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Abstract

In the past decade, due to compelling measurements of the angular power spectrum of the cosmic

microwave background (CMB) radiation, the large-scale matter distribution, the recent acceleration

of the expansion rate of the Universe over cosmic time, and the current expansion rate (the Hubble

constant), cosmology has culminated in a standard model of the Universe. By connecting this

standard cosmological model with predictive theories of physics we can hope to look for signatures of

these theories in the data. Along this line of inquiry we consider in this thesis: (i) the effects on CMB

temperature and polarization anisotropies of spatial fluctuations of the fine-structure parameter

α between causally disconnected regions of the Universe at the time of recombination, (ii) the

suppression of the small-scale matter power spectrum due to the decay of charged matter to dark

matter prior to recombination, (iii) the consequences of a neutral dark-matter particle with a nonzero

electric and/or magnetic dipole moment, (iv) how charged-particles decaying in the early Universe

can induce a scale-dependent or ‘running’ spectral index in the small-scale matter power spectrum

and examples of this effect in minimal supersymmetric models in which the lightest neutralino is a

viable cold-dark-matter candidate. With improved tests and cross-checks of standard-cosmological-

model predictions we can search for anomalies that may reveal the character of the underlying

physics. In this direction we propose in this thesis: (v) a new method for removing the effect of

gravitational lensing from maps of CMB polarization anisotropies using observations of anisotropies

or structures in the cosmic 21-cm radiation, (vi) that measurements of fluctuations in the absorption

of CMB photons by hydrogen in the 21-cm line and deuterium in the 92-cm line during the cosmic

dark ages could be used to determine the primordial deuterium abundance.
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Chapter 1

Introduction

1.1 The Standard Model of the Universe

In the past decade cosmology has culminated in a standard model of the Universe. The emergence

of this standard model is due to compelling new data from measurements of the angular power

spectrum of the cosmic microwave background (CMB) radiation [1·1], galaxy surveys that have

measured the large-scale matter distribution [1·2], observations of Type Ia supernovae [1·3], which

have measured the relative expansion rate of the Universe over cosmic time, and the Hubble Space

Telescope key project [1·4], which has performed an absolute measurement of the current expansion

rate (the Hubble constant H0). From these observations we now have overwhelmingly compelling

evidence that ∼25% of the energy density of the Universe is in the form of dark matter [1·5],

∼70% is in a non-clustering negative-pressure component known as dark energy [1·6] (that acts like

Einstein’s cosmological constant [1·7] and is driving a contemporary period of accelerated expansion),

and surprisingly only ∼5% is in the form of the familiar elements listed on the periodic table and

described by the standard model of particle physics. The geometry of the Universe is now known

to be flat [1·1], which is presumed to be due to a period of exponential expansion or inflation [1·8]

that also, through quantum fluctuations in the inflaton field or other fields present during inflation,

created a nearly scale-invariant spectrum of primordial Gaussian density perturbations [1·9] and

gravitational waves [1·10]. These fluctuations have been observed in the angular power spectrum of

the cosmic microwave background [1·1]. It is believed that, through gravitational instability, these

very same fluctuations grew and seeded the formation of galaxies and the large-scale structure in

the Universe (e.g. [1·11]). This model forms a consistent cosmological paradigm that has thusfar

been consistent with all cosmological observations and can be used as a baseline to test refined or

alternate theories of cosmology.

While the emergence of this standard cosmological model (SCM) is remarkable, and it is con-

sistent in so far as it describes the observed cosmology, the physics underlying the key unknown

ingredients of dark matter, dark energy, and inflation in the model are not known. We must search
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for a physical understanding of these phenomena and equally importantly look for new ways to test

and constrain this model. By connecting the SCM with predictive theories of physics we can hope

to look for signatures of these theories in the data, and with refined tests and cross-checks of the

SCM predictions we can hope to look for anomalies that point the way to the underlying physics.

This thesis explores both of these lines of inquiry. In Chapters 2–5 physical theories that have

novel predictions for cosmological, astrophysical, or physical observables are considered, while in

Chapters 6–7 new techniques for probing the SCM are proposed. These chapters are self-contained,

stand on their own, and have been presented in chronological order. In the sections below I provide

a brief synopsis of the chapter of the same title including the major results of that chapter, and a

description of my primary contributions to the work.

1.2 Spatial Variation of the Fine-Structure Parameter and

the Cosmic Microwave Background

In Chapter 2, we consider the effects on CMB temperature and polarization anisotropies of spatial

fluctuations of the fine-structure parameter α between causally disconnected regions of the Universe

at the time of recombination. Such fluctuations in α might be expected in theories where the gauge

coupling constants are set by the vacuum-expectation-value (VEV) of a light scalar field.

We first review previous work [1·12, 1·13] that shows how the recombination history depends

on a homogeneous shift in α and then discuss how it affects the CMB power spectrum. We then

discuss how spatial variations of α, in which the mean value of α is unaltered, affect the CMB

temperature and polarization power spectra. Interestingly, we find these effects are analogous to

those of weak gravitational lensing on the CMB, but differ in detail. Like weak-gravitational lensing,

spatial variation of α induces a spatially-varying angular power spectrum across the sky. We show

how this has the effect of inducing a curl-mode (B-mode) component in the CMB polarization

pattern. It also induces “non-Gaussian” signatures in the CMB, in the form of locally anisotropic

correlation functions, that cannot be described by the power spectrum alone. We calculate the

CMB bispectrum and trispectrum induced by spatial α variation. Effects like those we investigate

here may also arise if there are other spatial variations in recombination physics that do not involve

significant density/pressure perturbations. Our calculations are thus illustrative theoretically, apart

from the specific application on which we focus.

In the final section of Chapter 2, we discuss the properties of and constraints to a toy field-theory

model for spatial variation of α that produces the CMB effects outlined above without inducing

significant density perturbations.

This chapter was originally published as “Spatial Variation of the Fine-Structure Parameter and

the Cosmic Microwave Background,” Kris Sigurdson, Andriy Kurylov and Marc Kamionkowski,
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Physical Review D 68, 103509 (2003). I was primarily responsible for deriving the effects of spatial

variation of α on the CMB and writing the technical sections related to that work in the paper.

Kurylov and I worked closely together on the last section of the paper which discusses the toy field-

theory model of α variation. Kamionkowski and I discussed the CMB calculation often during the

course of the project, and jointly edited the manuscript.

1.3 Charged-Particle Decay and Suppression of Primordial

Power on Small Scales

While the standard cosmological model is in remarkable agreement with observation, on subgalactic

scales there are possible problems that warrant further investigation. Namely, the model overpredicts

the number of subgalactic halos by an order of magnitude compared to the eleven observed dwarf

satellite galaxies of the Milky Way [1·14]. Several possible resolutions have been proposed to this

apparent discrepancy, ranging from astrophysical mechanisms that suppress dwarf-galaxy formation

in subgalactic halos (see, for example, Ref. [1·15]) to features in the inflaton potential that suppress

small-scale power and thus reduce the predicted number of subgalactic halos [1·16].

In Chapter 3 we study the suppression of the small-scale matter power spectrum due to the

decay of charged matter to dark matter prior to recombination. In the model discussed, prior to

decay, the charged particles couple electromagnetically to the primordial plasma and participate in

its acoustic oscillations. After decay, the photon-baryon fluid is coupled only gravitationally to the

neutral dark matter. We show how this generically leads to suppression of power for scales that

enter the horizon prior to decay. This suppression, reduces the amount of halo substructure on

galactic scales while preserving the successes of the standard hierarchical-clustering paradigm on

larger scales. For decay times of ∼3.5 years this leads to suppression of power on subgalactic scales,

bringing the observed number of Galactic substructures in line with observation. We discuss how

decay times of a few years may be possible if the dark matter is purely gravitationally interacting,

such as the gravitino in supersymmetric models or a massive Kaluza-Klein graviton in models with

universal extra dimensions.

This chapter was originally published as “Charged-Particle Decay and Suppression of Primordial

Power on Small Scales,” Kris Sigurdson and Marc Kamionkowski, Physical Review Letters 92,

171302 (2004). I was primarily responsible for deriving the modified perturbation equations which

include the effects of the charged-decay process, and for writing the initial draft of the manuscript.

Kamionkowski and I discussed the calculation often during the course of the project, and jointly

edited the manuscript.
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1.4 Dark-Matter Electric and Magnetic Dipole Moments

A wealth of observational evidence indicates the existence of considerably more mass in galaxies and

clusters of galaxies than we see in stars and gas. The source of the missing mass has been a problem

since Zwicky’s 1933 measurement of the masses of extragalactic systems [1·5]. Given the evidence

from galaxy clusters, galaxy dynamics and structure formation, big-bang nucleosynthesis, and the

cosmic microwave background that baryons can only account for ∼ 1/6 of this matter, most of it

must be nonbaryonic. Although we know it likely exists, we do not know what the underlying theory

of dark matter is or what the detailed particle properties of it are. While theorists have identified

promising candidates for the dark matter, such as the neutralino (the supersymmetric partner of the

photon, Z0 boson, and/or Higgs boson) [1·17] or axion [1·18], there is currently no direct evidence

that these particles constitute the dark matter. Other candidates are certainly possible.

In Chapter 4, we ask the question, “How dark is ‘dark’?” In other words, how weak must the

coupling of the dark-matter particle to the photon be in order to be consistent with laboratory

and astrophysical constraints? In particular we consider the consequences of a neutral dark-matter

particle with a nonzero electric and/or magnetic dipole moment. Theoretical constraints, as well

as constraints from direct searches, precision tests of the standard model, the cosmic microwave

background and matter power spectra, and cosmic gamma rays, are included. Interestingly, we

find that a relatively light particle with mass between an MeV and a few GeV and an electric or

magnetic dipole as large as ∼ 3 × 10−16e cm (roughly 1.6× 10−5 µB) satisfies all experimental and

observational bounds and remains a phenomenologically viable candidate for dark matter. Some of

the remaining parameter space may be probed with forthcoming, more sensitive, direct searches and

with the Gamma-Ray Large Area Space Telescope.

This chapter was originally published as “Dark-Matter Electric and Magnetic Dipole Moments,”

Kris Sigurdson, Michael Doran, Andriy Kurylov, Robert R. Caldwell and Marc Kamionkowski,

Physical Review D 70, 083501 (2004). I computed the dark-matter scattering and annihilation cross

sections used throughout the paper and wrote the introductory section on the dipole Lagrangian;

the cross sections were independently verified by Kurylov and Doran. I derived the perturbation

evolution equations for dipolar-dark-matter, implemented them in a Boltzmann code, and wrote

the corresponding section of the paper; these perturbation equations were independently verified by

Doran and implemented in a separate Boltzmann code for comparison. Kamionkowski and Caldwell

completed the relic abundance, direct detection, and galactic annihilation calculations. Kurylov

computed the limits from precision measurements and particle physics. Caldwell and Kamionkowski

were primarily responsible for the overall editing of the manuscript.
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1.5 A Running Spectral Index in Supersymmetric Dark-Matter

Models with Quasi-Stable Charged Particles

In Chapter 5 we show that charged-particles decaying in the early Universe can induce a scale-

dependent or ‘running’ spectral index in the small-scale linear and nonlinear matter power spectrum

and discuss examples of this effect in minimal supersymmetric models in which the lightest neutralino

is a viable cold-dark-matter candidate. If all of the present-day dark matter is produced through

the late decay of charged next-to-lightest dark-matter particles (NLDPs), then, as discussed in

Ref. [1·19], the effect is to essentially cut off the matter power spectrum on scales that enter the

horizon before the NLDP decays. However, if only a fraction fφ of the present-day dark matter is

produced through the late decay of charged NLDPs, the matter power spectrum is suppressed on

small scales only by a factor (1−fφ)2. This induces a scale-dependent spectral index for wavenumbers

that enter the horizon when the age of the Universe is equal to the lifetime of the charged particles.

What we show in this chapter is that, for certain combinations of fφ and of the lifetime of the

charged particle τ , this suppression modifies the nonlinear power spectrum in a way similar (but

different in detail) to the effect of a constant αs ≡ dns/dlnk 6= 0. Although these effects are

different, constraints based on observations that probe the nonlinear power spectrum at redshifts of

2 to 4, such as measurements of the Lyman-α forest, might confuse a running index with the effect

we describe here even if parametrized in terms of a constant αs. This has significant implications

for the interpretation of the detection of a large running of the spectral index as a constraint on

simple single-field inflationary models. The detection of a unexpectedly large spectral running in

future observations could instead be revealing properties of the dark-matter particle spectrum in

conjunction with a more conventional model of inflation.

While, even with future Lyman-α data, it may be difficult to discriminate the effect of a constant

running of the spectral index from a scale-dependent spectral index due to a charged NLDP, other

observations may nevertheless discriminate between the two scenarios. Future measurements of the

power spectrum of neutral hydrogen through the 21cm-line might probe the linear matter power

spectrum in exquisite detail over the redshift range z ≈ 30 − 200 at comoving scales less than 1

Mpc and perhaps as small as 0.01 Mpc [1·20]; such a measurement could distinguish between the

charged-particle decay scenario we describe here and other modifications to the primordial power

spectrum. If, as in some models we discuss in this chapter, the mass of these particles is in reach of

future particle colliders the signature of this scenario would be spectacular and unmistakable—the

production of very long-lived charged particles that slowly decay to stable dark matter.

Although we describe the cosmological side of our calculations in a model-independent manner,

remarkably, there are configurations in the minimal supersymmetric extension of the standard model

(MSSM) with the right properties for the effect we discuss here. In particular, we find that if the
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lightest supersymmetric particle (LSP) is a neutralino quasi-degenerate in mass with the lightest

stau, we can naturally obtain, at the same time, LDPs providing the correct dark matter abundance

Ωχh
2 = 0.113 [1·1] and NLDPs with the long lifetimes and the sizable densities in the early Universe

needed in the proposed scenario. Such configurations arise even in minimal supersymmetric schemes,

such as the minimal supergravity (mSUGRA) scenario [1·21] and the minimal anomaly-mediated

supersymmetry-breaking (mAMSB) model [1·22]. This implies that a detailed study of the (τ ,fφ)

parameter space using current and future cosmological data may constrain regions of the MSSM

parameter space that are otherwise viable. We discuss the expected signatures of this scenario at

future particle colliders, such as the large hadron collider (LHC), and prospects for detection in

experiments searching for WIMP dark matter.

This chapter was originally published as “A Running Spectral Index in Supersymmetric Dark-

Matter Models with Quasi-Stable Charged Particles,” Stefano Profumo, Kris Sigurdson, Piero Ullio,

and Marc Kamionkowski, Physical Review D 71, 023518 (2005). I computed the modified perturba-

tion evolution equations, calculated the modified matter power spectra, and wrote the corresponding

sections of the paper. Ullio and Profumo worked out how to track the abundances of multiple coan-

nihilating species, and Profumo was responsible for finding example supersymmetric models that

produced the desired effect. Kamionkowski and I were responsible for editing the manuscript.

1.6 Cosmic 21-cm Delensing of Microwave Background Po-

larization and the Minimum Detectable Energy Scale of

Inflation

The curl (B) modes of cosmic microwave background (CMB) polarization anisotropies are a unique

probe of the primordial background of cosmological gravitational waves [1·23]. At these long wave-

lengths, inflation [1·8] is the only known mechanism to causally generate such a background of

gravitational waves [1·10]. Since the amplitude of these inflationary gravitational waves (IGWs)

is proportional to V , the value of the inflaton potential V (ϕ) during inflation, the amplitude of

gravitational-wave induced B-mode polarization anisotropies directly constrains the energy scale of

inflation V1/4 (see, for example, Ref. [1·24]). While the experimental sensitivity to B-mode polar-

ization can be improved, the expected signal is contaminated by foreground effects [1·25]. The main

confusion to the detection of B-mode polarization anisotropies generated by IGWs at recombination

is the mixing of gradient-mode (E-mode) and B-mode anisotropies via gravitational lensing [1·26].

In Chapter 6, we propose a new method for removing the effect of gravitational lensing from maps

of cosmic microwave background (CMB) polarization anisotropies. Using observations of anisotropies

or structures in the cosmic 21-cm radiation, which was emitted or absorbed by neutral hydrogen
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atoms that underwent a spin-flip transition at redshifts 10 to 200, the CMB can be delensed. We

find that this method could allow CMB experiments to have increased sensitivity to a primordial

background of inflationary gravitational waves (IGWs) compared to methods which rely on CMB

observations alone — reducing the minimum detectable energy scale of inflation below 1015 GeV.

While the detection of cosmic 21-cm anisotropies at high resolution is a challenging endeavor, the

detection of these fluctuations is already being pursued as a probe of the Universe at or before

the epoch of reionization. A combined study with a relatively low-resolution (but high-sensitivity)

CMB polarization experiment may constrain alternative models of inflation which were heretofore

considered to have undetectable IGW amplitudes. The ultimate theoretical limit to the detectable

inflationary energy scale via this method may be as low as 3 × 1014 GeV.

This chapter was originally available online as “Cosmic 21-cm Delensing of Microwave Back-

ground Polarization and the Minimum Detectable Energy Scale of Inflation,” Kris Sigurdson and

Asantha Cooray, arXiv:astro-ph/0502549 and has been submitted to Physical Review Letters. I had

the initial idea of using cosmic 21-cm radiation to infer the projected potential. Cooray calculated

the curves shown in the figures. Cooray and I jointly wrote the text of the paper, and I was the

primary editor.

1.7 Measuring the Primordial Deuterium Abundance During

the Cosmic Dark Ages

In Chapter 7 we discuss how measurements of fluctuations in the absorption of cosmic microwave

background (CMB) photons by neutral gas during the cosmic dark ages, at redshifts z ≈ 7–200,

could reveal the primordial deuterium abundance of the Universe.

After the cosmic microwave background (CMB) radiation decoupled from the baryons at a red-

shift z ≈ 1100, most CMB photons propagated unfettered through the neutral primordial medium.

This has allowed exquisite measurements of the temperature fluctuations in the primordial plasma

at the surface of last scattering, and the statistical properties of these fluctuations have recently

been used, in conjunction with other observations, to determine the cosmology of our Universe [1·1].

After the photons kinetically decoupled from the gas at z ∼ 200, the latter cooled adiabatically with

Tg ∝ (1+z)2, faster than the Tγ ∝ (1+z) cooling of the CMB. This epoch, with most of the baryons

in the form of relatively cold neutral atoms and before the first stars formed, is known as the cosmic

dark ages.

The reason most CMB photons propagate unimpeded through the neutral primordial gas is

elementary quantum mechanics — atoms absorb non-ionizing radiation only at the discrete wave-

lengths determined by the differences of their atomic energy levels. One interesting example is the

well-known 21-cm spin-flip transition [1·27], due to the hyperfine splitting of the ground state of the
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hydrogen (H) atom. At any given z, CMB photons with wavelength λ21 = 21.1 cm can resonantly

excite this transition. By measuring brightness-temperature fluctuations due to density fluctuations

in the neutral gas [1·28], radio telescopes observing at λ = (1 + z)λ21 can probe the matter power

spectrum at z ≈ 30–200 [1·20].

In this chapter we discuss another application of these measurements. Less well-known than the

21-cm transition of neutral H is the spin-flip transition of neutral deuterium (D) at λ92 = 91.6 cm

[1·29,1·30]. We show that the strength of the cross-correlation of brightness-temperature fluctuations

at a wavelength λH = (1 + z)λ21 due to resonant absorption of CMB photons in the 21-cm line of

neutral hydrogen with those at a wavelength λD = (1 + z)λ92 due to resonant absorption of CMB

photons in the 92-cm line of neutral deuterium is proportional to the fossil deuterium to hydrogen

ratio [D/H] fixed during big bang nucleosynthesis (BBN). In principle, a sufficiently large future

experiment could constrain the primordial value of [D/H] ≡ nD/nH to better than 1% without

any systematics. While there is no physical obstacle to such a measurement, it would certainly

be technically challenging; simply detecting neutral D during the cosmic dark ages would be a

significantly easier goal and may be possible with next-generation cosmic 21-cm experiments.

We emphasize that, although technically challenging, this measurement could provide the cleanest

possible determination of [D/H], free from contamination by structure formation processes at lower

redshifts, and has the potential to improve BBN constraints to the baryon density of the Universe

Ωbh
2. In this chapter we also present our results for the thermal spin-change cross-section for

deuterium-hydrogen scattering, which may be useful in a more general context than we describe

here.

This chapter was originally available online as “Measuring the Primordial Deuterium Abundance

During the Cosmic Dark Ages,” Kris Sigurdson and Steven R. Furlanetto, arXiv:astro-ph/0505173

and has been submitted to Physical Review Letters. I had the initial idea of using cosmic 92-cm ra-

diation to measure the primordial deuterium abundance through cross-correlation with the hydrogen

signal. I calculated the deuterium-hydrogen spin-change cross section, the spin temperature evolu-

tion, the brightness temperature evolution, and the brightness temperature fluctuations. Furlanetto

made the initial estimate of the signal-to-noise and I wrote a code to make a more realistic estimate.

Furlanetto and I had many discussions during the course of this project and he contributed his

extensive knowledge of cosmic 21-cm fluctuations. I wrote the bulk of the text of the paper, and

Furlanetto and I jointly edited it.
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Chapter 2

Spatial Variation of the

Fine-Structure Parameter and the

Cosmic Microwave Background

We study the effects on cosmic microwave background (CMB) temperature and polarization

anisotropies of spatial fluctuations of the fine-structure parameter between causally disconnected

regions of the Universe at the time of recombination. Analogous to weak gravitational lensing,

in addition to modifying the mean power spectra and inducing a curl component (B mode) to

the polarization, spatial fluctuations of the fine-structure parameter induce higher-order (non-

Gaussian) temperature and polarization correlations in the CMB. We calculate these effects for

the general case of arbitrary correlation between temperature fluctuations and fine-structure pa-

rameter fluctuations, and show the results for a model where these two types of fluctuations

are uncorrelated. The formalism we present here may also be applied to other modifications

of recombination physics that do not significantly alter the evolution of the dominant density

perturbations. We discuss the constraints on the effective Lagrangian for variable fine-structure

parameter necessary to realize this scenario.

Originally published as K. Sigurdson, A. Kurylov and M. Kamionkowski, Phys. Rev. D 68, 103509 (2003).

2.1 Introduction

The possibility that the fine-structure parameter α may vary in time has long been entertained

[2·1–2·8], and has received renewed interest with recent evidence from quasar spectra that may

support a variation of less than one part in 104 over a time scale of ∼ 10 Gyr [2·9,2·10]. Although

the results may still be controversial, the observational work has inspired theoretical work that

investigates models with variable α [2·11–2·18], as well as other work that investigates possible

connections with dark energy and new long-range forces [2·19–2·21]. It has also stimulated a more

careful re-investigation of the constraints placed on variable α from big-bang nucleosynthesis [2·22].
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Of course, if a relativistic theory allows for temporal variation of α then it must also allow for

spatial variations of α between regions not in causal contact. In this chapter we study cosmological

probes of spatial variations in α, focusing in particular on the cosmic microwave background (CMB),

which is rapidly becoming an increasingly precise probe of cosmological models [2·23–2·25], as well

as the physics that underlies them [2·26]. As we will see, spatial variation in α induces a spatially-

varying power spectrum. This induces “non-Gaussian” signatures in the CMB, in the form of locally

anisotropic correlation functions, that cannot be described by the power spectrum alone (although

strictly speaking the joint probability distribution of temperatures at n points remains a multivariate

Gaussian). Quite interestingly, these effects are analogous to those of weak gravitational lensing

(“cosmic shear”) on the CMB, but differ in detail. So, for example, spatial variation of α can alter

slightly the CMB power spectrum, induce a curl component (B mode) in the polarization, and induce

higher-order temperature and polarization correlations in the CMB. Effects like those we investigate

here may also arise if there are other spatial variations in recombination physics that do not involve

significant density/pressure perturbations. Our calculations are thus illustrative theoretically, apart

from the specific application on which we focus.

Below, we first review previous work [2·27, 2·28] that shows how the recombination history

depends on a homogeneous shift in α and then discuss how it affects the CMB power spectrum. We

then show how spatial variations of α, in which the mean value of α is unaltered, affect the CMB

temperature and polarization power spectra, and in so doing show that a curl component is induced

in the CMB polarization. We then calculate the CMB bispectrum and trispectrum induced by

spatial α variation. Throughout, we compare with the analogous calculations for weak lensing, and

show how the effects of weak lensing and spatial α variations differ. We then discuss the properties

of and constraints on a toy field-theory model for spatial α variation that produces the CMB effects

we investigate here, without inducing significant density perturbations.

Before proceeding further, we clarify that here we investigate spatial variations in the fine-

structure parameter α = e2/~c that arise only from spatial variations in the electromagnetic gauge

coupling e; we do not tinker with relativity nor quantum mechanics.

2.2 Recombination and α

Recombination depends on the value of α because the visibility function, the probability distribution

of when a photon last scattered, is dependent on α. The visibility function is defined as

g(t) = e−τ
dτ

dt
, (2.1)
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where
dτ

dt
= xenpcσT , (2.2)

is the differential optical depth of photons due to Thomson scattering. Here,

σT =
8π~

2α2

3m2
ec

2
, (2.3)

is the Thomson cross section, np is the total number density of protons (both free and bound), and

xe is the fraction of free electrons. The strongest effect of variations of α on this quantity occur due

to the alteration of the ionization history xe(t).

The recombination of hydrogen cannot proceed through direct recombination to the ground

state because the emitted photon will immediately ionize a neighboring atom with high probability.

Instead, the ionized fraction decreases mainly through the two-photon process 2s → 1s, or via the

cosmological redshifting of 2p→ 1s Lyman-α photons out of the Lyman-α line. These processes are

described by a single differential equation [2·29],

dxe
dt

= C
[
βe

−
B1−B2

kB T (1 − xe) −Rnpx2
e

]
, (2.4)

where β is the ionization coefficient, R is the recombination coefficient, C is the Peebles efficiency

factor (discussed below), and

Bn =
mec

2α2

2n2
, (2.5)

is the binding energy of the level with principle quantum number n.

Through the Einstein relations we relate β to R through

β =

(
mekBT

2π~2

) 3
2

e
−

B2
kB T R . (2.6)

The recombination coefficient can be written

R =

∞∑

n=2

n−1∑

l=0

αnlwn , (2.7)

where

αnl =
8π(2l+ 1)

(2πmekBT )
3
2 c2

e
Bn

kB T

∫ ∞

Bn

d(hν)σbfnl
(hν)2

e
hν

kB T − 1
, (2.8)

is the rate at which atoms recombine to the n, l energy level and wn is the efficiency for an n level

to survive in a plasma [2·30]. The details of wn are not important for the present discussion, other

than to note that at the densities of interest it is unity for n < nmax ∼ 500. Since the dominant

contributions to R come from n . 50, R is insensitive to the weak α dependence of nmax. Above,
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αnl is written in terms of the ionization cross section σbfnl , which can be expressed in the form [2·31]

σbfnl = α−1fn

(
hν

B1

)
. (2.9)

Thus, we can write

αnl =
8π(2l+ 1)

αc2

(
kBT

2πme

) 3
2

eξ/n
2

∫ ∞

ξ/n2

dyfn

(
y

ξ

)
y2

ey − 1
, (2.10)

where

ξ =
B1

kBT
=
mec

2α2

2kBT
, (2.11)

and it immediately follows that the α dependence of R is of the form,

R = α−1T
3
2F (ξ) = α2G(ξ) . (2.12)

As shown in Ref. [2·32], for the temperatures of interest,

R =
64

3

~
2α2

m2
ec

√
πB1

3kBT
φ2 , (2.13)

where

φ2 ' 13
√

3

16π
ln

(
B1

kBT

)
. (2.14)

Given the scaling in Eq. (2.12), we can then read off the α dependence. Explicitly, the recombination

coefficient is

R =
52

3

~
2α3

√
2πm3

ekBT
ln

(
mec

2α2

2kBT

)
. (2.15)

The rate of recombination is inhibited by ionizing photons which can disrupt atoms in the n = 2

state before they can decay to the ground state. The efficiency of recombination from the n = 2

state is described by the Peebles efficiency factor,

C =
ΛH + Λ2s→1s

ΛH + Λ2s→1s + β
, (2.16)

which is just the ratio of the recombination rates to the sum of the recombination and ionization

rates from the n = 2 level.

In Eq. (2.16),

ΛH =
8πH

(λ2p→1s)3n1s
, (2.17)

is the rate at which a recombination is successful because the emitted Lyman-α photon is redshifted

out of the Lyman-α line before ionizing a hydrogen atom. Here, H = (1/a)(da/dt) is the Hubble
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Figure 2.1: The probability distribution for the last scattering of a photon, the visibility function,
as a function of conformal time η in the ΛCDM model for ϕ = (α − α0)/α0 = 0.03 (dotted), ϕ = 0
(solid), and ϕ = −0.03 (dashed).

expansion rate, n1s ' (1−xe)np is the number density of atoms in the 1s state (almost all hydrogen

atoms are in the 1s state), and

λ2p→1s =
16π~

3mecα2
, (2.18)

is the Lyman-α rest wavelength.

The two-photon process 2s → 1s proceeds through virtual atomic states at a rate Λ2s→1s =

8.22458 s−1 [2·33], and scales as [2·34]

Λ2s→1s ∝ α8 . (2.19)

Eqs. (2.4)–(2.19) account for the α dependence of xe(t). Along with the α dependence of σT ,

this completely determines how g(t) varies with α in a given cosmology. While we expect a more

complete calculation of recombination, such as that in Ref. [2·35], may yield further refinements to

the α dependence, modifying hydrogen recombination as described above is adequate for our purposes
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Figure 2.2: The angular power spectrum of CMB anisotropies for a spatially uniform ϕ = 0.03
(dotted), ϕ = 0 (solid), and ϕ = −0.03 (dashed).

because we are primarily concerned with the α dependence of the visibility function at very high

redshift where the simple calculation accurately captures the physics. Also, it was determined in

Ref. [2·28] that other effects, such as modifications to the details of helium recombination, or the

cooling of baryons, are small compared to the effect of variations of α on hydrogen recombination.

In this chapter we work within the flat geometry ΛCDM cosmology with baryon and matter

densities Ωb = 0.05 and Ωm = 0.30, Hubble parameter h = 0.72, and spectral index n = 1. Fig. 2.1

shows the visibility function g(η) = exp(−τ)dτ/dη plotted versus the conformal time η =
∫
dt/a

for three different values of ϕ = (α− α0)/α0 where α0 = 0.00729735 ' 1/137 is the value of the

electromagnetic fine structure parameter [2·36]. For positive values of ϕ the visibility function is

narrower and peaks earlier, while for negative values of ϕ the visibility function is broader and

peaks later. These effects impact directly the CMB angular power spectrum because the peak of the

visibility function determines the physical distance to the last scattering surface, while the width of

the visibility function determines the thickness of the last scattering surface.

Fig. 4.13 shows the angular power spectrum of CMB anisotropies calculated assuming a spatially

homogeneous value of ϕ. The dependence of the spectrum on ϕ is easy to understand qualitatively.
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For positive ϕ the angular-diameter distance is larger, so the features are scaled systematically to

higher values of l. The last-scattering surface is also narrower so that small-scale (high-l) features

are less damped due to photon diffusion. For negative ϕ the opposite holds, the smaller angular-

diameter distance scales features to lower values of l while the broader last-scattering surface leads

to more damping of power on small scales. In the next two Sections we derive the changes in the

angular power spectrum due to spatial fluctuations in ϕ between causally disconnected regions of

the Universe.

2.3 Power Spectra

2.3.1 CMB Power Spectra Fundamentals

The CMB radiation is observed to be a nearly isotropic background of blackbody radiation at a

temperature of TCMB = 2.728± 0.004 K [2·37]. Anisotropies in the temperature are observed with

a fractional amplitude of ∼ 10−5 [2·38], and in the polarization with a fractional amplitude of

∼ 10−6 [2·39]. For a review of the physics of CMB anisotropies see, e.g., Ref. [2·40].

The fundamental CMB anisotropy observables are the Stokes parameters (Θ, Q, U, V ), which can

be expressed in the Pauli basis as (see, for example, Ref. [2·41])

P(n̂) = Θ(n̂)1 +Q(n̂)σ3 + U(n̂)σ1 + V (n̂)σ2 . (2.20)

In this expression,

Θ(n̂) =
T (n̂) − TCMB

TCMB
, (2.21)

denotes the fractional temperature anisotropy in a direction n̂, and the remaining Stokes parameters

are normalized to this quantity. Here Q and U describe independent linear polarization states, while

V describes circular polarization. Because circular polarization cannot be generated via Thomson

scattering, V = 0 for the CMB.

It is convenient to introduce the quantities,

±A(n̂) = Q(n̂) ± iU(n̂) , (2.22)

which have the spin-2 transformation properties,

±A(n̂) → e∓2iφ
±A(n̂) , (2.23)

under a counterclockwise rotation of the coordinate axis by an angle φ.
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We can expand Θ(n̂) and ±A(n̂) in normal modes as [2·42],

Θ(n̂) =

∞∑

l=1

m=l∑

m=−l

(−i)l
√

4π

2l+ 1
ΘlmY

m
l (n̂) , (2.24)

and

±A(n̂) =

∞∑

l=1

m=l∑

m=−l

(−i)l
√

4π

2l+ 1
(±Alm) (±2Y

m
l (n̂)) , (2.25)

where

Θlm =

∫
d3k

(2π)3
Θ

(m)
l (k)eik·x , (2.26)

and

±Alm =

∫
d3k

(2π)3

(
±A

(m)
l (k)

)
eik·x . (2.27)

Here sY
m
l are the spin-s weighted spherical harmonics [2·43], with Y ml = 0Y

m
l , and X

(m)
l (k) is the

contribution to the angular mode Xlm from wave vectors of the primordial density field of magnitude

k.

It is conventional to write the polarization in terms of the moments of the curl-free (scalar)

configurations Elm, and the moments of the divergence-free (pseudo-scalar) configurations Blm,

where

±Alm = Elm ± iBlm . (2.28)

We can then provide a complete description of an arbitrary CMB anisotropy field using the moments

Θlm, Elm, and Blm.

The basic observables of the random fields X(n̂) are the power spectra CXX̃l , defined by,

〈X∗
lmX̃l′m′〉 = δll′δmm′CXX̃l , (2.29)

where X, X̃ ∈ {Θ, E,B} and the angle brackets denote an average over all realizations. Here,

CXX̃l =
2

π(2l + 1)2

∫
dk

k

2∑

m=−2

k3X
(m)∗
l (k)X̃

(m)
l (k) . (2.30)

A set of Gaussian random fields—and we expect {Θ, E,B} to be Gaussian—are completely

characterized by their power spectra and cross-power spectra. Because the pseudo-scalar B has

opposite parity to the scalars Θ and E, the only non-vanishing power spectra are CΘΘ
l , CΘE

l , CEEl ,

and CBBl .

For small patches of sky it is an excellent approximation to treat the sky as flat and expand the

field X(n̂) in spin-weighted Fourier modes rather than spin-weighted spherical harmonics. Thus we
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have (for example, Ref. [2·44])

Θ(n̂) =

∫
d2l

(2π)2
Θ(l)eil·n̂ , (2.31)

±A(n̂) = −
∫

d2l

(2π)2
±A(l)e±2i(φl−φ)eil·n̂ , (2.32)

and we again define E and B through

±A(l) = E(l) ± iB(l) . (2.33)

In this notation the power spectra are defined by

〈X(l)X̃(l′)〉 = (2π)2δ2(l + l′)CXX̃l . (2.34)

Unless otherwise noted, we work within this flat-sky approximation for the remainder of the chapter.

2.3.2 Derivative Power Spectra

How do the expressions for the power spectra change if we allow for spatial fluctuations of α? As a

warmup we first consider a spatially uniform variation, α = α0(1 + ϕ), where ϕ� 1.

For a given primordial density field δ(x), the temperature and polarization patterns, Θ(n̂) and

±A(n̂), can be calculated by solving the combined Einstein equations and radiative-transfer equa-

tions, as well as the equations for the recombination history. As discussed above, this recombination

history depends on α. Thus, the temperature and polarization fields are implicitly functions of

ϕ = (α − α0)/α0. We can expand Θ(n̂) = Θ(n̂;ϕ) and ±A(n̂) = ±A(n̂;ϕ) in Taylor series about

ϕ = 0,

Θ(n̂) = Θ0(n̂) + ∂ϕΘ0(n̂)ϕ+
1

2
∂2
ϕΘ0(n̂)ϕ2 + · · · , (2.35)

±A(n̂) = ±A0(n̂) + ∂ϕ (±A0(n̂))ϕ+
1

2
∂2
ϕ (±A0(n̂))ϕ2 · · · . (2.36)

Inverting Eqs. (2.31) and (2.32), we find that

Θ(l) =

∫
d2n̂Θ(n̂)e−il·n̂ , (2.37)
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and

±A(l) = −
∫
d2n̂ (±A(n̂)) e±2i(φ−φl)e−il·n̂ . (2.38)

Thus, the ϕ expansions can be written in l space as

Θ(l) = Θ0(l) + ∂ϕΘ0(l)ϕ+
1

2
∂2
ϕΘ0(l)ϕ

2 + · · · , (2.39)

±A(l) = ±A0(l) + ∂ϕ (±A0(l))ϕ+
1

2
∂2
ϕ (±A0(l))ϕ

2 + · · · , (2.40)

and in fact for any field X ∈ {Θ, E,B} we may write

X(l) = X0(l) + ∂ϕX0(l)ϕ+
1

2
∂2
ϕX0(l)ϕ

2 + · · · . (2.41)

To O(ϕ2) we then have,

〈X(l)X̃(l′)〉 = 〈X0(l)X̃0(l
′)〉 + 〈X0(l)∂ϕX̃0(l

′)〉ϕ+ 〈∂ϕX0(l)X̃0(l
′)〉ϕ

+
1

2
〈X0(l)∂

2
ϕX̃0(l

′)〉ϕ2 +
1

2
〈∂2
ϕX0(l)X̃0(l

′)〉ϕ2 + 〈∂ϕX0(l)∂ϕX̃0(l
′)〉ϕ2, (2.42)

and in terms of power spectra this becomes

CXX̃l = CX0X̃0

l +
(
CX0∂X̃0

l + C∂X0X̃0

l

)
ϕ+

(
1

2
CX0∂

2X̃0

l +
1

2
C∂

2X0X̃0

l + C∂X0∂X̃0

l

)
ϕ2. (2.43)

Since we are for the time being assuming a spatially uniform value of ϕ we may also write

CXX̃l = CXX̃l

∣∣∣
0

+ ∂ϕC
XX̃
l

∣∣∣
0
ϕ+

1

2
∂2
ϕC

XX̃
l

∣∣∣
0
ϕ2. (2.44)

This allows us to make the identifications

CXX̃l

∣∣∣
0

= CX0X̃0

l ,

∂ϕC
XX̃
l

∣∣∣
0

= CX0∂X̃0

l + C∂X0X̃0

l ,

∂2
ϕC

XX̃
l

∣∣∣
0

= CX0∂
2X̃0

l + C∂
2X0X̃0

l + 2C∂X0∂X̃0

l . (2.45)

These identifications make it clear how to calculate the individual ‘derivative’ power spectra. We

just differentiate Eq. (2.30) with respect to ϕ, evaluate the expression at ϕ = 0, and pick off the

terms with the requisite structure.
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Figure 2.3: The C∂Θ0∂Θ0

l (solid) and CΘ0∂
2Θ0

l (dashed) derivative power spectra.
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Figure 2.4: The C∂E0∂E0

l (solid) and CE0∂
2E0

l (dashed) derivative power spectra.
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Figure 2.5: The C∂Θ0∂E0

l (solid), CΘ0∂
2E0

l (dashed) and CE0∂
2Θ0

l (dotted) derivative power spectra.
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For example,

C∂X0∂X̃0

l =
2

π(2l + 1)2

∫
dk

k

2∑

m=−2

k3∂ϕX
(m)∗
l (k)∂ϕX̃

(m)
l (k)

∣∣∣∣∣
ϕ=0

, (2.46)

where factors like ∂ϕX̃
(m)
l (k) can be calculated numerically or directly from first principles using the

expressions for the X̃
(m)
l (k) derived in, for instance, Ref. [2·45]. Because they are used in subsequent

calculations, we have created a modified version of the code CMBFAST [2·46] that can compute these

derivative power spectra. (See Figs. 2.3–2.5).

2.4 Spatial Variations of α

We now consider the effects of spatial variations of α (parametrized by ϕ) between different causally

disconnected regions of the Universe.

First, suppose that there were no density fluctuations, but spatial variations of α. In that case,

photons from different points on the sky would be scattered last at different cosmological times, but

they would all still have the same frequency when observed by us. However, if there are density

fluctuations, the manner in which they are imprinted on the CMB depends on the value of α, as

discussed above. Thus, if there are spatial variations in α, the power spectra (or two-point correlation

functions) will vary from one place on the sky to another. This implies that the stochasticity of

the spatial variations in α induce non-Gaussianity in the CMB quantified by non-zero (connected)

higher order correlation functions (trispectra and perhaps bispectra). It also implies a correction

to the mean power spectrum (i.e., that measured by mapping regions of the sky that contain many

coherence regions of α), as well as the introduction of a non-zero curl in the polarization. All of these

effects are analogous to similar effects induced by weak lensing of the CMB. The only difference is

that in our case, the temperature and polarization patterns are modulated by a variable α, rather

than lensing by an intervening density field along the line of sight.

In this section, we first calculate the modified power spectra CΘΘ
l , CΘE

l , CEEl , and CBBl . We

then determine the form of the higher order correlations (bispectra and trispectra) in the next two

sections.

2.4.1 Observable Modes in the Presence of ϕ Fluctuations

We assume that at a given position n̂ at the surface of last scatter, the value of α is α(n̂) =

α0[1 + ϕ(n̂)]. Here we treat ϕ(n̂) as a random field with angular power spectrum 〈ϕ(l)ϕ(l′)〉 =

(2π)2δ2(l + l′)Cϕϕl in the flat-sky approximation.

We assume that the surface of last scatter is much thinner than the spatial correlation length of
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ϕ, and that in a given direction α is constant throughout recombination. We also assume that the

dynamics responsible for the variations of ϕ have a negligible effect on the perturbation evolution,

so that the sole effect of variations of ϕ are a modification of the microphysics. We will discuss the

validity of these assumptions later.

Again we expand our fields Θ(n̂) = Θ(n̂;ϕ) and ±A(n̂) = ±A(n̂;ϕ) in a Taylor series about

ϕ = 0 as

Θ(n̂) = Θ0(n̂) + ∂ϕΘ0(n̂)ϕ(n̂) +
1

2
∂2
ϕΘ0(n̂)ϕ2(n̂), (2.47)

±A(n̂) = ±A0(n̂) + ∂ϕ (±A0(n̂))ϕ(n̂) +
1

2
∂2
ϕ (±A0(n̂))ϕ2(n̂), (2.48)

where ϕ(n̂) is now a function of position.

By taking the Fourier transform of Θ(n̂) we find

Θ(l) = Θ0(l) + [(∂ϕΘ0)?ϕ] (l) +
1

2

[
(∂2
ϕΘ0)?ϕ?ϕ

]
(l) , (2.49)

where

[X?ψ] (l) =

∫
d2l′

(2π)2
X(l′)ψ(l − l′) (2.50)

is the convolution of two fields X and ψ, and

[X?ψ?λ] (l) =

∫
d2l′

(2π)2
[X?ψ] (l′)λ(l − l′) , (2.51)

is the double convolution of three fields X , ψ, and λ.

Similarly, taking linear combinations of the Fourier transforms of ±A(n̂) we find that

E(l) = E0(l) + [(∂ϕE0)?cϕ] (l) − [(∂ϕB0)?sϕ] (l)

+
1

2

[
(∂2
ϕE0)?cϕ?ϕ

]
(l) − 1

2

[
(∂2
ϕB0)?sϕ?ϕ

]
(l) , (2.52)

and

B(l) = B0(l) + [(∂ϕB0)?cϕ] (l) + [(∂ϕE0)?sϕ] (l)

+
1

2

[
(∂2
ϕB0)?cϕ?ϕ

]
(l) +

1

2

[
(∂2
ϕE0)?sϕ?ϕ

]
(l) , (2.53)

where

[X?cψ] (l) =

∫
d2l′

(2π)2
cos (2φl′ )X(l′)ψ(l − l′) , (2.54)
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and

[X?sψ] (l) =

∫
d2l′

(2π)2
sin (2φl′)X(l′)ψ(l − l′) , (2.55)

are the even- and odd-parity spin-2 weighted convolutions of X and ψ respectively.

Examining these expressions we find that a given mode X(l) receives corrections due to the

combination of modes {∂nϕX0(l0), ϕ(l1), ϕ(l2), . . . , ϕ(ln)} such that
∑n
i=0 li = l. Furthermore, the

E and B modes mix so that, for example, the mode B(l) can be induced by the combinations of

modes {∂nϕE0(l0), ϕ(l1), ϕ(l2), . . . , ϕ(ln)} such that
∑n

i=0 li = l. These effects modify the angular

power spectra of CMB anisotropies, and introduce higher-order connected (non-Gaussian) correlation

functions.

2.4.2 The ΘΘ Power Spectrum

Using Eq. (2.49) we find that the expansion for the two point correlation function (in Fourier space)

is

〈Θ(l)Θ(l′)〉 = 〈Θ0(l)Θ0(l
′)〉 + 〈Θ0(l) [∂ϕΘ0?ϕ] (l′)〉 + 〈[∂ϕΘ0?ϕ] (l)Θ0(l

′)〉

+
1

2
〈Θ0(l)

[
∂2
ϕΘ0?ϕ?ϕ

]
(l′)〉 +

1

2
〈
[
∂2
ϕΘ0?ϕ?ϕ

]
(l)Θ0(l

′)〉 + 〈[∂ϕΘ0?ϕ] (l) [∂ϕΘ0?ϕ] (l′)〉 (2.56)

to O(ϕ2). In the above expression and what follows we adopt the convention that the differential

operators ∂ϕ act only the the field immediately following them.

We assume that Θ0 and ϕ are zero-mean Gaussian random fields without higher-order connected

correlators. By writing out the convolutions and Wick expanding the correlators it is easy to verify

that correlators involving an odd number of fields vanish, and so there are no corrections to first

order in ϕ. It is also straightforward to verify that

〈Θ0(l)[∂
2
ϕΘ0?ϕ?ϕ](l′)〉 = 〈[∂2

ϕΘ0?ϕ?ϕ](l)Θ0(l
′)〉

= (2π)2δ2(l + l′)
[
σ(ϕϕ)CΘ0∂

2Θ0

l + 2σ(ϕ∂2Θ0)CΘ0ϕ
l

]
, (2.57)

where

σ(ψλ) =

∫
d2l

(2π)2
Cψλl (2.58)

is the covariance between two fields ψ and λ. Similarly we can show that

〈[∂ϕΘ0?ϕ] (l) [∂ϕΘ0?ϕ] (l′)〉 = (2π)2δ2(l + l′){
[
Cϕϕ?C∂Θ0∂Θ0

]
l
+
[
C∂Θ0ϕ?C∂Θ0ϕ

]
l
} , (2.59)

where we have dropped terms that contribute only when l = 0.
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Figure 2.6: The solid curve shows the ΘΘ power spectrum for the Gaussian correlation function for
ϕ with angular correlation scale θc = 1◦ and variance σ(ϕϕ) = 9× 10−4 (fluctuations in ϕ at the 3%
level). The dashed curve shows the power spectrum without fluctuations in ϕ.

Collecting all terms we find that to leading order the average power spectrum including fluctua-

tions in ϕ is

CΘΘ
l = CΘ0Θ0

l + σ(ϕϕ)CΘ0∂
2Θ0

l + 2σ(ϕ∂2Θ0)CΘ0ϕ
l +

[
Cϕϕ?C∂Θ0∂Θ0

]
l
+
[
C∂Θ0ϕ?C∂Θ0ϕ

]
l
. (2.60)

Note that the corrections to CΘ0Θ0

l involve couplings between the derivative power spectra, which

are calculated as described in Section 2.3.2, and Cϕϕl and the various cross power spectra, which are

specified by the model that generates spatial variations in ϕ.

In general Θ0 and ϕ may be correlated if, for instance, they are generated by a common mecha-

nism or if they are strongly coupled through evolution equations. We discuss in Section 2.7 why we

do not expect the latter source of correlations to be important as long as the energy in the ϕ field

and its fluctuations are small compared to the dominant radiation and matter perturbations. In the
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case where Θ0 and ϕ have no cross-correlation, the expression simplifies to

CΘΘ
l = CΘ0Θ0

l + σ(ϕϕ)CΘ0∂
2Θ0

l +
[
Cϕϕ?C∂Θ0∂Θ0

]
l
. (2.61)

The result for CΘΘ
l will of course depend on Cϕϕl . To illustrate we consider a simple model in

which ϕ is highly correlated on angular scales smaller than the correlation angle θc, and uncorrelated

on larger scales. (Below we discuss a physical model that may produce such a correlation function).

We thus have,

〈ϕ(0)ϕ(θ)〉 =σ(ϕϕ)e−(θ/θc)
2

. (2.62)

In the flat-sky approximation we have

Cϕϕl =

∫
d2θ 〈ϕ(0)ϕ(θ)〉e−il·θ , (2.63)

which implies that

Cϕϕl = πθ2cσ
(ϕϕ)e−

1
4
l2θ2c . (2.64)

In this case the average ΘΘ power spectrum is

CΘΘ
l =CΘ0Θ0

l + σ(ϕϕ)
[
CΘ0∂

2Θ0

l +
θ2c
2

∫
dl′l′e−

1
4
(l2+l′2)θ2c I0

(
θ2c
2
ll′
)
C∂Θ0∂Θ0

l′

]
, (2.65)

where In is the nth-order modified Bessel function of the first kind. We show this average power

spectrum in Fig. 2.6. The main effect of ϕ fluctuations is to reduce the amplitude of oscillatory

features in the damping tail. This effect can be understood by noting that patches of the sky with

different values of ϕ will have different power spectra, and that, as can be seen in Fig. 4.13, the

location of of the peaks in the damping tail of these power spectra shift as ϕ changes. These patch

power spectra add incoherently, so that the amplitude of the oscillatory component of the average

power spectrum is reduced. This is the same type of effect as in weak gravitational lensing [2·47].

As we will see, this is the predominant effect in the other power spectra as well.
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Figure 2.7: The ΘE power spectra for the Gaussian correlation function for ϕ with σ(ϕϕ) = 9×10−4

and θc = 1◦ (solid) and θc = 2◦ (dotted). The dashed line shows the power spectrum without
fluctuations in ϕ.

2.4.3 The ΘE Power Spectrum

Using Eqs. (2.49) and (2.52), and immediately dropping the vanishing correlators involving an odd

number of fields, we find that the expansion for the power spectrum is

〈Θ(l)E(l′)〉 = 〈Θ0(l)E0(l
′)〉 +

1

2
〈Θ0(l)

[
∂2
ϕE0?cϕ?ϕ

]
(l′)〉 − 1

2
〈Θ0(l)

[
∂2
ϕB0?sϕ?ϕ

]
(l′)〉

+ 〈[∂ϕΘ0?ϕ] (l) [∂ϕE0?cϕ] (l′)〉 − 〈[∂ϕΘ0?ϕ] (l) [∂ϕB0?sϕ] (l′)〉

+
1

2
〈
[
∂2
ϕΘ0?ϕ?ϕ

]
(l)E0(l

′)〉 (2.66)

to O(ϕ2).

By writing out the convolutions, Wick expanding the correlators, and noting that terms involving

B0 vanish due to parity, we find that the non-vanishing terms are

〈Θ0(l)
[
∂2
ϕE0?ϕ?ϕ

]
(l′)〉 = (2π)2δ2(l + l′)

[
σ(ϕϕ)CΘ0∂

2E0

l + 2σ(ϕ∂2E0)CΘ0ϕ
l

]
, (2.67)



30

〈
[
∂2
ϕΘ0?ϕ?ϕ

]
(l)E0(l

′)〉 = (2π)2δ2(l + l′)
[
σ(ϕϕ)CE0∂

2Θ0

l + 2σ(ϕ∂2Θ0)CE0ϕ
l

]
, (2.68)

〈[∂ϕΘ0?ϕ] (l) [∂ϕE0?cϕ] (l′)〉 = (2π)2δ2(l + l′){
[
C∂Θ0∂E0?cC

ϕϕ
]
l
+
[
C∂E0ϕ?cC

∂Θ0ϕ
]
l
} . (2.69)

Collecting these terms we find that, to leading order, the average cross power-spectrum including

fluctuations in ϕ is

CΘE
l = CΘ0E0

l + σ(ϕϕ)

[
1

2
CΘ0∂

2E0

l +
1

2
CE0∂

2Θ0

l

]
+ σ(ϕ∂2E0)CΘ0ϕ

l + σ(ϕ∂2Θ0)CE0ϕ
l

+
[
C∂Θ0∂E0?cC

ϕϕ
]
l
+
[
C∂E0ϕ?cC

∂Θ0ϕ
]
l
. (2.70)

If ϕ has no correlation with the density field, the expression simplifies to

CΘE
l = CΘ0E0

l + σ(ϕϕ)

[
1

2
CΘ0∂

2E0

l +
1

2
CE0∂

2Θ0

l

]
+
[
C∂Θ0∂E0?cC

ϕϕ
]
l
. (2.71)

Inserting the power spectrum from Eq. (2.64), we obtain the expression

CΘE
l = CΘ0E0

l + σ(ϕϕ)

[
1

2
CΘ0∂

2E0

l +
1

2
CE0∂

2Θ0

l

+
θ2c
2

∫
dl′l′e−

1
4
(l2+l′2)θ2c I2

(
θ2c
2
ll′
)
C∂Θ0∂Θ0

l′

]
. (2.72)

We show this average power spectrum in Fig 2.7. The major effect of ϕ fluctuations on the ΘE

power spectrum is to reduce the peak amplitudes on small scales.

2.4.4 The EE Power Spectrum

Using Eq. (2.52), and dropping the correlators involving an odd number of fields and those that

vanish due to parity, we find that the expansion for the power spectrum is

〈E(l)E(l′)〉 = 〈E0(l)E0(l
′)〉 +

1

2
〈E0(l)

[
∂2
ϕE0?cϕ?ϕ

]
(l′)〉 +

1

2
〈
[
∂2
ϕE0?cϕ?ϕ

]
(l)E0(l

′)〉

+ 〈[∂ϕE0?cϕ] (l) [∂ϕE0?cϕ] (l′)〉 + 〈[∂ϕB0?sϕ] (l) [∂ϕB0?sϕ] (l′)〉 (2.73)

to O(ϕ2).

After evaluating the convolutions, and Wick expanding these correlators, we find

〈E0(l)
[
∂2
ϕE0?cϕ?ϕ

]
(l′)〉 = 〈

[
∂2
ϕE0?cϕ?ϕ

]
(l′)E0(l)〉

= (2π)2δ2(l + l′)
[
σ(ϕϕ)CE0∂

2E0

l + 2σ(ϕ∂2E0)CE0ϕ
l

]
, (2.74)
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Figure 2.8: The EE power spectra for the Gaussian correlation function for ϕ with σ(ϕϕ) = 9×10−4

and θc = 1◦ (solid) and θc = 2◦ (dotted). The dashed line shows the power spectrum without
fluctuations in ϕ.
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〈[∂ϕE0?cϕ] (l) [∂ϕE0?cϕ] (l′)〉 = (2π)2δ2(l + l′)

∫
d2l1

(2π)2

{
cos2 (2φl1)C

∂E0∂E0

l1
Cϕϕ|l−l1|

+ cos (2φl1)

[
2l1

2 sin2 (φl1)

|l− l1|2
− 1

]
C∂E0ϕ
l1

C∂E0ϕ
|l−l1|

}
, (2.75)

〈 [∂ϕB0?sϕ] (l) [∂ϕB0?sϕ] (l′)〉 = (2π)2δ2(l + l′)

∫
d2l1

(2π)2
sin2 (2φl1)C

∂B0∂B0

l1
Cϕϕ|l−l1|

. (2.76)

Collecting these terms we find that

CEEl = CE0E0

l + σ(ϕϕ)CE0∂
2E0

l + 2σ(ϕ∂2E0)CE0ϕ
l +

∫
d2l′

(2π)2

{
[cos2 (2φl′)C

∂E0∂E0

l′

+ sin2 (2φl′)C
∂B0∂B0

l′ ]Cϕϕ|l−l′| + cos (2φl′)

[
2l′

2
sin2 (φl′)

|l − l′|2 − 1

]
C∂E0ϕ
l′ C∂E0ϕ

|l−l′|

}
, (2.77)

is the expression for the average E-mode power spectrum including fluctuations in ϕ.

If E0 and ϕ are uncorrelated, the expression simplifies to

CEEl = CE0E0

l + σ(ϕϕ)CE0∂
2E0

l +

∫
d2l′

(2π)2
[cos2 (2φl′)C

∂E0∂E0

l′ + sin2 (2φl′)C
∂B0∂B0

l′ ]Cϕϕ|l−l′| . (2.78)

For the ϕ power spectrum in Eq (2.64), dropping the negligible primordial B-mode term, we

obtain the expression

CEEl = CE0E0

l + σ(ϕϕ)
{
CE0∂

2E0

l

+
θ2c
4

∫
dl′l′e−

1
4
(l2+l′2)θ2c

[
I0

(
θ2c
2
ll′
)

+ I4

(
θ2c
2
ll′
)]

C∂E0∂E0

l′

}
. (2.79)

We plot this average power spectrum in Fig. 2.8. Again, the effect of ϕ fluctuations is to reduce the

amplitude of the oscillatory component at small angular scales.

2.4.5 The BB Power Spectrum

Using Eq. (2.53), and once again dropping the correlators involving an odd number of fields and

those that vanish due to parity, we find that the expansion for the two point correlation function is

〈B(l)B(l′)〉 = 〈B0(l)B0(l
′)〉 +

1

2
〈B0(l)

[
∂2
ϕB0?cϕ?ϕ

]
(l′)〉 +

1

2
〈
[
∂2
ϕB0?cϕ?ϕ

]
(l)B0(l

′)〉

+ 〈[∂ϕB0?cϕ] (l) [∂ϕB0?cϕ] (l′)〉 + 〈[∂ϕE0?sϕ] (l) [∂ϕE0?sϕ] (l′)〉 (2.80)

to O(ϕ2).
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Figure 2.9: The BB power spectra for the Gaussian correlation function for ϕ with σ(ϕϕ) = 9×10−4

and θc = 1◦ (solid), θc = 2◦ (dotted), θc = 5◦ (dashed), and θc = 10◦ (dot-dashed).

Evaluating the convolutions, and Wick expanding these correlators, leads to the expressions

〈B0(l)
[
∂2
ϕB0?cϕ?ϕ

]
(l′)〉 = 〈

[
∂2
ϕB0?cϕ?ϕ

]
(l′)B0(l)〉 = (2π)2δ2(l + l′)

[
σ(ϕϕ)CB0∂

2B0

l

]
, (2.81)

〈 [∂ϕB0?cϕ] (l) [∂ϕB0?cϕ] (l′)〉 = (2π)2δ2(l + l′)

∫
d2l1

(2π)2
cos2 (2φl1)C

∂B0∂B0

l1
Cϕϕ|l−l1|

, (2.82)

〈[∂ϕE0?sϕ] (l) [∂ϕE0?sϕ] (l′)〉 = (2π)2δ2(l + l′)

∫
d2l1

(2π)2

{
sin2 (2φl1)C

∂E0∂E0

l1
Cϕϕ|l−l1|

+ sin (2φl1)

[
l21 sin(2φl1) − 2ll1 sin (φl1)

|l− l1|2
]
×C∂E0ϕ

l1
C∂E0ϕ

|l−l1|

}
. (2.83)

Any ϕ-B0 cross correlations must vanish due to parity.



34

Collecting all terms we find that the expression for the average B-mode power spectrum is

CBBl = CB0B0

l + σ(ϕϕ)CB0∂
2B0

l +

∫
d2l′

(2π)2

{[
cos2 (2φl′)C

∂B0∂B0

l′

+ sin2 (2φl′)C
∂E0∂E0

l′

]
Cϕϕ|l−l′| + sin (2φl′)

[
l′2 sin(2φl′) − 2ll′ sin (φl′)

|l− l′|2
]
C∂B0ϕ
l′ C∂B0ϕ

|l−l′|

}
, (2.84)

and if E0 and ϕ are uncorrelated the expression simplifies to

CBBl = CB0B0

l + σ(ϕϕ)CB0∂
2B0

l +

∫
d2l′

(2π)2
[cos2 (2φl′)C

∂B0∂B0

l′ + sin2 (2φl′ )C
∂E0∂E0

l′ ]Cϕϕ|l−l′| . (2.85)

If the intrinsic B-modes due to gravitational waves are negligible then for our ϕ power spectrum,

Eq. (2.64), the average B-mode power spectrum is

CBBl = σ(ϕϕ)

{
θ2c
4

∫
dl′l′e−

1
4
(l2+l′2)θ2c

[
I0

(
θ2c
2
ll′
)
− I4

(
θ2c
2
ll′
)]

C∂E0∂E0

l′

}
. (2.86)

This expression shows that E modes modulated by ϕ fluctuations can induce B modes. We note here

that this effect is more general than the specific application of α variation we focus on here, and is a

generic feature of any fluctuations that modulate the power spectrum but have negligible effects on

the evolution of the dominant density perturbations. In Fig. 2.9 we plot the induced B-mode power

spectra due to ϕ fluctuations. The induced B-mode power spectrum inherits the oscillatory features

of the unperturbed E0-mode power spectrum as long as correlation angle is larger than the horizon

size at recombination, while the amplitude of the power spectrum decreases as the correlation angle

increases.

2.5 Bispectra

We have shown in the previous section that modulation of the temperature and polarization power

spectra by spatial variations of α alters the mean power spectra of CMB anisotropies. In this section

and the one that follows we show how this modulation introduces higher order correlations into the

CMB temperature field.

The temperature bispectrum is defined in terms of the connected piece (the terms remaining

after the Gaussian piece is subtracted out) of the three-point correlation function in Fourier space

as

〈Θ(l1)Θ(l2)Θ(l3)〉c = (2π)2δ2(l1 + l2 + l3)B
ΘΘΘ(l1, l2, l3) . (2.87)

This expression must be invariant under the exchange of any two fields, or equivalently, l vectors.

We insert Eq. (2.49) into the three-point correlation function, and after some straightforward algebra
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we find that

BΘΘΘ(l1, l2, l3) =

3∑

i,j=1
i<j

B(li, lj , l6−i−j) , (2.88)

where the sum runs over the distinct permutations of {1, 2, 3} and, to leading order,

B(li, lj , lk) = CΘ0∂Θ0

li
CΘ0ϕ
lj

+ CΘ0ϕ
li

CΘ0∂Θ0

lj
. (2.89)

Thus, the temperature bispectrum vanishes unless ϕ and Θ0 are correlated. In the models we

consider in this work, ϕ and Θ0 are not expected to be highly correlated. However, if a model of

spatial variations of α predicts that variations of ϕ and Θ0 are strongly correlated the bispectrum may

be a strong signature of such a model as, unlike the power spectrum or the trispectrum (discussed

below), it is first order in ϕ. We note that expressions analogous to Eqs. (2.88) and (2.89) will hold

for the polarization and cross-bispectra as well.

2.6 Trispectra

In analogy with the bispectrum, the temperature trispectrum is defined in terms of the connected

piece of the four-point correlation function in Fourier space as

〈Θ(l1)Θ(l2)Θ(l3)Θ(l4)〉c = (2π)2δ2(l1 + l2 + l3 + l4)T
ΘΘΘΘ(l1, l2, l3, l4) . (2.90)

This expression must also be invariant under the exchange of any two fields, or equivalently, l vectors.

We insert Eq. (2.49) into the four-point correlation function, and after some straightforward algebra

we find that

TΘΘΘΘ(l1, l2, l3, l4) =

4∑

i,j=1
i<j

4∑

k,l=1(6=i,j)
k<l

TA(li, lj , lk, ll) +

4∑

i,j,k=1
i<j<k

4∑

l=1
l6=i,j,k

TB(li, lj , lk, ll) , (2.91)

where the sums run over the distinct permutations of {1, 2, 3, 4},

TA(li, lj , lk, ll) = CΘ0∂Θ0

li
CΘ0∂Θ0

lj

(
Cϕϕ|lj+lk |

+ Cϕϕ|lj+ll|

)

+
(
CΘ0∂Θ0

li
CΘ0ϕ
lj

+ CΘ0ϕ
li

CΘ0∂Θ0

lj

)(
C∂Θ0ϕ

|lj+lk |
+ C∂Θ0ϕ

|lj+ll|

)

+ CΘ0ϕ
li

CΘ0ϕ
lj

(
C∂Θ0∂Θ0

|lj+lk |
+ C∂Θ0∂Θ0

|lj+ll|

)
, (2.92)
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and

TB(li, lj , lk, ll) = 2CΘ0∂
2Θ0

li
CΘ0ϕ
lj

CΘ0ϕ
lk

+ 2CΘ0ϕ
li

(CΘ0ϕ
lj

CΘ0∂
2Θ0

lk
+ CΘ0∂

2Θ0

lj
CΘ0ϕ
lk

) . (2.93)

If Θ0 and ϕ have no cross correlation, the second term vanishes and the first term simplifies to

TA(li, lj , lk, ll) = CΘ0∂Θ0

li
CΘ0∂Θ0

lj

(
Cϕϕ|lj+lk|

+ Cϕϕ|lj+ll|

)
. (2.94)

Expressions similar to Eqs. (2.91)-(2.93) will hold for the polarization and cross-trispectra as well.

2.6.1 The Kurtosis

The trispectrum is a nontrivial function of six variables and extracting the full trispectrum from

CMB data will be a challenging experimental endeavor. It is therefore worthwhile to examine

simpler statistical signatures of non-Gaussianity in the CMB. If the trispectrum is nonvanishing,

the probability distribution function of Θ(n̂) on the sky will no longer be precisely Gaussian. As

in the case of weak lensing, the deviation from Gaussianity can be parametrized by the kurtosis

[2·48], which is a measure of how flattened out or peaked the distribution is relative to a Gaussian

distribution.

The kurtosis of a non-Gaussian random field may be written in terms of the trispectrum as

K(θ) =
1

σ4(θ)

∫
d2l1

(2π)2
d2l2

(2π)2
d2l3

(2π)2
d2l4

(2π)2
{
(2π)2δ2(l1 + l2 + l3 + l4)T

ΘΘΘΘ(l1, l2, l3, l4)

×W (l1θ)W (l2θ)W (l3θ)W (l4θ)
}
, (2.95)

where W (lθ) is a smoothing function with smoothing scale θ, and

σ2(θ) =

∫
d2l

(2π)2
CΘΘ
l W 2(lθ) (2.96)

is the smoothed variance.

If we adopt a Gaussian smoothing function

W (lθ) = e−
1
2
σ2

b l
2

, (2.97)

with σb = θ/(
√

8ln2) and insert the expression for the trispectrum from Eq. (2.94) we find after

some algebra that

K(θ) =
3

2π3σ4(θ)

∫
l1dl1l2dl2l3dl3

{
CΘ∂Θ
l1 Cϕϕl2 CΘ∂Θ

l3

[
I0(σ

2
b l1l2)I0(σ

2
b l2l3)e

−σ2
b (l21+l22+l

2
3)
]}

. (2.98)
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Figure 2.10: The ratio of the kurtosis to the variance in the estimator of the kurtosis due to Gaussian
fluctuations for spatial α fluctuations with σ(ϕϕ) = 9× 10−4 and θc = 1◦ (solid) and the same ratio
for weak lensing (dashed). The kurtosis is undetectable for weak lensing at any angular resolution,
while for spatial α fluctuations of this amplitude the kurtosis may in principle be detected by a high
resolution no-noise experiment.

It was shown in Ref. [2·48] that the sample variance of the kurtosis of a Gaussian random field

smoothed over an angular scale θ for a full-sky experiment is

σ2
K(θ) =

3

2
θ2 . (2.99)

In Fig. 2.10 we plot the ratio of the kurtosis to the standard deviation of the kurtosis as a function of

smoothing scale. Despite the improved variance at high resolution the kurtosis due to weak lensing

cannot be detected because in the limit of infinite resolution the kurtosis of weak lensing vanishes

more quickly than the variance. This can be understood by noting that weak lensing is power

conserving because it maps the temperature at one point on the sky to another, and so with infinite

resolution the probability distribution function is Gaussian. In contrast, the kurtosis due to spatial α

fluctuations approaches a constant value in the limit of infinite resolution, and so for low θ the signal-
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to-noise increases as θ−1. This occurs because α fluctuations do not lead to a pure remapping of of

the temperature pattern (they do not conserve power), and thus in the limit of infinite resolution

modulate the variance of the (Gaussian) temperature probability distribution function from one

patch of the sky to another. The resulting mean probability distribution is no longer Gaussian.

Note that the dip in the kurtosis at θ ≈ 15 arcminutes occurs because when smoothed over that

scale modulation of the CMB due to spatial α fluctuations becomes approximately power conserving.

An ideal noise-free experiment at an angular resolution of 1 arcminute could detect the kurtosis due

to α fluctuations at the level of σ(ϕϕ) = 9× 10−4, while higher resolution experiments could observe

lower amplitude α fluctuations.

2.6.2 A Discriminating Filter

As discussed above, weak lensing of the CMB by matter along the line of sight must induce a

contribution to the trispectrum

LΘΘΘΘ(l1, l2, l3, l4) =

4∑

i,j=1
i<j

4∑

k,l=1(6=i,j)
k<l

L(li, lj , lk, ll) , (2.100)

where

L(li, lj , lk, ll) = −CΘ0Θ0

lk
CΘ0Θ0

ll

[
Cφφ|li+lk|

[(li + lk) · lk][(li + lk) · ll] + Cφφ|lj+lk|
[(lj + lk) · lk][(lj + lk) · ll

]
.

(2.101)

We emphasize that in this expression Cφφl is the power spectrum of the projected lensing potential

and not the power spectrum of α fluctuations Cϕϕl .

Since this contribution to the trispectrum must be in the CMB, we now derive a filter to distin-

guish between the weak-lensing and α-fluctuation trispectra.

For compactness, we introduce the notation

Xijk ≡ XΘΘΘΘ(li, lj , lk,−li − lj − lk) , (2.102)

and

∑

ijk

≡
∫

d2li

(2π)2
d2lj

(2π)2
d2lk

(2π)2
. (2.103)

The signal for detection of the α-fluctuation trispectrum can be in general written as a windowed
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integral over trispectrum configurations (quadrilaterals in l-space),

S =
∑

ijk

WijkTijk , (2.104)

where Wijk is the to-be-determined window function.

To determine the least-square quartic discriminator we treat the trispectrum due to weak gravi-

tational lensing as a source of noise that should be minimized, and write

NL =
∑

ijk

WijkLijk . (2.105)

In addition, we at minimum also have the Gaussian noise due to cosmic variance

N2
G =

∑

ijk

W 2
ijkGijk , (2.106)

where

Gijk =
4!

4πfsky
C

�

ΘΘ
li C

�

ΘΘ
lj C

�

ΘΘ
lk

C
�

ΘΘ
|li+lj+lk|

, (2.107)

and

C
�

ΘΘ
l = CΘΘ

l +
4πfskys

2

texpT 2
CMB

eσ
2
b l

2

(2.108)

is the sum of the actual CMB power spectrum and the noise power spectrum introduced by an

experiment that observes a fraction fsky of the sky with beam width σb for a time texp with detectors

of noise-equivalent-temperature s.

The total noise is then just

N2 = N2
G +N2

L . (2.109)

We want to solve for the Wijk that maximizes the signal to noise ratio S/N . To do this we set

δ

δWijk

(
S2

N2

)
= 0 . (2.110)

After some straightforward algebra, and making use of the fact that S2/N2 is invariant under

renormalization of Wijk , we find that the signal-to-noise ratio is extremized only if Wijk takes the
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form

Wijk =
Tijk − λLijk

Gijk
. (2.111)

Thus, we have

S2

N2
=

T 2 − 2λT X + λ2X 2

T + X 2 − (2λX − λ2L)(1 + L)
, (2.112)

where

T =
∑

ijk

T 2
ijk

Gijk
, (2.113)

X =
∑

ijk

LijkTijk
Gijk

, (2.114)

L =
∑

ijk

L2
ijk

Gijk
, (2.115)

and the optimum weighting is

λ =
X

1 + L . (2.116)

In the absence of lensing this expression reduces to the conventional signal-to-noise measure

S2

N2
= T =

∑

ijk

T 2
ijk

Gijk
. (2.117)

In Fig. 2.11 we show the maximum signal-to-noise ratio for detection of the α-fluctuation trispec-

trum that would be detected were weak lensing not present. For a given weak lensing power spectrum

Cφφl the actual signal-to-noise will be less than the bound shown.

2.7 Theoretical Models of Variable α

Recent theoretical work [2·11–2·16,2·18–2·21] has considered the ingredients required of field-theory

models for variable fine-structure parameter in order to explain a small time variation of α. Here

we briefly amend those discussions to consider the field-theory requirements for spatial variations of

the sort we consider in this chapter.

The simplest way to introduce spatial variation of α is to couple the photon to a scalar field φ(x)
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Figure 2.11: The signal-to-noise ratio of the α-fluctuation trispectrum that would be observed by
an experiment with s = 12.42 µK

√
sec observing for 1 year (the effective parameters of the Planck

satellite) with resolution θ if weak lensing were not present for σ(ϕϕ) = 9 × 10−4. Since in practice
we know weak lensing must be present in the CMB this curve serves as an upper bound on the
observable signal-to-noise ratio.
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through a term (see, e.g., Ref. [2·20] and references therein)

Lφγγ = −λ
4
g

(
φ

fφ

)
F µνFµν , (2.118)

in the Lagrangian that appears in addition to the usual electromagnetic Lagrangian, F µνFµν/4.

Here, fφ is a constant with dimensions of mass, λ is an overall coupling constant, and g(x) =
∑∞

n=1 cnx
n is a dimensionless function of the ratio φ/fφ normalized so that g(1) = 1. This interaction

then leads to a fractional change in α,

δα

α
= −λg

(
φ

fφ

)
= ϕ . (2.119)

The best present constraint to g comes from the evolution of globular-cluster stars; this requires

[λ(dg/dφ)]−1 & 1.6 × 1010 GeV [2·49]. If we consider fractional fluctuations in α of . 10−2, then

λ ∼ 10−2, δφ . fφ, and σ(ϕϕ) ∼ λ2.

Cosmological mechanisms that might induce spatial variations in φ are analogous to those that

have been considered, e.g., for spatial variations in the axion field [2·50]. These variations in φ

can arise either during or after inflation. If φ is a spectator field during inflation, then fluctuations

in φ can be induced quantum mechanically during inflation resulting in a nearly scale-invariant

spectrum for φ fluctuations. Alternatively, if φ is a pseudo-Nambu-Goldstone field in a model

with an approximate global symmetry, it could fall during the symmetry-breaking phase transition

to different random points on the vacuum manifold (which is periodic in φ with period 2fφ) in

different causally-disconnected regions. In this case, the scalar-photon interaction will in general be

an arbitrary Fourier series in φ. A simple interaction of this form, containing only the first harmonic

and (as motivated below) constraining g(φ/fφ) to be an even function, is

Lφγγ = −λ
8

[
1 − cos

(
πφ

fφ

)]
F µνFµν . (2.120)

For such an interaction φ will be uncorrelated on scales larger than the horizon, and δα/α is fixed by

the magnitude of the explicit symmetry breaking term λ, rather than by fφ. In either case (inflation

or spontaneous symmetry breaking), the gradient term in the scalar-field Lagrangian will tend to

align the scalar field within causally-connected regions of the Universe. Thus, the value of α at

the surface of last scatter should be constant within square-degree patches, but will vary from one

square-degree patch to another, as we have assumed throughout this chapter.

Now consider constraints to the potential-energy density V (φ) for the scalar field. If it is

quadratic, V (φ) = m2
φφ

2/2, then (neglecting for the moment the interaction with photons) the
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equation of motion for φ is

φ̈+ 3Hφ̇+m2
φφ = 0 , (2.121)

and has the solution

φ(t) = φ0
sin(mφt)

mφt
(2.122)

in the matter dominated era. At early times when H � mφ the value of φ is frozen at φ ≈ φ0,

while for H . mφ the field in each horizon will oscillate about its minimum with an amplitude

decaying like 1/t. We thus require mφ . Hrec ' 10−28 eV so that the α fluctuations are frozen in at

recombination. On the other hand, observations of the Lyman-α forest at redshifts z ∼ 4 show no

evidence of spatial fluctuations in α larger than one part in 104. Thus, if we consider (δα/α) & 10−4

at the surface of last scatter, then we must require that λg|z≈4 . 10−4. If the leading order term

in g is quadratic in φ (as we argue below) this leads to the constraint mφ &
√
λ/0.01 × 10−31 eV.

Finally, laboratory experiments constrain the value α̇/α today to be . 5 × 10−15 yr−1 [2·51]. To

satisfy this requirement we require that g ∝ φ2 to leading order at small φ so that α̇/α ∝ t−2. This

leads to the constraint mφ & 2× (λ/0.01)× 10−30 eV if the oscillatory factor is unity. We note that

if g ∝ φn with n > 2 for small φ this constraint can be relaxed, and that late-time Λ domination

does not significantly alter the limit. These constraints will insure that the model conforms to upper

limits to α variations in the low-redshift Universe, but we caution that they are constraints based on

the root-mean-squared value of the scalar field. If we happen to live in a region where the amplitude

of φ is randomly small (large) the constraints based on local observations will be weaker (stronger)

than discussed above. Also, the nonlinear evolution of the mass distribution may modify constraints

based on recent terrestrial phenomena [2·52].

We must also be sure that fluctuations in the scalar field do not lead to density perturbations

that exceed those of amplitude 10−5. This constraint requires that the gradient-energy density,

k2(∆φ)2 . 10−5 ρm(zrec), where k ' Hrec is the largest wavenumber for which perturbations are

significant at the redshift zrec ' 1100 of decoupling, and Hrec = Ω
1/2
m H0(1 + zrec)

3/2 is the Hubble

parameter at decoupling. However, from the Friedmann equation, ρm(zrec) ∼ H2
recm

2
Pl, where

mPl ' 1019 GeV is the Planck mass, so we find a constraint ∆φ . fφ . 3 × 1016 GeV.

Now lets examine the effect of the scalar-photon Lagrangian on the scalar field dynamics. If we

include the interaction in the Lagrangian it is easy to verify the equation of motion for the scalar

field is modified to include a forcing term

φ̈+ 3Hφ̇+m2
φφ+

λ

4

dg

dφ
〈FµνF µν〉 = 0 , (2.123)
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where

〈FµνF µν〉 =
1

8π

(〈
E2
〉
−
〈
B2
〉)

(2.124)

and
〈
E2
〉

and
〈
B2
〉

are the spatially-averaged, squared, electric and magnetic fields respectively. A

bath of thermal photons has
〈
E2
〉

=
〈
B2
〉

and so will not contribute to the forcing term. However,

nonrelativistic matter is a source for electromagnetic fields with
〈
E2
〉
6=
〈
B2
〉
, and so the forcing

term should be proportional to the density of nonrelativistic matter ρm. If, as we discussed above,

g(φ/fφ) is dominated by its quadratic term then in the matter dominated era the equation of motion

reads

φ̈+
2

t
φ̇+ (m2

φ +
η

t2
)φ = 0 , (2.125)

where η = (2λξρm0
t20)/f

2
φ, and ξ is the fraction of matter density ρm due to electromagnetic energy.1

Thus, if η is small the effect of the forcing term is to introduce a small time-dependent mass term

into the equation of motion. The solution will qualitatively behave like that of Eq. (2.122), except

that the time that field begins to oscillate may shift by a small η-dependent factor, and the power law

of decay will shift from −1 to −1 + η. Generically η need not be small, but for fφ & 5 × 1015 GeV

and λ ≈ 0.01 we find |η| . 0.1 .2 This brings us uncomfortably close to the limits on fφ from

gradient energy density. In general, η should be replaced by the quantity η̃ = η + ω, where η̃

may in principle be small even if η is not. The term ω arises from the terms of the effective non-

renormalizable Lagrangian of the form λnmψφ
2nψ̄ψ or σnm

2
χφ

2nχ2 that couple the scalar field φ to

the energy density in other matter fields. Theories that do not lead to ‘fifth forces’ which violate

the weak-equivalence-principle (WEP) must have η̃ = 0 precisely.

We thus have a constraint [λ(dg/dφ)]−1 & 1010 GeV to the scalar-photon coupling, and a con-

straint (2λ/0.01) × 10−30 eV . mφ . 10−28 eV to the scalar-particle mass. We note that these

relations may seem hard to reconcile, as contributions to the scalar-particle propagator from diver-

gent loop diagrams containing photons should generically be large. Likewise, if φ is a Goldstone

mode for some spontaneously broken global symmetry, it may be unusual from the point of view of

Planck-scale physics [2·53]. It was also pointed out in Ref. [2·54] that variations of a light scalar

should give rise to large variations in vacuum energy density. On the other hand, similar problems

arise in models for inflation and for scalar-field models for dark energy and dark matter. Here, we

take the view that our φ-photon coupling is simply a low-energy effective Lagrangian, and anticipate

that the light mass can be protected, e.g., by a mechanism such as that proposed in Ref. [2·55] where

1Naively, one might guess that ∼nG intergalactic magnetic fields would suggest ξ ∼ 10−11 . However, the quantity
of interest here is 〈B2〉, rather than 〈B〉2 , as well as 〈E2〉. Thus, strong microscopic magnetic fields in the vicinity of
electrons and protons may contribute ξb ∼ 10−5 [2·20].

2This assumes a baryon fraction Ωb/Ωm = 1/6, that magnetic energy contributes |ξb| ≈ 2 × 10−5 [2·20], and that
the dark matter has negligible electromagnetic energy so that ξ = (Ωb/Ωm)ξb.
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the scale of an inflaton potential is fixed by the size of an extra dimension. If so then one might

assume that whatever mechanism alleviates the cosmological-constant problem may also alleviate

problems associated with vacuum-energy gradients.

2.8 Discussion

In this chapter we have studied the effects on the CMB of spatial fluctuations in the fine-structure

parameter between causally disconnected regions of the Universe at the time of recombination. Al-

though we have focused on the particular case of fluctuations in the fine-structure parameter, the

formalism we have presented may be applied mutatis mutandis to other modifications of recombi-

nation physics that do not alter the evolution of the dominant density perturbations. As discussed

above, such fluctuations will alter the predicted CMB power spectra, introduce a B-mode polar-

ization signal, and introduce temperature and polarization trispectra and perhaps bispectra. We

stress here that these results are not dependent on the particular model for α variation discussed in

Section 2.7.

From the point of view of effective field theory, variations of the fine-structure parameter can be

phrased in terms of a scalar-photon interaction Lagrangian Lφγγ , the parameters of which can be

chosen to be consistent with current experimental limits. Ultimately, if such light, cosmologically

interesting, scalars do exist in nature their mass must be protected by some yet unknown mechanism.
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Chapter 3

Charged-Particle Decay and

Suppression of Primordial Power

on Small Scales

We study the suppression of the small-scale power spectrum due to the decay of charged matter

to dark matter prior to recombination. Prior to decay, the charged particles couple to the photon-

baryon fluid and participate in its acoustic oscillations. After these charged particles decay to

neutral dark matter the photon-baryon fluid is coupled only gravitationally to the newly-created

dark matter. This generically leads to suppression of power on length scales that enter the horizon

prior to decay. For decay times of ∼3.5 years this leads to suppression of power on subgalactic

scales, bringing the observed number of Galactic substructures in line with observation. Decay

times of a few years are possible if the dark matter is purely gravitationally interacting, such

as the gravitino in supersymmetric models or a massive Kaluza-Klein graviton in models with

universal extra dimensions.

Originally published as K. Sigurdson and M. Kamionkowski, Phys. Rev. Lett. 92, 171302 (2004).

3.1 Introduction

The standard inflation-inspired cosmological model, with its nearly scale-invariant power spectrum

of primordial perturbations, is in remarkable agreement with observation. It predicts correctly the

detailed pattern of temperature anisotropies in the cosmic microwave background (CMB) [3·1],

and accurately describes the large scale clustering of matter in the Universe [3·2]. However, on

subgalactic scales there are possible problems with the standard cosmology that warrant further

investigation. Namely, the model overpredicts the number of subgalactic halos by an order of

magnitude compared to the eleven observed dwarf satellite galaxies of the Milky Way [3·3]. Several

possible resolutions have been proposed to this apparent discrepancy, ranging from astrophysical

mechanisms that suppress dwarf-galaxy formation in subgalactic halos (see, for example, Ref. [3·4])
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to features in the inflaton potential that suppress small-scale power and thus reduce the predicted

number of subgalactic halos [3·5].
In this chapter, we show that if dark matter is produced by the out-of-equilibrium decay of a

long-lived charged particle, then power will be suppressed on scales smaller than the horizon at the

decay epoch. Unlike some other recent proposals, which suppress small-scale power by modifying

the dark-matter particle properties [3·6], ours modifies the dark-matter production mechanism. In

the model we discuss here, prior to decay, the charged particles coupled electromagnetically to the

primordial plasma and participate in its acoustic oscillations. After decay, the photon-baryon fluid

is coupled only gravitationally to the neutral dark matter. This generically leads to suppression of

power for scales that enter the horizon prior to decay. This suppression, reduces the amount of halo

substructure on galactic scales while preserving the successes of the standard hierarchical-clustering

paradigm on larger scales. Apart from the changes to the model due to the decay process, we adopt

the standard flat-geometry ΛCDM cosmological model with present-day dark-matter density (in

units of the critical density) Ωd = 0.25, baryon density Ωb = 0.05, cosmological constant ΩΛ = 0.70,

Hubble parameter H0 = 72 km s−1Mpc−1, and spectral index n = 1.

3.2 The Standard Case

In the standard ΛCDM model the initial curvature perturbations of the Universe, presumably pro-

duced by inflation or some inflation-like mechanism, are adiabatic (perturbations in the total density

but not the relative density between species) and Gaussian with a nearly scale-invariant spectrum

of amplitudes. These initial perturbations grow and react under the influence of gravity and other

forces, with the exact nature of their behavior dependent upon the species in question. Because

dark-matter particles are, by assumption, cold and collisionless the fractional dark-matter-density

perturbation δd ≡ δρd/ρd can only grow under the influence of gravity. The baryonic species being

charged, are tightly coupled by Coulomb scattering to the electrons, which are themselves tightly

coupled to the photons via Thomson scattering. The baryons and photons can thus be described

at early times as a single baryon-photon fluid, with the photons providing most of the pressure and

inertia and the baryons providing only inertia. Gravity will tend to compress this baryon-photon

fluid, while the radiation pressure will support it against this compression. The result is acous-

tic oscillation, and the baryon density perturbation δb ≡ δρb/ρb and photon density perturbation

δγ ≡ δργ/ργ will oscillate in time for length scales inside the horizon (on length scales larger than

the horizon, the pressure can have no effect). At early times these perturbations are very small and

linear perturbation theory can be applied. This allows an arbitrary density field to be decomposed

into a set of independently evolving Fourier modes, labeled by a wavenumber k. Fig. 3.1 shows

the growth of a dark-matter density perturbation under the influence of gravity, and the oscillatory
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Figure 3.1: The evolution of the comoving wavenumber k = 3.0 Mpc−1 density perturbations
in the early Universe for dark matter (dashed line) and baryons (dotted line). The dark-matter
perturbation always grows under the influence of gravity while the baryonic perturbation oscillates
due to a competition between gravity and the photon pressure.

behavior of the baryon perturbation for the same wavenumber.

We choose to work in the synchronous gauge where the time slicing is fixed to surfaces of constant

proper time so that particle decays proceed everywhere at the same rate. In the synchronous gauge

the standard linearized evolution equations for perturbations in Fourier space are (e.g., [3·7])

δ̇d = −θd −
1

2
ḣ , (3.1)

θ̇d = − ȧ
a
θd , (3.2)

δ̇b = −θb −
1

2
ḣ , (3.3)
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θ̇b = − ȧ
a
θb + c2sk

2δb +
4ργ
3ρb

aneσT (θγ − θb) , (3.4)

δ̇γ = −4

3
θγ −

2

3
ḣ , (3.5)

and

θ̇γ = k2

(
1

4
δγ − Θγ

)
+ aneσT (θb − θγ) , (3.6)

where θb, θd, and θγ are the divergence of the baryon, dark-matter, and photon fluid velocities

respectively and an overdot represents a derivative with respect to the conformal time η. Here h is

the trace of the spatial metric perturbations hij . Its evolution is described by the linearized Einstein

equations, which close this system of linearized equations. The last terms on the right-hand-sides

of Eqs. (3.4) and (3.6) account for Thomson scattering between baryons and photons, and are

responsible for keeping them tightly coupled in the early Universe. In these equations σT is the

Thomson cross section, ne is the electron number density, and cs is the intrinsic sound speed of the

baryons. During tight coupling the second moment Θγ of the photon distribution and other higher

moments can be neglected, and the radiation can reliably be given the fluid description described

above.

3.3 Charged-Particle Decay

We now show how Eqs. (3.1)–(3.6) are modified by the decay of a long-lived metastable charged

particle to dark matter in the early Universe. We assume that the decay is of the form q± → `±d,

so the decay of each charged particle q± produces a dark-matter particle d and a charged lepton `±.

Denoting the decaying charged component by the subscript ‘q’, the background density ρq evolves

according to the equation,

ρ̇q = −3
ȧ

a
ρq −

a

τ
ρq , (3.7)

where τ is the lifetime of q±. The first term just accounts for the normal a−3 scaling of non-

relativistic matter in an expanding universe, while the second leads to the expected exponential

decay of the comoving density. For the dark matter we have

ρ̇d = −3
ȧ

a
ρd + λ

a

τ
ρq , (3.8)
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Figure 3.2: The evolution of the comoving wavenumber k = 30.0 Mpc−1 (left panel), k = 3.0 Mpc−1

(center panel), and k = 0.3 Mpc−1 (right panel) density perturbations in the early Universe for
dark matter in the ΛCDM model (dashed line) and in the model with τ = 3.5 yr (solid line). The
‘β’ perturbation is represented by the dotted line. Due to being sourced by the low amplitude ‘β’
perturbations at early times the dark matter perturbation in the model with a decaying charged
component is suppressed relative to the standard ΛCDM case for k = 3.0 Mpc−1. For k � 3.0 Mpc−1

(very small scales) δd tracks the oscillations in δβ before decay, while for k � 3.0 Mpc−1 (large scales)
δd follows the standard growing evolution.

where λ = md/mq is the ratio of the masses of the dark matter particle to the charged particle. The

energy density in photons evolves according to

ρ̇γ = −4
ȧ

a
ργ + (1 − λ)

a

τ
ρq . (3.9)

This last equation follows from the assumption that the produced lepton initiates an electromagnetic

cascade which rapidly (compared to the expansion timescale) thermalizes with the photon distribu-

tion. In practice, the last term on the right-hand-side of Eq. (3.9) is negligibly small because the

decay takes place during the radiation dominated era when ργ � ρq. Furthermore, limits on the

magnitude of µ-distortions to the blackbody spectrum of the CMB constrain |1 − λ| to be a small

number, as we discuss below.

Using covariant generalizations of Eqs. (3.7)–(3.9) we can derive how Eqs. (3.1)–(3.6) are modified

by the transfer of energy and momentum from the ‘q’ component to the dark matter during the decay

process. Since the charged ‘q’ component and the baryons are tightly coupled via Coulomb scattering

they share a common velocity θβ = θb = θq . This makes it useful to describe them in terms of a

total charged-species component with energy density ρβ = ρb + ρq , which we denote here by the

subscript ‘β’. Because in the synchronous gauge the decay proceeds everywhere at the same rate

this description is even more useful as δβ = δb = δq is maintained at all times for adiabatic initial

conditions. In terms of these ‘β’ variables, then, we have
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δ̇d = −θd −
1

2
ḣ+ λ

ρq
ρd

a

τ
(δβ − δd) , (3.10)

θ̇d = − ȧ
a
θd + λ

ρq
ρd

a

τ
(θβ − θd) , (3.11)

δ̇β = −θβ − 1

2
ḣ , (3.12)

θ̇β = − ȧ
a
θβ + c2sk

2δβ +
4ργ
3ρβ

aneσT (θγ − θβ) , (3.13)

δ̇γ = −4

3
θγ −

2

3
ḣ+ (1 − λ)

ρq
ργ

a

τ
(δβ − δγ) , (3.14)

and

θ̇γ = k2

(
1

4
δγ − Θγ

)
+ aneσT (θβ − θγ) + (1 − λ)

ρq
ργ

a

τ

(
3

4
θβ − θγ

)
. (3.15)

We now describe how small-scale modes that enter the horizon prior to decay are suppressed

relative to those modes that enter the horizon after decay. Due to the Thomson collision terms, the

‘β’ component and the photons will be tightly coupled as a ‘β’-photon fluid at early times and this

fluid will support acoustic oscillations. Furthermore, Eqs. (5.5) and (5.6) show that the dark-matter

perturbations are strongly sourced by the perturbations of the ‘β’ component prior to decay, when

the ratio ρq/ρd is large. Dark-matter modes that enter the horizon prior to decay will thus track

the oscillations of the ‘β’-photon fluid rather than simply growing under the influence of gravity.

After decay, when the ratio ρq/ρd is small, the source term shuts off and dark-matter modes that

enter the horizon undergo the standard growing evolution. In Fig. 3.2 we follow the evolution of

the dark-matter perturbations through the epoch of decay. We modified CMBFAST [3·8] to carry out

these calculations.

3.4 Discussion

In order to suppress power on subgalactic scales the decay lifetime must be roughly the age of the

Universe when the mass enclosed in the Hubble volume is equal to a galaxy mass; this occurs when

τ ∼ years. In Fig. 3.3 we plot the linear power spectrum of matter density fluctuations at the
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Figure 3.3: The linear-theory power spectrum of matter density fluctuations in the standard ΛCDM
model (dashed line), and in the charged decay to dark matter model (solid line) with τ = 3.5 yr.
The charged decay model matches the standard ΛCDM model on length scales larger than 0.3 Mpc,
but power drops of sharply below 0.3 Mpc.

present day for a charged-particle lifetime τ = 3.5 yr assuming a scale-invariant primordial power

spectrum. We see that power is suppressed on scales smaller than k−1 ∼ 0.3 Mpc relative to the

standard ΛCDM power spectrum. Suppression of power on these length scales reduces the expected

number of subgalactic halos, bringing the predictions in line with observation [3·5] without violating

constraints from the Lyman-alpha forest [3·9]. It leaves the shapes of galactic halo density profiles

essentially unchanged [3·10]. Of course, the model reproduces the successes of the standard ΛCDM

model on larger scales and in the CMB.

The requirements of the charged-particle species are that it has a comoving mass density equal to

the dark-matter density today and has a lifetime of τ ∼ 3.5 yr. In order to satisfy the constraint to

the CMB chemical potential [3·11], the fractional mass difference between the charged and neutral

particles must be ∆m/m < 3.6 × 10−3, and in order for the decay to be allowed kinematically

the mass difference must be greater than the electron mass. One possibility is the superweakly

interacting massive particle scenario of Ref. [3·12] in which a charged particle may decay to an
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exclusively gravitationally interacting particle. For example, in supersymmetric models, the decay

of a selectron to an electron and gravitino ẽ → e G̃ with m �

e ≈ m �

G > 122 TeV would satisfy

these constraints, as would the decay of a KK-electron to an electron and KK-graviton e1 → eG1

with me1 ≈ mG1 > 72 TeV in the case of the single universal extra dimension Kaluza-Klein (KK)

model discussed in Refs. [3·12, 3·13]. Such masses are close to the unitary bound for thermal

production [3·14], but might be accommodated through nonthermal mechanisms or if the next-to-

lightest partner is a squark which might then interact more strongly and thus evade this bound.

There may also be viable scenarios involving nearly-degenerate charged and neutral higgsinos.

It should be noted that the recent Wilkinson Microwave Anisotropy Probe evidence for early

star formation [3·16] argues against the suppression of small-scale power, but these results are not

yet conclusive. If it does turn out that traditional astrophysical mechanisms can explain the dearth

of dwarf galaxies, then our arguments can be turned around to provide constraints to an otherwise

inaccessible region of the parameter space for decaying dark matter [3·15]. Finally, if the mechanism

we propose here is realized in nature, then the dearth of small-scale power, along with the detection

of a non-zero CMB chemical potential, would be a powerful probe of the particle spectrum of the

new physics responsible for dark matter.
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Chapter 4

Dark-Matter Electric and

Magnetic Dipole Moments

We consider the consequences of a neutral dark-matter particle with a nonzero electric and/or

magnetic dipole moment. Theoretical constraints, as well as constraints from direct searches,

precision tests of the standard model, the cosmic microwave background and matter power spectra,

and cosmic gamma rays, are included. We find that a relatively light particle with mass between an

MeV and a few GeV and an electric or magnetic dipole as large as ∼ 3×10−16e cm (roughly 1.6×

10−5 µB) satisfies all experimental and observational bounds. Some of the remaining parameter

space may be probed with forthcoming more sensitive direct searches and with the Gamma-Ray

Large Area Space Telescope.

Originally published as K. Sigurdson, M. Doran, A. Kurylov, R. R. Caldwell and M. Kamionkowski, Phys.

Rev. D 70, 083501 (2004).

4.1 Introduction

A wealth of observational evidence indicates the existence of considerably more mass in galaxies

and clusters of galaxies than seen in stars and gas. The source of the missing mass has been a

problem since Zwicky’s 1933 measurement of the masses of extragalactic systems [4·1]. Given the

evidence from galaxy clusters, galaxy dynamics and structure formation, big-bang nucleosynthesis,

and the cosmic microwave background that baryons can only account for ∼ 1/6 of this matter, most

of it must be nonbaryonic. Although neutrinos provide the cosmological density of dark matter

if their masses sum to ∼ 12 eV, such particles cannot (essentially from the Pauli principle) have

a sufficiently high phase-space density to account for galactic dark-matter halos [4·2]; moreover,

such masses are now inconsistent with neutrino-mass measurements [4·3]. Theorists have thus taken

to considering for dark-matter candidates new physics beyond the standard model. To date, the

most promising candidates—those that appear in fairly minimal extensions of the standard model
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(SM) and which coincidentally have a cosmological density near the critical density—are a weakly-

interacting massive particle (WIMP), such as the neutralino, the supersymmetric partner of the

photon, Z0 boson, and/or Higgs boson [4·4], or the axion [4·5]. A considerable theoretical literature

on the properties and phenomenology of these particles has arisen, and there are considerable ongoing

experimental efforts to detect these particles.

In the absence of discovery of such particles, it may be well worth exploring other possibilities.

Thus, an alternative line of investigation takes a more model-independent approach and seeks to

explore phenomenologically the possible properties of a dark-matter particle. Along these lines, for

example, constraints to strongly-interacting dark matter were considered in Ref. [4·6]; self-interacting

dark matter has been considered [4·7, 4·8], and some have studied whether dark matter might be

charged [4·9] or have a millicharge [4·10,4·11].

Our investigation follows in spirit the latter possibility. In particular, dark matter is so called

because the coupling to photons is assumed to be nonexistent or very weak, or else we would have

presumably seen such particles either through absorption or emission of radiation or in laboratory

experiments. In this chapter, we ask the question, “How dark is ‘dark’?” In other words, how

weak must the coupling of the dark-matter particle to the photon be in order to be consistent

with laboratory and astrophysical constraints? In the work on millicharged particles, a dark-matter

coupling to photons was assumed to arise from a tiny charge.

In this chapter we consider the possibility that the dark matter possesses an electric or magnetic

dipole moment. The punch line, illustrated in Fig. 4.1, is that a Dirac particle with an electric or

magnetic dipole moment of order ∼ 10−17e cm with a mass between an MeV and a few GeV can

provide the dark matter while satisfying all experimental and observational constraints.1

In the following section, we introduce the effective Lagrangian for the dipolar dark matter (DDM)

interaction with photons. We discuss the relic abundance in Section 4.3. Section 4.4 presents con-

straints on dark-matter dipole moments and masses that arise from direct searches at low-background

detectors as well as constraints from high-altitude experiments. Section 4.5 discusses constraints due

to precision tests of the standard model, while Section 4.6 discusses constraints due to the cosmic

microwave background and the growth of large-scale structure. We provide some concluding remarks

in Section 4.8. An Appendix provides details of the calculation of the drag force between the baryon

and DDM fluids used in Section 4.6.

1Throughout, we will quote numbers for both the electric and magnetic dipole moments in units of e cm, where
e is the electron charge. For reference, the Bohr magneton µB = e

�
/2me = 1.93 × 10−11 e cm in these units. Also

note that we work in rationalized Gaussian units so that the fine-structure constant α ≡ e2/4π
�
c ≈ 1/137, and in

particle-physics units (
�

= c = 1) e2 ≈ 4π/137 and e ≈ 0.303.
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Figure 4.1: The constraints on the dipolar-dark-matter parameter space [mχ, (D, M)] that come
from present-day searches and experiments. Viable candidates must lie in the shaded region, below
the solid lines and outside the long-dashed lines. The short-dashed “relic abundance” curve shows
where the dark matter would have a cosmological density Ωχh

2 = 0.135, assuming standard freeze-
out, no particle-antiparticle asymmetry, and no interactions with standard-model particles apart
from the dipole coupling to photons. Note that the EGRET and GLAST curves constrain the com-
bination (D4 +M4)1/4, the perturbative and unitarity curves apply to the stronger of (D, M), while
all other curves restrict (D2 + M2)1/2.
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4.2 Theory of Dipole Moments

A particle with a permanent electric and/or magnetic dipole moment must have a nonzero spin;

we thus consider spin-1/2 particles. Moreover, Majorana particles cannot have permanent dipole

moments, so we consider Dirac fermions. Since the spin and the magnetic dipole are both axial

vectors, a magnetic dipole moment can arise without violating any discrete symmetries. However,

the electric dipole moment is a vector and thus requires time-reversal and parity violation.

The effective Lagrangian for coupling of a Dirac fermion χ with a magnetic dipole moment M
and an electric dipole moment D to the electromagnetic field F µν is

Lγχ = − i

2
χ̄σµν (M + γ5D)χF µν . (4.1)

At energies that are low compared to the dark-matter mass, the photon is blind to distinctions

between M and D (unless time-reversal-violating observables are considered). Hence, we can discuss

limits to D which equally apply to M, except where noted.

On dimensional grounds, we expect the electric dipole moment to satisfy the limit D . em−1
χ '

2×10−14 (mp/mχ) e cm, where mp is the proton mass. Similar arguments also apply to the magnetic

dipole moment.2 This limit is shown as the perturbative bound in Fig. 4.1, as violation of this bound

would signal some non-trivial or non-perturbative field configuration. As we will see below, more

rigorous but slightly weaker upper limits can be set with unitarity arguments.

These upper limits already simplify our analysis. The phenomenology of charged dark-matter

particles is determined largely by the ability of these particles to form atom-like bound states with

electrons, protons, or each other. However, dipolar dark matter cannot form such bound states.

A neutral particle with a magnetic moment will not form bound states with charged particles.

Curiously enough, a neutral particle with an electric dipole moment (EDM) can indeed form a

bound state with an electron, as first noted by no less than Fermi and Teller [4·12], but only if the

dipole moment is greater than 0.639 e a0 = 3.4 × 10−9 e cm (assuming mχ � me) where a0 is the

Bohr radius. For smaller values of the dipole, the electron “sees” both poles of the dipole and finds

no stable orbit. This critical electric dipole moment scales inversely with the dipole-electron reduced

mass, so a bound state with a proton can occur if the dipole mass is � mp and D & 1.8×10−12e cm.

As we will see below, such values for the EDM cannot occur for a pointlike DDM. Likewise, the

weakness of the dipole-dipole interaction prevents the formation of any stable dark-matter atoms.

The first cosmological constraint is that from big-bang nucleosynthesis (BBN). BBN requires that

the effective number of relativistic degrees of freedom at T ∼ MeV does not exceed the equivalent of

roughly 0.2 neutrino species [4·13]. Since the particles we are considering are Dirac particles, they

2The limit is satisfied if mχ is the lightest scale relevant for the DDM sector (see Section 4.5 for discussion). Note,
however, that the actual magnitude of the dipole moments in a particular theory can be significantly below this limit.
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act like two effective neutrino species and thus cannot be relativistic and in equilibrium at BBN.

Generally, such considerations rule out mχ . MeV, and so we restrict our attention in Fig. 4.1 to

masses above an MeV. Strictly speaking, if the dipole moment is (D,M) . 10−22 e cm, and if the

particle has no other interactions with standard-model particles, then a particle of mass . MeV can

decouple at a temperature & 10 GeV, and if so, it will evade the BBN limit.

4.3 Dark Matter Annihilation and Relic Abundance

DDM particles can exist in thermal equilibrium in the early Universe when the temperature T � mχ,

and their interactions will freeze out when T drops below mχ resulting in some cosmological relic

abundance. The mass density of relic DDM particles is fixed by the cross section σann for annihilation

to all lighter particles times the relative velocity v through (see, e.g., Eq. (5.47) in Ref. [4·14]),

Ωχh
2 ' 3.8 × 107

(
mχ

mp

)
ln
(
A/

√
lnA

)
/A

= 0.135(g∗/10)−1/2
ln
[
A/

√
lnA

]

21

(
σannv

5.3× 10−26 cm3 sec−1

)−1

, (4.2)

where

A = 0.038
√
g∗mplmχ(σannv) =

6.3× 109 (g∗/10)1/2

(mχ/GeV)

(
σannv

5.3× 10−26 cm3 sec−1

)
, (4.3)

assuming that annihilation takes place (as it does in our case) through the s wave. Here, g∗ is

the effective number of relativistic degrees of freedom at the temperature Tf ∼ mχ/A of freezeout.

Figure 4.2: Feynman diagrams for annihilation of a DDM–anti-DDM pair to two photons.
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Figure 4.3: Feynman diagram for DDM–anti-DDM annihilation to fermion-antifermion pairs.

For the interaction of Eq. (4.1), DDM–anti-DDM pairs can annihilate to either two photons or

to charged particle-antiparticle pairs through the diagrams shown in Figs. 4.2 and 4.3. The cross

sections for these two processes (to lowest order in v) are

σχχ̄→2γv = (D4 + M4)m2
χ/2π = 1.0 × 10−33m2

GeV(D4
17 + M4

17) cm3 sec−1,

σχχ̄→ff̄v = Neffα(D2 + M2) = 2 × 10−27Neff (D2
17 + M2

17) cm3 sec−1, (4.4)

where (D17, M17) = (D, M)/(10−17 e cm), and mGeV ≡ mχ/GeV. Here, Neff =
∑

f Q
2
fNcf is the

effective number of fermion-antifermion pairs with massmf < mχ, Qf is the charge of fermion f , and

Ncf is the number of color degrees of freedom for fermion f . (Ncf = 1 for electrons.) In the standard

model, annihilation can also occur to W+W− pairs above threshold. For (D17,M17)(mχ/mp) .

5000, fermions are the dominant final state. The present-day mass density of DDM particles thus

depends primarily on the dipole moment. If such particles are to account for the dark matter,

then Ωχh
2 = 0.135 [4·15], and (D2 + M2)1/2 ' 1.0 × 10−17 e cm for mχ ∼ 1 GeV. The full mass

dependence of this result is shown in Fig. 4.1.

The cross sections in Eq. (4.4) are s-wave cross sections. According to partial-wave unitarity,

the total s-wave annihilation cross section must be σ . 4π/m2
χ [4·16], so that (D, M)mχ . 3, fixed

by the cross section for annihilation to two photons. This limit is shown in Fig. 4.1, as is the more

stringent, but less rigorous, limit (D, M) . e/mχ.

Of course, the present-day mass density of DDM particles could differ from the estimates obtained

above. To obtain these results, we assumed (1) that the dipole interaction with photons is the

only interaction of these particles; and (2) that there is no particle-antiparticle asymmetry. It is

reasonable to assume that in any realistic model, a dark-matter dipole interaction will arise from

loop diagrams involving other standard-model and new particles. If so, then there may be other

contributions to the annihilation cross sections. In this case, the relic abundance will be smaller

than we have estimated above. We thus conclude that if there is no particle-antiparticle asymmetry,

our estimates should be treated as an upper bound to the relic abundance, and the Ωχh
2 curve in
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Fig. 4.1 should be considered an upper limit to the desired values of D and M. On the other hand,

the relic abundance could also be increased if exotic processes increase the expansion rate during

freezeout [4·17].

If there is an asymmetry between χ and χ̄, then the relic abundance is increased relative to

our estimate. In this case, however, the present-day Universe should contain predominantly either

particles or antiparticles. Although there is no a priori reason to expect there to be a particle-

antiparticle asymmetry, the observed baryon-antibaryon asymmetry might lead us to expect an

analogous dark-matter asymmetry, should the dark matter be composed of Dirac particles. It is

possible such asymmetries have a common origin.

Finally, we have assumed above that the particles freeze out when they are nonrelativistic.

However, as the dipole moment is lowered for a given mass, freezeout occurs earlier. If the dipole

moment is reduced beyond a certain value, and if there are no other couplings to standard-model

particles, then freezeout will be relativistic. These particles will then be roughly as abundant as

photons, and they will overclose the Universe by huge margins unless their masses are . few eV;

even in this case they will violate constraints to hot dark matter from the CMB and large-scale

structure, and they will also be unable, from the Tremaine-Gunn argument, to make up the dark

matter in Galactic halos. The transition from nonrelativistic to relativistic freezeout occurs (again,

assuming no non-dipole interactions with standard-model particles) for mχD2
17 . 10−10 GeV for

mχ & MeV, and for mχ . MeV, at mχD4/3
17 . 200 MeV.

4.4 Direct Detection

The diagram for scattering of a DDM particle with a particle of charge Ze occurs through the

exchange of a photon, as shown in Fig. 4.4 (not unlike the electron-neutron interaction [4·18]). In

the nonrelativistic limit, the differential cross section for this process is given by,

dσ

dΩ
=
Z2e2

(
D2 + M2

)

8π2v2(1 − cos θ)
, (4.5)

Figure 4.4: Feynman diagrams for elastic scattering of an electron from a DDM particle.
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where v is the relative velocity. Through this interaction the DDM might produce a signal in a direct-

detection experiment. Although the total cross section is formally infinite, the divergence comes

from the small-momentum-transfer scatterings that will be screened by atomic electrons. Roughly

speaking, then, the DDM-nucleus elastic-scattering cross section will be σ ∼ (Ze)2(D2+M2)/2πv2 '
6.4 × 10−32 Z2(D2

17 + M2
17) cm2, using v ∼ 10−3 c. Current null searches in germanium detectors

[(A,Z) = (76, 32)] correspond for masses mχ ∼ 10 GeV to a rough upper limit to the cross section

∼ 10−42 cm2 [4·19], thus ruling out any dipole moment (D2
17 + M2

17)
1/2 & 10−7. This is shown in

Fig. 4.1 as the horizontal dashed line at D = 10−24 e cm. Note that the cross-section limit depends

(and increases) with mass at higher masses; the curve appears as a horizontal line simply because

of the break in scale on the y axis.

This seems like a very stringent limit, especially considering the value, D17 ∼ 1, favored for the

correct cosmological density. However, if the dipole moment becomes large enough, the particles will

be slowed in the rock above the detector and thus evade detection in these underground experiments.

In order to determine the magnitude of the dipole moment for this to occur, we need to calculate the

stopping power dE/dx for the particle as it passes through the atmosphere and then the rock. Since

elastic scattering takes place through exchange of a photon, it leads to a long-range interaction and,

as we have seen above, a formally divergent elastic-scattering cross section. The calculation of the

stopping power thus parallels that for ionization loss due to Coulomb collisions, with two important

differences. First of all, since the long-range force is ∝ r−3, as opposed to r−2 for Rutherford

scattering, stopping occurs via scattering from nuclei, rather than electrons. Second, since this

interaction falls more rapidly with radius than the Coulomb interaction, the stopping power is due

primarily to hard scatters at small impact parameter, rather than soft scatters at a wide range of

impact parameters.

Our result for the stopping power due to scattering from nuclei of charge Z is

dE

dx
= −nN

∫
Tdσ = −nN

(Ze)2(D2 + M2)µ2c2

2πmN
, (4.6)

where the kinetic-energy transfer in a single collision is T = p2(1 − cos θ)/mN , x is the depth, and

µ = µ[mχ,mN ] = mχmN (mχ+mN )−1 is the reduced mass. For very weak WIMP interactions with

nuclei, the most restrictive limits on the WIMP-proton cross section (the smallest upper bounds)

are obtained from null searches from experiments that are deepest underground (so as to reduce

the background). However, the most restrictive constraints on the cross section at the upper end of

the excluded range of cross sections will come from the shallowest underground experiment with a

null result. From Eq. (4.6), we find that the dark-matter particles will only penetrate to a depth

x = (Ei − Ef )/|dE/dx| where Ei = 1
2mχv

2 is the initial dark-matter kinetic energy and Ef is the

final energy. For a stopped particle, Ef = 0. However, the particle only needs to lose enough energy
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for Ef to drop below the detection threshold for a particular experiment. Equating the maximum

kinetic energy transferable in a collision (θ = π) to the threshold detectable nuclear-recoil energy

(Eth), we find the velocity must be slowed to v2
f = mdEth/2µ[mχ,md]

2, where md is the mass

of the nuclei in the detector, and µ[mχ,md] is the DDM-nucleus reduced mass. Hence, the final

dark-matter energy must be Ef = mχmdEth/4µ[mχ,md]
2.

So far we have assumed that the particle loses energy but is not significantly deflected in each

scatter; this will be a good approximation if mχ � mN . However, when mχ . mSi ' 26 GeV,

the dark-matter particle may be backscattered upon encountering a terrestrial nucleus, rather than

simply being slowed without deflection. In this case, the particle will diffuse, undergoing N ∼
mN/2mχ scatters before coming to rest. If so, the penetration depth will be reduced by an additional

factor of ∼ N−1/2. We thus replace dE/dx → dE/dx[1 + (mN/2mχ)
1/2] in our expression for the

penetration depth.

Then, for a given shielding thickness L, in meters water equivalent (mwe), we invert the expression

for the stopping distance to obtain the following bound on the dipole strength:

D2 + M2 >

1
2mχv

2 − 1
4

mχmd

µ[mχ,md]2Eth

e2

2πL
∑
i fiZ

2
i
µ[mχ,mi]2

m2
i

[1 + (mi/2mχ)1/2]
, (4.7)

where the index i sums over the composition of the shielding material, and fi is the fractional com-

position by weight. We use a realistic model of the composition of the Earth (chemical composition

by weight: O [46.6%], Si [27.7%], Al [8.1%], Fe [5%], Ca [3.6%], Na [2.8%], K [2.6%], Mg [2.1%])

and atmosphere (10 mwe consisting of a 4:1 ratio of nitrogen to oxygen), although the resulting

bounds do not change substantially if we ignore the atmosphere and approximate the Earth’s crust

as entirely composed of Si. We take the initial DDM velocity to be 300 km sec−1.

The shallowest underground experiment with a strong null result is the Stanford Underground

Facility (SUF) run of the Cryogenic Dark Matter Search (CDMS) [4·20], which was situated at

a depth of 16 mwe. With a detector energy threshold of Eth = 5 keV, it is sensitive to DDM

masses down to mχ ∼ 10 GeV. Near this threshold we find that DDM particles are stopped by the

shielding for D17 & 20. This bound grows more prohibitive with increasing mass, as illustrated in

Fig. 4.1. The Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) [4·21],

though at a depth of 3800 mwe, extends to slightly lower masses, having a detector threshold energy

Eth = 0.6 keV. Near mχ ∼ 1 GeV the minimum dipole strength is D17 & 2. However, there are no

limits from underground experiments for DDM masses below 1 GeV.

Two airborne experiments—unobscured by the atmosphere or rock—which have closed the win-

dows on some forms of strongly-interacting dark matter [4·6,4·22], also restrict dark-matter dipole

moments. To determine the predicted signal at a detector, we recast Eq. (4.5) as the cross section

per energy transfer, whereby dσ/dT = Z2e2(D2 + M2)/4πv2T . The event rate (per time, energy,
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and unit mass of detector) is

R = NN (0.3 GeV cm−3)
v

mχ

dσ

dT
= 2.3 (D2

17 + M2
17)

mp

mχ

(
keV

T

)
sec−1 keV−1 g−1, (4.8)

where NN is the number of nuclei per gram of material.

The silicon semiconductor detector flown on a balloon in the upper atmosphere by Rich et

al. [4·23] observed an event rate of ∼ 0.5 counts sec−1 keV−1 g−1 nuclear recoils in the lowest

energy bin at 2 keV. For dark-matter masses above the threshold ∼ 7 GeV, we thus require

(D2
17 + M2

17)(mp/mχ) < 0.2.

The X-ray Quantum Calorimeter (XQC) detector flown on a rocket by McCammon et al. [4·24],

was designed to probe the soft x-ray background. However, it serendipitously provides a tight

constraint on dipolar dark matter. To predict the expected number of events, we start by computing

the number of DDM particles that could impinge on the detector: Nχ = nχvAt = 3 × 107mp/mχ,

where nχ is the galactic number density of dark-matter particles, v is their velocity, the cross-sectional

area of the XQC detector is A = 0.33 cm2, and the rocket flight was about t ∼ 120 seconds. The

chief property of the XQC detector is the 14 µm thick Si substrate above the thermistor, providing

a target of NN ∼ 6.5 × 1019 nuclei/cm2. Thus, the event/energy count NNNχdσ/dT integrated

over the 25–100 eV energy bin gives a predicted ∼ 0.38 (D2
17 + M2

17)(mp/mχ) events compared to

the ∼ 10 observed events. Since the detector has a 25 eV threshold, energy transfer by dark-matter

particles as light as ∼ 1 GeV can be detected. Altogether, the balloon and rocket experiments

exclude a wide range of dipole strengths and masses, as illustrated in Fig. 4.1.

4.5 Constraints from Precision Measurements

We now consider the limits placed on DDM due to precision tests of the standard model. Our use

of perturbation theory is valid provided the energy scale of the interaction E satisfies (D, M)E � 1.

In addition, we require that the DDM mass satisfies (D, M)mχ . 1, equivalent to the unitary

bound [4·16], which ensures the self-consistency of the local operator in Eq. (4.1). Indeed, if Λ

is the energy scale at which a dipole is generated then one generally expects (D, M) Λ ∼ 1. In

Figure 4.5: One-loop correction to the photon self-energy induced by dipole moments M,D of the
dark-matter particle.
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Lγχ we assume that all interacting particles with masses greater than Λ have been integrated out.

Consequently, one must have at least mχ < Λ for the dark matter to be dynamical, which also yields

(D, M)mχ . 1.

4.5.1 Muon Anomalous Magnetic Moment

The interaction in Eq. (4.1) contributes to the photon propagator via the diagram shown in Fig. 4.5.

The photon-DDM interaction vertices are either both electric or magnetic dipolar; the mixed diagram

where one vertex is magnetic and the other is electric is proportional to εµνρλF
µνF ρλ = 0 for photons

with equal momenta. The sum of the diagrams produces the following contribution to the photon

vacuum-polarization tensor:

Πµν(q2) = Π(q2)
(
q2gµν − qµqν

)
≈ βq2

(
q2gµν − qµqν

)
,

β =
D2 + M2

8π2

(
1 − 1

3
ln
m2
χ

µ2

)
, (4.9)

where the photon momentum is taken to be small, q2 � m2
χ (resulting in βq2 � 1), and µ is the

renormalization scale, which should be smaller than Λ. We take µ . 1 TeV for our estimates. With

this self-energy correction, the photon propagator for βq2 � 1 can be written as

−igµν
(

1

q2
− 1

q2 − 1/β

)
. (4.10)

The second term above generates a correction to the muon gyromagnetic ratio δaµ = −αm2
µβ/3π.

Interestingly, this contribution is not explicitly suppressed by the DDM mass. In view of recent

measurements [4·25] and comparison with the SM predictions, we require that δaµ does not exceed

10−9, whereby (D2 + M2)1/2 < 6 × 10−15 e cm. The order of magnitude of this result can be

obtained on dimensional grounds, if we consider that the DDM dipole moment contributes to aµ via

at least a two-loop graph (see Fig. 4.6), with two electromagnetic couplings and two dipole couplings.

Figure 4.6: Lowest-order correction to the muon anomalous magnetic moment induced by dipole
moments of the dark-matter particle.
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Including a factor 1/16π2 per loop, one obtains the estimate,

δaµ ∼ e2

(16π2)2
(
D2 + M2

)
E2, (4.11)

where E is the characteristic energy scale for the process. In the case of the muon, E ∼ mµ, which

reproduces the rigorous result to within an order of magnitude.

4.5.2 Electric Dipole Moments

Furry’s theorem tells us that in evaluating radiative corrections to a process one should only keep

the diagrams with an even number of photons attached to a closed loop.3 Contributions with an

odd number of photons attached sum to zero. On the other hand, one must have an odd number

of time-reversal-odd (T-odd) EDM vertices in the DDM loop to generate a T-odd operator. These

considerations show that the lowest-order non-vanishing diagram must have four photons attached to

the DDM loop; diagrams with two photons attached, similar to the one in Fig. 4.6, vanish (see above).

Out of the four photons attached to the DDM loop, either one or three can have EDM coupling

to DDM. Note that in this scenario both electric and magnetic DDM moments are necessary to

generate a dipole moment for a SM fermion. With these considerations in mind, the lowest-order

three-loop diagram that induces an EDM for a charged fermion is shown in Fig. 4.7. One obtains

the following estimate for the induced electric dipole moment:

Df ∼
[
DM(D2 + M2)

] e3m3
f

(16π2)3
ln2 mχ

mf
, (4.12)

3Since the theorem is valid for interactions that preserve charge conjugation invariance we can apply it to electric
and magnetic dipole moment interactions.

Figure 4.7: Three-loop contributions to the EDM of a charged fermion f . Either one or three of
the DDM-photon interaction vertices must be of EDM type. The dots indicate all other diagrams
which can be obtained from the one shown by permutation of the interaction vertices.
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where a possible double-logarithmic enhancement is included. For the electron, the present limit is

De < 4× 10−27 e cm, which implies (D, M) < 3× 10−13 e cm for mχ ∼ 100 GeV and D ∼ M. For

smaller mχ the limit becomes weaker.

There are constraints on the EDMs of other systems, such as the neutron and the mercury atom.

It is non-trivial to translate such constraints into limits on the underlying interaction. In case of

the neutron, one may attempt to treat the neutron as a point particle for virtual-photon energies

below 1 GeV. For higher loop momenta, photons begin seeing the quarks and the contribution to

the EDM becomes suppressed by the quark masses. In this case one may use the above equation

with mf → mn and no logarithmic enhancement, in order to estimate the neutron EDM:

Dn =
[
DM(D2 + M2)

] e3|κn|3m3
n

(16π2)3
< 6 × 10−26 e cm, (4.13)

which results in the limit (D, M) . 4 × 10−15 e cm (assuming D ' M. In the above equation,

κn = −1.91 is the magnetic moment of the neutron. It appears because the neutron is neutral, and

couples to the photon in Fig. 4.7 via a magnetic-moment interaction. The limit for the EDM of the

mercury atom is much stronger than the neutron, DHg . 10−28 e cm. Unfortunately, the mercury

atom is a complicated system for which the EDM is influenced by many sources. Therefore, we leave

the Hg limit for future study.

4.5.3 W Boson Mass

The DDM can contribute to the running of the fine-structure constant for momenta ranging up to

the Z0 mass. Such running will affect the relationship between the Fermi constant GF , the mass of

the W± boson, and the fine-structure constant at zero momentum:

m2
W =

πα√
2GF

1

(1 −m2
W /m

2
Z)(1 − ∆r)

, (4.14)

where ∆r is a correction calculable in a given theory. The interaction in Eq. (4.1) modifies the

standard expression for ∆r, whereby ∆rNew = Π(m2
Z) − Π(0). In the standard model ∆rSM =

0.0355 ± 0.0019 ± 0.0002. On the other hand, one can use experimentally measured values for α,

mW,Z , and GF in Eq. (4.14) to infer ∆rExp = 0.0326 ± 0.0023, which gives ∆rNew < 0.003 at

the 95% confidence level. Therefore, we obtain the limit (D2 + M2)1/2 . 3 × 10−16 e cm. A full

calculation of the vacuum polarization yields the constraint shown in Fig. 4.1. This turns out to be

the strongest constraint due to precision tests of the standard model.
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Figure 4.8: Lowest-order correction to Z0-pole observables induced by dipole moments of the dark-
matter particle.

4.5.4 Z-Pole Observables

The DDM will contribute to various Z0-pole observables through two-loop diagrams similar to the

one shown in Fig. 4.8, at the level α(D2 + M2)m2
Z/64π3. Requiring that these contributions do

not exceed the ∼ 0.1% precision to which Z0-pole observables are typically known [4·26] results in

the constraint (D2 + M2)1/2 < 10−14 e cm. Note that in order for perturbation theory to apply

to energies E ∼ mZ , one must have (D, M)mZ < 1, which means (D, M) . 7 × 10−16 e cm.

Interestingly, consistency with a perturbative treatment at the Z0 pole imposes much stronger

constraints on the DDM than the Z0-pole observables themselves.

4.5.5 Direct Production

If kinematically allowed, DDM can be directly produced in various scattering and decay experiments.

In this case one may use the “missing energy” signature to constrain the DDM couplings. Here, we

consider missing-energy constraints from both low-energy (B+ and K+ meson decays) as well as

collider (LEP, CDF) experiments.

4.5.5.1 B+ and K+ decays

Searching for light (mχ . 1 GeV) dark matter using missing-energy signatures in rare B+ meson

decays was originally suggested in Ref. [4·27].

There, data from BABAR [4·28] and CLEO [4·29] were used to set a limit Br(B+ → K+ +

invisible) . 10−4 [derived from Br(B+ → K+ν̄ν)]. This limit can be used to constrain the dipole

moments of dark matter. The diagram for B+ → K+χ̄χ decay is shown in Fig. 4.9(a). The rate

for this decay can be related to the photon-exchange contribution to B+ → K+l+l−|γ shown in

Fig. 4.9(b). Since the graphs have identical topologies, the difference in rates will come from the

difference in effective couplings and the final-state phase-space integrals. One can estimate,

Br (B+ → K+χ̄χ)

Br (B+ → K+l+l−) |γ
∼ (D2 + M2)m2

B+

e2
PS (K+χ̄χ)

PS (K+l+l−)
, (4.15)
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Figure 4.9: Photon-exchange contributions to (a) Br (B+ → K+χ̄χ) and (b) Br (B+ → K+l+l−).
The blobs collectively represent quark flavor-changing interactions.

where PS(· · · ) stand for the corresponding final-state phase-space integrals, and mB+ = 5.279 GeV

is the B+ mass. Belle [4·30] and BABAR [4·31] find Br(B+ → K+l+l−) . 10−6. Since the ratio

of the phase-space integrals is of order unity, and since in the absence of accidental cancellations

Br(B+ → K+l+l−)|γ . Br(B+ → K+l+l−), one obtains the constraint

2 × 10−6

(
(D2 + M2)1/2mB+

e

)
. 10−4, (4.16)

which leads to (D2 + M2)1/2 . 3.8 × 10−14 e cm. This constraint is relevant for mχ < (mB+ −
mK+)/2 = 2.38 GeV.

RareK+ decays can be treated in a similar manner. The relevant branching ratios are Br(K+ →
π+e+e−) = 2.88+0.13

−0.13 × 10−7 and Br(K+ → π+ν̄ν) = 0.157+0.175
−0.082 × 10−9 [4·26]. The resulting

constraint on the dipole moment is (D2 + M2)1/2 . 1.5 × 10−15 e cm. This constraint applies

for mχ < (mK+ −mπ+)/2 = 0.18 GeV. We see that constraints from B+ and K+ decays are not

competitive with other constraints shown in Fig. 4.1.

4.5.5.2 Collider Experiments

A typical example of a process where DDM can be directly produced in a collider experiment is

shown in Fig. 4.10. Here, two fermions f scatter to produce a final state containing some set of

visible particles X (photon, multiple jets, etc.), along with particles that are not detected. In the

SM, the latter are neutrinos.

Limits on the rate for such processes have been set by, e.g., the L3 and CDF collaborations [4·32].

At LEP, X consisted of a single photon whereas at CDF it consisted of one or more hadronic jets.

In order to translate constraints from collider experiments into limits on DDM couplings one

needs an analytical expression for the rate for f f̄ → Xχ̄χ. Naive application of the effective

Lagrangian in Eq. (4.1) would result in upper limits from these missing-energy searches of roughly

10−17 e cm. However, this constraint does not actually exclude larger values of the dipole moments.
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Figure 4.10: A typical process that would produce a missing-energy signature in a collider experi-
ment. Here, X stands for the visible portion of the final state. Neutrinos or DDM may carry a large
fraction of the energy but are not detected.

Indeed, as discussed above, perturbation theory will break down when the energy scale for the

process E satisfies (D, M)E & 1. This means that missing-energy searches from L3 (E ≈ 200 GeV)

and CDF (E = 1.8 TeV) cannot be used to probe effective dipole moments (D, M) > 10−16 e cm

and (D, M) > 10−17 e cm, respectively, unless the underlying physics that gives rise to the dipole

moment is specified.

4.5.6 Other Laboratory Constraints

Important constraints can be obtained for millicharged particles from the Lamb shift [4·10,4·33] and

from a targeted experiment at SLAC [4·34]. We have checked, however, that due to the different

energy dependence of the photon-dipole vertex, as opposed to the photon-millicharge vertex, the

DDM-induced correction to the Lamb shift is small for dipole moments not eliminated by other

precision measurements, such as the running of the fine-structure constant. Likewise, although

the SLAC experiment is in principle sensitive to neutral particles with a dipole, the production

and energy deposition of dipole particles is sufficiently small, for dipole moments consistent with

accelerator experiments, to evade detection in the SLAC experiment.

4.6 Constraints from Large-Scale Structure and the CMB

We now consider the effects of the interaction Lγχ on the evolution of cosmological perturbations and

their resulting imprints on the matter power spectrum and the CMB. A dipole moment can induce

a coupling of the dark matter to the baryon-photon fluid by scattering from photons through the

diagrams shown in Fig. 4.11, or by scattering from protons, helium nuclei, and/or electrons through
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Figure 4.11: The photon-DDM scattering diagram, the analogue of the Compton-scattering diagram
for electric or magnetic moments.

the diagram shown in Fig. 4.4. What we will show below is that the dark matter is coupled to the

baryon-photon fluid at early times, and decouples at later times. When the dark matter is coupled

to the photon-baryon fluid, the pressure of the plasma resists the growth of gravitational potential

wells. Thus, the short-wavelength modes of the density field that enter the horizon at early times

will have their growth suppressed relative to the standard calculation resulting in a suppression of

small-scale power. The evolution of the longer-wavelength modes that enter the horizon after the

dark matter has decoupled remain unaffected. Before presenting the results of our detailed analysis,

we begin with some simple estimates.

We first show that DDM-photon scattering is negligible compared with DDM-baryon scattering

in providing the drag force between the DDM fluid and the baryon-photon fluid. To do so, we first

estimate the drag force per unit mass (i.e., the deceleration) on a DDM particle that moves with a

velocity V with respect to the rest frame of a blackbody at temperature T . The diagrams in Fig.

4.11 will lead to a photon-DDM scattering cross section σχγ ∼ (D4 + M4)E2
γ . Considering that

the momentum transfer to the DDM particle in each scatter is ∼ Eγ and that the difference of the

fluxes of photons moving in the same versus opposite direction to the DDM particle is ∼ T 3(V/c),

we conclude that the deceleration due to photon scattering is aγ ∼ (D4 + M4)T 6(V/c)/mχ.

We next estimate ab, the drag force per unit mass due to DDM-proton scattering. We first note

that the peculiar velocity of the baryon-photon fluid (obtained from the continuity equation) in the

early Universe will be V ∼ (H/k)cδ, where H is the Hubble parameter, k is the physical wavenumber

of the mode in question, and δ ∼ 10−5 is the amplitude of the fractional density perturbation. Since

(H/k) . 1 for modes inside the horizon, we must have V . 10−5 c. On the other hand, the proton

thermal velocity dispersion is v̄p ∼ (T/mp)
1/2c & 10−4.5 c before recombination. Thus, for the early

times of interest to us here, the relative velocity between the DDM and the baryon-photon fluid is

small compared with the thermal proton velocities. Thus, the appropriate relative velocity to use in

Eq. (4.5) in estimating the proton-DDM cross section is v̄p, resulting in a DDM-proton cross section

σχb ∼ e2(D2 + M2)/v̄2
p. The momentum transfer per scatter is ∼ µv̄p, where µ is the proton-DDM
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reduced mass, and the difference of the fluxes of protons moving with as opposed to against the

DDM fluid is npV , where np is the proton density. The drag force per unit mass on the DDM fluid

due to scattering with protons is thus ab ∼ e2(D2 + M2)(µ/mχ)(V/v̄p)np. We also conclude from

the appearance of µ in this result that drag due to scattering from electrons is negligible compared

with baryon drag.

Since np ∝ T 3 and v̄p ∝ T 1/2, we find ab ∝ T 2.5 as opposed to aγ ∝ T 6. Thus, at early times,

photon drag dominates while baryon drag dominates at later times. The transition occurs at a

temperature T ∼ GeV for values of mχ and (D, M) of interest to us, and such high temperatures

correspond to (comoving) horizon scales considerably smaller than the distance scales (& Mpc)

probed by large-scale structure. We can thus neglect photon drag. From ab ∝ T 2.5 we infer a

deceleration time for the DDM fluid tdec = V/ab ∝ T−2.5. Since this decreases more rapidly than

the Hubble time tU ∼ mPlT
−2 (where mPl ∼ 1019 GeV is the Planck mass), we conclude that DDM

particles are tightly coupled to the plasma at early times and then are decoupled at later times.

With these rough estimates, the transition temperature is T ∼ 10 keV (D2
15 +M2

15)
−2(1 +mχ/mp)

2

suggesting that power on scales smaller than λ ∼ 10−2 (D2
15 + M2

15)
2(1 +mχ/mp)

−2 Mpc will be

suppressed. The T 0.5 dependence of the ratio of the deceleration and expansion times suggests

furthermore that the small-scale suppression will change gradually, rather than exponentially, with

wavenumber k. Knowing that the linear-theory power spectrum is measured and roughly consistent

with scale invariance down to distances ∼Mpc leads us to conclude that dipole moments (D2 +

M2)1/2 & 5 × 10−15 (1 + mχ/mp)
1/2 e cm will be ruled out. Strictly speaking, when mχ < mp,

the detailed calculation must take into account the velocity dispersion of the DDM particles; our

detailed calculation below includes these effects. As seen below, the detailed analysis leads to a

slightly stronger constraint.

4.6.1 Exact Equations

The standard calculation of perturbations in an expanding universe requires solution of the com-

bined Einstein and Boltzmann equations for the distribution functions of the dark matter, baryons,

photons, and neutrinos including all relevant standard-model interactions (see, e.g., Refs. [4·35,4·36]

and references therein). Since the perturbations are initially very small, linear perturbation theory

is an excellent approximation; this allows us to solve the perturbation equations in Fourier space at

each wavenumber k independently of all other wavenumbers (modes are uncoupled). The scattering

of photons and baryons by DDM through the interaction Lγχ influences the growth of cosmological

perturbations by introducing additional collision terms to the Boltzmann equations, which ultimately

result in a drag force between the DDM and the colliding species in the equations describing the

cosmological fluid (see, e.g., Refs. [4·37,4·38], which consider similar effects). Below we present the

exact perturbation equations including the effects of dark matter with electric or magnetic dipole
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moments. Since solutions to these equations are numerically intensive when photons and baryons are

tightly coupled through Compton scattering, we also discuss the equations appropriate for solving

for the DDM, photon, and baryon perturbations during the epoch of tight coupling.

In the synchronous gauge the equations describing the evolution of baryons, photons, and dark

matter with an electric or magnetic dipole moment are,

δ̇γ = −4

3
θγ −

2

3
ḣ , δ̇b = −θb −

1

2
ḣ , δ̇χ = −θχ − 1

2
ḣ ,

θ̇γ = k2

(
1

4
δγ − Σγ

)
+ aneσT (θb − θγ) + anχ〈σ〉χγ(θχ − θγ),

θ̇b = − ȧ
a
θb + c2sbk

2δb +
4ργ
3ρb

aneσT (θγ − θb) + anχ〈σv〉χb(θχ − θb),

θ̇χ = − ȧ
a
θχ + c2sχk

2δχ +
ρb
ρχ
anχ〈σv〉χb(θb − θχ) +

4ργ
3ρχ

anχ〈σ〉χγ(θγ − θχ). (4.17)

While the evolution equations for the density contrast δj = δρj/ρj for each species j ∈ {γ, b, χ}
are as in the standard case [4·35], as discussed above, the evolution equations for the fluid-velocity

perturbations have additional drag-force terms due to the photon-DDM interaction. Note that in

these equations and what follows the variable θj = ikVj is the divergence of the fluid velocity in

Fourier space, Σj is the shear, csj is the intrinsic sound speed, and nj and ρj are the background

number and energy densities of a particular species j, respectively. The variable h is the trace of the

scalar metric perturbation in Fourier space (not to be confused with the Hubble parameter), a is

the cosmological scale factor, and an overdot represents a derivative with respect to the conformal

time τ . Furthermore, σT is the Thomson cross section, while

〈σ〉χγ =
80

21
π(D4 + M4)T 2

γ , (4.18)

is the appropriately thermally-averaged DDM-photon cross section, which can be obtained from the

differential cross section [4·39,4·40],

dσχγ
dΩ

=
(D4 + M4)E2

γ

8π2
(3 − cos2 θ), (4.19)

for photon-DDM scattering. As argued above, the photon-DDM drag term is small, and we consider

it no further in Eq. (4.17).

The quantity

〈σv〉χb =
4(1 + ξY )

3π2
√

〈vp〉2 + 〈vχ〉2
mχ

mχ +mp
e2(D2 + M2), (4.20)

is the appropriate thermally-averaged cross section times relative velocity for the baryon-DDM
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coupling, and

ξ = 8
mχ +mp

mχ + 4mp

√
〈vp〉2 + 〈vχ〉2
〈vp〉2 + 4〈vχ〉2

− 1 (4.21)

is the relative efficiency for coupling to helium nuclei compared to protons. Appendix A provides a

derivation of this collision coefficient. In these expressions, Y = ρHe/ρb ' 0.24 is the cosmological

helium mass fraction (approximating mHe ' 4mp), 〈vp〉 =
√

8Tb/πmp is the average thermal speed

of the protons, 〈vχ〉 =
√

8Tχ/πmχ is the average thermal speed of the DDM, and Tγ , Tb, and Tχ

are the photon, baryon, and DDM temperatures respectively. The dark-matter temperature evolves

according to

Ṫχ = −2
ȧ

a
Tχ +

2aρb〈σv〉Tχb
mχ +mp

(Tb − Tχ) +
8aργ〈σ〉χγ

3mχ
(Tγ − Tχ), (4.22)

where 〈σv〉Tχb is the same as the expression given in Eq. (4.20) with the replacement of ξ by ξT

which is given by the expression in Eq. (4.21) with the factor (mχ + mp)/(mχ + 4mp) replaced

by [(mχ + mp)/(mχ + 4mp)]
2. The final term, describing the dark matter heating by photons, is

important at very early times. For the dipole strength and mass range considered, the influence is

manifest only on very small length scales, below the range of interest.

At early times, the DDM temperature Tχ ' Tb, but at later times, when the DDM decouples,

Tχ drops relative to Tb. The DDM-proton cross section is ∝ v−2, which leads to 〈σv〉χb ∝ 〈vp〉−1.

As a result, we cannot directly apply the results of Ref. [4·37], wherein a velocity-independent dark

matter-baryon interaction was assumed. However, we have verified that we recover their results if

we take a velocity-independent cross section as the source of dark-matter–baryon drag.

4.6.2 Tightly Coupled Equations

At early times when τ−1
c ≡ aneσT � ȧ/a the rapid scattering of baryons and photons forces these

species to have nearly equal fluid velocities, and consequently the solution of the equations shown

in Eq. (4.17) is numerically intensive. Following standard procedures [4·35,4·41] we derive a set of

equations to leading order in the (conformal) Compton scattering time τc that are appropriate for

evolving the fluid variables through this epoch of tight coupling. We first write down an equation

for the time derivative of θb − θγ which is usually termed the baryon-photon ‘slip’ to leading order

in τc,

θ̇b − θ̇γ =
2Rγb

1 +Rγb

ȧ

a
(θb − θγ) +

τc
1 +Rγb

[
− ä
a
θb + k2

(
c2sbδ̇b −

1

4
δ̇γ −

1

2

ȧ

a
δγ

)

+
1

τχ
(θ̇χ − θ̇b) −

1

2

ȧ

a

1

τχ
(θχ − θb)

]
, (4.23)
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where we have introduced the (conformal) DDM-baryon scattering time τ−1
χ ≡ anχ〈σv〉χb, and

Rγb ≡ 4ργ/(3ρb). It is useful to separate this equation as a sum of the terms not containing τχ (this

is just the time derivative of the standard slip, which we denote Sbγ), and the new terms introduced

by the DDM coupling,

θ̇b − θ̇γ = Ṡbγ + β

[
(θ̇χ − θ̇b) −

1

2

ȧ

a
(θχ − θb)

]
, (4.24)

where

β =
1

1 +Rγb

τc
τχ

(4.25)

is the parameter that controls how strongly the new interaction affects the evolution of the slip. In

terms of these definitions the baryon-velocity evolution equation is

θ̇b =
1

1 +Rγb + βRγb

{
− ȧ
a
θb + k2

[
c2sbδb +Rγb

(
1

4
δγ − Σγ

)]

+ Rγb

[
Ṡbγ + β

(
θ̇χ − 1

2

ȧ

a
(θχ − θb)

)]}
. (4.26)

The photon-evolution equation is then given by the exact expression

θ̇γ = − 1

Rγb

[
θ̇b +

ȧ

a
θb − c2sbk

2δb −
1

τχ
(θχ − θb)

]
+ k2

(
1

4
δγ − Σγ

)
. (4.27)

We use these equations to follow the initial evolution of the baryon and photon fluid variables and

switch to the exact equations of Eq. (4.17) at later times. For the evolution of the DDM fluid

variables we always use the exact form of Eq. (4.17).

4.6.3 Effects on the Matter and CMB Power Spectra

In Fig. 4.12 we show the linear matter power spectrum and in Fig. 4.13 we show the angular power

spectrum of the CMB for several values of the dipole moment and for DDM mass mχ = 1 GeV.

Physically, the effects of DDM on the matter power spectrum and CMB can be simply understood.

Prior to matter-radiation equality the photons have a much larger density than the baryons or the

DDM and so to a first approximation completely drive the behavior of the baryon perturbations

through Compton scattering. In turn, the baryon perturbations drive the behavior of the DDM

perturbations, very efficiently before DDM decoupling so that the DDM density contrast δχ on

scales that enter the horizon during this epoch track the oscillations of the baryon-photon fluid

before growing, and less efficiently after DDM decoupling so that the baryons simply cause a drag on

the growth of δχ. In either case, the matter power spectrum is suppressed relative to the standard
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Figure 4.12: Matter power spectra including baryon-DDM drag. The solid (red) curve is for is for
(D2 + M2)1/2 = 1.4 × 10−15 e cm The short-dash (black) is for (D2 + M2)1/2 = 1.0 × 10−16 e cm
The long-dash (blue) curve is for is for (D2 + M2)1/2 = 5 × 10−15 e cm. These are all for a mass
of 1 GeV. The curves are all for the standard concordance cosmological parameters, and the data
points are from SDSS [4·43]

case. The behavior of the CMB angular power spectrum can be similarly understood. Roughly

speaking, the coupling of the DDM and baryons increases the effective baryon loading of the plasma

at early times so that the CMB power spectra look similar to those from high-baryon models. This

is of course an imperfect correspondence as modes of larger wavelength enter the horizon when

the coupling is weaker, and so at later and later times the evolution of the photon perturbations

becomes more and more like the standard-CDM case. But due to geometrical projection effects

modes of wavenumber k contribute to all l . kdA where dA is the angular-diameter distance to the

last-scattering surface, and so the effects of DDM on small length scales can be noticed even on

relatively large angular scales in the CMB.

As the effect of DDM on the CMB may be partially degenerate with other cosmological pa-

rameters, we have explored a parameter space that allows us to constrain mχ and (D,M) after

marginalizing over other cosmological parameters. We consider flat ΛCDM models and our chosen

parameter space is the dark-matter density Ωmh
2, the baryon density Ωbh

2, the Hubble parame-

ter h in units of 100 km sec−1 Mpc−1, the optical depth τCMB to the last-scattering surface, and

the primordial spectral index n. We have employed the Markov chain Monte Carlo technique (see,

e.g., Ref. [4·42]) to efficiently explore this parameter space, taking the most recent results from

SDSS [4·43], WMAP [4·44], CBI [4·45], VSA [4·46], and SNe Ia [4·47] as our data. Note that
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Figure 4.13: CMB power spectra including DDM-baryon drag. The labeling of the curves is the
same as in Fig. 4.12, and the data points are those from WMAP [4·44]

although DDM has no effect on observations of Type Ia supernovae, we include these data because

the other parameters we allow to vary are constrained by these observations. We conclude using

a relative-likelihood test that cosmological measurements lead to the bound shown in Fig. 4.1.

The numerical calculations confirm the qualitative behavior discussed above. Dipole moments as

large as (D2 + M2)1/2 ∼ 10−17 e cm, near the upper end of our allowed parameter space, are thus

cosmologically viable.

4.7 Gamma Rays

DDM particles in the Galactic halo can annihilate to two photons through the diagrams shown in

Fig. 4.3. Since halo particles move with velocities v ' 300 km sec−1 � c, the photons produced

will be very nearly monoenergetic with energies equal to the DDM-particle rest mass. The intensity

at Earth of such gamma rays is obtained by integrating the emissivity, n2
χ〈σχ̄χ→2γv〉, where nχ

is the DDM number density, along the given line of sight. The intensity is largest toward the

Galactic center, where the dark-matter density is largest. In this direction, the gamma-ray intensity

is then [4·4],
dF
dΩ

= 1.0× 10−10 σχ̄χ→2γv

10−30 cm3 sec−1
m−2

GeVI cm−2 sec−1 sr−1, (4.28)



81

where I is a scaled integral of n2
χ along a line of sight toward the Galactic center. The numerical

coefficient is one-half that from Ref. [4·4] since we have here particle-antiparticle annihilation rather

than Majorana annihilation. Roughly speaking, I ' 3 − 30 for cored-isothermal-sphere models

of the Galactic halo, while I can extend up to ∼ 300 for Navarro-Frenk-White profiles [4·48]; i.e.,

uncertainty in the dark-matter distribution in the inner Galaxy leads to an uncertainty of two orders

of magnitude in the predicted flux. We thus expect

dF
dΩ

= (3 × 10−13 − 3 × 10−11)(D4
17 + M4

17) cm−2 sec−1 sr−1. (4.29)

To constrain dipole moments from non-observation of a gamma-ray line, we choose to use the

most conservative estimate, I ' 3 for the dimensionless line integral. Moreover, we are not aware of

any EGRET analysis that places limits in particular to a line flux. We thus obtain very conservative

limits by using the binned continuum fluxes for the total gamma-ray flux listed in Table 1 of Ref. [4·48]

and noting that a line flux in that bin cannot exceed the measured continuum flux. The EGRET

limits apply for masses 0.1 . (mχ/GeV) . 10, and range from D17 . 180 for mχ . GeV to

D17 . 100 for mχ ' 10 GeV, as shown in Fig. 4.1.

Again, a few caveats are in order. First of all, our limit is quantitatively conservative—we chose

the halo model that produces the lowest flux, and a detailed EGRET analysis would probably yield

a line-flux limit lower than what we have assumed. On the other hand, the strong dependence ∝ D4

of the predicted flux on the dipole moment guarantees that the upper limit to the acceptable dipole

moment will not depend quite so strongly on these details. Second, if D17 & 5 in the mass range 100

MeV to 1 GeV, then the correct cosmological abundance most likely requires a particle-antiparticle

asymmetry. If so, then the annihilation rate in the halo could be reduced far below the values we

have obtained above. We conclude by noting that with the increased sensitivity of the Gamma-Ray

Large Area Space Telescope (GLAST), a detailed search for a line flux, and the possibility that the

actual halo model provides a more generous annihilation rate, an observable GLAST signature may

exist for masses 0.1 − 1 GeV and dipole moments as low as D17 ∼ 10.

4.8 Discussion

In this chapter we have considered the cosmology and phenomenology of dark-matter particles with a

nonzero magnetic or electric dipole moment. We have found that information from precision tests of

the standard model, direct dark-matter searches, gamma-ray experiments, and the CMB and large-

scale structure restrict the dipole moment to be (D, M) . 3 × 10−16 e cm for masses mχ . few

GeV and (D, M) . 10−24 e cm for larger masses. (This improves on an earlier limit on WIMP

electromagnetic dipole moments based on direct detection [4·49]). Some of the allowed regions of
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parameter space may soon be probed with GLAST and with future more sensitive direct-detection

experiments. The electromagnetic interactions of these particles with nuclei are coherent. Moreover,

these particles cannot annihilate directly to neutrinos. Therefore, searches for energetic neutrinos

from decays of the products of χ̄χ annihilation in the Sun or Earth are thus likely to provide less

sensitive probes than direct searches [4·50]. Moreover, if there is a particle-antiparticle asymmetry,

then the energetic-neutrino flux could be reduced without altering the direct-detection rate.

We have restricted our attention to particles with masses mχ & MeV, with the notion that

lower-mass particles will violate BBN limit, as discussed toward the end of Section 4.2. We also

consider masses mχ & MeV, as particles of lower mass will almost certainly undergo relativistic

freezeout and thus lead to unacceptable dark-matter candidates. However, as also noted above that

if an mχ . MeV particle has a dipole moment (D, M) . 10−22 e cm and no other interactions

with ordinary matter, then it might still be consistent with BBN. Of course, such a particle will,

assuming standard freezeout, have a mass density many orders of magnitude larger than the dark-

matter density. But suppose we were to surmise that the dark-matter density was fixed by some

other mechanism, e.g., suppose the dipole was sufficiently weak that it never came into equilibrium.

In this case, an additional constraint to the dark-matter dipoles can be obtained from energy-

loss arguments applied to stars in globular clusters. Such arguments eliminate dipole moments

(D, M) . 6 × 10−23 e cm for masses mχ . 5 keV [4·51]. We have also considered constraints

from astrophysical phenomena such as the stability of the Galactic disk, lifetime of compact objects,

and annihilations in the solar neighborhood [4·6], and find that these constraints on the mass and

interaction strengths are not competitive with those presented here.

It would be of interest to attempt to embed this scenario in a consistent particle physics model.

We might find links between baryonic and non-baryonic matter abundances, the dark matter electric

dipole moment and the CP violation needed for baryogenesis, and the magnetic moments of dark

matter and baryons (e.g., Ref. [4·52] considered a fermionic technibaryon with electromagnetic dipole

interactions as a dark matter candidate). However, such model building is beyond the scope of the

present study. Our approach throughout has been entirely phenomenological, as we have been

motivated by the desire to answer the question, “How dark is ‘dark’?”
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Appendix 4.A: The Baryon-Dark Matter Collision Term

To determine how the cosmological perturbation equations for baryons and dark matter are altered

when we bestow the dark matter with a magnetic or electric dipole moment, we must formally

evaluate the collision operator of the general-relativistic Boltzmann equation in a given gauge [4·14,

4·35, 4·36] for the dipole interaction of Eq. (4.1). We have completed this calculation in detail,

and find that the dipole interaction produces a drag force proportional to the relative velocity

V = vχ − vb of the dark-matter and baryon fluids. As the relative velocity is gauge invariant in

linear perturbation theory and all scatterings are local processes, we may thus take a simpler, more

physically transparent approach and just evaluate this drag force using nonrelativistic statistical

mechanics. It is this approach we now present.

We wish to calculate the drag force per unit mass, or deceleration, due to collisions with protons to

the dark-matter fluid as it passes through the baryon-photon fluid. Comoving scales λ & Mpc enter

the horizon when the cosmological temperature is T . 10 eV, when the DDM particles (which are

restricted to mχ & MeV) are nonrelativistic. We may thus consider thermal velocity distributions

for nonrelativistic baryons and dark matter. Since the drag force can only depend on the dark-

matter–baryon relative velocity, we take the baryon fluid to be at rest and the dark-matter fluid to

have a velocity of magnitude V in the x̂ direction. Then, the proton phase-space distribution is

fp(~vp) =
np

(2π)3/2v̄3
p

e−v
2
p/2v̄

2
p , (4.30)

where v̄p = (kTp/mp)
1/2 is the proton velocity dispersion and np the proton number density, and

fχ(~vχ) =
nχ

(2π)3/2v̄3
χ

exp

[
− (~vχ − V x̂)2

2v̄2
χ

]
, (4.31)

is the dark-matter phase-space distribution, with v̄χ = (kT/mχ)
1/2. Recall also that we expect

V � v̄p, as discussed above.

The drag force per unit mass is obtained by integrating the momentum transfer per collision

over all collisions between protons and dark-matter particles. From the symmetry of the problem,

the deceleration of the dark-matter fluid will be in the x̂ direction, and it will have a magnitude,

ax =
1

nχ

∫
d3vχfχ(~vχ)

∫
d3vpfp(~vp)|~vp − ~vχ|

∫
dΩ

dσ

dΩ
(vχxf − vχxi). (4.32)

Here Ω = (θ, φ) is the scattering angle in the center-of-mass frame, and vχxf − vχxi is the difference

between the final and initial x component of the dark-matter–particle velocity; the difference is the

same in the center-of-mass and laboratory frames. The differential cross section dσ/dΩ is that given

in Eq. (4.5).
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Consider an individual scattering event. Let α be the angle that ~vp − ~vχ makes with the x̂

direction; this is then the angle that ~vχ makes with the x̂ axis in the center-of-mass frame, and

the magnitude of the initial and final dark-matter velocities in the center-of-mass frame is vcm
χ =

mpv/(mp +mχ), where v ≡ |~vp − ~vχ| is the relative velocity. The initial x̂ component of the dark-

matter velocity in the center-of-mass frame is then vχxi = vcm
χ cosα. The scattering angles θ and

φ are then the polar and azimuthal angles that the scattered dark-matter velocity make with the

initial velocity in the center-of-mass frame. By rotating this coordinate system by an angle α about

the ẑ axis to align it with the laboratory x̂ axis, we find vχxf = vcm
χ (cosα cos θ − sinα sin θ sinφ).

Thus, ∫
dΩ

dσ

dΩ
(vχxf − vχxi) = −mpZ

2e2(D2 + M2) cosα

2π(mp +mχ)v
. (4.33)

Completing the integral in Eq. (4.32) in the limit V � (v̄p, v̄χ), we find

ax =
2(Ze)2(D2 + M2)mpnp
3π(2π)1/2(mp +mχ)

V√
v̄2
p + v̄2

χ

. (4.34)

Taking into account the definition 〈vp〉 =
√

8Tp/(πmp), this drag force leads to the drag-force term

in Eqs. (4.17), (4.20), and (4.21), when including the simple corrections for a mass fraction Y of

helium.
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Chapter 5

A Running Spectral Index in

Supersymmetric Dark-Matter

Models with Quasi-Stable Charged

Particles

We show that charged-particles decaying in the early Universe can induce a scale-dependent or

‘running’ spectral index in the small-scale linear and nonlinear matter power spectrum and discuss

examples of this effect in minimal supersymmetric models in which the lightest neutralino is a

viable cold-dark-matter candidate. We find configurations in which the neutralino relic density is

set by coannihilations with a long-lived stau, and the late decay of staus partially suppresses the

linear matter power spectrum. Nonlinear evolution on small scales then causes the modified linear

power spectrum to evolve to a nonlinear power spectrum similar (but different in detail) to models

parametrized by a constant running αs = dns/dlnk by redshifts of 2 to 4. Thus, Lyman-α forest

observations, which probe the matter power spectrum at these redshifts, might not discriminate

between the two effects. However, a measurement of the angular power spectrum of primordial

21-cm radiation from redshift z ≈ 30–200 might distinguish between this charged-decay model

and a primordial running spectral index. The direct production of a long-lived charged particle

at future colliders is a dramatic prediction of this model.

Originally published as S. Profumo, K. Sigurdson, P. Ullio and M. Kamionkowski, Phys. Rev. D 71,

023518 (2005).

5.1 Introduction

While recent cosmological observations provide convincing evidence that nonbaryonic dark matter

exists [5·1], we do not know the detailed particle properties of the dark matter, nor the particle

spectrum of the dark sector. There has been considerable phenomenological effort towards placing
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model-independent limits on the possible interactions of the lightest dark-matter particle (LDP)1

in an attempt to try and identify candidates within detailed particle theories or rule out partic-

ular candidate theories. For instance, models with stable charged dark matter have been ruled

out [5·2], while significant constraints have been made to dark-matter models with strong interac-

tions [5·3], self-interactions [5·4, 5·5], and a millicharge [5·6, 5·7]. Recently, it was shown that a

neutral dark-matter particle with a relatively large electric or magnetic dipole moment remains a

phenomenologically viable candidate [5·8].
Concurrent with this phenomenological effort, theorists have taken to considering physics beyond

the standard model in search of a consistent framework for viable dark-matter candidates. The lead-

ing candidates, those that produce the correct relic abundance and appear in minimal extensions of

the standard model (often for independent reasons), are the axion [5·9] and weakly interacting mas-

sive particles (WIMPs), such as the neutralino, the lightest mass eigenstate from the superposition

of the supersymmetric partners of the U(1) and SU(2) neutral gauge bosons and of the neutral Higgs

bosons [5·10, 5·11]. However, other viable candidates have also been considered recently, such as

gravitinos or Kaluza-Klein gravitons produced through the late decay of WIMPs [5·12,5·13]. These

latter candidates are an interesting possibility because the constraints to the interactions of the LDP

do not apply to the next-to-lightest dark-matter particle (NLDP), and the decay of the NLDP to

the LDP at early times may produce interesting cosmological effects; for instance, the reprocessing

of the light-element abundances formed during big-bang nucleosynthesis [5·14–5·16], or if the NLDP

is charged, the suppression of the matter power spectrum on small scales and thus a reduction in

the expected number of dwarf galaxies [5·17].

In this chapter we describe another effect charged NLDPs could have on the matter power

spectrum. If all of the present-day dark matter is produced through the late decay of charged NLDPs,

then, as discussed in Ref. [5·17], the effect is to essentially cut off the matter power spectrum on

scales that enter the horizon before the NLDP decays. However, if only a fraction fφ of the present-

day dark matter is produced through the late decay of charged NLDPs, the matter power spectrum

is suppressed on small scales only by a factor (1 − fφ)
2. This induces a scale-dependent spectral

index for wavenumbers that enter the horizon when the age of the Universe is equal to the lifetime

of the charged particles. What we show below is that, for certain combinations of fφ and of the

lifetime of the charged particle τ , this suppression modifies the nonlinear power spectrum in a way

similar (but different in detail) to the effect of a constant αs ≡ dns/dlnk 6= 0. Although these

effects are different, constraints based on observations that probe the nonlinear power spectrum at

redshifts of 2 to 4, such as measurements of the Lyman-α forest, might confuse a running index

with the effect we describe here even if parametrized in terms of a constant αs. This has significant

1In supersymmetric models the LDP is the lightest supersymmetric particle (LSP), but we adopt this more general
notation unless we are speaking about a specific supersymmetric model.
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implications for the interpretation of the detection of a large running of the spectral index as a

constraint on simple single-field inflationary models. The detection of a unexpectedly large spectral

running in future observations could instead be revealing properties of the dark-matter particle

spectrum in conjunction with a more conventional model of inflation. We note that the Sloan

Digital Sky Survey Lyman-α data [5·18] has significantly improved the limits to constant-αs models

compared to previous measurements alone [5·1,5·19,5·20]. A detailed study of the (τ ,fφ) parameter

space using these and other cosmological data would also provide interesting limits to the models

we discuss here.

While, even with future Lyman-α data, it may be difficult to discriminate the effect of a constant

running of the spectral index from a scale-dependent spectral index due to a charged NLDP, other

observations may nevertheless discriminate between the two scenarios. Future measurements of the

power spectrum of neutral hydrogen through the 21cm-line might probe the linear matter power

spectrum in exquisite detail over the redshift range z ≈ 30− 200 at comoving scales less than 1 Mpc

and perhaps as small as 0.01 Mpc [5·21]; such a measurement could distinguish between the charged-

particle decay scenario we describe here and other modifications to the primordial power spectrum.

If, as in some models we discuss below, the mass of these particles is in reach of future particle

colliders the signature of this scenario would be spectacular and unmistakable—the production of

very long-lived charged particles that slowly decay to stable dark matter.

Although we describe the cosmological side of our calculations in a model-independent manner,

remarkably, there are configurations in the minimal supersymmetric extension of the standard model

(MSSM) with the right properties for the effect we discuss here. In particular, we find that if the

LSP is a neutralino quasi-degenerate in mass with the lightest stau, we can naturally obtain, at the

same time, LDPs providing the correct dark matter abundance Ωχh
2 = 0.113 [5·1] and NLDPs with

the long lifetimes and the sizable densities in the early Universe needed in the proposed scenario.

Such configurations arise even in minimal supersymmetric schemes, such as the minimal supergravity

(mSUGRA) scenario [5·22] and the minimal anomaly-mediated supersymmetry-breaking (mAMSB)

model [5·23]. This implies that a detailed study of the (τ ,fφ) parameter space using current and

future cosmological data may constrain regions of the MSSM parameter space that are otherwise

viable. Furthermore, we are able to make quantitative statements about testing the scenario we

propose in future particle colliders or dark matter detection experiments.

The chapter is organized as follows: We first review in Section 5.2 how the standard calculation

of linear perturbations in an expanding universe must be modified to account for the effects of a

decaying charged species, calculate the linear matter power spectrum and discuss the constraints to

this model from big bang nucleosynthesis (BBN) and the spectrum of the cosmic microwave back-

ground (CMB). In Section 5.3 we briefly discuss how we estimate the nonlinear power spectrum

from the linear power spectrum and present several examples. In Section 5.4 we discuss how mea-
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surements of the angular power spectra of the primordial 21-cm radiation can be used to distinguish

this effect from other modifications to the primordial power spectrum. In Section 5.5 we describe

how this scenario can be embedded in a particle physics model, concluding that the most appealing

scheme is one where long lifetimes are obtained by considering nearly degenerate LDP and NLDP

masses. In Section 5.6 we compute the lifetimes of charged next-to-lightest supersymmetric particles

(NLSPs) decaying into neutralino LSPs, and show that, in the MSSM, the role of a NLDP with a

long lifetime can be played by a stau only. In Section 5.7 we estimate what fraction of charged

to neutral dark matter is expected in this case, while in Section 5.8 we describe how consistent

realizations of this scenario can be found within the parameter space of mSUGRA and mAMSB.

Finally, in Section 5.9 we discuss the expected signatures of this scenario at future particle colliders,

such as the large hadron collider (LHC), and prospects for detection in experiments searching for

WIMP dark matter. We conclude with a brief summary of our results in Section 5.10.

5.2 Charged-Particle Decay

In this section we discuss how the decay of a charged particle φ (the NLDP) to a neutral particle χ

(the LDP) results in the suppression of the linear matter power spectrum on small scales.

As the φ particles decay to χ particles, their comoving energy density decays exponentially as

ρφa
3 = mφnφ0

e−t/τ , (5.1)

increasing the comoving energy density of χ particles as

ρχa
3 = mχnχ0

(1 − fφe
−t/τ ) . (5.2)

Here nχ0
= Ωχρcrit/mχ is the comoving number density of dark matter, and nφ0

= fφnχ0
is the

comoving number density of dark matter produced through the decay of φ particles, a is the scale

factor, and t is the cosmic time.

Since the φ particles are charged, they are tightly coupled to the ordinary baryons (the protons,

helium nuclei, and electrons) through Coulomb scattering. It is therefore possible describe the

combined φ and baryon fluids as a generalized baryon-like component β as far as perturbation

dynamics is concerned. We thus denote by ρβ = ρb + ρφ the total charged-particle energy density

at any given time. At late times, after nearly all φ particles have decayed, ρβ ' ρb.

The relevant species whose perturbation dynamics are modified from the standard case are the

stable dark matter (subscript χ), the charged species (subscript β), and the photons (subscript γ). By

imposing covariant conservation of the total stress-energy tensor, accounting for the Compton scat-

tering between the electrons and the photons, and linearizing about a Friedmann-Robertson-Walker
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Figure 5.1: Shown is ∆2(k) = k3P (k)/2π2, the dimensionless matter power spectrum per logarithmic
interval for the canonical ns = 1 ΛCDM model (dashed), for a model with τ = 20 yr and fφ = 1/7
(long-dashed), for a model with τ = 13 yr and fφ = 1/5 (solid), and for a model with τ = 3 yr and
fφ = 1/2 (dotted). Modes that enter the horizon be before the φ particles decay are suppressed by
a factor of (1 − fφ)

2.

(FRW) Universe we arrive at the equations describing the evolution of linear fluid perturbations of

these components in an expanding Universe. In the synchronous gauge, for the ‘β’ component, the

perturbation evolution equations are

δ̇β = −θβ − 1

2
ḣ , (5.3)

and

θ̇β = − ȧ
a
θβ + c2sk

2δβ +
4ργ
3ρβ

aneσT (θγ − θβ) . (5.4)

Here and in what follows, δX = δρX/ρX is the fractional overdensity and θX = ikVX is the diver-

gence of the bulk velocity in Fourier space of a given species X . An overdot represents a derivative

with respect to the conformal time. The number density of electrons is ne, while σT is the Thomson
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cross section. Because the φ particles and the baryons share a common bulk velocity and overden-

sity,2 these equations are identical to the standard perturbation equations for the baryons with the

replacement b→ β (see, for example, Ref. [5·24]). For the dark matter we find that

δ̇χ = −θχ − 1

2
ḣ+ λm

ρφ
ρχ

a

τ
(δβ − δχ) , (5.5)

and

θ̇χ = − ȧ
a
θχ + λm

ρφ
ρχ

a

τ
(θβ − θχ) , (5.6)

where λm ≡ mχ/mφ = (1 + ∆m/mχ)
−1. The modifications to the photon perturbation evolution

are negligibly small because φ decays during the radiation-dominated epoch when ρφ � ργ and, as

discussed below, for viable models λm ' 1 to prevent unreasonably large spectral distortions to the

CMB.

Combining these equations with the (unmodified) equations for the neutrino perturbations we

can solve for the linear power spectrum of matter fluctuations in this model. We have solved these

equations using a modified version of CMBFAST [5·25]. In Fig. 5.1 we show the linear matter power

spectrum in this model for several values of the φ lifetime τ and fraction fφ. As shown in this figure,

the small-scale density modes that enter the horizon before the φ particles decay (when the age of

the Universe is less than τ) are suppressed relative to the standard case by a factor of (1 − fφ)
2.

Since the decaying particles are charged, the production of the LDP will always be accompanied

by an electromagnetic cascade. The latter could in principle reprocess the light elements produced

during BBN, or induce unreasonably large spectral distortions to the CMB. We show here that in

fact these effects are small for the models discussed in this chapter.

The energy density released by the decay of φ particles can be parametrized as

ζEM = εEMfφYχ , (5.7)

where εEM is the average electromagnetic energy released in a φ decay and Yχ ≡ nχ/nγ is the

dark-matter to photon ratio. In the specific models we discuss below, εEM ≈ ∆m/3, and

Yχ =
Ωχρc
mχnγ

= 3 × 10−12

(
TeV

mχ

)(
Ωχ
0.23

)
. (5.8)

2This assumes adiabatic initial conditions. Note that the perturbation Sφβ ≡ δφ − δβ will generally evolve away
from zero in an arbitrary gauge, even when starting with the adiabatic initial condition Sφβ(0) = 0, due to gradients
in the proper time. It is a special simplifying property of the synchronous gauge that Sφβ = 0 for all time for adiabatic
initial conditions.
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This yields

ζEM ≈ fφ
∆m

mχ

(
Ωχ
0.23

)
eV . (5.9)

In the models we discuss below, ∆m/mχ ∼ 10−4, and fφ ≤ 1/2, giving ζEM . 5×10−5 eV. The limit

derived from too much reprocessing of the BBN light element abundances is ζEM . 3.8 τ
1/4
yr ×10−3 eV

[5·26,5·27] where τyr = τ/(1 yr), so we are safely below this bound.

For τyr . 300, electromagnetic energy injection will result in a chemical-potential distortion to

the CMB of [5·28]

µ = 4.5 τ1/2
yr × 10−3

(
ζEM
eV

)
e−0.128τ−5/4

yr , (5.10)

and so we expect µ . 2.0 × 10−7 — 2.3 × 10−6 for lifetimes between τyr = 1 — 100, below the

current limit of µ < 9 × 10−5 [5·29].

5.3 The Nonlinear Power Spectrum

As density perturbations grow under the influence of gravity, linear evolution ceases to describe

their growth and nonlinear effects must be taken into account. On large scales, where density

perturbations have had insufficient time to become nonlinear, the linear matter power spectrum

describes the statistics of density fluctuations. However, on small scales the full nonlinear matter

power spectrum is required.

In order to calculate the nonlinear power spectrum for a given model we have used the recently

devised HALOFIT method [5·30]. This method uses higher-order perturbation theory in conjunction

with the halo model of large-scale structure to determine the nonlinear power spectrum given a

linear power spectrum. It has been shown to accurately reproduce the nonlinear power spectra

of standard N-body simulations and, unlike the earlier mappings such as the Peacock and Dodds

formula [5·31], it is applicable in cases (like we consider here) when ∆2(k) = k3P (k)/2π2 is not a

monotonic function. In particular we have checked that it approximately reproduces the shapes of

the nonlinear power spectra determined in Ref. [5·32] through N-body simulations in models where

the linear power spectrum is completely cut off on small scales. As we are discussing here less drastic

alterations to the linear power spectrum, we believe the HALOFIT procedure provides an estimate of

the nonlinear power spectrum adequate for illustrating the effect we describe in this chapter. Any

detailed study would require a full N-body simulation.

In Figs. 5.2–5.5 we show both the linear and nonlinear matter power spectra at redshift z = 4

(data from measurements the Lyman-α forest probe redshifts 2–4 at wavenumbers k/h ∼ 0.1–

10 Mpc−1) for a charged-decay model, and for a model with a running spectral index. Although these

models have different linear power spectra, nonlinear gravitational evolution causes these models to
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Figure 5.2: Shown at a redshift z = 4 are ∆2(k) = k3P (k)/2π2, the nonlinear (upper curves) and
linear (lower curves) dimensionless matter power spectra per logarithmic interval for the canonical
ns = 1 ΛCDM model (dashed), for an ns = 1 model with τ = 20 yr and fφ = 1/7 (solid), and
for a running-index model with ns = 1.00 and αs = −0.025 (dotted). Although the linear power
spectra differ significantly in these latter two models, nonlinear evolution causes them to have nearly
degenerate nonlinear power spectra for k/h & 1.5 Mpc−1.
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Figure 5.3: Shown at a redshift z = 4 are ∆2(k) = k3P (k)/2π2, the nonlinear (upper curves) and
linear (lower curves) dimensionless matter power spectra per logarithmic interval for the canonical
ns = 1 ΛCDM model (dashed), for an ns = 1 model with τ = 13 yr and fφ = 1/5 (solid), and for
a running-index model with ns = 1.00 and αs = −0.025 (dotted). Nonlinear evolution causes these
two models to have overlapping nonlinear power spectra for 2 Mpc−1 . k/h . 10 Mpc−1.
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Figure 5.4: Shown at a redshift z = 4 are ∆2(k) = k3P (k)/2π2, the nonlinear (upper curves) and
linear (lower curves) dimensionless matter power spectra per logarithmic interval for the canonical
ns = 1 ΛCDM model (dashed), for an ns = 1 model with τ = 15 yr and fφ = 1/4 (solid), and for
a running-index model with ns = 0.96 and αs = −0.025 (dotted). Nonlinear evolution causes the
charged-decay model to match the canonical ΛCDM model for k/h . 1.5 Mpc−1 and the running-
index model for k/h & 1.5 Mpc−1.
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Figure 5.5: Shown at a redshift z = 4 are ∆2(k) = k3P (k)/2π2, the nonlinear (upper curves) and
linear (lower curves) dimensionless matter power spectra per logarithmic interval for the canonical
ns = 1 ΛCDM model (dashed), for an ns = 1 model with τ = 1 yr and fφ = 1/2 (solid), and for a
running-index model with ns = 0.96 and αs = −0.025 (dotted). Despite the drastic change in the
linear power spectrum nonlinear evolution causes the charged-decay model to match the canonical
ΛCDM model for k/h . 8 Mpc−1 and the running-index model for k/h & 8 Mpc−1.
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Figure 5.6: We reproduce here (with permission) Fig. 3 from Ref. [5·18], which illustrates the current
constraints on the parameter αs. The charged-decay models produce changes to the nonlinear power
spectrum similar to constant αs 6= 0 models within the WMAP+Lya contour shown here and the
examples we show in Figs. 5.2–5.5 are denoted by the black circles (ours). However, the charged-
decay models leave the CMB angular power spectra unaltered (corresponding to models with αs = 0
on a line passing through the black cross). Matching to allowed constant-αs models is conservative
in this respect, and we thus expect the charged-decay models we have discussed in Figs. 5.2–5.5 to
be consistent with current data.

have nearly identical nonlinear power spectra over interesting ranges of wavenumbers. The lifetimes

shown were chosen because they produce effects on scales that can be probed by measurements of

the Lyman-α forest, while the values fφ = (1/2, 1/4, 1/5, 1/7) were chosen because they arise in the

supersymmetric models we discuss below.

In Fig. 5.6 we show the current constraints on the (ns,αs) parameter space from the Wilkinson

Microwave Anisotropy Probe (WMAP) satellite and SDSS Lyman-α forest data. The constant-αs

models we have compared our charged-decay model to lie within the WMAP+lya contours shown in

the Figure. Since, in each case, the charged-decay model tends to interpolate between the standard

Λ-cold-dark-matter (ΛCDM) model on larger scales (in particular on the scales probed by the CMB)

and a constant-αs running-index model on smaller scales, and both are allowed by these data, we

expect the charged-decay models we have considered in Figs. 5.2–5.5 to be consistent with current

data as well. We leave for future work the task of using a combined analysis of Lyman-α forest and

other cosmological measurements to put limits directly on the (fφ,τ) parameter space (and thus on

the parameter space of the MSSM models we discuss below).
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5.4 The 21-cm Power Spectrum

After recombination and the formation of neutral hydrogen, the gas in the Universe cools with respect

to the CMB temperature TCMB starting at at a redshift z ∼ 200. The spin temperature Ts of the

gas, which measures the relative populations of the hyperfine levels of the ground state of hydrogen

separated by the 21-cm spin-flip transition, remains collisionally coupled to the temperature Tb of

the baryons until a redshift z ∼ 30 when collisions become inefficient and the spin temperature

rises to TCMB. There is thus a window between z ∼ 30–200 in which neutral hydrogen absorbs the

CMB at a wavelength of 21 cm. It has recently been suggested that the angular fluctuations in the

brightness temperature of the 21-cm transition within this window may be measured with future

observations and used to constrain the matter power spectrum at these very high redshifts [5·21].

At redshifts z & 30, the matter power spectrum on the scales k/h ∼ 1 − 100 Mpc−1 of interest

here are still in the linear regime. As discussed in Ref. [5·21], due to the unprecedented wealth

of potential information contained in these 21-cm measurements, models with a running index or

other small-scale modifications of the matter power spectrum can in principle be distinguished from

each other. Even if the charged-particle lifetime is so small that no significant modifications to the

power spectrum occur on scales probed by other cosmological observations (like the model shown

in Fig. 5.5), 21-cm observations might detect or constrain such effects on the linear matter power

spectrum.

5.5 The Long-Lived Charged Next-to-Lightest Dark-Matter

Particle

From the particle-physics point of view, the setup we have introduced may seem ad hoc. We need

a pair of particles that share a conserved quantum number and such that the lightest, the LDP,

is neutral and stable, while the other, the NLDP, is coupled to the photon and quasi-stable, in

order to significantly contribute to the cosmological energy density at an intermediate stage in the

structure-formation process. Such a picture requires three ingredients: (1) the relic abundance of

the LDP must be compatible with the CDM component; (2) the abundance of the NLDP must be

at the correct level (namely, ∼ 1/5 the total dark-matter density); and (3) the NLDP must have the

proper lifetime (i.e., τ ∼ 10 yr).

Let us start with the last requirement. One way to get the required lifetime is to introduce

a framework with strongly-suppressed couplings. One such possibility is, for instance, to assume

that the LDP is a stable super-weakly–interacting dark-matter particle, such as a gravitino LSP in

R-parity–conserving supersymmetric theories or the Kaluza-Klein first excitation G1 of the graviton

in the universal extra-dimension scenario [5·33]. The NLDP can have non-zero electric charge, but
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at the same time a super-weak decay rate into the LDP (with the latter being the only allowed

decay mode). In models of gauge-mediated supersymmetry breaking, this might indeed be the case

with a stau NLSP decaying into a gravitino LSP. In this specific example, we have checked that, to

retrieve the very long lifetimes we introduced in our discussion, we would need to impose a small

mass splitting between the NLSP and LSP, as well as to raise the mass scale of the LSP up to about

100 TeV. This value is most often considered uncomfortably large for a supersymmetric (SUSY)

setup, and it also makes thermal production of LDPs or NLDPs unlikely, being near a scale at which

the unitary bound [5·34] gets violated. Without thermal production one would need to invoke first a

mechanism to wipe out the thermal components and then provide a viable non-thermal production

scheme that fixes the right portion of LDPs versus NLDPs. Finally, such heavy and extremely

weakly-interacting objects would evade any dark-matter detection experiment, and would certainly

not be produced at the forthcoming CERN Large Hadron Collider (LHC). This would then be a

scheme that satisfies the three ingredients mentioned above, but that cannot be tested in any other

way apart from cosmological observations.

An alternative (and to us, more appealing) scenario is one where long lifetimes are obtained

by considering nearly degenerate LDP and NLDP masses. In this case, decay rates become small,

without suppressed couplings, simply because the phase space allowed in the decay process gets

sharply reduced. Sizeable couplings imply that, in the early Universe, the LDP and NLDP efficiently

transform into each other through scattering from background particles. The small mass splitting, in

turn, guarantees that the thermal-equilibrium number densities of the two species are comparable.

To describe the process of decoupling and find the thermal relic abundance of these species, the

number densities of the two have to be traced simultaneously, with the NLDP, being charged,

playing the major role. This phenomenon is usually dubbed as coannihilation [5·35] and has been

studied at length, being ubiquitous in many frameworks embedding thermal-relic candidates for dark

matter, including common SUSY schemes.

We will show below that sufficiently long lifetimes may be indeed obtained in the minimal super-

symmetric standard model (MSSM), when the role of the NLDP is played by a stau nearly degenerate

in mass with the lightest neutralino (with the former being the stable LSP and the thermal-relic

CDM candidate we will focus on in the remainder of our discussion). A setup of this kind ap-

pears naturally, e.g., in minimal supergravity (mSUGRA) [5·37]. This is the SUSY framework with

the smallest possible parameter space, defined by only four continuous entries plus one sign, and

hence also one of the most severely constrained by the requirement that the neutralino relic density

matches the value from cosmological observations. Neutralino-stau coannihilations determine one of

the allowed regions, on the border with the region where the stau, which in the mSUGRA scheme

is most often the lightest scalar SUSY particle, becomes lighter than the neutralino. Although a

stau-neutralino mass degeneracy is not “generic” in such models, this scenario is economical in that
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the requirements of a long NLDP lifetime and of comparable LDP and NLDP relic abundances are

both consequences of the mass degeneracy. In this sense, evidence for a running spectral index or

any of the other observational features we discuss would simply help us sort out which configuration

(if any) nature has chosen for SUSY dark matter.

5.6 Lifetimes of Charged NLSPs in the MSSM

We refer to a MSSM setup in which the lightest neutralino χ0
1 is the lightest SUSY particle. The

charged particles that could play the role of the NLDP include: (1) scalar quarks, (2) scalar charged

leptons, and (3) charginos. We now discriminate among these cases by the number of particles in

the final states for the decay of NLSPs to neutralino LSPs.

Scalar quarks and leptons have as their dominant decay mode a prompt two-body final state;

i.e., S̃ → χ0
1S, where we have labeled S̃ the SUSY scalar partner of the standard-model fermion

S. A typical decay width for this process is O(1) GeV, corresponding to a lifetime O(10−24) s.

This holds whenever this final state is kinematically allowed; i.e., if mS̃ > mS + mχ0
1
. If it is

kinematically forbidden, there are two possibilities: squarks may either decay through Cabibbo-

Kobayashi-Maskawa (CKM) suppressed flavor-changing processes or through four-body decays. For

instance, the stop decay may proceed through t̃→ χ0
1c or t̃→ χ0

1bf f̄
′. On the other hand, within the

same minimal–flavor-violation framework, scalar leptons are not allowed to decay in flavor-changing

two-body final states, and only the four-body decay option remains.

The case for the chargino is different because this NLSP decay has a three-body final state,

either with two quarks bound in a meson state (i.e., χ+
1 → χ0

1π
+) or with a leptonic three body

channel (i.e., χ+
1 → χ0

1l
+νl). The latter final state becomes dominant, in particular, for electron-type

leptons, l = e, if the mass splitting between NLSP and LSP becomes small.

We have listed all decay topologies as these are especially relevant when discussing the limit in

which we force a reduction of the allowed decay phase-space volume; i.e., the limit in which the

NLSP and LSP are quasi-degenerate in mass. Here we can also safely assume that the masses of

the final-state particles, apart from the neutralino, are much smaller than the mass of the decaying

particle. We can then consider the limit of a particle of mass mχ0
1

+ ∆m decaying into a χ0
1 and

n− 1 massless final states, and derive an analytical approximation to the behavior of the final-state

phase space dφ(n) and of the decay width Γ(n) as functions of ∆m. In the case of two-body decays,

the phase space reads

dφ(2) =
dΩ

32π2


1 −

(
mχ0

1

mχ0
1
+ ∆m

)2

 ∝ ∆m. (5.11)

On the other hand, a recursive relation between dφ(n) and dφ(n−1) based on the invariant mass of
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Figure 5.7: The lifetime of a 1 TeV stop (blue dotted line), a chargino (red dashed line) and a stau
(black solid line), as a function of their mass splitting with the lightest SUSY particle, the lightest
neutralino.

couples of final states yields

dφ(n)(∆m) ∝ dφ(n−1)(∆m) ×
∫ ∆m

dµ(dφ(2))(µ)

∝ (∆m)2(n−2)+1. (5.12)

The dependence of the decay width Γ(n) on ∆m must, however, take into account not only the

phase-space dependence, but also the behavior of the amplitude squared M(n) of the processes as a

function of ∆m. The occurrence of a massless final state yields, in the amplitude squared, a factor

that scales linearly with the momenta circulating in the Feynman diagram. One therefore has the

further factor

M(n) ∝ (∆m)n−1. (5.13)

Finally, we have

Γ(n) ∝ M(n) × dφ(n) ∝ (∆m)3n−4, (5.14)

i.e., the lifetime to decay to a two-body final state scales like τ (2) ∝ (∆m)−2, while for a four-body

decay we have τ (4) ∝ (∆m)−8.

Reducing the NLSP mass splitting ∆m one may hope to obtain “cosmologically relevant” NLSP

lifetimes. For scalar quarks, this is not quite the case, as two-body final states always dominate, and
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even for amplitudes that are CKM-suppressed, the scaling with ∆m is too shallow, and the resulting

lifetimes are rather short, even for very small mass splittings.

The situation is slightly more favorable for charginos, whose three-body decay width is approxi-

mately equal to
G2
F

(2π)3
16

15
(∆m)5. (5.15)

At tree level and in the limit of pure Higgsino-like or Wino-like states, the lightest neutralino

and lightest chargino are perfectly degenerate in mass. However, when one takes into account

loop corrections to the masses, ∆m usually turns out to be larger than a few tens of MeV; see,

e.g., [5·38, 5·39]. This translates into an absolute upper limit on the chargino lifetime of about

10−(2−3) s.

Finally, in the case of sleptons l̃, the interesting regime is when ∆m < ml and only four-body

decays are allowed. For example, for the lightest stau τ̃1, the processes

τ̃1 → χ0
1 ντ f f̄

′, (5.16)

with

(f̄ ′, f) = (ν̄µ, µ), (ν̄e, e), (ū, d), (c̄, s), (5.17)

where, depending on ∆m, only final states above the kinematic threshold are included. In this case,

∆m can be safely taken as a free parameter of the theory: in most scenarios the gaugino mass

parameter setting the neutralino mass for bino-like neutralinos, and the scalar soft mass parameter

setting the stau mass, are usually assumed to be independent. Analogously, there are models in which

the µ parameter setting the mass for a Higgsino-like neutralino, and scalar soft mass parameter are

unrelated. A similar picture applies to the smuon, though lifetimes start to be enhanced at much

smaller mass splittings (mµ instead of mτ ), and it is theoretically difficult to figure out a scenario

in which the lightest smuon is lighter than the lightest stau.

The scalings we have sketched are summarized in Fig. 5.7, where we plot lifetimes for a stop

(CKM-suppressed), a chargino, and a stau as a function of ∆m. The decaying-particle masses have

been set to 1 TeV, and the ∆m range is between the electron and the tau mass. The lifetimes of the

stop and of the chargino have been computed with the code SDECAY [5·40]. Some details on the

computation of the stau lifetime are given below. Notice that the scaling of Eq. (5.14) is accurately

reproduced for all cases. The bottom line is that indeed the lightest stau can play the role of the

NLDP with a cosmologically relevant lifetime, and that the stau is the only particle in the MSSM

for which this can be guaranteed by adjusting only the LDP-NLDP mass splitting.
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5.7 The Relative Abundance of the Charged NLSP

The next step is to determine the relic density of the NLSP and LSP in the early stages of the evolu-

tion of the Universe. As we have already mentioned, we are going to consider thermal production. We

briefly review here how to compute the evolution of number densities with coannihilation [5·35,5·36].

Consider a setup with N supersymmetric particles χ1, χ2, ... χN , each with mass mi and number

of internal degrees of freedom gi. The ordering is such that m1 ≤ m2 ≤ · · · ≤ mN . In the evolution

equations, the processes that change the number density of SUSY particles i are of three kinds:

(a) χi χj ↔ Xf
a , ∀ j ,

(b) χi X
i
b ↔ χj X

f
b , ∀ j 6= i ,

(c) χj ↔ χi X
f
c , ∀ j > i ,

(5.18)

where Xa, X
i
b, X

f
b , and Xf

c are (sets of) standard-model (SM) particles. In practice, the relevant

processes one should include are those for SM particles that are in thermal equilibrium. Assuming

the distribution function for each particle k is the same as for the equilibrium distribution function,

fk(Ek) ∝ f eq
k (Ek) =

1

exp(Ek/T ) ± 1
, (5.19)

and invoking the principle of detailed balance, the Boltzmann equation for the evolution of the

number density of SUSY particle i, ni = gi/(2π)3
∫
d3pfi(E), normalized to the entropy density of

the Universe, Yi = ni/s, as a function of the variable x ≡ m1/T (with T the Universe temperature;

this is equivalent to describing the evolution in time) is given by

x

ĝ(x) Y eq
i

dYi
dx

= −
∑

j

〈σijvij〉neq
j

H

(
Yi Yj

Y eq
i Y eq

j

− 1

)
(5.20)

−
∑

j 6=i

[
∑
X 〈σiX→jviX→j〉neq

X ]

H

(
Yi
Y eq
i

− Yj
Y eq
j

)

+
∑

j>i

Γj→i

H

(
Yj
Y eq
i

−
Yi Y

eq
j

(Y eq
i )2

)
−
∑

j<i

Γi→j

H

(
Yi
Y eq
i

− Yj
Y eq
j

)
.

In this equation, analogously to Yk, we have defined Y eq
k ≡ neq

k /s, the ratio of the equilibrium

number density of species k (at temperature x) to the entropy density. On the left-hand side, we

introduced

ĝ(x) ≡
[
1 +

T

3 geff
dgeff/dT

]−1

, (5.21)

with geff(T ) being the effective degrees of freedom in the entropy density. The function ĝ(x) is

close to 1 except for temperatures at which a background particle becomes nonrelativistic. On the

right-hand side, the last two terms contain factors in Γk→l that label the partial decay width of a
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particle k in any final state containing the particle l; in our discussion they play a role just at late

times when NLSPs decay into LSPs, giving the scaling we have used in Eq. (5.1). The first two

terms refer, respectively, to processes of the kind (a) and (b) in Eq. (5.18), including all possible SM

final and initial states. The symbol 〈σabvab〉 indicates a thermal average of the cross section σabvab;

i.e.,

〈σabvab〉 =
1

neq
a neq

b

∫
d3pad

3pbf
eq
a (Ea)f

eq
b (Eb)σabvab . (5.22)

As is evident from the form we wrote the Boltzmann equation, interaction rates have to be compared

with the expansion rate H of the Universe. In general, over a large range of intermediate temper-

atures, the 〈σiX→jviX→j〉neq
X terms will be larger than the 〈σijvij〉neq

j terms, since we expect the

cross sections to be of the same order in the two cases, but the scattering rates will be more effi-

cient as long as they involve light background particles X with relativistic equilibrium densities neq
X

that are much larger than the nonrelativistic Maxwell-Boltzmann–suppressed equilibrium densities

neq
j for the more massive particles j. This implies that collision processes go out of equilibrium at

a smaller temperature, or later time, than pair-annihilation processes. Writing explicitly the ex-

pression for d/dx(Yi/Y
eq
i − Yk/Y

eq
k ), in which Maxwell-Boltzmann–suppressed terms and terms in

mass splitting over mass scale can be neglected, one finds explicitly that in the limit that collisional

rates are much larger than the expansion rate, for any i and k, Yi(x)/Y
eq
i (x) = Yk(x)/Y

eq
k (x), or

equivalently,

Yi(x) =
Y (x)

Y eq(x)
Y eq
i (x) , (5.23)

with Y (x) ≡ ∑
k Yk(x) and Y eq(x) ≡ ∑

k Y
eq
k (x). At Tcfo, when

∑
X 〈σiX→kviX→k〉neq

X ' H ,

collision processes decouple and the relative number densities become frozen to about

ni(T )

nk(T )
=
neq
i (Tcfo)

neq
k (Tcfo)

' gi
gk

(
mi

mk

)3/2

exp

(
mk −mi

Tcfo

)
, (5.24)

up to the time (temperature) at which heavier particles decay into lighter ones.

The sum Y (x) of the number densities has instead decoupled long before. Eq. (5.24) is the

relation that is implemented to find the usual Boltzmann equation [5·35, 5·36] for the sum over

number densities of all species compared to the sum of equilibrium number densities, and that

shows that the decoupling for Y occurs when the total effective annihilation rate becomes smaller

than the expansion rate, at a temperature Tafo that, as mentioned above, is much larger than Tcfo.

To get an estimate for Tcfo, we can take, whenever a channel is kinematically allowed, the (very)

rough s-wave limit,

σi→kvi→k ∼ σikvik ∼ 〈σikvik〉 ∼
3 · 10−27 cm3 s−1

Ωχh2
, (5.25)

where an approximate relation between annihilation rate and relic density has been used [5·10].

There are then two possibilities depending on whether (i) the background particle X enforcing colli-
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sional equilibrium has a mass much larger than the mass splitting ∆m between the SUSY particles

involved, or (ii) the opposite regime holds. In the first case we find that Tcfo ∼ mX/(10−15), roughly

the temperature at whichX itself (except for neutrinos) decouples from equilibrium. From Eq. (5.24)

we find that ni/nk ' gi/gk; i.e., they have comparable abundances. In the opposite case, we find

instead that Tcfo ∼ ∆m/(10 − 15) and hence ni/nk ' gi/gk

(
mi

mk

)3/2

exp [(10 − 15)sign(mk −mi)];

i.e., the abundance of the heavier particle is totally negligible compared to the lighter one.

Long-lived stau NLSPs are kept in collisional equilibrium with neutralinos by scattering on

background τ± and emission of a photon. In this case we are clearly in the limit (i), as m �

τ1 −mχ0
1
�

mτ . Since the number of internal degrees of freedom for both staus and neutralinos is 2, we find

that the fraction of charged dark matter in this model is

fφ =
g �

τ1

gχ0
1
+ g �

τ1

=
1

2
. (5.26)

More carefully, though, this is not a strict prediction of our MSSM setup for a stau NLDP, and

should be interpreted just as an upper limit. In fact, if we have other SUSY particles that are quasi-

degenerate in mass with the LSP, and if they then coannihilate and decouple from the neutralino at

a later time than the stau, either through mode (i) and then immediately decaying into neutralinos

(in all explicit examples, the decay into staus is strongly suppressed compared to the decay into

neutralinos), or through mode (ii), then fφ is reduced to

fφ =
g �

τ1∑n
i=1 gi

, (5.27)

where the sum in the denominator involves the neutralino, the stau and all SUSY particles with

Tcfo lower than the Tcfo for staus.

In particular, if the lightest neutralino is a nearly-pure higgsino, then the next-to-lightest neu-

tralino will also be a higgsino very nearly degenerate in mass, and the lightest chargino will also be

nearly degenerate in mass, with mass splittings possibly smaller than mτ . In this case, charginos

and neutralinos will be kept in collisional equilibrium through scatterings on (νl, l) pairs. At the

same time, the collisional decoupling of staus might be slightly delayed because of chargino-stau

conversions through the emission of a photon and absorption of a tau neutrino; however this second

process has a Yukawa suppression (as we are considering Higgsino-like charginos) compared to the

first, and hence it is still guaranteed that the stau decoupling temperature is larger than the chargino

Tcfo temperature. Since the mass splitting between neutralino and chargino and that between light-

est neutralino and next-to-lightest neutralino cannot be smaller than few tens of MeV (due to loop

corrections to the masses), decoupling will always happen in mode (ii) and we do not have to worry

about possible stau production in their decays. Since gχ+ = 4, applying the formula in Eq. (5.27) we
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Figure 5.8: Points in the mSUGRA parameter space, at null trilinear scalar coupling A0, featuring
Ωχ0

1
= 0.11 and mχ0

1
= m �

τ1 , for both negative (solid line) and positive (dashed line) sign of the µ
parameter.

find fφ = 1/5. In the case of a wino-like lightest neutralino, instead, the only extra coannihilating

partner would be the lightest chargino, yielding fφ = 1/4. Finally, adding to this picture, e.g., a

quasi-degenerate smuon and selectron, fφ = 1/7 could be obtained.

5.8 Long-Lived Stau NLSPs in Sample Minimal Models

We provide a few examples of well motivated theoretical scenarios where neutralino-stau degeneracy

occurs, possibly in connection with further coannihilating partners driving low values of fφ. In

surveying the possible models, the criterion we take here is that of the composition of the lightest

neutralino in terms of its dominating gauge eigenstate components. We thus outline bino-, higgsino-

and wino-like lightest-neutralino benchmark scenarios.

5.8.1 A Case with fφ = 1/2: Binos in the mSUGRA Model

As we mentioned above, in the framework of minimal supergravity (mSUGRA) [5·22] one of the

few cosmologically allowed regions of parameter space is the tail where the neutralino and the stau
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are quasi-degenerate. In this case, coannihilations reduce the exceedingly large bino-like neutralino

relic abundance to cosmologically acceptable values for neutralino masses up to around 600 GeV.

Coannihilation effects depend on the relative mass splitting between the two coannihilating species.

Requiring a mass splitting as small as those found above amounts, as far as the neutralino relic

density is concerned, to effectively setting mχ0
1

= m �

τ1 . This, in turns, sets the mass of the neutralino-

stau system once a particular value of the relic abundance is required. We plot in Fig. 5.8 points

fulfilling at once mχ0
1

= m �

τ1 and Ωχ0
1

= ΩCDM ' 0.113, the latter being the central value as

determined from the analysis of CMB data [5·1]. Result are shown in the (mχ0
1
-tanβ) plane, with

tanβ the ratio of the vacuum expectation values of the two neutral components of the SU(2) Higgs

doublets, and at a fixed value of the trilinear coupling A0 = 0 (this latter quantity is, however, not

crucial here). The solid line corresponds to negative values of the Higgsino mass parameter µ, while

the dashed line corresponds to positive values of µ. Notice that at µ < 0 the accidental overlap of

the heavy Higgs resonance with the coannihilation strip, around tanβ = 43, shifts the neutralino

masses to larger values. We point out that the two requirements of mass degeneracy and of the

correct relic density determine, at a given value of tanβ, the required mass of the neutralino-stau

system, thus solving the residual mSUGRA parameter space degeneracy, and making the present

framework testable and predictive.

In the minimal configuration we have considered, only the lightest neutralino and the lightest

stau are playing a role, hence fφ = 1/2. However, since the mass splitting between the lightest stau

and lightest smuon and selectron is rather small, assuming a slight departure from universality in

the scalar sector, two additional quasi-degenerate scalar particles can be obtained and the fraction

of charged dark matter reduced to fφ = 1/4.

5.8.2 A Case with fφ = 1/5: Higgsino-like Neutralinos

When the µ term is lighter than the gaugino masses M1 and M2, the lightest neutralino gets

dominated by the higgsino component. This situation occurs, again within the mSUGRA model, in

the so-called hyperbolic branch/focus point (HB/FP) region [5·41, 5·42], where large values of the

common soft breaking scalar mass m0 drive µ to low values. In this region, scalars are naturally

heavy, at least in the minimal setup; however, the occurrence of non-universalities in the scalar

sector [5·43] may significantly affect the sfermion mass pattern. In particular, in a SUSY Grand

Unified Theory (GUT) scenario, soft breaking sfermion masses get contributions from D-terms

whenever the GUT gauge group is spontaneously broken with a reduction of rank [5·44]. Light

staus may naturally occur, for instance when the weak hypercharge D-term dominates and features

negative values. In this case the hierarchy between diagonal entries in the soft supersymmetry-

breaking scalar mass matrices is m2
E � m2

U,D,Q,L. The m2
L term may also be lowered in presence of

additional D-terms originating from the breaking of further U(1) symmetries.
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Figure 5.9: A low-energy parameterization of the higgsino-like neutralino case, at tanβ = 50.
In the smaller frame we indicate the points, on the (µ,M1) plane, that give Ωh2 ' 0.113. The
corresponding models are reproduced in the larger frame, where we plot the relevant mass splittings
of the chargino-neutralino system.

The relic neutralino abundance is fixed by the interplay of multiple chargino-stau-neutralino

coannihilations. In the limit of pure higgsino, the dynamics of these processes fixes the value of µ

yielding a given relic neutralino abundance. On the other hand, a mixing with the bino component

along the borders of the HB/FP region may entail a larger spread in the allowed mass range, affecting

the χ0
1 higgsino fraction. We sketch the situation in Fig. 5.9, where we resort, for computational

ease, to a low-energy parameterization of the above outlined scenario. The smaller frame shows

the points on the (µ,M1) plane that produce the required amount of relic neutralinos. The larger

frame reproduces the values of the chargino-neutralino and neutralino–next-to-lightest-neutralino

mass splitting; the lines end in the pure-higgsino regime. Suitable models, in the present framework,

must also fulfill the mass splitting requirement m �

χ2,
�

χ+
1
− mχ0

1
< mτ . This enforces the allowed

neutralino mass range, at tanβ = 50, between 870 and 880 GeV. Had we lowered the value of tanβ,

the corresponding mχ0
1

range would only have shifted to masses just a few tens of GeV lighter.

As we have already mentioned, since we are dealing with a case with two neutralinos, a chargino

and a stau quasi-degenerate in mass, we find fφ = 1/5. Again, a smuon and a selectron can be

added to this to shift the charged particle fraction to fφ = 1/7.
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Figure 5.10: A few Feynman diagrams for four-body final states for the process τ̃1 → χ0
1 ντ f f̄

′,.
Diagram (a) is the dominant diagram; diagrams of type (b) are sub-dominant, and diagrams of type
(c) are sub-sub-dominant.

5.8.3 A Case with fφ = 1/4: Wino-like Neutralinos

A benchmark case where the lightest neutralino is wino-like is instead provided by the minimal

Anomaly mediated SUSY breaking (mAMSB) scenario [5·23]. In this framework, tachyonic sfermion

masses are cured by postulating a common scalar mass term, m0. The lightest sfermion turns out to

correspond to the lightest stau τ̃1 again. The latter, at suitably low m0 values, may be degenerate in

mass with the lightest neutralino. We performed a scan of the mAMSB parameter space, requiring

mχ0
1
' m �

τ1 , and found that the correct relic abundance requires the neutralino masses to lie in the

range 1250 . mχ0
1

. 1600 GeV, with the lower bound holding for small values of tanβ, while the

higher for larger ones. The chargino-neutralino mass splitting is always below the τ mass, since χ0
1

in mAMSB is always a very pure wino, and it has large masses. We finally remark that here, as in

the case of higgsinos, the occurrence of stau coannihilations raises the neutralino relic abundance,

contrary to the standard result with a bino-like LSP.

Since, in this case, we have one neutralino, a chargino and a stau quasi-degenerate in mass, we

find fφ = 1/4.

5.8.4 The Stau Lifetime

The τ̃1 four-body decay proceeds through diagrams of the types sketched in Fig. 5.10. They come

in three sets: those with W exchange, those with H± exchange, and those with a sfermion ex-

change. However, since ∆m ≡ m �

τ1 −mχ0
1

is much smaller than any supersymmetric-particle mass,

the virtuality of all diagrams except those featuring a τ exchange (diagrams (a) and (b) in the

Figure) is extremely large. Hence all diagrams but those with a τ exchange will be suppressed by

a factor (mτ/mSUSY)4 ∼ 10−8, and the interferences with the dominating diagrams by a factor

(mτ/mSUSY)2 ∼ 10−4. Of the two diagrams with a τ exchange, however, the one with the H±

exchange has a Yukawa suppressed H±ff̄ ′ vertex, which gives a suppression, with respect to the
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W -exchange diagram,

∼ (mµ tanβ/mW )2(mτ tanβ/mW )2 ∼ 10−7 − 10−3

for tanβ = 5 − 50 (5.28)

in the most favorable muonic final channel. Notice that the chirality structure of the couplings

entails that no interference between these two diagrams is present. Diagrams with a charged Higgs

or a sfermion exchange are moreover further suppressed with respect to those with a W exchange

by a factor (mW /mSUSY)4 which, depending on the SUSY spectrum, can also be relevant.

In this respect, a very good approximation to the resulting stau lifetime is obtained by considering

only the first diagram, whose squared amplitude reads

|M|2 =
∑

final states

16(g2/
√

2)4 (pντ · pf )
((pτ )2 −m2

τ )
2
((pW )2 −m2

W )
2

[
|VR|2

(
2(pχ0

1
· pτ )(pτ · pf̄ ′) − (pτ )

2(pχ0
1
· pf̄ ′)

)
+

+m2
τ |VL|2(pχ0

1
· pf̄ ′) − 2mχ0

1
mτRe(V ∗

LVR)(pτ · pf̄ ′)
]
, (5.29)

with VL,R the left- and right-handed coupling of the τ̃1 in the τ̃1τχ
0
1 vertex. The sum is extended over

the final states of Eq. (5.17). For numerical purposes, the four-particles phase space is integrated

with the use of the Monte Carlo routine Rambo, with final-state finite-mass corrections for all final

states.

Fig. 5.11 shows the stau lifetime for a sample of the supersymmetric scenarios outlined in the

preceding sections. We fully account for threshold effects in the phase space, with the four contri-

butions from electronic, muonic, and first- and second-generation quarks. The quark masses have

been set to their central experimental values [5·45]. For the case of higgsinos, we reproduce the two

extreme regimes when the m2
L term is large (no Left-Right mixing) and when m2

L ' m2
R (maximal

Left-Right mixing). The differences in the lifetimes are traced back to overall mass effects and to

the values of the VL and VR couplings (for instance, |VL| � |VR| in the wino case, while the opposite

regime holds for the case of higgsinos and no LR-mixing). In any case, we conclude that lifetimes

of the order of 1 − 100 years are obtained with a mass splitting ∆m = 20 − 70 MeV.

5.9 Dark Matter Searches and Collider Signatures

Unlike other charged long-lived NLDP scenarios, the framework we outlined above has the merit of

being, in principle, detectable at dark-matter–detection and collider experiments.

We show in Fig. 5.12 the spin-independent neutralino-proton scattering cross section for the

mSUGRA parameter-space points of Fig. 5.8, and for the higgsino and wino (mAMSB) cases, as

discussed in Sec. 5.8.2 and 5.8.3, together with the current exclusion limits from the Cryogenic Dark
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Figure 5.11: The stau lifetime, as a function of the mass splitting with the lightest neutralino. The
parameter space points are defined by the two requirements mχ0

1
' m �

τ1 and Ωχ0
1

= 0.11. For the
wino and higgsino cases tanβ = 50, while in all cases A0 = 0 and µ > 0.

Matter Search (CDMS) experiment [5·46], and the future reach of the XENON 1-ton facility [5·47].

For binos, at µ > 0 most points lie within less than one order of magnitude with respect to the

future projected sensitivity, making it conceivable that this scenario may be tested in next-generation

facilities. For negative µ, destructive interference among the lightest- and heavy-Higgs contributions

lead instead to cancellations in σχ0
1P

. Finally, higgsino and wino detection rates respectively lie one

and two orders of magnitude below the future expected sensitivity.

Indirect-detection experiments look less promising, even for winos and higgsinos, which always

feature uncomfortably large neutralino masses. We checked, for instance, that the expected muon

flux from the Sun, generated by neutralino pair annihilations, is at most 10−(4−5) muons per km2

per year, far below the sensitivity of future neutrino telescopes like IceCube [5·48].

Turning to collider experiments, considering as the searching tool the usual missing transverse-

energy channels, dedicated studies have shown that the mSUGRA coannihilation strip will be within

LHC reach, mainly through in a mass range that extends up to mχ0
1

. 550 GeV along the coan-

nihilation strip, quite independently of tanβ [5·49]. Concerning higgsinos and winos, instead, the

relevant mass range we study here appears to be beyond standard LHC searches [5·58].

Even at high-energy colliders, the peculiar and distinctive feature of this scenario is however

represented by the long-lived stau. The production of what have sometimes been dubbed long-lived

charged massive particles (CHAMP’s) [5·50] has been repeatedly addressed. Exclusion limits were
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Figure 5.12: The spin-independent neutralino-proton scattering cross section, as a function of the
neutralino mass, along the parameter-space points outlined in Fig. 5.8. We also indicate the current
exclusion limits from the CDMS experiment [5·46], and the expected reach of the XENON 1-ton
facility [5·47].
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determined by the CDF Collaboration [5·50,5·51], and the future reach of the LHC and of a future

Linear Collider has been also assessed for this broad class of exotic new particles [5·52, 5·53]. The

case of a stable3 stau has been, in particular, considered several times, since it occurs in the context

of various SUSY-breaking models, like gauge-mediated SUSY-breaking (GMSB) scenarios [5·54];

see also, e.g., Ref. [5·55, 5·56]. We remark that, contrary to GMSB, in the present framework the

production of long lived staus at accelerators is expected to come along together with the production

of neutralinos, thus making the two scenarios distinguishable, at least in principle.

A long-lived stau would behave as a highly penetrating particle, appearing in the tracking and

muon chambers of collider detectors with a small energy deposit in calorimeters. Staus, depending

on their velocities, would produce either highly-ionizing tracks in the low-β regime, or, if quite rela-

tivistic, they would appear similar to energetic muons. In this latter case, one could look at excesses

of dimuon or multi-lepton events as a result of superparticle production; for example, considering

the ratio σ(µ+µ−)/σ(e+e−). In case additional particles have masses close to the neutralino-stau

system, the total production cross section of superparticles would be greatly enhanced. Long-lived

charginos may also give interesting accelerator signals [5·57].

While the reach of the Tevatron appears to be insufficient to probe the parameter space of the

models we are considering here [5·55], the discovery of this kind of scenarios at the LHC, though

challenging, looks quite conceivable, particularly in the case of binos. In fact, even in the less

promising case in which the particle spectrum does not feature any particle close in mass with the

χ0
1 − τ̃1 system, the highly-ionizing–track channel should cover a mass range widely overlapping

that indicated in Fig. 5.8. On the other hand, excess dimuon events could provide an independent

confirmation, although the 5-σ LHC reach for CHAMP’s in this channel alone has been assessed to

lie around 300 GeV [5·55]. Moreover, if additional coannihilating particles (charginos, smuons, or

selectrons) are present, the discovery at the LHC would certainly look even more promising [5·56].

A further recently proposed detection technique for long-lived staus is represented by trapping

these particles into large water tanks placed outside the LHC detectors [5·59]. Following the results of

Ref. [5·59], a 10-kton water tank may be capable of trapping more than 10 staus per year, if the mass

m �

τ1 ' 400 GeV. The subsequent decays could then be studied in a background-free environment.

More than twice as many sleptons would also get trapped in the LHC detectors, although in this

case a study of the stau properties would look more challenging [5·59]. Other methods of trapping

and detecting staus have also been proposed [5·60].

3Here stable simply means that the decay length is much larger than the detector size.
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5.10 Discussion

We have examined a scenario in which a fraction fφ of the cold-dark-matter component in the

Universe is generated in the decay of long-lived charged particles and shown that a scale-dependent

(or ‘running’) spectral index is induced. The power spectrum on scales smaller than the horizon size

when the age of the Universe is equal to the charged-particle lifetime gets suppressed by a factor

(1− fφ)
2. Such a feature might be singled out unambiguously by future measurements of the power

spectrum of neutral hydrogen through the 21-cm line, obtaining direct information on the charged

particle lifetime and fφ.

On the contrary, current and future tests for departures from a scale-invariant power spectrum

based on Lyman-α data may fail to uniquely identify the scenario we propose. In fact, we have

estimated the modifications to the non-linear power spectrum at the redshifts and wavenumbers

currently probed by Lyman-α forest data, and shown that these resemble (but are different in

detail) those in models with a constant running of the spectral index αs. We expect, based on this

resemblance, models with fφ in the range 1/2 − 1/7 (as predicted in some explicit models we have

constructed) to be compatible with current cosmological data for lifetimes in the range 1 − 20 yr.

We have also verified that constraints from the primordial light-element abundances and distortions

to the CMB spectrum are not violated.

From the particle-physics point of view, we have shown that the proposed scenario fits nicely

in a picture in which the lightest neutralino in SUSY extensions of the standard model appears as

the cold-dark-matter candidate, and a stau nearly degenerate in mass with the neutralino as the

long-lived charged counterpart. A small mass splitting forces the stau to be quasi-stable, since the

phase space allowed in the its decay process gets sharply reduced. At the same time, it implies

that neutralino and stau are strongly linked in the process of thermal decoupling, with the charged

species playing the major role. Owing to these coannihilation effects, the current neutralino thermal

relic abundance is compatible with the value inferred from cosmological observatations and, at early

times, the stau thermal relic component is at the correct level.

We have described several explicit realizations of this idea in minimal supersymmetric frame-

works, including the minimal supergravity scenario, namely the supersymmetric extension of the

standard model with smallest possible parameter space. We have pointed out that charged dark

matter fraction from 1/2 to 1/7 (or even lower) can be obtained and that stau lifetimes larger than

1 yr are feasible. We have also shown that some of the models we have considered may be detected

in future WIMP direct searches, and discussed the prospects of testing the most dramatic feature of

the model we propose, i.e., the production of long-lived staus at future high-energy particle colliders.
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Chapter 6

Cosmic 21-cm Delensing of

Microwave Background

Polarization and the Minimum

Detectable Energy Scale of

Inflation

We propose a new method for removing the effect of gravitational lensing from maps of cosmic

microwave background (CMB) polarization anisotropies. Using observations of anisotropies or

structures in the cosmic 21-cm radiation, which was emitted or absorbed by neutral hydrogen

atoms that underwent a spin-flip transition at redshifts 10 to 200, the CMB can be delensed. We

find that this method could allow CMB experiments to have increased sensitivity to a primordial

background of inflationary gravitational waves (IGWs) compared to methods which rely on CMB

observations alone — reducing the minimum detectable energy scale of inflation below 1015 GeV.

While the detection of cosmic 21-cm anisotropies at high resolution is a challenging endeavor, the

detection of these fluctuations is already being pursued as a probe of the Universe at or before the

epoch of reionization. A combined study with a relatively low-resolution (but high-sensitivity)

CMB polarization experiment may constrain alternative models of inflation which were heretofore

considered to have undetectable IGW amplitudes. The ultimate theoretical limit to the detectable

inflationary energy scale via this method may be as low as 3 × 1014 GeV.

Originally available online as K. Sigurdson and A. Cooray, arXiv:astro-ph/0502549. Submitted to Phys.

Rev. Lett.

6.1 Introduction

The curl (B) modes of cosmic microwave background (CMB) polarization anisotropies are a unique

probe of the primordial background of cosmological gravitational waves [6·1]. At these long wave-
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lengths, inflation [6·2] is the only known mechanism to causally generate such a background of

gravitational waves [6·3] . Since the amplitude of these inflationary gravitational waves (IGWs)

is proportional to V , the value of the inflaton potential V (ϕ) during inflation, the amplitude of

gravitational-wave induced B-mode polarization anisotropies directly constrains the energy scale of

inflation V1/4 (see, for example, Ref. [6·4]). While the experimental sensitivity to B-mode polar-

ization can be improved, the expected signal is contaminated by foreground effects [6·5]. The main

confusion to the detection of B-mode polarization anisotropies generated by IGWs at recombination

is the mixing of gradient-mode (E-mode) and B-mode anisotropies via gravitational lensing [6·6].
In this chapter we propose a new method for separating lensing-induced B modes from the IGW

signal using observations of anisotropies in the cosmic 21-cm radiation emitted or absorbed by neu-

tral hydrogen atoms at redshifts 10 to 200. While the detection of cosmic 21-cm anisotropies at high

resolution is challenging, a combined study with CMB polarization data could probe inflationary

energy scales well below the Grand Unified Theory (GUT) scale of 1016 GeV — constraining infla-

tionary models with energy scales below 1015 GeV. The ultimate theoretical limit to the minimum

detectable energy scale of inflation via this method could reach as low as 3 × 1014 GeV.

6.2 Gravitational Lensing

Lensing induces a remapping of the polarization field at the last-scattering surface ±X(n̂) such

that ±X̃(n̂) = ±X [n̂ + ∇φ(n̂)] is the observed polarization field, where ±X = Q ± iU are linear

combinations of the Stokes parameters Q and U and α(n̂) = ∇φ(n̂) is the lensing deflection angle.

Here,

φ(n̂; zs) = −2

∫ r(zs)

0

dr′
r − r′

r′r
Φ(n̂, r′) (6.1)

is the deflection potential, a line-of-sight projection of the gravitational potential Φ to redshift zs.

The total lensing potential φ(n̂) ≡ φ(n̂; zCMB) is this quantity evaluated at zs → zCMB ≈ 1100.

Using the flat-sky approximation and the E-mode/B-mode decomposition [6·1], the lensed B-

mode polarization power spectrum, in the relevant limit CBBl << CEEl , is

C̃BBl = CBBl +

∫
d2l′

(2π)2
[l′′ · l′]2 sin2(2θ′l)C

φφ
l′′ C

EE
l′ , (6.2)

where l′′ = l − l′. The second term in this expression is the lensing confusion in the B-mode map

which must be separated from CBBl — the IGW signal. Here, Cφφl is the angular power spectrum

of the total deflection potential and is simply related to a weighted projection of the matter power

spectrum [6·6]; Cφφl (zs) is the incomplete power spectrum out to source redshift zs < zCMB.

Unlike the B modes generated by tensor perturbations (the IGWs), CEEl is dominated by larger
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amplitude scalar perturbations. The expected few-percent conversion of E modes creates a large

signal in the B-mode power spectrum [6·6]. For tensor-to-scalar ratios T /S below 2.6 × 10−4 or,

since V1/4 = 3.0× 10−3(T /S)1/4mPl [6·7], V1/4 below 4.6× 1015 GeV the IGW signal is completely

confused by the lensing contaminant [6·8]. To bypass this limit one must separate the lensing

induced B-modes from those due to IGWs. Clearly, the lensing confusion could be exactly removed

if one knew the three-dimensional distribution of mass out to the CMB last-scattering surface.

However, as our goal is a measurement of CBBl , knowledge of the projected quantity φ(n̂) is sufficient.

One way to estimate φ(n̂; zs) is by using quadratic estimators or maximum likelihood methods to

statistically infer the deflection-angle field given some lensed random field χ̃(n̂) at source redshift

zs. For instance, arcminute resolution CMB temperature and polarization maps could be used to

make such an estimate [6·9–6·11]. Another way to estimate φ(n̂; zs) is by observing the weak-lensing

distortions of the shapes of objects of a known average shape at source redshift zs. We note here

that observations of the weak lensing of galaxies, which have zs ∼ 1–2, can not be used to delense

CMB maps because a large fraction of the lensing contamination (55% at l = 1000) comes from

structure at z > 3. Higher source redshifts are required for effective delensing. We first review the

potential observational signatures of the cosmic 21-cm radiation, and then discuss the methods for

delensing the CMB outlined above.

6.3 Cosmic 21-cm Radiation

Neutral atoms kinetically decouple from the thermal bath of CMB photons at z ∼ 200 and cool

adiabatically as Tg ∝ (1 + z)2 [6·12]. Since the spin temperature of the hydrogen atoms remains

collisionally coupled to Tg these atoms resonantly absorb CMB photons at λ21 = 21.1 cm — the

hyperfine transition of the ground state of hydrogen. The cosmic 21-cm radiation is thus first ob-

servable in absorption by low-frequency radio telescopes which could detect brightness-temperature

fluctuations at wavelength λ = λ21(1 + z) [6·13–6·15]. During reionization, the neutral gas distri-

bution is likely to be complex due to the first luminous sources [6·16] and cosmic 21-cm signatures

shift to emission [6·17]. Yet, even before reionization, it is possible the 21-cm sky is brightened by

emission from neutral hydrogen gas contained in minihalos with masses ∼ 103–107 M� [6·18].

Like the CMB, the statistics of the high-z absorption fluctuations are expected to be Gaussian and

quadratic estimators of the lensing potential, described below, could be straightforwardly adapted

to reconstruct the deflection field. If the statistics of the 21-cm fluctuations during reionization can

be understood the lensing of the 21-cm emission from that era might also provide a useful probe

of the lensing potential. The most promising (but futuristic) possibility involves using the shape

statistics of high-redshift minihalos to infer the lensing potential.
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6.4 Quadratic Estimators

Quadratic estimators can be used to extract lensing information from the gravitationally-lensed

field χ̃(n̂) of some intrinsic field χ(n̂) at redshift zs. The quadratic form ∇ · [χ(n̂)∇χ(n̂)] provides

an estimate of the deflection angle at position n̂ on the sky given the χ̃ anisotropy map. For the

CMB, the quantity χ̃ could be the temperature anisotropies [6·10], the polarization anisotropies, or

some combination of both [6·11]. The brightness temperature fluctuations in the 21-cm transition

of neutral hydrogen from redshifts 10 to 200 could similarly be used [6·19].

In Fourier space, the quadratic estimator for the deflection potential is

φ̂(l; zs) = Ql(zs)

∫
d2l′

(2π)2
(l · l′Cχχl′ + l · l′′Cχχl′′ )

χ(l′)χ(l′′)

2Tχχl′ Tχχl′′
, (6.3)

where Cχχl is the unlensed power spectrum and T χχl = C̃χχl +Nχχ
l is to total power spectrum, in-

cluding lensing corrections and a noise power spectrumNχχ
l . The expectation value of the deflection-

potential estimator 〈φ̂(l; zs)〉 (the ensemble average over realizations of the random field χ) is just

φ(l; zs). Here,

[Ql(zs)]
−1

=

∫
d2l′

(2π)2
(l · l′Cχχl′ + l · l′′Cχχl′ )

2

2Tχχl′ Tχχl′′
(6.4)

is the noise power spectrum associated with a quadratic reconstruction of Cφφl (zs) using the field

χ̃ [6·10].

6.5 Partial Delensing Bias

An estimate of φ(n̂) can be used to delense the CMB B-mode polarization map. In the limit

zs → zCMB (conventional CMB delensing) the extraction of CBBl from the delensed map is limited

by the noise introduced during delensing. The residual contamination of the B-modes is given by

the second term of Eq. (6.2) with the replacement Cφφl → Ql. However if zs < zCMB this noise is

not necessarily the factor limiting a measurement of the IGW signal. Using φ̂(n̂; zs) as a proxy for

φ(n̂) to delense the map leaves a residual lensing contamination not due to noise. Accounting for

this partial delensing bias Bl(zs) ≡ Cφφl −Cφφl (zs) (due to the difference in source redshift between

the lensed field χ̃(n̂) and the CMB) the residual contamination of the B-mode power spectrum is

instead the second term of Eq. (6.2) with Cφφl → Bl(zs) + Nl(zs). This is true whether φ̂(n̂; zs) is

estimated using quadratic estimators or by some other method. Here, Nl(zs) is the residual noise

power spectrum of the deflection potential due to noise associated with the delensing process — for

quadratic reconstruction Nl(zs) = Ql(zs). If the deflection potential is reconstructed from a line, as

is the case for cosmic 21-cm radiation, the source redshift is exactly know and Bl(zs) can be reliably

estimated.
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6.6 Quadratic Reconstruction

Unlike the CMB anisotropies, which lack power on angular scales below a few arcminutes due to

Silk damping, the cosmic 21-cm anisotropies extend to much higher values of l (limited by the

Jeans wavelength of the gas) and peak in amplitude at higher values of l [6·14,6·15]. Additionally,

measurements of cosmic 21-cm anisotropies in different frequency bins provide several estimates of

essentially the same deflection field.

As shown in Fig. 6.1, we estimate a 21-cm experiment centered around zs ∼ 30 with a 20

MHz coverage in frequency space capable of observing anisotropies out to l ∼ 5000 would have an

Nl(zs) higher than the planned CMBpol mission. In this case residual confusion arises from noise

rather than bias. A quadratic reconstruction of the deflection field using this type of measurement,

in conjunction with a CMB polarization experiment, could detect T /S & 2.5 × 10−5 or V1/4 >

2.6×1015 GeV. A next-generation 21-cm experiment capable of observing anisotropies out to l ∼ 105

with the same central redshift and bandwidth would have a Nl(zs) an order of magnitude below

CMBpol and now be limited largely by the bias Bl(zs). Paired with CMB polarization observations,

this type of measurement could detect T /S & 1.0 × 10−6 or V1/4 > 1.1 × 1015 GeV — comparable

to very high sensitivity and resolution future CMB observations alone [6·20]. However, as the CMB

data would not need to be used to reconstruct the deflection field a much lower resolution CMB

experiment would suffice. Furthermore, if lensing information need not be extracted from the CMB

observations, the optimal observing strategy is to integrate over a few square degree patch of the

sky as proposed in Ref. [6·22]. Such a CMB experiment could thus be ground based.

6.7 Other Methods

If minihalos bright in 21-cm emission exist in the early Universe, just as galaxy shapes are sheared by

weak gravitational lensing so will be the shapes of these minihalos. Ellipticity information obtained

from such 21-cm minihalos could be used to reconstruct the projected potential out to high z [6·23].

Based on the dark-matter halo mass function, we expect roughly a surface density of 1011/sr of such

minihalos at z ∼ 30 for a bandwidth of 1 MHz with masses between 105 and 107 M�. A typical halo

of mass 106 M� has a characteristic projected angular size of ∼ 60 milliarcseconds. If resolved, then

techniques currently applied to measure shear in background galaxies in the low-z Universe could be

adapted for this application. Regardless of the exact method, a deflection potential reconstructed

from high-redshift 21-cm observations could then be used to delense CMB B-mode maps.
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Figure 6.1: Shown is the angular power spectrum of the deflection potential as a function of source
redshift zs. The curves labeled ‘l < 5000’ and ‘l < 105’ are the estimated noise levels for quadratic
reconstruction using 21-cm anisotropies in 40 0.5 MHz bins centered around zs ≈ 30. We assume a
noise power spectrum with Tsys = 3000K at 46 MHz, that lmaxfcov ≈ 15, and a year of integration
[6·17]. The curve labeled shapes shows the residual noise curve in a scenario where shear is directly
measured using resolved minihalos in a 1 MHz bandwidth about zs ≈ 30. Also shown is the noise
levels for a CMB reconstruction of deflections with the planned CMBpol mission assuming a 3
arcminute beam, a noise level of 1µK

√
sec, and a year of integration.

6.8 Bias-Limited Delensing

To understand to what extent bias-limited reconstructions, where the residual lensing contamination

is dominated by Bl(zs), would result in the removal of lensing confusion we have calculated the

residual B-mode power spectrum after correcting for the modified lensing kernel when zs < zCMB.

We have adapted the formalism of Ref. [6·21] to estimate the smallest detectable background of IGWs

and the resulting limits are summarized in Fig. 2. While knowing the projected mass distribution

out to zs = 1 does not allow the confusion to be reduced significantly, if it is known to zs = 10

the confusion is reduced by an order of magnitude and the minimum detectable energy scale of

inflation is reduced below the limit derived using quadratic CMB statistics [6·21]. A lensing-source

redshift zs & 30 would be required to improve beyond the practical 1.1×1015 GeV limit of the more
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Figure 6.2: Shown are power spectra of CMB B-mode polarization. The curve labeled ‘IGWs’ is
the IGW contribution to B-modes assuming a tensor-to-scalar ratio of 0.1 with (solid line; τ = 0.17)
and without (dashed line) reionization. The curve labeled ‘lensing’ is the total lensing confusion
to B-modes. Thin lines show the residual B-mode lensing contamination for bias-limited delensing
out to zs. Thick lines show previous estimates of the residual confusion from CMB experiments
alone using quadratic estimators with an ideal noise-free experiment (dashed line), and likelihood
methods using a high resolution/sensitivity experiment (dot-dashed). The noise curve of latter
this experiment, with 2 arcminute beams and a pixel noise of 0.25 µK-arcminute, is the curve
labeled ‘High-Res’. Bias-limited lensing information to zs & 10 improves upon the limit to the
IGW amplitude based on quadratic statistics, and the likelihood level can be reached with zs ∼ 30.
If zs ∼ 100 an additional order-of-magnitude in the IGW amplitude could be probed. The curve
labeled ‘Low-Res’ is the noise curve for a lower resolution CMB polarization experiment with 30
arcminute beams sufficiently sensitive to detect IGWs when paired with a cosmic 21-cm lensing
reconstruction. For very efficient delensing other foregrounds, such as patchy reionization [6·28],
might dominate confusion.



126

sophisticated maximum likelihood method with high resolution and sensitivity CMB polarization

observations [6·20]. However we emphasize here that in the case where a bias-limited reconstruction

of the deflection field exists for zs ∼ 30, a very high-resolution CMB polarization experiment is not

necessary, and a similarly sensitive experiment with a lower resolution could do the same job. Thus,

it is conceivable that the Inflationary Probe of NASA’s Beyond Einstein Program can be designed in

combination with a cosmic 21-cm radiation experiment. Such a cosmic 21-cm radiation experiment

could be extremely exciting in its own right [6·14,6·24].

For a bias-limited reconstruction out to a zs ∼ 100, the limit on the tensor-to-scalar ratio is

7.0× 10−8 or V1/4 > 6.0× 1014 GeV. For zs ∼ 200, the maximum redshift where 21-cm fluctuations

are expected to be nonzero, one could probe down to V1/4 > 3 × 1014 GeV.

6.9 Discussion

While obtaining bias-limited measurements out to zs ≈ 100 is a daunting task, with many experi-

mental and theoretical obstacles to overcome, there is great interest in detecting the fluctuations in

the cosmic 21-cm radiation at z ∼ 10 − 200 for their own sake. The observational study of 21-cm

fluctuations, especially during and prior to the era of reionization, is now being pursued by a variety

of low frequency radio interferometers such as the Primeval Structure Telescope (PAST [6·25]), the

Mileura Widefield Array (MWA), and the Low Frequency Array (LOFAR [6·26]). Planned interfer-

ometers such as the Square Kilometer Array (SKA) will improve both sensitivity and low-frequency

coverage.

While certain models of inflation, those related to Grand Unified Theories (GUTs), are expected

to have an energy scale V1/4 between 1015 GeV and 1016 GeV there are certainly other possibilities.

For instance, some supersymmetric theories of inflation have energy scales of several times 1014 GeV

[6·27]. New methods, such as the idea of using observations of the cosmic 21-cm radiation to delense

the CMB B-mode polarization suggested here, are needed to push the minimum detectable energy

scale of inflation below 1015 GeV and discriminate between between physical theories at the highest

energy scales.
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Chapter 7

Measuring the Primordial

Deuterium Abundance During the

Cosmic Dark Ages

We discuss how measurements of fluctuations in the absorption of cosmic microwave background

(CMB) photons by neutral gas during the cosmic dark ages, at redshifts z ≈ 7–200, could reveal

the primordial deuterium abundance of the Universe. The strength of the cross-correlation of

brightness-temperature fluctuations due to resonant absorption of CMB photons in the 21-cm line

of neutral hydrogen with those due to resonant absorption of CMB photons in the 92-cm line of

neutral deuterium is proportional to the fossil deuterium to hydrogen ratio [D/H] fixed during big

bang nucleosynthesis (BBN). Although technically challenging, this measurement could provide

the cleanest possible determination of [D/H], free from contamination by structure formation

processes at lower redshifts, and has the potential to improve BBN constraints to the baryon

density of the Universe Ωbh2. We also present our results for the thermal spin-change cross-

section for deuterium-hydrogen scattering, which may be useful in a more general context than

we describe here.

Originally available online as K. Sigurdson and S. R. Furlaneto, arXiv:astro-ph/0505173. Submitted to

Phys. Rev. Lett.

7.1 Introduction

After the cosmic microwave background (CMB) radiation decoupled from the baryons at a redshift

z ≈ 1100, most CMB photons propagated unfettered through the neutral primordial medium. This

has allowed exquisite measurements of the temperature fluctuations in the primordial plasma at the

surface of last scattering, and the statistical properties of these fluctuations have recently been used,

in conjunction with other observations, to determine the cosmology of our Universe [7·1]. After

the photons kinetically decoupled from the gas at z ∼ 200, the latter cooled adiabatically with
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Tg ∝ (1 + z)2, faster than the Tγ ∝ (1 + z) cooling of the CMB. This epoch, with most of the

baryons in the form of relatively cold neutral atoms and before the first stars formed, is known as

the cosmic dark ages.

The reason most CMB photons propagate unimpeded through the neutral primordial gas is

elementary quantum mechanics — atoms absorb non-ionizing radiation only at the discrete wave-

lengths determined by the differences of their atomic energy levels. One interesting example is the

well-known 21-cm spin-flip transition [7·2], due to the hyperfine splitting of the ground state of the

hydrogen (H) atom. At any given z, CMB photons with wavelength λ21 = 21.1 cm can resonantly

excite this transition. By measuring brightness-temperature fluctuations due to density fluctuations

in the neutral gas [7·3], radio telescopes observing at λ = (1 + z)λ21 can probe the matter power

spectrum at z ≈ 30–200 [7·4].
In this chapter we discuss another application of these measurements. Less well-known than the

21-cm transition of neutral H is the spin-flip transition of neutral deuterium (D) at λ92 = 91.6 cm

[7·5,7·6]. We show below that cross-correlating brightness-temperature fluctuations at a wavelength

λH = (1 + z)λ21 with those at a wavelength λD = (1 + z)λ92 allows a measurement of the primordial

D abundance. In principle, this technique could constrain the primordial value of [D/H] ≡ nD/nH

to better than 1%. While there is no physical obstacle to such a measurement, it would certainly be

technically challenging, and require a heroic experimental effort; simply detecting neutral D during

the cosmic dark ages would be a significantly easier goal.

Deuterium has long been recognized as our best ‘baryometer’ because its primeval relic abundance

is so sensitive to the baryon-to-photon ratio η = nb/s. Moreover, big bang nucleosynthesis (BBN)

[7·7] is the only known natural production mechanism, although mechanisms inside galaxies can

destroy it [7·8]. The measurement we describe below could thus determine the true BBN abundance

of D and, in principle, might improve BBN constraints to the baryon density of the Universe Ωbh
2.

7.2 Hyperfine Structure of H and D Atoms

The µµµ·B interaction between the magnetic moments of the electron and the nucleus splits the ground

state of single-electron atoms into eigenstates of the total spin operator F = S + I with eigenvalues

F+ = I + 1/2 and F
−

= I − 1/2 and ∆E = (16/3)F+µB(gNµN/a
3
0) (e.g., [7·9]). Here, S is electron

spin, I is nuclear spin, a0 is the Bohr radius, µB is the Bohr magneton, µN is the nuclear magneton,

and gN is the nuclear g factor (gp = 5.56 for H; gD = 0.857 for D). The proton, with I = 1/2, splits

the H ground state into a triplet with F+ = 1 and a singlet with F
−

= 0. The deuteron, with I = 1,

splits the D ground state into a quartet with F+ = 3/2 and a doublet with F
−

= 1/2.
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7.3 The Spin-Temperature

The population of atoms in the excited spin state relative to the ground state

(n+/n−
) = (g+/g−

)e−T?/Ts (7.1)

can be characterized by a spin temperature Ts. Here g+ = 2F+ + 1 and g
−

= 2F
−

+ 1 are the

spin degeneracy factors and T? = ∆E/kB. For H and D, we have respectively T H

? = 0.0682 K,

TD

? = 0.0157 K, and (gH

+
/gH

−
) = 3, (gD

+
/gD

−
) = 2.

Competition between three factors determines Ts: absorption of 21-cm CMB photons, absorption

and re-emission of Lyman-α photons (the Wouthuysen-Field or WF effect [7·10,7·11]), and atomic

spin-change collisions (collisions with free electrons are unimportant in these environments [7·10]).

The first drives Ts toward Tγ , while the latter two drive it toward the gas temperature Tg. In

equilibrium the spin temperature of the a species X (either D or H) is

TX

s =
(1 + χX)TgTγ
(Tg + χXTγ)

, (7.2)

where χX ≡ χX

c + χX

α is the sum of the equilibrium threshold parameters for spin-change collisions

and for radiative coupling through the WF effect. Explicitly, χX

c = (CX

+−
TX

? )/(AX

+−
Tγ) and χX

α =

(PX

+−
TX

? )/(AX

+−
Tγ), where CX

+−
is the collisional de-excitation rate, AX

+−
is an Einstein coefficient, and

PX

+−
∝ Pα, where Pα is the total Lyman-α scattering rate. At z � 10, before the first galaxies formed,

Pα is tiny and the WF effect can be neglected. However, it might have interesting consequences

near z ∼ 10.

7.4 H-H and D-H Collision Rates

While the cross section for H-H spin-change collisions σHH

+−
is well known [7·12–7·16], we were unable

to locate the D-H spin-change cross section for the temperature range of interest and computed σDH

+−

using standard methods1. In the elastic approximation,

σDH

+−
=

π

3k2

∞∑

l=0

(2l + 1)sin2(tηDH

l − sηDH

l ) , (7.3)

where k = µDHv/~, µDH = mDmH/(mD + mH) is the reduced mass of the D-H system, and v is

the relative velocity.2 The partial wave phase shifts in the triplet and singlet electronic potentials

Vt(R) and Vs(R) in which the D and H atoms scatter are tηDH

l and sηDH

l respectively. We used the

1It has been computed at higher temperatures by Ref. [7·18], at 1 K by Ref. [7·19], and measured at 1 K by
Ref. [7·20].

2Compare with σHH
+−

= (π/4k2) � ∞

l=0(2l + 1)sin2(tηHH

l
− sηHH

l
) for H-H collisions when quantum symmetry can be

neglected [7·16].
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Figure 7.1: The thermal spin-change cross sections that keep Ts collisionally coupled to Tg for D
(solid line), H (dashed line), and muonium (dotted line). Although the potentials are identical, the
peaks differ because of the reduced masses.

variational potentials of Refs. [7·21, 7·22] for R ≤ 12 a0, the smooth fit of Ref. [7·23] for Vt(R)

between 12 a0 ≤ R ≤ 15 a0, and the asymptotic form of Ref. [7·24] for larger R. We found the

phase shifts by solving the radial Schrödinger equation at each energy E = ~
2k2/2µDH and angular

momentum
√
l(l + 1)~, truncating at lmax ∼ 100 to resolve the resonant structure at sufficiently

high E. We verified that our results agree with Ref. [7·19] at 1 K (after accounting for our more

recent potentials), with those of Refs. [7·14–7·17]3 for σHH

+−
, and with Ref. [7·17] for the muonium-H

spin-change cross section σµH

+−
.

The collisional de-excitation rate is CX

+−
= v̄XHσ̄

XH

+−
nH, where v̄XH =

√
8kBTg/µXHπ is the thermal

velocity, σ̄XH

+−
is the thermal spin-change cross-section (averaged over the Maxwell-Boltzmann distri-

bution of relative velocities), and nH is the number density of H atoms. In Fig. 7.1 we plot σ̄HH

+−
,

σ̄DH

+−
, and σ̄µH

+−
. While σ̄HH

+−
falls off for Tg . 100 K, σ̄DH

+−
continues to rise to a peak near Tg ∼ 1 K.

This occurs because of low-energy s-wave and p-wave contributions to D-H scattering (a much larger

3We are in harmony with Ref. [7·16] which found that κ(1 → 0) = v̄HHσ̄HH
+−

is 4/3 larger than previously quoted
[7·13,7·14] at high Tg .
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Figure 7.2: The H and D spin temperatures as a function of z. Here we assume Pα = 0 for all z.

scattering length and a scattering resonance). These do not appear for H-H because of the different

reduced mass (µHH ≈ mH/2 while µDH ≈ 2mH/3). The discussion of D-H spin-change in Ref. [7·10]

did not account for this and incorrectly concluded that σDH

+−
∼ σHH

+−
.

7.5 Spin-Temperature Evolution

In Fig. 7.2 we plot Tγ , Tg (found using recfast [7·25]), T H

s , and TD

s as a function of z. After the gas

cools below Tγ , collisions keep T H

s and TD

s coupled to Tg. Near z ∼ 30 collisions become inefficient

for H and T H

s returns to Tγ . TD

s remains coupled to Tg down to significantly lower redshift both

because the lifetime of the excited state of D is relatively long (AH

+−
/AD

+−
= 61.35) and because

σ̄DH

+−
� σ̄HH

+−
at low temperatures.
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7.6 Brightness Temperature Fluctuations

When the spin temperature of a given species is less than Tγ it will absorb CMB photons. The

brightness temperature is T X

b = aτX(TX

s − Tγ), where

τX =
gX

+
cλ2hAX

+−
nX

8(gX
+

+ gX
−
)πkBTX

s H(z)
(7.4)

is the optical depth of the spin-flip transition in question, a = 1/(1 + z) and H(z) is the Hubble

parameter. We are interested in correlations between brightness temperature fluctuations δX

Tb
(n̂, a) ≡

δTX

b (n̂, a)/TX

b (a) = βX

Tb
(a)δ(n̂, a) observed in a direction n̂ at wavelengths differing by a factor

λ92/λ21. Here,

βX

Tb
= 1 +

χX

c

χ̂X
+ Γ

[
Tγ

Tg − Tγ
+
χX

c

χ̂X

dln(CX

+−
)

dln(Tg)

]
, (7.5)

δ(n̂, a) = δnH(n̂, a)/nH(a) = δnD(n̂, a)/nD(a) is the density contrast, and χ̂X ≡ χX(1 + χX). At high

z, when Tg ≈ Tγ , Γ → 0 due to residual Thomson scattering with free electrons [7·26] (fluctuations

are isothermal), but as the gas begins to cool adiabatically Γ → 2/3 [7·27]. In Eq. (7.5) we have

neglected the contributions to δTb
from fluctuations in the neutral fraction (likely to be small at

high z) and, for simplicity, fluctuations in the gradient of the radial velocity δ∂rvr [7·28]. The latter

will enhance our signal by a factor of ∼ 1–2. In Fig. 7.3 we plot T H

b , aβH

Tb
TH

b , T̃D

b and aβD

Tb
T̃ db ,

where TD

b ≡ εT̃D

b and ε ≡ [D/H]. We see that T̃D

b and aβD

Tb
T̃ db peak at much lower z than their H

counterparts because, as discussed above, T D

s is coupled to Tg to lower z.

7.7 D-H Cross Correlations

We now estimate the cross-correlation of brightness temperature fluctuations across frequencies

related by λ21/λ92. We write the brightness temperature fluctuation due to H or D as H(n̂, a) =

βH

Tb
(a)TH

b (a)δ(n̂, a) and εD(n̂, a) = εβD

Tb
(a)T̃D

b (a)δ(n̂, a) respectively. A radio telescope observing

at a frequency ν will measure the quantity O[n̂; ν] = H(n̂, ν/ν21) + εD(n̂, ν/ν92) + N [n̂; ν], where

N [n̂; ν] is the instrumental noise. We form the product O[n̂; να]O[n̂; νβ ], where νβ ≡ (ν92/ν21)να.

Assuming that δ(n̂, a) is a zero-mean Gaussian random field and uncorrelated Gaussian noise, its

expectation value is 〈O[n̂; να]O[n̂; νβ ]〉 = ε〈HαDβ〉 to leading order in ε. Here we have introduced

the shorthand Hα ≡ H(n̂, να/ν21), Dβ ≡ D(n̂, νβ/ν92), and Nα = N [n̂; να].

We now understand the crucial point of this chapter. The 21-cm and 92-cm fluctuations at these

frequency separations must be correlated because they trace the same underlying patches of the

Universe.

Note that we have neglected the relatively small intrinsic correlations of the H brightness fluc-
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Figure 7.3: The brightness temperatures T H

b and T̃D

b and the brightness temperature fluctuations

βH

Tb
TH

b and βD

Tb
T̃D

b (scaled to the growth rate of density perturbations δ ∝ a).

tuations from large-scale modes of the density field which contribute at the level of ∼ 0.1% or less

of the D signal. If necessary, these intrinsic H correlations could be removed through independent

measurements of the matter power spectrum or by correlating the 21-cm signal with frequencies

near but not equal to the corresponding D patches.

7.8 Signal Estimate

The signal-to-noise contributed by a pair of frequency bands centered around (να, νβ) for an exper-

iment with a maximum baseline of L and frequency resolution ∆ν is

S
N (να) = ε

4

θβ

〈HαDβ〉√
(〈H2

α〉 + 〈N2
α〉)(〈H2

β〉 + 〈N2
β〉
, (7.6)
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where θβ = λβ/L is the angular resolution in the D band. Here, 〈HαDβ〉 = σ2
δ (β

H

Tb
TH

b )(βD

Tb
T̃D

b ) and

〈H2
α〉 = σ2

δ (β
H

Tb
TH

b )2, where

σ2
δ =

2

π2

∫ ∞

0

dkkP (k)

∫ k

0

dkzj
2
0(ξkzρ)

J2
1 (
√
k2 − k2

zρ)

(k2 − k2
z)ρ

2
(7.7)

is the variance in the density field at scale-factor a smoothed over the coin-shaped regions of the

Universe of comoving radius ρ and thickness 2ξρ that are sampled by an experiment with high

spectral (radial) resolution but lower angular (transverse) resolution. We adopt a noise variance of

〈N2
α〉 = T 2

sys/(f
2
cov ∆ν tint) (e.g., [7·29]), where Tsys = 6500[να/(30MHz)]−2 K is the noise tempera-

ture, fcov is the covering fraction of the array, and tint is the integration time. Our choice for Tsys is

only an estimate, and the noise (ultimately due to Galactic synchrotron radiation) varies strongly

across the sky. The total signal-to-noise ratio (S/N )tot is the sum in quadrature over all pairs of

frequency bands (να, νβ).

If collisions dominate the coupling between T H

s and Tg down to z ∼ 7 then a value [D/H] ∼
3× 10−5 could be detected at 1- to 2-σ by an experiment with L ∼ 7.5 km and ∆ν ∼ 100 kHz in ∼6

years. If, however, the first generation of stars created a flux of Lyman-α photons which coupled T H

s

to Tg until z ∼ 7 through the WF effect without significantly heating the gas, a similar detection

might be made by a smaller experiment with L ∼ 2.5 km and ∆ν ∼ 1 kHz. Although it dramatically

enhances the 21-cm signal, the WF effect does not improve the [D/H] measurement by the same

margin because S/N becomes independent of Hα once 〈H2
α〉 � 〈N2

α〉 (it only serves to make the H

fluctuations a better matched template). Finally, we note that an experiment capable of mapping

21-cm brightness-temperature fluctuations out to lmax ∼ 105 (where it may be a powerful probe of

the small-scale matter power spectrum [7·4]) could measure [D/H] to a precision as good as ∼ 1%

— or even ∼ 0.1% if the WF effect coupling is efficient.

For these estimates we have assumed a ΛCDM cosmology with ns = 1, and that a significant

fraction of the Universe remains neutral until z ∼ 7. The largest contribution to the signal originates

from z . 10 where the D signal peaks and the variance in the density fluctuations is largest.

Varying these assumptions, or including additional sources of temperature fluctuations, could change

(S/N )tot by factors of order unity.

7.9 Discussion

Despite the obvious technical challenges in observing this signal, we emphasize that it has the virtue

of providing the cleanest possible measurement of the primordial [D/H], free from contamination by

structure formation processes at lower z. Via the window of BBN, this would allow radio telescopes

to peer into the first few minutes of the Universe. We believe future searches for cosmic 21-cm
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fluctuations should bear this possibility in mind.

We also note that 3He+ has a hyperfine transition (with λ = 3.46 cm) that can be used in a similar

fashion; it has the advantage of much lower foreground contamination at higher frequencies. This line

will appear during reionization and should exhibit a strong anti-correlation with the corresponding

21-cm signal. If the astrophysics of reionization can be understood well enough, the cross-correlation

of this line with the 21-cm line could supplement the D-H experiment in order to probe BBN in

even more detail.
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