ref. [19] and assume no net density of gauginos, thereby

setting µ
W̃± = 0 in Eq. (2.65) and giving:

SCP
H̃±(x) = −ΓH̃±µH̃± , (2.68)

with Γ
H̃± = Γ+

H̃± + Γ−
H̃± . In this case, it is straightforward to obtain the corresponding

source term for the neutral Higgsinos,

SCP
H̃0 (x) = −ΓH̃0µH̃0 , (2.69)

where Γ
H̃0 can be obtained from the formulae for Γ

H̃± by making the following replacements:

g2 → g2/
√

2 for W̃ 0 intermediate states and g2 → g1/
√

2, ω
W̃
→ ωB̃, and Γ

W̃
→ ΓB̃ for the

B̃ intermediate states.

The Higgsino CP -violating source arises from the second term in Eq. (2.64). As before,

we expand the gj(x, z) to first order about x = z and observe that only the x0 − z0 compo-

nent survives when the d3z integration is performed. Also note that gA(x, z) − gA(z, x) =

2i ImgA(x, z) = 0 so that only the terms proportional to the Higgsino and gaugino masses

contribute. The result is:

S
CP�

H̃±(x) =
g2
2

π2
v(x)2β̇(x)M2 |µ| sinφµ

×
∫ ∞

0

dk k2

ω
H̃
ω
W̃

Im
{
nF (E

W̃
)− nF (E∗

H̃
)

(E
W̃
− E∗

H̃
)2

+
1− nF (E

W̃
)− nF (E

H̃
)

(E
W̃

+ E
H̃

)2

}
.

(2.70)

The corresponding expression for SCP�
H̃0

(x) can be obtained by making the same replacements

as indicated above for the CP -conserving terms. The correspondence with the results of

Ref. [20] can be seen from Eq. (2.134) of Appendix 2.B. We again find essential agreement,
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apart from a sign difference on the cos 2φ term.

2.3.3 Chiral Fermions

The final source term associated with Fig. 2.2(a) involves L and R top quarks. At this

order, the latter only contribute a µi-dependent CP -conserving term. In order to illustrate

the structure of this term that arises when the terms of O(g2) are retained, we employ the

interacting fermion propagators of Eqs. (2.31-2.33). The result is:

SCPtR (x) = Γ+
tR

(µtL + µtR) + Γ−
tR

(µtL − µtR) , (2.71)

with

Γ±
tR

=
1
T

NCy
2
t vu(x)

2

π2

∫ ∞

0
dk k2 Im

{
ZRp (k)ZLp (k)
ERp + ELp

[
hF (ELp )∓ hF (ERp )

]
+
ZLp (k)ZRh (k)∗

ELp − ER∗h
[
hF (ELp )∓ hF (ER∗h )

]
+ (p↔ h)

}
.

(2.72)

Here, the “p” and “h” subscripts indicate contributions from the particle and hole modes,

and “L ” and “R” refer to left- and right-handed quarks. We have not included in our

calculation the effects of µtL,R
-dependence of the widths ΓL,Rp,h (T, µtL,R

), which in principle

also enter at this order. For an expanded version of Eq. (2.72), including these effects, see

Eq. (2.135) in Appendix 2.B.

In the limit of tL ↔ tR symmetry, Γ+
tR

vanishes, and Γ−
tR

simplifies to:

Γ−
tR

=
1
T

NCy
2
t vu(x)2

π2

∫ ∞

0
dk k2 Im

{
Zp(k)2

Ep hF (Ep) +
Zh(k)2

Eh hF (Eh)

+
2Zp(k)Z∗

h(k)
Ep − E∗h

[
hF (Ep) + hF (E∗h)

]}
.

(2.73)

We observe that all contributions to the CP -violating source terms and the Γ± vanish in

the limit of zero thermal widths. Since the widths are generically of order g2T (here, g

denotes either a gauge or Yukawa coupling), the source terms for the QTEs are generally

fourth order in the couplings.
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2.4 Quantum Transport Equations and ρB

We now discuss diffusion equations for the particle species that significantly contribute to

the density of left-handed doublet fermions nL(x) [cf. Eq. (2.2)] that acts as the “seed”

for baryogenesis. We subsequently relate ρB to nL and solve explicitly the equations in the

case of a simple geometry and profile for the bubble wall describing the phase boundary.

2.4.1 Solving the Diffusion Equations

Using the source terms computed in Section 2.3, one can arrive at a coupled set of differential

equations for the various particle number densities. These equations simplify considerably

under the assumptions of approximate chemical equilibrium between SM particles and their

superpartners (µf ≈ µf̃ with µṼ ≈ 0), as well as the between different members of left-

handed fermion doublets (µW± ≈ 0). In this case, one obtains transport equations for

densities associated with different members of a supermultiplet. This approach is the one

followed in Ref. [19], and for pedagogical purposes we summarize the development here.

First, we define the appropriate supermultiplet densities:

Q ≡ ntL + nt̃L + nbL + nb̃L (2.74a)

T ≡ ntR + nt̃R (2.74b)

B ≡ nbR + nb̃R (2.74c)

H ≡ nH+
u

+ nH0
u
− nH−

d
− nH0

d
+ nH̃+

u
− nH̃−

d
+ nH̃0

u
− nH̃0

d
, (2.74d)

where the Higgsino densities arise from the vector charges n
H̃+ = Ψ̄

H̃+γ
0Ψ

H̃+ and n
H̃0 =

Ψ̄
H̃0γ

0Ψ
H̃0 associated with the Dirac fields defined in Eq. (2.56). There are analogous

definitions for the first- and second-generation (s)quarks. Although we do not consider

them here, one may also define the corresponding axial charge densities. In the case of the

Higgsinos, for example, it will involve the sum, rather than the difference, of the u- and

d-type Higgsino densities6

The diffusion equation for a density ni has the structure:

∂µJ
µ
i = SCPi + S

CP�
i + Ssph

i , (2.75)

6This density was considered in Ref. [48], and its overall impact on the baryon asymmetry found to be
small.
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where Jµi is the current associated with the density ni, SCPi and SCP�i are the source terms

computed above, and Ssph
i is the strong sphaleron transition term, arising from the QCD

anomaly of the axial quark current:

∂µj
µ
5 =

nfg
2
s

16π2
GAαβG̃

Aαβ, (2.76)

where jµ5 =
∑

i q̄iγ
µγ5qi, summed over flavors i. Various derivations of the strong sphaleron

term appear in the literature, so we do not reproduce them here. However, we note that

the expressions in Refs. [19, 63] have erroneously omitted a factor of 1/NC [64].

The CP -conserving damping terms SCPi have been given in Eqs. (2.48), (2.65), and

(2.71) to linear order in the appropriate chemical potentials. Assuming local thermal equi-

librium we relate the number densities to the chemical potentials via:

ni = gi

∫
d3k

(2π)3
[N(ωk, µi)−N(ωk,−µi)] , (2.77)

where N(ω, µ) is the appropriate boson or fermion distribution function and gi counts the

internal degrees of freedom (spin and color). Dropping terms of O(µ3
i ), one obtains:

ni =
ki(mi/T )T 2

6
µi , (2.78)

where the factors ki(mi/T ) are exponentially small in the regime mi/T � 1, and reduce

in the massless limit to ki(0) = 1 for chiral fermions, ki(0) = 2 for Dirac fermions, and

ki(0) = 2 for complex scalars. In our analysis we keep the full dependence on mi/T :

ki(mi/T ) = ki(0)
cF,B
π2

∫ ∞

m/T
dxx

ex

(ex ± 1)2
√
x2 −m2/T 2 , (2.79)

where for fermions (bosons) cF (B) = 6 (3), and we choose the +(−) sign in the denominator.

Using Eq. (2.78) in Eqs. (2.48, 2.65, 2.71), and defining:

Γ±
M =

6
T 2

(
Γ±
t + Γ±

t̃

)
(2.80a)

Γh =
6
T 2

(
Γ
H̃± + Γ

H̃0

)
, (2.80b)
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the resulting set of coupled transport equations is:

∂µTµ = Γ+
M

(
T

kT
+

Q

kQ

)
− Γ−

M

(
T

kT
− Q

kQ

)
(2.81a)

− ΓY

(
T

kT
− H

kH
− Q

kQ

)
+ Γss

(
2Q
kQ
− T

kT
+

9(Q+ T )
kB

)
+ S

CP�
t̃

∂µQµ = −Γ+
M

(
T

kT
+

Q

kQ

)
+ Γ−

M

(
T

kT
− Q

kQ

)
(2.81b)

+ ΓY

(
T

kT
− H

kH
− Q

kQ

)
− 2Γss

(
2Q
kQ
− T

kT
+

9(Q+ T )
kB

)
− SCP�

t̃

∂µHµ = −Γh
H

kH
− ΓY

(
Q

kQ
+
H

kH
− T

kT

)
+ S

CP�

H̃
, (2.81c)

where Γss = 6κ′ 83α
4
sT , with κ′ ∼ O(1).

We comment briefly on the structure of these equations. In previous derivations of these

transport equations, the terms on the right-hand sides containing the various reaction rates

Γ−
M ,ΓY , etc. were derived using semi-classical statisical mechanics. Consider a microscopic

reaction which changes the number densities ni of particles i each by an amount ∆ni. Let

µi be the chemical potentials for these particles. In one reaction, then, the free energy F

changes by and amount ∆F =
∑

i µi∆ni. In a thermal ensemble, the probabilities to occupy

a state with a number of particles ni (“old”) or with ni + ∆ni (“new”) are proportional to:

Pold ∝ eβ
∑

i µini

Pnew ∝ eβ
∑

i µi(ni+∆ni),
(2.82)

where β = 1/T . The net rates to transition from the old to the new state or vice versa are

proportional to these occupation probabilities:

Γq.m.(Pold − Pnew) = Γq.m.Pold(1− eβ
∑

i µi∆ni), (2.83)

where Γq.m. is the quantum mechanical rate for the individual reaction ni ↔ ni + ∆ni.

Summing over all possible starting states “old”, we have
∑

states Pold = 1, so the net rate,

in the limit of small chemical potentials µi/T � 1, is:

Γnet = −Γq.m.
∑
i

µi∆ni
T

. (2.84)
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Then, the rate of change of a particular density nj, since one reaction changes it by ∆nj,

is given by:

ṅj = −Γq.m.∆nj
∑
i

µi∆ni
T

. (2.85)

The minus sign indicates that the reactions will tend to cause nj to relax back to zero. The

chemical potentials µi are related back to the densities ni themselves by Eq. (2.78).

This sort of argument accounts for the structure of the Γ−
M ,ΓY ,Γh, and Γs.s. terms

in (2.81). In the treatment of Ref. [19], these are the only terms that appear, with the

thermodynamic rates being given simply by:

Γ =
6Γq.m.
T 3

. (2.86)

However, deriving the equations by starting from the Schwinger-Dyson Eqs. (2.13) in

nonequilibrium quantum field theory, we obtain more general combinations of densities

on the right-hand sides of Eqs. (2.81), such as the Γ+
M terms, with more involved expres-

sions for the rates Γ than Eq. (2.86). In this work, we have only completed this computation

for the Γ±
M ,Γh terms, leaving the recalculation of ΓY to a future study. For Γs.s. we adopt

the semi-classical derivation.

For now, though we have not computed ΓY , we will follow the authors of Ref. [19], who

estimate ΓY � Γ−
M . For κ′ ∼ O(1), one also has Γss � Γ±

M . These facts allow one to relate

algebraically the densities Q and T to H, by setting the linear combinations multiplying

ΓY and Γss equal to δY = O(1/ΓY ) and δss = O(1/Γss), respectively. One then obtains:

Q =
(kB − 9kT )kQ

(9kT + 9kQ + kB)kH
H + αQY δY + αQsδss (2.87a)

T =
(9kT + 2kB)kT

(9kT + 9kQ + kB)kH
H + αTY δY + αTsδss , (2.87b)

with known coefficients αQY,Qs,TY,Ts. Taking 2 × [Eq. (2.81a)] + [Eq. (2.81b)] + [Eq.

(2.81c)], introducing the diffusion approximations T = −Dq∇T , Q = −Dq∇Q, H =

−Dh∇H, and using Eq. (2.87) leads to:

Ḣ − D̄∇2H + Γ̄H − S̄ = O(δss, δY ) , (2.88)
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where7

D̄ =
(9kQkT + kBkQ + 4kTkB)Dq + kH(9kT + 9kQ + kB)Dh

9kQkT + kBkQ + 4kT kB + kH(9kT + 9kQ + kB)
(2.89a)

Γ̄ =
(9kQ + 9kT + kB)(Γ−

M + Γh)− (3kB + 9kQ − 9kT )Γ+
M

9kQkT + kBkQ + 4kT kB + kH(9kT + 9kQ + kB)
(2.89b)

S̄ =
kH(9kQ + 9kT + kB)

9kQkT + kBkQ + 4kT kB + kH(9kT + 9kQ + kB)

(
S
CP�
t̃

+ S
CP�

H̃

)
. (2.89c)

The subleading terms δY,ss can be determined by use of Eqs. (2.87) in Eqs. (2.81a,2.81b).

We include the effect of δss in our final expression for ρB [19], although its effect is negligible

in the relevant MSSM parameter region.

Equation (2.88) can now be solved for a given set of assumptions about the geometry of

the bubble wall. Again, for clarity of illustration, we will work in a framework that allows

us to carry analytic calculations as far as possible, leaving to the future a numerical solution

of the equations for a realistic wall geometry and profile. First, as commonly done in earlier

studies, we ignore the wall curvature, thereby reducing the problem to a one-dimensional

one in which all relevant functions depend on the variable z̄ = |x + vwt|, where vw is the

wall velocity. Thus, z̄ < 0 is associated with the unbroken phase, z̄ > 0 with the broken

phase, and the boundary wall extends over 0 < z̄ < Lw. Second, we take the relaxation

term Γ̄ to be nonzero and constant for z̄ > 0. The resulting solution for H in the unbroken

phase z̄ < 0 (related to ρB as shown below) is:

H(z̄) = A evw z̄/D̄ (2.90)

with

A =
1

D̄κ+

∫ ∞

0
S̄(y) e−κ+y dy κ+ =

vw +
√
v2
w + 4Γ̄D̄

2D̄
�
√

Γ̄
D̄
. (2.91)

The above equation is valid for any shape of the source S̄(z̄). For simplicity, however, we

assume a simple step-function type behavior for the source: S̄ nonzero and constant for

0 < z̄ < Lw. Specializing to this case of constant sources in 0 < z̄ < Lw, using 4D̄Γ̄� v2
w,

7Our expressions differ from those in Ref. [19], which we believe result from an algebraic error. The
numerical impact of this difference, however, is not significant.
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Lw
√

Γ̄/D̄ � 1, and taking Γ̄ = rΓ (Γh + Γ−
M ) from Eq. (2.89a), we arrive at:

A = kH Lw

√
rΓ
D̄

S
CP�
H̃

+ S
CP�
t̃√

Γh + Γ−
M

. (2.92)

When evaluating the source terms SCP�
H̃
, S

CP�
t̃

[see Eqs. (2.52),(2.70)] for this simple profile

one has to use β̇ = vw∆β/Lw: thus A is explicitly proportional to vw and is only weakly

dependent on Lw. Solutions for Q and T are then obtained via Eqs. (2.90) and (2.87).

2.4.2 The Baryon Density ρB

Neglecting the wall curvature and assuming a step-function profile for the weak sphaleron

rate, the baryon density satisfies the equation [49, 65]:

Dqρ
′′
B(z̄)− vwρ′B(z̄)− θ(−z̄)R ρB = θ(−z̄) nF

2
ΓwsnL(z̄) , (2.93)

where nF is the number of fermion families and the relaxation term is given by [65]:

R = Γws

[
9
4

(
1 +

nsq

6

)−1
+

3
2

]
, (2.94)

where nsq indicates the number of light squark flavors, and the weak sphaleron rate is given

by Γws = 6κα5
wT , with κ � 20 [66].

The solution to Eq. (2.93) in the broken phase, eventually growing into the Universe, is

constant and given by:

ρB = −nFΓws

2vw

∫ 0

−∞
nL(x) exR/vw dx . (2.95)

Neglecting leptonic contributions, nL is given in the unbroken phase by the sum of left-

handed quark densities over the three generations (Q1L, Q2L, Q). Since appreciable densities

of first and second generation quarks are only generated via strong sphaleron processes,

it is possible to express Q1L and Q2L in terms of Q and T , in such a way that nL =

Q+Q1L +Q2L = 5Q+ 4T [19]. Using then Eq. (2.87) one obtains :

nL = −H
[
r1 + r2

v2
w

Γss D̄

(
1− Dq

D̄

)]
, (2.96)
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where

r1 =
9kQkT − 5kQkB − 8kT kB
kH(9kQ + 9kT + kB)

(2.97a)

r2 =
k2
B(5kQ + 4kT )(kQ + 2kT )
kH(9kQ + 9kT + kB)2

, (2.97b)

and finally, in the broken phase:

ρB(z̄ > 0) =
nF
2
A

[
r1Γws + r2

Γws

Γss

v2
w

D̄

(
1− Dq

D̄

)]
2D̄

vw

[
vw +

√
v2
w + 4RDq

]
+ 2RD̄

=
nF
2
A

[
r1Γws + r2

Γws

Γss

v2
w

D̄

(
1− Dq

D̄

)]
D̄

v2
w +R(D̄ +Dq)

,

(2.98)

where the second equality is true in the limit v2
w � 4DqR, which holds for the parameters

we have chosen in this calculation. The contribution from the first term in Eq. (2.98)

is linear in vw, due to the linear dependence on vw contained in the β̇ appearing in the

CP -violating sources. The second term is suppressed by two additional powers of vw and

generally leads to a negligible contribution to ρB in the MSSM case (see discussion below).

It could, however, be dominant in the case of heavy degenerate t̃L and t̃R, which leads to

r1 ∼ 0 [19].

The central feature emerging from the above discussion is that the net baryon density

is proportional to A ∼ SCP�/
√

Γ. A large relaxation rate Γ for the relevant charges will

suppress the overall baryon asymmetry. While in Refs. [20, 62] it was pointed out how

a non-equilibrium quantum transport could result in a resonant enhancement of SCP�, we

observe here that similar resonance effects in the relaxation terms will mitigate the impact

of the enhanced sources. In the next section we discuss the numerical impact within the

MSSM, but caution that reaching definitive conclusions will require computing the other

transport coefficients, such as ΓY , within the same framework.
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2.5 Baryogenesis and Electroweak Phenomenology within the

MSSM

The results derived in the previous Sections allow us to perform an illustrative, prelimi-

nary analysis of baryogenesis within the MSSM. This should be taken as an exploration,

whose robustness will be tested once we implement the next steps in our treatment of

the source terms in the transport equations. With this caveat in mind, we explore the

connections between electroweak baryogenesis and phenomenology within the MSSM, fo-

cusing in particular on the implications for EDM searches. Throughout, we assume—as in

mSUGRA—that all the terms in the Higgs scalar potential and all gaugino masses are real,

while all the A-parameters (trilinear scalar couplings) are equal at the GUT scale, therefore

sharing the same phase φA. In this case, the baryon asymmetry and EDMs are sensitive to

the two independent CP violating phases φµ and φA.8

2.5.1 Dependence of the BAU on MSSM Parameters

From the structure of Eqs. (2.98,2.92) and (2.52,2.70) we can write the baryon-to-entropy

density ratio9 YB ≡ ρB/s as:

YB = F1 sinφµ + F2 sin (φµ + φA) , (2.99)

where we have isolated the dependence on the phases φµ and φA. The first term that

contains F1 stems from the Higgsino source, while the F2 term arises from the squark

source.

The functions F1 and F2 display a common overall dependence on bubble wall parame-

ters (vw, Lw, ∆β), while having distinct dependence on other MSSM mass parameters such

as |µ|, the soft mass parameters for gauginos (M1,2) and squarks (Mt̃L
,Mt̃R

), the triscalar

coupling |At|, and tanβ. In order to assess the size of YB and the impact on CP -violating

phases, we must choose a reference region in the MSSM parameter space, and we follow two
8One may, of course, work with a more general soft SUSY-breaking sector that contains additional CP -

violating phases.
9We evaluate the entropy density at the electroweak phase transitions via s = (2π2)/45×geff (T )T 3, with

geff = 130.75, resulting in s = 57.35 T 3. Similarly, to convert the present ratio ρB/nγ to YB, we use the
relation s = 7.04 nγ . [1] None of these densities, of course, exhibits an equation of state with w ≡ p/ρ < −1
[67].
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Figure 2.5: Left panel: CP -violating Higgsino source ŜH̃ = −SCP�
H̃
/(v2β̇ sinφµ), as a function

of |µ|. Right panel: relaxation rate RΓ = (Γh+Γ−
M)/(Γh+Γm)H.N., normalized to the value

used in [19], as a function of |µ|. We have taken M2 = 200 GeV, and the values of all other
parameters as indicated in the text.

obvious guidelines: (i) we require that v(Tc)/Tc � 1, so that the baryon asymmetry is not

washed out in the broken symmetry phase; (ii) we require no conflict with precision elec-

troweak physics and direct collider searches. Both criteria lead to non-trivial restrictions.

The condition of a strongly first-order phase transition [v(Tc)/Tc � 1] requires light

scalar degrees of freedom coupling to the Higgs sector. It has been shown [22, 23] that within

the MSSM the only viable candidate is a light top squark, which should be mainly right-

handed (t̃R) in order to avoid large contributions to the ρ parameter. Quantitatively, for

lightest Higgs boson mass mh � 120 GeV, one needs 100 GeV � mt̃ < mt, and sufficiently

small stop mixing parameter |At−µ/ tan β| � 0.6Mt̃L
[22]. Moreover, present experimental

limits on mh and the constraint v(Tc)/Tc � 1 jointly require either values of tan β > 5 or

Mt̃L
in the multi-TeV region [48]. Based on these considerations, for illustrative purposes

we work with the following values of MSSM parameters at the electroweak scale: Mt̃R
= 0,

Mt̃L
= 1 TeV, |At| = 200 GeV, M2 = 200 GeV, tan β = 10. We also take for the CP -odd

Higgs mass mA = 150 GeV, which translates into ∆β ∼ 0.015 [68]. We vary in the plots

the scale |µ|, in order to display the resonant behavior for |µ| ∼M2. Finally, for the bubble

wall parameters we adopt the central values vw = 0.05 and Lw = 25/T [68].

With the above choice of MSSM parameters, the stop-induced contribution to YB is

suppressed (F2 ∼ 10−3F1), since one is far off the squark resonance [(Mt̃L
−Mt̃R

)�Mt̃R
].

On the other hand, the Higgsino-induced contribution F1 can account for the observed YB
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Figure 2.6: Left panel: Higgsino contribution to YB (Cf Eq. (2.99)), normalized to the
observed value. F1 displays residual resonant behavior for |µ| ∼ M2. All other input
parameters are given in the text. Right panel: Stop contribution to YB (Cf Eq. (2.99))
normalized to the observed value. The upper curve is for Mb̃L

= Mt̃L
, while the lower one

is for Mb̃L
� Mt̃L

. We have taken here Mt̃R
= 100 GeV, |µ| = 200 GeV, and have allowed

Mt̃L
to reach unrealistically low values to explore the size of the squark resonance. For

realistic input parameters F2 � F1.

even without maximal values of | sinφµ|. We highlight below the salient results of our study:

• The primary result of our analysis is that both the source SCP�
H̃

and the relaxation term

Γh display the resonant behavior [20, 62] typical of quantum transport for |µ| ∼M2.

We illustrate this in Fig. 2.5: the left panel shows the behavior of the rescaled CP -

violating higgsino source ŜH̃ ≡ −SCP�H̃ /(v2β̇ sinφµ) versus |µ|, while the right panel

displays the ratio RΓ of the relaxation term (Γh + Γ−
M) as calculated in this work

to the one used in previous studies, (Γh + Γ−
M )H.N. [19]. To our knowledge this

is the first explicit calculation showing resonance behavior for the relaxation term

Γ̄ ∼ rΓ(Γh + Γ−
M).

• Since F1 is proportional to SCP�
H̃
/
√

Γh + Γ−
M , the baryon asymmetry retains a resonant

behavior, albeit with an attenuation of the peak due to the enhanced relaxation term.

This is shown explicitly in Fig. 2.6. In the left panel we plot F1/Y
WMAP
B , normalizing

to the baryon asymmetry extracted from CMB studies [2]: YWMAP
B = (9.2 ± 1.1) ×

10−11 (the quoted error corresponds to 95% CL).

• For completeness we also display in Fig. 2.6 (right panel) the behavior of the squark

contribution F2/Y
WMAP
B as a function of Mt̃L

, with Mt̃R
= 100 GeV. Within the
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Figure 2.7: Allowed band in the | sinφµ|–|µ| plane, obtained by requiring successful elec-
troweak baryogenesis. All other MSSM parameters are given in the text. The light-shaded
(green) narrow band corresponds to the experimental input from WMAP, while the two
bands combined [dark (blue) + light (green)] correspond to input from Big Bang Nucle-
osynthesis.

MSSM, precision electroweak data and the requirement that v(Tc)/Tc � 1 force the

masses to be far away from the peak region. However, in extensions of the MSSM

where the phase transition is strenghtened by additional scalar degrees of freedom this

contribution might be important (see, e.g., Refs. [44, 45]).

• For given values of the MSSM parameter space explored here, successful EWB carves

out a band in | sinφµ| centered at | sinφµ| = Y exp
B /|F1| (whose width depends on the

uncertainty in Y exp
B ). Due to the resonant behavior of F1, the location of this band

is highly sensitive to the relative size of M2 and |µ|. As illustration, in Fig. 2.7 we

plot the allowed band in the | sinφµ|–|µ| plane determined by the baryon asymmetry,

with all other MSSM parameters fixed as above. The bands in the plot combined

together correspond to the baryon density determined from Big Bang Nucleosynthesis,

Y BBN
B = (7.3 ± 2.5) × 10−11 (the error corresponds to 95% CL [1]). Using WMAP

input leads to the narrow, lighter-shaded band in our plot located at the upper edge

of the BBN-induced band.
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Figure 2.8: SUSY loop graphs inducing quark EDM. A quark may develop an electric dipole
moment through one-loop effects involving superparticles with CP -violating couplings at
one of the vertices. The external photon sees one of the charged particles in the loop. The
vertex couplings may involve the phases φµ, φA in the MSSM.

2.5.2 SUSY-induced EDMs

We conclude this investigation with a brief account of the connections between the baryon

asymmetry and EDM phenomenology. Since the Standard Model predictions are in general

highly suppressed and well below present experimental sensitivity, limits on the electron,

neutron, and atomic EDMs can be used to constrain the phases of a given new physics

model.

Let us first review how an EDM can be generated. The EDM of a spin-1
2 fermion f is

the coefficient df in the low-energy effective Lagrangian10:

LE = − i
2
df ψ̄σµνγ5ψF

µν . (2.100)

Such a term could be induced by one-loop diagrams in SUSY containing a CP -violating

coupling in one of the vertices, such as those in Fig. 2.8. For an elementary particle such

as the electron, it is only the coefficient df in Eq. (2.100) which gives rise to the measured

EDM. However, for composite particles such as the neutron or an atom, the EDM dn or dA

of the whole particle may arise from not only the EDMs of the constituent particles, but

also other CP -violating operators involving these constituents. Quarks, for instance, may

develop a chromoelectric dipole moment d̃C :

LC = − i
2
d̃C q̄σµνγ5T

AqGAµν , (2.101)

10The notational conventions for the terms in the effective Lagrangian are those of Ref. [69].
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Figure 2.9: SUSY loop graphs inducing quark chromo-EDM. A chromoelectric dipole mo-
ment of the quark may be induced by SUSY loops containing squarks with CP -violating
couplings to the other particles.

or a gluonic dipole moment dG:

LG = −1
6
dGfABCGAµρG

Bρ
ν GCλσεµνλσ, (2.102)

which is called the Weinberg operator [70]. The chromo-EDM can be induced by the MSSM

through the graph in Fig. 2.9.

2.5.3 Combining Constraints from the BAU and Electric Dipole Mo-

ments

The present experimental limits on EDMs of interest to us are those for the electron [71],

neutron [72], and 199Hg [73] EDMs:

|de| < 1.9× 10−27e · cm
|dn| < 7.5× 10−26e · cm
|dHg| < 2.1× 10−28e · cm,

all given at 95% CL. New experiments under development promise to improve upon these

bounds by up to two orders of magnitude or more. For example, an experiment using PbO

molecules at Yale may achieve a sensitivity of ∼ 10−29 e · cm for the electron EDM, while

an experiment at Los Alamos may reach ∼ 10−30 e · cm. Meanwhile, another experiment

at Los Alamos using ultra-cold neutrons may test the neutron EDM with a sensitivity of

∼ 10−28 e · cm.11

Although a single EDM can be sufficiently small even for maximally large CP -violating
11These and other present and proposed EDM limits are reviewed in Ref. [74].
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phases (due to cancellations), constraints from more than one EDM can be very powerful.

In Ref. [75], for example, it was pointed out how limits on electron and 199Hg EDMs single

out a well defined region in the φµ–φA plane, for given values of gauginos, squark and

slepton masses. As shown above, for each point in the MSSM paramter space, electroweak

baryogenesis also selects a band in the φµ–φA plane. This implies in general non-trivial

constraints on the MSSM parameter space, as the EDM-allowed region need not in general

coincide with the one required by the baryon asymmetry.

To illustrate this situation, we have evaluated the bands in φµ–φA allowed by present

limits on electron, neutron, and mercury EDMs, and EWB for several representative points

in the MSSM parameter space (see Figs. 2.10 and 2.11). In our analysis we take the ex-

pressions for the electron EDM and quark chromo-electric dipole moments from Ref. [69].

In relating the 199Hg EDM to the quark-level CP -violating couplings, we follow the treat-

ment of Ref. [75] 12, where it was shown that the dominant contribution arises from the

chromo-electric dipole moments of quarks (d̃q) according to

dHg = −
(
d̃d − d̃u − 0.012d̃s

)
× 3.2 · 10−2e. (2.103)

For the neutron EDM, QCD sum rule techniques were used in Refs. [77] to derive the

expression in terms of quark EDMs and chromo-EDMs:

dn = 0.7(dd − 0.25du) + 0.55egs(d̃d + 0.5d̃u). (2.104)

There are also in general contributions from the Weinberg operator and also four-quark

operators, but Ref. [78] demonstrated that, in the MSSM with large tan β, these contribu-

tions are only about ∼10% the size of those in Eq. (2.104). In this work, since we will take

tan β = 10, we ignore these extra contributions for our purposes. We also neglect the renor-

malization group evolution of φµ and φA from the weak scale to the atomic scale, having

assumed a common, flavor-independent phase for the tri-scalar coupling at the former.

The plots in Fig. 2.10 correspond to taking the first and second generation sfermions,

along with the gluinos, to be degenerate with masses equal to 750 GeV; the gaugino mass

M1 = 100 GeV; and the triscalar coupling A = 200 GeV. We consider then values of M2

and |µ| corresponding to the peak of resonant baryon generation, M2 = |µ| = 200 GeV. In
12For a recent reanalysis of hadronic EDMs in SUSY see Ref. [76].
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Figure 2.10: Allowed bands in the φµ–φA plane implied by consistency with the 95% C.L.
limits on current and proposed limits in EDMs. In the left panel, we use the current
limits on the electron, mercury, and neutron EDMs. In the right panel, we illustrate future
limits that could come from improved sensitivities to electron and neutron EDMs. These
constraints are shown together with the phases required by baryogenesis. The shaded [dark
(blue) and light (green) combined] EWB band corresponds to BBN input [1], while the
narrow light-shaded (green) band on the left corresponds to WMAP input [2]. In these
plots we use |µ| = M2 = 200 GeV (resonance peak). The the other supersymmetric masses
are as specified in the text.

the left panel we show the current EDM constraints on the phases φµ,A, and in the right the

limits that could come from proposed electron and neutron EDM experiments. For these

choices of MSSM parameters, Eq. (2.99) predicts for YB:

M2 = |µ| = 200 GeV : YB = −1.3× 10−8 sinφµ + 1.7× 10−11 sin(φA + φµ). (2.105)

In the left panel of Fig. 2.11, we consider lowering the masses of heavy sfermions and gluinos

to 500 GeV, which does not change Eq. (2.105) for YB, but tightens the EDM bands. In

the right panel of Fig. 2.11, we move the heavy sparticles back to 750 GeV, but move off

the peak of resonant baryon production, to M2 = 200 GeV, |µ| = 250 GeV. In this case,

M2 = 200 GeV, |µ| = 250 GeV : YB = −2.0×10−9 sinφµ+4.6×10−11 sin(φA+φµ). (2.106)

In both cases in Fig. 2.11, EDM constraints already rule out successful baryogenesis for the
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Figure 2.11: Choices for MSSM parameters ruled out by EDM constraints and requiring
successful electroweak baryogenesis. Left panel: EDM and EWB bands in φµ–φA plane on
the resonant peak M2 = |µ| = 200 GeV, but with first- and second-generation sfermion and
gluino masses at 500 GeV. The EDM limits are tighter in this case, ruling out successful
baryogenesis. Right panel: For heavy sparticles at 750 GeV, but with M2 = 200 GeV, |µ| =
250 GeV, which lies off the resonant peak for the creation of the baryon asymmetry. The
required phases are already ruled out by present EDM limits.

chosen parameters. Thus, we find the general trend that for M2 ∼ |µ| (and some relatively

heavy sparticle masses), electroweak baryogenesis requires only small phases, consistent

with the constraints from EDMs. As one moves off resonance (or lowers heavy sparticle

masses), then larger phases are needed to generate the observed baryon asymmetry, and

this requirement tends to conflict with the EDM constraints.

Ultimately, if supersymmetry is discovered at collider experiments, spectroscopy will

dictate the input for mass parameters. Then joint constraints from low-energy EDM mea-

surements and collider searches could be used to tightly test the scenario of baryogenesis

at the electroweak scale, especially as a new generation of lepton, neutron, and neutral

atom EDM searches will likely tighten the constraints in Fig. 7 by two or more orders of

magnitude (for a recent discussion, see Ref. [74] and references therein).
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2.6 Conclusions

It is instructive to consider the essential physics leading to the enhanced sources and re-

laxation terms discussed in this work. The propagation of quasiparticles in the plasma is

modified by scattering from the spacetime varying Higgs vevs that causes transitions to

intermediate states involving other quasiparticle species. The system retains some memory

of each scattering due to the presence of thermal widths, Γi, that reflect the degeneracy

of states in the thermal bath. For Γi = 0, the oscillating exponentials appearing in the

Green’s functions wash out any memory of the scattering. For Γi �= 0, the Green’s functions

now contain decaying exponentials as well as oscillating terms, and the memory washout

is incomplete. The impact of quantum memory effects are, thus, characterized by the ratio

of time scales, τint/τp ∼ Γi/ωi, where τint is the characteristic propagation time associated

with a quasiparticle of frequency ωi and τp ∼ 1/Γi, the plasma time, is the time scale on

which transitions between the quasiparticle and other, degenerate states may occur. To the

extent that the quasiparticle thermal mass and/or three-momentum is large compared to

Γi, this ratio τint/τp is O(ε).

A special situation arises, however, when the spacetime variation of the Higgs vevs is

gentle and the thermal mass of an intermediate state is close to that of the initial state.

Under these conditions, the scattering event injects essentially zero four-momentum into the

initial state i, leading to resonant production of the intermediate state j. The characteristic

lifetime of the latter is no longer τint ∼ 1/ωi, but rather the resonance time scale

τres ∼ 1√
∆ω2 + Γ2

ij

, (2.107)

where ∆ω = ωi − ωj and Γij = Γi + Γj [see, e.g., Eqs. (2.128-2.130) and (2.132-2.134) of

Appendix 2.B]. In this case, the impact of quantum memory is characterized by the ratio

τres/τp. For |∆ω| � Γij, this ratio becomes of O(1), and the impact of quantum memory

is resonantly enhanced13. On the other hand, for |∆ω| � Γij, the ratio is O(ε) and one

returns to the more generic conditions.

In this study, we have shown how this effect can enhance both the particle number-
13An examination of Eqs. (2.128-2.130) and (2.132-2.134) of Appendix 2.B indicates the presence of an

additional, dynamical enhancement factor ∼ ω/
√

∆ω2 + Γ2
ij in the relevant integrals.
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changing relaxation terms as well as the CP -violating sources that enter the transport

equations relevant to electroweak baryogenesis. Importantly, the effect of resonant relax-

ation tends to mitigate the impact of resonantly-enhanced sources, as both enhancements

occur under the same conditions for the electroweak model parameters (in this case, those

of the MSSM). We suspect that analogous resonant effects occur in other transport coef-

ficients, such as the ΓY Yukawa terms discussed above, but that the conditions on model

parameters leading to enhancements—owing to simple kinematic considerations—will be

different. It may be, for example, that the Yukawa interactions are no longer fast compared

to the Higgs vev induced transitions when the latter are resonantly enhanced, and in this

case, the solution to the differential equations will differ from the general structure obtained

here and by other authors. This possibility is one that should be explored in future work.

Additional refinements of the present analysis are clearly in order, including some form

of all-orders resummation of the Higgs vev insertions (possibly along the lines proposed in

Refs. [48, 61]) and a treatment of the axial charge transport equations via Eq. (2.23). In

principle, one would also like to study the density dependence of the thermal frequencies and

widths, the impact of nonzero gaugino densities, variations in bubble wall geometry, and

possibly higher-order effects in ε, such as the departure of δf of the thermal distribution

functions from their equilibrium values. In short, it is apparent that EWB is not yet a

solved problem, but rather one that calls for additional study.

Undertaking this effort will be important for electroweak phenomenology. As illustrated

here as well as in other studies (e.g., [28]), determining the viability of EWB within a

given electroweak model involves a detailed interplay of collider phenomenology, precision

electroweak data, EDM searches, and a careful treatment of the dynamics of the electroweak

phase transition. In particular, in light of the open questions pertaining to the latter, it

is too soon to draw definitive conclusions about the implications of the next generation

of EDM searches for the baryon asymmetry. One hopes, however, that by the time these

searches obtain their first results, the context for their theoretical interpretation will have

been further clarified.
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2.A Appendix: Propagators at Finite Temperature and Den-

sity

In this section, we derive some useful properties of propagators at finite temperature and

density, using derivations based on those for the case of finite temperature and zero density

in Refs. [54, 55].

2.A.1 General Structure of Fermion Propagators

We begin with the spectral function for fermions at temperature T = 1/β in the presence

of a chemical potential µ:

ραβ(x) =
1
Z

Tr
[
e−β(H−µN){ψα(x), ψ̄β(0)}

]
, (2.108)

where Z = Tr [e−β(H−µN)]. It is convenient to define the retarded and advanced propagators:

SR(x) = θ(x0)ρ(x) (2.109a)

SA(x) = −θ(x0)ρ(x), (2.109b)

supressing spinor indices. The Fourier transforms of SR,A(x) and ρ(x) are related by:

SR(k0,k) = i

∫ ∞

−∞

dω

2π
ρ(ω,k)

k0 − ω + iε
(2.110a)

SA(k0,k) = i

∫ ∞

−∞

dω

2π
ρ(ω,k)

k0 − ω − iε . (2.110b)

It is possible to express the momentum-space spectral function in terms of a single product

of ψα(x) and ψ̄β(x) instead of the anticommutator in Eq. (2.108), whose Fourier transform

is:

ραβ(ω,k) =
∫
d4x ei(ωt−k·x)ραβ(t,x)

=
∫
d4x ei(ωt−k·x) 1

Z

∑
n

〈n|e−β(H−µN)
[
ψα(x)ψ̄β(0) + ψ̄β(0)ψα(x)

] |n〉 . (2.111)
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Now insert a complete set of states between the fermion fields:

ραβ(ω,k) =
∫
d4x ei(ωt−k·x) 1

Z

∑
n,j

[
〈n|e−β(H−µN)ψα(x) |j〉 〈j|ψ̄β(0) |n〉

+〈n|e−β(H−µN)ψ̄β(0) |j〉 〈j|ψα(x) |n〉
]
.

(2.112)

We can rewrite the second term by switching summation labels and translating ψα from x

to 0:

∑
n,j

〈n|e−β(H−µN)ψ̄β(0) |j〉 〈j|ψα(x) |n〉

=
∑
j,n

ei(En−Ej)te−i(kn−kj)·xe−βEjeβµ(Nn+1)〈n|ψα(0) |j〉 〈j|ψ̄β(0) |n〉 ,
(2.113)

which after integrating in Eq. (2.112), becomes

1
Z

∑
j,n

(2π)4δ(ω + En − Ej)δ3(k + kn − kj)e−β(En+ω)eβµ(Nn+1)〈n|ψα(0) |j〉 〈j|ψ̄β(0) |n〉 ,

(2.114)

where we used the first delta function to replace Ej with En + ω in the exponential e−βEj .

This can now be written:

e−β(ω−µ) 1
Z

∫
d4x ei(ωt−k·x)

∑
n,j

〈n|e−β(H−µN)ψα(x) |j〉 〈j|ψ̄β(0) |n〉 (2.115)

which is e−β(ω−µ) times the first term of Eq. (2.112), so we conclude:

ραβ(ω,k) =
[
1 + e−β(ω−µ)

] ∫
d4x ei(ωt−k·x) 1

Z
Tr

[
e−β(H−µN)ψα(x)ψ̄β(0)

]
. (2.116)

Similarly, we could have manipulated the first term of Eq. (2.112) in the same way, and

derived the companion relation:

ραβ(ω,k) =
[
1 + eβ(ω−µ)

] ∫
d4x ei(ωt−k·x) 1

Z
Tr

[
e−β(H−µN)ψ̄β(0)ψα(x)

]
. (2.117)
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Appearing on the right-hand sides of Eqs. (2.116,2.117) are the Green’s functions S>(k0,k)

and −S<(k0,k), giving the relations:

S>(k0,k) = [1− nF (k0 − µ)]ρ(k0,k) (2.118a)

S<(k0,k) = −nF (k0 − µ)ρ(k0,k), (2.118b)

where nF (x) = 1/(1 + ex).

The various Green’s functions satisfy the identities:

St(x, y) = SR(x, y) + S<(x, y) = SA(x, y) + S>(x, y) (2.119a)

S t̄(x, y) = S>(x, y)− SR(x, y) = S<(x, y)− SA(x, y) , (2.119b)

which follow directly from the definitions in Eqs. (2.10,2.109). Thus, using Eq. (2.118),

the time- and anti-time-ordered propagators can be expressed in terms of the retarded and

advanced propagators:

St(k0,k) = [1− nF (k0 − µ)]SR(k0,k) + nF (k0 − µ)SA(k0,k) (2.120a)

S t̄(k0,k) = −nF (k0 − µ)SR(k0,k)− [1− nF (k0 − µ)]SA(k0,k) . (2.120b)

Also note that ρ = SR − SA = S> − S<.

2.A.2 Bosonic Propagators

Similar results may be derived from scalar bosonic propagators, for which the analog to

Eq. (2.118) is:

G>(k0,k) = [1 + nB(k0 − µ)]ρ(k0,k) (2.121a)

G<(k0,k) = nB(k0 − µ)ρ(k0,k) , (2.121b)

where the momentum-space spectral function ρ(k0,k) for bosons is the Fourier transform

of:

ρ(x) =
1
Z

Tr
{
e−β(H−µN)[φ(x), φ∗(0)]

}
. (2.122)

The bosonic propagators also satisfy the identity ρ = GR −GA = G> −G<.
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2.A.3 Tree-Level Propagators

At tree level, the propagators SR,A for fermions are given by:

SR,A(k0,k) =
i(k/ +m)

(k0 ± iε)2 − E2
k

, (2.123)

and GR,A for bosons are given by:

GR,A(k0,k) =
i

(k0 ± iε)2 − E2
k

, (2.124)

where E2
k = |k|2 + m2. Note that these propagators are independent of the temperature

and chemical potential, which only enter in the thermal distribution functions appearing in

the relations of the retarded and advanced propagators to the other Green’s functions, for

example, in Eq. (2.120).

2.A.4 One-Loop Corrections to Massless Fermion Propagators

Resumming the one-loop self-energy into the fermion propagator at finite temperature

changes the pole structure of the propagator dramatically, introducing a new collective

“hole” excitation of the plasma [53, 54]. In fact, this structure can be shown to hold even

beyond perturbation theory [55]. Extending the results of Ref. [55] to include dependence

on a chemical potential, the propagator takes the form given in Eqs. (2.31–2.33). Recall

that in those equations Ep,h = ωp,h − iΓp,h are the complex poles of the spectral function,

and Zp,h are the corresponding residues. At leading order in the “hard thermal loop” ap-

proximation (see Ref. [51]), calculating the poles only to order E ∼ gT , one finds Γ = 0,

and Zp,h(k, µ) and ωp,h(k, µ), where k = |k|, depend only quadratically on µ/T , which we

thus neglect in our analysis in the present work, where we keep only effects linear in µ/T .

In this limit, and including only a single gluon loop in the quark self-energy diagram, the

poles of the spectral function are given by the solutions to the equation:

0 = k0 − k − αsCFπT
2

4k

[(
1− k0

k

)
log

∣∣∣∣k0 + k

k0 − k
∣∣∣∣+ 2

]
, (2.125)
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where CF = 4/3 is the Casimir of the fundamental representation of SU(3). The solutions

to this equation give the poles k0 = Ep(k),−Eh(k). The residues satisfy:

Zp,h(k) =
E2
p,h − k2

m2
f

, (2.126)

where

m2
f =

αsCFπT
2

2
. (2.127)

Calculation of the imaginary parts Γp,h of the poles, since they begin at order g2T , requires

a resummation of hard thermal loops in self-energy diagrams [56, 57, 58]. We are also

interested in their dependence on the chemical potential µ. We leave the calculation of

these effects to a future study.

2.B Appendix: Expanded Source Terms for Quantum Trans-

port

2.B.1 Bosons

The CP -conserving source term for right-handed stops in Eq. (2.46) can be expanded by

explicitly taking the imaginary part of the integrand:

SCP
t̃R

(x) = − 1
T

NCy
2
t

2π2
|Atvu(x)− µ∗vd(x)|2

∫ ∞

0

k2dk

ωRωL
(2.128)

×
{
µR

[
1
∆
(
sinφ Imh+

R + cosφ Re h+
R

)− 1
δ

(
cos θReh+

R − sin θ Imh+
R

)]
+µL

[
1
∆
(
sinφ Imh+

L − cosφReh+
L

)
+

1
δ

(
cos θReh+

L − sin θ Imh+
L

)]}
,
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where

ωL,R =
√
|k|2 +M2

t̃L,R
(2.129)

∆ =
√

(ΓL + ΓR)2 + (ωL − ωR)2

δ =
√

(ΓL + ΓR)2 + (ωL + ωR)2

tan θ =
ωL + ωR
ΓL + ΓR

tanφ =
ωL − ωR
ΓL + ΓR

h±L,R =
exp[(ωL,R ± iΓL,R)/T ]

{exp[(ωL,R ± iΓL,R)/T ]− 1}2

and where ΓL,R are the thermal widths for the t̃L,R. The rates Γ±
t̃

defined in Eq. (2.49) can

then be expressed:

Γ±
t̃

= − 1
T

y2
t

4π2
|Atvu(x)− µ∗vd(x)|2 (2.130)

×
∫ ∞

0

k2dk

ωRωL

{
1
∆
[
sinφ Im(h+

L ± h+
R)− cosφRe(h+

L ∓ h+
R)
]

+
1
δ

[
cos θRe(h+

L ∓ h+
R)− sin θ Im(h+

L ∓ h+
R)
]}

.

Meanwhile, the CP -violating source given in Eq. (2.52) can be expanded:

S
CP�
t̃R

(x) = NCy
2
t Im(µAt)v(x)2β̇(x)

∫ ∞

0

k2dk

2π2

1
ωLωR

(2.131)

×
{

1
δ2

[
Re

(
1 + n+

R + n+
L

)
sin 2θ + Im

(
n+
R + n+

L

)
cos 2θ

]
+

1
∆2

[
Re

(
n+
R − n+

L

)
sin 2φ− Im

(
n+
R + n+

L

)
cos 2φ

]}
,

where n±L,R = nB(ωt̃L,R
±ΓL,R). Our result agrees with that of Ref. [20] except for a different

relative sign in front of the cos 2φ term and the overall factor of NC .
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2.B.2 Massive Fermions

The CP -conserving rates for Higgsino-gaugino interactions given in Eq. (2.66) can be ex-

panded:

Γ±
H̃± = g2

2v(x)
2 1
T

∫ ∞

0

k2dk

2π2

(
1

ω
H̃
ω
W̃

)
(2.132)

×
(

1
∆

{[
ωH̃ωW̃ + ΓH̃Γ

W̃
− k2 +M2 |µ| cosφµ sin 2β(x)

]
×
[
cosφRe(h+

W̃
∓ h+

H̃
)− sinφ Im(h+

W̃
± h+

H̃
)
]

+
[
Γ
H̃
ω
W̃
− Γ

W̃
ω
H̃

] [
sinφRe(h+

W̃
∓ h+

H̃
) + cosφ Im(h+

W̃
± h+

H̃
)
]}

+
1
δ

{[
ωH̃ωW̃ − ΓH̃Γ

W̃
+ k2 −M2 |µ| cosφµ sin 2β(x)

]
×
[
cos θRe(h+

W̃
∓ h+

H̃
)− sin θ Im(h+

W̃
∓ h+

H̃
)
]

− [
Γ
H̃
ω
W̃

+ Γ
W̃
ω
H̃

] [
cos θ Im(h+

W̃
∓ h+

H̃
) + sin θRe(h+

W̃
∓ h+

H̃
)
]})

,

where

ω
H̃,W̃

=
√
|k|2 +M2

H̃,W̃
(2.133)

∆ =
√

(Γ
W̃

+ Γ
H̃

)2 + (ω
W̃
− ω

H̃
)2

δ =
√

(Γ
W̃

+ Γ
H̃

)2 + (ω
W̃

+ ω
H̃

)2

tan θ =
ω
W̃

+ ω
H̃

Γ
W̃

+ Γ
H̃

tanφ =
ω
W̃
− ωH̃

Γ
W̃

+ ΓH̃

h±
W̃ ,H̃

=
exp[(ω

W̃ ,H̃
± iΓ

W̃ ,H̃
)/T ]

{exp[(ω
W̃ ,H̃

± iΓ
W̃ ,H̃

)/T ] + 1}2 .

The CP -violating Higgsino source in Eq. (2.70) can be expressed:

S
CP�

H̃±(x) = 2g2
2M2 Im(µ)v(x)2β̇

∫ ∞

0

k2dk

2π2

(
1

ωH̃ωW̃

)
×
{

1
∆2

[
sin 2φ Re

(
N+

W̃
−N+

H̃

)
+ cos 2φ Im

(
N+

W̃
+N+

H̃

)]
(2.134)

+
1
δ2

[
sin 2θ Re

(
1−N+

W̃
−N+

H̃

)
− cos 2θ Im

(
N+

W̃
+N+

H̃

)]}
,
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where N±
H̃,W̃

= nB(ω
H̃,W̃

± iΓ
H̃,W̃

). Our result agrees with that of Ref. [20] except for the

sign of the cos 2φ term.

2.B.3 Chiral Fermions

For chiral fermions, the CP -conserving chirality-changing rates in Eq. (2.72) can be ex-

panded:

Γ±
tR

=
1
T

NCytv
2
u

π2

∫ ∞

0
k2dk (2.135)

×
{
ZRp Z

L
p

δp

[
sin θp

{
Re(λLp h

+
pL ∓ λRp h+

pR)− Im(h+
pL ∓ h+

pR)
}

+ cos θpRe(h+
pL ∓ h+

pR)

+
T

δp
cos 2θp(λLp ∓ λRp )Re(1−N+

pL −N+
pR)

]
−Z

L
p Z

R
h

∆hp

[
sinφhp

{
Re(λLp h

+
pL ± λRh h+

hR)− Im(h+
pL ± h+

hR)
}− cosφhp Re(h+

pL ∓ h+
hR)

+
T

∆hp
cos 2φhp(λLp ± λRh )Re(N+

pL −N+
hR)

]
+(p↔ h)

}
,

where

δp =
√

(ωRp + ωLp )2 + (ΓRp + ΓLp )2

∆hp =
√

(ωLp − ωRh )2 + (ΓRh + ΓLp )2

h±pL = hF (ωLp ± iΓLp ), etc.

N±
pL = nF (ωLp ± iΓLp ), etc.

tan θp =
ωLp + ωRp
ΓLp + ΓRp

tan φhp =
ωRh − ωLp
ΓLp + ΓRh

,

(2.136)

and where the

λL,Rp,h =
∂ΓL,Rp,h
∂µtL,R

, (2.137)

parameterize the linear shifts in the thermal widths due to non-vanishing chemical potential.

As noted at the end of Appendix 2.A, in a fully resummed calculation of the fermion self-

energy, such shifts which are linear in µi/T may arise, and thus have to be included in
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our calculations, which we defer to future work. Also note that we have approximated the

residues ZL,Rp,h to be purely real, which is true at the order we are working.

2.C Appendix: Residues of Thermal Distribution Functions

The expressions for the CP -violating and conserving sources presented in Sec. 2.3 omit the

terms arising from the residues of the poles of the thermal distribution functions appearing

in the thermal Green’s functions.

For example, the CP -violating source for squarks, Eq. (2.52), arises from the second

term in Eq. (2.42), which at an intermediate stage in the derivation takes the form:

S
CP�
t̃R

(X) = −2iy2
t Im(µAt)v2(X)β̇(X)

∫ 0

−∞
dt t

∫
d3k

(2π)3

∫ ∞

−∞

dk0

2π

∫ ∞

−∞

dq0

2π
ei(k

0−q0)t

× [nB(k0)− nB(q0)]ρR(k0,k)ρL(q0,q).
(2.138)

The k0, q0 integrals can be done by contour integration. The exponential factor ei(k
0−q0)t

determines that the k0 contour should be closed in the lower half-place, while the q0 contour

should be closed above. The terms in Eq. (2.52) come from picking up the residues of the

poles in the spectral functions ρR(k0,k) and ρL(q0,q). However, nB(k0) and nB(q0) also

contain poles. The function nB(x),

nB(x) =
1

ex/T − 1
, (2.139)

has poles at the points xn = 2πinT , where n is any integer. These are illustrated in Fig. 2.12.

Near one of these points, the Bose-Einstein function behaves as:

nB(x) =
T

x− xn + · · · , (2.140)

where the ellipses denote non-singular terms in the series expansion of nB(x). The residues

of these poles generate new contributions to SCP�
t̃R

. First, note that the residues at k0, q0 = 0

contribute nothing, as ρR(0,k) = ρL(0,q) = 0, as seen by inspection of Eq. (2.28). The

remaining residues give, after completing the time and dΩk integrals in Eq. (2.138), the
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� q0

�

−EL

−E∗L

E∗L

EL

xn

� �

�

Figure 2.12: The q0 integral in Eq. (2.138) is evaluated along the contour closed in the
upper half-plane. The integrand contains poles at the locations ±E(∗)

L from the spectral
function and at xn = 2πinT from the Bose-Einstein function nB(q0). The other integrands
appearing in the various source terms all have this basic analytic structure.

extra contributions:

∆SCP�
t̃R

(X) = − y
2
t

π2
Im(µAt)v2(X)β̇(X)T

∫ ∞

0
dk k2

×
∞∑
n=1

{
1

2ωL

[
1

(E∗L + 2πinT )2
− 1

(EL − 2πinT )2

]
ρR(−2πinT, k)

+
1

2ωR

[
1

(ER − 2πinT )2
− 1

(E∗R + 2πinT )2

]
ρL(2πinT, k)

}
.

(2.141)

In the region of resonant enhancement of the original terms in S
CP�
t̃R

, where Mt̃L
≈ Mt̃R

,

these new terms are numerically about 103 times smaller (primarily because of the large

factors of T in the denominators), while they become comparable only far away from the

resonant region. Since these regions are phenomenologically unimporant in our analysis,

we can safely ignore ∆SCP�
t̃R

for our purposes, although they should be included in future

calculations for complete consistency.

Corrections to the CP -violating Higgsino source SCP�
H̃± in Eq. (2.70) come similarly from

poles in the Fermi-Dirac function nF (x) at the points κn = (2n − 1)iπT for integers n:

nF (x) =
1

ex/T + 1
= − T

x− κn + · · · (2.142)
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The extra contribution to the source generated by the residues of these poles:

∆SCP�
H̃±(X) =

2g2
2

π2
Im(µ)v(X)2β̇(X)M2T

∫ ∞

0
dk k2

×
∞∑
n=1

{
1

2ω
W̃

[
1

(E
W̃
− κn)2 −

1
(E∗
W̃

+ κn)2

]
ρ
H̃±(κn, k)

+
1

2ωH̃

[
1

(E∗
W̃

+ κn)2
− 1

(E
W̃
− κn)2

]
ρ
W̃

(−κn, k)
}
.

(2.143)

Again, the size of ∆SCP�
H̃± is numerically insignificant compared to SCP�

H̃± given in Eq. (2.70),

except far away from the region |µ| = M2, thus leaving our phenomenological studies

substantially unaffected.

The CP -conserving sources SCP are also modified. For instance, to SCP
t̃R

in Eq. (2.46)

must be added the terms:

∆SCP
t̃R

(X) = − y
2
t

π2
|Atvu(X)− µ∗vd(X)|2 T

∫ ∞

0
dk k2

×
(
µR

1
2ωL

{
1
2
ρ′R(0, k)

(
1
EL +

1
E∗L

)

+
∞∑
n=1

[
ρ′R(−2πinT, k)

(
1

EL − 2πinT
+

1
E∗L + 2πinT

)

−ρR(−2πinT, k)
(

1
(EL − 2πinT )2

− 1
(E∗L + 2πinT )2

)]}

−µL 1
2ωR

{
1
2
ρ′L(0, k)

(
1
ER +

1
E∗R

)

+
∞∑
n=1

[
ρ′L(2πinT, k)

(
1

ER − 2πinT
+

1
E∗R + 2πinT

)

+ρL(2πinT, k)
(

1
(ER − 2πinT )2

− 1
(E∗R + 2πinT )2

)]})
,

(2.144)

where

ρ′R,L(k0, k) =
∂

∂k0
ρ(k0, k)

= − i

2ωk

[
1

(k0 − ER,L)2
− 1

(k0 + E∗R,L)2
− 1

(k0 − E∗R,L)2
+

1
(k0 + ER,L)2

]
.

(2.145)
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These corrections are also numerically insignificant compared to Eq. (2.46), except far away

from the region Mt̃L
≈Mt̃R

. Similar expressions should hold for the CP -conserving sources

for quarks and Higgsinos, which we also expect we can safely ignore, though we do not

include their explicit expressions here.

2.D Appendix: Towards the Yukawa Source

In this Appendix we take initial steps towards a computation of the source terms arising

from the Yukawa interactions illustrated in Fig. 2.3. These describe the interactions, for

instance, of squarks with real Higgs bosons:

Lyint = ytt̃L(AtH0
u − µ∗H0∗

d )t̃∗R + h.c. (2.146)

These interactions contribute to the squark source given by Eq. (2.19):

St̃R(X) =
∫
d3z

∫ X0

−∞
dz0

[
G<R(X, z)Σ>

R(z,X) −G>R(X, z)Σ<
R(z,X)

+Σ>
R(X, z)G<R(z,X) − Σ<

R(X, z)G>R(z,X)
]
,

(2.147)

by inducing the self-energies:

Σ>
R(x, y) = −y2

tG
>
L (x, y)

[|At|2G>H0
u
(x, y) + |µ|2G>

H0∗
d

(x, y)
]

(2.148a)

Σ<
R(x, y) = −y2

tG
<
L (x, y)

[|At|2G<H0
u
(x, y) + |µ|2G<

H0∗
d

(x, y)
]
. (2.148b)

Note that these self-energies contain no CP -violating phases, unlike Eqs. (2.39,2.40), which

contained cross-terms between the vu and vd vevs. Thus, these Yukawa interactions involv-

ing real Higgs particles contribute only to the CP -conserving part of the squark source.

The Hu and Hd contributions to the self-energy have essentially the same structure, so for

clarity, we include only the former in the following calculations. The Hd contributions can

be restored straightforwardly.

Every Green’s function appearing in Eqs. (2.147, 2.148) contains dependence on the

corresponding chemical potential µi. Expanding each one to first order in µi/T ,

Gi(X, z) = G0
i (X, z) + µiδGi(X, z). (2.149)
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Let us Wigner transform each of the Green’s functions to momentum space:

Gi(X, z) =
∫

d4p

(2π)4
e−ip·(X−z)Gi(p;µi(X)), (2.150)

where we have approximated the dependence of the chemical potentials µi(X+z) on the col-

lective coordinate X+z by simply µ(X), which assumes the variation in µi is slow compared

to the typical scale of individual interactions between particles. With this assumption, after

plugging Eqs. (2.148) into Eq. (2.147), using the Wigner transforms (2.150), and expanding

to first-order in the chemical potential µi/T as in Eq. (2.149), the Yukawa-type source for

squarks can be rearranged into the following useful form:

SYt̃R(X) =
∫ 0

−∞
dt

∫
d4p

(2π)4

∫
dq0

2π
[
ei(p

0−q0)t + e−i(p
0−q0)t

]
hB(p0)

×
{
− µR

T
ρR(p0,p)

[
Σ>
R(q0,p)− Σ<

R(q0,p)
]

+
µL
T
ρL(p0,p)

[
Σ>
L(q0,p)− Σ<

L (q0,p)
]

+
µH
T
ρH(p0,p)

[
Σ>
H(q0,p)− Σ<

H(q0,p)
]}
,

(2.151)

where we have used

G>i (p) = [1 + nB(p0 − µi)]ρi(p) (2.152a)

G<i (p) = nB(p0 − µi)ρi(p), (2.152b)

so that

δG>i (p) = δG<i (p) = −µi
T
hB(p0)ρi(p). (2.153)

The momentum-space self-energies are evaluated at zero chemical potentials and are given

by:

Σ>
R(q) = −y2

t |At|2
∫

d4k

(2π)4
G>L (k)G>H(q − k) (2.154a)

Σ>
L (q) = −y2

t |At|2
∫

d4k

(2π)4
G>R(k)G<H(k − q) (2.154b)

Σ>
H(q) = −y2

t |At|2
∫

d4k

(2π)4
G>R(k)G<L (k − q), (2.154c)



77

where, again, all Green’s functions here are evaluated with zero chemical potentials. The

self-energies Σ<
i are obtained by flipping all ≷ signs.

The evaluation of Eq. (2.151) is considerably complicated by the presence of finite widths

Γi in the Green’s functions appearing inside the integrand. Näıve contour integration as

for the ΓM -type sources derived earlier produces a result which is ultraviolet-divergent.

Investigations into the proper regulation of these terms or a correct procedure for integra-

tion (which is even further complicated by the poles in the thermal distribution functions

as described in the previous Appendix) is still underway at the time of this writing. The

quantitative analysis of SY
t̃R

and the comparison of its size to the ΓM -type sources derived

earlier is essential to check the consistency of the approximations used in solving the trans-

port equations that give the left-handed weak doublet fermion density nL and, thereby, the

baryon density, ρB. If the coefficient ΓY appearing in the transport equations is not con-

siderably larger than Γ−
M , then the assumption that ΓY � Γ−

M must be discarded, changing

the solution of the transport equations entirely. This scenario is particularly likely to oc-

cur in the regions of MSSM parameter space where Γ−
M is enhanced. The evaluation of

the Yukawa-type sources and their impact on the phenomenological analysis presented in

Sec. 2.5 is one of the most urgent tasks handed to us by the basic foundational analysis

presented in this chapter.
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Chapter 3

Effective Theories of Strong
Interactions

Theoria bezeichnet die rein empfangende, von aller �praktischen� Bezweckung des
tätigen Lebens durchaus unabhängige Zuwendung zur Wirklichkeit. Man mag diese
Zuwendung �uninteressiert� nennen—wenn hiermit nichts anderes ausgeschlossen sein
soll als jegliches auf Dienlichkeiten und Belange gerichtete Absehen. Im übrigen ist
hier auf höchst entschiedene Weise Interesse, Beteiligung, Aufmerksamheit,
Zielsetzung. Theoria und contemplatio zielen mit ihrer vollen Energie dahin—freilich:
ausschließlich dahin—, daß die ins Auge gefaßte Wirklichkeit offenbar und deutlich
werde, daß sie sich zeige und enthülle; sie zielen auf Wahrheit und nichts sonst.

Josef Pieper, Glück und Kontemplation

Theoria has to do with the purely receptive approach to reality, one altogether
independent of all practical aims in active life. We may call this approach
“disinterested,” in that it is altogether divorced from utilitarian ends. In all other
respects, however, theoria emphatically involves interest, participation, attention,
purposiveness. Theoria and contemplatio devote their full energy to revealing,
clarifying, and making manifest the reality which has been sighted; they aim at truth
and nothing else.

Josef Pieper, Happiness & Contemplation

In this chapter we review the basic features of several effective theories for the strong

interactions—heavy quark effective theory, soft-collinear effective theory, and non-relativistic

QCD—following developments of these theories in recent years. This forms the background

for the discussion of the applications of these effective theories pursued in the subsequent

chapters.

3.1 Quantum Chromodynamics

It is a lovely language, but it takes a very long time to say anything in it, because we
do not say anything in it, unless it is worth taking a long time to say, and to listen to.

Treebeard, in The Two Towers, by J.R.R. Tolkien
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Quantum Chromodynamics (QCD) is the theory of the strong interactions between quarks

and gluons, which bind together to make protons, neutrons, and other hadrons. The theory

accounts successfully for many hadronic phenomena, especially those occurring at relatively

large energies, for example, in the bombardment of protons by highly energetic electrons

in deep inelastic scattering, revealing the pointlike substructure of the proton. QCD is

governed by the Lagrangian density:

LQCD = ψ̄q(iD/ −mq)ψq − 1
4
GAµνG

Aµν , (3.1)

where we sum over quark flavors q and SU(3) generators A. The covariant derivative is

Dµ = ∂µ − igAAµTA.

QCD allows for reliable quantitative predictions at large energies due to the phenomenon

of asymptotic freedom [79, 80]. The observed strength of the interaction between quarks and

gluons is characterized by a coupling constant gs, which is a function of energy, becoming

small at large energies and large at small energies. Physical quantities can be calculated as

a perturbation series in powers of gs, or, rather, αs = g2
s/4π, which is a reliable procedure

as long as αs � 1.

At small energies, however, such as the scale at which quarks and gluons bind together

into light hadrons (protons, pions, etc.), the coupling constant is large, αs � 1, and per-

turbation theory breaks down completely. Even in processes involving strongly-interacting

particles at large energies, because the particles used or observed directly in experiments

are hadrons, not free quarks and gluons, these low-energy binding effects contaminate the

analysis, preventing completely precise calculation of the observable quantities. However, it

is often possible to separate the perturbatively-calculable large energy phenomena from the

low-energy hadronization effects in a way that preserves much predictive power. Imagine

calculating the total rate for Z bosons to decay to hadrons, Γ(Z → hadrons). In perturba-

tion theory, we begin with the Z coupling to quarks:

LZq̄q = ψ̄qγµ(gV + gAγ5)ψqZµ. (3.2)

We can calculate the decay rate for Z to qq̄, Γ(Z → qq̄). This process produces a q̄q pair

moving back-to-back with energyMZ/2. This is much larger than the scale of hadronization,
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ΛQCD. The quark and antiquark move far apart before they hadronize. We do not know

how to calculate the dynamics of this hadronization, but since we know it must happen

with probability 1, we can approximate the total hadronic decay rate of the Z by:

Γ(Z → hadrons) = Γ(Z → q̄q), (3.3)

to leading order in αs(MZ). We can compute to next order in αs(MZ) by including the

rate Γ(Z → q̄qg). And so on. Because we have separated the parton-level physics from the

longer-range, lower-energy physics of hadronization, we are able to make a reliable quanti-

tative prediction that is a very good approximation to reality. We say we have “factorized”

the total hadronic decay rate of the Z—into Γ(Z → partons) and the probability for partons

to hadronize, which is 1.

For more complicated observables, we seek to perform similar factorizations, although

the low-energy, nonperturbative quantities which appear will not, in general, be so simple

as “1”. These may be objects such as parton distribution functions, meson light-cone wave

functions, etc. Although such quantities are not calculable in perturbation theory, they may

appear in more than one physical observable, thus providing some remnant of predictive

power. They may also be calculable numerically in lattice QCD.

Proving factorization and identifying the relevant nonperturbative quantities is a major

thrust in the direction of modern research in QCD. There are two main camps of research.

There are those who attack the problem directly in QCD, the so-called perturbative QCD

or QCD factorization approach [81]. Then there are those who quail at the enormity of

full QCD and attempt to work instead with a simpler version of the theory. This is the

approach of effective field theory [82, 83], which we adopt in this thesis.

3.2 Example: Heavy Quark Effective Theory

In an effective field theory one identifies a small parameter determined by the relevant

physics in a given problem in which to expand the full theory to a given order of approx-

imation. Equivalently one integrates out the degrees of freedom living at an energy scale

much larger than those relevant in the physical problem at hand.1

1The presentation in this and the following section are heavily influenced by the lectures presented in
Ref. [84].
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As an illustrative example and a prelude to the effective field theories we consider later

in this thesis, we overview the heavy quark effective theory (HQET) [85], an effective field

theory describing hadrons containing one heavy quark, namely, charm (c) or bottom (b).2

In such a hadron, the heavy c or b quark moves with a relatively slow velocity compared to

the other light quark(s) accompanying it. The typical momenta of the constituent partons is

of order p ∼ ΛQCD. Thus, the velocity of the heavy quark Q is of the order v ∼ ΛQCD/mQ.

We can expand the Lagrangian of full QCD in Eq. (3.1) for heavy quarks in powers of this

small velocity v.

Physically, we imagine that the interaction of a heavy quark with low-energy gluons

causes only small fluctuations of its momentum, p = mQv + k, with k ∼ ΛQCD. We want

the effective theory to describe these small fluctuations. First, we remove from the full

QCD heavy quark field Q(x) the dependence on the large momentum p = mQv, defining a

new field Qv:

Q(x) =
∑
v

e−imQv·xQv(x), (3.4)

summing over labels v. In terms of the new fields, the quark part of the QCD Lagrangian

becomes:

LQ = Q̄v(x)(iD/ +mQv/−mQ)Qv(x), (3.5)

summing implicitly over v.3 Now write Qv(x) as the sum Qv(x) = hv(x) +Hv(x), where:

hv(x) =
1 + v/

2
Qv(x), Hv(x) =

1− v/
2

Qv(x). (3.6)

Then, the heavy quark Lagrangian (3.5) becomes:

LQ = h̄v(x)iD/hv(x) + H̄v(x)(iD/ − 2mQ)Hv(x)

+ H̄v(x)iD/hv(x) + h̄v(x)iD/Hv(x).
(3.7)

Derivatives acting on the fields hv,Hv produce momenta of order ΛQCD/mQ, so the kinetic

term for Hv(x) is suppressed relative the leading term quadratic in Hv, −2mQH̄v(x)Hv(x).

Hv therefore is not a dynamical field and can be integrated out by using the equation of
2We limit our attention, not surprisingly, to heavy hadrons containing two (Qq̄) or three (Qqq), not five

[86, 87], quarks and antiquarks.
3Strictly speaking, we should have summed over separate labels v, v′ for the two heavy quark fields, but

interactions with soft gluons cannot change these label velocities; hence we sum over only a single velocity.
This simplification will not occur in SCET.
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motion (obtained by varying with respect to H̄v):

(iD/ − 2mQ)Hv = −iD/hv . (3.8)

Substituting into Eq. (3.7), we obtain

LQ = h̄v(x)iD/hv(x)− h̄v(x)iD/ 1
iD/ − 2mQ

iD/hv(x). (3.9)

Expanding in powers of 1/mQ:

LQ = h̄v(x)
(
iv ·D − 1

2mQ
D/D/ + · · ·

)
hv(x), (3.10)

having used Pvγ
µPv = vµ, where Pv = (1 + v/)/2. The dots denote higher-order terms in

the 1/mQ expansion.

Keeping terms only to a fixed order in 1/mQ in Eq. (3.10) defines the Lagrangian of

heavy quark effective theory. The leading order term is very simple:

LHQET = h̄v(x)(iv ·D)hv(x), (3.11)

giving the heavy quark propagator

i
1 + v/

2
1

v ·k + iε
(3.12)

and the heavy quark-gluon interaction vertex

−igTAvµ. (3.13)

This leading-order Lagrangian exhibits more symmetries than evident in the full QCD La-

grangian. First, it is independent of the heavy quark mass, giving rise to a flavor symmetry

between b and c quarks. Second, containing no Dirac matrices, it also exhibits spin sym-

metry. This heavy quark spin-flavor symmetry is thus an approximate symmetry of full

QCD made evident only by the effective theory expansion in 1/mQ. It allows for powerful

predictions for processes involving different hadrons containing heavy quarks which are re-

lated by spin-flavor symmetry. Violations of this symmetry at higher order in 1/mQ can be
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systematically calculated by keeping more terms in the HQET Lagrangian (3.10)4.

This relatively simple example of HQET illustrates two key features we will seek in

formulating any effective field theory:

• Extra, approximate symmetries not obvious in the full theory but easily identified at

leading order(s) in the the effective theory.

• The simplification of interactions between heavy (hard) particles and soft ones, as in

Eq. (3.13).

The first property grants us more predictive power in relating apparently different physical

processes to one another, while more sophisticated exploitation of the latter will simplify

proofs of factorization of perturbative and nonperturbative contributions to physical ob-

servables. We now embark on this task in the effective theory truly of interest in this

thesis.

3.3 Soft-Collinear Effective Theory

Consider a process in which there are hadrons moving with very large energy compared to

their invariant mass, for instance, in the decay of Z bosons to light hadrons as considered

in Sec. 3.1, or in B decays such as B → Dπ or B → ππ. We can formulate an effective

field theory for quarks and gluons moving on such collinear trajectories and the soft partons

with which they interact—the soft-collinear effective theory [89, 90].

3.3.1 Effective Theory for Inclusive Decays—SCETI

We first identify the relevant energy scales and small parameters to use in formulating the

effective theory. Recall that in HQET, we took this to be the heavy quark mass mQ and

velocity v ∼ ΛQCD/mQ. Here, we begin by defining two light-cone vectors, n and n̄, which

satisfy

n2 = n̄2 = 0, n·n̄ = 2, (3.14)
4Or estimated by being more clever [88].
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for example, n = (1, 0, 0, 1) and n̄ = (1, 0, 0,−1). Vectors can be decomposed along these

two light-cone directions and the orthogonal transverse directions:

V µ =
n̄·V
2
nµ +

n·V
2
n̄µ + V µ

⊥ . (3.15)

We thus define the light-cone components V + = n·V , V − = n̄·V . For a collinear particle,

one light-cone component of its momentum will be large, the other small. Its momentum

will scale in powers of some small parameter λ as:

(p+, p−, p⊥) ∼ Q(λ2, 1, λ), (3.16)

where Q is the large scale governing the physical process being studied, on which the

definition of λ also depends. The collinear particles also interact with soft, or ultrasoft,

particles, with momenta scaling as:

soft: ps ∼ Qλ (3.17a)

ultrasoft: pus ∼ Qλ2. (3.17b)

The effective theory for collinear and (ultra)soft particles with these scalings is called SCETI.

Another choice of scalings gives the theory SCETII, to be introduced in the next section.

We form the SCETI Lagrangian essentially by expanding the QCD Lagrangian in powers

of λ. We start with the Lagrangian for collinear quarks, which we take to be massless. In

QCD,

Lq = q̄iD/ q. (3.18)

We seek to describe fluctuations in the momenta of the collinear particles about its collinear

trajectory. So, for a collinear quark of momentum p, we write:

p = p̃+ k, (3.19)

where p̃ contains the large (label) components of the momentum,

p̃µ = p̃−
nµ

2
+ p̃⊥, (3.20)
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and the residual momentum k ∼ ΛQCD represents the fluctuations about the label momen-

tum.

As in HQET, we extract the large momentum fluctuations from the full QCD field,

defining a new field qn,p:

q(x) =
∑
p̃

e−ip̃·xqn,p(x). (3.21)

The QCD Lagrangian (3.18) then becomes:

Lq =
∑
p̃,p̃′

e−i(p̃−p̃
′)·xq̄n,p′(x)(p̃/ + iD/ )qn,p(x). (3.22)

Again as in HQET, we project out the large and small components of Dirac field, writing

qn,p = ξn,p + Ξn,p, where:

ξn,p =
n/n̄/

4
qn,p, Ξn,p =

n̄/n/

4
qn,p, (3.23)

in terms of which the Lagrangian (3.22) becomes:

Lq =
∑
p̃,p̃′

e−i(p̃−p̃
′)·x

[
ξ̄n,p′(x)

n̄/

2
in·Dξn,p(x) + Ξn,p′(x)

n/

2
(p̃− + in̄·D)Ξn,p(x)

+ ξ̄n,p′(x)(p̃/⊥ + iD/⊥)Ξn,p(x) + Ξn,p′(x)(p̃/⊥ + iD/⊥)ξn,p(x)
]
.

(3.24)

Again, as in HQET, we have a derivative, n̄ · ∂, acting on Ξn,p, which is suppressed relative

to the term containing the label momentum p̃−. So the field Ξn,p is not dynamical, and we

eliminate it using its equation of motion:

Ξn,p(x) =
1

p̃− + in̄·D (p̃/⊥ + iD/⊥)
n̄/

2
ξn,p(x) (3.25)

Inserting this into (3.24) leaves us with the Lagrangian:

Lξ =
∑
p̃,p̃′

e−i(p̃−p̃
′)·xξ̄n,p′

[
in·D + (p̃/⊥ + iD/⊥)

1
p̃− + in̄·D (p̃/⊥ + iD/⊥)

]
n̄/

2
ξn,p(x). (3.26)

To sort out the interactions between gluons and collinear quarks, we must first distinguish

between the collinear and (ultra)soft gluon fields. The gluon fields appearing in the covariant
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�

= i
n̄/

2
n̄ · p̃

n · k n̄ · p̃+ p̃2
⊥ + iε

�

= igTAnµ
n̄/

2

�

= igTA

(
nµ +

γ⊥µ p̃/⊥
n̄ · p̃ +

p̃/′⊥γ
⊥
µ

n̄ · p̃′ −
p̃/′⊥p̃/⊥

n̄ · p̃ n̄ · p̃′ n̄µ
)
n̄/

2

p̃+ k

p̃ p̃′

Figure 3.1: Feynman rules involving collinear quarks in SCETI. The collinear particles are
shown with label momenta p̃, p̃′ and residual momentum k.

derivatives in the collinear quark Lagrangian (3.26) can be split up:

A = Ac +As +Aus, (3.27)

where the collinear, soft, and ultrasoft fields are assigned the power countingas:

Ac ∼ Q(λ2, 1, λ), As ∼ Q(λ, λ, λ), Aus ∼ Q(λ2, λ2, λ2), (3.28)

to match the scalings of the corresponding momenta. Note that interactions of soft gluons

with collinear quarks leave the quark with the momentum scaling Q(λ, 1, λ), which does

not exist in the effective theory. So soft gluons should not appear in the Lagrangian (3.26).

Collinear quarks do interact with ultrasoft gluons. The effective theory collinear gluon fields

Acn,q are defined by:

Ac(x) =
∑
q̃

e−iq̃·xAcn,q(x), (3.29)

factoring out the large label momentum q̃.

In the Lagrangian (3.26), the components D⊥ and n̄ · D of the covariant derivative

contain both ultrasoft and collinear gluons. Due to the power counting in Eq. (3.28), the

ultrasoft gluon fields give a subdominant contribution compared to that of the collinear
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gluons. Thus, the correct collinear quark Lagrangian in SCETI at leading order in λ is:

LSCETI
=
∑
p̃,p̃′

e−i(p̃−p̃
′)·xξ̄n,p′

[
in·D + (p̃/⊥ + iD/ c⊥)

1
p̃− + in̄·Dc

(p̃/⊥ + iD/ c⊥)
]
n̄/

2
ξn,p(x), (3.30)

where Dc = ∂ − igAc contains only the collinear gluon field, while n·D still contains both

collinear and ultrasoft fields. Some of the Feynman rules arising from this Lagrangian are

shown in Fig. 3.1.

The Lagrangian (3.30) may be written in a still more compact form by the introduction

of the label operators [91]:

n̄·Pξn,p = n̄·p̃ ξn,p (3.31a)

Pµ⊥ξn,p = p̃µ⊥ξn,p, (3.31b)

and similarly for label operators acting on collinear gluon fields. In the second, messier,

term of the Lagrangian (3.30), the ordinary derivatives which appear hit everything to their

right. Thus, they bring down extra factors of the label momenta of the collinear gluons,

because of the exponential factor in Eq. (3.29). For example,

n̄·∂Ac⊥(x) = n̄·∂
∑
q̃

e−iq̃·xAc⊥n,q(x) =
∑
q̃

e−iq̃·xn̄·q̃Ac⊥n,q(x). (3.32)

We can account for derivatives on the exponential factors and eliminate the explicit label

momenta appearing in the Lagrangian (3.30) by making use of the label operators in (3.31):

LSCETI
= ξ̄(x)

[
in·D + iD/ c⊥

1
in̄·Dc

iD/ c⊥

]
n̄/

2
ξn(x), (3.33)

where now

Dc
µ = Pµ − igAcµ, (3.34)

and

ξn(x) =
∑
p̃

e−ip̃·xξn,p(x). (3.35)

Finally, note that this Lagrangian contains the collinear gluon field n̄·Ac in the denominator

of the second term, giving rise to couplings of collinear quarks to an arbitrary number of
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n̄ ·Ac gluons. These infinitely many couplings can be resummed into the form of Wilson

lines:

Wn(x) = P exp
[
ig

∫ x

−∞
ds n̄·Ac(x)

]
, (3.36)

where P denotes path ordering. Using the property

Wn(x)n̄·PW †
n(x) = n̄·P − ign̄·Ac(x) = n̄·Dc, (3.37)

we can express the SCETI Lagrangian (3.33) as:

LSCETI
= ξ̄n(x)

[
in·D + iD/ c⊥Wn(x)

1
in̄·PW

†
n(x)iD/

c
⊥

]
n̄/

2
ξn(x). (3.38)

It is also possible to argue that invariance under gauge transformations of collinear field

requires this precise form of the Lagrangian, which we do not go through here.

Similar analysis leads also to the effective Lagrangian for collinear gluons [92]:

L(g)
c =

∑
q̃,q̃′

e−i(q̃−q̃
′)·x 1

2g2
Tr

{[
iDµ + gAn,q, iDν + gAνn,q′

]}2
, (3.39)

where

Dµ = n̄·P n
µ

2
+ Pµ⊥ + in·Dn̄

µ

2
. (3.40)

Ghost fields and gauge-dependent terms have been ignored in Eq. (3.39).

3.3.2 Decoupling Ultrasoft Fields

We could take Eq. (3.38) as the final form of our Lagrangian for SCETI. However, one more

manipulation simplifies greatly the separation of hard and soft (nonperturbative) physics

in the effective theory [92]. First, introduce the ultrasoft Wilson lines:

Yn(x) = P exp
[
ig

∫ x

−∞
ds n·Aus(ns)

]
. (3.41)
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Rewrite the fields in (3.38) as:

ξn(x) = Yn(x)ξ(0)n (x) (3.42a)

An(x) = Yn(x)A(0)
n (x)Y †

n (x) (3.42b)

Wn(x) = Yn(x)W (0)
n (x)Y †

n (x). (3.42c)

(The last rule actually follows from the second.) From the property

[(n·∂ − ign·Aus)Yn(x)] = 0, (3.43)

we find that upon making the replacements (3.42) in the SCETI Lagrangian (3.38), the

term containing the ultrasoft gluon disappears! That is,

ξ̄n(x)in·Dn̄/2 ξn(x)→ ξ̄(0)n (x)in · (∂ − igA(0)
n )

n̄/

2
ξ(0)n (x). (3.44)

Thus, in terms of the fields ξ(0)n , A
(0)
n , there are no couplings of collinear particles to ultrasoft

gluons at leading order in SCETI. The same decoupling occurs in the gluon Lagrangian

(3.39). Since nonperturbative physics is governed by interactions with ultrasoft gluons, this

decoupling greatly simplifies the separation of perturbative and nonperturbative contribu-

tions to physical observables in the effective theory.

Ultrasoft gluons have not entirely disappeared from the theory, however. When we

match currents or operators mediating various decays from QCD onto SCETI, we must

include ultrasoft Wilson lines Yn(x) whenever we have a collinear field in the operator,

according to Eqs. (3.42). (Equivalently, we must ensure that all operators are invariant un-

der ultrasoft gauge transformations.) These rules will become apparent in the applications

presented in subsequent chapters.

3.3.3 Effective Theory for Exclusive Decays—SCETII

We now have all the tools in the effective theory required to describe inclusive decays such

as in Z decays to hadrons in Chap. 5. Before proceeding to this application, however, let

us introduce the novel features of a second version of SCET—SCETII [93]— required to

analyze exclusive decays as in Chap. 4 on radiative exclusive Υ decays.
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To see the inadequacy of SCETI in analyzing an exclusive decay producing energetic

light hadrons, such as Υ→ γππ, consider the typical invariant mass of these light hadrons.

For a particular light hadron, such as the pion, the invariant mass squared is of the order

∼ Λ2
QCD. The typical momentum of a collinear particle in SCETI, however, scales as:

(p+, p−, p⊥) ∼ Q(λ2, 1, λ), (3.45)

where λ =
√

ΛQCD/Q. The invariant mass squared of such a particle is:

p2 = p+p− − p2
⊥ ∼ Q2λ2 ∼ QΛQCD, (3.46)

which is too large to represent a light particle with m2 ∼ Λ2
QCD.

The correct effective theory is formed by using instead the parameter η = ΛQCD/Q and

collinear fields which scale as:

(p+, p−, p⊥) ∼ Q(η2, 1, η), (3.47)

giving an invariant mass squared of p2 ∼ Q2η2 = Λ2
QCD, which is now correct for an exclusive

light hadron. These collinear fields interact with soft fields, whose momenta scale as:

ps ∼ Q(η, η, η), (3.48)

with invariant mass squared p2
s ∼ Λ2

QCD. The effective theory for collinear and soft degrees

of freedom with these scalings is called SCETII.

The soft fields of SCETII are in fact the same as the ultrasoft fields in SCETI. The

collinear fields, however, live at a lower energy scale in SCETII than they do in SCETI.

For this reason, the collinear fields in SCETI are often called hard-collinear fields to dis-

tinguish them from the collinear fields of SCETII. The introduction of another degree of

freedom, the soft-collinear messenger mode, was introduced in Refs. [94, 95] so that all

infrared divergences in one-loop graphs in SCETII and QCD would match, which can also

be accomplished by introducing a proper infrared regulator in the effective theory, as in

Ref. [96]. We do not evaluate any loop graphs with these divergences in the subsequent

chapters, and so blissfully ignore these modes or regulators.
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To work in SCETII, one can imagine matching directly from QCD onto SCETII. How-

ever, it is more convenient to match QCD first onto SCETI, and then match SCETI onto

SCETII, since we have already done the hard work of completing the first step. In the sec-

ond step, we take the collinear fields of SCETI, and lower their off-shellness from the scale√
QΛQCD to ΛQCD, putting them in SCETII. Interactions with ultrasoft gluons are already

removed from the SCETI collinear quark and gluon Lagrangians via the field redefinition

(3.42). We simply change ultrasoft Wilson lines Yn(x) in SCETI into soft Wilson lines Sn(x)

in SCETII which look the same as in SCETI but contain the soft gluon fields of SCETII

with the scaling (3.48).

Note that in SCETII, there could not be interactions of collinear quarks with soft gluons

anyway, because the soft gluon knocks the collinear quark off shell, due to the scalings in

(3.47) and (3.48).

We will make use of SCETII in Chap. 4, where the procedures described above will be

illustrated by explicit example.

3.3.4 Reparametrization Invariance

The introduction of the light-cone vectors n, n̄ along which to decompose felds and momenta

in the effective theory breaks the Lorentz invariance of the original theory of QCD. The

Lorentz symmetry manifests itself in the effective theory by means of invariance under

redefinitions of the vectors n, n̄ and of the label momenta assigned to collinear particles.

These features are known as reparametrization invariance (RPI) [97].

We focus here on the theory SCETI for simplicity. The first invariance requirement

arises from the fact that the decomposition of collinear momenta into label and residual

components is not unique. We wrote in Eq. (3.19) for a collinear momentum p,

p = p̃+ k, (3.49)

where p̃ is contains the large O(Q) and O(Qλ) label momenta, and k is the O(Qλ2) residual

momentum. Shifting an amount of momentum of order Qλ2 between the label and residual

momentum should yield an equivalent description of the collinear physics. The main conse-

quence of this invariance, together with gauge invariance, is that operators in the effective
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theory containing derivatives must appear in the combination:

Dµ = Dµ
c +Dµ

us, (3.50)

where Dµ
c = Pµ − igAµn,q, and Dµ

us = ∂µ − igAµus. This condition relates operators at

different orders in λ, since the terms contained in Eq. (3.50) have different scalings in λ. In

this thesis we will focus on the constructions of operators only at leading order in λ, so this

constraint will not be crucial.

More relevant constraints arise from the second type of invariance, that of redefinitions

of the light-cone vectors n, n̄ themselves. These vectors enter the very definition of the

SCET Lagrangian, and the theory must remain invariant for equivalent choices of n, n̄,

which are those that leave invariant the conditions:

n2 = n̄2 = 0, n·n̄ = 2, (3.51)

must yield an equivalent theory. There are three classes of transformations we can make.

In the first two, we fiddle just with the transverse components of one or the other of n, n̄:

Type I:

⎧⎪⎨⎪⎩
nµ → nµ + ∆⊥

µ

n̄µ → n̄µ

Type II:

⎧⎪⎨⎪⎩
nµ → nµ

n̄µ → n̄µ + ε⊥µ
, (3.52)

and in the last class we mutually rescale the vectors:

Type III:

⎧⎪⎨⎪⎩
nµ → (1 + α)nµ

n̄µ → (1− α)n̄µ
, (3.53)

The parameters ∆⊥, ε⊥, α are infinitesimal, but can be assigned a particular scaling in

λ. Starting with type-II transformations, consider the change induced in the light-cone

components of a vector V µ. We start with the decomposition:

V µ = n̄·V n
µ

2
+ n·V n̄

µ

2
+ V µ

⊥ . (3.54)
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Under the transformation, the components become:

n·V → n·V (3.55a)

n̄·V → (n̄+ ε⊥)·V = n̄·V + ε⊥ ·V⊥ (3.55b)

V µ
⊥ = V µ − n̄·V n

µ

2
− n·V n̄

µ

2

→ V µ − (n̄+ ε⊥)·V n
µ

2
− n·V n̄

µ + εµ⊥
2

(3.55c)

= V µ
⊥ − ε⊥ ·V⊥

nµ

2
− n·V ε

µ
⊥
2
.

If V is, say, a collinear momentum or field with scaling (V +, V −, V⊥) ∼ Q(λ2, 1, λ), then

we see from the shifts in n̄·V and V⊥ that we can assign a scaling of 1 to the parameter

ε⊥ without messing up the power counting of p. Similar examination of type-I and type-III

transformation reveals that ∆⊥ cannot have a scaling larger then λ, while α can also be

order 1. Therefore, type-II and type-III RPI can constrain operators at the same order in

λ, while type-I will relate operators at different orders in λ. We will make use of type-II

and type-III RPI to restrict the number of operators which can appear in the description

of Υ decays in Chap. 4.

3.4 Non-Relativistic QCD

We have described effective theories in QCD for hadrons containing a single heavy quark

(HQET) and for light, energetic hadrons (SCET). We make use in this thesis of one more

effective theory, that for mesons containing a heavy quark-antiquark pair, QQ̄. In such a

meson, both heavy partons move with relatively small velocity. Thus, we are led to expand

QCD about its non-relativistic limit—hence, the effective theory of non-relativistic QCD

(NRQCD) [98, 99, 100].

In NRQCD, we separate the fields in the QCD Lagrangian which create quarks and

antiquarks, into the two-component spinor fields ψ and χ, respectively. The small expansion

in NRQCD is the heavy quark velocity v. This parameter now determines two separate

physical scales, not just one: the heavy quark three-momentum is of the order |p| ∼ mQv,

while the kinetic energy is of order E ∼ mQv
2.
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To form the NRQCD Lagrangian for heavy quarks, begin again in QCD:

LQ = Ψ̄Q(iD/ −mQ)ΨQ. (3.56)

The Dirac field ΨQ contains fields creating/annihilating both quarks and antiquarks:

ΨQ =

⎛⎝ψ
χ

⎞⎠ , (3.57)

in terms of which the Lagrangian (3.56) is:

LQ =ψ†(iD0 − 2mQ)ψ + χ†(iD0 + 2mQ)χ

+ ψ†iσ ·Dχ+ χ†iσ ·Dψ,
(3.58)

having used the conventions for Dirac matrices:

γ0 =

⎛⎝1 0

0 −1

⎞⎠ , γi =

⎛⎝ 0 σi

−σi 0

⎞⎠ . (3.59)

We can decouple the ψ and χ fields by the following transformation:

ΨQ → exp
(
− iγ ·D

2mQ

)
ΨQ, (3.60)

which turns (3.56) into:

LQ →
(
ψ† χ†

)⎛⎝−mQ + iD0 + D2

2mQ
0

0 mQ + iD0 − D2

2mQ

⎞⎠⎛⎝ψ
χ

⎞⎠ , (3.61)

up to terms suppressed by higher powers of v. Removing the dependence on large label

momenta p from the full-theory fields:

ψ(x) = e−i(mQt−p·x)ψp(x), χ(x) = ei(mQt+p·x)ψp(x), (3.62)

and keeping the dominant terms in v, we obtain the leading-order Lagrangian for quarks
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and antiquarks in NRQCD:

LNRQCD = ψ†
p(x)

(
iD0 − p2

2mQ

)
ψp(x) + χ†

p(x)
(
iD0 +

p2

2mQ

)
χp(x). (3.63)

The fields ψp, χp describe fluctuations about the label momentum p of order mQv
2:

P = p + k, E = k0, (3.64)

where P is the total heavy quark or antiquark three-momentum, and the residual momentum

k = (k0,k) ∼Mv2.

The construction of operators to describe quarkonium decays in this effective theory is

performed in Chap. 4.
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Chapter 4

Exclusive Radiative Decays of Υ

“For I am Saruman the Wise, Saruman Ring-maker, Saruman of Many Colours!”
I looked then and saw that his robes, which had seemed white, were not so, but

were woven of all colours, and if he moved they shimmered and changed hue so that
the eye was bewildered.

“I liked white better,” I said.

Gandalf, in The Fellowship of the Ring by J.R.R. Tolkien

We now turn to the application of SCET to exclusive decays—the radiative decays of quarko-

nia to an exclusive light hadron in the final state. This chapter is based on work published

in Ref. [42].

4.1 Introduction

In a recent series of papers the differential decay rate for the decay Υ→ γX has been studied

in the “endpoint” region where the decay products have a large total energy of order the

Υ mass (MΥ), and a small total invariant mass squared of order ΛMΥ, where Λ ∼ 1GeV

is the typical hadronic scale [40, 41, 39, 37, 101]. An important tool in this analysis is the

soft-collinear effective theory (SCET) [89, 90, 91, 92], which is a systematic treatment of

the high energy limit of QCD in the framework of effective field theory. Specifically SCET

is used to describe the highly energetic decay products in the endpoint region. The heavy b

and b̄ quarks which form the Υ are described by non-relativistic QCD (NRQCD) [98, 100].

The soft-collinear effective theory is not limited to applications involving inclusive pro-

cesses. In fact SCET has been extensively applied to exclusive decays of B mesons into

light mesons [93, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111]. Here we use similar

techniques to study exclusive radiative decays of the Υ. We make use of some of the results
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derived in the analysis of inclusive radiative decays in the endpoint region, but the analysis

of exclusive decays is complicated by the existence of two different collinear scales. This

necessitates a two-step matching procedure [93]. In the first step one matches onto SCETI

which describes collinear degrees of freedom with typical offshellness of order
√

ΛMΥ, as is

appropriate for inclusive decays in the endpoint region as discussed above. In the second

step SCETI is matched onto SCETII, which is appropriate for exclusive processes since it

describes collinear degrees of freedom with typical offshellness of order Λ.

The analysis of Υ decay is further complicated by the existence of two types of currents:

those where the bb̄ is in a color-singlet configuration and those where it is in a color-octet

configuration. The octet operators are higher-order in the combined NRQCD and SCET

power counting, so one might suppose that they can be dropped. However, the octet

currents have a Wilson coefficient which is order
√
αs(MΥ) while the singlet current has

a Wilson coefficient of order αs(MΥ). The additional suppression of the singlet Wilson

coefficient is enough so that both color-octet and color-singlet operators must be included

as contributions to the inclusive radiative decay rate in the endpoint region [41, 39].

In this work we show that in exclusive decays the octet currents are truly suppressed

relative to the singlet current and can be neglected. We then determine the minimal set of

color-singlet currents which can arise and fix their matching coefficients in SCETI. We run

this current to the intermediate collinear scale µc ∼
√

ΛMΥ and match onto SCETII. Our

expression for the decay rate agrees with that derived in QCD using a twist expansion [112,

113, 114]. Finally we use our results to make a prediction for the ratio of branching fractions

B(Υ→ γf2)/B(J/ψ → γf2), B(J/ψ → γf2)/B(ψ′ → γf2), and analyze the decay Υ→ γππ

in the kinematic regime where the pions are collinear.

4.2 Power Counting

4.2.1 Inclusive Decays

The first step is to match the QCD amplitude for a bb̄ pair in a given color and spin

configuration to decay to a photon and light particles onto combined SCETI and NRQCD

currents. The SCET power-counting is in the parameter λ ∼ √
Λ/M , where M = 2mb,

while the NRQCD power-counting is in v, the relative velocity of the bb̄ pair in the Υ.

Numerically, λ ∼ v ∼ 1/3. The matching is shown graphically in Fig. 4.1. The effective
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+ crossed diagrams+ crossed diagram

Figure 4.1: Matching onto operators in the effective field theory with one and two gluons
in the final state. The currents on the left have a color-octet bb̄ in either a 1S0 or 3PJ
configuration. The matching for a color-singlet bb̄ pair in a 3S1 configuration is shown on
the right.

theory operators can be classified into those with the bb̄ in a color-octet configuration (shown

on the left-hand side of Fig. 4.1) and those with the bb̄ in a color-singlet configuration (shown

on the right-hand side of Fig. 4.1). The leading octet operators can be further subdivided

into a those where the bb̄ is in a 1S0 configuration and those where the bb̄ is in a 3PJ

configuration. The octet 1S0 operators are [41, 39]

Jµ(8, 1S0) =
∑
i

C8,1S0

i (M,µ)Γiαµ χ
†
−pB

α
⊥ψp , (4.1)

where

Bµ
⊥ = − i

gs
W †[Pµ⊥ + gs(Aµn,q)⊥]W. (4.2)

The operator Pµ⊥ projects out the label momenta in the perpendicular direction [92]. The

sum in Eq. (4.1) is over all possible Lorentz structures denoted by Γiαµ, and C8,1S0
i (M,µ) is

the corresponding matching coefficient for each structure. The octet 3PJ operators are

Jµ(8, 3PJ) =
∑
i

C8,3PJ
i (M,µ)Γiαµσδχ

†
−pB

α
⊥Λ · p̂σΛ · σδψp , (4.3)

where Λ is a Lorentz boost matrix. Each of these color-octet operators scales as O(λ) in

SCET. The NRQCD power-counting has the 1S0 octet operators scaling as O(v3); however,

this operator has an overlap with the Υ state beginning at O(v2). (See Appendix 4.A.)

Thus the 1S0 operator contributes at order v5λ to the Υ radiative decay rate. The 3PJ

octet operator has NRQCD scaling O(v4), but overlaps with the Υ at order v. Thus the

total power-counting of the 3PJ contribution is O(v5λ), which is the same as the 1S0 octet

operators. The leading order matching coefficients for both are O(
√
αs(M)).
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The color-singlet operators are

Jµ(1, 3S1) =
∑
i

Γiαβδµχ
†
−pΛ · σδψpTr

{
Bα

⊥C
(1,3S1)
i (M, P̄+)Bβ

⊥
}
, (4.4)

where P̄+ = P̄† + P̄, with P̄ ≡ n̄ · P. These operators scale as O(λ2) in SCET and O(v3)

in NRQCD. The leading matching coefficients are O(αs(M)). Thus the ratio of color-octet

to color-singlet contributions in inclusive radiative Υ decay scales as:

octet
singlet

∼ v2

λ
√
αs(M)

∼ v√
αs(M)

. (4.5)

4.2.2 Exclusive Decays

The situation changes when one considers exclusive decays. The currents we just discussed

are SCETI currents where the typical invariant mass of the collinear degrees of freedom is of

order µc =
√
MΛ. In order to have overlap with the meson state we must match onto SCETII

currents where the typical invariant mass of collinear particles is O(Λ). Furthermore, the

interpolating field which annihilates the meson state in SCETII is defined to consist only of

collinear fields in a color-singlet configuration [93]. Given these considerations it is simple

to match the color-singlet operator in SCETI to an operator of identical form in SCETII.

However, the matching of the octet contributions from SCETI onto SCETII is more involved.

Before we consider the matching of the octet contributions from SCETI onto SCETII

we turn our attention to the scaling of these contributions in SCETI. In order to produce

a final state consisting only of collinear fields in a color-singlet configuration we need an

interaction which changes the ultrasoft (usoft) gluon into a collinear gluon (as shown on the

left-hand side of Fig. 4.2). This term in the SCET Lagrangian is power suppressed by λ so

that the time-ordered product of the octet current with the collinear-collinear-usoft vertex

scales as O(λ2) in the SCETI power counting. In addition, the exchanged gluon introduces

an extra factor of the coupling constant at the matching scale: αs(µc). Including these

factors, the time-ordered product of octet currents with the subleading Lagrangian scales as

O(αs(µc)
√
αs(M)λ2v5), and the ratio of time-ordered products to the singlet contribution

is
octet
singlet

∼ v2αs(µc)√
αs(M)

≈ 0.05 , (4.6)



100

for the bottomonium system. For charmonium the above ratio is about 0.2. This result is

very different from the result for the inclusive decay given in Eq. (4.5). In SCETI the octet

contribution to exclusive radiative Υ decay is not only suppressed in the limit v, λ→ 0, but

numerically suppressed by a factor of ∼ 10 for typical values of the parameters. This is the

same order of suppression we expect from higher order SCET and NRQCD corrections; thus,

we should be able to safely neglect the color-octet contribution in SCETI. However, before

we can neglect the octet contribution in our analysis we must show that the suppression of

the octet piece holds after matching onto SCETII.

We first turn our attention to the simpler calculation: matching the color-singlet oper-

ator. In SCETI we perform the field redefinition [92]:

An → Y A(0)
n Y † , (4.7)

which decouples usoft from collinear degrees of freedom. Under this field redefinition

Bα
⊥ → Y B

(0)α
⊥ Y † , (4.8)

and the Y ’s cancel in the trace of the color singlet operator given in Eq. (4.4). Thus we

match the SCETI operator after the field redefinition onto an operator in SCETII of a form

identical to that in Eq. (4.4):

J (II)
µ (1, 3S1) =

∑
i

Γiαβδµχ
†
−pΛ · σδψpTr

{
Bα

II⊥C
(1,3S1)
i (M, P̄+;µc)B

β
II⊥

}
, (4.9)

where µc =
√
MΛ is the SCETI–SCETII matching scale, and the subscripts indicate SCETII

fields. From now on we drop the subscripts. In SCETII the power-counting parameter is

η ∼ λ2, and the SCETII color-singlet operator in Eq. (4.9) is O(v3η2). The short-distance

coefficient is inherited from SCETI and is O(αs(M)).

The matching of the color-octet current is more complicated. In order to match onto

an SCETII operator with color-singlet collinear degrees of freedom we must consider time-

ordered products where a usoft gluon radiated from the bb̄ pair is turned into a final state

collinear degree of freedom. An example of such a diagram is given in Fig. 4.2. Two

collinear gluons are required for the collinear final state to be color-singlet. One of the

collinear gluons comes from the octet current, and the other can be produced by pulling



101

Figure 4.2: Matching from SCETI to SCETII. This Feynman diagram is an example of
a time-ordered product in SCETI that matches onto an operator in SCETII that has a
nonzero overlap with the final-state collinear meson.

a gluon out of the bb̄g Fock state of the Υ, and kicking it with a collinear gluon from the

current. This requires a collinear-collinear-ultrasoft coupling which first appears at order λ

in the SCETI Lagrangian [115, 116, 117]:

L(1)
cg =

2
g2

Tr
{

[iDµ, iD⊥ν
us ][iDµ, iD⊥

cν ]
}
, (4.10)

where Dµ = Dµ
c + n ·Dusn̄

µ/2. The decay amplitude comes from a time-ordered product

of the color-octet current and L(1)
cg , or a time-ordered product of the color-octet current,

L(1)
cg , and a leading order gluon interaction. Though our result will hold for either type of

time-ordered product we will, for the sake of concreteness, only consider the former:

T8 =
∫
d4xT

{
J(8, ·)(0),L(1)

cg (x)
}
, (4.11)

where the dot stands for 1S0 or 3PJ . In the time-ordered product two gluon fields are

contracted to form the internal propagator in Fig. 4.2, which scales as 1/λ2. We require

two uncontracted A⊥
cν fields (in a color-singlet configuration) so that we can match onto an

SCETII operator in the form Tr[A⊥
cµA

⊥
cν ] which annihilates the final state collinear meson.

In this example the leading contribution is an n̄·An gluon field in one of the Wilson lines in

J(8, ·) contracted with an n·An field in L(1)
cg . After the contraction what remains in L(1)

cg is

2
g2

Tr
{

[gTA, A⊥ν
us ][P̄ , A⊥

cν ]
}
, (4.12)

which scales as (λ2)(1)(λ) = λ3. Note we now have the correct field content for the operator

shown on the right-hand side of Fig. 4.2: there are two outgoing Ac⊥ fields, one from L(1)
cg
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and one from J(8, ·), in a color-singlet configuration, and an incoming soft gluon field also

from L(1)
cg .

Next we decouple collinear and usoft in SCETI through the field redefinition in Eq. (4.7).

This introduces factors of Y and Y † into our expressions. When matching onto SCETII these

become soft Wilson lines S and S†. Since these Wilson lines do not affect the power counting

we ignore them. Now we can match onto a convolution of SCETII operators with SCETI–

SCETII matching coefficients. Since these arise from integrating out the internal collinear

propagators they scale as λ−2 for each propagator. In our example there is one propagator

so the matching coefficient scales as O(λ−2), which is O(η−1) in the SCETII power counting

(remember η ∼ λ2). Since the SCETII operator has two A⊥
cν fields each scaling as η, and a

soft field scaling as η, it scales as η3. Combining the scaling of the SCETII operator with

the scaling of the SCETI–SCETII matching coefficient gives an O(αs(µc)η2) contribution.

If we include the order v5 NRQCD scaling from the heavy sector, and the O(
√
αs(M))

contribution from the QCD–SCETI matching coefficient the color-octet contribution to

exclusive decays scales as O(v5η2
√
αs(M)αs(µc)) in SCETII. Taking the ratio of the color-

octet to the color-singlet contribution to exclusive Υ decay in SCETII we find:

octet
singlet

∼ v2αs(µc)√
αs(M)

, (4.13)

which is the same scaling we found in SCETI. Thus we can safely neglect the color-octet

contributions at this order.

4.3 Complete Basis of Color-Singlet Matching Coefficients

Now that the color-octet contribution has been eliminated we determine a complete basis

of Lorentz structures Γiαβµν that can appear in the color-singlet matching coefficient in

Eq. (4.4). At leading order in αs(M) only one Lorentz structure was found to be non-

zero [41]:

C
(1,3S1)
1 (M,ω)Γ1

αβδµ =
4g2
seeb

3M
g⊥αβgµδ . (4.14)

However, at higher order other Lorentz structures may appear. These coefficients can be

constructed from the set:

{gµν , nµ, n̄µ, vµ} , (4.15)
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where v is the four-velocity of the Υ, under the restriction that Γiαβδµ satisfies the appro-

priate symmetries. For example, the full theory amplitude is parity even, as is the effective

theory operator, meaning that the matching coefficient must also be parity even. As a result

the epsilon tensor is not included in Eq. (4.15).

We treat v as an object independent of n, n̄ [117], and use n2 = n̄2 = 0, n · n̄ = 2, and

v2 = 1. Before we write down all the possible operators which can appear we note some

simple properties that will make our task more manageable. First we note that Γαβδµ must

be symmetric in α and β. To see this consider the object:

∑
ω

C
(1,3S1)
i (M,ω)ΓiαβδµTr (Bα

⊥δω,P̄+
Bβ

⊥) , (4.16)

which is the collinear part of the color-singlet operator where a sum over ω has been in-

troduced. First interchange α and β, and then use the cyclic nature of the trace to switch

the two B⊥ fields. Note, however there is a projection on these fields from the operator

in the Kronecker delta involving P̄+. Since P̄+ = P̄† + P̄ this operator projects out mi-

nus the label on Bα
⊥ and projects out the label on Bβ

⊥ [91]. To preserve this relationship

when the order of the fields is switched we must let δω,P̄+
→ δω,−P̄+

. By letting ω → −ω
we have δ−ω,−P̄+

= δω,P̄+
, and the operator goes into itself. However, the Wilson coeffi-

cient is now C
(1,3S1)
i (M,−ω). To demonstrate that Eq. (4.16) is symmetric under α ↔ β

we must show that C(1,3S1)
i (M,ω) is even in ω. We use charge conjugation for this. The

heavy quark sector of the operator has charge conjugation C = −1 as does the photon.

As noted in Ref. [118] two gluons in a color-singlet configuration must have C even. Since

QCD is charge conjugation conserving the product of operator and coefficient in Eq. (4.16)

must also be C even. This is the case if the matching coefficient C(1,3S1)
i (M,ω)Γiαβδµ is C

even. Following Ref. [119], under charge conjugation the above product of operator and

coefficient goes to itself with ω → −ω in the coefficient function. Thus charge conjuga-

tion implies C(1,3S1)
i (M,−ω) = C

(1,3S1)
i (M,ω), and as a result Eq. (4.16) is symmetric in

α and β. Second, any vδ appearing in Γαβδµ gives zero contribution to the operator, since

v · Λ = 0. Third, nα, n̄α (and by symmetry nβ, n̄β) appearing in the operator also gives

a zero contribution since these indices contract with indices on the B⊥ field. Finally, we

use reparameterization invariance (RPI) of SCET [97, 115]. The terms satisfying these
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requirements are

∑
i

C
(1,3S1)
i (M,ω)Γiαβδµ = c1gαβgδµ + c2gαβ

nδnµ
(n · v)2 + c3gαβ

nδvµ
n · v (4.17)

+ c4

[(
gαµ − vαnµ

n · v
)(

gβδ − vβnδ
n · v

)
+
(
gαδ − vαnδ

n · v
)(

gβµ − vβnµ
n · v

)]
.

So far we have allowed v to be an arbitrary vector. Now we restrict ourselves to a

frame where vµ⊥ = 0. Furthermore we are interested in the case where the photon is real, so

we can restrict the photon to have transverse polarizations. This leaves only two linearly

independent terms:

∑
i

C
(1,3S1)
i (M,ω)Γiαβδµ = ag1g

⊥
αβg

⊥
δµ + ag2

(
g⊥αδg

⊥
βµ + g⊥αµg

⊥
βδ − g⊥αβg⊥δµ

)
, (4.18)

where gµν⊥ = gµν − (nµn̄ν + n̄µnν)/2. The first term projects out the trace part of the

Tr (Bα
⊥δω,P̄+

Bβ
⊥) operator, while the second term projects out the symmetric traceless com-

ponent. Since the Lorentz symmetry in the perpendicular components is not broken in

SCET these two terms do not mix under renormalization. The leading-order matching fixes

the coefficients a1 and a2 to order αs:

ag1(P̄+;µ = M) =
4g2
seeb

3M
, ag2(P̄+;µ = M) = 0 . (4.19)

Since there is no mixing, a2 = 0 +O(α2
s(M)) at all scales. Note this matching assumes the

Υ states are non-relativistically normalized: 〈Υ(P ′)|Υ(P )〉 = δ3(P − P ′).

In addition to gluon operators we must consider the basis of all possible quark operators

which can appear in radiative Υ decays

Jqµ(1,
3S1) =

∑
i

χ†
−pΛ · σδψpξ̄n,p1WΓiµδ(M, P̄+)W †ξn,p2 . (4.20)

The basis of Dirac structures, {n̄/, n̄/γ5, n̄/γ
µ
⊥}, was given in Ref. [119], and the most general

basis of quark operators can then be constructed out of these Dirac structures and the set

{εαβµν , gµν , nµ, n̄µ, vµ}. Using the symmetries of SCET and RPI we find

∑
i

Γiµδ = aq1
n̄/

2
g⊥µδ + aq2

n̄/

2
γ5ε

⊥
µδ + aq3

n̄/

2
γ⊥µ nδ . (4.21)
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The first term transforms as a scalar, the second term transforms as a pseudoscalar, and the

third as a vector. The matching coefficients at the scale µ = M for the quark operators in

radiative Υ decay are all zero at leading order in perturbation theory, but the scalar quark

operator mixes with the scalar gluon operator through renormalization group running and

can be generated in this manner. The pseudoscalar and vector term do not mix with the

scalar gluon operator due to Lorentz symmetry and will not be generated at this order in

the perturbative matching.

4.4 Decay Rates & Phenomenology

We now consider the phenomenological implications of our analysis for exclusive radiative

decays of quarkonium into either a single meson or a pair of mesons which are collinear.

The (n+ 1)-body decay rate is given by:

Γ(Υ→ γFn) =
1

2MΥ

∫
d3q

2Eγ(2π)3

n∏
i

d3pi
2Ei(2π)3

(2π)4δ4(P − q −
n∑
i

pi)

× |〈γ(q)p1...pn|JµAµ|Υ(P )〉|2,
(4.22)

where J is the QCD current, A is the photon field, and Fn denotes an exclusive final

state consisting of n collinear particles. We consider only decay rates where the final state

momenta pi are all collinear with combined invariant mass m2
n = (

∑n
i pi)

2 ∼ Λ. The

effective theory decay rate is obtained by matching the current J onto the SCETII current

given in Eq. (4.9) plus a quark operator:

〈γ(q)p1...pn|JµAµ|Υ(P )〉
→

∑
i

Γiαβδµ〈γ(q)p1...pn|χ†
−pΛ·σδψpTr

{
Bα

⊥C
(1,3S1)
i (P̄+;µ)Bβ

⊥
}Aµ|Υ(P )〉

+
∑
i

〈γ(q)p1...pn|χ†
−pΛ·σδψpξ̄n,p1WΓiµδ(M, P̄+)W †ξn,p2Aµ|Υ(P )〉

= 〈0|χ†
−pΛ·σδψp |Υ(P )〉 〈γ(q)|Aµ |0〉 g⊥δµ

×
[
〈p1...pn|Tr

{
Bα

⊥ a
g
1(P̄+;µ)B⊥

α

}|0〉+ 〈p1...pn|ξ̄n,p1W
n̄/

2
aq1(P̄+;µ)

M
W †ξn,p2|0〉

]
.

(4.23)
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In obtaining the second line we make use of the results in Eqs. (4.18) and (4.19), and use

the properties of SCETII to factor soft and collinear degrees of freedom. In the last line we

changed to a nonrelativistic normalization for the Υ state.

Next we define the light-cone wave functions

〈p1 . . . pn|P̄Tr [Bα
⊥δω,P+B

⊥
α ] |0〉 = M3−nφFn

g (x), (4.24a)

〈p1 . . . pn|ξ̄n,ω1W
n̄/

2
δω,P̄+

W †ξn,ω2 |0〉 = M3−nφFn
q (x) , (4.24b)

where states are relativistically normalized, and the discrete label ω is converted to a contin-

uous one, x = ω/n̄ ·p, as explained in Ref. [101]. The wave functions φFn
q,g are dimensionless.

See Appendix 4.B for the relation of these SCET light-cone wave functions to those con-

ventionally defined in QCD. Then the collinear matrix elements in brackets in Eq. (4.23)

can be written as the convolution:

〈p1...pn|Tr
{
Bα

⊥ a
g
1(P̄+;µ)B⊥

α

}|0〉 + 〈p1...pn|ξ̄n,p1W
n̄/

2
aq1(P̄+;µ)W †ξn,p2|0〉

= M2−n
∫ 1

−1
dx

(
ag1(x;µ)φFn

g (x;µ) + aq1(x;µ)φFn
q (x;µ)

)
.

(4.25)

The dependence on the scale µ cancels between the long-distance matching coefficients and

the wave function. We will elaborate on this point in a moment. First we expand both

a
g/q
1 (x;µ) and φFn

g/q(x;µ) in Gegenbauer polynomials:

aq1(x;µ) =
∑
n odd

a(n)
q (µ)C3/2

n (x) , (4.26a)

ag1(x;µ) =
∑
n odd

a(n)
g (µ)(1 − x2)C5/2

n−1(x) , (4.26b)

φFn
q (x;µ) =

∑
n odd

b(n)
q (µ)(1 − x2)C3/2

n (x) , (4.26c)

φFn
g (x;µ) =

∑
n odd

b(n)
g (µ)(1 − x2)C5/2

n−1(x) . (4.26d)

Then the convolution becomes an infinite sum of products of Gegenbauer coefficients:

∫ 1

−1
dx
(
ag1(x;µ)φFn

g (x;µ) + aq1(x;µ)φFn
q (x;µ)

)
=

∑
n odd

(
f

(n)
5/2a

(n)
g (µ)b(n)

g (µ) + f
(n)
3/2a

(n)
q (µ)b(n)

q (µ)
)
,

(4.27)
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where

f
(n)
5/2 =

n(n+ 1)(n + 2)(n + 3)
9(n + 3/2)

, f
(n)
3/2 =

(n+ 1)(n + 2)
n+ 3/2

. (4.28)

We now return to the question of the scale. Here we pick µ ∼ Λ which minimizes

logarithms in the wave function; however, large logarithms of M/Λ then appear in the

Wilson coefficients. These large logarithms are summed using the renormalization group

equations in SCET. This calculation was carried out in Ref. [101], and we only quote the

results here. We find:∫ 1

−1
dx
(
ag1(x;µ)φFn

g (x;µ) + aq1(x;µ)φFn
q (x;µ)

)
=

4
3
ag1(M)

∑
n odd

{[
γ

(n)
+

(
αs(µ)
αs(M)

)2λ
(n)
+ /β0

− γ(n)
−

(
αs(µ)
αs(M)

)2λ
(n)
− /β0

]
b(n)
g (µ)

+
f

(n)
3/2

f
(n)
5/2

γ
(n)
gq

∆(n)

[(
αs(µ)
αs(M)

)2λ
(n)
+ /β0

−
(
αs(µ)
αs(M)

)2λ
(n)
− /β0

]
b(n)
q (µ)

}
,

(4.29)

where

β0 = 11− 2nf
3

, (4.30a)

γ
(n)
± =

γ
(n)
gg − λ(n)

∓
∆(n)

, (4.30b)

λ
(n)
± =

1
2

[
γ(n)
gg + γ

(n)
qq̄ ±∆(n)

]
, (4.30c)

∆(n) =

√(
γ

(n)
gg − γ(n)

qq̄

)2
+ 4γ(n)

gq γ
(n)
qg , (4.30d)

γ
(n)
qq̄ = CF

[
1

(n+ 1)(n + 2)
− 1

2
− 2

n+1∑
i=2

1
i

]
, (4.30e)

γ(n)
gq =

CF
3

n2 + 3n+ 4
(n+ 1)(n + 2)

, (4.30f)

γ(n)
qg = 3nf

n2 + 3n+ 4
n(n+ 1)(n + 2)(n + 3)

, (4.30g)

γ(n)
gg = CA

[
2

n(n+ 1)
+

2
(n+ 2)(n + 3)

− 1
6
− 2

n+1∑
i=2

1
i

]
− nf

3
. (4.30h)

The quantities λ(n)
± which appear in the exponents in Eq. (4.29) are negative for any n > 1.

Furthermore λ(1)
− < 0, while λ(1)

+ = 0. This property allows us to consider the asymptotic
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limit M � Λ, where αs(M)→ 0. Then

lim
M→∞

∫ 1

−1
dx

[
ag1(x;µ)φFn

g (x;µ) + aq1(x;µ)φFn
q (x;µ)

]
−→ 16

3
CF

4CF + nf
ag1(M)

[
b(1)g (Λ) +

3
4
b(1)q (Λ)

]
≡ BFnag1(M),

(4.31)

which defines a nonperturbative parameter BFn . However, for values of M around the Υ

mass this is not a very good approximation, and for values around the J/ψ mass a much

better approximation is to assume no running at all.

4.4.1 Two-Body Decay: Υ→ γf2

Having taken care of the technical details we can now use the above results to study the

two-body radiative decay Υ→ γF1. The decay rate is

Γ(Υ→ γF1)SCETII
=

1
16π
〈Υ|ψ†

p′σ
i
⊥χ−p′χ†

−pσ
i
⊥ψp |Υ〉

×
[ ∫ 1

−1
dx
(
ag1(x;µ)φF1

g (x;µ) + aq1(x;µ)φF1
q (x;µ)

)]2

,

(4.32)

where the full expression for the term in brackets is given in Eq. (4.29). After factoring,

the soft matrix element involving the heavy quark fields was further simplified using the

vacuum insertion approximation for the quarkonium sector, which holds up to corrections of

order v4 [98]. Note that the operator above overlaps only with the λ = ±1 helicities of the

Υ. Then using the rotation symmetries of NRQCD [120] we can relate the non-relativistic

matrix element above to those conventionally used:

〈Υ|ψ†
p′σ

i
⊥χ−p′χ†

−pσ
i
⊥ψp |Υ〉 = 2

3
〈Υ|O(1, 3S1) |Υ〉 . (4.33)

For the final state meson F1 to have nonzero overlap with the operators in Eq. (4.24) it

must be flavor singlet, parity even and charge conjugation even. One candidate with the

correct quantum numbers is the f2(1270). Furthermore this decay has been measured both

in Υ and J/ψ radiative decay, which is why we consider it. An interesting point is that only

the helicity λ = 0 component of the f2 contributes at the order to which we are working.

To see this begin by considering the decomposition of the following gluon matrix element
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into all possible light-cone form-factors:

〈f2|Tr [Bα
⊥B

β
⊥] |0〉 = A(e(λ))gαβ⊥ +Bλe

αβ
⊥ (λ), (4.34)

where eαβ is the symmetric-traceless polarization tensor of the f2. We give the explicit

form in Appendix 4.C. There are only two form factors above since the matrix element

must be decomposed into tensors that have non-zero perpendicular components. The only

structures available are gαβ⊥ and eαβ⊥ . For λ = ±1, eµν⊥ (λ = ±1) = 0, so this helicity

component does not appear at this order. The coefficient A(e(λ)) is a scalar function

which can be constructed from Tr (e⊥) and n̄αnβeαβ . Because the helicity-zero polarization

tensor has the property that eµν⊥ (λ = 0) ∝ gµν⊥ , and the helicity-two polarization tensor has

Tr (e⊥) = 0 and n̄αnβe
αβ = 0, we can fix the normalization of the coefficient A(e(λ)) so

that the first term on the right-hand side of Eq. (4.34) parameterizes the λ = 0 contribution

while the second term parameterizes the λ = ±2 contributions. The helicity-zero piece is

picked out by the a1g
αβ
⊥ term in Eq. (4.18), while the helicity-two piece is picked out by the

a2 term. Thus at leading order in perturbation theory, the dominant decay should be to

the helicity-zero component of the f2.

The NRQCD matrix element in Eq. (4.32) can be expressed in terms of the leptonic

decay width of the Υ. At leading order,

Γ(Υ→ e+e−) =
8πα2e2b
3M2

〈Υ|O(1, 3S1) |Υ〉 , (4.35)

and the decay rate for Υ→ γf2 can be expressed as:

Γ(Υ→ γf2) =
16παs(M)2

9α
(Bf2)2Γ(Υ→ e+e−) . (4.36)

We can repeat the same analysis for the decay rate Γ(J/ψ → γf2) and form a ratio of

branching fractions, which in the asymptotic limit is:

B(Υ→ γf2)
B(J/ψ → γf2)

=
[
αs(Mbb̄)
αs(Mcc̄)

]2 (4CF + 3
4CF + 4

)2 B(Υ→ e+e−)
B(J/ψ → e+e−)

, (4.37)

where MQQ̄ = 2mQ. Using mb = 4.1 − 4.4 GeV, mc = 1.15 − 1.35 GeV, B(Υ → e+e−) =

(2.38 ± 0.11) × 10−2, and B(J/ψ → e+e−) = (5.93 ± 0.10) × 10−2 [1], we predict the ratio
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of branching fractions to be in the range:

[
B(Υ→ γf2)
B(J/ψ → γf2)

]
M→∞

= 0.14 − 0.19 . (4.38)

As was mentioned earlier the asymptotic limit is not a particularly good approximation for

the Υ, and quite bad for the J/ψ. We can improve this approximation by keeping more

terms in the resummed formula in Eq. (4.29). The dominant term is the part of the n = 1

term proportional to b(1)g (µ), and in this approximation:

B(Υ→ γf2)
B(J/ψ → γf2)

=
[
αs(Mbb̄)
αs(Mcc̄)

]2
⎡⎣γ(1)

+ − γ(1)
−
(
αs(µ)/αs(Mbb̄)

)2λ(1)
− /β

nf =4

0

γ
(1)
+ − γ(1)

−
(
αs(µ)/αs(Mcc̄)

)2λ(1)
− /β

nf =3

0

⎤⎦2

× B(Υ→ e+e−)
B(J/ψ → e+e−)

= 0.13− 0.18 ,

(4.39)

where µ ∼ 1 GeV. The range of values has not changed much from Eq. (4.38), however,

theoretical errors are reduced: corrections to Eq. (4.39) from the b
(1)
q and higher-order

terms in Eq. (4.29) are estimated to be roughly 40%, while corrections to the infinite mass

limit from higher order terms are estimated to be roughly 80%. In addition there are

theory errors from neglecting higher-order terms in the perturbative expansion, as well as

in the expansions in v and η. Our prediction can be compared to the measured value of

0.06 ± 0.03, using the measurements B(Υ → γf2) = (8 ± 4) × 10−5 and B(J/ψ → γf2) =

(1.38±0.14)×10−3 [1]. Given the theoretical errors we can only conclude that our prediction

does not disagree with data.

Our predictions for the ratios of Υ and J/ψ branching fractions to γf2 are consistent

with those derived in Refs. [112, 113, 114], which use an expansion in twist. In particular,

we reproduce the suppression of the helicities |λ| = 1, 2 in the final state relative to λ = 0.

In contrast with Ref. [114], we extract the NRQCD color-singlet matrix elements from

the leptonic decay widths of Υ and J/ψ instead of the decay widths to light hadrons, for

which corrections from color-octet contributions must be taken into account for a reliable

calculation [121]. The leptonic decay width, however, receives large corrections at NNLO in

perturbation theory [122, 123]. In either case, one hopes that the uncertainties are mitigated

in taking the ratios of branching fractions.
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We can also compare the decay rates of J/ψ and ψ′ to γf2 predicted by Eq. (4.32) at

the matching scale µ = M , where aq1(x;M) = 0 and ag1(x;M) is a constant. Dependence on

the integral of the wave function φf2g (x;M) cancels out in the ratio of branching fractions:

B(J/ψ → γf2)
B(ψ′ → γf2)

=
B(J/ψ → e+e−)
B(ψ′ → e+e−)

= 7.85 ± 0.35 , (4.40)

while the measured value is 6.57± 1.42. We used B(ψ′ → e+e−) = (7.55± 0.31)× 10−3 and

B(ψ′ → γf2) = (2.1± 0.4) × 10−4 [1].

4.4.2 Three-Body Decay: Υ→ γππ

Next we consider a two pion final state in the kinematic region where the pions are collinear

to each other with large energy and small total invariant mass mππ ∼ Λ. In this case we we

have a three-body final state where the two pions are collinear. It is convenient to define

the variables:

m2
ππ = (p1 + p2)2 , z =

n̄·p1

MΥ
. (4.41)

In terms of these variables the differential decay rate is

dΓ
dm2

ππ dz
=

1
512π3M2

Υ

〈Υ|ψ†
p′σ

i
⊥χ−p′χ†

−pσ
i
⊥ψp |Υ〉

×
[ ∫ 1

−1
dx
(
ag1(x;µ)φππg (x;µ) + aq1(x;µ)φππq (x;µ)

)]2 (4.42)

to leading order in m2
ππ/M

2
Υ. The properties of the meson pair light-cone wave function φππ

have been investigated in Refs. [124, 125], which interestingly find that in the region where

Λ� mππ �MΥ they are given by an integral over two single-particle wave functions. The

ratio of the Υ and J/ψ rates to γππ in the kinematic region of low m2
ππ is numerically the

ratio in Eq. (4.39) times an extra factor of m2
c/m

2
b ∼ 0.07 − 0.1, that is, 0.01 − 0.02. This

suppression is due to the much larger total phase space available in Υ→ γππ relative to that

in Υ → γf2. No Υ→ γππ events have yet been observed in the region m2
ππ < (1.0 GeV)2

[126].
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4.5 Conclusions

We have systematically analyzed the exclusive radiative decays of quarkonium to energetic

light mesons within the framework of soft-collinear effective theory and non-relativistic

QCD to leading order in the effective theory power counting, as well as to leading order

in the strong coupling. We show that color-octet contributions are suppressed by a factor

of v2αs(µc)/
√
αs(M) ≈ 0.05 in exclusive Υ decays, and can therefore be safely neglected.

This is different from the situation in inclusive radiative decays in the endpoint region where

octet contributions must be kept.

We then turn to the color-singlet contribution. The tree-level matching onto this op-

erator is carried out in Refs. [41, 39]; however, the authors do not consider the complete

set of operators that could appear in this decay. We use the symmetries of SCET and

NRQCD, including RPI, to show that the operator which is matched onto in Refs. [41, 39]

is the only operator that can appear for the decays in question. We also consider the set

of possible quark operators which can arise. Again only one of the possible quark opera-

tors can contribute to the decays we are interested in. This operator has zero matching

coefficient, but it can be generated through running. We use the results of Ref. [101] for

the renormalization group mixing of the quark and gluon operators, thus resumming large

logarithms. Our results agree with an analysis in twist carried out in Refs. [112, 113, 114].

Finally we study the phenomenology of quarkonium radiative decay to the f2, as well

as to ππ where the pions are collinear. We make predictions for the ratios of branching

fractions B(Υ→ γf2)/B(J/ψ → γf2) and B(J/ψ → γf2)/B(ψ′ → γf2), as well as for the

differential decay rates of Υ and J/ψ to γππ in the kinematic region of two collinear pions.

Our predictions for the decays to γf2 are consistent with experimental data, but with large

theoretical uncertainties, while there is insufficient data for γππ with which to compare.

Further theoretical work and more experimental data, especially for the light-cone wave

functions of f2, will improve the precision of these predictions greatly.

4.A Appendix: Power Counting of States in NRQCD

The color-octet operators introduced in Eqs. (4.1) and (4.3) do not overlap with the Υ

state until subleading order in v. We choose to represent the Υ state—a color-singlet spin-1
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state—as being created from the vacuum with an interpolating field:

|Υ(p)〉 ∼ ψ†
pΛ · σδχ−p |0〉 . (4.43)

Thus, the NRQCD parts of the color-singlet operator O(1,3 S1) in Eq. (4.4) overlap with

the Υ state at leading order in v:

〈0|χ†
−pΛ · σδψp |Υ〉 ∼ O(v3), (4.44)

where the v3 is the scaling of the operator itself. However, the color-octet operators do

not overlap with the Υ until we put in insertions from the subleading part of the NRQCD

Lagrangian. For example, for the 1S0 operator,

〈0|O(8, 1S0) |Υ〉 ∼ 〈0|T
{
χ†
−pT

Aψp, ψ
†
q(σ ·B)ψq

} |Υ〉 ∼ O(v5) . (4.45)

The field B scales as v4 while the ψ propagator in the time-ordered product scales as 1/v2,

giving an overall v2 suppression in the matrix element relative to the color-singlet matrix

element. Thus the total scaling is O(v5). The matrix element of the color-octet 3PJ operator

is the same as the 1S0:

〈0|O(8,3 PJ) |Υ〉 ∼ 〈0|T{χ†
−pT

AΛ·p̂σΛ·σδψp, ψ
†
q

p ·D
2M

ψq} |Υ〉 ∼ O(v5), (4.46)

since the operator O(8,3 PJ) itself scales as v4, p · D scales as v3, and the ψ propagator

scales as 1/v2.

Thus these two color-octet operators contribute at the same order in v to the Υ-to-

vacuum matrix element, suppressed by v2 relative to the contribution of the color-singlet

operator.

4.B Appendix: Nonperturbative Matrix Elements and Light-

Cone Wave Functions

The matrix elements in Eq. (4.24) defining the SCET wave functions φFn
g,q can be related to

conventional QCD wave functions for flavor-singlet mesons. The two-gluon wave functions



114

for a meson with momentum q and net helicity λ = 0,±2 are defined as [127]:

〈0|TrGµν(z)Y (z,−z)Gνλ(−z) |q, λ = 0〉µ0
= fLS qµqλ

∫ 1

−1
dζ eiz·qζφLS(ζ, µ0) , (4.47a)

〈0|TrGµν(z)Y (z,−z)Gνλ(−z) |q, λ = ±2〉µ0
(4.47b)

= f⊥S [(qµe⊥νβ − qνe⊥µβ)qα − (qµe⊥να − qνe⊥µα)qβ]
∫ 1

−1
dζ eiz·qζφ⊥S (ζ, µ) ,

where Y (z,−z) is the path-ordered exponential of gluon fields:

Y (z,−z) = P exp
[
ig

∫ z

−z
dσ · A(σ)

]
. (4.48)

Going to the light-cone frame where qµ = n̄·q
2 nµ and zµ = n·z

2 n̄
µ, we invert these formulas

to find

φLS(ζ;µ0) =
n̄µn̄λ

4πfLS q−

∫ ∞

−∞
dz+ e−iζq

−z+/2〈0|TrGµν(z+)Y (z+,−z+)Gνλ(−z+) |q, λ = 0〉 ,

(4.49a)

φ⊥S (ζ;µ0) =
n̄µn̄αe∗νβ⊥
4πf⊥S q−

∫ ∞

−∞
dz+ e−iζq

−z+/2 (4.49b)

× 〈0|TrGµν(z+)Y (z+,−z+)Gαβ(−z+) |q, λ = ±2〉 ,

where z+ = n·z, and q− = n̄·q. Now we match the QCD fields on the right-hand side to

fields in SCET:

n̄µGµν(z+)→
[
e−iP̄z

+/2n̄µG
µν
n

]
, (4.50a)

Y (z+,−z+)→
[
Wne

i(P̄†+P̄)z+/2W †
n

]
, (4.50b)

where

Gµνn =
i

g
[Dµ − igAµn,q,Dν − igAνn,q′ ], (4.51)

with

iDµ =
nµ

2
P̄ + Pµ⊥ +

n̄µ

2
in·Dus. (4.52)
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Therefore, for example, the matching between the QCD light-cone wave-function φLS and

the SCET operator is

φLS(ζ;µ0)→ n̄µn̄λ

4πfLS q−

∫ ∞

−∞
dz+ e−iζq

−z+/2〈0|TrGnµν(0)Wne
iP̄+z+/2W †

nG
nν
λ(0) |q, λ = 0〉

=
−1

16πfLs q−
∑
ω

∫ ∞

−∞
dz+ e−i(ζq

−−ω)z+/2(q− − ω)(q− + ω)〈0|TrBν
⊥δP̄+,ωB

⊥
ν |q, λ = 0〉 .

(4.53)

Integrating over z+, and converting from the discrete index ω to the a continuous ωc where

ζ ≡ ωc/q
− we obtain the matching relation between the QCD and SCET light-cone wave

functions

φL,⊥S (ζ;µ)→ − q−

4fLS
(1− ζ2)φM(L,⊥)

g (ζ;µ) . (4.54)

The SCET wave functions on the right-hand side are given by [cf. Eq. (4.24)]:

〈0|P̄Tr [Bα
⊥δω,P̄+

B⊥
α ] |M(q)〉 = (q−)2φM(L)

g , (4.55a)

e∗⊥αβ〈0|P̄Tr [Bα
⊥δω,P̄+

Bβ
⊥] |M(q)〉 = (q−)2φM(⊥)

g . (4.55b)

Relations between the wave functions for the quark operator in QCD and SCET can be

derived as in Ref. [119].
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4.C Appendix: Spin-2 Polarization Tensors

The spin-2 polarization tensor for a particle of mass m and momentum k can be built from

spin-1 polarization vectors using Clebsch-Gordan coefficients to arrive at:

eµν(λ = ±2) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 1 ±i 0

0 ±i −1 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.56a)

eµν(λ = ±1) = ∓ 1
2m

⎛⎜⎜⎜⎜⎜⎜⎝
0 |k| ±i |k| 0

|k| 0 0 Ek

±i |k| 0 0 ±iEk

0 Ek ±iEk 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.56b)

eµν(λ = 0) =
1
m2

√
2
3

⎛⎜⎜⎜⎜⎜⎜⎝
k2 0 0 |k|Ek

0 −m2

2 0 0

0 0 −m2

2 0

|k|Ek 0 0 E2
k

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.56c)
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Chapter 5

Enhanced Nonperturbative Effects
in Z Decays to Hadrons

“White!” he sneered. “It serves as a beginning. White cloth may be dyed. The white
page can be overwritten; and the white light can be broken.”

“In which case it is no longer white,” said I. “And he that breaks a thing to find
out what it is has left the path of wisdom.”

Gandalf, in The Fellowship of the Ring by J.R.R. Tolkien

In this chapter, we apply soft-collinear effective theory for inclusive decays—SCETI— to

the hadronic decays of Z bosons. The material in this chapter is based on Ref. [33].

5.1 Introduction

Some of the most successful applications of perturbative QCD are to processes such as Z

decay to hadrons or e+e− annihilation at large center-of-mass energy, in which a state with

no strong interactions decays into final hadronic states. Here we will discuss the case of Z

decay, but the results apply equally well to the other cases. Not only is the total hadronic Z

decay width calculable, but so are less inclusive infrared-safe quantities like the Z decay rate

into 2-jet and 3-jet events, the thrust distribution and jet mass distributions. Comparison of

perturbative predictions for these and other quantities with experimental data on Z decays

from LEP and SLD has led to a remarkably accurate extraction of the strong coupling

constant αs(MZ) [35, 128, 129, 130, 131, 132, 133]. Although the extraction of the strong

coupling from event shape variables is less accurate than from the total hadronic Z width,

it is more model-independent since (neglecting quark mass effects) it does not depend on

the values of the quark couplings to the Z.
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For the totally inclusive hadronic Z decay width, the operator product expansion allows

one to include in theoretical predictions nonperturbative strong interaction effects that

are characterized by vacuum expectation values of local operators. The effects of higher-

dimension operators are suppressed by powers of the strong interaction scale ΛQCD divided

by the center-of-mass energy MZ . Since the Z mass is large, these effects are very small. For

example, if quark masses are neglected, the leading nonperturbative effects in the Z decay

width come from the vacuum expectation value of the gluon field strength tensor squared,

〈GµνGµν〉. This dimension-four operator gives rise to corrections to the total hadronic width

suppressed by Λ4
QCD/M

4
Z ∼ 10−9.

Less inclusive variables that characterize Z decay to hadrons give rise to nonperturba-

tive effects suppressed by smaller powers of ΛQCD/MZ [34, 134, 135, 136, 137, 138, 139].

Furthermore, these corrections often become even more important in corners of phase

space where hadronization effects are significant, such as in the thrust distribution very

near T = 1. It has been conjectured that the enhanced nonperturbative effects to many

event shape distributions have a universal form with a single nonperturbative parameter

[34, 138, 139, 140, 141, 142]. These arguments are based on analysis of renormalon ambigu-

ities in the QCD perturbation series and on the behavior of resummed perturbation theory.

The conjectured relationship between the nonperturbative corrections to event shape dis-

tributions has recently been tested experimentally [35].

In Ref. [32], the enhanced nonperturbative effects that occur for the jet energy distri-

bution in corners of phase space were studied using effective field theory methods. This

approach uses the fact that very low momentum degrees of freedom which contain the non-

perturbative physics couple to the degrees of freedom with energies of order MZ via Wilson

lines. Nonperturbative effects have been extensively studied previously [137] using factor-

ization methods to divide the process into hard, jet-like and soft subprocesses [81, 143].

Nonperturbative effects are computed from the soft subprocess. The effective field theory

approach is similar to the one based on factorization methods. In this chapter we elaborate

on the work in [32] and extend it to other shape variables. The enhanced nonperturbative

effects are expressed in terms of weighted matrix elements of operators involving Wilson

lines, where the weighting depends on the event variable being considered. Our hope in

this chapter is to make the results of Ref. [137] more accessible to the community of high

energy theorists who are most familiar with effective field theory methods.
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We study smeared distributions, allowing us to expand the nonperturbative effects in

powers of ΛQCD, and write them as matrix elements of Wilson line operators and their

derivatives. The computations are similar to those of smeared distributions in the endpoint

region in B decay—the point-by-point computation requires knowing the nonperturbative

shape function, whereas nonperturbative effects in the smeared distributions can be written

in terms of λ1,2 provided the smearing region is large enough.

For pedagogical reasons we start with a detailed treatment of the jet energy EJ in Z

decay to two jets, where the jets are defined as Sterman and Weinberg did in their original

work on jets in QCD [144]. We spend considerable effort on this variable because the

theoretical expression for its enhanced nonperturbative corrections is simpler than for other

more phenomenologically interesting variables like thrust. At lowest order in perturbation

theory, the Z boson creates a quark and an antiquark, each with energy MZ/2, and so the

jet energy distribution is equal to

dΓ2-jet

dEJ
= Γ(0)

2-jet δ(EJ −MZ/2), (5.1)

where Γ(0)
2-jet is the total two-jet rate at lowest order in perturbation theory. This leading

order theoretical expression for the jet energy distribution is singular at EJ = MZ/2.

Furthermore, the leading perturbative and nonperturbative corrections are also singular

at that kinematic point. However, a non-singular quantity that can be compared with

experiment without any resummation of singular terms is obtained by smearing the jet

energy distribution over a region of size ∆ that contains the lowest order partonic endpoint at

EJ = MZ/2. The leading nonperturbative correction to this smeared energy distribution is

suppressed by ΛQCD/∆. So, for example, with ∆ ∼ 10 GeV the nonperturbative corrections

are expected to be of order 10%, roughly the same size as perturbative corrections, and an

order of magnitude larger than the order ΛQCD/MZ correction expected in the complete two

jet rate. We argue that for EJ very near MZ/2 it is not possible to capture the dominant

nonperturbative effects simply by shifting, EJ → EJ − µnp, in the perturbative expression

for dΓ2−jet/dEJ (where µnp is a nonperturbative parameter of order ΛQCD).

In the next section, we derive an expression for the leading enhanced nonperturbative

correction to the smeared jet energy distribution for two jet events using methods from

soft-collinear effective field theory (SCET) [89, 90, 92, 91]. This correction is given by the
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←− δ
Eoutside < βEtot

Figure 5.1: Sterman-Weinberg jets. An event is characterized as a two-jet event for specified
cuts β, δ if two cones of half-angle δ contain most of the energy in the event, with no more
than βEtot of energy outside the cones.

vacuum expectation value of a nonlocal operator involving Wilson lines. Perturbative order

αs corrections to this variable are derived in Appendix 5.4.

Section 5.3 discusses the leading nonperturbative corrections for thrust, jet masses, the

jet broadening variables, the C parameter and energy-energy correlations. In agreement

with Ref. [137] we find that the correction to jet mass sum and thrust are related. How-

ever, without additional model-dependent assumptions we do not find that the enhanced

nonperturbative corrections to the C parameter and jet broadening variables can be related

to those for thrust and the jet masses. We compare the level of our understanding of the

enhanced nonperturbative effects in these variables.

5.2 Operator Product Expansion For The Two Jet Energy

Distribution

The nonperturbative corrections to the jet energy distribution for Z decay to two jets,

dΓ2-jet/dEJ near EJ = MZ/2 are computed in this section. The perturbative corrections

will be discussed in Sec. 5.4. The results are given for the Sterman-Weinberg jet definition,

where a cone of half-angle δ contains a jet if the energy contained in the cone is more than

Ecut = βMZ , as illustrated in Fig. 5.1. We take the cone half-angle δ and the dimensionless

energy cut variable β to be of order a small parameter λ, and compute in a systematic

expansion in powers of λ. We are interested in the jet energy distribution within a region

∆ of MZ/2, where MZ � ∆� λ2MZ . For example, ∆ ∼ λMZ .
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SCETI is the appropriate effective field theory for the kinematic region of interest, and

will be used for the derivation of the nonperturbative corrections to dΓ2-jet/dEJ near EJ =

MZ/2. It is convenient to introduce two lightlike vectors n and n̄ which satisfy n0 = n̄0 = 1

and n = −n̄. Four-vectors are decomposed along the n, n̄ and perpendicular directions:

V = (V +, V −, V⊥) where V + = n · V , V − = n̄ · V and V µ
⊥ = V µ − V +n̄µ/2 − V −nµ/2.

For the problem of interest, SCETI contains n-collinear, n̄-collinear and ultrasoft degrees

of freedom [119]. The n-collinear and n̄-collinear degrees of freedom have typical momenta

that scale as

p(n)
c ∼MZ(λ2, 1, λ), p(n̄)

c ∼MZ(1, λ2, λ), (5.2)

and the ultrasoft degrees of freedom have momenta that scale as

pu ∼MZ(λ2, λ2, λ2). (5.3)

We take λ ∼ √
ΛQCD/MZ which implies that the typical “off-shellness” of the ultrasoft

degrees of freedom, p2
u ∼ M2

Zλ
4 ∼ Λ2

QCD, is set by the QCD scale while the typical “off-

shellness” of the collinear degrees of freedom, p2
c ∼M2

Zλ
2 ∼MZΛQCD, is much larger than

Λ2
QCD. Hence the collinear degrees of freedom can be treated in perturbation theory.

Cone algorithms for jets, like that of Sterman and Weinberg, are ambiguous at higher

orders in perturbation theory [145, 146]. This arises when there is more than one way to

assign a particle to a particular jet. However, in this section we work to lowest order in

perturbation theory, where the events consist of two almost back-to-back jets plus ultrasoft

degrees of freedom. Since the cones are well separated, there is no ambiguity in assigning

partons to the jets.

The nonperturbative effects we are after are characterized by matrix elements of opera-

tors composed from the ultrasoft degrees of freedom. In Z decay into two jets, the jets are

almost back-to-back, and n is chosen along one of the jet directions. The degrees of freedom

in the two jets are then represented by n-collinear (for the antiquark jet) and n̄-collinear

fields (for the quark jet). In this section we work to lowest order in perturbation theory in

the collinear fields. Hence we match the weak neutral current in full QCD onto the effective

theory at tree level,

jµ = [ξ̄n̄Wn̄]Γµ[W †
nξn], (5.4)
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where Γµ = gV γ
µ
⊥ + gAγ

µ
⊥γ5 involves the vector and axial couplings of the Z boson. The

fields ξn̄ and ξn are collinear quark fields in the n̄ and n directions and we have adopted

the convention

ξn(x) =
∑
p̃

e−ip̃·xξn,p̃(x), (5.5)

where the label momentum p̃ contains the components of order 1 and λ, n̄ · p and p⊥, and

the order λ2 components are associated with the space-time dependence of the fields. The

Wilson lines Wn,n̄ are required to ensure collinear gauge invariance [91]. Since in this section

we work to lowest order in QCD perturbation theory, they play no role in the analysis and

can be set to unity.

The typical momenta of the partons in the jets are of the order of the collinear momenta,

Eq. (5.2), where the overall scale of their momentum is set by MZ . However, it is possible

for the jets to contain partons with momenta that have an overall scale that is much less

than MZ . Because of the sum over all values of p̃ in Eq. (5.5), such partons can still be

represented by collinear fields. The interaction of n-collinear fields among themselves is

given by the full QCD Lagrangian, and so the hadronization of n-collinear partons into a

jet is described by the full theory.

The Lagrangian of the effective theory does not contain any direct couplings between

collinear particles moving in the two different lightlike directions labeled by n̄ and n; how-

ever, they can interact via the exchange of ultrasoft gluons. It is convenient to remove

the couplings of the collinear degrees of freedom to the ultrasoft ones via the field redefini-

tion [92]:

ξn → Y †
n ξn, An → Y †

nAnYn, (5.6)

where An is an n-collinear gluon field and

Yn(z) = P exp
[
ig

∫ ∞

0
ds n · Au(ns+ z)

]
(5.7)

denotes a path-ordered Wilson line of ultrasoft gluons in the n direction from s = 0 to

s = ∞. This is the appropriate field redefinition for outgoing collinear fields, since if a

factor of exp(−εs) is inserted in the integrand to decouple the interactions at late times, one

reproduces the correct iε prescription for the collinear quark propagator. For annihilation

which contains incoming collinear particles Yn is from s = −∞ to s = 0 and the daggers
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are reversed in Eq. (5.6). An analogous field redefinition with n→ n̄ removes the couplings

in the Lagrangian of ultrasoft fields to the n̄-collinear fields.

The differential decay rate for Z decay to two jets is

dΓ2-jet =
1

2MZ

∑
final states

1
3

∑
ε

|〈JnJn̄Xu| jµ(0)εµ |0〉|2

× (2π)4δ4(pZ − pJn − pJn̄ − ku),
(5.8)

where the sum over final states includes the usual phase space integrations and ε is the

polarization vector of the decaying Z boson. Since after the field redefinitions shown in

Eq. (5.6), there are no interactions between the ultrasoft and collinear degrees of freedom,

the matrix element factorizes, and at lowest order in perturbation theory in the collinear

degrees of freedom,

dΓ2-jet =
1

2MZ

d3pq
(2π)32p0

q

d3pq̄
(2π)32p0

q̄

∣∣∣M(0)
if

∣∣∣2 ∑
Xu

(2π)4δ4(pZ − pq − pq̄ − ku)

× 1
NC

〈
0
∣∣∣ T̄ [Ynd eY †

n̄e
a](0)

∣∣∣Xu(ku)
〉〈

Xu(ku)
∣∣∣T [Yn̄a cY †

nc
d](0)

∣∣∣0〉 . (5.9)

In Eq. (5.9), |M(0)
if |2 is the square of the Z → qq̄ decay amplitude averaged over Z polar-

izations and summed over the quark and antiquark spins and colors, T (T̄ ) denotes time-

(anti-time-) ordering, NC is the number of colors, and we have explicitly displayed the color

indices on the ultrasoft Wilson lines.

The derivation of Eq. (5.9) in many ways parallels the use of the operator product

expansion to compute the deep inelastic scattering cross-section, or the rate for inclusive

semileptonic B decay. There is, however, one important distinction. The sum over final

states in deep inelastic scattering and B decay is a sum over a complete set of color-singlet

hadron states. In Eq. (5.8), one is summing over a complete set of jet and ultrasoft states.

These are a complete set of partonic states, and are not necessarily color-singlet states.

In fact, unitarity would be violated if one separately imposed the color-singlet condition

on each of |Jn〉, |Jn̄〉 and |Xu〉. The derivation of Eq. (5.9) is valid to the extent that

the sums over partonic and hadronic states are equivalent. In jet production, the color of

the fast quark that turns into a jet is eventually transferred to low-energy partons during

the fragmentation process. The low-energy partons communicate between the different

jets, and make sure the whole process is color-singlet. The assumption is that this color
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recombination does not affect the decay rate at order ΛQCD/MZ .

To calculate dΓ2-jet/dEJ we integrate Eq. (5.9) over the allowed values of the quark

and antiquark three-momentum with the factor δ(EJ − p0
q) inserted. This corresponds to

choosing the quark jet as the “observed” jet. If one does not distinguish between quark and

antiquark jets then Eq. (5.9) still applies since the value of dΓ2-jet/dEJ when the “observed”

jet is an antiquark jet is the same. It is convenient to work in the rest frame of the decaying

Z, pZ = (MZ ,MZ ,0⊥), and align n̄ with the quark three-momentum pq. The decomposition

of the quark’s four-momentum in terms of label and residual momentum, pq = p̃q + kq, has

the form p+
q = p̃+

q + k+
q with p−q = 0, pq⊥ = 0. (Note this means that p̃q⊥ = kq⊥ = 0 and

k−q = 0.) Hence the phase space integration over quark three-momentum becomes

∫
d3pq

(2π)32p0
q

=
1

4(2π)2
∑
p̃+q

p̃+
q

∫
dk+

q . (5.10)

For the antiquark’s four-momentum the decomposition into residual and label momentum

is p+
q̄ = k+

q̄ , p−q̄ = p̃−q̄ + k−q̄ and pq̄⊥ = p̃q̄⊥ + kq̄⊥. One cannot set pq̄⊥ = 0 by a choice of n,

since n = −n̄, and n̄ has already been fixed by the direction of the quark jet.

Expressed in terms of label and residual momenta the phase space integration over

antiquark three-momentum is

∫
d3pq̄

(2π)32p0
q̄

=
∑
p̃q̄

∫
d4kq̄
(2π)3

δ
(
(p̃q̄ + kq̄)2

)
=

∑
p̃q̄

∫ dk−q̄ d2kq̄⊥
2(2π)3

1
p̃q̄−

. (5.11)

Here the delta function δ
(
(p̃q̄ + kq̄)2

)
= δ(p̃−q̄ k

+
q̄ − p̃2

q̄⊥) was used to do the k+
q̄ integration

setting k+
q̄ = p̃2

q̄⊥/p̃
−
q̄ . At leading order in the SCET expansion parameter λ the invariant

matrix elementM(0)
if only depends on the label momenta p̃+

q and p̃−q̄ . In terms of label and

residual momentum the energy-momentum conserving delta function becomes:

δ4(pZ − pq − pq̄ − ku) = 2δ(p−Z − p−q̄ − k−u )δ(p+
Z − p+

q − p+
q̄ − k+

u )δ2(pq̄⊥ + ku⊥)

= 2δMZ ,p̃
−
q̄
δMZ ,p̃

+
q
δ2p̃q̄⊥,0δ(k

−
q̄ + k−u )δ(k+

q + k+
u )δ2(kq̄⊥ + ku⊥).

(5.12)

The relation k+
q̄ = p̃2

q̄⊥/p̃
−
q̄ and the Kronecker delta that sets p̃q̄⊥ to zero imply that k+

q̄ = 0,
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and so this variable does not appear in the penultimate delta function in Eq. (5.12).

Using these results gives:

dΓ2-jet

dEJ
=
|M(0)

if |2
8MZ(2π)

∫
dk+

q

∫
dk−q̄ d2kq̄⊥

∑
Xu

δ

(
MZ

2
− EJ +

k+
q

2

)

× δ(k−q̄ + k−u )δ(k+
q + k+

u )δ2(kq̄⊥ + ku⊥)

× 1
NC

〈
0
∣∣∣ T̄ [Ynd eY †

n̄e
a](0)

∣∣∣Xu(ku)
〉〈

Xu(ku)
∣∣∣T [Yn̄a cY †

nc
d](0)

∣∣∣0〉
=
|M(0)

if |2
16πMZ

∑
Xu

δ

(
MZ

2
− EJ − k+

u

2

)
× 1
NC

〈
0
∣∣∣ T̄ [Ynd eY †

n̄e
a](0)

∣∣∣Xu(ku)
〉〈

Xu(ku)
∣∣∣T [Yn̄a cY †

nc
d](0)

∣∣∣0〉 .

(5.13)

We write the remaining delta function as the integral:

δ

(
MZ

2
− EJ − k+

u

2

)
=
∫

du
2π

exp
[
−i

(
MZ

2
− EJ − k+

u

2

)
u

]
. (5.14)

At this stage the collinear degrees of freedom have been integrated out, and the matrix

elements above, which involve only ultrasoft degrees of freedom, are evaluated at leading

order in the SCET expansion parameter (i.e. λ → 0). Recall that the Sterman-Weinberg

jet criteria restrict particles outside the cones used to define the two jets associated with the

quark and antiquark to have energy less than Ecut which we are taking to be order λMZ .

In the limit λ → 0 this energy cut becomes much larger than a typical component of an

ultrasoft four-momentum. Hence, for the matrix elements of these operators, Ecut should

be taken to infinity and does not restrict these matrix elements. Similarly the cone angle

is taken to be of order λ while the typical angle between components of ultrasoft momenta

is order unity. Thus the cone angle should be taken to zero in the effective theory that

contains only ultrasoft degrees of freedom and so there is no restriction on the ultrasoft

states that are summed over in Eq. (5.13).

Using the exponential dependence on ku to translate the anti-time ordered product to

the space-time point un/2, and then using the completeness relation to perform the sum

over all ultrasoft intermediate states, we find for the jet energy distribution:

dΓ2-jet

dEJ
= Γ(0)

2-jet S(MZ/2− EJ), (5.15)
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where the shape function S is defined by [136]

S(k) =
1
NC

∫
du
2π

eiku
〈
0
∣∣∣ T̄ [Ynd eY †

n̄e
a](un/2)T [Yn̄a cY †

nc
d](0)

∣∣∣0〉 , (5.16)

and the total two jet Z-decay width at lowest order in perturbation theory is

Γ(0)
2-jet =

∣∣∣M(0)
if

∣∣∣2
16πMZ

=
NCMZ

12π
(g2
V + g2

A), (5.17)

having implicitly summed over spins and colors. The n-directed and n̄-directed ultrasoft

Wilson lines commute since (s1n− s2n̄)2 = −4s1s2 < 0, and the gauge fields in the Wilson

lines are space-like separated.

In this derivation we chose the jets to be composed entirely of collinear degrees of

freedom. This is appropriate since jets are confined to narrow cones. For example, the mo-

mentum of any massless particle in the quark jet satisfies p− � p+, which is the appropriate

scaling for collinear particles in the n̄ direction. However, it is possible to repeat the above

derivation allowing ultrasoft degrees of freedom to be inside a jet. Then instead of inserting

δ(EJ−p0
q) into Eq. (5.9), one inserts δ(EJ−p0

q−k0
uJ), where k0

uJ = (k+
uJ/2)[1+O(λ)] denotes

the total ultrasoft energy inside the quark jet. Using the delta functions in Eq. (5.12) we

obtain again Eq. (5.13), with k+
u in the final delta function now denoting the total ultrasoft

momentum outside the quark jet. However, as mentioned previously, at leading order in λ

the cone angle of the jet shrinks to zero, and one recovers the previous result.

It is possible to remove the time- and anti-time-ordering completely in the definition of

the shape function S. Using the results from Appendix 5.A.1 our expression for the shape

function becomes

S(k) =
1
NC

∫
du
2π

eiku
〈
0
∣∣∣ [Y †

n

e

dY
†
n̄e

a](un/2)[Yn̄a cY n
d
c](0)

∣∣∣0〉
=

1
NC

〈
0
∣∣∣ [Y †

n

e

dY
†
n̄e

a]δ(k + in · ∂/2)[Yn̄a cY n
d
c]
∣∣∣0〉 , (5.18)

where the overline denotes an anti-triplet Wilson line.

Since in the kinematic region of interest MZ/2−EJ is much larger than n · ∂ acting on
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ultrasoft gauge fields it is appropriate to expand the delta function above which gives

S(MZ/2 −EJ) = δ(MZ/2− EJ) + δ′(MZ/2− EJ) 〈0|O1 |0〉

+
1
2
δ′′(MZ/2− EJ) 〈0|O2 |0〉+ · · ·

(5.19)

where

Om =
1
NC

[
Y

†
n

e

dY
†
n̄e

a
]( in · ∂

2

)m [
Yn̄a

cY n
d
c

]
=

1
NC

Tr
[
Y †
n̄

(
in ·D

2

)m
Yn̄

]
. (5.20)

The simple form for the operators Om arises because the variable EJ is totally inclusive on

the “unobserved” antiquark jet.

The formula for dΓ2-jet/dEJ is

dΓ2-jet

dEJ
= Γ(0)

2-jet

[
δ(MZ/2− EJ) + δ′(MZ/2 −EJ) 〈0|O1 |0〉+ · · ·

]
. (5.21)

The delta function term in Eq. (5.19) simply reproduces the leading perturbative formula

for dΓ(0)
2-jet/dEJ while the higher-order terms contain the effects of nonperturbative physics.

The derivation presented here assumes the observed jet is the quark jet. A similar derivation

in the case where the antiquark jet is observed gives operators

Om =
1
NC

Tr
[
Y n

†
(
in̄ ·D

2

)m
Y n

]
. (5.22)

Since the vacuum expectation values of Om and Om are equal by charge conjugation, our

results also hold in the case where one does not distinguish between quark and antiquark

jets.

We define the matrix elements using dimensional regularization with MS subtraction so

that in perturbation theory the vacuum expectation values 〈0|Om |0〉 are zero.

Note that O2 is a very different operator than O1 so it is not possible to capture the

effects of nonperturbative physics for |EJ −MZ/2| ∼ λ2MZ
1 simply by taking the lowest

order perturbative formula in Eq. (5.21) and shifting EJ by a nonperturbative parameter
1More correctly the differential cross section dΓ2-jet/dEJ smeared over a region ∆ of energy (that contains

EJ = MZ/2) with ∆ of order λ2MZ .
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µnp, that is, EJ → EJ − µnp. This ansatz results in the shape function

S(MZ/2−EJ) = δ(MZ/2−EJ) + δ′(MZ/2−EJ)µnp +
1
2
δ′′(MZ/2−EJ)µ2

np + · · · (5.23)

where the series of derivatives of delta functions has coefficients that are simply related by

〈0|Om |0〉 = 〈0|O1 |0〉m, which is not correct.

For |EJ −MZ/2| ∼ λ2MZ all terms in the series of Eq. (5.19) are equally important.

However for |EJ − MZ/2| ∼ ∆ � λ2MZ the vacuum expectation value of O1 provides

the leading order ΛQCD/∆ nonperturbative correction. In this kinematic region the shift

EJ → EJ − µnp, with µnp = 〈0|O1|0〉, correctly captures the most important effects of

nonperturbative physics.

We have focused on nonperturbative effects that are enhanced in the region near EJ =

MZ/2. If one considers a variable like the average value of the jet energy over the entire

allowed phase space, then there are sources of nonperturbative corrections that we have not

considered.

Using the results of Appendix 5.A.2, the operator O1 in Eq. (5.20) can be expressed in

terms of the gluon field strength tensor [136]:

O1 =
1
2
Tr[Y †

n̄ (in ·D)Yn̄]

=
1
2
Tr

[
ig

∫ ∞

0
ds Y †

n̄ (z; s, 0)nµn̄νGµνYn̄(z; s, 0)
]
.

(5.24)

O1 in Eq. (5.24) vanishes if the ultrasoft gauge field is treated as a classical degree of

freedom. Then the Wilson lines in Eq. (5.24) are unitary matrices and the trace vanishes

since the gluon field strength tensor is in the adjoint representation. Note that the vacuum

expectation value of O1 can still be nonzero because of quantum effects. Usually operators

involving products of gluon fields require renormalization. However, it is straightforward

to show that O1 is not renormalized at one loop. For example, we have shown that the

two-gluon matrix element of the operator O1 shown in Fig. 5.2 is identically zero, even

before performing the loop integration. That is,

〈0|O1|Aaα(ε1, p1)Abβ(ε, p2)〉 = 0, (5.25)

after extensive algebra.
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Figure 5.2: Two-gluon matrix element of O1 at one-loop order. Matrix elements of O1 such
as this are identically zero in perturbation theory; hence, O1 is not renormalized.

5.3 Enhanced Nonperturbative Corrections to Event Shape

Variables

There are a number of event shape distributions that are commonly studied in the literature.

Conventionally, one defines a general event shape distribution dσ/de, where e is an event

shape variable defined such that the region e→ 0 corresponds to the two jet limit. Examples

are e = 1 − T for thrust, e = B for jet broadening and e = C for the C parameter.

Any event shape distribution in Z decay contains both perturbative and nonperturbative

contributions. The perturbative effects can be computed as a perturbation series in αs(MZ).

At leading order, only two-jet (i.e. qq̄) events contribute. Events with more hard partons

are suppressed by powers of αs(MZ). In general, nonperturbative effects are suppressed

by powers of ΛQCD/MZ , but in corners of phase space where e� 1 these nonperturbative

effects become enhanced. Here we consider the region ΛQCD �MZe�MZ and focus on the

enhanced nonperturbative contribution suppressed only by a single power of ΛQCD/(MZe).

Perturbative expressions for the jet variables considered in this section have been ex-

tensively studied in the literature [147, 148, 149, 150, 151, 152]. Our main interest is in

nonperturbative physics. Working to leading order in αs(MZ), the dominant nonpertur-

bative effects are corrections to the two-jet distribution. Nonperturbative corrections to

higher-order processes are suppressed by additional powers of αs(MZ). We will compute

the enhanced nonperturbative corrections to some commonly measured event shape distri-

butions, just as we did for the jet energy distribution in Sec. 5.2. Recall for the jet energy
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distribution the dominant nonperturbative correction came from expanding

δ

(
MZ

2
− EJ +

k+
q

2

)
= δ

(
MZ

2
− EJ

)
+ δ′

(
MZ

2
−EJ

)
k+
q

2
+ · · · (5.26)

in Eq. (5.13) to linear order in k+
q . The delta function from Eq. (5.12) sets k+

q = −k+
u , and

we therefore find

dΓ(0)
2-jet

dEJ
= Γ(0)

2-jet

[
δ

(
MZ

2
− EJ

)
−δ′

(
MZ

2
− EJ

)〈k+
u 〉
2

]
, (5.27)

where

〈
k+
u

〉
=
∑
Xu

1
NC

〈
0
∣∣∣ T̄ [Ynd eY †

n̄e
a
]
(0)

∣∣∣Xu(ku)
〉〈

Xu(ku)
∣∣∣T [Yn̄a cY †

nc
d
]
(0)

∣∣∣0〉 k+
u . (5.28)

The jet energy distribution has the nice property that one can write 〈k+
u 〉 as the vacuum

expectation value of an operator involving Wilson lines of ultrasoft gauge fields [namely,

Eq. (5.24)]. For some shape variables this is not possible. However, expressions analogous

to Eqs. (5.27–5.28) can be derived.

5.3.1 Thrust

First we consider the thrust distribution dΓ/dT where the thrust T is defined by

MZ T = max
t̂

∑
i

∣∣̂t · pi

∣∣ , (5.29)

where t̂ is a unit vector that defines the thrust axis. The maximum is taken over all possible

directions of t̂, and the sum is over all final state particles. To the order we are working

the thrust axis t̂ can be set equal to the spatial part of the lightlike four-vector n used

to define the collinear antiquark field. It is convenient to call this direction the z-axis.

The thrust distribution is calculated analogously to the two jet distribution except that

the delta function δ(EJ − p0
q) is replaced by δ

(
MZT −

∣∣pzq∣∣− ∣∣pzq̄∣∣−∑
α |kzuα|

)
, where the

sum is over all ultrasoft particles. We adopt the same conventions as in the jet energy

distribution so that the phase space integrals are again done using the delta function in

Eq. (5.12). Decomposing the total ultrasoft four-momentum, ku = k
(a)
u + k

(b)
u , into the sum
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of the ultrasoft momentum from particles in the same hemisphere as the antiquark (type

a) and the same hemisphere as the quark (type b) the thrust T can be written as

MZT =
∣∣pzq∣∣+

∣∣pzq̄∣∣+∑
α

|kzuα|

=
1
2
(
p−q̄ − p+

q̄

)− 1
2
(
p−q − p+

q

)
+

1
2

(
k(a)−
u − k(a)+

u

)
− 1

2

(
k(b)−
u − k(b)+

u

)
=

1
2
p̃−q̄ +

1
2
p̃+
q +

1
2
(
k−q̄ − k+

q̄

)
+

1
2
k+
q +

1
2

(
k(a)−
u − k(a)+

u

)
− 1

2

(
k(b)−
u − k(b)+

u

)
.

(5.30)

Now the delta functions in Eq. (5.12) set p̃−q̄ = p̃+
q = MZ , k−q̄ = −k−u , k+

q = −k+
u , and

k+
q̄ = 0. Thus we find

T = 1− 1
MZ

(
k(a)+
u + k(b)−

u

)
, (5.31)

where we have also used ku = k
(a)
u + k

(b)
u . Thus,

dΓ
dT

= Γ(0)
2-jet

⎡⎣δ(1 − T )− δ′(1− T )

〈
k

(a)+
u + k

(b)−
u

〉
MZ

⎤⎦
≡ Γ(0)

2-jet

[
δ(1 − T )− δ′(1− T )

〈
OT1

〉
MZ

]
.

(5.32)

The thrust axis and the hemispheres are determined by the jet directions, and can be defined

in terms of the label momenta of the quark and antiquark. Thus t̂ and the hemispheres a

and b are label variables. Nevertheless, because of the hemisphere condition on the ultrasoft

momentum in Eq. (5.32), there isn’t a simple formula expressing the correction in terms of

the vacuum expectation value of an operator involving Wilson lines like the one in Eq. (5.24).

In a region |1 − T | ∼ λ2 the higher order terms in the ultrasoft momentum that were

neglected in Eq. (5.32) are important. Eq. (5.32) is appropriate for a region δT near T = 1

that satisfies 1� δT � λ2, for example, δT ∼ λ.

5.3.2 Jet Masses

The squared jet masses M2
a,b are the squares of the invariant mass of all the particles in

the two hemispheres a and b, defined by the plane perpendicular to the thrust axis. Two

commonly used variables are the sum of jet masses, M̂2
S = (M2

a+M2
b )/M2

Z , and the heavy jet

mass M̂2
H = max(M2

a ,M
2
b )/M2

Z . The jet masses are M2
a = (pq̄+k

(a)
u )2 and M2

b = (pq+k
(b)
u )2.
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More explicitly,

M2
a = (p+

q̄ + k(a)+
u )(p−q̄ + k(a)−

u )− (pq̄⊥ + k(a)
u⊥)2 (5.33a)

M2
b = (p+

q + k(b)+
u )(p−q + k(b)−

u )− (pq⊥ + k(b)
u⊥)2. (5.33b)

Recall that pq is aligned along n̄ so that pq⊥ = 0. Also, the delta function in Eq. (5.12)

sets p̃q̄⊥ = 0 and p̃−q̄ = p̃+
q = MZ . Then, working to linear order in the ultrasoft momenta,

M2
a = MZk

(a)+
u and M2

b = MZk
(b)−
u , so

dΓ

dM̂2
S

= Γ(0)
2-jet

⎡⎣δ(M̂2
S)− δ′(M̂2

S)

〈
OMS

1

〉
MZ

⎤⎦ (5.34a)

dΓ

dM̂2
H

= Γ(0)
2-jet

[
δ(M̂2

H )e− δ′(M̂2
H)

〈
OMH

1

〉
MZ

]
, (5.34b)

where

〈
OMS

1

〉
=
〈
k(a)+
u + k(b)−

u

〉
(5.35a)〈

OMH
1

〉
=
〈
max

(
k(a)+
u , k(b)−

u

)〉
. (5.35b)

Note that in the kinematic region where expanding to linear order in ultrasoft and residual

momentum is appropriate, the nonperturbative corrections to theM2
S and 1−T distributions

are given by the same nonperturbative matrix element. The nonperturbative corrections to

the M2
S and M2

H distributions are different.

Working to higher orders in ku/MZ , the definitions of thrust in Eq. (5.31) and of jet

masses in Eq. (5.33) become different beyond linear order. However, the corrections to

event shape distributions at higher orders in ΛQCD/(MZe) come not from expanding the

argument of the delta functions used to define these variables to higher orders in ku/MZ ,

but rather from expanding these delta functions as power series in the ultrasoft momentum,

as in Eq. (5.26) for the jet energy. So even at higher orders, the enhanced nonperturbative

corrections, i.e. of order [ΛQCD/(MZe)]n, n > 1, come from the leading-order correction to

the argument of the delta function, which are the same for thrust and jet mass sum. So the

enhanced nonperturbative corrections to thrust and jet mass sum are related to all orders

in ΛQCD/(MZe).
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Figure 5.3: Determination of the thrust axis. To the order we are working, the quark
and antiquark have momenta |pq| = |pq̄| = MZ/2. The antiquark then makes an angle
θq̄ = 2 |kq̄⊥| /MZ with the z-axis, and the thrust axis t̂ makes an angle θt = |kq̄⊥| /MZ with
both the quark and antiquark.

5.3.3 Jet Broadening

Jet broadening variables Ba,b are defined by

Ba,b =
1

2MZ

∑
i∈a,b

∣∣pi × t̂
∣∣ , (5.36)

where the hemispheres a and b are defined as before, and t̂ is the thrust axis. The jet

broadening variables at order ku/MZ require knowing the thrust axis to order ku/MZ . The

thrust axis t̂ maximizes
∑

i

∣∣̂t · pi∣∣.
The angle between pq̄ and the z-axis is given by

θq̄ =
|kq̄⊥|
MZ/2

, (5.37)

and the thrust axis t̂ can be written as

t̂ = (0,− sin θt, cos θt). (5.38)

By symmetry,

θt =
|kq̄⊥|
MZ

, (5.39)

which is half the size of θq̄ (see Fig. 5.3).
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Now calculate
∣∣pi × t̂

∣∣ for each particle. To linear order in ku/MZ we find for the quark,

∣∣pq × t̂
∣∣ =

MZ

2
sin θt =

|kq̄⊥|
2

, (5.40)

and for the antiquark,

∣∣pq̄ × t̂
∣∣ = |kq̄⊥| cos θt − MZ

2
sin θt =

|kq̄⊥|
2

. (5.41)

For each ultrasoft particle α, the cross product kα × t̂ is given by the determinant

∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

kxα kyα kzα

0 − sin θt cos θt

∣∣∣∣∣∣∣∣∣ . (5.42)

Since sin θt is already of order ku/MZ the cross product is, to linear order in ku/MZ ,

kα × t̂ = (kyα,−kxα, 0), (5.43)

so
∣∣kα × t̂

∣∣ = |kα⊥|. Combining the contributions of each particle to the sum in Eq. (5.36),

and using the delta function in Eq. (5.12) to set kq̄⊥ = −ku⊥, we obtain for the jet broad-

ening variables (to linear order in ku/MZ):

Ba =
1

2MZ

(
|ku⊥|

2
+
∑
α∈a
|kα⊥|

)
, (5.44a)

Bb =
1

2MZ

(
|ku⊥|

2
+
∑
α∈b
|kα⊥|

)
, (5.44b)

where the sum on α is over the ultrasoft particles in hemisphere a or b.

One conventionally defines two other broadening variables as

Bmax = max (Ba, Bb) , (5.45a)

Bsum = Ba +Bb. (5.45b)



135

The jet broadening distribution is

dΓ
dB

= Γ(0)
2-jet

[
δ(B) − δ′(B)

〈
OB1

〉
MZ

]
, (5.46)

for Ba,b,sum,max, where
〈
OB1

〉 ≡ MZ 〈B〉 is the matrix element of the appropriate quantity

in Eqs. (5.44,5.45). Nonperturbative effects in the jet broadening measures are not related

to the jet energy or thrust.

In this paper, we have assumed that the nonperturbative physics is completely described

by ultrasoft degrees of freedom. It is possible that some of the subtleties associated with

nonperturbative corrections to the jet broadening variables that have been discussed in the

literature [141] can be attributed to nonperturbative effects in the collinear sector, which

we have not included.

5.3.4 C Parameter

The C parameter is defined as

C = 3 (λ1λ2 + λ2λ3 + λ3λ1) , (5.47)

where λi are the eigenvalues of

θrs =
1
MZ

∑
i

prip
s
i

|pi| , (5.48)

and r, s = 1, 2, 3 are the space components of the momentum pi of the ith particle.

The largest component of θrs is θzz. The quark and antiquark in the jets have z-

momentum pzq = −pzq̄ = MZ/2 to the order we are working. Then, to linear order in

ku/MZ , the eigenvalues of θrs are given by:

det(θ − λI) = (1− λ) det(X − λI), (5.49)
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where I is the identity matrix and

X11 =
∑
α

kx2α
MZ |kα| , (5.50a)

X22 =
∑
α

ky2α
MZ |kα| , (5.50b)

X12 = X21 =
∑
α

kxαk
y
α

MZ |kα| . (5.50c)

Here the sums over α are only over ultrasoft particles. (The contributions from the quark

and antiquark to these components of θrs are suppressed by another factor of 1/MZ , since

|pq| = |pq̄| = MZ/2.)

The largest eigenvalue is λ1 = 1, and the other two eigenvalues satisfy

λ2 + λ3 =
1
MZ

∑
α

(kxα)2 + (kyα)2

|kα| . (5.51)

Thus,

C =
3
MZ

∑
α

|kα⊥|2
|kα| . (5.52)

The C distribution is then:

dΓ
dC

= Γ(0)
2-jet

[
δ(C)− δ′(C)

〈
OC1

〉
MZ

]
, (5.53)

where
〈
OC1

〉 ≡ MZ 〈C〉 defined in Eq. (5.52). Like jet broadening, the C parameter distri-

bution is not local on the ultrasoft fields, and the nonperturbative correction is not related

to that for any of the above distributions.

5.3.5 Energy-Energy Correlation and Jet-Cone Energy Fraction

The angular correlations of radiated energy can be characterized by the one-point and

two-point correlations [153],

dΣ
dΩ

=
∫

dΓ
∑
i

Ei
MZ

δ (Ω− Ωi) , (5.54a)

d2Σ
dΩdΩ′ =

∫
dΓ

∑
i,j

EiEj
M2
Z

δ (Ω− Ωi) δ
(
Ω′ − Ωj

)
, (5.54b)
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where the sum is over all particles, and includes the terms with i = j. They are normalized

so that

∫
dΩ

dΣ
dΩ

= Γ, (5.55a)∫
dΩ′ d2Σ

dΩdΩ′ =
dΣ
dΩ

. (5.55b)

The energy-energy correlation function P (cos χ) is defined by

P (cosχ) =
∫

dΩ′dΩ
d2Σ

dΩdΩ′δ(cos χ− cos θΩΩ′), (5.56)

where θΩΩ′ is the angle between vectors in the Ω and Ω′ directions.

The angular energy correlations Eq. (5.54b) were defined in Ref. [153] for e+e− annihila-

tion, and the solid angle was defined with respect to the beam direction. For unpolarized Z

decay, there is no preferred direction, so dΣ/dΩ is a constant, and d2Σ/dΩdΩ′ contains the

same information as the energy-energy correlation function P (cosχ). One can, however,

define distributions analogous to Eq. (5.54b) where the solid angle is measured with respect

to the thrust axis t̂. The one-point function is called the jet cone energy fraction J .

The energy-energy correlation and the jet cone energy fraction both are proportional

to δ functions if one considers the leading order process of Z decay into a quark-antiquark

pair:

P (cosχ) = J(cos χ)

=
1
2
Γ0

[
δ (cosχ− 1) + δ (cosχ+ 1)

]
.

(5.57)

Ultrasoft emission (in two-jet events) changes the distribution in two ways: (a) by changing

the energy or (b) by changing the solid angle of the emitted particles. At order ku/MZ , the

change in energy can be neglected, because it does not shift the angles of the partons; thus

there is no contribution proportional to δ′(cosχ ± 1), as for variables such as thrust. The

angle between the quark and antiquark is [compare Eq. (5.37)]:

cos θqq̄ = −1 + 2
k2
⊥

M2
Z

, (5.58)
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and the angle of the quark or antiquark with respect to the thrust axis is [compare Eq. (5.39)]:

cos θqt̂ = − cos θq̄t̂ = 1− k2
⊥

2M2
Z

, (5.59)

where k⊥ is the total ⊥ momentum of the ultrasoft particles. The shift in angle is second

order in ku/MZ , and so to first order, there is no enhanced contribution near cosχ = ±1.

There are nonperturbative contributions at second order.

5.3.6 Classes of Observables

The different observables we have discussed can be divided into classes, based on the extent

to which their nonperturbative corrections are inclusive on the ultrasoft degrees of freedom.

A class I observable is the jet energy distribution. The nonperturbative correction to

the jet energy depends on 〈k+
u 〉, where ku is the total ultrasoft momentum, so the jet energy

distribution is totally inclusive on the ultrasoft fields. The derivation of nonperturbative

corrections to the two jet energy distribution is not quite on the same footing as the deriva-

tion of nonperturbative corrections to the B meson semileptonic decay rate, because of

the additional assumption about the equivalence of sums over partonic and hadronic states

discussed after Eq. (5.9).

Class II observables are thrust and the jet masses M2
S,H . The nonperturbative cor-

rections to these variables require the ultrasoft momentum to be broken up into two

parts, ku = k
(a)
u + k

(b)
u , corresponding to the contributions from ultrasoft partons in the

two hemispheres. The hemispheres are chosen based on the jet directions, i.e., based on

the collinear degrees of freedom. The momentum in each hemisphere can then be de-

fined by integrating the ultrasoft energy-momentum tensor over the hemisphere at infinity

[137, 154, 155, 156, 157]. The class II variables are not totally inclusive on the ultrasoft

variables, but require them to be divided globally into two parts. Whether our derivation

of the nonperturbative corrections for class II observables (e.g., the relation between jet

mass and thrust distributions) is valid depends on the nature of hadronization in QCD.

The ultrasoft fields end up inside final state hadrons. The final hadron can contain ultra-

soft partons from different hemispheres, so the hadronic energy flow in each hemisphere

does not have to equal the parton energy flow in each hemisphere. If the hadronic and

partonic energy flows differ by order unity, the derivation of nonperturbative effects in class
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II observables is invalid. If, for a smearing region of size ∆ the mixing of ultrasoft momenta

between the two hemispheres during hadronization is an effect of order ΛQCD/∆, then its

impact on class II observables is the same size as k2
u effects, which are one higher order than

the terms we have computed.

Class III observables are the jet broadening measures Ba,b,sum,max and the C parameter.

These depend on knowing the individual ultrasoft momenta of each parton. This appears

to be a notion that cannot be made rigorous in field theory.

5.3.7 Model-Dependent Relations Among Event Shape Variables

Nonperturbative corrections to event shape distributions have been considered extensively

in the literature in the past. For example, in the work of Ref. [137], nonperturbative shape

functions were derived for thrust and jet mass distributions. The enhanced nonperturbative

corrections to these distributions are given by first moments of these shape functions, and

the results in sections 5.3.1 and 5.3.2 are in agreement with Ref. [137].

The derivations of the enhanced non-perturbative corrections in this section have only

relied on the fact that they arise from matrix elements of ultrasoft operators. It is insightful

to understand what further conditions have to be imposed to reproduce other proposed

relations amongst nonperturbative parameters for event shape distributions [34, 138, 139,

140].

As an example, consider the C parameter, for which the nonperturbative matrix element

was defined as

〈OC1 〉 = 3

〈∑
α

|kα⊥|2
|kα|

〉
. (5.60)

For on-shell soft gluons collinear to the antiquark or quark jet (i.e., in hemisphere a or b,

respectively), k(a)+ � k(a)− and k(b)− � k(b)+. This implies that

〈∑
α

|kα⊥|2
|kα|

〉
coll

= 2

〈∑
α

|k+
α k

−
α |

|k+
α + k−α |

〉

= 2

〈∑
α

|k(a)+
α |+

∑
β

|k(b)−
β |

〉

= 2
〈
k(a)
u + k(b)−

u

〉
.

(5.61)
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This leads to

〈OC1 〉coll = 6 〈OT1 〉. (5.62)

To take into account that ultrasoft gluons can also be radiated at a finite angle, one can

impose the condition that the matrix elements of OC1 and OT1 are given by the one-gluon

contribution in perturbation theory, performing the angular integrals in the phase space at

a fixed value of |k⊥|. Under this assumption, the matrix element of OC1 is given by:

〈 |kα⊥|2
|kα|

〉
1−gluon

= 2

〈∫ π
2

0
dθ sin θ

|k⊥|2
(|k⊥| / sin θ)

1
sin2 θ

〉
= π〈|k⊥|〉,

(5.63)

where the factors of sin θ from the phase space, from the relation |k⊥| = |k| sin θ, and from

the squared amplitude for one gluon emission have all canceled out to give the final result.

For the matrix element of OT1 , we calculate:

〈
k(a)+ + k(b)−

〉
1−gluon

= 2

〈∫ π
2

0
dθ sin θ

|k| (1 − cos θ)
sin2 θ

〉

= 2

〈∫ π
2

0
dθ
|k⊥| (1− cos θ)

sin2 θ

〉
= 2〈|k⊥|〉.

(5.64)

This leads to the result

〈OC1 〉1−gluon =
3π
2
〈OT1 〉1−gluon. (5.65)

Given the assumptions that have to be made to obtain Eq. (5.65) (or analogous relations

based on higher orders in perturbation theory), it does not seem likely to us that there is a

simple analytic nonperturbative relation between
〈
OC1

〉
and

〈
OT1

〉
.

5.3.8 Comparison with the Data

Predictions for event shape variables have been compared with experimental data in Refs. [35,

128]. Nonperturbative corrections have been included using the ansatz that their effect on
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distributions for shape variables is described by shifting the variable by cfµnp/Ecm in the

perturbative formula for the distribution:

dΓ
df

(f)→ dΓ
df

(
f − cfµnp

Ecm

)
. (5.66)

Here cf is a constant that depends on the kinematic variable f , µnp is a universal nonpertur-

bative parameter, and Ecm is the center-of-mass energy. An analysis in perturbation theory

(similar to what was done in section 5.3.7) provides simple relations between the c’s for

some of the event shape variables. We have found that, provided one is not in a kinematic

region that is extremely close to the partonic endpoint (i.e., the shape function region), c for

1−T and M2
S are the same. However, we argued that c for other parameters like the heavy

jet mass and C are not connected to c for thrust. Some experimental evidence for this can

be found in the analysis of Ref. [35]. For 1 − T and the jet mass sum2 a simultaneous fit

for αs and µnp under the assumption that c takes on its conjectured values (see Fig. 5.4)

yields values of µnp that are close to each other, and values of αs that are consistent with

other extractions of the strong coupling. However, Ref. [35] finds that µnp for the heavy

jet mass, C parameter, and jet broadenings are not related to µnp for thrust in the way

that the analysis based on perturbation theory suggests, and, furthermore, a fit to these

variables does not yield a value of αs that is consistent with other extractions.

5.4 Perturbative corrections to dΓ/dEJ

Neglecting order αs corrections to the nonperturbative effects proportional to O1, pertur-

bative corrections to dΓ2-jet/dEJ in Eq. (5.9) can be calculated in full QCD using standard

methods. In this section we first review the computation of perturbative O(αs) corrections

to the total two-jet rate Γ2-jet and then compute the jet energy distribution dΓ2-jet/dEJ at

order αs. We work in d = 4 − ε dimensions to regulate infrared, collinear and ultraviolet

divergences that occur in contributions to the differential decay rate. The jets are defined

using the Sterman-Weinberg criteria which involve an energy cut βMZ and a cone half-angle

δ. Corrections suppressed by αsβ and αsδ are neglected.
2Ref. [35] advocates the use of a modified E-scheme jet mass to reduce sensitivity to hadronic masses.
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Figure 5.4: Experimental fit for model of nonperturbative power corrections to event shape
variables. The DELPHI collaboration [35] tested the Dokshitzer-Webber model for nonper-
turbative power corrections to event shape variables in e+e−-annihilation, fitting to the two
model parameters α0 and αS(MZ). The data suggest a fairly poor fit for most variables,
except for the thrust and jet mass sum, which are most nearly consistent with each other
while also agreeing with independent extractions of αs(MZ). These findings are consitent
with the theoretical predictions in Sec. 5.3.
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5.4.1 Two Jet Decay Rate

Using the Sterman-Weinberg definition of jets, there are three contributions to the two-jet

rate at O(αs):

(a) One quark and one antiquark each creating a jet;

(b) One quark and one antiquark each creating a jet, plus a gluon with energy Eg < βMZ ;

(c) One quark and one antiquark each creating a jet, plus a gluon with energy Eg > βMZ

inside one of the jets (within an angle δ of the quark or antiquark).

Contribution (a) is simply the rate Γ(Z → qq̄). The tree and virtual gluon graphs give

the amplitude:

MZ→qq̄ = εµ(pZ)ūa(pq)Γµva(pq̄)
(

1 +
αsCF
2π

X

)
, (5.67)

where the color index a is summed over values a = 1, . . . , NC , and CF is the Casimir of the

fundamental representation. Explicit computation of the one-loop vertex correction gives,

X = − 4
ε2
− 3
ε

+
2
ε

ln
(−2pq · pq̄

µ2

)
−4+

π2

12
− 1

2
ln2

(−2pq · pq̄
µ2

)
+

3
2

ln
(−2pq · pq̄

µ2

)
. (5.68)

Integrating the square of the amplitude over the d dimensional two body phase space gives:

ΓZ→qq̄ =
NC

32π2
(g2
V + g2

A)
[
M1−ε
Z (4π)ε

2− ε
3− εΩ3−ε

]
×
[
1 +

αsCF
π

(
− 4
ε2
− 3
ε

+
2
ε

ln
M2
Z

µ2
− 4 +

7π2

12
− 1

2
ln2 M

2
Z

µ2
+

3
2

ln
M2
Z

µ2

)]
,

(5.69)

where Ωd is the total solid angle in d dimensions. The 1/ε poles will cancel out against

divergences from the real gluon emission graphs. We do not need to expand the bracketed

prefactor in Eq. (5.69) in powers of ε because the identical factor will appear in the real

gluon graphs.

Contributions (b) and (c) come from integrating the square of the amplitude for real

gluon emission, Z → qq̄g, over the three-body phase space in d dimensions. We find for the

terms that do not vanish as β and δ go to zero,

Γ(b)
Z→qq̄g =

g2
sM

1−ε
Z NCCF
256π5

(2π)2ε
( µ

MZ

)ε
Ω2−εΩ3−ε(g2

V + g2
A)
(
−1
ε

)Γ(− ε
2)2

Γ(−ε) β
−ε, (5.70)
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and

Γ(c)
Z→qq̄g =

g2
sM

1−ε
Z NCCF
256π5

(4π)2ε
( µ

MZ

)ε
Ω2−εΩ3−ε

2− ε
3− ε(g

2
V + g2

A)
(2δ)−ε

−ε
×
[
4
ε
(2β)−ε + 2

(
1 +

3ε
4

+
13ε2

8

)
Γ(−ε)2
Γ(−2ε)

]
.

(5.71)

Adding together contributions (b) and (c), expanding in powers of ε and converting to the

MS scheme yields for the total rate for Z → qq̄g in the two-jet region

ΓZ→qq̄g =
NCCFαs

32π3
(g2
V + g2

A)
[
M1−ε
Z (4π)ε

2− ε
3− εΩ3−ε

]
×
(

4
ε2

+
3
ε
− 2
ε

ln
M2
Z

µ2
− 3

2
ln
M2
Z

µ2
+

1
2

ln2 M
2
Z

µ2

− 4 ln 2β ln δ − 3 ln δ +
13
2
− 11π2

12

)
.

(5.72)

Finally, we add together the rates ΓZ→qq̄ and ΓZ→qq̄g from Eqs. (5.69) and (5.72). The

ε-dependent prefactors in brackets in the two equations are identical, as promised. The

1/ε-poles in the remainder of the expressions cancel out exactly (as do all the logarithms of

MZ/µ), so we can set ε = 0 in the remaining finite parts, leaving

Γ2-jet =
NCMZ

12π
(g2
V + g2

A)

[
1 +

αsCF
π

(
5
2
− π2

3
− 3 ln δ − 4 ln 2β ln δ

)]
, (5.73)

which agrees with Sterman and Weinberg’s original result [144].

5.4.2 Differential Decay Rate dΓ2-jet/dEJ

We now turn our attention to the differential decay rate dΓ2-jet/dEJ . The contribution of

ΓZ→qq̄ to this rate is simply

dΓZ→qq̄

dEJ
= ΓZ→qq̄ δ

(
EJ − MZ

2

)
, (5.74)

where ΓZ→qq̄ is the total rate for Z → qq̄ calculated to O(αs), which is given by Eq. (5.69).

For the contribution of real gluon emission processes, we write the three-body phase
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space for this rate:

dΓ2-jet

dEJ
=

1
16MZ

1
(2π)2d−3

Ωd−2Ωd−1dE1E
d−4
1 dE2E

d−4
2 d cos θ sind−4 θ

× δ
[
M2
Z − 2MZ(E1 + E2)

2E1E2
+ 1− cos θ

]
δ(EJ − · · · )|M|2,

(5.75)

where the δ(EJ − · · · ) defines EJ according to which partons actually go inside the jet. It

is useful to split up the phase space slightly differently than for the case of the total rate:

(a) Gluon with energy Eg > βMZ inside unobserved jet;

(b) Gluon with any energy inside observed jet;

(c) Gluon with energy Eg < βMZ outside observed jet.

These three regions exhaust the possible gluon energies and locations with respect to the

jets. It is convenient to introduce the variable

eJ =
MZ

2
− EJ (5.76)

and focus on a region of eJ near the origin with size of order βMZ .

For case (a), where a gluon with Eg > βMZ is inside the unobserved jet, take E1 = Eg,

E2 = Eq̄, so θ is the angle between the gluon and antiquark, and EJ = Eq. Integrating over

θ and Eq̄ using the delta functions leaves an integral over Eg running between the limits

E±
g =

MZ

4

(
1±

√
1− 8eJ

MZδ2

)
, (5.77)

and restricts eJ to lie between

δ2βMZ < eJ <
MZδ

2

8
. (5.78)

Similarly, for case (b), where a gluon with any energy lies inside the observed jet,

E1 = Eq, E2 = Eg, and EJ = Eg + Eq. Integrate over θ and Eq using the delta functions.

Then the limits of the Eg integral are

E±
g =

MZ

4

(
1±

√
1 +

8eJ
MZδ2

)
, (5.79)
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and eJ is restricted to the region

−MZδ
2

8
< eJ < 0. (5.80)

Before we proceed to case (c), note that the physical observable we actually want to

calculate is the smeared distribution

dΓ
dEJ

∣∣∣∣
∆

=
∫

dEJw∆(EJ)
dΓ
dEJ

, (5.81)

where w∆ is a smooth function which smears the differential rate over a region of jet energy

whose size is of order βMZ . But the contributions to the rate from cases (a) and (b) have

support only over a region of size δ2MZ � βMZ near eJ = 0. Consider smearing dΓ/dEJ ,

or equivalently dΓ/deJ , over a region near EJ = MZ/2 (eJ = 0) of size of order βMZ . Then

w(0) ∼ 1/βMZ , w′(0) ∼ 1/(βMZ)2, etc. Expanding,

∫
deJw(eJ )

dΓ
deJ

=
∫

deJ [w(0) + w′(0)eJ + · · · ] dΓ
deJ

. (5.82)

Since w′(0)/w(0) ∼ 1/βMZ , and, for the contributions in cases (a) and (b), eJ ∼ δ2MZ in

the region where dΓ/deJ is nonzero, the second term is suppressed by a power of δ2/β � 1.

Thus only the first term is relevant.3 Keeping only the first term amounts to replacing the

full dΓ/deJ by
dΓ
deJ
→ δ(eJ )

∫
de′J

dΓ
de′J

. (5.83)

However, integrating the contributions of (a) and (b) to dΓ/deJ over all allowed values

of eJ simply gives their contribution to the total Sterman-Weinberg jet rate, that is, they

will build up part of the term ΓZ→qq̄gδ(EJ −MZ/2) in dΓ2-jet/dEJ . Since we have already

calculated the total rate, we need not analyze cases (a) and (b) any further, as long as we

can get the remaining contribution to the total rate from case (c).

In case (c) we have a gluon with Eg < βM anywhere outside the observed jet. Here

3This argument assumes that the integral
∫

deJ eJdΓ/deJ is finite, which can easily be shown.
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E1 = Eq, E2 = Eg, and EJ = Eq. Writing out the formula for the rate explicitly,

dΓ(c)

dEJ
=

1
16MZ

1
(2π)2d−3

Ωd−2Ωd−1θ(eJ)θ[βMZ(1− δ2)− eJ ]

×
∫ βMZ

eJ (1+δ2)
dEg Ed−4

g Ed−4
q sind−4 θ|M(c)

Z→qq̄g|2.
(5.84)

The part of the amplitude that gives a contribution that survives as β → 0 is

∣∣∣M(c)
Z→qq̄g

∣∣∣2= 4NCCF g
2
sµ

ε d− 2
d− 1

(g2
V + g2

A)
M2
Zpq · pq̄

(k · pq)(k · pq̄) . (5.85)

Substituting Eq. (5.85) into the phase space,

dΓ(c)

dEJ
=
MZg

2
sNCCF

256π5

( µ

MZ

)ε
(2π)2ε

d− 2
d− 1

Ωd−2Ωd−1

× (g2
V + g2

A)e
−1− ε

2
J θ(eJ)θ[βMZ(1− δ2)− eJ ] ln

[
βMZ − eJ
eJδ2

]
.

(5.86)

The factor, (1/eJ ) ln[(βMZ − eJ)/(eJ δ2)], is singular as eJ → 0, and must be rewritten in

terms of an integrable quantity. Use the “plus distribution”:

∫ βMZ

0
deJ f(eJ)+ g(eJ ) ≡

∫ βMZ

0
deJ f(eJ)[g(eJ )− g(0)], (5.87)

where f diverges at eJ = 0 and g is a test function finite at eJ = 0. To replace f by f+, we

would write

∫ βMZ

0
deJ f(eJ)g(eJ ) =

∫ βMZ

0
deJ f(eJ)+ g(eJ ) + g(0)

∫ βMZ

0
deJ f(eJ). (5.88)

The second term amounts to replacing

f(eJ)→ δ(eJ )
∫

de′J f(e′J). (5.89)

But making this replacement in Eq. (5.86) means writing a delta function δ(EJ −MZ/2)

and integrating the differential rate over all allowed values of eJ , which again just gives

its contribution to the total Sterman-Weinberg jet rate. Together with the contributions

from (a) and (b) this gives the one loop contribution to δ(EJ −MZ/2)Γ2−jet. Only the plus

function piece gives a deviation of the jet energy distribution away from EJ = MZ/2. The
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final result for the differential rate to O(αs) is:

dΓ2-jet

dEJ
= δ

(
EJ − MZ

2

)
Γ2-jet

+
MZαsNCCF

12π2
(g2
V + g2

A)θ(eJ)θ(βMZ − eJ)
[

1
eJ

ln
(
βMZ − eJ
eJδ2

)]
+

,
(5.90)

where the total rate Γ2-jet is given by Eq. (5.73).

5.4.3 First Moment of the Jet Energy Distribution

As an application of the above result consider the first moment of the jet energy distribution,

defined by

M1(f) =
∫ MZ

MZ
2

−fβMZ

dEJ

(
1

Γ2−jet

dΓ2−jet

dEJ

)(
1
2
− EJ
MZ

)
, (5.91)

Using the expression in Eq. (5.21) for the nonperturbative correction and in Eq. (5.90) for

the order αs perturbative correction to the jet energy distribution gives

M1(f) =
αsCFβ

π

[
f log

(
1
fδ2

)
− (1− f) log(1− f)

]
+
〈0|O1|0〉
MZ

, (5.92)

for f < 1 and

M1(f) =
αsCFβ

π
log

(
1
δ2

)
+
〈0|O1|0〉
MZ

, (5.93)

for f > 1. Note that the order αs contribution to M1(f) is independent of f for f > 1.

This occurs because the perturbative correction vanishes for EJ < MZ/2− βMZ .

In Fig. 5.5 we plot M1(f), for f < 1. For this figure the value of the energy cut is

β = 0.15 and the cone half-angle is δ = 15◦ and the vacuum expectation value of O1 is

set equal to 500 MeV. We evaluate αs at the scale βMZ and find with these parameters

that the order αs corrections reduce the two jet rate by about 16% from its tree level value

lending support to the validity of perturbation theory for the values of the cone angle and

energy cut used in Fig. 5.5.

5.4.4 Perturbative Corrections in the Effective Theory

Although we have used full QCD to calculate the jet energy distribution it is possible to

do the computation in the effective theory. Here we briefly discuss how that computation

would proceed.
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Figure 5.5: First moment M1(f) of the jet energy distribution. The black solid curve
shows the perturbative contributions only, while the red dashed line represents the moment
including the nonperturbative contribution. The figure corresponds to β = 0.15, δ = π/12,
〈0|O1|0〉 = 0.5 GeV, and we have evaluated the strong coupling constant at the scale
µ = βMZ .

The full theory amplitude for Z → qq̄ is reproduced in SCET by the Wilson coefficient

in the current matching:

jµQCD = [ξ̄n̄Wn̄]C(µ, p̃q · p̃q̄)Γµ[W †
nξn], (5.94)

where there is an implicit sum over label momenta and the matching coefficient C(µ, p̃q · p̃q̄)
can be read off4 from Eqs. (5.67) and (5.68):

C(µ, p̃q ·p̃q̄) = 1 +
αsCF
2π

[
−4 +

π2

12
− 1

2
ln2

(−2p̃q · p̃q̄
µ2

)
+

3
2

ln
(−2p̃q · p̃q̄

µ2

)]
, (5.95)

and the UV renormalization factor for the current in the effective theory is

ZV = 1 +
αsCF
2π

[
− 4
ε2
− 3
ε

+
2
ε

ln
(−2p̃q · p̃q̄

µ2

)]
. (5.96)

4The matching coefficient is just given by the finite part of the full theory matrix element 〈qq̄|jµ|0〉
because the full theory current has no anomalous dimension, so the 1/ε poles are pure IR divergences, which
must cancel out in the matching condition. The loop graphs in the effective theory contributing to this
matrix element are zero in dimensional regularization, so the finite part of the matching coefficient is just
the finite part of the QCD matrix element, given by Eqs. (5.67) and (5.68), while the infinite parts become
the UV counterterm in the effective theory [82, 158].
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Note that both the renormalization factor and the matching coefficient depend on the label

momenta for the quark and antiquark. For outgoing particles, the collinear Wilson lines are

defined as

Wn(z) = P exp
[
ig

∫ ∞

0
ds n̄ ·An(n̄s+ z)

]
, (5.97)

and one must include collinear gluons produced by a Wilson line in real gluon emission

to get the correct Z → qq̄g amplitude. We find that the perturbative expressions for the

two jet rate presented in the previous sections are reproduced by the effective theory if we

call any particles inside the observed quark jet n̄-collinear particles and all other particles

n-collinear. In the effective theory, ultrasoft gluons in the final state contribute zero in

perturbation theory and appear only in the nonperturbative shape function. A similar

result holds for deep inelastic scattering [159].

5.5 Concluding Remarks

We have studied nonperturbative effects in Z decay to hadrons using soft-collinear effective

theory (SCET). The jet energy distribution for two jet events has enhanced nonperturbative

effects when the jet energy is near MZ/2. These nonperturbative effects can be expressed

in terms of the vacuum expectation value of operators involving Wilson lines. The Wilson

lines arise from the coupling of ultrasoft gluons to collinear degrees of freedom in the jet. In

Sec. 5.4 we derive the order αs perturbative corrections to the jet energy distribution and

discuss the implications of perturbative and nonperturbative physics on the first moment

of this distribution.

For a region of |EJ −MZ/2| that is of size ∆, the leading nonperturbative corrections

to the jet energy distribution are of order ΛQCD/∆ when ∆ is large compared to ΛQCD. In

this region they can be characterized by the vacuum expectation value of a single operator

involving ultrasoft fields which provides a contribution to the jet energy spectrum that is

proportional to δ′(MZ/2 − EJ). For multijet events, a similar analysis holds; however, an

additional operator analogous to O1 but involving adjoint Wilson lines occurs for a gluon

jet [32].

When ∆ ∼ ΛQCD, one is in the shape function region, and the functional dependence

on EJ is much more complicated. While we focused mostly on the kinematic region where

MZ � ∆ � ΛQCD, it was shown that in the shape function region, it is not possible
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to capture the effects of nonperturbative physics by introducing a single nonperturbative

parameter µnp and shifting EJ → EJ − µnp in the perturbative formula for the jet energy

distribution.

The jet energy distribution has the special property that it is totally inclusive in one

of the jets, and hence expressions for nonperturbative effects can be derived using operator

methods that are similar to those used for the endpoint region in inclusive semileptonic B

decay. Other event shape variables (e.g. thrust, jet mass, jet broadening) have nonpertur-

bative effects that are enhanced in the partonic endpoint region. We discussed the extent

to which these effects can be understood using field theoretic methods in QCD.

5.A Appendix: Properties of Wilson Lines

In this section we derive some useful properties of the ultrasoft Wilson lines introduced in

Eq. (5.7).

5.A.1 Relations Between Triplet and Anti-triplet Wilson Lines

Consider the time- and anti-time-ordering of the Wilson lines in the shape function S defined

in Eq. (5.16). For Yn, the path ordering is the same as time ordering and so T [Yn] = Yn.

Consider writing Yn as the product of N infinitesimal integrals over path segments of length

ds,

Yna
b =

(
eigANds

)
a

bN−1

(
eigAN−1ds

)
bN−1

bN−2 . . .
(
eigA1ds

)
b1

b, (5.98)

with the subscripts on the ultrasoft gauge fields denoting their space-time location along

the path of integration. Taking its adjoint

Y †
na

b =
(
e−igA1ds

)
a

b1 . . .
(
e−igAN−1ds

)
bN−2

bN−1

(
eigANds

)
bN−1

b. (5.99)

Time ordering this expression,

T
[
Y †
na

b
]

=
(
eigANds

)
bN−1

b
(
e−igAN−1ds

)
bN−2

bN−1 . . .
(
e−igA1ds

)
a

b1

=
(
e−igA

T
Nds

)b
bN−1

(
e−igA

T
N−1ds

)bN−1

bN−2
· · ·

(
e−igA

T
1 ds

)b1
a = Y n

b
a,

(5.100)
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where the overline denotes an anti-triplet Wilson line. (Recall that the generators in the 3

representation are minus the transpose of those in the 3.) Similarly,

T̄
[
Yna

b
]

= Y
†
n

b

a, T̄
[
Y †
na

b
]

= Y †
na

b. (5.101)

From these results, Eq. (5.18) follows.

5.A.2 O1 in Terms of the Gluon Field Strength

We can express the operator O1 in terms of the gluon field strength tensor as written in

Eq. (5.24). It is convenient for this purpose to generalize the expression for the ultrasoft

Wilson line to

Yn̄(z; b, a) = P exp
[
ig

∫ b

a
ds n̄ · A(z + n̄s)

]
(5.102)

so that with a = 0 and b = ∞ we recover the standard Wilson line used above, Yn̄(z) =

Yn̄(z; 0,∞). Differentiating along the n direction,

n · ∂ Yn̄(z) = ig

∫ ∞

0
ds Yn̄(z;∞, s) [n · ∂zn̄ · A] (z + n̄s)Yn̄(z; s, 0)

= ig

∫ ∞

0
ds Yn̄(z;∞, s) [n · ∂zn̄ · A− n̄ · ∂zn ·A+ n̄ · ∂zn ·A] (z + n̄s)

× Yn̄(z; s, 0)

= ig

∫ ∞

0
ds Yn̄(z;∞, s) [n · ∂zn̄ · A− n̄ · ∂zn ·A] (z + n̄s)Yn̄(z; s, 0)

+ ig

∫ ∞

0
ds Yn̄(z;∞, s)

[
d(n · A)

ds

]
(z + n̄s)Yn̄(z; s, 0).

(5.103)
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Using the chain rule,∫ ∞

0
ds

d
ds

[Yn̄(z;∞, s) [n ·A] (z + n̄s)Yn̄(z; s, 0)]

=
∫ ∞

0
ds

[
d
ds
Yn̄(z;∞, s)

]
[n ·A] (z + n̄s)Yn̄(z; s, 0)

+
∫ ∞

0
ds Yn̄(z;∞, s)

[
d(n · A)

ds

]
(z + n̄s)Yn̄(z; s, 0)

+
∫ ∞

0
ds Yn̄(z;∞, s) [n ·A] (z + n̄s)

[
d
ds
Yn̄(z; s, 0)

]
= −ig

∫ ∞

0
ds Yn̄(z;∞, s)[n̄ · A(z + n̄s), n ·A(z + ns)]Yn̄(z; s, 0)

+
∫ ∞

0
ds Yn̄(z;∞, s)

[
d(n · A)

ds

]
(z + n̄s)Yn̄(z; s, 0).

(5.104)

Using the above equation to eliminate the last term in Eq. (5.103) yields,

n ·DYn̄(z) = ig

∫ ∞

0
ds Yn̄(z;∞, s)nµn̄νGµν(z + n̄s)Yn̄(z; s, 0), (5.105)

where

n ·DYn̄(z) = n · ∂ Yn̄(z)− ign ·A(∞)Yn̄(z) + igYn̄(z)n ·A(z), (5.106)

and the gluon field strength tensor is defined by,

Gµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. (5.107)

Hence

O1 =
1
2
Tr[Y †

n̄ (in ·D)Yn̄] =
1
2
Tr

[
ig

∫ ∞

0
ds Y †

n̄ (z; s, 0)nµn̄νGµνYn̄(z; s, 0)
]
, (5.108)

which is Eq. (5.24).
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Chapter 6

Summary and Outlook

“There is no supersymmetry.”

Carlos Wagner, in the middle of his 2002 TASI Lecture,
Introduction to Supersymmetry.

Experiments to search with unprecedented sensitivity for particles and phenomena beyond

the Standard Model of particle physics lie just over the horizon. These experimental ad-

vances make urgent the task of theorists to prepare to extract evidence for new physics

from the empirical data by improving our ability to calculate reliably within the Standard

Model, and then to be ready to deduce the implications of the new discoveries for our

existing models of physical phenomena.

In this work we have chipped modestly away at these complementary tasks. First, taking

note of the already-existing evidence of the inadequacy of the Standard Model in the baryon

asymmetry of the Universe, we took steps toward a more reliable calculation of the BAU

predicted by the scenario of electroweak baryogenesis in the MSSM, and comparing the sizes

of CP -violating phases required by this scenario with the limits already placed on them by

the null results of searches for electric dipole moments of electrons, neutrons, and 199Hg

atoms. Making use of the closed-time path formalism for quantum field theory incorporating

the effects of finite-temperature and nonequilbrium physics, we found regions of parameter

space in the MSSM for which the baryon asymmetry would be enhanced over the predictions

of semi-classical calculations. In these regions, electroweak baryogenesis is found to account

successfully for the BAU with CP -violating phases in the MSSM as small as 10−2−3, which

are still consistent with current bounds from EDM searches. Future electron and neutron

EDM searches, however, should be sensitive enough to rule out this scenario for baryogenesis

if no EDMs (or too small EDMs) are found, or to detect positively nonzero EDMs of this size.
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Such a discovery, combined with discoveries of superpartners with masses consistent with

our predictions, would constitute strong evidence that the baryon asymmetry could indeed

have been produced during the electroweak phase transition. More likely, EDM searches

and LHC results will further restrict the parameter space in the MSSM that could allow for

successful electroweak baryogenesis, and point our investigations in the direction of other

models (either extending the MSSM or favoring a different mechanism for baryogenesis)

that could be the correct account of the particles which actually exist in Nature and the

origin of those which ended up as the matter that makes up all of our observable (and

improbable [160]) Universe today.

On the Standard Model front, we employed effective field theories in QCD to untangle

perturbatively-calculable and unknown nonperturbative effects in processes involving the

strong interactions by organizing the theory in powers of some small parameter. We applied

soft-collinear effective theory combined with non-relativistic QCD to the exclusive radiative

decay of Υ or other quarkonia to light hadrons. It has been known that in inclusive radiative

Υ decays the decay channel involving the bb̄ pair in a color-octet configuration can be as

important as the color-singlet channel in the kinematic region of near-maximal photon

energy, Eγ ∼ MΥ/2. In exclusive decays, however, we showed that the color-octet channel

could be safely ignored, thanks to the power counting in the effective theory of the color-

singlet and color-octet contributions to the Υ → γH decay rate. The power counting and

perturbative matching produced an operator which dominantly contributes to the decay

rate, leading us to predict that the dominant decay product in radiative Υ decay should be

the f2(1270), which should be produced in a helicity-zero state. The limited experimental

evidence so far lends support to this prediction, although the helicity of the produced f2

has not yet been positively identified. Our analysis also suggests a larger branching fraction

for Υ→ γf2 than the data so far indicate. Further data on this decay and other radiative

decays, if consistent with the effective theory predictions, would lend powerful support to

the validity of the effective theory expansion, establishing its reliability for use in other

processes, especially those which relate more directly to searches for new particles.

Such processes are the production of hadronic jets in lepton collisions or, in our formu-

lation, Z decays. SCET isolated for us the soft gluon matrix elements giving the leading

nonperturbative corrections to event shape distributions in hadronic Z decays or, equiv-

alently, e+e− annhilation. Reliable calculation of these variables in QCD is essential to
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separate the Standard Model background in such processes in searches for new physics.

Universalities among nonperturbative contributions to different event shapes would reduce

the uncertainties in these calcualtions greatly, improving our ability to find deviations from

Standard Model predictions while also revealing new information about QCD itself. We

attempted to find such relations in the Z decay distributions in jet energy, thrust, jet

masses, jet broadenings, C parameter, and other variables. The theory, however, did not

fully acquiesce to our hopes, leaving us only one relation between the thrust and jet mass

sum distributions. Experimental tests of models proposing more extensive relations among

these nonperturbative corrections seem to confirm our findings. This suggests a future di-

rection of research to define new event shape variables, other than those standardly used in

the past, which may receive universal nonperturbative corrections. This task was begun in

perturbative QCD in Refs. [161, 162], and could be analyzed also in SCET. Similar methods

could also be applied to other classes of events with QCD-jet backgrounds, or to the study

of processes with collinear hadrons in the initial state, as occurs at any hadron collider.

Precision tests at low energy which constrain parameters of proposed models of physics

beyond the Standard Model together with reduction of uncertainties in calculations of strong

interaction phenomena prepare the way for the further scrutiny of the Standard Model to

ever higher precision and perhaps the discovery of new particles and phenomena which lie

beyond it. It is the task of the theorist to develop reliable methods to predict the observables

in these phenomena and be prepared to understand the implications thereof on our models

for the particles which make up our Universe and how they were generated in the very

beginning.
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