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ABSTRACT 

 

Bulk metallic glasses (BMGs) possess a unique set of mechanical properties that 

make them attractive structural materials:  yield strength > 2 GPa, fracture toughness ~20 

MPa.m1/2 and elastic strain limit ~2%.  BMGs can also be cast into intricate shapes which 

retain their dimensional integrity and require no further machining.  Unfortunately, 

monolithic BMGs fail catastrophically under unconstrained loading by forming shear 

bands.  To overcome this problem, BMG matrix composites with fiber and dendritic 

reinforcements were proposed.  The former type includes metallic fibers of Ta, Mo and 

stainless steel.  The latter composites develop precipitates during casting and are thus 

called in-situ composites.  Here, the reinforcements form an interpenetrating dendritic 

structure and enhance the ductility of the composite. 

This study investigated the deformation behavior of these two types of BMG 

composites.  Loading measurements were performed during neutron or high-energy X-

ray diffraction to determine lattice strains in the crystalline reinforcements.  The 

diffraction data were then combined with finite element and self-consistent modeling to 

deduce the behavior of the amorphous matrix, as well as to understand the effective 

deformation mechanisms in the composite.   

The deformation of the wire composites was studied using an integrated neutron 

diffraction and finite element (FE) approach.  The FE model yielded a reasonable version 

of in-situ stress-strain plots for both reinforcements and the matrix.  It was found that the 

reinforcements yielded first and started transferring load to the matrix which remained 
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elastic throughout the whole loading experiment.  The reinforcements were seen to 

possess yield strengths lower than their monolithic forms, likely due to annealing during 

processing.  After optimizing material properties to fit experimental data, the FE model 

developed was reasonably successful in describing both the macroscopic composite 

deformation and the lattice strain evolution in the reinforcements. 

In the case of the in-situ composites, a detailed neutron and high energy X-ray 

diffraction study was conducted combined with a self-consistent deformation model.  The 

compressive behavior of the composite and the second phase (in its monolithic form) 

were investigated.  It was shown that the ductile second phase yields first upon loading 

the composite followed by multiple shear band formation in the BMG matrix, a process 

which enhances the ductility of the composite.  It was also discovered that the mechanical 

properties of the reinforcements, and indirectly the composite, are highly variable and 

quite sensitive to processing conditions.  This resulted from the unstable nature of the 

BCC β phase reinforcements which tend to transform into an ordered phase leading to 

significant stiffening, but also loss of ductility.  An additional heat treatment study 

confirmed this phase evolution.   

The overall conclusion of this study is that BMG composites with high ductility 

require reinforcements that yield first and induce multiple shear bands in the amorphous 

matrix, which in turn enhances the latter’s ductility.  To also retain a high yield point, the 

reinforcements need to be stiff.  These two properties can best be optimized in β phase 

composites via a judicious combination of microstructure control and heat treatment. 
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CHAPTER 1 

INTRODUCTION 

1.1 Metallic Glasses 

It has been known that there are three major thermodynamic states: gas, liquid and 

solid, according to independent experimental variables such as temperature and pressure. 

The degrees of freedom among atomic bonds determine each state and there exists a first 

order transition between each state.  

Glass is defined as vitrified liquid or a non-crystalline solid that demonstrates 

characteristics of both solid and liquid in terms of viscosity and structure. In other words, 

glass is a solid at room temperature (R.T). based on the definition of a solid [1] because 

viscosity exceeds 1014.6 poise, but is still a liquid because the structure of a liquid is 

maintained, whereas most of the solid turns into crystalline phases. A crystal is a periodic 

array of atoms which occupy each lattice point with 3-D translational symmetry. 

However, liquid is a more random array of atoms without long range periodicity. 

Therefore, a glass is considered to be an amorphous solid whose atomic structure is 

similar to that of liquid.  

The most important characteristic of glass besides amorphous structure is the 

glass transition phenomenon. The glass transition Tg is the temperature where atomic 

configuration is frozen while viscosity keeps increasing with a decrease in temperature. 

Since thermodynamically metastable metallic glass formation is subject to kinetic 

processes, Tg is the function of the cooling rate as shown in Fig. 1.1. A non-crystalline 

solid below Tg  is called a “glass”, and is referred to as a “supercooled liquid” above Tg 

[2]. 
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Fig. 1.1 Schematic diagram of volume change with respect to temperature as a liquid is 

cooled through the glass transition temperature, Tg. 
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Fig. 1.2 Equilibrium viscosity as a function of temperature for the undercooled liquid of 

Zr46.75Ti8.25Cu7.5Ni10Be27.5  “Vitreloy 4” alloy. Reproduced from [3]. 
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Fig. 1.3 Heat capacity of Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass as a function of 

temperature: the point of discontinuity of Cp is the glass transition temperature, Tg. 

Reproduced from [4]. 

 
The easiest way to differentiate a glass from a crystalline phase is to monitor 

changes in volume (Fig. 1.1) as a function of temperature. An abrupt volume change 

during cooling is related to crystallization while glass transition is accompanied with a 

continuous change in volume and other thermodynamic variables such as entropy and 

enthalpy. Although the first order thermodynamic variables remain continuous with 

respect to temperature, their derivatives give rise to discontinuity or abrupt changes due 

to their slope difference around the transition interval. Therefore, heat capacity and 

thermal expansion vary very rapidly as shown in Fig. 1.3. Due to the fact that glass 

transition takes place within a certain temperature range, it is conventional to determine 

Tg at the onset of ∆H slope rise (Cp jump) in the DSC heating curve. 
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The quenching rate required to make glass out of a pure metal was estimated to be 

around 1010 K/s [5], and it was not possible to achieve such a high cooling rate in the 

laboratory. The first metallic glass, Au75Si25, was discovered by Klement, Willens, and 

Duwez at Caltech in 1960 by a rapid gun quenching technique that produced up to a 107 

K/s cooling rate [6]. Many other metallic glass systems have been developed since then, 

but the critical cooling rate for glass forming was still too high to form bulk specimens. A 

breakthrough came in the late 1980’s and early 1990’s in two research groups at Tohoku 

University and Caltech. Inoue investigated a large variety of alloy systems [79] with a 

critical cooling rate of 101 ~ 102 K/s. In 1993, Pecker and Johnson at Caltech developed 

Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vitreloy 1) bulk metallic glass with a critical cooling rate of 1 

K/s, which means that up to a 5 cm diameter rod could be processed by the conventional 

casting method without any crystallization [10]. Lin and Johnson found a new Cu-based 

metallic glass (Cu47Ti34Zr11Ni8, Vitreloy 101) and other Zr-based glass systems 

(Zr52.5Ti5Cu17.9Ni14.6Al10, Vitreloy 105; Zr57Nb5Cu15.4Ni12.6Al10, Vitreloy 106) with a 

critical cooling rate of 10 K/s were also developed [11]. While Vitreloy 1 has been 

known as the best metallic glass forming alloy up to now, Vitreloy 106 is regarded as the 

best non-Be metallic glass forming alloy. 

Bulk metallic glass (BMG) formation provided many opportunities to investigate 

various mechanical properties, including constitutive behavior, flow criteria, fracture and 

fatigue, as well as thermodynamic and kinetic characteristics [12]. BMGs have attracted 

attention as promising structural materials due to their high elastic limit (2%), high 

strength (around 2 GPa), and good fracture toughness (20-55 MPa·m1/2) [13-15]. Fig. 1.4 

shows the difference in strength between pure metals and a metallic glass. 
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Fig. 1.4 Stress strain curve of Vitreloy 106 BMG and some pure metals. All samples were 

melted and cooled in the arc melter. All pure metals show low yield strength and large 

ductility while BMG exhibits very high yield strength but no plasticity. 

 

1.2 Metallic Glass Composites 

The deformation mechanism of metallic glass is different from that of crystalline 

materials. Plastic deformation of crystalline phases is carried out by the movement of 

dislocations, and the interactions between dislocations themselves and other defects such 

as inclusions and grain boundaries introduce work hardening behavior in typical 

crystalline alloys. However, due to its unique structural characteristics, the only plastic 

deformation mechanism in amorphous alloys at low temperaturesw is shear band 

formation. (it should be noted that at sufficiently high temperatures, metallic glasses can 
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deform via viscous flow.) Once a shear band starts to propagate, it usually penetrates all 

the way through the sample, leading to catastrophic failure in a monolithic metallic glass. 

It has been determined that the main toughening mechanism of a BMG is to 

introduce second phase materials in order to prevent single shear band propagation and 

by forming multiple shear bands instead. Several kinds of BMG matrix composites were 

suggested by Choi-Yim and Conner at Caltech, and they exhibit significantly improved 

damage tolerance [16-20]. 
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Fig. 1.5 Compression tests of various kinds of particulate composites. (Reproduced from 

Choi-Yim Ph.D. thesis [21]) 

 
To date, there are two major ex-situ composites: particulate and wire composites. 

Fig. 1.5 shows that the ductility of particulate composites is enhanced significantly in 

compression, but no practical improvement is found in tension [21]. The optimum 

particulate composite is yet to be determined but it seems that the particulate 

reinforcements are more effective with larger volume fraction and/or bigger size. Another 

important factor is the interface strength between the matrix and reinforcements. It is 
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known that carbide particles tend to form ZrC at the interface in a Vitreloy 106 matrix, 

and in general, interface strength can be aided or deteriorated by such a third phase [18]. 

The constitutive behavior of W particulate composites was recently investigated by X-ray 

diffraction and Eshelby modeling and it was found that the W particles yield first and 

then transfer load to the BMG matrix [22]. 

As W particles lead to a considerable toughening in the BMG matrix composites, 

W wires have also shown the best performance among many wire reinforced systems. Fig. 

1.6 shows the compression test data from a series of W reinforced Vitreloy 1 composites 

exhibiting an outstanding increase in toughness without sacrificing compressive strength 

at all. Clausen and Üstündag investigated in-situ behavior of these composites using 

neutron diffraction and finite element modeling (FEM), and showed that the W wires 

yield first and start to transfer load to the matrix at around 1300 MPa, whereas the matrix 

yielded at 1900 MPa by multiple shear band formation [23]. Thermal residual stress also 

plays an important role here. For instance, the 20% W composites yield first due the 

largest thermal residual stress, which can be as high as -500 MPa in the W [24]. The 

source of these residual stresses is the thermal expansion mismatch between the matrix 

and the wires. The “freezing” temperature below which residual stress buildup starts 

during cooling down turns out to be near the glass transition temperature of the glass 

matrix. 
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Fig. 1.6 Compression data of W wire reinforced Vitreloy 1 composites. (20 ~ 80%). 

(Reproduced from Conner et al. [17]). 

 

The most attractive BMG composites are obtained in-situ as the reinforcements 

precipitate out during casting [25-27]. This phase has a BCC crystal structure, consisting 

primarily of Zr and Ti, and hence, is referred to as the “β phase” since it is reminiscent of 

the β allotrope of both Ti and Zr (their “α phase” at room temperature has an HCP crystal 

structure).  Upon cooling from the high temperature melt, the initial alloy undergoes 

partial crystallization by nucleation and dendritic growth of the β phase.  The remaining 

liquid subsequently freezes to an amorphous solid producing a two-phase microstructure 

containing β phase dendrites in a glassy matrix. The dendritic structure of the β phase has 

been shown to inhibit the formation of macroscopic shear bands in the matrix which 

cause catastrophic failure in monolithic BMGs. It was found that the β phase leads to the 

formation of multiple shear bands in the glass matrix with a similar spacing to that of the 

secondary dendrites in the β phase.  However, neither the underlying deformation 
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mechanisms nor the load sharing in the composite could be determined in previous 

studies. 
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Fig. 1.7 Compressive stress-strain curves of an in-situ β phase composite compared with 

those from a monolithic matrix and a monolithic β phase. (Reproduced from Kim, Ph.D. 

thesis [28])  M: Amorphous matrix; H: Composite made at Howmet; B: Monolithic β 

phase alloy. 

 

1.3 Overview of the Thesis 

 The brief overview of the BMG composite studies described above makes it clear 

that various metallic glass composite systems have been developed with enhanced 

ductility compared to monolithic BMG alloys. However, all the mechanical tests 

conducted previously were macroscopic and only measured the overall, bulk-averaged 

response of the composite. For this reason, important details about the deformation 

mechanisms and load sharing between the matrix and reinforcements were lacking. 

Without a good appreciation of the effective deformation mechanisms in BMG 

composites, it will be impossible to further improve their properties and obtain the 
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“ideal” composite with high strength and ductility. The present study integrated advanced 

diffraction methods such as neutron and high energy X-ray diffraction to monitor the in-

situ lattice strain evolution in the crystalline reinforcements and mechanics modeling to 

reach conclusions about the deformation of BMG matrix composites.  

 Based on the previous work on W reinforced composites, other wire composite 

systems were investigated using neutron diffraction and FE modeling. The overall 

mechanical behavior and modeling results are discussed in Chapter 3. 

 An extended study on in-situ β phase composites is described in Chapter 4 and 

Chapter 5. Here, the deformation mechanisms were studied by combining neutron 

diffraction and self-consistent modeling. An unexpected stiffening behavior of the 

monolithic β phase was discovered and led to a systematic heat treatment study to 

demonstrate the effects of processing conditions on the mechanical properties of 

composites. Compressive and tensile properties are summarized, along with ultrasound 

measurements of elastic constants in Chapter 4. 

Due to the fact that the mechanical properties were discovered to be highly 

sensitive to processing conditions and phase evolution according during heat treatment, 

Chapter 5 is dedicated to phase analysis and microstructure evolution. The pseudo binary 

phase diagram (of Vitreloy 1 - β phase) was constructed from a high temperature 

experiment and is also presented in this chapter. 

Finally, Chapter 6 presents an overall summary and lists some future directions 

for further research on BMG composites. 
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CHAPTER 2 
 

EXPERIMENTAL PROCEDURES 

 
2.1 Synthesis of Metallic Glass Matrix Composites 

2.1.1  Wire Composites 

Ingots of the Vit.106 alloy were prepared by arc-melting elemental metals with a 

purity of 99.7% or higher in a Ti-gettered Ar atmosphere.  Tungsten, stainless steel (type 

302) and Mo reinforcement wires were purchased from Thermionic, Inc. (North 

Plainfield, NJ 07060) and Alfa Aesar (Ward Hill, MA 01835) supplied the Ta wire.  All 

wires were 0.25 mm in diameter and were straightened before processing the composites 

using the melt infiltration procedure [1].  Specifically, a stainless steel tube containing the 

wire bundle at the bottom was evacuated to about 3 x 10–2 torr and flushed with Ar gas 

several times.  While still under vacuum, it was heated to 975°C and held there for 10 

min to melt the Vit. 106 alloy.  After melting the metallic glass, the temperature was 

lowered to 875ºC and held for another 15 min during which 100 psi Ar gas pressure was 

applied to force the molten alloy into the tube.  This was followed by quenching the tube 

in water at room temperature. Since Vit 106 can be processed up to 10 mm in diameter, 

an 8 mm inner diameter stainless tube was used. Compression test samples were 

machined into a cylindrical geometry of 6 mm diameter and 14.4 mm length with the 

fiber axes parallel to the sample axis for neutron diffraction experiment. In order to have 

uniform distribution of wires in low volume fractions such as 40%, wire bundles were 

slightly bent in the middle to attain a uniform increase distribution within the tube. Each 

sample was characterized by X-ray diffraction before machining to ensure a glassy matrix. 
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Fig. 2.1 Experimental setup and schematic diagram for the wire composite casting 

procedure. (reproduced from [1]) 

 

2.1.2 In-situ Composites 

Specimens were prepared by alloying high purity Cu (99.999 %), Ni (99.995 %), 

and Ti (99.995 %), all from Cerac, Inc., Milwaukee, WI 53201; Nb (99.8 %) from Alfa 

Aesar, Ward Hill, MA 01835; Zr with less than 300 ppm oxygen content from Teledyne 

Wah-Chang Inc., Albany, OR 97321; and Be (99.99 %) from Electronic Space Products 

International, Ashland, OR 97520.  The alloys were prepared in the form of 25 g or 40g 

rods of roughly cylindrical geometry by plasma arc melting in a Ti-gettered argon 

atmosphere on a water-cooled Cu plate.  The molten alloy was then undercooled to a 

temperature range between the liquidus and solidus for a given composition [2].  This led 

to the chemical partitioning of the undercooled liquid into a solid (crystalline metal 

dendrites - the β phase) and a liquid phase with a different composition.  The liquid phase 

was depleted of the elements going into the β phase which shifted its composition to that 

of a bulk metallic glass forming alloy.  Cooling of the remaining liquid thus resulted in 

the formation of an amorphous matrix around the crystalline phase. In addition to the 

composite, a monolithic β phase sample with the same chemical composition found in the 
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dendrites of the composites was prepared by the arc melting procedure described above, 

except that there was no high-temperature hold used in the chemical partitioning step. 

 

              

Fig. 2.2 SEM images of an 80% W wire composite (left) and an in-situ β composite. 

(Unlike Vit 1-W composites [1], there is no reaction layer between Vit 106 and W). 

 

2.2 Mechanical Tests and Microscopy 

2.2.1 Loading Tests 

Mechanical test specimens were machined into a cylindrical shape with 3 mm 

diameter x 6 mm height (aspect ratio of 2.0), or ingots were cast by 3 mm diameter Cu 

mold for compressive loading test at Caltech by Instron 4204. The crosshead speed was 

0.1mm per minute with a corresponding strain rate of 2.8 x 10-4/s for a 6mm high sample. 

The maximum of 10,000 lbs. for the load cell allows up to 5 mm diameter in metallic 

glass samples. However, neutron diffraction samples were machined into 6mm diameter 

x 14.4 mm height (aspect ratio of 2.4) due to the large sampling volume associated with 

neutron scattering factor.  

 

2.2.2. Ultrasound Measurements of Elastic Constants 



 16
The ultrasonic sound velocity was measured to calculate elastic modulus, shear 

modulus and Poisson’s ratios of the specimens, and the mass densities were measured 

according to the hydrostatic weighing technique [3]. Measurements were made using a 

Parametrics Model 5052UA ultrasonic analyzer connected to an oscilloscope for data 

analysis. Transmission and reflection modes were used, depending upon sample 

conditions, and the typical error range of sound velocity measurement was about 5% of 

total values. The basic equations for shear modulus G, Young’s modulus E, and Poisson’s 

ratio υ are given below as a function of density ρ, normal sound velocity υl, and shear 

sound velocity υs. 
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2.2.3 SEM and Microprobe Analysis 

Samples were cut into small pieces to be mounted in a BUEHLER SIMPLIMET 

1000 mounting machine and were polished by a BUEHLER ECOMET 3 polisher down 

to 1 µm level. LEO 1550 VP Field Emission Scanning Electron Microscopy (FE SEM) 

was used to observe microstructures. The significant contrast between the matrix and 

reinforcement in wire composites did not require surface etching under RBSD 
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(Rutherford back scattering detector) mode, but in-situ composite surface was etched 

with a solution of 40% HF, 20% HNO3, and 40% HCl [4].  

The chemical composition of the monolithic matrix and β phase was determined 

using a JEOL JXA-73 electron microprobe analyzer with the elements of Zr, Ti, Nb, Cu 

and Ni used as standards, whereas the Be content was calculated by difference.  Both the 

matrix and β phase were randomly selected by six data points each, afther which a mean 

value of six data points was selected. Since Be was not detected within the instrument 

resolution in β phase, all of Be was assumed to be in the matrix. Based on these data, 

monolithic β phase and monolithic glass samples were prepared. 

 

2.3 Neutron Diffraction of Wire and In-situ Composites 

2.3.1 Experimental Procedure 

Neutron diffraction experiments were conducted under uniaxial compression 

using the SMARTS diffractometer [5] at the Lujan Neutron Science Center, Los Alamos 

National Laboratory.  The geometric setup of SMARTS allows simultaneous 

measurements in longitudinal and transverse directions (Fig. 2.3).  The diffraction data 

were collected using the time-of-flight technique.  Elastic strain in the wires or β phase 

was calculated from changes in their lattice parameters as a function of applied stress.  

Strains are reported relative to the initial strain state at a −5 MPa applied stress (which 

was needed to hold samples in a horizontal loading geometry). Each composite was 

subjected to several loading-unloading cycles while the longitudinal macroscopic strain 

was measured with an extensometer.  Neutron data were collected under load control in 
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15-20 minute runs at approximately 25-100 MPa stress intervals.  A compressive strain 

rate of about 10–4 /sec was employed between load levels. 

 

      

Fig. 2.3 Schematic of sample geometry with respect to beam and loading direction. 

 

2.3.2 Data Analysis 
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Fig. 2.4 Refined diffraction pattern of Mo (BCC) wire composites. (Top: Longitudinal, 

Bottom: Transverse). 

 

Fig. 2.4 shows diffraction data of Mo wires (textured along <110> direction) with 

refinement using the Rietveld method [6-7]. The refined parameters through GSAS 

(General Structure Analysis System) are background, histogram scale factor, lattice 

parameter, orientation distribution, absorption, and isotropic atomic displacement, Uiso. 

The lattice parameters were determined from the entire diffraction pattern to within a 5 × 

10−5 fitting error in wire composites and 15 × 10−5 in β phase composite.  

It must be remembered that the strain information is elastic strain from the 

crystalline phase, and total strain is given by extensometer attached to the sample. Since 

neutron reveals only reinforcement behavior due to a lack of diffraction information from 

the amorphous phase, mechanical modeling (Finite Element Modeling in wire composites 

and Self Consistent Modeling in in-situ β phase composite) has to be applied to account 

for glass matrix behavior. The final output would be the in-situ phase stress-strain curve 

of each phase. More details on modeling will be described in Chapters 3 and 4. 

 

2.4 Synchrotron X-ray Diffraction of In-situ Composites 
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2.4.1 High Energy X-ray Diffraction Procedure 

Two kinds of experiments utilized high energy X-ray diffraction at beam line 1-

ID in Advanced Photon Source (APS): in-situ tensile loading of in-situ β phase 

composite, and phase evolution experiments according to heat treatment. The energy of 

the beam was 80 KeV (λ=0.1536Å), and beam & detector size were adjusted on a case 

by case basis. The beam size varied from 100 µm × 100 µm to 250 µm × 250 µm, and 

original detector size (500 mm × 500 mm) was reduced to 300 mm × 300 mm for speedy 

data collection in the heat treatment experiment. X-ray recording took less than 15 

seconds, but one minute had to be used for erasing image plate which delays overall time 

resolution down to two minutes. Silicon or Alumina was used as a standard for correcting 

diffraction peaks.  

Load Cell Frame2D Image Plates

 

Fig. 2.5 APS in-situ tensile loading experimental setup in beam line 1-ID. The dotted 

lines represent synchrotron beams and the load cell frame is located in the middle.  
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2.4.2 Data Analysis 

 

Fig. 2.6 A captured image of Cu mold casting β phase composite during FIT 2D analysis. 

 

By using Si and Al2O3 as standards, sample to detector distance, beam center, and 

tilt angle were determined, followed by integration of diffraction peaks from samples. 

Azimuth angle for integration can be varied according to the purpose: the 10º integration 

was done in a vertical and horizontal direction in the case of loading experiment in order 

to deduce normal and shear strain, and the whole 360º integration was suitable for phase 

analysis. Once output files are generated in the form of GSAS, the rest of the refinement 

steps and modeling part will be the same as the neutron data as explained above.  
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CHAPTER 3  

RESULTS AND DISCUSSION: 

MECHANICAL BEHAVIOR AND MODELING  

OF WIRE COMPOSITES 

 
3.1 Compressive Loading of Wire Composites 

Bulk metallic glasses (BMGs) are attractive structural materials due to their 

unique mechanical properties:  large elastic strain limit (about 2%), high strength (above 

2 GPa), good fracture toughness (~20 MPa m1/2), good specific strength, high corrosion 

resistance, and so on [1-3].  However, they exhibit poor ductility at room temperature as 

they usually fail catastrophically under unconstrained loading due to unstable shear band 

formation.  Several BMG composites have been produced to mitigate this failure mode 

[4-7]. Among different kinds of composites developed, those with continuous 

unidirectional metallic wire reinforcements have exhibited enhanced mechanical 

properties.  For instance, composites with Vitreloy 1 (Zr41.2Ti13.8Cu12.5Ni10.0Be22.5) matrix 

and 20-80 vol.% W wires have nearly preserved the high yield strength of the BMG, but 

have added significant ductility (total strain to fracture reaching 15-20% in compression) 

[5].   

Recent work by Üstündag and co-workers using neutron diffraction (ND) and 

finite element modeling (FEM) has elucidated the bulk deformation mechanisms in the W 

wire composites [8-9].  It was shown that significant thermal residual stresses develop in 

these composites due to the coefficient of thermal expansion (CTE) mismatch between 

the matrix and reinforcements [8].  Specifically, these stresses are generated during 
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cooldown starting around the glass transition temperature of the matrix and can exceed   

–500 MPa in the axial direction of the W wires [8].  When the W composites are loaded 

in compression, these compressive thermal residual stresses induce yielding in the W 

wires at applied stresses lower than those expected in a residual-stress-free composite [9].  

This investigation also showed that it is always the W wires that first experience plastic 

deformation followed by “yielding” in the BMG matrix in the form of multiple shear 

band formation [9].  The presence of the W wires stabilizes the production of multiple 

shear bands in the BMG, thereby enhancing the overall ductility of the composite.  

A similar combined ND-FEM methodology was followed in the present study.  A 

different BMG alloy, Vitreloy 106 (Zr57Nb5Al10Cu15.4Ni12.6), was chosen as the matrix.  

Vit.106 is among the best glass forming alloys, i.e., it can be cast into large dimensions 

and is Be-free, an important environmental advantage.  Three different materials were 

considered for reinforcement:  type 302 stainless steel, Mo, and Ta. The reinforcement 

volume fraction was kept at 40% for ND and FEM, and similar to the W composites, the 

wires were unidirectional.  These reinforcements have different properties compared to 

W (Table 3.1).  For instance, their yield strengths and Young’s moduli are lower than 

those of W, and one of them (steel) has a higher CTE than that of the matrix.  The 

purpose of the present study was to quantify the effects of the different reinforcement 

properties on the deformation of the BMG composites.  This section begins by presenting 

macroscopic data and fracture morphology.  It proceeds with results from ND and FEM 

studies. 
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 Elastic modulus
E (GPa) 

Poisson’s ratio  
(ν) 

Yield strength 
σY (MPa) 

CTE 
(10-6/K) 

Vit. 106 85 [13] 0.38 [13] 1800 [13] 8.7 [13] 
(at 293 K) 

Type 302 
SS 193 [11] 0.25 [11] 250 [11] 17.2–18.4 [11] 

(at 293-800 K)

Mo 330 [14] 0.38 [14] 400 [14] 4.8–5.7 [12] 
(at 293-800 K)

Ta 186 [13] 0.35 [13] 350 [13] 6.3–7.2 [12] 
(at 293-800 K)

Vit. 1 [9] 96 0.36 1900 9.0 
(at 293 K) 

W [9] 410 0.28 1300 4.5 
(at 293 K) 

 
Table 3.1 Properties of reinforcement wires and two BMG matrices:  

Zr57Nb5Al10Cu15.4Ni12.6 (Vit. 106) and Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 (Vit. 1). 

 

 
Wire yield strength 
(von Mises stress) 

σY (MPa) 

Wire axial thermal 
residual stress 

(MPa) 

Composite axial 
yield stress (MPa)

Type 302 SS 175 ~0 – 120 

Mo 350 – 160 – 140 

Ta 80 – 90 – 20 

W [9] 1300 – 300 – 600 
 

Table 3.2 Properties of 40% wire reinforced BMG composites in uniaxial compression 

calculated using FEM in comparison with neutron diffraction data.  The data in the last 

row were obtained in a previous study [9]. 
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3.1.1 Macro Stress-Strain Behavior of Wire Composites 

 Even though the more detailed ND and modeling analysis was performed on 40% 

Mo, Fe, and Ta wire-reinforced Vitreloy 106 composites (and presented in Section 3.1.3), 

the first wire composites had 80% wires due to processing convenience. Such a high 

volume fraction allowed a close packed configuration of wires and a uniform morphology. 

Low volume fraction composites sometimes suffer from a nonuniform wire distribution.  

 Fig. 3.1 illustrates the uniaxial compressive behavior of four 80% wire 

composites in comparison with that of a monolithic Vit. 106 alloy. (Additional macro 

curves are presented in Section 3.1.3). It is clear that all composites exhibit enhanced 

ductility compared to the monolithic Vit. 106. However, this comes at a price of lower 

yield point, except for the W reinforced composites. The higher yield point of W wires 

offers a partial explanation for why the W composites exhibit the highest yield point, 

even higher than that of monolithic Vit. 106. However, a more detailed analysis is 

necessary to appreciate the subtleties in the behavior of all wire composites. This is 

presented below, starting with an investigation of the fracture morphology in composites. 
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Fig. 3.1 Macro stress-strain curves in uniaxial compression of Vit. 106 matrix, 80% wire 

reinforced composites. The tests were performed at Caltech by Instron 4204 with a cross 

head speed of 0.1 mm/min. 

 

 

 



 28
3.1.2 Fracture Morphology 

Fig. 3.2 shows the top and side views of composites after fracture or buckling. 

Based on these images, W wire composite shows the strongest interface strength and it 

never fails at the boundary, but rather, a crack passes through the wires. On the other 

hand, the interface of Fe (302 SS) is the weakest and cracks always follow that interface. 

The weakness of this interface is also proven in processing since it is very difficult to 

make Fe wire samples because they debond in many cases during machining. Mo seems 

to be in the middle range because cracks follow mainly the fiber-matrix interface, but it 

sometimes penetrates the fibers as well. Mo and Ta show buckling, which means large 

toughness, but also a low yield strength. Based on these qualitative observations, one can 

conclude that although the Ta composite shows the best performance in cyclic loading 

without any interface debonding, overall, the W composite is the best choice from a 

practical point of view due to its high yield strength, relatively high ductility (up to 15%) 

and strong fiber-matrix interfaces. 
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a) W (top view)                 b) Fe (SS) (top view)                   c) Mo (top view)     

             

d) Mo (side view)                            e) Ta (side view) 

           

   f) W (side view)                          g) Fe (SS) (side view) 

Fig. 3.2 Fracture morphology of 80% wire composites in top and side view. 

Wire diameter is 0.25 mm. 
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3.1.3 Neutron Diffraction and Finite Element Modeling 

Neutron diffraction measurements only record the elastic (lattice) strains; 

therefore, for a comprehensive interpretation of the composite’s deformation, a 

mechanics model is required.  This model is especially essential in this study because the 

diffraction data are limited to the crystalline wires and measurement of the BMG matrix 

is not possible due to its amorphous structure.  A finite element model was developed for 

this purpose using the commercial software ABAQUS™ [10].  A three-dimensional mesh 

was employed to allow loading parallel to the fiber axis (Fig. 3.3).  The plane strain 

assumption was utilized in the model by constraining planes that are perpendicular to the 

fiber axis to remain planar (Fig. 3.3).  Therefore, the model addresses behavior deep 

beneath the surface of the sample and does not account for surface effects.  The 

calculations employed a unit cell model, and symmetry boundary conditions were 

imposed on all outer surfaces.  Due to the cylindrical shape of the fiber, second order, 20 

node, brick elements were used in the mesh, and reduced integration points were 

employed for speedy calculations.  For comparison with the diffraction data which 

average across the sample cross section, the volume average of elastic strains were 

calculated for the two phases using the element volume and the “element centroid” value 

[10] of the elastic strain at each element.   
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Fig. 3.3 Mesh used in the FEM calculations for a 40% fiber model.  The light gray 

elements represent the fibers while the dark gray elements represent the matrix.  The 

surfaces in the 1-2 planes (perpendicular to the fiber axis) are constrained to remain 

planar, effectively imposing a plane strain behavior.  Loading is applied along direction 3. 

 

The material parameters used in the calculations are shown in Table 3.1.  Table 

3.2 exhibits the information obtained from the FE calculations.  The thermal residual 

stresses were calculated assuming they are generated starting at the glass transition of Vit. 

106 (~414ºC) [15].  Previous work on W wire composites [9] has shown that in a BMG 

composite, both the reinforcements and the matrix usually exhibit a different constitutive 

behavior than in their monolithic forms.  Therefore, the in-situ yielding and hardening 

behavior were treated as variables to optimize the agreement between the model and the 
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experimental data (both lattice strain in the wires from ND, and macroscopic strain in the 

composite from the extensometer).  The FE model employed the kinematic hardening 

assumption [10] for the wire constitutive behavior to recalculate their hardening during 

unloading and to account for the reversed yielding observed in the reinforcements upon 

unloading.  The BMG appeared to remain elastic throughout the whole experiment for all 

three composites and its yield point was determined to be the same as that in the literature 

(1800 MPa).  The fitted values for the in-situ yield strengths of the wires, however, did 

change inside composites and are shown in Table 3.2.  The estimated error bars for these 

fits are about 5%.  The resulting phase dependent, in-situ stress-strain plots are shown in 

Fig. 3.4.  The reader should note that these plots represent a reasonable solution based on 

the available data and the assumptions employed in the FEM, but are not necessarily 

unique in a strict mathematical sense. 

Figs. 3.5-3.7 exhibit the experimental data in comparison with model predictions.  

The stress-strain plots shown in Fig. 3.4 for each phase were deduced as a result of this 

comparison.  As shown in the Table 3.1, since the thermal expansion coefficients of Mo 

and Ta are smaller than that of the matrix, the Mo and Ta wires are expected to be under 

compressive stress following sample processing while the BMG experiences tensile axial 

and hoop stress and compressive radial stress.  This residual stress state is predicted to be 

reversed in the stainless steel composite because of an opposite CTE mismatch between 

the wires and matrix.  

 

 

 



 33
 

 

 

 

0

500

1000

1500

2000

0 0.5 1 1.5 2

Vo
n M

ise
s S

tre
ss

   [
MP

a]

Total Strain   [%]

Vit. 106

Mo

SS

Ta

 

 

Fig. 3.4 In-situ stress-strain behavior for each phase as calculated by the finite element 

model.  These plots were deduced by comparing the experimental data with model 

predictions. 
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Due to a lack of proper stress-free reference wires, the thermal residual stresses 

could not be measured in this study.  However, the values calculated (see Table 3.2) 

based on the assumption that stress buildup starts at the BMG glass transition temperature 

[8-9] provided reasonable approximations when ND data from loading experiments were 

compared to model predictions except for the SS composite.  The model fits for this 

composite that included calculated thermal residual stresses were not as satisfactory as 

those that disregarded such stresses (Fig. 3.6).  It was therefore concluded that the 

thermal residual stresses were largely relaxed in the SS/BMG composite.  One possible 

explanation for this behavior is that the SS/BMG interface in these composites has 

generally been observed to be weaker than that found in W, Mo and Ta reinforced BMG 

composites as explained earlier.  The predicted tensile radial residual stress at the 

SS/BMG interface may have aided the relaxation process and even experienced 

debonding during cooling.  

A comparison of FE model predictions and the experimental data suggests that the 

model is successful in describing the early part of the deformation of all composites and 

is especially satisfactory for the SS/BMG composite (Figs. 3.5-3.7).  In all composites, 

the wires appear to yield first while the BMG matrix remains elastic throughout the 

whole deformation (Fig. 3.4).  The wires also yield during unloading as indicated by the 

non-linear unloading curves.  Another interesting observation based on the constitutive 

behaviors presented here (see Fig. 3.4) is that, compared to literature data, the in-situ 

yield strength of the wires has decreased in all three composites (Table 3.2).  The 

decrease is especially pronounced in the Ta wires whose yield strength dropped from 350 

MPa to about 80 MPa (compare Tables 3.1 and 3.2).  This can be attributed to a probable 
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annealing of the wires during composite processing, a phenomenon also seen in W/BMG 

composites [9].  

Compared to W reinforced BMG composites, those reinforced with SS, Mo and 

Ta wires exhibit much lower yield strengths in compression.  40% W/BMG composites 

started yielding at around –600 MPa [9] (see Table 3.2).  In comparison, the axial yield 

stress in the present composites is –120 MPa for SS, –140 MPa for Mo and –20 MPa for 

Ta composites (Table 3.2).  These values are quite low and suggest that the present 

composites are not as attractive as those with W wires.  Nevertheless, they do enhance 

the ductility of the BMG matrix and prevent the formation of unstable shear bands. It is 

also worth noting that due to their much higher Young’s modulus (Table 3.1), the SS, Mo 

and Ta wires carry a higher proportion of the applied stress compared to the BMG matrix 

and delay the latter’s yielding. 
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Fig. 3.5 Neutron (a) and macroscopic composite data (b) of the 40% Mo - Vit. 106 matrix 

composite compared with the predictions of the FEM model. 
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Fig. 3.6 Neutron (a) and macroscopic composite data (b) of the 40% SS (type 302) - Vit. 

106 matrix composite compared with the predictions of the FEM model.  Two versions of 

the model are shown:  the first version (“TRS”) includes thermal residual stresses while 

the second one assumes there are no thermal residual stresses (“no TRS”). 
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Fig. 3.7 Neutron (a) and macroscopic composite data (b) of the 40% Ta - Vit. 106 matrix 

composite compared with the predictions of the FEM model. 
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3.2 Tensile Loading of Wire Composites  

 Tensile test samples of 80% Mo and Ta composites were prepared to compare 

with their compressive behavior. Those composites showed more than 20% overall 

ductility in compression with yield strength of about −400 MPa (Fig. 3.1). Referring to 

data presented in Tables 3.1 and 3.2, one would expect compressive thermal residual 

stresses in Mo and Ta wires after casting due to their lower CTE compared to that of the 

BMG matrix. As a result, a tension test would normally exhibit a higher yield strength as 

applied tensile stress has to first overcome the compressive residual stresses in the wires 

before initiating yielding in them. Before reviewing the results of the tension tests on 

80% composites, it is important to note that the thermal residual stress in the wires of 

these composites would be lower (due to the higher wire fraction) than that found in the 

40% composites.  

The results of the tension tests performed on 80% Mo and Ta composites are 

exhibited in Fig. 3.8. Both composites yielded at lower stresses compared to those seen in 

the compression tests (see Fig. 3.1). Fig. 3.8 also shows an interesting phenomenon called 

“fiber pull out” in the Mo composites. Specifically, Mo wires appear to pull out of the 

matrix due to the relatively weak interface between the two. This is seen as stress drops 

in the stress-strain curve and is further illustrated in the sample images shown in Fig. 3.9 

(a). Fiber pull out is a well known toughening mechanism in brittle matrix composites as 

it significantly increases the fracture energy. Unfortunately, fiber pull out might lower the 

probability of multiple shear band formation in the BMG matrix, hence, preventing any 

further enhancement of the composite ductility. This result, therefore, suggests once 
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again the need for a relative strong interface between the reinforcements and BMG 

matrices to attain high ductility and toughness.  

Fig. 3.9 (b) shows the Ta composite after the tension test. Here, necking around 

fracture region is observed and plastic deformation of the matrix can be inferred, but Ta 

composites are not attractive for structural applications due to their low yield strength 

despite their relatively strong fiber-matrix interfaces.  

 

 

 

Fig. 3.8 Macro uniaxial tensile stress-strain curves for Mo and Ta 80% wire composites. 
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(a) Mo 80% 

 

(b) Ta 80% 

Fig. 3.9 Fracture images of Mo and Ta 80% composites after the tension test. Fiber pull-

out and necking are observed in Mo and Ta, respectively. 

 

 

3.3 Conclusions 

In an attempt to develop bulk metallic glass (BMG) composites with enhanced 

ductility, stainless steel (SS), Mo and Ta wires were incorporated in a BMG matrix via a 

melt infiltration process.  The deformation of the three composites under uniaxial 

compression was studied using an integrated neutron diffraction and finite element (FE) 

approach.  The FE model yielded a reasonable version of in-situ stress-strain plots for 

both reinforcements and the matrix.  It was found that the reinforcements yielded first 

and started transferring load to the matrix which remained elastic throughout the whole 

experiment.  The reinforcements were seen to possess yield strengths lower than their 

monolithic forms, likely due to annealing during processing.  After optimizing material 

properties to fit experimental data, the FE model developed was reasonably successful in 

describing both the macroscopic composite deformation and the lattice strain evolution in 

the reinforcements. 
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Additional experiments were performed in tension using 80% Ta and Mo 

composites.  Both materials exhibited lower yield points in tension compared to those in 

compression.  Furthermore, the Mo composite underwent extensive fiber pull out due to 

the relatively weak fiber-matrix interface.  These results, combined with an analysis of 

the fracture morphology of all composites, allow the following conclusions re. the 

“optimum” wire reinforcement for BMG composites:  (i) high yield strength (but 

preferably lower than that of the matrix);  (ii) high stiffness (so that it can carry most of 

the applied load);  (iii) good ductility (so that it can experience significant plastic 

deformation and trigger multiple shear banding in the BMG matrix); and (iv) relatively 

strong fiber-matrix interface (to allow effective load transfer).  Based on these criteria, 

the W wires appear to be the closest to approach the “ideal” wire reinforcement; however, 

they still suffer from inadequate ductility.  In this regard, the β phase found in in-situ 

composites described in the next chapter offer more options in terms of both 

microstructure control and reinforcement property optimization. 
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CHAPTER 4 

RESULTS AND DISCUSSION:  

MECHANICAL BEHAVIOR AND MODELING  

OF IN-SITU β PHASE COMPOSITES  

 
4.1 In-situ Composite Development and Characterization 

4.1.1 Background: Development of LM2 In-situ Composites 

 Ever since A. Peker and W. L. Johnson developed the Zr41.2Ti13.8Cu12.5Ni10Be22.5 

(Vitreloy 1) bulk metallic glass with a critical cooling rate of about 1K/s in 1993 [1], 

Caltech has investigated many other BMG systems such as Cu47Ti34Zr11Ni8, (Vitreloy 

101), Zr52.5Ti5Cu17.9Ni14.6Al10 (Vitreloy 105), and Zr57Nb5Cu15.4Ni12.6Al10 (Vitreloy 106), 

with a critical cooling rate of about 10 K/s [2-3]. At the same time, several different kinds 

of composites with wire and particulate reinforcements have been processed and have 

successfully shown a significant improvement of ductility [4-5]. In 1999, C. P. Kim and 

W. L. Johnson at Caltech developed the Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 in-situ 

composites (named LM2 by Liquid Metal Technologies) while searching for new BMG 

systems near Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 (Vitreloy 1, also called LM1). Due to chemical 

partitioning during casting, these composites end up with an amorphous matrix similar to 

Vitreloy 1 and a dendritic BCC crystalline phase (called the β phase). Such in-situ 

composites are attractive since they allow microstructure control and avoid interface 

reactions seen in most ex-situ composites. Figs. 4.1 to 4.3 are reproduced from C. P. 

Kim’s Ph.D. thesis and offer phase diagram, microstructure and mechanical property 

information about these composites. 
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Fig. 4.1 Ternary phase diagram that shows phase partitioning between crystalline and 

amorphous phases: C: composite made at Caltech; H: composite made at Howmet; 

M: amorphous matrix; B: BCC β phase [6]. 

 

 

    

Fig. 4.2 Microstructure of two in-situ β phase composites. (C: made at Caltech; H: made 

at Howmet). Bright spots are the BCC dendrite, while dark areas belong to the glassy 

matrix. Note that the magnification is the same in both micrographs, indicating a much 

finer dendrite size in the Howmet material which had been subjected to a higher cooling 

rate [6]. 
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Fig. 4.3 Tensile stress-strain curves of two in-situ composites compared to that of Vit. 1. 

C represents the composite made at Caltech, and H labels the composite made by the 

Howmet Corporation. The finer dendrite size in the latter composite leads to a higher 

yield strength [6]. 

 

 It is clear from Fig. 4.3 that the in-situ composites possess significant ductility 

compared to a monolithic BMG while retaining most of its high yield strength. Fig. 4.2 

and Fig. 4.3 also imply that composites processed at higher cooling rates have finer 

dendritic structures leading toward a higher yield strength. This observation, in turn, 

suggests a unique opportunity to manipulate composite properties by optimizing 

processing conditions. The present study undertook a systematic effort to relate 

microstructure to processing conditions by investigating a wide range of composites. The 

details of microstructure analyses are illustrated in Chapter 5 while this chapter presents 

the effects of processing on mechanical properties and elastic constants.  
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Here, it is important to note that while earlier work on these composites suggested 

a dendrite volume fraction of 25% [6], a more precise digital image analysis performed in 

the present study yielded a value of 40%. This number was obtained from the average of 

40 different micrograph analyses which had a standard deviation of 3.56%. The corrected 

value was employed in the chemical composition analyses.  

 

bcc

BMG

BMG + bcc

BMG

Phase ν
G

[GPa]
E

[GPa]
Composition [at.%]Sample

0.40122.763.3Zr71Ti16.3Nb10Cu1.8Ni0.9B

0.36932.689.2Zr47Ti12.9Nb2.8Cu11Ni9.6Be16.7M

0.37528.678.8Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5C and H

0.35535.997.2Zr41.2Ti13.8Cu12.5Ni10Be22.5Vit1

bcc

BMG

BMG + bcc

BMG

Phase ν
G

[GPa]
E

[GPa]
Composition [at.%]Sample

0.40122.763.3Zr71Ti16.3Nb10Cu1.8Ni0.9B

0.36932.689.2Zr47Ti12.9Nb2.8Cu11Ni9.6Be16.7M

0.37528.678.8Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5C and H

0.35535.997.2Zr41.2Ti13.8Cu12.5Ni10Be22.5Vit1

 

Table 4.1 Composition and elastic constants of LM2 in-situ composites from ref. [6]  

C: composite made at Caltech; H: composite made at Howmet; M: amorphous matrix; B: 

BCC dendrite. (E: Young’s modulus; G: shear modulus; ν: Poisson’s ratio). 

 

 

Table 4.1 exhibits the elastic constants along with the composition of each phase 

in the early LM2 composites in comparison with Vit. 1. Composition analyses were 

performed by a JEOL JXA-73 electron microprobe, which does not detect low Z 

elements such as Be. To obtain the Be content, a common practice is to calculate it from 

the balance of all the other elements so that a total of 100% is reached for the 

composition of a given phase. In the wavelength dispersive spectroscopy (WDS) analysis 

performed with the microprobe, the total composition of all the other elements was very 

close to 100% in the β phase, so it was assumed that no Be exists in this phase. As for the 

matrix, the Be content (16.7%) was calculated from the balance of the other elements. 
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However, this analysis assumed a wrong value for the volume fraction of the matrix 

(75% instead of the correct value of 60% determined in the present study). Therefore, a 

new balance calculation was performed to obtain 20.8% Be in the matrix, resulting in an 

accurate composition of Zr44.7Ti12.2Nb2.7Cu10.5Ni9.1Be20.8, which is very close to the 

composition of Vit. 1 (except for the Nb) and proves once again the similarity between 

the matrix in β phase composites and Vit. 1. 

 Following the development of the LM2 composites, Clausen et al. utilized 

neutron diffraction to investigate the deformation of these composites and the monolithic 

β phase prepared as a reference [7]. In order to estimate the thermal residual stresses in 

the composites, they also performed CTE measurements on the monolithic β phase in a 

dilatometer with a heating rate of 3°C /min up to 350°C. The sample was cooled down 

after being held at 350°C for 30 minutes at the same rate used during heating. When this 

heat-treated β phase sample was loaded during neutron diffraction, an unexpected 

behavior was observed: the specimen stiffened over 50% while becoming extremely 

brittle (Fig. 4.4).  

 While the as-cast monolithic β phase started to yield around 600 MPa and had a 

Young’s modulus of 64 GPa, it stiffened up to 100 GPa and remained elastic throughout 

loading after the heat treatment. This unexpected behavior triggered a systematic study of 

the deformation behavior and phase evolution in β phase composites presented in this 

thesis. Overall mechanical properties are discussed in Chapter 4, and phase evolution and 

microstructure are explained in Chapter 5 in more detail. 
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         (a) Before CTE measurement 

 

       (b) After CTE measurement 

 

Fig. 4.4 Neutron diffraction data of monolithic β phase before and after CTE 

measurement up to 350°C. The Young’s modulus jumps from 64 to 100 GPa while the 

material becomes brittle. The neutron diffraction patterns are shown in Fig. 5.9. 
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4.1.2 System Optimization and Physical Properties of LM2A2 In-situ Composites 

 Following the development of the LM2 (Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5) in-situ 

composites, Liquid Metal Technologies continued new composite development and 

arrived at LM2A2 (Zr56.2Ti11.3Nb7.5Cu6.9Ni5.6Be12.5) as a better material. The only 

compositional difference between LM2 and LM2A2 is in the Ti and Nb content (5% vs. 

7.5% Nb at the expense of Ti). Despite this small difference, the thermal stability and 

ductility of LM2A2 surpass those of LM2 significantly. For example, as shown in Fig.4.5, 

the ductility increased to 14% from 8% total strain while maintaining the same level of 

yield strength above 1400 MPa. 
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   (a) LM2                                                       (b) LM2A2 

Fig. 4.5 Compressive tests of LM2 (~8% total strain) and LM2A2 (~14% total strain) in-

situ composites (courtesy of Liquid Metal Technologies). 
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 In the present study, the LM2A2 (Zr56.2Ti11.3Nb7.5Cu6.9Ni5.6Be12.5) composite was 

used for heat treatment and mechanical tests. Here, in addition to the composite, 

monolithic β phase and monolithic glass samples were studied as reference materials for 

the reinforcement and matrix, respectively. Their compositions were determined by an 

electron microprobe analysis of the composite. A minimum of six different locations 

were probed in each phase of the composite to arrive at the data displayed in Table 4.2 

below. As with LM2, the Be content was determined by balance. Note that the β phase 

contains no Be since the total of the other elements approached 100%. As for the matrix, 

the measured volume fractions of each phase (40% for the reinforcements and 60% for 

the matrix) were used to calculate its composition from the conservation of mass 

principle. Notice that the matrix composition (Zr42.2Ti9.4Nb3.2Cu13.7Ni10.7Be20.6) is quite 

similar to that of Vitreloy 1 (Table 4.2) except for the Nb. It is not surprising, therefore, 

that the elastic constants of the matrix material are also close to those of Vitreloy 1.  

 

 

bcc

BMG

BMG + bcc

BMG

Phase ν
G

[GPa]
E

[GPa]
Composition [at.%]Sample

0.402262Zr71.1Ti13.1Nb13.4Cu1.6Ni0.8B

0.363595Zr42.2Ti9.4Nb3.2Cu13.7Ni10.7Be20.8M

0.372878Zr56.2Ti11.3Nb7.5Cu6.9Ni5.6Be12.5C

0.363697Zr41.2Ti13.8Cu12.5Ni10Be22.5Vit1

bcc

BMG

BMG + bcc

BMG

Phase ν
G

[GPa]
E

[GPa]
Composition [at.%]Sample

0.402262Zr71.1Ti13.1Nb13.4Cu1.6Ni0.8B

0.363595Zr42.2Ti9.4Nb3.2Cu13.7Ni10.7Be20.8M

0.372878Zr56.2Ti11.3Nb7.5Cu6.9Ni5.6Be12.5C

0.363697Zr41.2Ti13.8Cu12.5Ni10Be22.5Vit1

 

Table 4.2 Composition and elastic constants of LM2A2 in-situ composites and the 

corresponding monolithic versions of its components. (C: composite; M: monolithic 

matrix glass; B: monolithic β phase alloy).  
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4.2 Tensile and Compressive Stress-Strain Behavior of LM2A2 

Composites 

4.2.1 Tensile Tests of Heat Treated LM2A2 
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Fig. 4.6 Tensile stress-strain plots of monolithic β phase heat treated at 300°C. 
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Fig. 4.7 Tensile stress-strain plots of β phase composite heat treated at 300°C. 
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 Figs. 4.6 and 4.7 show tensile stress-strain curves for monolithic β phase and 

composite, respectively, as a function of heat treatment at 300ºC. These figures were 

obtained directly from an extensometer attached to samples during in-situ synchrotron 

diffraction experiments at APS. It is clear that as heat treatment holds increase, there is a 

gradual reduction of ductility in both the monolithic β phase and the composite. 

Synchrotron diffraction data of all heat treated composites show peak broadening 

of the BCC peaks from the reinforcement, and indicate no crystallization of the matrix. 

As will be explained in more detail in Chapter 5, it is reasonable to conclude that the 

observed dramatic changes in the composite behavior as a function of heat treatment are 

mostly due to changes in the reinforcement. Specifically, it appears that when the β phase 

becomes more brittle, so does the composite. This observation suggests an important 

conclusion that the inherent ductility of the reinforcement is crucial for the overall 

composite ductility and may be even more important than the geometric effect of shear 

band blocking in the matrix by β phase dendrites. Some preliminary work was performed 

to image the interactions between matrix shear bands and dendritic reinforcements (see 

Figs. 4.8 – 4.10). The shear bands appear to run between dendrites and are somehow 

multiplied due to a combined effect of yielding in the dendrites and their geometric 

constraint on the matrix. It is shown below that the β phase yields first and then triggers 

shear banding in the matrix, but the micromechanical details of this process are not well 

understood at the moment. This is suggested as an important future study since it is 

important to fully appreciate the micromechanical deformation mechanisms in these 

composites before their properties can be further enhanced. 
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One last comment before concluding this section: The embrittlement of β phase 

composites during heat treatment appears to be more severe in tension compared with 

compression, confirming the general trend observed in these BMG composites (as well as 

others) that they are usually more ductile in compression. While some composites were 

later discovered to contain processing-induced pores that act as stress concentrators (such 

as the β phase composites quenched in water or cast in a Cu mold), the overall lack of 

tensile ductility is still an important problem to address in BMG composites.  

 

 

 

     

 

Fig. 4.8 Tensile sample geometry and fracture image of an as-cast β phase composite 

after necking in the middle of sample. 
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                                                                        20 µm 

 

 

 

Fig. 4.9 Successive SEM images taken from the same region of the tensile test sample 

shown in Fig. 4.8. Shear bands are visible as dark lines.  
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Fig. 4.10 Surface displacement field in the deformed β phase composite shown in Fig. 4.9 

obtained from digital image processing (in collaboration with Rockwell Scientific). 

Although the resolution is limited, the image suggests a general tendency of vertical 

deformation (along the loading direction) and some Poisson effect. 
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4.2.2 Compressive Tests of Heat Treated LM2A2 

 Compressive tests were performed on a screw-driven load frame (Instron 4204) at 

Caltech. The results are illustrated in Figs. 4.11 – 4.14. Figs. 4.11 and 4.12 show a similar 

trend with heat treatment as that observed in tensile tests: both the monolithic β phase 

and composite samples became more brittle as the heat treatment holds increased. Note 

that the as-cast versions of both samples were quite ductile and did not fracture during the 

tests despite significant deformation (Fig. 4.14). In order to ensure that the embrittlement 

is purely a reinforcement effect, monolithic glass samples (of the same composition as 

that found in the matrix) were heat treated at 340°C and tested under compression (Fig. 

4.13). Those tests yielded virtually identical results and showed no embrittlement of the 

glass. Additional X-ray diffraction confirmed that there was no crystallization. It can be 

concluded, therefore, that heat treatment led to embrittlement in composites, and that this 

is largely due to the embrittlement of the β phase reinforcements. 
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Fig. 4.11 Compressive stress-strain curves of monolithic β phase heat treated at 340°C. 

Note that the as-cast specimen did not fracture during the test. 
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Fig. 4.12 Compressive stress-strain plots of β phase composites heat treated at 340°C. 

Here the as-cast specimen did not fracture in the duration of the test. 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

500

1000

1500

2000

Glass Matrix Compressive Test

 

 

S
tre

ss
 [M

P
a]

Strain [%]

   No H.T
   4hr H.T
 16hr H.T

 

Fig. 4.13 Compressive stress-strain curves of monolithic glass heat treated at 340°C. 
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Fig. 4.14 Compression samples (6 mm diam. x 14.4 mm length) after testing (left to 

right): as-cast monolithic β phase, same material after 16 hr HT, as-cast composite, and 

the same material after 16 hr HT. 

 

4.2.3 Ultrasonic Sound Velocity Measurement of Elastic Constants 

To quantify another important property evolution during heat treatment, all 

samples mentioned above were subjected to ultrasonic tests to measure their elastic 

constants. The results are listed in Tables 4.3 – 4.5. The shear modulus of the β phase 

increased from 22 GPa to 32 GPa (a 45% increase), while that of the composite changed 

from 27 GPa to 33 GPa (a 22% increase). Similar changes were also seen in the Young’s 

modulus, whereas the Poisson’s ratio remained largely constant or decreased slightly in 

both samples. On the other hand, heat treatment had less effect on the elastic constants of 

the monolithic glass matrix.  

Therefore, it can be concluded that the stiffening of the composite can mostly be 

attributed to the stiffening of the reinforcement. This result is similar to the effects of heat 

treatment on ductility, and once again, proves that dramatic changes in the β phase 

reinforcement are leading to significant changes in the mechanical properties of the 

composite during heat treatment. 
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0.370.380.40 ν (Poisson's ratio)

887862 E (Young's Modulus, GPa)

322822 G (Shear Modulus, GPa)

16 hr H.T.4 hr H.T.No H.T.

0.370.380.40 ν (Poisson's ratio)

887862 E (Young's Modulus, GPa)

322822 G (Shear Modulus, GPa)

16 hr H.T.4 hr H.T.No H.T.

 

Table 4.3 Ultrasonic sound velocity measurements of the elastic constants of monolithic 

β phase as a function of heat treatment at 340ºC. 

 

0.36 0.37 0.39 ν (Poisson's ratio)

89 8374 E (Young's Modulus, GPa)

33 3027 G (Shear Modulus, GPa)

16hr H.T.4 hr H.T.No H.T.

0.36 0.37 0.39 ν (Poisson's ratio)

89 8374 E (Young's Modulus, GPa)

33 3027 G (Shear Modulus, GPa)

16hr H.T.4 hr H.T.No H.T.

 

Table 4.4 Ultrasonic sound velocity measurements of the elastic constants of in-situ 

composites as a function of heat treatment at 340ºC. 

 

0.360.360.36ν (Poisson's ratio)

1019998E (Young's Modulus, GPa)

373736G (Shear Modulus, GPa)

16 hr H.T.4 hr H.T.No H.T.

0.360.360.36ν (Poisson's ratio)

1019998E (Young's Modulus, GPa)

373736G (Shear Modulus, GPa)

16 hr H.T.4 hr H.T.No H.T.

 

Table 4.5 Ultrasonic sound velocity measurements of the elastic constants of monolithic 

glass as a function of heat treatment at 340ºC. 
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4.3 In-situ Loading Experiments 

4.3.1 Compressive Loading Behavior during Neutron Diffraction of As-cast 

Specimens 

4.3.1.1 Introduction 

In this section, a detailed investigation of the deformation mechanisms in β phase 

composites is presented. First, relevant previous work is reviewed. The dendritic structure 

of the β phase has been shown to inhibit the formation of macroscopic shear bands in the 

matrix which cause sudden failure in monolithic BMGs. The mechanical properties of the 

BMG/β phase composites have previously been characterized via macroscopic 

measurements, such as determination of elastic constants by ultrasound and conventional 

tension and compression, as well as Charpy impact testing [8-10]. It was found that the β 

phase leads to the formation of multiple shear bands in the BMG matrix with a similar 

spacing to that of the secondary dendrites in the β phase. However, neither the underlying 

deformation mechanisms nor the load sharing in the composite could be determined in 

these studies. There was some speculation that plastic deformation via dislocation slip, 

twinning or a stress-induced phase transformation in the β phase might play a role. Since 

the β phase composites offer an attractive venue to manipulate microstructure and 

optimize the mechanical properties of BMG matrix composites, it is important to 

understand their effective deformation mechanisms. 

In the present study, neutron diffraction was used, aided by self-consistent 

modeling, to investigate the in-situ deformation of a BMG/β phase composite and a β 

phase monolith during compressive loading. Neutron diffraction allows for in-situ bulk 

measurements of internal strains in crystalline materials [11-12], and is ideal for 
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composite systems as it is phase specific. Although the amorphous nature of BMG 

precluded its analysis by Bragg diffraction, the crystalline β phase could be used as an 

internal “strain gauge.” Then, by combining the diffraction data for the β phase with 

model predictions of the composite behavior, it was possible to infer the in-situ behavior 

of the BMG matrix. Moreover, the neutron diffraction data could identify the nature of 

the deformation mechanism in these composites. 

 

4.3.1.2 Experimental Procedure 

Specimens were prepared by alloying high purity Cu (99.999 %), Ni (99.995 %), 

Ti (99.995 %), (all from Cerac, Inc., Milwaukee, WI 53201), Nb (99.8 %, from Alfa 

Aesar, Ward Hill, MA 01835), Zr (with less than 300 ppm oxygen content from Teledyne 

Wah-Chang Inc., Albany, OR 97321), and Be (99.99 %, from Electronic Space Products 

International, Ashland, OR 97520). The alloys were prepared as 25 g rods of roughly 

cylindrical geometry by plasma arc melting in a Ti-gettered argon atmosphere on a water-

cooled copper plate. The molten alloy was then undercooled to a temperature range 

between the liquidus and solidus for a given composition [8]. This led to the chemical 

partitioning of the undercooled liquid into a solid (crystalline metal dendrites - the β 

phase, about 40 vol.%) and a liquid phase with a different composition.  The liquid phase, 

depleted of the elements going into the β phase, attained the composition of a BMG 

forming alloy (approximately Vitreloy 1). Cooling of the remaining liquid thus resulted 

in the formation of an amorphous matrix around the crystalline phase. In addition to the 

composite, a monolithic β phase sample with the same chemical composition found in the 
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dendrites of the composites was prepared by the arc melting procedure described above, 

except that there was no high-temperature hold used in the chemical partitioning step.   

In-situ compression testing was performed on the specimens while neutron 

diffraction data were collected in the NPD and SMARTS diffractometers at the Lujan 

Neutron Science Center, Los Alamos National Laboratory.  All specimens were 

cylindrical with a 6 mm diameter and 14.4 mm length (aspect ratio = 2.4).  The setups of 

NPD and SMARTS permit the collection of multiple diffraction patterns simultaneously. 

Load frames specially constructed for these instruments allow the scattering vectors for 

the two 2θ = ±90º banks to be oriented parallel and perpendicular to the loading axis. 

This provides simultaneous measurement of the longitudinal and transverse lattice strains. 

Using the time-of-flight technique, diffraction patterns within a d spacing range of 0.5 to 

4 Å were collected (see Fig. 4.15) and the Rietveld method [13-15] was employed to 

determine an average lattice strain in the β phase based on changes in its lattice parameter. 

The reported lattice strains were calculated relative to the lattice parameter at a nominal –

5 MPa compression needed to hold the sample in the load frame. In this study, results 

obtained from two samples are presented: a BMG/β phase composite and a monolithic β 

phase specimen.   
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 (a) Composite (b) Monolithic β phase 
Fig. 4.15 Diffraction patterns parallel to the loading axis for: (a) the composite sample 

and (b) the monolithic β phase sample.  The raw data are shown as crosses fit with the 

Rietveld model.  The lower curve exhibits the difference between the two.  The sharp 

Bragg reflections in both patterns are from the BCC β phase (with a lattice constant of 

about 3.50 Å).  In the composite (a), the presence of the amorphous BMG matrix is 

apparent from the undulating background. 

 

4.3.1.3 Neutron Diffraction Data 

Diffraction patterns parallel to the loading axis for both samples are shown in Fig. 

4.15. In these patterns, the BCC structure of the β phase is clearly evident. The pattern for 

the composite, Fig. 4.15(a), shows a wavy background due to the amorphous matrix. The 

weighted fitting residuals, Rwp, for all Rietveld refinements were around 0.05 to 0.07 

suggesting a good match between the data and the Rietveld model. Throughout the study 

(in both the monolithic and composite forms), the β phase was successfully described 

with the space group, Im3m (BCC). This result eliminates the possibility of a stress-

induced phase transformation in this phase (at least within the ~3-5 wt.% detection limit 

of neutron diffraction).   

The macroscopic longitudinal deformation of both samples was monitored by an 

extensometer during the neutron diffraction experiments (see Figs. 4.16(a) and 4.17(a) 
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below). Although there is some nonlinearity in the low stress regions (likely due to 

settling of samples on the compression platens and/or some bending), the data obtained in 

this study match previous results. The stiffness of the monolithic β phase sample obtained 

from the extensometer data was around 70 GPa, comparable to the literature value of 63 

GPa [10]. The macroscopic stiffness of the composite was 74 GPa, again close to the 

literature value (79 GPa in [10]). The deviations are attributed to sample and 

extensometer mounting and sample bending during loading, since as described below, the 

Young’s modulus and Poisson’s ratio of the β phase calculated from the bulk-averaged 

neutron data were within 7% of the literature values.   

 

4.3.1.4 Lattice Strains and Elastic Anisotropy 

The neutron diffraction data were analyzed using both the whole-pattern Rietveld 

refinement method [13-15] and single peak fits. Within the Rietveld technique, a crystal 

structure model is fit to the entire diffraction pattern and the lattice parameters 

determined yield an average strain value for a given phase. Single peak fits to individual 

reflections, on the other hand, provide information about lattice plane specific elastic and 

plastic behavior and are used in self-consistent model calculations. 

Self-consistent (polycrystal deformation) models (SCM) [16-17], can predict the 

lattice plane specific Young’s modulus and Poisson’s ratio, also known as the diffraction 

elastic constants (DECs), with good accuracy [11,18-20]. These calculations require as 

input only the single crystal stiffnesses of the material. Within the SCM scheme the 

polycrystal is regarded as an agglomerate of ellipsoidal grains whose properties are 

determined by the single crystal properties (elastic and plastic) of the material. 



 66
Interactions between grains are modeled using the Eshelby theory [21] where each grain 

is embedded in a matrix (or “equivalent medium”) with the average properties of the 

polycrystal. Direct comparison of SCM predictions with diffraction experiments is 

possible via weighted averages of elastic strains in grains that are oriented with given 

lattice plane normals parallel to the scattering vector used in the experiment (see 

references [16-17] for further details). In the present work a “reverse” approach was 

followed, namely the SCM was used for the first time in combination with a least squares 

fitting program to determine the single crystal stiffnesses of the β phase based on its 

measured DECs. This approach is similar to that of Gnäupel-Herold et al. [22] who used 

Voigt, Reuss and other classical models, except that the SCM enables one to take into 

account the effects of the orientations and the finite size of the detectors in diffraction 

experiments. This is especially critical when the material is highly anisotropic, as is 

demonstrated below for the β phase.  

The input data for the calculation of the single crystal stiffnesses of the β phase 

were the slopes of linear fits to the elastic region of the loading curves (up to about –600 

MPa) in Fig. 4.16(b). The results of the calculation (Table 4.6) show that the β phase has 

a relatively low Young’s modulus, but large elastic anisotropy leading to elastic constants 

that vary significantly with crystallographic orientation. This can also be deduced from 

the spread of slopes in the elastic portions of the loading data in Fig. 4.16(b). 
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β phase ER 
(GPa) νR ES 

(GPa) νS C11 
(GPa)

C12 
(GPa) 

C44 
(GPa) A 

This study 59(1) 0.37(1) 59(2) 0.37(2) 90(2) 68(2) 33(1) 3.0 

 

Table 4.6 Elastic constants for the β phase monolith determined from neutron diffraction 

data. Subscript “R” refers to Rietveld refinements and indicates elastic constants obtained 

from changes in lattice constants as a function of applied stress.  Here, the error bars are 

based on linear fits to the neutron data.  Subscript “S” refers to data from single peak fits 

which also employed the self-consistent model.  The errors in this case are based on the 

least squares fitting routine.  A is the anisotropy ratio:  2C44/(C11–C12). 

 

    

 (a) (b) 
Fig. 4.16 Measured and calculated response of the monolithic β phase sample to applied 

compressive stress: (a) macroscopic strain along the loading axis; and (b) lattice plane 

specific elastic strain (symbols designate neutron data while lines are SCM predictions; 

(here, “L” and “T” indicate longitudinal and transverse directions, respectively).  The 

difference between measured and calculated macroscopic stiffness shown in (a) is likely 

due to extensometer problems.  This claim is supported by the fact that the diffraction 

data in the elastic region is in good agreement with model calculations as shown in (b). 
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4.3.1.5 Self-Consistent Modeling of Plastic Deformation 

The single peak data also revealed information about the plastic anisotropy in the 

β phase. Since the 110, 211 and 321 reflections of cubic material are elastically identical, 

they are a good indicator of the onset of plasticity as they split after yielding due to their 

plastic anisotropy:  beyond –600 MPa in the β phase monolith (see Fig. 4.16(b)) and 

beyond –1000 MPa in the composite (see Fig. 4.17(b)).  To understand the in-situ plastic 

deformation of the composite, the SCM calculations were extended into the plastic 

regime. 

    
 (a) (b) 

Fig. 4.17 (a) Comparison of measured (by extensometer) and calculated (SCM) 

macroscopic stress-strain curve for the composite sample.  (b) Comparison of measured 

(symbols) and calculated (lines) lattice specific stress-strain curves for the β phase in the 

composite sample (“L” and “T” indicate longitudinal and transverse directions, 

respectively).   

 

Modeling the deformation of a dendritic second phase in a composite is 

challenging due to the difficulty of assigning a representative geometry to accurately 
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describe dendrites. For this reason, some studies have employed approximate shapes in 

the form of a cylinder with a certain aspect ratio and used the finite element method [23] 

or have chosen a sphere in a mean field model [24]. In the present work, the β phase 

dendrites were approximated as spheres and a new self-consistent polycrystal 

deformation model was developed to describe the mechanical behavior of the β 

phase/BMG composites. A recent study [25] confirmed that the shape of β phase 

dendrites in a BMG composite does not influence the overall SCM predictions and that a 

sphere is a good approximation of a dendrite in this model. 

Two new approaches were adapted in this study while performing SCM 

calculations. The first one was described earlier and involved a “reverse” calculation of 

the single crystal elastic constants starting from lattice plane dependent DECs via a least 

squares fitting. The second new addition to the SCM was the inclusion of a second phase 

to represent the BMG matrix. Here, the self-consistent polycrystal deformation model of 

Turner and Tomé [17] was improved so that the deformations of both the β phase and the 

BMG matrix were accounted for. The basic approach was to use the measured 

macroscopic stress-strain curve of the composite to refine its yielding and hardening 

behavior. To further validate the model, its lattice plane specific predictions were then 

compared to diffraction data from the β phase inside the composite. 

First, the elastic-plastic deformation of the monolithic β phase was evaluated. The 

reader is referred to [16-17] for the description of the ‘traditional’ SCM based on 

dislocation slip in crystalline grains. Despite some problems with the extensometer data, 

reasonable fits to both the macroscopic strains and the lattice plane specific diffraction 

data were obtained (see Fig. 4.16). Overall, the monolithic β phase was found to have a 
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uniaxial yield stress of –610 MPa. This corresponds to an initial critical resolved shear 

stress of –300 MPa, which is the threshold shear stress used in the crystal-plasticity-based 

self-consistent models. Its strain hardening coefficient was found to be zero. It should be 

noted that the macroscopic data were used to determine the onset of non-linearity in the 

stress-strain plot which is independent of any systematic error in the extensometer data. 

The SCM calculations employed this information to evaluate the initial critical resolved 

shear stress. Similarly, the high plastic region (beyond –1.5% total strain in Fig. 4.16(a)) 

of the macroscopic stress-strain plot was fit by the model to obtain the strain hardening 

parameter. 

The extensometer behaved more satisfactorily during the testing of the composite 

(Fig. 4.17(a)). Here, the metallic glass matrix was modeled as an isotropic continuum, i.e., 

without the elastic and plastic anisotropy found in the crystalline β phase. For the BMG, 

the von Mises (or J2) yield criterion was assumed, which was shown by Lowhaphandu et 

al. [26-27] to be a good approximation of the plastic behavior of most BMG alloys. Since 

this is the first time that polycrystal plasticity and continuum mechanics have been 

combined in the rate independent SCM formulation, some alterations were needed to the 

model, mainly for the calculation of the elastic-plastic stiffness tensor (also known as the 

tangent stiffness tensor) of the BMG. These calculations were based on the J2 theory 

described in detail in [28]. 

The β phase was modeled as a set of 10,000 single crystals with different 

orientations and the inherent single crystal stiffnesses and slip systems of the BCC crystal 

structure. The BMG was introduced into the model as an isotropic single grain weighted 

with the appropriate ratio of the volume fractions of the matrix and β phase. In this 
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formulation, the BMG still interacted with the average composite matrix (also known as 

the “equivalent medium”), as did the β phase grains. Further details of the model are 

presented in [29]. 

The results of the SCM calculations for the composite sample are shown in Fig. 

4.17. The macroscopic predictions of the model were accurately fit to the measured 

composite stress-strain curve (Fig. 4.17(a)) using the initial BMG yield stress, the initial 

critical resolved shear stress for the β phase, and the hardening behavior of the BMG as 

variables. The single crystal elastic constants for the β phase used in the composite 

calculations were determined from the monolithic β phase sample. The Young’s modulus 

and Poisson’s ratio for the BMG matrix were taken from ref. [10]. The β phase was 

treated as non-hardening (or perfectly plastic, similar to the case for the monolithic β 

phase). This is consistent with the observation that the stress vs. elastic (lattice) strain 

curves for the β phase in the composite become vertical after yielding (see Fig. 4.17(b)). 

The reader should note that another mechanism that would lead to such behavior in the β 

phase is its complete debonding from the BMG matrix.  So far, no large scale debonding 

at β phase/matrix interfaces has been observed [10]. 

As seen in Fig. 4.17(a), the agreement between the model and data on the 

macroscopic scale is good. The initial critical resolved shear stress for the β phase was 

estimated as –325 MPa, and the initial von Mises critical shear stress of the BMG was 

found to be –800 MPa. These values are somewhat different from those for the monoliths 

(–300 MPa for the monolithic β phase and a literature value of about – 31600  = –924 

MPa, i.e., tensile yield stress divided by 3  for the matrix [10]). It is possible that 

thermal residual stresses developed in the composite during processing altered the 
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“apparent” yield points of each phase. If so, this would suggest an initial tensile 

longitudinal residual stress in the β phase and a compressive stress in the BMG.   

 The hardening behavior of the BMG was modeled with a Voce-type exponentially 

decreasing hardening function (often used in the traditional SCM [17]):  
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where τ0 is the initial critical shear stress, pε  is the equivalent plastic strain (the 

hardening parameter), τ1 is the width of the transition range, θ0 is the hardening slope at 

the initial shear stress and θ1 is the hardening slope at the end of the transition range. The 

hardening modulus of the BMG was found to change from an initial value of 52 GPa (θ0) 

at an initial critical shear stress of –800 MPa (τ0) to a final value of 1 GPa (θ1) over an 80 

MPa range (τ1). The hardening parameters were determined by trial-and-error 

calculations which yielded an error bar of less than 3%. 

To further validate the model, its lattice plane dependent estimates were compared 

with the diffraction data (Fig. 4.17(b)). The model predicts the elastic region with good 

accuracy. The predictions are also satisfactory in the plastic region except that beyond –

1200 MPa the measured data show a slight reversal in the elastic strain, whereas the 

model exhibits saturation. The SCM estimates also compare very well to the transverse 

strain data. Overall, the agreement between the model predictions and the neutron data is 

quite satisfactory and comparable to SCM predictions for other materials [11,16,20]. 

Fig. 4.18 shows the calculated in-situ behavior of each phase in the composite as 

well as the composite average. The calculated in-situ stiffnesses for the β phase and the 

matrix are 61 and 89 GPa, respectively. These values compare very well to those reported 
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in the literature. Szuecs et al. [10] studied monolithic β phase and metallic glass 

(prepared under identical conditions to those used in the present study) and reported 

Young’s moduli of 63 GPa for the β phase and 89 GPa for the BMG monolith. Similarly, 

the composite modulus predicted by the SCM model (81 GPa) is comparable to the value 

measured by the extensometer and to that obtained by Szuecs et al. (~ 79 GPa) [10].   

The current results clearly show that it is the β phase that yields first during the 

loading of a BMG/β phase composite. A possible scenario that follows is that the load 

transfer to the BMG matrix that succeeds the yielding of the β phase and/or the stress 

concentrations generated at the intersection of slip bands in the β phase and the 

matrix/particle interface induce multiple shear bands in the BMG matrix. Such shear 

bands have indeed been observed in β phase/BMG composites subject to plastic strain [8-

10]. The multiple shear bands in the BMG enhance its ductility and damage tolerance as a 

single, catastrophic shear band is avoided. It should be noted that contrary to its 

monolithic behavior, the BMG does appear to strain harden in the composite (see Fig. 

4.18), which is likely related to the generation of multiple shear bands in it. In the present 

study, calculations (not reported here) showed that agreement between the self-consistent 

model and experimental data was not possible without including strain hardening in the 

BMG. The details of the micromechanics of multiple shear band generation in β 

phase/BMG composites, however, are still unclear and subject to future investigations. 
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Fig. 4.18  Calculated in-situ behavior (phase stress vs. phase strain) for the composite. 

The arrows indicate the yield points in the β phase (about –650 MPa) and the BMG 

matrix (around –1350 MPa). The solid line (“macro”) designates the composite behavior. 

The in-situ Young’s moduli for each phase are also shown. 

 

4.3.1.6 Texture Evolution in the β Phase 

The previous discussion established that the dislocation slip based plasticity of the 

β phase plays a significant role in the ductility of BMG/β phase composites. Moreover, 

the diffraction data showed that there was no detectable stress-induced phase change 

upon loading the β phase. This section deals with the last possible deformation 

mechanism in the β phase:  twinning. 

If a crystalline metal is subjected to plastic deformation, it is expected that texture 

will develop in it. For instance, Pang et al. [30] reported changes in peak intensities 

reaching 50% for the 111 and 220 reflections in an FCC stainless steel sample deformed 

by dislocation slip up to 8% in tension. If plastic deformation is governed by twinning, a 

much larger and abrupt shift in peak intensity is to be expected. Brown et al. [31] 
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demonstrated peak intensity changes of 100% or more, even with some peaks totally 

disappearing and new ones appearing in U - 6 wt.% Nb alloys that deform by twinning. 

Furthermore, the two plastic deformation modes, slip and twinning, lead to different 

texture developments in the material depending on the nature of active slip or twin 

systems. 

Fig. 4.19 exhibits the change in the measured peak intensities in the β phase 

parallel to the loading axis for the two samples as a function of applied stress. This 

provides a qualitative description of texture development since more detailed texture data 

(which requires diffraction patterns in multiple orientations) are not available at present. 

The expected texture development during uniaxial compression of a BCC metal due to 

crystallographic slip is combined <111> and <100> fiber texture [32] along the 

compression axis (the <111> component being the strongest). This is exactly opposite of 

what is expected for FCC metals due to the relationship between slip planes and slip 

vectors in BCC and FCC crystal structures [32]. Based on the reported peak intensity 

changes [30] and the plastic deformation of the monolithic β phase sample, one would 

expect no more than 40% change in the intensity of the 222 (111 is not an allowed 

reflection in the BCC crystal structure) and 200 reflections of the β phase if its plastic 

deformation were entirely due to dislocation slip. The experimental data for the 

monolithic sample (see Fig. 4.19(b)) indeed show a change of about 40% for the 200 

reflection, but unfortunately the intensity of the 222 reflection was too weak to be 

analyzed using single peak fits. The changes in peak intensity seen for the 200 

(increasing) and 110 (decreasing), too, are consistent with that of plastic deformation by 

dislocation slip as described in [32]. The large increase of the 321 peak intensity in the 
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composite is not seen in the monolithic sample and could be an indication of slightly 

changed slip pattern in the β phase inside the composite due to the additional constraints 

by the BMG matrix. In conclusion, the present data lend support to a dislocation slip 

based deformation in the β phase, although a minor contribution from twinning cannot be 

entirely discounted. Additional studies are underway to further clarify texture 

development in monolithic β phase and β phase/BMG composites subject to large plastic 

deformation. 

 

    

 (a) (b)  

Fig. 4.19 Development of peak intensity parallel to the loading axis as a function of 

applied stress in the β phase for:  (a) the composite, and (b) the monolithic β phase.   

 

4.3.1.7 Summary of the Deformation Mechanism in As-cast Composites 

The compressive deformation of as-cast in-situ composites was investigated with 

neutron diffraction and self-consistent modeling (SCM) for the first time. Previous 

studies [10] had proposed several deformation mechanisms for the β phase including 
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stress-induced phase transformations, twinning and dislocation slip. The neutron 

diffraction data conclusively showed that no detectable phase transformations were 

present as the β phase remained BCC during its deformation in both monolithic and 

composite forms. Furthermore, the low degree of texture development observed 

suggested that twinning was not a dominant deformation mechanism. This left dislocation 

slip as the only active deformation mode in the β phase. This conclusion was also 

supported by the fact that the SCM calculations, that considered only dislocation slip in 

the β phase, showed good agreement with the lattice plane specific diffraction data. 

The successful fitting of model predictions with diffraction data allowed the 

deduction of the mechanical properties of the β phase, both as a monolith and inside a 

metallic glass matrix. It was shown that the β phase is highly anisotropic in the elastic 

regime (with an anisotropy ratio reaching 3.0), has a uniaxial yield point of about –600 

MPa and plastically deforms by dislocation slip. The β phase was seen to largely retain 

these properties inside a metallic glass matrix. The SCM predictions also yielded insight 

into the load sharing behavior of the two phases in the composite. It was demonstrated 

that, upon loading, the β phase yields first (around –600 to –700 MPa), then starts 

transferring load to the matrix. The BMG matrix enters the “plastic” regime around         

–1400 MPa by presumably initiating multiple shear bands. It is speculated that the plastic 

deformation of the dendritic β phase somehow triggers shear banding in the matrix. 

However, the detailed micromechanical description of this process is still lacking and is 

subject to future studies. 

 



 78
4.3.2 Tensile Loading Behavior of As-cast Specimens during Synchrotron X-ray 

Diffraction  

X-ray diffraction using an area detector yields multiaxial strain and texture 

information. To exploit this feature of XRD several in-situ tensile tests were performed at 

APS with high energy X-rays (80 keV). Cyclic loading was applied up to 4.3% total 

strain, and the first two cycles analyzed so far with the Rietveld method are shown in Fig. 

4.20. It is seen that as the β phase starts yielding, it experiences progressively 

compressive lattice strain. Future work will attempt to compare these data with the 

predictions of the self-consistent model presented above. Due to its multiaxial nature, the 

synchrotron data are expected to offer a more rigorous test for the model.  
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Fig. 4.20 Macro stress-strain curve (left) and synchrotron X-ray diffraction data (lattice 

strain in the β phase - right) from an as-cast composite under cyclic tensile loading. 
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4.4 Effect of Heat Treatment on In-situ Composites 
The preceding sections established that the mechanical behavior of the in-situ 

composites is largely controlled by the dendritic reinforcements. The combined neutron 

diffraction – self-consistent modeling study showed that in the as-cast form, the β phase 

deforms by dislocation slip. On the other hand, heat treatment led to significant 

embrittlement in both the composite and the monolithic β phase. As will be shown in 

Chapter 5, heat treatment appears to induce ordering in the β phase. Such an effect of 

ordering on alloy ductility is a commonly observed phenomenon. Fig. 4.21 illustrates the 

effect of atomic bonding on the Peierls-Nabarro force encountered by moving 

dislocations. Here, the size of the dislocation width (W) is dependent upon the 

directionality of the bonding. W is large in a typical ductile metal (due to limited 

directional bonding), while it is usually small when ordering, or directional bonding is 

present (also in ceramics). As a result, the Peierls-Nabarro force encountered by a gliding 

dislocation is expected to be much larger in ordered alloys [33]. When dislocation motion 

is hindered, it is possible that the other competing deformation mechanism, namely 

twinning, may become active in the heat treated (and ordered) β phase. The ongoing 

analysis of the in-situ deformation data from diffraction experiments may shed light on 

this issue.  In any case, however, dislocation slip will be hindered and the alloy will 

become more brittle. 

Another interesting effect of ordering in the heat treated β phase is its stiffening. 

To gauge its influence on the composite behavior, some parametric studies were 

performed using the self-consistent model presented earlier. Fig. 4.22 exhibits some of 

the results of these studies. It is clear that as the β phase stiffens, the overall ductility of 
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the composite decreases dramatically. This result proves, once again, the need for soft, 

compliant dendrites to achieve high ductility in these composites. 

 

 

   
WBefore slip After slipWBefore slip After slip

 

 

W

a

b

WW

aa

bb

 

Fig. 4.21 Schematic of dislocation width for a ceramic or ordered metal (top) and a 

typical ductile metal (below). 
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Fig. 4.22 Self-consistent model calculation of composite (top) and phase-specific stress-

strain plots (bottom) by varying the relative Young’s moduli of the amorphous matrix 

and the β phase reinforcements. In the as-cast composites, Ematrix / Ebeta phase ~ 1.5. The 

calculations employed the constitutive relations shown in Fig. 4.18 and assumed 25 

vol.% dendrites.  In the top figure, a clear trend is observed towards lower ductility (as 

quantified by the area under the stress-strain curve) when the β phase reinforcements 

become stiffer. 
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4.5 Conclusions 

The most attractive BMG composite, Zr-based in-situ β phase composite, was 

developed in 1999, and systematic optimization was carried out on it over the past several 

years. It was found that an extra addition of Nb increases ductility and thermal stability. 

Although β phase was known to lead to the formation of multiple shear bands in the 

BMG matrix with a similar spacing to that of the secondary dendrites, the underlying 

deformation mechanism and load sharing in the composite could not be determined from 

macroscopic tests alone. In order to obtain further insight into the deformation of in-situ 

composites, diffraction experiments were performed in the present study combined with 

mechanics modeling. 

The neutron diffraction results combined with self-consistent modeling revealed 

that in the as-cast composites (with the highest ductility known to date), the β phase 

yields first and starts to deform plastically via dislocation slip. During this process, load 

is transferred to the matrix initiating multiple shear bands in it. The complicated three-

dimensional morphology of the dendrites enhances multiple shear band formation, and 

hence, leads to higher ductility in the amorphous matrix. The previously considered 

twinning and stress induced phase transformation mechanisms were not supported by 

diffraction data analysis, and it was concluded that dislocation slip is the most dominant 

mechanism for the β phase inside the as-cast composite.  

On the other hand, if the reinforcement is ordered after heat treatment below the 

glass transition temperature of the amorphous matrix, it stiffens and its resistance to 

dislocation slip increases dramatically resulting in a stiff and hard, but brittle composite. 

The ultrasound measurement of elastic constants and neutron data show drastic increases 
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in the Young’s and shear moduli of the β phase. This suggests that dislocation slip in the 

β phase may no longer be the major deformation mechanism due to the high Peierls-

Nabarro force and the high shear modulus due to increased bonding directionality, and 

twinning may become a prominent deformation mechanism once the ordering takes place. 

Additional diffraction work is underway to better quantify the contribution of twinning in 

heat treated specimens. 

To achieve desired mechanical performance by composites, especially high 

ductility, it is crucial to understand the two major parameters that control multiple shear 

band formation in the matrix: shear blocking and shear softening, i.e., the geometric 

constraints by and the mechanical properties of reinforcements, respectively. Results 

from the particulate and fiber composites suggested the importance of stopping shear 

band propagation by reinforcements, and geometric constraints such as the volume 

fraction, size and the shape of the reinforcements were seen as important factors. The 

three dimensional, complicated geometry of dendrites in the in-situ composites can 

certainly provide effective geometric constraint. However, the heat treatment study of in-

situ composites showed that the overall composite properties can be strongly influenced 

by the mechanical properties of reinforcements as well. To resolve this issue and to 

quantify the relative contributions of geometric constraints by reinforcements and shear 

softening in the matrix on multiple shear band formation in the latter, a deeper 

understanding of the micromechanics of shear band initiation at the matrix/reinforcement 

interface is crucial.  This is another important topic for future work.  The mechanical 

properties of BMG composites can be optimized only after the micromechanics of shear 

band formation in these materials is fully appreciated. 
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CHAPTER 5  

RESULTS AND DISCUSSION: 

MICROSTRUCTURE AND PHASE EVOLUTION  

OF IN-SITU β PHASE COMPOSITES 
 

5.1 Microstructure of In-situ β Phase Composites 
 

 The main purpose of investigating these composites is to optimize their 

composition and microstructure, which govern their overall mechanical properties. C. P. 

Kim and W. L. Johnson at Caltech developed the Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 in-situ 

composites (LM2) in 1999 in the process of searching for a new BMG system around 

Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 (also known as Vitreloy 1 or LM1). The LM2 composite 

consists of a dendritic and ductile BCC crystalline phase within an amorphous matrix 

which is almost identical to Vitreloy 1 [1]. Since then, Liquid Metal Technologies (LMT) 

has developed many other Zr-based in-situ composites (called the LM2 series), and 

systematic optimization has been performed to increase thermal stability and mechanical 

properties. The Zr56.2Ti11.3Nb7.5Cu6.9Ni5.6Be12.5 in-situ composite called LM2A2 (note that 

it contains 7.5% Nb instead of 5% in the LM2 series) was chosen as the best, based on its 

∆T (i.e., the temperature difference between Tx - crystallization and Tg - glass transition) 

and toughness as explained previously in Section 4.1.2. Since compositional optimization 

was reached, it became important to correlate mechanical properties with microstructure 

that is controlled by processing conditions.  

As the physical properties such as elastic and shear moduli are very sensitive to 

processing conditions, and yield properties are dependent on microstructure, it was 
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crucial to investigate microstructure in more detail and correlate it with processing. This 

chapter first presents a detailed microstructural analysis of β phase composites. This is 

followed by an in-depth investigation of phase evolution during heat treatment to 

correlate the significant hardening and stiffening described in Chapter 4 with changes in 

the β phase. 

By taking advantage of the excellent glass forming ability associated with 

Vitreloy 1 (critical cooling rate of 1.8 K/s, [2]), β phase in-situ composites (LM2 series) 

have been successfully made in the arc-melter and studied. The arc-melter provides a 

wide range of cooling rates compared to mold casting due to unidirectional cooling and 

bigger sample size, but it still has to maintain cooling rates which are needed to ensure 

the glassy structure of the matrix. The critical cooling rate equation for a plate and 

cylinder can be derived as follows [3]: 

 

                         2
critP

Lt
2
crit

Lplate
crit LC

T0.4K
L

T0.4    (K/s)  R ==
κ

                            (1) 

                         2
critP

Lt
2
crit

Lcylinder
crit DC

T0.8K
D

T0.8   (K/s) R ==
κ

                           (2) 

 
κ = thermal diffusivity of the liquid alloy 
TL = liquidus temperature of the alloy (K) 
L = plate thickness (cm) 
D = cylinder diameter (cm) 
Kt = thermal conductivity (Watts/cm-K) 
CP = specific heat of the alloy (J/cm3-K) 

 

The formula assumes that the thermal conductivity of the mold is at least ~10 times that 

of the liquid alloy. For example, for Vitreloy 1, Kt=0.18 Watts/cm-K, CP=5 J/cm3-K, 
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TL=1000K, then Rcrit

plate≈15/L2 (cm), Rcrit
cylinder≈30/D2 (cm); for Rcrit=1.8 K/s, one 

obtains L=2.9 cm in plate and D=4.1 cm in cylinder geometry. That means one can make 

an in-situ composite in the arc-melter up to 1.4 cm in height because the heat transfer 

solution for the top of the button with one side as heat sink is very close to the solution at 

the center of a two times thicker plate with heat sinks at both sides. Therefore, it is 

estimated that an LM2A2 in-situ β phase composite can be made up to 30 g (a 

hemisphere of 1.4 cm radius and a density of 6.3 g/cm3 [4]) using the arc-melter without 

crystallization. In other words, the cooling rate of a Cu mold for a 5 mm diameter rod is 

about 120 K/s, while for a hemispherical arc-melted sample with 5 mm radius it is 15 K/s. 

In the present study, two different kinds of samples were prepared: a wedge-

shaped copper mold casting and an arc-melted button. Both of them experienced varying 

cooling rates over different regions in them, and exhibit different size and shape of the 

dendritic β phase while volume fraction of this phase remained in the range of 40% (± 

4%). In the second part of the microstructure study, tensile yield strength was indirectly 

calculated from Vickers hardness tests to relate microstructural variations with the 

mechanical properties of the composites. 

 

5.1.1 Microstructure of Wedge-Shaped LM2A2 

Ingots of LM2A2 materials prepared in the arc-melter were cut into small pieces 

to fit into a quartz tube with an inner diameter of 8 mm. A Cu mold carved into a wedge 

shape was put inside the casting chamber and the quartz tube was located above it in 

contact with the gate of the mold. A turbo-pump-aided pumping system lowered the 

pressure to the level of 10-3 ~ 10-4 torr, and materials were heated by an induction coil 
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around the quartz tube, followed by an injection process with pressurized Ar gas. The 

final sample dimensions were 38.4 mm height x 7.8 mm width x 4.3 mm thickness with a 

wedge angle of 11.6º. 

Considering the geometry of the wedge shape, one can expect a lower cooling rate 

going up to the top and/or moving towards the center of the sample. Fig. 5.1 illustrates 

microstructural changes in the center along the vertical axis. At the very bottom of the 

sample, no noticeable second phase was detected, probably because the kinetics of the 

second phase precipitation is not fast enough to overcome the high quenching rate there 

[5].  Dendrite size begins to gradually increase from bottom to top, indicating that slow 

cooling allows more time for dendrites to grow. The morphology of the second phase 

appears equiaxed regardless of dendrite size and sampling volume location, which 

suggests that heat flux is not uniaxial and/or cooling rate is fast enough to prevent 

directional growth in the second phase. This is a reasonable assumption for the mold 

casting sample.  However, as will be shown below, the arc-melted button experienced 

more directional heat flux from the bottom and top and perhaps a lower cooling rate even 

though sample thickness was the same (7.8 mm) in both samples.   

In the wedge-shaped sample, dendrite size is about 2-4 µm near the bottom, and 

increases to 4-7 µm around the center of the sample. The maximum dendrite size in this 

sample is around 8-10 µm at the very top of the wedge. 
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Fig. 5.1 Backscattered SEM images of the microstructure of the wedge-shaped LM2A2 

sample along its vertical axis.  Here, the bright regions belong to the β phase while the 

dark area is the amorphous matrix.  Numbers indicate distance from the bottom corner 

(magnification: x 1000). Slow cooling regions show large dendrite size as expected. 
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Fig. 5.2 Backscattered SEM images of the microstructure of the wedge-shaped LM2A2 

sample along its horizontal axis. Here, the bright regions belong to the β phase while the 

dark area is the amorphous matrix.  Numbers indicate distance from the central line 

(magnification: x 1000). 
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The horizontal scan reveals a similar trend in microstructure as that observed 

along the vertical one. Dendrite size varies from 1 µm to 7 µm and dendrites become 

visible in the SEM at about 80 µm from the outside surface (for x 1000 magnification). 

As shown in Chapter 4, the Cu-mold-quenched LM2A2 sample exhibits 40% dendrite 

volume fraction, similar to all the other in-situ composites. It is worth noting that casting 

pores often exist in samples prepared by Cu mold casting and many of such pores (about 

20-30 µm in diameter) were observed at certain spots in the LM2A2 wedge sample as 

well. This observation explains why all composite materials processed through Cu mold 

casting never exhibit any ductility in tension tests despite enhanced compressive ductility.  

It is presumed that these pores function as stress concentrators and crack opening sources 

[6-7] 

 

5.1.2 Microstructure of Arc-Melted LM2A2 

In this study, 10 g of raw materials were used to obtain a hemisphere of 16 mm 

diameter x 7.8 mm height. Fig. 5.3 shows SEM images of the arc-melted sample along its 

vertical axis. At the very bottom (known as the skull), there is no clear distinction 

between the amorphous matrix and the β phase dendrites. Each phase becomes 

identifiable around 0.7 mm from the bottom, and long streaks of β phase are seen inside 

the matrix suggesting unidirectional cooling toward the bottom. Between 1.3 ~ 1.9 mm 

from the bottom, the largest dendrites are located and their size ranges from 8-12 µm. As 

the height increases, dendrites first become smaller (down to 1 µm) and then enlarge back 

to 2-3 µm on the top. Fig. 5.4 displays top and bottom scans of the sample around its 

edges. Top regions show gradual decrease in dendrite size from 2-3 µm, down to 1 µm 
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moving from the center to the down left due to thickness change, while the bottom area 

above the skull exhibits an abrupt increase in dendrite size up to 10 µm around the corner 

of the left edge because sample actually does not touch the Cu plate in that region. Fig. 

5.5 summarizes the general trends in microstructure (i.e., dendrite size) with contour lines 

and SEM images. The smallest dendrites are found on the left center of the sample with 

0.4 ~0.6 µm, and the largest ones are located around the center. 

 In conclusion, both wedge-shaped and arc-melted samples exhibit significant 

variations in dendrite size due to changes in cooling rates during solidification.  While the 

changes in the former sample can be directly correlated with sample shape (and thus 

resulting cooling rates), the arc-melted sample showed unexpected variations.  One 

possible explanation for these variations is that radiation cooling may become quite 

effective from the top of the arc-melted sample leading to small dendrites there. Finite 

element modeling was applied to confirm this effect and is illustrated in Appendix C. As 

expected, the bottom also shows small dendrites due to the high conduction heat transfer 

there.  On the other hand, loss of contact at the lower left precluded effective cooling in 

that region via conduction. Unfortunately, radiation does not appear to be effective at the 

lower left resulting in the lowest cooling, and hence the largest dendrites there.  

In any case, these large variations in dendrite size are expected to influence the 

mechanical properties of the composite leading to significant variations across samples.  

This topic is further discussed in the next section. 
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Fig. 5.3 Backscattered SEM images of the microstructure of the arc-melted, as-cast LM2A2 sample along its vertical axis. Here, the 
bright regions belong to the β phase while the dark area is the amorphous matrix.  Numbers indicate distance from the bottom 
(magnification: x 1000). 
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Fig. 5.4 Backscattered SEM images of the microstructure of the arc-melted, as-cast LM2A2 sample around its edges. Here, the bright 
regions belong to the β phase while the dark area is the amorphous matrix.  Numbers indicate horizontal distance from the center 
(magnification: x 1000). 
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a) Smallest dendrites (0.4~0.6 µm) 

(x 5000) 

   

Small Dendrite

Large Dendrite

        
b) Middle size dendrites (2~4 µm) 

 

 
c) Largest dendrites (8~12 µm) 

 
 

Fig. 5.5 Contour lines (not to scale) of 

the dendrite size distribution (left) and 

corresponding typical microstructure 

images (backscattered SEM) from the 

arc-melted sample. 
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5.1.3 Yield Strength vs. Dendrite Size  

The SEM study of LM2A2 samples revealed that dendrite size and shape of the β 

phase are very sensitive to cooling rate and direction, whereas their volume fraction 

remained quite stable at around 40% ± 4% (based on the analysis of about 40 

micrographs). A key question is how these different microstructures affect the 

mechanical properties of the composite such as yield strength. Because the β phase is 

very sensitive to processing conditions and it is difficult to apply systematically different 

cooling rates in each sample, an indirect procedure of deducing yield strength was used 

from Vickers hardness measurements. A diamond tip was pressed into various parts of 

the button and hardness and tensile yield strength values were calculated by the following 

equation [8]: 

                                          
 d

 x Weight)(1.854  Hardness 2=                        (3) 

                                       
3

Hardness  Strength  Yield Tensile =                        (4) 

(d = diagonal length of square indents) 

 

 Fig. 5.6 shows Vickers indents in different areas with varying dendrite size. 

Hardness values range from 4.1 to 7.1 GPa and calculated yield strength varies from 1.4 

to 2.4 GPa when dendrite size changes between 2 to 10 µm.  These results are compared 

to earlier tension test data from other in-situ composites.  Both types of yield strength 

data clearly exhibit a marked decrease with increasing dendrite size in analogy to the 

classical Hall-Petch relation found in polycrystalline metals where yield strength 

decreases with increasing grain size.  The discrepancy between the tension test results 
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and the Vickers indentation data suggests a possible problem with calculating yield 

strength from indent size in these composites, likely due to their inhomogeneous structure.  

Nevertheless, all yield strength data clearly demonstrate a significant decrease in yield 

strength when dendrite size increases.  A natural question at this point is the “ideal” 

dendrite size that maximizes both yield strength and ductility, a question to be addressed 

in future work. 

 

38.5μm x 39.2μm
37.4μm x 36.8μm

36.6μm x 34.2μm

37.0μm x 37.7μm

True Hardness=4.1 GPa
Tension yield strength=1.4 GPa

               

31.5μm x 30.9μm
30.5μm x 29.8μm

True Hardness=6.0 GPa
Tension yield strength=2.0 GPa

 
a) dendrite size ≈ 10 µm                                          b) dendrite size ≈ 6 µm 

27.2μm x 25.7μm

30.2μm x 29.2μm

True Hardness=7.1 GPa
Tension yield strength=2.4 GPa

 
c) dendrite size ≈ 2 µm 

 

Fig. 5.6 Vickers indents (marked as white arrows) and the corresponding hardness and 

yield strength data for different regions within an arc-melted button.   
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Fig. 5.7 Tensile yield strength calculated from Vickers hardness data vs. average dendrite 

size compared to tension tests of earlier composites from Caltech (5 µm dendrite size 

average) and Howmet (2 µm average) materials [4]. 

 

5.2 Phase Evolution of In-situ β Phase Composites  

The accidental discovery of β phase stiffening (see Chapter 4) led to a systematic 

study of the effect of heat treatment (HT) on this phase’s properties, both in monolithic 

and composite forms. Two kinds of HT experiments were carried out and the details are 

presented below:  (i) cyclic heating up to the melting temperature of the composite; and 

(ii) isothermal holds at 300°C and 600°C of both the monolithic β phase and composite. 

300ºC was chosen to avoid crystallization in the matrix (its glass transition temperature is 

about 350ºC) and isolate events occurring only in the β phase. 600ºC is between the 

crystallization and melting temperatures of the matrix; thus, HT at this temperature might 

lead to changes in both the dendrites and the matrix. It will be shown below that only the 

β phase undergoes phase evolution at 300°C, while crystallization takes place in the 



101 

 

amorphous matrix at 600°C without any appreciable change in the β phase. Results from 

the 300°C isothermal holds are especially interesting since they point to the intrinsic 

instability of the β phase below the glass transition temperature of the amorphous matrix, 

a regime where these composites are likely to be used in applications. Phase analysis 

during and after HT were performed using either laboratory X-rays (with Cu Kα 

radiation) or high energy synchrotron X-rays for deeper penetration (see Chapter 2 for 

details). Samples consisted of arc-melted LM2A2 buttons machined into 3 mm diameter 

x 35 mm height cylindrical samples using Electrical Discharging Machining (EDM). 

Oxidation layers from EDM cutting were removed by mechanical polishing.  

 

5.2.1 LM2 Composite Phase Evolution 

Differential Scanning Calorimeter (DSC) data from an LM2 

(Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5) composite are illustrated in Fig. 5.8. It is seen that the 

LM2 composite (top curve) and monolithic glass (bottom curve) behave very similarly to 

Vitreloy 1 (Tg: 350°C, TL: 720°C, Tx(1st): 400°C, Tx(2nd): 450°C) [9]. The glass transition 

temperature (Tg) of the composite and monolithic glass are both ~350°C, whereas the 1st 

and 2nd crystallization temperatures are at ~400°C and 450°C, respectively. However, it is 

somewhat ambiguous to determine the liquidus line for both the composite and 

monolithic glass curves: TL (matrix) is estimated at about: 750°C, but TL (composite) 

could not be determined from DSC. Another interesting observation is that the monolithic 

β phase does not melt in the DSC up to 1300°C, and in another experiment using Electro 

Static Levitation (ESL) up to 1400°C. On the other hand, the β phase inside the 

composite melts below 1200°C as seen in in-situ X-ray diffraction studies (presented 
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below). These observations suggest that the β phase inside the composite may behave 

somewhat differently compared to the monolithic β phase. Nevertheless, the monolithic β 

phase offers valuable crystal structure and mechanical property data crucial for 

understanding the behavior of in-situ composites. 

 Fig. 5.9 shows XRD patterns of two LM2 monolithic β phase specimens:  as-cast 

(left) and after an accidental heat treatment during CTE measurements. The latter 

exhibited significant stiffening and embrittlement. Here, the HT involved a heating rate 

of 3ºC/min up to 350ºC, a 30 minute hold, and a final cooling at the same rate as with 

heating. The total HT time was about 24 hours. Diffraction data reveal that lots of new 

diffraction spots appeared around the original BCC patterns suggesting new phase 

formation. More details with respect to this phenomenon are discussed below. 
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Fig. 5.8 DSC scans for the Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 (LM2) composite and 

amorphous matrix under a constant heating rate of 20°C/min. (Tg: ~350°C, 1st Tx: ~400°C, 

2nd Tx: ~450°C, TL(matrix): ~750°C). 

TL
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                            a)  As cast     b) Heat Treated during CTE measurement 

Fig. 5.9 2-D diffraction images (top row - from a digital image plate) and their azimuthal 

integration (bottom row) of LM2 monolithic β phase samples. Experiments were 

performed at APS using a beam energy of 80 KeV and a beam size of 250µm x 250µm. 

The coarseness of the diffraction patterns (also called graininess) suggests a large grain 

size, especially in the as-cast sample.  
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5.2.2 In-situ Cyclic Heating Experiment of LM2A2 

 
      a) R T                                    b) 300℃                                c) 600℃  

 

 
d) 820℃                                  e) 880℃                               f) 980℃ 

 

 
g) 1030℃                                  h) 1060℃                               i) 1150℃ 

 
 

Fig. 5.10 Azimuthally integrated 2-D diffraction patterns during the heating of an in-situ 

β phase composite. Experiments were performed with high energy synchrotron XRD 

using a beam size of 100 x 100 µm. 
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               a) Cooling 760℃                  b) Cooling 570℃                 c) Cooling 450℃ 
 

 
 

d) Cooling 250℃                  e) Cooling 100℃                        f) R.T               
 

Fig. 5.11 Same as in Fig. 5.10, except the patterns were taken during the cooling stage of 

the experiment. 

 

Figs. 5.10 and 5.11 show integrated diffraction patterns from an in-situ cyclic HT 

experiment (Fig. 5.10: during the heating stage, Fig. 5.11: during the cooling stage) of a β 

phase composite. The sample was sealed in a quartz tube to prevent oxidation at high 

temperature, and an IR furnace supplied heat at a rate of 50°C/min. The most important 

message from this experiment is that the BCC second phase remains stable throughout 

most of the temperature range until the whole composite melts at 1150°C (the solidus line 

seems to start after 800°C). Please also note that the cooling was achieved by simply 
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turning off the furnace (i.e., under air cooling conditions) leading to numerous 

crystallization peaks observed in the cooling stage (Fig. 5.11). This confirmation of the 

high temperature stability of the β phase placed additional significance on the isothermal 

heat treatment experiments presented below. 

 

5.2.3 Isothermal Heat Treatment of LM2A2 

It has been known that an isothermal HT, even below Tg, can change the 

mechanical properties of monolithic BMGs, e.g., by reducing their fracture strength [10]. 

In addition, the TTT diagram of Vitreloy 1 [11-13] exhibits no asymptotic line against 

crystallization, which means BMG can be crystallized even below Tg under proper HT 

time and other sample conditions. Thiyagarajan and co-workers also reported that the 

embrittlement of BMG can take place even before crystallization due to a decomposition 

(or phase separation) process [14]. Phase separation in Vitreloy 1 has been scrutinized by 

Atom Probe Field Ion Microscopy (AP/FIM) [15] and Small Angle Neutron Scattering 

(SANS) [16-20]. The process was identifiable in SANS after several hours of HT at 

350°C ( = Tg of Vit.1). Therefore, due to the similarity between the amorphous matrix in 

in-situ composites investigated in the present study and Vit.1, it was important to 

maintain a relatively low HT temperature (300°C) not only to avoid the crystallization of 

the amorphous matrix, but also to exclude its decomposition and thus isolate effects 

solely due to the β phase reinforcements. Even though 18 hours of HT at 300°C might 

involve a certain degree of decomposition in the matrix, it was seen in Chapter 4 that the 

monolithic BMG with the same composition as the matrix in β phase composites 

remained amorphous after 18 hr HT at 300°C and its fracture strength did not change at 
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all. Therefore, it can be assumed that all the HT effects observed in in-situ composites at 

300°C are likely due to phase evolution in the second phase reinforcement only. 

Fig 5.12 and Fig 5.13 show as-cast and water-quenched in-situ composites before 

and after a 300°C HT. 2-D diffraction images clearly show amorphous rings (from the 

matrix), along with BCC patterns from the β phase reinforcements. Compared with the 

water-quenched sample, BCC rings are spottier in the as-cast sample, suggesting a larger 

grain size for the β phase in the latter. This is to be expected from the higher cooling rate 

likely attained in the water-quenched sample.  

However, the effect of HT on both samples is similar. The main BCC peaks are 

mostly retained as HT time increases, but this process is accompanied with peak 

broadening, especially towards the end. There is also a clear overall peak height drop 

(compare, e.g., the changes in peak height for the 110). Overall, it appears that the BCC 

peaks are splitting, indicating a gradual phase transition from cubic into tetragonal-like 

phase. It is not clear yet whether this new phase is tetragonal or whether it consists of two 

BCC phases undergoing phase separation. Additional phase analysis is needed to clarify 

this issue. The unstable nature of the BCC β phase has long been suspected in these 

materials. The most dominant element in the β phase (Zr71.1Ti13.1Nb13.4Cu1.6Ni0.8) is Zr 

which is HCP at room temperature (the α phase) and transforms into β (BCC) at 862°C. 

A similar trend is also known for Ti (transition at 880°C). On the other hand, Nb is a well 

known BCC (β phase) stabilizer in Zr-Ti alloys [4]. Therefore, the presence of these three 

elements as the majority of the β phase assures its structure as a metastable BCC at low 

temperatures. However, there is stored lattice energy in the β phase which can be 
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considered as the main source of the driving force for the cubic to tetragonal-like phase 

transition (or ordering) in this material.  

In order to confirm that the new phase is the preferred low temperature ordering 

phase and not an intermediate phase before a more stable phase is reached, additional 

long term HT experiments were carried out at 300°C and 600°C. At each temperature, the 

HT was continued until no further changes in the diffraction patterns were observed. The 

results are displayed in Fig. 5.14. If the new phase was an intermediate phase, phase 

transformation kinetics would be expected to increase at 600°C. However, if it is an 

ordered phase at 300°C, there should not be much change in 600°C because order-

disorder transition normally takes place at lower temperatures. This is exactly what 

happened during the long term HT experiment. At 600°C, neither any drop in peak 

intensity nor any appreciable peak broadening was observed. But, at 300°C, as was also 

seen in synchrotron data, BCC peaks became broader and the peak splitting was obvious. 

Therefore, it can be concluded that the β phase undergoes order-disorder transition at 

300°C from cubic to a tetragonal-like phase. Lattice mismatch between BCC and the new 

phase and other microstrain effects due to the diffusion that accompanies the transition 

process would be possible reasons for peak broadening. If a nucleation process is 

dominant and continuous, then a small grain size for the ordered phase would be another 

reason behind peak broadening. Since the ordered phase has a shallower potential well, 

its shear modulus (curvature of the potential well) would be increased as ordering process 

is in progress, an effect that has been observed in ultrasonic measurements (see Section 

4.2.3).  

 



109 

 

1.0 1.5 2.0 2.5 3.0 3.5

As-cast Composite HT at 300C

(222)
(321)(310)(220)

(211)

(200)

(110)

18hr HT
15hr HT
12hr HT
9hr HT
6hr HT
3hr HT
No HTIn

te
ns

ity

d spacing

 

                

 

Fig. 5.12 Azimuthally integrated diffraction patterns of an as-cast in-situ composite (top) 

and sample 2-D patterns before (lower left) after its heat treatment at 300°C for 18 hours 

(lower right). The diffraction data were collected using high energy XRD at APS (see 

Chapter 2 for details). 
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Fig. 5.13 Azimuthally integrated diffraction patterns of a water-quenched in-situ 

composite (top) and sample 2-D patterns before (lower left)  after its heat treatment at 

300°C for 18 hours (lower right). The diffraction data were collected using high energy 

XRD at APS (see Chapter 2 for details).  
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Fig. 5.14 Evolution of LM2A2 monolithic β phase diffraction patterns during long term 

HT at 300°C (top) and 600°C (bottom). The data were collected ex- situ using a 

laboratory X-ray machine with Cu Kα radiation at Caltech. Note that more peak 

broadening and splitting is observed at 300ºC while no appreciable changes are seen after 

HT at 600ºC. 
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This ordering mechanism also explains why the water-quenched sample is more 

resistant to phase evolution. Since water-quenching can bring stable BCC configuration 

down to room temperature due to a fast cooling, it takes more energy to induce phase 

transformation in this stable BCC. In other words, the as-cast BCC phase at room 

temperature is more unstable than the water-quenched one because the phase stability of 

the as-cast sample is only dependent on compositional modification by the addition of the 

β phase stabilizer, Nb, but that of the water-quenched one is aided by fast cooling as well. 

Another reason would be the grain boundary effect. Elastically stored energy (the driving 

force for ordering) can be released more when incoherency is introduced by defects such 

as grain boundaries. As seen in 2-D diffraction images, the water-quenched sample has a 

finer grain size and there would be less chance to build up much of strain energy inside 

grains. 

Another isothermal HT experiment at 600°C was conducted on a β phase 

composite. In this case, the phase evolution shown in Fig. 5.15 can be attributed to the 

crystallization of the amorphous matrix. At this temperature, the crystallization kinetics is 

very fast and the TTT diagram of Vit.1 suggests it takes only 100 sec before the onset of 

crystallization [11]. 
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Fig. 5.15 Azimuthally integrated diffraction patterns of an as-cast (top) and a water-

quenched (bottom) in-situ composite heat treated at 600°C for 1 hour. The experiments 

were conducted in situ using high energy XRD at APS. 

 

 Fig. 5.15 shows the two extremes of before and after crystallization for both types 

of composites. While the BCC β phase peaks are dominant before HT, many additional 

peaks are observed afterwards. In order to identify these new peaks, it was assumed that 

the crystallized matrix (Zr42.2Ti9.4Nb3.2Cu13.7Ni10.7Be20.8) is almost identical with Vit.1 
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(Zr41.2Ti13.8Cu12.5Ni10.0Be22.5), except for the existence of Nb. There have been many 

studies of the crystallization behavior of Vit.1 [9, 21-22] and on diffusion mechanisms in 

metallic glasses [23-26]. Despite some minor discrepancy among these papers, there has 

been a general agreement in that Zr2Cu and Be2Zr are the major crystalline phases [27-

28]. Using this information as a basis, two basic criteria were chosen when matching the 

new peaks to known phases in the powder diffraction database: heat of mixing 

(thermodynamics), and the diffusion constant and the amount of each element (kinetics). 

If there were multiple candidates for small peaks, diffusivity and heat of mixing criteria 

were applied to narrow down the choices. Besides the two major phases (Zr2Cu and 

Be2Zr), two minor ones (Be17Nb2 and NiTi) offered the best matches. However, this 

process was done under the assumption that there are no unknown ternary phases 

possible in this alloy, a possibility that cannot be entirely excluded. Fig. 5.16 shows the 

final peak identification results. 

-23Zr-Cu
-25Nb-Be
-30Ti-Be
-30Ni-Nb
-35Ni-Ti
-43Zr-Be
-49Zr-Ni

∆Hmix

(KJ/mol)component

-23Zr-Cu
-25Nb-Be
-30Ti-Be
-30Ni-Nb
-35Ni-Ti
-43Zr-Be
-49Zr-Ni

∆Hmix

(KJ/mol)component

             

4.40E-24Ni (10.7%)

2.68E-18Cu (13.7%)
4.48E-15Ti (9.4%)

4.23E-32Nb (3.2%)

1.58E-14Zr (42.2%)
1.01E-12Be (20.8%)
D (cm2/s)Component

4.40E-24Ni (10.7%)

2.68E-18Cu (13.7%)
4.48E-15Ti (9.4%)

4.23E-32Nb (3.2%)

1.58E-14Zr (42.2%)
1.01E-12Be (20.8%)
D (cm2/s)Component

           

(a)                                                               (b)          

Table 5.1 Heat of mixing among matrix elements (a) [29] and diffusivity data (b) at 

350°C [30]. Tracer self diffusivity data except for Be, which was measured in Zr solvent 

atmosphere. Real Be diffusivity: DBe(Tg) = 1.5x10-15 cm2/s, DBe(Te) = 2.0x10-6 cm2/s [24]. 

Considering diffusivity and heat of mixing Be2Zr phase should form first and it agrees 

with other results [12]. 
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Fig. 5.16 Phase distribution in the LM2A2 composite after 1 hr HT at 600°C. 

(One major difference from other crystallization studies [9, 21-22] was to have Nb in the 

alloy). 
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5.3 Pseudo Binary Phase Diagram for In-situ β Phase Composites  
 

(a) 880°C 

Liquid: 65%, β Phase: 35% 

(b) 980°C 

Liquid: 74%, β Phase: 26% 

(c) 1030°C 

Liquid: 82%, β Phase: 18% 

(d) 1150°C 

Liquid: 100%, β Phase: 0% 

Fig. 5.17 Synchrotron X-ray diffraction data used in determining phase volume fraction. 

The areas of crystalline peaks and amorphous background were calculated through image 

analysis.  
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Fig. 5.18 Pseudo binary phase diagram for in-situ β phase composites. M and B represent 

the glassy matrix and the β phase, respectively. The Vitreloy 1 alloy, 

(Zr75Ti25)55(Be50(Cu55Ni45)50)45 and the monolithic β phase, Zr75(TiNb)25 are chosen as 

binary axes. The in-situ composite, (Zr75(TiNb)25)75 (Be50(Cu55Ni45)50)25 falls on x=0.424 

as indicated by the arrow. The composition of M (Zr42.2Ti9.4Nb3.2Cu13.7Ni10.7Be20.8) and B 

(Zr71.1Ti13.1Nb13.4Cu1.6Ni0.8) were measured via electron microprobe analysis. M sits on 

x=0.076 based on Be content of 20.8% compared with 22.5% of Vit 1, while B occupies 

x=0.947 according to the ZrTiNb content (97.6-55.0)/(100-55). The melting temperature 

of Vit 1 (720°C) and the Zr75(TiNb)25 β phase (1600°C) were deduced from literature 

[31-32]. 
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Fig. 5.19 Processing map for the Vit 1 and BCC β phase alloys. M represents the 

solubility limit of the β phase alloy within the glass forming region. Blue dashed line 

indicates the onset of dendritic phase under homogenous nucleation conditions. Materials 

shaded with yellow decompose into glass (M) and the BCC crystalline (B) phase when 

they cool down. The overall Nb content for the composite varies from 5.0 % to 7.5 % at 

the expense of Ti, yet bulk glass forming region extends further to the red dashed line, 

(Zr75Ti25)70 (Be50(Cu55Ni45)50)30, if Nb is not present in the alloy. 
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 As seen in Section 5.2, the most important result obtained from the cyclic and 

isothermal heating experiments is that the monolithic β phase (or the β phase inside the 

composite) undergoes order-disorder transition at low temperatures (below Tg of the 

glassy matrix) whereas it remains as a stable BCC phase at high temperatures (above Tm  

of the glassy matrix). The characteristic of the low temperature ordering is extremely 

important because it determines the overall mechanical property of the composite as 

explained in Section 4.4. At one hand, the low temperature behavior of the β phase 

reveals a drawback of this composite by suggesting limits for its use temperature and 

time in real applications. On the other hand, the stable nature of the β phase at high 

temperatures offers and advantage since the stability of the β phase makes it possible to 

control the volume fraction and size of the dendrites using information from the 

thermodynamic quasi-equilibrium phase diagram and kinetics data from a TTT diagram. 

The term 'quasi' is used because glass formation itself involves a certain degree of kinetic 

process and it appears to follow an equilibrium diagram as long as the cooling rate is 

sufficient enough for glass formation. 

 The first step for the construction of the quasi-equilibrium phase diagram is to 

determine the volume fraction of each phase. Since the scattering intensity is proportional 

to the volume fraction of each phase, integrated areas under diffraction peaks (obtained 

from image analysis, hence the values are only approximate) are assumed to correlate 

with volume fraction. In order to confirm this method, room temperature data were 

analyzed and showed indeed that the 40/60 volumetric ratio between the BCC crystalline 

(β) and amorphous matrix phases. Fig. 5.17 shows that the β phase melting proceeds as 

temperature increases; each volume fraction here is calculated by the same method. The 
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pseudo binary equilibrium phase diagram was constructed with these volume fraction 

data and Fig. 5.18 exhibits all the details. C. P. Kim generated the room temperature two-

dimensional ternary phase diagram showing phase partitioning in Fig. 4.1 [4], and Fig. 

5.18 was constructed with temperature information based on his work. The Vitreloy 1, 

(Zr75Ti25)55(Be50(Cu55Ni45)50)45, and monolithic β phase, Zr75(TiNb)25, are selected as 

binary axes, and the in-situ composite, (Zr75(TiNb)25)75 (Be50(Cu55Ni45)50)25, is marked 

with the arrow in the middle of diagram. As the Vitreloy 1 and monolithic β phase allow 

a certain level of solubility of each other, the actual glassy and crystalline phase 

compositions inside the composite turn out to be M (Zr42.2Ti9.4Nb3.2Cu13.7Ni10.7Be20.8) and 

B (Zr71.1Ti13.1Nb13.4Cu1.6Ni0.8) and are marked. The β phase lattice parameter values 

deduced from diffraction data increase above 800°C (beyond the nominal thermal 

expansion effect) which suggests the reduction of small atom solubility, i.e., the Be 

content decreases. The data points, b', c', and d' are interpolated from e' and g. The 

melting point of Vitreloy 1 (f) and monolithic β phase (g) were taken from literature [31-

32]. Since the composite chemical composition is known and the β phase solidus line is 

fixed, the β phase liquidus line could be calculated. As the glass volume fraction changes 

to 65%, 74%, 82% and 100% at 880°C, 980°C, 1030°C and 1150°C, respectively, data 

points of a, b, c, and d are calculated according to the lever rule. The β phase liquidus 

line was extended to two extremes of each phase (f and g), and it shows very good 

agreement with one another.  

 This pseudo binary phase diagram (Fig. 5.18) is very important form processing 

point of view, because one can modify phase volume fraction by changing processing 

temperature and composition. However, in order to apply this diagram in the laboratory, a 
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more detailed description is needed as the β phase formation is quite sensitive to cooling 

rate. S. Mukherjee reported that the β phase dendrite starts to form at 780°C with about 

400°C undercooling if at the cooling rate is 20 K/sec under homogenous nucleation 

conditions [2]. C. P. Kim  formed bulk glass up to the composition of (Zr75Ti25)70 

(Be50(Cu55Ni45)50)30, when Nb is absent [4], but once β phase is stabilized by the addition 

of Nb up to 7.5%, then materials shaded with yellow in Fig. 5.19 decompose into glass 

(M) and the BCC crystalline (B) phase. The dendrite formation temperature (blue dashed 

line) and the maximum bulk glass forming region without Nb (red dashed line) are 

marked in Fig. 5.19, and quasi-equilibrium phase diagram (Fig. 5.18) combined with 

these kinetic information resulted in a “processing map for in-situ composite” (Fig. 5.19.) 

 It now becomes possible to control dendrite size as well as volume fraction. As 

seen in Fig. 5.18, the volume fraction will be governed by the lever rule between M and 

B. On top of that, if the appropriate point is chosen in terms of temperature and 

composition, one can suppress dendrite growth with enhanced nucleation rate. For 

example, if the materials is held around 600°C~700°C at the composition of x=0.28 in 

Fig. 5.19, it is highly possible to obtain a finer dendritic composite. The exact processing 

conditions should be developed through experiments based on this map, and a series of 

composite processing is subject to future work.  

 This phase diagram also explains why a monolithic β phase behaves differently 

from that inside a composite. According to Fig. 5.19, β phase composition B should have 

1.2 at% Be, yet the electron microprobe technique is not capable of detecting this little 

difference. Therefore, this small amount of Be is likely responsible for the slight 

difference in the behavior of the β phase in monolithic and composite forms. 
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5.4 Conclusions 

Although the Zr-based in-situ composite is among the most promising BMG 

composites, its processing sensitivity and the unstable nature of its dendritic 

reinforcement became serious issues in the application of this material. The present study 

performed a systematic microstructure analysis and phase evolution investigation using 

SEM and synchrotron high energy X-ray diffraction to quantify microstructure and phase 

evolution during the casting and heat treatment of the in-situ composites.  

Wedge- and button-shaped in-situ composites were studied and it was found that 

the dendrite size is very sensitive to processing conditions and can vary even in one 

button from 0.4 µm to 12 µm. The arc-melted button showed that the volume fraction of 

dendrites remains around 40% regardless of location, while the dendrite size varies by 

one order of magnitude. This observation suggests that the β phase formation is relatively 

stable thermodynamically, but is very sensitive to heat flux (i.e., cooling rate). The tensile 

yield strength was indirectly deduced from a Vickers hardness tests on the arc-melted 

button, and it showed a gradual decrease with increasing dendrite size. Therefore, it will 

be desirable to have as small dendrites as possible to increase the yield strength of the 

composite. However, too small a dendrite size will be likely be detrimental as it might 

preclude effective toughening of the composite. The “ideal” dendrite size is still a subject 

of speculation and is one of the important topics to be tackled in future research.  

Besides the microstructure of the composite, phase stability of the reinforcement 

and the amorphous matrix became an important factor in the composite’s mechanical 

behavior.  Through the cyclic and isothermal heating of in-situ composites, it was 

determined that the β phase remains as a stable BCC crystalline phase above the melting 
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temperature of the glassy matrix, but it undergoes an order-disorder phase transition 

below the glass transition temperature of the matrix. It is not clear yet whether this 

ordered phase has a tetragonal unit cell or it involves a phase separation of two BCC 

crystalline phases. Whatever the case might be, it has been shown that the shear modulus 

of the β phase increases accompanied with a reduction in ductility, leading to the 

embrittlement of the composite.  

 One of the most important results of this study is the construction of the ‘quasi-

equilibrium phase diagram’ of β phase composites, because this diagram provides the 

fundamental guide in composite design. For instance, a desired volume fraction can be 

achieved by the appropriate processing conditions in terms of hold temperature and 

overall composition. On top of that, the kinetic information about the onset of β phase 

formation will make it possible to even control dendrite size at a given volume fraction 

by suppressing dendrite growth rate. Therefore, it is feasible to process a much finer 

dendritic composite without applying a fast cooling rate. This is a very attractive 

processing method because it is relatively independent of processing time, and it avoids 

the formation of casting pores which have caused embrittlement of the composite in 

tension. Of course, the detailed processing conditions should be further tuned in 

additional experiments, a central topic in future research.  
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CHAPTER 6  

SUMMARY AND FUTURE WORK 
 

Ever since the Zr-based bulk metallic glasses (BMGs) were developed in early 

1990s, there have been many efforts to improve their ductility. Since it was known that 

multiple shear band formation is required to prevent catastrophic failure, ex-situ and in-

situ composite systems were developed and and these materials indeed showed improved 

ductility compared to monolithic BMGs. 

This thesis studied two classes of BMG composites: (i) fiber reinforced ex-situ 

composites (with Mo, Ta, and Fe wire reinforcements), and (ii) in-situ β phase dendritic 

composites. The main goal of this research was to understand the deformation 

mechanisms in these BMG composites in order to eventually find out the best composite 

system.  

The geometric constraint by as well as the material properties of the 

reinforcement plays an important role in toughening BMGs. Therefore, volume fraction, 

size, and shape of the reinforcement are the key factors in the geometric part, while the 

elastic constants and plastic behavior of the reinforcement are the crucial material 

parameters thought to be important for multiple shear band generation in the matrix. In 

this study, in general, low shear modulus reinforcements and/or a high volume fraction 

tended to be effective in increasing the ductility of BMGs. An often observed drawback 

was a reduced yield strength for composites (compared to the value found in monolithic 

BMGs – about 2 GPa), However, the critical values for each parameter are still unknown 

since the micromechanics of the initiation and interaction of shear bands in the matrix 

with reinforcements is still not well understood. The most important next step in BMG 
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composite research, therefore, should try to address this issue by employing model 

composites with simplified geometries (e.g., sandwich or concentric cylinder). The 

“ideal” BMG composite can only be designed after a deeper understanding of the 

composite micromechanics is reached. 

Wire Composites: Based on previous studies of Vitreloy 1 / W fiber 

composites, Mo, Ta, and stainless steel (Fe) fibers were used in a Vitreloy 106 matrix to 

enhance its ductility. In-situ loading experiments with neutron diffraction were performed 

to monitor strain evolution of the reinforcements vs. applied stress, and these results were 

combined with Finite Element Modeling (FEM) to deduce the deformation behavior of 

the glass matrix. It was found that the reinforcements yielded first and started transferring 

load to the matrix which remained elastic throughout the whole experiment. Despite the 

significant increase in ductility with these fibers, those fiber composites were not 

suggested as good candidates in real applications due to their low yield strength. The 

unwanted annealing during the melt infiltration process seems to further lower the yield 

point of the fibers, and hence the composite. Most fibers also exhibited a weak interface 

with the matrix which reduced the load transfer between the two phases. Due to its high 

yield strength, high stiffness, and good interface strength, W fibers appear to be the best 

reinforcements for BMGs. Critical issues to be addressed in future fiber composite 

research include: (i) Determination of optimum fiber volume fraction; (ii) measurement 

of fiber-matrix interface strength for various systems to quantify the effect of the 

interface on overall composite performance.  

In-Situ Composites: Vitreloy 1 based in-situ composites were developed in 1999 

at Caltech, and the dendritic BCC β phase inside caused multiple shear band generation 
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in the matrix increasing the overall ductility. In order to investigate the effective 

deformation mechanisms in these materials, diffraction data was combined with self-

consistent modeling (SCM). The model successfully described phase specific behavior. 

The results revealed that dislocation slip of the β phase is the most prominant 

deformation mechanism, and that the β phase is highly anisotropic in the elastic regime. 

As seen in fiber composites, the β phase yielded first and transferred load to the matrix 

triggering multiple shear bands. The detailed micromechanical description of this process 

is still unknown and subject to future research.  

In the course of this work, it was also discovered that the β phase is highly 

metastable at low temperatures and that it can easily be both hardened and stiffened by 

heat treatments below the glass transition temperature of the glassy matrix. This led to a 

systematic heat treatment study which investigated both the mechanical properties and 

phase evolution. It was found that the ductility of the composite decreased as the β phase 

experienced embrittlement and stiffening during heat treatment. Additional experiments 

on both monolithic β phase and matrix alloys confirmed that the drastic variations in the 

composite properties after heat treatment are basically due to changes in the β phase 

properties. It was also confirmed that the β phase experiences an order-disorder transition 

at low temperatures. The precise crystallographic analysis of this transition is subject to 

future studies. This stiffening behavior of the β phase was also supported by ultrasound 

measurements of its elastic constants. As heat treatment proceeds, the shear modulus of 

monolithic β phase increases by about 40% while its Poisson’s ratio decreases slightly. 

The overall result is a likely reduction of dislocation slip due to a higher Peierls-Nabarro 

force which reduces the ductility of the β phase.  
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As the mechanical properties of the β phase composite are very sensitive to 

processing conditions, a microstructure study with a wedge-shaped sample and an arc-

melted button showed that dendrite size varied from sub-µm to over 10 µm across sample 

cross section while maintaining a fixed volume fraction of 40%. In contrast to low 

temperatures, the β phase was seen to be highly stable at high temperatures in a cyclic 

heating experiment during synchrotron X-ray diffraction. Combining all these results, it 

was possible to construct a quasi-equilibrium phase diagram for the β phase composites. 

This diagram provides the possibility of controlling both the volume fraction and size of 

β phase dendrites, through which the mechanical performance of the β phase composite 

can be manipulated. This phase diagram needs to be further populated with additional 

experiments and detailed processing conditions should be derived using its guidance. 

These are important future research topics for these composites.  
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Appendix A 
 

Applied Stress vs. Elastic Strain of Fiber Composites 

 from Neutron Diffraction 

 

 
(a) Vit 106 BMG composite with 40% W  

 

 
(b) Vit 106 BMG composite with 80% W 

 

Fig. A.1 Applied stress vs. elastic stain data of W reinforced BMG composites from 

neutron diffraction. Both longitudinal and transverse strains are plotted. 
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(a) Vit 106 BMG composite with 40% Fe  

 

 
(b) Vit 106 BMG composite with 80% Fe  

 

Fig. A.2 Applied stress vs. elastic stain data of Fe reinforced BMG composites from 

neutron diffraction. Both longitudinal and transverse strains are plotted. 
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(a) Vit 106 BMG composite with 40% Ta  

 

 
(b) Vit 106 BMG composite with 80% Ta  

 

Fig. A.3 Applied stress vs. elastic stain data of Ta reinforced BMG composites from 

neutron diffraction. Both longitudinal and transverse strains are plotted. 
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(a) Vit 106 BMG composite with 40% Mo  

 

 
(b) Vit 106 BMG composite with 80% Mo 

 

Fig. A.4 Applied stress vs. elastic stain data of Mo reinforced BMG composites from 

neutron diffraction. Both longitudinal and transverse strains are plotted. 
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Appendix B 
 

Validity of Calculating Three-Dimensional Phase Volume Fraction from 

a Two-Dimensional SEM Image 
 
 

5 µm5 µm  
 

Fig. B.1 SEM image of an in-situ β phase composite: White area represents the BCC 

crystalline (β) phase while the black area is the amorphous matrix. Despite the dendritic 

nature of the BCC second phase, it is often observed in sphere-like or ellipsoidal shapes 

in many regions of two-dimensional images. 

 

The complicated three-dimensional (3-D) geometry of dendrites makes the 

volume fraction analysis challenging, especially if the only data available is in the form 

of two-dimensional (2-D) slices from SEM images. Here, the observed area fraction can 

vary depending on the cutting angle and direction to obtain the 2-D images. For example, 

the area fraction of a sphere within a cube may be 79% (π / 4) if the cut is along the 

center, while its volume fraction is always 52%. However, this problem can be resolved 

if one analyzes many 2-D cuts so that there is an equal probability of making the cut 

anywhere between the edge and the center.  
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Fig. B.2 Sphere-cube model for second phase area and volume fraction calculation: The 

sphere inside of the cube represents the BCC crystalline phase inside the amorphous 

matrix, and radius of the sphere, r' is an arbitrary value between 0 and r. The cube is the 

reference volume over which integration is performed, and the thin slice with a thickness 

dx is the integral element. 

 

 The sphere-cube model is drawn in Fig. B.2, based on the sphere-like shape of 

most BCC dendrites observed in SEM images. In this model, the sphere size is treated as 

a variable, and the probability of cutting the sphere is all equal from the edge to the center.  

First of all, sphere-to-cube volume ratio is calculated: 
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The next step is to calculate circle-to-square 2-D area ratio. Since cutting is a random 

process, it is important to find out the average value of the circle area.  
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Then, the area fraction is given as: 
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Equation (B.1) is equal to (B.4) 
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 Therefore, as long as the 2-D analysis is performed over a reasonably large area to 

ensure the average value is captured, it is valid to estimate the 3-D volume fraction from 

a 2-D SEM image analysis. It is also worth noting that a more rigorous integration proved 

that the relation shown in equation (B.5) also holds true regardless of inclusion shape and 

number [1], which means that the spherical shape assumption for the dendrites is not 

required. 
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Appendix C 
 

Finite Element Modeling of Heat Transfer in an Arc-melted Button 
 

 

 

 

 
 

Fig. C.1 Backscattered SEM images of the microstructure of the arc-melted in-situ β 

phase button along its vertical axis. The radius of the sample is 7.8 mm, and dendrite size 

varies from 1 ~ 12 µm along the vertical axis. (Modified from Fig. 5.3, magnification:     

x 1,000) 
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Radiation Cooling

Convection Cooling

 
 

Fig. C.2 Temperature profile calculated by FEM around the dendrite forming temperature 

range: 1000℃ ~ 1050℃. (Here, temperature scale is given in Kelvin.) The modeling was 

done in collaboration with Marios Demetriou at Caltech [2]. 
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 As explained in Section 5.1.2, it was somewhat unexpected to observe the 

dendrite size becoming smaller going up to the top of the button, because it suggests the 

slowest cooling doest not take place at the top surface during dendrite formation. The 

author had initially assumed a convective unidirectional cooling only from the bottom of 

the sample. However, Figs. 5.3-5.5 clearly show that the largest dendrites occur in the 

lower middle range. Another interesting observation is that the second phase in most 

regions shows an equiaxial shape. Although a more careful observation reveals locally 

elongated dendritic morphology mainly in the top and bottom areas, the overall trend 

illustrates isothermal cooling rather than a unidirectional one.  

 To interpret these counter-intuitive observations, Finite Element Modeling (by 

FEM Lab software) was employed, and it successfully described the real heat transfer 

conditions. Based on the previous knowledge on Vitreloy 1 and the cooling rate of the 

arc-melter, the overall convective heat transfer coefficient hc, between water and molten 

button through Cu conduction, was determined to be around 100 W/(m2K) [2]. The data 

employed in this calculation includes the conductivity of the Cu plate and the thermal 

resistance between the Cu plate and water plus the thermal resistance between the Cu 

plate and the molten button as well.  

Another important parameter is the cooling by radiation: 

                                                       hr =  4εσT3                                                      (C.1)  

where, emissivity ε = 0.3 for Vit 1, Stefan-Boltzmann constant σ = 5.67 x 10-8 W/(m2K4), 

T = 1500 K (liquidus of dendrite). Therefore,  

                                                  hr ≈ 200 W/(m2K)                                               (C.2) 

                                                 hc ≈ 100 W/(m2K)                                               (C.3) 
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The most important conclusion here is that cooling by radiation is as effective (if not 

more) as convective cooling at high temperatures. With these input data, the temperature 

profile was generated by 3-D FEM, and the result is shown in Fig. C.2. The starting 

temperature was 2000 K and Fig. C.2 exhibits the early stage of the cooling 

(1000℃~1050℃) where dendrites are expected to form under heterogenous β phase 

nucleation condition. The solidus and liquidus for dendrites are estimated to be about 

800℃ and 1150℃, respectively, from the synchrotron in-situ heating experiments (see 

Section 5.3.) Materials parameters such as heat capacity are taken from Vitreloy 1 due to 

its compositional similarity with the amorhous matrix. The slowest cooling rate takes 

place in the middle range due to the fast cooling by radiation which it explains the bigger 

dendrite formation in the middle of the button. The fact that the largest dendrites were 

discovered a little lower than the exact center suggests that cooling by radiation was more 

effective than convective cooling at that temperature range. However, the temperature 

scale varies by only 20℃ in most of the sampling volume, which means there is no 

significant temperature gradient inside the button. It was monitored in the FEM 

simulations that the whole button cooled down isothermally until the room temperature, 

even though a time specific profile such as that in Fig. C.2 reveals a small temperature 

gradient.  

 To further validate this modeling result, a scaling analysis was applied using the 

Biot number defined as: 

                                          3
)(Bi R

k
h

k
AVh

==                                   (C.4) 
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where, the overall heat transfer coefficient hoverall ≈ 100 W/(m2K), thermal conductivity 

of Vit 1 kvit1 = 18 W/(mK), mid-plane distance R ≈ 0.008 m. Therefore, 

                                                     02.0Bi ≈                                                 (C.5) 

Fig C.3 shows that a small Biot number (high k and low h) generates isothermal cooling 

since conduction within the solid is much faster than heat loss at the interface. The 

calculated Biot number 0.02 << 1 confirms the isothermal cooling behavior predicted by 

the FEM modeling.  

 
 

Fig. C.3 Transient temperature distribution for different Biot numbers in a plane wall 

symmetrically cooled by convection. Note that a small Biot number (high heat transfer 

rate inside the materials) induces isothermal cooling and a large Biot number (high heat 

transfer rate at the interface) causes significant temperature gradients within the solid. 

Reproduced from Frank P. Incropera and David P. De witt “Introduction to Heat 

Transfer” p. 231.  

 

 As shown above, the overall cooling rate does not change much within the button, 

while a large variation of the dendrite size should be driven by large differences in the 

cooling rate. One possible explanation of why the dendrite size varied much inside the 
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button while the temperature gradients are expected to be low would be the 

“recalescence”, i.e., the latent heat released during dendrite solidification. It has been 

known that recalescence events can lead to local temperature increases about 50~200℃ 

[3-4]. In that case, this volumetric heat source cannot be ignored. Since the solidification 

process happens from the edge to the center, the continuous latent heat release process 

could induce a greater cooling rate difference by modifying the heat flux from the center 

to the surface. Unfortunately, the current state of the art in modeling is not sufficient to 

further quantify the exact temperature profile within the button during dendrite formation 

and growth. 

 In sum, it is concluded that the radiative cooling effect is quite significant around 

the dendrite forming period, and the whole button cools down mostly isothermally with a 

small temperature gradient. The observed big dendrite size distribution in spite of this 

expected small cooling rate difference suggests that dendrite formation is very sensitive 

to local heat transfer conditions, and additional temperature gradients may be added by 

the volumetric heat source which is generated through the solidification process.   
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