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Abstract

In order to study quantum effects such as state superposition and entanglement, one would like to
construct simple systems for which the damping rates are slow relative to the rate of coherent evolu-
tion. One such system is strong-coupling cavity quantum electrodynamics (QED), in which a single
atom is coupled to a single mode of a high finesse optical cavity. In recent years, optical trapping
techniques have been applied to the cavity QED system, allowing an individual atom to remain
coupled to the cavity for long periods of time. For the purpose of future cavity QED experiments,
one would like to gain as much control over the trapped atom as possible; in particular, one would
like to cool the center of mass motion of the atom, to measure the magnetic field at the location of
the atom, and to be able to prepare the atom in a given internal state. In the first part of this thesis,
I present a scheme for driving Raman transitions inside the cavity that can be used to achieve these
goals. After giving a detailed theoretical treatment of the Raman scheme, I describe how it can be

implemented in the lab and discuss some preliminary experimental results.

In the second part of this thesis, I present a number of simple field theory models. These mod-
els were developed in an attempt to understand some of the central ideas of theoretical physics by
looking at how the ideas work in a highly simplified context. The hope is that by reducing the
mathematical complexity of an actual theory, the underlying physical concepts can be more easily

understood.

Note on units: this thesis uses natural units (7 = ¢ =1).
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Chapter 1

Atomic physics

1.1 Introduction

1.1.1 Cavity QED

Many quantum systems can be described in terms of a simple system with a few degrees of freedom
interacting with a complicated environment with many degrees of freedom. If the simple system
were isolated it would evolve coherently, but because of the coupling to the environment the coherent
evolution is damped at a rate determined by the strength of the coupling. The damping destroys
quantum effects such as state superposition and entanglement, so to study these effects one would

like to construct systems where damping is slow relative to the rate of coherent evolution.

Two candidates for building such systems are atoms and photons. Atoms can store quantum infor-
mation for long periods of time in internal states and are easily manipulated with laser beams, while
photons are useful for transporting quantum information from one location to another. One system
that combines the advantages of both is cavity quantum electrodynamics, in which a single atom is
coupled to a resonant mode of an optical cavity. For cavity QED, the internal states of the atom and
the Fock states of the quantized cavity mode constitute the degrees of freedom of the system, while

the modes of the electromagnetic field to which the atom and cavity couple serve as the environment.

An optical cavity is formed by two mirrors separated by a distance L. The mirrors confine light to a
finite region, resulting in a set of modes at integer multiples of the free spectral range vpsr = 1/2L.
Each mode acts like a separate harmonic oscillator, which may be driven by coupling resonant light
into the cavity and which is damped at a rate x determined by the mirror reflectivities. By adjusting
the mirror separation L, one of the modes can be tuned into resonance with an atomic transition;
for vpsr > 7, where 7y is the spontaneous decay rate of the atom, the non-resonant modes are so far

detuned that they don’t interact with the atom and may be neglected. The resonant mode couples



[\

to the atom via the Hamiltonian

Hi=-pE
where p' is the atomic dipole moment and E is the electric field at the position of the atom.
We would like to compare the coherent coupling strength to the damping rates v and . The coher-

ent coupling strength is determined by the magnitude of H;, which can be estimated as follows. If

there are n photons inside the cavity, then the field energy is
1
= —VE?
nw = =

where w is the angular frequency of the mode and V is the mode volume. Thus, the electric field is
given by
E = (8mnw/V)1/?

The spontaneous decay rate of the atom is

4
§ = §w3p2

Thus, the atomic dipole moment is given by
p = (/4%
Substituting these results into H;, we obtain

H; ~ gv/n

where

g = (3/167%)1/2 (QX*/V)'/? 5

characterizes the strength of the atom/cavity coupling. Here @ = w/7 is the quality factor of the
atom and A = 27/w. Note that to generate a large coupling we want a cavity with a small mode
volume and an atom with a large Q. For our cavity V/\3 = 3.6 x 10* and x = (27)(8.4 MHz), and
for the atomic transition we use @ = 6.8 x 107 and = (27)(5.2 MHz). Thus, the coherent coupling
strength is g = (27)(32 MHz).

Having estimated the coherent coupling strength, let us now consider the dynamics of the sys-

tem. For simplicity, we will assume the atom has only two levels: a ground state g and excited state
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e. We can define raising and lowering operators for the atom:

oy = el

o- = lg)

By substituting for the dipole moment of the atom and for the electric field of the light, one can
show that
Hi=—p-E=glao; +ad'o)

where g is the coherent coupling rate we just calculated, and a and a are creation and annihilation
operators for the cavity mode. If we include terms for the energy of the atom and the field, we find

that the total Hamiltonian is
H=wo,o_ +wa'a+glac, +alo.)

This is known as the Jaynes-Cummings Hamiltonian [1]. We can form a basis of states for the system
by taking tensor products of the atomic states |g), |e) and cavity Fock states |n) to obtain product

states |g,n), le,n). The ground state is |g,0), and the two lowest excited eigenstates are

1

+) 7

(le,0) £1g,1))
with eigenvalues w £ g. If the atom is decoupled from the cavity, these states are degenerate, but
in the presence of the coupling they are split by 2¢g. This splitting of the lowest two excited states

is called the vacuum Rabi splitting.

Now suppose we drive the cavity with a laser beam tuned to the atomic resonance. Because the
vacuum Rabi splitting shifts the eigenstates of the system out of resonance with the driving field, we
expect the presence of an atom to suppress the coupling of light into the cavity. We can calculate

this effect as follows. To include the effects of the driving laser, we add a term to the Hamiltonian:
H=wo,o_ +wa'a+glaoy +a'o )+ \a+a)coswt

where A\ gives the driving strength. The Hamiltonian can be simplified by applying some unitary

transformations and making the rotating wave approximation:

H = g(aoy +alo_) + (A/2)(a + a')
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We can obtain an approximate steady state solution by viewing the coupled atom-cavity system as
an isolated atom described by an effective Hamiltonian H,, and an isolated cavity described by an
effective Hamiltonian H.. The Hamiltonian H, is obtained from H by replacing the operator a with

a parameter a = (a) characterizing the field amplitude:
Ha = g(Oé0'+ + a*o_)

Similarly, H, is obtained from H by replacing the operator o_ by a parameter 5 = (o_) character-
izing the atomic dipole:

H.=g(B%a+ Ba") + (A\/2)(a +al)

If we define an effective Rabi frequency Qg = 2ga and an effective driving strength A\g = 2¢g8 + A,

we can express H, and H,. as

Qroy+Q50-)

N~ N —

(Aga' 4+ X a)

For weak driving, the atomic dipole and the field amplitude are given by the ratio of the driving

rates (g and Ag) to the damping rates (y and k):
f=(0-) =—iQp/y = —2iga/y

a={(a) = —irg/k = —a/Na — i)k

where N4 = ry/4g? is called the critical atom number. The field amplitude is therefore
a=—i(Ar)(1+NH?
and the number of photons inside the cavity is
n=laf = OVRP(L+ N3 ™2 = ng(1+ N2

where ng = (A\/k)? is the photon number for an empty cavity. Thus, the coupling to the atom

reduces the number of photons in the cavity by a factor of ~ NX2.

In the limit ¢ < K, we can give a second interpretation to the critical atom number. Suppose
we start the system in state |e,0). The excitation can decay via one of two channels: either the

atom spontaneously emits a photon |e,0) — |g,0) (rate 7), or the atom coherently transfers its exci-
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tation to the cavity |e,0) — |g, 1) (Rabi frequency 2g), and the cavity emits the photon |g,1) — |g, 0)
(rate ). In the limit g < k, decay via the second channel proceeds at a rate I' = (2¢)?/k. Thus, if
we repeatedly start the system with the atom in its excited state, then the ratio of photons emitted

by the atom to photons emitted by the cavity is 7/T" = k7/4g? = Na, the critical atom number.

So far we have considered the effect of the atom on the light in the cavity, but what about the
effect of the light on the atom? The atom saturates when the effective Rabi frequency Qg equals
the spontaneous decay rate . Substituting our expression for 2z, we see that the field needed to

saturate the atom is o = v/2g, so the number of photons needed to saturate the atom is
Ny = |a|* = 7%/44?
This is called the saturation photon number. Substituting for g, we find
N, ~V/QN
Thus, for a small enough cavity (V < QA3) a single photon will saturate the atom.

In summary, by using a cavity with high finesse and low mode volume we can enhance the ef-
fects of single quanta, so that a single atom strongly effects the intra-cavity field and a single photon

strongly effects the atom.

1.1.2 Optical trapping

To study cavity QED in the lab, we need a way of delivering atoms to the optical cavity. One
delivery method is to pass an atomic beam through the cavity; another is to drop a cloud of cold
atoms on it. For both these methods, an individual atom passes rapidly through the cavity and
is only briefly coupled to the cavity mode. A better method is to trap an atom at a well-defined
location inside the cavity, so it remains coupled for a long time. To accomplish this, we create an
optical trap by driving a cavity mode that has a resonant frequency much lower than that of the

atom. This type of trap is known as a far off resonance trap, or FORT [2], [3].

Roughly, the FORT works as follows. The electric field E of the FORT light induces a dipole p’
in the atom, which couples back to the field, yielding a potential

U = -5 E(7)



6

For red detuned light (atom driven below resonance), the induced dipole oscillates in phase with
the field, so the atom is pulled toward regions of high field intensity. Because of the standing wave
structure of the cavity mode, the high intensity regions occur at the center of pancake shaped wells,
any one of which is capable of trapping an atom. We can create a nearly conservative trap by using
light that is highly detuned; for light with intensity I and detuning A, the trap depth is ~ I/A
while the scattering rate is ~ I/A2, so by increasing both the detuning and the intensity we can
hold the trap depth constant while reducing the scattering rate. Using a FORT, we have succeeded
in trapping atoms inside our cavity for ~ 3 s, which is ~ 108 times longer than the timescale 1/g

that characterizes the atom/cavity coupling [4].

1.1.3 Some applications of cavity QED

A wide variety of experiments can be performed using cavity QED with trapped atoms. Two ap-
plications that we have implemented in the lab are the single atom laser [5], [6] and single photon

generation [7].

By using a cavity with high finesse and low mode volume, one can enhance the effects of single
quanta to such a degree that a single atom can serve as a lasing medium [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18]. In a conventional laser, a lasing medium consisting of many atoms
is coupled to one or more modes of an optical cavity and is driven by an external pumping mech-
anism. Because of the atom/cavity coupling, light that is present in the cavity can stimulate the
atoms to coherently emit into the cavity modes instead of spontaneously emitting into free space,
and for strong enough coupling emission into the cavity dominates the emission into free space.
As we make the atom/cavity coupling stronger and stronger, fewer and fewer atoms are needed
for the laser to operate, until ultimately a single atom will suffice. If the critical atom number is
small but the critical photon number is large, then the single atom laser has a sharp threshold,
obeys the semiclassical laser equations, and exhibits other laser-like properties. For our cavity, both
the critical number and the critical photon number are small; thus, deviations from conventional

laser-like behavior are observed, such as photon antibunching and the lack of a well-defined threshold.

A second application of cavity QED is single photon generation. In free space, an atom with two
ground states a and b and one excited state e can be used to generate single photons in the following
way. First we optically pump the atom into state a by applying a field on the b — e transition. Next,
we apply a field on the a — e transition. The field excites the atom to state e, from which it can
either decay to a, where it will be re-excited by the field, or to b, where it decouples from the field.
Eventually the atom is optically pumped into b, with a single photon emitted at frequency wpe. This

scheme for generating single photons is not very useful, because the photon is emitted in a random
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direction. However, by introducing a cavity that has a mode resonant with the b — e transition, we
can collect the photon and direct it into a single spatial mode. Furthermore, the cavity can be used
to implement an adiabatic passage scheme, which allows the temporal profile of the photon to be

controlled.

1.1.4 Raman scheme

For the purpose of future cavity QED experiments, one would like to gain as much control over the
trapped atom as possible. In particular, one would like to cool the center of mass motion of the
atom, to measure the magnetic field at the location of the atom, and to be able to prepare the atom
in a given internal state. As the main topic of this thesis, I present a scheme I have developed for
driving Raman transitions inside the cavity that can be used to achieve all of these goals. Raman
transitions are a standard tool for cooling and manipulating atoms [19], [20], [21], [22], [23], and have
been used to cool trapped ions to the motional ground state [24]. Here I show how this powerful

technique can be applied to the cavity QED system.

Before introducing the scheme and discussing its applications, I want to briefly review the con-
cept of a Raman transition by using a simple model. Consider a three-level atom that has an
excited state e and two degenerate ground states a and b (see Figure 1.1). If we drive both the
a — e and b — e transitions with classical fields that have Rabi frequency 2 and detuning A, then

the Hamiltonian for the system is
Q Q
H = —Ale){e| + 5 (le)al + la){el) + 3 (le) (b] + [b){e])

We can simplify H by introducing states that are superpositions of a and b:

) = =(la) £ 1)

S

Thus,
H = ~Ale) el + 5 () (+] + [+ (e

For large detunings (A > Q), the first term dominates, and we can treat the second term as
a perturbation. To lowest order, the eigenstates are |e), |+), |—) with eigenvalues E, = —A,

Ey =Q?/4A, E_ = 0. Thus, we can approximate H by

QZ
H =~ —Ale){e] + < [+)(+]



Or, substituting for |+),
H =~ —Ale)(e] + U(|a){a| + [0)(]) + Q—QR(|G><1?| + [b){al)

where U = Q?/4A and Qp = Q?/2A.

Figure 1.1: Three-level atom.

Note that in the approximate Hamiltonian there is no coupling of the ground states to the excited
state; the effects of the couplings that were present in the original Hamiltonian are taken into ac-
count in the second and third terms. The second term describes a level shift to the ground states
by an amount U, and the third term describes an effective field with Rabi frequency g, which
couples the ground states to one another. It is this third term that is of interest; in general, one
can couple two ground states of an atom by driving the atom with a pair of far detuned beams,
where the relative detuning of the two beams is equal to the splitting between the two ground states.
The coupling generated by such a method is called a Raman coupling, and the resulting transitions

between ground states are called Raman transitions.

The Raman scheme presented in this thesis involves using the FORT trapping light itself as one
leg of a Raman pair. To form the other leg, we pulse on a second, much weaker beam, which I
will call the Raman beam. The relative detuning between the FORT and Raman beams is chosen
so as to drive Raman transitions between the two ground state hyperfine manifolds of Cesium. By
controlling the power, detuning, and duration of the Raman pulse, one can apply various unitary

transformations to the ground state manifold of the atom. This has a number of applications.

One application is Raman spectroscopy. If we repeatedly start the atom in one ground state man-

ifold, apply a Raman pulse with a given detuning, and then check if the atom has been transfered
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to the other ground state manifold, we can determine the transfer probability for that detuning. By
measuring the transfer probability for many different detunings we can map out a Raman spectrum.
This is a useful diagnostic tool, which provides information about the magnetic fields at the location

of the atom and about the distribution of ground state populations.

A second application is atomic state preparation. One can create arbitrary superpositions of ground
states by optically pumping the atom into a known initial state and then applying an appropriate
Raman pulse. The ability to create superposition states is a key ingredient in many entanglement

and teleportation schemes.

A third application is cooling the atomic center of mass motion. The strength of the Raman coupling
depends on the intensities of the FORT and Raman beams at the position of the atom, and therefore
varies as the atom moves around inside the cavity. Thus, the Raman coupling gives a coupling of

the internal atomic state to the center of mass motion, which can be exploited to cool the atom.

1.2 Two-level systems

One can often model an atom as a two-level system with one ground state and one excited state. In

this section, I discuss some general results that are useful in working with such two-level systems.

1.2.1 Representations of pure states

Here I discuss several ways of representing pure states, which are states of a single, isolated quantum

system. The state of a two-level system can be described by a wavefunction

[¢) = cele) + colg)

where c. and ¢4 are complex numbers. Two complex numbers correspond to four real degrees of
freedom, but only two of these are physical. One degree of freedom is removed by requiring that the

wavefunction be normalized:

W) = [ee|* +1cg? =1

A second degree of freedom corresponds to the freedom to make phase transformations [¢) — €% |¢)),
which give different wavefunctions that describe the same physical state. Thus, a two-level system

in a pure state has two physical degrees of freedom.
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The state of the system may also be represented by a density matrix
p=10)W =" pili) (]
j
where
Pij = Cq C;

Note that for pure states, the density matrix is idempotent (p?> = p), hermitian (p' = p), and has
unit trace (Tr[p] = 1). Conversely, any idempotent, hermitian matrix with unit trace is the density
matrix for a pure state. To see this, consider the eigenstates of such a matrix. Since the matrix is

hermitian, it has a pair of eigenstates |¢1), |¢2) with eigenvalues Ay, Ao:

p = A1]o1)(@1] + Xa|d2) (2]

Since the matrix is idempotent,

p|¢n> = )‘n|¢n> = p2|¢n> = )‘121|¢n>

SO

/\n(l - )‘n)|¢n> =0

Thus, A, € {0,1}. Since the matrix has unit trace, one eigenstate, |¢,), must have eigenvalue 1,

and the other, |¢,), must have eigenvalue 0. Thus,

p= |¢a><¢a|

which is the density matrix corresponding to the pure state |¢g).

Wavefunctions and idempotent density matrices can be used to represent the pure states of quan-
tum systems with any number of levels. But there are additional representations that apply only to

two-level systems. Consider the normalization condition for the wavefunction of a two-level system:
|Ce|2 + |Cg|2 =1

This is the equation for the three sphere S3, which has two unique properties. First, it is isomorphic

to SU(2):

3 Ce Cgq
(Ceyreq) € 5° = € SU(2)
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Second, S? forms a U(1) bundle over S? via the Hopf fibration. These properties give two additional
representations for pure states. First, a pure state can be represented as a unitary matrix with unit

determinant:

Second, a pure state can be represented as a three-vector with unit length. To see this, note that

since the density matrix is hermitian, it can be expressed as

p=a+f-7
were o and E are real. Here
or = le){gl+lg)(el
oy = —i(le)(gl —lg)(el)
oz = le)el = lg){yl
are the Pauli spin matrices. They satisfy
[O'i,Uj] = 22'61']‘;7g01C
{O’i,O'j} = 2517‘

Since the density matrix has unit trace a = 1/2, and since it is idempotent,
2 1 2, 3
rr=aT pr+B-o=p

This implies that |5] = 1/2, so

(14+#-0)

1
P=3

where 7 = 23 is called the Bloch vector. The wavefunction and Bloch vector are related by
P =2Re(cgc;) &+ 2Im(cgcz) g+ (lce|2 - |Cg|2) z

In fiber bundle language, the mapping |1)) — # constitutes a projection from S (the total space)
onto S? (the base space). All the wavefunctions that can be obtained from |¢) by a phase transfor-
mation 1)) — e%[1)) are projected onto the same Bloch vector #, so the Bloch vector can be thought
of as a projective representation. Since the density matrix shares this property, it is also a projective

representation.
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It is often useful to express the quantum state as a function of two coordinates that correspond
to its two physical degrees of freedom. Here is what the quantum state would look like for one

possible choice of coordinates, in each of the four representations discussed:

wavefunction:

i) = €/ sin0/2|g) + e7*/% cos 02 |e)

unitary matrix:
e~ /2cos0/2  €?/?sin0/2
—e79/25in0/2 e "%/?cos0/2

U =

density matrix:

1 1+cosf e *®sinf
p=51 .
2 e®sinf 11— cosf
Bloch vector:

7 =sinfcos¢ L+ sinfsin¢y + cosh 2

In summary, a pure quantum state of a two-level system can be represented as a wavefunction

(element of S3) or, isomorphically, as a unitary matrix (element of SU(2)):

Ce Cg
cele) + Cg|9> .
_Cg C6

By projecting out the overall phase factor, a pure quantum state can also be represented as a unit
length Bloch vector (element of S?) or, isomorphically, as an idempotent density matrix (idempotent
hermitian matrix with unit trace):

. 14+r, 1y —iry

ro——

1
2 Te+iry 1—r,

1.2.2 Representations of mixed states

In the previous section we discussed four ways of representing the pure states of a single, isolated
two-level system. Two of these representations—the density matrix and the Bloch vector—may be

generalized to mixed states, which describe a statistical ensemble of quantum systems.

Suppose that a fraction p, of the systems in an ensemble are described by the sate vector |¢y,).

The expectation value of an arbitrary operator A is a weighted sum over expectation values of each
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of the systems in the ensemble:
<A> = an<"/]n|A|wn> = anTT[PnA] = TT[pA]

where

P = ) (Ynl

is the density matrix for the pure state |¢,,), and

P=D Dupn
n

is the density matrix describing the statistical ensemble. Note that
Trlp) =Y puTrlpa) =D pn=1
n n

Also, p is clearly hermitian. Thus, for both pure states and mixed states, the density matrix is

hermitian and has unit trace.

How can we tell if a given density matrix describes a pure state or a mixed state? Since the density
matrix is hermitian in both cases, it can always be diagonalized by a suitable unitary transformation.

In the basis {|¢,)} in which it is diagonal, it takes the form
p= Z An|n ) (¢n|

Note that
(Dnlplpn) = A = an|<¢n|1/)n>|2

Thus, A, > 0. Since p has unit trace,

Thus, A, < 1. Note that
Trlp’) =) X,

Since 0 < A\, < 1, we have that A2 < \,,. Thus,

Tr[p*] <1
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If Tr[p?] = 1, then for all n we must have that A2 = \,,, which implies that \,, € {0,1}. Since p has
unit trace, one of the A\,’s is one and the rest are zero, so the density matrix describes a pure state.

If Tr[p?] < 1, then there are several nonzero \,’s, so the density matrix describes a mixed state.

The Bloch vector representation can also be generalized to describe mixed states. Let 7, denote
the Bloch vector corresponding to the state |1,,). Then the n'* quantum system in the ensemble is

described by the density matrix

1 LS
Pr = [n) (Yn] = 5(1 + P - O)
Thus, the density matrix for the entire ensemble may be expressed as
P=D Pupn= l(1+F'5)
- 2
where
7= Z Pn Fn

Note that
1 L,
Tr[p? = 5(1 +171?)

Thus, for pure states |7] = 1, while for mixed states |#] < 1; that is, pure states live on the surface

of the Bloch sphere, while mixed states live on the interior.

The Bloch sphere and density matrix representations are related by

1+7r, 1y —iry

ry+iry  1—r1,

and

7= 2Re(pa1) & + 2Im(p21) § + (p11 — pa2) 2

1.2.3 Composite systems

We often want to describe the state of a system A that is not isolated, but which is part of a larger
system that is isolated. The larger system can be described by a pure state, but in general the
corresponding state of system A is a mixed state. We may therefore view a single state of the larger

system as describing an ensemble of states for system A.

To understand how this works, consider two systems A and B, which are coupled to form a compos-
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ite system A ® B. Let {|ay,)} be a basis of states for system A, and let {|3,,)} be a basis of states
for system B. Using these states, we can form a basis of states {|an, Bm) = |an) @ |Bm)} for the

composite system. An arbitrary state |1)) of the composite system can be expanded in this basis
|¢> = Z Cnmlanu ﬁm>
nm
We can define a set of states {|ym,)} of system A by

[Ym) = b chm|an>

1/2
bm = <Z |Cnm|2>

The states {|vm)} are normalized, but in general they are not orthogonal to one another. If we

where

define states {|vm, Om) = [Ym) ® |Bm)} for the composite system, we can express |¢) as
|1/}> = Z bmh/mv 6m>

Note that |y,,) may be viewed as the relative state of |3,,); that is, whenever system B is in state
|Bm), system A is in state |v,,). Because the states {|Gm)} are orthonormal, the states {|vm,Bm)}

are also orthonormal. Thus, the probability that the composite system is in state |V, Gm) is

Pm = |<7muﬁm|w>|2 = |bm|2

We may therefore view the single state |1)) of the composite system as an ensemble of states for
system A, where state |y,,) occurs in the ensemble with probability p,,. The density matrix for A

is therefore

pa = Pmlvm)(Ym| =Trap

where

p =) = me|7m76m><7m’ﬁm|

is the density matrix for the composite system.

1.2.4 Time evolution

The wavefunction for an isolated system evolves in time according to the Schrédinger equation:

Z.at|¢> = H|1/)>
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where H is the Hamiltonian for the system. For a two-level system, H can always be expressed in
the form

H=Ey+-Q.¢&

N =

for some choice of parameters Ey and Q. Changing FEy does not alter the physical behavior of the

system, so for simplicity I will set Ey = 0.

We can use the equation of motion for the wavefunction to derive the corresponding equation of

motion of the density matrix. Since p = |1)(1)|, we have that
p = —i[H, p]

From the equation of motion for the density matrix, we obtain the equation of motion for the Bloch

vector. Recall that the density matrix and Bloch vector are related by
1 A
p=5(1+7-0)
2
Substituting this into the equation of motion for the density matrix, we find

Q.5,7-5] =

(A x7)-G

N~

1.
p==r-d=—ilH,p|=—
2
Thus, the equation of motion for the Bloch vector is
F=0x7

I now want to solve for the eigenstates and eigenvalues of H for the case where Q) is constant in

time. I will denote the eigenstates by |4), and the corresponding eigenvalues by F.:
H|+) = Ex|+)

From the equation of motion for the Bloch vector, we see that the eigenstates |4) correspond to the

Bloch vectors £, Suppose ) has the following coordinate representation:
Q) =sinfcospd +sinfsingg + cosh 2

Then, using the results of section 1.2.1, we find that the eigenstate |+) corresponding to +Q is

[+) = e'?/25in0/2|g) + e "**/% cos 0/2 |e)
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and the eigenstate |—) corresponding to — is
|—) = /2 cos0/2|g) — e "% sin6/2 |e)

The eigenvalues corresponding to these states are £y = :l:|Q| /2.

1.3 Two-level atoms

I now want to apply the general results for two-level systems that we derived in section 1.2 to the
special case of a two-level atom. After briefly reviewing the transformation to the interaction picture,
I write down the Hamiltonian for a two-level atom coupled to a beam of light, and I write down the

master equation for a two-level atom that can spontaneously decay.

1.3.1 Interaction picture

In many situations a Schrodinger picture Hamiltonian Hg can be divided into a simple part Hy and
a complicated part H;:
Hg=Hy+ H;

Usually Hy describes how the system would evolve freely in isolation, while H; describes the inter-
action of the system with an external driving force. Thus, Hy is called the free Hamiltonian, and

H; is called the interaction Hamiltonian.

The total Hamiltonian Hg determines the time evolution of the Schrédinger picture wavefunction

[s):
i0|ps) = Hs|vs)

The wavefunction evolves under the combined influence of Hy and H;, but because the evolution
under Hj is usually known and uninteresting, we can simplify the problem by transforming to the
interaction picture, in which the evolution under Hjy is already taken into account. We therefore

define an interaction picture wavefunction [i;), which is related to [i)g) by

1) = Ulls)

where

U= e—iHot
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is a unitary transformation describing time evolution under Hy. The time evolution of |¢);) is given
by
i) = i(0Us) +iU" uleos) = i(@UNU ) + U Hslibs) = Hlyr)

where I have defined an interaction picture Hamiltonian H; by

H; =U'HsU +i(o,UNU = U H,U

As an example, consider an atom with a set of internal states {|n)}. We can define transition
operators Aj:

Ajr = |7) (k]

and projection operators P,:

Typically, the Hamiltonian for the atom will consist of sums of Hamiltonians of the form

Hgs = Hy + H;
where
H() = WTPT
and
H; = f(Ajk)

for some function f. We can transform to the interaction picture via the unitary transformation

U = e—iHot _ —iPrw;t

The interaction picture Hamiltonian is
Hy=U'HU=U"f(Ajx)U = f(UTA;,U) = f(A1))

where

A(t) = UTAjU = eFromt Ay, e reort

Note that

%(UTAij) = iw, U [Py, Ajx)U = iw, (8,5 — 6,1)(UTA;U)
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If we integrate this differential equation subject to the initial condition
U (0)A;xU(0) = Aji

we find that
UTAij = Ajk ei(érjiérk)wrt

Thus, the interaction picture Hamiltonian is
H] _ f(AJk; e’i(&,‘jftsTk)w,,‘t)

In summary,

Hs =w, P+ f(Aj) < Hyp = f(Az e Criomlernt)
For a two-level atom, this gives
Hs =wo,o_ + f(o_) « Hy = f(o_e ™)
As another example, consider a harmonic oscillator Hamiltonian of the form
Hs =wa'a + f(a,a’)
If we transform to the interaction picture via the unitary transformation
awt

U = e—ia

then the interaction picture Hamiltonian is

So
Hg =wa'a + f(a,a’) « H; = flae ™ al )

1.3.2 Two-level atom without spontaneous decay

I now want to write down the Hamiltonian for a two-level atom that is driven by a beam of light.

The free Hamiltonian for the atom is

Hy =wale)le| =waoto—
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where wy is the splitting between the excited state |¢) and the ground state |g). The interaction

Hamiltonian describing the coupling of the atom to the light is
H;, =er- E
I will assume the light is a plane wave with polarization é:
(éeﬂ'(wt%.m 4 ei(wtfl_c‘-F)) Eo

If the atom is much smaller than the wavelength of the light (E -7 & 1), then the phase of the electric

field is approximately constant over the entire atom, and we can make the dipole approximation:

It is convenient to express the field in terms of the cycle-averaged intensity I, which is given by

S

1
= (B +BY) = o

2

Thus,
| . .
E = 5(87r1)1/2 (€™t 4 &% ety

Substituting this into the Hamiltonian, we obtain
1 1/2 (2 =, —iwt ~k = dwt
Hi:§(87ral) (é-7e + e - Te)

where a = e? is the fine structure constant. If we insert a complete set of states {|g), |e)}, and note

that parity considerations require (e|]e) = (g|F]g) = 0, we find
1 —iwt * iwt 1 iwt * —iwt
Hizi(ﬂmre +Q*0_e )—|—§(Qca+e +Qo_e™™)

where

Q = (8rad)'/? (e|¢ - 7g)

is the Rabi frequency, and
Q. = (8mal)/? (e|é* - Fg)

is a counter-rotating Rabi frequency. Note that for linearly polarized light € is real, so 2 = €, and

the interaction Hamiltonian can be expressed as

H;i=Qo; +Q%0_)coswt
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For elliptically polarized light, this form of H; only holds in the rotating wave approximation.

The total Schrodinger picture Hamiltonian is

Hg Hy+ H;

1 - , 1 . .
= wao40_ + E(Q ore 4L O o™t + 5(96 oL et 4 Qo et

The corresponding interaction picture Hamiltonian is (U = e~ 0+7-wat)

) . 1 ) )
H; = (Q oL eszt Qo ezAt) + 5(96 o el(erwA)t 4 QZ o efl(erwA)t)

N =

where A = w — w4 is the detuning of the light. In the rotating wave approximation, the second term
may be dropped:
1 . _
HI _ 5(9 oy e*lAt + Q* o ezAt)

Transforming back to the Schrédinger picture (U = e?+7-4%)  we obtain
1 ,
H=-Acjo_+ 5(904_ +Q%0)
It is convenient to express this in the form
1 1 " 1 1~
H: —§A+§(QU++Q o_ —AO'Z): —§A+§QEU

where

Op=ReQi—ImQj— Az

The magnitude of Op is
Qp = |G| = (Q° + A1/

and

QOp = QE/QE =sinfcos¢i +sinfsing g + cosb 2

where I have defined the angles ¢ € [0, 27] and 6 € [0, 7] by
Q= Qe
and

sinf = [Q]/Qg
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cosf = —-A/Qg

Using the results of section 1.2.4, we find that the eigenvectors of H are

+) = €%2sin0/2|g) + e /% cos /2 |e)
=) = €%2cos0/2]g) — e /2 sinf/2 |e)
and the eigenvalues are
1

We can express the ground and excited states in terms of |+):

le) = €2 (cosf/2|+) —sind/2|-))

l9) = e /2 (sinf/2|+) 4 cosh/2|-))
Suppose we start the atom in the ground state:
[4(0)) = lg) = e~*/? (sin /2 |+) + cos /2| -))

Then the wavefunction at time ¢ is

() = e /2 (e sinf/2 |+) 4+ e F-t cosf/2|-))
= ¢glg) + cele)
where
iat/2 A
g = e (cos(Qpt/2) — o sin(Qgt/2))
E
Q0
e = —i— 2 gin(Qpt/2)
Qp

Thus, the probability of being in the excited state at time ¢ is

s QP .,
De = |ce|® = ‘oz sin (Qpt/2)
E

1.3.3 Two-level atom with spontaneous decay

If we include the spontaneous decay of the two-level atom, then its time evolution is given by the
master equation

. . Y
p=—ilH pl+5(20-poy —0r0_p—poio-)
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where

1
H=-Acjo_+ 5(90’+ + Q%)

and v is the spontaneous decay rate of the excited state. The equations of motion for the matrix

elements of p are

. i «

Pgg = g(nge = W peg) + Vpee

. (PP

Pee = 5(9 Peg — nge) — VPee

: by Y,

Pge = 59 (Pgg = Pee) — (5 +iA)pge

Note that
(02) = Tr[p(le)e] = 19)(9])] = pee — Pgg

(04) = Trlple){gl] = pge
Thus, we can write equations of motion for the expectation values of o_ and o,:
d Q y

So) = iglo - (Q -t

%@z) = i(Q(0-) — o)) =71+ (02))

In steady state, the density matrix is

/2> + (7/2)? + A?

Pos = 2IQ/22 + (7/2)% + A2
_ |©2/2]?

Pee = 210727 + (v/2)2 + A2
_i/2)(r/2 - iA)

P T AR/ (/2 1 A2

1.4 Optical cavities

In this section I review some basic properties of optical cavities and discuss the coupling of an atom

to one of the modes of an optical cavity.

1.4.1 Classical cavity

I first want to consider a classical description of an optical cavity. For simplicity, I'll start by mod-
eling the cavity as a pair of flat mirrors that are parallel to one another and are separated by a

distance L, then later I'll consider the effects of mirror curvature.



24

Suppose a plane wave with wavelength A is incident on one of the mirrors, and that the coeffi-
cients of transmission and reflection for both mirrors are ¢ and r. We want to solve for the electric
field E.(z) inside the cavity at a distance z from the input mirror. Since the light that enters the
cavity bounces back and forth between the two mirrors, we can express E.(z) as sum of the fields

for each bounce:

EC(Z) — tErL e’ikz 4 t'I"ErL eik(Qsz) 4 tT2Ei eik(2L+z) 4.

tEi(eikz + Teiikz)(l + T2 e2ikL + T4 e4ikL 4. )

tEi(eikZ + Te—ikz)(l _ 7”2 e2ikL)—1

where k = 2m/X. If we assume that the mirrors are highly reflective (r ~ —1), then we can
approximate this as

E.(z) = 2itE;(1 — r?e** )~ ginkz

I will define R = r? and T' = t2. Assuming the mirrors do not absorb any of the light, R and T

satisfy the conservation equation R+ T = 1. The intensity inside the cavity is then

I(z) = [|B(2)/Eil* 1L
= ATI(1+ R* —2Rcos2kL) 'sin? kz
= ATI(1+ R* — 2R + 4Rsin® kL) 'sin® k2

= ATIL(T? +4Rsin® kL) ' sin? kz
Since R ~ 1, we may approximate this as
I.(2) = (4/T)L;(1 + (4/T?) sin® kL) *sin® kz

Because the mirrors are highly reflective, the 4/T? factor in the denominator is very large, so light
is only coupled into the cavity if its wavelength is tuned such that kL = nn for some integer n. We
can understand this condition as follows. If the mirrors were perfectly reflective, then the cavity
would have normal modes at integer multiples of the free spectral range vpgr = 1/2L. If we now
allow the mirrors to be slightly transmissive, we expect light to be coupled into the cavity when it
is tuned into resonance with one of these modes. The width of the resonance can be determined
as follows. Assume the light is nearly resonant with mode n, so the detuning of the light from the

mode is small compared to the free spectral range. The detuning is given by

A =27(1/\ = nvpsg) = 2n/\ —nw/L
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In terms of the detuning,

kL =2rL/A= AL+ nn

and

I.(2) = (4/T);(1 + (4/T?) sin® AL) ' sin? kz
If we expand around A = 0, we find
I.(2) = (4/T)L;(1 + (2A/K)*) " sin® k2

where k = T/L is the full width at half maximum of the resonance. According to this definition,
K gives the energy decay rate for the entire cavity. Note that some authors define k differently, so

that it represents an amplitude decay rate, or so that it gives the decay rate for an individual mirror.

I now want to solve for the transmitted and reflected fields. The electric field at the face of the

output mirror is

E, = 2E¢*l 4 1202E, S 4 ...

tQEi(l _ T2 e2ikL)—1 eikL

Thus, making the same approximations as before, we find that the transmitted intensity is
I = L;(1+ (4)T?)sin* kL) ™!
The reflected field can be obtained from this by using the conservation equation I. + I; = I;.

The results obtained thus far were derived by treating the mirrors as flat planes. If we now in-
clude the curvature of the mirrors, the results are modified in several ways. Because of the mirror
curvature, light is confined in the transverse direction, resulting in a set of transverse modes. If we

drive only the lowest order transverse mode (the gaussian mode) then the intra-cavity intensity is
Io(7) = (4/T)(1 + (28/8)") " (D) I;

where

() = sin kz e~ +02) /w3

describes the mode shape. The mode radius wy is related to the mirror radius R by

A
wf = (LR - 1)
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For R > L, this may be approximated as

A
2 _ 1/2
= —(2RL
Wo 27r( )
For our cavity, R = 20 cm and L = 45 pm, so wy = 25 um at the FORT wavelength of A = 895 nm.

We can define an effective mode volume by
1
V= / [ (7) 2 d3r = %(2RL)1/2L = AL

where A is an effective area for the mode, obtained by integrating over the transverse mode profile:

A= // e =2y /w5 gy dy = gwg

To couple light into the cavity, the input light must be spatially mode matched to a cavity mode.
The input intensity I; is related to the input power P; by I, = P;/A, where A is the effective area.
Usually P; is less than the total power in the input beam, since not all the input power is mode
matched into the cavity. We can measure P; in the lab by tuning the input beam to resonance
and measuring the output power, and then including a correction factor to account for light that is

absorbed in the mirrors. Note that we can express the intensity inside the cavity in terms of P;:
Ie(7) = (2/kV)(1 + 2A/5)*) 7! [p (M) P
The total energy inside the cavity is therefore
o /IC(F) &Pr = (2/k)(1 + (28/5)?) ' P,

1.4.2 Quantum cavity

In the previous section we showed that the transmission spectrum of the cavity is sharply peaked
around integer multiples of the free spectral range. If the mirrors are highly reflective, then we may
treat the system as a set of cavity modes at these resonant frequencies, which are weakly coupled to
a continuum of output modes via the mirrors. I want to single out one of these modes and quantize
it by introducing creation and annihilation operators a and af. The Hamiltonian for the chosen
mode is

H = wea'a+ Ma + al) coswt

where w, is the frequency of the mode, and w and A\ are the frequency and pumping strength of

the driving field. The Hamiltonian can be simplified by making a series of unitary transformations.
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First, make a transformation to eliminate the first term (U = e’iaT‘“"Ct):

H — Mae ™t 4 af ') cos wt
Next, make the rotating wave approximation:
H — (\/2)(a e + al e718Y)

where A = w — w, is the detuning of the light from the cavity resonance. Finally, make a transfor-

mation to eliminate the time dependence (U = e‘i“T“At)

H=-Ad'a+ (\/2)(a+al)

This Hamiltonian describes the coherent evolution of the mode. To include the damping that arises

from the weak coupling to the output modes, we write down a master equation for the system:
) ) K
p=—ilH,p] + 5(2apa’ — a'ap — pa'a)

where k is the cavity decay rate discussed in the previous section. The steady state solution to the

master equation is

p=la)a|
where |a) is a coherent state with amplitude

A2

4= A +ik/2

Thus, in steady state, the number of photons in the cavity is

n = |a|2 _ ()‘/'%)2
1+ (2A/k)2

The field energy in the cavity is £ = nw. If we compare this to the classical result from the previous

section, we can relate the pumping strength A to the power P; of the driving field:
N = (2K)(P;/w)

Note that when the cavity is on resonance, all the input light is transmitted through the cavity.

Thus, the rate at which photons are emitted from the cavity is the same as the rate at which they
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are delivered by the input beam, which is
I'=P/w=nk/2

Because of the driving field, photons are only emitted from the output mirror. In the absence of the
driving field, however, photons that are initially present in the cavity are emitted from both mirrors,

so the total emission rate is nx.

1.4.3 Cavity QED

So far we have been discussing the case of an empty cavity, but I now want to consider the coupling

of the cavity to a two-level atom. The Hamiltonian for the atom/cavity system is
H=w,0,0_ +wala+glalo_ +aoy)+ Na+a')coswt

The first term is the Hamiltonian for the atom, the second term is the Hamiltonian for the mode,
the third term gives the coupling of the atom to the mode, and the fourth term describes a probe
beam that is driving the mode. Here w, and w, are the resonant frequencies of the atom and cavity
mode, g is the atom/cavity coupling strength, and w and A are the frequency and pumping strength

of the probe beam.

The Hamiltonian can be simplified by making a series of unitary transformations. First, make

a transformation on @ and a' to eliminate the second term (U = eiiat““’ct)

H — waor0_ +glaTo_e™ +aoe” ™) 4 Nae ! 4 al e™e!) coswt
Now make the rotating wave approximation in the last term:
H — weo 0_ + g(aT07 eiwet 4 aos efiwct) +(V/2)(a eiBdet 4 gf efiAct)

where A, = w — w,.. Make a second unitary transformation on a and a' to eliminate the time

dependence in the last term (U = e~ie'afet).

H — weop0- —Acala+ glaTo_ et + aoy e ) + (V/2)(a + al)
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Finally, make a unitary transformation on o4 and o_ to eliminate the time dependence in the third

term (U = e*iumAat):
H— —As0p0 —Adala+gla’o +aoy)+ (A/2)(a+al)

where A, = w — w,. This is the form of the Hamiltonian we will use.

The Hamiltonian gives the coherent part of the evolution. To describe the damping of the sys-
tem, we write down a master equation that includes terms for the decay of the atom at rate v and
for the decay of the cavity at rate x:

K
p=—ilH,p| + %(%fpcu —040_p—poio_)+ 5(2apaT —a'ap — pa'a)

One might worry that the presence of the cavity would alter the mode structure of the vacuum and
thereby change the spontaneous decay rate of the atom. We can show, however, that this effect is
negligible. From the point of view of an atom located at the focus of the cavity mode, the mode
subtends a solid angle Q = 47 (1 — cos#), where 8 = /7wy is beam divergence angle. The ratio of

the solid angle subtended by the mode to the total solid angle is
Q/4m =1—cosf ~ 0?2 ~6x107°

where I have substituted the values of A and wy for our cavity. Thus, the majority of the solid angle
that the atom sees corresponds to vacuum modes, so the spontaneous decay rate is not significantly

different from the free space value.

1.4.4 Semiclassical approximation

In many cases, cavity QED can be described in a semiclassical approximation. As an example, I'll
use the semiclassical approximation to solve for the steady state photon number when the cavity is

driven by a probe with strength A. The Hamiltonian for the system is
H=-Ayo,0_ —Aca’a+g(a’o_ +acy)+ (A/2)(a+al)

In the semiclassical approximation, we treat the coupled atom-cavity system as an isolated atom
described by an effective Hamiltonian H,, and an isolated cavity described by an effective Hamil-

tonian H.. The Hamiltonian H, is obtained from H by replacing the operator a with a parameter
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a = (a) characterizing the field amplitude:
H,=-As010_ +glacy +a*o_)

Similarly, H, is obtained from H by replacing the operator o_ by a parameter 5 = (o_) character-

izing the atomic dipole:
H.=—Acala+g(B%a+ Ba’) + (A/2)(a + al)
We can express H, and H, as

1
H, = —-Aj,0.0_+ i(QE oy +Qpo_)
P S
H. = —Acaa+§(/\Ea + Aga)

where Qp = 2ga is an effective Rabi frequency and Ag = 2¢g3 + A is an effective pumping strength.

The master equation for the atom is

. Y

Pa = _Z[Haapa] + 5(2U—pa0+ —04+0—Pa — pa0+0—)
The master equation for the cavity is

K

pe = _i[Hca pc] + (2apcaT - aTapC - pCaTa)

[\]

We now want to find the steady state solution. For simplicity, let us assume that the cavity is
resonant with the atom (w, = w.), so A, = A, = A. From the steady state solution to the atomic

master equation (see section 1.3.3), we find

S T = OEDO/2 ) —igaly/2+i)
P = Q2P + (7/22 + A2~ 2%l + (7/2)2 + A2

From the cavity master equation, we find that in steady state

So the steady state value of « is

gB+A/2

a=Trlpcal = (Ap/2)(Ac + i’i/2)71 T A+ ir/2
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If we require that o and § be consistent with one another, we obtain the solution for the coupled

atom-cavity system. In the weak driving limit, we can approximate [ as

__ 9a
= A+ iv/2

Substituting this result into our equation for o, we find

(A +iv/2)(\/2)
(A +ik/2)(A+iv/2) — g?

So the photon number is

(A% +72/4)(V/2)?
(92 — A2+ 1y /4)% + A2(7/2+ 1/2)2

n=la* =

Note that on resonance, the photon number is
n=(A/k)?/(1+1/Na)® =no/(1+1/Na)*

where ng is the photon number for an empty cavity, and Na = kvy/4g? is the critical atom number.

The excited state population for the atom is
De = |ﬁ|2 = n/NV

where NV, = 42 /4g? is the critical photon number. For our cavity,

g = (2m)(32MHz)
k = (2m)(8.4MHz)
v = (2m)(5.2MHz)

so the critical atom and photon numbers are

Ny = 0.0102

N, = 0.0066

Figure 1.2 is a graph of photon number n versus probe detuning A, using the parameters relevant

to our experiment. We recently performed an experiment to measure this curve in the lab [25].
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Figure 1.2: Photon number n/ng versus probe detuning A. The green curve is for an empty cavity;
the red curve is for an atom coupled to the cavity with strength g.

1.4.5 Single atom laser

I now want to apply the semiclassical approximation to a simple three-level atom model for a single
atom laser. A level diagram of the single atom laser is shown in Figure 1.3. The atom has states 1,
2, and 3, where state 3 decays to state 2 at rate v and state 2 decays to state 1 at rate I'. The 2 —3
transition is coupled with strength g to the cavity mode, which is assumed to be resonant with the
transition, and the 1 — 3 transition is driven on resonance by a classical field with Rabi frequency
Q, where for simplicity we will chose the phase of the field such that €2 is real. Note that the decay
2 — 1 draws population from 2, which in a conventional laser would maintain a population inversion

across the 2 — 3 lasing transition.
The Hamiltonian for the coupled atom-cavity system is
u - Q . u
H = g(aAszz +a'Ags) + §(A31 + Aiz)
where Ajj, = |j)(k| are atomic raising and lowering operators. The master equation is

p=—ilH,p|+ Lrp+ Lyp+ Lip
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Figure 1.3: Level diagram for the single atom laser.

where

T o o o o
Lrp = 5(2/112/)1421 — Agp — pAaa)
Lyp = %(2/123@432 — Assp — pAs3)
Lep = g(2apaT —a'ap — pa'a)

describe the spontaneous decay on the 1—2 transition, the spontaneous decay on the 2 — 3 transition,
and the cavity decay. In the semiclassical approximation, the equations of motion for the expectation

values are

A = —i(Q/2)(A1z3 — Az1) + T Agy
Ay = —ig(a®Ags — adsy) — T Ay + Y Ass
Ags = —ig(adsy — a*Ags) —i(Q/2)(As1 — Ays) — YAss
A = —iga*Asz +i(Q2)Asz — (T/2)Arz
Ags = —iga(Ass — Aszz) —i(/2) Az — (1/2)(T + ) Ass
Az = —i(Q/2)(Ass — An) +iga”Aar — (v/2) A

a = —ighaz — (K/2)a

where A, = (A;) and a = (a). Note that these equations are invariant under the transformation
(v, Ay, Aoz) — (ewa, ei‘i’Agl,ei‘z’A%), where ¢ is an arbitrary phase. By exploiting this invariance,
we can always choose the phase such that « is real. Given that « is real, the equations imply that
Ao is also real, and that Asg and Ag; are imaginary (of course, Aq1, Aag, and Ass are always real, as

they represent atomic populations). It is convenient to introduce real valued variables Bag = —iAoag
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and B3; = —iA31. In terms of the new variables, the equations of motion are
Aj = —QBs; +TAp
Ay = 2gaBas —TAg +vAss
Ass = —2gaBss+ QB — yAss
Ajy = —gaBs; + (2/2)Bas — ([/2) A1z
Bog = —ga(Ass — Agz) — (/2)A12 — (1/2) (T +7)Bas
Bsi = —(9/2)(As3 — An) + gadis — (v/2)Bs
& = gBas— (k/2)a

We now want to look at the steady state solution to these equations. From Azy =0 and & =0, we
find that
kn +yAzz = ['Ag

We can understand this relation by noting that for every photon spontaneously emitted on the 1 —2
transition, there is either one photon emitted from the cavity or one photon spontaneously emitted
on the 2 — 3 transition. Thus, the sum of the rates for cavity emission and for spontaneous emission

on the 2 — 3 transition must equal the rate for spontaneous emission on the 1 — 2 transition.

Before continuing our investigation of the steady state solution, it is convenient to introduce some
new parameters. Let us define a scaled photon number m = n/N,, a dimensionless pumping strength
p = Q?/4T, and a parameter = v/I" that gives the ratio of the spontaneous emission rates for the
2—3 and 1— 2 transitions. Also, recall that the critical atom and photon numbers are N = xy/4g>

and N, = v%/44°.
After a bit of algebra, we find that in steady state the scaled photon number m obeys the equation

am?>+bm+c=0

where

a = n?

b = n’p+n*+2n

c = 2+np*+Cn+2/n+3-NYp+1+n
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Thus, the laser output as a function of pumping intensity is given by

(Vb2 —4ac—0)/2a for ¢ >0

0 forc< 0

m(p) =

Note that this expression for m(p) is independent of the critical photon number N.,. We see that
the laser threshold occurs at a pumping strength p; such that ¢(p;) = 0. Above threshold (p > p:),

the populations are

A = 1— Ay —Ass
Az = Nanm(p)+ Nan(p+1+1/n)
Aszs = Na(p+1+1/n)

Below threshold (p < p;),

Ain = 1—Ag — Asg
Ao = nAss

Az = (2+n+n/p)7"
A = 0

Bss = 0

Bz = (v/Q)As3

Now that we have an understanding of the semiclassical theory, let us consider a full quantum
treatment of the single atom laser. The degree to which the quantum description agrees with the
semiclassical description depends on the value of the critical photon number N,. We can see this
by considering the behavior of the single atom laser for pumping strengths near the semiclassical
threshold p;. In the limit of large critical photon number, if we are even slightly above the semiclas-
sical threshold then there are many photons in the cavity (recall that n = N, m), so the quantum
fluctuations are small and the system is well described by the semiclassical theory. As we reduce
the critical photon number, there are fewer photons in the cavity and quantum fluctuations be-
gin to smear out the sharp threshold predicted by the semiclassical theory. We can describe this
transition quantitatively by using the semiclassical theory to calculate the scaled photon number at
twice py; when m(2p;) > 1/N, (which implies that n(2p;) > 1), we expect the system to be well
approximated by the semiclassical theory. Figure 1.4 shows lines of constant m(2p;) in the space of
parameters (1, N4) that characterize the system. Note that for large enough values of N4 and 7,

there is no semiclassical threshold.
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Figure 1.4: Lines of constant m(2p;). Curves are shown for m = 0.0,0.1,0.2,0.5,1.0,2.0. Above the
m = 0.0 curve there is no semiclassical threshold.

Using the quantum optics toolbox [26], it is straightforward to simulate the full quantum system
on a computer. For the simulations I present here N4 = 0.05 and n = 0.5, which gives p; = 0.128
and m(2p;) = 0.918. The simulations are performed by truncating the Fock space at 70 photons.
Graphs of m(p) for different values of N, are shown in Figure 1.5 and Figure 1.6.

1.5 Raman transitions in a three-level system

In this section I present a scheme for driving Raman transitions in a cavity. For simplicity, I'll
describe the scheme using a three-level model for the atom; then in a later section (section 1.7) I'll

generalize to the case of a many-level atom.

1.5.1 Adiabatic elimination

We will often be interested in the interaction of an atom with light fields that are far detuned from
resonance. For far detuned light the excited state populations are small, and we can approximate
the full Hamiltonian with an effective Hamiltonian that only involves the ground states. In this

section I show how this can be accomplished.

To gain some intuition about the problem I'll start with the case of a two-level atom, which we
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Ngamma = 0.2
Ngamma = 1.0
Ngamma = 5.0
7F semiclassical

Figure 1.5: Scaled photon number m verses pump strength p for N4 = 0.05, n = 0.5, and IV, =
0.2,1.0,5.0. The semiclassical result is also shown; the kink in the semiclassical curve at p = 0.128

is the laser threshold.

already know how to solve exactly. Suppose the atom is coupled to a light field with Rabi frequency

Q and detuning A, where for simplicity I will assume €2 is real and A is negative. The Hamiltonian

for the atom is

where 6 is determined by

Q
—Acio_ + 5(0’4r +o_)

1 1
—5A+ 5(92 + A)Y2(sinf o, 4 cosbo.)

cos = —A(Q2+A%)7Y2

sinfg = Q(Q2 4 A2)71/2

The eigenstates and eigenvalues are

and

|[+) = cosf/2]e) +sinb/2|g)

|-) = cos8/2|g) —sinf/2]e)

E. = —é - %(92 + A%)1/2
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Figure 1.6: Scaled photon number m verses pump strength p (zooming in on the threshold region)
for Ny = 0.05, n = 0.5, and N, = 0.2,1.0,5.0,20.0,40.0. The semiclassical result is also shown. A
threshold can be observed for N, = 40 and N, = 20, but for smaller values of IV, the threshold is
smeared out by quantum fluctuations.

For large detunings |A| > Q, the eigenstates and eigenvalues can be approximated as

Q

)= o) - 5xlo)

=)

12

R

Q
19) + 5xle)
and

—A
Q2
4A

Ey

1R

E_

R

Thus, one eigenstate consists mostly of the excited state and evolves at a fast rate A, while the

other eigenstate consists mostly of the ground state and evolves at a slow rate Q2 /4A.

Now consider a multilevel atom with a set of excited states {|e)} and a set of ground states {|g)}.

I'll assume the Hamiltonian for the atom has the form

H==>"Ale)(e| + %(/H—AT)
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where A, is the detuning of the light from excited state e and A is a generalized lowering operator

that connects excited states to ground states.

As in the case of the two-level atom, for large detunings |A.| > ) the eigenstates of H can be split
into two manifolds {|E)} and {|G)}, where eigenstates in manifold {|E)} have eigenvalues ~ —A,
and consist mostly of admixtures of excited states ({(g|E) ~ §2/A.), while eigenstates in manifold

{|G)} have eigenvalues ~ Q2 /4A. and consist mostly of admixtures of ground states ({e|G) ~ Q/A.).
Consider a state |¢)) which lies entirely in manifold {|G)}. It can be expressed as
W) =D1G) =D cele) + Y cgla)
G e g

The equations of motion for the amplitudes {c.} and {c,} are

1Ce

Q
_Ae Ce + 5 §<6|AT|Q> Cg

. Q
ity = 5> (glAle)e.

Because the state [t) lies entirely in manifold {|G)}, it evolves at a rate ~ Q2/4A., which is much
slower than the detunings A.. Thus, ¢, < Acce, and we can approximate the first set of equations

as

Q
—Agce + 3 ;<6|AT|g> cg >0

We can therefore solve for the excited state amplitudes in terms of the ground state amplitudes:

Q
Ce = 5. Z<6|AT|Q> Cg
€y

Substituting this result into the second set of equations, we find
2

- Q
icy =y T (glAle)(elATly) ¢y

€

Thus, the evolution of the ground state amplitudes is given by an effective Hamiltonian

Q2
Hg = Z 4AeA|e)<e|AT
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One can generalize the above result to include Hamiltonians of the form
H=Hgy— > Acle)(e| + 9(A + AT
99 . 2

where Hg, only couples ground states to ground states, and H,, < |A.|. In this case, the effective

Hamiltonian is

Q2
Hp=Hgy+ Y EA|e><e|AT

So far I have assumed the evolution is unitary, so the atom can be described by a wavefunction
that evolves according to Schrodinger’s equation. If we include the spontaneous decay of the excited
states, then the atom is described by a density matrix that evolves under the master equation. By
employing similar reasoning to that used above, one can adiabatically eliminate the excited states in
the master equation, resulting in an effective master equation for the ground states. One finds that
the ground states evolve under the effective Hamiltonian given above, but there are also effective
decays from one ground state to another. These decays result from off-resonant excitation of the
excited states, and the decay rates are ~ vp., where p. ~ Q2/A? is the population in the excited

state e.

1.5.2 FORT configuration

As an example of the adiabatic elimination technique, I want to calculate the FORT potential for
a three-level atom coupled to far detuned light. The atom has ground states a and b with energies

—04/2 and +d4/2, and an excited state e with energy w.. Thus, the Hamiltonian for the atom is
1
Hy = wele){e| + 5(5,402

where I have defined

o, = 1b)(b] —|a){al

I will assume that the light drives both the a — e transition and the b — e transition with Rabi

frequency ). The total Hamiltonian for the system is then
H=Hy+Q(A+ A" coswrt
where wy, is the frequency of the light, and

A = (la) + [b)){e]
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is a generalized atomic lowering operator (see Figure 1.7).

wA

wr

b 542
5a/2

Figure 1.7: Three-level atom, FORT configuration.

By applying some unitary transformations and making the rotating wave approximation, we can

cast the Hamiltonian in the form
1 Q i
H = —A|€><6| + §5A0'z + E(A + A )

where A = wy — w, is the detuning of the light. If we adiabatically eliminate the excited state, we
obtain an effective Hamiltonian for the ground states:

Q2

Hp =
E7UA

1 1
AN+§M@:§M@+U+U%

where U = Q?/4A.

We will assume that d4 > U, so to lowest order the eigenstates of Hg are |a) and |b). The
second term of Hg gives the state independent FORT potential U, and the third term gives a state

dependent correction to the FORT potential of order U?/§4 and may be neglected.

1.5.3 Raman scheme

Now I want to generalize the results of the previous section to the case where there are two beams
of light driving the atom. I assume the beams have optical frequencies wy = wy, + /2 and Rabi

frequencies Q4 (see Figure 1.8).
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Figure 1.8: Three-level atom, Raman configuration.
The Hamiltonian for the system is
H = Hy + (Qy coswit+Q_cosw_t)(A+ AT)

As before, we can simplify the Hamiltonian by applying some unitary transformations and making

the rotating wave approximation:
/ 1 T
H' = —Ale)(e| + 55,4@ +B+B

where

B = E(QJF eWRt/2 L e—izth/z)A
2
If we adiabatically eliminate the excited state, we obtain the effective Hamiltonian

1 1
Hp = ZBBT+§5AO.Z
b 1
= 4A(Qi—|—92,—|—2Q+Q,cos§Rt)(1—|—az)+§5Agz

1
= 55,403 +U+Uoy + Qgcosdpt + Qg o, cosdrt

where

_ L2 o2
U= 5 (@ +02)
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and
Q.0
Q =
E~ A

We will assume that one beam is much stronger than the other, so U > Qpg. Also, let us assume
that 04 > U, so to lowest order the eigenstates are |a) and |b). The first three terms in Hp have
the same form as in the Hamiltonian from the previous section, which described an atom coupled
to a single beam. As before, the second term gives the state independent FORT potential, and the
third term gives a state dependent correction to the FORT potential of order U%/§4 and may be
neglected. The fourth and fifth terms are new; they appear because a second beam is present. The
fourth term modulates the state independent FORT potential with frequency dg and amplitude Qp.
Because g is generally much larger than the motional frequency of the atom, this term averages to
zero. In addition, because U > Q g, the amplitude of the modulation is small relative to the static

FORT potential. Thus, the fourth term may be neglected, and we are left with
1
Hg = §6AO'Z + U + Qgo, cosdrt

This Hamiltonian describes an effective two-level atom with ground state a, excited state b, and
resonant frequency 64, which is coupled to a classical field with frequency ér and Rabi frequency
Q. By performing some unitary transformations and making the rotating wave approximation, we

can express the effective Hamiltonian as

4] Q
HE:U—§O'Z+TEO'1

where 6 = g — 4.

So far we have only considered the internal degrees of freedom of the atom, but I now want to
include the center of mass motion as well. If we add a kinetic energy term, and allow U and Qg to

depend on the position 7 of the atom, then the total Hamiltonian is

2
H=2 yum -2+ %QE(F) Oa

2m 2
To find U(F) and Qg(7), we need to know the spatial dependence of the beams. I will assume that
the atom is inside a cavity, and that the two beams are obtained by driving one of the cavity modes
with a pair of input beams (note that since the beams are at two different frequencies, at least one
of the beams must be detuned from the cavity resonance, and its coupling into the cavity will be

suppressed). As a first step, I will only consider motion along the cavity axis, so we only include the
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axial standing wave structure of the beams:
04 (2) =024(0) coskz
Thus, the effective Rabi frequency is
Qp(z) = Qcos® kz

where

Q

1
X 24(0)2-(0)

and the FORT potential is
U(z) = —Ugcos® kz = —Ug + Up sin® kz

where

Up = Q2.(0) + Q2(0))

1
“ial
I have chosen the sign convention such that Uy > 0 for red detuning (A < 0). Substituting these

expressions into the Hamiltonian, we find

2 0 Q
H = i + Upsin®kz — —0, + — cos’ kz oy
2m 2 2

where I have dropped the constant term —Uj.

1.5.4 Harmonic approximation

We can gain some insight into the model Hamiltonian by considering a harmonic approximation,
which should be valid for atomic motion near the bottom of the well. If we expand in z (for a red
detuned FORT we are expanding about an antinode), and retain only the lowest order terms, we
find

2

1 Q
H= 2p;n + gmuﬂzz — gaz + 5(1 — (k2)?)o,

where I have introduced a vibrational frequency w, defined by
1
Emw2 = Upk?

Note that the vibrational frequency may be expressed as

w= 2(U0wmc)1/2
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where wye. = k2 /2m is called the recoil frequency.

The atomic motion can be quantized by introducing creation and annihilation operators b' and

b, which are related to z and p, by

z = (2mw) Y2 b+
p. = —i(mw/2)"?(b—b)
Thus,
kz = n(b+b)

where 7, the Lamb-Dicke parameter, is
n = k@2mw) 2 = (Wyee/w)'/?
Putting all this together, we find that the Hamiltonian is

H=wb'b— goz + % (1—=n*(b+0b")Ho,

where T have dropped the constant term w/2 corresponding to the zero point energy. The first term
gives the kinetic energy of the atom, and the second term gives the internal energy. The third term
describes a coupling of the internal state of the atom to the center of mass motion. We can calculate
the Rabi frequencies for transitions to different motional states by taking matrix elements of this

term; for a transition from motional state n to motional state n’, the Rabi frequency is
Qe = (0,1 [Q2 (L =17 (b +b)?)|a, n)
The Rabi frequencies for the red sideband, carrier, and blue sideband are

Qpn_—2 = 772\/5\/”_ 1Q
Qe = Q=702 +1)Q
n*vVn+ 1vVn +20Q

Qn—>n+2

Thus, the sidebands are suppressed by 7% relative to the carrier (note that for a blue detuned FORT
we would expand around a node, so in this case both the carrier and the sidebands would be of order
n?). Because of symmetry considerations, transitions can only be driven to even sidebands. This a

consequence of using the FORT itself as one of the legs in the Raman pair.
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1.5.5 Numerical results

I now want to return to general Hamiltonian

2 ) 9
H = P —|—Uosin2kz——0'z—|——C052kZUm

and numerically solve for the energy eigenvalues and Rabi frequencies. It is convenient to introduce

dimensionless variables Z and p,, which are related to z and p by a canonical transformation:

z = (mw)?z

P = (mw) ?p,
In terms of the dimensionless variables, the Hamiltonian is
H = Hemt + Hint

where
1 1
Hemt = iw(ﬁi + 2_772 Sin2(\/§775))

describes the center of mass motion, and

) Q
Hin: = —50= + ) 0052(\/5172) O

describes the internal state. The eigenstates 1, and eigenvalues F,, of He,; are given by

Enwn = Hext djn

We can define dimensionless eigenvalues ¢, = E,, /w, and express this as a set of coupled first order

differential equations:

1/); = Tn

1
= (2—772 Sinz(\/iﬁi) — 2€n) Pn

where the prime denotes a derivative with respect to z. These equations can be numerically solved
to obtain the energy eigenstates and eigenvalues. From the eigenstates, we can calculate the Rabi

frequencies for different transitions:

Qrpy = 0 / Vi (2) cos®(V2nz) ¢, (2) dz
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Note that the only free parameter in the problem is 7.

The parameters describing the actual experiment are as follows. At the FORT wavelength of 935 nm,
the recoil frequency is wye. = (27)(1.71 kHz). I will assume the FORT depth is Uy = (27)(45.0 MHz),
which gives a vibrational splitting of w = (27)(0.554 MHz) and a Lamb-Dicke parameter of n =
0.0555. In terms of the dimensionless variables, the well depth is Up/w = 1/4n? = 81.2 and the
potential reaches a maximum at z = 47/2v/2n = £20.0. For this particular value of 7, I numeri-
cally solve the Schrédinger equation. The resulting spectrum of states is shown in Figure 1.9, and
the energy splittings and Rabi frequencies are shown in Figure 1.10. The FORT has ~ 100 bound
states, although for the very highest lying states quantum tunneling becomes important and we can

no longer consider states to be localized to particular wells.

80 T T T T T T T T T /

epsilon_n

0 Il Il Il Il Il Il Il Il Il

0 10 20 30 40 50 60 70 80 90 100
n

Figure 1.9: Eigenvalues €, versus n, where I have plotted points for even values of n.

1.5.6 Semiclassical model

To treat the case of full three dimensional motion I've developed a semiclassical approach, in which
the internal states of the atom are quantized but the center of mass motion is classical. I will first
illustrate the technique for the one dimensional model, so we can compare it against the numerical

results obtained in the previous section.
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epsilon_nI - epsilon_(nl-z) —
. Omega(n --> n)/Omega
18 i Omega(n --> n-2)/Omega —*— |

16 - T T
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12 | E
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04 + i

0.2
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0 10 20 30 40 50 60 70 80

epsilon_n
Figure 1.10: The red curve is €, — €,,_2 versus €,, the blue curve is Q,_,,, /€ versus ¢,, and the green
curve is 2/ versus €,. I have plotted points for even values of n.

Recall that the Hamiltonian for the 1D model is

H= Hemt + Hint

where
1 1
Hezt = 50}(}32 + 2—172 Slnz(ﬁné))
and
1) Q
Hin = 50t cos?(V2nz) o,

If we treat H.,; as a classical Hamiltonian, we obtain equations of motion

= p:
Dz = —\/1577 sin(v/2nz) cos(v/2nz2)

where to simplify the notation I have dropped the bars on z and p,. If we treat H;,; as a quantum
Hamiltonian, where z(t) is taken as a time-dependent parameter rather than a dynamical variable,

we find that the equations of motion for the ground and excited state populations are

éy = —%(—5%—1—900052(\/5772)0@)
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O —%(-1-6 ca + Qo COS2(\/§772’) cp)

Let us choose initial conditions such that the atom is in its ground state and has kinetic energy F:

2(0) = 0
p-(0) = V2E
&(0) = 0
ca(0) = 1

We can integrate the two sets of equations simultaneously to find the probability py(t) of the atom
being in the excited state at time t. For a Raman pulse of duration T', I will define an average

transfer probability Db by
| /C (t) dt
Py Py

A graph pp as a function of Raman detuning is shown in Figure 1.11, where curves are shown for
both the semiclassical model presented here and for the full quantum solution from the previous
section. For this graph, the Rabi frequency is given by Q/w = 0.4 and the duration of the Raman
pulse is given by wT = (27)(10.0). The curves for the full quantum theory are produced by taking
pu(t) to be the sum of the probabilities for making a transition to the carrier, the second order

sideband, and the fourth order sideband:

pb(t) = P(Qn—mvév t) +
P(Qn—>n+27 0 — (En+2 - En)7 t) +
P(Qnﬂn+4a 0 — (En+4 - Eﬂ)v t)

where
2

POLAT) = gre

sin?((Q? + A%)Y271/2)

is the probability that a pulse of Rabi frequency 2, detuning A, and duration T transfers an atom

from the ground state to the excited state (see section 1.3.2).

Now let us consider the atomic motion in all three dimensions. The spatial dependence of the beams

is given by the mode shape ¥ (7) from section 1.4.1:

Qu(7) = Qe ()
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Figure 1.11: Comparison of quantum and semiclassical treatments of the atomic motion. Curves
are plotted for atoms with n = 20, 50, 80.

Thus, the FORT potential is
U(7) = —Up |0(7)|> = —Up cos? kz e~ 2@ +y*)/wh

where
07 +02

Uo = A

and the effective Rabi frequency is
Qp(r) =Q |¢(ﬁ|2 =Q cos? kz 6_2(5”2""3/2)/1”3

where
Q.0
Q=
2A

In these expressions, I have shifted z by /2k relative to the definition of z from section 1.4.1, so

that 7= 0 corresponds to the bottom of a FORT well.

The Hamiltonian for the motion is

Hewt(f':ﬁ) = % + U(F)



51

In the harmonic approximation,

U(7) —Up + Uok?2% 4 (2Uy Jwd) (2 + %)

12

12

1 1
Uy + 5mw222 + §mw3(:62 +9?)
where w, and w, are the axial and radial vibrational frequencies. Thus, the axial vibrational fre-
quency is given by

1
Emwg = Upk?

and the radial frequency is given by

1
§mwf = 2Uy/wd

Thus, the ratio « of radial to axial vibrational frequency is

Wy V2 1

= e kw119

where I have substituted the FORT wavelength A = 935 nm and the beam waist size wy = 25.1 ym.
In order to simulate the motion on a computer, it is convenient to make all the variables dimensionless

by scaling them by an appropriate factor:

t — wut

ro— kT
. kp
p —

Mwq

In terms of the scaled variables, the total energy is
E(7,p) = Up (p* — cos? 2 6_0‘2@2"’”2))

and the equations of motion are

Po= 7

Pr = 202 g e~ (@ +y?)
by = —20Pye @
p. = —sinzcosze @ FHYY)

These can be numerically integrated together with the equations of motion for the internal state of

the atom to give the transfer probability py.
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1.6 Many-level atoms

So far we have only considered simple models in which the atom has two or three internal states. I
now want to treat the case of a real many-level Cesium atom. After briefly reviewing the Cesium
spectrum, I discuss several results that are useful for performing calculations involving many-level
atoms, and I apply these results to generalize the calculations performed earlier for two- or three-level

atoms to the case of a many-level atom. A good general reference on the Cesium atom is [27].

1.6.1 Cesium spectrum

The portion of the Cesium spectrum that is relevant to the experiments discussed in this thesis is
shown in Figure 1.12. The spectrum can be divided into a 6.5 manifold of ground states and a 6P
manifold of excited states. These manifolds are split into fine structure manifolds by the coupling
of the electron spin S to the orbital angular momentum E, which gives total angular momentum
J =L+S. Since the electron has spin 1/2, there are two excited state fine structure manifolds
(6P /2 and 6P;/5), and a single ground state fine structure manifold (65;,2). The fine structure
manifolds are in turn split into hyperfine manifolds by the coupling of J to the nuclear spin f, which
gives total angular momentum F = J+ I Since the Cesium nucleus has spin 7/2, 6Py)5 splits
into four hyperfine manifolds (F' = 2,3,4,5), while 65,/ and 6P,/ each split into two hyperfine
manifolds (F = 3,4).

L7 250 MHz
o — F=14
6P5)2 — I 200 MHz
F=3 150 MH
~ F:2 Z
852nm
. —— F=4
6P 2 <l I 1.2GHz
— F=3
894 nm
L — F=4
651 /2 9.2GHz
—— F=3

Figure 1.12: Spectrum of the Cesium atom.

The fine structure splitting and hyperfine splitting define important energy scales for the atom.
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The fine structure splitting between 6P/, and 6P/, is 16.5 THz, while the hyperfine splitting is
much smaller: the 6S;/5, F' = 3 and 65,/3, F = 4 manifolds are split by Agr = (27)(9.2 GHz),
the 6Py 9, ' = 3 and 6P, /5, I' = 4 manifolds are split by Agp = (27)(1.2 GHz), and the hyperfine
manifolds within 6P/, are separated by splittings of order hundreds of MHz. States in 65,2, F' = 4
can decay to 651/, F' = 3 through a i - B interaction, but because the splitting between the two
manifolds is so small this decay is very slow, and to a good approximation both manifolds can be

considered stable.

We can form a basis of energy eigenstates for the atom that are also eigenstates of L2, S2, I?,
J?, F?, and the projection F, of F along an arbitrary axis 2. The states are denoted by their

eigenvalues:

|6L,]7F7mF>

Sometimes I will shorten this to |F, m) for the ground states and |F’,m’) for the excited states, and
it will be understood from context to which fine structure manifold the excited state belongs. Due
to rotational invariance, the energy of a state is independent of mp, so each hyperfine manifold F'

consists of 2F + 1 degenerate Zeeman states.

1.6.2 Circular polarization vectors

In performing atomic physics calculations with vectors, it is often convenient to choose a basis of

circular polarization vectors relative to a coordinate system {z, ¢, £}:

R Lo
€x1 = :Fﬁ(xj:zy)

o

o
Il
W

I will show that the components of a vector with respect to this basis transform in the same way
as the spherical harmonics Y7 4, and therefore form a spherical tensor of rank one. Note that the

circular polarization vectors satisfy the orthonormality relations

<€y = 0gr

and that
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An arbitrary vector A can be expressed as
A=) "A.¢
q

where
Ag=¢4-A
If A is nonzero, we can define a unit vector A = A/|A], which can be expressed as

A=sinfcos¢ +sinfsingy + cosf 2
for some choice of angles  and ¢. The spherical harmonics Y ,,(A) are
Yi+1(A) = 7(3/87)Y/2 et sinf = (3/4m)V/2 A - é1y
Yi0(A) = (3/4m)'/2 cosf = (3/4m)/2 A - &y
Thus, the components of A are
Ag =g A= (4n/3)' 2 |A]Y1,4(4)

Therefore, the components A, transform under rotations in the same way as the spherical harmonics

Yi,4(A).

One must be careful when considering the circular polarization components of the hermitian conju-

gate of an operator, since the notation A:E is ambiguous. I will adopt the convention that

Al =¢, A

Note that this is not the same as (A,), which is given by

-, -,

() = (0 A) = &5 AT = (-1)7ey- AT = (1)1 A1,

1.6.3 Wigner-Eckart theorem and projection theorem

The Wigner-Eckart theorem allows us to express matrix elements of an arbitrary vector operator A

as a product of a reduced matrix element and a Clebsch-Gordon coefficient (see [28] for a proof of
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the theorem):

(Jo,mal Ag|lJ1,m1) = (202 + 1) 72 (J||Al|J1) (J2, mal1, q; J1,ma)

~1/2 factor does not

Some authors define their reduced matrix elements such that the (2Jy + 1)
appear, but I prefer this definition, because reduced matrix elements defined in this way have the
property that

[(J2Al[J)] = [(J1]|AT]]J2)]

This can be seen from the following considerations. Note that

|(Jo, ma|Ag|J1,m1)|? = (Jl,m1|é;-/YT|J2,m2)<J2,m2|éq-/f|J1,m1>
= (Jl,m1|é_q-/TT|J2,m2)<J2,m2|éfq-fY|J1,m1>

= [(Ji,m] AT |2, mo)[?

where Aiq =é_g4- AT. From the Wigner-Eckart theorem,

YD WJaymalAg gy, ma)l?

m1 m2

= 2L+ D)7HRIANTDPY YD [(J2ymall g5 Jr,m)

q mi1 m2

[(J2l|AllJ1) P

Similarly,

DO I malAL T, mo)

q mi1 m2

= @+ 1) ANATR)PD DD DN I mall, —g; Jo, mo)?

q mi1 Mma2

= [(AllAT]] )

Thus, the magnitudes of the two reduced matrix elements are equal.

We can derive a useful corollary to the Wigner-Eckart theorem for the special case J; = Jo = J.

Note that

D (Loml(&; - D) (g - A)J.m)

q

SN (gmley - JIJm!)(Jm | AglJ,m)

q m

(J,m|J - A|J,m)
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= e (JIIA]lT)

where

cy = T+ 1) N Tmler - T m!) (w1, q; Jm)

q m
Note that since J - A4 is a scalar, c¢; does not depend on m. If we substitute A = J in the above

result, we find that
(J,m|J?|J,m) = cy (J||J||J) = J(J + 1)

Thus,
o J(J+1)
SRVIINI¥
and
- o (JIAl[])
Jm|J-AlJm)=JJ+1)———

From the Wigner-Eckart theorem, we have that

(Jym|Ag|J,m) _ (JIA]lT)

(sm!| gl Jym) (T J[]T)

Thus,
1

/
A =
(J,m/|AqlJ, m) T+ D)

<Jam|j "LY|']7 m><‘]a m/|']q|']7 m>

This result factors the matrix element of A into a matrix element of J and a term corresponding to

the projection of A along J , and is therefore known as the projection theorem.

1.6.4 Coupling to a magnetic field

The projection theorem can be used to calculate the coupling of an atom to a magnetic field. The
coupling Hamiltonian is

Hp=—ji-B

where (i, the magnetic moment of the atom, includes contributions from the electron’s orbital motion
and from its spin:

fi = up(9rL + gsS)

There is also a contribution from the nuclear spin, but it is smaller by the electron to proton mass
ratio and may be neglected. The constant pp is the Bohr magneton, which is defined such that
gr = —1 for an electron. We can calculate the Bohr magneton as follows. Suppose an electron
moves in a circle of radius r at angular frequency w. The electric current generated by the moving

charge is [ = —ew /2, and the angular momentum is L = mwr?, so the magnetic moment due to
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the electron’s orbital motion is

p=7r*l = —(e/2m) L

Thus, the Bohr magneton is given by
pp = e/2m = (1/2m)(ah/c)*/? = (27)(1.40 MHz - G 1)
where I have used the definition of a gauss:
G=g'?. cm /2.1
The total Hamiltonian for the system is
H=Hy+ Hp

where Hy is the Hamiltonian for the atom in the absence of a field. The Hamiltonian Hy has
eigenstates |F,m) that are grouped into hyperfine manifolds F', where the splitting between these
manifolds is ~ 100 MHz for the excited states and 9.2 GHz for the ground states. If Hp is small rela-
tive to these splittings, then we can approximate its contribution to H using first order perturbation

theory:

H~Hy+> > Y |F,m/)(F,m/|Hp|F, m)(F,m|

F m' m
Note that
(F,m/|Hp|F,m) = —B - (F,m/|ji|F,m)

By the projection theorem,
(F,m/ || F,m) = gp(F, J, L) up (F,m'|F|F,m)

for some constant gp(F, J, L), which is called the Lande g-factor. Thus, we can express the Hamil-

tonian as

H=Hy—pupB-FY_ Prgr
F

where the sum is taken over all hyperfine manifolds F', Pr is a projection operator onto manifold

F, and gF is the Lande g-factor for that manifold.

I now want to evaluate the g-factors. This can be accomplished as follows. By the projection
theorem,

(J,m!|S|J,m) = (J,m!| T - S|J,m) (J,m'|J|J,m)

1
J(J+1)
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The matrix element of J - S can be evaluated by using that

R 1 = o = =2 = -
J-S:§(J J+S-S—|J—S|2):§(J J+S-S—L-L)
Thus,
- 1 S(S+1)—L(L+1) -
/ ——— 1 /
ont|Slam = 5 (14 ZEELZHEEDY ) gm)
Similarly,

L(L+1)—S8(S+1)
JT+1)

. 1 .
(o Egom) = 5 (1+ ) (| 17.m)

Thus, if we substitute for ji, we obtain

<Ja ml|ﬁ|‘]a m> “B (gL <Ja mI|E|']7 m> +9s <']7 m/|§|']7 m>)

pg 95 (J, L) (J,m'|.J|J,m)

where

uL+n—sw+n>

gs(J, L) = %(QL +9s5) + l(gL - 9s) ( J(J+1)

2

Similarly, using that

J(J+1)—I(I+1)
F(F+1)

. 1 .
(F,m/|J|F,m) = B (1 + > (F,m/|F|F,m)

we find that
(F,m/|{|F,m) = pp gr(F,J,L) (F,m'|F|F,m)

where

gr(F,J,L) = 1 (1+ JJ+1)—I(I+1)

2 F(F+1) ) 9s(J, L)

Substituting gs = —2, g, = —1, we obtain the following g-factors:

Ly F|gr(L,JF)
Pyp 5| +2/5
Pyy 4| +4/15
Pyy 3 0
Pyy 2| —2/3
Py 4| +1/12
Py 3| —1/12
Sy 4| +1/4
Sie 3| —1/4
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1.6.5 Relating reduced matrix elements

Suppose we add angular momentum J to angular momentum I to get total angular momentum
F = J+1I. 1 want to show that if A is a vector operator that does not couple to f, then we can

relate the reduced matrix elements (F'||A||F) and (J'||A||J):

, 1 J J
(F'||A||F) = —(=1)7H 1+ \2F +1V2F +1 (J'||Al|T)
I F' F

I will call this the reduced matrix element reduction formula.

The quantity in brackets is a 6J symbol, which is defined as follows. Consider a system of three

spins. One could describe the system using a product basis:
{|J1; ml>|J25 m2>|J37 m3>}

Alternatively, one could couple spins J; and Jy together to get a spin Ji2, then couple Jio with J3
to get a total spin J (see Figure 1.13). I will denote these states by

{1((J1, J2)J12, J3)J,m) }

As an example of this notation, consider the Cesium hyperfine states. They are obtained by coupling
Lto S to get f, and then coupling Jto I to get F. Thus, in this notation they would be expressed
as

{I((L, S)J, ) F,m)}

A third possibility is to couple Jo with J3 to get Jos, and then couple J; with Ja3 to get total spin
J (see Figure 1.13):
{I(1, (J2, J3)Jag)J,m) }

The 6J symbols relate these last two descriptions of the system. They are defined by

<((J1, Jg)Jlg, Jg)J, m|(J1, (Jg, Jg)Jgg)J, m> =

Ji J2 Ji2
Jz  J  Jo3

(=1) /it ta T o010 + 1/ 2003 + 1

Note that the overlap does not depend on m. The 6J symbol is symmetric under permutation of

columns and under exchange of rows for any pair of columns.
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J2 J3 J2 J3

Jo3

J1 J J1 J

Figure 1.13: Two different methods for coupling J;, Jo2, and J3 to get total spin J.

Now, let us return to the derivation of the reduced matrix element reduction formula. Note that we

may expand matrix elements of the operator A as

(F',m'|Aq|F,m) =

Z SN F I mly L) (T mly | Al T m) (T,ms 1 omg | Fym)

m myp myg
where I have used that A does not couple to I. From the Wigner-Eckart theorem,
(I m5|Agl Tymy) = 20+ 1D)7V2 (TN A|T) (T m |1, g5 T, meg)
Also,
(F',m/|Ag|[Fym) = (2F +1)7V2 (F'||A||F) (F',m/|1,¢; F,m)
Substituting these results into our expansion of (F’,m’|A4|F, m), we obtain the following relation:

(2F" + 1)~ 2 (F']|A||F)
(277 + 1)~ (T |AllT)

ZZZ (F'm!|J'mlys Lmp) (T w1, g3 J,mg) (S, mes Tmg | Fym)

m myp myj

(F',m/|1,q; F,m) =

The ratio of reduced matrix elements can be expressed in terms of a 6J symbol. First,

|(1,(J, I)F)F’,m’)
= ZZ (1,q; F,m|F',m') |1,q) |(J, T)F, m)

ZZZZ g, E,m|E m!y (J,my; I, mi|F,m) |1,q) |J,mz) |I,mr)

q mg mjp



61

Next,

(,nJ' , nHF,m|

= S F I il Lo (1, 0) T | (I,my]
mr

!
my

= ZZZZ<F/am/|J/7m{];Iv m1> <J/7m{]|1aq; J7 mJ> <15q| <J7 mJ| <I7 m1|

m’;, ¢ my mp

Putting all this together, we find that the overlap is

(1, )T D) m|(1, (J,1)F)F',m)
(2F +1)"'2 (|| Al F)

(2J'+ 1)_1/2 <J/||A||J> ZZ<F/7m/|17q;F7m><17q;Fam|F/7m/>
qg m
_ QF )TV (FA|F)
(2J"+ )72 (|| AllT)

where I have used completeness on 1 ® F. From the definition of the 6J symbols, we also have

(1, )T, DEF ! |(1, (J,)F)F',m/) =

, T J J
— (=) +1V2F + 1

I FF F
Thus, we obtain the desired result:

, 1 J J
(F'||A||F) = —(=1)7H 1 \2F +1V2F +1 (J'||Al|J)
I F' F

1.6.6 Dipole matrix elements

In performing atomic physics calculations we often need to evaluate matrix elements of 7 between

two atomic states. In this section, I will show how these matrix elements can be evaluated.

T’ll start by considering matrix elements of 7 between atomic states of good orbital angular mo-

mentum L. Using the Wigner-Eckart theorem, we can express these matrix elements as
(6P, m’|r,|6S,0) = (1/3)Y2(6P||r||6S) (1,m'[1,q;0,0) = D &,

where

D = (1/3)"2(6P||r[|6S)
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is the dipole moment for the S — P transition.

Now I want to consider matrix elements of 7 between two fine structure states (that is, states

of good J ). From the Wigner-Eckart theorem,

(I [rqlJ,m) = (20" + D)7 V2 (Tl T) (T 11, g T, m)

We can relate the reduced matrix elements (J'||r||.J) to the dipole moment D as follows. Since 72

is a scalar and does not couple to the electronic spin, we have that
(J',m/|r?|J,m’y = (6P,0[r%|6S,0) = |(6P,0[ro|6S,0)|* = D?

But if we insert a complete set of states and apply the Wigner-Eckart theorem, we can also express

this as

<J/,ml|r2|,]7 m/> = ZZ |<lem/|TQ|Ja m>|2
q m
= @I+ DN DD W w15 J,m)
q m

= @S + D[S Irl])?
where I have used completeness on 1 ® J. Equating the two expressions, we find that
D= (27 + )2 (J'[|r]|])
Thus, the dipole matrix elements are
(J' m!|rq|J,m) = D (J',m/|1,¢; J,m)

Finally, I'll consider matrix elements of 7 between two hyperfine states (that is, states of good ﬁ)

From the Wigner-Eckart theorem,
(F' ol rg| Fom) = (2F + 1) 72 (F||r[|F) (F' /|1, g; F, m)

Since 7 does not couple to the nuclear spin f, we may apply the reduced matrix element reduction

formula to express (F'||r||F) in terms of (J'||r||J):

QF' + )7 V2FIE) = @0+ )7 2SNl ) B (F, F)

= DBy(F.F)
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where I have defined

1 J J

By (F,F') = —(=1)7H+F /27 1+ 1V2F + 1
I F F

Thus, the dipole matrix elements are
(F',m/|ry|Fym) = D By (F,F")(F',m/|1,q; F,m)

Here are Mathematica routines to calculate the factors 3 (F’, F) and the dipole matrix elements

(F',m/|rq|F,m):

betalJp_, Fp_, F_] :=
-(-1)"Fp*Sqrt[2Jp + 1]*Sqrt[2F + 1]*
SixJSymbol[{1, 1/2, Jp}, {7/2, Fp, F}]

dipole[Jp_, Fp_, mp_, F_, m_] :=
D*beta[Jp, Fp, Fl*
ClebschGordan[{1, mp - m}, {F, m}, {Fp, mp}]

where D should be defined as the value of the dipole moment in whatever system of units is being

used. Using the first routine, we find that the factors 5/ (F’, F') are as follows:

For J' = 3/2,
F' |2 3 3 4 4 5
F |3 3 4 3 4 4
b2 |1 VB VIR BT AT
For J' =1/2,
F’ 3 3 4 4
F 3 4 3 4

B2 —/1/4 /3/4 —\/7/12 /5/12

Note that the factors obey the sum rule

DB (FL PP =1

F

In the next section, I will explain why this is true.

The dipole moment D can be expressed in a number of different ways. I defined D in terms of
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the reduced matrix element for the S — P transition:
D = (1/3)"2(6P]|r||65)

The dipole moment D is also equal to the dipole matrix element for the |4,4) « |5,5) cycling
transition:

D = <6P3/2, 5, 5|T+1|651/2,4, 4>

If we express D in terms of the Bohr radius ag, we find
D = 3.166 ag
Later we shall see that D can be related to a saturation intensity Ilq¢:
D = (871'04]5(1,5)_1/2 ~y

where

Y ="7YD2 = (2#)(522 MHZ)

is the decay rate for the D2 line and
Lot = (1/6) why v = (he/6m)(2m)3(v/A3) = 2.19 mW /em?
is the saturation intensity for the D2 line.

1.6.7 Atomic raising and lowering operators

We can define an atomic raising operator for the many-level atom by
At = D71 P(e) 7 P(g)

where

P(g) =165,0)(65,0/ = > |,m)(Jym| = > > |F,m)(F,m|
F m

m

projects onto the manifold of ground states, and
P(e) =Y _[6P,m)(6P,m/| =Y > |, m/) (I m| =N |Fm ) (F |
m’ J m/ F' m/

projects onto the manifold of excited states. If we substitute the different forms of the projection

operators into our expression for /YT, and use the results of the previous section to evaluate the
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resulting dipole matrix elements of 7, we find that
At = D' P(e)ry Plg)é;
q
= Y l6P.q)(65.0¢;
q
= > 3> I m g Jom) [T m) (m]é;
qg J m m
= Y IS Br(FEF)(F w1, q; Fym) [F ') (F,m| €
qg F' m' F m
The operator AT is the many-level atom generalization of the o operator for a two-level atom.

The reduced matrix elements of AT can be obtained from the reduced matrix elements of 7, which

were calculated in the previous section:

(6P||AT||6S) = 3!/2
(JI|AY)) = (2 +1)V?
(F'I|AT||F) = (2F' +1)Y28,(F',F)

By taking the hermitian conjugate of /_ﬁ, we obtain an atomic lowering operator A. We can express

7 in terms of the raising and lowering operators:
7= D(A+ A"

From

AT =3 "16P,q)(65,0] ¢;

q

we see that

—

A- AT =3P(g)

and

-,

At A= P(e)

We can use this last result to prove the sum rule

S 1B (FL PP =1
F
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The proof goes as follows. Since AT - A = P(e), we have
(F',m/|AT - A|F',m'y =1
But if we insert a complete set of states {|F,m)}, and substitute

AT =3T3 SN S  B (B ) (/|1 Fom) [F' o) (Fom|

q F' m' F
we find
(Fm/| AT AIF ) = Y NS m e - AT|F,m)?
q F m
= Y Br(EF DD WF Mg Fom))?
F qg m
D 1Br(FL PP
F

Equating these two expressions, we obtain the sum rule.

The operator AT connects the 65 manifold of ground states to the entire 6P manifold of excited
states. But sometimes we will want an operator that only connects ground states to a particular

submanifold of excited states. I will define operators
Aty = P(J") At
which connect ground states to excited states in the fine structure manifold J’, and operators
AN(J F')y = P(J',F'") A

which connect ground states to excited states in the hyperfine manifold F’ that lies in the fine

structure manifold J’. Note that

Y AN F) = AT(T)
F/

and

AN =4
J’
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1.6.8 Spontaneous decay rate

I now want to calculate the spontaneous decay rate for Cesium. We will start with a two-level atom,

and then generalize to the full Cesium atom. The atom decays via the interaction Hamiltonian
Hi = —ef - E

where E is the quantized electric field, evaluated at the position of the electron. In the dipole
approximation we can just evaluate E at the position of the atom, which I take to be at the origin.

In the radiation gauge, the electric field is given by
E=-9A

where /Y, the vector potential, is obtained by quantizing the modes of a box with periodic boundary
conditions:
A= Z(Qw/w,;V)l/Q (agy €xx e iwgt=Fk-7) + a];;/\ ézl\ ei(“’ﬁt_g'?))
Ex
Here V' is the volume of the box, and aj, and a%}\ are creation and annihilation operators for mode
k. The vectors €, are photon polarization vectors; they are orthogonal to each other and to i€, SO
the set {l;:, €51 €yt forms an orthonormal frame. A convenient coordinate representation for these

vectors is

k = sinfcos¢x +sinfsingy + cosh 2
= cosfcos¢pZ + cosfsingy —sinf 2

—singZ + cospy

)
L
(™)

I

Using the above expression for the vector potential, we find that the electric field at the position of

the atom is

E=-0A= iZ(27rw,;/V)1/2 (agy égy € “F — a%)\ N e wrt)
kA

In the Schrodinger picture,

If we substitute this into the interaction Hamiltonian and make the rotating wave approximation,
we obtain

H;=—-er-E= iZ(g,;/\ Ay O+ — 97y a%}\ o)
Ex
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where

9iy = 2mawy/V)2 (7 &, |g)

gives the coupling of the atom to the mode 5y

We can calculate the spontaneous decay rate from the interaction Hamiltonian by applying Fermi’s
golden rule:

d*y = 2 |(f|Hi|i)|* 6(Ey — E;) d*n

Suppose the atom decays from an excited state e to a ground state g by emitting a photon into

mode k). The matrix element for this process is
(9, 15\ Hile, 0) = igp,
The density of final states is given by
d*n = 2m) 3V dk® = (2m) PV w? dw d

Thus, the decay rate per unit solid angle for emitting a photon in direction k is

dW 3
0= (2m) " taw Z| el ez, 19)|?

where w = F, — E; is the atomic transition frequency. Note that
(el éz519)I? Z €3 - (elrqlg)®

Substituting for the circular polarization vectors éj, we find

ey - ez, > = sin®6
|65 épl” = 0
5y &g > = 300529
el = 5

Thus,

L . 1
D el ég\lg) I = sin® 0[(elrolg)|* + Z1+ cos 0) (|{elr+1lg)* + [{elr—1]g)|)
A
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If we substitute this into our expression for the decay rate per unit solid angle and integrate over

all possible photon emission directions 12:, we obtain the total decay rate:
4 3 2 4 3 oy e
(e —g) = zow > lelrglg)® = zow” {glrle) - {elrlg)
q

Now let us consider the full Cesium atom. We can use this result to calculate the decay rate from

excited state |F’,m’) to ground state |F, m):
’ 1 4 3 / ! 2
Y| F',m'y — |F,m)) = W Z [(F', m|rq|F, m)]|
q
If we substitute for the dipole matrix element, we obtain
7(|F/=m/> - |F7 m>) =g |6J/(F/7F)|2 |<F/7m/|17m/ —m; F, m>|2

where

4
Yy = gO&U}%/D2

From completeness on 1 ® F we have

ST HE, (L m! — mi Fom)? = 1
Thus, the total decay rate from |F’,m’) to the ground state manifold F is

S AF ) = [Fom)) = v |85 (F )P
Note that this rate is independent of m’. From the sum rule
> 1B (FF)? =1
F

we see that the total decay rate out of |F',m') is

DD AF m) = |Fom)) =g

F m

Note that this rate is independent of the excited state hyperfine manifold F”.

We can also use our expression for the quantized atom/field interaction to derive the coupling

of a classical beam of light to the atom. Suppose mode kX is in a coherent state ag,, and all other



70

modes are in their ground states. Then, tracing over the field variables, we obtain
TTF[HZ'] = (1/2)(QU+ + Q*U_)
where
Q = 2i gy oy

Thus,
Q= (8manw/V) [{e|7- &, 19)|* = (8mal) (|7 &, |9)]?

where n = |ag, |* is the number of photons and I = nw/V is the intensity of the beam. This agrees

with the expression for the Rabi frequency we obtained in section 1.3.2.

1.6.9 Coupling to cavity mode
I now want to consider the coupling of a many-level atom to a cavity mode. The atomic dipole p’
couples to the cavity field E at the position of the atom via the Hamiltonian

Hi=-p-E

The atomic dipole may be expressed in terms of the generalized atomic raising and lowering opera-
tors:

7=ei =eD(A+ Ah)

The quantized cavity field is given by
E= i(27rwc/V)1/2 D(F) (aée™ ™ — ol & eit)

where w, and € are the frequency and polarization of the cavity mode, ¥ (7) describes the mode

shape, and V is the mode volume.

Note that if the birefringent splitting of the cavity is small, as is the case for our cavity, then
modes occur in nearly-degenerate pairs. One of the modes in each pair is linearly polarized along
one birefringent axis; the other mode is polarized along the orthogonal birefringent axis. To describe
the coupling of the atom to the cavity, we need to include coupling Hamiltonians for both of the

modes that are resonant with the atom.

If we substitute for the atomic dipole and the quantized cavity field, we find that the coupling
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Hamiltonian is

H; = —igo(7) (aee ™t —al e e™?) . (A + AT)

where I have defined a coupling constant
g0 = (2maw./V)/? D

If we use our expression for the atomic decay rate

4 32
= = D
Yy 3 aw,

and approximate w. ~ w,, then we can express the coupling constant as
go = (3/167%)1/2 (QA*/V)1/2
where @ = w,/7v is the quality factor of the atom, and A\ = 27 /w, is the wavelength.

The operators A and AT are Schrédinger picture operators. We can transform to the interaction
picture by defining operators

AN(F,F') = P(F") At P(F)

which connect the ground state hyperfine manifold F' to the excited state hyperfine manifold F”.

The operator A can then be expressed as
LR IULS
F F
In the interaction picture, the operator AT takes the form

At — Z Z AN(F F") eirr
F F
where wp g/ is the F' — F’ transition frequency. If we substitute this into the interaction Hamiltonian
H, and make the rotating wave approximation, we obtain coupling terms for all possible atomic
transitions. The terms corresponding to a F' — F’ transition evolve in time at a rate given by the
detuning Ap pr = w—wp ps. For the situations we will be interested in, the cavity is nearly resonant
with one of these transitions and is far detuned from all the others. We can neglect the couplings to

the far detuned transitions and retain only the coupling to the nearly resonant ' — F’ transition:

H; = —igo(7) (aé- AT(F, F')e "Arrt — gl e . A(F, F') e!Arrt)
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1.6.10 Coupling to classical fields

We will often want to describe the coupling of the atom to a laser beam. The atomic dipole p couples

to the electric field E of the beam via the coupling Hamiltonian
Hy=—p-E
The dipole may be expressed in terms of the generalized atomic raising and lowering operators:
7=ei =eD(A+ Ah)
As for the two-level atom we discussed in section 1.3.2, the electric field is given by
E = %(87‘1’])1/2 (ee ™ 4 &% ety

where I and € are the intensity and polarization of the light at the position of the atom. Thus,

-

Q , , .
H; = 70 (ée_““’t + & ezwt) . (A—‘,—AT)
Here
Qo = (8mad)/2 D = y(I/I00)"?

where I have defined a saturation intensity I,,: relative to the dipole D:
v = (87Tozfsat)1/2 D

We will be interested in situations where the light is nearly resonant with a single atomic transition
F — F’ and far detuned from all the others. Thus, if we make the rotating wave approximation, and
neglect the couplings to the far detuned transitions, we can approximate the coupling Hamiltonian
as

Hy =~ (¢ AN(F, F'ye ™t 4 & A(F, F'") ™)

In the rotating wave approximation this can also be expressed as

H; = Qo (¢ AT(F,F') 4+ & - A(F,F")) coswt

1.7 Far detuned light

Both the FORT and the Raman scheme involve the use of far detuned light. In the context of a

three-level model, we have seen how the coupling of far detuned light to the atom can be accounted
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for by adiabatically eliminating the excited state. In this section I want to generalize these results

the case of a many-level Cesium atom.

1.7.1 Ground state transition amplitudes

When we adiabatically eliminate the excited states for a many-level atom, we obtain ground state

transition amplitudes of the form
1
> - (F2, mafrile){elr; [ F1, ma)

where the sum is carried out over all excited states e. In general, the excited states can be grouped
into a set of manifolds {E'} such that for each manifold the energy splittings between states within
that manifold are small relative to the detuning of the light. For each manifold E in the set, we
can neglect the differences in detunings among the states in ' and approximate them all by a single

detuning Ag for the entire manifold. We can then express the sum as

1
> N D (Fo,malrile)(elr;| Fy,ma)
E

ecE

The case we will be most interested in is one where the detuning of the light is large compared to
the excited state hyperfine splitting but small relative to the fine structure splitting, so for this case

we would group the excited states into fine structure manifolds 6 /o and 6P55.

To evaluate the ground state transition amplitudes, it is helpful to express 7 in terms of atomic

raising and lowering operators that couple ground states to excited states in the manifold E:

F=D> (A(E)+ Al(E))
E

Thus,

Z<F27m2|Ti|e><€|Tj|F1,m1> = D? (Fy, ma| A;(E) AN(E)| Fy,my)
eclk

The tensor A4;(E) A;r- (E) may be evaluated by decomposing it into its irreducible parts (for a discus-
sion of this type of decomposition, see [28] or [29]):

Ai(B) AL(E) = TO(E) b5 + T{" (B) s + T3 (E)

where

TONE) =
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transforms as a scalar (spin 0),

1
TV (E) = 5 eign Ai(E) AY(E)

transforms as a vector (spin 1), and

-,

T?(B) = = (A(E) AL(E) + A;(E) Al(E)) — = A(E) - A1(E) s,

N~

transforms as a traceless symmetric tensor (spin 2).

If we choose E to be a hyperfine manifold F’ within a fine structure manifold J’, then in gen-

eral all three components will contribute:
Ai(J/,F/) A;[(J/,F/) - T(O)(JI,FI) 5i; + T]gl)(J/,F/) €xij + Ti(jz)(JlaF/)

If we choose E to be a fine structure manifold J’, then we can ignore the contribution of the nuclear
spin and consider eigenstates of J2 and J,. Since the ground state has J = 1/2, and it is not possible

to couple spin 1/2 to spin 1/2 via spin 2, the tensor component vanishes:

AT AL = TOT) 835+ T () ensg

Note that
17 ’
F/
STV E) = 1)
F/
S TOWLF) = TOW)
F/

Finally, if we group all the 6P excited states into a single manifold, then we can ignore both the
nuclear spin and the electron spin and consider eigenstates of L? and L,. Since the ground state

has L = 0, only the scalar component contributes:
A; AT =T 5
Note that

S TOWU) =0
Jl
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ZT(O)(J’) = 70

J!

I now want to evaluate the irreducible tensors. The tensor T is given by

TO = 4. AT = P(g) =1

wl

The tensors 79 (.J') may be evaluated as follows:
1 . .
TOW) = (J,m|TOJ")|J,m) = 5 (Jm|A(T") AT (T T, m)
If we insert a complete set of states, we obtain

1
TOU) = 333 Iml Al )
q m

1
= @I+ O)TINANTYPY DY [Tmi g T )
q m'

w

= LI+ )T A

w

The reduced matrix element is given by

[(TIAT) 2 = [T IATD? = 27" + 1)

: TOJY = (1/3)(2J + 1)(2J + 1)1 = (1/6)(2J" + 1)
Thus,

TO(1/2) = %

TO(3/2) = %
Note that

Z 7Oy =T
J/

as expected.

It is a little more complicated to evaluate T (J’). Since TH(J') only acts on ground states,

which all have J = 1/2, we can apply the projection theorem to express it as

— =

TOIY =y J
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for some constant cj/. Recall that

YT =0

J!

Thus, ¢3/3 = —c1/2. We can find ¢/, by considering a particular matrix element:
(6512, 1/2/T{V(1/2)[651/2,1/2) = 172 (6512, 1/2/J[6S1/2,1/2)

Note that

TOW) = S(ALT) AL — A7) AL

i
= An) AL () = AL () AL ()
where AZ =é,- At. Thus,

(651/2,1/2|T{V(1/2)[651/2,1/2)
= 5(6812,1/21411(1/2) AL, (1/2)[6S12. 1/2)

i
— —§|<6P1/2,—1/2|AT_1(1/2)|651/2,1/2>|2

= 312, -1/201,-151/2,1/2)
- !
I
Also,
(651/2,1/2[J.[6S51/2,1/2) = 1/2
So
2
c = ——1
1/2 3
and

TW(3/2) = —TM(1/2) = +§z’f

If we combine our expressions for 79 (.J') and T (J"), we find

2 2

Ai(3/2) Al(3/2) = 3 0 + 3 €igi Ji
1 2

Ai(1/2)A;(1/2) = géij—gleiijk

Using this result, we can express the ground state transition amplitudes as

3 AlJ/ AT AT = (1/3)[(2/ D + 1/A1) 815 + 2i(1/ g — 1/ A1) eija il
~
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where A; and Ajz are the detunings of the light from the D1 and D2 lines:
Ay =2/ — 21/ Ak
It is convenient to introduce some dimensionless detuning parameters
Cr = (/M — 1)t = =21/Ap Ay
At the FORT wavelength of A, = 935 nm, these parameters are

Cs (AL/X3—1)"1 =103

o (AL/X—1)"1 =221

In terms of the detuning parameters, the ground state transition amplitudes are

Z Alj/ Al(J/) A;(JI) = —()\L/67T)[(203 + Cl) 5ij =+ 22(03 — Cl) €ijk Jk]
7

1.7.2 Matrix elements of .J

In the previous section, we showed that the ground state transition amplitudes can be expressed in

terms of J. I now want to evaluate the matrix elements of J between two hyperfine states:
(Fa,ma|J|Fy,my)

For Fy = F;, = F, we can use the projection theorem to express matrix elements of J in terms of

matrix elements of F. Recall that gr is defined by
(F,mo| | Fyma) = pp gr (F) m2|ﬁ|F, mi)
The ground states have no orbital angular momentum, so
fi=pupgsS=npgsJ

Thus, since gg = —2,

i 1 _
<F,m2|J|F,m1> = —59}? (F,m2|F|F,m1>

In particular

1
<F7m|Jz|va> = _ggFm
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For the general case of arbitrary F} and F5, we can apply the Wigner-Eckart theorem:
(Foymol Jg|Fayma) = (2F> + 1)V (|| J||Fy) (Faymall, ¢; Fyyma)

Since J does not couple to the nuclear spin, we can use the reduced matrix element reduction formula

to express (Fy||J||F1) in terms of (J||J||.J):

1 J J
(Bol[J||F1) = —(=1)7H* = /2F +1V2F; +1 (JII7117)
I

2 I

The reduced matrix element (J||J||J) can be evaluated as follows. Note that
(J,m|J?|J,m) = J(J+1)
If we insert a complete set of states and apply the Wigner-Eckart theorem, we find
(Lol P21 om)y =3 0% [ mldgl Jm) 2 = (2 + D)7 L))
PRy

Thus,
(JIIIT) = (J(J +1)(2] + 1))*/2

Putting this all together, we find

(Fa,mal|Jq|Fa,my) =

1 1/2 1/2
—-(3/2)V2 (=)= 2k +1 (F2,ma|1, ¢; F1,ma)
72 B, P
FOI‘J+1,
4,m+11J44,m) = +V4—mV/5+m/8V2
B,m+1J41]3,m) = —V3—mvVA+m/8/2
A,m+11J4|3,m) = —VA+mV/5+m/8V2
Bm+1J44,m) = +V/3—mVi—m/8V2
For Jy,
(4, m|Jy|4,m) = —-m/8

(3,m|Jy|3,m) = +m/8



(4,m|Jy|3,m) = —+16—m?/8
(3,m|Jol4,m) = —+16—m?/8

FOI‘Jfl,
(4,m—11J_1|4,m) = —/5—mVi+m/8V2
B,m—11J_4|3,m) = +V3+mvVi—m/8/2
(4,m—11J_4|3,m) = —V4—mvV5—m/8/2
B,m—11J_1[4,m) = +V/3+mVi+m/8/2

The operators J;l can be related to the angular momentum raising and lowering operators Ji as

follows. The raising and lowering operators are defined by
Jyr = Jp £1iJy

Thus,

. 1
Jﬁ:lzeil't]::lzﬁjﬁ:

1.7.3 FORT potential

For the three-level model discussed in section 1.5.2, we found that the effective Hamiltonian for the
ground states was
Hg = %5 a0, +U
where
02
V=1

For the full Cesium atom, the effective Hamiltonian is
1 N
Hp = 5AHF(P4 —Pg) +U

where

N 1 -
U= ZE: mQ(E) O (E)

and Ps and Py are projection operators onto the F' = 3 and F' = 4 ground state hyperfine manifolds.

The operator Q(E) is the generalization of the Rabi frequency €2; it is given by

QT(E) =7 (I/Isat)1/2 €- ET(E)
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where I and € are the intensity and polarization of the FORT beam. Thus, using the results of

section 1.7.1, we find

2
Aot T 2 1 1 1 o
U=——|—+——+2i| — — — -J
12 Toar <A3 TR <A3 A;) €9
We will assume that the FORT beam propagates in the Z direction, so the polarization vector € lies

in the x — y plane and can be expressed as

e= (1985, + (6187,
Note that
€41 X é*+1 = —é_l X é*—l = —iZ
Thus,
* xé=—i(lég1- € —|e_1-€*) 2
So

Note that J, couples the F = 3 and F' = 4 ground states. However, because Agp > U , this

coupling can be neglected, and we can make the replacement
J 1 F
z T TF z
29F
where g4 = 1/4 and g3 = —1/4. Thus, the Hamiltonian can be approximated by
1 ~ .
Hp = §AHF(P4 — P3) +U(F) + gr pp Be(7) - F

where

2 2 =
I 2 1 AR
ur) = 12 Tons (A3 + Al) T 2Un I (2Cs +C)

is a state independent potential, and

= 1) (1 N
BE(F)_ 1B 12 Isat Ag Al (|€+1 6| |€_1 6| )Z

is an effective magnetic field. It is convenient to express U in terms of the input power to the cavity.

Recall that the ratio of the maximum intensity inside the cavity I. to the input power P; is

I./P, = 4/kLA
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The FORT depth Up is given by

72AF Ic

U =
E= "94r Lo

(203 =+ Cl)
Thus, the ratio of the FORT depth to the input power is
Urp/P; = (2r)(127%) 71 (2C3 + C) (v*Ap /KL Al e:) = 37.0 MHz/mW

In deriving the expression for Upr, we assumed that the detunings were the same for the FF = 3
and F' = 4 ground states. This is a reasonable approximation, because the hyperfine splitting Agp
between F' = 3 and F = 4 is much smaller than the detunings. However, because the detuning of
the F' = 3 manifold is slightly larger than the detuning for F' = 4, the FORT potential is slightly
weaker for F' = 3. Thus, the FORT squeezes the two manifolds together, causing a small reduction

0 in the effective hyperfine splitting. We can calculate ¢ as follows. The FORT depth is

2
2L/ 2 1
Up = 2=
r 12th<A3+A1>

So
2 1. 2 1 2 1. 2 1
) = l _— 4 — _l +
12 It \As A4 12 Iier \As+Agr A1+ Apr
2
Y

R

12 Iyqr (A_g As A A )
U (2032 +C%> AHpAF
2C5 4+ C4 2mc

R

Substituting the FORT wavelength of A\p = 935nm, we find that the ratio of the shift § to the
FORT depth Uy is
0/Up = —470 Hz/MHz

Although this is a small shift, it is possible to observe it in the lab (see section 1.9.8).

So far I have only considered the Stark shifts of the ground states. The excited states are also
shifted by the FORT; however, the situation is more complicated than for the ground states because
additional transitions contribute to the shifts. By choosing the FORT wavelength A\ properly, one
can exploit these additional transitions to match the excited state shift to the ground state shift,
resulting in a state insensitive FORT. Such a FORT has two advantages over an ordinary, state
dependent FORT. First, an atom that makes transitions between ground and excited states will not
be heated by a fluctuating FORT potential, as would be the case for an ordinary FORT. Second,

and more importantly, the detunings of the atom from any additional light beams that are present
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are independent of the position of the atom within the FORT. For Cesium, the magic wavelength
that results in a state insensitive FORT is Ap = 935 nm, which fortunately lies very close to one of

the modes of our cavity. The state insensitive FORT is discussed in depth in [30] and [31].

For the experiments discussed in this thesis we use far detuned light in order to create a state
independent trapping potential U(7), and the effective magnetic field EE(F) is an unwanted side
effect, which we eliminate by using linearly polarized light. But it is worth keeping in mind that far
detuned light could also be used for the specific purpose of generating an effective magnetic field. By
using three circularly polarized beams propagating along three orthogonal axes one could generate
a field of arbitrary magnitude and direction, and if the beams were large enough the field would be
nearly uniform over the region of interest. The effective magnetic field would have the advantage

that it could be varied or turned on and off much more rapidly than a real field generated by bias coils.

Another possibility would be to create more complicated FORT potentials by driving multiple modes
of the cavity. By varying the intensities of the different driving beams, one could even change the
shape of the potential in real time. Perhaps this technique could be used to translate atoms along

the cavity axis so as to optimize their coupling to the QED probe.

1.7.4 Raman transitions

For the three-level model discussed in section 1.5.3, we found that the Raman coupling was
Hi = QE Oy COS&Rt

where
_ QrQp
- 2A

Qp

For the full Cesium atom, this generalizes to
Hi = QE COS (5Rt

where

Here

OL(B) = v (In/Lat)/? & - AT(E)
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where I, Ir and ép, €ég are the intensities and polarizations of the FORT and Raman beams. Thus,

using the results of section 1.7.1, we find

Op = (V/6) UrIn/I%)"? (2/Ds +1/A1) & ep +
2i(1/Ag — 1/A1) (€} % ér) - J)

I will assume that the FORT and Raman beams are linearly polarized and mutually orthogonal, so
the first term vanishes and

k

g*FX(%R

is a unit vector that lies along the cavity axis. Thus, {égr, éF, I%} forms an orthonormal frame. The
quantization axis Z can be chosen to lie in an arbitrary direction relative to this frame. For a given
choice of 2, we can define vectors & and § such that {Z, ¢, 2} also forms an orthonormal frame, which

is related to {ég, ép, k} by

cosfcospép + coslsingér —sinfk

:i‘ =
7 = —singép +cospér
z = sin@cosgbép—I—Sin@singbéR—l—cosOI;

Note that € represents the angle between the cavity axis k and the quantization axis Z. From these
relations, it follows that

k=cosfzZ—sinfz

Let us now calculate the Rabi frequencies for transitions between states that are defined relative to

quantization axis £. The Rabi frequency for |4, ms) < |3,my) is
Q4 m2) < [3,m1)) = (4,m2|Qp|3,m1)

It is convenient to express (0g in terms of the Rabi frequency € for the transition |4,0) < |3,0)

with quantization axis 2 = k. This is given by

Qo (4,0/Qg|3,0)

= i(v*/3) (IpIr/T2)"* (1/As — 1/A1) (4,0]J.]3,0)

= —i(y?/6) (IrIr/I2,)" % (1/As — 1/Ay)

Thus,
Op =—2Q0k-J=—Q (2J. cosf + v2J_1 sinf — v/2J, sinf)
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The Rabi frequencies for Am = 0 transitions are
y M 9 E[9,Mm) =(L—m 0 COS
(4,m|Qg|3,m) = (1 —m?/16)/2Qy cosd
and the Rabi frequencies for Am = +1 transitions are
A 1
,m —+ E3,m) =—=4+m +m 0 Sln
4 11Qp)3 S 1725 1720 sin g

I will sometimes speak of the Rabi frequency of the Raman beam; by this I mean the frequency g
at the bottom of a FORT well. We can relate the value of 2y at the bottom a FORT well to the
FORT intensity Ur as follows. Recall that for a linearly polarized FORT,

Ur = (v*/12)(Ir/Lsat)(2/ A3 + 1/ A1)

where I is the maximum intensity of the FORT beam inside the cavity. Thus,

Cs —C4

Qo/Up = —2i [ 2—L
o/Ur ’(203+01

) (Ir/Ir)Y? = —i(0.553)(Ir/IF)"/?

where I is the maximum intensity of the Raman beam inside the cavity. I will assume the FORT
beam is resonant with the cavity, while the Raman beam is detuned by Apyr = (27)(9.2 GHz).
Thus, we can relate the ratio of Raman to FORT intracavity intensity to the ratio of Raman to
FORT input power by

Ig/Ip = (1+ (2Apr/K)*) " (Pr/Pr)

where Pp and Pg are the input powers of the FORT and Raman beams, and « = (27)(1.6 GHz) is

the full width at half maximum of the cavity resonance at the FORT wavelength. Thus,

_ (&G 2y-1/2 1/2
Qo/UF = 21 (2034—01) (1+(2AHF/I<L) ) (PR/PF)

—i(0.048)(Pr/Pp)'/?

1.8 Experimental apparatus

1.8.1 Overview of experiment

At the heart of the experiment is a vacuum system consisting of two chambers: an upper chamber,
which is connected to a Cesium source, and a lower chamber, which contains the physics cavity. A
typical experimental cycle begins by loading a cloud of cold atoms in a magneto-optical trap (MOT)

in the upper chamber. The cloud is then dropped into the lower chamber, where it is recaptured in
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a second MOT situated directly above the physics cavity. Finally, this second MOT is dropped on
the cavity, and atoms falling into the cavity mode are cooled into a FORT by beams that enter the
cavity from the side. Once an atom has been loaded we are ready to perform a cavity QED experi-
ment. This generally involves driving the atom with various light fields (applied either from the side
of the cavity or coupled into a cavity mode) and collecting the output light with photon counters.

The photon counters generate a stream of clicks, which are recorded by a computer for later analysis.

Many different pieces of equipment are needed to make all this work. Since most of this has been
thoroughly documented elsewhere [32],[33],[31], I will just give a brief overview of the main compo-

nents.

1.8.2 MOTs

The magneto-optical trap (MOT) is a standard tool for cooling and trapping atoms [34], [35], [36].
To form a MOT, we combine trapping light that is red detuned from 4—5’ transition with a magnetic
quadrupole field generated by a pair of anti-Helmholtz coils. The trapping light is delivered by three
pairs of counter-propagating beams oriented along three orthogonal axes that intersect at the center
of the quadrupole field. Atoms at the center of the trap are driven by light that is red detuned, so
they don’t scatter very strongly. However, if an atom moves away from the center, it sees a magnetic
field that Zeeman shifts it into resonance with the light. If the polarizations of the beams are chosen
properly, then atomic selection rules will only permit the atom to absorb light from beams that push
it back toward the center of the trap. Thus, the combination of the trapping light and the magnetic
field produces a restoring force that confines atoms to the center of the trap. In addition, the red
detuned trapping light provides Doppler cooling, which damps the atomic motion and allows the
trap to be loaded from background vapor. Using a MOT, a cloud of ~ 107 atoms can be loaded in
~ 1s. The atoms in the MOT have a temperature that is set by the Doppler limit of v/2, which for
Cesium is 125 pK.

The MOT loading rate depends on the pressure of background Cesium gas, which is why we use
a double chamber configuration: we can maintain a relatively high Cesium pressure in the upper
chamber, so the upstairs MOT loads quickly, and a relatively low pressure in the lower chamber, so

the lifetime of atoms trapped in the cavity is not unduly limited by collisions with background gas.

1.8.3 Cavity locking and cavity QED probe

The probe frequency f, and cavity frequency f. must be known and stable to a frequency resolu-

tion that is small relative to the rates «, k, and g that characterize the atom/cavity system. To
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achieve this we need to actively servo-lock the cavity length and the probe laser frequency to a
reliable frequency reference. A convenient reference is the Cesium atom itself: by performing satu-
rated absorption spectroscopy in a Cesium cell it is possible to resolve narrow lines corresponding
to transitions to specific excited state hyperfine manifolds. The width of these lines is set by the
spontaneous decay rate v = (27)(5.2 MHz), so they can be used to stabilize frequencies to within a

few hundred kHz.

The locking scheme involves two cavities and two diode lasers; in addition to the physics cavity
(PC) and probe laser (PL) that we want to stabilize, there is an ancillary cavity called the trans-
fer cavity (TC) and an ancillary laser called the locking laser (LL). The physics cavity and transfer

cavity have modes at integer multiples of their free spectral ranges vpc = 2/Lpc and vpre = 2/ Lre:

fpc(n) = nvpc

fre(n) = nvre

Since the cavity lengths are Lpo = 42 um and Lpc ~ 30cm, the free spectral ranges are vpo =
3.6 THz and vpc ~ 500 MHz. The probe laser has wavelength 852nm and drives mode 99 of the
physics cavity, while the locking laser has wavelength 836 nm and drives mode 101 of the physics
cavity. The basic idea is that the transfer cavity is stabilized by locking it to Cesium, the probe
laser and locking laser are stabilized by locking them to the transfer cavity, and the physics cavity
is stabilized by locking it to the locking laser. In detail, the locking scheme works as follows (see

Figure 1.14).

First, we lock the probe laser to the transfer cavity by monitoring the coupling of light from the

probe laser into one of the transfer cavity modes and feeding back to the probe laser. This sets

frr = frc(ni)

for some mode n; of the transfer cavity.

Next, we lock the transfer cavity to a known line in Cesium by monitoring a saturated absorp-

tion signal derived from probe light and feeding back to the transfer cavity. This sets

fre(ni) = fpL = fos
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Figure 1.14: Scheme for locking the physics cavity and probe laser.

Thus, the modes of the transfer cavity now occur at fixed frequencies relative to Cesium; that is, for

an arbitrary mode n, we have

frc(n) = fro(ni) + (n —ni) vre = fos + (n —n1) vre

where vre is held at a constant, stable value by the lock.

The next step is to lock the locking laser to the transfer cavity by monitoring the coupling of
locking laser light into one of the transfer cavity modes and then feeding back to the locking laser

(the locking laser and probe laser are coupled into opposite sides of the transfer cavity). This sets

fLL = fTC(nQ)

for some mode ns of the transfer cavity.

Finally, we lock the physics cavity to the locking laser. This is accomplished by using an EOM
to put sidebands on light from the locking laser, monitoring the coupling of one of the sidebands

into the physics cavity, and feeding back to the physics cavity. This sets

fpc(101) = frr + Afrr
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where A frr is the frequency offset of the sideband. The modes of the physics cavity now occur at

fixed frequencies relative to Cesium; specifically, for mode 99 at 852 nm, we have

fe=fprc(99) = fos + (n2 —n1) vre —2vpe + Afrr

where vpe and vpe are stabilized by the locks. By adjusting the sideband frequency Afrr, we can
tune the cavity frequency f.. Note that Afr; only needs to be tuned over a transfer cavity free
spectral range vro; if we want to tune f. further than vpre, we simply lock the locking laser to a

different transfer cavity mode.

The probe beam is obtained by passing light from the probe laser through two double passed AOMs,

so the frequency of the probe beam is

fp=frL +AfpPL

where A fpy, is the net AOM shift. Thus,

fp=Jfcs+AfpL

By varying the AOM shift Afpy, we can tune the probe frequency.

1.8.4 FORT and Raman lasers

The FORT and Raman beams are obtained from two independent diode lasers. Both beams drive
cavity mode 90 at 935 nm, but the FORT beam is tuned to the cavity resonance while the Ra-
man beam is detuned by Agp = (27)(9.2 GHz) (note that the Raman beam is tuned blue of the
FORT beam). The cavity mirrors are coated to optimize the reflectivity at 852nm; at 935nm
the coating is not as effective and the cavity resonance is very broad (x = (27)(1.6 GHz)). Thus,
even though the Raman beam is detuned from resonance it is still possible to couple a significant
amount of Raman light into the cavity. Also, because the resonance is so broad, the coupling of the
FORT beam into the cavity is relatively insensitive to the FORT frequency, and consequently the
FORT laser doesn’t need to be locked. It is sufficient to monitor the transmission of the FORT light

through the cavity and tweak the FORT wavelength by hand over the course of an experimental run.

To drive Raman transitions, the frequency offset between the FORT and Raman beams must be
known and stable to a frequency resolution that is small relative to the effective Rabi frequency.
This is achieved by phase locking the Raman laser to the FORT laser. The phase lock works by

combining light from the two lasers on a fast photo-detector, mixing the resulting beat note down
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to DC to obt=in an error signal, and then feeding back to the Raman laser.
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-47 dBm 104 10 4B
1MW x 2 . m | cpL = m Q i)
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10 dBm
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Ch. 1
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Figure 1.15: Feedback loop for the FORT /Raman phase lock.

A diagram of the feedback loop is shown in Figure 1.15. We combine light from the two lasers using a
fiber beam splitter; at the output of the fiber there is ~ 1 mW of light from each laser. The combined
light is focused onto a NewFocus detector, which results in a —47 dBm signal at 9 GHz. This signal
is amplified and mixed against a 9 GHz synthesizer to get a 50 MHz intermediate frequency, which
is more convenient to work with. A 50 MHz synthesizer is used to mix the intermediate frequency
signal down to a DC error signal. This error signal is fed back to the laser using three branches: a
fast current loop that modulates the laser diode directly through a bias-T, a slow current loop that
modulates the laser current through the current controller, and a DC lock that feeds back to the

PZT. More details about the FORT/Raman phase lock can be found in [37].

Light from the Raman laser passes through an AOM, which is used for tuning and shuttering the
Raman beam, and is then mixed with the FORT beam on a polarizing beam splitting cube before

being coupled into the physics cavity.
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1.8.5 Photon counters

Output light from the cavity is coupled into a fiber, split into two beams with a fiber beam splitter,
and sent to a pair of photon counters. There are many ways light can be lost on the way from the
cavity to the photon counters, and the counters themselves have an overall quantum efficiency of
~ 0.5. Including all the loss mechanisms, the detection efficiency (that is, the probability that a
photon that starts inside the cavity will be recorded by the computer) is ~ 0.07.

We use two counters because after a counter detects one photon it must wait ~ 50ns before it
can detect another. This means that a single photon counter cannot be used to measure time cor-
relation properties of the light over timescales shorter than 50 ns. If two photon counters are used,
one can get around this problem by correlating the output of one photon counter with the output

of the other.

The photon counters are connected to a computer card that records the arrival times of detected
photons. The card has four channels; so since each detector uses a single channel there are two
remaining channels that can be used to record timestamps for other events in the experiment. The
software that controls the card produces a text file containing a list of all the recorded clicks. Clicks
are listed in the form of 32 bit integers, where the two high order bits give the channel number
and the remaining bits give the arrival time in units of 2ns. The card can also be operated in a

two-channel mode, which has a time resolution of 1ns.

1.8.6 Timing

For the experiment to function, a complicated series of precisely timed events must occur: laser
beams need to be shuttered on and off, pieces of equipment must be triggered, and so forth. In
all, about twenty TTL channels are needed. The pulses for all twenty channels are generated by an
AdWin Gold. The AdWin also has four analog output channels, three of which are used to set the

currents for the magnetic bias coils.

In order to simplify the specification of timing information, I have written a simple programming
language for defining pulses. The system works by running a text file containing the timing infor-
mation through a pulse compiler program, which results in a set of low-level commands that can be
downloaded into the AdWin. The language has a number of convenient features: names can be as-
signed to channels, events, and durations; pulses can be referenced to other pulses; and subsequences
of pulses can be iterated. These features allow the timing information for the entire experiment to

be quickly and easily modified.
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coils | radius [em] | separation [cm] | # turns | calibration [G/A]
axial 8.0 8.4 38 2.07
transverse 4.0 20.0 18 0.14

Table 1.1: Bias coil parameters.

coil | calibration [kHz/V]
x 25
Y 50
z 360

Table 1.2: Bias coil calibration factors, expressed in units of frequency splitting versus programming
voltage

1.8.7 Bias coils

A set of six bias coils is used to control the magnetic field at the location of the atom. The coils
are grouped into three pairs that are aligned along three orthogonal axes Z, ¢, and 2, where 2 lies
along the cavity axis and # and ¢ are perpendicular to the cavity axis and at a 45 degree angle to

the vertical. The total bias field is the sum of the fields produced by the three pairs of coils.

The coil parameters are listed in Table 1.1. T have not been able to locate a record of the number
of turns on the coils, but by combining the known coil geometry with information from Raman
spectroscopy, we can infer that the axial coils have ~ 38 turns each and the transverse coils have
~ 18 turns each. In the case of the axial coils we can measure the field with a Hall probe, and the
results agree well with the Raman scans. Each pair of coils for a given axis is wired in parallel, and
the calibration factor in Table 1.1 is the ratio of the field at the position of the cavity to the total

current flowing into the pair of coils.

The three coil pairs are driven by three independent current sources, which receive programming
voltages from analog output channels on the AdWin Gold. The current supplies for the & and 2
axes can supply a maximum of five amps, while the supply for the y axis can supply a maximum
of ten amps (the ambient field along ¢ is larger than along & or 2, so more current is needed). The

currents are related to their programming voltages by

I, = —(054/V)V,
I, = —(1.0A/V)V,
L = —(054/V)V,

It is convenient to express the calibration factors in terms of frequency splitting versus AdWin

output voltage (see Table 1.2).
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1.9 Experimental techniques and results

1.9.1 Useful transitions

There are a number of standard techniques for manipulating atoms that involve driving specific
atomic transitions with a classical field. Here I review some of the more useful transitions and dis-

cuss their applications.

One of the most important transitions is the 4 — 5’ transition. Because of the dipole selection
rule AF = 0, %1, an atom that starts in I = 4 and is excited by 4 — 5’ light can only decay back
into F' = 4. Thus, by detecting the light scattered from the atom, we can determine which hyperfine
ground state the atom is in: an F' = 4 atom will scatter ~ 10* photons before it falls into F = 3
via off-resonant excitation of F’ = 4, while an F' = 3 atom is decoupled from the light and doesn’t

scatter any photons.

A second application of the 4 — 5’ transition is optical pumping. If we drive an F = 4 atom
with 4 — 5’ light that is o polarized, then the atom will be optically pumped into |4,4). Once there
the atom cycles between |4,4) and |5’,5'); because of the selection rule Am = 0, £1, from |5, 5’) the

atom can only decay back to |4, 4).

A third application of the 4 — 5’ transition is Doppler cooling. To Doppler cool the atom, we
drive it with counter-propagating laser beams that are red detuned from the 4 — 5’ transition. For
a moving atom, the beam propagating opposite to the atom’s direction of motion is Doppler shifted
into resonance, causing the atom to scatter light from the beam. Since the atom only absorbs light
with momentum opposite to its own, but emits the light in all directions, the net effect is to damp

the motion.

Another useful transition is the 4 — 4’ transition. An atom driven by a 4 — 4’ beam has a sin-
gle dark state that depends on the polarization of the beam. This is easy to see in the case of o
polarized light, for which the |4, 4) state is dark. For linearly polarized light the |4, 0) state is dark,
where the quantization axis is chosen along the polarization direction of the light. Thus, by properly
choosing the polarization of the 4 — 4’ light, we can optically pump the atom into specific states in

the F' = 4 manifold.

The 4 — 4’ transition can also be used to cool the atom via polarization gradient cooling. This
works by driving the atom with counter-propagating beams of circularly polarized light that are

blue detuned from the 4 — 4’ transition. At every point in space the two beams combine to yield a
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linear polarization vector, but the orientation of the polarization vector rotates as one moves along
the beam propagation direction. Thus, a stationary atom sees a constant polarization vector and is
optically pumped into the corresponding dark state, while a moving atom sees a polarization vector
that rotates with angular frequency w = kv. If the velocity is high enough then the atom won’t
have enough time to be pumped into the dark state corresponding to its current location, and will
therefore couple to the light. Thus, the light exerts a force on the atom that is proportional to the
atom’s velocity. For blue detuned light, the force is opposite to the velocity and therefore cools the

atomic motion.

1.9.2 Loading into the FORT

At the beginning of each experimental cycle, a cloud of atoms is collected in the upper chamber,
transfered to the lower chamber, and then dropped on the cavity, resulting in a shower of cold atoms
falling through the cavity mode. The falling atoms can be loaded into the FORT using a variety
of methods. One possibility is to monitor the transmission of a resonant probe beam through the
cavity and to trigger on the FORT when a dip in the transmission indicates that an atom is present.
Another possibility is to keep the FORT on at all times and cool the atoms into the trap. One way
to provide cooling is to use side beams that are blue detuned from the 4 — 4’ and 3 — 3’ transitions;
experiments indicate that such a scheme gives a maximum loading probability of ~ 0.4 (the loading
probability is the probability that for a given drop at least one atom is loaded into the trap). A
variation on this scheme is to use side beams that are blue detuned from the 4—4’ transition together
with a strong Raman beam tuned to Raman resonance. This combination seems to be a particularly
effective way of loading atoms; loading probabilities of up to ~ 0.9 can easily be achieved. This

Raman loading scheme is used for all the experiments discussed here.

We can determine if we succeeded in loading an atom by checking whether a resonant probe beam
is transmitted through the cavity. If it is not, we know that at least one atom was loaded. Given
that we know at least one atom was loaded, the expected number of loaded atoms can be calculated
as follows. I will assume that the probability of loading an atom is independent of how many atoms

have already been loaded, so the probability of loading n atoms is given by a Poisson distribution:

The loading probability p is then
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Thus, the mean number of atoms is

(n) = —log(1 - p)

Since we know there is at least one atom in the trap, the probability that there are n atoms is P,_1.

Thus, the expected number of atoms is

N=> nP, 1= (14+n)P,=1+(n)=1-log(l-p)
n=1 n=0

If the loading probability is small, then when a transmission dip is observed it is highly likely that

there is only one atom in the cavity.

1.9.3 Optical pumping

For many experiments, the atom needs to be prepared in a specific initial state. This is accomplished
through optical pumping: we drive the atom with light fields that couple to all the states except the
one we want to populate, which is called the dark state. The driving fields cause the atom to ran-
domly scatter from one state to another until it lands in the dark state and decouples from the light.

Thus, if we leave the pumping light on long enough, the atom eventually ends up in the desired state.

One state we want to prepare is |3,0), where the quantization axis is chosen to lie along the cavity
axis. To prepare this state, we use a resonant 3 — 3’ beam that enters the cavity from the side and
is linearly polarized along the cavity axis. The dark states for this beam are the |3,0) state and
all the F' = 4 states. Thus, we can prepare the atom in |3,0) by combining the 3 — 3’ beam with
additional beams that repump the atom from F' =4 to F = 3. The 4 — 4’ cooling beams are used
for this purpose, although they are not ideal because they have their own dark state in the F' = 4
manifold. However, because the polarization of the 4 — 4’ light depends on the position of the atom,
so does the dark state; therefore, a moving atom won’t get stuck in the 4 — 4’ dark state and will

eventually scatter to F' = 3.

Sometimes rather than preparing a specific state we want to randomly choose a state |3,m) in
such a way that the m values are uniformly sampled. This can be achieved by alternating pulses of
3—3" and 4 — 4/ cooling light to pump the atom back and forth between F' = 4 and F' = 3. For each
pulse m is randomly changed by %1, 0; so if enough pulses are used m is effectively randomized. By

using 4 — 4’ light for the final pulse, we ensure that the atom ends up in an F = 3 state.
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1.9.4 Measuring the atomic state

Here I present a method for determining which ground state hyperfine manifold the atom is in by
measuring the transmission of a resonant probe beam. Both the probe beam and the cavity are
tuned to the 4 — 5’ transition, so every state in the F' = 4 manifold is coupled to the cavity mode.
For atoms in F' = 3 all the probe light is transmitted (since the atoms are decoupled from the cavity
mode), while for atoms in ' = 4 the probe transmission is reduced by an amount determined by the
strength of the coupling. If the probe is linearly polarized and we choose a quantization axis along

the polarization direction, then for an atom in |4, m) the cavity coupling is

and the transmission is reduced by a factor

n~ (kv/49%)% ~ N3 (90/9)*

For our cavity N3 ~ 1074, so for all Zeeman sublevels, and almost all atom positions, this is a huge

reduction. Thus, to a good approximation, the probe is shuttered off any time the atom is in F' = 4.

We can use the shuttering effect to determine which ground state the atom is in by pulsing on
a probe and counting the number of photons that are transmitted. For this scheme to work, the
atom has to stay in the same ground state for the duration of the pulse. This will clearly be the case
if the atom starts in F' = 3; since the atom is decoupled from the cavity, it doesn’t interact with
the probe light and can’t scatter from F' = 3 to F' = 4. It will also be the case if the atom starts
in F' = 4, provided the probing interval is short enough, because the scattering rate from F = 4 to
F = 3 is very low. There are two reasons for the low scattering rate. First, since the 4 — 5’ transition
is a cycling transition, the atom can only get to F = 3 through off-resonant excitation of F’ = 4.

Second, because of the shuttering effect itself, there is very little light in the cavity to excite the atom.

For this measurement technique we typically use a probe strength corresponding to an empty cavity
photon number of n = 0.14 and a probe duration of 100 us. Thus, if the cavity is empty, or if
the atom is in F' = 3, the counting rate at the detectors is enx ~ 500 keps (where e = 0.07 is the
detection efficiency, as discussed in section 1.8.5) and the mean number of clicks recorded during a
probe interval is ~ 50. To demonstrate the detection scheme, we performed an experiment where
atoms were randomly prepared in F' = 3 or F' = 4 and then interrogated by the probe beam. Figure
1.16 is a record of the detected clicks for a single atom, and Figure 1.17 is a histogram of clicks

for the entire data set. We can clearly resolve a peak at ~ 58 clicks due to the F' = 4 atoms, and
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another peak at ~ 10 clicks due to the F' = 3 atoms. The widths of the peaks are set by the shot
noise of the light. To determine which state the atom is in, we set a threshold at half the mean
number of clicks for an empty cavity. If the number of counts recorded during the probing window
is below the threshold, we assume the atom is in F' = 3; if it is above the threshold, we assume the

atom is in F' = 4.
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Figure 1.16: State measurements for a single atom. The horizontal line at 57.8 clicks is the mean
number of clicks for an empty cavity; the line at n = 28.9 clicks is the threshold. For trials where
the transmission dips below the threshold, the atom is assumed to be in F' = 4.

1.9.5 Measuring the Raman transfer probability

We often want to measure the probability that a Raman pulse transfers the atom from one ground
state hyperfine manifold to the other. This can be accomplished by repeatedly preparing the atom
in F = 3, applying the Raman pulse, and then checking if the atom was transfered to F' = 4 by
using the scheme from the previous section. I will call a single transfer attempt a trial. By taking
the ratio of the number of successful transfers to the total number of trials, we can determine the

Raman transfer probability.

The Raman transfer probability depends on a number of factors, such as the way the initial state is
prepared, the magnetic field, and the Rabi frequency, detuning, and duration of the Raman pulse.
Thus, for each probability measurement these factors are held constant across all the trials. We

can often obtain useful information about the system by repeating the probability measurement for
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Figure 1.17: Histogram of clicks. The vertical line at 57.8 clicks is the mean number of clicks for an
empty cavity; the line at n = 28.9 clicks is the threshold used to determine whether an atom is in
F=3o0or F=4.

100

different values of a single parameter in order to map out the dependence of the probability on the

parameter.

There is one complication I haven’t mentioned yet: since the atom can leave the FORT at any
time (either by being heated out of the trap or because of collisions with background gas), for each
trial we need to know whether or not an atom is present. If the transmission is low during the state
detection phase of the trial then we know that an F' = 4 atom is present, but if transmission is high

it could either mean that an F' = 3 atom is present or that the cavity is empty.

We deal with this problem as follows. In a typical experiment, each atom is subjected to N = 1000
trials, after which the atom is released, if it hasn’t already left on its own. For each trial k£ we obtain
a measurement result ny, where ny is 1 if the transmission was low for that trial (indicating that
an atom was present and had made a Raman transition 3 — 4), and ny is 0 if the transmission was
high (indicating either that the atom stayed in F' = 3, or that the atom had left the cavity). Thus,

the total number of transmission dips that have been recorded up to and including trial k is

k
tk = Z Ty
r=1
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If we plot tj, versus k, the result typically looks like Figure 1.18. At first the graph climbs with a
slope given by the probability of making a Raman transition, but at some point the graph suddenly
flattens out, indicating that the atom has left the cavity. For the trials that occur prior to this kink
in the graph we know that an atom was present. Specifically, if r is the largest trial number such
that t, < ty — m then I assume the atom remained in the cavity for r trials, where m is a small
margin to allow for occasional transmission dips after the atom has left (such dips could be caused

by shot noise fluctuations in the probe light, for example). Typically we take m = 5.

Now that we know when the atom left the cavity, we can easily calculate the Raman transfer
probability; it is given by p = ¢,./r. To get better statistics we typically repeat this measurement
protocol for ~ 10 atoms and divide the total number of transitions by the total number of trials to

find the probability.
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Figure 1.18: Total number of transmission dips versus trial number for a sample atom. From the
location of the kink, we infer that the atom left the cavity around trial number 580.

1.9.6 Raman spectroscopy

The technique for measuring the Raman transfer probability can be used to perform Raman spec-
troscopy. This involves measuring the Raman transfer probability as a function of the detuning of

the Raman pulse, while holding the duration and Rabi frequency of the pulse constant

To understand the Raman spectrum, we must first look at the energy spectrum of the ground
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state manifold. The Hamiltonian for the ground states is
1
H = QAHF(P4 — P;)+ Hp

The first term gives the hyperfine splitting between F' = 3 and F = 4, while the second term
describes the coupling of the ground states to the magnetic field B at the position of the atom:

Hp=grupB-F

Recall that g4 = 1/4 and g3 = —1/4. Thus, if we choose the quantization axis along the direction of

the magnetic field,

1

H|4,m) = (+§AHF+mwB)|4,m)
1

H|3,m) = (—§AHF—mwB)|3,m)

where

1 - .
wp = zn|B| = (27)(350kHz/G) B

is the magnetic splitting between adjacent Zeeman levels. This energy spectrum is shown in Figure

1.19.
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Figure 1.19: Ground state spectrum of Cesium.

Raman transitions between states in the F' = 3 and F' = 4 manifolds are subject to the selection
rules Am = 0,+1 (see Figure 1.20). Note that the Am = 0 transitions occur at even multiples of
wp, and the Am = 41 transitions occur at odd multiples of wp. Because g4 = —g3, the Am = +1
transitions are twofold degenerate (|3,m) < |4, m+1) is degenerate with |3, m+1) < [4,m)), except

for the edge transitions |3,3) < |4,4) and |3, —3) < |4, —4).
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Figure 1.20: Spectrum of allowed transitions. The solid lines are for Am = 0 transitions; the dashed
lines are for Am = +1 transitions.

The Raman spectrum depends on the initial state of the atom and on the strength and duration of
the Raman pulse. Suppose we prepare the atom so it is in state |3, m) with probability p;(|3,m)),
and apply a Raman pulse of Rabi frequency €2, duration T', and detuning A. If the Rabi frequency is
small relative to the magnetic splitting, then each Zeeman sublevel in F' = 3 will couple appreciably
to at most one sublevel in F' = 4, and the system can be approximated as a collection of two-level

atoms. In this approximation, the probability that the atom is in F' = 4 after the Raman pulse is

p(A) = ZZP(QE(|37m> - |47m/>)7 A— (m/ - m)wBu T) pi(|37m>)

m m/

where
2

P(Q,AT) = ﬁ sin?((Q2? + A2)Y21/2)
is the probability that a two-level atom initially in its ground state is transfered to the excited state
by a pulse of light with Rabi frequency 2, detuning A, and duration T (see section 1.3.2). If we
consider the probability as a function of detuning, we see that it consists of a Lorentzian envelope
that is modulated by a sin? factor, where the frequency scale of the modulation is ~ 1 /T. For long
pulse durations, this fine scale modulation is averaged out by the atomic motion or other sources

of frequency jitter, so we only see the Lorentzian envelope. Thus, we can approximate the Raman

spectrum as

1 A—(m' —mwg)?\ "
W) =3 L (14 gy o i) P

o
A sample Raman scan is shown in Figure 1.21. Peaks are observed for both Am = 0 and Am = £1
transitions, but the Am = 0 peaks are stronger, indicating that for this scan the magnetic field was
more axial than transverse. Figure 1.22 shows a Raman scan taken after the magnetic fields were
nulled. Figure 1.23 shows a Raman scan for an axial bias field, and Figure 1.24 shows a Raman scan

for a transverse bias field.
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Figure 1.21: Raman scan. The vertical lines are at integer multiples of the 290 kHz magnetic
splitting. The Rabi frequency for this scan was = (27)(50 kHz).

1.9.7 Measuring and nulling the magnetic field

The total magnetic field B at the position of the atom is the sum of the ambient field B, and the
field Eb produced by the bias coils:
é = Ea + By

The bias field is known under our control, but to control the field B that the atom actually sees
we need to know the ambient field. Here I present a technique for measuring the ambient field by
preparing the atom in a random F' = 3 state, applying a resonant Raman pulse, and tuning the bias
field so as to maximize the Raman transfer probability. The basic idea is that if the bias field exactly
cancels the ambient field then the Zeeman splitting vanishes, all the transitions pile up around zero
detuning, and the atom is transfered by the Raman pulse regardless of its initial state. If the fields
don’t cancel then the transitions are split out, so the atom is only transfered if it starts in |3,0).
Thus, if we tune the bias field so as to null the ambient field, we should see an enhancement in the

Raman transfer probability.

In section 1.8.7 I described how the magnetic field is broken into components along three orthogonal
axes. We null the three components one at a time; for each component, we maximize the Raman
transfer probability by varying the current in the pair of bias coils corresponding to that component

of the field, while holding the orthogonal components of the field fixed. T’ll assume we start with
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Figure 1.22: Raman scan with no bias field. Two scans are shown; one with Rabi frequency 2 =
(27)(70kHz) (red curve), and one with Rabi frequency €2 = (27)(35kHz) (green curve).

the Z component. The magnitude of the component of B parallel to 2 is
By=B-2
and the magnitude of the component of B perpendicular to Z'is
B, =|B - B)%|
Thus, we can express the magnetic splitting as
wp = iu3|]§| =wp, (14 B}/BY)"Y? =wp, (1+ (B, + By)?/B1)"?

where

upB1

B~ =

wp, =

Suppose we choose a Rabi frequency larger than wp, and tune to Raman resonance. For B > B
the magnetic field will split out the Zeeman sublevels, and the Raman beams only addresses the
|3, m) state. However, as B| — 0, the magnetic splitting becomes small enough that several Zeeman
sublevels lie within the Lorentzian envelope (recall that the width of the envelope is set by the

Rabi frequency), and we see an enhancement in the Raman transfer probability. Thus, if we plot
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Figure 1.23: Raman scan for an axial bias field. The vertical lines are at integer multiples of the
400 kHz magnetic splitting. The Rabi frequency for this scan was = (27)(70 kHz).

the Raman transfer probability as a function of the bias field component along the Z direction, we
should get something that looks like Figure 1.25. The peak of this graph indicates the value of By
that nulls the ambient field along 2. By performing the same sort of scan along the two orthogonal
axes (Figure 1.26 and Figure 1.27), we can null the ambient field in all three dimensions. Note
that the width of the peak is set by the Rabi frequency, so by reducing the Rabi frequency we can

measure the fields to higher resolution.

1.9.8 Rabi flopping

If we apply a large axial bias field to split out the Zeeman sublevels and tune near Raman resonance,
then only the |3,0) < |4,0) transition is driven appreciably, and the system may be approximated
as a two-level atom. Recall from section 1.3.2 that if we start a two-level atom in the ground state
(in this case the |3,0) state) and apply pulse of coherent light of duration T" with Rabi frequency
and detuning A, then the probability to find the atom in the excited state (in this case |4,0)) is

2

POLAT) = gre

sin?((Q% + A2)Y/27/2)
For our case Q = Q(|3,0) < |4,0)), and the detuning A is given by

A =wr—wr —Agr
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Figure 1.24: Raman scan for a transverse field. The vertical lines are at integer multiples of the
240kHz magnetic splitting. The Rabi frequency for this scan was Q = (27)(70 kHz).

Figure 1.28 shows a Raman scan over the [3,0) < |4,0) transition for a Rabi frequency of Q =
(27)(50kHz) and pulse duration of T'= 100 us. For this scan the atoms were prepared by optically
pumping them into |3,0) before each Raman pulse. Because the FORT squeezes the hyperfine
manifolds together and reduces the effective hyperfine splitting (see section 1.7.3), the peak is shifted
away from zero by 6 ~ —20 kHz. We can see the Lorentzian envelope due to the first term, plus some
of the sin? modulation from the second term. This fine scale modulation is partially washed out
because atoms at different temperatures have different Rabi frequencies, which leads to decoherence

of the Rabi oscillations

In Figure 1.29, the Raman detuning was set to zero, and the Raman transfer probability was
measured for different pulse durations. The Rabi oscillations can be clearly observed, although
they gradually decohere over time. From the observed rate of decoherence and known dependence
of Rabi frequency on temperature, one could probably use this curve to infer something about the

temperature of the atoms.

1.9.9 Laser noise

So far I have assumed that the FORT and Raman beams are both perfectly monochromatic. In
practice this is not the case; because the FORT /Raman phase lock is not perfect, there is broadband

noise around the Raman resonance frequency that causes incoherent decays between the F' = 3 and
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Figure 1.25: Transfer probability versus programming voltage for the Z coils. Two scans are
shown: one with Rabi frequency Q = (27)(70kHz) (red curve), and one with Rabi frequency
0 = (2m)(35kHz) (green curve).

F = 4 ground state manifolds. We can calculate the decay rates by using a simple two-level atom

model and approximating the broadband noise as a comb of discrete frequencies.

Suppose we start the two-level atom in its ground state and drive it with a comb of classical fields
that have frequencies w,, and Rabi frequencies €2,,. If we only consider the coupling of the atom to

mode m, then the equation of motion for the excited state amplitude is

1Ce = e~ Hwm—wajt Cq

2
2

At small times ¢4 ~ 1, so we can approximate this as
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Figure 1.26: Transfer probability versus programming voltage for the & coils. Two scans are
shown: one with Rabi frequency Q = (27)(70kHz) (red curve), and one with Rabi frequency
0 = (2m)(35kHz) (green curve).

The decay rate g — e for a single frequency w,, is therefore

ce(t)? ™
= O 7402 DG~ wa)t/2)
where
.2
Sin- xr
D —
@ =2

The total decay rate is obtained by summing the decay rates for all the different fields in the comb:
_ _r 2
y= ;'7771 = Zt;Qm D((wm —wa)t/2)

To calculate the decay rate we need to know the distribution of Rabi frequencies €2,,. This in-
formation can be obtained by forming a beat note between the Raman and FORT beams on a

photodetector. If the beams were monochromatic, then the electric fields at the detector would be

Ep(t) = Epert

Ep(t) = Ejer!
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Figure 1.27: Transfer probability versus programming voltage for the ¢ coils. Two scans are
shown: one with Rabi frequency Q = (27)(70kHz) (red curve), and one with Rabi frequency
0 = (2m)(35kHz) (green curve).

and the resulting photocurrent I (¢) would be
I.Y(t) ~ |ER(t) + EF(t)|2 ~Ip+ I+ 2COS(((.«)R — wp)t) VIrlp

where Ir and Ir are the cycle-averaged intensities of the FORT and Raman beams. Consider the
power spectrum S(w) of the photocurrent. In the limit of monochromatic beams, there is a spike
at frequency wr — wp that has integrated power proportional to Irlr. Relative frequency jitter
between the two beams produces broadband noise around this spike, resulting in a curve that looks
like Figure 1.30. Since the effective Rabi frequency is proportional to /IrIr, the effective Rabi

frequency for comb line m is given by
Q2 = aS(wn) dw
where « is a constant that depends on calibration factors and dw is the spacing between adjacent

comb lines. Using this result, we can express the total decay rate as

™

N Zat/S(w) D((w — wa)t/2) dw
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Figure 1.28: Raman scan over the |3,0) < |4,0) transition. The curve is the Lorentzian envelope
one would expect based on the calculated Rabi frequency of Q = (27)(50kHz) and the calculated
FORT-induced shift of § = —(27)(20 kHz), where the height of the curve has been fit to the data.

If the noise spectrum is flat over a bandwidth ~ 1/¢, then we can approximate D as a delta function:
T @
v=gaSwa) =7 5wva)

We can determine the constant o by expressing it in terms of the Rabi frequency of the coherent
oscillations that are driven by the spike at the beat note frequency. If the beams are tuned to Raman
resonance, and if the spectral width of the spike is much less than 1/7", where T is the duration of
the Raman pulse, then the spike will drive coherent Rabi oscillations with a Rabi frequency given

by

Spectrum analyzers usually display the power spectrum in terms of the power P,(v) = BS(v) in

some bandwidth B, so we can also write this as
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Figure 1.29: Rabi flopping on the |3,0) < |4, 0) transition.
The rate equations for the ground and excited state populations p, and p. are

De = 7(”) (pg_pe)

g = W) (pe —pg)

Since pgy + pe = 1, we have that
De = ’7(”) (1 - 2pe)

If we solve this subject to the initial condition p.(0) = 0, we find
1
pe(v) = 5 (1 —exp(=27(v)t))

Figure 1.31 is a comparison of an actual Raman scan with the spectrum p,. () we would expect based
on the laser noise shown in Figure 1.30. The graphs show reasonable agreement; the discrepancy
most likely is due to the fact that the two curves were measured on different days, and the exact

shape of the FORT /Raman beat note depends on parameters in the feedback loop that vary on a

day to day basis.

Fortunately, the effects of the laser noise are only significant when large Rabi frequencies are used,
which means the current setup can be used to perform Raman scans, null the magnetic fields, and

observe Rabi flopping, as has been discussed in previous sections. However, it is likely that the
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Figure 1.30: Power spectrum of the FORT /Raman beat note (B = 30kHz).

laser noise contributes to the large backgrounds observed in the Raman scans (see Figure 1.21, for
example). As we will discuss in the following section, the laser noise becomes a serious problem for
Raman cooling, because this application requires large Rabi frequencies and also because the bumps

in the noise spectrum occur near the frequency of interest—the red sideband at —1 MHz.

To reduce the laser noise we are planning on changing the Raman configuration; instead of gen-
erating the Raman beam by using a separate laser that is phase locked 9.2 GHz away from the
FORT laser, we will generate the Raman beam by picking off light from the FORT laser and passing
it through a 9.2 GHz EOM and a filtering cavity.

1.9.10 Raman cooling

I now want to show how Raman transitions can be used to cool the atom. To introduce the basic
idea, let us first consider Raman cooling using the three-level model we discussed 1.5.3. In the

harmonic approximation, the Hamiltonian for the model system is
H=Hy+ H;

where

Hy = wbib+ %az
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Figure 1.31: Population transfer due to laser noise. The red curve is the observed Raman spectrum
for 2 = (27)(200kHz); the green curve is the predicted spectrum based on the power spectrum of
the beat note.

is the Hamiltonian for the external and internal degrees of freedom for the atom, and
H; = Q1 —n*(b+b")?) 0, cosdpt

describes the Raman coupling. The eigenstates of Hy are {|a,n),|b,n)}, and the eigenvalues are

nw — d4/2 for |a,n) and nw + d4/2 for |b,n). The spectrum of Hy is shown in Figure 1.32.

Suppose we start the atom in ground state a and vibrational state n. We can lower the vibra-
tional quantum number by driving the atom with a Raman pulse that is tuned to the red sideband
(0r = 04 — 2w). The Raman pulse will transfer some of the population from state |a,n) to state
|b,n — 2). We can then optically pump the atom back into ground state a by applying a classical
field on the b — e transition. Note that because n-changing transitions are suppressed by at least
~ ny/n, for small enough n it is unlikely that the atom will change its vibrational state during
the optical pumping process. The net effect of the Raman and optical pumping pulses is to move
some of the population from state |a,n) to state |a,n — 2). By iterating the pulse sequence, we can
cool the atom. Although the scheme described here involves alternating Raman pulses with optical
pumping pulses, it is also possible to cool the atom by applying the Raman and optical pumping

light simultaneously, and it is this method that we actually use in the lab.
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Figure 1.32: Raman cooling. The cooling operates by interleaving Raman pulses tuned to the red
sideband with optical pumping pulses on the b — e transition.

Note that the cooling scheme combines a coherent process (the Raman pulse) with a spontaneous
process (the spontaneous decay caused by the optical pumping pulse). The spontaneous process is
necessary because when we cool the atom we are trying to map all possible initial states to the same

final state, which is impossible with unitary evolution alone.

The cooling rate is determined by the Rabi frequency of the Raman pulses. Recall from section
1.5.3 that if the effective Rabi frequency is ), then the Rabi frequency for the |a,n) <« |b,n — 2)

transition is

Qpon—o = 772\/EV n—1Q

Thus, we can speed up the cooling by increasing the effective Rabi frequency 2. However, if we try

to go too fast we will off-resonantly excite the transition |a,n) < |b, n), which has Rabi frequency
Qo = Q=120 +1)Q

Thus, to ensure that we drive the red sideband exclusively, 2 must be smaller than the detuning 2w
of the carrier. This requirement sets the maximum possible cooling rate. Also, note that Q,_,_2
is roughly proportional to n. This means that the cooling rate becomes smaller and smaller as the

atoms get colder and colder.

So far we have been working in the harmonic approximation, which is only valid near the bottom
of the well. When we consider the full sin® kz potential, the situation becomes more complicated,
because the vibrational frequency of the atom now depends on the atom’s energy. The potential
is shallower than harmonic, so hot atoms see a smaller vibrational frequency than cold atoms (see

section 1.5.5). To deal with this problem, one can slowly sweep the Raman detuning over the course
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of the cooling procedure.

Now let us consider Raman cooling for a real Cesium atom. We will assume that the magnetic
field is nulled, so all the Zeeman transitions pile up around zero detuning. If we choose the quantiza-
tion axis to lie along the cavity axis, then state |3, m) is coupled to state |4, m) by the Raman pulse,
and the system can be thought of as a collection of two-level atoms, all with resonant frequency
App. Thus, an arbitrary state |3, m) in the F' = 3 manifold plays the role of state |a) in the model

we just considered, and the corresponding state |4, m) in the F' = 4 manifold plays the role of state |b).

To implement Raman cooling in the lab, we apply a series of 2,000 cooling cycles to the atom. Each
cooling cycle involves three 100 us pulses of light, so the entire series takes 600 ms to complete. The
first pulse consists of blue detuned 4 —4’ light, which is applied from the side of the cavity by pairs of
circularly polarized beams, together with Raman light, which has detuning —2w, = —(27)(1 MHz)
and Rabi frequency Qo = (27)(200 KHz). The 4 — 4’ light provides polarization gradient cooling
in the radial direction, and also acts in tandem with the Raman light to provide Raman cooling
in the axial direction (it is the analog of the b — e beam in the three level model). The second
pulse consists of Raman light alone, and the third pulse consists of 4 — 5’ probe light, which is
used to detect if the atom is still present in the cavity. The probe light heats the atom, so without
the axial cooling provided by the Raman beam the atom would gradually be heated out of the FORT.

Unfortunately, because of the laser noise issues discussed in the previous section, the Raman beam
does not drive coherent Rabi flops at the large Rabi frequencies needed for Raman cooling. However,
even with the laser noise, the cooling should still be partially effective. For these initial cooling tests
we do not worry about sweeping the Raman detuning to account for the anharmonicity of the well;

rather, we keep it set at a fixed detuning for the entire cooling process.

To check that the Raman cooling was indeed cooling the atom, we measured the mean lifetime
and the probability that the atom survived all 2,000 cooling cycles for several different values of the
Raman detuning. Table 1.3 shows the results we obtained when we tuned the Raman beam to the
red sideband, blue sideband, and carrier (—1 MHz, +1 MHz, and 0 MHz). The mean lifetime and
survival probability are much larger when the Raman beam is tuned to the red sideband than when
it is tuned to the carrier or to the blue sideband, which indicates that the Raman cooling is working

as intended.

The idea of using the FORT itself as one leg of a Raman pair means that the FORT and Raman

beams are perfectly registered, so the effective Rabi frequencies are the same for all the FORT wells.
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Raman detuning [MHz] | mean lifetime (# cycles) | survival probability
+1.0 331 0%

0.0 443 2%

-1.0 1,317 36%

Table 1.3: Results of Raman cooling experiment.

This is very convenient for state preparation and for diagnostics such as Raman spectroscopy, but
it is a disadvantage when it comes to Raman cooling because, as we discussed earlier, it causes a
slowdown in the cooling rate. One could get around this by driving Raman transitions using a pair
of Raman beams on a different cavity mode from the FORT. The resulting misregistration of the
FORT and Raman beams would allow at least some of the FORT wells to have eflicient cooling
rates. The ideal cavity mode for the Raman beams would be the mode at exactly half the FORT
wavelength (that is, mode number 180 at 468 nm), because at this wavelength there would be a node
in the Raman beam at every antinode of the FORT beam. This would result in very efficient cooling

for every FORT well.

As discussed in the previous section, we are planning to get rid of the FORT /Raman phase lock
and to generate the Raman beam by using an EOM to add 9.2 GHz sidebands to the FORT beam.
For this new setup, one could take the laser that currently generates the Raman beam, tune it to
a different cavity mode, and put its output light through the same EOM. This way, the FORT and
FORT sideband could be used to drive well-insensitive Raman transitions, and the second beam and

its sideband could be used for efficient Raman cooling.

1.9.11 Cavity transmission spectrum

As a trapped atom rolls around inside a FORT well its coupling to the cavity changes. The changing
cavity coupling will modulate the transmission of a resonant probe beam, so if we look at the
power spectrum of the probe transmission we should see a peak at the axial vibrational frequency

o ~ (27)(500kHz). We can obtain the power spectrum by taking the click record from a series of
Raman measurements and keeping only those trials for which the atom was coupled to the cavity.
Each trial is 100 us long, which is enough time for the atom to undergo ~ 50 axial oscillations. Thus,
we can obtain the power spectrum by adding the power spectra for many individual trials. Figure
1.33 shows a power spectrum calculated in this way, using data that was acquired for a Raman scan.
We can clearly see a peak at the axial oscillation frequency. The peak is broadened because the trap

is anharmonic, so atoms at different temperatures have different vibrational frequencies.
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Figure 1.33: Cavity transmission spectrum. The peak at 500 kHz is due to the axial motion of the
atom.

1.10 FORT issues

In this section, I discuss several technical issues involving the FORT. I show how the ellipticity of
the FORT light can be measured in the lab, and I calculate the rates for atomic scattering due to

off-resonant excitation by the FORT light.

1.10.1 FORT ellipticity

If the polarization vector of the linearly polarized FORT input beam is not aligned with a birefrin-
gent axis of the cavity, then the cavity will convert the linear polarization to elliptical polarization.
As discussed in section 1.7.3, elliptical polarization leads to an unwanted pseudo-magnetic field, so
we want to minimize the ellipticity of the FORT by aligning the input polarization as carefully as

possible. In this section, I show how this can be accomplished.

Assume the FORT beam propagates in the Z direction, so the input polarization can be expressed

as

€in =cosO T +sinf g



116

where the axes & and g are chosen to lie along the birefringent axes of the cavity. The output

polarization vector is then given by
out = C0s0 & 4 €' sinf

for some angle ¢. Note that
(1 + sin ¢ sin 26)

N | =

|éi1 . gout|2 =

This corresponds to an effective field proportional to
|61 - out|> = |61 - €out]? = sin@sin 20 = /1 — e2

where

e = (1 — sin? ¢ sin® 20)1/2

is the ellipticity of the light.

To measure the ellipticity, we put a polarizing cube in the output beam and measure the trans-

mitted light. Assume the cube is oriented so that it transmits light that is polarized along
q = cCcOosa T +sinay

Note that
o+ Eout = COScos B + €' sinasin @

Thus, the fraction of the power that is transmitted through the cube is

A . . 1 . .
|6a - €out|> = cos? a cos? + sin? a sin” 0 + 5 cos ¢ sin 2« sin 260

1
= 3 (1 4 cos2a cos 26 + sin 2« cos ¢ sin 26)

If we define an angle v by cos20 = ecos<y, then cos¢sin20 = esin-y, and we can express the

transmitted power as

1
o bout]®? = 5(1 + e (cosy cos 2 + sin ysin 2a))

= %(1 + e cos(2a — 7))
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Suppose we rotate the angle « of the polarizing cube and find the maximum and minimum trans-

mitted power P,,q; and P,;,. Then the ellipticity is given by

Pmax - Pmln
Pma;ﬂ +szn

e =

We can find the birefringent axes of the cavity by measuring the ellipticity for different values of
the input polarization angle 6, as shown in Figure 1.34. The figure plots the measured ellipticity e
as a function the angle 0, /o of a A\/2 waveplate that is used to rotate the polarization of the input
beam. Figure 1.35 shows the results of axial field scans performed before and after the FORT input
polarization was aligned with the cavity. Note that when the polarization is misaligned, the spatially

inhomogeneous FORT pseudofield broadens out the peak in the field scan.

0.995 1

0.99 —

0.985 b

0.975 + 1

0.965 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70

theta_lambda/2 [degrees]

Figure 1.34: Measurement of FORT ellipticity. The curve is a fit to the data, which indicates that
a birefringent axis occurs at 0y /5 = 13.7 deg and that the maximum ellipticity is e = 0.032.

1.10.2 Scattering in a FORT

The FORT is not a perfectly conservative trap; in addition to providing a trapping force for the
atom, the FORT light causes scattering among the various atomic ground states. Here I show how

to calculate these rates, first for a three-level atom and then for the full Cesium atom.

Consider a three-level atom that has ground states a and b and excited state e, where the a — e

transition is driven by a classical field with Rabi frequency 2 and detuning A, and the atom can
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Figure 1.35: Field scans performed before (green curve) and after (red curve) the FORT input
polarization was aligned with a birefringent axis of the cavity. A FORT pesudofield broadens the

peak.

spontaneously decay from e to b. The Hamiltonian for the system is

1 ) .
H = §(Q|e><a| et 4 Q*|a){e] emt) +

>_gpale) (bl agy e E + [b) (el ak )
kA

where A = wy, —wa and 0; = wi —wa.

If the atom starts in state a, the classical field will drive it to e, where it can spontaneously decay
to b. We want to calculate the resulting a — b scattering rate. The wavefunction for the system can

be expressed as

(1)) = A(t)]a, 0) + E(t)]e,0) + Y B, (H)[b, 15,)
EX

where A(0) = 1 and E(0) = Bj, (0) = 0. The equations of motion for E(t) and By, (t) are
B = Q —iAt 4 -5y g
=5 + Z 9ix € [15)

EX
7 st
’LBE)\ = gp,e'F E



119

For small times, almost all the population is in |a,0), so the equation of motion for E may be
approximated as

.0 .
E = EG_ZAtA

Integrate this subject to the initial condition E(0) = 0:

Substitute this into the equations of motion for BEA:

0
PN

ZBE)\ = ﬂgﬁ)\ (ei(wg_wL)t “5 t) i(wp—wr)t

Now integrate this equation, subject to the initial conditions By, (0) = 0:

By, = @

B =~ 90 (wp —wn) T (e )

Thus,
Q 2
Bl =2 |5 g5, Dllwg = w2
where
.2
sin“ z
D —
(@) = —3

Thus, the scattering rate into mode kN is

2

B- 2
Bl 02 s

- A Tk

To get the total scattering rate we sum over the scattering rates into all possible modes:
= Z I; =0@2n73V Z / I’k
where I have used that the density of modes is given by
d*n = (2n)*V &’k

The Rabi frequency is
Q = (8zal)'/? (e|¢ - 7la)

Recall that the mode couplings are (see section 1.6.8):

9z, = 2mawz/V)Y2 (e|7 - ¢, |b)
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and that

[ ltelea - a5 S leley - 100

Thus, the total scattering rate is
87T 2 A%
I = Ta2(wi/A) I§j|b| ) (elé - Fla) 2

Now consider a full Cesium atom. We can generalize this result to calculate the scattering rate from

ground state |Fy, m1) to ground state |Fy, ms):

I‘(|F1,m1> — |F2,ma))
= ? a’wil Fz,mzl( A (- AT | Fryma)

2

B %(WL/M (1/Isar) A, (Famal(é AT (@ AT |Fy )

q

= 36 2 (/\3//\14)(]/[5!115)(1(203 + 01)2 Oy, Fs Omy,ms +

(C3 — C1)? [(Fy,malé x J|Fy,my)|?)

I will assume the FORT is linearly polarized and that the quantization axis is chosen along the
direction of the FORT polarization. It is convenient to express the scattering rates in terms of the

FORT potential:

2
Y )\L I
Ur = 2C; +C
7 G R
The scattering rate for Am = 0 transitions is
1 A3
L(|F,m) — |F,m)) = ——5-(2C3+ C1) U
6m A7

and the scattering rate for Am = £1 transitions is

F(|F17 m) — [Fp,m£1)) =
2 Y3 (C3 — Ch)?

i 2 WFy,m ot 1L F U
37.‘. /\2 2C5 + C; |< 2, | i| 17m>| F

Using these expressions for the scattering rates, we can simulate the depolarization of a trapped

atom (these simulations are discussed in [31]).
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Chapter 2

Classical field theory model in 1 +1
dimensions

2.1 Introduction

In order to study some basic concepts of classical field theory, I have developed a simple field theory
model that describes a scalar field interacting with a non-relativistic particle in 1 + 1 dimensions.
The model can be viewed as an extreme simplification of classical electrodynamics; specifically, I
have simplified classical electrodynamics in three ways: by reducing the number of spatial dimen-
sions from three to one, by replacing the vector field with a scalar field, and by using non-relativistic

as opposed to relativistic dynamics.

I chose these specific simplifications for several reasons. Clearly, the fewer dimensions we have
to worry about, the simpler the theory will be; thus, we are led to consider theories in one or two
spatial dimensions. The reason for choosing one rather than two spatial dimensions is that waves
propagate differently in even and odd dimensions: in odd spatial dimensions waves propagate only
on the light-cone, while in even spatial dimensions they propagate both on and within the light-cone.
Thus, in the interest of preserving as much of the character of 3+ 1 dimensional electrodynamics as
possible, it is better to work in one spatial dimension. If we simply write down Maxwell’s equations
in 1 4+ 1 dimensions, we find that the electromagnetic field is not dynamical; it can be solved for in
terms of the particle degrees of freedom. Thus, because I was interested in studying field dynamics,
I replaced the vector field with a scalar field. However, I found that there are a number of subtleties
involving relativistic scalar fields in 1 + 1 dimensions, so to avoid these, I made a final simplification
by assuming non-relativistic dynamics for the particle motion. The end result is a model that is

very simple, but which still exhibits many of the features of 3 + 1 dimensional electrodynamics.
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2.2 Model field theory

In this section I define the model and then present a detailed analysis of it. I discuss the fields
radiated by the particle, the decomposition of the field into in/out and retarded/advanced fields,

scattering, and radiation reaction.

2.2.1 Hamiltonian for the model theory

The model theory describes a particle interacting with a scalar field ¢ and with a static potential

V. I will take the Hamiltonian for the system to be
H=Hy+H,+ H;

where

is the Hamiltonian for a free field,

H,=—+V(2)

is the Hamiltonian for a free particle, and

H; = 2g/¢(t,x)p(t, x)dx

describes the interaction of the particle with the field. Here p(¢, ) is the charge density; it is given
by
p(t,x) = flz —2(t))

where f(x) is the charge density profile of the particle and z(¢) is the position of the particle at time

t. I will assume that the charge density profile is normalized such that
/ flx)dx =1

Orp(t, ) = —v(t) f'(x — (1))

Note that

and

Oup(t, ) = f'(x — 2(t))

so the charge density satisfies the continuity equation

Op(t,x) +v(t) Ozp(t,x) =0
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From the Hamiltonian, it follows that the equations of motion for the field variables are

Oo(t,z) = =(t,x)
om(t,x) = 02¢(t,x) — 2gp(t, )

and the equations of motion for the particle variables are
i = p/m
p = ——+29/81pt:1c (t,x)dx

= —5—29/ (t,z) 0. &(t, x) dx

where in the equation of motion for the particle momentum I have integrated by parts and used
that the charge density vanishes as * — +oo. From the equations of motion, we find that the field
equation is

Do(t, ) = —2gp(t, z)

and the force on the particle is

av
F:mfz':—%—2g/ (t,x) Oz (t, z) dx

These two equations form a coupled system: the first equation describes how the particle acts as

source for the field; the second describes how the field exerts a force on the particle.
We will often want to specialize to the case of a point particle, for which the charge density profile

is

Then the interaction Hamiltonian is

;=29 [ 6(t.2) 80 — 2(0)) o = 296 5(1)

the equations of motion for the field variables are

Oho(t,z) = 7(t,x)
om(t,x) = Op(t,x) —2g6(x — 2(t))
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and the equations of motion for the particle variables are

Z = p/m

. av

po= 20,0
2

where 0, ¢ is understood to be evaluated at the particle position:

am¢ = aw¢(tu :E) |z:z(t)
The field equation is
Oo(t, z) = —2g0(z — 2(t))
and the force on the point particle is

F=mz= _d_V — 2900
dz

It is interesting to note that a scalar field gives an attractive force between two particles of the same

charge. To see this, consider a point charge at rest at z;. The charge density is
plt,x) = d(z — 21)
From the field equation, we find that the static field generated by the charge is
o(t,z) = glz — 21|
The force that this field exerts on a test charge at 2o is
F=-290;0 |pezr,= —292 €(z2 — 21)
So the charges attract. Note that for a vector field, like charges repel.

2.2.2 Retarded and advanced fields

As a first step toward understanding the model field theory, I want to calculate the fields radiated
by a moving particle. In the full theory, the particle and field form a coupled system, so the particle
motion itself depends on the field configuration; however, to start out we will ignore this and assume
the particle moves along a prescribed trajectory z(t). Thus, we will view the particle’s position not
as a dynamical variable, but rather as a time-dependent parameter that enters into the Hamiltonian

Hy + H; for the field. From the equations of motion that follow from this Hamiltonian we obtain
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the field equation

D(b(tv :E) = _2gp(tv I)

To solve for the field, it is helpful to introduce retarded and advanced Greens functions, which satisfy

the equations

OG,(t,z) = 0OG,(t,z) = 26(t) 6(x)

with boundary conditions G, (t,z) = 0 for t < 0 and G, (¢,x) = 0 for ¢ > 0. The Greens functions

are given by

G, (t,z)

o(t — |z)
Go(t,x)

O(—t — |x])
Using the Greens functions, we can define retarded and advanced fields by

or(t,x) = —g//GT(t—t’,:b—x’)p(t',x')dt'dx'—i—gt
da(t,r) = —g//Ga(t—t’,x—x’)p(t’,x’)dt’dw’—gt

These fields are solutions to the inhomogeneous wave equation:
O (t, ) = Oy (t, x) = —2gp(t, x)
The gradients of the retarded field are
oo (t,r) = —g //6(t —t' — |z —2|) p(t',2") dt' da’ + g
= —g/p(t— lz —yl.y)dy+g
Opbr(t,x) = g//e(:v -2 )6t —t — |z —2|)p(t',2") dt' dx’
= g/e(:v—y)p(t— |z —yl,y) dy

and the gradients of the advanced field are

Orpa(t,z) = g/p(t+|w—y|7y)dy—g

Ora(t,z) = g/e(:v—y)p(tJrlw—yI,y)dy
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For the case of a point particle, we can explicitly solve for the field gradients. The charge density

profile is
plt,x) = d(z — (1)

So the fields produced by the charge are

or(t,z) = —g/@(t—t — |z —2(¢ )|)dt + gt
balt,z) = —9/9(t St o= ()t — gt

The gradients of the retarded field are

6t¢r (tu ‘T)

—g/a(t—t' Sl — () dt + g
Duton(t,z) = g/e(;v—z(t’))é(t—t'—|:v—z(t’)|)dt'

and the gradients of the advanced field are
Oda(t,z) = /5t—t—|x—z( NHdt' —g
Dualtiz) = / (2 — () 6 —t— |z — 2(t)|) dt

To evaluate these integrals, it is helpful to consider the retarded time ¢, (¢, z) and the advanced time

to(t, x) corresponding to the event (¢,x). They are defined implicitly by the equations

t. = t—|z—2z(t)]

ta t+ |z — z(ta)]

These definitions are unique, provided that the particle always moves more slowly than the speed
of light. To see this, suppose that there are two different retarded times ¢; and ¢ corresponding to

the event (¢,z). Let us choose the labels such that ¢t > ¢;. Then

te—t1 =z —z(t)| — |z — 2(t2)| < |2(t2) — 2(t1)]

where I have used the triangle inequality

la—c| <]a—bl+|b—¢]

Thus, the mean velocity in the time interval [t1,t2] is at least the speed of light.
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(tavz(ta))

(tra 2(tr))

Figure 2.1: The retarded time ¢, (¢, ) and advanced time ¢, (¢, ) for the event (¢, z).

The retarded time has a simple physical interpretation: if a pulse of radiation is emitted by the
particle at the retarded time t,(¢,2), then it will reach point x at time ¢. Similarly, if a pulse of
radiation is emitted from point z at time ¢, it will reach the particle at the advanced time t,(¢, x)

(see Figure 2.1).

The retarded and advanced times can be used to simplify the delta functions in the field gradient

integrals:

St —t — |z — 2(t)]) = [1 —v(t,) el — 2(t:)] 7" 6(¢' — )
St —t—|z—z2(t)]) = 1+ v(ta) e(z — 2(ta))] 1 6( — ta)

Thus, performing the ¢’ integration, we find that the gradients of the retarded field are

Ouor(t,r) = —gll —v(ty)e(zr — 2(t:)] 7 v(te) e(x — 2(tr))
Outr(t,) = gl —v(ty)e(w — 2(t,))] 7 (@ — 2(tr))

and the gradients of the advanced fields are

Oida(t,x) = —gll+v(ta) (@ — 2(ta))] 7" v(ta) e(z — 2(ta))

Ozda(t,z) = g[l+u(ta) e(z = 2(ta))] " ez — 2(ta))
To simplify the notation, sometimes I will write the gradients of the retarded field as

Odr(t,x) = —g(l—ve(x—2)) tve(x —2)

Outr(t,x) = g(l—ve(w—2)) " e(w—2)
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where it is understood that z and v are to be evaluated at the retarded time (v = v(t,), z = z(¢,)).

If the particle always moves slower than the speed of light, then

e(x —z(t)) = e(x — 2(t,))

In other words, if the particle is to the left (right) of z at time ¢, then it was also to the left (right)

of z at time t,(¢,2). To see this, note that
t—t, > |2(t) — 2(tr)]

since otherwise the average speed of the particle during the time interval [t,,t] would exceed the

speed of light. Thus, from the definition of ¢,.,
|z — 2(t)| > |2(t) — 2(tr)|
So

e(x — z(t,)) = e(x — 2(t))

Thus, we can also express the field gradients as

Opr(t,z) = —gll —v(ty)e(z — 2()] 7" v(tr) ez — 2(t))
Outr(t,x) = g[l—v(ty)e(w —2(t)] " e(a — 2(t))

So far, we have assumed that the event (¢,2) does not lie on the particle trajectory (so z # z(t)).
But to calculate the radiation reaction force, we will need to know the field gradient at the position
of the particle. Thus, I will repeat the derivation of the field gradient for the special case of events

that lie on the particle trajectory. For such an event, the field gradient is

0ubr (@) |o=z(ry = g/f(z(t) —z(t) ot =t — |2(t) — 2(t')|) dt’
= g/e(z(t) —z2(t—=7))0(r — |2(t) — 2(t — 7)|) dT

where 7 = ¢t — t/. We can evaluate the integral by expanding in 7; this technique is based on a
similar method used in [38] to evaluate the radiation reaction for 3+ 1 dimensional electrodynamics.
Note that because the particle always moves slower than the speed of light, the delta function is

zero for any finite value of 7. The integration region can therefore be restricted to [—n, +n], where
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7 is arbitrarily small:
+n
Der(1,) [omsiey= g/ e(2() — 2(t — 7)) (7 — |2(t) — 2(t — 7)) dr

-7

For small values of 7, z(t — 7) can be expanded in a power series:
Zt—T)=z—vT 4

where, to simplify the notation, I have defined z = z(t) and v = v(t). If we choose 1 small enough,
then for all values of 7 in the integration region the higher order terms in the expansion are negligible.

Thus,

+n
Do (t,) osiy= g/ e(wr) o — |or]) dr
-n
For v > 0,
+n 0
0.00(t,5) lomsty = ol [ (1= v)r)dr — [ 5((1+v)r)dr]
0 -
= g(l-v)"to

where I have used that

. v)T)dT = v) 7! " T T—l v) 7!
s x o= 1 20) / S(r)dr = (14 )

Similarly, for v < 0,

+n 0
Bubr(t,2) lostyy = —292[/0 5((1+v)r) dr — / 5((1 — v)7) dr]

= ¢g(1 —v2)7lv

In either case,

am(bT(ta I) |w:z(t): g (1 - 1)2)71 v

Note that this is the average of the field gradients on either side of the trajectory.

In summary, for points (¢,2) that do not lie on the particle trajectory, the field gradient is

Ouy(t,2) = g[l —v(t:) e(w — ()] 7" ez — 2(t))
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where t,.(t,2) is the retarded time for (¢,z). For points (¢t,z = z(t)) that do lie on the trajectory,
the field gradient is

0oty (t,2) = g (1 = 0*(t)) " v(t)

2.2.3 in and out fields

Suppose ¢(t, z) is a solution to the inhomogeneous wave equation. We have shown that ¢, (¢, z) and

¢a(t, ) are also solutions to the inhomogeneous wave equation:

D(b(t,i[:) = D¢r(t7x) = D(ba(tvx) = —29p(f,$)

Thus, we can define fields ¢, (¢, 2) and ¢out(t, ) by

din(t,x) = o(t,x) — op(t, )
¢out(t7 JJ) = ¢(tu ‘T) - ¢a(t7 :E)

which satisfy the homogeneous wave equation:
D(bzn(tax) = D(bout(tu :E) =0

In this section I want to solve for the time evolution of the in and out fields. I will show that given

the initial conditions ¢y (0,2) and 7, (0, z), the in field at time ¢ is

1 -+t
Binlt,) = 30100, +1) + Gin 0,2 — 1) + / 7in(0, ) dy]

r—t

A similar result holds for the out field. It is straightforward to verify this result by checking that it
satisfies the homogeneous wave equation and gives the correct initial conditions at ¢ = 0, but it is
also instructive to derive it using Greens function methods. The derivation I give here is adapted

from an analogous derivation for 3 + 1 dimensional electrodynamics that is presented in [39].

The Greens function method for solving the homogeneous wave equation relies on Gauss’s theo-

/8“C'#d2$:/ Cy do"
1% v

where C}, is an arbitrary vector field, V' is a closed spacetime region, and 9V is the boundary of V.

rem, which states that

Suppose we know the value of the fields at time ¢ = 0 and want to solve for the fields at a later time
t =t’. Then we define V to be the rectangular region enclosed by the spacelike lines (¢ = 0,x) and
(t =t',x), and by the timelike lines (¢, —L) and (¢,+L), where L is chosen to be large enough that
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the fields vanish outside of [—L, +L] for all times in the interval [0,t']. We choose the vector C), to
be
C,=A0,B—B9,A

where A and B are given by

Alt,x) = ¢inl(t,x)
B(t,z) = G_(t—t,z—1')

and I have defined a Greens function
G_(t,z) = G.(t,2) — Ga(t,z) = 0(t — |x|) — 0(—t — |2|) = €(t) O(t* — 2?)
Note that G_(t,x) satisfies the homogeneous wave equation
OG_(t,z) =0
and obeys the boundary conditions

G- (ta I) |t:0 =0
8tG7 (t, I) |t:0 = 25(I)

Substituting our expression for C}, into Gauss’s theorem, we find that

/V(A OB — BOA) d*z = /W(AaﬂB — B9, A)do*

Because A and B both satisfy the homogeneous wave equation, the right hand side vanishes. Also,
because of the way we have defined V', the surface integral vanishes on the two timelike lines. Thus,

the surface integrals on the two spacelike lines must be equal:
/[A 6tB - B 8tA]t:0 dr = /[A 6tB - B 6tA]t:t/ dzr
Note that

Blizy = 0

&gB |t:t’ = 25(.’[] — JJ/)
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and

Blimo = —e(t)0(t” —|z—a']?)

OB |i=o St + |z —2'|)+ 6t — |z —2'|)

We will assume ¢’ > 0, so

Blimo = —0(t”—l|z—2'])

&gB |t:0 = 6(t/ — |.’II — (EI|)

= 6t —x+2 )+t —2' +2)

Thus,
’ ! 1
in(t',2") = 5 /[A 0yB — B 0; A]i—o dx
1 '+t
= 3602 +) + ¢in(0,2" — ') + / 7in (0, 2) da]
:E/*t/

We can simplify the notation by dropping the primes:

1 x+t

r—t

2.2.4 Field energy and momentum

Because the model system is invariant under translations of time and space, it obeys conservation
laws for energy and momentum. For simplicity, in what follows I will assume the particle is a point

charge.

The energy density u(t, z) and momentum density s(¢,x) for the field are

% ((t, )% + (D, 0(t, ))?)
—r(t,z) D,9(1, )

u(t, x)

s(t, x)

Note that s(¢,z) can also be interpreted as an energy flux, and u(t,z) can be interpreted as a
momentum flux. The total energy and momentum of the field can be obtained by integrating the

energy density and momentum density over all space:



The total energy of the particle is

and the interaction energy due to the coupling of the particle to the field is

E; = 2g¢(t, 2(t))

Using the equations of motion, we can calculate the rates of change of these energies. For the particle

energy, we find

Ep = _29an¢ |w:z: 'UFf

where

Ff = _29 a$¢ |m:z

is the force exerted on the particle by the field. For the interaction energy, we find
Ei = 29(7 +v 6I¢) |m:z

Similarly, using the field equation, we can write down a continuity equation for the field energy
density:
Opu + Ops = —2gmp = —(E, + E;) 6(z — 2(t))

If we integrate the continuity equation over all space, and assume there is no outgoing energy flux

at +oo (that is, if we assume s(¢,2) — 0 as x — £00), we obtain an energy conservation equation:

d
—(Ey+E;+E,)=0

Note that in the energy conservation equation for a vector field the F; term does not occur.

We can also use the field equations to write down a continuity equation for the field momentum
density:
018 + Ozu = 2gp 0pd = —Ff 6(x — 2(t))

If we integrate this equation over all space, we find

Py + u(t,+00) — u(t,—o0) = —F}
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Because the static field of the charge does not fall off with distance, u(¢,2) does not vanish as
x — +o0o. However, we are free to assume that the radiation field does vanish for x — £oo, in which

case only the static field is present and u(t, +00) = u(t, —00). Thus,
Py = —Fy
and we obtain a momentum conservation equation:

d dv
L A,
dt( ' +p) + -

where I have used that the total force on the particle is
F=p=—"-+F

2.2.5 Scattering

We are now ready to consider the problem of scattering in the model theory. The situation I want
to consider is the following. In the far past (¢ < ¢;, for some time ¢;) and the far future (¢t > ty,
for some time ¢y), the particle is stationary and is well separated from any radiation fields that are

present:

z; fort <t
Z(t): 1 (2

Zf for t > tf

Between t; and ¢y, incoming wave packets (and possibly externally applied driving forces) push the
particle around, causing it to emit and absorb radiation. The problem we want to solve is to express

the state of the field after ¢; in terms of the state of the field before ¢;.

For t < t;, the retarded field is just the static field generated by the stationary charge:
or(t, ) = glx — 2| = Yi(t, x)

The total field is
¢(t, ,T) = (bin(tv ‘T) + wi(tv ,T)

Thus, for ¢ < t;, the total field cleanly divides into a free radiation field ¢;,, which describes the
incoming wave packets, and a static field ¢;, which is bound to the particle. For ¢t > ¢;, the in field
describes what the incoming wave packets would look like if they didn’t interact with the particle

and continued to evolve freely.
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Similarly, for ¢t > ty, we can write down the advanced field:

ba(t,x) = glz — 2p| = Py(t,z)
The total field is
¢(ta I) = (bout (tv .I) + T/Jf (ta I)

For t > t;, the out field describes the outgoing wave packets, while for ¢t < ¢y, the out field describes
what the outgoing wave packets would look like if they were freely evolved backward in time, ne-

glecting their interaction with the particle.

We can relate the in and out fields by noting that for all times

P(t,2) = in(t, ) + ¢r(t, ) = out (t,z) + ¢a(t, z)

Thus,
(bout (ta JI) = ¢in (t7 JI) + ¢— (t7 JI)

where

¢— (t,.’L‘) = ¢out(t7x) - (bin(tu ,T) = ¢T(tu :E) - (ba(tv :E)

represents the radiation emitted or absorbed by the particle during the time interval [¢;,¢f].

It will be convenient to restrict our attention to a finite region of spacetime containing the en-
tire scattering process (see Figure 2.2). We will choose a time T big enough that -7 < t; <ty < T.
Also, we will choose a length L big enough that for all times ¢t € [T, T the particle and the radia-
tion fields are contained in the spatial region [—L, L]; that is, for t € [-T,T], z(t) € [~ L, L] and the
in and out fields vanish outside of [-L, L]. From now on I will only refer to times in the interval

[T, T], so I will assume that these two conditions are met.

I will redefine the field energy E, so that only the energy in the region [—L, L] is included:

L
Efz/ u(t,z) dx
-L

The total energy of the system is
E=E;+E,+E;

Because the in and out fields vanish outside of [—L, L], no field energy can enter or leave this region;

therefore, the total energy E is conserved throughout the entire scattering process.
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Figure 2.2: Scattering region.

For ¢t < t;, I will define an energy density for the in field alone:

Uin (t, .I') = [7_‘_12” (t7 «T) + (aw(bm (tu x))2]

N | =

Note that

So

(020)? = 204(¢ i) + 20 Db + (Da1)i)?

Substituting for the static field, we obtain
(am¢in)2 = (aw(b)Q - 29 6m(¢€(x - Zz)) + 4g¢6($ - Zi) + 92

Also,

Thus, we can relate the in field energy density to the total field energy density:

Uin = u — g0z (P e(x — 2;)) + 290 6(x — 2;) + %QQ
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Since the particle is at rest, E, = V(z;), and the total energy of the system is
L
E=E;+E;, = / u(t,z)dx + V(z;) + 299(t, z;)
—L
If we substitute for u, we get
L 1
E= [ win(t)ds - 34°(L) + glo(t, )+ (6. ~L)
—-L

Since

we are left with

L
E= / uin(t; I) dx + Ebound + V(Zz)
—L

where

1

Ebound - 5 /(3m1/)z)2 dr = %/(811/})‘)2 dx = %.92(21;)

is the energy of the static field bound to the stationary charge. Similarly, for ¢ > t;, we can show
that
L
E = / Uout(t, ) dx + Ebouna + V (25)
L

In summary, for ¢t < t; the field decomposes into a radiation field ¢;, and a static field v;, while
for t > t; the field decomposes into a radiation field ¢+ and a static field ;. In both cases, the
energy of the system also decomposes into a term corresponding to the energy of the radiation field

and a term corresponding to the energy of the bound field.

2.2.6 Radiated power

I now want to calculate the power radiated by a particle moving along a specified trajectory z(t).

This can be accomplished by evaluating the energy density of the out field for t > t:
out(t,2) = 3 [(@uoue(t,2))? + (Dathns )
For t > tf, the total field may be expressed as
O(t,x) = Pout (t, ) + Y5 (t, ) = Pin(t, ) + ¢r(t, 7)

I will assume that before ¢; there is no radiation, so ¢, (t,2) = 0. Then

¢0M(t7x) = ¢T(t7x) - djf(tvx)
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Recall from section 2.2.2 that the gradients of the retarded field are

dupy(t,x) = —gll—ve(z —2(1)] " ve( — 2(1)
0oty (t,x) = g[l —ve(w—2(t)] ™" e(z — 2(t))

where v = v(t,). For t > t;, z(t) = zy, so

1

6t¢r (tu ‘T)
Dur(t, )

—gll —ve(x —zf)] " ve(r — z5)

gl —ve(x —zp)) e(x — zy)

The gradients of the static field are

Il
o

6{@/1]0 (t, CE)

Ohs(t,z) = ge(x—zy)
Thus, the gradients of the out field are

Obout(t,x) = —g[l —ve(z— zf)]_l ve(r — zy)

az¢out(tax) = g[l—’(}e(:l?—Zf)]il’U
If we substitute these gradients into the expression for the energy density, we obtain

Uout(t, ) = g?v2[1 —ve(x — Zf)]72

Thus, the total energy radiated by the particle during the interval [¢,, ¢, + At] is (see Figure 2.3)

AE = uou(t, 2(t) + (t — ) (1 — v) At + wour(t, 2(t:) — (£ — £.)) (1 + v) At

U2

1—v2At

= 292

The radiated power is therefore
_AE 92 v?

p-=2r
At gl—v2

Note a particle moving at a constant velocity radiates; the theory is not Galilean invariant.
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(1+v(t,)) At (1 —v(t,)) At

—L Z4 +L

Figure 2.3: Energy radiated by the particle during the time interval [t,, ¢, + At].

2.2.7 Radiation reaction

A moving particle radiates because the particle does work against a radiation reaction force, which

is caused by the coupling of the particle to its own retarded field. Since the total field is
ot x) = din(t, ) + ¢ (t, )
the total force that the field exerts on the particle is
Fy(t) = =29 0:0(t, 7) lo=2(ny= Fin(t) + F1 ()

where

‘Fi (t) = _29 6m¢zn(tu :E) |z:z(t)
is the force that the incoming radiation field exerts on the particle, and

FT(t) =-2 6m¢r(t7x) |ac:z(t)

is the radiation reaction force that the particle exerts on itself. Recall from section 2.2.2 that the

gradient of the retarded field evaluated at the position of the particle is

8x¢7“(ta I) |w:z(t): g (1 - 1)2 (t))71 ’U(t)
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Thus, the radiation reaction force is
F.(t) = —2¢% (1 —v*(1)) L o(t)
For small velocities we approximate this as
F.=—ymz

where

v =2g%/m

The equation of motion for the particle is then
.. . dv
mz+myi = T 29 Opbin

It is sometimes argued that radiation damping in electrodynamics constitutes a time asymmetry
of the theory. This is not correct, as can be understood from the model field theory; the time
asymmetric damping term only reflects our time asymmetric decomposition of the field into an
in field and a retarded field. We could equally well decompose the field into an out field and an

advanced field, in which case the equation of motion would be

d
mi—myz = _v 29 Oz out
dz

Note that the sign of the damping term has flipped. The real time asymmetry is not a time
asymmetry in the theory; rather, it is a time asymmetry in the asymptotic conditions. In most
physical situations, the state of the field is simple in the far past, but complicated in the far future;

thus, it is natural to express the equation of motion in terms of the in field rather than the out field.

2.2.8 Scattering from a harmonically bound particle

I now want to apply the equation of motion derived in the previous section to the problem of
scattering from a harmonically bound particle. Consider a wavepacket that starts to the left of
the particle and propagates toward it. I will assume the wavepacket is very broad and nearly

monochromatic, and may therefore be approximated as a plane wave:

Gin(t, ) = gy eI
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where w = k, since the wave propagates to the right. The equation of motion for the particle is
44 wiz = —(29/m) Opbin (t, @) |ama= —i(yw/g) s e " @1F2)

I will assume the displacement of the particle is much less than the wavelength of the radiation

(kz < 1), so we can make the dipole approximation:
E+ i +wiz = —i(yw/g)¢re !

The solution is

2(t) = (i/9)¢r f(w) e

where I have defined

fw) =yw (w? — wg +iyw) !

The velocity of the particle is
v(t) = —iwz(t) = —(w/g) b1 flw)e ™!
Thus, v < 1. In this limit, the gradient of the retarded field is
Der(t,2) = —gv(ty) e(x — 2(t)) = wor f(w) e ™" e(w — 2(t,))
Recall that the retarded time ¢,.(¢,2) is given by
tr =t— |z — z(t)]

Thus, in the dipole approximation

Thus, we may simplify our expression for the field gradient:

Oy (t, ) = —woy fw) e w7 ¢()
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The total field is given by the sum of the in field and the retarded field:

¢ = ¢in + ¢7‘
Thus, the gradient of the total field is
Ohd(t,z) = —iwdr e~ HWt=ka) _ o, fw) e~ (t=lz)) e(x)
Ai e—i(wt—k;ﬂ) 4 Ar e—i(wt—i—kw) forx < 0
Ay e~ iwt—kz) forx >0
where
A = —iwgr
AT = zf(w) Al

A = (1—if(w)) A

are the amplitudes of the incoming, reflected, and transmitted waves. The corresponding intensities

are

L = W3¢rl?
I = |fW]L
L = (1-|f@Ph
where I have used that
Imf =—|f]?

Note that the intensities obey the conservation equation I; = I, + I;.

2.2.9 Vector field

It is interesting to compare our model field theory for a scalar field with an analogous theory for a

vector field. The field equations for the vector field are just Maxwell’s equations in 1+ 1 dimensions:

0 E(t,z) = 2p(t,x)

OE(t,x) = —-2J(t,x)
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Note that partial derivatives commute:

0:0, E(t,x) = 0,0, E(t,x)
Thus, we obtain a continuity equation for the electric charge:

Op(t,x) + 0p J(t,2) =0
We can solve for the field explicitly:

B(t.) = Eo+ [ o= y)p(t.v)dy
where FEj is a constant. It is straightforward to check that this satisfies the field equations:
0.5(t,) =2 [ 8w~ ) plt.) dy = 20(t,2)

and

HE(t,x) = —2/e(az—y)8yJ(t,y)dy

=2 [ d(z—y) J(t,y)dy
—2J(t, )

where I have used the continuity equation and integrated by parts.
The energy density of the field is
1
u(t,z) = ZEQ(t,x)

and there is no energy flux:

s(t,x) =0

Note that
Owu(t,z) = %E(t,x) OE(t,x) = —J(t,z)E(t, x)

and

Opu(t,x) = %E(t,x) 0 E(t,x) = p(t,x)E(t, x)

Thus, we obtain an energy continuity equation

Opu(t, x) + 0zs(t, ) + J(t,x)E(t,x) =0
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and a momentum continuity equation
Os(t, z) + Ozu(t,x) — p(t,z)E(t,x) =0
For a point particle following a trajectory z(t), the charge density is

plt,a) = e8(x — (1))

and the current is

J(t,z) =v(t) p(t, )
Since we are using nonrelativistic dynamics, the equation of motion for the particle is
F(t) = mi(t) = p(t) = e E(t, 2(t))
Note that for a point particle,
Oru(t,x) = —v(t) F(t) d(z — 2(t))

and

Ou(t,x) = F(t) §(x — 2(t))

2.3 Extended particles

So far I have only considered the case of a point particle; I now want to generalize to the case of
a spatially extended particle. First I present exact calculations for the self-energy of a stationary
extended particle and for the radiation reaction force of an extended particle moving at a uniform
velocity, and then I derive approximate results for the self-energy and radiation reaction force of an

extended particle in arbitrary motion.

2.3.1 Extended particle at rest

I will begin by calculating the self-energy of a static charge distribution p(z). We will assume the

/p(x) de =1

and that the charge is confined to a finite region of space, so we can choose a length L such that

distribution is normalized such that

p(x) vanishes outside the interval [-L, +L]. The retarded field generated by the charge distribution
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is

or(x) = g/ |z —y| p(y) dy + ¢o

where ¢ is an arbitrary constant, which for simplicity I will set to zero. The field energy in the

region [—L,+L] is

+L
By =5 [ (00000 s = 500(@) 0D — g [ 60 (@pto) o

—L

where I have integrated by parts and used the field equation

D¢ (x) = 2gp(x)

The gradient of the retarded field is

0ur () = g/é(w —y)p(y) dy

So
0ur(2) |o=t1= g/E(iL —y)ply)dy = ig/p(y) dy = +g

Also,
6o (+L) + 60 (—L) = g / (IL — | + | + u]) ply) dy = 29L / ply) dy = 29I

Thus, the field energy may be expressed as
By = 50°2L) — g [ 6.(0)p(e) ds
Note that the first term is just the field energy Epouna for a point charge. The interaction energy is
B =29 [ 0, (@)pla) da
So the total energy is
Bj+ B = 50°eD)+g [ oa)pla)ds
= 30D+ ¢ [[ o=yl o) dody

Note that the total energy increases if the charge distribution expands; this is because like charges

attract.
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2.3.2 Extended particle moving at constant velocity

I now want to calculate the radiation reaction force for an extended particle moving at a constant

velocity v. The charge density is
p(t, ) = f(z —vt)

where f(z) is the charge density profile of the particle. The gradient of the particle’s retarded field

is

Oubr(tix) = g/e<x—y>p<t—|x—y|,y>dy
- g/e(x—y)f(y—v(t—Ix—yl))dy
= g/j f(y—v(t—:c+y))dy—g/00f(y—v(t—y+~’6))dy

— 00

= -0 [ fwdi-g4o0™ [ fwa
= g(1—-2v?)""! /(U—i—e(:v — vt —u)) f(u)du

= gv(1 =0t +g(1—0H? /e(x — vt —u) f(u)du
Thus, the retarded force on the particle is
Fult) = =29 [ p(t.2)2,01(t,2) do = ~2g70(1 — 7))

This is the same as the retarded force for a point particle.

2.3.3 Extended particle in arbitrary motion

Now let us generalize to the case of arbitrary motion. The calculations presented here are patterned

after the discussion of the Abraham-Lorentz self-force that is presented in [40].

Recall that the gradient of the retarded field generated by a charge distribution p(t, z) is

0y (t, ) = g/é(w —y)p(t =z —yl,y)dy

Thus, the retarded force is

F.(t) = —29/p(t,x)8x¢r(t,x)d:c
- —292//p<t,x>p<t— & — yl,9) e(z — y) de dy
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We can expand the charge density in a power series in |z — y|:
o0

p(t = |z —yl,y) Z

I:v —y|" o p(t,y)

For a particle that moves along a trajectory z(t) and that has a charge density profile f(z), the

charge density is

p(t,y) = fly — 2(t))

Thus, if we keep only terms of linear order, then for n > 0

" d"z(t
O p(t,y) = — dtﬁ ) Oyp(t,y)
So
> d"z(t
ot~ 2~ y1.9) = plt.9) — Dot y) 3 T oy T2
n=1

Substitute this into the expression for the force:

g0 = 2 SO ] ) Gyptt) be — ol o - oy

n! dtm

o0

— 9 2 ( // t t _ o n—1
g 7;:1 (n—l dt" x)p(t,y) |z —y|"  dxdy

dn+1
T // t,x) p(t,y) |z —y|" dx dy

where I have integrated by parts in going from the first to the second line, and used that

Oyllz — y|" e(x — y)] = —njz —y["*

For a fixed time ¢, T will define variables u =  — z(t) and v =y — z(¢). Then

0 dn+1
FE.(t) = o g //|u " fy)f(v) dudv

= —2g zZ—mgZ+---

ms = ~2¢" [ [ o= fw) (o) dudo

is the self-energy of the particle.

where

If the velocities and accelerations are low enough that a linear approximation is justified, and if
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the particle is small enough that we can truncate the series expansion of the retarded force at the

second order, then the equation of motion for the particle is
mi = Fy, + Fp = —290,bin — 29° %2 —mg 3

Thus,
MRz +mpryi = —290,bin

where

mpr =m-+mg

is the renormalized mass, and

v =2¢"/mp

is the damping constant.

2.4 Alternative models for space

In setting up the model field theory, we have assumed that space is both infinitely extended and
infinitely divisible, so that points in space can put in one to one correspondence with real numbers.
The theory therefore has an infinite number of degrees of freedom, because the value of the field
at each point in space constitutes an independent degree of freedom for the system. I now want to
consider some alternative models of space. First, I will show how the theory can be adapted to a
finite spatial region [—L, 4+ L] on which periodic boundary conditions are imposed. Next, I will write
down a discrete version of the theory by introducing a spatial lattice. I consider two different lattice
models: one with damped boundary conditions, and one with periodic boundary conditions. The
lattice models have a finite number of degrees of freedom, which allows them to be simulated on a

computer.

2.4.1 Periodic boundary conditions

The model field theory applies to an infinite spatial region (—o0, 00). In this section, I want to show
how the theory may be adapted to a finite spatial region [—L,+L], on which periodic boundary
conditions are imposed by identifying the points +L and —L. For simplicity, I will only consider
static charge distributions and fields. The change in spatial topology (from R to S!) introduces

several new features.

First, because the field gradient is a physical quantity, it must have the same value at +L and
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—L, as these are just different labels for the same physical point:

am¢ |m:+L: am¢ |w:—L

From the field equation
92 = 2gp

we see that this implies that the total charge must vanish:

+L
/ pdx =0
—L

Second, it is not always possible to define a single field ¢ over the entire spatial manifold. Instead,
we must introduce an open cover {U,} of the manifold, and define a separate field ¢, for each

coordinate patch U,. These fields satisfy the field equations

260 = 2gp

In regions where two coordinate patches U, and Ug overlap, the corresponding fields are related by

a constant:

o = (bﬁ + Cap

Thus, in the overlap region U, N Ug the gradients of the fields ¢, and ¢z agree:

az ¢a = az ¢5

As an example, I will consider an open cover consisting of two coordinate patches U; and Us:
Ul = (_Lv +L)

Us =[—L,0) U (0,+L]

Note that Uy UUs = [—L,+L]. There are two disjoint regions where U; and Us overlap, which T will
call Ur and Up:
Uy, =(-L,0)

Ur = (0,+L)

Thus, Uy NU; =Ug U Uy,

To find the field ¢;(x) generated by the charge distribution p(z), it is helpful to introduce a Greens
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function

G(z) = |z| — 2?/2L
which satisfies
02G(z) = 2(6(x) — 1/2L)
Using the Greens function, we can express ¢ (z) as

+L
P1(z) = E$+C+/ G(z —y) py) dy

—L

where E and c are constants. Note that because we need to specify these constants, the charge
distribution does not uniquely determine the field or field gradient. If we substitute our expression

for the Greens function into this expression for the field, we find that
¢1(+L) — ¢1(—L) =2LE

Thus, for E = 0 the field is continuous across the boundary.

As an example, consider a configuration of two stationary point particles, one with charge +g¢g

at z4, and one with charge —g at z_. The field ¢; for coordinate patch U; is

¢1(z) = Br+ctgle -2~ (9/2L)(x —24)* —
gle =z |+ (9/2L)(x — 2-)?

= Ez+d +glv—2y|—glo— 2|
where I have defined

B = E+(g/L)(zs — )

¢ = e—(g/2L)(2 — 2)
A corresponding field ¢ for the coordinate patch Us is given by

o1(x) +d forx <0
¢1(x)+d—2LE forz >0

¢z =

where d is an arbitrary constant. The field gradient is

Op1 = Ozpo = E' + ge(v — 24) — ge(z — 2-)
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2.4.2 Finite lattice with damped boundary conditions

By introducing spatial lattice with a finite number of sites, we can write down a discrete version
of the model field theory that has only a finite number of degrees of freedom. The lattice sites are
labeled by an integer n that ranges from —R to R, so the total number of sites in the lattice is
N = 2R+ 1. For each site n, we can define field variables ¢,,(t) and m,(t), which evolve under the
Hamiltonian

HZHf-i-Hi-i-Hp

where

Hf = %wp Z[Tffl + (¢n+1 - ¢n)2]

Hi = 29 dupn

p2

are the lattice versions of the field, interaction, and particle Hamiltonians. The quantity p,, is the

charge at lattice site n; it is given by

pu(t) = f(n — =(t))

where f(z) is the charge density profile of the particle and z(¢) is the particle’s trajectory. The

equations of motion are

én = WFTp

7:‘—11 = WF¢Z_2gpn

Z = p/m

) d d

po= —EV(z>—2g§nj¢%f(n—z)

where

¢Z = ¢n+1 + ¢n—1 - 2¢n

is the lattice equivalent of the second derivative. From the equations of motion, we find that the
lattice wave equation is

Q.Z/;n - W%‘ (bx = —2gwrpn
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and the force on the particle is

. dv d
F—mz——g—Qg;@zEf(n_z)

Because there are only a finite number of lattice sites, we need boundary conditions for the terminal

sites £ R. If the lattice extended beyond site R, then equation of motion for 7 would be

R = wr ¢p = wr (Pr+1 + PrR—1 — 20R)

where for simplicity I have neglected the static field of the charge. If we replace this with an equation
of motion that gives the same time evolution for mr, but which does not contain the field variable
®r+1, then waves incident on the terminal lattice site R will be damped. We can obtain such an
equation from the following considerations. For the continuum theory, a monochromatic wave has

the form

¢(f, {E) — ¢O ei(kw—wt)

where w = |k|. Note that
(O £05)p(t,x) =0

where the upper sign is for a rightmoving wave (k > 0), and the lower sign is for a leftmoving wave
(k < 0). Thus,
0:0(t, ) = Fr(t, x)

In the lattice theory, this becomes

¢n+1 - an )

for waves that have a wavelength much longer than the lattice spacing. Thus, for a rightmoving

wave incident on site R,

ORrR11 =~ R — TR

We can use this result to substitute for ¢r41 in the original equation of motion for 7wg:
iR = WF (pr—1 — ¢r — TR)
If we also include the static field of the charge, we get

R =wr (pr—1 — ¢r —TR) + ¢
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So, the equations of motions for damped boundary conditions are

(;.Sn = WFrTp
wr (pr—1 —¢r —TR) + ¢ forn=R
T = WF ¢, — 29pn for —-R<n< R

wr (¢p—(r—1) —¢-r—7-r)+g forn=-R

The lattice field theory can be simulated on a computer by integrating the equations of motions for

some set of initial conditions. For the simulations I present here, the particle follows the trajectory

1
z(t) = Eat2

and the charge density of the particle is
f(:E) — (27_‘,0_2)71/2 67962/202

I integrate the equations of motion for the field variables, subject to the initial conditions

6a(0) = g3 In—r|p.(0)

m(0) = 0

where

Thus, at the start of the simulation, the only field present is the static field of the particle.

The results of the computer simulation are shown in Figure 2.4 and Figure 2.5, which plot the
force on the particle as a function of time. The two figures correspond to two limits: a fast moving
point particle and a slowly moving extended particle. For a point particle, we would expect the force
on the particle to be

F. = —2¢%v(1 —v?)7' = —2¢%at(1 — (at)*)™!

This limit is shown in Figure 2.4, for which o = 2.

The force on a slowly moving extended particle is

F,. = —292U —mga = —292at —mga



where
mg = —2¢° // lu — o] f(u)f(v) dudv
Note that
1=l )10 dud =

1 2 °r

—(202)"/2/ e " it dr/ | cos @ — sin 6|™ df

n 0
Thus,

This limit is shown in Figure 2.5, for which o = 10.

a=le-3, R=2000, g=1.0, sigma=2.0
l T T T T T T

T T
simulation +

force
N
T
4
1

0 100 200 300 400 500 600 700 800 900
t

Figure 2.4: Force versus time for a point particle (¢ = 2). The points are from the computer
simulation; the curve is the theoretical prediction for a point particle.

2.4.3 Finite lattice with periodic boundary conditions

I now want to consider a variation on the lattice theory from the previous section, where instead
of damped boundary conditions we choose periodic boundary conditions. That is, we couple lat-
tice site +R to lattice site —R, which is equivalent to making the identifications ¢ry1 = ¢_r and
¢_r—1 = ¢r. I will assume that there is a single set of field variables (¢, 7,,) that describes the en-

tire lattice. For the continuum theory with periodic boundary conditions that we considered earlier,
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a=1e-3, R=200, g=1.0, sigma=10.0
0.05 T T T

T
simulation +

-0.05 = B

force
#

0.1 | et :

-0.15 K B

0 20 40 60 80 100
t

Figure 2.5: Force versus time for an extended particle (o = 10). The points are from the computer

simulation; the curve is the theoretical prediction.

the equivalent assumption would imply that we are only allowing field configurations for which £ = 0.

As before, the field and interaction Hamiltonians are

Hf = %wp Z[ﬂ'i + (¢n+1 - ¢n)2]

Hi = 29 dupn
n
where p,, is the charge at lattice site n. The equations of motion for the field variables are

(bn = WFTn

7:rn WF(bZ - 29Pn
and the field equation is

&n - w%‘ ¢Z = —29wFpn

I will first calculate the field produced by a static charge distribution, and then generalize to the
case of a charge distribution with a specified time dependence. Finally, I'll couple a charged particle

to the field and find the equations of motion for the coupled system.
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For static charges and fields, the field equation is

¢ = (29/wr)pn

Note that because of the periodic boundary conditions,

Z¢Z = Z(¢n+1 + Pn—1 —2¢,) =0

n

Thus, the total charge must be zero
=0
n

We can solve for the static field by introducing a Greens function G,, that satisfies
G =2(5, —1/N)

The static field is then given by
¢n = (Q/WF) Z anr Pr

To find G,,, assume it has the form

G, = E Cm e27r1mn/N
m##0

for some coefficients ¢,,. Then

G;: - _ Z (Wm/WF)QCm e27rimn/N

m##0
where
Wy, = 2wp|sin(mm/N)|
Note that
_ 1 2wimn/N __ 1 1 2mimn/N
6n = N Z e = N + N Z e
m m#0
So

2 .
" _ _ 2mwimn/N
Gl =200~ 1/N) = %O: e

Equating the two expressions for G/, we find

2
Cm = _N(WF/WW)Q
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Thus,
G _ _2 Z(w /w )2 eQﬂ'imn/N
n N F/%Wm
m#0
R
_ 2 cos(2mmn/N)
- N 4= 1—cos(2mm/N)
n? N?2-1
= fnl- 2 -
N 6N
Note that

ZG" =-2 Z (Wr/wm)?6m =0

m#0
It is convenient to perform a canonical transformation from the field variables (¢,,m,) to new

variables «, that describe the normal modes of the field:

bn = (2N)—1/2 Z (WF/wm)1/2(Oém e27rimn/N + a;kn e—27rimn/N)
m#0
T = _i(2N)71/2 Z(wm/wF)l/z(am e27rimn/N _ a:‘n 6727rimn/N)
m#0

In terms of the new variables, the field Hamiltonian is

H :_WFZW + (bn-i-l ¢n Zwm|am|

m##0

and the interaction Hamiltonian is

Hi =29 $upn =Y wmlamAy, +ajm)

m#0

where

>\m — (gm/wm) an 6727rinm/N

n
and

= (29)2N) " (wr /wm)'/?

The equations of motion for the normal mode variables are
10 = Win(Qm + Am)

Thus, each field mode acts like a simple harmonic oscillator. The charge distribution displaces each

oscillator from its equilibrium value of «,,, = 0, resulting in a static field a,,, = —\;,. We can define
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new variables by subtracting the contribution from the static field:
Qm = Qm + A
Or, in terms of the original field variables,

(lgn = ¢p — (Q/WF) ZGn—rpr

Tp = Tn,
Then

Hy+H, = Z Wi |2 + Z wm (am s, + ol Am)
m#0 m#0

= D wmldnf* = 3 wnlAnl”

m#0 m#0

Or, in terms of the original field variables,

Hy+H; = %;(Wi + (Pns1 — ¢n)?) + QQZ%Pn

= %Z(ﬁ-i + (én-l—l _én)2) +Q2ZZGa_b Pa Pb
n 2 b

where I have used that

Z wm|)\m|2 = _(QQ/WF)ZZGa—bPan
a b

m#0
as can be verified by substituting for A,, and G,. Thus, in terms of the transformed variables, the
Hamiltonian breaks into a sum of two terms: one that describes a free field, and one that describes

the self-interaction of the charge distribution.

Now that we have discussed static charge distributions, let us generalize to the case of a time

dependent charge distribution. The equations of motion for the field modes are
'Lam - wm(am + )\m)

where now A, depends on time. Given the state of the field at time ¢y, we can integrate these

equations to find the state of the field at a later time ¢:

t
an(®) = an(to) e = iy, [ ()i ar

to



159

t
= am(ty) e~ wm(t—to) _ iGm Zef2mmr/N/ Pr(t/) o~ iwm (t— t') ) dt!

n to

The first term describes the free evolution of the field, while the second term describes the field

generated by the charge distribution. Thus, we can define a retarded field by
ret = —igm Z —2mimr /N / 9( I) pr(t/) e—iwm(t—t/) dt’

Or, in terms of the original field variables,

¢ret Z/Gret t—t (t)dt/

where

Gt (t) = (2g/N) 0(t) Z(wp/wm) sin(2rmn/N — wpt)
m#0

is the retarded Greens function.

So far we have assumed that the charge distribution is an external parameter with a prescribed
time dependence, and that only the field is dynamical. Let us now consider what happens when
we couple a particle to the field, so the charge distribution depends on the dynamical variables
for the particle. Because the total charge must sum to zero for a periodic lattice, I will assume a
uniform background charge is present that cancels out the charge of the particle. Thus, the charge

distribution can be expressed as

pu(t) = f(n —z(t)) = 1/N

where f(z) is the charge density profile of the particle and z(t) is the position of the particle at time
t. A simple choice for the charge density profile is

_ l _ l 27rzwm/N sin
f(z) = N ;cos(wam/N) =N ; N sin(rz/N)

For simplicity, I have set wrp = 1, so length and time are dimensionless quantities. Note that for

N —

flz) — (2m) ! /ﬂ it gy — ST

- T

For this choice of charge density profile, the charge distribution is

_ 1 2mi(n—z(t))m/N
t) = N Z &

m##0
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We can check that the total charge is zero:

an _ Z 5771 e*Qﬂ'izm/N -0

m#0

The transformed charge distribution is

Am () = (gm/wm) Z pn(t) e—2minm/N _ (g /W) o—ikm(1)

n

where k,, = 2rm/N. Thus, the interaction Hamiltonian is

Hi = 3" gulom €% + aj, e~ %0%)
m#0

If we take the particle Hamiltonian to be

p
then the equations of motion are
Wy = WOy + 9Im e—ikmz
Z = p/m
dav ,
po= —o-i Z Gk (g €Fm* — o e~ hm=)
o m##0

I will assume that at ¢ = 0, only the static field of the charge distribution is present:
i (0) = =Am(0) = —(gm/wm) e hm=(0)

For later times, part of the field corresponds to the static field, and part corresponds to the radiated

field. It is convenient to define a set of variables 3, by subtracting off the instantaneous static field:
B (t) = am(t) + (gm/wm) e hm=()

The equations of motion for the new variables are

B = @B + G (ki Jwm)v e~ Frm?
Z = p/m
. dv . ikm 2 * —ikmz
p = _E_Zzgmkm(ﬁme —Bne )

m##0
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We can integrate the first equation to solve for §,,(¢), using that 3,,(0) = 0:
t . ’ ’
nt) = =i o) [ 0(t) om0V g
0

Thus, the force on the particle is

F(t) = —Cfl—‘: —/0 K(t,t)o(t")dt

where

K(t,t') = (49°/N) Y (km/wm)? cos(wm(t = 1) = km(2(1) = 2(1')))

m#0
I will assume that the displacement of the particle is much smaller than the wavelength of the

radiation it produces, so we can make the dipole approximation:

K(t,t) = (46°/N) Y (km /wm)? cos(wm(t — 1))

m#0
In the dipole approximation, the particle only couples to modes of the field that have wavelengths

much longer than the lattice spacing, so we may approximate wy, ~ |k,| in the sum:

K(t,t') ~ (49/N) Z cos(2mm(t —t')/N) ~ 4¢*6(t — t')
m#0

Substituting this into the expression for the force, we obtain

av
F= g, T MW
where
v =2g%/m

This agrees with the force we calculated for the continuum theory, in the limit of a slowly moving

point particle.
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Chapter 3

Quantum field theory model in
1 + 1 dimensions

3.1 Introduction

In this chapter I present a simple quantum field theory model I have developed involving a two level
atom coupled to a scalar field on a lattice in 141 dimensions. I begin by discussing a classical scalar
field on a lattice, and I then show how the field may be quantized. Finally, I couple the quantized
scalar field to a two level atom, and show how properties of the system may be calculated using a

number of different methods.

3.2 Classical scalar field on a lattice

Here I consider a simple field theory model: a scalar field on a one dimensional lattice. I write
down the Hamiltonian for the model using two different methods; first by considering a mechanical
model of the field involving masses coupled by springs, and then by writing down a discrete version
of the Lagrangian for a continuum field theory. I find the normal modes of the field and express the

Hamiltonian in terms of the normal mode coordinates.

3.2.1 Mechanical model

The Hamiltonian for a scalar field on a lattice can be obtained by considering a mechanical model
consisting of a linear chain of masses, where each mass is coupled to its nearest neighbors by springs.
We can label the masses by an integer n that runs from —R to R, so the total number of masses in
the chain is N = 2R 4+ 1. We need boundary conditions for the terminal masses +R; for simplicity,
I will impose periodic boundary conditions, so mass —R is coupled to mass +R. If we let ¢,, denote

the displacement of mass n from its equilibrium position, and let 7,, denote its momentum, then the
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Hamiltonian for the system is

1 1 - -
o= Z[%ﬁi + §mw%(¢n+1 — én)?]

where ¢p+1 = ¢_r. The Hamiltonian can be simplified by a canonical transformation:

¢n = (m(.UF)l/2 an

Ty = (mwp)71/2 T

Note that while the original variables ¢,, and 7, have units of length and momentum, respectively,
the new field variables both have units of root action. In terms of the new variables, the Hamiltonian
is

H = %WF ;(ﬂ'i + (¢n+1 - ¢n)2)

The equations of motion that follow from this Hamiltonian are

¢n = WFTp

7:"71 - WFQI)Z

where I have defined

O = Ppi1 + b1 — 205

The system is described by 2N field variables, but because two degrees of freedom correspond to a
uniform translation of the entire lattice, there are only 2N — 2 physical degrees of freedom. This

can be understood as follows. Let us define ® and II by

I = an

Using the equations of motion for ¢, and m,, we find

= wFH

I = 0
Thus, II(¢) = Il is a constant, and ®(t) is given by

(I)(t) =g + Ilgwrt
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In what follows, we will assume &5 = IIy = 0.

3.2.2 Relativistic Lagrangian

A second way to write down the Hamiltonian for the scalar field is to derive it from a relativistic

Lagrangian density. The Lagrangian density for a massless scalar field is

£ = 5(0u6)(06) = 5((00)° — (220)°)

Since £ has units of energy density, ¢ has units of action. The Lagrangian for the field is

L:/Ldm

We can put the field on a lattice by making the following replacements:

btx) — oult)
0u6(t,5) — dult)
0.0(t:0) =~ (basa(t) ~ du(t)

where a is the lattice spacing. Then the Lagrangian density becomes
Lo 1 2
L—Ly= §(¢n - _2(¢n+1 = ¢n)°)
a
and the Lagrangian becomes
L=} £y =5 3 (@b — ~(on1 — 6.)°)

The canonical momentum conjugate to ¢, is given by

_ oL _
oo

Tn

an
So the Hamiltonian for the field is
1
H= ; G — L = EWF ;(77121 + (¢n+1 - ¢n)2)

where wp = 1/a. Thus, we obtain the same field Hamiltonian as in the previous section.
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3.2.3 Normal modes

I now want to consider a canonical transformation from the field variables {¢,,, 7,} to new variables
{Qm, P} that describe the normal modes of the field. It is convenient to combine @, and P, in

a single complex variable ay,:

T(Qm+lp )

The transformation (¢, 7,) — ap, is given by
o = (2N) 712 Z ) wE)Y 26y + (W )V 2y) e=2mimn/N

where

Wy, = 2wp|sin(mm/N)|

and o, is defined for m € {£1,---,£R}. Using that

%ZSQﬂimn/N =5

we can derive the inverse transformation o, — (¢, T ):

bn = (2N)—1/2 Z (WF/wm)1/2(Oém e27rimn/N + a;kn e—27rimn/N)
m#0
_ (2N)71/2 Z (WF/wm)l/Q(Oém + O‘*—m) e27rimn/N
m#0
T = _i(2N)71/2 Z(wm/wF)l/z(am e27rimn/N _ a:‘n 6727rimn/N)
m##0
_ —i(2N)71/2 Z(Wm/wF>l/2(am _ Olim) e271-z'mn/N
m##0
Note that
Ont1 — On = (2]\])*1/2 Z (WF/wm)1/2(e27rim/N — 1) (o + o‘*—m) e2mimn/N
m#0
and
11— > m/N 2 = 45in?(rm/N) = (Wi /wr)?
Thus,

Z(¢n+1_¢n)2 =
> -

n

Y (wmfwr)lam +at [
m##0

N = N =

Y (wm/wr)lam —at,,
m##0



166

So the transformed Hamiltonian is

—wFZW + (o1 — on)°

=D walom|’

m#0

and the equations of motion for the new variables are

10 = WO,

If we rewrite the above results in terms of the real valued variables @,, and P,,, we find that the

P} = A{¢n, m} is

transformation {Q,,

P —1/2 Z (wF /wWm) Q cos(2rmn/N) — P, sin(2rmn/N)]
m#0

. —1/2 Z m/wr) 2 [P cos(2mmn/N) 4 Qu sin(2rmn/N)]
m#0

the Hamiltonian is

1 2 2
H=1S wn@+p)
m#0
and the equations of motion are
Qm = mem
Pm = —wnlm

The variables {Q,, Py, } describe running wave modes; modes with positive m move to the right,

and modes with negative m move to the left.

ing wave modes {Cy,, ¢, Sm, Sm }, which are

transformation

We can also describe the system in terms of stand-

related to the running wave modes by the canonical

Qon = —5(Cot )
I %(Cm—sm)
Pun = ~slen=Su)
I %(cm—i—S)

where m is always taken to be positive in the above relations. It is easy to check that [Q,, Prn,]

Omy,m, for all my and mg; thus the transformation is canonical.

The relationship between the
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standing wave variables and the variables {¢,, 7, } is

T

bn = (2/N)V/? Z (Wi /wm)Y?(Cypy cos(2mrmn/N) + Sy, sin(2xmn/N))
T = (2/N)Y/? Z (Wi /wr)Y?(em cos(2mmn/N) + sp, sin(2rmn/N))

and the transformed Hamiltonian is

1 s
H= §n;wm(cil+(§'ﬁl+sfn+5i)

3.3 Field quantization

We can obtain a model for a quantum field by quantizing the scalar field model from the previous
section. I will show that the quantum field obeys the same equations of motion as the classical field
in two situations: when the quantum field is in a multi-mode coherent state, and when it is in a
single photon state. Also, I will show how a single photon state may be represented in terms of a

single particle wavefunction.

In some respects, a classical field is analogous to the quantum wavefunction for a single particle,
and a quantized field is analogous to a second quantized wavefunction describing a many particle
system. In order to explore the relationships between these systems, I write down the Schrodinger

equation on a lattice, second quantize it, and compare it with the quantized scalar field.

3.3.1 Quantized scalar field

The Hamiltonian for the quantized scalar field can be obtained from the Hamiltonian for the classical
scalar field via canonical quantization. We have seen that the field variables (¢,,, 7,) for the classical

field can be expressed in terms of complex normal mode variables q,:

bn = (2N)—1/2 Z (WF/wm)1/2(Oém e27rimn/N + a;kn e—27rimn/N)
m#0
T = _i(2N)71/2 Z(wm/wF)l/z(am e27rimn/N _ a:‘n 6727rimn/N)
m#0

In these coordinates, the Hamiltonian describes a set of uncoupled harmonic oscillators:

H= Z Wrn |t |?

m#0
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We can quantize the system by replacing the amplitudes «,,, with annihilation operators a,,. Thus,

the quantized field operators are

an _ (2N)71/2 Z(WF/Wm)l/Q(dm eQwimn/N + &In 6727rimn/N)
m##0
o— _,L-(2N)71/2 Z(Wm/WF)l/Q(dm eQwimn/N _ din 6727rimn/N)
m#0

and the quantized Hamiltonian is

H=>" wni,inm
m#0

The Hilbert space for the system may be expressed as a direct sum of Hilbert spaces:
H=Ho®PH1DPH2P---

where H,, is the Hilbert space of states containing exactly n photons. The dimensions of the Hilbert

spaces for zero, one, and two photons are

dim(Hy) = N -1
dim(Hy) — %N(N—l)

Note that the Hamiltonian does not couple Hilbert spaces of different photon number.

3.3.2 Multi-mode coherent state

Let |®) denote the state of the scalar field. Suppose the field is in a multi-mode coherent state,
which means that for all m

Gm|P) = am |P)

where «,, is a complex number representing the field amplitude for mode m. Note that the field

amplitudes may be expressed as

m = (P]a|P)

The state |®) evolves in time according to the Schrodinger equation:

. d B
i |®) = 1|®)
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So the equations of motion for the field amplitudes are
= (D) | ®) + (D | D) = —i(D[A, H]|®) = —iwp (P|ip|P) = —iwmaum

Thus, the evolution of |®) under the quantum Hamiltonian H can be obtained by treating the
field amplitudes as normal coordinates for a classical field and evolving them under the classical

Hamiltonian H.

3.3.3 Single photon state

Next, suppose the field is in a single photon state |®) € H;. We can express |®) as

|(I>> = Z Cm|1m> = Z Cmdjn|O>

m#0 m#0

for some set of expansion coefficients {c¢,,}, which may be thought of as the momentum space

wavefunction of the photon. Note that
¢m = (0]am|P)

If we substitute our expression for |®) into the Schrodinger equation, we obtain the equations of
motion

1Cm = WmCm

These have the same form as the equations of motion for the normal coordinates of a classical field,

so we can formally interpret the single photon wavefunction as a classical field that is given by

(bn _ (2N)_1/2 Z(WF/Wm)1/2(Cm e?m’mn/N + C:ﬁn e—27rimn/N)
m#0
T = —i(2N)_1/2 Z (Wm/wF)1/2(Cm e?frimn/N _ c:n e—27rimn/N)
m#0

These evolve in time according to the classical equations of motion

¢n = WFTp

7:"71 - WFQI)Z
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We can also represent the single photon state by a position space wavefunction ,,, which is a discrete

Fourier transform of the momentum space wavefunction c¢,,:

N N71/2 Zcm e271'1'77177,/N

Cm = N71/2 Z 1/177, 6727rimn/N
n
The equations of motion for the position space wavefunction are
“/}n — ’L'N71/2 Zcm e271'1'77177,/N _ N71/2 Zwmcm e27rimn/N — ZHH,T U
m m T

where

1 .
Hn,r — N Z Wi e27r1m(n77")/N
m#0

are the matrix elements of the Hamiltonian in position space. The matrix elements can be expressed

as
Hn,r = Wwr 571177“
where I have defined
1 i —r
Sywl _ N Z (wm/wF)w eQTrzm(n )/N
m#0

We can evaluate S} as follows:

sl = e Z(wm/wp) cos(2rmn/N)

! N m#0

R
2 ) )
_ 7i(2n+1)m/N _ _7wi(2n—1)m/N
N Im E (e e )

m=1

— A2n+1 - A2n71

where n
2 ; 2 sin(mn(R + 1)/2N) sin(mnR/2N)
An i mimn/N _ 2
N mmZ:le N sin(mn/2N)
Note that for N — oo,
.2
A, sin”(mn/4)
/4
So
ol 4 1

Tl —4n?
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The equation of motion for the position space wavefunction may be expanded in a lattice Taylor

series for some coefficients ho,:

ity = wp Yy oy 77
where w,(fr) is the lattice derivative of v, of order 2r, which is defined recursively by
e R
and 1/17(10) = 1. For example,

P = = 1hy 1 — 2+ Yo

and

OO =l =l Yl = Ynge — Angr + 6y — A1 + Pna

Note that H,, , is nonlocal, because the time derivative of i, depends on space derivatives of v,
of arbitrarily high order. This nonlocality is acceptable, because the position space wavefunction is
not observable; the field only couples to matter through the field operator (;Aﬁn Thus, the physically

relevant representation is the effective classical field ¢,,, which obeys a local wave equation:
én - w%‘ ¢Z =0

In summary, the equations of motion for the single photon may be obtained from the classical

Hamiltonian

H = %WF ;(7721 + (¢n+1 - ¢n)2) = % Z Wm|cm|2

m#0

or by restricting to the single particle subspace of the quantum Hamiltonian

f{ = Z Hn,rd)jﬂ[}r = Z wméiném

m##0

The transformation (¢, m,) <— ¢, is canonical, and the transformation v, «— ¢, is unitary.

The quantum coordinates are normalized such that

Z |7/)n|2 = Z |Cm|2 =1
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and the equations of motion preserve this normalization. The different representations of the single

photon state |®) are related by

(bn _ (2]\])71/2 Z(WF/Wm)l/Q(Cm e271-z'mn/N + C;kn 6727rimn/N)
m##0

- VIY S et

T = _i(2N)71/2 Z (wm/wF)1/2(Cm e27rimn/N _ crn 6727rimn/N)
m##0

- \/_2871/2 Im(,)

em = @N)TV2Y (Wi /wp) P on +i(wr fwm) 2] e TN

_ N—1/2 Z Un e—27rimn/N

U)n = \/—Z 1/2 ¢r+ S 1/2 )

_ N71/2 Zcm e271'1'77177,/N

As an example, suppose the position space wavefunction for the photon is a wavepacket with a

gaussian envelope:

Yn(x,00m) = Ae—("—1)2/202 e2mimn/N

Here z is the position of the packet, ¢ is the width of the packet, m determines the momentum of the
packet, and A is a normalization constant. Graphs of the single photon in each representation are

plotted in Figures 3.1, 3.2, and 3.3. For these graphs, N = 2001, z = 0.0, ¢ = 200.0, and m = 20.

3.3.4 Second quantized Schrodinger equation

Having discussed the quantum description of fields, I now want to turn to the quantum description
of particles. In quantum mechanics, a single particle is described by a wavefunction (¢, ), which

evolves in time according to the Schrédinger equation:
. 1
O = —5—0yp + Vi
2m

where V' (z) is the potential energy. We can put the theory on a lattice by making the following

replacements:
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Figure 3.1: Single photon state, ¢,, and m, field variables.

r=0, m=20, sigma=200.0

1000

0.06

0.04

0.02 |

-0.02

-0.04

real(psi_n) ——
imaj(psi_n) ———

-0.06
-1000

Figure 3.2:

-500 0

500

Single photon state, position space wavefunction ,,.

1000



174

r=0, m=20, sigma=200.0

0.7 T T
real(c_m) +
imag(c_m)

05

04

03

0.1 + n

-0.1 1 1 1

10 15 20 25
m

Figure 3.3: Single photon state, momentum space wavefunction c¢,,.

Ut — balt)
dub(ta) — dn(t)
Prilta) — (D)

where

V= Pnt1 + Y1 — 2y

Thus, the Schrodinger equation for the lattice theory is

where

wp = (2ma®)~?

In coordinate free form, the wavefunction for the particle is

[¥) =D tln)

30
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where |n) represents a state of the system in which the particle is localized at lattice site n. The

Schrédinger equation can then be expressed as

Z.at|¢> = ﬁ|1/)>

where

H=—wp Y [n)(n+1]+n—1]=2(n)) + > Valn)(n]

For a free particle (V,, = 0), the eigenstates of H are
|pm> — N—1/2 Z e27rimn/N|n>

and the eigenvalues are
2
m = 4wp sin? N) = —— sin®(pma/2
w wp sin®(mm/N) — sin (pma/2)

where p,,, = 2rm/Na. Note that for p,, < wp the eigenvalues can be approximated as

2
Wy~ P
2m

which is the ordinary dispersion relation for a nonrelativistic particle.

In the basis of energy eigenstates, the Hamiltonian is
H= Zwm|pm><pm|
m

Thus, if we expand an arbitrary wavefunction [¢) in the basis of energy eigenstates

|1/}> = Z Cm |pm>

m

then the equations of motion are

1Cm = WmCm

I will now show how the single particle wavefunction can be related to a classical field described by

the Hamiltonian

H= %WF Z[(T‘—n-‘rl - 7Tn)2 + (¢"+1 - ¢")2]

Consider a canonical transformation from the field variables (¢,,, m,) to new variables (@, Py,) that

describe the normal modes of the field. For convenience I will introduce a single complex coordinate
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Cm, defined by

- %(Qm +iPy)

The canonical transformation ¢, — (¢, 7, ) is given by

bn = (2N)71/2 Z(Cm e27rimn/N + Crn 6727rimn/N)
m##0
o— _,L-(2N)71/2 Z(Cm e271'z'mn/N _ C;kn 6727rimn/N)
m#0
Note that
|1 —e2™m/N |2 = 4sin?(7m/N) = W, Jwr
Thus,

Z(¢n+1 - ¢n)2 =

n

Z(Trnqu - 7Tn)2 -

n

> (@m/wr)lem + ¢t
m#0

N~ N

Z (Wi /wF)|em = ¢, ?
m##0
So the transformed Hamiltonian is
1
= ng ;[(ﬂ-nJrl - 7771)2 + (¢n+1 - ¢n)2] = ;me|cm|2

Thus, in the new coordinates, the field is described as a set of noninteracting harmonic oscillators.
The equations of motion for {c,,} that follow from the classical Hamiltonian H are the same as
those that follow from the quantum Hamiltonian H , so we can formally interpret the single particle

as a classical field.

Quantizing the classical field is equivalent to second quantizing the quantum wavefunction. This is
accomplished by quantizing each of the normal modes (¢, — é,), so the second quantized Hamil-

tonian is

E[ = Zwméiném = Z hnr ’JJL’JJT

The operators ¢/ and é&,, create and destroy a particle in mode m, while 1/;;2 and z/;n create and

destroy a particle at lattice site n.

The total Hilbert space for the system is a direct sum of n particle Hilbert spaces:

H=Ho®PH1DPH2D---
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where H,, is the Hilbert space for n particles. The Hamiltonian can describe bosons or fermions,
depending on whether we choose commutation or anticommutation relations for the creation and

annihilation operators. For bosons, the dimensions of the n-particle Hilbert spaces are

1
For fermions,
dlm(Ho) =1
dim(Hz) = SN(N-1)

3.3.5 Single particle state

Consider the action of this Hamiltonian on the single particle subspace H;. On this subspace, we

can express the Hamiltonian as

H= Z Win|Pm) (Pm|

m##0
Thus, by quantizing the classical field theory, and then restricting to the subspace of single particle
states, we obtain the correct quantum Hamiltonian for a free single particle. If we add the following

interaction to the classical Hamiltonian:

1 2 2

n

we get the quantum Hamiltonian for a particle in a potential. There is a correspondence between

quantum and classical Hamiltonians for even powers of p:

2 1
2p_m — —wpty, 2 ;[(ﬂ'wrl - 7Tn)2 + (Pnt+1 — ¢n)2]

V(a) e 3 Vit e 5 3 Valwd + 62)

but there is no correspondence for odd powers of p.

In summary, the equations of motion for the single particle can be obtained from the classical
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Hamiltonian

H= %wp Z[(ﬂ'n.:,_l - 7Tn)2 + (¢n+1 - ¢n)2] = % Z wm(Pﬁl + Q?n)
n m#0

or from the quantum Hamiltonian
H = Z P [R) (1| = Zwm|pm><pm|

The different representations for the single particle are related by

, 1

= N—1/2 Cm e?ﬂzmn/N = — (¢, + im0,
v ; 7 )
Cm = N—1/2 an e—ZWimn/N — (2N)_1/2 Z(¢n + Zﬂ'n) e—27rimn/N
¢n _ (2N)—1/2 Z (Cm e27rimn/N + c:n e—27rimn/N) — \/iRe(’lﬁn)

m#0
T, = —i(QN)_1/2 Z(Cm e?m’mn/N _ C:ﬁn e—27rimn/N) _ \/glm(wn)
m#0

3.4 Two-level atom coupled to field

So far I have only discussed quantum fields that are free. In order to study some of the issues that
arise when quantum fields interact, I have developed a simple model that describes a scalar field
coupled to a two-level atom. Because of the coupling, the atom can decay from its excited state and
photons can scatter off of the atom. In the following sections, I write down the Hamiltonian for the
model, and then study it from a number of different perspectives. I show several different ways of
calculating the spontaneous decay rate of the atom, using both conventional techniques and the full
machinery of quantum field theory. I think it is helpful to discuss some of the issues that arise in
quantum field theory in the context of a simple model, where they can be more easily understood.
Also, because the model is so simple, a full dynamical simulation of scattering and decay processes

can be carried out on a computer.

3.4.1 Hamiltonian for the system

A coupled atom-field system can be described by the Hamiltonian

H=H,+ Hy + H,
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where H, is the Hamiltonian for the atom, H¢ is the Hamiltonian for the field, and H; describes the

atom-field coupling. The Hamiltonian for the atom is given by
H, =wpo40_
where w4 is the frequency of the atomic transition. The Hamiltonian for the field is given by

Hy = 50r Y7 + (61— 60)°) = Y wnalyan

m##0

where

Wi = 2wr|sin(mrm/N)|

is the frequency of mode m. I will take the interaction Hamiltonian to be
Hi = )\(O’Jr + O',)(bo

where A is a constant that determines the strength of the coupling. If we substitute for the field

operator, which is given by

¢n _ (2N)_1/2 Z (WF/wm)1/2(am e27rimn/N + a;fn e—27rimn/N)
m#0

then we find that interaction Hamiltonian can be expressed as

H; = Z Im (0 am + U—GIn)
m#0

where I have made the rotating wave approximation and defined constants
Im = /\(2N)71/2(WF/WW)1/2

which give the coupling strength of the atom to the individual field modes. Putting these Hamilto-

nians together, we find that the the total Hamiltonian for the coupled atom-field system is

H=wjpo,0_+ Z wmainam + Z gm(oram + J,ain)
m#0 m##0

This Hamiltonian is defined in the Schrédinger picture, but it is often more convenient to work in

the interaction picture, in which the time evolution under H, and Hy is already taken into account.
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The interaction picture Hamiltonian H(t) is related to the Schrédinger picture Hamiltonian H by

H](t) _ ei(Ha+Hf)t Hefz‘(HaJer)t — Z gm(0+am e—iamt + U—GIn eiamt)
m##0

where d,, = w,;, — w4 is the detuning of mode m from the atom.

The total Hilbert space of the system is
HA  =HA9 M e HE oHE @)

where H4 is the Hilbert space for the atom (spanned by {|g), |e)}), and HZ is the Hilbert space
for n photons. The total Hilbert space decomposes into a direct sum of Hilbert spaces that do not

couple to one another:
HY =Hnre M onl oy o) =HF oM o @
where H{M" consists of the single state |g)|0), and HAF for n > 0 consists of states of the form
€)|Pn-1) +19)|®n)

where |®y) € HkF . The subscript n on HE counts the number of excitations for that Hilbert space,

where an excitation is either a photon or an excited atom.

3.4.2 'Weisskopf-Wigner approach

Because of the coupling to the field, an atom in the excited state will spontaneously decay to the
ground state by emitting a photon. The decay rate can be calculated using a number of different
methods. The method I adopt here, which is due to Weisskopf and Wigner [41], involves solving the

equations of motion for the coupled atom-field system.

Assume we start the system with the atom in its excited state and all the field modes in their
ground states. Because this initial state has a single excitation, and states with different numbers
of excitations do not couple to one another, the system is restricted to the subspace H:!¥". Thus, we

can express the interaction picture wavefunction as

r(1) = ce()le, 0) + D com(®)lg, Lm)

m#0
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for some choice of amplitudes c. and ¢g,,. The wavefunction evolves under the Schrédinger equation:

i0:|¥ ) = Hr(t)|¥r)

So the equations of motion for the amplitudes are

WOmt

ég7n = —igme Ce
Ce = —1 Z Im g #0mt Cgm
m#0
and the initial conditions are
ce(0) = 1
cgm(0) = 0

If we integrate the first equation subject to the initial conditions cgy, (0) = 0, we find

¢
Com(t) = —z'gm/ et e (t') dt’
0

We can substitute this into the equation of motion for c.:

ng/ e i0m (t— t') dt’ ng/ e~ 10mT ce(t—r) dr

m#0 m#0

where 7 = t — t/. This result is easier to interpret if we express it in terms of the time correlation

function of the field. Recall that the interaction picture field operator at lattice site n = 0 is

Bo(t) = (2N) 2 37 (i fum) Y (a et + af, o)

m#0

Thus, the time correlation function of the field is (see Figure 3.4)

(O 60(0)go(0)]10) = (2N) ™ 3™ (i) e n = 55 37 g2, eieml

m##0 m#Q

So the equation of motion for ¢, can be expressed as

bo(t) = =\ /0 (0] (T)p0 (0)|0) €“AT co(t — 7) dr

If the timescale over which the field fluctuations are correlated is much shorter than the timescale

for the evolution of ¢, then we can make the Markoff approximation by replacing c.(t — 7) with
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Figure 3.4: Time correlation function for the field (R = 1000).
ce(t) and extending the 7 integral to co. Then
Ce(t) = —i%(wa) ce(t)

where

S(w) = —ix’ / " 016(1)6(0)[0) €7 dr

is the spectrum of the field fluctuations. Thus, the vacuum fluctuations of the field drive the atomic
decay, and the decay rate is determined the spectral power of the vacuum fluctuations at the atomic

transition frequency.
It is straightforward to solve the equation of motion for ¢, subject to the initial condition c.(0) = 1:
Ce(t) — efiE(wA)t

If we express Y(wy4) in the form

Y(wa)=A—i

o2

where v and A are real, then

Ce(t) _ e—iAt e—vt/2
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Thus, 7 gives the spontaneous decay rate, and A gives a shift in the atomic transition frequency—the
Lamb shift. To calculate these quantities, we go back to our expression for X(w4) and substitute

for the field correlation function:

Y(wa) = —i/ Z g2 e~ Hwm—wa—ie)t gy
0

m#0

The sum can be evaluated by taking a continuum limit:

> —>/Ooop(w)dw

m#0

where p(w) is the density of states at frequency w. In this limit,

Swa) =i [ [ g*w)plo)e i ar
0 0

where
9(w) = A@N) 2 (wp fwm)'?
is the coupling strength at frequency w. Note that

1

Ww—wa

/ e WmwATIOTr — _j(w—wy —i€) ! = m6(w —wa) —iP
0
So the spontaneous decay rate is
v =219 (Wa)p(wa)
and the Lamb shift is

_p [T ),
A—P/O Py d

The density of states at frequency w can be evaluated by expressing it in terms of the density of

states at wavenumber k:

ple) = (p(1) + () |

The wavenumber for mode m is ky, = 2mm/L, where L = Na = N/wp is the length of the lattice,

so the density of states at wavenumber k is
p(k) = (27) 'L = N/2nwp
The dispersion relation in the continuum limit is

w = 2wp|sin(ka/2)|
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So
} = cos(ka/2) = (1 — (w/2wr)?)'/?

Thus, the density of states at frequency w is
p(w) = (N/mwrp)(1 = (w/2wp)?) 1/

Substituting this into our expression for the spontaneous decay rate, we find

7= (2 fwa)(L — (wa/20p)2) 2
Thus, in terms of the decay rate, the coupling strength is

A= (wa)/2 (1 = (wa/20p)?) V!
and coupling to mode m is

gm = (ywa/2N)? (wr fwin)'? (1 = (wa/20r)*) M/

The expression for the Lamb shift can be understood by calculating the energy shifts of the atomic
states using second order perturbation theory. There is no energy shift of |g,0), so the Lamb shift

is given by the shift of |e, 0):

A Z Qau:r;UijO ZQZ
m#0 m#0

The coupled atom-field system can be simulated on a computer by integrating the equations of
motion starting from a given initial condition. For the simulations presented here, R = 1000,
w4 = wsn0, and v = 0.05 in units in which wrp = 1. The initial condition is chosen so the atom is in
the excited state and the field is in the vacuum state. Figure 3.5 shows the population in the excited
state versus time, while Figures 3.6 and 3.7 show the state of the field at time ¢ = 500.0. At this time
the atom has completely decayed, and the field is in a single photon state. As discussed in section
3.3.3, a single photon state can be represented in several different ways: Figure 3.6 shows |cgm|?,

where ¢y, is the momentum space wavefunction for the photon, while Figure 3.7 shows [, |?, where
= N—1/2 chm e27rimn/N
m

is the the position space wavefunction. Note that because of the Lamb shift, the peak of the

momentum space wavefunction is shifted away from m = 300. The predicted Lamb shift is A =
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Figure 3.5: Population in the excited state versus time. The red curve is from the simulation; the
green curve is the theoretical prediction in the continuum limit.

0.0434 for the parameters used in the simulation, which corresponds to a shift of A p(ws) = 15.5

mode orders, where p(wa) is the density of states at the atomic frequency.

3.4.3 Fermi’s golden rule

A second way to calculate the spontaneous decay rate is by using Fermi’s golden rule. The basic
idea is to calculate the probability for the atom to emit into a single mode, and then sum over all
the modes to get the total decay rate. If we only consider the coupling of the atom to a single mode

m then the Hamiltonian is
—i0mt iémt)

Hi(t) =gm(orame +o_al e

Since the initial state is |e, 0), the state of the system at time ¢ can be expressed as

[W(t)) = ce(t)le, 0) + cgm(t)|g, Lm)
where the equations of motion for c. and ¢y, are
St

Cgm = —1gme€ Ce

WOmt

Ce = —igme Cgm
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Figure 3.6: |cgm|?, where gy, is the momentum space wavefunction of the photon at ¢ = 500.0 (Note
the Lamb shift away from m = 300).
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Figure 3.7: [¢,|?, where v, is the position space wavefunction of the photon at ¢ = 500.0.
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At small times c. ~ 1, so the equation of motion for ¢4, can be approximated by

: . iOmt
Cgm = —lgme ™

If we integrate this subject to the initial conditions ¢, (0) = 0, we find

Com = =5 (e — 1)
m
Thus, the population in state |g, 1,,) is

|cgm|2 = 4(g,2n/572n) sin2(6mt/2) = 7Tg72nt2D(5mt/2)

where

The rate at which population is transfered from |e, 0) to |g, 1,,,) is therefore
_legml® _ o
To get the total decay rate, we sum the decay rates for all the different modes:

v = Z TYm =Tt Z g7277,D(5mt/2)
m#0 m#0
As in the previous section, we can evaluate the sum by taking a continuum limit and approximating

the sum as an integral:

Y=t / " () p(@) D((w — wa)t/2) d

The function D((w — wa)t/2) is sharply peaked around w = w4, so we can approximate the decay

rate by evaluating ¢g?(w) and p(w) at the peak value w4 and extending the lower limit of the integral

to —oo:
3= rtgap(oa) [ Dl - wa)t/2) do = 2ng*(alplwa) [ Do) do
But L,
/D(:E)dac = %/812296 de =1
Thus,

v =2mg*(wa)p(wa)

which agrees with the result derived in the previous section.
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The above basically amounts to a derivation of Fermi’s golden rule, which states that the decay

rate from a state with energy E; to a state with energy Ey is given by
V(Ei — Ey) = 2n|(f|H|i)* p(Ey)
where p(E) is the density of final states at energy E.

3.4.4 Master equation

Another way to treat the spontaneous decay of the atom is to derive an effective master equation
for the atomic density matrix. This is accomplished by writing down the master equation for the
coupled atom-field system and then tracing out the degrees of freedom for the field. The derivation
of the master equation that I give here is based on a derivation presented by Carmichael in [42].

Since the atom-field system evolves coherently, the master equation is
par = —i[H(t), par]
where

Hit) = . gm(0same ! +o_al, et
m##0

If we integrate the master equation, we obtain
t
par(®) = par ()~ 1 [ [H(0), par(®)]
0
Now substitute this back in to the original master equation:
t
par(t) = ~ilHi(0), par(0)] = [ [Hi®).[H: (). par(®)]) de
0
I will assume that at ¢t = 0, the field is in the vacuum state, so the density matrix is
par(0) = p(0) @ [0){0|

where p is the density matrix of the atom alone. Let us assume that the atom is only weakly coupled
to the field. Then, because the density matrix factorizes at time 0, it should approximately factorize

at time t:

par(t) ~ p(t) ©[0)(0]
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If we substitute this into our expression for p4r(t) and trace out the field degrees of freedom, we

find
P(t):—iTTF([HI(t)vp(t)®|0><0|])—/O Tre([Hi(t), [Hi(t'), p(t") @ [0)(0[]]) dt’

The first term vanishes. For the second term, note that

Tre([Hi(t), [Hi(t), p(t') @ [0)(0[]]) =
(O () Hi(#)]0) p(t') =Y (L Hr(£)[0) p(t') (O Hr (8)[1m) +

m

p(t') (OLH(¢') Hr(£)[0) = > (Ll H1(£)[0) p(t') (O H1(#') | 1m)

m

The matrix elements are given by

(O[H () Hi(t)|0) =Y g2, e ntg o

m

and

> (Ll Hi(#)[0) p(t') (O1HI ()| 1) = D g™ o p(t')or

m

Thus,
t .
plt) = / S g [20plt — 7)oy — oro_plt = 7) — plt =)oy -] T dr
0 m

where 7 =t — t/. In the Markoff approximation,

p(t) = 5 (20-p(t)oy —oro_p(t) — p(t)oso-)

o |2

where
oo .
y=2 / Z 97271 e~ OmT dr
0 m

We can use the master equation to calculate the spontaneous decay rate of the atom. At ¢t = 0 the

atom is in the excited state, so

The decay is given by
V(e —g) = (glplg) =~

3.4.5 Propagators

Now I want to show how the spontaneous decay rate of the atom can be calculated using methods
from quantum field theory. These methods involve the use of propagators, which describe the time

correlation properties of the system. The atomic decay rate can be extracted from the propagator for
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a coupled atom, which is obtained by using a Feynman diagram expansion to express the propagator

in terms of known propagators for a free atom and a free field.

Consider a theory described by the Hamiltonian
H=Hy+ H;

where

Hy =wgb'd

is a free Hamiltonian describing a particle of mass wp, and where H; describes an interaction. The

retarded propagator for the particle is defined as
S(t) = —i(QITbr (1) b (0)]|2)

where Q) is the ground state of H, and the subscript on by and b;l indicates that these are

Heisenberg picture operators:

bH(t) _ eth be*th

In general, the propagator is difficult to calculate for the interacting system but easy to calculate
for the free system. We therefore resort to perturbation theory and expand the propagator for the
interacting system in a series whose terms consist of propagators for the free system. The retarded

propagator of the free system is
So(t) = —i(0|T[b(t) b7 (0)]|0)

where |0) is the ground state of Hp, and I have adopted the convention that time-dependent operators

without an H subscript are in the interaction picture:
b(t) = eilot pemiHot — peiwnt
Thus, the free particle propagator is
So(t) = —if(t) e~ “n?
Or, in the frequency domain,

So(w) = /So(t) WOt — (w — wp + i€) !
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One can show that the retarded propagator for the full system may be expressed as [43]

0] exp (—i [ Hy(t) dt) b(ta) b (8)]]0)
(OTTexp (—i J Hr (1) d)][0)

S(ta — tb) =

where

H](t) — eiH()t Hz e*iH[)t

is the interaction picture Hamiltonian.

Now I want to specialize to the case of the two-level atom coupled to a scalar field. For this

system, the free atom propagator is
So(w) = (w —wa +i€) "
and the free field propagator for a photon in mode m is

Go(m,w) = (W — Wy + €)™

The propagator for the interacting atom is given by

=0T fexp (=i [ Hi(t) dt) o_(ta) o (1)]]0)

Slta —t0) = O foxp (—i ] Hy () d6)][0)
where
Hy(t) = Z gm (o4 (t)am(t) + o_(t)al, (1))
m#0
Note that
Hl(t)|970> =0

so the ground state of the interacting system is the same as the ground state of the free system
(192) = |g,0)). Also,
(9,01 lexp (i [ Hi(0)d)]g.0) =1

So the propagator is

S(ta —ty) = —i<g,0|T[eXP(—i/H1(t) dt) o (ta) o4 (ts)]lg, 0)
The exponential may be expanded in a Taylor series:

S(te —tp)
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Figure 3.8: Feynman diagrams for the atom propagator to second order. The solid line represents
an excited atom; the dashed line represents a photon.

n!

= > O fan o [t 0,0 H0) - i) o (12) oy ()]l 0
n=0

Note that all the odd order terms in the series vanish. The zeroth order term is just the free atom
propagator:

—i(g, 0| T[o—(ta) o1 (t)]]9, 0) = So(ta — 1)

The second order term is

%//<970|T[H1(t1)H1(t2)a,(ta)ng(tb)”g’0> dt dts

If we substitute for Hy(t), we obtain

(9, OIT[H (t1) Hr (t2)o - (ta)o(o)]lg, 0) =

S G200t — 1) (9, 0T [0+ (t)am(t1) o (12)aly (12) o (ta)rs ()]:0) + (01 )]
m#0

Note that

0(t1 — t2) (9, 0|04 (t1)am (t1)o— (t2)al, (t2)o— (ta)o4 (t)]]g, 0)
= O(ta — t1) 0(ts — t2) Otz — t1) (9,00 (ta)oy (t1) am(t1)al, (t2) o (t2)o 4 (ts)|g, 0)

= —iSo(fa — tl) Go(tl — tg) So(tg — tb)
Thus, the atom propagator is (see Figure 3.8):

S(ta — tb) =

So(ta —tv) + Z gfn/ So(ta — t2) Go(m,ta —t1) So(t1 — tp) dt1 dta + -
m#0

The series takes on a simpler form if we work in the frequency domain:
Sw) = So(w)+ So(w) E(w) Sp(w) + - -

= Sp(w) (1 = B(w)Sp(w)) ™

= (w—ws—2(w)+ie)™!
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where the self-energy is
Y(w) = Z g2, Go(m,w) = —i/ Z 92 piw—wmtie)r g
0

m##0 m#Q

We can check this result for a single mode field. The Hamiltonian for an atom coupled to a single
mode field is

H=wpoy0_ + wFaTa + H;
where H; describes the coupling of the atom to the mode:
H; =g(o_a' + 0 a)

For simplicity, I will assume that the atom is resonant with the mode (wsg = wp). The retarded

propagator for the atom is
S(t) = —if(t) (g,0leto_e o, |g,0) = —if(t) (e, 0]e~|e, 0)

If we define
(1)) = e~ Ht]e, 0) = e=4!(cos gtle, 0) — i sin gt[g, 1))

then we can express the propagator as
S(t) = —ib(t) (Y (0)[4(t)) = —if(t) 74" cosgt
In the frequency domain,
S(w) = /S(t) W gt = (W —wy — B(w) +ie) !

where the self-energy is

Y(w) = ¢*(w — wp +i€) 7

which agrees with the result obtained from the perturbation expansion.

Returning to the full model, recall that the propagator for the atom is

S(w) = (w—wa — B(w) +ie) !
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We can expand ¥(w) in a power series about wa:
Y(w) = B(wa) + X' (wa) (w—wa) + -+

Then
S(w)~Z(w—wa — B(wa) +ie) "

where

Z=(1-Y"(wa) !

Thus, in the Markoff approximation
S(w) = (w—wa —B(wa) +ie)~*

Or, in the time domain,

S(t) = —if(r)e (watElwa)t

This is what we would expect based on the equations of motion we derived in the Weisskopf-Wigner
approach:
1e(t) = L(wa) ce(t)

so for c.(0) =1,

Ce (t) — efiE(wA)t

Note that the excited atom may be thought of as a quasiparticle with a lifetime given by ~.

3.4.6 Scattering

In this section I consider the scattering of a single photon off of the atom. The initial state of the
system is given by

|¢> = Z Cm|ga 1m>

m#0
where this is defined in the interaction picture. We will choose the coefficients {c,,} such that the
initial state describes an incoming wavepacket that is peaked around a particular mode s. The

probability amplitude for the photon to scatter into mode r is given by
a= Y (g 1ITlexp(-i [ Hi®)d0)lg. 1) cn

If we introduce a large time T', we can express the matrix element in terms of operators that create

a photon at time —7" (long before the scattering event) and that annihilate the photon at time +7°



195
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Figure 3.9: Scattering spectrum.

(long after the scattering event):

(9.1 Tlexp(~i [ Hi6)do))g. 1)
= T (g ofTlexp(—i [ Hi(t)dt)a, (1) aly(~T)]g.0)

= Orm +1Gr9m llwrtwm)T // Go(r,T —ta) S(ta — ty) Go(m, tp + T') dt, dty

Recall that
Go(s,7) = —if(T) e” T

and

S(r) = —ib(T) e iwatA—iy/2)r

Thus, if we define A; = wy — (wa + A —i7y/2), we find

(9, 1, Tlexp(—i / H(t) dt)]|g. 1)

T ta - -
= 67‘,771 - grgm/ dta/ dtb ezArta eilAmtb
_T _r

T

Srm — Z.Qrgm eilrta (efiAmta _ eiAmT) dt,
Am Jor
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For large T, the second term goes away because of the —yT'/2 term in the exponential, so we are

left with
T

(9,1, Tlexp(—i / L e i
m -T

Also, for large T the integral is sharply peaked around w, ~ w,,, and may be approximated as a

delta function:

T .
; T
/ e“tdt = 2T sm; — 27 6(w)

_T w
Thus,
2
(9oL Tlexp(=1 [ Hi0)d0)]lgs L) = B — 270 Z2 50y — )
Note that
1
Bwr = w3) = 5pr) Gram + 8r.m)
Also,
v =2mg*(wa)p(wa)

So we find

(9,1, Tlexp(—i / Hi() dt)]|g, L) = 6y (Grom + 6, —m)

s
2A,,

Thus, the probabilities for the photon to be reflected and transmitted are

[if ()P
1 —if(w)?

br

Y43

where

fw)=(/2)(w = (wa+ A) +iy/2) "

Figure 3.9 shows the results of a computer simulation that integrates the equations of motion for a
single photon incident on an atom in its ground state. For each value of of m, a gaussian wavepacket is
prepared as described in section 3.3.3, where x = —500.0 and ¢ = 100.0. The system is then evolved
in time from ¢ = 0.0 to ¢ = 1000.0, at which point the reflection and transmission probabilities are
computed. The graph shows the reflection probability p, as a function of the momentum m of the

wavepacket.
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Chapter 4

Quantum field theory in 0+ 1
dimensions

4.1 Introduction

In 041 dimensions, quantum field theory is equivalent to quantum mechanics, as can be understood
from the following considerations. Note that a scalar field in n + 1 dimensions can be viewed as a

mapping of spacetime into the real numbers:
(tv'rlv T 7:677.) - ¢(t7x17 T 7:677.)

The trajectory of a particle in n + 1 dimensions can be viewed as a mapping of the real numbers

into spacetime:

t— (tzit), -, za(t))

Thus, a field in 0 + 1 dimensions and a particle trajectory in 1 + 1 dimensions are described in the
same way: the field is described by a mapping ¢t — ¢(¢), and the particle is described by a mapping
t — x(t). The two systems are therefore formally equivalent, and we can translate results back and

forth between them.

In the following sections, I present a number of simple field theory models in 0 + 1 dimensions,
which I solve using both ordinary quantum mechanics and with the formalism of quantum field

theory.
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4.2 Classical scalar field

4.2.1 Hamiltonian for a scalar field

A classical scalar field in 0 + 1 dimensions is described by two dynamical variables ¢ and (;5, which

evolve in time according to the Lagrangian

1
2

P2 — lm2¢2

Lo = 5

We can couple the field to a source p(t) by adding an interaction Lagrangian
Li = p(t) ¢

so the total Lagrangian is

L=Lo+ L;

The field equation for ¢ is obtained from L via the Euler-Lagrange equation:

This gives
(0F +m*)p =p

which is just the Klein-Gordon equation in 0 4+ 1 dimensions.

The canonical momentum 7 is given by

oL .
m™=—= (b
o9
Thus, the Hamiltonian is
. 1 1
H=np—L= §7r2+§m2¢2—p¢
The equations of motion for ¢ and 7 are
¢ =

o= —mP¢+p
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4.2.2 Retarded and advanced fields

We can solve the inhomogeneous field equation by introducing retarded and advanced Greens func-

tions, which satisfy the equations
(6t2 + mQ)GT(t) = (8152 + m2)Ga(t) =4(t)

with boundary conditions G, () = 0 for ¢ < 0 and G,(t) = 0 for ¢ > 0. The Greens functions are

given by
Gy (t) = i9(1%) inmt
. = —6(t)sinm
1
Wt) = ——0(—t)sinmt
Go(t) — (—t)sinm

Using the Greens functions, we can define retarded and advanced fields by

¢r(t)

/Gr(t—t/)p(t’) dt' = %/t sinm(t — ') p(¢') dt’

ba(t) /Ga(t —tYp(t")dt' = % /too sinm(t' —t) p(t') dt’

From the definitions of the retarded and advanced Greens functions, it follows that retarded and

advanced fields are solutions to the inhomogeneous field equation:
(0F +m?)o(t) = (07 +m*)da(t) = p(t)

4.2.3 in and out fields

Suppose ¢(t) is a solution to the inhomogeneous field equation. We can define fields ¢;,(t) and
(bout (t) by

Pin(t) = o(t) — n(t)
¢out (t) = ¢(t) - ¢a (t)

which satisfy the homogeneous field equation

(07 +m?)pin(t) = (87 + m*)dour(t) = 0
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The Greens function G_(t) for the homogeneous field equation is given by the difference between

the retarded and advanced Greens functions:

(02 +m*)G_(t) =0

We can use G_(t) to solve for the time evolution of the in and out fields as follows. Consider two

arbitrary functions A(7) and B(7), and define a function C(7) by
C=A0,B—Bo;A

Then
t t
/XA&B—B&AmTz/aJMT:qw—C@
0 0

We will take A(7) = ¢in(7) and B(r) = G_(t — 1), so
C(1) = —=in (1) G- (t = 7) — Tin(T) G_(t — T)

Note that
(07 + m?) A(r) = (6% + m*)B(r) = 0

SO

AO’B—-BO*A=0

Thus, C(t) = C(0). Substituting G_(¢) into our expression for C(7), we find that
1 .
C(0) = —¢in(0) cosmt — Ewm(o) sin mt

and

C(t) = —ou(t)

Thus,
1
@in(t) = ¢in(0) cosmt + —m;,,(0) sinmt
m

If we take a time derivative, we obtain the corresponding equation for 7, (t):
Tin (t) = —=m ¢, (0) sinmt + 7, (0) cosmt

Thus, given the initial conditions ¢;,(0) and 7;,(0), we can solve for ¢;, and m;, at all times. In

the previous section, we showed how to solve for ¢, and 7, at all times. By adding the in field to
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the retarded field, we obtain the total field:
(b(t) = ¢in (t) + ¢7‘ (t) = ¢out (t) + ¢a (t)

4.2.4 Scattering

Suppose p(t) = 0 for ¢ < =T and for ¢t > T. We can then view the time evolution of the system as
a scattering problem: for ¢ < —7T the field evolves freely, for =T < t < T the field scatters off the
source, and for ¢ > T the scattered field evolves freely again. Note that for t < —T, the retarded
field vanishes (¢, (t) = 0) and ¢(¢t) = ¢in(t), while for ¢ > T, the advanced field vanishes (¢4 (t) = 0)
and 6(t) = Gour(t).

Let us describe the scattering problem in terms of a new set of field coordinates x and p that

are given by

r = mt%¢

p = m~ Y2
They can be combined in a single complex number «:

—(w +ip)
a=—(x+1
v
where we consider a and a* to be independent dynamical variables. Note that

dx 1 1 1 da

dp V2 \ i da*

Thus, using Hamilton’s equations for & and p, we find

OH 1 (OH O0HY\ i
da* /2 N

=B\ T
So the equation of motion for the field amplitude is

.OH

&= i
Oa*

The free field Hamiltonian is
m

Ho (* +a%) = m|a/?
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and the interaction Hamiltonian is
H; =m™ ' Pp(t)e = (2m)~*(a + a")p(1)
From these, it follows that the equation of motion for « is
& = —ima —i(2m)~Y2p
It is convenient to define a canonical transformation new variables for which the time evolution due

to Hy is already taken into account:

&= aezmt

This is the classical analog of the unitary transformation to the interaction picture in quantum

mechanics. The transformed Hamiltonians are

and

Hi _ (2m)71/2(6é efimt +a* eimt)p(t)
In this coordinate system, the equation of motion for & is

& = —i(2m) "2 pemt

We can express the solution as

where @;,, is a constant, and

t
a(t) = —i(2m)71/2/ p(t') ™" dt’

— 00

Note that for ¢ > T, the retarded field amplitude &, is also constant and is given by
a, = —i(2m)71/2/p(t/) et ay!
The total energy radiated by the source is

Erad - 7n|64r|2
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4.3 Free fields

In this section, I describe several types of free quantum fields in 0+ 1 dimensions. Most of the results

presented here are obtained by simply transcribing the analogous results for 3 + 1 dimensions.

4.3.1 Neutral scalar field

In the previous section, we showed that the Hamiltonian for a free classical scalar field is

1 1
Hy = §7T2 + §m2¢2 = m|a|?
where
¢ = (2m)'%(a+a”)
= —i(m/2)Y*(a—a*)

To describe a quantum scalar field, we replace the dynamical variables with operators:

1 1
Hy = 571'2 + §m2¢2 =m(a'a+1/2)

where

¢ = (2m)'%(a+ah)

T = —i(m/2)"*(a—a)

Whereas the state of the classical field is given by the dynamical variables ¢ and m, which evolve in
time according to Hamilton’s equations, the state of the quantum field is given by a wavefunction

|®), which evolves in time according to the Schrédinger equation:
d
—i—|®) = Hy|P
i=|®) = Ho|®)

The Hamiltonian Hj has eigenstates |n) and eigenvalues E, = m(n + 1/2), so we interpret it as
describing free particles of mass m, where |n) represents a state in which n particles are present.
Because there are no interactions among the particles, the energy of an n-particle state is just the

sum of the energies of each particle, plus the vacuum energy m/2.

In the interaction picture, the field operator is

le(t) _ engt ¢67iH0t _ (2m)71/2 (a efimt + aT eimt)
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We can define a normal ordering operator that shifts creation operators to the left and annihilation

operators to the right. For example,
Nla'a] = N[aa'] = a'a

Also, we can define a time ordering operator that shifts operators evaluated at later times to the

left, and operators evaluated at earlier times to the right. For example,

T(¢1(ta)pr(ty)] = 0(ta — o)1 (ta)Pr(ts) + O0(ts — ta)Pr(ts)d1(ta)

The Feynman propagator is
1 —i(m—ie —
Dp(ta —ty) = (OT[r(ta)1(t)]|0) = 5—e (mielta =]

where I have added a small imaginary component to the mass so that time integrals over the
Feynman propagator converge. Note that the Feynman propagator is the Greens function for the

classical Klein-Gordon equation:
(0} + m*)Dp(t) = —id(t)

Wick’s theorem states that a time ordered product of operators is equal to a normal ordered product

of operators, summed over all possible contractions. For two fields, this means that

Tpr(ta)dr(ts)] = Nlor(ta)or(ts)] + (0|d1(ta)dr(ts)|0)
N(¢1(ta)or(ty)] + Dr(ta —ty)

For three fields,
T[¢a¢b¢c] = N[(ba(bb(bc + ¢anc + (bcha + ¢0Dab]

where to simplify the notation I have defined ¢, = ¢;(tx) and Doy = Dp(ta — tp)-

We can introduce a Fourier transformed propagator Dp(w), related to D (t) by

L[5 : 1
Dp(t) = %/DF(L«J) e~ Wt gy — %efl(mfze)‘ﬂ

Dp(w) = /Dp(t) e“tdt =i(w? —m? 4 ie) ™!
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4.3.2 Charged scalar field

The Lagrangian for a free charged scalar field of mass m is
Ly =0u¢l* —m?|o*
The field can be coupled to an electromagnetic potential A via the substitution
0y — 0y +1A
Thus, the Lagrangian for the coupled field is
L=[¢]" +iA(¢¢" —¢" §) — (m® — A%)|o|”

The canonical momentum is

W:Z—gzé*—ﬁlf

The Hamiltonian is given by
H=n"¢" +n¢— L=l +m?o> —iA(mg —n"¢")

To quantize the system, we introduce operators a! and a that create and destroy particles, and
operators b' and b that create and destroy antiparticles. They are related to the field operators ¢
and 7 by

¢ = (2m)"V2(a +bh)
T = —i(m/2)"%(b—a)

The quantum Hamiltonian is
H =7t +m?¢'¢p —iA(np — n7¢") = m(a’a 4+ b'b) + A(a'a — bTb) + m

The charge operator is

Q= —iN[rp—¢'n'] =ala—b'b
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4.3.3 Neutral fermion field

We have seen that the quantum harmonic oscillator is equivalent to a neutral boson in 0 + 1 QFT.

The boson field operator is given by
¢ = (2m)""?(a +al)

where the creation and annihilation operators a' and a obey commutation relations:

Similarly, a two-level quantum system is equivalent to a neutral fermion in 04+ 1 QFT. The fermion
field operator is given by

Y=0_+4+04 =0y

where the creation and annihilation operators o4 and o_ obey anticommutation relations:
{0*50*} = {0’+,O'+} =0

{U*aUJr} =1

The conjugate field operator is given by
$ = o, = —o_ + a4 = ivy
The Hamiltonian for the free field is
H= %1/_)1/) = %(UJFU, —0_04)=moyo_ —m/2

Note that the vacuum energy for a neutral fermion has the opposite sign as the vacuum energy for

a neutral boson. In the interaction picture, the field operators are

1/}I(t) = og_ e—imt +o4 eimt

1/}I(t) - —0_ efimt +o, eimt
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The normal ordering operator can be generalized to act on fermion fields by including a factor of

—1 every time operators are exchanged:
Nloyo_]=—Nlo_oi] =040-
and similarly for the time ordering operator:
Tlyr(t)yr(t2)] = 0(ts — t2)r(t)r(t2) — O(t2 — t1)dr(t2)yr (tr)
With these definitions, Wick’s theorem has the same form for fermions as it does as for bosons:
Tlpr(t0)dr(t)] = Nwr(t)Pr(ta)] + 01T [r(t)yi(t2)]]0)
The Feynman propagator is given by
Sr(ti = t2) = (O [r(t)¢r(t2)]]0) = e~

4.3.4 Charged fermion field

In 3 + 1 dimensions, the Dirac equation is
(iv"9, —m)p =0
where 9 is a Dirac spinor and v* is a four-vector of 4 x 4 matrices that satisfies
{0y =0

One possible representation for these matrices is

In 0 + 1 dimensions, the Dirac equation is

where 9 is a spinor and 4? is a 2 x 2 matrix. If we define orthogonal spinors |£), we can express ¥

as

b =il+) +-[=)
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and 7° as

7 = ) = =)=
The adjoint spinor v is given by
b=yl =YL+ - (|
The Dirac equation can be obtained from the Lagrangian
L = (ir°8 — m)p
or from the Hamiltonian

H = mpp = m(|op * = [ )

We can quantize the system by replacing 1% and 1 with operators b and b that create and destroy

fermions, and by replacing ¢_ and ¢* with operators ¢! and ¢ that create and destroy anti-fermions:
W =b+) +cf|-)

Because the particles obey Fermi statistics, we quantize using anti-commutators rather than com-

mutators:

{b,b"} = {c,cf} =1

and all other commutators are equal to zero. In terms of the creation and annihilation operators,
the Hamiltonian is

H=m(b'b—cc’) =m((d'b+cfe) —m

Note that there is a vacuum energy —m; each mode contributes a vacuum energy —m/2, and be-
cause the modes describe fermions rather than bosons, the sign of the energy is negative rather than

positive.

One consequence of the anti-commutation relations is that
(b1 = (=0

Thus, there are only four states of the system: the vacuum state |0,0), a state with one fermion
b1]0,0) = [1,0), a state with one anti-fermion ¢'|0,0) = |0, 1), and a state with one fermion and one

anti-fermion b'¢f(0,0) = |1, 1).
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The Feynman propagator for the Dirac equation is given by

Srap(ta —ts) = (01T 10 (ta)rs(ts)]|0)

where, as for the neutral fermion field, the time ordering operator is defined such that there is a

minus sign every time field operators are exchanged:

TWr1a(ta)Vrs(ts)] = 0(ta — to)ra(ta)Vis(te) — O(ty — ta) V1 (te)ra(ta)

Substituting for the field operators, we find that the Feynman propagator Sg(¢) and its Fourier

transform Sg(w) are given by

1 : 1 o
Sp(t) 5 / Sp(w)e ™t dw = 5 (L+e(t) ~0) eilm=ie)lt

SF((U)

/S’F(t) et dt = i(wy? —m +ie) ™!

The charge operator is

Q = eN[py°¢] = e(b'b — cfe)

4.4 Interactions

4.4.1 General results

The Hamiltonian H for a quantum field theory can be expressed as the sum of a free Hamiltonian

Hy and an interaction Hamiltonian H;:
H=Hy+ H;

The free Hamiltonian describes one or more free fields whose quanta are noninteracting particles,
while the interaction Hamiltonian couples the fields together and causes the particles to interact.
For example, in describing a theory of interacting bosons, we would take Hy to be the Hamiltonian
for a free scalar field:

1 1

Hy = §7T2 + §m2¢2 =m(a'a+1/2)

In the following sections I will give examples of different interaction Hamiltonians H;, but first I

want to discuss some general features of interacting systems.

The interaction Hamiltonian H; modifies the free particle theory described by Hp in a number

of ways. First, it alters the vacuum state of the theory; in general, the vacuum state of the inter-
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acting theory is a superposition of multiparticle states of the free theory. Second, the interaction
Hamiltonian not only causes particles to interact with one another, it also causes particles to interact
with themselves. This means that the physical mass of the particles (also called the renormalized
mass) is not the mass that appears in the free Hamiltonian; rather, it is the sum of the free mass and
the mass-energy associated with the particle’s self-interaction. Finally, the creation and annihilation

operators for the free theory do not create and destroy particles for the interacting theory.

To deal with these modifications, I will introduce creation and annihilation operators df and d

for the interacting theory. They are defined in terms of the eigenstates {|7)} of the full Hamiltonian:

d = Y Vn+in)n+1
d' = Y Vn+Iln+1)n]

where

Hln) = Eqy|n)
From these expressions, it follows that the commutation relation for the new operators is

[d,d']=1

Thus, d and d' are related to a and a' by a canonical transformation. Note that if we define constants

mp and Vj, appropriately, we can express eigenvalues of H in the form
_ _ 1 1
E,=FEy+mgrn+ 51/271(71— 1)+ 5%n(n—1)(n—2)+~-~
For example, mr = F1 — Ey and Vo = By — 2, + Ej. Also, note that
(d)*d*n) =n(n —1)(n —2)--- (n — k)ln)
Thus, the full Hamiltonian H may be expressed as
> g+ Ly gtat L dtdtdi
H=FEy+mgrd d—i—?ng d'dd + §V3d d'd'ddd + - - -

We can interpret this result by comparing it with the free Hamiltonian Hy:

1
Hy = §m +ma'a
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We see that in going from Hy to H the vacuum energy has changed from Ey = m/2 to Ey, and the
particle mass has changed from m = E; — Ey, the free mass, to mr = E; — Ej, the renormalized
mass. Also, there are n-body interactions among the individual particles, which are described by
potentials V,,. In higher dimensions, the interactions lead to particle-particle scattering. In 0 + 1
dimensions there is no scattering (there is nowhere for the particles to scatter to); rather, the inter-

actions cause the energy to depend on the number of particles in a nonlinear way.

As an example, suppose we have n particles that interact through a two-body potential. Then
the total energy of the system will be given by Ey (the vacuum energy), plus the number of particles

times mp (the particle mass), plus the number of pairs of particles times Vo (the potential energy

per pair):

_ 1
En:EO—I—mRn—FEVQn(n—l)

Thus, the two-body potential gives a quadratic contribution to the energy spectrum.

I now want to discuss the correlation functions for the interacting theory. For the free theory,

we defined the two-point correlation function as

(0|T[¢pr(ta)91(ts)]|0)

where ¢(t) is the interaction picture field operator, defined by evolving the Schrédinger picture field

operator ¢ under the free Hamiltonian Hy:
¢I(t) — eiHot ¢67iH0t — (2m)71/2(a efimt + aT eimt)
For the interacting theory, we define the two-point correlation function as

(OIT[$(ta)$(t5)]|0)

where ¢(t) is the Heisenberg picture field operator, defined by evolving the Schrédinger picture field

operator ¢ under the full Hamiltonian H:
(b(t) — eth ¢e—th

Recall that for the free theory, the two-point correlation function is just the Feynman propagator
and may be interpreted as the probability amplitude for a particle that was created at time ¢, to
propagate to time t,:

(0l¢1(ta) o1 (t)]|0) = Dp(ta — ty)
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We can obtain an analogous result for the interacting theory. From the definition of the time ordered

product,

(0|7 [¢(ta) B (te)]|0) = O(ta — to) (Ol6(ta)d(ts)0) + O(ts — ta) (06 (te)$(ta)|0)

If we insert a complete set of states, we find

0lo(ta)o(t)I0) = D (0le(ta)ln)(n|é(t1)I0)

n

= D e BT (Olg[R) (7l 6 D)

n

Thus,

OIT[p(ta)o(tp)]|0) = > e EnmEollta=tol (73] p|0) 2

an DF(ta - tb7 En - EO)
where

is called the spectral density, and

1 .,
Di(r, ) = e 00

is the Feynman propagator for a particle of mass . This result is the 0+1 dimensional equivalent
of the Kéllén-Lehmann spectral representation of the two-point correlation function (see [43] for a
discussion of this representation). The quantity p; deserves special attention; it is called the field

strength renormalization and is also denoted by Z:
Z = pr = 2mg|(1|¢|0)|?

The field strength renormalization can be interpreted as the probability of creating a single particle

state by acting on the interacting vacuum with the free field operator.

I will now show that the spectral density obeys the relation
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The proof presented here is adapted from a similar proof for 3 + 1 dimensional QFT that is given

in [44]. Note that for the free theory,

(Oll@r(t), ¢1(0)]0) = [¢1(t), d1(0)] = —1G_(t,m)

where

1
G_(t,n) = —sinput
W

The analogous result for the interacting theory is
Ollo(1), 6(0)][0) = > _[(0l¢(t)|n)(n]6(0)[0) — (0]¢(0)[n) (n|(t)[0)]

_ Z(ei(Eo—En)t _ ei(En—Eo)t) |<ﬁ|¢|()>|2

= —iY pnG_(t,En— Eo)

Thus,
0 (01[¢(1), p(0)][0) [1=o= —i > _ pn G (t, By — Ep) li=o=—i ¥ _ pn

But we can also express the time derivative of the correlation function as

9:(0[[e(t), $(0)]10) [e=o= (OI[m(t), #(0)]|0) |¢=0= —i

where I have used that
and

By comparing these two expressions for the time derivative of the correlation function, we obtain

the desired result.

We can interpret the spectral decomposition of the two-point function by comparing the free and in-
teracting theories. For the free theory, ¢ creates single particle states of mass m, which propagate in
time according to the Feynman propagator Dp(t) = Dg(t,m). For the interacting theory, ¢ creates
both single particle states of mass mp and multiparticle states of mass E,, — Ey. The probability of
creating a single particle state is Z, and the probability of creating an n-particle state is p,. Both
single and multiparticle states propagate according to the Feynman propagator, evaluated at their

respective masses.
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Techniques from quantum field theory can be used to evaluate the two-point correlation function of

the interacting theory. One can show that [43]

= ~ 0T [¢1(ta)or(te) exp(—i [ Hy(t)dt)]|0)
<O|T[¢(ta)¢(tb)]|0> - <O|T[6Xp(—ZfH[(t) dt)]|0>

We can obtain a perturbation series by expanding this result in H;. If we express Hy in terms of
field operators, then the terms in this series take the form of correlation functions of the free theory.

Using Wick’s theorem, these correlation functions can be expressed in terms of Feynman propagators.

Thus, the two-point correlation function of the interacting theory can be expressed as a series,
the terms of which consist of integrals over products of Feynman propagators for the free theory.
Each term in the series represents a specific spacetime process and may be depicted as a Feyn-
man diagram: vertices in the diagram represent events, and lines connecting vertices represent the

propagation of a particle from one event to another.

4.4.2 ¢? interaction

Consider an interaction of the form

The full Hamiltonian is

1 1 1 A
H = HO +H7, = 57’1’2 + 5(7’)12 +)\)¢2 = m(aTa-i- 5) + R(G+GT)2

Thus, the interaction H; just redefines the mass of the particle. We can immediately write down

the solution by introducing operators d and df, defined by
¢ = (2mp)Y23(d +d") = (2m)"?(a + o)

where

mp = m(1+ \/m2)/?

is the renormalized mass. In terms of the renormalized mass and the new operators d and df, the
Hamiltonian is

1 1
H= §7r2 + §m%¢2 =mp(did+1/2)
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The canonical transformation from a and af to d and df can be written down explicitly; it is just

the squeezing transformation:

d = coshra+sinhral

df = sinhra+ coshral

where

r= ilog(l + A/m?)

By expressing the field operator in terms of d and df, we can immediately write down the two-point

correlation function for the full Hamiltonian:

— e~malta=bl = Dp(t, — ty,m
2mR F( a b R)

(0T [(ta)e(t)]|0) =

Thus, Z =1 and p, =0 for n > 1.

We can also obtain these results from the Feynman perturbation expansion. Recall that

= ~ (0T [¢1(ta)pr(ty) exp(—i [ H(t) dt)]|0)
<O|T[¢(t(l>¢(tb)]|0> - <O|T[6Xp(—ZfH[(t) dt)]|0>

For the numerator,

(0|7 6o exp(—iA / Hy(t) dt)|0) =
Dab +
(1/1)(=iA/2) / (DasDi1 + 2Da1 Diy) dt1 +

(1/21)(—iA/2)° / / (Das D1 Doy + 2Dy D35 + 2Dy Dy D +
2Dg2Day D11 + 4D g1 D12 Doy + 4D g2 D21 D1y) dty dte + - -

For the denominator,

OTlexp(~iA [ H:(2) de)]o) =
1+
(1/1)(=iA/2) / DuyDuy dty +

(1/21)(—iA/2)° / / (DviDss + 2D%) dt dts + - -



216

Thus,

(01T [¢(ta)(t)]]0) =
Dy, + (—i/\)/Dalle dty + (—M)Q// Da1 D19 Doy dty dty + - - -

Note that the denominator cancels out the disconnected diagrams in the numerator.

It is simpler to use the Fourier transformed propagator:

/ 0IT[¢()(0)]0) e dt = Dp(w) + (i) Di(w) + (=iA)* D (w) - -
= (1+i\Dp(w)) ' Dr(w)
= i(w? = (Mm*+N) +ie)?

= DF (w, mR)
Thus, we recover our previous results for mg and Z.

4.4.3 ¢* interaction

Consider an interaction of the form

H; = \¢*

Then the total Hamiltonian is

1 1
H=Hy+H; = §7r2 + §m2¢2 + \p?

For simplicity, in this section I will set m = 1; it can always be restored by using dimensional analysis.
The Hamiltonian H cannot be solved in closed form; however, one can perform a perturbative

expansion in the parameter A. To second order, the energy eigenvalues are

_ H; 2
By = B+ (n|Hifny + Y il

—, nom
The first two energy eigenvalues are
_ 1 3 21
= —4+A-N
0 571073
_ 3 15 165
Ey = — 42X -\
1 5 + 1 A 3 A

Thus, the renormalized mass is

mpr =14 3\ — 18)\2
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To second order, the wavefunctions are (see [28], for example)

1 k| H;|n)|?
) = [1- 51;7“(”' _|k”)>2| In) +
s (it <n|H( an_ K| Hiln) iy b UlA |m m|H m|;z> "
k#n m#n
Using these wavefunctions, we find that
189

(Oll1) = —(1 - —A + 75

Sl

Thus, the wavefunction renormalization is
ALAITVI2 9.2
Z =2mg|Olo[1)]" =1 - 3

We can also obtain these results using the Feynman perturbation expansion. Recall that

OIT[gs(t )sz(tb)exp —i [ Hi(t) dt)]|0)

OIT[p(ta)d(ts)]|0) = (O|T [exp(—i [ H;(t) dt)]|0)

As we have seen in section 4.4.2, the denominator cancels out the disconnected diagrams in the
numerator. Thus, we can obtain the correlation function by expanding the numerator and retaining

only the connected diagrams. The following results will be useful:

1 .
/Dalle dt; = §(|7'| —1i)Dp(7)
/D 1D} dtlziDg( )—ﬁDF( )
alLb g 32

[ 141Dt = 7) Dite) dt = (7% 7| = 1) D7)

/ Diydty = —i/4

where 7 = t, — tp.

To zeroth order,

(OIT [¢a][0) = Dab

To first order,
(0T [$adv1]|0) = 3 Dap D, + (4 - 3) Dar D11 D1p
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Note that since we are contracting six fields, the number of terms is
344-3=15=5-3-1

We see that there is one connected diagram and one disconnected diagram. The connected diagram

is given by
(4-3) (1/11) (—i/\)/DalDllledtl — _3\(1 + 7)) D (7)

To second order,

(0T [pap i $3]|0) =
Day (0|7 ¢3][0) +
4-3-3) (Da1D11D1yD3g + D2 Daa Doy DY,) +
4-3)* (Da1Dy1 D35 D2a + Doz D2 D3, D11) +
3)? (Da1D11 D12 D23 Doy, + Da2 D22 Doy D1y Dyy) +

(
(
(4
(

42 .3-2) (D1 D34 Doy + Daa D3, D)

The first two lines correspond to disconnected diagrams. Note that the first line involves a contraction

of eight fields, which gives 7-5-3 -1 = 105 terms. Thus, the total number of terms is
105+2((4-3-3)+(4-3)*+(4-3)>+(4*>-3-2))=945=9-7-5-3-1
which is as it should be for a contraction of ten fields. We see that there are three connected diagrams:

The first diagram (Figure 4.1) is

(V)
—
N

- 3) (1/21) (—iA)? / / Dar Doy D%y D dt dt

= 18i)\? / Do Dy dt;

9N*(1+i|r|) Dp (7))

The second diagram (Figure 4.2) is

2(4-3)2(1/2") (—iN)? // Dy1D11D19Ds9 Doy, dtq dis
= —36)2 / / Da1D12 Doy dty dis

9
= 5/\2(3 + 3i|7| — 72)Dp(7)
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The third diagram (Figure 4.3) is

2(4%-3-2)(1/2") (—iN)? // Dy1 D3y Doy dty dty
= —96)\* / / Dqy1 D3y Doy dty dts

9 1
= §A2DF(T, 3) + gX“(27 + 36i|7|) Dr(7)
Thus, to second order, the two-point correlation function is

(01T [¢(ta)(t)]10)
= [1=3X1+4|7|) + %)\2(207+ 216i|7| — 367%)|Dp (1) + gxzDF(T, 3)

= ZDgp(t,mg)+ p3 Dp(7,3)

where
9
Z = 1-—2)2
8
mr = 1+3\—18)\2
9
p3 = g/\Q

One can also obtain these results by numerically solving the Schrodinger equation:

1 d?

1 _
(_gr& + 5@52 + A¢4)q)n(¢) = Enq)n(d))

The mass renormalization is given by

mRZEl—EQ

and the wavefunction renormalization is given by

2
7= 2mp / 7 () d Bo() do

The results of a numerical calculation of mpr and Z are shown in Figure 4.4 and Figure 4.5.

4.4.4 Yukawa interaction

I now want to consider a theory that describes an interaction between bosons and fermions. The

Hamiltonian for a free boson field is

1 1
H, = §7T2 + §m2¢2 =ma'a
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Figure 4.1: First diagram.
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Figure 4.2: Second diagram.
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Figure 4.3: Third diagram.
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Figure 4.4: Renormalized mass mp. The points are from a numerical calculation; the curve is the

theoretical prediction to second order.
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The Hamiltonian for a free fermion field is
Hy = ppp = p(b'b+ cle)
Thus, the free Hamiltonian for a system of bosons and fermions is
Ho=Hy+ Hy

The eigenstates for Hy are products of the eigenstates {|n,)} of H, and the eigenstates {|np, n.)} of
Hf:

Ho|’na, Np, nc> = (mna + N(nb + nc))lnav Tp, n0>

where

|na7 Ny, nc> = |na>|nbu nc>

Consider a Yukawa coupling of the fermion field to the boson field:
H; = M\ppp = nm(a + a’)(bTb + cTe)
where I have defined a dimensionless coupling 7:
0= (2m)”"2 (A/m)
The total Hamiltonian is

H = Hy+H;+H;

= 57 g 4l + Ay

= ma'a+ pd'b+c'e) +nm(a+ a")(bTb+ cfe)
This Hamiltonian can be solved exactly by introducing an operator d:
d=a+nbd'b+cle)

Note that
d'd = a'a+n(a+a®) (b + cfe) + n*(bTb + cle) + 2n° bibele

Thus, we can express the total Hamiltonian as

H = mdd+ (u—n*m)®'b+cle) — 2n°mblbcte
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= mpd'd+pur (0'b+cle) + Vablbele

where

mr=m  pr=p—n’m  Vo=-2"m

The eigenstates and eigenvalues of the interacting Hamiltonian are
H|ﬁd7 nbv nC> - (mna + ,LLR(nb + TLC) + ‘/2 nbnc)|ﬁd; TLb, nc>

We see that the interacting theory can be interpreted as a system of noninteracting bosons of mass
m, together with a system of fermions of mass pgr, where fermions couple to antifermions with
strength V5. We can understand the sign of this coupling by the following argument. In higher
dimensions, a Yukawa coupling gives an attractive force between fermions and antifermions [43].
The corresponding result for 0 + 1 dimensions is that if we take two systems, one consisting of an
isolated fermion and one consisting of an isolated antifermion, and add their energies, then the result

is greater than the energy of a single system consisting of both a fermion and an antifermion.

To express the interacting eigenstates in terms of the free eigenstates, first note that
d|0, np, ne) = (a+n(b'b+ c'¢))|0, np, ne) = 0

Thus,
al0, np, ne) = —n(bTh + c'¢)|0, ny, ne)

So |0, ny, n.) is a coherent state of the operator a. Note that if |«) is a coherent state with amplitude
a (that is, ala) = a]a)), then we can express it in terms of the number states as follows:

2 + 2 a™
ja) = ¢ 1ol ol gy — -l 3 X
>

|
n n!

Thus,

_ —1)"a
10, g, ne) = e (metne)®/2 Z % ™ (np + 1) |Na, M, Ne)
ng

V!

Note that the vacuum states of the free and interacting theories are the same:

|0,0,0) = |0,0,0)
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From the eigenstates of the interacting theory, we can calculate the wavefunction renormalizations.

The fermion wavefunction renormalization is

2

Z; =1(0,1,0[b%[0,0,0)|* = e "
and the boson wavefunction renormalization is
Zy = 2mg[(1,0,0[0,0,0)* = 1
Note that we can introduce a new boson field operator:
® = (2m)~ Y2 (d + d)

Then the Hamiltonian takes the form

H = TP 4 282 4 ) — ()

This describes a free boson field and a self-interacting fermion field, which is consistent with our

previous interpretation.

We can also obtain these results using the Feynman perturbation expansion. To second order

in A,

(01T [¥ra(ta)drs(ts) exp(—iA/¢1(t)1/31(t)¢1(t) dt)]|0)

(O|T[¢1a(ta)1s(ts)]0) —
()\2/2)/ Drp(ti —t2) (0T [Wra(ta)Vrs(ts) iy (1) 1y (1) V16 (t2)b15(t2)]|0) dty dio

= SFozﬁ(ta - tb) -

¥ / Di(ty — t2) Sias(ta — t1) s (tr — t2) S (s — ) dby dtz +
/\2/ Dr(t1 — t2) Spany(ta — t1) Srya(ts — ) Srss(0) dty dta —

(X/2) Srap(ta — tb)/ Dp(t1 — t2) (O|T W1 (t1)01 (t1)0015(t2) 16 (t2)|0) dty dio
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Figure 4.6: Two-point correlation function to second order.

The second line vanishes because Sp(0) = 0, and the third line corresponds to disconnected diagrams.

Thus, to second order, the fermion two-point correlation function is

(0T [Ya(ta) s (te))|0) =
[Sp(ta — tb) + / SF(ta — tl) E(tl — tg) SF(tQ — tb) dtq dtQ]aﬁ

where
%(t) = =A?Sr(t) Dr(t)

This expression is represented by the diagrams shown in Figure 4.6. If we Fourier transform the

correlation function, we find
/<0|T[1/)a(t)1/3ﬁ(0)]|6> e dt = [Sp(w) + Sp(E) 2(w) Sk(w)]as
where
Sw) = [ Sl0) e dt =~ — (u+ )
Thus,
0T da)0) e ai
= [i(wy® =)+ iPm? (@ = p) (@ = (e +m) ap

[i(1=7*) (@’ = (p—n"m) " +in* @y’ — (n+m)) ap

(1= 1%) Sp(w, p —n*m) +10° Sp(w, it + m)]ap

To understand why the second and third lines in this expression are equal, it is easiest to simply

expand the third line to second order in 7 and note that it agrees with the second line. From this
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result, we can read off the renormalized fermion mass and the fermion wavefunction renormalization:
pr=p—m'm  Zp=1-1n

4.4.5 Scattering

Consider a field theory in 3 + 1 dimensions described by a Hamiltonian
H=Hy+ H;

were Hy is a free Hamiltonian and H; describes an interaction. We can express the free Hamiltonian

as

Hy = Z wmajnam
m

where af, and a,, are creation and annihilation operators for mode m. Let us consider scattering in
this theory. We start with two widely separated particles A and B, each described by a wavepacket.
As the system evolves in time, the particles come together, interact, and then fly apart. In the
distant past and the distant future, the particles are too far apart to interact with each other and
the evolution of the system can be described by a free Hamiltonian Hy. In general, however, the free
Hamiltonian Hy is not the same as the free Hamiltonian Hy, because the free particle states of the
interacting theory are not the same as the free particle states of the free theory. For example, the
coupling of an electron to the electromagnetic field surrounds it with a Coulomb field, and the energy
of this field gives a correction to the mass of the electron. I will call the free particles described by

Hj bare particles, and the free particles described by Hy dressed particles.

In previous sections, we showed that in 0 + 1 dimensions one can relate bare particles to dressed
particles via a canonical transformation of the particle creation and annihilation operators. Now I
want to consider a different method of obtaining the free particle states of the interacting theory,
which generalizes to higher dimensions. First, we modify the Hamiltonian by introducing a function
ft):

H=Hy+ f(t)H;

If we start with a single particle state of Hy (a bare particle) and evolve it under H by slowly
ramping f from 0 to 1, it should adiabatically evolve into a single particle state of Hy (a dressed
particle). If we do the same for a two-particle state of Hy, we should end up with a two-particle
state of Hy, provided that the two particles start out far away from each other, and that during the
adiabatic ramping of f they remain far enough apart that we can neglect their mutual interaction.

If we continue to evolve the two-particle state under H, the particles will approach, interact, and
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scatter. We can then adiabatically ramp down f, so the dressed particles turn back into bare par-
ticles. Because the particles are widely separated when the interaction is ramped on and off, the
probability amplitude for producing a given final state from a given initial state is independent of
the details of the ramping process. The advantage of the ramping technique is that we don’t need
to solve explicitly for the asymptotic states of the interacting theory; the adiabatic evolution takes

care of this for us (the adiabatic ramping technique is discussed at length in [45]).

The adiabatic ramping technique can be demonstrated in 0 + 1 dimensions; however, because par-
ticles can never be separated from one another, the result cannot be interpreted as describing a
scattering process, and the final states depend on how the ramping is performed. I will demonstrate
the technique with a simple model. Consider a free Hamiltonian that describes two types of particles,

A particles and B particles, both of which have mass m:

1 2 1 2
HO 2 + mT(bi + —Wg + m7¢l2) = maTa + mbTb

=_
2 2

where

ba = (2m)"?(a+ah)

o = (2m)*(b+ bl
Suppose we introduce an interaction
A
Hi = 7(65 + ¢3)* = g((a+al)* + (b +b1)?)’

where

A

9= Tom2
so the total Hamiltonian is

H(t) = Ho + f(t) H;

In the far past and far future f(t) — 0, so the eigenstates of H(t) are just the eigenstates of Hy.
The lowest few eigenstates include the ground state |0,0) with energy 0, two single particle states

|1,0) and |0, 1) with energy m, and three two-particle states |2,0), |1,1), and |0,2) with energy 2m.

As the interaction is turned on, the ground state |0,0) adiabatically evolves into the interacting

ground state |Q2), and the two single particle states |1,0) and |0, 1) adiabatically evolve into dressed
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particle states. To first order in g, the energy of the interacting ground state is

and the energy of the dressed particle states is

<1,0|H0 + Hi|1,0> = <0, 1|H0 + Hi|0, 1> =m + 24g

Thus, the renormalized mass for the particles is mgr = m + 16g.

In the far past and far future, the eigenstates |1,1), |2,0), and |0,2) are all degenerate. The state
|1,1) remains an eigenstate of H when the interaction is turned on, so there is no AB scattering.
However, the interaction Hamiltonian couples |2,0) and |0,2), which leads to AA <« BB scattering.

We can calculate the scattering probability as follows. Note that

<270|H1|270> = <072|H1|072>
<072|H1|270> = <270|H1|072>

52¢g
4g

Thus, to first order in g, the eigenstates corresponding to {|2,0),|0,2)} are

[+) = 7(|2 ,0) £10,2))

and the eigenvalues are

Ei =4g(13£1)

Thus, on the subspace spanned by {|2,0),]0,2)}, the Hamiltonian can be expressed as

H = 2m+ f(t) (Ey[+)(+] + E-|=){=])

= omt G SOE, +E) + 3 F()(Ey — B-)(12,0)(0,2]+ [0,2)(2,0)

Thus, if we start with |2,0) in the distant past, then the probability of finding |0,2) in the distant
future is

p(AA — BB) =sin? 6

0= 5B~ E0) [ fyat=1g [ fyas

where
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4.4.6 Particle production

One type of scattering that can occur in 0 4+ 1 dimensions is particle production from a classical

source. The Hamiltonian for the system is:
H=Hy+ H;

where H( describes the free field:

1 1
HO _ §7T2+ §m2¢2

and H; describes the coupling to a classical source p(t):

I will assume that the system starts in some initial state at time 0 and evolves to time 7', and that
the p(t) is nonzero only for times between t, and ¢, where 0 < t, < t, < T. We can view the
evolution of the system as a scattering process: before ¢, and after ¢, the field evolves freely, while
for times between ¢, and t; the field scatters off the classical source. We would like to solve for the
state of the system at time 7" in terms of the state at time 0. Note that this is the same problem

we treated in section 4.2.4, only the classical field has been replaced with a quantum field.

It is convenient to work in the interaction picture. The interaction picture wavefunction is
1) = e @)
and the interaction picture Hamiltonian is
Hy = etHot [, e=iHot — (1), (1)

The equation of motion is

001 (1)) = Hy(8)| 91 (1))
Thus, the interaction picture wavefunction at time ¢ is given by
|©;(2)) = U(t)|®1(0))

where U (t) is defined by
10 U(t) = Hr(t)U(t)
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The solution to this equation, subject to the initial condition U(0) = 1, can be expressed as
t
Ut) = Tlexp(~i | Hit) dt)
0
We are interested in the scattering matrix for the system, which is given by
T
U(T) = Tlexp(~i | Hi(t)de)
0
Since Hy(t) = 0 for ¢ < t, and for ¢ > t;, we can extend the limits of integration to +oo:
U(T) = Tlexp(~i [ Hi(t)de)

I will now apply Wick’s theorem (see following section) to evaluate the scattering matrix. There are

only two connected diagrams that occur:
A= —z'/HI(t) dt = —i/p(t)qﬁ](t) dt
with symmetry factor S(A4) =1, and
B=- // p(t1)p(t2)Dp(ty — to) dty dts
with symmetry factor S(B) = 2. Thus, using Wick’s theorem,
U(T) = Nlexp(A/S(A) + B/S(B))] = Nlexp(A + B/2)]

We can evaluate the diagrams by introducing the Fourier transforms of the classical source and the

propagator:

i
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Since p(t) is real,

Diagram A is
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where I have defined
a= —i(2m)71/2/p(t) e dt = —i(2m) Y2 j(m)

Diagram B is

B= -0 [ |5) Dr(w)dv
Note that

Dp(w) =i(w? —=m? +ie) ' =i2m) " (w —m +ie) ™' — (w+m —ie)™)

and

(x+ie)™ ' = Pé —imd(x)

Thus, the real and imaginary parts of Dy (w) are

ReDp(w) = 7(2m) 1 (6(w —m)+ d(w +m))

ImDp(w) = (2m) 'P((w—m)"t+ (w+m)™)
So the real part of B is
Re B = —(4m) " (|3(m) 2 + |5(~m)|?) = —|af?

Thus,
B=—|a]*—if

where

9=(2w)_1/|ﬁ(w)|2lmﬁp(w)dw

Thus, the scattering matrix is

U(T) = e 2 D(a)

where D(«), the displacement operator, is
D(a) = e~1o*/2 gaa’ g—a%a
One can show that D(a) can also be written in the form

D(a) = exp(aa’ — a*a)
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4.4.7 Wick’s theorem

We want to evaluate the scattering matrix

T
UT) = Tlexp(—i | Hi(t)dr)

If we expand the exponential in a power series, we obtain

oo _im T T
U(T)_Z;J%/O dt1-~/0 dt, T[Hy(t1)--- Hr(ty))

Using Wick’s theorem, we can express the time ordered products as normally ordered sums over all

possible contractions:

(=i)" T[H(t) -+~ Hi(tn)] = Y N[AG(t1, -+, )]

[e3

where the A”’s are the individual terms in the sum. Thus,

[e%) T T
) =3 [ [ Y Nz
n=0 " «

If we integrate a term A% (¢1,---,t,) over all the times ¢y, -, t,, we obtain a result A(A”), which

I will call the diagram corresponding to that term:

T T
A(Ag):/ dtl---/ dty A7 (b, 1)
0 0

Thus,
U(T) =33 L NIAAY)

n=0 «
We can define an action of the symmetric group S, on the set of terms {A”} as follows. For 7 € S,,,
define a mapping 7(Ap) = Aj such that A} is obtained from Ay by permuting the times ¢1,---,t,
according to the permutation 7. The orbit of a term is the set of terms that can be obtained from

it via the group action:

Orbit(A}) = {n(AL) : m € Sy}
and the stabilizer of a term is the set of permutations that leave the term invariant:
Stab(Al) ={m € S, : w(AL) = A}

Note that
|Orbit(AL)| |Stab(AL)| = |Sk| = n!
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Now, all the terms in Orbit(A®) correspond to the same diagram A(AZ). Thus, if we define

S(AMD) = 1Stab(AD)] = e

we can express the sum over diagrams as

n!
DA =] som "
a (D7}

where {D"™} denotes the set of distinct diagrams of order n. Thus,

> N[D™ N[D
=33 {5 =X o)

n=0 {Dn} D

-~
—

As an example, suppose

Hr = ¢;1

Then the sum over the third order terms is

Z A} = (—i)’ T[¢p12¢3] = iN[¢1$2¢3 + D12¢)3 + Dazds + Ds1¢1]

Note that
Orbit(iy pags) = {id1 a3}
Stab(ig1¢p2¢3) = S3
and
Orbit(iD12¢3) = {iD12¢3,iDa3p1,iD3102}
Stab(iD12¢3) = {(), (12)}
Thus,

Z A(A2) = A(ig1da¢3) + 3A(iD12¢3)

(e

Suppose a diagram D factors into disconnected diagrams:
D=]][D}*
k

Then
s(D) = [ [ s(Dx)™ !
k



234

Thus,

U(T) = Nlexp( Y Dx/s(Dx))]
{Dr}

where the sum is taken over all connected diagrams {Dy}.

4.5 Path integrals

4.5.1 QFT at finite temperature

Consider a neutral scalar field ¢ and a neutral fermion field ¥. At zero temperature, the Feynman

propagators for the fields are given by

—i{0|T'[p(t1)p(t2)]|0)  (for bosons)
Gty —t2) =
—i(0|T [ (1) (t2)]]0)  (for fermions)

One can also define retarded propagators, which are given by

—i6(t) (0][p(t1)¢(2)]10)  (for bosons)
Gr(t1 —t2) =

—i0(t) (0|{w(t1)d(t2)}]0)  (for fermions)

At finite temperature, the Feynman propagators generalize to

—iTr[pssT[d(t1)P(t2)]]  (for bosons)
G(t1 —t2) =
—iTr[pssT[h(t1)1(t2)]]  (for fermions)

and the retarded propagators generalize to

—i0(t) Trpss|o(t1)@(t2)]]  (for bosons)
GR(tl — tg) =
—if(t) Trlpss {0 (t1)Y(t2)}]  (for fermions)

where

Pss = 271 eiﬁH

is the steady state density matrix, and

Z = Trle PH)
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is the partition function. The retarded propagators are related to the Feynman propagators by [46]

Re G(w) + itanh(Bw/2) Im G(w) (for bosons)
GR(w) =
Re G(w) + i coth(fw/2) Im G(w)  (for fermions)

where

Glw) = / G(t) et dt

GR((U) = /GR(t) ei‘”t dt

At finite temperatures, it is convenient to define temperature Greens functions by

TripssT[o(11)d(m2)]]  (for bosons)
D(r — 1) =

Tr(pssT[b(T1)Y(72)]]  (for fermions)

where for an arbitrary operator A, we define A(7) by
A(r) = efIm Ae™HT

The temperature Greens functions are related to the retarded Greens functions by
D(wy) = —GRr(iwy)

One can show that for —38 < 7 < 0, D(7 + ) = £D(7), where the plus sign is for bosons and the
minus sign is for fermions. Also, for neutral fields, D(7) = D(—7) (the proof of these results can be

found in [46], for example).

Since D(7) is periodic on [—f3, (], its Fourier transform is defined at discrete frequencies ws, where

3

Wws = =8

so we can express D(7) as
1 E 2 — W T
D(T) = % . Ds €

which can be inverted to give



236

For bosons, Dy = 0 for odd s, while for fermions, Dy = 0 for even s.

For free bosons the causal Greens function is

G(t) = —Z(2m)_1((ﬁ+ ]_) e—im\tl +ﬁelm\t|)

Gw) = (A+1)m) ((w—m+ie)™ —(w+m—ie)™ )+

n(2m) (w4 m +ie) !t — (w—m —ie)t)

where the mean photon number 7 is

~ efﬁm/Q
"T3 sinh(8m/2)
The retarded Greens function is
Gr(t) ! 0(t) sinmt
= —— inm
R m
Grw) = @m) Y (w-m+ie) = (w+m+ie)™h)

and the temperature Greens function is (see Figure 4.7)

D(r) = (©2m) ' ((n+1) e~™Il 4 ﬁemlﬂ)

D(ws) = (wi+m?)~"
For free fermions, the causal Greens function at finite temperature is

G(t) = —i(pye ™ —p_eml)

where
eiﬁm/2
bx = 2 cosh(Bm/2)
The retarded Greens function is
Ggr(t) = —20(t)sinmt

Grw) = (wW—m+ie)™t —(w+m+ie)™?
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Figure 4.7: Temperature Greens function D(7) for bosons. Curves are shown for Sm = 0.5, 1, 10.

and the temperature Greens function is (see Figure 4.8):

—m|7| m|7|

S
\]
S~—
|

p+e —p-e

2m(w? +m?)~!

S
&
<
I

4.5.2 Boson lattice path integral

The temperature Greens function for neutral bosons is
D(7) = Trlpss TIp(r)@(0)]] = 27! Trle™ P~ g7 g]
where Z, the partition function, is
2 =Trle ) = [(ole o) do

Because D(1 + ) = D(7) for 7 < 0, we only need to consider 7 € [0, 3]. We can chop the interval
[0, 3] into N segments of length A = §/N, and insert a complete set of states after each segment.

Then the temperature Greens function becomes

N-1 N-1
D(T) = Z_l <H /d¢n> ¢r ¢O <H T(¢n+lu¢n)>
n=0 n=0
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I I betla*m =05 ——

beta*m =10.0 ——
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Figure 4.8: Temperature Greens function D(7) for fermions. Curves are shown for Sm = 0.5, 1, 10.

and the partition function becomes
N—-1 N—1
Z- (1‘[ / d%) (1‘[ T(¢n+1,¢n)>
n=0 n=0
where ¢n = ¢o, 7/N = 7/8, and T, the transfer matrix, is

T(¢as$p) = (dale™ > |dp) = (¢all — AH]| )

Assume H has the form
L,

H= 57 +V(9)

Substituting H into the transfer matrix, we obtain

T(6a: 64) = (9all = A + V(60 +60)/2)I60)

The operator 7 has eigenstates {|p)}, which are given by

($lp) = (2m)~1/2 e??
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By inserting a complete set of states {|p)}, we can express the transfer matrix as

T(0nn) = [(Gulp) (L= B (5" + V((@a +00)/2) olén) dp

= @0 [ epl- 50+ b6, — )~ AV((6u -+ 00)/D)] dp

(b0 — )P = AV((u + )/2)

= (2rA)"Y2 exp(—2A

Substituting this expression for the transfer matrix into the partition function, we find
-1

(270) N”(H / d¢n>exp Z<2A2<¢W O+ V{(dni1 + 60)/2)

n=

Thus, we may view the partition function as a weighted sum over all possible field configurations.

In the continuum limit, the sum over field configurations becomes a path integral: the partition

— [ plel oo " L) an)

where L is the Lagrangian in complex time 7 = it:

function is given by

1
Lp(r)] = ~5(0:0)* = V(9)
I now want to return to the discrete case and work out explicitly the case of a free field, for which
L o509
V(¢) = 5™ ¢

The partition function for the free field is

n=

N-1 2
(27 A) N/2<H/d¢n>exp Z(2A2(¢n+1 6n)? + T (Bnr1 + 60)?)

It is convenient to introduce dimensionless variables g, = m'/? ¢,,, ¢ = mA = fm/N. We can then

express the partition function as

N-1
Z = (2re) N2 (H / dqn> exp(~ Fl{g.)])
n=0

where

1 2 € 9
Fl{qn}] = 1 zn: p (@nt1 — qn)* + §(qn+1 + ¢n)7]
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Similarly, the temperature Greens function is

D7) = = {gra)

where I have defined a correlation function
N-1
(o) = 271 (2me) /2 <H / dq") a- a0 exp(~Fl{a.}])
n=0

I will introduce a parameter x, related to € by

e = 2tanhz/2
Then
1
Fl{g,}] = 1 Z[(COth 2/2) (gnt1 — qn)2 + (tanhz/2) (gn41 + qn)2]
= i Z[Z(COth x/2 4 tanh x/2) qfl + (cothz/2 — tanh 2/2)(gn+1 + Gn-1) Gn)
1
— Zg-A-
2 q q
where

Aij = (sinh I)_1(2 COShI5ij - 5i,j+1 — 5i,j71>

Thus, the partition function is

N-1
Z = (2r)~N/? (2tanh x/2)~N/2 (H /dqn> exp(—% q-A-q)
n=0

The integrals can be performed by using the following result, which holds for any symmetric matrix

B;; and any vector J; (see [47], for example):

N-1
1 1
<H /dqn> exp(—5 q¢-B-q+J-q) = (2n)N/?(det B)"1/2 exp(—5 J-B7t-)
n=0
Using this result, we find that the partition function is
Z = (2tanh z/2)"N/2 (det A)~1/2

and the correlation function is

(qiqz) = (A71)y
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The determinant and inverse of A;; can by calculated by Fourier transforming the field variables g;.

For simplicity, I will assume that N = 2R + 1 is odd. Then

R
anN_1/2 Z e27rinm/Num
m=—R

Because g, is real, u_,, = u},, so we can express u,, in terms of real valued variables ¢, a1,---,ar,

by, --,bgr as follows:

(1/\/5)((1771 —ibm)

U4m
ug = ¢

Uem = (1/\/5)(am+ibm)

where m is always taken to be positive in the above relations. We obtain an orthogonal transforma-

tion from the variables g, to the variables ¢, am,, bm:
R
g = N"2c+ V2 (cos2mnm/N) am + sin(2rnm/N) by, )]

m=1

Because the transformation is orthogonal, it preserves the normalization:

N-1 R R
I DTN ey
n=0 m=—R m=1
The transformation diagonalizes A;;:
R
g-A-qg= Y (2/sinhz)(coshz — cos(2rm/N))|um|*
m=—R
Thus,
R
det A = H (2/ sinh x)(cosh x — cos(2rm/N))
m=—R
Also,

R

|tm|
Z (2/ sinh z)(cosh x — cos(2rm/N))
Thus, the inverse of A is given by

R

cos(2mm(i — j)/N)
(A™)i = Z (2/ sinh x)(cosh z — cos(2rm/N))
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Using the identity (see [48] for a proof of this result)
N-1
I 2(cosha — cos(2mm/N)) = 4sinh®(Nx/2)
m=0

we can express the partition function as

“1)2 _ cosh™ (/2)

Z = (2tanhz/2)"N/2 (det A)71/? = 2sinh(Nz/2)

We can check that this gives the correct continuum limit by taking N — oo:
Z — (2sinh(Bm/2))!

To evaluate the correlation function, we can use the identity (see [48] for a proof of this result)

1 & cos(2mnm /N cosh((N/2 —n)x
3 ( /N) ((v/ )z)

N e, cosha — cos(2rm/N)  sinha sinh(Nz/2)

Thus, the correlation function is

cosh((N/2 — |i — j|)x)

(0:g5) = (A71)ij = 2 sinh(Nz/2)

We can check that this gives the correct temperature Greens function in the continuum limit by

taking N — oc:
1

D(r) = — {(M)a(0)) = 5~ (A + 1) e~ +ne™)
where
_ efﬁm/Q
"= 2sinh(Bm/2)

I now want to show how a renormalization group transformation can be carried out analytically for

the boson path integral. Note that we can express the partition function as

N—-1 N-1
7 = <H /dqn> (H Te(Qn-i—la Qn)>
n=0 n=0

where the transfer matrix is

1 €

TE(Qav Qb) = (27‘-6)71/2 eXp[_%(qa - Qb>2 - ) (Qa + %)2]
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Or, in terms of z,

T;E (Qaa qb)

= (2m)""*(2tanha/2)"/? exp(—i((cothw/Q) (da = @)* + (tanh /2) (¢a + 5)*))

= (27r)_1/2(2 taunhgc/2)_1/2 exp(—(sinh :v)_l(%(cosh )@ 4+ qF) — qaq))

It is straightforward to check that

tanh x

:71—‘1} as
2tanh /2 2(das @)

/Tm(qa,q) T:(q, qv) dq

Thus, if we start with a lattice of 2N sites and perform the ¢, integrals for odd n, we get

Z[2N, ]

2N-1
= <H /dqn> Tw(q0,q1) To(q1,92) - - Tu(an -1 qo0)
n=0

tanhz \" [ T
= (m> (H /dqn>T2m(QO=Q2)T21(Q27Q4)'"sz(QN—%QO)

n even

_ tanh x
~ \2tanhx/2

)N Z|N, 2z]

Thus, we can interpret a scale transformation A — 2A as a redefinition x — 2x. Since we have the
exact solution for Z, we can check that this works. Properties of the system are invariant under this

transformation; for example, the mean squared field fluctuation is
9 1
(42) = 5 coth(N/2)

4.5.3 Fermion lattice path integral

The temperature Greens function for neutral fermions is
D(7) = Trlpss T (r)(0)]] = Trle” D e ™ 4] /Tr[eH]

Because D(t + ) = —D(7) for 7 < 0, we only need to consider 7 € [0, 5]. Suppose we chop the
interval [0, 3] into N segments, and suppose that 7/8 = /N for some r. Then

D(7) = Tr[UN="pU™]/Tr[UN] = Tr[UN "0,U"0.0,]/Tr[UY]

where

U=ePH/N —1_-BH/N =1—-(Bm/2N)o, =1-e"* 0,
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and

J = %1og(2N/ﬂm)

We can relate D(7) to the correlation function for the 1D Ising model with antiperiodic boundary
conditions. The partition function for the Ising model with periodic boundary conditions (sy = so)
is

Zp = Tr[TN]

where

T=e¢'+e/ O
The spin correlation function is
(sisj)p = Zp' Tr(o, T o, TN "]
For the case of antiperiodic boundary conditions (sy = —sg), the partition function is
Zy=Tr[TNo,]
The spin correlation function is
(sisj)a = Z;l TT[JZTTUZT]\FTJI]

Note that we can relate the unitary transformation U for the fermion path integral to the transfer
matrix 1" for the Ising model by
U=e 'RTR™

where R is a unitary transformation corresponding to a rotation of w/2 about the y-axis. The

temperature Greens function is therefore

D(t) = TrlUYN "0, U"0,0.)/Tr[U"]
= —Tr[T""" (R '0,R)T" (R '0.0.R)|/Tr[T"]
= —Tr[TN "0, T 0,0.]/Tr[TV]

= —(Za)Zp) (sr50)a

4.5.4 Diffusion

Another way to think about path integrals is in terms of diffusion.
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Consider a particle on a one dimensional lattice that randomly hops from site to site in discrete
timesteps, such that if it is at lattice site n for timestep IV then it will have equal chances of landing
at sites n+ 1 and n — 1 for timestep N 4+ 1. We can define a propagator K(ng,, ny; N) that gives the

probability for the particle to move from site n; to site n, after NV timesteps:
K(ng,ny, N) =27 ¢(ng — ny, N)

where ¢(n, N) is the number of different paths the particle could take that would displace it n sites

in N timesteps. Note that ¢(n, N) can be obtained from the generating function

N

(x+ 2 HNY = Z c(n,N)z"

n=—N

Thus,
cln _ N! ~ 9N (o1 71/267n2/2N
) = T w my ~ 2 )

where I have applied Stirling’s approximation:
1
logn! ~nlogn —n + B log(2mn)

Thus,
K (ng,ny; N) ~ (2rN)~1/2 e~ Ima—nol*/2N

Now consider an ensemble of independently random walking particles, and let p,, (V) be the number

of particles at lattice site n after N timesteps. Note that

Thus,

pu(N +1) = palN) = £ J(N)

where

Pr(N) = pri1(N) = 2pp(N) + pn-1(N)

This can be thought of as a discrete field equation for p,,(N). The propagator is the Greens function

for this field equation:
pn(N) = K(n,r;N) p(0)

Suppose the distance between adjacent lattice sites is a, and the duration of a single timestep is A.

If we view the system on distance scales that are large compared to a and on timescales that are
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long compared to A, then we can approximate the lattice by a continuum. The continuum theory

describes the evolution of the particle density p(7, ), which is related to p, (k) by

pn(N) = p(7,2)
pn(N +1) = pu(N) — Adep(7, )

PR(N) — @ 3p(r,2)
Thus, we obtain a field equation for p:
Orp(1,z) = D 2p(T, )

This is the diffusion equation, where D = a?/2A is the diffusion constant. The propagator for the
continuum theory is

K(z,y;7) = (4nD7)"Y/? o—(@—y)?/4DT

and

p(r,z) = /K(:E,y;T)p(O,y) dy
We can relate the diffusion equation to the Schrodinger equation by setting 7 = it:
1
0p(t, ) = —5—FY(tw) — O-(t,x) = DO(t, )
m

where D = 1/2m is the diffusion constant. We can define a propagator for the quantum particle,

which gives the amplitude for the particle to propagate from point z; to point x, in time ¢:
K(zq,xh;t) = (24]e”H)2y)

So
<Ia|1/}(t)> = /K(xavxb;t) <$b|1/)(0)> dxy,

For a free particle, the propagator is
K (&q, xp;t) = (m/2mit)"/? gima’ /2t

This can be obtained from the propagator for the diffusion equation by substituting D = 1/2m,

T =1t.

Diffusion can be viewed as a sum over all possible trajectories that an individual particle could

follow; similarly, the time evolution of a quantum particle can be viewed as a sum over all possible
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quantum trajectories. If we divide the time interval ¢ into N segments of duration A, and proceed

as for the boson path integral, we can express the propagator as

K(xq,xp;t) = (m/2miA)N/? <H /dw ) SHwn ]
where xg = xp, xny = x4, and
Slan}l = A (Ga5 (@as1 = 0)” = V((@ns1 +20)/2))

As N — oo,
K (20, 7: / Dla(t)] Sz

where

Sl(t)] = /O L(i,2)dt

is the classical action, and

is the classical Lagrangian. The functional integral is over all paths such that z(0) = zy and

/D[x —J\}Enoo<H/dxn>

4.6 1D Ising model

x(t) = zn. It is defined by

We have seen that there is a correspondence between the fermion lattice path integral and the 1D
Ising model. In this section I review the 1D Ising model and calculate the partition function, the
magnetization, and the correlation function. Most of these results are well known (see [49], for

example). I also show that the Ising model is equivalent to a two-level quantum system.

4.6.1 Description of model

The 1D Ising model is a lattice of N spins s,, = £1 with periodic boundary conditions (sy = so)

described by the Hamiltonian

—BH[{sn}] = JZ SnSn+1 + B Z Sn
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The first term couples spins to their nearest neighbors; the second term describes an interaction

with an external magnetic field. We can express the Hamiltonian as

—5H[{5n}] = Z t(5n+1v Sn)

n

where

1
t(Sq,8p) = JSaSp + §B(sa + sp)

The partition function is given by

7 - Z e~ BH{sn}] _ Z Het(snﬂ,sn) — Z H<5n+1|T|5n> = Tr[TN]

{Sn} {Sn} n {Sn} n

where | £ 1) are orthogonal unit vectors, and the transfer matrix T is defined by
(sa|Tsp) = e o)

If we expand T in the Pauli spin matrices, we find
T = 5 =e¢’coshB+e 7o, + e’ sinh Bo,

From this expression, we see that T can be diagonalized via a rotation about the y axis. A rotation

of angle 6 about the y axis is described by a unitary transformation U that has the property

Uo,U ' = o, cos0+0, sind

Uo, U ' = o, cos6— 0o, sinb
Thus,

UTU ! =

e’ cosh B+ (e7/ cosf — e’ sinh Bsin ) o, + (77 sin@ + ¢’ sinh Bcos ) 0.,
We will choose 6 so as to eliminate the o, term:

tand = (¢*/ sinh B) ™!
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Note that

cosf = (sinh®B+e *) Y2 sinh B

sinf = (sinh® B+ e 4/)71/272/

So we are left with

UTU ! = e’ cosh B + e’ (sinh? B + e=4/)1/2 5, =
0 A

where

A+ = e’ cosh B + (%! sinh? B 4 ¢727)1/2

Thus, the partition function is
Z =Tr[TN) = Tr[(UTUHN] =AY + 2V

The magnetization per spin is given by

_ 10 N Ny—1 N-1 3/\+ No1 OA=
m=(s;) = N@BIOgZ (AL +2A2) AL B + A2 5B
Note that
1 8/\+ 1 OA_ sinh B
- = = cosf
)\+ 0B A_ 0B (sinh2 B+ e47)1/2
Thus,

A =AY
= <ﬁ> cosf
AL+ AL
If J and B are finite, then in the limit of an infinite lattice (N — oo) we have that A_ /Ay — 0, so

Z—»x\f

m — cosf = (sinh® B+e */)71/2 sinh B

The magnetization m(J, B) is shown in Figure 4.9.

The susceptibility at B = 0 is
0

2J
8B (JB) |B 0o— €

X =

Thus, although the susceptibility diverges as J — oo, it remains finite for any finite value of J, and

therefore there is no phase transition.
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Figure 4.9: Magnetization m(J, B).

4.6.2 Correlation function
The spin correlation function is
(sisj) =Z~ Z sisje” H[{sn}]l = 71 Z 5i8j H<5n+1|T|sn>
{Sn} {Sn} n

Note that

> (salTls1)s1(s1|TIsp) = > > (salT|s2)(s2]0|51) (1|7 |ss)

51 s§1  S2

Thus, we can express the correlation function as
(sis;) = Z " Tr(o.T"0, TV 7]

where r = |[i — j|. We can simplify the expression for the correlation function by transforming the

matrices using the matrix U from the previous section:
(sisj) = Z ' Tr[(Uo, U (UTU Y (Uo, U )Y (UTU )N "]

Recall that

Uru—'=
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and

1 i cosf —sinf
Uoc, U " =0, cost — o, sinf =
—sinf —cosf

Thus,

)\N—r )\C + A]_V_T /\r
(sis;) = cos? 0 + ( + A AN * ) sin?6
In the limit N — oo,

(sisj) = cos? 0 4+ (A_/A,)" sin20 = m? 4 (1 — m?) e~ li=il/re

where 7., the correlation length, is given by

cosh B + (sinh2 B+ 64,1)1/2>

—1
r, =log(AL/A_)=1o
¢ 8(A+/A-) 5 (coshB — (sinh® B + e=47)1/2

4.6.3 Renormalization group

I now want to consider renormalization group transformations for the Ising model. Recall that the

transfer matrix is

eJ+B o=
T(J,B) =
=) oJ-B
Thus,
B cosh(2J + B h B
T%(J,B) =2 e” cosh( ) o8 =T (J, B)
cosh B e B cosh(2J — B)
where
y o llog <cosh(2J + B) czosh(QJ - B)>
4 cosh” B
1 cosh(2J + B)
B = B+ -1 _——=
+ 2 8 (cosh(?J - B))
e** = 16cosh(2.J + B) cosh(2J — B) cosh® B

Thus, we may view a scale transformation from a N site Ising model to a N/2 site Ising model as
a transformation (J, B) — (J’, B") of the coupling constants. Physical properties of the system are

invariant under this transformation; for example, consider the magnetization m:
m(J, B) = (sinh® B + ¢~*/)"Y/2 sinh B

It is straightforward to check that m(J, B) = m(J’, B').
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4.6.4 Two-level system

In this section I show that a two-level quantum system is equivalent to the 1D Ising model with an

effective coupling and magnetic field.

Let us consider a finite dimensional quantum system with a basis of states {|s,)}, which is de-

scribed by a Hamiltonian Hg. The partition function for the system is

Zg = Trle 1] = Tr[TN] = Y " (so|T|sn—1) -+ (52| T|s1) (51| T|s0)
{Sn}

where T, the transfer matrix, is given by
T = e~ PHa/N — 1 (8/N)Hq
If we define a matrix ¢t by

(salt|sp) = log((sal|T]ss))

then we can express the partition function as

Zg = Z eXP(Z<Sn+1|t|Sn>)
{sn} n

We can define a classical Hamiltonian H¢ for a linear chain of spins {s,} by
—BHol{sa}Y) = ~NC + 3 {snsatlsn)

where C' is a constant chosen for later convenience. The Hamiltonian describes nearest neighbor
couplings between the spins that are determined by the matrix elements of ¢. The partition function

for the lattice of spins is

Zo =Y exp(—BHol{sa}]) = ¢V Zg
{Sn}

As a specific example, consider a quantum system with two states {| £ 1)} described by the Hamil-

tonian

—ﬁHQ =an-d

where 7 is an arbitrary unit vector. In spherical coordinates,

n=sinfcos¢x + sinfsingy + cosh 2
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The transfer matrix is

1+ecosh esinfe @

esinfe® 1 —ecosf
where € = o/N. The matrix ¢ is given by

log(1+ ecos) log(esin®) —i¢pp
log(esin®) +i¢ log(l — ecosf)

= %(log(l + ecosf) +log(l — ecosh)) + log(esinb) oy + poy +

1
5(10g(1 + ecosf) —log(l —ecosh)) o,

To first order in e,

t =log(esin®) o, + ¢ oy +ecosbo,

Note that
1
(salllsp) = 5(1 + Sash)
1
(saloalss) = (1~ sus1)
7
<3a|0y|5b> = _§(Sa — Sp)
1
<3a|UZ|Sb> = E(Sa + sp)
Thus,
1 )
(salt|spy = C + Jsqsp + §B(sa + sp) — %d)(sa — Sp)
where

1
C=-J= 3 log(esin §)
B = ecosf

Thus, the classical Hamiltonian Hg corresponding to the quantum Hamiltonian Hg is
—BHc[{sn}] =J Y snsni1+ B> sn

This is just the 1D Ising model with nearest neighbor coupling J and magnetic field coupling B.

Recall that the magnetization per spin is

MY =AY
m = <m> cosf
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where

At = e’ coshB =+ (¥ sinh? B4+ e 2 )V/2 = (1+¢)e @

If we substitute for B and J in terms of € and 6, we find

(4N =1 - -
m = ((1+6)N—|— { —E)N) cos ) = tanh v cos 6
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Chapter 5

Relativistic field theory in 3+ 1 and
1 + 1 dimensions

5.1 Introduction

Here I consider relativistic field theory in both 3+ 1 and 1 + 1 dimensions, and for both vector and
scalar fields. I discuss the coupling of the fields to point particles and calculate the fields radiated by
a moving particle. Also, I show that if the coupling to matter is chosen properly, scalar field theory

in 1 + 1 dimensions can be viewed as the 1 + 1 dimensional analog of general relativity.

5.2 Useful results

In this section I discuss some results that are useful in working with relativistic field theories. I
first discuss point particles, and then present two different ways of obtaining a conserved energy-

momentum tensor from a given field Lagrangian.

5.2.1 Point particles

We can describe the motion of a point particle by specifying its trajectory z#(\). The parameter A
is arbitrary; a transformation A\ — A changes our description of the trajectory, but not any physical
property of the particle. It is convenient to parameterize in terms of the proper time 7, which is
defined by the condition

v
Nuw'w” =1

where
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If @ and b are two points along the particle’s trajectory, then the proper time elapsed between point

a and point b is

Aa
T — Tp = / (mtuv”v”)l/2 d\
A

b

where

dz*
=
R

This gives the transformation from an arbitrary parameterization A to a parameterization in terms

of 7.

Given a trajectory zH(7) parameterized in terms of its proper time 7, we can define a number

of Lorentz invariant densities. There is a scalar density
plx) = m/é(D)(x —z(7))dr
which gives the mass density in the rest frame of the particle, a vector density
JH(x) = e/w“ 6Pz — z(7))dr
which gives the charge current, and a tensor density
)" (r) = m/w”w” 8Pz — z(7))dr

which is the energy-momentum tensor for a free particle. Note that

d
wh 9,0P) (x — (1)) = —d—é(D) (x — 2(1))
T
Thus, the charge current is conserved:
OpJ*(z) =0

Also,
y dw”
B, T () = m / S 5P~ 2(r)) dr

Note that 9, T} (x) = 0 for a free particle.

The trajectory for a free point particle can be obtained from the action

S, = /c,,(:c) d*z = /Lpd)\



257

where £, is a Lagrangian density and L, is a relativistic Lagrangian. There are several ways to

define a free particle Lagrangian. One possibility is
Ly(z#, ") = —771(770‘[3110‘1)[})1/2

This corresponds to a Lagrangian density

A second possibility is

L,=— —mnagwo‘wﬁ

2

Note that w® and w! are not independent, since they are related by the constraint
Nuw'w” =1

However, the correct equations of motion result if we ignore the constraint and vary them indepen-

dently.

We can also derive the equation of motion from the action

S = /(eflng“v” +m?)Ved\ = /Lp d\

where

e =exy = det(eyy) = (e’\)‘)_l

can be thought of as a one-dimensional metric for the trajectory. The Lagrangian that follows from
this action is
1
Ly(et vt ) = e 2 guote + & 2m?)

The equation of motion for e is

8Lp7
e

SO

e= m_QgH,,U“U”

If we substitute this into the original Lagrangian, we obtain

Ly(2#, ") = 777,(g‘ul,v”v”)1/2
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which reproduces our first Lagrangian.

5.2.2 Energy-momentum tensor

We will often want to construct the energy-momentum tensor corresponding to a given field La-
grangian £. One way to obtain the energy-momentum tensor is to apply Noether’s theorem to
spacetime translations. According to Noether’s theorem, we can define a canonical stress tensor 27
that has the property

90" = —0°L |cap

Here 9°L lezpt indicates that only explicit spatial dependence of £ is included in the derivative;
implicit spatial dependence, due to the dependence of £ on spatially dependent dynamical variables,

is not included. For a scalar field ¢, the canonical stress tensor is given by

oL
00 = —=—(9°¢) — "L
ORI
while for a vector field A*, it is given by
oL
0P = ————(9°A,) —n*"L
8(80(14#)( M) n

The energy-momentum tensor 7% can usually be obtained in a straightforward way from the canon-

ical stress tensor §%.

A second way to obtain the energy-momentum tensor involves writing down the action S for the
field in a form that is invariant under general coordinate transformations. We can then find the
energy-momentum tensor 7%° by varying the action with respect to the metric tensor (see [50] for

a proof of this result):

1
05 =~ /T“B 8gap g'/* d*x

where g is minus the determinant of g,,. For this method to be applicable, all the fields in the

action must be dynamical; that is, there can be no explicit spacetime dependence of the Lagrangian.

There are several results that are useful in performing the variations. First, the variation of the
inverse metric tensor is given by

59" = =" 9" 8gas

This follows from

6(9™" gup) = 9°" 0gup + gup 69°" = 6(0%) =0
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Second, the variation of ¢ is given by

69 = 99" 69w
This is easy to see in 1 4+ 1 dimensions. In 1 4 1 dimensions, g is
1 ap Pr
g = g10 901 — g11 goo = —56 € Ggapuv

and the inverse metric tensor is

1
gV = —— Qb BV

g Jors

Thus,
69 = _eaueﬁugaﬁ 6,9”1/ = ggHV 5g;uj

I now consider some examples.

The action for a free point particle is
S = —m/(77(3431)‘3‘1)ﬁ)1/2 d\
In covariant form this becomes
S = —77”L/(ga@1)°‘1)ﬁ)1/2 d\=—-m //(gagvo‘vﬁ)l/2 Pz — z(N\) drdPx
Thus, the energy-momentum tensor is
TP = mg~1/? /(gagvo‘vﬁ)fl/2 0P 5P (z — z(N)) dX
In Lorentz coordinates, this becomes

T8 = m/wo‘wﬁ 6Pz — 2(1)) dr

For a free scalar field, the action is

1 "
5= [0 iz

In covariant form, this becomes

s=3 [ 900005 @
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Thus, the energy-momentum tensor is

1
T = g"*g"? (0a)(0p) — 3 9" 9°%(0a9)(039)

For a free vector field, the action is
1 v j2
Sy = 1 E, F' d*x

In covariant form, this becomes

Thus, the energy-momentum tensor is

1
T = —gg%" 97 Fuo Fyr + 199" 47 Fuo For

5.3 Vector field

As an example of a relativistic field theory, let us consider a point particle coupled to a vector field.
We will first discuss a dynamical field coupled to a non-dynamical source, and then a dynamical
particle coupled to a non-dynamical field. Finally, we will consider a system where both the particle

and the field are dynamical.

5.3.1 Dynamical field

The Lagrangian for a free vector field A* is
1 "
Ef = _ZFHVF
where F*” the field strength tensor, is related to A* by
FrY = gt AY — 9" A#

Note that
0Ly

= —F‘U'U
90, A,)

So the field equations are

9, F" =0
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The canonical stress tensor corresponding to L is
037 = —Fr o’ A, + inaﬁFWFW =177 — For g, A"
where the energy-momentum tensor 74" is
TY" = FFF," + in‘“’F“ﬁFag
Using the field equations, we can express 9?6 as
037 =177 — 0, (Fr AP)

Noether’s theorem states that

aao?ﬁ = _aﬁﬁf |em;0l: 0

SO

0T} =
as can be verified by using the field equations.
Now, suppose we add an interaction Lagrangian L;:
L;=—-J"'A,

so the total Lagrangianis L¢; = L+ L;. Since the source J* will in general be spatially dependent,
the total Lagrangian is no longer invariant under translations. The field equations that follow from
Ly; are

O FH = J¥

The canonical stress tensor corresponding to L¢; is
037 =177 — For 9,AP + 2P g1 A,
Or, using the field equations,
037 =177 — 0, (Fo1AP) — J*AP + P J1 A,
Note that

0a05) = 0aT% — J*(0aA%) + (9°J") A, + J(0°A,)
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= 017" = F*PJ, + (0°J") A,
where I have used that the current is conserved (9, J* = 0). From Noether’s theorem, we have that
0a07) = =0 Lyi |eap= (9°T*) Ay
Thus, equating these two expressions for BQH?E , we find
0aT" = FoP ],
as can be verified using the field equations.

I now want to specialize to the case of a vector field in 141 dimensions. It is useful to introduce
a tensor €, which is defined by €p1 = —€10 = 1, €go = €11 = 0. It follows that Ol = —€l0 = 1,

€% = ¢! = 0. The following results hold:

ey = 6560 — 6108y
Eﬂyeua = 6#(1
ey = =2

The field strength tensor is
FH = gAY — Q¥ AF = e E

where the electric field F is
E=-0,A" —9,A' = F10

The Lagrangian for a free vector field is

1 1
L;=—-F,F" =_F?
R 2
The energy-momentum tensor T is

1 1
T4 = FFF," + Zn“”FC“’Faﬁ = —ZFQﬁFaﬁnﬂ” = _E*pw

The field equations are

OuE = —€,J"
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Or, in component notation,

E = J°
OE = -J'

These are just Maxwell’s equations in 141 dimensions.

5.3.2 Dynamical particle

Now let us consider a dynamical point particle coupled to a non-dynamical vector field A*.

Lagrangian density for the system is
Ly =—p— J,A"

where

plx) = m/é(D)(x —z(7))dr

is the mass density as measured in the instantaneous rest frame of the particle, and

JH(x) = e/w“ 6Pz — z(7)) dr

S:/@mﬁz—/%mx

Ly (2#,0") = TrL(77aﬁvo‘vﬁ)1/2 +evtA,

is the current. The action is

where

The equation of motion is given by

d 0Ly OLy; _
d\ Qv oz
Note that
%iiz = mnuv” (Napv®0®) T2 £ eA, = myw’ +eA,
%Z;ZZ = ev’ 0,4,
Thus,

d e
—wh = —F"w,
dr m

The
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Recall that the energy-momentum tensor for a free particle is
v v ¢(D
T (x) = m/w“w 6Pz — 2(7)) dr

Thus,
y dw”
B, TH () = m / S 5P~ 2(r)) dr

If we substitute the equation of motion for the particle, we find
0, Ty = F*J,

5.3.3 Dynamical particle and field

Now let us consider a point particle coupled to a vector field A*, where both the particle and the

field are dynamical. The total Lagrangian for the system is
1 174
L=Ls+Ly+L; = —ZFWF“ —p—J A"
where J* is related to the particle dynamical variables by
JH(x) = e/w“ 6Pz — z(7))dr
The total energy-momentum tensor is
T;,uj — T}Ll/ + T;uj

where

)" (r) = m/w”w” 6Pz — z(7))dr

and

1
T}“j = F‘uaFaV + ZW#VFQQFQ[}

The field equation is
O FH = Jv

The equation of motion for the particle is

d e
—wh = —F"w,
dr m
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From these, it follows that
0, TH" = —(?#T]i“' = F*J,

So the total energy-momentum tensor is conserved:
orTH =0

Because the only spatial dependence of the total Lagrangian is the implicit spatial dependence from
the dynamical variables, we can also obtain the energy-momentum tensor by varying the covariant

form of the action with respect to the metric tensor:

1
S = /g 9" FouFpy g1/2d2x—

m//g LM Y250 (2 — 2(A)) dA dPx

5.4 Scalar field

As a second example of a relativistic field theory, let us consider a point particle coupled to a scalar
field. We will first discuss a dynamical field coupled to a non-dynamical source, and then a dynamical
particle coupled to a non-dynamical field. Finally, we will consider a system where both the particle

and the field are dynamical.

5.4.1 Dynamical field

The Lagrangian for a free scalar field is
1 Iz
Ly = 5(0:0)(0"9)
The field equation that follows from Ly is
Op=0

The energy-momentum tensor T;‘ P for the field is just given by the canonical stress tensor 9?‘&

corresponding to L:

157 =037 = (0°9)(0°¢) — —n 7(8,0)(9" )

Thus, from Noether’s theorem,

0aT" = 007" = =0°Ls |expi=10
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as can be verified using the equation of motion.

Now suppose we add an interaction of the form

where p describes a source. Later we will let p depend on other dynamical variables in the Lagrangian,
but for now it is just a spacetime-dependent parameter. The equation of motion that follows from

Efi :Ef + L; is

dif

The canonical stress tensor corresponding to Ly; is
03 = (0°6)(0°9) — 5" (,0)("6) + 1 fp = T3" 4 1
Thus, from Noether’s theorem,
0205 = —0°Lyi |eam=07p

as can be verified using the equations of motion. Note that because p is a parameter rather than a

function of dynamical variables, its spatial dependence is included in 9°L 7i lexpr- We find that
01} = —(9°f)p

5.4.2 Dynamical particle

The Lagrangian density for a particle coupled to a scalar field is

Lpi=Ly+Li=—1+f(d)p

where f(¢) is a function that describes the form of the coupling, and for now the field ¢ is taken to

be a spacetime-dependent parameter rather than a dynamical variable. The action is
S:/@m%z—/%mx

Lyi(2",0") = m(1 + f) (00”2

where the Lagrangian is
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The equation of motion for the particle is given by

d OLyi 0Ly
d\ ovv 027
Note that
Co = (1 ) (™) = 1+ o =
E Ny Nagl" v =m Wy = Ty
OL,; .
S =m0, ) (a0

Thus, the equation of motion is

Lt + (14 )7 @) — ) =0

Or

d

ETF# = (%Lf

Recall that the energy-momentum tensor for a free particle is
v _ v (D
T (r) = m/w“w 5 )(ar —2(1))dr

We can define an energy-momentum tensor for a coupled particle that includes the interaction energy

of the particle with the field:
v _ v (D
Th (z) = m(1 + f)/w“w 6P (x — (1)) dr
Note that

9,1 (x) = m(@uf)/w“w” 6P (& — (7)) dr +

pi

m(l+ f) / d;:j 8Pz — z(7)) dr

If we substitute the equation of motion for the particle, we find that
0Ty (x) = (9" f)p

where

plx) = m/é(D)(x —z(7))dr
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5.4.3 Geometric interpretation

In the previous section, we showed that for the Lagrangian density
Lpi=Lp+Li=—1+[(d))p
the equation of motion for the particle is
d —1 v v
St (14 )7 O ) e — ) =0

I now want to show that we can reinterpret this result: instead of viewing the particle as moving
in a flat spacetime and being accelerated by the field, we can view the particle as falling freely in a

curved spacetime, with a metric tensor given by

Guv = (1 +f)277,uu

Note that given a particle trajectory z#(\), where A is an arbitrary parameter, we can define two
different proper times: a proper time 7 relative to the metric 7,,, and a proper time s relative to

the metric g,

dr = (nuudZ“dz”)1/2

ds

(9w dz“dz”)l/2

Since we are dealing with two metric tensors, to avoid ambiguity I will be careful not to raise or
lower indices. We can define a velocity v* relative to the arbitrary parameter A, and velocities w*

and u” relative to the proper times A and 7:

vt = %
wt = %
ut = %
Note that
Nuw'w” = guutv” =1
Also,
I = )
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ds
B Ky )1/2
d)\ (gul/v v )

We can express the particle Lagrangian as
Lpi (2", 0") =m(1 + f)(n;wvuvu)lﬂ = m(nguvu)l/Z

The equation of motion for the particle is given by the Euler-Lagrange equations:

d 0Ly OL,
d\ ovY dz7
Note that
e = Mgt (gagv®?) 2 = mgyu
0Ly
o JTan% a, B\—1/2
9 = 2mgijv VY (gapvo?)

Thus, the equation of motion is

d 174 1 174
d_s(g'yuu ) - iguu,'y ufu” =0

Or

35+ 397 G+ G = G =0

The Christoffel symbols are given by

1
I = 590‘7(%%# + Guyw = Guvy)

Thus, we can express the equation of motion as

d
d—SU’Y + Fvaﬁuauﬁ =0

so the particles move along geodesics of the metric g, .

5.4.4 Dynamical particle and field

Now let us consider a point particle coupled to a scalar field ¢, where both the particle and the field

are dynamical. The Lagrangian for the system is

L= Ly + Lyt L= Z(0u0)@"9) — (1+ o
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where p is related to the particle dynamical variables by
plx) = m/é(D)(x —z(7))dr
The total energy-momentum tensor is
17 =17 + T

where

Tﬁ'(z) =m(l+ f)/w“w” 5(D)(x —z(7))dr

and

757 = (0°9)(0%¢) — %n“ﬁ (Oud) (0" )

The field equation is

d
Dqﬁ—i—épzo

The equation of motion for the particle is

W (D Ot ) =0

From these, it follows that
0oy = =017 = (9°f)p

So the total energy-momentum tensor is conserved:
9aT" =0

Note that while for a vector field the total energy-momentum tensor of the system is just the sum
of the individual energy-momentum tensors for the particle and field, for a scalar field the total

energy-momentum tensor also includes a contribution due to the particle/field interaction.

Because the only spatial dependence of the total Lagrangian is the implicit spatial dependence from
the dynamical variables, we can also obtain the energy-momentum tensor by varying the covariant
form of the action with respect to the metric tensor:

s = 5 [ 900009 Pu -

m//(l + 1) (guv" )2 5P (& — 2(N)) dN dPx
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5.5 Greens function for the wave equation

In the next section, I will calculate the fields radiated by a moving particle for several different field
theories. For linear systems (that is, systems that obey the superposition principle), this is most
easily accomplished by the use of Greens functions, which are solutions to the field equation for a
point source. By integrating the Greens function against the source distribution function, we obtain
the fields produced by that source. Here I calculate retarded Greens functions for the wave equation
in various dimensions and show how the Greens function in D spacetime dimensions may be related

to the Greens function in D + 1 spacetime dimensions.

5.5.1 General expression for the Greens function

The Greens function for the wave equation satisfies
0G(z) = Qp_o 6P ()

where D is the spacetime dimension and €2, is the surface area of S™:

27.rn/2

" T(n/2)

The Greens function G(z) is related to its Fourier transform G(q) by
G(z) = (QW)_D/e_i‘” G(q)dPq

Thus,
0G(x) = —(2m) P / (¢-q) e % G(q) dPq

The delta function can be expressed as

6P)(z) = (2m)~P /e_i‘” dq

So from the definition of the Greens function, we find that

~ Qp_»
Gg) = —=P=2
(q) 14

Substituting this result into the expression for G(z), we obtain

G(z) = —Qp_o (2m)~ P /(q q)lemirT Py
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Note that

/(q cq) temlre gl = //(w2 — k2! o—iwt=F-7) g D=1k

The w integral is given by

/(w2 —EH e dw = /(w +k+ie) N w—k4ie) e dw

sin kt
k

= —270(t)

where I have chosen the poles in such a way that we get a retarded Greens function (other choices

of poles result in Greens functions that satisfy other boundary conditions). Thus,

Gr(z) = Qp_o (2m)~ P71 9(15)/% R gD -1,

A D dimensional spacetime may be viewed as a D + 1 dimensional spacetime that is symmetric
under translations along one of the spatial dimensions. This observation can be used to relate the

Greens function in D spacetime dimensions to the Greens function in D + 1 spacetime dimensions:

Qp_»

G,,P(t,(ﬂl," '7:I:D—l) = K
—1

/G7‘D+1(t7xl7"'7xD)de

5.5.2 Greens function in 3 + 1 dimensions

For 3 + 1 dimensions, the retarded Greens function is

sin kt

Go(Ft) = (4m)2m) 2 0(t) / K i
= —i(2n)71 (1) /000 /_11 ethreost (oikt _ o=kt d(cos 0) k dk

= _(271')_1 @/ (eikr _ e—ikr)(eikt _ e—ikt) dk
0

= —@ (0(t+7r)—08(t—r))
_ 5(t—r)

Note that

52 —r?) = %(5@ +7)+6(t—r))

Thus, we can also express the Greens function in a manifestly Lorentz invariant form:
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5.5.3 Greens function in 2 + 1 dimensions

For 2 + 1 dimensions, the retarded Greens function is

sin kt eiE'Fd2k

@
3
—~
3
~
~

Il

(27)(27) 2 G(t)/

oo 27
= (2n)7 ') / / et eosO gin kt df dk
0 0

Note that [51]
2
JO(ZU) _ (27‘1’)_1/ eimcosé do
0

and [51] .
/ JO(kT) sin kt dk = H(t _ T) (t2 _ 7'2)_1/2
0

Thus,
Gr(7F\t) = 0(t — 1) (12 —r?)~1/2

Or, in manifestly Lorentz invariant form,
Gr(z) = 0(z - ) (x - )" Y/?

We can also obtain the Greens function for 2 + 1 dimensions from the Greens function for 3 + 1

dimensions:

Gr(t,7) = %H(t) /(T2 + 2H7V25(t — (2 + 22)V?) dz
where 7= x & 4+ y . We can express the delta function as 6(f(z)), where
flz)=t— (" +2%)"?
If ¢t > r, then f(z) has zeros at z = £z¢, where
20 = (2 — r2)1/?

Note that
| (£20)| = 20 (r* + 25) /2

If t < r, then f(z) is negative and the delta function vanishes. Thus,

5t — (2 + 2212 = L0t — 1) (% + 22)2 (5(z + 20) + 6(= — 20))

20
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If we substitute this result into our expression for the Greens function, we obtain

Gl 7) = 0t — 1) = 0(t — 1) (12 — 72) 112

20

which agrees with our previous result.

Note that in 3 4+ 1 dimensions, waves only propagate on the light cone, while in 2 + 1 dimen-
sions, waves propagate both on and inside the light cone. This can be understood by noting that a

point source in 2 4+ 1 dimensions is equivalent to a line source in 3 + 1 dimensions.

5.5.4 Greens function in 1 + 1 dimensions

For 1 + 1 dimensions, the retarded Greens function is
1 sinkt ..
Gr(x,t) =2(2m)" " 0(¢) — ¢ dk =0(t) I(0)

where

2 [e'e) e—ozk
I(a) = = sin kt cos kx dk
O k

Note that I(oco) = 0. If we differentiate with respect to «, we can perform the integral:

ar 1 i+ n t—2x
doo w\a2+ (t+x)2 a2+ (t—x)2

Now integrate over a to get

I(a) = 1(0) — %tan_l (ti‘x) - %tan_l (tfx)

Using this expression, together with the fact that I(co) = 0, we find

1(0) = 0(t — =)

Thus,
Gr(z,t) =0t — |z|)

Or, in manifestly Lorentz invariant form,
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We can also obtain the Greens function for 1 + 1 dimensions from the Greens function in 2 + 1

dimensions:

1 _
Grlto) = 3 [ 01t = (4 ) ) (= a® = )2 dy

Note that, because of the @ function, the integral is nonzero only if ¢ > |z|. Thus, we can express

the Greens function as
Yo

1 ~
Gultor) = 2ot —1al) [ (4~ v") 2 dy
T —Yo
where

Yo = (t2 _ x2)1/2

If we perform the integral, we find

Gr(t,x) = 0(t — |z[)

which agrees with our previous result.

5.6 Fields radiated by a moving particle

I now want to evaluate the fields radiated by a moving particle, in both 1+ 1 and 3 + 1 dimensions,

and for both scalar and vector fields.

5.6.1 General results

Here I collect a number of results that are useful for calculating the fields and field gradients produced
by a moving particle. To calculate the field at x, we need to evaluate the retarded Greens function
G.(r(z,7)), where

r(z,7) =2 — 2(7)

and z(7) is the location of the particle at proper time 7. Note that

dr#
et 7
dr v
where
dz"
w2
v dr

is the velocity of the particle.

First I want to relate the gradient of G,(r) to the derivative of G, (r) with respect to the proper
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time 7. Because G,.(r) is Lorentz invariant, we can express the gradient in the form

d dr# n _
d—TGT(r) = 0,Gy(r) = —w" 9,G,(r) = —(r - w) h(r)
So
0,G,(r) = ~(r-w) ™ 1 - Gu()

Next, I want to evaluate §(r - r). Note that for a point x that does not lie on the world line of the
particle, there are two proper times for which r - r vanishes: the retarded proper time 7,.(z), and the

advanced proper time 7,(x). They are defined implicitly by

r(z, ) r(x,m) =r(x,74) 1(x,74) =0

and
22r) < 2° < 2%(7,)
Thus,
d 1
o(r-r) = |£(rr) (O(t — 7))+ (7 — 7a))
= 0w -7 =0 = 7))

In what follows I will assume that » and w are evaluated at the retarded proper time 7,.(z); that is,

r=r(x,7-(2)) and w = w(r.(z)).

Note that r may be expressed as

r=(r-w)(w+mn)

where n = n(x) is a vector field given by

The vectors n and w obey the following orthonormality conditions:

w-w=-n-n=1
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M

(r-w)wh

Z#(TT)

(r-w)nt

Figure 5.1: Diagram of vectors, drawn in the instantaneous rest frame of the particle at the retarded
proper time 7,.(z) of point z*.

w-n=>0

Note that r - w may be interpreted as the distance from the particle to the point z, as measured in

the instantaneous rest frame of the particle at the retarded proper time 7,.(z).

In summary, given a particle trajectory z(7), we have defined vector fields r, w, and n by

r = r(x1(r) =2 - 2(7(x))
w = w(Tr(x))

no= (r(@7 (@) wm) e, m() - win (@)

Note that r is everywhere lightlike, w is everywhere timelike, and n is everywhere spacelike. A

diagram of the vectors r, n, and w for a specific point z is shown in Figure 5.1.
I now want to calculate the gradient of r. Note that

Dor? = 04(2" — 2P(1,)) = 6P — WP Do
Since r - r = 0, it follows that

1
Eaa(r-r)zrﬁaarﬁ:ra—(r-w)aanzo
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Thus, the gradient of the proper time is
OaTr = (r-w) 174 = Wo + Na
So the gradient of r is
9o’ =68, — (r-w) try w? =46°, — (Wo + nq) w?

Note that
Our® =D —1

where D is the spacetime dimension.

5.6.2 (General results for a vector field

Consider a vector field A" coupled to a current J* in D spacetime dimensions. The Lagrangian is

1
40Qp_o

L= FHrE,, — p— J, A"

The field equation is
O F" = Qp_sJ”

In the Lorentz gauge (9, A" = 0), this becomes
OA*(z) = Qp_o J*(x)
For a point particle with trajectory z(7), the current is
JH(x) = e/w“ 6Pz — z(7))dr
Thus, the retarded vector potential for the particle is
Al (z) = /Gr(x —y) J*(y)dPy = e/w“ G.(r)dr
The gradients are

O Ak (x) = e/w“&,GT(T)dT
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Note that

d Ltk = —(r-w) Tt e + (r-w)”
Lr-w) ) = ~(r ) +(r-w)

2wk 4 (row) Y s?

where I have used that w - w = 1, and I have defined
s=a—(r-w)(r-a)w=a—(a-n)w

Note that

r-s=20

and

s-s=a-a+(a-n)?

The retarded field strength tensor is
V= grAY — OV AF = e/GT(r) (r-w) 2 el + (1 w) " rle sy dr

I now want to discuss the conservation of energy and momentum. Recall that we can define an

energy-momentum tensor for the field
T Qfl ( FHe FBV +1 nz Fo Fﬁo’
] p—2"ap 1 NaB o )

such that
8HT]5”' =F"J,

Using that F** = F* + F!'" we can decompose the energy-momentum tensor as follows:

137 =Tl + TP + TS

CTross

where

m wm

v — (0% 124 1 (0% o
T = Qpl o (1ag FLC FLY + 477 Y N Nyo FLTFE)

is the energy-momentum tensor for the in field,
1
T = QpLo(ap FY B 4 0™ N 1o 2 F7)
is the energy-momentum tensor for the retarded field, and

B 1
Tl = QLo (ap FL Y+ 1ap FiS FPY 4 50 o 1o B2 FLY)

Cross
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is the energy-momentum tensor associated with the interference between the in field and the retarded
field. Note that
OuFI = Qp_aJ”

and

Ok, =0

from which it follows that 727, T8 _  and T8 obey the individual conservation laws

wm ) Cross’

T2 = 0
80(ng55 = F iiyJ#
0T’ = FM™J,

5.6.3 General results for a scalar field

Consider a scalar field ¢ coupled to a source p in D spacetime dimensions. The Lagrangian is

1

L= 2Q0p_2

(0u0)(0"d) — (1 + ¢)p

The field equation is
Up=—-Qp_2p

For a point particle with trajectory z(7),
pla) = [ 0w~ x(r) ar
Thus, the retarded field radiated by the source is
00(0) = = [ Gl =)o)y =~ [ Gy dr
The gradient of the retarded field is

Ouor(z) = —/aHGT(T‘)dT

I
|
@Q
3
3
S~—
S
ﬂ
~—~
—
=
g
~—"
AN
-
=
~—
U
\]

Note that
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Thus, the gradient of the retarded field is

0,00() = = [ Go(r) (- w) 2 (s = (- w) = (-0, dr

I now want to discuss the conservation of energy and momentum. Recall that we can define an

energy-momentum tensor for the field
&3 - [e3 1 (63
T3 = QpL, ((079)(0°6) — 51°7(9,0)(0¢))

such that
0T = —(0%9)p

Using that ¢ = ¢, + ¢4, we can decompose the energy-momentum tensor as follows:

10 =Tl + TP+ T

Cross

where

To = 5 (0% 60n) (0 6in) — 51 (0ui0) (" 610))

is the energy-momentum tensor for the in field,
T0% = 0L, ((0°6,)(0700) — 51(0,6,)(0"6,))
is the energy-momentum tensor for the retarded field, and
Trdss = oo ((096:)(97 din) + (0761) (0% Bin) = 17 (D) (9" Bin)

is the energy-momentum tensor associated with interference between the in field and the retarded

field. Note that
O, = —Qp_ap

and

from which it follows that 727, T8 _  and T obey the individual conservation laws

wm ) Cross?

TP = 0
TS, = —pdtin

Cross

BaT? = —pdPe,
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5.6.4 Vector field in 3 + 1 dimensions

Let us begin our study of vector fields in 3+ 1 dimensions by calculating the retarded field produced
by a moving particle. We will start with points x that do not lie on the world line of the particle.

In section 5.6.2, we showed that the retarded field strength tensor is given by
Fr = e/GT(r) ((r- w)72 plew?! 4 (r- w)71 rle s”]) dr

The retarded and advanced Greens functions in 3 + 1 dimensions are

G.(r) = 29(r0)6(r-7°) = (r-w)71 §(r—1)
Gu(r) = 29(—7‘0) o(r-r) = —(r-w)_l 6(T — Ta)
Thus,
B = B4 P
where
F' = e(r- w) 73 (rfw” — rYwh)
Fi = e(r- w) "2 (rs” — Vst

and where r, w, and s are all evaluated at the retarded proper time 7,.(z). We see that the retarded
field strength tensor is the sum of a velocity field F"/, which falls off like 1/R?, and a radiation field
F!" . which falls off like 1/R.

rad’

Now let us calculate the retarded field for points x = z(7’) that do lie on the particle world line. This
requires care, because the field diverges as we approach the particle. We can isolate the divergent
part of the field by taking linear combinations of the retarded and advanced field strength tensors

(I believe this observation was first made by Dirac):
FIY = F + Fiv

Then

T

FIEY () |pma(ry= e/Gi(r(x,T)) diT (T“(x,T) w”(r) —r¥(z,7) w”(ﬂ) d

r(z, ) w(r

where

Gi(r) = G.(r)+Gu(r)=26(r-1)

lC)
—~
E
~—
I

Gr(r) — Ga(r) = 2¢(r°) 5(r - 1)
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We can calculate these fields using a method presented in [38], which involves expanding the inte-
grand in the parameter u = 7 — 7’. Let us define z = 2(7'), w = w(r’), a = a(7’'), a = a(7’). If we
expand z(7) and w(7) in u, we find

1y 1 3. 4
z 4 uw+ 5 U a+ e a+ O(u®)

1
w+ ua + §u2d +0(u®)

IS
—~
3
~—
Il

£
\]

S~—
I

Thus,

(7)== = 2(r) = ~u(w + Fua + gud) + O(u')

and

r(z,7) - w(T) = —u(l - %uQ (a-a))+O(u*)

where I have used that a-a+w-a = 0 (this follows from w-a = 0). From these results, we find that

u2

3
r(x, T)wY (1) — r¥(x, 7)) wh (1) = —gw[“ al — %w[“ al + O(u*)

and
ri(z, T)w” (1) — ¥ (z, 7) wH(T)

r(z,7) - w(r)

2
= g wlt ol + % wl o’ + O(u®)

If we substitute these into these expressions into the field strength tensor, we obtain

1 2
Fi(z(m)) = e/Gi(—uw) (Ew[“ a’l + U wl @) + O(u?)) du

where
Gi(—uw) = 26(u?)
G_(—uw) = —2¢(u)d(u?) =268 (u)
Thus,
F* = —gew[“ a!
P = ewl* gV /5(u2) du = 2(mg/e)w a¥!

where I have defined a divergent self-energy mg:
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The retarded field strength tensor is therefore

2
FM = _(FI" + F') = _gew[u a’! + (mg/e)w* a”!

N =

The equation of motion for the particle is
mat = eF"w, = e(F!\' + FI'")w,
Substituting for the retarded field, we find
% 2 2/
ma* = eF! M w, + 3¢ (@" 4 (a-a)w") —mga"

Or

2
mpgat = eFlw, + §62 (@" + (a-a)wh)

where mr = m + mg is the renormalized mass.

Now let us calculate the energy-momentum tensor for the retarded field:

1
TY = (4m) " 1y F FP + 30 1oy 1 B FP°)

If we substitute F** = F"7 + F"” we find that

vel rad’

Nop F2 F™ =0

rad © ve

Thus, the energy-momentum tensor for the retarded field can be expressed as the sum of energy-

momentum tensors for the velocity field and for the acceleration field:

TH =T + T

r vel rad

where
T = ()M S FOY 4 Ty EEPT
vel Nap Lyer Lyel 477 Ne Tyo 'yel L'vel
1
= (e2/4m)(r - w)7° (rfw” + rYw” — 5(1‘ cw) ') — (2 /4n)(r - w) O ri?
and

v — «a v 1 v o o
T = (47) " (nap F" FP +Zn# Ne e F21 FP%)

rad rad * rad rad * rad
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wh S
Cs

Gy

2H(7)

Figure 5.2: The region V is defined by the intersection of surfaces S, C, and Cs. This diagram is
drawn in the instantaneous rest frame of the particle at proper time 7.

= —(e*/4n) (r-w) " (s-s) i

= —(62/47T) (r- w)_2 (a-a+(a- n)2) (w” 4+ nt) (w” +n")
Here I have used that

Nap NBv FOB ey — 962 (r-w)™?

vel ~ vel

naunﬁuFaﬁ Fr =0

rad ~ rad

Using these results, we can calculate the momentum that the particle exchanges with the field during
a proper time interval [7, 7+ d7]. Let C; and Cs denote the lightcones for points z(7) and z(r 4 dr).
Working in the instantaneous rest frame of the particle at proper time 7, we can define a sphere of
radius R that is centered on z(7). Let S denote the surface swept out by the spacetime trajectory
of this sphere. The total momentum P® flowing out of the region V that is enclosed by surfaces .5,

C1, and Cy is given by (see Figure 5.2)

AP = / TP dog
2%
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where dog(z) is the outward-pointing surface element at point z. For points x € S, do* can be
expressed as

do* = —R%n* dQ dr

where the minus sign is required so that do* points outward (n - do > 0). For points z € Cq, do*
can be expressed as

do* = p* (n* +w")dQdp = pr* dQ dp

while for points « € C7, do* can be expressed as
dot = —p* (n* +w")dQdp = —pr* dQ dp
where p(z) = r%(z) is a radial coordinate.

Part of the momentum flux is due to radiation, and part is due to momentum corresponding to

the velocity field; that is, P* = P, + P, where
rad = / T::zﬁd dog
ov
vel = / ng dog
ov
Note that
TpTeg = 0
1% 62 —4 v
Tu Tvel = 8_71' (’f‘ : ’U}) r

Thus, momentum from the radiation field can only flow through surface S:

T";dz/STslﬁddoﬁ = —(62/47r)w0‘d7/5(a-a+(a-n)2)dQ

In the instantaneous rest frame of the particle at 7,

a* = (0,d)

Thus,

(a-n)* = (@-n)* = |d@* cos’d = —(a-a) cos® 0
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where 6 is the angle between @ and n. Substituting this result into the integral, we find that

2
o = —Z¢e*(a-a)wdr

3
Now let us consider the momentum flux corresponding to the velocity field. Momentum from the
velocity field can flow through S, C1, and Cj; however, because the energy-momentum tensor for
the velocity field falls off like 1/R*, for large R the momentum flow through S is negligible. Thus,

momentum corresponding to the velocity field only flows through C7 and Cs:

Cz Cl
R

(€2/2) (w® (r + dr) — w® (7)) / Lo

0P2

mg a®(7)dr

where

Thus, the total momentum flux is

AP AP®

rad

n APS, 2,
dr dr dr

—3¢ (a-a)w® +mga®

We obtained this expression for the total momentum flux by evaluating a surface integral over the
boundary of the region V. But if we apply Gauss’s theorem, we can also express AP% in terms of

a volume integral:
AP = / TP dog = / TP da = —/ FoP Jgdx = —eFP(2(1,)) wg dr
oV v v
Thus, substituting the expression for F*?(z(7,.)) that we derived earlier, we find

Ape 22 s a «
o = 3¢ (a* + (a-a)w*) +mga

This is the same as the expression we found by performing the surface integral, except that there is
an additional @ term. I'm not sure why the surface integral failed to produce this term; I assume it
is somehow due to the contribution of the surface integral at the points z(7) and z(7 + dr) where
the particle intersects the surface. At these points the energy-momentum tensor is singular, and a

more careful treatment of the surface integral is probably needed.
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5.6.5 Scalar field in 3 + 1 dimensions
Let us now consider a scalar field in 3 + 1 dimensions and calculate the retarded field produced by

a moving particle. We will start with points z that do not lie on the world line of the particle. In

section 5.6.3, we showed that the retarded field is given by

0,n(z) = = [ Golr) (- w) 2 (s = (- w) = (7))

Substituting for the Greens function, we find

au¢r = u¢rud + au(bvel

where

Optraa = (r-w)>(r-a)ry = (r-w)™" (a-n) (w, +ny)
Oudver = —(r-w) 7> (ry = (r-w)wy) = —(r-w)ny
Now consider points 2z = z(7’) that do lie on the world line of the particle. The gradients of the

fields at x are

Op () = —/Gi(r(:z,r)) % (T("LT)(T)) i

T,T) - w

By expanding in w = 7 — 7/, we can show that (see section 5.6.4)

1 1
% =w, + Uy + guz (au + (a-a)w,) + O(u?)
So
1 1 ,
Opt+(z) = —/Gi(—uw) (5 a, + U (ay + (a-a)w,)+ O(u?)) du
Thus,
2.
Oup— = g(au + (a-a)wy)
Oud+ = —a#/5(u2) du = —2mgay,
where

1
mg = 5/5(u2) du
is the self-energy. The gradient of the retarded field is therefore

1

8,u¢r = _(8ﬂ¢+ + 3u¢f) =

B (ap + (a-a)w,) —msay,

Wl =
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The energy-momentum tensor for the radiation field is

T = () (076)(0%0) — 51" (0,6)(09)
= (@Amn)tr-w) " (an)? (w® + n®) (w® 4+ nP)

Using this expression, we can calculate AP , as defined in the previous section:

B
rad /S Trofzd dog

= (4n)! dT/S(n-a)2 (w* +n%)dQ

(4m) " dr w™ /S(n -a)?dQ

1
= —g(a-a)wo‘dT

where I have used that

(n-a)*> = —(a-a) cos®f

as was shown in section 5.6.4.

5.6.6 Vector field in 1 + 1 dimensions

Consider a particle coupled to a vector field in 1 + 1 dimensions. The retarded Greens function in

1 + 1 dimensions is

Note that

C%Gr(r) ==2(r-w)0(°)6(r-r) = =0(1 — 1)

Thus, the gradient of the retarded field produced by the particle is
-1 d -1
O Ar = —e [ (r-w)" ryw d—GT(T) dr=e(r-w) "r,w* =e(w, +n,) w"
T

where r and w are evaluated at the retarded proper time 7,.(x). The retarded field strength tensor
is

FIv =orAY — 0" Al = e (nfw” — n"wh) = E e

Thus, the electric field is

E=ceepw'n’ =ee(z' — z(2"))
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Here I have used that in 1 4+ 1 dimensions, n can be expressed in terms of w:

ny(z) = —e(z' — 21 (7,.)) € W (T7)

SO

€y WHnY = ezt — 2(1)) = e(a! — 2 (2?))

5.6.7 Scalar field in 1 + 1 dimensions

Now consider a particle coupled to a scalar field in 1 + 1 dimensions. The retarded and advanced

Greens functions in 1 + 1 dimensions are

Note that

C%Gr(r) ==2(r-w)0(°)6(r-r) = =0(1 — 1)

Using the results of section 5.6.3, we find that for points x that do not lie on the world line of the
particle, the gradient of the retarded field is

d
Our(z) = /(7" w) "y, EGT(T) dr = —(r-w)"try = —w, —ny,

where 7 and w are evaluated at the retarded proper time 7, (z).

For points # = z(7’) that do lie on the world line of the particle, a more careful treatment is

needed. The field gradients are

d
Opbr.a(z) = /(r cw) ", d_rGT’“(r) dr

As in section 5.6.4, we will define z = z(7'), w = w(7’), and expand the integrand in the parameter
u=7—71". We find
(r-w) ™ 1y = w4 O(w)

Thus, the field gradients are

d
0pubr.a lo=z(r= wﬂ/%Grya(—uw) du
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Note that
Gr(—uw) = 0(—u)
Go(—uw) = 6(u)
So
au¢r |z:z(7’) = —’U}M(T)
au(ba |z:z(7’) = ’LUM(T)

In summary, for points x that do not lie on the particle trajectory, the gradient of the retarded field

is

Optr(z) = —wu (70 (2)) = npu(7e(2))-

For points « = z(7) that do lie on the world line of the particle, the gradient of the retarded field is

Our(2(7)) = —wu(T)
The equation of motion for the particle is
Lot (14 )7 Q) — ) =0
Or, using that ¢ = ¢y, + Op,
d . -1 v vy _
P (1 + ¢ + @in)” (0w din) (W'w” —nt) =0

We can evaluate ¢, using the general expression we found in section 5.6.3:

00 =~ [ Gl 2 i = — [0~ Lrar = -+
where 7 is an integration constant. Thus,

d
Ew“ + (1 + T0O — T + ¢in)71(au¢in)(w#wy - 77#1/) = 0

The dependence of the equation of motion on the absolute proper time 7 is strange, and I’'m not

sure how to understand this result. It seems to indicate that as |7 — 79| — Fo0, the force on the

particle goes to zero.
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Let us now calculate the energy-momentum tensor for the retarded field. For points that do not lie

on the world line of the particle, the energy-momentum tensor is
Tf‘ﬁ = (1/2)(r-w)™? ropP = (1/2)(w™ + n“‘)(wﬁ + nﬁ)
We can check that this satisfies the energy conservation equation
0T = —p0°e,

For points that do not lie on the world line of the particle p = 0, so the energy conservation equation
becomes

DaTP =0

We can check this result by evaluating the partial derivative

BaT,?‘ﬁ = (1/2)0u((r-w)™2 ro‘rﬁ)

(1/2) (r- w)_2 (rﬁ Our® +1¢ (%rﬁ) — (r- w)_3 rPra O (1 - W)
In section 5.6.1 we showed that 7® 9o = r?, r* 9,7, = 0, and 9,7 = 1. Thus,

7% On(r - w) = ra(aarﬁ)wﬁ =r-w
So we find that 9,7%% = 0, as expected.

We can use our expression for the energy-momentum tensor of the retarded field to calculate the
momentum that the particle exchanges with the field during a proper time interval [, 7 + d7]. Let
us consider a spacetime region V defined as in section 5.6.4. The total momentum flowing out of
this region is

AP = / T2 dog
oV

where for points x € S, the surface element do# is
dot = —ntdr
for points x € Cs, the surface element do* is

1
do* = (n* +w)dp = —rtdp
p
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and for points z € C1, the surface element do* is

1
dot = —(n* +wh)dp=——r*dp
p

where p = 7. Since r,T*” = 0, only the surface S contributes to the surface integral:
AP® = / TP dog = w™ dr
s
where I have substituted 7.%% = (1/2)(w® + n®)(w” + n?).

We can check this result by using Gauss’s theorem to convert the surface integral to a volume

integral:

AP* = / T dog = / TP dPx
1% v
If we substitute the energy conservation equation

3ﬁTfﬁ =—p0%¢p,

we obtain

AP® = —/ p8a¢>r d217 = —8a¢r |m:z(7’) dr = wa dr
14

which agrees with our previous result.

5.7 Gravity

It is straightforward to write down the 141 dimensional analog of Newton’s theory of gravity. The
field equation is

92¢ =2Gp
where p is the mass density. For a point particle following a trajectory z(t), the mass density is
p(t,x) = m/é(:z: —z(t)) dt
The equation of motion for the particle is
ERp—

It is not so straightforward to write down the analog of general relativity in 141 dimensions. Since

the Einstein field equations involve tensors that are well defined in any number of dimensions, the
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most obvious approach is to simply apply them to the 141 dimensional case. This doesn’t work,
however, for the following reason. In 141 dimensions, the Riemann tensor can be expressed in terms
of the curvature scalar [52]:

R
Rvuaﬁ = 5 ng (g;wz 9vB — Gup gl/a)

From this result, it follows that the Ricci tensor is
Ryp =Ry = gguﬁ
which implies that in 141 dimensions the Einstein tensor vanishes:
GW:RW—ggW:O
and the Einstein field equations are
G =8rGT,, =0

Thus, the Einstein field equations do not constrain the metric tensor and simply state that the

energy-momentum tensor vanishes.

In the following sections, I consider an alternative theory of gravity in 1+1 dimensions, which
is described by the field equation
R =4GgasT™?

This is the direct 1+1 dimensional analog of a theory of gravity in 3+1 dimensions that was proposed
by Nordstrgm in 1913. His field equations were (see [53] and the discussion of prior geometry in
[54])

R = 247Gg,sT?

cP,, =0

where C? wv is the Weyl tensor. In 1+1 dimensions, the Weyl tensor vanishes identically, so the
Nordstrgm equations are equivalent to the proposed field equation for 141 dimensional gravity. This
theory of 1 4+ 1 dimensional gravity was first written down by Robert Mann, who has investigated
the theory in depth (see [55] and [56], for example). Here I derive the field equation for 141
dimensional gravity using two different approaches, and then I present the 141 dimensional analog

of the Schwarzschild solution and the solution for a static star of uniform density.
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5.7.1 Field equation: first approach

The first approach is to consider gravitational tidal forces. In Newtonian gravity, two nearby test
particles that are falling freely can experience a relative acceleration due to local variations in the
strength of the gravitational field. We can attempt to interpret this effect geometrically: we assume
that the particles move along geodesics in a curved spacetime, and that the relative acceleration
is the geodesic deviation caused by the curvature. By comparing the Newtonian theory with the
geometric interpretation we can relate the mass density to the curvature tensor, and thereby obtain

the 141 dimensional analog of the Einstein field equations.

We will begin by using the Newtonian theory to derive an equation for the tidal acceleration of
two nearby freely falling particles A and B. Let z(¢) denote the position of particle A, and let
z(t) + A(t) denote the position of particle B. The equation of motion for particle A is

Z=- xd)
and the equation of motion for particle B is

where I have assumed that A(t), the separation between the two particles, is small relative to the
spatial variation of the gravitational field. If we subtract the first equation from the second, we find
that

A+ (02¢)A =0

We can substitute the Newtonian field equation to obtain
A+2GpA=0

We would like to interpret this as the nonrelativistic limit of the equation for geodesic deviation:

d*A R
— +=-A=0
ds? + 2
Thus, we are led to identify
R =4Gp

This should be the nonrelativistic limit of our new field equation. This cannot be the correct
relativistic field equation, since R is a scalar under general coordinate transformations, while p is

the time-time component of a rank two tensor (the energy-momentum tensor). However, note that
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the trace of the energy-momentum tensor is a scalar and reduces to p in the nonrelativistic limit:
9o T =p—p—p

Thus, we take
R = 4Gg,sT*P

as our gravitational field equation.

5.7.2 Field equation: second approach

The second approach is to start with a relativistic field theory in flat spacetime and attempt to
modify it so as to incorporate the principle of equivalence. This approach is meant to parallel Feyn-
man’s derivation of the Einstein field equations starting from a spin-2 field in flat spacetime [57].
The principle of equivalence states that gravity couples to all forms of energy-momentum, including
the energy-momentum of the gravitational field itself. Thus, I will consider a system consisting of
a point particle interacting with a scalar field, where the form of the interaction is determined by
requiring that the field couple to the trace of the total energy-momentum tensor for the system. This
gives a nonlinear field theory in flat spacetime, which can then be reinterpreted as a field theory in

curved spacetime with metric tensor gog = e2? Nas-

Consider a theory in flat spacetime that describes a point particle coupled to a scalar field ¢.

The Lagrangian for the system is

1 H
L= 75(0u0)(0"¢) = (1 + f(9)p

where f(¢) is a function that describes the coupling, G is the coupling strength, and

plx) = m/5(2) (x — 2(1)) dr

is the mass density in the rest frame of the particle. We will determine f(¢) by requiring that the
field couple to the trace of the total energy-momentum tensor for the system. From the Lagrangian,

it follows that the total energy-momentum tensor is

TS = L (@°0)(076) — 3 (0:6)(0"6)) +

m(1+ f) /wo‘wﬁ 6@ (z — (1)) dr
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The subscript indicates that the energy-momentum tensor is defined relative to the point of view
in which the particle is moving in flat spacetime with metric 7, ; later, when we consider the par-
ticle to be moving in a curved spacetime with metric g,,,,, we will need to distinguish the flat space

energy-momentum tensor T(‘jg from the curved space energy-momentum tensor T(O;f .

The field equation is

d
D¢:—2Gép

The equation of motion for the particle is

Lot (4 DOt — ) =0

From these it follows that the energy-momentum tensor is conserved:

af _
OaTy) =0
We want to choose f(¢) such that the field couples to the trace of the total energy-momentum

tensor:

_ af3
O¢ = —2G nasT()

If we substitute the field equation and the expression for T(O‘ﬁ we see that this condition implies

n)’
af
%_1+f
So
F(9) = Ae? —1

for some constant A. If the field vanishes, the particle should be free, so we require that f(0) = 0,

which implies A = 1:

fl@)=e~1
Thus, the Lagrangian is
1
[ “h) — o?
£ = 15(0,0)0"0) — %p
the energy-momentum tensor is
108 = ((0%6)(0°0) — 5n™(0,0)(0"6) +
m = 2G 21 #

me‘b/wo‘wﬁ 6@ (x — 2(r)) dr
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the field equation is
Op = —2Ge®p

and the equation of motion is

iw“ + (0 d)(wHw” — ) =0
dr

As we have seen in section 5.4.3, we can view the particle as moving freely in a curved spacetime

with metric tensor

uv = (1 + f)2 Ny = 62¢77uu

From this point of view, the energy-momentum tensor of the particle is

T(O;f(:t) =mg~1/? /uo‘uﬁ 0@ (z — 2(s)) ds

Thus,
gaﬁT((if = mgil/z/é(z)(:c —z(s))ds = me*2¢/6(2)(x —z(s))ds
Note that
ds = e®dr
Thus,

s T = me? [0 =2 dr = m [ 69 = 2(9)ds = * 4o T3

The curvature scalar corresponding to g, is (see the following section)
R=—2"%n"0,0,6 = —2¢2?0¢
So we can express the flat spacetime field equation as
R = 4G gasT()

In summary, from one point of view the spacetime is flat, and the particle interacts with a scalar
field ¢. The field equation is
O¢ = —2Ge®p

and the equation of motion for the particle is

Lt 4 (@) (W — ) =0
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From another point of view, the spacetime is curved, and the particle falls freely. The metric tensor
satisfies

_ af

R=4G gagT(g)

and the equation of motion for the particle is

d
E’UJ’Y + F’Yaguauﬁ =0

5.7.3 Geometry in conformal coordinates

Here I calculate the Christoffel symbols and curvature scalar for the metric

Guv = 62‘%:/

Note that

g=—detg,, = et?

The Christoffel symbols are

1 v
FHQB = 59“ (guﬁ,oz + 9av,p — gaﬁ,u)
= nwj (771/5 aot¢ + Nav aﬁ(b — Nap 8u¢)

= 5“{3 8a¢ + 5#04 8ﬁ¢ - gaﬁglw 8v¢

Thus, the geodesic equation

d
d—su“ + THpuu’ =0

can be expressed as

Lt (@) 2t — g) =0
S

The Riemann curvature tensor is
R g =01 0 — 0 oy + 1705y, = T7 0 I8
The scalar curvature is
R= QQBRMQMB = gaﬁ(aul—waﬁ - aﬁl—wau + Fvaﬁl—w"w - Iwaul—wvﬁ)
For the first term, note that

6MFH0¢B = 2(9(1(95(]5 - gaﬁguyauau(b
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Thus,
g0, a5) = 0

For the second term, note that

'y =20a¢

Thus,
gaﬁ(aﬁl—wau) = 2gaﬁaaaﬁ¢

For the third term, note that
gaﬁpua 5= 0

Thus,
g*PTH 5T 4y = 0

For the last term,

g*PTH T 5 = 0

This can be seen by substituting for the Christoffel symbols. Thus, the scalar curvature is
R =—2¢g"0,0,¢6 = —2¢ 21" 9,0, ¢

5.7.4 Schwarzschild solution

I now want to present some solutions for the theory of gravity in 141 dimensions. We will begin
with the 141 dimensional analog of the Schwarzschild solution, which was first written down in [58].
The derivation I give here parallels the derivation of the Schwarzschild solution that is presented in

[59].
For a static solution, the metric has the form
ds* = A(y) dt* — B(y) dy?

Note that because the solution is static, there is no dt dz term. If A(y) and B(y) are positive and

nonsingular, we can define a coordinate transformation

y
7= [ (AwBW)"* du
0
If we perform this transformation and drop the bars, the metric takes the form

ds? = A(y) dt* — A (y) dy®
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The scalar curvature for this metric is
- d?A
dy?
I will assume that g,gT*® = 0 for y # 0, and that the space is symmetric under y — —y. Then the

solution to the field equation is

A(y) = 2aly| +b

for some constants a and b. Thus, the metric tensor is
ds® = (2aly| + b) dt* — (2aly| + b)~* dy?

Note that a must be positive so that as y — oo the metric has the correct signature, but b may have
either sign. For b < 0, there are event horizons at x = £b/2a, which are analogous to the event

horizons of the Schwarzschild solution. For b > 0, there are no horizons.

To gain some insight into the b > 0 class of solutions, let us look at the solutions in several different
coordinate systems. We will call the original (¢,z) coordinates Schwarzschild coordinates. Let us
consider a transformation from the Schwarzchild coordinates (¢, z) to a new set of coordinates (u,v)

that are given by

a~t (2a|x| 4+ b)'/? sinh at

g
|

v = a te(x)(2alz|+b)/? coshat

The (u,v) coordinates will be called Kruskal coordinates, after an analogous coordinate system used

to describe the Schwarzschild solution [60]. Note that

du (2azx + b)Y/? coshat  e(x) (2ax + b)~'/? sinhat dt
dv e(x) (2azx + b)'/? sinh at (2ax + b)~'/? coshat dx

If we express the metric in terms of the Kruskal coordinates, we find
ds* = (2azx + b) dt* — (2ax + b) ' d2?* = du® — dv?

Thus, the Kruskal coordinates describe a flat spacetime in Lorentz coordinates. However, only the
regions to the left and to the right of the hyperbolas given by v? —u? = b/a? describe physical events.
These two regions are glued together along the hyperbolas; that is, if an event has coordinates (u, v)
such that v? — u? = b/a?, then (u,v) and (u, —v) are two coordinates for the same event. We can

therefore consider the left and right hyperbolic regions as two separate coordinate patches. Instead
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of describing both regions with the single coordinate system (u,v), let us describe the left region

with coordinates (u_,v_), defined by

u_ = a *(b—2azx)/?sinhat

v = —a*(b—2ax)"/?coshat
and the right region with coordinates (u4,vy), defined by

uy = a *(2ax +b)/?sinhat

vy = a Y(2ax+b)/?coshat

An event with Schwarzschild coordinates (¢,z) is described by the (u4,v;) coordinate system if
z > 0, and by the (u—,v_) coordinate system if x < 0. Points with = 0 (that is, points on the

singularity) are described by both coordinate systems, which are related by

U+ = Uu—-

V4 = —U_

In order to glue the coordinate systems together, we need to relate the coordinate descriptions of

vectors in the tangent space of the overlap region = 0. Note that for = > 0,

duy (2ax + b)'/? coshat  (2ax + b)~'/? sinh at dt
dv (2ax + b)'/? sinhat  (2ax 4 b)~'/? coshat dx

duy b'/2 coshat b~1/? sinhat dt
dvy bY/2 sinhat b=/ coshat dz
For x < 0,
du— | (b —2ax)'/? coshat —(b— 2ax)~1/? sinhat dt
dv_ —(b—2ax)'/? sinhat (b — 2ax)~/? coshat dx
So as x — 0 from below,
du_ b'/?2 coshat —b~1/? sinhat dt

dv_ —b/2 ginhat  b=1/2 coshat dx
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Thus, at z = 0, the tangent spaces for the two coordinate systems are related by

du_ cosh2at  —sinh2at duy
dv_ —sinh2at  cosh2at dvy

This is just a Lorentz transformation with v = tanh 2at.

In summary, the Kruskal coordinates are convenient because in this system the metric tensor is
the Minkowski metric. The cost of this simplification is that instead of one global coordinate patch
(t,y) we need two separate coordinate patches (u4,v4) and (u_,v_), which are glued together in a

nontrivial way.

Let us now consider a second coordinate transformation, which will allow us to express the so-
lution in terms of a scalar field in flat spacetime. Consider a transformation from the Schwarzschild

coordinates (¢,y) to a new set of coordinates (¢, x) that are defined by

1
y = oe(@)(e) — )
where
d(x) = alz| + ¢o
and
¢p = 11 b
0 = 5 0og
Note that
Aly) = 2aly| + b = ¥
and

dy = e24() dy

Thus, the metric in the new coordinate system is
ds? = 2@ (at? — dx?)

This is just the Lorentz metric multiplied by a conformal factor, so I will call the (¢,x) coordinates
conformal coordinates. Using the results of section 5.4.3, we can interpret the system as describing

a flat spacetime with a scalar field ¢(z).



304

5.7.5 Solution for a static star of uniform density
Here I present a solution to the field equation for a static star of uniform density. I will assume the
star is a perfect fluid, so its energy-momentum tensor is given by

T = (p+ p) uu’ — pg*?

where p(z), p(x), and u®(z) are the density, pressure, and velocity of the fluid at point . I assume
the metric tensor has the form

2
Guv =€ ¢77;w

Since the fluid is static, the components of the velocity vector u® are

W = e?

ut = 0

Thus, the components of the energy-momentum tensor are

700 _ efqup
T 672¢p
T = 0
TV = 0

The energy-momentum tensor obeys the conservation law
TP 5 = 9gT? + T, TH? + T 3T =0
If we substitute for Christoffel symbols (see section 5.7.3), we find

Tlﬁ-g = 6BT16+F1H5TH6+F5H5T1“

)

= 0,T" + (6'50,0 + 8, 050 — gup " 0vd) THP + 20,0 T

= e 2 (9up+ (p+p)0u0)

Thus, we obtain an equation of hydrostatic equilibrium:

Ozp=—(p+p) 09
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The gravitational field equation is
R = —2¢"%0¢ = 4G gosT*” = 4G(p — p)
Since the field is static, this reduces to
93¢ = 2G(p — p) e**
Thus, the pressure p(z) and the gravitational potential ¢(z) obey the coupled set of equations

979 = 2G(p—p)e*?

—(p+p)0:0

Op

We can express the solution to these equations in terms of the pressure and gravitational potential

at the center of the star (pg = p(0), ¢o = ¢(0)).

The equations can be simplified by defining a dimensionless spatial coordinate v and a dimensionless

pressure P(u):

u = (4Gpo)'/? ez
P(u) = p(u)/po
In terms of ¢(u) and P(u), the equations are

¢ = E(Q_P)62(¢*¢o)
2

Pl = —(a+P)¢

where the primes denote derivatives with respect to u, and where a = p/py is the ratio of the density

of the star to the pressure at the center of the star.

If we integrate the second equation, we find

s )

o) = o — 1o (1

Or, solving for the pressure,

P=(a+1) e~ (3—d0) _
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Substituting this result into the first equation, we obtain
_ 1 _
¢” = q e2(¢=d0) _ _(a 4 1) e(@—d0)
2

I will assume the star is symmetric about u = 0, so ¢'(0) = 0. Using this boundary condition, we
find
(¢ +1—(a—1)coshu))

N | =

d(u) = ¢o — log(

Thus, the gradient of the potential is

Note that
1
e~ (W) =) — 5(04 +1—(a—1)coshu)

If we substitute this result into the equation for the pressure, we find
L 9 2
P(u) = 5(04 +1—(a®—1)coshu)

By definition, the pressure vanishes at the surface r of the star (P(r) = 0), so

a? +1
h =
coshr 1
Note that
2«
inhr —
sinh r T

Thus, we can express 7 in terms of a:

(a+1>
r = log T
o —

¢(r) — do = log(1+1/a)

Note that

and

o) =1

The corresponding equations for Newtonian gravity are

gz/)// — o
P = —af



The solutions are
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Chapter 6

Other

6.1 Introduction

Here I discuss a few random results that didn’t fit in elsewhere.

6.2 Spacetime lattice

Here I present a 1+1 dimensional spacetime lattice whose symmetry group is a discrete subgroup of

the Poincare group. The lattice consists of vectors of the form

Rm,n =meéy+neée
where n and m are integers, and the basis vectors €y and €] are
and

The Minkowski metric is

So the magnitudes of the basis vectors are

’I](éb,éb) = _n(glagl) =1
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and their scalar product is

n(€o, €1) = —1/2

Consider the Lorentz transformation for velocity 8 = v/5/3:

1{ 3 5

A=-
2\ V5 3
Note that
Aey = 28+ é
Agl = gg + €1

Thus, A maps the lattice onto itself:
Aﬁm,n = R2m+n,m+n
We can also define translation operators T by
Tp7=r+eg
where 7 is an arbitrary vector. The translation operators also map the lattice onto itself:

TORm n - ﬁm—i—l n

)

—

TlRm,n = Rm,nJrl

The symmetry group of the lattice is generated by the operators A, Ty, and 77, and forms a discrete

subgroup of the Poincare group.

I was hoping to propagate waves on the lattice (that is, to define initial conditions on a space-
like line of nodes, and then use a discretized wave equation to evolve the wavefront in time), but I

don’t think this is possible, since no two nodes are lightlike separated:

— —

Ry Bnn) = m?n(€o, o) + 2nmn(€p, 1) +n?n(é, )

= m2—nm—n2

This is nonzero unless

m=(1/2)(1+V5)n
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which is impossible if m and n are integers. Thus, if a node emits a pulse of light, the pulse will

never hit another node in the lattice.

6.3 Dynamical model for a 1D ideal gas

Here I present a model for a one-dimensional ideal gas. The model consists of a collection of N
atoms that bounce back and forth between a piston and an infinitely massive wall, where a constant
force is applied to the piston so that if it wasn’t supported by collisions with the atoms it would
accelerate uniformly. I will assume that the atoms only collide with the wall and the piston, and

not with one another.

Given this specification of the model, we can calculate how the system evolves in time. For simplic-
ity, we will first consider the case of a single atom. Let (z,v) denote the position and velocity of
the atom, and let (y,w) denote the position and velocity of the piston, where the coordinate system
is chosen such that the wall lies at the origin. Suppose we start the system in some initial state
(z0,v0, Y0, wo) at time ¢y and let it evolve to time ¢; = to + 7. If the atom and piston do not collide

during the interval [to,?1], then the state at time ¢; is

12
= y0+on—§T

)

7) = wo—t
) = xo+vor
)

where I have chosen units such that the acceleration of the piston is 1.

Let us assume that at time tg the atom had just collided with the piston, so x¢g = yo. We want to
evolve the system in time until the next atom/piston collision occurs. There are two cases to con-
sider: either the atom bounces off the wall and hits the piston, or the atom hits the piston directly.
In the first case, which I will call case A, the atom collides with the wall after a time —zo /v, and

then collides with the piston after a time 74 given by

y1(1a) = —z1(74)

Thus,
TA = vo + wo + ((vo + wo)? + 4ag)/?
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and the configuration at t; = tg + 74 is

Yy = I

w1 = Wy —TA

r1 = —(zo+wvoTa)
vT = —

In the second case, which I will call case B, the atom collides with the piston after a time 75 given
by

yl(TB) =$1(TB)

Thus,

B = 2(11)0 — 1)0)

and the configuration at t; = tg + 75 is

gy = 1

w; = Wo—TB
T1 = o+ V7B
v1 = Yo

We can determine which case applies by looking at the sign of y; as computed for case B: if the

sign is positive then case B applies, and if the sign is negative then case A applies.

The above procedure allows us to evolve the system from just after a collision (time ¢o) to just
before the next collision (time ¢1). To evolve the system from just before the next collision (time 1)
to just after the next collision (time ¢2), we apply the conservation laws for energy and momentum.
Let 7 be the ratio of the mass of the piston to the mass of the atom. From the conservation of
momentum we have

V1 + rwy = v + rwsy

and from conservation of energy we have
2 2 2 2
V] +rwi = vy + rw;
Solving for vy and we, we find

wy = (r+1)7((r—Dw +2v;)
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ve = (r4+1)"'2rw — (r — 1))

Note that by evolving the system from ¢g to t1, and then from ¢; to t2, we obtain a mapping of the
state of the system immediately after a collision to the state of the system immediately after the

next collision:

(z0, Yo, vo, wo) — (X2, Y2, V2, W)

If we iterate this mapping we can evolve the system in time from one collision to the next.

It is straightforward to generalize to the N atom case: we just search through all the atoms and
select the one that collides with the piston first, and then proceed as for the one atom case (note that
the positions of the N — 1 unselected atoms must also be updated). For large N, the piston/atom
mass ratio r sets the equilibrium pressure p of the gas: p = rm, where m is the mass of an atom,

since in equilibrium the pressure p must balance the force rm that is exerted on the piston.

The model can easily be simulated on a computer. For the simulations I present here, I start
the system in a non-equilibrium state: the initial state of the piston is taken to be yo = N/r,
wo = 0, while the initial state of the atoms is chosen such that the atom positions are uniformly
distributed in [0, o] and the atom velocities are uniformly distributed in [—vg, vg], where vg is chosen
such that (v?) = 1. Starting from this initial state, I evolve system and plot velocity histograms at

different times (see Figure 6.1).

The simulation can also be used to calculate the entropy of the system as a function of time. The
entropy is given by

S =~ [[ 1ap) (s (. p)) dods

where f(z,p) is the phase space distribution of the atoms and A is an arbitrary constant with units

of action. In equilibrium, the phase space distribution is just the Maxwell-Boltzmann distribution:
f(x,p) =n (2nmT)~ /2 o~ P> /2mT

where n is the density and T is the temperature. If we substitute this result into our expression for

the entropy, we find that the maximum possible entropy is
1
Smaz = N(log((2rmT)Y?/An)) + 5)

Note that

T =m{v?) =m
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Figure 6.1: Histogram of velocities at different times (¢ = 0.00, t = 1.17 x 10%, ¢t = 1.21 x 10%). For
this simulation, N = 10% and r = 103. The solid curve is the Maxwell-Boltzmann distribution.
From the ideal gas law, and our previous observation that p = rm, we find that
p=rm=nT =nm
so n = r. Thus, if we choose A = m,

Stmas = N5 (1 +log(2m)) ~logr)

A graph of the entropy versus time is shown in Figure 6.2, together with the predicted maximum

entropy.

Let us return to the case of a single atom. The state of the system is given by coordinates (z, v, y, w),

which are restricted to the constant energy surface defined by

1 1
FE = 502 + 51‘1112 +ry

where for simplicity I have set m = 1. Thus, the maximum atom velocity is

U = (2E)Y/?



SIN

314

-5.48

5.52 |
-5.54 |
5.56 |
5.58 ||
-5.6
-5.62 fr

-5.64

e

QUAAPHNALAAN s Y g WM o A

o AR AT A A N
el

-5.66

2000

6000 8000 10000 12000

t

4000

Figure 6.2: Entropy per atom versus time. For this simulation, N = 10* and » = 103. The horizontal
line is the predicted maximum entropy.

and the maximum piston velocity is

Wy, = (2B /1r)/?

It is convenient to introduce new coordinates v and (§ that are defined by

Let us choose tan 6 = 71/

Then

2

, SO

Lcos@—i— isinﬁ

« =
U, W,

68 = —Lsinﬁ—i—icosﬁ
U W,

cos = (14r)"1/2

sinf = /21472

(2E)_1/2 1+ r)_1/2 (v +rw)

(2E) Y2 (1 +7)" V2012 (v — w)
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Figure 6.3: Sample configuration space trajectories (r = 1.1).

In the new coordinates, the equation for the constant energy surface is
2 2 _
a®+ 6%+ (r/By =1

We can simulate the system on a computer. The configuration space is three dimensional, but we
can plot a two dimensional slice through the space by imposing the requirement = y, that is, that

a collision just occurred. Figure 6.3 shows some configuration space trajectories of the system.

6.4 Chaotic mappings and the renormalization group

By applying renormalization group techniques to chaotic mappings, Feigenbaum was able to un-
derstand universality in the period doubling route to chaos for iterated 1D mappings [61]. Here I

present a highly simplified renormalization group approach to understand mappings of the form
falx) = x(1 —2)

where A € [0,4] is a control parameter. Before explaining this approach, I will briefly review the

behavior of this type of mapping.

Given an initial point x¢ € [0, 1], we can generate a series of points {z,} by defining z,+1 = fr(xn).
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Figure 6.4: Asymptotic behavior of {z,} for different values of .

The asymptotic behavior of this series depends on the value of the control parameter \: for small
values of A\ the series rapidly approaches a fixed point; for larger values of A\ the series bounces
around among a finite set of fixed points; and for still larger values of A the series becomes chaotic.

A graph of the asymptotic behavior of the series as a function of A is shown in Figure 6.4.

As a first step toward understanding this behavior, I want to show how we can calculate the values
and stability criteria for the first and second order fixed points. The first order fixed points of fy
are given by

iz) ==

which implies = 0 or * = a, where a = 1 — 1/A. The stability of a first order fixed point is
determined by the slope of fy: if the slope lies in the range (—1,1) then the fixed point is stable;
otherwise it is unstable. Note that

d

d—xf,\(!ﬂ) la=0= A

and

d
d_zf)\(x) |m:a— 2-A

Thus, the fixed point x = 0 is stable for A € [0,1), and the fixed point z = a is stable for A € (1, 3).

For A > 3, there are two second order fixed points b, defined by fi(bs) = bx. We can solve
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for the fixed points by writing them in the form b4 = « & 3 for some constants o and 3. Then

fla+p) = Ma+pB-a®—-2a8-p)=a-p
fla—p) Ma—pB—a?+20B8— ) =a+f

If we add and subtract these equations, we find

a = Ma—ao?-p5%

8 = A2ap-5)

From the second of these, we obtain

1
a=3(1+1/)

Substitute this into the first equation:
1
fr=al-1/]A—a)= Z(l +1/A) (1 =3/X)
Thus, the second order fixed points are given by

by = —(14+1/)) + %(1 +1/0)Y2 (1 —3/0)12

N | =

The stability of the second order fixed points is determined by the slope of f)(fx(z)). Note that

PN b= ) ) las= F04) S0 = 422 = X2

where

d

fi@) = = fala)

Thus, the second order fixed points are stable for A € [3, A2, where Ao = 1 4+ /6 = 3.449.

We can use our understanding of first and second order fixed points to define a renormalization
group transformation that maps second order fixed points at one value control parameter to first
order fixed points at a smaller value of the control parameter. Note that we can think of the second
order fixed point by of fi(x) as a first order fixed point of fx(fx(x)), and that near b the function
r(fa(z)) looks similar to a smaller version of f5, for some choice of control parameter A (see Figure

6.5).



318

0.8 -

0.2 - /
/

0.6

X

r—a

Figure 6.5: Renormalization group transformation. The red curve is f)(z) and the green curve is

fa(fa(z)). The lower left and upper right corners of the square have coordinates (a,a) and (y, y); if
we zoom in on this region, we see that fy(fr(x)) looks like a smaller version of f, which is shown

in the pink curve. For this graph A = 3.4, which gives A = 2.76, a = 0.706, b = 0.852, y = 0.920.

To make this correspondence explicit, define a coordinate transformation

y—a

where y is yet to be determined. We want to choose A and y such that

f3(@) = fA(fa(x))

for  ~ b,. Since we are solving for two unknowns (A and %), we need two equations. For the first

equation, I will require that the second order fixed point by of fi(fa(z)) be mapped into a first

order fixed point of f5:

fa(by) = by

R L=,

Since the stability of a fixed point is determined by the slope, I will take the second equation to be

d
5 /3@ la=p,
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The first equation says that b, is a first order fixed point of f5, so
by =1-1/X

The second equation gives

A1 —2by) =442\ — N2

Combining these results, we obtain an equation for the coupling constant flow:
A=A —2)-2
This has a fixed point A, = \., where
Ae = A2 =2\, —2

Thus,
1
Ae = 5(3 +V17) = 3.562

We can solve for y by using that

_ Y
by =1-1/A=-—+"2
y—a
Thus,
_a+b+—a
YEOTT TN

where (summarizing our previous results)

A= N-_22-2

a = 1-1/X

by = %(1 +1/A) + %(1 +1/0)2 (1= 3/0)1
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