Slack Matching

Thesis by
Piyush Prakash

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2005
(Submitted May, 2005)

© 2005
Piyush Prakash
All Rights Reserved

ii

Acknowledgements

I wish to thank my advisor, Alain Martin, for his guidance and encouragement. I also thank the members of
the Asynchronous VLSI group at Caltech for the stimulating discussions: Mika Nystréom, Catherine Wong,
Karl Papadantonakis, Wonjin Jang, Jonathan Dama and Paul Pénzes. Last but not least, I wish to thank
my parents for their support and encouragement.

The work described in this thesis was sponsored by the Defense Advanced Research Projects Agency and

monitored by the Air Force Office of Scientific Research.

iii

Abstract

In this thesis we present a method for slack matching asynchronous circuits, described as a collection of
handshaking expansions. We present an execution model for a restricted class of HSE. We define the number
of messages that a process contains. The static slack, dynamic slack and dynamic threshold are defined. We
state sufficient conditions under which the dynamic slack of a pipeline of half-buffers is the sum of that of
the processes comprising the pipeline. The slack matching problem is formulated as that of ensuring that
all pipelines and rings in a system can simultaneously contain a number of messages that is no less than the
dynamic threshold but no greater than the dynamic slack. We describe an algorithm to formulate the slack

matching problem as a mixed integer linear program.

iv

1 Introduction

Asynchronous circuits are designed as communicating modules that use local handshakes instead of a global
clock for synchronization. It has been observed that the cycle-time of an asynchronous system can be lower
than that of the slowest module in the system running on its own. Slack matching is a technique to reduce the
system’s cycle-time by inserting buffering into communication channels. Slack matching is only guaranteed
to be safe on systems that are slack elastic, i.e., systems such that an arbitrary amount of buffering can be
added along any communication channel without affecting the correctness of the system [5].

Slack matching has been compared to the retiming problem in synchronous design. Whilst retiming can
be applied to asynchronous systems with good results, the results are inferior to optimal slack matching.
Slack matching has been shown to be NP-complete [2] whereas retiming for optimal throughput can be
solved in polynomial time [3]. We reduce slack matching to optimizing a given cost function over a set of
linear constraints, with some variables restricted to being integers. When the cost function is linear in the
number of slack matching buffers added, mixed integer linear programming (MILP) solvers can be used to
slack match a system.

Systems are often designed with a target cycle-time, 79. We will study the problem of adding buffers to
a slack elastic system to reduce the overall cycle-time of the system to 7. The processes in the system will
be restricted to using each communication channel exactly once per cycle. The systems will be described at

the handshaking expansion (HSE) level, with the HSE annotated with delays.

1.1 Prior work

Chapter 2 of Lines[4] studies asynchronous pipelines and introduces the concept of dynamic slack; however
Lines does not rigorously define dynamic slack. Pénzes[9] presents an execution model for production rule
sets. Using this model, the slack matching problem is formulated as an integer linear programming problem.
However, no explicit algorithm is given to generate the integer linear program. No comment is made on the
size of the integer linear program generated relative to the size of the system being slack matched. Chapter 5
of Wong|[10] presents a method for slack matching systems composed of processes with the PCHB reshuffling.
If the delays of all processes are identical, the slack matching algorithm presented is similar to that presented
here. However, for heterogenous systems Wong[10] determines the dynamic slack of a pipeline of buffers by
analyzing all paths in the pipeline. In contrast, we will state conditions under which the dynamic slack of a
heterogenous pipeline is the sum of the dynamic slack of the components of the pipeline. This allows us to

construct a smaller integer program in polynomial time for the slack matching problem.

1.2 Outline

We first describe an execution model for HSE called constraint graphs. We will state restrictions on the class
of HSE that can be modeled by constraint graphs. We define the number of messages in rings and pipelines.
We study how changing the number of messages in a system affects its constraint graph. The concepts of
static slack, dynamic slack and dynamic threshold are defined. We present sufficient conditions under which
the dynamic slack of a pipeline of half buffers is the sum of that of the processes comprising the pipeline.
The slack matching problem is formulated as that of ensuring that it is possible for all pipelines and rings
in a system to simultaneously contain a number of messages that is no less than the dynamic threshold but
no greater than the dynamic slack. An algorithm is described for generating a set of linear constraints that
need to be satisfied in order to slack match a system. The performance of the algorithm on circuits from the

Lutonium[7] and MiniMIPS[6] is discussed.

2 Execution Model—Constraint Graphs

We first describe the constraint graph execution model and then provide an algorithm to generate the

constraint graphs of a restricted class of HSE.

2.1 Constraint graphs

Definition 1
A constraint graph is a 4-tuple C=(V, E, k, §) where

e V is a set of vertices

e [the edge set, is a set of ordered pairs of vertices

k: E — {0, 1} specifies the initial token placement
e 0: F — [0,00) is the delay function

Constraint graphs are used to model repetitive systems. The vertices of a constraint graph represent
events, and the edges capture the partial ordering between events. An edge (u,v) will have a token when
event u has occurred but the subsequent occurrence of event v has not yet occurred. The delay, §(u,v), of
an edge is the minimum delay between an occurrence of v and the subsequent occurrence of v.

Tokens move through the system per the following rule: when all the fan-in edges of a vertex contain and
token, and for each such edge (u,v), the token has been on the edge for at least 6(u,v) time, a token can be

removed from all the fan-in edges and placed on the fan-out edges of the vertex.

2.1.1 Executions of a constraint graph

An ezecution of a constraint graph (V| E,t,¢), is any function, e : V' x N — [0, 00) such that
Vi e N, (u,v) € E:e(v,i+ k(u,v)) —e(u,i) > 0(u,v)

e(v,1) =0Vv : V(u,v) € E: k(u,v) =1

e(u,) denotes the i'" occurrence of the event u. Consider the mapping l.((u,v),t) : E x [0,00) — {0,1} to

evaluate to 1 when there is a token on edge (u,v) at time ¢ in execution e. l.((u,v),t) is defined as:
le((u,v),t) = Fi:e(v,i+ k(u,v)) >t Ae(u,i) <t

A linear execution is an execution, where for all u, e(u,i) = ay, + py - i. a,, and p, are, respectively, the
offset and cycle period of the vertex u. If two vertices u and v appear on the same cycle in the constraint
graph, p,, must equal p,. The cycle time, 7, of a linear execution of the constraint graph (V, E, k, §) is defined

as

7 = max{p.}. 1)

In the remainder of this thesis, we will only consider systems such that their constraint graphs are strongly
connected.

Chapter 2 of Burns[1] defines repetitive Event-Rule (ER) systems. An execution of a constraint graph is
analogous to a timing function of a repetitive ER system. Similarly, the fastest execution and fastest linear
execution of a constraint graph are analogous to the timing simulation and minimum-period linear timing
function of an ER system. Burns[1] shows that there exists a timing simulation of an ER system if for all
cycles ¢ in its collapsed constraint graph, either the sum of the occurrence index offsets along the cycle is
greater than zero or the total delay along the cycle is zero. Burns shows that there exists a minimum-period
linear timing function of a repetitive ER system whenever the timing simulation exists. Let s and s’ represent
the timing simulation and minimum-period linear timing function of a repetitive ER system, (E,R). It can
be shown that there exists a finite B such that Yu € E,i > 0,s'(u,i) — s(u,i) < B when the collapsed
constraint graph of the ER system is strongly connected.

Similar arguments can be used to demonstrate the existence of a fastest execution of a constraint graph

if for all cycles ¢ in the constraint graph:

> k(wv)=0= Y §(u,v)=0. (2)

(u,v)€c (u,v)€c

It can be shown that fastest linear execution exists whenever the fastest execution exists. Let e and e’ be

the fastest execution and the fastest linear execution of the constraint graph. Then there must exist a finite
B such that Yu € Vi > 0,¢'(u,) — e(u,i) < B. Therefore, the cycle period of a vertex u in the fastest linear
execution of a system is the mean time between successive occurrences of u in the system’s fastest execution.
The fastest execution and fastest linear execution of a constraint graph can be constructed in the same
manner as the timing simulation and minimum-period linear timing function of an ER system are constructed.
The arguments in Burns[1] can also be used to show that the cycle time, 7, of the fastest linear execution

of a constraint graph is given by

delay along cycle ¢
T = max . (3)
all cycles ¢ | # of tokens on cycle ¢

Only simple cycles, i.e., ones that do not have any sub-cycles, need to be considered in the maximization.

2.2 Repetitive straight-line handshaking expansion

In this section, we define a class of HSE that can be modeled with constraint graphs.

An HSE in which each select statement is of the form [G — skip] (a wait), where G is a conjunction of
literals, and each repetition statement is of the form *[true — S] (a non-terminating loop) is said to be a
straight-line-handshaking-expansion(SLHSE) [1].

Constraint graphs will be used to model systems that are described as repetitive SLHSE in standard
form.

An SLHSE that satisfies the following restrictions is said to be a repetitive SLHSE in standard form.
1. Each process can be written as P = S; x[T].
2. S and T are sequences of alternating waits and assignments that begin and end with a wait.

3. Each variable is either only assigned and used in one process or is used to implement a communication
channel. A pair of variables (a,b) implement a communication channel if a is assigned only by one
process P, b is assigned only by one process @, and P and @) are the only processes that use the

variables a and b. Furthermore, the assignments to a and b obey a four-phase handshake protocol.

4. If a variable appears in a wait statement, then the variable is either a local variable or the input variable
of a communication channel such that this process is the one that assigns the corresponding output

variable.
5. There are no vacuous assignments or vacuous waits on variables. However all variables are initialized.
6. All assignments occurs at most once in .S and exactly once in T

7. The projection of T" onto the statements in S is S.

8. For all assignments a such that a appears in S, if a;a’ appears in the projection of T onto {a,a’}, o’

appears in S.

9. For all variables w such that [f(w)] appears in S, all assignments a such that [f(w)]; a appears in the

projection of T onto the variables {w, a}, also appear in S.

Restrictions 1-5 can be satisfied by rewriting an SLHSE. Conditions 6-9 ensure that the system is repetitive

and can be modeled by a constraint graph.

Example 1

The process:

PCHB =init; loT; [ril; rol; [=li; lo]; * [[—ri A li]; roT; loT; [1i]; rol; [=li]; lo]]

it = lo], roT, [-ri A lil
can be rewritten as a repetitive SLHSE in standard form:

PCHB = init; [truel;loT; [ril;rol; [-li]; lo]; [truel;* [[—ri A li]; roT; [truel; lo]; [ril; rol; [—1lil; lo]; [truel]

2.3 Constructing constraint graphs of an HSE

We now describe how to construct the constraint graph of collections of repetitive SLHSE in standard form.

e Vertices: For each variable v, create vertices labeled v T and v |. These vertices represent v being

assigned the values true and false respectively.

e Edges: The edges of the constraint graph capture the partial ordering between assignments in a
collection of HSE. Consider an assignment, a, in T', such that at least one assignment precedes a in T'.
We can rewrite T as T";a/;w;a; T”. w and a' are respectively the constraining wait and constraining
assignment of a. Consider an assignment, a, such that no other assignment precedes a in 1. Rewrite
T as wy;a;T";a’;we. In this case the constraining assignment of a is ¢’ and w; and ws are the
constraining waits of a. For every assignment a, construct edges (u, a) for all u such that either u is a
constraining assignment of a, or v is an assignment that can make a literal in a constraining wait of a

evaluate to true.

e Tokens: An edge (u,v) has a token if and only if the i*" occurrence of v precedes the i'" occurrence

of u in any execution, for all ¢ > 1,7 € N.

e Delay Function: A function that, for each edge (u,v), evaluates to the minimum delay between an

occurrence of assignment u and the subsequent occurrence of assignment v.

2.3.1 Parallel composition

We can use constraint graphs to model collections of repetitive SLHSE without the restrictions that S and

T be sequences. For a program fragment

(an- e .)

coears(wyag;.), (w'iah)
The constraining waits and assignments of ay are w and a;. Similarly, the constraining waits of a}, are w’
and a1. For program fragments

. . . e ol .
(e aw), (G el w)ag

The constraining waits of az are w and w’. The constraining assignments are a; and aj. The constraining
waits of other assignments can be determined in the usual manner.
Example 2

Figure 1 shows the constraint graph of the HSE

PCHB = init; [truel;loT; [ril;rol; [-li]; lo]; [truel;*[[—ri A lidroT; [truel; lol; [ril; rol; [-1lil; lo|; [truel]

init =lo|,rol;{ri = false A i = true}

17 ‘.—> ‘ rof

loT rif
1i] I\I rol
lo) '/] il

rol

Figure 1: Constraint graph of PCHB

3 Messages

A message is distinct from a token in a constraint graph. A ”message” corresponds to a value on a com-
munication channel. We define the number of messages in pipelines and rings and show how the number of
messages in rings and pipelines can be changed.

If the first non-vacuous action in S that a process m performs on the variables implementing a channel is
a wait, then the channel is said to be a passive channel of the process. Otherwise the channel is said to be

an active channel of the process.

A buffer is a process with exactly two channels, one of which is passive and the other active. A pipeline
is a sequence of one or more processes such that for all but the last process in the sequence, exactly one
passive channel of a process is an active channel of the next process in the sequence. One active channel of
the first process in the sequence is said to be the active channel of the pipeline; one passive channel of the
last process in the sequence is said to be the passive channel of the pipeline. For processes that have more
than one active channel and/or more than one passive channel, any passive channel such that it is neither
the passive channel of the the pipeline nor the active channel of the next process in the sequence is connected
to a source/sink. Similarly any active channel of a process that is neither the active channel of the pipeline
nor a passive channel of the previous process in the sequence is connected to a source/sink.

A ring of buffers is a pipeline such that the active channel of the pipeline is also the passive channel of
the pipeline.

In the proceeding sections, we will refer to one of the channels as the L channel of a pipeline, and the
other channel as the R channel of the pipeline. We will adopt the convention that the L channel of a pipeline
is implemented using the variables [7 and lo; the R channel is implemented using the variables ri and ro.
The variables l7 and ri are only assigned to by the environment; the variables lo and ro are only assigned to
by the pipeline being considered. When multiple pipelines are being consider, the variables %, lo, ri, ro will
be subscripted with the name of the pipeline that the variables correspond to.

In order to determine the number of messages in a pipeline, it will be necessary to keep a count of the
number of times certain variables in the system are assigned to. To keep track of the number of times a
variable, v, has been assigned to we introduce a ghost variable cv that is initialized to zero. Each assignment
v := a in the system is replaced by the pair of assignments (v := a;cv := cv + 1). We use the notation
(S) to indicate that S is an atomic action. In the rest of this thesis, the variables cri and clo are the ghost

variables that count the number of assignments to i and lo, respectively.

3.1 Pipelines
3.1.1 Initial messages

Definition 2

cri—clo
2

The number of initial messages in 7, init_msg(r), is given by init_msg(w) = when no more assignments

to ri can occur in the system:

Inity; In; lo” :=lo; [lo # 10’ li == =li || 7 ||

Initg; cri == 0; Ig; *[ro’ := ro; [ro # ro'1; (ri := —ri;cri := cri + 1)]
where:

e [Inity, initializes the L channel of .

e Initg initializes the R channel.
e [y is the assignment (ri := —wri;cri := cri + 1) if the R channel of 7 is passive, skip otherwise.

e [; is the assignment [i := —li if the L channel of 7 is passive, skip otherwise.

3.1.2 Messages during the execution

Definition 3

The number of messages in a pipeline, 7, in the system

Inity; I; %[0’ :=lo; [lo # 10" i == —1li] || 7 ||

Initg;cri := 0; Ig; *[ro’ := ro; [ro # 10']; (ri := —ri;cri := cri + 1)]

. . lo—cri .. .
is given by m = €25 + init_msg(7).

Let m4 - mp denote the pipeline such that the R channel of pipeline 74 is the L channel of 7g.

Lemma 1

The number of messages in the pipeline m = 74 - g is the sum of the number of messages in m4 and 7pg.

LemmaProof 1

Since the R channel of 74 is the L channel of 7p if the number of messages in 74 has been decreased by n,
the number of messages in mp must have been increased by n at any point during the execution of 7. Since
each communication channel is used on every cycle, the number of messages that can be removed from a
pipeline is the sum of the number of initial messages in the pipeline and the number of messages inserted

into the pipeline. Thus, init_msg(7) = init_-msg(m4) + init-msg(mp). The number of messages in 7 is given

clor—criy clo,rA —CTix,
2 2

by init_msg(m) + . The number of messages in 74 is init_msg(ma) + . The number of
clo,,B —CTirp

messages in wp is init_msg(mp) + . Since clog, = crip,, the number of messages in 7 can be

rewritten as

clor —criy, + clog, —cri

init_msg(m4) + init_msg(rp) + 5

Since lor, is another name for lo, and ri,, is another name for ri,, the number of messages in 7 is equal

to the sum of the number of messages in 74 and wg. O

3.1.3 Changing the number of messages in a pipeline

The number of messages in a pipeline 7 is increased by n when the program in definition 3 is executed in

such a manner that % =n.

3.2 Rings

Consider a pipeline 7 such that the initial values of the variables lo and r¢ are equal, and the values of the
variables li and ro are equal. A ring can be formed by merging the variables [i and 7o into one variable, and
merging o and ri into another variable. The ring thus formed is said to be the ring formed by connecting
the R channel of 7 to its L channel. Recall that either the L channel is active and the R channel is passive
or vice versa.

Consider a ring 7 and some channel on r implemented by the variable pair a,b. The channel must be an
active channel of some process p; and the passive channel of some process ps. Let a be the variable that is
assigned to by pi1, and b be the variable assigned to by pe. In p1, replace all assignments to a by assignments
to the variable a;; replace waits on b with waits on b;. Similarly, in ps, replace all assignments to b with
assignments to by and waits on a with waits on a;. The resulting pipeline is said to be the pipeline formed
by disconnecting the ring r at the channel (a,b). The channel (a1,b1) is the active channel of the pipeline,

and (ag,b2) the passive channel of the pipeline.

3.2.1 Initial messages

The number of initial messages on a ring, 7, is the number of initial message in a pipeline formed by

disconnecting r at some channel.

Lemma 2

All pipelines, 7, formed by disconnecting a ring, r, have the same number of initial messages.

LemmaProof 2
Consider pipelines 71 and 79 obtained by disconnecting the same ring at two different channels. There exist
pipelines w4 and 7wp such that 711 =74 - g, and 1o = g - 74.

From lemma 1, init_msg(m;) must be init_msg(m4) + init.msg(np). Similarly, init_msg(mz) must be

init_msg(np) + init_msg(m4). O

Definition 4
For any ring, r, init_msg(r) = init_msg(m,.) where =, is any pipeline formed by disconnecting 7.
3.2.2 Messages during the execution

Since a process, p, uses each communication channel exactly once per cycle, the number of messages on a

ring is constant.

3.2.3 Changing the number of messages on a ring

In this section, we describe a method to change the number of messages on a ring. We also discuss how the
placement of tokens in the constraint graph of a ring is affected when the number of messages on the ring is
changed.

The number of messages on a ring can be changed by disconnecting the ring, changing the number of
messages in the pipeline formed, and then connecting the active channel of the resulting pipeline to its

passive channel to form a ring.

Lemma 3

The number of messages on a ring can only be changed by integral amounts.

LemmaProof 3
In order to be able to compose 7, with itself to form a ring, /7 and ro must be initialized to the same values.
Similarly, lo and ri must be initialized to the same values.

In order to be able to connect the passive channel of 7, to the active channel of 7, to form a ring after
inserting/removing messages, li must have the same value as ro and lo must have the same value as ri. Thus

either both in and out must be even, or both must be odd. In either case, the number of messages inserted

clo—cri

5. Since clo — cri is even, the number of messages inserted into the ring must be integral.

is given by

a

Next, we classify all the cycles in a ring. We will use this classification of cycles to study how the number
of tokens on a cycle is affected by changing the number of messages on a ring.
Given a ring, 7, let m, be a pipeline formed by disconnecting the ring r at some channel. The paths in the

constraint graph of 7, between its input variables and output variables can be grouped into three categories:

1. o paths—paths from an assignment of /i to an assignment of lo and paths from an assignment of i to

an assignment of ro.
2. p paths—paths from an assignment of /i to an assignment of ro.
3. X paths—paths from an assignment of i to an assignment of [o.

Figure 2 labels the paths in the constraint graph of 7, between assignments to input variables of 7, and
assignments to output variables of m,.. Each label consists of two parts, the first specifies which of the three
groups the path belongs to and the second is an index that along with the groups specifies the source and
sink of the path.

According to this classification, any cycle in the constraint graph of a ring, r, is either a cycle in the

10

1i7 1iT ro] lif rol
loT loT rif lof rif
li] li] ro| li] rol
lo| lo| i) lo] il
liT lif rof i1 rof

Figure 2: Classification of paths in a pipeline
constraint graph of 7., or can be expressed as a composition of paths in 7, that matches the regular expression

C = Fy|Fy|Loc|Bi| By (4)
Fy = p1pa (5)
Fy = po|p1o204|pro3oe|p2000s|paoi07|ps (6)
By = Ao (7)
B = M| AMosog| o702 Aa0s01| Aa0503| A3 ()

(9)

Loc = 0¢04|0106|0205|0307|00050306|01070204|p102A106|p103A204|p200 A 107]p201 X205

Consider a ring 7, and pipeline 7, formed by disconnecting the ring at some point. If a cycle in the
constraint graph of r consists of a path in 7, that matches one of the regular expressions (5)—(8), then the
cycle will consist of paths matching the same regular expression in any pipeline formed by disconnecting r.

Let ¢(v) denote the number of times assignment v occurs when the number of messages in =, increases
by n. After increasing the number of messages in 7, by n, the pipeline’s active channel can be connected
with its passive channel to form a ring. Thus the sequencing of the handshake implies that after the number

of messages in 7, has increased by n:

clil)—cltrol)=c(li])—c(rol)=c(lloT)—c(ri)=cllo]l)—c(ri]l)=mn (10)
e=c(liT)—c(li])e{-1,0,1} (11)
a=c(liT)—c(lo]) e {-1,0,1} (12)
b=c(liT)—c(lo]) e {-1,0,1} (13)

11

lo7 lo | rol ro |
li 7 a b n n+e
li] a—e b—e n—e n
ri T -n b—a—n —a —a+e
ril ||la—b—n —n —b —b+e

Table 1: Change in number of tokens on path when the number of messages is increased by n

Table 1 shows the change in the number of tokens on the various classes of paths the number of messages

in 7, has increased by n. The table is easily derived from (10)—(13).

Lemma 4
Changing the number of messages in a ring by n € Z changes the number of tokens on any cycle in a ring’s
constraint graph by an amount independent of the channel at which the ring was disconnected to insert the

messages.

LemmaProof 4
Changing the number of messages on a ring, by an integral amount only changes the number of messages on
cycles matching Fy, Fy, By, B;.

If a cycle matches one of Fy, Fs, Bo, By when a ring is disconnected at a particular channel, it must match
the same expression, no matter where the ring is disconnected.

Inspection of table 1 and (4) reveals that inserting a message into a ring, changes the number of tokens

on all cycles matching one of the expressions Fy, Fs, B, By, by the same amount. O

4 Static slack

In this section the static slack of a buffer is defined. For processes with multiple passive channels and/or
active channels, the static slack of the process between a specified pair of passive and active channels is

defined as for a buffer, with all other channels being connected to sources and sinks.

4.1 Pipelines
Static slack measures the maximum number of messages a buffer, or pipeline of buffers can contain.

Definition 5 Static Slack: Pipeline
The static slack of a pipeline 7, is s = (clo — cri) /2 + init_msg(n) when no more assignments can be

performed on I in the following program:

Indtp; In; *[lo" = lo; Llo # 10’1 li := Uil || 7 || Initg; Ir; mo’ := ro; Lro # 10'1; (ri := —ri;cri := 1)

12

4.2 Rings

Definition 6 Static Slack: Ring

The static slack of a ring of buffers is the maximum number of messages that can be on the ring.

Consider a pipeline, 7, of process such that its passive channel can be connect to its active channel to
form a ring. If a ring of n instances of 7 has static slack s,,, then 7 must have static slack 2=. Since the static
slack need not be integral, the static slack must be measured by considering a sequence of rings composed

of 7.

Definition 7 Static Slack : Pipeline when part of a ring

The static slack, s, of a pipeline, 7w, when part of a ring can be measured as

. Sn
s= lim —,
n—oo N

where s,, is the static slack of a ring of n instances of .

The definition of static slack of a ring is a special case of the definition of the dynamic slack of a ring.
The proof that this limit exists will follow from the proof that the corresponding limit in the definition of

the dynamic slack exists.

5 Dynamic slack and Dynamic Threshold

The cycle time of a ring of buffers varies with the number of messages on the ring. Inserting a message into
the ring adds tokens to some cycles and removes tokens from others. This imposes a two sided constraint
on the number of messages needed for a ring to maintain a specified cycle time, 7. The upper bound will be
referred to as the dynamic slack of the ring at 7, and the lower bound as the dynamic threshold at 7.

In the interest of clarity, the dynamic slack and dynamic threshold are defined for a pipeline of buffers.
For pipelines of processes with multiple passive channels and/or multiple active channels, dynamic slack and
dynamic threshold between the L and R channels of the pipeline are defined as for a pipeline of buffers, with

all other channels being connected to infinitely fast sources or sinks.

5.1 Dynamic Slack

We will define the dynamic slack of a ring, the dynamic slack of a pipeline, when part of a ring and the
dynamic slack of a pipeline when part of a larger pipeline. We will show that the dynamic slack of a pipeline

when part of a ring equals the dynamic slack of a pipeline when part of a larger pipeline.

13

5.1.1 Ring

Definition 8 Dynamic Slack: Ring
The dynamic slack ds(r, 7), of a ring of buffers, r, at cycle time, 7, is defined as the maximum number of

messages that r can contain such that its cycle time is no greater than 7.

The dynamic slack of a pipeline, 7, when part of a ring is defined only for pipelines that are initialized in
such a manner that their passive and active channels can be connected to form a ring. If a ring, r,,, composed
of n instances of 7 has dynamic slack ds(r,,T), then 7 is said to have dynamic slack at least W. The
ratio of the dynamic slack of a ring to the number of processes on the ring need not be constant. Therefore,
the dynamic slack is measured by considering a sequence of rings composes of n instances of 7.

A ring composed of n instances of 7 may not be able to operate at the cycle time 7, for all n € N. We
consider rings composed of L(i) instances of 7 where L(i) is the i*" smallest n € N such that a ring of n

instances of 7 can operate at cycle time 7.

Definition 9 Dynamic Slack: Pipeline when part of a ring

The dynamic slack, ds,ing(m, T), of a pipeline, m, when part of a ring is defined as

d)9

where 7,(;) is a ring of L(i) instances of 7.

Note that dsying(m, 00) is the static slack of the pipeline when part of a ring.
We proceed to show that this limit exists. We first prove a lemma that relates the dynamic slack of a
ring composed of n instances of a pipeline and the dynamic slack of rings composed i - n,7 € N instances of

the pipeline. This lemma is used to prove that the limit exists.
Lemma 5

Let r,, be a ring of n instances of a pipeline, 7 that has cycle time at most 7. There exists x,, € R such that

ds(rp,T) = init_msg(r,) + | kn| and

ds(rim,T) =i - init_msg(ry) + |i - #in

for all i € N where r;.,, is a ring of ¢ - n instances of .

LemmaProof 5
Consider any simple cycle, j, in the constraint graph of r,. Let A; be the delay along this cycle, k; the
number of tokens initially present on the cycle, and o; the change in number of tokens on this cycle when a

message is added to the ring.

14

Since the ring can operate at the target cycle time, all cycles in the constraint graph of r, must satisfy
(3) when there are initially ds(r,,7) messages on the ring. Thus, all cycles, j, satisfy (14)—(16) where

m = ds(ry, T) — init_msg(ry,).

MT=8 5, if o) > 0. (14)
ajT

kj’?' - Aj ZO if Qj = 0. (15)

ki — A,

MTT25 <y if o) < 0. (16)
ajT

Let C(r,) be the set of cycles in the constraint graph of r,,. The dynamic slack of 7, is given by

ds(ry, 7) = init_msg(ry,) + LMJ

Qe T
where c is a cycle in the constraint graph of r,, such that

AC — kCT . Aj — ij
—_— = mmn —.
Qe T jeC(rn) Q5T

We now express the dynamic slack of the ring r;.,, in a similar manner. Observe that r;.,, has ¢ initial

messages for each initial message in ring r,. Thus, ds(r;.,,) is given by

Ac/ — kc/
ds(rim, T) = init-msg(r;.,) + {;J (18)
Qe =T
AC/ — kc/
= ¢ - init-msg(r,) + {;J , (19)
Qe = T
where ¢’ is a cycle such that
Ac/ - kc/T . Aj - ij
———— = min —/———.
Qer T JEC(rim) QG - T

Any cycle in the constraint graph of r;.,, can be written as a composition of cycles in r,,. For each cycle
j in 7y, let v; be a non-negative integer that denotes the number of times that cycle j appears when the ¢’

is expressed as a composition of cycles in r,.

AC/ = Z’Uj . Aj (20)
J

kcl = Z’Uj . kj (21)

J
i-ac/:ZUj-aj (22)
J
The cycle ¢/ must have a < 0. Furthermore, from the arguments in section 2.1.1, only simple cycles need

15

to be considered. Table 1 and (4) show that simple cycles have |a| < 2. If a = —1, then the cycle ¢ that

traverses each edge in cycle ¢’ twice has o+ = —2 and

AC/ — kc/T - ACT — kCTT

Qer =T Ot =T

Thus we can restrict our attention to the case where o = —2.

From (20)—(22), and the definition of ¢/, we have that

i3 v (A — k)
J

Ay — ke .
Qe = T D vjray=—2i Tz Vi Qg
- J
i v (ki = A)
. J

= min : 24
> vjra=—2i —TZ“J' " ()
; J

Note that ¢, 7 and v; are non-negative. From (15) we note that when (24) is minimized v; =0 Vj : a;; = 0.
Thus,
> vy (L)

AC/ — kc/ . et
77’ — min Jio;#0 . (25)
Qer = T E’L}j'@tj:*?i 2T
]
(25) is minimized when v; = 0 Vj # ¢, v, = IZ_iI
Therefore,
2i (A, — ke
ds(rin,T) =i - init_msg(r,,) + {%J (26)
(A, k,
= ¢ - init-msg(ry,) + {uJ ' (@7)
Qe T

This proves the lemma for x, = 2e=kT O

Qe T

Theorem 1
Consider a pipeline 7 for which a ring of h instances of m operate at cycle time at most 7. There exists

kn € R such that if ds(ry,, 7) = init-msg(rn) + [Kn], dSring(m, 7) = init_msg () + 5=

Proof 1

We use the notation r, to denote a ring consisting of n instances of a pipeline .
Recall that

ef

d BE

16

In order to prove the theorem, we need to show that for any € > 0, there exists I such that for all 4 > I,

dS(TL(i), T)

In order to prove this, we bound the difference between ds(r,,) and (init_msg(m) +

L(i)

Forn € [j-h,(j+1)-h], from lemma 5

— init_msg(m) + 5

Kh

<e

ds(rjmn,7) < j-h-(ds(rp,7) +1)

Using lemma 5, substitute for the left hand side of the inequality

j-n-initmsg(ry) + |j-n- k) <j-h-(ds(rp,7)+1)

Rewriting

n (7 - init_msg(ry) + [J - knl)) < j-h-(ds(rp,7) +1)

J - initmsg(ry) + |J - £n)] < ds(rp,7) +1

From lemma 5,

(-] + 1) h- dS(T‘n, T) < d8<r(j+l)-n-ha T)

Applying the lemma to the right hand side and rewriting,

(G+1)-h-ds(rp,7) < (+1) n-initomsg(ry) + (G + 1) -n- Ky

ds(ra,) < (j + 1) - initmsg(ry) + (j +1) - o

<n((j+1)-initmsg(ry) + (J + 1) xn)

Recall that init_msg(ry) = h - init_msg(7). Let X = init_msg(ry). Thus,

J(X+rn) =2 X4k G+1) - (X+rr) Xtk

ds(rp,7) X +&n [

n h
<

G+1)-h

—init_msg(ry) — kp — 2 init_msg(ry) + kp

h

)

j-h

G+1)-h

Thus, for L(i) € [j - h,(j + 1) - h],

)

j-h

|

L)

h

17

J-h

ds(rpey,7) init_msg(ry) + Kp < 2 + init_msg(rp) + Kkn

h

|

(28)

(29)

(32)

Recall that L(7) is increasing in ¢. Thus, for all ¢ > I such that L(I) > % + h, (39) holds.

ds(rL(l-) ,T) init_msg(ry) + kn
— < 39
L(4) h =€ (39)

This proves the theorem. O

5.1.2 Pipelines

In this section we study the dynamic slack of a pipeline, 7. The dynamic slack is the maximum number of

messages an instance of 7 can contain whilst maintaining a cycle time of 7.

Definition 10 Dynamic Slack: Pipeline
Consider a sequence of pipelines, {7, }, such that 7, is the pipeline consisting of n instances of .
The dynamic slack of 7 is
Lz

def ;.
dspip(m,T) = nlLrI;O 0

where m,, is the maximum number of messages in 7, during the steady state of any fastest linear execution

of the system
L, || R

where L and R are sources/sinks that have delay 0 between their input and output variables. It is required

that there be a delay of 7 between two successive actions on communication variables assigned to by R.

In this section, when we refer to an execution of a pipeline, if the environment of the pipeline is unspecified,
the environment of the pipeline is assumed to be that described in definition 10.

We will prove a lemma that relates the dynamic slack of a ring of buffers to the maximum number of
messages in the steady state of a fastest linear execution of a pipeline obtained by disconnecting the ring.
This lemma will be used to prove that the limit in definition 10 exists, and is equal to the dynamic slack of

the pipeline when part of a ring.

Lemma 6
Consider a ring r,, that consists of n instances of a pipeline, 7. If r,, can operate at cycle time 7 or lower,

then any fastest linear execution of g, contains no more than ds(ra,,7) + 1 messages in the steady state.

LemmaProof 6

Using the notation from section 3.2.3, the cycle in the constraint graph of the ring ra, that limits the
maximum number of messages on the ring is a cycle that is either a Ag or A3 path in 7,. Label this path
p. Since ro, has cycle time at most 7, the ratio of the delay along the cycle to the number of tokens on the

cycle is less then 7.

18

Consider a pipeline s, and its fastest linear execution. In the stead state, the number of tokens on p

varies by at most one. The path p needs to have at least @ tokens at during the steady state of a fastest

linear execution of 7a,, where d(p) is the delay along p. Thus, during a fastest linear execution g, must

have at least @ — 1 tokens on p in the steady state. This corresponds to there being at most ds(ra,,7) +1

messages in moy,. O

Theorem 2
If there exists h such that a ring composed of h instances of 7 has an execution with cycle time at most 7,

then dspip (7, 7) = dsying (T, 7).

Proof 2
The proof of this theorem is structured in the same fashion as that of theorem 1. We will bound the difference
between my, and ds,ing(mw, T) for all n > h.

Given a linear execution of ring rq;.;, with ds(rg;.n,7) messages such that the cycle period of any vertex
is exactly T, an execution of pipeline m,, : n > 2j - h can be constructed by setting the state of k’th process
on the pipeline to be the state of the process (k mod 25 - h)!" on the ring. During this execution there are
at least ds(raj.p, T) messages in m,.

From theorem 1, 2§ - h - d$ying(m,7) — 1 < ds(rojn,7) < 2j - h - dsping(m, 7) Thus
My, > 25 - h - dsping(m,7) — 1 (40)
For all pipelines m,, such that n < 2(j + 1) - h. m,, must satisfy (41). Applying lemma 6, we obtain (42).

my, < M2(j+1)-h (41)

<2(G+1)-h-dsping(m,T)+1 (42)

Thus, for any pipeline 7, such that n € [25-h,2(j 4+ 1) h],

My 2j - h-dsping(m,7) = 1 20+ 1) h-dsping(m,7) + 1

T — dSm’ng(ﬂ', T) S |: 2(] _|_q1)h — ds”'ng(ﬂ', T)7 T8 h 9 — dSring(ﬂ—a T)

(43)
—2h - dSping(m,7) =1 2h - dSping(m,7) +1
‘ : d 44
[+0n 2k o .
n d rin 3 + L

" — g7 < e B)

19

Note that for any € > 0, there exists N = w such that for all n > 2(N + 1)h,

" Asping(m,7)| < e. (46)
n
Thus,
dspip(m,T) L Jim % = dSping(m,T). (47)

5.2 Dynamic Threshold

We will define the dynamic threshold of a ring, the dynamic threshold of a pipeline, when part of a ring and
the dynamic threshold of a pipeline when part of a larger pipeline. We will show that the dynamic threshold
of a pipeline when part of a ring equals the dynamic threshold of a pipeline when part of a larger pipeline.
The definitions presented in this section are very similar to the definitions of dynamic slack presented in
section 5.1. Like dynamic slack, dynamic threshold is defined as a limit. The proofs that these limits exist
closely mirrors the corresponding proofs for dynamic slack. In this section we will simply state the theorems.

The proofs of these theorems are provided in appendix A.

5.2.1 Ring

Definition 11 Dynamic Threshold: Ring
The dynamic threshold dt(r, 7), of a ring of buffers, r, at cycle time,r, is defined as the minimum number of

messages that » must contain such that its cycle time is no greater than 7.

Next we define the dynamic threshold of a pipeline, m when part of a ring. The dynamic threshold of a
pipeline, when part of a ring is only defined when the input and output channels of the pipeline are initialized
in such a manner that the input channel can be be connected to the output channel to form a ring.

If a ring, r,,, composed of n instances of 7 has dynamic threshold dé(r,,7), then 7 must have dynamic
threshold W. The dynamic threshold need not be rational, therefore, the dynamic threshold is measured
by considering a sequence of rings composed of n instances of .

A ring composed of n instances of 7 may not be able to operate at the target cycle time for all n € N.
Thus, we consider rings composed of L(i) instances of = where L(i) is the i'" smallest n € N such that a

ring of n instances of 7 can operate at the target cycle time.

20

Definition 12 Dynamic Threshold: Pipeline when part of a ring
The dynamic threshold, dt,ing (7, 7), of a pipeline, m, when part of a ring is defined as

e dt 1)
Atring(m,T) def lim (T%)T)
1—00 (3

where 71,(;) is a ring of L(i) instances of 7.

We now proceed to show that this limit exists. This proof is very similar to the corresponding proof for
dynamic slack. We first state a lemma that relates the dynamic threshold of a ring composed of n instances
of m to that of a ring composed of i -n,i € N instances of . This lemma can be used to prove that the limit

exists.

Lemma 7

Let r, be a ring of n instances of a pipeline, 7 that has cycle time at most 7. There exists x,, € R such that

dt(rn, T) = init-msg(ry,) + [£n| and

At(Tiom,T) =1 - init-msg(r,) + [- Ky |

for all 7 € N where r;.,, is a ring of ¢ - n instances of .

Theorem 3
Consider a pipeline 7 for which there exists h such that a ring of h instances of 7 has cycle time at most 7.

There exists kj, € R such that if W = init_-msg(rp) + [kn], dtring(m, 7) = init_msg(m) 4 5.

5.2.2 Pipelines

In this section we study the dynamic threshold of a pipeline, 7. The dynamic threshold is the minimum

number of messages an instance of 7, can contain, whilst maintaining a cycle time of 7.

Definition 13 Dynamic Threshold: Pipeline
Consider a sequence of pipelines, {7}, such that 7, is the pipeline consisting of n instances of 7. Let each
instance of 7 contain the minimum number of messages such that 7 can be composed with itself.
The dynamic threshold of 7 is
def My,

dtpip(ﬂ',T) = nlLH;O T

where m,, is the minimum number of messages in 7, in the steady state of any fastest linear execution of

the system:

Ll | R

21

where L is source that has delay 0 between its input and output variables. However, there is a delay of 7

between two successive actions on communication variables assigned by L. R is an infinitely fast sink.

In this section, when we refer to the execution of a pipeline, if the environment of the pipeline is unspec-
ified, the environment of the pipeline is assumed to be that described in definition 13.

We will state a lemma that relates the dynamic threshold of a ring of buffers to the minimum number of
messages in the steady state of a pipeline obtained by disconnecting the ring. This lemma can be used to
prove that the limit in definition 13 exists, and is equal to the dynamic threshold of the pipeline when part
of a ring. Since the proofs are very similar to the corresponding proofs for the dynamic slack, we list the

proofs in appendix A

Lemma 8
Consider a ring 7, that consists of n instances of a pipeline, m. Let 7, be the pipeline that consists of n
instances of w. If r,, can operate at cycle time 7 or lower, then in any fastest linear execution of ma,, w2y,

contains no less than dé(ra,,7) — 1 messages.

Theorem 4
If there exists h such that a ring composed of h instances of 7 has an execution with cycle time at most 7,

then dtpip(m,T) = dtping(m, 7).

6 Dynamic Slack and Dynamic Threshold of Half-Buffers

Lines [4] presents all the possible reshufflings of an *[L; R] buffer that do not require data to be stored on
state variables within the buffer. Of these reshufflings, PCHB, WCHB, B1,B4, and B5 have static slack
%. Sufficient conditions are presented under which the dynamic slack (and dynamic threshold) of a pipeline

composed of processes with any of the first four reshufflings is the sum of that of the processes in the pipeline.

6.1 Buffers

First, systems composed of buffers are considered. We will define bounds on the delays of the various paths
between the input and output variables of a buffer. We will further need to make some assumptions about
the delays of adjacent buffers in a pipeline. This, along with assumptions on the intersections of paths, will
be used to identify the cycles that limit the minimum and maximum number of messages that a pipeline can
contain at a specified cycle time 7.

All the paths between input and output variables of a process are classified as in section 3.2.3. We will

use the notation Ag(pg) to denote a Ay path of the process py.

22

|| Path | Delay Tokens || Path | Delay Tokens ||

/\0 sz-i-% 1 (o4 = Z; 1

A1 =0 0 o1 §uz—|—% 1

AQ :bl 1 ()] S’Ul—i-% 1

A3 <bit+3 1 g3 =7 0

Po = fi 0 o4 <wi+ 3 0

p1 <fi+3 1 o5 =Y 0

P2 <fit3 0 o =s; 0

P3 < fitkit ki a7 <z+t3 1

Table 2: Bounds on delays in process p;

Je{i} fi+tb; <3
]E{Z,Z+1} wl—i-IJS% wi—i—uj_% Zz’""UjS% Zl'—FTjS%
]E{Z,Z+1} wz—l-ng% 51+7’J§% yZ—FCCJS% zz—i-ujgg

Table 3: Constraints on delays of connected processes

In order to simplify the set of possible cycles in a constraint graph, we need to make assumption 1. Note

that the constraint graph of a half buffer with reshuffling B5 does not satisfy the assumption. However, half

buffers implementing one of the other four reshufflings do satisfy the assumption.

Assumption 1

For any process, p

1. all p; and p2 paths intersect all \; paths

2. all pp paths intersect all \; paths such that ¢ # 1

3. all p3 paths intersect all \; paths such that ¢ # 2

4. all pg paths intersect all o5 paths

5. all ps paths intersect all o7 paths

Table 2 defines bounds on the delays between input and output variables of a process p;, and lists the

number of tokens on such paths when there are no messages in the process. The bounds on the delays along

the paths depend on the specified time, 7.

Assumption 2

The delay on the paths between input and output variables of a process must satisfy the constraints in

table 2. Furthermore, the constraints in table 3 must be satisfied for all processes.

We will consider systems composed of processes that have one of the four remaining reshufflings

23

PCHB = [truel;loT; [ril;rol; [-li];lo]; [truel;
*[[=ri A lilroT; [truel;loT; [ri]; rol; [—li]; lo]; [truel]
WCHB = [truel;lol; [ri A —lil;rol; [truel;lo|; [truel;
*[[—ri A lil;r0T; [truel; loT; [ri A —lil; rol; [truel; lo]; [truel]
B1 = [truel;loT; [ri A —lil; lo]; [truel; rol; [truel;
*[[—ri A lil;roT; [truel; loT; [ri A =lil; lo]; rol; [truel]
B4 = [truel;lol; ([ril; rol), ([ri A =li; lo)); [truel;
*[[—ri A li]; roT; [truel; loT; ([ril; rol), ([ri A =lil; lo]); [truell

All process are initialized with the program:
mit =lol,roT, [-ri A 1i]

Figure 3 shows the constraint graphs for such buffers.

PCHB WCHB
1it rot 1it rot
loT rit loT rit
li] ro| li] rol
lo] ri] lo| ri]
1i7 rol 1i7 rol
1i7 rol 1i7 rol
lo? rif lo? rif
li] rol li] rol
lo| ri] lo| ri]
1i7 rol 1i7 rol

Figure 3: Constraint graphs of half buffers

In addition to assumptions 1 and 2, it is assumed that the ratio of the delay to the number of tokens
on cycles that traverse exactly one process is at most 7. If this were not the case, the dynamic slack and
dynamic threshold for any system composed of such processes would be undefined. Adding buffers to the
system does not change the number of tokens on such cycles.

The L channel of a buffer is referred to as its input channel, and the R channel its output channel. We

will refer to cycles in a pipeline of processes matching regular expression (9) as local cycles.

24

Lemma 9
If assumptions 1 and 2 hold, all simple local cycles traverse no more than 3 processes. Furthermore, no

simple local cycle constrains the cycle time to be greater than 7.

LemmaProof 9
Consider a local cycle traversing greater than 3 processes. There must be at least one process, pg, such that
the cycle traverses no A\;(po) : ¢ € {0,1,2,3} and no p;(po) : 7 € {0,1,2,3} paths, but traverse at least one
oi(po) : j € {4,5,6,7} path.

Let p; and py be the processes such that the input channel of py is the output channel of p; and the
input channel of p; is the output channel of pg.

If the local cycle traverse greater than 3 processes, it must traverse pg, p1 and p2. Furthermore, the cycle
must contain at least one A\; and p; edge from both p; and p,.

The only pairs of paths, p;(p), A;(p) : ¢,7 € {0, 1,2, 3}, such that the paths do not intersect are po(p), A1 (p)
and p3(p), A2(p). Thus the local cycle must have one of the following sets of paths

1. po(p1), po(p2), A1 (p2), o7(p1), o2(p2), A1 (p1)
2. po(p1), p3(p2), Aa(p2), o7(p1), 01(P2), A1(P1)
3. p3(p1), 02(p2), 04(p1), po(p2), A1(p2), A2(p1)

4. p3(p1),01(p2),04(p1), p3(p2), A2(P2), A2(p1)

All four sets contain paths that intersect, hence the cycle cannot be simple.

If a simple local cycle traverses three processes pg, p1 and ps,the cycle can contain only on X;(p1) and
one p;(p1) path, where i,j € {0,1,2,3}.

Table 4 lists all simple cycles traversing 2 processes. Table 5 lists all simple cycles traversing 3 processes.
Table 3 shows that these processes cannot constrain the cycle time to be greater than 7. Changing the
number of messages on a ring does not change the number of tokens on local cycles, thus these cycles can

never constrain a ring’s cycle time to be greater than 7. O

A cycle that matches one of the regular expressions (5)—(8) is referred as a global cycle. A simple global
cycle can traverse a ring at most twice. Thus, we need only consider simple global cycles in even length rings
that traverse a ring once. Global cycles matching one of the regular expressions (5) or (6) are referred to as
forward cycles. Global cycles matching one of the regular expressions (7) or (8) are referred to as backward
cycles. A critical cycle of a system is a cycle such that ratio of the delay along the cycle to the number of

tokens on the cycle equals the system’s cycle time.

25

Edges Delay Tokens
ao(p1)as(po) <z t+wo+ 5 1
a1(p1)as(po) <ur+so+ 3 1
o2(p1)os(po) <vi+y+3 1
o3(p1)oz(po) <ri+z+3 1
o0(p1)os(po)os(pr)os(po) | = 21+ Yo+ 71+ s0 1
a1(p1)oa(po)oa(p1)or(po) | < ui + w1 +wo + 20 + 27 3

Table 4: Local cycles traversing at most 2 processes

Edges Delay Tokens
po(p1)oo(p2)A1(p1)os(po) < fitz2+bi+s0 1
po(p1)o1(p2)or(p1)oa(p2) M (p1)os(po) | < fi+ ug+ 21 +va + b1+ 50 + 3F 3
p3(p1)o3(p2)A2(p1)os(po) < fit+r2+bi+yo+ ki L+ k
p3(p1)o2(p2)oa(p1)or(p2)Xa(p1)os(pe) | < fitve+wi+ug+bi+yo+ki7+ 3 | 3+k

Table 5: Local cycles traversing 3 processes

Lemma 10
If a forward cycle constrains the cycle time of a ring of buffers satisfying assumptions 1 and 2 to be greater

than 7, the forward cycle pj is a critical cycle.

LemmaProof 10
A forward cycle contains a p; path of each process on the ring. If the cycle contains more than one p; path,
it must also contain a A; edge. However, any cycle containing two p;(p) paths and a A;(p) path will contain
at least 1 pair of intersecting paths thus the cycle cannot be simple. Thus we need to only consider forward
cycles with no \; paths.

Consider all possible paths from the ¢ T input of process p; to the ro T output of process p;. Since a
simple forward cycle cannot traverse any A;(p) edges, any such paths falls in one of three categories, where

pi—1 is the process connected to the input channel of p;.

L. po(pi)
2. 00(pi)os(pi—1)po(pi)
3. o1(pi)or(pi—1)po(ps)

Using the bounds from table 2, we see that if the cycle that constrains the cycle time of a ring of buffers
to be 7 has paths of the type 2 and 3, a cycle containing no paths of these two types also determines the
cycle time of the systems.

Table 6 is used to perform similar analysis to show that forward cycles containing any o; : i € {0,1,...,7}

edges impose no tighter a constraint on the cycle time than a path that consists of only p; edges.

26

li T —ro T path Delay tokens || I T —ro | path Delay tokens
po(ps) =fi 0 p1(pi) <fi+3 1
oo(pi)os(pi—1)p2(pi) | < fi+ T 1 oo(pi)os(pi—1)p3(pi) | < fi +kiT+ 5 1+ kK
o1(pi)or(pi—1)p2(pi) | < fi+27 2 or(p)or(pi—1)pzpi) | < fi+ (ki +)7+ Z | 2+ K
li | —ro 1 path delay tokens || l4 | —ro | path delay tokens
p2(pi) <fit3 0 p3(pi) < fit+ kit ki
o2(pi)oa(pi-1)po(pi) | < fi+ 5 1 o2(pi)oa(pi-1)p1(pi) | < fi+27 2
o3(pi)os(pi-1)po(pi) | < fi+ 3 0 o3(pi)os(pi—1)p1(pi) | < fi+ 7 1

Table 6: Possible forward paths across 1 process, p;

po(pi - pit1) paths | delay tokens || p1(p; - pi+1) paths | delay tokens

po(pi)po(pit1) = fi+ fina 0 po(pi)p1(pit1) < fit firr + ?k 1

P1(pi)p2(pit1) <fitfipn+T 1 P1(pi)ps(Pi+1) < fi+ figr + ZheatlT 1+ kipa

p2(pi - pi+1) paths | delay tokens || p3(p; - pit+1) paths | delay tokens

p2(pi)po(Pi+1) < fit fiqr + 5% X 0 p2(pi)p1(pit1) <fitfipi+T

P3(Pi)p2(Pit1 <fitfipn 5 1 P3(Pi)P3(Pi+1 < Jit+fim i T Rir) T | ki + R
(P)p2(pi) | < it fioa + BB |k (Pi)pa(pit) | < fit fivrt (bt hin)7 | hi &

Table 7: Possible critical p; paths in pipeline of 2 processes, p; and p;41.

Base case: Consider a pair of connected buffers p; and p; 1, where the output channel of p; is connected
to the input channel of p; 1. Denote this pipeline of processes p; - pi+1. Let p;(p; - pi+1) denote the class p;
paths in this pipeline.

Table 7 lists the paths p; paths in a pipeline p; - p;+1. The table shows the number of tokens on the paths
when there are no messages in the ring. Note that if the number of tokens on a particular p;(p; - pi+1) path
changes, it must change on all such paths since the paths share the same start and end points.

Inspection of table 7, shows that the claimed path is indeed critical in rings of 2 and 4 buffers.

Inductive Step: Assume that for all integers n > 1, the claim holds for rings of length at most 2n.
Consider a ring of length 2n 4 2. This ring can be expressed as a composition of two pipelines 74 and 7p,
of even length such that the critical forward cycle of the ring can be expressed as a composition of a pg(7a)
and a po(mp) path or that of a p3(ma) and p3(7wp) path.

Note that the maximum delay on a p3(7) pathis Y~ f;+7 " k;. This path has > k; tokens on it initially.
There is a composition of po(ma) and a po(wg) path that has delay exactly Y f;, with 0 tokens initially.
Both cycle have the number of tokens changed by the same amount when a message is added to the ring.
Thus the p3(m4 - 7p) path is no more critical than the po(m4 - 75) cycle. By assumption, the critical po(74)

and po(mp) paths must be p§. O

Lemma 11

If a backward cycle constrains the cycle time of a ring to be greater than 7, then (A1 A2)* is a critical backward

cycle.

27

ri T —lo T paths delay tokens || i T —lo | paths delay tokens

Ao(pi) <b+3 1 M (pi) = b, 0

oa(pi)oirz(pq) <bi+ % 2 o4(pi)o1As(pi) <bi+ 27 2

05(pi)osA2(pi) <bi+3 1 05 (pi)osAs(pi) <b+T1 1

ri | —lo T paths delay tokens || ri | —lo | paths delay tokens

A2 (pi) =b+ 3 1 A3(pi) <bi+3 1

o6(pi)oo(pi+1)Xo(pi) | <bi+T 2 o6(pi)oo(Pis) M (i) | < b; + é 1

o7(pi)oa(pit1)do(pi) | < by + 27 3 or(pi)oa(Piy1) M (pi) | <bi + 5 2

Table 8: Possible backward paths across process p;

Ao(pi - pi+1) paths | delay tokens || A1(p; - pi+1) paths | delay tokens
Ao (Pit1) Mo (pi) <bi+bip1+7 2 Ao (Pit1) A1 (pi) <bi+biy1+3 1
A (Pig1) A2 (pi) =b; +bi11 1 A1 (piv1)As(pi) <bi+b1+3 1
A2(pi - pi+1) paths | delay tokens || As(p; - pi+1) paths | delay tokens
X2 (Pit1) Mo (pi) <bi+bi1+3 2 X2 (Pit1) A1 (pi) =b; +bit1 1
A3(Pit1) A2 (pi) <bitbi1+3 2 A3(pit1)A3(pi) <bi+bi1+T 2

Table 9: Possible critical A, paths in pipeline of 2 processes p; and p;11

LemmaProof 11

Any simple backward cycle must contain at least one \; path of each process on the ring. If a backward
cycle contains a p; path of a process, it must contain 2 \; paths of that process. However, for any process a
set of 2 \;(p) paths and 1 p;(p) path, will contain at least one pair of intersecting paths, thus such a cycle
would not be simple.

Table 8 shows that for any backward path containing o;(p) edges imposes no tighter a constraint on the
cycle time than a path consisting solely of \; edges. Table 8 is derived from table 2.

Base case: Table 9 lists all the paths from input variables of the output channel to a output variables
of input channels in a pipeline of two buffers. The table shows the number of tokens on these paths when
no messages are present on the buffers. Note that if the number of tokens on a particular \; path changes,
then the number of tokens on all A; paths must change.

Inspection of the table reveals that the claim does indeed hold for rings of length 2 and 4.

Inductive step: Assume that for all integers n > 1, the claim holds for rings of length at most 2n.
Consider the critical backward cycle of ring of length 2n + 2. The ring of length 2n 4 2 can be expressed as
a composition of 2 pipelines, m4 and wp of even length with the property that the critical cycle consists of
either a Ay path in both pipelines or a A3 path in both pipelines.

Since the claim is assumed to hold for the shorter pipelines, (A1 A2)* and (AzA1)* must be critical Ay and

A3 paths respectively. Thus the claimed path must be a critical path of the ring of length 2n 4+ 2. O

28

Theorem 5
The dynamic slack (or dynamic threshold) of a pipeline of processes satisfying assumptions 1 and 2 is the

sum of the dynamic slack (or dynamic threshold) of the processes on the pipeline.

Proof 5

The theorem follows directly from lemmas 10 and 11. For any given type of buffer, clearly from lemmas 10

and 11, the dynamic slack and dynamic threshold are T;fb and % respectively.

For a heterogenous ring, r, we have the constraints that

Z T — 2bl
dS(T7 T) = ZT (48)
-3 T ;fbi (49)

S

dt(r,7) =

5t

Furthermore, lemma 9 guarantees that no local cycles force the cycle time of the system to be greater

than 7. O

6.2 Processes with more than two channels

In this section we will consider the dynamic slack and dynamic threshold of pipelines containing processes
with more than two channels. We will state a set of conditions sufficient to show that if the dynamic ranges
of all the pipelines in a system intersect, the system can operate at the target cycle time. In the proceeding
section, we will adopt the convention that a channel /; is implemented by variables li; and lo;, where [i; is

an input variable to the process and lo; an output variable.

Assumption 3
It is possible to partition the set of channels in any process P into two sets L and R such that the projection
of P onto any pair of channels [€ L and r € R results in a process implementing one of the reshufflings

section 6.1. For a system .S, any pipeline in the system satisfies conditions of section 6.1.

Let the channels in L be referred to as the input channels of P, and those in R the output channels of P.
We will use the notation ; P; to refer to the buffer obtained by projecting P onto the variables implementing

channels /; and r;.

29

(©)

(d)

Path Delay # Tokens Path Delay # Tokens
rij T —rop T | < 5(7“1'] 1,70, 1) 0 lij T —lok 1| <d(lig 1,00k 1) 1
ri; T —rog | | <0(rij T,70; 1)+ 7 1 lij T —lok | d(lix 1, lox 1) 1
rij | —rop T | <o(rij [,ro; 1)+ 7 1 lij | —log 1 O(lig 1, lok 1) 1
rij | —rog | | <0(rij [,ro;]) 1 lij | —log | | <0(lix |,lox |) 0
(a) (b)

Path Delay Path Delay

Tij T—rop T | < fipk + bsz Z’L] T—=lox T | < f].pl. + kaL

rij T —rog | | < fip, +bp+ 35 lijT=lox | | < fip+bp+3

rij | —rop T | < fip, + bsz + % lij | —log T | < iji +b,.p + %

i L —rop | | <fp + ble lij L =lox | | < iji +0b.p

Table 10: Constraints on delays of paths in processes with multiple inputs and outputs

Assumption 4

For a process P with multiple input or output channels:

o for any pair of output channels r; and r of P the constraints in table 10(a) are satisfied.

for any pair of input channels [; and I} of P the constraints in table 10(b) are satisfied.

for any pair of input channels I;,[; and any pair of output channels r;, r, the constraints in table 10(c)

are satisfied.

for any pair of input channels /;, [, and any pair of output channels r;, r;, the constraints in table 10(d)

are satisfied.

for any pair of input channels /;,[; and any pair of output channels r;, 7%, f,p, +b,p, < 7.

When these constraints hold, it can be shown, by considering all possibilities, that if all pipelines can
simultaneously contain a number of messages greater than their dynamic threshold and less than their
dynamic slack, then no local cycles constrain the cycle time to be greater than 7. Similarly, an exhaustive
case analysis can be used to show that if the global cycles stated in lemmas 10 and 11 do not constrain the

cycle time to be greater than 7, no global cycle constrains the cycle time to be greater than 7.

7 Algorithm for Slack Matching

Slack matching is an optimization performed adding buffers to a system in order to reduce the system’s cycle

time. In this section we formulate the slack matching problem as a mixed integer linear program (MILP).

30

We will consider systems that consist of processes that can be represented as constraint graphs if all the
communication channels are modeled as channels carrying no data. It is assumed that the system being slack
matched is closed. If the system is not closed, sources are connected to the system’s inputs, and sinks to the
outputs. It is assumed that the environment’s delays are such that the environment does not constrain the
cycle time of the system to be greater than the target cycle time, 7. We will first state constraints that can
be used to determine whether a system is slack matched. From these constraints, we can derive a system of
linear equations that must be satisfied in order to slack match a system.

A system is represented by a directed graph, G = (V| E), with each vertex representing a process, and
each edge a communication channel. We adopt the convention that an edge (u,v) represents a channel such
that it is an active channel of process u and a passive channel of process v. For every pair of edges, (a,b) and
(b, c) let ds(4be, 7) and dt(gbe, 7) denote the dynamic slack and dynamic threshold of the process b between
channel connected to a and that connected ¢ at cycle time 7. Let M(4b.) denote the number of messages
process b contains between channels connected to a and c. The cycle time of a system will be considered to
be that of the slowest assignment in the system. Let S C V denote the set of sources in the system. It is
assumed that each source has exactly one output. Similarly, let T C V denote the set of sinks in the system.
It is assumed that each sink has exactly one input.

A path in a graph is a sequence of edges, {e;}, such that src(e;+1) = sink(e;). Let |p| denote the length
of a path, p. For any path, p, src(p) = src(eo) and sink(p) = sink(ejp—1). A cycle in a graph is a path p,
such that sre(p) = sink(p).

We will refer to the closed interval, [dt(,bc,T),ds(obe, T)] as the dynamic range of process b between

channels a and c.

7.1 Necessary and sufficient conditions for slack matching

We present necessary and sufficient conditions for the cycle time of a system to be 7y, under assumptions 5
and 6. Section 6 presents sufficient conditions on systems of half-buffers for which assumptions 5 and 6
are satisfied. Under these assumptions, a system is slack matched when each of its pipelines and rings can

simultaneously contain a number of messages within their dynamic range.

Assumption 5
The dynamic slack and dynamic threshold of a pipeline composed of multiple processes are the sum of the

dynamic slacks and dynamic thresholds of the processes.

Assumption 6
If the number of messages in a pipeline, or ring, is within the dynamic range of the ring, at the target cycle

time, 79, then the pipeline, or ring, has an execution with cycle time 7.

31

A process graph is said to be slack matched when the following system of equations can be satisfied:

Sabab =0 V(a,b) € FE (52)
Sabbe = Sabab + drabe — M (abe) + Speve V(a,b), (b,c) € E (53)
Sabed = Savab + drae — M (abe) + Speca V(a,b), (b, ¢), (c,d) € E (54)
Savef = Sabab + Arape — M (obe) + Shees Y(a,b), (b,c),(d,e), (e, f) € E : d € reachable(c) (55)
S = — ATy + M (yuy) Y(u,u) € E (56)
Sheab = —drape + M (abe) Y(a,b), (b,c) € E : a € reachable(c) (57)
drape € [dt(abe, T0), ds(abe, T0)] Y(a,b),(b,c) € E (58)
Ko — Ki=Swea Va€S,deT, (a,b),(cdeE (59)

Note that the variables drqs. denote a value in the dynamic range of process b between the channel (a,b)
and the channel (b, ¢). The variables K, represent the number of messages removed from source a, and Ky
the number of messages inserted in to sink d.

For any path in the process graph between processes a and f such that the first edge of the path is (a, b)
and the last is (e, f), the sum of Sy and the number of initial messages in the corresponding pipeline lies
within the dynamic range of the path. If there are multiple paths in the process graph between a process
a and f such that the first edge of the path is (a,b) and the last is (e, f), the variables Supey capture
requirement that the dynamic range of the corresponding pipelines be such that there exists a number of
messages that can be added to all these a—f pipelines so that the number of messages in the pipeline is
within its dynamic range. This requirement arises from the fact that if a message is inserted into one of

these pipelines, a message is inserted into all of the pipelines.

Lemma 12

Satisfying the system of equations (52)—(59) is equivalent to satisfying

Sapap = 0 V(a7 b) ekl (60)
Suvwe = Z drape — M (gbe) Vp:eg = (u,v) Aep—1 = (v, w) (61)
(ei(p),ei+1(p))
:((avb))(bvc))
Svwur = —ATupw + M (4U) Y(u,v), (v,w) € E : u € reachable(w) (63)
drabc S [dt(abcu 7—0)7 ds(abcu TO)] V(a7 b)u (b7 C) ek (64)
K, — Kq = Saped Va € S,d €T, (a,b),(c,d) € E (65)

32

LemmaProof 12

Consider any path p in G such that src(p) = u and sink(p) = v. If the path consists of one edge, (60)—(61)
has the constraint for this path. Assume that for all paths of length n, satisfying (52)—(55) is equivalent to
satisfying (60)—(61). Consider a path p of length n+ 1. Let eq(p) = (u,v), e1(p) = (v, s), and e, (p) = (w, z).
Let p’ denote the path from v to w such that eg(p’) = (v, s) and e,—1(p’) = (w,z). (61) can be rewritten as

Suvww = Z drabc - M(abc) (66)
(ei(p),eir+1(p))
=((a,b),(b,c))
= dTuvw - M(uvw) + Z d'rabc - M(abc) (67)
(ei(p"),ei+1(p"))
:((avb)v(bvc))
= Swvuv + Aryvs — M(uvs) + Svswz (68)

All other constraints are identical in the two sets of equations. O

Lemma 13

If a system operates at the target throughput, its process graph is slack matched.

LemmaProof 13

If a system operates at the target cycle time, there must exist an execution such that, simultaneously
e the number of messages in any pipeline in the system is within the pipeline’s dynamic range.
e the number of messages on any cycle in the system is within the cycle’s dynamic range.

Since each communication channel is used once per cycle, the number of messages on a ring is constant.
Furthermore, if there exist two pipelines, m; and 72, between a pair of processes a and b, the difference

between the number of messages on the two pipelines is constant. (60)—(65) capture these conditions. O

Lemma 14

If a process graph is slack matched, the corresponding system operates at the target throughput.

LemmaProof 14
If a process graph is slack matched, then (52)—(59) are satisfied. Thus, there exists an execution such that
the number of messages in any pipeline (or ring) of the system lies within the dynamic range of the pipeline

(or ring). By assumption 6, such an execution has cycle time at most 79. O

33

7.2 MILP for slack matching

Slack matching is performed by adding buffers along communication channels in such a manner that the
constraints (52)—(58) on the resulting system are satisfied.

Replacing constraints of the form Sgpqs = 0 by ones of the form (69) and (70) allows the variables Sgpap
to take on a value in the dynamic range of a pipeline of N, buffers. Slack matching a system now reduces to

determining values of the variables Ny such that the system of equations (53)—(59) and (69)—(70) is satisfied.

Sap € [Nap - dt(b, 70), Nap - ds(b, 70)] Y(a,b) € E (69)

Ng €N Y(a,b) € E (70)

Since there may be multiple solutions, any cost function linear in N, may be used to drive the optimiza-

tion.

7.3 Generating the MILP

The set of constraints for slack matching a system can be computed in O(m?n?) time where m = |E| and
n=1V|.

Constraints of the form (69),(70), (56) and (58) can be generated in O(m) time by looping over the edges
set.

It takes O(mn + n?) time to generate an n x n matrix R, such that

0, 14 € reachable(j)
R;; = (71)
1, i ¢ reachable(j)

This is done by running n breadth first searches, one rooted at each vertex. In O(n) time, an array can be
constructed such that indicates whether a vertex is a source or a sink. There are O(m?n?) 4-tuple (a, b, e, f)
satisfying the condition (a,b), (b,¢), (d,e), (e, f) € E : d € reachable(c). Given matrix R, constraints of the
form (53)—(55),(57) and (59) can be generated by simply looping over all such 4-tuples.

Due to cycle time constraints on the internal cycle, the number of channels a process has is usually

bounded, and significantly smaller than n. In this case, the constraint can be generated in O(k*n?) time.

34

IDecode

ool v e
| |
Jou = 1=

Figure 4: Lutonium fetch loop

8 Case Studies

The algorithm from section 7 was implemented in Modula-3[8] and used with glpsol, a freely available
MILP solver. Two large examples were studied, the fetch loop of the Lutonium[7], an asynchronous 8051

microcontroller and a control loop in the fetch unit of the MiniMIPS microprocessor [6].

8.1 Example I: Lutonium Fetch Loop

This algorithm was used to slack-match the fetch loop of the Lutonium micro-controller. Whilst the instruc-
tion memory is not implemented as a pipeline of half buffers, it can be modeled as one. The memory is
modeled as a stage whose dynamic threshold equals its dynamic slack. The dynamic threshold is determined
by the forward latency of the memory.

Figure 4 shows the fetch loop of the Lutonium micro controller.

Table 11 shows the buffers needed to slack match the system. The table also lists the results of slack
matching when performed by hand on the system. Observe, that there are fewer buffers on the byte channel

in the pc increment loop when slack matching is performed using this algorithm.

35

Channel

Slack matching buffers (hand) | Slack matching buffers (MILP)

ExtControl - CBUFE
ExtControl - Router
ExtControl - IntCtrl
CBUF - IntCtrl
Router - SplD1
Router - Mrgl0
Router - MrgExt
PCNH - PCIH
PCNH - PCUH
PCNL - PCUL
PCIL - PCUL

1

R == =W N

— = = O W N

Table 11: Slack Matching buffers for Lutonium fetch

1
VA

[

BJ

|

1J

Figure 5: Control Loop in the MiniMIPS fetch

8.2 Example II: Control Loop of MiniMIPS

Figure 5 shows a loop in the fetch of the MiniMIPS. Table 12 shows the buffers required to slack match
this loop. It also shows the results when slack matching was performed by hand. Note that extra buffers
included when slack matching was performed by hand may be needed because a ring composed of a mixture

of half buffers and full buffers was not included when generating the MILP.

Channel | Slack matching buffers (hand)

Slack matching buffers (MILP)

VA-MPE
I1J-MPE

4
4

1
1

Table 12: Slack Matching buffers for the control loop in the MiniMIPS fetch

36

9 Conclusion and future work

Dynamic slack and dynamic threshold of a buffer have been defined. An algorithm has been presented to
slack match systems composed of processes that can be represented as collections on repetitive SLHSE in
standard form, given certain assumptions about the dynamic slack and dynamic threshold of these processes.
Sufficient conditions have been presented that guarantee that the dynamic slack and threshold of systems
of composed of half buffers satisfy these assumptions. This algorithm has been tested on circuits from the
Lutonium[7] and the MiniMIPS [6].

For the examples studied so far, solving the MILP has not proved unreasonable. As larger systems are
considered, solving an MILP may take excessively large amounts of time.

Similar arguments to those in section 6 can be used to provide a class of full buffers such that systems
composed of these buffers satisfy assumptions 5 and 6.

Since most real systems do not use each channel on every cycle, extending the theory to systems with
conditional communications would be interesting. It would be interesting to study systems composed of
buffers with different static slack, in particular the case of systems containing both half buffers and full

buffers.

References

[1] S.M. Burns. Performance Analysis and Optimization of Asynchronous Circuits. PhD thesis, California
Institute of Technology, 1990.

[2] S. Kim and P. Beerel. Pipeline optimization for asynchronous circuits:complexity analysis and an

efficient optimal algorithm. In Proc. International Conference on Computer-Aided Design, 2000.

[3] C. Leiserson, F. Rose, and J. Saxe. Optimizing synchronous circuitry by retiming. In Third Caltech
Conference On VLSI, March 1993.

[4] A.M. Lines. Pipelined asynchronous circuits. Master’s thesis, California Institute of Technology, 1995.

[5] R. Manohar and A.J. Martin. Slack elasticity in concurrent computing. In J. Jeuring, editor, Proc.
4th International Conference on the Mathematics of Program Construction, Lecture Notes in Computer

Science 1422, pages 272—285. Springer Verlag, 1998.

[6] A.J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Pénzes, R. Southworth, U. Cummings, and T.K.
Lee. The design of an asynchronous MIPS R3000 microprocessor. In Proc. 17th Conference on Advanced
Research in VLSI, 1997.

37

[7] A.J. Martin, M. Nystrom, K. Papadantonakis, P.I. Pénzes, P. Prakash, C.G. Wong, J. Chang, K.S.
Ko, B. Lee, E. Ou, J. Pugh, E. Talvala, J.T. Tong, and A Tura. The Lutonium: A sub-nanojoule
asynchronous 8051 microcontroller. In Proc. 9th IEEE Intl Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, May 2003.

[8] G. Nelson. Systems programming with Modula-3. Prentice Hall, 1991.
[9] P. Pénzes. Pipeline composition for asynchronous circuits. unpublished, September 1999.

[10] C.G. Wong. High-Level Synthesis and Rapid Prototyping of Asynchronous VLSI Systems. PhD thesis,
California Institute of Technology, 2004.

38

A Dynamic Threshold

We list the proofs that were omitted in section 5.2.

A.1 Proof of lemma 7

Consider any simple cycle, j in the constraint graph of r,. Let A; be the delay along this cycle, k;, the
number of tokens initially present on the cycle and «; the change in number of tokens on this cycle when a
message is added to the ring.

Since the ring can operate at the target cycle time, for all cycles in the constraint graph of r,,, (3) must
be satisfied when there are ds(r,, 7) messages on the ring. Thus, for m = ds(ry, 7) — init_msg(r,) all cycles,
j, satisfy (14)—(16).

Let C(r,) be the set of cycles in the constraint graph of r,. The dynamic threshold of the ring is
determined by

A — ke
dt(rp,T) = init_msg(r,) + {77—‘ (72)
Qe T
where c is a cycle such that
Ac - ch Aj - ij
——— = max ————.
ac * T jeC(TH) a] - T

We now express the dynamic threshold of the r;.,, in a similar manner. Observe that ring r;.,, has ¢ initial

messages for each initial message in ring r,,. Thus ds(r;.,,) is given by

Ac/ — kc/
dt(rsp,) = init_msg(r;.p,) + {77—-‘ (73)
Qer =T
Ac/ - kc/T
— i init. . 74
i - init_msg(r,) + {70@/ = -‘ (74)
where ¢’ is the cycle such that
Ac/ - kc/T Aj - ij
—————— = max —————.
Qer + T JEC(rin) QT

Recall that any cycle in the constraint graph of 7;.,, can be written as a composition of cycles in r,,. Thus
(20) - (22) hold.

The cycle ¢’ must have a > 0. Furthermore, from section 2.1.1, only simple cycles need to be considered.
Table 1 and (4) show that simple cycles have |a| < 2. If a = 1, then the cycle ¢! that traverse each edge

in cycle ¢’ twice has a,: = 2 and

AC/ — kc/T - ACT — kCTT

Qer =T Ot - T

Thus we can restrict our attention to the case where o = 2.

39

From (20)—(22), we have that

A inj(Aj—ij)
c — kc/T o J
2¢ 78T ax (75)
Qer =T Evjwaj:% Tzvj e
j J

Note that i, 7 and v; are non-negative.

From (15) we note that when (75) is maximized, v; =0 Vj : o; = 0.

S vy (M)
Ac’ — kot _ max Jia; #0 & (76)
Qe = T Z'Uj»aj:% 27
J

Note that (76) is maximized when v; = 0 Vj # ¢, v, = =

Thus, .
dt(rim,T) =14 - init_msg(r,) + [%—‘ (77)
=1 -imit-msg(ry) + [w—‘ (78)
This proves the lemma for x,, = %

A.2 Proof of theorem 3

We use the notation r, to denote a ring consisting of n instances of a pipeline 7.

Recall that

ef dt i)
dtring(m,T) def lim 7(“((.; 7)
1—00 (3

In order to prove the theorem, we need to show that for any € > 0, there exists I such that for all 4 > I,

dt(rpeiys
M — init_msg(m) + % <e

7

In order to prove this, we bound the difference between dt(r,,7) and (init_msg(m) + 52).

Forne[j-h,(j+1)-h], from lemma 7

dt(r(js1ymmT) > (G4 1) b (dt(rn,7) — 1) (79)

40

Using lemma 7, substitute for the left hand side of the inequality

(j+1) -n-initmsg(ry) + [(J+1) -n-kp| > (G +1)-h-(dt(r,,7)—1) (80)

Rewriting
n((j+1) - initmsg(ry) + [+1) - ka]) = (G +1) - b (dt(ry, 7) — 1) (81)
(J +1) - init-msg(rn) + [(j + 1) - £p] = dt(rn,7) — 1 (82)

From lemma 7,

Jhedt(rn,7) > dt(rjnn,T) (83)

Applying the lemma to the right hand side and rewriting,

Joh-dt(rp,7) > 7 -n-inittmsg(ry) +Jj-n - Kp (84)
> n(j - init-msg(rp) +j - £n) (85)
dt(rp,T) > j - init_msg(ry) + 7 - K, (86)

Recall that init_msg(ry) = h - init_msg(7). Let X = init_msg(ry). Thus,

dt(rn,7) X A4wn _[j-(X+kn) X+rn G+ -(X+m)+2 X+ (87)
n h G+1)-h ho i h h
{— init_msg(ry,) — kp init_msg(ry,) + kp + 2] (88)
G+1)-h ’ j-h
Thus, for L(i) € [j - h, (7 + 1) - h],
dt(rpey, ™) init-msg(ry) + Kp, < 2 + init_msg(ry) + kp (89)
() h = i h

Recall that L(¢) is increasing in ¢. Thus for all 4 > I such that L(I) > w + h, (90) holds.

<e (90)

dt(TL(i), 7') _ init_msg(rh) “+ Kp
L(i) h

A.3 Proof of lemma 8

Using the notation from section 3.2.3, the cycle in the constraint graph of the ring ra, that limits the
minimum number of messages on the ring is a cycle that is either a py or ps path in ma,. Label this path

p. Since ro, has cycle time at most 7, the ratio of the delay along the cycle to the number of tokens on the

41

cycle is less then 7.

Consider a pipeline 7, and its fastest linear execution. During the steady state, the number of tokens
on any path varies by at most one. The path p needs to have at least @ tokens at some point during any
fastest linear execution, where §(p) is the delay along p. Thus during any fastest linear execution, 7o, must
3(p)

T

have at least — 1 tokens. This corresponds to there being at least dt(ra,,7) — 1 messages in ma, at any

point during the steady state of a fastest linear execution.

A.4 Proof of theorem 4

The proof of this theorem is structured in the same fashion as that of theorem 3. We will bound the difference
between my, and dt,ing(m, 7) for all n > h.

Given a linear execution of r5.(j11)., with dt(TQ.(j+1).h7 7) messages in the ring such that the cycle period
of any vertex is exactly 7, an execution of my.(;44)., can be constructed by mapping the state of the kth
process on the ring to the k*" process on the pipeline. Such an execution of To.(j4+4).n Will have cycle time at
most 7. At any point during this execution, there are at least dt(rs.(j41).n, 7) messages in the pipeline. Thus
for any n < 2(j +1) - h, (91) holds. From theorem 3, dt(ro(j11y.n,7) < (25 + 1) - b - dtying(m, 7). Thus,(91)
simplifies to (92).

(92).

my < dt(rg(j+1).h,7') (91)
<(2j4+1)-h-dtring(m,7) (92)

Consider p, : n > 2j - h. my, > maj.;, From lemma 8
My > 25 - b dtring(m,7) — 1 (93)

Thus for any pipeline p,, n € [25 - h,2(j + 1) h],

M, 2j - h-dtping(m,7) —1 2(4+ 1) h-dtrpg(m, 1)
- = dtrin g , - dtrin g - - dtm’n 4
n 9(71'37—) € |: 2(]+1)h 9(71'37—)3 2jh 9(7T7T) (9)
—2h - dtying(m,7) =1 2h - dtring(m,T) (95)
2(7+ Dh ’ 2j-h
n dtm’n) + =
m_ _ dt”,nq (7T, T)‘ S 9(71-.7-) 2h (96)
n ‘ j
Note that for any € > 0, there exists N = w such that for all n > 2(N + 1)h,
% — dtying (7, 7)| < € (97)

42

Thus

ef

dtpip(m,T) 4 Jim

m
— = dtying(m,T)

n—oo N

43

(98)

