
STATE ESTIMATION IN MULTI-AGENT DECISION
AND CONTROL SYSTEMS

Thesis by

Domitilla Del Vecchio

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2005

(Defended March 29, 2005)

ii

c© 2005

Domitilla Del Vecchio

All Rights Reserved

iii

To my mother Daniela and to my dear Lorenzo

iv

Acknowledgements

I would like to thank my committee members: Professors Richard M. Murray, Pietro

Perona, Eric Klavins, John Doyle, and Jerry Marsden. In particular, I would like to thank

Professors Pietro Perona and Eric Klavins for their substantial contributions to my research.

A special thanks goes to my adviser, Professor Richard M. Murray, for being the best guide

I could have ever had during the duration of my Ph.D. I wish to thank my family, Daniela,

Raffaele, and Liana, for being always very close to me even if physically very far. I would

like to deeply thank Lorenzo for having accompanied me all along the not-so-easy path that

lead me to obtain my Ph.D. Finally, I would like to thank all of my friends, with whom I

shared many, many things for all the duration of my studies.

v

Abstract

This thesis addresses the problem of estimating the state in multi-agent decision and

control systems. In particular, a novel approach to state estimation is developed that uses

partial order theory in order to overcome some of the severe computational complexity

issues arising in multi-agent systems. Within this approach, state estimation algorithms are

developed that enjoy provable convergence properties and are scalable with the number of

agents.

The dynamic evolution of the systems under study are characterized by the interplay of

continuous and discrete variables. Continuous variables usually represent physical quan-

tities such as position, velocity, voltage, and current, while the discrete variables usually

represent quantities internal to the decision protocol that are used for coordination, com-

munication, and control. Within the proposed state estimation approach, the estimation of

continuous and discrete variables is developed in the same mathematical framework as a

joint continuous-discrete space is considered for the estimator. This way, the dichotomy

between the continuous and discrete world is overcome for the purpose of state estimation.

Application examples are considered, which include the state estimation in competi-

tive multi-robot systems and in multi-agent discrete event systems, and the monitoring of

distributed environments.

vi

Contents

Acknowledgements iv

Abstract v

1 Introduction 1

2 Basic Concepts 5

2.1 Partial Order Theory . 5

2.2 Deterministic Transition Systems . 10

2.3 Enumeration Approach to the Discrete State Estimation Problem 12

3 Construction of Discrete State Estimators on a Lattice 15

3.1 Motivating Example . 15

3.2 Problem Formulation . 21

3.3 Problem Solution . 23

3.4 Example: The RoboFlag Drill . 29

3.4.1 System Specification . 29

3.4.2 RoboFlag Drill Estimator . 31

3.4.3 Complexity of the RoboFlag Drill Estimator 35

3.4.4 Simulation Results . 37

4 Existence of Discrete State Estimators on a Lattice 39

4.1 Estimator Existence . 40

4.2 Existence of an Estimator on a Chosen Lattice 47

vii

5 Discrete State Estimators on a Lattice for Nondeterministic Systems 50

5.1 Basic Definitions . 50

5.2 Estimator Construction and Existence . 52

5.3 Nondeterministic Example . 55

6 Cascade Discrete-Continuous State Estimators on a Lattice 60

6.1 The Model . 61

6.2 Problem Statement . 62

6.3 Estimator Construction . 64

6.4 Estimator Existence . 70

6.5 The Case of Monotone Systems . 74

6.5.1 Form of the Estimator for a Monotone System 75

6.5.2 Algebraic Tests for Induced Interval Compatibility 78

6.6 Simulation Examples . 80

6.6.1 Example 1: Linear Discrete-Time Hybrid Automaton 80

6.6.2 Example 2: Monotone System . 82

6.6.3 Example 3: RoboFlag Drill (variation) 83

6.6.4 Complexity Considerations . 86

7 Conclusions, Future Directions, and Possible Extensions 88

7.1 Conclusions . 88

7.2 Future Directions and Possible Extensions 90

7.2.1 State Estimation in Discrete Event Systems Modeled as Petri Nets . 91

7.2.1.1 Petri Net Model . 91

7.2.1.2 State Estimation on a Partial Order 94

7.2.2 Monitoring a Distributed Environment 96

7.2.2.1 System Model . 97

7.2.2.2 Formulation of the Estimation Problem on a Lattice . . . 100

7.2.2.3 Meeting Constraints on the Partial Order 108

7.2.2.4 Dealing with Uncertainty on the Model, Random Distur-

bances, and Measurement Errors 109

viii

7.2.2.5 Simulation Examples 112

Bibliography 116

ix

List of Figures

2.1 Examples of partial orders . 6

2.2 Power lattice . 7

2.3 Examples of maps on partial orders . 8

2.4 Approximations on a partial order . 10

2.5 Weakly equivalent executions . 11

2.6 Enumeration approach to state estimation 13

3.1 RoboFlag drill . 16

3.2 The RoboFlag Drill . 17

3.3 Lower and upper bound description for the RoboFlag drill 18

3.4 Lattice approach to state estimation . 20

3.5 Example of estimator convergence plots . 21

3.6 RoboFlag drill example . 30

3.7 Convergence plots . 38

4.1 Transition classes . 43

4.2 Automaton example. 46

4.3 Automaton example: lattice (χ,≤). 46

5.1 Extension f̃ on lattice χ. 55

5.2 Estimator convergence plots . 59

6.1 Estimator update laws . 68

6.2 Hasse diagram representing elements in the lattice (L,≤). 72

6.3 Estimator update laws for the monotone case 77

x

6.4 Finite State Machine Example . 80

6.5 Estimator convergence plots . 82

6.6 Monotone system example . 83

6.7 Estimator convergence plots . 85

7.1 Petri net example . 93

7.2 Uncertainty on the model (branchings) . 110

7.3 Uncertainty on the model (unknown dynamics) 111

7.4 Estimator convergence plots for the monitoring example: deterministic case . 113

7.5 Estimator convergence plots for the monitoring example: nondeterministic

case . 114

7.6 Estimator convergence plots for the monitoring example: modeling uncertainty114

7.7 Estimator convergence plots for the monitoring example: measurement errors 115

1

Chapter 1

Introduction

Logic and decision making are playing increasingly large roles in modern control sys-

tems, and virtually all modern control systems are implemented using digital computers.

Examples include aerospace systems, transportation systems (air, automotive, and rail),

communication networks (wired, wireless, and cellular), and supply networks (electrical

power and manufacturing). The evolution of these systems is determined by the interplay

of continuous dynamics and logic. The continuous variables can represent quantities such

as position, velocity, acceleration, voltage, current, etc., while the discrete variables can

represent the state of the decision and communication protocol that is used for coordina-

tion and control. Most of these systems are also multi-agent, in which an agent can be,

for example, a wireless device, a micro-controller, a robot, a piece of machinery, a piece

of hardware or software, or even a human. The need for understanding and analyzing the

behavior of these systems is compelling. However, the coupling of continuous dynamics

and decision protocols renders the system under study interesting and complicated enough

that new tools are needed for the sake of analysis and control. Also, multi-agent systems

are usually affected by the combinatorial explosion of the state space that renders most of

the existing state estimation algorithms inapplicable.

The problem of estimating the state of a decision and control system has been addressed

by several authors for control or as a means for solving monitoring or surveillance problems

in distributed environments. In the hybrid systems literature, Bemporad et al. [7] propose

the notion of incremental observability for piecewise affine systems and construct a dead-

beat observer that requires large amounts of computation. Balluchi et al. [4] combine a

2

location observer with a Luenberger observer to design hybrid observers that identify the

location in a finite number of steps and converge exponentially to the continuous state.

However, if the number of locations is large, as in the systems that we consider, such an ap-

proach is impracticable. In Balluchi et al., sufficient conditions for a linear hybrid system to

be final state determinable are given [5]. In Alessandri et al., Luenberger-like observers are

proposed for hybrid systems where the system location is known [2, 3]. Vidal et al. [43]

derive sufficient and necessary conditions for observability of discrete time jump-linear

systems, based on a simple rank test on the parameters of the model. In later work [44],

these notions are generalized to the case of continuous time jump linear systems. For jump

Markov linear systems, Costa and do Val derive a test for observability [18], and Cassan-

dra et al. propose an approach to optimal control for partially observable Markov decision

processes [15]. For continuous time hybrid systems, De Santis et al. propose a definition

of observability based on the possibility of reconstructing the system state, and testable

conditions for observability are provided [28].

In the discrete event literature, observability has been defined by Ramadge [38], for

example, who derives a test for current state observability. Oishi et al. [37] derive a test

for immediate observability in which the state of the system can be unambiguously recon-

structed from the output associated with the current state and last and next events. Özveren

et al. [22] and Caines [13, 14] propose discrete event observers based on the construction

of the current-location observation tree that is impracticable when the number of locations

is large, which is our case. Observability is also considered in the context of distributed

monitoring and control in industrial automation, where agents are cooperating to perform

system-level tasks such as failure detection and identification on the basis of local informa-

tion [39]. Diaz et al. consider observers for formal on-line validation of distributed systems,

in which the on-line behavior is checked against a formal model [29]. In the context of sen-

sor networks, state estimation covers a fundamental role when solving surveillance and

monitoring tasks in which the state usually has several components, such as the position of

an agent, its identity, and its intent (see for example [17] or [11]).

The main contribution of this work is to design state estimators for decision and control

systems that overcome severe complexity issues encountered in previous work ([4, 13, 14]).

3

These complexity issues render prohibitive the estimation problem for systems with a large

discrete state space, which is often the case in multi-agent systems. Our point of view

is that some of the complexity issues, such as those encountered in [13] or [4], can be

avoided by finding a good way of representing the sets of interest and by finding a good

way of computing maps on them. As a naive example, consider the set S of all natural

numbers between one and one thousand. This set is usually represented as an interval in

N, that is S = [1, 1000], so that the listing of all the elements it contains is not necessary

for representing it. Suppose we want to know what the set S is mapped to by a map φ that

associates each element n with the element n+ 2. Clearly, to compute φ(S) we do not need

to compute φ on each element of S and collect all the results. In fact, it is easy to see that

φ(S) = [3, 1002], that is, we just compute φ on the least and maximum elements of S to

obtain the least and maximum elements of φ(S), which are then used to represent the latter

set. This simplification is possible thanks to the order structure naturally associated with N

and thanks to the structure of the map φ.

These ideas are extended by using partial order theory to an arbitrary set, which might

be more complicated than a set in N and might contain continuous components. Partial

order theory has been used historically in theoretical computer science to prove properties

about convergence of algorithms [19]. It has also been used for studying controllability

properties of finite state machines [12] and for approaching the state explosion problem in

the verification of concurrent systems [31]. In this work, we exploit partial order theory

to estimate the state in systems with a large discrete space. In particular, given a system Σ

defined on its space of variables, we extend it to a larger space of variables that has lattice

structure so as to obtain an extended system Σ̃. Under certain properties verified by the

extension Σ̃, an observer for system Σ can be constructed, which updates at each step only

two variables. It updates the least and greatest element of the set of all values of variables

compatible with the output sequence and with the dynamics of Σ. The structure of the

obtained observer resembles the structure of the Luenberger observer or a Kalman filter as

it is obtained by “copying” the dynamics of the system Σ and by correcting it according to

the measured output values.

This work is concerned with the estimation of the discrete state in case the continuous

4

state is measured, and with the estimation of the whole system state in case a cascade

structure of the estimator is possible. Within this context, the proposed estimation approach

is also general as it applies to any observable system. In fact, we show that a system

is observable if and only if there is a lattice in which the extended system satisfies the

requirements for the construction of the proposed estimator. Within the state estimation

framework that we develop, the estimation of the discrete and continuous part of the state

space is handled in a unified way. In fact, there is no need to implement both a continuous

state estimator that relies on classical control theory and a discrete state estimator based on

automata theory, as done in most previous work. This is achieved by using a partial order

to establish relationships between elements of a discrete space in analogy to how a metric

establishes relationships between elements in a continuous space.

The contents of this work are organized as follows. In Chapter 2, some of the basic

mathematical machinery on partial order theory and transition systems is introduced. Ob-

servability notions are introduced as well, and enumeration approaches to state estimation

are reviewed. In Chapter 3, the state estimation problem is re-cast on a partial order and

a solution is proposed for estimating the discrete state of a deterministic system when the

continuous state is measured. Chapter 4 shows that the proposed approach applies to any

observable system and thus is general. In Chapter 5, the results of Chapter 3 and of Chapter

4 are generalized to the case of nondeterministic systems. In Chapter 6, the results of the

previous chapters are extended to the case of estimation of both discrete and continuous

variables assuming a cascade for of the estimator. A multi-robot system involving two

teams competing against each other is used through these chapters as a leading example.

In Chapter 7, more application examples are proposed along with possible extensions.

5

Chapter 2

Basic Concepts

In this chapter, we review some basic notions that will be used throughout this work.

First, we give some background on partial order and lattice theory in Section 2.1 (for more

details the reader is referred to [21, 1]). The theory of partial orders, while standard in

computer science, may be less well known to the intended audience of this thesis. Then,

the class of systems under study is introduced in Section 2.2, i.e., deterministic transition

systems, and the state estimation problem is defined. Finally, we show a solution to the

problem in Section 2.3, an enumeration method that has been most often used in previous

work.

2.1 Partial Order Theory

A partial order is a set χ with a partial order relation “≤”, and we denote it by the pair

(χ,≤). For any x,w ∈ χ, sup{x,w} is the smallest element that is larger than both x and

w. In a similar way, inf{x,w} is the largest element that is smaller than both x and w. We

define the join “g” and the meet “f” of two elements x and w in χ as

1. x g w := sup{x,w} and x f w := inf{x,w};

2. if S ⊆ χ,
∨

S := sup S , and
∧

S := inf S .

Let (χ,≤) be a partial order. If x f w ∈ χ and x g w ∈ χ for any x,w ∈ χ, then (χ,≤)

is a lattice. In Figure 2.1, we illustrate Hasse diagrams [21] showing partially ordered sets.

6

From the diagrams, it is easy to tell when one element is less than another: x < w if and

only if there is a sequence of connected line segments moving upward from x to w.

x g w

x w

x w

x f w

w

x f wx f w

x g w

x

a) b)

d)c)

wx

Figure 2.1: In diagram a) and b), x and w are not related, but they have a join and a meet,
respectively. In diagram c), we show a complete lattice. In diagram d), we show a partially
ordered set that is not a lattice, since the elements x and w have a meet, but not a join.

Let (χ,≤) be a partial order. Then (χ,≤) is a chain if for all x,w ∈ χ, either x ≤ w

or w ≤ x, that is, any two elements are comparable. If instead any two elements are not

comparable, i.e., x ≤ y if and only if x = y, (χ,≤) is said to be an anti-chain. If x < w and

there is no other element in between x and w, we write x � w.

Let (χ,≤) be a lattice and let S ⊆ χ be a non-empty subset of χ. Then, (S ,≤) is a

sublattice of χ if a, b ∈ S implies that a g b ∈ S and a f b ∈ S . If any sublattice of χ

contains its least and greatest elements, then (χ,≤) is called complete. Any finite lattice is

complete, but infinite lattices may not be complete, and hence the significance of the notion

of a complete partial order [1]. Given a complete lattice (χ,≤), we will be concerned with

a special kind of a sublattice called an interval sublattice defined as follows. Any interval

sublattice of (χ,≤) is given by [L,U] = {w ∈ χ : L ≤ w ≤ U} for L,U ∈ χ. That is,

this special sublattice can be represented by two elements only. For example, the interval

sublattices of (R,≤) are just the familiar closed intervals on the real line. A particular

instance of a partial order is the f-semilattice, which is a partially ordered set in which all

meet (f) exist but all joins do not necessarily exist.

7

Let (χ,≤) be a lattice with least element ⊥ (the bottom). Then, a ∈ χ is called an atom

of (χ,≤) if a > ⊥ and there is no element b such that ⊥ < b < a. The set of atoms of (χ,≤)

is denotedA(χ,≤).

The power lattice of a setU, denoted (P(U),⊆), is given by the power set ofU, P(U)

(the set of all subsets ofU), ordered according to the set inclusion ⊆. The meet and join of

the power lattice is given by intersection and union. The bottom element is the empty set,

that is, ⊥ = ∅, and the top element isU itself, that is, > = U. Note thatA(P(U),⊆) = U.

An example is illustrated in Figure 2.2. Given a set P, we denote by |P| its cardinality.

α1 α2 α3

U = {α1, α2, α3}

> = α1 g α2 g α3 = U
α1 g α2 = {α1, α2}

α1 g α3 = {α1, α3}

α2 g α3 = {α2, α3}

(χ,≤) = (P(U),⊆)

⊥ = ∅

Figure 2.2: Power lattice (χ,≤) of a setU composed of three elements.

Definition 2.1.1. Let (P,≤) and (Q,≤) be partially ordered sets. A map f : P→ Q is

(i) an order preserving map if x ≤ w =⇒ f (x) ≤ f (w);

(ii) an order embedding if x ≤ w ⇐⇒ f (x) ≤ f (w);

(iii) an order isomorphism if it is order embedding and it maps P onto Q.

Definition 2.1.2. If (P,≤) and (Q,≤) are lattices, then a map f : P → Q is said to be a

homomorphism if f is join-preserving and meet-preserving, that is, for all x,w ∈ P we have

that f (x g w) = f (x) g f (w) and f (x f w) = f (x) f f (w).

Proposition 2.1.1. (See [21]) If f : P → Q is a bijective homomorphism, then it is an

order isomorphism.

8

z

x w

y

z

x w

y

f

f

e)
f (z) = f (w)

f (x) = f (y)

f (z)

f (x)

f (y)

f (w)

f)

Figure 2.3: In diagram e), we show a map that is, order preserving but not order embedding.
In diagram f), we show an order embedding that is, not an order isomorphism: any two
elements maintain the same order relation, but in between z and w there is nothing, while
in between f (z) and f (w) some other elements appear (it is not onto).

Every order isomorphic map faithfully mirrors the structure of P onto Q. In Figure 2.3

we show some examples.

The notion of an order preserving map can be generalized to the case in which the map

is nondeterministic, that is, it maps an element to a set of possible elements. With a slight

abuse of the term “order preserving” we also make the following non-standard definition.

Definition 2.1.3. Let x,w ∈ χ, with (χ,≤) a lattice, x ≤ w, and f : χ → P(χ). We say that

f is order preserving if
∨

f (x) ≤
∨

f (w) and
∧

f (x) ≤
∧

f (w).

A partial order induces a notion of distance between elements in the space. Define the

distance function on a partial order in the following way.

Definition 2.1.4. (Distance on a partial order) Let (P,≤) be a partial order. A distance d on

(P,≤) is a function d : P × P→ R such that the following properties are verified:

(i) d(x, y) ≥ 0 for any x, y ∈ P and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x);

(iii) if x ≤ y ≤ z then d(x, y) ≤ d(x, z).

9

Since Chapter 6 deals with a partial order on the space of the discrete variables and

with a partial order on the space of the continuous variables, it is useful to introduce the

Cartesian product of two partial orders as it can be found in [1].

Definition 2.1.5. (Cartesian product of partial orders) Let (P1,≤) and (P2,≤) be two partial

orders. Their Cartesian product is given by (P1 × P2,≤), where P1 × P2 = {(x, y) | x ∈

P1 and y ∈ P2}, and (x, y) ≤ (x′, y′) if and only if x ≤ x′ and y ≤ y′. For any (p1, p2) ∈

P1 × P2 the standard projections π1 : P1 × P2 → P1 and π2 : P1 × P2 → P2 are such that

π1(p1, p2) = p1 and π2(p1, p2) = p2.

One can easily verify that the projection operators preserve the orders.

In this work we will also deal with approximations of sets and elements of a partial

order. We thus give the following definition.

Definition 2.1.6. (Upper and lower approximation) Let P1 and P2 be two sets with P1 ⊆ P2

and (P2,≤) a partial order. For any x ∈ P2, we define the lower and upper approximations

of x in P1 as

aL(x) := max
(P2,≤)
{w ∈ P1 | w ≤ x}

aU(x) := min
(P2,≤)
{w ∈ P1 | w ≥ x}.

If such lower and upper approximations exist for any x ∈ P2, then the partial order (P2,≤)

is said to be closed with respect to P1.

One can verify that the lower and upper approximation functions are order preserving.

This means that for any x1, x2 ∈ P2 with x1 ≤ x2, then aL(x1) ≤ aL(x2) and aU(x1) ≤ aU(x2).

Example of lower and upper approximations are depicted in Figure 2.4.

In this section, we have given some basic definitions on partial order and lattice theory.

In the next section, we introduce the class of models that we are going to consider in this

work. These are transition systems with output.

10

aL(x)

x

in P1

in P2 and not in P1

aU(x)

Figure 2.4: Let P1 ⊆ P2, the open circles represent elements in P2 that are not in P1 while
the filled circles represent elements that are also in P1.

2.2 Deterministic Transition Systems

The class of systems we are concerned with are deterministic, infinite state systems

with output. The following definition introduces such a class.

Definition 2.2.1. (Deterministic transition systems) A deterministic transition system (DTS)

is the tuple Σ = (S ,Y, F, g), where

(i) S is a set of states with s ∈ S ;

(ii) Y is a set of outputs with y ∈ Y;

(iii) F : S → S is the state transition function;

(iv) g : S → Y is the output function.

An execution of Σ is any sequence σ = {s(k)}k∈N such that s(0) ∈ S and s(k + 1) =

F(s(k)) for all k ∈ N. The set of all executions of Σ is denoted E(Σ). An output sequence

of Σ is denoted y = {y(k)}k∈N, with y(k) = g(σ(k)), for σ ∈ E(Σ).

Definition 2.2.2. Let Σ = (S ,Y, F, g) be a deterministic transition system. The set Ω ⊂ S

is the ω+-limit set of Σ, denoted ω(Σ), if it is the smallest subset of S such that for all

σ = {s(k)}k∈N

(i) if s(k) ∈ Ω and s(k + 1) = F(s(k)), then s(k + 1) ∈ Ω;

11

σ1 σ2 σ3

ω(Σ)

Figure 2.5: Executionsσ2 andσ3 are weakly equivalent according to Definition 2.2.5 while
σ1 is not weakly equivalent to either σ2 or σ3.

(ii) for each σ ∈ E(Σ), there exists kσ such that σ(kσ) ∈ Ω.

Definition 2.2.3. Given a deterministic transition system Σ = (S ,Y, F, g), two executions

σ1, σ2 ∈ E(Σ) are distinguishable if there exists a k such that g(σ1(k)) , g(σ2(k)).

Definition 2.2.4. (Observability) The deterministic transition system Σ = (S ,Y, F, g) is

said to be observable if any two different executions σ1, σ2 ∈ E(Σ) are distinguishable.

From this definition, we deduce that if a system Σ is observable, any two different initial

states will give rise to two executions σ1 and σ2 with different output sequences. Thus, the

initial states can be distinguished by looking at the output sequence. However, there are

systems for which two different initial states cannot be distinguished, but the states at some

later step can. We introduce a weaker notion of observability analogous to detectability

[41] that accounts for this distinction.

Definition 2.2.5. Given a deterministic transition system Σ = (S ,Y, F, g), two executions

σ1, σ2 ∈ E(Σ) are weakly equivalent, denoted σ1 ∼ σ2, if there exists k∗ such that σ1(k∗) <

ω(Σ) and σ1(k) = σ2(k) for all k ≥ k∗.

In Figure 2.5, we show examples of equivalent and not equivalent system executions.

Definition 2.2.6. (Weak observability) A deterministic transition system Σ = (S ,Y, F, g) is

weakly observable if whenever σ1 / σ2 then there is k such that g(σ1(k)) , g(σ2(k)).

12

For any system Σ, the state estimation problem is defined as follows.

Problem 2.2.1. (State estimation problem) Given Σ and any output sequence y = {y(k)}k∈N,

determine {s(k)}k≥k0 for some k0 > 0.

In the next section, a solution to this problem, first introduced by Caines ([13, 14]), is

presented.

2.3 Enumeration Approach to the Discrete State Estima-

tion Problem

Let Σ = (S ,Y, F, g), with S a finite set and Y = {Y1, ...,Ym} with m ≤ |S |. We use

a variable ŝ to represent an estimate of s with ŝ ∈ P(S). Since S is composed by a finite

number of elements, the estimation problem is called the discrete state estimation problem.

The intention is that ŝ(k) denotes the set of all possible values of s(k) compatible with the

output sequence until step k and with the system dynamics. For k ≥ 0, ŝ(k) is updated

according to

ŝ(k + 1) = F(ŝ(k)) ∩ Oy(k + 1), ŝ(0) = S , (2.1)

where for any ŝ ∈ P(S), we define

F(ŝ) = {s′ ∈ S : ∃ s ∈ ŝ with F(s) = s′},

and Oy is the output set and it is defined by Oy := g−1(y), with g−1 : Y → P(S) is the

inverse of g defined as

g−1(y) = {s ∈ S : g(s) = y}.

Equation (2.1) gives at each step k a set that contains all and only the states compat-

ible with the system dynamics and with the output sequence up to step k + 1. A picture

representing this update law is in Figure 2.6.

For such an update law, the following result holds.

13

Fŝ(k)
F(ŝ(k))

Oy(k + 1)

Figure 2.6: Enumeration approach to state estimation: the set of possible consistent states
ŝ(k) is mapped forward through the system dynamics F, and then F(ŝ(k)) is intersected
with the set of all states compatible with the new output (Oy(k + 1)). This procedure gives
ŝ(k + 1), which is represented by the filled circles in the right diagram.

Theorem 2.3.1. Given the system Σ = (S ,Y, F, g), the update law in equation (2.1) is such

that

(i) s(k) ∈ ŝ(k) for any k ≥ 0 (correctness);

(ii) |ŝ(k + 1)| ≤ |ŝ(k)| (non-increasing error);

(iii) if Σ is (weakly) observable, then there is k0 > 0 such that ŝ(k) = s(k) for any k ≥ k0

(convergence).

Proof. Proof of (i). This can be proved by induction argument on the step k. Briefly,

s(0) ∈ ŝ(0). Assume s(k) ∈ ŝ(k), we prove that s(k + 1) ∈ ŝ(k + 1). This follows from

two facts. Fact 1): s(k + 1) ∈ g−1(y(k + 1)) because g(s(k + 1)) = y(k + 1). Fact 2): Since

s(k) ∈ ŝ(k), also s(k + 1) = F(s(k)) ∈ F(ŝ(k)).

Proof of (ii). This follows directly from the following two facts. Fact 1): |F(ŝ(k))| =

|ŝ(k)|. Fact 2): For any two sets A and B, |A ∩ B| ≤ |A|.

14

Proof of (iii). This can be proved by contradiction. Assume that there is no k0 such

that ŝ(k) = s(k), then one can construct two executions of Σ, σ1 , σ2 such that g(σ1(k)) =

g(σ2(k)) for any k. This contradicts (weak) observability. �

This proof is just a sketch. For a complete proof, the reader is deferred to [13]. This

enumeration approach to state estimation will also be referred to as current location obser-

vation tree method, due to the tree implementation provided in [13].

From expression (2.1), it is clear that this approach is impracticable if the size of S is

large. This is often the case in multi-agent and distributed systems, in which each agent has

a set of possible states and the overall state of the system explodes combinatorially in the

number of states of each agent. For example, if we have a multi-agent system composed

by N agents each of which can be in n different states, the size of S is of the order of nN ,

that is, |S | ≈ O(nN). This means that |S | grows exponentially in the number of agents,

and thus the computational complexity of the enumeration approach to estimation grows

exponentially as well in the number of agents for a multi-agent system. In the next chapter,

we propose a methodology to overcome this state explosion problem and show an example

of a multi-robot system in which the computational complexity of the estimation algorithm

is O(N).

15

Chapter 3

Construction of Discrete State
Estimators on a Lattice

In the previous chapter, we have shown an enumeration approach to the discrete state

estimation problem (first introduced by Caines [13]). Such an approach is however imprac-

ticable when the dimension of the state space is large as is often the case in multi-agent or

distributed systems. In this chapter, we propose an alternative to the enumeration of the

compatible states. In particular, a set is represented by a lower and an upper bound once

it has been immersed in a lattice structure. We then keep track of the set by updating its

lower and upper bounds as opposed to the list of elements it contains. As a motivating

example, we introduce in Section 3.1 a multi-robot system. In Section 3.2, the state estima-

tion problem is formulated on a lattice, and a solution is proposed in Section 3.3. Finally,

the example presented in Section 3.1 is revisited, and the estimator constructed in Section

3.4. The results of this chapter appeared in [23].

3.1 Motivating Example

As a motivating example, we consider a task that represents a defensive maneuver for a

robotic “capture the flag” game [20]. We do not propose to devise a strategy that addresses

the full complexity of the game. Instead, we examine the following very simple drill or

exercise that we call “RoboFlag Drill.” Some number of blue robots with positions (zi, 0) ∈

R
2 (denoted by open circles) must defend their zone {(x, y) ∈ R2 | y ≤ 0} from an equal

number of incoming red robots (denoted by filled circles). The positions of the red robots

16

are (xi, yi) ∈ R2. An example for 5 robots is illustrated in Figure 3.1.

z2z1 z3 z4 z5

(x1, y1)
(x2, y2)

(x3, y3)
(x5, y5)

(x4, y4)

Figure 3.1: An example state of the RoboFlag Drill for 5 robots. The dashed lines represent
the assignment of each blue robot to red robot. Here, the assignment is α = {3, 1, 5, 4, 2}.
The variables zi denotes the position along the horizontal axis of blue robot i, and (xi, yi)
denotes the position in the plane of red robot i.

The red robots move straight toward the blue robots’ defensive zone. The blue robots

are each assigned to a red robot, and they coordinate to intercept the red robots. Let N

represent the number of robots in each team. The robots start with an arbitrary (bijective)

assignment α : {1, ...,N} → {1, ...,N}, where αi is the red robot that blue robot i is required

to intercept. At each step, each blue robot communicates with its neighbors and decides

to either switch assignments with its left or right neighbor or keep its assignment. It is

possible to show that the α assignment reaches the equilibrium value (1, ...,N) (see [35] or

[34] for details). We consider the problem of estimating the current assignment α given the

motions of the blue robots, which might be of interest to, for example, the red robots in that

they may use such information to determine a better strategy of attack. We do not consider

the problem of how they would change their strategy in this work.

17

(x3, y3)

(x4, y4)

(x5, y5)

(x6, y6)

(x7, y7)

(x8, y8)

α(k) = (2, 1, 5, 3, 7, 4, 6, 8)
z1 z2 z3 z4 z5 z6 z7 z8

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

(x6, y6)

(x7, y7)

(x8, y8)

(x1, y1)

(x2, y2)

α(k + 1) = (1, 2, 3, 5, 4, 7, 8, 6)
z1 z2 z3 z4 z5 z6 z7 z8

Figure 3.2: Example of the RoboFlag Drill with 8 robots per team. The dashed lines
represent the assignment of each blue robot to red robot. The arrows denote the direction
of motion of each robot.

The RoboFlag Drill system can be specified by the following rules:

yi(k + 1) = yi(k) − δ if yi(k) ≥ δ (3.1)

zi(k + 1) = zi(k) + δ if zi(k) < xαi(k) (3.2)

zi(k + 1) = zi(k) − δ if zi(k) > xαi(k) (3.3)

(αi(k + 1), αi+1(k + 1)) = (αi+1(k), αi(k)) if xαi(k) ≥ zi+1(k) ∧ xαi+1(k) ≤ zi+1(k), (3.4)

where we assume zi ≤ zi+1 and xi < zi < xi+1 for all k. Also, if none of the “if” statements

above are verified for a given variable, the new value of the variable is equal to the old

one. This system is a slight simplification of the original system described in [34]. In

such a work in fact, two close robots might decide to swap their assignments even if they

are moving in the same direction, while in the present case, two close robots swap their

assignments only if they are moving one toward the other. Also, in [34] the decision are

taken sequentially first from the robots on the left and then from the robots on the right, and

the decision are coordinated by a token that moves from left to right. In the presebt case,

the decision protocol is completely decentralized.

18

Equation (3.4) establishes that two robots trade their assignments if the current assign-

ments cause them to go toward each other. The question we are interested in is the follow-

ing: given the evolution of the measurable quantities z, x, y, can we build an estimator that

tracks on-line the value of the assignment α(k)? The value of α ∈ perm(N) determines the

discrete state, i.e., S = perm(N). The discrete state α determines also what has been called

in previous work the location of the system (see [4]). The number of possible locations

is N!, that is, |S | = N!. This for N ≥ 8 renders prohibitive the application of location

observers based on the current location observation tree as described in [13] (revised in

Chapter 2) and used in [4], [22]. At each step, the set of possible α values compatible with

the current output and with the previously seen outputs can be so large as to render imprac-

tical its computation. As an example, we consider the situation depicted in Figure 3.2 (left)

step k
z motion at
observation of

[







































































2
1
4
1
6
1
1
1







































































,







































































8
2
8
4
8
6
7
8







































































]

Oy(k)

f̃
[







































































1
2
1
4
1
6
1
1







































































,







































































2
8
4
8
6
8
7
8







































































]

f̃ (Oy(k))

[







































































1
1
1
5
1
7
1
1







































































,







































































1
2
3
8
5
8
7
8







































































]

Oy(k + 1)

∩ = [







































































1
2
1
5
1
7
1
1







































































,







































































1
2
3
8
5
8
7
8







































































]

Figure 3.3: The observation of the z motion at step k gives the set of possible α, Oy(k). At
each step, the set is described by the lower and upper bounds of an interval sublattice in an
appropriately defined lattice. Such set is then mapped through the system dynamics (f̃) to
obtain at step k+1 the set of α that are compatible also with the observation at step k. Such
a set is then intersected with Oy(k + 1), which is the set of α compatible with the z motion
observed at step k + 1.

where N = 8. We see the blue robots 1, 3, 5 going right and the others going left. From

equations (3.2)–(3.3) with xi < zi < xi+1 we deduce that the set of all possible α ∈ perm(N)

compatible with this observation is such that αi ≥ i + 1 for i ∈ {1, 2, 3} and αi ≤ i for

i ∈ {2, 4, 6, 7, 8}. The size of this set is 40320. According to the enumeration methods

presented in Section 2.3, this set needs to be mapped forward through the dynamics of

the system to see what are the values of α at the next step that correspond to this output.

19

Such a set is then intersected with the set of α values compatible with the new observation.

To overcome the complexity issue that comes from the need of listing 40320 elements for

performing such operations, we propose to represent a set by a lower L and an upper U

elements according to some partial order. Then, we can perform the previously described

operations only on L and U, two elements instead of 40320. This idea is developed in the

following paragraph.

For this example, we can view α ∈ NN . The set of possible assignments compatible with

the observation of the z motion deduced from the equations (3.2)–(3.3), denoted Oy(k), can

be represented as an interval with the order established component-wise, see the diagram

in Figure 3.3. The function f̃ that maps such a set forward, specified by the equations

(3.4) with the assumption that xi < zi < xi+1, simply swaps two adjacent robot assignments

if these cause the two robots to move toward each other. Thus, it maps the set Oy(k) to

the set f̃ (Oy(k)) shown in Figure 3.3, which can still be represented as an interval. When

the new output measurement becomes available (Figure 3.2, right) we obtain the new set

Oy(k + 1) reported in Figure 3.3. The sets f̃ (Oy(k)) and Oy(k + 1) can be intersected by

simply computing the supremum of their lower bounds and the infimum of their upper

bounds. This idea is also explained in Figure 3.4. This way, we obtain the system that

updates L and U, being L and U the lower and upper bounds of the set of all possible α

compatible with the output sequence:

L(k + 1) = f̃ (sup(L(k), inf Oy(k)))

U(k + 1) = f̃ (inf(U(k), sup Oy(k))). (3.5)

The variables L(k) and U(k) represent the lower and upper bound, respectively, of the set

ŝ computed in equation (2.1). The computational burden of this implementation is of the

order of N if N is the number of robots. This computational burden is to be compared to

N!, which is the computation requirement that we have with the enumeration approach as

noticed earlier in this section.

As it will be shown in detail in this thesis, the update laws in equations (3.5) have,

among others, the property that [L(k),U(k)] ∩ perm(N) tends to α(k). Letting V(k) =

20

U(k)

L(k)

f̃ (U(k))
f̃

supOy(k + 1)

infOy(k + 1)f̃ (L(k))

inf(f̃ (U(k)), supOy(k + 1))

sup(f̃ (L(k)), infOy(k + 1))

Figure 3.4: Lattice approach to state estimation. The set of possible consistent states ŝ(k)
is represented by a lower and an upper bound L(k) and U(k), once the set has been im-
mersed into a lattice. Then, the function f̃ is computed on L(k) and U(k), only. The
intersection with the output set at step k, Oy(k + 1) = [infOy(k + 1), supOy(k + 1)], is com-
puted by computing the supremum and infimum of the set intersection. Its supremum is
inf(f̃ (U(k)), supOy(k + 1)) and its infimum is sup(f̃ (L(k)), infOy(k + 1)).

|[L(k),U(k)] ∩ perm(N)|, Figure 3.5 shows convergence plots V(k) for the estimator com-

pared to the convergence plots E(k) = 1/N
∑N

i=1 |αi(k) − i| of the assignment protocol to its

equilibrium (1, ...,N).

This example gives an idea of how complexity issues can be overcome with the aid of

some partial order structure. In particular, the function f̃ has the property of preserving the

interval structure of the sets of interest: this is a key property that allows to use of upper

lower bounds only for computation purposes. In a more general setting, one would like to

know what are the system properties that allow such simplifications. By using partial order

theory, we address this question.

In the following section, we restrict the class of systems introduced in the previous

chapter to those in which the continuous variables are measurable. The discrete state esti-

21

1 2 3 4 5 6 7 8 9 10
0

10

20

1 2 3 4 5 6 7 8 9 10
0

5

10

15

1 2 3 4 5 6 7 8 9 10
0

10

20

time

dashed line = E(k)
solid line = log of V(k)

N=8: results for different initial conditions

Figure 3.5: Convergence plots for the estimator (V(k)) compared to the convergence plot
of the assignment protocol to its equilibrium (E(k)).

mation problem is then stated as the problem of finding suitable update laws for the upper

and lower bounds of the set of all possible discrete variable values compatible with the

output sequence. A solution to this problem is proposed in Theorem 3.3.1.

3.2 Problem Formulation

The deterministic transition systems Σ we defined in the previous chapter are quite

general. In this section, we restrict our attention to systems with a specific structure. In

particular, for a system Σ = (S ,Y, F, g) we suppose that

(i) S = U ×Z withU a finite set andZ a finite dimensional space;

(ii) F = (f , h), where f : U ×Z → U and h : U ×Z → Z;

(iii) y = g(α, z) := z, where α ∈ U, z ∈ Z, y ∈ Y, and Y = Z.

The set U is a set of logic states and Z is a set of measured states or physical states,

as one might find in a robot system. In the case of the example given in Section 3.1,

U = perm(N) and Z = RN , the function f is represented by equations (3.4) and the

function h is represented by equations (3.2)–(3.3). In the sequel, we will denote this class

22

of deterministic transition systems by Σ = S(U,Z, f , h) where we associate to the tuple

(U,Z, f , h), the equations:

α(k + 1) = f (α(k), z(k))

z(k + 1) = h(α(k), z(k)) (3.6)

y(k) = z(k),

where α ∈ U and z ∈ Z. An execution of the system Σ in equations (3.6) is a sequence

σ = {α(k), z(k)}k∈N. The output sequence is {y(k)}k∈N = {z(k)}k∈N. Given an execution σ

of the system Σ, we denote the α and z sequences corresponding to such an execution by

{σ(k)(α)}k∈N and {σ(k)(z)}k∈N, respectively.

From the measurement of the output sequence, which in our case coincides with the

evolution of the continuous variables, we want to construct a discrete state estimator: a

system Σ̂ that takes as input the values of the measurable variables and asymptotically

tracks the value of the variable α. We thus define in the following definition a deterministic

transition system with input.

Definition 3.2.1. (Deterministic transition system with input) A deterministic transition

system with input is a tuple (S ,I,Y, F, g) in which

(i) S is a set of states;

(ii) I is a set of inputs;

(iii) Y is a set of outputs;

(iv) F : S × I → S is a transition function;

(v) g : S → Y is an output function.

In Problem 3.2.1 below, we specify what the elements of this tuple are when the DTS

with input is a discrete state estimator of a DTS Σ = S(U,Z, f , h). First, note that the set

U does not have a natural metric associated with it. As a consequence, a way to track the

value of α is to list, at each step k, the set of all possible α values that are compatible with

23

the observation and with the system dynamics given in (3.6). This enumeration approach

has been shown in Section 2.3, in which the estimate is a list of possible values that the

estimator has to update when a new measurement becomes available. This method leads to

computational issues when the set to be listed is large.

In this chapter, an alternative to simply maintaining a list of all possible values for α is

proposed. We find a representation of the set so that the estimator updates the representation

of the set rather than the whole set itself. In particular, if the set U can be immersed in

a larger set χ whose elements can be related by an order relation ≤, we could represent a

subset of (χ,≤) as an interval sublattice [L,U]. Let “id” denote the identity operator. We

formulate the discrete state estimation problem on a lattice as follows.

Problem 3.2.1. (Discrete state estimator on a lattice) Given the deterministic transition

system Σ = S(U,Z, f , h), find a deterministic transition system with input Σ̂ = (χ×χ,Z×

Z, χ × χ, (f1, f2), id), with f1 : χ × Z ×Z → χ, f2 : χ ×Z ×Z → χ,U ⊆ χ, with (χ,≤) a

lattice, represented by the equations

L(k + 1) = f1(L(k), y(k), y(k + 1))

U(k + 1) = f2(U(k), y(k), y(k + 1)),

with L(k) ∈ χ, U(k) ∈ χ, L(0) :=
∧

χ, U(0) :=
∨

χ, such that

(i) L(k) ≤ α(k) ≤ U(k) (correctness);

(ii) |[L(k + 1),U(k + 1)]| ≤ |[L(k),U(k)]| (non-increasing error);

(iii) There exists k0 > 0 such that for any k ≥ k0 we have [L(k),U(k)] ∩ U = α(k)

(convergence).

3.3 Problem Solution

For finding a solution to Problem 3.2.1, we need to find the functions f1 and f2 defined

on a lattice (χ,≤) such that U ⊆ χ for some finite lattice χ. We propose in the following

24

definitions a way of extending a system Σ defined on U to a system Σ̃ defined on χ with

U ⊆ χ. Moreover, as we have seen in the motivating example, we want to represent the

set of possible α values compatible with an output measurement as an interval sublattice

in (χ,≤). We thus define the Σ̃ transition classes, with each transition class corresponding

to a set of values in χ compatible with an output measurement. We define the partial order

(χ,≤) and the system Σ̃ to be interval compatible if such equivalence classes are interval

sublattices and Σ̃ preserves their structure. On the basis of such notions, Theorem 3.3.1

below gives a possible solution to Problem 3.2.1.

Definition 3.3.1. (Extended system) Given the deterministic transition system Σ = S(U,Z,

f , h), an extension of Σ on χ, with U ⊆ χ and (χ,≤) a finite lattice, is any system Σ̃ =

S(χ,Z, f̃ , h̃), such that

(i) f̃ : χ ×Z → χ and f̃ |U×Z = f ;

(ii) h̃ : χ × Z → Z and h̃|U×Z = h.

Definition 3.3.2. (Transition sets) Let Σ̃ = S(χ,Z, f̃ , h̃) be a deterministic transition sys-

tem. The non empty sets T(z1,z2)(Σ̃) = {w ∈ χ | z2 = h̃(w, z1)}, for z1, z2 ∈ Z, are named the

Σ̃-transition sets.

Each Σ̃-transition set contains all of w ∈ χ values that allow the transition from z1 to z2

through h̃. It will be also useful to define the transition class Ti(Σ̃), which corresponds to

multiple transition sets, as transition sets obtained by different pairs (z1, z2) can define the

same set in χ.

Definition 3.3.3. (Transition classes) The set T (Σ̃) = {T1(Σ̃), ...,TM(Σ̃)}, with Ti(Σ̃) such

that

(i) For any Ti(Σ̃) ∈ T (Σ̃) there are z1, z2 ∈ Z such that Ti(Σ̃) = T(z1,z2)(Σ̃);

(ii) For any T(z1,z2)(Σ̃) there is j ∈ {1, ...,M} such that T(z1,z2)(Σ̃) = T j(Σ̃);

is the set of Σ̃-transition classes.

25

Note that T(z1,z2) and T(z3,z4) might be the same set even if (z1, z2) , (z3, z4): in the

RoboFlag Drill example introduced in Section 3.1, if robot j is moving right, the set of

possible values of α j is [j + 1,N] independently of the values of z j(k). Thus, T(z1,z2) and

T(z3,z4) can define the same set that we callTi(Σ̃) for some i. Also, the transition classesTi(Σ̃)

are not necessarily equivalence classes as they might not be pairwise disjoint. However, for

the RoboFlag Drill it is the case that the transition classes are pairwise disjoint, and thus

they partition the lattice (χ,≤) in equivalence classes.

Definition 3.3.4. (Output set) Given the extension Σ̃ = S(χ,Z, f̃ , h̃) of the deterministic

transition system Σ = S(U,Z, f , h) on the lattice (χ,≤), and given an output sequence

{y(k)}k∈N of Σ, the set

Oy(k) := {w ∈ χ | h̃(w, y(k)) = y(k + 1)}

is the output set at step k.

Note that by definition, for any k, Oy(k) = T(y(k),y(k+1))(Σ̃), and thus it is equal to Ti(Σ̃)

for some i ∈ {1, ...,M}. The output set at step k is the set of all possible w values that are

compatible with the pair (y(k), y(k + 1)). By definition of the extended functions (h̃|U×Z =

h), this output set contains also all of the values of α compatible with the same output pair.

Definition 3.3.5. (Interval compatibility) Given the extension Σ̃ = S(χ,Z, f̃ , h̃) of the

system Σ = S(U,Z, f , h) on the lattice (χ,≤), the pair (Σ̃, (χ,≤)) is said to be interval

compatible if

(i) each Σ̃-transition class, Ti(Σ̃) ∈ T (Σ̃), is an interval sublattice of (χ,≤):

Ti(Σ̃) = [
∧

Ti(Σ̃),
∨

Ti(Σ̃)];

(ii) f̃ : (Ti(Σ̃), z) → [f̃ (
∧

Ti(Σ̃), z), f̃ (
∨

Ti(Σ̃), z)] is an order isomorphism for any i ∈

{1, ...,M} and for any z ∈ Z .

The following theorem gives the main result, which proposes a solution to Problem

3.2.1.

26

Theorem 3.3.1. Assume that the deterministic transition system Σ = S(U,Z, f , h) is ob-

servable. If there is a lattice (χ,≤), such that the pair (Σ̃, (χ,≤)) is interval compatible, then

the deterministic transition system with input Σ̂ = (χ × χ,Z×Z, χ × χ, (f1, f2), id) with

f1(L(k), y(k), y(k + 1)) = f̃
(

L(k) g
∧

Oy(k), y(k)
)

f2(U(k), y(k), y(k + 1)) = f̃
(

U(k) f
∨

Oy(k), y(k)
)

solves Problem 3.2.1.

Proof. In order to prove the statement of the theorem, we need to prove that the system

L(k + 1) = f̃ (L(k) g
∧

Oy(k), y(k))

U(k + 1) = f̃ (U(k) f
∨

Oy(k), y(k)) (3.7)

with L(0) =
∧

χ, U(0) =
∨

χ is such that properties (i)–(iii) of Problem 3.2.1 are satisfied.

For simplicity of notation, we omit the dependence of f̃ on its second argument.

Proof of (i): This is proved by induction on k. Base case: for k = 0 we have that

L(0) =
∧

χ and that U(0) =
∨

χ, so that L(0) ≤ α(0) ≤ U(0). Induction step: we assume

that L(k) ≤ α(k) ≤ U(k) and we show that L(k + 1) ≤ α(k + 1) ≤ U(k + 1). Note that

α(k) ∈ Oy(k). This, along with the assumption of the induction step, implies that

L(k) g
∧

Oy(k) ≤ α(k) ≤ U(k) f
∨

Oy(k).

This last relation also implies that there is x such that x ≥ L(k) g
∧

Oy(k) and x ≤
∨

Oy(k).

This in turn implies that

L(k) g
∧

Oy(k) ≤
∨

Oy(k).

This in turn implies that L(k) g
∧

Oy(k) ∈ Oy(k). Because of this, because (by analogous

reasonings) U(k) f
∨

Oy(k) ∈ Oy(k), and because the pair (Σ̃, (χ,≤)) is interval compatible,

we can use the isomorphic property of f̃ (property (ii) of Definition 3.3.5), which leads to

f̃ (L(k) g
∧

Oy(k)) ≤ α(k + 1) ≤ f̃ (U(k) f
∨

Oy(k)).

27

This relationship combined with equation (3.7) proves (i).

Proof of (ii): This can be shown by proving that for any w ∈ [L(k + 1),U(k + 1)] there

is z ∈ [L(k),U(k)] such that w = f̃ (z). By equation (3.7), w ∈ [L(k + 1),U(k + 1)] implies

that

f̃ (L(k) g
∧

Oy(k)) ≤ w ≤ f̃ (U(k) f
∨

Oy(k)). (3.8)

In addition, we have that
∧

Oy(k) ≤ L(k) g
∧

Oy(k)

and

U(k) f
∨

Oy(k) ≤
∨

Oy(k).

Because the pair (Σ̃, (χ,≤)) is interval compatible, by virtue of the isomorphic property of

f̃ (property (ii) of Definition 3.3.5), we have that

f̃ (
∧

Oy(k)) ≤ f̃ (L(k) g
∧

Oy(k))

and

f̃ (U(k) f
∨

Oy(k)) ≤ f̃ (
∨

Oy(k)).

This, along with relation (3.8), implies that

w ∈ [f̃ (
∧

Oy(k)), f̃ (
∨

Oy(k))].

From this, using again the order isomorphic property of f̃ , we deduce that there is z ∈ Oy(k)

such that w = f̃ (z). This with relation (3.8) implies that

L(k) g
∧

Oy(k) ≤ z ≤ U(k) f
∨

Oy(k),

which in turn implies that z ∈ [L(k),U(k)].

Proof of (iii): We proceed by contradiction. Thus, assume that for any k0 there exists a

k ≥ k0 such that {α(k), βk} ⊆ [L(k),U(k)]∩U for some βk , α(k) and βk ∈ U. By the proof

of part (ii) we also have that βk is such that βk = f̃ (βk−1) for some βk−1 ∈ [L(k−1),U(k−1)].

28

We want to show that in fact βk−1 ∈ [L(k−1),U(k−1)]∩U. If this is not the case, we can

construct an infinite sequence {ki}i∈N+ such that βki ∈ [L(ki),U(ki)] ∩ U with βki = f̃ (βki−1)

and βki−1 ∈ [L(ki − 1),U(ki − 1)]∩ (χ −U). Notice that |[L(k1 − 1),U(k1 − 1)]∩ (χ −U)| =

M < ∞. Also, we have

|[L(k1),U(k1)] ∩ (χ −U)| < |[L(k1 − 1),U(k1 − 1)] ∩ (χ −U)|.

This is due to the fact that f̃ (βk1−1) < [L(k1),U(k1)] ∩ (χ − U), and to the fact that each

element in [L(k1),U(k1)]∩(χ−U) comes from one element in [L(k1−1),U(k1−1)]∩(χ−U)

(proof of (ii) and because U is invariant under f̃). Thus we have a strictly decreasing

sequence of natural numbers {|[L(ki − 1),U(ki − 1)] ∩ (χ −U)|} with initial value M. Since

M is finite, we reach the contradiction that |[L(ki − 1),U(ki − 1)]∩ (χ −U)| < 0 for some i.

Therefore, βk−1 ∈ [L(k − 1),U(k − 1)] ∩U.

Thus for any k0 there is k ≥ k0 such that {α(k), βk} ⊆ [L(k),U(k)]∩U, with βk = f (βk−1)

for some βk−1 ∈ [L(k − 1),U(k − 1)] ∩ U. Also, from the proof of part (ii) we have that

βk−1 ∈ Oy(k − 1). As a consequence, there exists k̄ > 0 such that {βk−1, z(k − 1)}k≥k̄ = σ1

and {α(k − 1), z(k − 1)}k≥k̄ = σ2 are two executions of Σ sharing the same output. This

contradicts the observability assumption. �

The following corollary is a consequence of Theorem 3.3.1 in the case in which the

extended system Σ̃ is observable.

Corollary 3.3.1. If the extended system Σ̃ of an observable system Σ is observable, then

the estimator Σ̂ given in Theorem 3.3.1 solves Problem 3.2.1 with L(k) = U(k) = α(k) for

k ≥ k0.

Proof. The proof proceeds by contradiction. Assume that for any k0 ≥ 0 there is k ≥ k0

such that {α(k), βk} ⊆ [L(k),U(k)] for some βk. By the proof of (ii) of Theorem 3.3.1, we

have that βk = f̃ (βk−1) for βk−1 ∈ [L(k − 1),U(k − 1)] and βk−1 ∈ Oy(k − 1). Thus, σ1 =

{βk−1, z(k − 1)}k∈N and σ2 = {α(k − 1), z(k − 1)}k∈N are two executions of Σ̃ = S(χ,Z, f̃ , h̃)

that share the same output sequence. This contradicts the observability of the system Σ̃. �

29

An example in which the Theorem 3.3.1 holds but the Corollary 3.3.1 does not is pro-

vided by the RoboFlag Drill introduced in Section 3.1. In fact, if we allow the assignments

to be in NN instead of being in the set of permutation of N elements, there are different

executions compatible with the same output sequence.

3.4 Example: The RoboFlag Drill

The RoboFlag Drill has been described in Section 3.1. In this section, we revisit the

example by showing first that it is observable with measurable variables z, and then by

finding a lattice and a system extension that can be used for constructing the estimator

proposed in Theorem 3.3.1.

3.4.1 System Specification

For completeness, we report here the system specification. The red robot dynamics are

described by the N rules

yi(k + 1) = yi(k) − δ if yi(k) ≥ δ (3.9)

for i ∈ {1, ...,N}. These state simply that the red robots move a distance δ toward the

defensive zone at each step. The blue robot dynamics are described by the 2N rules

zi(k + 1) = zi(k) + δ if zi(k) < xαi(k)

zi(k + 1) = zi(k) − δ if zi(k) > xαi(k) (3.10)

for i ∈ {1, ...,N}. For the blue robots we assume that initially zi ∈ [zmin, zmax] and zi < zi+1

and that xi < zi < xi+1 for all time. The assignment protocol dynamics is defined by

(αi(k + 1), αi+1(k + 1)) = (αi+1(k), αi(k)) if xαi(k) ≥ zi+1(k) ∧ xαi+1(k) ≤ zi+1(k), (3.11)

30

which is a modification of the protocol presented in [34], since two adjacent robots switch

assignments only if they are moving one toward the other. We define x = (x1, ..., xN),

z = (z1, ..., zN), and α = (α1, ..., αN). The complete RoboFlag specification is then given by

the program given in rules (3.9)–(3.11). An example with 5 robots is illustrated in Figure

3.6. In particular the rules in (3.10) model the function h : U × Z → Z that updates

z1

(x1,y1)

z2 z3 z4 z5

(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)

Figure 3.6: An example state of the RoboFloag Drill for 5 robots. Here, α = {3, 1, 5, 4, 2}.

the continuous variables, and the rules in (3.11) model the function f : U × Z → U

that updates the discrete variables. In this example, we have U = perm(N) the set of

permutations of N elements, and Z = RN . Thus, the RoboFlag system is given by Σ =

S(perm(N),RN , f , h), and the variables z ∈ RN are measured.

Problem 3.4.1. RoboFlag Drill Observation Problem. Given initial values for x and y

and the values of z corresponding to an execution of Σ = S(perm(N),RN , f , h), determine

the value of α during that execution.

Before constructing the estimator for the system Σ = S(perm(N),RN , f , h), we show in

the following proposition that such a system is observable.

Proposition 3.4.1. The system Σ = S(perm(N),RN , f , h) represented by the rules (3.10)

and (3.11) with measurable variables z is observable.

31

Proof. Given any two executions σ1 and σ2 of Σ, for proving observability, it is enough

to show that if {σ1(k)(α)}k∈N , {σ2(k)(α)}k∈N, then {σ1(k)(z)}k∈N , {σ2(k)(z)}k∈N. Since

the measurable variables are the zi’s, their direction of motion is also measurable. Thus,

we consider the vector of directions of motion of the zi as output. Let g(σ(k)) denote

such a vector at step k for the execution σ. It is enough to show that there is a k such

that g(σ1(k)) , g(σ2(k)). Note that, in any execution of Σ, the α trajectory reaches the

equilibrium value [1, ...,N], and therefore there is a step k̄ at which f (σ1(k̄)) = f (σ2(k̄)) and

σ1(k̄)(α) , σ2(k̄)(α). As a consequence the system is observable if g(σ1(k̄)) , g(σ2(k̄)).

Therefore it is enough to prove that for any α , β, for α, β ∈ U, we have g(α, z) =

g(β, v) =⇒ f (α, z) , f (β, v), where z, v ∈ RN . Thus, g(α) = g(β) by (3.10) implies that (1)

zi < xαi ⇐⇒ vi < xβi and (2) zi ≥ xαi ⇐⇒ vi ≥ xβi . This implies that xαi ≥ zi+1 ∧ xαi+1 ≤

zi+1 ⇔ xβi ≥ vi+1 ∧ xβi+1 ≤ vi+1. By denoting α′ = f (α, z) and β′ = f (β, v) , we have that

(α′i , α
′
i+1) = (αi+1, αi) ⇔ (β′i , β

′
i+1) = (βi+1, βi). Hence if there exists an i such that αi , βi,

then there exists a j such that α′j , β
′
j, and therefore f (α, z) , f (β, v). �

In the following subsection, the formal estimator construction is presented.

3.4.2 RoboFlag Drill Estimator

We have shown that the RoboFlag system Σ = S(perm(N),RN , f , h) represented by

the rules (3.10) and (3.11) with measurable variables z is observable. In this section, we

construct the estimator proposed in Theorem 3.3.1 in order to estimate and track the value

of the assignment α in any execution. To accomplish this, we need to find a lattice (χ,≤)

in which to immerse the set U and an extension Σ̃ of the system Σ to χ, so that the pair

(Σ̃, (χ,≤)) is interval compatible.

We first construct a lattice (χ,≤) and the extended system Σ̃ = S(χ,Z, f̃ , h̃) such that

(Σ̃, (χ,≤)) is interval compatible. We choose as χ the set of vectors in NN with coordinates

xi ∈ [1,N], that is,

χ = {x ∈ NN : xi ∈ [1,N]}. (3.12)

For the elements in χ, we use the vector notation, that is, x = (x1, ..., xN). The partial order

32

that we choose on such a set is given by

∀x,w ∈ χ, x ≤ w if xi ≤ wi ∀i. (3.13)

As a consequence, the join and the meet between any two elements in χ are given by

∀ x,w ∈ χ, v = x g w if vi = max{xi,wi},

∀ x,w ∈ χ, v = x f w if vi = min{xi,wi}.

With this choice,we have
∨

χ = (N, ...,N) and
∧

χ = (1, ..., 1). The pair (χ,≤) with the

order defined by (3.13) is clearly a lattice. The set U is the set of all permutations of N

elements and it is a subset of χ. All of the elements inU form an anti-chain of the lattice,

that is, any two elements of U are not related by the order in (χ,≤). In the reminder of

this section, we will denote by w the variables in χ not specifying if it is inU, and we will

denote by α the variables inU.

The function h : perm(N) × RN → RN can be naturally extended to χ as

zi(k + 1) = zi(k) + δ if zi(k) < xwi(k)

zi(k + 1) = zi(k) − δ if zi(k) > xwi(k) (3.14)

for w ∈ χ. The rules (3.14) specify h̃ : χ ×RN → RN , and one can check that h̃|U×Z = h. In

an analogous way f : perm(N) × RN → perm(N) is extended to χ as

(wi(k + 1),wi+1(k + 1)) = (wi+1(k),wi(k)) if xwi(k) ≥ zi+1(k) ∧ xwi+1(k) ≤ zi+1(k), (3.15)

for w ∈ χ. The rules (3.15) model the function f̃ : χ × RN → χ, and one can check

that f̃ |U×Z = f . Therefore, the system Σ̃ = (f̃ , h̃, χ,RN) is the extended system of Σ =

(f , h, perm(N),RN) (see Definition 3.3.1).

The following proposition shows that the pair (Σ̃, (χ,≤)) is interval compatible.

Proposition 3.4.2. The pair (Σ̃, (χ,≤)), where Σ = S(perm(N),RN , f , h) is represented by

the rules (3.10)–(3.11), and (χ,≤) is given by (3.12)–(3.13), is interval compatible.

33

Proof. According to Definition 3.3.5, we need to show the following two properties

(i) Ti(Σ̃) = [
∧

Ti(Σ̃),
∨

Ti(Σ̃)],

(ii) f̃ : ([
∧

Ti(Σ̃),
∨

Ti(Σ̃)])→ [f̃ (
∧

Ti(Σ̃)), f̃ (
∨

Ti(Σ̃))] is an order isomorphism.

To simplify notation, we neglect the dependence of f̃ on its second argument.

Proof of (i): By (3.14) we have that T(z1,z2)(Σ̃) is not empty if for any i we have z2
i = z1

i +δ,

z2
i = z1

i − δ, or z2
i = z1

i . Thus

T(z1,z2)(Σ̃) =











































{w | xwi > z1
i , }, if z2

i = z1
i + δ

{w | xwi < z1
i , }, if z2

i = z1
i − δ

{w | xwi = z1
i , }, if z2

i = z1
i .

(3.16)

Because we assumed that xi < zi < xi+1, we have that

xwi > zi if and only if wi > i

xwi < zi if and only if wi < i.

This, along with relations (3.16) and Definition 3.3.3, imply (i).

Proof of (ii): To show that f̃ : Ti(Σ̃) → [f̃ (
∧

Ti(Σ̃)), f̃ (
∨

Ti(Σ̃))] is an order isomor-

phism we show: a) that it is onto; and b) that it is order embedding. a) To show that it

is onto, we show directly that f (Ti(Σ̃)) = [f̃ (
∧

Ti(Σ̃)), f̃ (
∨

Ti(Σ̃))]. We omit the depen-

dence on Σ̃ to simplify notation. From the proof of (i), we deduce that the sets Ti are of

the form Ti = (Ti,1, ...,Ti,N), with Ti, j ∈ {[1, j], [j + 1,N], [j, j]}. Denote by f̃ (Ti) j the jth

coordinate set of f̃ (Ti). By equations (3.15) we derive that f̃ (Ti) j ∈ {Ti, j,Ti, j−1,Ti, j−1}. We

consider the case where f̃ (Ti) j = Ti, j−1; the other cases can be treated in analogous way. If

f̃ (Ti) j = Ti, j−1 then f̃ (Ti) j−1 = Ti, j. Denoting
∧

Ti = l and
∨

Ti = u, with l = (l1, ..., lN) and

u = (u1, ..., uN), we have also that f̃ (l) j = l j−1, f̃ (l) j−1 = l j, f̃ (u) j = u j−1, f̃ (u) j−1 = u j. Thus,

f̃ (Ti) j = [f̃ (l) j, f̃ (u) j] for all j. This in turn implies that f̃ (Ti) = [f̃ (l), f̃ (u)], which is what

we wanted to show. b) To show that f̃ : Ti → [f̃ (
∧

Ti), f̃ (
∨

Ti)] is order embedding, it is

enough to note again that f̃ (Ti) is obtained by switching Ti, j with Ti, j+1, Ti, j−1, or leaving

34

it as Ti, j. Therefore if w ≤ v for w, v ∈ Ti then f̃ (w) ≤ f̃ (v) since coordinate-wise we

will compare the same numbers. By the same reasoning the reverse is also true, that is, if

f̃ (w) ≤ f̃ (v) then w ≤ v. �

The estimator Σ̂ = (χ × χ,Z × Z, χ × χ, (f1, f2), id) given in Theorem 3.3.1 can be

constructed because the hypotheses of the theorem are satisfied by virtue of Proposition

3.4.1 and Proposition 3.4.2. The estimator Σ̂ can be specified by the following rules

li(k + 1) = i + 1 if zi(k + 1) = zi(k) + δ (3.17)

li(k + 1) = 1 if zi(k + 1) = zi(k) − δ (3.18)

Li,y(k + 1) = max{Li(k), li(k + 1)} (3.19)

(Li(k + 1), Li+1(k + 1)) = (Li+1,y(k + 1), Li,y(k + 1))

if xLi,y(k+1) ≥ zi+1(k) ∧ xLi+1,y(k+1) ≤ zi+1(k) (3.20)

ui(k + 1) = N if zi(k + 1) = zi(k) + δ (3.21)

ui(k + 1) = i if zi(k + 1) = zi(k) − δ (3.22)

Ui,y(k + 1) = min{Ui(k), ui(k + 1)} (3.23)

(Ui(k + 1),Ui+1(k + 1)) = (Ui+1,y(k + 1),Ui,y(k + 1))

if xUi,y(k+1) ≥ zi+1(k) ∧ xUi+1,y(k+1) ≤ zi+1(k) (3.24)

initialized with L(0) =
∧

χ and U(0) =
∨

χ. Rules (3.17-3.18) and (3.21-3.22) take the

output information z and set the lower and upper bound of Oy(k), respectively. Rules (3.19)

and (3.23) compute the lower and upper bound of the intersection [L(k),U(k)] ∩ Oy(k),

respectively. Finally, rules (3.20) and (3.24) compute the lower and upper bound of the set

f̃ ([L(k),U(k)] ∩ Oy(k)), respectively. Also note that the rules in (3.17-3.24) are obtained

35

by “copying” the rules in (3.15) and correcting them by means of the output information,

according to how the Kalman filter or the Luenberger observer is constructed for dynamical

systems (see Kalman’s seminal paper [33] or Luenberger’s seminal paper [36]).

3.4.3 Complexity of the RoboFlag Drill Estimator

The amount of computation required for updating L and U according to (3.17)–(3.24) is

proportional to the amount of computation required for updating the variables α in system

Σ. In fact, we have 2N rules, 2N variables, and 2N computations of “max” and “min” of

values in N. Therefore, the computational complexity of the algorithm that generates the

sequences L(k) and U(k) is proportional to 2N, which is of the same order as the complexity

of the algorithm that generates the α trajectories.

As established by property (iii) of Problem 3.2.1, the function of k given by |[L(k),U(k)]∩

U−α(k)| tends to zero. This function is useful for analysis purposes, but it is not necessary

to compute it at any point in the estimation algorithm proposed in equation (3.17-3.24).

However, since L(k) does not converge to U(k) once the algorithm has converged, i.e.,

when |[L(k),U(k)] ∩ U| = 1, we cannot find the value of α(k) from the values of U(k)

and L(k) directly. Instead of computing directly [L(k),U(k)] ∩ U, we carry out a simple

algorithm, that in the case of the RoboFlag Drill example takes at most (N2 + N)/2 steps

and takes as inputs L(k) and U(k) and gives as output α(k) if the algorithm has converged.

This is formally explained in the following paragraph.

Algorithm 3.4.1. (Refinement algorithm) Let ci = [Li,Ui]. Then the algorithm

(m1, ...,mN) = Refine(c1, ..., cN),

which takes assignment sets c1, ..., cN and produces assignment sets m1, ...,mN, is such that

if mi = {k} then k < m j for any j , i.

This algorithm takes as input the sets ci and removes singletons occurring at one coor-

dinate set from all of the other coordinate sets. By construction, it follows that mi ⊆ ci. It

does this iteratively: if in the process of removing one singleton, a new one is created in

36

some other coordinate set, then such a singleton is also removed from all of the other coor-

dinate sets. The refinement algorithm has two useful properties. First, the sets mi are equal

to the αi when [L,U] ∩ U = α. Second, the cardinality of the sets mi(k) is non-increasing

with the time step k. These properties are proved formally in the following propositions.

Proposition 3.4.3. If [L,U]∩U = αwith L,U ∈ χ, and ci = [Li,Ui], then Re f ine(c1, ..., cN) =

α.

Proof. Let ci denote the sets [Li,Ui]. Also, let Ui denote the set of permutations of i

elements. If [L,U] ∩U = α, we note that among the sets [Li,Ui] there is at least one i for

which Li = Ui, and therefore we have at least one singleton to take out from all of the other

coordinate sets. To show this, it is sufficient to notice that if this were not the case we would

have more than one possible α ∈ U in [L(k),U(k)]. Without loss in generality we assume

that i = N (if not, we can reduce to this case by performing a permutation of the coordinate

sets and keeping track of the used permutation). We are left to show that the process of

taking out one singleton always creates a new singleton that then needs to be removed from

the other coordinate sets. Then, we remove that singleton from all of the other sets c j for

j < N to obtain new sets c1
j whose elements take values in a set of possible N − 1 natural

numbers. Still, there is only one β ∈ UN−1 such that β ∈ (c1
1, ..., c

1
N−1). Again, for this to be

true there must exist j such that c1
j , for j ∈ [1,N − 1], is a singleton. Assume j = N − 1.

We thus remove this singleton from all of the other sets c1
j for j < N − 1 to obtain new

sets c2
j whose elements take values in a set of possible N − 2 natural numbers. Proceeding

iteratively, we finally obtain m1 = cN−1
1 ,...,mN−1 = c1

N−1, mN = cN , which implies that the mi

are singletons. Since αi ∈ mi by construction, we have proved what we wanted. �

Proposition 3.4.4. Let ci(k) = [Li(k),Ui(k)], and denote by mi(k) the sets obtained with the

refinement algorithm. Then

N
∑

i=1

|mi(k + 1)| ≤
N

∑

i=1

|mi(k)|.

Proof. Let us denote the variables at step k + 1 with primed variables and the variables at

step k with unprimed variables. The proof proceeds by showing that for each j there exists

37

a k such that m′j ⊆ mk. By equations (3.17-3.24) we deduce that we can have one of the

following cases for each i: (a) c′i ⊆ ci+1 ∧ c′i+1 ⊆ ci, (b) c′i ⊆ ci, (c) c′i ⊆ ci−1 ∧ c′i−1 ⊆ ci.

Let us consider case (a), the other cases can be treated in an analogous way. Let c j be

a singleton. In the refinement process it is deleted from any other set, so that we have

ci = mi + c j for all i. Assume that in the first singleton removal process no new singletons

are created. We have one of the following situations: c′j ⊆ c j+1 ∧ c j+1 ⊆ c j, c′j ⊆ c j,

c′j ⊆ c j−1 ∧ c′j−1 ⊆ c j. This implies that one of the c′k is equal to the singleton c j.

The sets m′i are created removing such singleton for all the other sets, so that we obtain

m′i + c j = c′i ⊆ ci+1 = mi+1 + c j and m′i+1 + c j = c′i+1 ⊆ ci = mi + c j. This in turn implies that

m′i ⊆ mi+1 and m′i+1 ⊆ mi. Because this holds for any i, we have that
∑N

i=1 |m
′
i | ≤

∑N
i=1 |mi|.

This reasoning can be generalized to the case where a singleton removal process creates

new singletons. �

As a final remark, note that the sets mi are not used in the update laws of the estimation

algorithm, they are just computed at each step from the set [L,U] in order to extract α from

it when the algorithm has converged.

3.4.4 Simulation Results

The RoboFlag Drill system represented in the rules (3.10) and (3.11) has been imple-

mented in Matlab together with the estimator reported in the rules (3.17-3.24). Figure 3.7

(left) shows the behavior of the quantities

V(k) = |[L(k),U(k)] ∩U|

and

E(k) =
1
N

N
∑

i=1

|αi(k) − i|.

V(k) represents the cardinality of the set of all possible assignments at each step. This

quantity gives an idea of the convergence rate of the estimator. E(k) is a function of α,

and it is not increasing along the executions of the system Σ = S(perm(N),RN , f , h). This

quantity is showing the rate of convergence of the α assignment to its equilibrium (1, ...,N).

38

In Figure 3.7 (right) we show the results for N = 30 robots per team. In particular, we report

1 2 3 4 5 6 7 8 9 10
0

10

20

1 2 3 4 5 6 7 8 9 10
0

5

10

15

1 2 3 4 5 6 7 8 9 10
0

10

20

time

dashed line = E(k)
solid line = log of V(k)

N=8: results for different initial conditions

10 20 30 40 50 60 70 80
0

2

4

6

10 20 30 40 50 60 70 80
0

2

4

6

dashed line = log of E(k)
solid line = lof of W(k)

time

N=30: results for different initial conditions

Figure 3.7: (Left) Example with N=8: note that the function V(k) is always non-increasing
because the set χ − U is invariant under f̃ . (Right) Example with N=30: note that the
function W(k) is always non-increasing, and its logarithm is converging to zero.

the logarithm of E(k) and the logarithm of W(k) defined as

W(k) =
1
N

N
∑

i=1

|mi(k)|,

which by virtue of Proposition 3.4.3 and Proposition 3.4.4 is non-increasing and converging

to one, that is, the sets (m1(k), ...,mN(k)) converge to α(k) = (α1(k), ..., αN(k)). In the same

figure, we notice that when W(k) converges to one, E(k) has not converged to zero yet. This

shows that the estimator is faster than the dynamics of the system under study.

In this chapter, we have proposed an estimator Σ̂ = (χ × χ,Z × Z, χ × χ, (f1, f2), id)

on a lattice (χ,≤) for a DTS Σ = S(U,Z, f , h) with U ⊆ χ. Such an estimator can be

constructed if the extended system Σ̃ = S(χ,Z, f̃ , h̃) is such that the pair (Σ̃, (χ,≤)) is

interval compatible. In the next chapter, we investigate when the pair (Σ̃, (χ,≤)) is interval

compatible, and what possible causes can be of the estimator complexity.

39

Chapter 4

Existence of Discrete State Estimators
on a Lattice

In the previous chapter, we have shown that if a system can be extended to a lattice

in a way such that the system extension and the lattice are order compatible, the estima-

tor on a lattice given in Theorem 3.3.1 can be implemented. In this chapter, we give a

characterization of what observable means in terms of the extensibility of a system into an

extended system that is interval compatible with a lattice (χ,≤). We show that if the sys-

tem Σ = S(U,Z, f , h) is observable, there always exists a lattice (χ,≤) such that the pair

(Σ̃, (χ,≤)) is interval compatible. The size of the set χ is singled out as a cause of complex-

ity, and a worst case size is computed. In particular, the worst case size of the lattice never

exceeds the size of the observer tree proposed in [13]. As a consequence, the method pro-

posed in this thesis is in the worst case computationally equivalent to previously proposed

methods. For systems whereU can be immersed in a space equipped with algebraic prop-

erties, as is the case for the RoboFlag Drill, a preferred lattice structure (χ,≤) exists where

joins and meets can be efficiently computed and represented by exploiting the algebra. For

these systems, the estimation methodology proposed in this thesis reduces complexity with

respect to enumeration methods. However, the pair (Σ̃, (χ,≤)) is not necessarily interval

compatible for any (χ,≤). We propose a way of constructing the estimator on a chosen

lattice by finding a generalization of Σ for which there exists an extension on the lattice

(χ,≤) with the desired properties. A possible way of determining a generalization of Σ

is by creating a nondeterministic approximation of the system. This is explained in the

40

following chapter. The results of this chapter have appeared in [26].

Note that, as in the case of the RoboFlag Drill, there are a number of applications in

which the discrete state dynamics evolves naturally on partially ordered sets. Resource

allocation problems involving moving resources (agents), as in the case of air traffic con-

trolled systems ([6, 42]) or weapon-target assignment problems, are examples where the

tasks are usually associated with positions in Euclidean space, where the usual cone partial

order induces a partial order on the tasks. In the case of dynamic scheduling for distributed

computing, the set of processes that need to be allocated to resources is typically partially

ordered according to priorities [10], and the allocation to resources is dynamically estab-

lished on the basis of such partial ordering. In addition, there are plenty of systems where a

partial order among events is naturally established by a causal order relation, as in the case

of message passing based distributed systems [45], or in the case of human activities [27].

An example from this class, is presented in Chapter 7. Also, all discrete event systems im-

plemented as Petri nets [16] are characterized by order preserving state transition functions

with respect to a suitable partial order. In Chapter 7, we show how our algorithms apply to

this case. Most of these examples are also distributed, meaning that the size of the discrete

state is so large as to render prohibitive the estimation problem if the partial order is not

explicitly taken into account in the estimator design.

This chapter is organized in two sections. In Section 4.1, the existence result for the

estimator on a lattice is given. In Section 4.2, a possible way for constructing the estimator

on a chosen lattice is given.

4.1 Estimator Existence

Consider the deterministic transition system Σ = S(U,Z, f , h). In order to show the

link between the original system and its extension, it is useful to define the Σ-transition

sets and the Σ-transition classes as defined for the extended system Σ̃ = S(U,Z, f̃ , h̃) in

Definition 3.3.2 and Definition 3.3.3, respectively.

Definition 4.1.1. The non-empty sets T(z1,z2)(Σ) = {α ∈ U | z2 = h(α, z1)}, for z1, z2 ∈ Z,

are named the Σ-transition sets.

41

Definition 4.1.2. The set T (Σ) = {T1(Σ), ...,TM(Σ)}, with Ti(Σ) such that

(i) for any Ti(Σ) ∈ T (Σ) there is (z1, z2) ∈ Z such that Ti(Σ) = T(z1,z2)(Σ);

(ii) for any z1, z2 ∈ Z for which T(z1,z2)(Σ) is not empty, there is j ∈ {1, ...,M} such that

T(z1,z2)(Σ) = T j;

is the set of Σ-transition classes.

Note that the set T (Σ) is finite as we assumed at the beginning that the set U is finite.

Each Σ-transition set T(z1,z2)(Σ) contains all of α values inU that allow the transition from z1

to z2 through the function h. Note also that for any z1, z2 ∈ Z we have T(z1,z2)(Σ) ⊆ T(z1,z2)(Σ̃)

because h̃|U×Z = h andU ⊆ χ. This in turn implies that Ti(Σ) ⊆ Ti(Σ̃).

We also assume that all of the executions contained in the ω+-limit set of Σ, ω(Σ), are

distinguishable. More formally we have:

Assumption 4.1.1. The ω+-limit set of Σ = S(U,Z, f , h), ω(Σ), is such that for any two

different executions σ1, σ2 with σ1(0), σ2(0) ∈ ω(Σ) there is k ∈ N such that σ1(k)(z) ,

σ2(k)(z).

In the case in which ω+-limit set is just one fixed point, this assumption is always triv-

ially verified. In the case where ω+-limit set is made up by fixed points and limit cycles, the

assumption requires that any two different fixed points have different output values, other-

wise two different executions starting in the two fixed points will not be distinguishable.

Lemma 4.1.1. Consider the deterministic transition system Σ = S(U,Z, f , h). Let ω(Σ)

verify Assumption 4.1.1. Then, Σ is observable if and only if f : (T j(Σ), z)→ f (T j(Σ), z) is

one to one for any j ∈ {1, ..,M} and for any z ∈ Z.

Proof. (=⇒). Let us show that if the system is observable then for any z ∈ Z and any

j ∈ {1, ..,M} we have that f : (T j(Σ), z) → f (T j(Σ), z) is one to one. We have to show that

if αa , αb and αa, αb ∈ T j(Σ) for some j, then f (αa, z) , f (αb, z). Suppose instead that

f (αa, z) = f (αb, z), this means that the two executions σa, σb starting at σa(0) = (αa, z)

and σb(0) = (αb, z) have the same output sequence, but they are different. This means that

42

they are not distinguishable, and therefore the system is not observable. This contradicts

the assumption.

(⇐=). We assume that for any z ∈ Z we have that f : (T j(Σ), z) → f (T j(Σ), z) is one

to one, and that Assumption 4.1.1 is verified. We need to show that for any σ1 , σ2 there

is k ∈ N such that g(σ1(k)) , g(σ2(k)), that is, σ1 and σ2 are distinguishable. Let then

σ1 and σ2 be two executions such that σ1(0) , σ2(0). Assume that g(σ1) = g(σ2). This

implies that σ1(k) = (α1(k), z(k)) and σ2(k) = (α2(k), z(k)). This implies that α1(k) , α2(k)

for all k, because α1(k) and α2(k) are in T(z(k+1),z(k)) (which coincides with a Ti for some i by

Definition 4.1.2), and we assumed that if α1(k) , α2(k) then f (α1(k), z(k)) , f (α2(k), z(k)).

This in turn implies that for k ≥ kσ1 and k ≥ kσ2 , σ1(k) ∈ ω(f , h), σ2(k) ∈ ω(Σ), σ1(k) ,

σ2(k) and g(σ1) = g(σ2). This contradicts the assumption. Therefore if σ1(0) , σ2(0), we

have that g(σ1) , g(σ2), which implies thatσ1 andσ2 are distinguishable and by Definition

2.2.4 implies that Σ is observable with output z. �

This lemma shows that observability can be determined by checking if the function

f is one to one on the Σ-transition classes T j(Σ), provided that the executions evolving

in ω(Σ) are distinguishable. This lemma is used in the following theorem, which gives

an alternative characterization of what observable means in terms of extensibility of the

system Σ into a system Σ̃ that is, interval compatible with a lattice (χ,≤).

Theorem 4.1.1. (Observability on bounded lattices) Consider the deterministic transition

system Σ = S(U,Z, f , h). Let ω(Σ) verify Assumption 4.1.1. Then the following are equiv-

alent:

(i) System Σ is observable;

(ii) There exists a complete lattice (χ,≤) with U ⊆ χ, such that the extension Σ̃ =

(f̃ , h̃, χ,Z) of Σ on χ is such that (Σ̃, (χ,≤)) is interval compatible.

Proof. ((i) ⇒ (ii)) We show the existence of a lattice (χ,≤) and of an extended system

Σ̃ = S(χ,Z, f̃ , h̃) with (Σ̃, (χ,≤)) an interval compatible pair by construction. Define χ :=

P(U), and (χ,≤) := (P(U),⊆).

43

To define h̃, define the sublattices (Ti(Σ̃),≤) of (χ,≤) for i ∈ {1, ...,M}, by (Ti(Σ̃),≤) :=

(P(Ti(Σ)),⊆) as shown in Figure 4.1. As a consequence, for any given z1, z2 ∈ Z such that

z2 = h(α, z1) for α ∈ Ti(Σ) for some i, we define z2 = h̃(w, z1) for any w ∈ Ti(Σ̃). Clearly,

h̃|U×Z = h, and Ti(Σ̃) for any i is an interval sublattice of the form Ti(Σ̃) = [⊥,
∨

Ti(Σ̃)].

⊥ = ∅

(χ,≤) = (P(U),⊆)

Ti(Σ̃)

U

Ti(Σ)

Figure 4.1: Example of the Σ and Σ̃ transition classes with U (dark elements) composed
by three elements.

The function f̃ is defined in the following way. For any x,w ∈ χ and α ∈ U we have































































f̃ (x g w) := f̃ (x) g f̃ (w)

f̃ (x f w) := f̃ (x) f f̃ (w)

f̃ (⊥) := ⊥

f̃ (α) := f (α),

(4.1)

where we have omitted the dependency on the z variable (that is, kept fixed) to simplify

notation. We prove first that f̃ : Ti(Σ̃) → [⊥, f̃ (
∨

Ti(Σ̃))] is onto. We have to show that

for any w ∈ [⊥, f̃ (
∨

Ti(Σ̃))], with w , ⊥, there is x ∈ [⊥,
∨

Ti(Σ̃)] such that w = f̃ (x).

Since
∨

Ti(Σ̃) = α1 g ... g αp for {α1, ..., αp} = Ti(Σ), we have also that f̃ (
∨

Ti(Σ̃)) =

f (α1) g g f (αp) by virtue of equations (4.1). Because w ≤ f̃ (
∨

Ti(Σ̃)), we have that

w = f (α j1) g ... g f (α jm) for jk ∈ {1, ..., p} and m < p. This in turn implies, by equations

(4.1), that w = f̃ (α j1 g ... g α jm). Since x := α j1 g ... g α jm <
∨

Ti(Σ̃), we have proved

that w = f̃ (x) for x ∈ Ti(Σ̃). Second, we notice that f̃ : Ti(Σ̃) → [⊥, f̃ (
∨

Ti(Σ̃))] is one to

44

one because of Lemma 4.1.1. Thus, we have proved that f̃ : Ti(Σ̃) → [⊥, f̃ (
∨

Ti(Σ̃))] is

a bijection, and by equations (4.1) it is also a homomorphism. We then apply Proposition

2.1.1 to obtain the result.

((ii) ⇒ (i)). To show that (ii) implies that Σ = S(U,Z, f , h) is observable, we apply

Lemma 4.1.1. In particular, (Σ̃, (χ,≤)) being interval compatible implies that f̃ : Ti(Σ̃) →

[f̃ (
∧

Ti(Σ̃)), f̃ (
∨

Ti(Σ̃))] is one to one for any i. This, along with Assumption 4.1.1, by

Lemma 4.1.1 implies that the system is observable. �

This result links the property of a pair (Σ̃, (χ,≤)) being interval compatible with the

observability properties of the original system Σ.

Theorem 4.1.1 shows that an observable system admits a lattice and a system exten-

sion that satisfy interval compatibility by constructing them, in a way similar to the way

one shows that a stable dynamical system has a Lyapunov function. However, the lattice

constructed in the proof of the theorem is impractical for the implementation of the esti-

mator of Theorem 3.3.1 when the size of U is large because the size of the representation

of the elements of χ is large as well. However, one does not need to have χ = P(U), but

it is enough to have in χ the elements that the estimator needs, that is, the elements in the

Σ̃-transition classes. With this consideration, the following proposition computes the worst

case size of χ.

Proposition 4.1.2. Consider the system Σ = S(U,Z, f , h), with f : U → U. Assume that

the sets {T1(Σ), ...,Tm(Σ)} are all disjoint. Then there exist an extension Σ̃ = S(χ,Z, f̃ , h̃)

with |χ| ≤ 2|U|2.

Proof. We construct the worst case (χ,≤) by adding in it all the elements that the estimator

in Theorem 3.3.1 needs. These are in the set of subsets ofU ordered according to inclusion.

Let Ti(Σ) be a Σ-transition class. For simplifying notation, we omit the dependence on Σ

denoting Ti(Σ) by Ti. The proof proceeds in two steps: 1) we show that for any Ti, the last

element of the sequence {Ti, f (Ti)∩Ti1 , f (f (Ti)∩Ti1)∩Ti2 ,, f (f (... f (Ti)∩Ti1 ...))∩Tin}

is a singleton for n < |U|, for any i j ∈ {1, ...,m}; 2) the jth element of the above sequence

can generate at most |U| nonempty sets for any combination (i1, ..., i j−1) and for any j.

45

Proof of 1). Let ωα denote the ω+-limit set of f . Since all of the executions are con-

verging to the ω+-limit set, it is enough to show that any two executions starting in the ωα,

will distinguish from each other in less than n = |ωα|. We proceed by contradiction. Define

the function Y : U → {Y1, ...,Ym, } such that Y(α) = Yi if α ∈ Ti. Assume that there are

xi, x j ∈ ωα such that

(a) Y(f k(xi)) = Y(f k(x j)) for any k < n and

(b) Y(f n(xi)) , Y(f n(x j)).

Since xi and x j belong each to a limit cycle, there are k j, ki such that f n−ki(xi) = f n(xi) and

f n−k j(x j) = f n(x j). As a consequence, we have by (b) that

(c) Y(f n−ki(xi)) , Y(f n−k j(x j)).

Assume without loss in generality that ki ≥ k j. If xi and x j belong to the same limit

cycle, we have ki = k j, and therefore we contradict (a). If ki > k j, xi and x j belong to

different limit cycles, and ki and k j are the respective limit cycle lengths. Thus ki + k j ≤ n.

Thus, by virtue of (a) we have Y(f n−(ki+k j)(xi)) = Y(f n−(ki+k j)(x j)) and by the periodicity of

trajectories in the limit cycles, we have f n−(ki+k j)(xi) = f n−k j(xi) and f n−(ki+k j)(x j) = f n−ki(x j).

As a consequence, Y(f n−(ki+k j)(xi)) = Y(f n−k j(xi)) and Y(f n−(ki+k j)(x j)) = Y(f n−ki(x j)). By

(a), we also have that Y(f n−ki(x j)) = Y(f n−ki(xi)) and Y(f n−k j(xi)) = Y(f n−k j(x j)). One can

verify that the set of these relations are inconsistent with (c).

Proof of 2). Since the Tis are all disjoint, the jth element of the sequence in 2) can have

at most |Ti| nonempty intersections for any combination of (i1, ..., i j−1) for any j. Then for

any j, we can have at most
∑

i |Ti| = |U| nonempty intersections.

Since the estimator needs all of these |U|2 elements and the “ f ” of these elements, the

size of (χ,≤) is at most 2|U|2. �

Example In this example, we show what the lattice (χ,≤) looks like in the case of an

automaton driving the discrete state dynamics. Consider the automaton reported in Figure

4.2 where U = {α1, .., α5}, and T = {T1,T2}. The lattice (χ,≤) can be constructed by

46

α1

α2

α3

α4

α5

T1

T2

Figure 4.2: Automaton example.

α1

⊥

α2 α3 α4 α5

>
(χ,≤)

f̃ (T1)

T1

f̃ 2(T1)

T2
f̃ (T2)

Figure 4.3: Automaton example: lattice (χ,≤).

following the procedure in the proof of Proposition 4.1.2, and it is shown in Figure 4.3. The

way it is constructed is as follows. For each set Ti, include an element that represents the

set itself (denotedTi in the diagram), and add edges going down to the elements it contains.

Then, include an element that represents the set f (Ti), denoted f̃ (Ti) in the diagram, and

add edges representing the inclusion relation accordingly. Then, include a set of elements

representing each the intersection of f (Ti) with the sets Ti, with the edges representing the

various inclusion relations accordingly. One proceeds this way until the intersection sets

are singletons (αi). At such a point, no new element needs to be added.

�

The size of χ gives an idea of how many values of joins and meets need to be stored.

In the case of the RoboFlag example with N = 4 robots per team, the size of P(U) is

16778238, while the worst case size given in Proposition 4.1.2 is 576, and the size of the

lattice χ proposed in Section 3.4.2 is 44 = 256. Thus the estimate given by Proposition

4.1.2 significantly reduces the size of χ given by P(U). Note that the size of the lattice

47

proposed in Section 3.4.2 is smaller than 576 because there are pairs of elements that have

the same join, for example, the pairs (3, 1, 4, 2), (4, 2, 1, 3), and (4, 2, 1, 3), (2, 1, 4, 3) have

the same join, that is, (4, 2, 4, 3).

This proposition shows that the worst case computation needed for implementing our

estimator is the same as the one needed in Caines [13], where the observer tree method is

proposed. The main advantage of the method proposed in this thesis is clear when the space

of discrete variables can be immersed in a lattice whose order relations can be computed

algebraically ((χ,≤) does not need to be stored). In such a case, one needs to find a better

lattice, if it exists, considering its size, the representation of its elements, and the complexity

of computing joins and meets. In the RoboFlag Drill, for example, such a better lattice

exists. Even if the size ofU is N! (which is huge if N is large) the lattice (χ,≤) is such that

its elements can be represented by a set of N natural numbers plus joins and meets, and f̃

can be computed by using the algebra naturally associated with NN . Thus, some systems

have a preferred lattice structure that drastically reduces complexity. For these systems

however, the extended system and such a preferred lattice structure are not always interval

compatible. In such a case, we propose in the following section a way to construct an

estimator on the desired lattice even if the interval compatibility condition is not satisfied.

The trade-off is that the convergence speed of the estimator can be lower.

4.2 Existence of an Estimator on a Chosen Lattice

In this section, we consider the case in which there is a preferred lattice structure (χ,≤)

in which the order relations can be computed algebraically, but there is no system ex-

tension Σ̃ such that the pair (Σ̃, (χ,≤)) is interval compatible. We thus look for an over-

approximation of the system Σ that might be interval compatible with the desired lattice

(χ,≤). Such an over-approximation is called a weakly equivalent generalization and is

defined in term of the set of all executions E(Σ).

Definition 4.2.1. Consider the deterministic transition system Σ = S(U,Z, f , h). We de-

fine Σ≥ = S(U≥,Z, f≥, h) to be a Σ-weakly equivalent generalization of Σ on U≥ with

U ⊆ U≥ if

48

(i) E(Σ) ⊆ E(Σ≥);

(ii) any σΣ≥ ∈ E(Σ≥) such that {σΣ≥(k)(z)}k∈N = {σΣ(k)(z)}k∈N, for some execution σΣ ∈

E(Σ), is such that σΣ≥ ∼ σΣ.

Item (i) establishes that Σ≥ is a generalization of Σ, denoted Σ ⊆ Σ≥. Moreover, (ii)

establishes that those executions of Σ≥ that have the same output sequence as one of the

executions, σΣ, of Σ are equivalent to σΣ. As a consequence, if the system Σ is observable

(or weakly observable), its Σ-weakly equivalent generalization Σ≥ is weakly observable on

the set of executions of Σ. For weakly observable systems, Theorem 3.3.1 can be applied by

substituting the assumption of the pair (Σ̃, (χ,≤)) being interval compatible with a weaker

assumption that we call weak interval compatibility defined as follows.

Definition 4.2.2. (Weak interval compatibility) Given the extended system Σ̃ = S(χ,Z, f̃ , h̃)

of Σ = S(U,Z, f , h) on (χ,≤). The pair (Σ̃, (χ,≤)) is said to be weakly interval compatible

if

(i) each Σ̃-transition class, Ti(Σ̃) ∈ T (Σ̃), is an interval sublattice of (χ,≤):

Ti(Σ̃) = [
∧

Ti(Σ̃),
∨

Ti(Σ̃)];

(ii) f̃ : ([L,U], z) −→ [f̃ (L, z), f̃ (U, z)] is order preserving for any [L,U] ⊆ Ti(Σ̃), and

any z ∈ Z and for any i ∈ {1, ...,M};

(iii) f̃ : ([L,U], z) −→ [f̃ (L, z), f̃ (U, z)] is onto for any [L,U] ⊆ Ti(Σ̃) for any z ∈ Z and

for any i ∈ {1, ...,M}.

We have this difference between observable systems and weakly observable systems

because in a weakly observable system, two executions sharing the same output can col-

lapse one onto the other, thus there cannot be any extension f̃ that is a bijection between the

output lattice and the set it is mapped to. Thus, we can restate Theorem 3.3.1 for weakly

observable systems in the following way.

49

Theorem 4.2.1. Assume that the deterministic transition system Σ = S(U,Z, f , h) is

weakly observable. If there is a lattice (χ,≤), such that the pair (Σ̃, (χ,≤)) is weakly in-

terval compatible, then the deterministic transition system with input Σ̂ = (χ × χ,Z ×

Z, χ × χ, (f1, f2), id) with

f1(L(k), y(k), y(k + 1)) = f̃ (L(k) g
∧

Oy(k), y(k))

f2(U(k), y(k), y(k + 1)) = f̃ (U(k) f
∨

Oy(k), y(k))

solves the discrete state estimation problem stated in Problem 3.2.1.

If we can find a Σ-weakly equivalent generalization Σ≥ for Σ that is weakly interval

compatible with the desired lattice χ, we can construct the estimator for the system Σ by

using Σ≥. This is formally stated in the following proposition.

Proposition 4.2.2. If the system Σ = S(U,Z, f , h) is observable (or weakly observable)

and its Σ-weakly equivalent generalization Σ≥ = S(U≥,Z, f≥, h) is such that the pair

(Σ̃≥, (χ,≤)) is weakly interval compatible for a given (χ,≤) and U≥ ⊆ χ, then Theorem

4.2.1 can be applied to Σ≥ with α(k) = σΣ(k)(α) and z(k) = σΣ(k)(z).

This way, we construct the estimator using f≥, but we estimate the value of α corre-

sponding to the execution of Σ whose output z we are measuring. The proof of this propo-

sition can be carried out easily by using directly (i) and (ii) of Definition 4.2.1. The coun-

terpart is that if the Σ-weakly equivalent generalization is too rough an over-approximation

of Σ, the convergence speed can be low.

A way of constructing a Σ-weakly equivalent generalization of Σ is to find a nondeter-

ministic function f≥ : U × Z → P(U) such that if α(k) = σΣ(k)(α) and z(k) = σΣ(k)(z),

then α(k + 1) ∈ f≥(α(k), z(k)). The function f≥ maps an element to a set of possible val-

ues in U, and U≥ = U. We show in the following chapter how the results obtained for

deterministic systems carry to nondeterministic systems.

50

Chapter 5

Discrete State Estimators on a Lattice
for Nondeterministic Systems

In this chapter, we outline the basic ideas that allow us to generalize the results of

Chapters 3 and 4 to nondeterministic transition systems. The systems considered in this

chapter are not probabilistic but rather nondeterminism arises because a state is updated to

a known set of possible values instead of being updated to one value only. This is a way of

taking modeling uncertainty into account. Such uncertainty can be due to poor knowledge

of the dynamics, or to timing uncertainties that often happen in concurrent systems. In

these systems, the state of the agents can be updated in an asynchronous fashion, and

the order in which each state of each agent is updated is not known a priori. In Section

5.1, basic definitions for nondeterministic transition systems are given. In Section 5.2, the

estimator proposed in the previous chapters is constructed and the existence result proved.

The chapter is concluded with a nondeterministic example in Section 5.3. The results of

this chapter appeared in [24].

5.1 Basic Definitions

Definition 5.1.1. (Nondeterministic transition systems) A nondeterministic transition sys-

tem (NTS) is the tuple Σ = (S ,Y, F, g), where

(i) S is a set of states with s ∈ S ;

(ii) Y is a set of outputs with y ∈ Y;

51

(iii) F : S → P(S) is the state transition set-valued function;

(iv) g : S → Y is the output function.

An execution of Σ is any sequence σ = {s(k)}k∈N such that s(0) ∈ S and s(k + 1) ∈

F(s(k)) for all k ∈ N. As opposed to a deterministic transition systems, in an nondetermin-

istic transition system F maps an element to a set, and thus it is a set-valued function. The

Definitions 2.2.2, 2.2.5, and 2.2.6, which are related to the weak observability property,

can be rewritten the same way for NTSs by replacing “deterministic transition system”

with “nondeterministic transition system” and by taking into account that F is a set-valued

map. As done for deterministic transition systems, we consider nondeterministic transition

systems with the special structure

(i) S = U ×Z withU a finite set andZ a finite dimensional space;

(ii) F = (f , h), where f : U ×Z → P(U) and h : U ×Z → Z;

(iii) g(α, z) := z, where α ∈ U, z ∈ Z, and Y = Z.

We denote this class of nondeterministic transition systems by Σ = S(U,Z, f , h), and we

associate to the tuple (U,Z, f , h) the equations

α(k + 1) ∈ f (α(k), z(k))

z(k + 1) = h(α(k), z(k)) (5.1)

y(k) = z(k),

if f is a set-valued map. Given a lattice (χ,≤) withU ⊂ χ, the extension Σ̃ = S(χ,Z, f̃ , h̃)

of Σ is defined in a way similar to the way it is defined for deterministic transition systems

(see Definition 3.3.1), but in this case Σ̃ is nondeterministic itself and U is not required to

be invariant under f̃ .

Definition 5.1.2. Given the nondeterministic transition system Σ = S(U,Z, f , h), a N-

extension of Σ on χ, withU ⊆ χ and (χ,≤) a complete lattice, is any system Σ̃ = S(χ,Z, f̃ , h̃),

such that

52

(i) f̃ : χ ×Z → P(χ) and f̃ |U×Z ∩ P(U) = f ;

(ii) h̃ : χ × Z → Z and h̃|U×Z = h.

The definition of interval compatible pair changes to the following definition.

Definition 5.1.3. Consider the N-extension Σ̃ = S(χ,Z, f̃ , h̃) of the nondeterministic tran-

sition system Σ = S(U,Z, f , h) on (χ,≤). The pair (Σ̃, (χ,≤)) is said to be N-interval

compatible if

(i) each Σ̃-transition class, Ti(Σ̃) ∈ T (Σ̃), is an interval sublattice of (χ,≤):

Ti(Σ̃) = [
∧

Ti(Σ̃),
∨

Ti(Σ̃)];

(ii) f̃ : ([w1,w2], z) −→ [
∧

f̃ (w1, z),
∨

f̃ (w2, z)] is order preserving for any [w1,w2] ⊆

Ti(Σ̃), and any z ∈ Z and for any i ∈ {1, ...,M};

(iii) f̃ : ([w1,w2]∩U, z) −→ [
∧

f̃ (w1, z),
∨

f̃ (w2, z))]∩U is onto for any [w1,w2] ⊆ Ti(Σ̃)

for any z ∈ Z and for any i ∈ {1, ...,M}.

Note that for a set-valued function f , we have that f : A→ B is onto if for any element

b ∈ B there is an element a ∈ A such that b ∈ f (a). In the following section, the estimator

is constructed.

5.2 Estimator Construction and Existence

In this section, we show how to extend the estimator construction and existence to non-

deterministic systems. The arguments carried out are similar to the deterministic setting.

The main difference lies in the fact that now we deal with set valued maps as opposed to

single valued maps. This will be taken directly into account in the estimator construction.

Also, this feature will no longer allow us to prove the monotonicity property of the estima-

tion error that we had in the deterministic setting (see (ii) of Problem 3.2.1). In particular,

Theorem 3.3.1 transforms to the following.

53

Theorem 5.2.1. Assume that the nondeterministic transition system Σ = S(U,Z, f , h) is

weakly observable. If there is a lattice (χ,≤), such that the pair (Σ̃, (χ,≤)) is N-interval

compatible, then the deterministic transition system with input Σ̂ = (χ × χ,Z × Z, χ ×

χ, (f1, f2), id) with

f1(L(k), y(k), y(k + 1)) =
∧

f̃ (L(k) g
∧

Oy(k), y(k))

f2(U(k), y(k), y(k + 1)) =
∨

f̃ (U(k) f
∧

Oy(k), y(k)) (5.2)

solves (i) and (iii) of Problem 3.2.1.

Proof. The proof is similar to the one of Theorem 3.3.1, except that now the function f̃ is

nondeterministic, and thus one has to carry out the arguments using ∨f̃ and ∧f̃ as opposed to

f̃ itself. This is sketched in what follows. For simplifying notation, we omit the dependence

of f̃ on y.

Item (i) can be proved by induction on k. By the initialization of the estimator L(0) ≤

α(0) ≤ U(0) (base case). Assume that L(k) ≤ α(k) ≤ U(k), and show this holds at step

k + 1. It suffices to notice that ∧Oy(k) g L(k) ≤ α(k) ≤ U(k) f ∨Oy(k), because α(k) ∈ Oy(k)

by definition. By the order preserving property of f̃ , we have

∧

f̃ (
∧

Oy(k) g L(k)) ≤
∧

f̃ (α(k)) ≤ α(k + 1)

and

α(k + 1) ≤
∨

f̃ (α(k)) ≤
∨

f̃ (U(k) f
∨

Oy(k)).

Item (iii) of Problem 3.2.1 is proved by contradiction. Assume β′′1 , β
′′
2 ∈ [L(k+1),U(k+

1)] ∩ U. By equations (5.2) and by property (iii) of Definition 5.1.3, there are β′1, β
′
2 ∈

[∧Oy(k)g L(k),U(k) f ∨Oy(k)]∩U such that β′′1 ∈ f (β′1) and β′′2 ∈ f (β′2), and β′1, β
′
2 ∈ Oy(k).

In an analogous way, there are β1, β2 ∈ [∧Oy(k − 1) g L(k − 1),U(k − 1) f ∨Oy(k − 1)] ∩U

such that β′1 ∈ f (β1) and β′2 ∈ f (β2), and β1, β2 ∈ Oy(k − 1). This implies that one can

construct two executions of Σ, σ1 = {β1(k), z(k)}k∈N and σ2 = {β2(k), z(k)}k∈N that share the

same output. This contradicts the weak observability of Σ. �

54

In Theorem 5.2.1, we assume that the system is weakly observable as opposed to ob-

servable as assumed in Theorem 3.3.1, and the functions f1 and f2 are modified by taking

that f (·) is a set into account. Also, (ii) of Problem 3.2.1 cannot be guaranteed because f̃

maps an element to a set.

The following theorem shows that, just as in the case of deterministic systems, it is

always possible to find a lattice (χ,≤) and a system extension Σ̃ such that the pair ((χ,≤),Σ)

is N-interval compatible.

Theorem 5.2.2. Consider the nondeterministic system Σ = S(U,Z, f , h). There exists a

lattice (χ,≤), with U ⊂ χ, and extensions f̃ : χ × Z → P(χ), h̃ : χ × Z → Z, with

f = f̃ |U×Z ∩ P(U) and h̃|U×Z = h, such that the pair ((χ,≤), Σ̃) is N-interval compatible.

Proof. The proof proceeds by construction. (0) A lattice (χ,≤) withU ⊂ χ is constructed;

(1) the map h : U × Z → Z is extended to (χ,≤) such that (i) is verified; (2) the map

f : U × Z → P(U) is extended to (χ,≤) such that f̃ |U×Z ∩ P(U) = f , and such that

(ii)-(iii) of Definition 5.1.3 are verified. Since the constructions (0) and (1) are identical to

the deterministic case, the proof concentrates on proving (2).

(2) In order to prove (ii) of Definition 5.1.3, f̃ is defined. For simplifying the notation,

we omit the dependence on z. We define f̃ for every element w ∈ χ. By the construction

in (0), any w ∈ χ has the form w = α1 g ... g αp for some αi ∈ U. Thus, for every p-tuple

(α1, ..., αp), define

f̃ (α1 g ... g αp) := f̃ (α1) g ... g f̃ (αp),

f̃ (α1) g ... g f̃ (αp) := P((f (α1) ∪ ... ∪ f (αp)). (5.3)

This is shown in Figure 5.1 for p = 2. Therefore, for any w ∈ χ, it follows that f̃ (w) =

[⊥, ∨f̃ (w)]. Also define f̃ (⊥) = ⊥. It follows by construction that f (α) = f̃ (α) ∩U for any

α ∈ U. To show that f̃ is order preserving, we check Definition 2.1.3. Since for any w ≤ x

we have ∧f̃ (w) = ∧f̃ (x) = ⊥, we need to check that ∨f̃ (w) ≤ ∨f̃ (x). In fact if w ≤ x, then

w = α1g...gαm and x = α1g...gαmgαm+1g...gαn for some αi ∈ U by part (0). By definition

f̃ (w) = P((f (α1)∪...∪ f (αm)) and f̃ (x) = P((f (α1)∪...∪ f (αm)...∪ f (αn)). Therefore f̃ (w) =

55

f (α j) = αm

⊥

αk
αl

f̃ (αi)

αm

f̃ (w)

⊥

αi

α j

f (αi) = {αl, αk}

w = αi g α j

Figure 5.1: Extension f̃ on lattice χ.

∪ j=1:m f (α j) ⊂ ∪ j=1:n f (α j) =
∨

f̃ (x). (iii) To prove that f̃ : [⊥,U] ∩U −→ [⊥, ∨f̃ (U)] ∩U

is onto, we need to show that for any β ∈ [⊥,
∨

f̃ (U)] ∩ U there is α ∈ [⊥,U] ∩ U

such that β ∈ f̃ (α). By construction (part (0)) we have that U = α1 g ... g αn, for some

α1, ..., αn. Therefore [⊥,
∨

f̃ (U)] ∩U = ∪i=1:n f (αi), which implies that β ∈ f (αi) for some

i ∈ {1, ..., n}. Since U = α1 g ... g αn we have that αi ∈ [⊥,U] ∩U for all i. �

Note that an equivalent of Proposition 4.2.2 holds if Σ is nondeterministic and weakly

observable. For completeness we reformulate such a proposition.

Proposition 5.2.3. If the nondeterministic transition system Σ = S(U,Z, f , h) is weakly

observable and its Σ-weakly equivalent generalization Σ≥ = S(U≥,Z, f≥, h) is such that

the pair (Σ̃≥, (χ,≤)) is N-interval compatible for a given (χ,≤), then Theorem 5.2.1 can be

applied to Σ≥ with α(k) = σΣ(k)(α) and z(k) = σΣ(k)(z).

In the following example, we show how to apply this proposition to a nondeterministic

version of the RoboFlag system in order to construct an estimator.

5.3 Nondeterministic Example

In this section, we propose a non-deterministic version of the RoboFlag system, and we

show how to construct an estimator. The system is analogous to the one analyzed in Section

3.4 except for the way the assignment is updated. In fact, we assume that at each step only

56

one pair of robots among the pairs with conflicting assignments swap the assignment, the

pair that switches being randomly chosen. The blue robot dynamics are described by the

rules

zi(k + 1) = zi(k) + δ if zi(k) < xαi(k) (5.4)

zi(k + 1) = zi(k) − δ if zi(k) > xαi(k) (5.5)

(αi(k + 1), αi+1(k + 1)) = (αi+1(k), αi(k)) if switch(i,i+1)(k), (5.6)

for i ∈ {1, ...,N}, where switch(i, j)(k) is such that

switch(i,i+1)(k)⇒ xαi(k) ≥ xαi+1(k) (5.7)

switch(i,i+1)(k) ∧ switch(j, j+1)(k) = f alse, i , j (5.8)
(

(xα1(k) ≥ xα2(k)) ∨ ∨ (xαN−1(k) ≥ xαN (k))
)

⇒

(switch(1,2)(k) ∨ ... ∨ switch(N−1,N)(k) = true. (5.9)

Rules (5.6) establish that two close robots will exchange their assignments if switch is

true. In particular, (5.7) implies that switch can be true only for two robots with conflict-

ing assignments, (5.9) establishes that one pair of close robots will exchange assignments

provided there is at least one pair of robots with conflicting assignments, and (5.8) implies

that only one pair of robots will exchange assignments. Therefore (5.7), (5.8), and (5.9),

along with (5.6), guarantee that, if there are some close robots with conflicting assignments,

there is one and only one pair of robots among them that will switch the assignments. This

renders the assignment protocol in commands (5.6) nondeterministic, as at each step we

do not know which pair of robots switches assignments. It is possible to show that the

assignment protocol converges to the equilibrium value (1, ...,N). For this, we defer the

reader to [35]. For the blue robots, we assume that initially zi ∈ [zmin, zmax], zi < zi+1, and

that xi < zi < xi+1 for all time. With this assumption, one can check that system Σ is

weakly observable. The proof is similar to the one given in Proposition 3.4.1. We define

x = (x1, ..., xN), z = (z1, ..., zN), α = (α1, ..., αN).

The rules reported in (5.6) determine the function f : U×RN → P(U) that updates the

57

discrete variables α, while the rules in (5.5) and (5.4) determine the function h : U×RN →

R
N . Therefore the blue robot system is defined by Σ = S(perm(N),RN , f , h).

For the purpose of constructing the estimator, we consider the order (χ,≤) described

in Section 3.4.2. One can verify that there is no extension of Σ on χ that is N-interval

compatible with (χ,≤). As a consequence, we apply Proposition 5.2.3. We look for a Σ-

weakly equivalent generalization of the NTS Σ that admits an extension Σ̃≥ on χ that is

N-interval compatible with (χ,≤). We define the system Σ≥ = S(U,Z, f≥, h) by defining

f≥ in the following way. Let v(k) = z(k + 1) − z(k) denote the velocity, then at step k we

have for β ∈ U

f≥(β, z) := f (β, z) if v(k) , v(k − 1) (5.10)

f≥(β, z) := [
∧

Oy(k),
∨

Oy(k)] ∩U otherwise. (5.11)

It is easy to verify (i)-(ii) of Definition 4.2.1, so that Σ≥ = S(U,Z, f≥, h) is a Σ-weakly

equivalent generalization of Σ = S(perm(N),RN , f , h). Property (i) is trivially verified.

To verify (ii) it is enough to notice that the switch before the stabilization time kσ of the

sequence {σΣ(k)(α)}k∈N is observable. Let σΣ≥ denote an execution of Σ≥ and {σΣ≥(k)(α)}k∈N

the corresponding α sequence; we have that f≥(σΣ≥(kσ − 1)(α), z(kσ − 1)) = f (σΣ≥(kσ −

1)(α), z(kσ − 1)) = (1, ...,N). This in turn implies that σΣ≥(kσ − 1)(α) = σΣ(kσ − 1)(α) for

some execution σΣ of Σ.

To find an extension Σ̃≥ that is N-interval compatible with (χ,≤), consider the following

extension of f≥ on χ at step k for any q ∈ χ

f̃≥(q, z) = w, (wi,wi+1) := (qi+1, qi), if vi(k) , vi(k − 1) (5.12)

f̃≥(q, z) := [
∧

Oy(k),
∨

Oy(k)] otherwise. (5.13)

Expression (5.12) defines an order isomorphism between [L,U] and [f̃≥(L, z), f̃≥(U, z)] for

any L,U ∈ χ. From expression (5.13), we deduce that f̃≥ is trivially order preserving

according to the Definition 2.1.3. Moreover f̃≥ : ([L,U]∩U, z) → [
∧

f̃≥(L, z),
∨

f̃≥(U, z)]∩

U is clearly onto by construction for any [L,U] ⊆ Oy(k), and f̃≥|U ∩ P(U) coincides with

58

f≥ by construction as well. As a consequence the system Σ̃≥ = S(P(χ),Z, f̃≥, h̃) with h̃ as

defined in Section 3.4.2 is N-interval compatible with (χ,≤).

We then apply Proposition 5.2.3 for constructing the estimator. Such an estimator can

be written as a set of rules as already done for the example in Section 3.4.2. In Figure 5.2

we report

W(k) =
1
N

N
∑

i=1

|mi(k)|,

which converges to 1 when the value of α has been locked, and

E(k) =
1
N

N
∑

i=1

|αi(k) − i|,

which gives an idea of the speed of convergence of the assignment to the equilibrium value

(1, ...,N). |[L(k),U(k)] ∩ U| converges to 1, but |[L(k),U(k)]| is not a monotonic function

of k as it was in the deterministic case. This is due to the nondeterministic nature of the

transition functions, as one element can be mapped to many. The choice of f≥ has a con-

siderable impact on the convergence speed of the estimator. The map f≥ we chose is rough

and does not take other information that we have on the system into account. For exam-

ple it does not model the fact that even if there is an unobservable switch, a subset of the

robots, depending on their assignment estimates, undergoes particular switches. The more

information we can model with f≥ the faster the convergence rate.

59

0 10 20 30 40 50 60
0

10

20

30

40

E

0 10 20 30 40 50 60
0

2

4

6

8

W

N = 10 robots

time

0 20 40 60 80 100 120 140 160 180
0

100

200

300

E

N = 30 robots

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

W

time

Figure 5.2: Example with N=10(left) and N=30(right): upper plot shows the stabilization
function of the α assignment (E), while lower plot shows the function W for the estimator.

60

Chapter 6

Cascade Discrete-Continuous State
Estimators on a Lattice

In this chapter, a cascade discrete-continuous state estimator on a partial order is pro-

posed and its existence investigated. The continuous state estimation error is bounded by a

monotonically non-increasing function of the discrete state estimation error, with both the

estimation errors converging to zero. We show that the lattice approach to estimation is

general as the proposed estimator can be constructed for any observable and independent

discrete state observable system. The main advantage of using the lattice approach for es-

timation becomes clear when the system has monotone properties that can be exploited in

the estimator design. In such a case, the computational complexity of the estimator can

be drastically reduced and tractability can be achieved. Some examples are proposed to

illustrate these ideas. This chapter is structured as follows. In Section 6.1, we introduce the

model of the system, which is equal to the one of the previous chapters except that now the

continuous variables are not measured. In Section 6.2, the problem is formulated, and in

Section 6.3 a solution is proposed. In Section 6.4, we show that under suitable observability

assumptions, the proposed estimator can always been constructed. In Section 6.5, we show

a particular class of systems, monotone systems, for which the order relations can be effi-

ciently computed at least in the continuous variable space. In Section 6.6, three examples

with decreasing complexity are shown, and the complexities of the respective estimators

are computed. The results of this chapter appeared in [25].

61

6.1 The Model

The model that we consider in this chapter is the same as the one in Section 3.2, except

that now the continuous variables are not measured anymore. Then, for a system Σ =

(S ,Y, F, g), suppose that

(i) S = U×Z withU a finite set, andZ an infinite possibly dense set, andY is a finite

or infinite set;

(ii) F = (f , h), where f : U ×Y → U and h : U ×Z → Z;

(iii) g : U ×Z → Y is the output map.

These systems have the form

α(k + 1) = f (α(k), y(k)) (6.1)

z(k + 1) = h(α(k), z(k)) (6.2)

y(k) = g(α(k), z(k)),

and they are referred to as the tuple Σ = (U ×Z,Y, (f , h), g). The function f that updates

the discrete variable α can be represented by a set of logic statements, or, in the case Y is

finite, by a look-up table or recursive formula as is the case of finite state machines ([32]).

For each value of α, the equation (6.2) is a difference equation. The set Y can be such that

the output has both a continuous and a discrete component. We leaveY unspecified for the

moment. In the examples at the end of the chapter, we will show several forms that this set

can take.

Before stating the problem in more detail, we recall the notions of transition sets of Σ

given in Section 4.1, by redefining them for the present case in which the variables z are

not measured.

Definition 6.1.1. (Σ-transition sets) The non empty sets T(y1,y2)(Σ) = {α ∈ U | y1 =

g(α, z) and y2 = g(f (α, y1), h(α, z))}, are the Σ-transition sets.

In general these sets depend on z. For the sake of simplicity, we are interested in the

case in which these sets do not depend on z. Thus, we give the following definition.

62

Definition 6.1.2. (Independent discrete state observability) The systemΣ = (U×Z,Y, (f , h), g)

is said to be independent discrete state observable if for any execution with output sequence

{y(k)}k∈N, the following are verified

(i) the Σ-transition sets T(y(k),y(k+1))(Σ) do not depend on z;

(ii) for any two executions σ1, σ2 ∈ E(Σ) with g(σ1(k)) = g(σ2(k)) = y(k) and with

{σ1(k)(α)}k∈N , {σ2(k)(α)}k∈N, there is k > 0 such that σ1(k)(α) ∈ T(y(k),y(k+1))(Σ) and

σ2(k)(α) < T(y(k),y(k+1))(Σ).

Item (i) is trivially verified if g(α, z) = (gα(α), gz(α, z)), where gα : U → {Y1, Y2, ..., Ym}

partitions the set U in equivalence classes. We allow two steps in order to have an equiv-

alence class that is independent of z(k), as this is often the case when α acts in the z dy-

namics. This assumption is made for the sake of simplicity. It can be relaxed to allow a

finite number of N steps for obtaining a set T(y(k),y(k+1),...,y(k+N))(Σ) that does not depend on

z with minor modifications to the estimator structure. From this definition, it follows that

an independent discrete state observable system admits a discrete state estimator that does

not involve the continuous state estimate. This property allows us to construct a cascade

discrete-continuous state estimator, that is, an estimator in which the discrete state estimate

is done as in Chapter 3, and the continuous state estimate is a function of the discrete state

estimate. This is formally explained in the following section.

6.2 Problem Statement

Consider the deterministic transition system Σ = (U ×Z,Y, (f , h), g), with the output

sequence {y(k)}k∈N. The problem of determining and tracking the value of the current state

(α(k), z(k)) of the system is formally stated in the following problem.

Problem 6.2.1. (Cascade discrete-continuous state estimator) Given the deterministic tran-

sition system Σ = (U × Z,Y, (f , h), g), find a deterministic transition system with in-

put Σ̂ = (χ × χ × L × L,Y × Y, χ × χ × ZE × ZE, (f1, f2, f3, f4), (f5, f5, f6, f7)), with

f1 : χ×Y×Y → χ, f2 : χ×Y×Y → χ, f3 : L×χ×Y×Y → L, f4 : L×χ×Y×Y → L,

63

f5 : χ → χ and f5 = id, f6 : L → ZE, withU ⊆ χ, (χ,≤) a lattice,Z ⊆ ZE with (ZE,≤) a

lattice, χ ×ZE ⊆ L, (L,≤) a lattice, such that the update laws

L(k + 1) = f1(L(k), y(k), y(k + 1))

U(k + 1) = f2(U(k), y(k), y(k + 1))

qL(k + 1) = f3(qL(k), L(k), y(k), y(k + 1)) (6.3)

qU(k + 1) = f4(qU(k),U(k), y(k), y(k + 1))

zL(k) = f6(qL(k))

zU(k) = f7(qU(k))

with L(k),U(k) ∈ χ, L(0) :=
∧

χ, U(0) :=
∨

χ, qL(k), qU(k) ∈ L, qL(0) =
∧

L, qU(0) =
∨

L, and zL(k), zU(k) ∈ ZE, have the following properties

(i) L(k) ≤ α(k) ≤ U(k) (correctness);

(ii) |[L(k + 1),U(k + 1)]| ≤ |[L(k),U(k)]| (non-increasing error);

(iii) there exists k0 > 0 such that [L(k),U(k)] ∩U = α(k) for any k ≥ k0 (convergence);

(i’) zL(k) ≤ z(k) ≤ zU(k);

(ii’) there is a nonnegative function V : N → R such that d(zL(k), zU(k)) ≤ V(k), with

V(k + 1) ≤ V(k);

(iii’) there exists k′0 > 0 such that d(zL′(k), zU′(k)) = 0 for any k ≥ k′0, where

L′ =
∧

([L,U] ∩U)

U′ =
∨

([L,U] ∩U)

qL′(k + 1) = f3(qL′(k), L′(k), y(k), y(k + 1))

qU′(k + 1) = f4(qU′(k),U′(k), y(k), y(k + 1))

zL′(k) = f6(qL′(k))

zU′(k) = f7(qU′(k)),

64

with qL′(0) = qL(0) and qU′(0) = qU(0), for some distance function “d.”

�

The update laws (6.3) are in cascade form as the variables L and U are updated on the basis

of their previous values and on the basis of the output, while the variables qL and qU are

updated on the basis of their previous values, on the basis of the output, and on the basis of

the values of L and U, respectively. Note that the lower and the upper bound estimates of

z(k) are outputs of the laws that update qL(k) and qU(k), which lie in the spaceL. Properties

(iii) and (iii’) ask that the lower and upper bounds converge to α(k) and z(k). Property (ii’)

gives a monotonic bound on the continuous variable estimation error.

Note that the distance function “d” has been left unspecified for the moment, as its form

depends on the particular partial order chosen (ZE,≤). In the case in which ZE = Z and

Z = Rn with the order is established component-wise, the distance can be the classical

euclidean distance. In the following section, a solution to Problem 6.2.1 is proposed.

6.3 Estimator Construction

Given the deterministic transition system Σ = (U × Z,Y, (f , h), g), a set of sufficient

conditions that allow a solution to Problem 6.2.1 is provided. With this respect, some

definitions involving the extension of the system Σ to a lattice are useful.

Definition 6.3.1. (Extended system) Consider the system Σ = (U × Z,Y, (f , h), g). Let

(χ,≤), (ZE,≤), and (L,≤) be lattices withU ⊆ χ,Z ⊆ ZE, and χ×ZE ⊆ L. An extension

of Σ on the lattice (L,≤) is given by Σ̃ = (L,Y, F̃, g̃) such that

(i) F̃ : L ×Y → L and F̃ |U×Z×Y = (f , h), and L − (U ×Z) is invariant under F̃;

(ii) F̃ |χ×ZE×Y = (f̃ , h̃), where f̃ : χ × Y → χ, f̃ |U×Y = f , h̃ : χ × ZE → ZE, and

h̃|U×Z = h;

(iii) g̃ : L → Y and g̃|U×Z = g;

(iv) the partial order (L,≤) is closed with respect to χ ×ZE.

65

Item (iv) of the above definition establishes (according to Definition 2.1.6) that the

chosen lattices are such that any element in L that is not in χ × ZE can be approximated

by two elements in χ × ZE, a lower element aL(q) and an upper element aU(q). These

are the lower and upper approximations of q, respectively. Note that if q ∈ χ × ZE, then

aL(q) = aU(q) = q.

In the following two definitions, we redefine the notions of Σ̃-transition sets and of

Σ̃-transition classes.

Definition 6.3.2. (Σ̃-transition sets) Let Σ̃ = (L,Y, F̃, g̃) be the extension of Σ on the

lattice (L,≤). For any y1, y2 ∈ Y, the non-empty sets T(y1 ,y2)(Σ̃) = {w ∈ χ | y2 =

g̃(f̃ (w, y1), h̃(w, z)) and y1 = g̃(w, z)} for z ∈ Z are named the Σ̃-transition sets.

By the independent discrete state observability property, the Σ-transition sets do not

depend on z. One can always obtain this same property for the Σ̃-transition sets by a proper

definition of the system extension on χ. In the sequel, we assume that the system extension

Σ̃ has been chosen so that also the Σ̃-transition sets do not depend on z. As done in Section

3.2, we can also define the Σ̃ transition classes. We recall this definition for completeness.

Definition 6.3.3. (Σ̃-Transition classes) The set T (Σ̃) = {T1(Σ̃), ...,TM(Σ̃)}, with Ti(Σ̃) such

that

(i) for any Ti(Σ̃) ∈ T (Σ̃) there are y1, y2 ∈ Y such that Ti(Σ̃) = T(y1 ,y2)(Σ̃);

(ii) for any T(y1,y2)(Σ̃) there is j ∈ {1, ...,M} such that T(y1 ,y2)(Σ̃) = T j(Σ̃);

is the set of Σ̃-transition classes.

The next definition links the discrete state dynamics of Σ̃ with the partial order (χ,≤) as

done already in Chapter 3.

Definition 6.3.4. (Interval compatibility) The pair (Σ̃, (χ,≤)) is said to be interval compat-

ible if the following are verified

(i) each Σ̃-transition class, Ti(Σ̃) ∈ T (Σ̃), is an interval sublattice of (χ,≤):

Ti(Σ̃) = [
∧

Ti(Σ̃),
∨

Ti(Σ̃)];

66

(ii) f̃ : (Ti(Σ̃), y) → [f̃ (
∧

Ti(Σ̃), y), f̃ (
∨

Ti(Σ̃), y)] is an order isomorphism for any i ∈

{1, ...,M} and for any y ∈ Y .

This definition is the same as Definition 3.3.5, the only slight difference is in the way

the transition classes have been defined due to the fact that now the z variables are not

measured. Item (i) in the above definition implies that the set Ty(k),y(k+1)(Σ̃) of w ∈ χ com-

patible with the pair (y(k), y(k + 1)) for any execution σ with output sequence {y(k)}k∈N is a

sublattice interval in χ. Also, the output set Oy(k) is still given as in Chapter 3 by

Oy(k) = Ty(k),y(k+1)(Σ̃).

For the construction of a cascade discrete-continuous state estimator, the case in which the

partial order (L,≤) is induced by the partial order (χ,≤) by means of the system dynamics

is of interest. Thus, the notion of induced transition sets is introduced in the following

definition.

Definition 6.3.5. (Induced transition sets) Consider the system Σ̃ = (L,Y, F̃, g̃) and a

transition set T(y1 ,y2)(Σ̃) for some y1, y2 ∈ Y. For any w1,w2 ∈ T(y1,y2)(Σ̃) with w1 ≤ w2, the

non-empty sets

T (w1,w2)
(y1,y2) (Σ̃) = {q ∈ L | π1 ◦ aL(q) ≥ w1, π1 ◦ aU(q) ≤ w2, y2 = g̃(F̃(q, y1)), and y1 = g̃(q)}

are named the induced transition sets.

Note that the number of such sets is not necessarily finite as q ∈ L, (χ × ZE) ⊆ L,

and ZE is not always finite. In analogy to how we have proceeded for the estimation of

the discrete state, we consider the case in which the induced transition sets induced by an

interval [w1,w2] ⊆ χ are themselves intervals in L. In such a case, we say that the system

Σ̃ and the partial order (L,≤) are induced interval compatible. This concept is formally

defined in the following definition.

Definition 6.3.6. (Induced interval compatibility) The pair (Σ̃, (L,≤)) is said to be induced

interval compatible if for any w1,w2 ∈ Ty1,y2(Σ̃) for some y1, y2 ∈ Y with w1 ≤ w2, we have

that

67

(i) the induced transition sets are such that

∧

T (w1,w2)
(y1,y2) = lq(w1)

∨

T (w1,w2)
(y1,y2) = uq(w2)

with lq(w1) and uq(w2) such that aL(lq(w1)) = (w1, lz(w1)) and aU(uq(w2)) = (w2, uz(w2)),

for lz(w1), uz(w2) ∈ ZE;

(ii) F̃ : ([lq(w1), uq(w2)], y1) → [F̃(lq(w1), y1), F̃(uq(w2), y1)] is order preserving, and F̃ :

(α × [lz(α), uz(α)], y1)→ [F̃(α, lz(α), y1), F̃(α, uz(α), y1)] is order isomorphic;

(iii) for any [w1,w2] ⊆ Ty1,y2(Σ̃), we have that

d
(

π2 ◦ aL ◦ F̃(lq(w1), y1), π2 ◦ aU ◦ F̃(uq(w2), y1)
)

≤ γ(|[w1,w2]|),

for some distance function “d,” and γ : N → R is a monotonic function of its argu-

ment.

Item (i) of this definition means that a sublattice interval [w1,w2] ⊆ χ compatible with

an output pair (y1, y2) induces a sublattice interval in (L,≤) corresponding to the same

output pair. Also, such output interval is approximated by the Cartesian product of the two

sublattice intervals [w1,w2] ⊆ χ and [lz(w1), uz(w2)] ⊆ ZE, in which lz depends only on w1

and uz depends only on w2. Item (ii) establishes the usual order preserving properties of the

extension, and item (iii) establishes that the size of the interval sublattice in (ZE,≤) induced

by an interval [w1,w2] ∈ χ increases with the size of [w1,w2]. A solution to Problem 6.2.1

is proposed by the following theorem.

Theorem 6.3.1. Given the system Σ = (U × Z,Y, (f , h), g), assume that there are lat-

tices (χ,≤), (ZE,≤), and (L,≤), with U ⊆ χ, Z ⊆ ZE, and χ × ZE ⊆ L such that the

pairs (Σ̃, (χ,≤)) and (Σ̃, (L,≤)) are interval compatible and induced interval compatible,

68

respectively. Then a solution to Problem 6.2.1 is provided by

f1(L(k), y(k), y(k + 1)) = f̃ (
∧

Oy(k) g L(k), y(k))

f2(U(k), y(k), y(k + 1)) = f̃ (
∨

Oy(k) f U(k), y(k))

f3(qL(k), L(k), y(k), y(k + 1)) = F̃(qL(k) g lq(
∧

Oy(k) g L(k)), y(k))

f3(qU(k),U(k), y(k), y(k + 1)) = F̃(qU(k) f uq(
∨

Oy(k) f U(k)), y(k))

f6(qL(k)) = π2 ◦ aL(qL(k))

f7(qU(k)) = π2 ◦ aU(qU(k)).

U(k)

L(k)

y(k)

α(k + 1)

L(k + 1)

y(k + 1)

f̃

∨Oy(k)

∧Oy(k)

L∗

α(k)

U∗

U(k + 1)

π2 ◦ aU

y(k + 1)
F̃(uq)

F̃(lq)

y(k)
qU(k)

zU(k + 1)

z(k + 1)

zL(k + 1)
π2 ◦ aL

qL(k + 1)

qU(k + 1)
q∗U

F̃

(α(k), z(k))

qL(k)

uq(U∗)

lq(L∗)

(α(k + 1), z(k + 1))q∗L

Figure 6.1: Hasse diagrams representing the updates of the estimator in Theorem 6.3.1. In
the diagram, we have denoted U∗ = ∨Oy(k)fU(k), L∗ = ∧Oy(k)gL(k), q∗U = qU(k)f lq(U∗),
and q∗L = qL(k) g lq(L∗).

Proof. The idea of the proof is analogous to the one proposed in Theorem 3.3.1. Here,

69

a sketch is provided. For the proof of (i)-(ii)-(iii), the reader is deferred to the proof of

Theorem 3.3.1. Define U∗ = ∧Oy(k) f U(k), L∗ = ∨Oy(k) g L(k), q∗U = qU(k) f lq(U∗), and

q∗L = qL(k) g lq(L∗). The dependence of uq and lq on their arguments is omitted, as well as

the dependence of F̃ on y.

Proof of (i’). By using the induction argument on k and exploiting the order preserving

property of F̃, one can show that qL(k) ≤ (α(k), z(k)) ≤ qU(k) (see Figure 6.1) for any k. By

the the fact that π2 ◦ aL and π2 ◦ aU are order preserving functions, (i’) follows (see Figure

6.1).

Proof of (ii’). Using the order preserving property of F̃, of π2 ◦ aL, and of π2 ◦ aU , one

deduces that zL(k+1) ≥ π2◦aL◦F̃(lq(L∗)) and zU(k+1) ≤ π2◦aU◦F̃(uq(U∗)) (see Figure 6.1).

By exploiting the property (iii) of the distance function in Definition 2.1.4 and the property

(iv) given in Definition 6.3.6, one can infer that d(zL(k + 1), zU(k + 1)) ≤ γ(|[L∗,U∗]|).

Since f̃ is order isomorphic, it follows that |[L∗,U∗]| = |[f̃ (L∗, y), f̃ (U∗, y)]|. Thus, (ii’) of

Problem 3.2.1 is satisfied with V(k) = γ(|[L(k),U(k)]|).

Proof of (iii’). For k > k0, L′(k) = α(k) = U′(k) as [L(k),U(k)]∩U = α(k). As a conse-

quence, qL′(k+1) = F̃(qL′(k)g lq(α(k))) and qU′(k+1) = F̃(qU′(k)guq(α(k))), where lq(α) =

(α, lz(α)) and uq(α) = (α, uz(α)). One then uses the facts that (α, lz(α)) ≤ qL′(k) g lq(α(k)),

qU′(k)guq(α(k)) ≤ (α, uz(α)), the fact that F̃ : (α×[lz(α), uz(α)]) → [F̃(α, lz(α)), F̃(α, uz(α))]

is order isomorphic, and the fact thatL− (U×Z) is invariant under F̃. Proceeding by con-

tradiction, if for any k there are (α′, z′1), (α′, z′2) in [qL′(k), qU′(k)] ∩ (U ×Z) that are com-

patible with the output, there must be (α, z1), (α, z2) ∈ [qL′(k−1), qU′(k−1)]∩ (U×Z) such

that (α′, z′1) = F(α, z1) and (α′, z′2) = F(α, z2). Also, (α, z1), (α, z2) are compatible with the

output as well (see Figure 6.1). Since this is true for any k, one can construct two executions

of Σ that are different and share the same output sequence. This contradicts observability

of Σ. Then there must be k > k0 such that [qL′(k), qU′(k)] ∩ (U × Z) = (α(k), z(k)), and

therefore zL′(k) = zU′(k) = z(k). �

In the following section, conditions in order to verify the assumptions needed for the

construction of the estimator given in Theorem 6.3.1 are given. In particular, observabil-

ity and independent discrete state observability are sufficient conditions for the estimator

70

construction, and therefore the proposed estimation approach on a lattice is general.

6.4 Estimator Existence

The following theorem shows that if the system Σ is observable and independent dis-

crete state observable, the lattices (L,≤), (ZE,≤), and (χ,≤) introduced in the previous

section exist, such that the extended system is both interval compatible with (χ,≤) and

induced interval compatible with (L,≤).

Theorem 6.4.1. Assume that the system Σ = (U × Z,Y, (f , h), g) is observable and in-

dependent discrete state observable. Then there exist lattices (χ,≤), (ZE,≤), (L,≤) with

U ⊆ χ, Z ⊆ ZE, and χ × ZE ⊆ L, and an extension Σ̃ of Σ on (L,≤) that is interval

compatible with (χ,≤) and induced interval compatible with (L,≤).

Proof. To prove that independent discrete state observability implies the existence of a

lattice (χ,≤) and an extension on (L,≤) of Σ that is interval compatible with (χ,≤), the

reader is deferred to Section 4.1. Briefly, it was shown that the lattice (χ,≤) can be chosen

as (χ,≤) = (P(U),⊆). The function f̃ : χ×Y → χ is defined f̃ (w, y) = f (α1, y)g...g f (αn, y)

for any w = α1 g ... g αn, and f̃ (⊥, y) = ⊥. The function h̃ can be defined on χ × Z

as in Section 4.1 so as to guarantee that the Σ̃-transition sets defined in Definition 6.3.2

are intervals. We recall that such sets do not depend on z, and thus the same construction

developed in Section 4.1 can be repeated. Next, lattices (ZE,≤), and (L,≤) with extensions

h̃ and F̃ that satisfy the induced interval compatibility properties are constructed as well.

Define {z | y = g(α, z), α ∈ U} := m(α, y). ThenZE is defined in the following way:

(i) Z ⊆ ZE;

(ii) m(α, y) ∈ ZE for any y ∈ Y and α ∈ U;

(iii) ZE is invariant under h, i.e., if z̄ ∈ ZE, then h(α, z̄) ∈ ZE for any z̄ ∈ ZE and α ∈ U;

(iv) ZE is closed under finite unions and finite intersections.

71

By construction, (ZE,≤) is a lattice where the order is established by inclusion. Each

element inZE is either a submanifold ofZ or a union of disjoint submanifolds. Also, (χ×

ZE,≤) is a lattice with order established component-wise. Define (L,≤) := (P(χ×ZE),⊆).

Obviously, χ×ZE ⊆ L. Any element q ∈ L has the form q = (w1, z̄1)g ...g (wk, z̄k), where

z̄i ∈ ZE and wi ∈ χ.

Define the function F̃ : L × Y → L in the following way. For any q = (w1, z̄1) g ... g

(wk, z̄k) ∈ L, define (we omit the dependence of F̃ on y for simplifying notation)

F̃(q) := F̃(w1, z̄1) g ... g F̃(wk, z̄n),

where

F̃(wi, z̄i) := (f̃ (wi), h̃(wi, z̄i)).

Let wi = αi,1 g ... g αi,pi and z̄i = mi,1 g ... g mi,ni with mi,1 submanifolds of Z or sets of

subsets of manifolds ofZ, then h̃ : χ ×ZE →ZE is defined such that

h̃(wi, z̄i) := g jh(αi, j, z̄i).

From this definition, it follows that F̃ is order preserving. Also, F̃(⊥) := ⊥.

The function g̃ : L → Y is defined in the following way. For any q ∈ L for q =

(w1, z̄1) g ... g (wk, z̄k), wi = αi,1 g ... g αi,pi , and z̄i = mi,1 g ... g mi,ni

g̃(q) := y if and only if g̃(wi, z̄i) = y,

with

g̃(wi, z̄i) = y if and only if g(αi,l, z̄i) = y for any l,

where g(αi,l, z̄i) = y if and only if z̄i ⊆ m(αi,l, y) by definition of m(αi,l, y).

For any q = (w1, z̄1) g ... g (wk, z̄k) ∈ L, its lower and upper approximations are defined

as aL(q) := (w1 f ... f wk, z̄1 f ... f z̄k) and aU(q) := (w1 g ... g wk, z̄1 g ... g z̄k). An example

of elements in the lattice (L,≤) with their lower and upper approximations is shown in

Figure 6.2. The lattices and the system extension have been constructed. Now, the items of

72

aL((α1, z1) g (α2, z2)) = ⊥
aU((α1, z1) g (α2, z2)) = (α1 g α2, z1 g z2)

(α1, z1) g (α2, z2)

(α2, z1) (α1, z2) (α1, z1) (α2, z2)

(α1 g α2, z1 g z2)
∈ L and not in χ × ZE

∈ χ ×ZE

(α2, z1) g (α1, z2)

⊥

Figure 6.2: Hasse diagram representing elements in the lattice (L,≤).

Definition 6.3.6 can be checked. Item (i) of Definition 6.3.6 is satisfied with {q ∈ L | y =

g̃(q), π1 ◦ aL(q) = ⊥, π1 ◦ aU(q) = w} = [⊥, uq(w)] with uq(kw) = (α1,m(α1, y)) g ... g

(αn,m(αn, y)) if w = α1 g ... g αn. Also, aL(⊥) = ⊥ and π2 ◦ aU(uq(w)) = m(α1, y) g ... g

m(αn, y).

Item (ii) of Definition 6.3.6 is satisfied because F̃ is order preserving by construction

and because F̃ : α × [⊥,m(α, y)] → [⊥, F̃(α,m(α, y))] is one-one because the system is

observable.

To verify (iii) of Definition 6.3.6, a distance function onZE is defined. For any z̄1, z̄2 ∈

ZE, define

d(z̄1, z̄2) :=



























|dim(z̄1) − dim(z̄2)| if z̄1 and z̄2 are related

1 if z̄1 and z̄2 are not related,
(6.4)

where if z̄ = m1 g ... gmn, dim(z̄) :=
∑

i dim(mi), and dim(mi) denotes the dimension of the

submanifold mi ⊂ Z. Define dim(⊥) = 0, dim(z) = 1 for any z ∈ Z, thus a submanifold

isomorphic to Rm has dimension m + 1. Properties (i)-(ii) of Definition 2.1.4 are verified.

(Note that any two points in Z are not related.) To verify (iii) of the Definition 2.1.4,

consider z̄1 ≤ z̄2 for z̄1, z̄2 ∈ ZE, and compute d(⊥, z̄1) and d(⊥, z̄2). If z̄1 ≤ z̄2, by the way

ZE has been constructed, it means that there are mi and m′i submanifolds in ZE such that

z̄1 = m1 g ... g mn, and z̄2 = m′1 g ... g m′p with n ≤ p, and for any i there is a j such that

mi ⊆ m′j. Thus, dim(z̄1) = dim(m1) + ... + dim(mn) and dim(z̄2) = dim(m′1) + ... + dim(m′p)

73

with n ≤ p and dim(mi) ≤ dim(m′i). Thus expression (6.4) defines a distance function

according to Definition 2.1.4. Thus, for any [⊥,U] ⊆ χ with U = α1 g ...gαn, we have that

d(⊥, π2 ◦ aU ◦ F̃(uq(U))) = d(⊥, h(α1,m(α1, y)) g ... g h(αn,m(αn, y))),

as

F̃(uq(U)) = (f (α1), h(α1,m(α1, y)) g ... g (f (αn), h(αn,m(αn, y)),

and

aU ◦ F̃(uq(U)) = (f (α1) g ... g f (αn), h(α1,m(α1, y)) g ... g h(αn,m(αn, y))),

and thus

π2 ◦ aU ◦ F̃(uq(U)) = h(α1,m(α1, y)) g ... g h(αn,m(αn, y)).

Concluding, the definition of distance given in equation (6.4) yields to

d(⊥, h(α1,m(α1, y)) g ... g h(αn,m(αn, y))) =
n

∑

i=1

dim(h(αi,m(αi, y)) ≤ dM |[⊥,U]|,

where dM = maxidim(h(αi,m(αi, y)). �

This theorem shows that for observable and independent discrete state observable sys-

tems it is always possible to construct the estimator on a lattice proposed in Theorem 6.3.1.

However, the main advantage of using the partial order based approach to state estimation

is clear from a computational complexity standpoint when the space of discrete and/or the

space of continuous variables can be extended to lattices where the order relation can be

efficiently computed. A class of systems for which this is the case is shown in the next

section.

74

6.5 The Case of Monotone Systems

In this section, we show a class of systems in which there is a partial order on Z, the

cone partial order, that is preserved by the system dynamics. In this case ZE = Z, (Z,≤)

is a lattice, and (L,≤) = (χ×Z,≤), i.e., (L,≤) is the Cartesian product of the partial orders

on the spaces of discrete and continuous variables.

Monotone dynamical systems are usually defined on ordered Banach spaces, which we

now introduce.

Definition 6.5.1. (Ordered Banach space) An ordered Banach space is a real Banach space

Z with a non-empty closed subset K known as the positive cone with the following prop-

erties:

(i) αK ⊆ K for any α ∈ R+;

(ii) K + K ⊆ K;

(iii) K ∩ (−K) = {∅}, i.e., the cone is pointed.

A partial ordering is then defined by x ≥ y for any x, y ∈ Z if and only if x − y ∈ K, with

x > y if and only if x ≥ y and x , y. The space and the partial order is denoted (Z,≤).

For more details on ordered Banach spaces and monotone systems, the reader is de-

ferred to [40] and [8].

From now on, let (Z,≤) be an ordered Banach space. A monotone dynamical system

on (Z,≤) is one whose flow preserves the ordering on initial data. To extend this property

to deterministic transition systems, consider the extension of Σ = (U ×Z,Y, (f , h), g) on

the lattice (χ × Z,≤). Such extension, denoted Σ̃ = (χ × Z,Y, (f̃ , h̃), g̃), is by definition

such that f̃ : χ × Y → χ and f̃ |U×Y = f ; h̃ : χ × Z → Z with h̃|U×Z = h; g̃ : χ × Z → Y

and g̃|U×Z = g. The only portion of the space that in fact has been extended is the discrete

portion as the continuous portion is an ordered Banach space already.

Definition 6.5.2. (Monotone deterministic transition systems) A deterministic transition

system Σ = (U ×Z,Y, (f , h), g), with (Z,≤) an ordered Banach space and (χ,≤) a lattice

75

with U ⊆ χ, is said to be a monotone deterministic transition system on the partial order

(χ ×Z,≤) if there is an extension Σ̃ = (χ ×Z,Y, (f̃ , h̃), g̃) on (χ ×Z,≤) with the property

that h̃ : χ×Z → Z is order preserving. The extension Σ̃ is termed the monotone extension

of Σ on (χ ×Z,≤).

For a monotone deterministic transition system, the partial order (Z,≤) can be used

in the estimator design to bring the computational burden down, as the elements of Z

are points, and their partial order relation can be computed efficiently using the algebraic

definition of (Z,≤). This avoids the complexity of the representation of elements such as

the ones in the constructive proof of Theorem 6.4.1, in which the elements in ZE are sets

of points ofZ, specifically manifolds, intersection of manifolds, and union of manifolds.

6.5.1 Form of the Estimator for a Monotone System

For a monotone deterministic transition system Σ = (U × Z,Y, (f , h), g), the induced

transition sets take a new form. Consider the monotone extension Σ̃ = (χ × Z,Y, (f̃ , h̃), g̃)

of Σ on χ×Z and a transition set T(y1,y2)(Σ̃) for some y1, y2 ∈ Y. For any w1,w2 ∈ T(y1,y2)(Σ̃)

with w1 ≤ w2, the induced transition sets have the form

T (w1,w2)
(y1,y2) (Σ̃) = {z ∈ Z | y2 = g̃(f̃ (w, y1), h̃(w, z)) and y1 = g̃(w, z)},

in which now T (w1,w2)
(y1 ,y2) (Σ̃) ⊆ Z. As a consequence, also the induced interval compatibility

takes a new form. In particular, the induced transition sets must be intervals inZ according

to the cone order established in Z. More formally, we can redefine the induced interval

compatibility as follows.

Definition 6.5.3. (Induced interval compatibility-monotone case) The pair (Σ̃, (Z,≤)) is

said to be induced interval compatible if for any w1,w2 ∈ Ty1,y2(Σ̃) for some y1, y2 ∈ Y with

w1 ≤ w2, we have that

76

(i) the induced transition sets are such that

∧

T (w1,w2)
(y1,y2) = lz(w1)

∨

T (w1,w2)
(y1,y2) = uz(w2);

(ii) h̃ : α × [lz(α), uz(α)]→ [h̃(α, lz(α)), h̃(α, uz(α))] is order isomorphic for any α ∈ U;

(iii) d(h̃(w1, lz(w1)), h̃(w2, uz(w2))) ≤ γ(|[w1,w2]|), with “d” a distance function onZ, and

with γ : N→ R a monotonic function of its argument.

Then, the form of the estimator of Theorem 6.3.1 is given by the same f1 and f2, and by

f3 : Z× χ ×Y ×Y → Z, f4 : Z× χ ×Y ×Y → Z, f5 : χ→ χ with f5 = id, f6 : Z → Z

with f6 = id, f7 : Z → Z with f7 = id defined as

f3(zL(k), L(k), y(k), y(k + 1)) = h̃(
∧

Oy(k) g L(k), zL(k) g lz(
∧

Oy(k) g L(k)))

f4(zU(k),U(k), y(k), y(k + 1)) = h̃(
∨

Oy(k) f U(k), zU(k) f uz(
∨

Oy(k) f U(k))),

f6(zL(k)) = id

f7(zU(k)) = id.

The results of the Theorem 6.3.1 remain the same except for property (iii’) that changes

to

(iii’) there exists k′0 > 0 such that for any k ≥ k′0, d(zL′(k), zU′(k)) = 0 where

L′(k) =
∧

([L(k),U(k)] ∩U)

U′(k) =
∨

([L(k),U(k)] ∩U)

zL′(k + 1) = f3(zL′(k), L′(k), y(k), y(k + 1))

zU′(k + 1) = f4(zU′(k),U′(k), y(k), y(k + 1)),

with zL′(0) = zL(0) and zU′(0) = zU(0).

The schematic of Figure 6.1 transforms to the one in Figure 6.3.

77

z(k + 1)

y(k + 1)

lz

zL(k)

z∗L

uz

zL(k + 1)

z(k)

z∗U
zU(k + 1)

y(k)
zU (k)

h̃

L∗

α(k)

L(k)

U(k + 1)

U∗

y(k)

α(k + 1)

L(k + 1)

y(k + 1)

f̃

U(k)
∨Oy(k)

∧Oy(k)

Figure 6.3: Hasse diagrams representing the updates of the estimator in Theorem 6.3.1 for the case
of monotone systems. In the diagram, we have denoted U ∗ = ∨Oy(k) f U(k), L∗ = ∧Oy(k) g L(k),
z∗U = zU (k) f lz(U∗), and z∗L = zL(k) g lz(L∗).

Corollary 6.5.1. If in addition to the assumptions of Theorem 6.3.1, Σ̃ is observable and

independent discrete state observable, then we have the stronger convergence properties:

(iv) there exists k′0 > 0 such that for any k ≥ k′0 d(zL(k), zU(k)) = 0;

(v) there exist a k0 > 0 such that for any k > k0 L(k) = U(k) = α(k).

For the proof of (v), the reader is deferred to Section 3.3. The proof of (iv) can be

carried out by contradiction in a way analogous to how (iii’) of Theorem 6.3.1 was proved.

78

6.5.2 Algebraic Tests for Induced Interval Compatibility

In the case of monotone systems, an algebraic check can be performed to verify the

interval compatibility properties once a lattice (χ,≤) is chosen for the discrete state space.

Define

h̃k(w, z) := h̃(h̃k−1(w, z), f̃ k−1(w, y(k − 2))),

and

f̃ k(w, y(k − 1)) := f̃ (f̃ k−1(w, y(k − 2), y(k − 1)),

with f̃ 0(w, y) := w and h̃0(w, z) := z. The following proposition is a straightforward conse-

quence of the observability property of a system.

Proposition 6.5.1. Consider the monotone deterministic transition system Σ = (U×Z,Y, (f , h), g).

If its monotone extension Σ̃ is observable, there is k̄ > 0 such that

{z | g̃(w0, z) = y(0), ..., g̃(h̃k̄−1(w0, z), f̃ k̄−1(w0, y(k̄ − 2)) = y(k̄ − 1)} = {z(0)},

where y(k) = g̃(w(k), z(k)), and w0 = w(0).

This proposition indicates that if the system Σ̃ is observable, the continuous state z can

be expressed as a function of the output sequence and of the starting discrete state. Thus,

there is a map that attaches to a discrete state, a value of the continuous state after some

time given an output sequence: this map is defined to be the observability map. In general,

k̄ depends on z. In case it is not dependent on z, we say that the system is observable in k̄

steps.

Definition 6.5.4. (Observability map) Let the monotone extension Σ̃ of Σ be observable.

Let y = {y(k)}k∈[1,k̄] be the output sequence up to the smallest step k̄ such that the system of

equations

g̃(z,w) = y(0)
...

g̃(h̃k̄−1(w, z), f̃ k̄−1(w, y(k̄ − 2))) = y(k̄ − 1)

79

has a unique solution for z ∈ Z. Then, the observability map, denoted Oy : χ → Z, is the

map that for a fixed finite sequence y attaches to w the unique z satisfying the above system.

Then, we can give the algebraic condition that guarantees that Σ̃ is induced interval

compatible with (Z,≤).

Proposition 6.5.2. If the monotone extension of Σ, Σ̃ is observable in two steps, and the

observability map Oy : χ → Z is order preserving, then the pair (Σ̃, (Z,≤)) is induced

interval compatible.

Proof. To prove (i) of Definition 6.3.6, let y = (y(k), y(k + 1)) be a pair of consecutive

outputs in the output sequence {y(k)}k∈N corresponding to an execution of Σ̃. By the observ-

ability in two steps hypothesis, it follows that for a fixed w ∈ χ

{z ∈ Z | y(k) = g̃(w, z), y(k + 1) = g̃(h̃(w, z), f̃ (w, y(k)))} = {z∗},

and thus lz(w) = z∗ = uz(w). Also, by the Definition 6.5.4, it follows that z∗ = Oy(w). By

the order preserving property of Oy, it follows that Oy(w1) ≤ Oy(w2) if w1 ≤ w2. Item (ii) of

Definition 6.3.6 is clearly verified as lz(α) = uz(α). Item (iii) can be proved in the following

way. Let

d̄ := maxwi�w j‖h̃(wi,Oy(wi)) − h̃(w j,Oy(w j))‖

for wi,w j ∈ [w1,w2] ⊆ χ, then (iii) is verified with γ(|[w1,w2]|) = d̄|[w1,w2]|. �

As a consequence of this proposition, the check for induced interval compatibility is

the order preserving property of the output map Oy, which is easy to check. The basic

assumption in order to have induced interval compatibility, is the order preserving property

of the observability map. In fact, the two steps observability assumption can be abolished if

item (i) of Definition 6.3.6 is relaxed to consider a longer sequence of output observations.

This can be done with minor modifications.

80

6.6 Simulation Examples

The first example is a linear hybrid automaton, in which a lattice of the type constructed

in the proof of Theorem 6.4.1 is used. The second example is a monotone deterministic

transition system in which the discrete space lattice is constructed as in the proof of The-

orem 6.4.1. This allows to have ZE = Z with a cone partial order with some complexity

reduction. However, the discrete space lattice still has the worst case size, and its partial

order relation needs to be stored. The third example is the multi-robot example already

proposed in Section 3.4, in which now the defenders have second order dynamics and only

their positions are measured. This is a monotone deterministic transition system in which

also the discrete state has been extended to a lattice whose partial order relations can be

efficiently computed using algebraic properties. This is the case that allows the largest

complexity reduction. This section is then concluded with complexity computations for

each one of the three examples proposed.

6.6.1 Example 1: Linear Discrete-Time Hybrid Automaton

α1

α2

α3

α4

α5

T1

T2

α1

⊥

α2 α3 α4 α5

>
(χ,≤)

f̃ (T1)

T1

f̃ 2(T1)

T2
f̃ (T2)

Figure 6.4: Map f and output function for the automaton of Example 1 (left). Lattice (χ,≤)
and the extended function f̃ (right).

Let U = {α1, α2, α3, α4, α5}, and α(k + 1) = f (α(k)) where f is defined in the Figure

6.4 (left). AssumeZ = Rn, z(k + 1) = A(α(k))z(k) + B(α(k)), where A(αi) = Ai ∈ R
n × Rn

and B(αi) = Bi ∈ R
n. The output function g is such that g(α, z) = (gα(α), gz(α, z)), where

gα : U → {T1,T2} and gz(α, z) = C(α)z, with C(αi) = Ci ∈ R
m × Rn.

81

An instance of such an example is considered with n = 3, where A1 = ((1, 1, 1)′,

(0, 1, 1)′, (0, 0, 1)′)′, A2 = ((1/2, 1/2, 1/2)′, (1, 2, 2)′, (0, 0, 1)′)′, A3 = ((2, 1, 1)′, (0, 1, 1)′,

(2, 0, 0)′)′, A4 = ((1, 1, 1)′, (1, 1, 0)′, (0, 0, 1)′)′, A5 = ((1, 0, 0)′, (1, 1, 1)′, (1, 1, 0)′)′, C1 =

(1, 0, 0), C2 = (1, 1, 2), C3 = (0, 0, 0), C4 = (1, 0, 0), and C5 = (0, 1, 1). The values of Bi are

not relevant for computing the estimator performance, and thus they are omitted.

For the discrete state estimate, the minimal lattice (χ,≤) where the system is extended

is shown in Figure 6.4 right. Its size is always smaller than |U|2 as shown in Proposition

4.1.2.

For the continuous state estimate, the lattice (ZE,≤) is constructed according to the

proof of Theorem 6.4.1, where the submanifolds are affine linear subspaces. Thus, zU(k) at

each step k is a collection of affine linear subspaces, each given by the set of z ∈ R3 such that

Mi(k)z = (Y(k)−Vi(k)), where Mi(k) = (C(αi)′, (C(f (αi))A(αi))′, ..., (C(f k−1(αi))A(f k−2(αi)))′)′,

Vi(k) = (0,C(f (αi))B(αi), ...C(f k−1(αi))B(f k−2(αi)))′, Y(k) = (y(0), ..., y(k − 1))′, and αi is

such that f k−1(αi) ∈ [⊥,U(k)], for U(k) ∈ χ and i ∈ {1, .., 5}. When only one αi is left

in [⊥,U(k)] and the corresponding matrix Mi(k) has rank equal to n, the estimator has

converged. Thus, define d(⊥, zU(k)) =
∑5

i=1 β(Mi(k)) where

β(Mi(k)) :=



























0 if f k−1(αi) < [⊥,U(k)]

(n + 1) − rank(Mi(k)) otherwise.

As a consequence, when d(⊥, zU(k)) = 1, the estimator has converged and z(k) = M j(k)†(Y(k)−

V j(k)) for some j ∈ {1, ..., 5}, where M j(k)† is the pseudoinverse of M j(k). Note that, after

the first k at which d(⊥, zU(k)) = 1, the state of the system is tracked. The behavior of

d(⊥,U(k)) := |[⊥,U(k)]| and of d(⊥, zU(k)) are illustrated in the left plot of Figure 6.5.

Note that the simultaneous discrete-continuous state estimation allows faster convergence

rates of the continuous estimate with respect to the case in which the continuous estimate

would take place after the discrete estimate has converged.

In this example, the continuous variable space does not have monotone properties. As a

consequence, the representation of the elements of (χ,≤) and of (ZE,≤) involves a listing

of objects: for χ, there is a listing of αis and for Z we have a listing of linear subspaces.

82

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

 Example 1

d(, U(k))

T

d(,z
U

(k))

T

time step k

2 4 6 8 10 12 14
0

2

4

6

8

10

2 4 6 8 10 12 14
0

20

40

60

80

100

Example 2

d(, U(k))

d(z
L
(k),z

U
(k))

time step k

T

Figure 6.5: Estimator performance: example 1 (left) and example 2 (right).

Moreover, to represent each linear subspace, a number of constants larger than n (the num-

ber of constants needed for representing an element in Rn) is needed. A measure of the

complexity of the estimator is given in the sequel. If |U| is very large, this choice of the

partial orders renders the estimation process prohibitive. A case in which a different partial

order must be used for computational tractability, is presented in Example 3.

6.6.2 Example 2: Monotone System

This example considers the case in which it is possible to choose ZE = Z because the

system is monotone. Let againU = {α1, α2, α3, α4, α5}, and α(k + 1) = f (α(k)) where f is

defined in Figure 6.4 (left). The continuous dynamics is given by

z1(k + 1) = (1 − β)z1(k) − βz2(k) + 2βX(α(k))

z2(k + 1) = (1 − λ)z2(k) + λX(α(k)), (6.5)

where β = 0.1, λ = 0.1, X(αi) := 10i for i ∈ {1, ..., 5}. The minimal lattice (χ,≤) is

shown in Figure 6.4 (right). In this case L = χ × Z, where Z = R2, and the order

(Z,≤) is chosen such that (za
1, z

a
2) ≤ (zb

1, z
b
2) if and only if za

2 ≤ zb
2. The function h̃ : χ ×

Z → Z is defined by defining the function X̃ : χ → R in the following way. X̃(T1) :=

max(X(α1), X(α2), X(α3)) = 30, X̃(T2) := max(X(α3), X(α5)) = 50, and in an analogous

way for the others, that is X̃(f̃ (T2)) = 50, X̃(f̃ 2(T1)) = 50, X̃(f̃ (T1)) = 50, and X̃(⊥) := 0.

83

z1

(x1,y1)

z2 z3 z4 z5

(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)

Figure 6.6: An example state of the RoboFlag Drill for 5 robots. Here α = {3, 1, 5, 4, 2}.

With this choice, h̃(w1, za) ≤ h̃(w2, zb) for any (w1, za) ≤ (w2, zb), that is, the system is

monotone. Convergence plots are shown in Figure 6.5 (right).

As opposite to Example 1, in this case the representation of the elements inZE requires

only n scalar numbers, and the computation of the order relation is straightforward. This

alleviates the computational burden with respect to the previous example.

6.6.3 Example 3: RoboFlag Drill (variation)

A version of the RoboFlag Drill system, already presented in Section 3.4, is considered

in which now the robots have partially measured second order dynamics. Briefly, there

are two teams of N robots, say the attackers and the defenders, in which each defender is

assigned to an attacker and moves toward it in order to intercept it before it passes over a

defensive zone. There is an assignment protocol that establishes that two close defenders

moving one toward the other will exchange their assignments. Only the dynamics of the

defenders is different from Section 3.4. In this case in fact, they have second order dynamics

in which the state is not entirely measured. Figure 6.6, represents an example with five

robots per team. The attacker positions are denoted by (xi, yi) and their dynamics is given

by

if yi > δ then y′i = yi − δ.

84

For the defenders, let the assignment be denoted by α = (α1, ..., αN) ∈ perm(N), with

αi the assignment of defender i, U = perm(N), their state variable be denoted by z =

(z1,1, z1,2,, zN,1, zN,2) ∈ Z, with output (z1,1, ..., zN,1) ∈ Y. The function f : U × Y → U

that updates α is given by

if xαi < zi,1 and xαi+1 < zi+1,1 then (α′i , α
′
i+1) = (αi+1, αi), (6.6)

for any i. The function h : U ×Z → Z that updates the z variables is given by

z′i,1 = (1 − β)zi,1 − βzi,2 + 2βxαi

z′i,2 = (1 − λ)zi,2 + λxαi (6.7)

for any i. The set Z is such that zi,1 ∈ [xi, xi+1] and zi,2 ∈ [xi, xi+1] for any i, which is

guaranteed if β and λ are assumed sufficiently small.

It can be easily shown that the system is independent discrete state observable and in-

terval compatible with (χ,≤) defined in the following way. The set χ is the set of vectors in

N
N with components less than N, and the order between any two vectors in χ is established

component-wise. By construction perm(N) ⊂ χ. It can be verified that the extended system

is observable in two steps. Also, we have the following property.

Proposition 6.6.1. The system Σ reported in equations (6.6) and (6.7) is monotone, and the

output map is order preserving.

Proof. We show that the system is monotone, by showing that there is a positive cone in

Z that induces the partial order (Z,≤), and a lattice (χ,≤) such that the extended system

Σ̃ on (χ,≤) is as in Definition 6.5.2. Let us choose (χ,≤) to be the set of vectors in NN

with components less than N, with the order between any two vectors in χ established

component-wise. For showing that h̃ : χ × Z → Z is order preserving, we choose the

positive cone K inZ composed by all vectors v = (v1,1, v1,2, ..., vN,1, vN,2) such that vi,2 ≥ 0.

This basically means that the order on each zi,2 must be preserved by the dynamics in

equations (6.7). This is true as if z(1)
i,2 < z(2)

i,2 and w(1)
i ≤ w(2)

i then (1 − λ)z(1)
i,2 + λxw(1)

i
≤

(1 − λ)z(2)
i,2 + λxw(2)

i
because xw(1)

i
≤ xw(2)

i
whenever w(1)

i ≤ w(2)
i , and because (1 − λ) > 0.

85

The output map is readily seen to be order preserving in its argument w = (w1, ...,wN) ∈

χ as for any k, we have that zi,2(k) = 1
β

(

(1 − β)yi(k) − yi(k + 1) + 2βxwi(k)
)

. �

The estimator in equations (6.4) has been implemented for the system in equations

(6.6) and (6.7). The discrete state estimator is identical to the one in Section 3.4. For the

continuous state estimator set zL = (zL,1, ..., zL,N) ∈ RN and zU = (zU,1, ..., zU,N) ∈ RN , where

zL,i ≤ zi,2 ≤ zU,i, that is, zL,i and zU,i are the lower and upper bound of the zi,2, respectively.

The first components zi,1 are neglected as they are measured. Figure 6.7 illustrates the

estimator performance. W(k) =
∑N

i=1 |mi(k)|, where |mi(k)| is the cardinality of the sets

0 5 10 15 20
1

2

3

4

5

6

W
(k

)

0 5 10 15 20
0

20

40

60

time step k

V(k)

d(z
L
(k), z

U
(k))

Figure 6.7: Estimator performance with N = 10 agents.

mi(k) that are the sets of possible αi for each component obtained from the sets [Li,Ui] by

removing iteratively a singleton occurring at component i by all other components. When

[L(k),U(k)] ∩ perm(N) has converged to α, then mi(k) = αi(k) (see Section 3.4 for details).

The distance function for z, x ∈ RN is defined

d(x, z) =
N

∑

i=1

abs(zi − xi).

86

The function V(k) is defined as

V(k) =
1
2

N
∑

i=1

(xUi(k) − xLi(k)),

and it is always non increasing. Note that even if the discrete state has not converged yet,

the continuous state estimation error after k = 8 is close to zero.

6.6.4 Complexity Considerations

The scope of the proposed examples is two-fold. First, they give an idea of the range of

systems to which the lattice estimation approach applies (observable and independent dis-

crete state observable systems). Second, they point out that the lattice approach alleviates

the computational burden of the estimator and even renders intractable problems tractable

when the system has monotone properties and a good choice of the lattices is made. To

make this point more formal, the computational complexity in each of the examples is esti-

mated as a function of the continuous variables, the discrete variables, and the sizes of the

sets where the discrete variables lie. This section is not meant to be a formal treatment of

computational complexity, but has the scope of giving a qualitative measure of the compu-

tational complexity diversity of the proposed examples. Let n be the number of continuous

variables (3 for the first example, 2 for the second, and 20 in the third), N be the number

of discrete variables (1 in the first example, 1 in the second example, and 10 in the third

example), and u be the set where each discrete variable lies (in the first and second example

u = U, and in the third u = {1, ...,N} andU = uN). The computational cost of the estimator

is computed as

computational cost ∝ S + aUC

where S is the sum of the sizes of the look-up tables used at each update of the estimator,

and aUC is the algebraic update cost of each estimator update. The cost of any set of

algebraic computation is set to 1. One can verify that S ∝ |u|2N in the first two examples,

and that S ∝ 2N in the third one. In the first example, aUC ∝ |u|Nn, and aUC ∝ 2n in the

second and third examples. This is shown in the following table.

87

Estimator computational cost

Example 1 |u|2N + |u|Nn

Example 2 |u|2N + 2n

Example 3 2N + 2n

From the table, one notices that moving from Example 1 to Example 3 the compu-

tational burden due to the size of u decreases, and it disappears in the case of the third

example. This is due to the monotone properties of the continuous dynamics in Example 2

and Example 3, and to the existence of a lattice (χ,≤) with algebraic properties in Example

3. Note also that the complexity reduction that characterizes the third example does not

occur because the discrete variables dynamics decouples, as in fact it is heavily coupled.

In order to give an idea of how one can find a “good” partial order for reducing the

complexity of the estimator design as it happens in Example 3, we consider in the next

chapter some application domains for which we show how a good partial order can be

established. The main idea for a general system is to find a coordinate frame in which the

system evolves preserving some partial order.

88

Chapter 7

Conclusions, Future Directions, and
Possible Extensions

7.1 Conclusions

In this work, we have presented an approach to state estimation in decision and control

systems, which reduces complexity by using partial order theory. The main idea is the

one of representing sets of consistent states by a lower and an upper bound once a partial

order has been established on the set of states. Under order preserving assumptions on

the system’s dynamics, the estimator can just keep track of the lower and upper bounds

of the set of all consistent states. Under suitable observability assumptions, it has been

shown that the lower and upper bounds converge toward each other. The main advantage

of this approach with respect to enumeration approaches most often used in the literature

is that a “cheap” representation of the sets of interest can be used in the estimator. This

synthetic representation and the fact that the representation is preserved by the dynamics

of the system guarantees that the computational burden is drastically reduced with respect

to enumeration approaches [13, 14, 22].

The generality of this approach has been investigated. In particular, it was shown that

if the system is observable, one can always find a partial order that allows the construction

of the estimator. The size and the complexity of the representation of the elements of the

partial order determine the complexity of the estimator. In the worst case scenario, one can

always find a partial order that leads to an estimator whose computation burden is the same

89

as the computation burden of the enumeration approach. In addition, it was shown how the

ideas developed in the context of deterministic systems can be generalized to systems that

are affected by uncertainty.

The developed algorithms enjoy scalability properties that are substantial in multi-agent

systems. This has been done for estimating the discrete state once the continuous one

is measured and for estimating both discrete and continuous state when an estimator in

cascade form is possible. The question of how to deal with the estimation problem for both

the continuous and the discrete states when an estimator cannot be put in cascade form

is still to be addressed. In particular, we will consider this question by requiring a bound

on the computational burden needed for implementing the estimator. With this bound,

we conjecture that with the partial order approach to state estimation it will be possible

to develop state estimators with low computational burden to the expense of estimation

accuracy. This is a compromise between performance and complexity.

For the problem of estimating the discrete state, we have shown that the size of the

lattice chosen for the estimator construction affects complexity. It is interesting to explore

if a minimal lattice always exists, what is the complexity required for its computation, and

if there is an automatic procedure to construct it. In the context of estimation of both the

continuous and the discrete states, we would like to explore possible analogies between

the partial order that is preserved by the dynamics and Lyapuniov functions for dynamical

systems. This would be useful to clarify any physical meaning that a partial order preserved

by the system dynamics may have.

By the use of a partial order, we were able to reason about notions such as convergence,

stability, and performance in a discrete space in a way similar to how we reason about these

notions in a continuous state space. This fact led us to overcome the dichotomy between

the discrete world and the continuous world, which affects virtually all state estimation

algorithms for hybrid systems proposed in the literature [2, 3, 4, 5]. Partial order theory

has proved to be a useful tool borrowed from theoretical computer science to address this

issue, and it was nicely merged with classical control theory to reach our goal. Using

partial order theory, can we build a bridge between the continuous and the discrete world

for dealing with more general analysis and control problems as well? This is the subject of

90

current and future work.

In the next section, we give some hints on possible application areas and related ex-

tensions of the proposed estimation approach. In particular, we show how to use the state

estimation algorithms on a lattice to reduce computational complexity when solving a mon-

itoring problem of distributed environments. The key point for applying our estimator in

a way such that complexity is reduced is the one of finding a good coordinate frame for

describing the system. Once this is done, the theory applies with minor extensions. Simu-

lation examples show promising performance.

7.2 Future Directions and Possible Extensions

In the previous chapters, we have developed a theory for estimating the state of decision

and control systems that relies on partial order theory to reduce computational complexity.

In Chapter 6, we also showed that such an estimation method allows treating the continuous

variables and the discrete variables in the same way as one can construct one partial order

that contains both the discrete and the continuous variable spaces. We have proposed a

multi-robot system as a guiding example to show how a “good” lattice can be chosen for

solving computational complexity issues. However, for an arbitrary system, there is not a

general procedure for establishing the partial order that allows reducing the computational

burden.

The aim of this section is to show a couple of application examples that are very differ-

ent from each other and from the multi-robot example, for which the proposed state esti-

mation methodology can be used in order to reach tractability of the estimation problem. In

general, distributed and multi-agent systems suffer from the combinatorial explosion of the

state space, and state estimation algorithms that scale with the number of agents are often

necessary. Thus, we present the following two application examples. The first example

is concerned with the state estimation problem in purely discrete event dynamic systems

modeled as Petri nets (Section 7.2.1). We show that these systems naturally evolve on a

partial order that is interval compatible with the system itself. The second example is a

monitoring problem of a distributed environment involving interacting agents whose states

91

change dynamically, as it happens in constrained human environments. We show how one

can choose a coordinate frame for describing the system that is characterized by a partial

order with which the transformed system is interval compatible (Section 7.2.2).

7.2.1 State Estimation in Discrete Event Systems Modeled as Petri

Nets

A discrete event system is a transition system whose state changes are driven by events.

We do not give the details on discrete event system models in this chapter, and the interested

reader is referred to [16]. Petri net models are an alternative to automata for representing

the dynamics of a discrete event system. They are often used to model manufacturing

environments, and they are well suited for representing causal relationships, process syn-

chronization, resource allocation, and concurrency. We define the Petri net model in the

following section.

7.2.1.1 Petri Net Model

Like an automaton, a Petri net is a device that manipulates events according to certain

rules. One of its features is that it includes explicit conditions under which an event can

be enabled; this allows the representation of very general discrete even systems whose

evolution depends on potentially complex control schemes. This representation is described

graphically, resulting in Petri net graphs. Any automaton can always be represented as a

Petri net, but not all Petri nets can be represented as automatons. Consequently, Petri nets

represent a larger class of languages than regular languages.

In Petri nets, events are associated with transitions. In order for a transition to occur,

several conditions may have to be satisfied. The information about these conditions is

contained in places. Some such places are viewed as an “input” to a transition, and they

contain the information related to the condition for the transition to occur. Other places are

viewed as “output” to a transition as they are affected by the transition occurrence. The

transitions and places are the basic components of a Petri net graph. In particular, a Petri

net graph has two kinds of nodes, places and transitions, and arcs connecting these. It is a

92

bipartite graph as no two nodes of the same kind can be connected by arcs.

Formally, a Petri net is a weighted bipartite graph (P, T, A, ω, s) (see [9] for details

on graph theory), in which P = {p1, ..., pn} is a set of places, T = {t1, ..., tm} is a set of

transitions, and A ⊆ P × T ∪ T × P is a set of arcs from places to transitions and from

transitions to places. ω : A → {1, 2, 3...} is a weight function on the arcs, s : P → N is the

function that assigns to the set of places a state s = (s(p1), ..., s(pn)) ∈ Nn.

Definition 7.2.1. The input and output places of a transition t j are denoted In(t j) and

Out(t j), respectively, and are defined as

In(t j) := {pi ∈ P | (pi, t j) ∈ A}

Out(t j) := {pi ∈ P | (t j, pi) ∈ A}.

In a similar way, the input and output transitions of a place pi are denoted In(pi) and Out(pi),

respectively, and are defined as

In(pi) := {t j ∈ T | (t j, pi) ∈ A}

Out(pi) := {t j ∈ T | (pi, t j) ∈ A}.

The weight function ω : A → {1, 2, 3...} is such that if pi < In(t j) or t j < Out(pi) then

ω(pi, t j) = 0. If pi < Out(t j) or t j < In(pi) then ω(t j, pi) = 0.

The state transition function f : Nn × P(T) → Nn that updates the state s is defined for

transition t j if and only if t j is enabled at s. The set of enabled transitions at s is given by

E(s) = {t j | s(pi) ≥ ω(pi, t j) ∀ pi ∈ In(t j)}. (7.1)

Not all enabled transitions necessarily fire. Then, we denote F (s) ⊆ E(s) to be the set of

firing transitions that in fact fire at s. We assume that the set of firing transitions is such

that |F (s) ∩ Out(pi)| ≤ 1. This means that if two transitions are enabled and share the

same input place, they cannot fire at the same time. Then, the state transition function f is

93

Figure 7.1: In the picture, we have P = {p1, p2}, T = {t1}, A = {(p1, t1), (t1, p2)}, ω(p1, t1) =
2, and ω(t1, p2) = 1. Moreover, In(t1) = {p1}, Out(t1) = {p2}. The state of the net is given
by s = (2, 0), and in this state, transition t1 is enabled.

defined according to

s′(pi) = s(pi) −
∑

j | t j∈F (s)

ω(pi, t j) +
∑

j | t j∈F (s)

ω(t j, pi). (7.2)

An example of a Petri net with two places is represented in Figure 7.1.

Let sk denote the state of the net at step k and F (sk) the set of transitions fired at sk.

An execution of the system (P, T, A, ω, s) is the sequence of states σ = {sk}k∈N with sk+1 =

f (sk,F (sk)). The state lives in U = Nn. Since we assume to measure the transitions that

fire, F (sk), the output sequence is the sequence y = {F (sk)}k∈N where yk = F (sk). The

set in which the output lives is then Y ⊆ P(T). The output function g is then defined as

g(sk) = F (sk). Given a firing sequence enabled at sk, F (sk)F (sk+1)...F (sk+p), we define the

notation

f (sk,F (sk)F (sk+1)...F (sk+p)) := f (... f (f (sk,F (sk)),F (sk+1))...,F (sk+p)).

The set of all possible states compatible with an observed firing is said to be the output set

and it is defined in the following definition.

Definition 7.2.2. (Output set) Given the set yk ⊂ T of fired transitions at step k, the output

set at step k is the set of all states s that enable all of the transitions in yk, i.e.,

Oy(k) := {s ∈ Nn | E(s) ⊇ yk}.

The system is observable if whenever two state sequences are different, the correspond-

94

ing firing sequences are also different. In the following section, we show that the state of

a Petri net naturally evolves on a partial order and that the system and such a partial order

are interval compatible.

7.2.1.2 State Estimation on a Partial Order

In this section, we introduce the partial order (χ,≤) to use for the estimator. The system

specified by (7.1) and (7.2) naturally evolves on a partial order, the output set is an interval

sublattice on such a partial order, and the dynamics is order isomorphic on the output set.

In particular, we establishU = χ = Nn with component-wise order. As a consequence, we

have a particular case of the general theory developed in Chapters 3-4, in which Σ = Σ̃.

The following propositions show that the system Σ = (U,Y, f , g) specified in the pre-

vious section and the partial order (χ,≤) are interval compatible. First, we assume that the

state of each place is bounded, that is, s(pi) ≤ ui and s ≤ u for u = (u1, ..., un).

Proposition 7.2.1. The output set corresponding to the set of firing transitions yk is an

interval sublattice, that is

Oy(k) = [
∧

Oy(k),
∨

Oy(k)]

for all k, in which ∧Oy(k) = ly(k) = (ly,1(k), ..., ly,n(k)) and ly,i(k) = ω(pi, t j) for the transition

t j such that t j ∈ yk ∩ Out(pi) and ly,i = 0 if yk ∩ Out(pi) = ∅. Also, ∨Oy(k) = u.

Proof. We show that each element of the first set belongs to the second one and vice versa.

Let us show first that if s ∈ Oy(k) then s ∈ [ly(k), u]. If s ∈ Oy(k), then yk ⊆ E(s) by the

definition of output set. This, along with the definition of enabled transitions (7.1), implies

that for any pi s(pi) ∈ [ω(pi, t j), ui] for t j ∈ yk ∩ Out(pi). Also, note that if yk ∩ Out(pi) is

not empty, there is by assumption only one t j ∈ yk ∩ Out(pi). If yk ∩ Out(pi) = ∅, it means

either that pi does not enable any transition in Out(pi) or that it does but such transition

does not fire. As a consequence, if yk ∩Out(pi) = ∅ it follows that s(pi) ∈ [0, ui]. Then, we

have showed that if s ∈ Oy(k), then s ∈ [ly(k), u].

Assume now that s ∈ [ly(k), u]; we want to show that s ∈ Oy(k). To show this, it is

enough to show that the set of enabled transitions at s includes all of the transitions yk, that

95

is, E(s) ⊇ yk. Since s ∈ [ly(k), u], we have that s(pi) ≥ ω(pi, t j) if t j ∈ yk ∩ Out(pi). As a

consequence t j ∈ E(s). This holds for any t j ∈ yk and thus E(s) ⊇ yk. �

Proposition 7.2.2. The state transition function f : ([∧Oy(k), ∨Oy(k)], yk)→ [f (∧Oy(k), yk),

f (∨Oy(k), yk)] is order isomorphic.

Proof. By definition of order isomorphic function, and by the way ∧Oy(k) and ∨Oy(k) have

been defined, we have to show that f : ([ly(k), u], yk) → [f (ly(k), yk), f (u, yk)] is order

embedding and onto.

Let us show first that it is order embedding, that is, for any a, b ∈ [ly(k), u] we have

a ≤ b, if and only if f (a, yk) ≤ f (b, yk). Let a = (a1, ..., an) and b = (b1, ..., bn). It follows

from equations (7.2) that if ai ≤ bi then a′i ≤ b′i since the same quantity is added to both ai

and bi as the set of firing transitions yk is the same for both of them. Similarly, if a′i ≤ b′i

then ai ≤ bi for the same reasoning.

Let us show that it is onto. We show that if a′ ∈ [f (ly(k), yk), f (u, yk)] then there is

a ∈ [ly(k), u] such that a′ = f (a, yk). If a′ ∈ [f (ly(k), yk), f (u, yk)] then

ly,i(k) −
∑

j : t j∈yk

ω(pi, t j) +
∑

j : t j∈yk

ω(t j, pi) ≤ a′i

and

a′i ≤ ui −
∑

j : t j∈yk

ω(pi, t j) +
∑

j : t j∈yk

ω(t j, pi).

Define ai such that a′i = ai −
∑

j : t j∈yk
ω(pi, t j) +

∑

j : t j∈yk
ω(t j, pi), then ly,i(k) ≤ ai ≤ ui. �

As a consequence of Propositions 7.2.1 and 7.2.2, the system Σ modeled as a Petri net

and the partial order (χ,≤) are interval compatible. Note that since U = χ, we have that

L(k) = sk and U(k) = sk for k ≥ k0 for some k0 > 0. This way, the computable quantity

|[U(k) − L(k)]| gives a measure of the estimation error, which goes to zero if the system

is observable. The opposite statement is also true, that is, if |[U(k) − L(k)]| does not go

to zero then the system with initial conditions in [0, u] is not observable. In fact, the set

[L(k),U(k)] is by construction the set of all possible states that are consistent with the out-

put observation and with the system dynamics.

96

If the state of each place is not upper bounded, or such a bound is not known, the

previous two propositions transform to the following.

Proposition 7.2.3. The output set is a f-semilattice, that is

Oy(k) = [
∧

Oy(k),∞)

where ∧Oy(k) = ly(k) = (ly,1(k), ..., ly,n(k)), and ly,i(k) = ω(pi, t j) for the transition t j such

that t j ∈ yk ∩ Out(pi) and ly,i = 0 if yk ∩ Out(pi) = ∅.

Proposition 7.2.4. The state transition function f : ([
∧

Oy(k),∞), yk)→ [f (
∧

Oy(k), yk),∞)

is order isomorphic.

In the case in which the places are not upper bounded, we have U(k) = ∞ in Theorem

3.3.1, and the estimator therein can be constructed with the properties

(i) sk ≥ L(k) for all k;

(ii) |[L(k + 1), sk+1]| ≤ |[L(k), sk]| for all k;

(iii’) there is k0 > 0 such that for any k ≥ k0 we have that L(k) = sk.

Note that the resulting estimator for this case is the same as the one derived by other means

in [30]. This shows that the kinds of estimators for Petri nets as developed in [30] can

be naturally re-derived as a particular instance of the partial order based state estimation

approach developed in this thesis. The computational complexity of the proposed estimator

is proportional to the number of plates as opposed to the dimension of the state space (that

is combinatorial in the number of plates). Note that if an upper bound on the state of a place

is not known, we do not have a way of computing the estimation error that scales with the

number of places as in the case in which such a bound is known.

7.2.2 Monitoring a Distributed Environment

In this section, we consider an example that is very different from the previously pro-

posed ones, for which we show how one can choose a “good” partial order. The purpose

97

of this section is thus to purely show ways of establishing useful coordinate frames in de-

cision and control systems whose models are fairly general. We do not claim to solve a

specific practical problem, which is left for future work. The problem considered here is

the one of estimating the state of a multi-agent nondeterministic hybrid system modeling

the behavior of agents, for example people, in a common environment such as a building,

a hospital, a laboratory, or a manufacturing chain. The measurements come from sensors

that, placed at a small number of locations, detect the presence or the absence of a person,

without recognizing his or her identity. The environment is partitioned in locations some

of which are “interesting” and some of which are not because they are used to move from

one location to the other and no interesting activity occurs in them. The problem to solve

is the one of establishing at which location each agent is at each time, given the sensor

firings and an approximate model of the agent dynamics and decisions. An obvious way

to attack this problem is to divide the environment into a grid and at each sensor firing to

establish the set of all possible environment configurations (in terms of the grid) compatible

with the sensor firings. This leads to combinatorial complexity because the sensors cannot

distinguish between agents.

In this section, we show that we can establish a coordinate system that has as each

coordinate the position of an agent along its own trajectory. Each agent trajectory can have

branching corresponding to possible decisions of the agent. Also, each agent evolves on

its own trajectory in a nondeterministic way due to the fact that he can randomly stop,

accelerate, or decelerate. Trajectories can be involved in mutual constraints representing

meetings between agents. In such a coordinate system, in which the order is established

according to the causal order relation (“happened before” relation), the dynamics of the

agents preserves the order by construction, and the output set can be approximated by an

interval in the partial order.

7.2.2.1 System Model

Consider N agents {A1, ..., AN} in a common E ⊆ R2 environment, which is partitioned

in a set of locations L = {λ0, ..., λn}, with λi ⊂ E. The locations {λ1, ..., λn} are referred to

as “interesting” locations as we are interested in determining what agent is occupying them

98

(if any). The location λ0 is everything left of E once the interesting locations have been

removed, i.e., λ0 = E − {λ1, ..., λn}. Let pi ∈ E for each i represent the position of agent i,

and let αi ∈ L for each i represent the location of agent i. The state si = (pi, αi) of agent i

is updated according to the laws

pi(k + 1) = hi(pi(k), αi(k)) + ∆hi(k)

αi(k + 1) = fi(pi(k), αi(k)), (7.3)

subject to

P(s(k), k) = true, s(0) ∈ S 0, (7.4)

in which hi : E×L → E, fi : E×L → L, s = (p, α) with α = (α1, ..., αN) and p = (p1, ...pN),

∆hi bounded uncertainties, P : EN ×LN ×N → {true, f alse} is a predicate that puts global

constraints among the agents. If no constraint is imposed, P = true always. The functions

(hi, fi) are referred to as the nominal dynamics of the agent. The transition functions fi

can be implemented as a set of logic rules (if-then-else). The measurements are given by

sensors placed at some of the locations in L − λ0. Each sensor returns 0 if no person is

detected, and it returns 1 if a person is detected. Formally, let Ls = {λs,1, ..., λs,m} ⊂ L − λ0

be the set of locations at which a sensor is positioned, then the measurement is given by

y = g(s) taking values in Y = {0, 1}m such that for each j ∈ {1, ...,m}

y j =



























1 if there is i ∈ {1, ..,N} with αi = λs, j

0 otherwise.
(7.5)

Each agent enters any location through a door that is identified as a point in E. We first

assume that there are no uncertainties on the fi and no measurement errors. We show in a

final section how to handle uncertainties and sensor errors within the proposed estimation

framework.

Given the output measurement, the knowledge of the nominal dynamics, and bounds

on ∆hi, we want to produce an estimate ŝ of the system state s that converges to s if there

is no uncertainty (∆hi = 0 for each i). In case there is uncertainty, we ask that the distance

99

d(s, ŝ), for some distance function d, stays bounded possibly at a small value that allows

discriminating between interesting locations for each agent. More formally, we have the

following estimation problem.

Problem 7.2.1. (Estimation problem) Given the system defined in (7.3), with constraints

(7.4), and with output (7.5), determine a function φ : EN × P(LN) × Y → EN × P(LN),

such that the estimate ŝ = (p̂, α̂) with α̂ ∈ P(LN) and p̂ ⊂ EN

ŝ(k + 1) = φ(ŝ(k), y(k + 1))

has the property that there is k0 > 0 such that

(i) d(p(k), p̂(k)) ≤ M for any k ≥ k0 for some distance function d;

(ii) α̂(k) ∩ (L − λ0)N = α(k) for any k ≥ k0;

and such that if ∆hi = 0 for each i, we have

(i’) d(p(k), p̂(k)) = 0 for any k ≥ k0;

(ii’) α̂(k) = α(k) for any k ≥ k0.

In this problem formulation, the estimate of α(k) is the set α̂(k) of all values of the

discrete state compatible with the observed output and with the system dynamics. Item (ii)

requires that even if there is an estimation error on the continuous variable p(k), such error

is small enough to let us disambiguate the interesting locations for each agent. Note also

that p̂(k) ⊂ EN , that is, it is a set of agent positions compatible with the output sequence

and with the dynamics.

Note that the state estimation problem has combinatorial complexity in the number of

agents as the output firings do not discriminate between agents. In the following section, we

reformulate the estimation problem on a lattice to overcome this combinatorial complexity

issue. In particular, we transform the system to a lattice where the dynamics preserves the

partial ordering and where the output set can be approximated by an interval sublattice.

100

7.2.2.2 Formulation of the Estimation Problem on a Lattice

In this section, we find a partial order on the system such that the set ŝ of all possible

system states can be represented or approximated by a lower and an upper bound in the

chosen partial order. In particular, we look for a partial order whose ordering is preserved

by the system dynamics, the output set can be represented by a interval sublattice, and the

constraints (7.4) can be reformulated in terms of lower and upper bounds. In order to do

so, we give some preliminary definitions.

Definition 7.2.3. (Abscissa) Let p : [a, b] → R2 be the parameterization of a path in R2.

For any t ∈ [a, b] with t = a + k for some k ∈ N, the function

z(t) =
t−1
∑

τ=a

||p(τ + 1) − p(τ)||

represents the length of the path covered up to t starting from p(a) increasing t one unit at

a time, and it is called abscissa.

The function z is a monotonic increasing function of t. If t represents time, all points

on such abscissa are ordered according to the causal order relation, i.e., z(t1) ≤ z(t2) if and

only if t1 ≤ t2. Also the inverse function t(z) is monotonic increasing.

In the case of the application under study, each one of the agents that visits a sequence

of locations, will have to pass through the doors that are identified with points in E. If

∆hi = 0, the path covered in the building is fixed, as every agent has to enter the building

by a door. As a consequence, each agent has a nominal abscissa intrinsically attached to

it, and it will move along it as time goes on. The uncertainty on the initial condition will

translate on the uncertainty on where the agent is along the abscissa. The uncertainty ∆hi

will result in an uncertainty on how far the agent moves on the abscissa from its current

position on the abscissa. Note that in general, depending on the structure of fi, an abscissa

can have branchings corresponding to decisions taken by the agent, with this decision not

being directly observed. In order to explain the basic ideas, we initially assume that the

abscissa has no branchings. The case in which branchings occur can be treated with minor

modifications that are explained in a later section.

101

Note that when an agent is in one of the interesting locations, we are not interested

in tracking exactly its position; as a consequence we will represent as a point on the ab-

scissa each interesting location. This way the not interesting locations λ0 will appear as

connectors between interesting locations (points on the abscissa). Thus, the agent abscissa

is formally defined in the following definition.

Definition 7.2.4. (Agent abscissa) Let pi : [a, b] → E be the trajectory of agent Ai with

∆hi = 0 in the environment E with a ≥ 0 and t = a + k ≤ b for some k ∈ N. The quantity

zi(t) =
t−1
∑

τ=a

‖p̄i(τ + 1) − p̄i(τ)‖,

with

p̄i(t) =



























pi(t) if pi(t) ∈ λ0

p(λ j) if pi(t) ∈ λ j for j , 0,

is the agent Ai abscissa, in which p(λ j) denotes the position of the door of location j. The

set of all points on the abscissa is denoted by

γi = {zi | ∃ t ∈ [a, b] with t = a + k for k ∈ N and zi =

t
∑

τ=a

‖p̄i(τ + 1) − p̄i(τ)‖}.

In the case in which each location has more than one door, we can still collapse the

location at one point. The coordinates along the abscissa of agent Ai corresponding to the

location λ j are denoted by λi
j = {λ

i,1
j , ..., λ

i,ni
j }, each associated with a different time the agent

visited that location along its trajectory. Also, λi
0 = γi − ∪ jλ

i
j. The set of positions along

the abscissa at which there is a sensor j ∈ {1, ...,m}, is denoted λi
s, j.

In these new coordinates, the system state is given by (z, α) ∈ Z × LN, with z =

102

(z1, ..., zN) andZ = γ1 × ... × γN. The new system dynamics is defined for any i as

zi(k + 1) = zi(k) + vi + ∆vi(k) (7.6)

αi(k + 1) = λ j if zi(k + 1) ∈ λi
j (7.7)

y j(k + 1) = 1 if ∃ i with zi(k + 1) ∈ λi
s, j (7.8)

y j(k + 1) = 0 if zi(k + 1) < λi
s, j ∀ i, (7.9)

zi(0) ∈ [Li,0,Ui,0], (7.10)

in which we assume that vi is known, constant along the abscissa, and any variation to

it is incubated in the uncertainty ∆vi(k), with ∆vi(k) ∈ [∆vi,m,∆vi,M]. The uncertainty on

the initial condition is transformed to an interval not including sensor locations along the

abscissa. We do not comment at this point on the constraints specified by (7.4) and devote

a later section to them.

This formulation is in accordance with the kind of model that we could have for each

persons daily habits. The behavior will typically be described by sentences of the form “

agent i enters in the morning between 8am and 10am, then he usually goes to his office,

where he has 30 minutes-1 hour meetings scheduled with agents (in the order) j, k, q.”

Notice also that, due to the discrete model of the agent motion, the abscissa has a grid

of points on which the agent transitions, the abscissa being defined on the basis of the

nominal dynamics. In order for the agent with uncertainty ∆vi(k) , 0 to still evolve on the

abscissa, we require that ∆vi(k) is such that for any k it moves the agent at points on the

grid of the abscissa. This technical point is due to our choice of a discrete model for the

agent dynamics. This technical point would be abandoned if the equations of motion of the

agent were represented in continuous time. We also assume for simplicity that there cannot

be two locations next to each other on the abscissa.

In the next definition, we establish a partial order onZ×LN .

Definition 7.2.5. For any pair of elements w, x ∈ Z×LN with w = (zw, αw) and x = (zx, αx)

103

the partial order (Z ×LN ,≤) is established by

w ≤ x if and only if zw ≤ zx

and

zw ≤ zx if and only if zw
i ≤ zx

i for all i.

Since the partial order is established on the basis of the z component only, and the dis-

crete state α can be unequivocally determined once the continuous one has been found, we

continue our arguments considering the z component of the state only. Thus, we establish

the partial order (χ,≤) with χ = Z and partial order as given in Definition 7.2.5. Any

x ≤ w ∈ Z define an interval sublattice inZ denoted [x,w] = [x1,w1]× ...× [xN,wN]. Note

that the discrete state evolution established by fi was used for defining the abscissas γi, as fi

establishes the sequence of locations that the agent visits, and hi establishes how the agent

evolves in each location. In the new coordinate system Z, these two different evolutions

have been fused together into one variable evolution zi for each agent. For any x ≤ w ∈ Z,

we define the distance d(x,w) as follows

d(x,w) :=
1
N

N
∑

i=1

(wi − xi), with wi − xi := |[xi,wi] − {xi}|.

The system represented by equations (7.6-7.7-7.8-7.9) is denoted Σ = (Z,Y, F, g), in

which F is specified by equation (7.6) and g by equations (7.8-7.9). If ∆vi = 0 for any

i, the dynamics (7.6) preserves the partial order (χ,≤), and F : [L,U] → [F(L), F(U)] is

onto. If ∆vi , 0, i.e., the system is nondeterministic, one can verify that F : [L,U] →

[∧F(L), ∨F(U)] is order preserving and onto.

Next, we show that the output set can be approximated by an interval in (χ,≤). Let again

Oy denote the output set corresponding to a measurement y, that is, Oy = {z ∈ Z | g(z) = y}.

Let [L,U] ⊆ Z denote an interval sublattice in Z, with L = (L1, ..., LN), U = (U1, ...,UM),

Ui ∈ γi, and Li ∈ γi, such that |[Li,Ui] ∩ λi
s, j| ∈ {1, 0} for each i, j. This means that [Li,Ui]

cannot contain more than one coordinate point on γi corresponding to the same location at

which a sensor is positioned. Let Oy|[L,U] denote the output set once z has been restricted

104

to belong to an interval sublattice [L,U], that is, Oy|[L,U] = {z ∈ [L,U] | g(z) = y}. For

simplifying notation, assume that only one sensor can fire at one time. Then, such set has

the property shown in the following proposition.

Proposition 7.2.5. Let y be such that y j = 1 and yk = 0 for any k , j. Then ∧Oy|[L,U] ∈

Oy|[L,U] and ∨Oy|[L,U] ∈ Oy|[L,U]. Let ly := ∧Oy|[L,U] and uy := ∨Oy|[L,U] ∈ Oy|[L,U], then

ly = (ly,1, ..., ly,N) and uy = (uy,1, ..., uy,N) with

ly,i =











































λi
s, j ∩ [Li,Ui] if λk

s, j ∩ [Lk,Uk] = ∅ ∀k , i,

Li if λk
s, j ∩ [Lk,Uk] , ∅ for some k , i and Li < λ

i
s,k for k , j,

Li + vi if λk
s, j ∩ [Lk,Uk] , ∅ for some k , i and Li ∈ λ

i
s,k for k , j,

(7.11)

and

uy,i =











































λi
s, j ∩ [Li,Ui] if λk

s, j ∩ [Lk,Uk] = ∅ ∀k , i,

Ui if λk
s, j ∩ [Lk,Uk] , ∅ for some k , i and Li < λ

i
s,k for k , j,

Ui − vi if λk
s, j ∩ [Lk,Uk] , ∅ for some k , i and Li ∈ λ

i
s,k for k , j.

(7.12)

Proof. This can be easily proved by showing two facts. 1) If x ∈ Oy|[L,U], then ly ≤ x and

uy ≥ x. 2) Both Ly and Uy are in Oy|[L,U].

Proof of 1). We proceed component-wise. If x ∈ Oy|[L,U], then g(x) = y and xi ∈ [Li,Ui].

Then, if ly,i = Li there is nothing to show. If ly,i = Li + vi, we need to show that there cannot

be any x ∈ Oy|[L,U] with xi = Li. If ly,i = Li + vi, then by (7.11), xi ∈ λ
i
s,k for k , j, that is,

it is placed at a sensor location. By the definition of g in equations (7.8-7.9) if xi ∈ λ
i
s,k for

some k, it must be yk = 1, which is a contradiction. Finally, consider ly,i = λ
i
s, j ∩ [Li,Ui]

and thus Uy,i = Ly,i. Then, by (7.11) we have that λk
s, j ∩ [Lk,Uk] = ∅ ∀k , i. This, in turn

implies that xi = λ
i
s, j ∩ [Li,Ui] because agent i is the only one that can have caused that

sensor firing.

Proof of 2). This is clear if ly,i = uy,i = λ
i
s, j ∩ [Li,Ui]. If ly,i = Li, we show that there

is x ∈ Oy|[L,U] such that xi = Li. If there is no x such that xi = Li with g(x) = y, it means

that Li ∈ λ
i
s,k for k , j, which is a contradiction by the definition (7.11). If ly,i = Li + vi,

105

we show that there is x ∈ Oy|[L,U] such that xi = Li + vi. If this is not the case, it means that

Li + vi ∈ λ
i
s,k for k , j. However, by (7.11) Li = λ

i
s,k for k , j. So we would have both Li

and Li + vi corresponding to locations. This contradicts our assumptions that establish that

on one abscissa there cannot be locations close to each other. �

This proposition guarantees that the interval sublattice [ly, uy] is the smallest interval

that contains Oy|[L,U], and thus it is the best representation of such a set in terms of interval

sublattices. The reason why Oy|[L,U] , [ly, uy] is because there are points in [ly,i, uy,i] where

agent Ai cannot be. In fact the agent cannot be at coordinate points on the abscissa that

correspond to sensor locations at which the senor has not fired. Define for each i the set of

points where the sensors have not fired as

zn f
i := ∪ j{λ

i
s, j : y j = 0}. (7.13)

We denoteZnot := Z−[(γ1−zn f
1)×...×(γN−zn f

N)]. By definition, no state compatible with the

output can be in such a set. In case ∆vi = 0 for each i, such a set changes dynamically in a

deterministic way as positions that were not occupied at step k map to positions that cannot

be occupied at step k + 1. This gives rise to a set U(k) to which Z must be constrained.

Such a constraint set is defined in the following definition.

Definition 7.2.6. For any executionσ of the systemΣwith output sequence g(σ) = {y(k)}k∈N

and with ∆vi = 0 for any i, we define the constraint set at step k,U(k), to be the set defined

as

U(0) = Z−Znot(0),

U(k + 1) = F(U(k)) − Znot(k + 1).

Note that the notion of constraint set makes no sense if ∆vi , 0 as in such a case we

cannot know from one step to another whereU(k) is mapped to.

In case ∆vi , 0, the function F maps a point to a set. The supremum and infimum of

this set for any z ∈ Z are defined as

∨

F(z) = z + v + ∆vM

106

and
∧

F(z) = z + v + ∆vm.

If there is no uncertainty, ∨F = ∧F = F.

Given the system Σ = (Z,Y, F, g) with z(0) ∈ [L0,U0] ⊂ Z and with output sequence

{y(k)}k∈N, we can implement the estimator for nondeterministic systems on a partial order

presented in Chapter 5, that is,

L(k + 1) =
∧

F(L(k)) g ly(k + 1)

U(k + 1) =
∨

F(U(k)) f uy(k + 1) (7.14)

L(0) = L0, U(0) = U0,

in which ly(k) = ∧Oy(k)|[L′,U ′] and uy(k) = ∨Oy(k)|[L′,U ′] with L′ = ∧F(L(k)) and U′ =
∨F(U(k)). We also assume that the set [L(k),U(k)] is such that |[Li(k),Ui(k)] ∩ λi

s, j| ∈ {1, 0}

for each i, j. This can be verified if L0 and U0 are not too far from each other compared

to the distances between the coordinate of the sensor locations on the abscissas. If the

system is deterministic, that is, ∨F = ∧F = F, then we have the following result, which is a

straightforward consequence of the results in Chapter 3.

Proposition 7.2.6. Given the system Σ = (Z,Y, F, g) with output sequence {y(k)}k∈N and

with ∆vi = 0 for any i, then the update laws (7.14) are such that

(i) z(k) ∈ [L(k),U(k)] for any k;

(ii) |[L(k + 1),U(k + 1)]| ≤ |[L(k),U(k)]|;

(iii) if Σ is observable, then there is a k0 > 0 such that [L(k),U(k)] ∩U(k) = z(k) for any

k ≥ k0.

The only difference with the results in Chapter 3 is that in the present case the setU is

not constant in time. It in fact depends on the measurements while in Chapter 3 it depended

on the space structure, which was the case of Chapter 3. Despite this difference, the results

follow in the same way.

107

If the system is nondeterministic, in order to guarantee that |[L(k),U(k)]| is bounded

asymptotically, we need to ask for an additional structural property of the system. In fact,

observability is not sufficient because the output set is not exactly an interval sublattice

as the theory developed in Chapter 5 requires. This additional property, named interval

observability, is defined in the following definition.

Definition 7.2.7. (Interval observability) Consider the system Σ = (Z,Y, F, g) with output

sequence {y(k)}k∈N, and consider the update laws as in equations (7.14). The system Σ is

said to be interval observable if for any i there is an infinite sequence {ki,0, ..., ki,l, ...} such

that

(i) Ui(ki,l) ∈ λi
s, j for some j;

(ii) [Li(k),Ui(k)] ∩ λi
s, j , ∅ ⇒ [Lp(k),Up(k)] ∩ λp

s, j = ∅ for any p , i, for any ki,l ≤ k ≤

ki,l + ∆ki,l, with ki,l + ∆ki,l such that L(ki,l + ∆ki,l) ∈ λi
s, j.

This property basically requires that periodically the set [Li(k),Ui(k)], for any i, will be

the only one to contain the coordinate corresponding to the sensor j for all the interval of

time that [Li(k),Ui(k)] contains such a coordinate. This guarantees that the set [L(k),U(k)]

does not grow unbounded due to nondeterminism as the following proposition shows.

Proposition 7.2.7. Given the system Σ = (Z,Y, F, g) with output sequence {y(k)}k∈N, then

the update laws (7.14) are such that

(i) z(k) ∈ [L(k),U(k)] for any k;

(ii) if Σ is interval observable, then there is a k0 > 0 such that d(L(k),U(k)) ≤ M with

M =
1
N

N
∑

i=1

min
(

di
∆vi,M − ∆vi,m

vi + ∆vi,m
, di

)

,

where di = maxl(U(ki,l+1) − U(ki,l)).

Proof. For each i, let di := max j(U(ki, j+1) − U(ki, j)). Then, given the update laws (7.14),

we have that agent Ai takes between di/(vi + ∆vi,M) and di/(vi + ∆vi,m) steps to cover the

108

distance di, then we have that

Ui(k) − Li(k) ≤ min
(

di
∆vi,M − ∆vi,m

vi + ∆vi,m
, di

)

.

�

Let di,m be the minimum distance between interesting locations on the abscissa γi. Prob-

lem 3.2.1 is solved if the uncertainties on the sets [Li,Ui] are such that

min
(

di
∆vi,M − ∆vi,m

vi + ∆vi,m
, di

)

≤ di,m ∀ i. (7.15)

Note that there are two ways to satisfy such inequality:

(1) Act on the sensor position such that di is decreased. For example, one can put sensors

such that between the points on the abscissa corresponding to U(ki, j) and U(ki, j+1),

there is only one interesting location.

(2) The previous measure is not needed if the smallest velocity of the agent vi + ∆vi,m is

high compared to the distance di. In this case, the agents excite the sensor with high

frequency and thus the uncertainty is decreased (we show this point in a simulation

example).

7.2.2.3 Meeting Constraints on the Partial Order

We consider two kinds of meeting constraints that we call of type C1 and of type C2.

C1. Two or more agents meet in one location specifically dedicated to the meeting, that

is, none of the agents can be at such location alone. Formally, let Ai1 , ..., AiP be the

agents involved in such meeting constraint, then the constraint P can be formulated

as

∀ p ∈ {1, ..., P}, αip(k) = λ j if and only if αiq(k) = λ j for any q , p. (7.16)

109

C2. One or more agents go to meet some other agent to a location already occupied by

the latter agent. For example students meet a professor in his office. This means that

the students cannot be in the professor’s office unless the professor is there. Formally,

let Aq be the agent in location λ j and {Ai1 , ..., AiP} be different agents meeting Aq in

λ j. Then, the constraint P can be set as

∀ p ∈ {1, ..., p} αip(k) = λ j ⇒ αq(k) = λ j. (7.17)

In the partial order formulation on (Z,≤) these two types of constraint simply translate to

conditions on lower and upper bounds according to what follows.

C1. Let Aip ∈ [Lip ,Uip] and let λip

j any abscissa coordinate corresponding to the location

l j, then (7.16) reduces to

Uip ≤ λ
ip

j ⇔ Uiq ≤ λ
iq
j ∀ p, q ∈ {1, ..., P}, (7.18)

Lip ≥ λ
ip

j ⇔ Uiq ≥ λ
iq
j ∀ p, q ∈ {1, ..., P}, (7.19)

C2. and (7.17) reduces to

Uq ≤ λ
q
j ⇒ Uip ≤ λ

ip

j ∀ p, q ∈ {1, ..., P}, (7.20)

Lq ≥ λ
q
j ⇒ Lip ≥ λ

ip

j ∀ p, q ∈ {1, ..., P}. (7.21)

In the next section, we give a qualitative overview on how to deal with uncertainty

issues.

7.2.2.4 Dealing with Uncertainty on the Model, Random Disturbances, and Mea-

surement Errors

In this section, we consider uncertainty originating from different sources: uncertainty

on the model of the discrete state evolution (uncertainty on fi), random disturbances caused

for example by unmodeled agents that populate the environment, and measurement errors

110

due to false alarms or missed detections. The arguments are not formal and have the sole

purpose of showing possible ways of dealing with uncertainty within this framework.

Uncertainty on the Model. In this case, given a current agent location, (1) either the next

location is not uniquely determined and belongs to a set of possible known locations, (2) or

only a nominal next location is known and the rest is unmodeled because it is unexpected.

In case (1), the abscissa of an agent looks as depicted in Figure 7.2. This could corre-

Figure 7.2: Abscissa of one agent with uncertainty on the model of type (1).

spond in practice to the fact that the agent does not behave exactly the same way every day,

but there might be variations from one day to the other that one can model. Also, the condi-

tion that decides which way to go is not directly observable in general. In this case nothing

changes in the estimation algorithm structure except that for each agent, the algorithm has

to keep track of all possible branchings at the same time. This translates to a lower and

an upper bound with dynamic dimension for each agent. The dimension increases when a

new branching occurs, and it decreases when one branching becomes inconsistent with the

measurement. The drawback is that the algorithm updates more than one variable for each

agent with an increased computational cost.

In case (2), the abscissa of each agent looks as depicted in Figure 7.3. The unshaped

parts are completely unknown as they correspond to the agent behavior that was not ex-

pected and thus not modeled. If an agent goes in the unshaped region, it is lost until (if

ever) he comes back on the nominal path. This corresponds in practice to the fact that

one day an agent does not enter the building because he is sick or something unexpected

happened to him, for example. In this case, the agent is lost. However, robustness of the

111

Figure 7.3: Abscissa of one agent with uncertainty on the model of type (2).

estimator requires that this does not affect “too much” the estimation error on the other

agents. This can be guaranteed under the assumption already made of interval observabil-

ity. This assumption states that for each agent i there is periodically one sensor firing for

which the interval [Li,Ui] is the only one compatible with the abscissa coordinate where

the sensor firing occurs for the entire time [Li,Ui] is compatible with it. As a consequence,

if a firing does not occur for any time at which [Li,Ui] is the only one compatible with the

firing of the sensor, it means that agent Ai did not follow the nominal path. This fact gives

an idea of how the algorithm can detect when an agent does something unexpected. Once

the inconsistency is detected for one agent, the algorithm can keep estimating the position

of all the other agents as usual. Note that before the inconsistency is detected, the estima-

tion error can increase for all of the agents (this point is illustrated in a later simulation

example).

Random Disturbances. This paragraph covers the case in which there are people wan-

dering around the building whose identities are not known and whose behaviors are not

modeled. They obviously cause the sensors to fire when they stop by locations at which the

sensors are positioned. Robustness of the estimator requires that the estimation error does

not diverge due to these random events. This can be obtained for example if an agent re-

turns periodically to the same location where a sensor is placed after a long enough period

of time. This way, if a firing is caused by a random agent, this happening will be detected

at some later time. The basic idea is that when a firing occurs and a random agent could

be the cause of that, the algorithm can keep track of multiple hypotheses, one in which the

firing was caused by an agent and one in which the firing was caused by a random agent.

This causes an increase of the estimation error. At some later time the false hypothesis

112

will be detected as such, and the estimation error decreases again (this is illustrated in a

simulation example).

Measurement Errors. Measurement errors can be of two kinds. We can have missed

detections or false alarms. The case of missed detection can be treated in a way similar to

the way uncertainty on the model (case (2)) is treated. In fact, a missed detection will cause

an inconsistency to be detected as a sensor firing was in fact expected, but it did not occur.

The case of false alarm is similar to the case of random firings caused by random agents.

These “spurious firings” can be detected as such as explained in the paragraph on random

disturbances.

7.2.2.5 Simulation Examples

We conclude the example of environment monitoring with some simulation examples,

which give an idea of how the performance of the proposed algorithm looks like. We give

some simulation results for both the deterministic case (∆vi = 0) and the nondeterministic

case (∆vi , 0 without uncertainty on the model of fi). We then, show how the algorithm

copes with the case in which we have uncertainty on the model of type (2), i.e., an agent

never entered the building, and with the case in which there are random agents that make

sensors fire. We assumed that initially all of the agents were outside of the building in an

interval along their abscissas between L0 and U0 (corresponding to uncertainty on when the

agent usually enters the building). The entrance of the building has a sensor that detects a

person passing through it. Also, we distributed sensors along the abscissas. In the figures,

we show the error

E(k) =
1
N

N
∑

i=1

Ei(k), with Ei(k) = (Ui(k) − Li(k)).

In Figure 7.4, we consider an example without uncertainty for different numbers of agents.

As the number of agents increases, the time taken to convergence increases as the number

of sensor firings needed for disambiguating the agents increases as well. In Figure 7.5,

we show the error E(k) in the nondeterministic case for two different values of ∆vm,i + vi.

113

When such a value is increased, the upper bound on the error decreases as predicted by our

analysis (see Proposition 7.2.7).

0 20 40 60 80 100 120 140 160
0

50

100

150
5 agents

E
(k

)

0 50 100 150 200
0

50

100

150
4 agents

E
(k

)

0 20 40 60 80 100 120 140 160
0

50

100
3 agents

E
(k

)

time

Figure 7.4: Example without dynamic uncertainty: convergence plots for different numbers
of agents.

In Figure 7.6, we show the case in which an agent never entered the building. The

algorithm detects an inconsistency as explained in the paragraph on uncertainty on the

model. In Figure 7.7, we show the case in which a random agent makes the sensors fire and

the algorithm detects it as explained in the paragraph on random disturbances.

114

0 10 20 30 40 50 60 70 80
0

50

100

150
E

(k
)

0 50 100 150 200
0

50

100

150
3 agents, slow agents

E
(k

)
3 agents, faster agents

time

Figure 7.5: Example with dynamic uncertainty: convergence plots for different values of
∆vi,m + vi. The lower plot has a value three times the one of the upper plot for each agent.
For any agent, the nominal speed is vi = 1 and ∆vi,m = 0 and ∆vi,M = 2, so that the speed of
each agent is uniformly distributed in [1, 3].

0 50 100 150 200 250 300 350
0

100

200

E
1(k

)

0 50 100 150 200 250 300 350
0

50

100

150

E
2(k

)

0 50 100 150 200 250 300 350
0

200

400

E
3(k

)

time

Figure 7.6: Example in which agent 3 never enters the building. The solid line shows the
error we would have if agent 3 entered the building as expected. The dashed line shows the
error in the case that agent 3 unexpectedly does not enter the building. The error on agents
one and two grows with respect to the nominal case until the inconsistency is detected (at
k=120). At this point the lower and upper bounds for agent three are arbitrarily set to zero
indicating that the agent has been lost.

115

0 50 100 150 200 250
0

100

200

E
1(k

)

0 50 100 150 200 250
0

50

100

150

E
2(k

)

0 50 100 150 200 250
0

100

200

300

E
3(k

)

time

Figure 7.7: Example with a random agent causing firing of sensors between k = 100 and
k = 150. The dashed line shows the error with such random firings. The solid line shows
the error we would have without the random firings. Note that after the inconsistency is
detected, the error goes back to normal.

116

Bibliography

[1] S. Abramsky and A. Jung. Domain Theory. Handbook of Logic in Computer Science

Volume 3. 1994.

[2] A. Alessandri and P. Coletta. Design of luenberger observer for a class of hybrid

linear systems. In Lecture Notes in Computer Science 2034, M. D. Di Benedetto, A.

Sangiovanni-Vincentelli Eds. Springer Verlag, pages 7–18, 2001.

[3] A. Alessandri and P. Coletta. Design of observer for switched discrete-time linear

systems. In American Control Conference, pages 2785–2790, 2003.

[4] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and A. Sangiovanni-Vincentelli. De-

sign of observers for hybrid systems. In Lecture Notes in Computer Science 2289, C.

J. Tomlin and M. R. Greenstreet, Eds. Springer Verlag, pages 76–89, 2002.

[5] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and A. Sangiovanni-Vincentelli. Ob-

servability of hybrid systems. In Conf. on Decision and Control, pages 1159–1164,

2003.

[6] A. Bayen, J. Zhang, C. Tomlin, and Y. Ye. Milp formulation and polynomial time

algorithm for an aircraft scheduling problem. In American Control Conference, 2003.

[7] A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and controllability

of piecewise affine and hybrid systems. IEEE Transactions on Automatic Control,

45:1864–1876, 1999.

[8] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences.

SIAM, 1994.

117

[9] B. Bollobas. Modern Graph Theory. Springer, 1998.

[10] P. Brucker, M. Garey, and D. Johnson. Treelike precedence constraints to minimize

maximum lateness. Math. Oper. Res., pages 275–284, 1977.

[11] H. H. Bui, S. Venkatesh, and G. West. Policy recognition in the abstract hidden

markov model. Journal of Artificial Intelligence Research, 17:451–499, 2002.

[12] P. E. Caiens and Y. Wei. The hierarchical lattices of a finite machine. Systems and

Control Letters, 25:257–263, 1996.

[13] P. E. Caines. Classical and logic-based dynamic observers for finite automata. IMA

J. of Mathematical Control and Information, pages 45–80, 1991.

[14] P. E. Caines and S. Wang. Cocolog: A conditional observer and controller logic for

finite machines. SIAM J. Control and Optimization, pages 1687–1715, 1995.

[15] A. R. Cassandra, L. P. Kaelbling, and M. L Littman. Acting optimally in partially

observable stochastic domains. In Proc. 12th Conference on Artificial Intelligence,

pages 1023–1028, Seattle, WA, 1994.

[16] C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Klwer

Academic Publisher, 1999.

[17] R. T. Collins, A. J. Lipton, H. Fujiyoshi, and T. Kanade. Algorithms for cooperative

multisensor surveillance. Proceedings of the IEEE, 89(10):1456–1477, 2001.

[18] E. F. Costa and J. B. R. do Val. On the observability and detectability of continuous-

time jump linear systems. SIAM Journal on Control and Optimization, 41:1295–1314,

2002.

[19] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Conference

Record of the Sixth Annual ACM Symposium on Principles of Programming Lan-

guages, pages 238–252, Los Angeles, 1977.

118

[20] R. D’Andrea, R. M. Murray, J. A. Adams, A. T. Hayes, M. Campbell, and A. Chaudry.

The RoboFlag Game. In American Control Conference, pages 661–666, 2003.

[21] B. A. Davey and H. A. Priesteley. Introduction to Lattices and Order. Cambridge

University Press, 2002.

[22] C. M. Özveren and A. S. Willsky. Observability of discrete event dynamic systems.

IEEE Transactions on Automatic Control, 35(7):797–806, 1990.

[23] D. DelVecchio and R. M. Murray. Discrete state estimators for a class of hybrid

systems on a lattice. In Lecture Notes in Computer Science 2993, R. Alur and G. J.

Pappas Eds. Springer Verlag, pages 311–325, 2004.

[24] D. DelVecchio and R. M. Murray. Discrete state estimators for a class of nondeter-

ministic hybrid systems on a lattice. In Conf. on Decision and Control, pages 3215 –

3220, 2004.

[25] D. DelVecchio and R. M. Murray. Existence of cascade discrete-continuous state

estimators for systems on a partial order. In Lecture Notes in Computer Science 3414,

M.Morari and L. Thiele Eds. Springer Verlag, pages 311–325, 2004.

[26] D. DelVecchio and R. M. Murray. Existence of discrete state estimators for hybrid

systems on a lattice. In Conf. on Decision and Control, pages 1– 6, 2004.

[27] D. DelVecchio, R. M. Murray, and P. Perona. Decomposition of human motion into

dynamics based primitives with application to drawing tasks. Automatica, 39:2085–

2098, 2003.

[28] E. DeSantis, M. D. Di Benedetto, and G. Pola. On observability and detectability of

continuous-time linear switching systems. In Conf. on Decision and Control, pages

5777–5782, 2003.

[29] M. Diaz, G. Juanole, and J. Courtiat. Observer-a concept for formal on-line validation

of distributed systems. IEEE Trans. on Software Engineering, 20:900–913, 1994.

119

[30] A. Giua and C. Seazu. Observability of place/transition nets. IEEE Transactions on

Automatic Control, pages 1424–1437, 2002.

[31] P. Godefroid. Partial-order methods for the verification of concurrent systems. Lec-

ture notes in computer science. Springer, 1996.

[32] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison Wesley, 2001.

[33] R. E. Kalman. A new approach to linear filtering and prediction problems. Transac-

tions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[34] E. Klavins. A formal model of a multi-robot control and communication task. In

Conf. on Decision and Control, pages 4133–4139, Hawaii, 2003.

[35] E. Klavins and R. M. Murray. Distributed algorithms for cooperative control. Perva-

sive Computing, 3:56–65, 2004.

[36] D. G. Luenberger. An introduction to observers. IEEE Transactions on Automatic

Control, AC-16:6:596–602, 1971.

[37] M. Oishi, I. Hwang, and C. Tomlin. Immediate observability of discrete event systems

with application to user-interface design. In Conf. on Decision and Control, pages

2665 – 2672, Hawaii, 2003.

[38] P. J. Ramadge. Observability of discrete event systems. In Conf. on Decision and

Control, pages 1108–1112, Athens, Greece, 1986.

[39] K. Rudie, S. Lafortune, and F. Ling. Minimal communication in a distributed discrete

event system. IEEE Trans. on Automatic Control, 48:957–975, 2003.

[40] H. L. Smith. Monotone Dynamical Systems. Mathematical Surveys and Monographs.

American Mathematical Society, 1995.

[41] E. D. Sontag. Mathematical Control Theory. Springer, 1998.

120

[42] C. Tomlin, I. Mitchell, and R. Ghosh. Safety verification of conflict resolution ma-

neuvers. IEEE Transactions on Intelligent Transportation Systems, 2(2):110–120,

2001.

[43] R. Vidal, A. Chiuso, and S. Soatto. Observability and identifiability of jump linear

systems. In Conf. on Decision and Control, pages 3614 – 3619, Las Vegas, 2002.

[44] R. Vidal, A. Chiuso, S. Soatto, and S. Sastry. Observability of linear hybrid systems.

In Lecture Notes in Computer Science 2623, O. Maler and A. Pnueli Eds. Springer

Verlag, pages 526–539, 2003.

[45] Y. Zeng, W. Cai, S. J. Turner, S. Zhou, and B. Lee. Characterization and delivery of

directly coupled causal messages in distributed systems. Future Generation Computer

Systems, pages 171 – 178, 2004.

