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Abstract

My goal is to identify processes of life that leave measurable effects on an organism’s

environment, but which are not tied to any particular biochemistry, in order to build

a conceptual framework for the search for extraterrestrial life. To this end, I test a

pair of phenomena that appear in both terrestrial (biochemical) life and in digital life.

Because these two life forms are different and unrelated, any phenomenon measurable

in both is suggested to be universal.

The Monomer Abundance Distribution Biosignature (MADB) is any measurement

of the relative concentrations of related chemical compounds that cannot be

explained by abiotic processes. I observe that living systems synthesize specific

chemical compounds at rates that maximize their fitness. As a result, life-bearing

environmental samples exhibit compounds in abundance ratios that are clearly not

the result of abiotic synthesis because those ratios belie the formation kinetics and

thermodynamics that would constrain abiotic synthesis. Often, biotic samples contain

high concentrations of specific large, complex molecules that are never seen in abiotic

synthesis and cannot be explained unless highly specific catalysts (i.e., enzymes) are

present, and energy is expended to drive thermodynamically unfavorable reactions.

I catalog this effect as it appears in terrestrial biochemical systems, including amino

acids and carboxylic acids, and demonstrate the universality of selection’s action on

the monomeric composition of life forms by studying analogous examples in digital

life. I suggest how this phenomenon provides a route to the detection of even unusual

or unforeseen biochemistries, and give examples of detection methods using pattern-

recognition techniques that may allow us to empower an autonomous system with

the general ability to detect life forms.
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The Layered Trophic Residue Biosignature (LTRB) is any observation of stratifi-

cation in solute chemistry that indicates metabolic activity by a sequence of diverse

communities. When multiple chemical resources are available, natural selection drives

adaptive radiation and the formation of specialist phenotypes. Competition ensures

that specialists consume resources in decreasing order of energetic potential when

resources diffuse through a medium near a boundary. The result is strata of chemicals

appearing in order of redox potential, which is best explained by the presence of life.
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1.1 The search for life

The potential existence of life outside the terrestrial biosphere remains one of the

most important unanswered questions in science. To date, the NASA Viking landers

of 1971 and 1972 have conducted the only in-situ experiments dedicated to detecting

life on another planet. While most scientists believe the tests were negative, the

interpretation of the results remains in dispute today.

Many astrobiologists feel that the search for extraterrestrial life should be “non-

Earth-centric,” meaning that our experimental methods should be minimally biased

by our present understanding of terrestrial forms of life. We should not, for example,

depend on an experiment which searches extraterrestrial soil for DNA, in case a

putative organism uses a different molecule for information storage. More extreme

suggestions imply that we should not even assume that life forms are based on organic

chemistry (some call such an assumption “carbon chauvinism”). While we can debate

the likelihood of such alternative biochemistries, our search should allow for the

maximum number of possibilities.

Leaving our potential space of biochemistries deliberately broad, however, begs the

question of what exactly we are looking for; is it possible to construct an experiment

to look for for an unknown biochemistry?

I argue in this thesis that the fundamental nature of living things guarantees they

will alter their environment in ways that should be detectable through geochemical

analysis. Furthermore, I suggest two general classes of biosignatures that may serve

our purpose, and propose a strategy for detecting one of them in a non-Earth-centric

way.

If the goal is the detection of life without foreknowledge of, or bias about, its

chemical makeup, then we must start by identifying features of life that we believe

are common to living systems. Without defending any particular definition of life

(a contentious and risky proposition in any scientific audience), I suggest that most

biologists would allow that living systems metabolize, i.e., couple energy-producing

reactions to energy-consuming reactions in order to drive biosynthesis, and that



4

living systems evolve and are subject to selection. Indeed, many biologists consider

metabolism to be an important part of the definition of life.

Metabolism, constrained by natural selection, leads to two phenomena which have

been measured in terrestrial geochemistry. Analysis of the first, which I call the

monomer abundance distribution biosignature (MADB), constitutes the bulk of the

work presented in this thesis. Preliminary results concerning the second, dubbed the

layered trophic residue biosignature, are also presented.

1.2 The monomer abundance distribution

biosignature

The space of possible chemical environments in the absence of life is large, but finite,

and we may be able to make exclusionary statements about it. Given comparable

molecules such as similar ligands from a common chemical family, we may be able

to make confident statements about their relative concentration. For example, in the

atmosphere of a planet whose crust contains abundant iron or other metals, we should

not see a high quantity of molecular oxygen relative to less-reactive species like carbon

dioxide and nitrogen because oxygen reacts quickly with metals to form mineral

oxides. Consider monosaccharides (glucose, fructose, etc.) as a second example:

all have the same formula, similar structure, and similar formation energy. The

observation of an extremely high concentration of any one monosaccharide species

relative to the others would indicate that some other phenomenon was actively

selecting for the increased concentration of that compound. The consideration of

relative (as opposed to absolute) concentration is critical: it insulates our analysis

from problems like dilution, dispersion, and/or the general availability of carbon in

the environment.

I use amino acids as an example in all of my research, because a wealth of

data exist. In an environment conducive to the formation of organic molecules

and protected from destructive influences like UV light or strong oxidants, the
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concentration of heavy amino acids like arginine [(C6H14N4O2), molecular weight

174.20)] and phenylalanine [(C9H11NO2), molecular weight 165.19)] should be low

relative to simpler compounds like glycine [(C2H5NO2), molecular weight 75.07)].

The large number of synthesis steps, high kinetic barriers, and many conformers

of the heavier molecules make it extremely unlikely that they will be formed in

large quantities unless catalysts are available which increase the formation rates of

those specific compounds. Indeed, fifty years of experimentation in abiotic formation

of amino acids from many different precursors and in a variety of environments

and energy sources have repeatedly generated mixtures of amino acids dominated

primarily by glycine with a few other low-weight constituents such as alanine, beta-

alanine, and sarcosine. [51,59,60,62,64,89,95].

The manufacture of catalysts to lower kinetic barriers and increase the rate of

specific reactions, and indeed, the coupling of energy-producing reactions to active

catalysts in order to drive otherwise thermodynamically unfavorable reactions are

two of the primary functions of metabolism in living systems. Terrestrial biosystems

use protein enzymes for this job. While a hypothetical extraterrestrial (ET) life form

might not employ proteins as we understand them, we may safely presume that it

would nonetheless require some form of cellular machinery to conduct its metabolic

chemistry.

Given that any hypothetical biochemistry would include cellular machinery to

amplify the rates of necessary reactions, I therefore contend that selection will

act to make that machinery highly specific. Organisms which synthesize their

component compounds at ideal rates will be more fit than those which waste energy

by synthesizing too much of any one compound, or which unnecessarily constrain

their reproduction by synthesizing too little of another key ingredient.

We expect the component molecules of organisms and their waste products to be

present in the environment, subject of course to diagenesis and breakdown. These

compounds, then, will stand out from the “background” chemistry we would expect if

life were not present. In practice, we expect this effect to be easiest to observe when

we make simultaneous measurements of multiple compounds from related families
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Figure 1.1: The molecular structures of valine and isovaline

Sample Source Ratio
Murchison Engel and Nagy, 1982 0.36
Murchison Engel and Nagy, 1982 5.45

ALHA 77306 Cronin et al. 1979 0.67
ALHA 77306 Cronin et al. 1979 0.50

Table 1.1: Valine:isovaline ratios from meteorite samples

and compare their abundance ratios.

For example, consider the conformers valine and isovaline, which have identical

molecular weights and similar structure differing only in the position of one methyl

group. (Figure 1.1) Because of these similarities, we would expect their appearance

as a result of abiotic synthesis to be similar. This in fact is the case: in the few

studies of uncontaminated meteorite amino acid contents which have measured and

reported both valine and isovaline [37,27], their measured concentrations have always

been within an order of magnitude as shown in Table 1.2. In the biosphere, however,

where valine is synthesized rapidly along with the other protein amino acids in very

large quantities that dwarf isovaline, the ratio is effectively infinite. Indeed, the

protein amino acids so thoroughly dominate terrestrial amino acid profiles that few

non-protein amino acids are ever reported at all in the numerous studies I have

considered; beta-alanine is the only exception I have observed in a search of available

literature.

This dominance by the protein amino acids is evidence of the selective pressure

I have previously mentioned: once the amino acid language of protein formation
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was established in early evolution, selection favored those organisms that efficiently

catalized the synthesis of the protein amino acids most efficiently.

I hypothesize, then, that we may observe the presence of life in abundance ratios

of related compounds that cannot be explained by the kinetics and thermodynamics

of abiotic synthesis, and I call this effect the monomer abundance distribution

biosignature (MAD Biosignature or MADB). Put simply, the rationale behind the

MADB may be described this way: abiotic synthesis forms the compounds that are

easy to make. Organisms, on the other hand, make the compounds that they need in

order to survive and compete. These two fundamentally different constraints should

produce different abundance ratios.

We would like to consider more than just a pair of molecules. If we measure

the concentrations of a set of several related chemicals, the overall pattern of that

group constitutes a profile which may be diagnostic for the underlying formation

mechanics of that family of compounds. Consider the frequency of letters in written

English as a visualization tool by analogy. If the letters did not carry meaning or

were selected by an “abiotic” process, we would expect all twenty-six letters to appear

with the same frequency. However, letters have function in written language: they

form words, which carry meaning. Their various utility in this function dictates that

they appear in specific frequencies. These frequencies are known. Figure 1.2 gives

two examples of the distribution spectra of letters in English texts: chapter 1 of The

Origin of Species by Charles Darwin, and the book of Genesis from the King James

Bible. The letter frequencies reflect, for example, that vowel sounds are necessary in

every syllable, but only five of the letters are primary vowels; as a result, there are

four primary vowels among the five most common letters. This pattern is used for

a task conceptually similar to our task of detecting life: letter frequencies are one of

the primary tools of classical cryptanalysis, the science of elucidating meaning in an

apparently meaningless or random ciphertext.

In much the same way that certain distributions of letter frequency can indicate

the presence of meaning in a sequence of characters, patterns of concentration in

chemical families in terrestrial soil samples can indicate the presence of the action of
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Figure 1.2: The relative distribution of the letters of the Roman alphabet in two
representative samples of English text.
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Figure 1.3: Short-chain carboxylic acids from terrestrial sediments compared to
those from two spark-synthesis experiments. Sediment data is the average of twelve
measurements from [81]. Error bars are one standard deviation.

selection, and therefore, life. Figure 1.2 compares the the relative concentrations of

twelve low-weight, straight-chain carboxylic acids (C2:0, acetic acid, through C12:0,

dodecanoic acid), as measured in terrestrial sediments [81] and from extracts of two

spark-synthesis experiments [80, 97]. Note how the concentrations from extracts

of abiotic syntheses drop off rapidly with increasing molecular weight: the larger

molecules have higher formation energies, more conformers, and require a greater

number of synthesis steps, so with each additional methyl group, they become

exponentially less likely to form. The acids extracted from terrestrial sediments,

which contain life, do not conform to the abiotic form. Instead, the heavier acids are

present in abundance, presumably because they serve a biological function.

More rigorously, if we consider the concentration c of a particular chemical in an

environmental sample, we expect that concentration to be the result of some complex

function involving the rates of formation kf and breakdown or removal kb from both

biotic and abiotic sources:

c = F (kf,abiotic, kf,biotic, kb,abiotic, kb,biotic, . . . ) (1.1)

When the biologically mediated terms kb,abiotic and kb,biotic are nonzero, it is possible

that c may take on a different range of values than is possible in the purely abiotic

case. In general, this function is not knowable, and other inputs such as overall

dilution can conspire to make the particular value of an individual c useless in the
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general case. Instead, we consider M simultaneous measurements of several chemical

species c1, . . . , cM as the vector c, which we normalize either by computing a unit

vector or by dividing the vector by a particular component cM . Then, a change in the

abundance ratio of any two chemicals ci : cj, ci : ck, etc., is equivalent to a change in

the direction of the vector c. We can then redefine the MADB in these terms: given

a measurement vector c of several related compounds in an environmental sample,

our sample contains life if the value of c represents the presence of these compounds

in proportions that cannot be explained by abiotic processes.

The MAD Biosignature, then, meets the criteria for non-Earth-centric life

detection: by looking for patterns which fall outside the range of possible abiotic

equilibria, we can discover life regardless of its biochemical similarity to our own.

This means, of course, that for such a survey to be meaningful and to have a good

chance of detecting life, we must satisfy two conditions. First, the system making

the analysis must analyze a sufficient source of data about environmental chemistry

(i.e., a sufficient number of compound families and a sufficient number of examples of

each family) that it will actually measure at least some of the compounds used by the

putative life form it wishes to discover. Second, we must carefully and exhaustively

characterize the range of possible abundance patterns which we consider abiotic.

The latter statement leads to an important conclusion about the search for

extraterrestrial life: if we are to remain open-minded about the composition of

possible biota, we best prepare for the search not by studying life, but by studying

the absence of life.

1.3 A brief comment on chirality

Homochirality, particularly of amino acids, is an often-cited potential biosignature

[56]. I have chosen not to involve chirality in my analysis because I would like to

make as few assumptions as possible about the nature of possible ET life forms.

The analysis, therefore, is left open to the possibility that a biochemistry might

exist in which both enantiomers of optically active compounds are used in equal
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quantity. Furthermore, the analysis performed herein demonstrates that in known

systems, monomer abundance profiles made without consideration to optical activity

are sufficient to distinguish biotic and abiotic systems.

However, the homochirality of terrestrial amino acid biosynthesis is a particularly

lucid example of the primary argument behind the MADB: given achiral or racemic

precursors, enantiomers have exactly equal formation kinetics and thermodynamics,

and in any abiotic synthesis a racemic mixture should be formed. The drastic

difference in concentration between enantiomers of amino acids in the terrestrial

biosphere is impossible to explain by mere thermokinetics and is therefore clear

evidence that a selection pressure — the necessity of consistent peptides for the

manufacture of functional proteins — is affecting synthesis.

1.4 A comment on experimental design for

missions

While I use quantified measurements of individual monomers in all sections of this

thesis, that choice is in large part dictated by the data available in the literature.

Others have correctly pointed out that actual quantification of individual amino acids,

for example, would be a difficult and probably unnecessary task for an automated

spacecraft.

The information about the distributions of monomers is also contained in the raw

output of whatever instrument is used to make the measurement. In all the monomer

profiles I have used here, the quantification step involves at least one form of gas-

or liquid-phase chromatography and/or mass spectrometry to separate individual

monomers after the desired chemical family has been separated from the bulk sample

via other chemical methods. The raw chromatographic spectra contain at least all of

the information that is in the tables of concentrations extracted from those spectra.

The pattern-recognition methods I use in Chapter 6 can be easily adapted to

any sort of input data, including chromatographic spectra. In a mission, it would
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likely make more sense to train the pattern-recognition system on raw (abiotic)

spectra from an instrument included in the spacecraft such as a gas chromatograph-

mass spectrometer (GCMS) like the equipment included on the Viking and Huygens

landers. The pattern-recognition system would then be looking for patterns of

chromatographic peaks which deviated significantly from its database of “allowable”

abiotic spectra. Using raw spectra as the abiotic training examples would both reduce

the complexity of the chemical analysis required to be performed on an unknown

sample before the data could be delivered to the pattern-recognition system, and

would allow for the possibility of detection of entirely unanticipated chemical families.

If, for example, the often-hypothesized “silicon-based biochemistry” were present,

the anomalous silane peaks in a chromatographic spectrum could trigger a positive

result, even if silanes were never considered during the research into possible abiotic

environments.
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Part II

Formation of the Monomer

Abundance Distribution

Biosignature
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Part II comprises three chapters: two representing work that has been submitted

to peer-reviewed journals for publication, and one representing unpublished results

that extend those results.

Herein I define the monomer abundance distribution biosignature, and consider

its appearance in two families of terrestrial biochemicals and one example of non-

terrestrial life.

In Chapter 2, I draw first on a history of research into prebiotic organic synthesis

conducted between 1953 and 2004. Studies of chemical synthesis have yielded

amino acids and/or carboxylic acids from conditions intended to model the prebiotic

terrestrial environment, planetary bodies including Jupiter, Titan, and Triton, and

interstellar ice particles and gas.

I compare the data from these laboratory studies to extractions of monomers

from another putative source of abiotic chemical synthesis: carbonaceous chondrites,

particularly the Murchison meteorite, which are believed to have been formed during

the early history of the solar system and that contain organic compounds believed to

date from that period.

These abiotic sources are contrasted to samples of the same chemical families

from the terrestrial biosphere. I draw on a representative sample of a vast literature

of amino acid and carboxylic acid profile studies from the Earth. — This study goes

on to demonstrate that the same phenomenon that causes biotic profiles to differ from

abiotic profiles — selection – also acts upon an artificial, digital form of life called

Avida, in which evolving computer programs compete for processor time. I study the

monomer profiles in Avida that are loosely analogous to amino acid and carboxylic

acid profiles in the terrestrial biosphere.

Chapter 3 extends the work in Avida with repeated evolutionary studies designed

to examine the dependence of the monomer abundance profiles on environmental

factors like mutation rate, initial conditions such as the ancestral genome, and

alterations to the underlying physics of the system. The primary features of the

MADB in Avida as measured in Chapter 2 are found to be largely independent of

all other variables, indicating that selection is in fact the criterion that dominates
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evolved monomer profiles in this system.

The study examines each individual monomer’s tendency to be selected for or

against by altering its availability and measuring how that affects its representation

in the ultimate evolved profile.

Chapter 4 continues the line of inquiry from Chapter 3 that investigated the

dependence of individual Avida monomers’ tendencies to be selected for or against

by varying their frequency of appearance in mutation. In the further results given

in Chapter 4, a much more detailed analysis varies the mutation frequency for each

monomer in a systematic manner as opposed to the Monte-Carlo approach used in

the prior work.
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Chapter 2

Monomer Abundance Distribution
Patterns as a Universal
Biosignature: Examples from
Terrestrial and Artificial Life

As revised for and resubmitted to Journal of Molecular Evolution, January 30, 2005.

Authors as published: Evan D. Dorn, Kenneth H. Nealson, Christoph Adami
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2.1 Abstract

Organisms leave a distinctive chemical signature in their environment because

they synthesize those molecules that maximize their fitness. As a result, the

relative concentrations of related chemical monomers in life-bearing environmental

samples reflect, in part, those compounds’ adaptive utility. In contrast, rates of

molecular synthesis in a lifeless environment are dictated by reaction kinetics and

thermodynamics, so concentrations of related monomers in abiotic samples tend to

exhibit specific patterns dominated by small, easily formed, low-formation-energy

molecules. We contend that this distinction can serve as a universal biosignature:

the measurement of chemical concentration ratios that belie formation kinetics

or equilibrium thermodynamics indicates the likely presence of life. We explore

the features of this biosignature as observed in amino acids and carboxylic acids,

using published data from numerous studies of terrestrial sediments, spark-synthesis

experiments, and meteorite bodies. We then compare these data to the results of

experimental studies of an evolving digital life system. We observe the robust and

repeatable evolution of an analogous biosignature in a digital life form, suggesting

that evolutionary selection necessarily constrains organism composition and that the

monomer abundance biosignature phenomenon is universal to evolved biosystems.

2.2 Introduction

The environmental concentrations of related chemical species carry information about

their origin and synthesis. Relative rates of synthesis for individual chemical species

differ between biotic and abiotic environments. Where molecules are synthesized by

abiotic processes, rates of formation are constrained by the laws of thermodymamics

and kinetics, resulting in a distribution of molecules dominated by low-weight and

kinetically allowable species. Organisms, on the other hand, contain machinery

(e.g., in terrestrial biota, enzymes) and expend energy to synthesize specifically those

molecules they need for survival and competition. In the presence of life, therefore,
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some specific complex and high-formation-energy molecules are synthesized rapidly

because they convey a fitness benefit. In effect, evolution acts on environmental

chemistry by selecting for genomes that synthesize molecules at adaptive rates. If the

compounds are stable (e.g., protected from rapid UV photolysis), then biosynthesis

may be a significant factor governing the observed concentrations in a sample.

Similarly, biologically mediated diagenesis may affect environmental concentrations

in a way that reflects evolved metabolic activity and therefore, selection.

The distribution of a set of molecules in an environmental sample, therefore, may

indicate the presence or absence of life. We call this effect the “monomer abundance

distribution biosignature” (MAD Biosignature or MADB) and hypothesize that it

is universal to all forms of life and collections of monomers they employ. While in

principle, we may observe such a biosignature in any set of chemical measurements,

in practice it is easiest to demonstrate by comparing the relative concentrations of

chemicals within a single family of related molecules (such as amino acids) where

comparison of synthesis rates is arguably valid. If our hypothesis is true, it carries

implications both for the understanding of evolving biochemistries and the detection

of extraterrestrial life, where the biochemistry of a putative ecosphere is not a priori

known.

While we apply the MAD Biosignature to the challenge of detecting life in

an extraterrestrial environmental sample, the use of monomer distributions as a

diagnostic tool for other purposes is well-established. Fatty acid and phospholipid

distributions have long been employed in the study of microbial diversity and other

fields of biogeochemistry (see e.g., [92,98,88]), and amino acid profiles are frequently

used as indicators of the diagenetic state of organic matter [43, 28, 17]. Amino

acid profiles have also been used to distinguish between the synthesis pathways

underlying abiotic amino acid formation in carbonaceous chondrites [12,55]. Nucleic

acid frequencies in genomes are highly variable, but have notable statistical properties

that can distinguish kingdoms and smaller families [78, 40], and patterns of nucleic

acids have been shown to reflect selective constraints such as RNA folding, thereby

distinguishing functional from non-functional RNA [79], and the likely availability
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of particular amino acids in the prebiotic environment [13]. Geochemical profiles

have even been employed previously to detemine whether hydrocarbon compounds in

Earth’s mantle are of a biotic or abiotic source, through comparison to the contents

of meteorites and known abiotic syntheses [87].

Amino and carboxylic acids are familiar chemical families in which terrestrial

biochemistry exhibits a clear signature of life’s presence, and we collect and compare

here data from a number of literature sources to demonstrate the effect. The

statistical significance of the monomer abundance biosignature in amino acids has

been previously studied [33], and we review here the most salient results. In this

study, we conduct a more thorough analysis of amino acids and include saturated

monocarboxylic acids in order to demonstrate that the MADB phenomenon as

observed in the terrestrial biosphere is not limited to only one monomer family.

Any proposed biosignature should be tested not only against terrestrial, but also

extraterrestrial life. To quote Maynard Smith [84]: “So far, we have been able to

study only one evolving system and we cannot wait for interstellar flight to provide

us with a second. If we want to discover generalizations about evolving systems, we

will have to look at artificial ones.” We would like to go a little further to suggest

that, in order to detect extraterrestrial life, we should have an understanding of the

fundamental dynamics of living and evolving systems, independent of the organisms’

particular substrate (i.e., chemistry). Digital life [2,73] is an artificial form of life that

provides just such an instance, and it has been used successfully as an experimental

platform for the study of evolutionary dynamics [2, 3, 9, 15, 53, 54, 69, 70, 93, 94, 96].

In a digital life system, self-replicating computer programs evolve within a digital

ecosystem, enabling precise and controlled studies of evolutionary dynamics.

The Avida Digital Life Platform [71] is ideal for our purposes, since it is a

controlled and understood system unrelated to terrestrial life. A digital system also

makes possible repeated experimentation with evolution. An introduction to digital

life can be found in [2] while Wilke and Adami [93] should be consulted for a recent

overview of research conducted with this form of life.

We examined the relative distributions of computer instructions (the fundamental
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“monomers” in Avida) of numerous evolved and evolving populations to characterize

the nature and robustness of the abundance patterns they form in response to

evolutionary pressures. Avida organisms (“avidians”) consist of a single genome:

a string of computer instructions. These genomes evolve as a result of externally

imposed mutations and selection pressures (the environment). The computer

instructions that compose avidians are weakly analogous to the amino acids, fatty

acids, or other compounds that compose familiar biota in the sense that they are

selectable, meaning only those instructions that carry a fitness advantange will be

reproduced in future generations. Therefore, any general fitness advantage or adaptive

utility of a single instruction should be visible in its bulk concentration in an evolved

population.

2.3 Materials and methods

2.3.1 Terrestrial biochemistry

2.3.1.1 Data sources

We compiled a database of measurements of related monomer concentrations (131

samples of amino acids and 31 samples of straight-chain monocarboxylic acids) from

a variety of publications including studies of formation synthesis, terrestrial water

columns and sediments, and meteorites.

Our set of abiotic amino acid data included thirty measurements in total, fifteen

from tholin and spark-synthesis experiments [47,59,57,63,74,77], one from a report of

UV photolysis in deep-space conditions [64], one of amino acid synthesis in a proton-

irradiatiated mixture [89], seven from the Murchison meteorite [20,22,23,27,35,36,37,

50], and six from two other carbonaceous chondrites [27, 83]. Based on composition

and racemic mixture, the amino acids from these meteorites are generally agreed to

be of abiotic origin [19,35].

The complementary data set of amino acids from the terrestrial biosphere included

125 measurements of extracts from a variety of terrestrial sediments and water
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columns [17, 18, 28, 42, 44, 46, 45, 48]. Our database of carboxylic acids from abiotic

sources includes two measurements from spark synthesis studies [80, 97] and three

from meteorite sources [82, 66, 52]. All five sources report only the concentrations of

short-chain carboxylic acids (C12:0 and shorter).

We rejected a few otherwise interesting measurements of amino acids including

simulated Martian conditions [1], early spark-synthesis studies [60], and amber-

encased insects [91] because they reported measurements of too few amino acids.

We compiled two different data sets of carboxylic acid measurements from

terrestrial sources. We include only the straight-chain saturated monocarboxylic acids

so that the data can be compared to sources of data on abiotic formation that report

only this subfamily of compounds. The first data set includes twelve measurements

of the same low-weight acids as the abiotic data set, all taken from coastal marine

sediments [81]. A second group contains twenty-four measurements of longer chain

carboxylic acids C14:0 through C28:0 in a variety of sediments and soils [98,90,16,5].

2.3.1.2 Data treatment

To combine the disparate sources of data into unified sets for comparison, we applied

the following protocol:

1. All data were converted to molar units.

2. Residues reported as “coeluted” (e.g., glycine and glutamate reported together

as GLX) were both given the reported value.

3. “Trace” values were given a concentration of 0.

4. Where enantiomers were reported separately, their sum was used in a combined

column.

5. Values reported as “approximate” or “estimated” were used unchanged.

6. Where values were reported as “< X”, we used X.
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In addition, we applied the following further steps to the amino acid and long-

chain carboxylic acid data sets:

7. Where a clear statement could be found in the text that a search was exhaustive

(e.g., “all other residues were absent or present only at trace levels”), unreported

measurements were assigned a zero.

8. Other unreported values were left blank and not included in averages.

9. Columns with more than 50% blank values in any one category were eliminated

from the analysis (e.g., Sarcosine is quantified in many spark-synthesis and

meteorite studies, but never in sediment studies).

The reduced amino acid database included eleven residues (from an initial thirty)

that were quantified with sufficient frequency in both the biotic and abiotic categories:

gly, ala, β-ala, aba, ser, ile, leu, asp, glu, thr, and val. The reduced long-chain

carboxylic acid data set included all straight-chain acids from C9:0 through C28:0,

except C27:0. The abiotic component of the short-chain carboxylic acid data set did

not contain sufficient overlapping data for reasonable presentation of averages, so we

have presented each measurement individually.

Each data set was then normalized to a value appropriate for that category. All

amino acid measurements were normalized to the mole concentration of glycine in

that sample. The short- and long-chain carboxylic acid data sets were normalized to

the concentrations of propionic acid (C3:0) and palmitic acid (C16:0), respectively.

2.3.2 Digital life

2.3.2.1 The Avida environment

In the digital world of Avida, computer programs of varying length encoded in a

simple language replicate themselves and compete for processor time and physical

space. Avidians evolve by mutation and selection of a self-replicating genome with

access to a “chemistry” of simple different instructions (the monomers; 29 were
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available in the variant used for this study). Typically, a population is seeded with

a primitive organism made from only 13 of those instructions. As the organism

replicates, mutations (including copy errors, spontaneous point mutations, and insert

and delete mutations) are imposed randomly on all organisms in the environment

at rates configurable by the experimenter. Mutations and insertions create a new

instruction (randomly chosen from the library of 29 with equal probability for each)

at the target location.

In order to replicate, an avidian needs energy in the form of CPU (central

processing unit) time. Each organism can increase its fraction of CPU time by

performing calculations on a stream of random input numbers. These calculations

(computational tasks) are the analogue of metabolic reactions (in biochemistry), and

the code evolved to perform these tasks is analogous to the genetic code for metabolic

enzymes. The simple self-replicator used as a progenitor (ancestor) organism does not

include code to complete any mathematical tasks. As genotypes evolve computational

genes, they receive a higher proportion of CPU time and quickly come to dominate

the population.

2.3.2.2 Evolved monomer abundances in terminal populations

Our first experiment examined the final distribution of instructions in 350 evolved

populations that varied in physical parameters and initital conditions. In each run,

we populated a grid of 3600 cells with one of two hand-coded ancestor genotypes,

and allowed the population to evolve for 4000 generations. We quantified the bulk

frequency of each of the instructions in the population every ten generations.

We used two different ancestor genotypes (carefully written to differ as much

as possible from each other) to control for the effect of initial conditions on the

final evolved biosignature. The two progenitors were Avida’s default 13-instruction

ancestor, which uses the instructions SEARCH-F, JUMP-B and INC for the primary

functions of flow control and replication, and an alternate 55-instruction ancestor that

replaces those instructions with CALL, RETURN, SEARCH-B, SHIFT-L, DEC, and

JUMP-F. Both organisms are shown in Table 2.4.2.1.
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We also varied the copy-mutation rate in seven levels ranging by factors of two from

0.00125 to 0.08 mutations per copied instruction. At each combination of ancestor

and mutation rate, we performed twenty-five runs that differed only in random seed.

2.3.2.3 Time-evolution of a biosignature

We conducted a second experiment in Avida to show the time-course of the evolving

MADB as a formerly abiotic environment becomes dominated by incident life. We

generated an abiotic population by initializing the same 3600-cell Avida grid with

randomly generated, nonviable (meaning nonreplicating) genomes. We created a

lethal environment by bombarding the entire population with a high rate of point

mutations. (A lethal mutation rate is so high that information cannot be maintained

in a self-replicating genome; eventually the gene for self-replication is lost.) For

the duration of the experiment, we periodically seeded this population with viable

(mutation-free) progenitor organisms. This is analogous to a steady influx of space-

borne spores onto a planet with a lethal environment and no existing biology.

Then, we progressively stepped down the rate of point mutations until it reached

a level where the organisms could survive and a population began to replicate and

evolve. The population was allowed to evolve until the distribution of instructions

had stabilized for several hundred generations. Then, the point mutation rate was

stepped back up until the population died and the randomizing effect of the mutations

returned the instruction distribution to its “prebiotic” state.

2.3.2.4 Data treatment

Of the twenty-nine instructions in Avida’s library, we exclude one instruction, NOP-

A, from the analysis. NOP-A is used by the system to initialize empty memory in

dividing organisms and is therefore greatly over-represented in comparison to the

other instructions, and fluctuates significantly as organisms execute the ALLOCATE

instruction. Furthermore, NOP-A’s base rate of synthesis and availability is strongly

genotype-dependent. It cannot be estimated a priori and we cannot make reasonable
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statements as to whether its abundance reflects biotic or abiotic processes, so we

therefore compare only the remaining 28 instructions.

We quantified terminal abundances in evolved populations by averaging the last

ten measurements to provide data smoothing. Avidians in the process of replicating,

and occasional nonviable mutations, cause small instantaneous fluctuations in

population abundance of the individual instructions.

2.4 Results

2.4.1 Terrestrial biochemistry

2.4.1.1 Amino acids

Glycine and alanine, which have low molecular weight and whose synthesis pathways

are kinetically more favorable, dominate mixtures of amino acids synthesized by

abiotic processes. Some small non-protein amino acids, including sarcosine and beta-

alanine, have been observed in synthesis experiments [47, 59, 57, 61, 63, 64, 77]. Other

amino acids are present only in trace concentrations, if at all [59, 57, 61, 64]. This

pattern reflects the thermodynamics and kinetics of amino acid synthesis and is

remarkably consistent, regardless of the specific nature of the synthesis environment.

For example, the alpha amino acids are likely formed via the Strecker (cyanohydrin)

synthesis [61], which presumes the existence of precursor molecules that include the

sidechain. The formation of heavier amino acids would require the prior formation of

the larger sidechains: since these reactions would include their own kinetic barriers,

the availability of the larger precursors, and ultimately, the final yields of the larger

amino acids are expected to be lower. Furthermore, the larger amino acids generally

have higher energies of formation [4] and therefore would be expected to have low

equilibrium concentrations even in the absence of kinetic barriers.

Amino acids in terrestrial samples show a more varied distribution dominated by

the protein amino acids in roughly equal proportions. Figure 2.1 shows the relative

abundances of a set of twelve amino acids measured in a variety of biotic and abiotic
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samples. The amino acids are plotted in ascending order of ∆Gr (Gibbs free energy

of synthesis) at 18oC as reported by Amend and Shock [4] to show both the trend

among abiotic synthesis products towards smaller and “simpler” compounds and the

biosynthesis of complex, expensive compounds. The “Sediment” curve represents

terrestrial sediment and water column extractions. “Meteorite” represents extractions

from three carbonaceous chondrites, and “Synthesis” is an average of fifteen spark-

synthesis experiments in a variety of atmospheres and a single extraction from amino

acids synthesized via UV photolysis on analogues of interstellar ice. The Synthesis

curve serves as an abiotic baseline: the pattern of amino acid concentrations we expect

when life is not present. Except for a single anomaly (high glutamate concentration),

the meteorite curve exhibits the same pattern, while the biologically generated

Sediment curve differs significantly, exhibiting high concentrations of a number of

the larger amino acids. The measured concentrations of the heavier protein amino

acids vary greatly in biotic samples, but are consistently higher than is ever observed

in abiotic sources.

This analysis only shows a small selection out of hundreds of possible amino acids.

A quantification of all possible low-molecular-weight amino acids would show several

such as sarcosine that are non-zero in the abiotic baseline but low or zero in the biotic

curves, similar to beta-alanine in Figure 2.1. Many heavier amino acids would not be

present in either case. Therefore, the complete amino acid biosignature for terrestrial

organisms would appear graphically as twenty peaks for the protein amino acids and a

few dozen smaller peaks for non-protein amino acids used for other biological functions

such as synthesis intermediates, neurotransmitters, and breakdown products, in a

large spectrum where most other residues were absent. Fig. 2.1 is a subset of this

hypothetical biosignature plot.

2.4.1.2 Carboxylic acids

Preparations from spark-synthesis studies exhibit carboxylic acids of low carbon

number: only acids C6:0 and smaller are seen in significant quantities, and acids

larger than C12:0 are not found at all [80, 97]. Figure 2.2 shows the relative
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Figure 2.1: Average patterns of amino acid abundances relative to glycine, compared
between biotic (Sediment n=125) and abiotic (Meteorite n=15, Synthesis n=16)
sources. Error bars are one standard deviation.

concentrations of the first few acids measured in two such experiments and as

measured in three meteorites, compared to an average of twelve measurements of

terrestrial sediments. We observe in the Synthesis data a consistent exponential

decrease in concentration with increasing molecular weight, while the Sediment curve

shows a much more even distribution. The meteorite data fall between the two

extremes, with a shallower exponential decrease and some variability in the relative

concentration of acetic acid, probably due to its relatively high volatility and possible

outgassing in space or during atmospheric entry. We contend that the pattern reflects

the same fundamental processes that are at work in the amino acid data. As molecules

become larger, formation energies are higher, synthesis kinetics generally become

less favorable, and the number of possible conformations is greater, reducing the

expected relative concentration of any particular conformer. The data from the

meteorites implies a probable abiotic origin with a small amount of contamination

by terrestrial material. We are not aware of any significant quantities of carboxylic

acids larger than C12:0 recovered from non-contaminated meteorites. Long-chain (up

to C33) lipid compounds have been created in abiotic synthesis at high (200 C and

greater) temperatures, but the authors reported no bias toward any particular carbon
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Figure 2.2: Relative concentrations of low-carbon number monocarboxylic acids from
five abiotic sources compared to the average of 12 measurements in sediments. The
data are plotted again on a semilog scale below to show the trend of decreasing
concentration after C6:0 in abiotic samples. Synthesis curves represent two individual
experiments (Shimoyama et al. 1994; Yuen et al. 1991).

number [75].

In terrestrial samples, however, the higher molecular weight acids C14:0 through

C32:0 are present in abundance. As shown in Figure 2.3, environmental samples

exhibit a consistent pattern that includes a primary peak at C16:0 with smaller

peaks favoring even-carbon-number acids. This pattern cannot be explained by

formation thermodynamics, but rather, reflects a pair of biological constraints. A

fitness criterion is present: carbon chain lengths near 16 — in both single- and

double-chain amphiphiles — are ideal for the formation of stable, non-porous, and

flexible bilayers in aqueous solution at biologically relevant ranges of temperature

and pH [41, 31, 38], and are therefore critical for membrane structure in a water-

based biosphere. The predominance of even-numbered carbon chains reflects

processes specific to terrestrial biochemistry: the primary fatty acid biosynthesis

cycle terminates at C16:0 (palmitate), from which other fatty acids are synthesized

through lengthening or shortening cycles that operate in two-carbon steps. A bias
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Figure 2.3: Curve representing the average pattern of long-chain monocarboxylic acids
found in terrestrial sediments (n=26), compared to an abiotic baseline. Sediment data
were normalized to C16:0 before averaging. Acids larger than C8:0 are not seen in
measurable quantity in abiotic syntheses and so are shown as zero.

toward even-numbered carbon chains is considered diagnostic of biosynthesis and has

been used to identify terrestrial contamination in meteorite sources [65]. The slight

increase in concentration of C12:0 seen in two of the meteorites in Fig. 2.2 probably

represents low-level terrestrial contamination.

2.4.2 Digital life

2.4.2.1 Monomer abundances in terminal populations

In Avida, two processes are present that we may consider “abiotic.” First, we initalize

the population with a hand-written, progenitor genotype. Second, mutations in Avida

result in the replacement of an instruction with a new one, randomly chosen from

the library with equal probability for each possible instruction. If selection did not

affect the distribution of instructions, we would expect one or both of these effects

to constrain the evolved abundance. If the initial conditions imposed by the ancestor

constrained the evolved population, we would expect the final abundance to reflect

the ancestor’s distribution. If mutation were the dominant effect, as we would expect

over long periods of time, the final population would show each of the instructions in
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equal proportion, demonstrating that the genotypes had incorporated the instructions

at the same rate at which they appreared in mutation. Thus, the abiotic expectation

in Avida, analogous to the Synthesis curves of Figs. 2.1, 2.2 and 2.3, is a flat line.

We observe in nearly all Avida runs, regardless of initial conditions or variables, a

specific and consistent pattern of evolved instruction abundance that reflects neither

of the abiotic constraints as a dominant feature. Figures 2.4a and 2.4b compare bulk

instruction frequency curves to the abiotic expectation for populations from the two

progenitor organisms in Table 2.4.2.1. Experiments were conducted at a number of

different mutation rates (µ represents the probability of mutation at each genome site

when the organism divides). While some variability is present as conditions change,

many of the general features of the pattern are conserved and all evolved patterns

are distinguishable from the abiotic baseline. The relative abundances observed in

our experiments differ not only in their mean, but also in their variance. Instructions

critical to an organism’s survival (such as COPY and DIVIDE) are usually present

at predictable levels (here, one per genome), and therefore show little variability.

Optional instructions such as NAND, on the other hand, are expressed at high

but variable concentrations as organisms in different competitive environments use

them to complete different mathematical tasks (see “The Avida Environment” in

Materials and Methods). Instructions that are frequently lethal when they appear as

mutations (e.g., RETURN and JUMP-F) are suppressed, and the useless but non-

fatal instruction NOP-X appears at a low but persistent level.

The distribution of relative abundances is essentially consistent over a large range

of mutation rates (factor of 32), and changes only as the mutation rate becomes so

high that the majority of offspring contain at least one mutation. At a near-lethal

mutation rate of µ=0.08, a change in survival strategy generates a dramatic shift

in the biosignature. Organisms abandon mathematical tasks and opt for very short

genomes in order to maximize the likelihood of spawning genetically pure offspring.

Mathematics-related instructions (NAND) are suppressed, while instructions that

generally appear only once per genome (COPY, ALLOCATE, DIVIDE) are present

at a higher concentration in the population as a whole because of the shorter average
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Progenitor Alternate Progenitor Evolved Avidian
1 SEARCH-F 1 CALL 29 DEC 1 SEARCH-F 29 NOP-C
2 NOP-A 2 NOP-A 30 NOP-C 2 NOP-A 30 PUT
3 NOP-A 3 NOP-A 37255 3 NOP-A 31 NOP-X
4 ADD 4 SHIFT-L 32 NOP-C 4 ADD 32 DIVIDE
5 INC 5 ALLOCATE 33 PUSH 5 ADD 33 PUT
6 ALLOCATE 6 PUSH 34 NOP-C 6 GET 34 SHIFT-R
7 PUSH 7 SWAP-STK 35 RETURN 7 ALLOCATE 35 DEC
8 NOP-B 8 PUSH 36 NOP-X 8 NAND 36 PUT
9 POP 9 NOP-B 37 NOP-X 9 PUT 37 NOP-B
10 NOP-C 10 POP 38 NOP-X 10 NOP-C 38 COPY
11 SUB 11 NOP-C 39 NOP-X 11 PUT 39 INC
12 NOP-B 12 POP 40 NOP-X 12 NAND 40 IF-N-EQU
13 COPY 13 NOP-B 41 NOP-X 13 GET 41 NOP-A
14 INC 14 IF-N-EQU 42 NOP-X 14 NAND 42 JUMP-B
15 IF-N-EQU 15 NOP-A 43 NOP-X 15 GET 43 NOP-A
16 JUMP-B 16 CALL 44 NOP-X 16 PUSH 44 GET
17 NOP-A 17 NOP-A 45 NOP-X 17 PUT 45 NOP-B
18 DIVIDE 18 NOP-B 46 NOP-X 18 POP 46 NOP-B
19 NOP-B 19 DIVIDE 47 NOP-B 19 NOP-X 47 JUMP-B
20 NOP-B 20 JUMP-F 48 NOP-B 20 IF-N-EQU

21 NOP-B 49 SEARCH-B 21 NAND
22 NOP-C 50 NOP-A 22 IF-BIT-1
23 COPY 51 NOP-B 23 NAND
24 INC 52 RETURN 24 GET
25 POP 53 NOP-X 25 NAND
26 NOP-C 54 NOP-C 26 NAND
27 DEC 55 NOP-A 27 NOP-C
28 NOP-C 28 PUT

Table 2.1: Examples of three Avida organisms. The progenitors, used to seed initial
populations, were hand-coded and are poorly adapted to the Avida environment. The
“evolved avidian” is an example genome that arose approximately 1000 generations
into a typical run seeded with the standard progenitor.
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Figure 2.4: Relative abundance curves for several evolved populations. Note how
a wide range of mutation rates (µ=0.00125 to 0.01) produces nearly identical
distributions. Tests at numerous intermediate values of µ showed similar results
(not shown). Near-lethal mutation rates (µ=0.08) and alternate progenitor
organisms produce distinct distributions that share some features with the “standard”
distribution. n=25 for each curve.
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genome length. Other features, such as suppression of often-lethal mutations (JUMP-

F, RETURN) are retained.

The observed pattern of evolved instruction abundance retains most of its

salient features when we seed the population with a drastically different progenitor

organism (See Table 2.4.2.1), demonstrating that the constraints of adaptation

generally overwhelm the effect of initial conditions. As runs progress, the signatures

of populations descending from the two disparate progenitors tend to converge.

However, there are some persistent features that most likely reflect weakly connected

adaptive peaks in the landscape. These local fitness maxima represent distinct

genotypes that are fairly well adapted themselves, but cannot be derived from each

other via evolution because the intermediate mutations required to convert one

genotype into the other would be invariably fatal. For example, the two progenitors

differ in implementing their essential “copy loop”: one uses the INC (increment)

operator while the other uses DEC (decrement). Changing INC to DEC in the copy

loop would require several simultaneous mutations, any one of which would be fatal

alone. As a result, this transformation is never seen in practice. Though INC and

DEC may serve other functions in an organism, evolved populations tend to express

the operator used by their ancestor’s copy loop. This effect is evident in Fig. 2.4.

2.4.2.2 Time-evolution of a biosignature

When viable self-replicators begin to dominate a previously lifeless Avida grid,

their signature frequency of instructions quickly overwhelms the pre-existing random

distribution. Figure 2.5 shows the time-varying abundances of several instructions in

one such run. At the outset, all instructions were present in equal abundance as the

cells contained randomized, nonviable code — exactly the hypothetical abundance

pattern used as an abiotic baseline in Fig. 2.4. When the point mutation rate was

decreased to a non-lethal level, life immediately became the dominant process.

As the population filled the available space, the distribution of instructions in

the ancestor’s genome began to dominate, but was quickly replaced as higher-fitness

organisms evolved. A recognizable distribution evolves with the same features we
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Figure 2.5: Abundance vs. time for 6 instructions as an incident life form populates a
previously abiotic environment. The ancestor’s most abundant instruction is NOP-B,
while the adapted population’s most abundant instruction is NAND. All instructions
were present in equal proportion in the initial, mutation-dominated environment that
did not contain any replicating organisms.
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see in Fig. 2.4, such as high NAND concentration, but suppressed JUMP-F. The

distribution stabilizes after a few hundred generations, even though the organisms

themselves were still evolving.

We tracked all 28 instructions and allowed the population to evolve for several

thousand generations beyond the point shown in Fig. 2.5. Eventually, we increased

the mutation rate to its previous level, and the population died. At that point, the

bombardment of point mutations rapidly returned the environment to its prebiotic

state. Digital movie files showing the time evolution of all 28 instructions for the full

time course of the experiment shown in Fig. 2.5. — and the development of one run

used to generate Fig. 2.4 — may be found in the online supplemental information.

(Note: these files have also been included in the electronic supplement to this thesis,

see Appendix A)

2.5 Discussion

We believe the monomer abundance distribution biosignature is a universal feature

of evolving systems: rapid synthesis of a select subset of compounds by a living

metabolism should inevitably leave a biosphere in notable disequilibrium with respect

to a sterile planet of the same geochemical composition. If we consider any particular

monomer family, it is unlikely that thermodynamics would constrain abiotic synthesis

to precisely the same rates as biotic synthesis. Indeed, if abiotic synthesis did produce

monomers in the same concentrations as evolved biosynthesis, then biosynthesis would

not be necessary, selection could not improve on abiotic geochemistry, and we question

whether such a circumstance could in fact be described as “life.”

Furthermore, the MADB should be detectable whenever life is present. While both

abiotic and biotic syntheses may be present in an environment, we may reasonably

expect biosynthesis to dominate most molecular synthesis as it does in the terrestrial

biosphere. The coupling of energy from metabolism to catabolism, the manufacture

of catalysts (enzymes), and the ability to concentrate reactants inside cells conspire

to generate vast increases in synthesis rates relative to abiotic chemistry. As a result,
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even small quantities of life should leave a detectable chemical signature.

Understanding evolution’s effects on environmental biochemistry carries signifi-

cance, both for our general understanding of life and for the search for extraterrestrial

life. It is essential for the latter because we cannot predict the specific biochemistry

of the putative life we are searching for. A hypothetical extraterrestrial biochemistry

might use a different set of amino acids, or use them in different abundances. But

while such a pattern may not look like the terrestrial data in Fig. 2.1, it would

also be unlikely to match the consistent pattern seen in abiotic syntheses. Likewise,

extraterrestrial fatty acid biosynthesis could conceivably use cycles that operated in

one- or three-carbon increments, resulting in a different distribution of peaks. If the

organisms used ammonia, methane, or some other primary solvent rather than water,

the adaptive peak for stable membranes might not be C:16. In either case, the unique

signature of this exotic biochemistry would reflect the adaptive constraints of these

organisms’ biosphere and would probably be very unlike the “Synthesis” curves in

Figure 2.2.

A contained digital system like Avida has several advantages for studying the

MADB hypothesis. The course of evolution can be studied repeatedly to provide

statistical significance to dynamics that usually only yield singular, history-dependent

events. With terrestrial life, we can only examine one example of an evolved

biochemistry: we cannot “start life over” on Earth and measure the concentrations

of amino or carboxylic acids in each resulting biosphere, and therefore cannot prove

that the particular concentration patterns we observe are the result of evolutionary

constraint rather than happenstance. In Avida, we can repeat the process indefinitely

to obtain statistics about how organisms adapt. In addition, we have complete control

over initial conditions, allowing us to accurately characterize their impact on the

result. Finally, Avida is completely unrelated to terrestrial biochemistry, giving us

an opportunity to study a biosignature protocol in a non-Earth-centric setting.
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2.6 Conclusions

The relative distribution of abundances of a set of monomers is a strong biosignature

that shows promise for detecting even unusual or unknown biochemistries. The

constraints of adaptation overwhelm the abiotic chemistry present in the environment

as organisms expend energy to build complex, low-entropy structures. The strong

similarity between laboratory synthesis and meteorite samples is a remarkable result

since meteorite samples may have formed under conditions very different from

laboratory syntheses and have aged under planetary and/or deep space conditions

for thousands or millions of years before collection and analysis.

Using a digital life platform, we have demonstrated that the monomer abundance

biosignature phenomenon is germane to any arbitrary living system, and have studied

the robustness of the marker across a range of mutation rates and seed organisms.

While an exhaustive analysis of initial conditions cannot be performed even for this

simple form of life, the robustness of discrimination we see, given the variety of

evolutionary paths and organisms produced in these experiments, bodes well for the

universality and applicability of the monomer abundance biosignature.

It may be possible to look for instances of the monomer abundance biosignature

simply by empowering a life-detection system with a few basic models (derived

theoretically and/or empirically) of expected abiotic chemical abundances, and then

examining samples for patterns that differ significantly. Strong deviations from

thermodynamic/kinetic expectations, i.e., the appearance of unusual concentrations

of any high formation energy, low probability compounds, could signal that a site or

sample may contain life and is worthy of further investigation. This strategy poses

significant challenges, but ultimately frees the search for extraterrestrial life from

biases centered in our present understanding of terrestrial biochemisty.

Creating accurate models of expected conditions will be difficult, as unfamiliar

local effects and boundary conditions (e.g., excessive concentrations of a certain

mineral, or unusual temperatures) could change the chemical species present in a

sample and cause a false positive. However, we may find some safe generalizations
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(for example, that phenylalanine and arginine will always be absent or low in the

absence of life) that enable astrobiologists to build reliable experiments.
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3.1 Abstract

Because organisms synthesize component molecules at rates that reflect those

molecules’ adaptive utility, we expect a population of biota to leave a distinctive

chemical signature on their environment that is anomalous, given the local chemistry.

We observe this effect in the distribution of computer instructions used by an evolving

population of digital organisms, and characterize the robustness of the evolved

signature with respect to a number of different changes in the system’s physics. The

observed instruction abundance anomaly has features that are consistent over a large

number of evolutionary trials and alterations in system parameters, which makes it

a candidate for a non-Earth-centric life-diagnostic.

3.2 Introduction

Evolved bio-organisms impress a distinctive chemical signature on their environment

because biota synthesize those compounds necessary for competition and replication.

More generally, biochemical synthesis may be seen as the product of selection, as

evolution shapes genomes so as to maximize their fitness. As a result, the chemical

species that persist in the environment do not generally reflect the chemical species

we would expect if life were not present.

The rates of formation and diagenesis of individual chemical

monomers (e.g., amino acids, carboxylic acids, or other ligands) in the absence of life

are dictated by the laws of formation kinetics and thermodynamics, and therefore,

the observed relative abundances of various monomers in an abiotic environment

reflect these constraints. For example, when amino acids are formed without life,

large and thermodynamically expensive molecules such as valine are always seen at

drastically lower concentrations than simpler compounds like glycine and alanine

[33,51,59,60,62,64,95].

Organisms, on the other hand, are constrained by their need to reproduce and

compete. Biota expend energy to manufacture whatever monomers are necessary to
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meet a fitness criterion: while synthesizing a particular molecule may be relatively

expensive, if it is essential to competition, the alternative may be extinction.

Therefore, we expect evolved genotypes to synthesize molecules at rates that reflect

those molecules’ marginal utility in fitness rather than, or in addition to, their

thermodynamic cost. If the compounds persist in the environment, we expect

bulk environmental concentrations of these monomers to also reflect fitness criteria

whenever biosynthesis is present at significant levels. This effect, which we call

the “monomer abundance distribution biosignature” (MADB), is very pronounced

in the terrestrial biosphere, and is easily detectable by a number of mathematical

techniques [34,33].

Previously, we demonstrated [34] that the MADB is observable and repeatable in

at least one artificial evolving system, the Avida Digital Life Platform (an introduction

to Avida may be found in [71]). Avida organisms (“avidians”) are small, self-

replicating programs written in a simple but robust and evolvable language; 29

instructions are available in the variant used for this study. The instructions may

be seen as weakly analogous to the monomers such as amino acids that compose

familiar biota. In Avida, instructions are substituted and inserted into genomes

via externally imposed mutations including copy errors, point mutations, and insert

and delete mutations. Genomes have multiple options of monomers from which to

construct genes, and by default, all instructions appear with equal probability when

a mutation is imposed. This is the fundamental abiotic process, since avidians cannot

affect the mutation rate or the frequency of appearance of any particular instruction.

If adaptation did not constrain their abundance, we would expect all 29 instructions

to appear in equal proportion in the population.

When the bulk frequency of programming instructions is counted in evolved

populations in Avida, we observe a distinct profile that does not reflect either

the abiotic parameters of the system or the instruction frequency of the ancestor,

indicating that selection has dictated the monomer abundance pattern of the

population. This pattern is largely consistent over many trials, even though the

actual genomes evolved may not resemble each other at all. Moreover, the pattern
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Figure 3.1: The distribution of instructions in two different ancestor organisms and in
populations descended from those ancestors. While the ancestors have very different
composition, the composition of the descendents is similar as the terminal populations
have adapted to the same environment. “Evolved” lines represent the average of 25
different evolutionary trials, each sampled after 1500 generations.

is consistent over a wide array of parameters such as mutation rate and different

ancestors. Figure 3.1 shows the relative distribution of 28 computer instructions

in evolved Avida populations descending from two distinct ancestor genotypes.

These results are more fully presented in [34]. Note that while the ancestors have

very different composition, their descendents have converged to a common profile,

demonstrating the dominant effect of selection on monomer abundances.

When life is introduced to a formerly abiotic environment, the MADB rapidly

overwhelms the preexisting abiotic signature, as seen in Figure 3.2 (from [34]). In

the experiment which produced Figure 3.2, an Avida population was seeded with

randomly generated, nonviable genomes and bombarded with a high (lethal) level

of point mutations. Single, viable intact organisms were periodically introduced

into the environment while the rate of point mutations was stepped down. When
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Figure 3.2: Figure 2. Evolution of the distribution of six computer instructions as
incident self-replicators colonize and adapt to a formerly lifeless environment. At the
outset, mutations cause all instructions to be present in roughly equal proportion.
The ancestor organism’s genome — nearly 20% NOP-B — dominates the early
biotic distribution. As the organisms adapt to the environment, a NAND-heavy
distribution develops and stabilizes. Often-lethal instructions such as JUMP-F are
strongly suppressed by selection forces.
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the mutation rate became low enough for organisms to survive, avidians quickly

populated the entire landscape, impressing their signature distribution of instructions

onto the environment. An initial spike reflects the ratios of instructions present in

the ancestor genotype, but this was quickly replaced by an evolved MADB as the

organisms adapted.

In this study, we further explore the robustness of the MADB as the fundamental

abiotic parameters of the Avida environment are changed. This is important because

it can be argued that the MADB observed in terrestrial biochemicals (e.g., amino

acids) is highly dependent on the formation thermodynamics of the individual

monomers, and that the pattern would be drastically altered if the costs of synthesis

were changed. Alternatively, it is conceivable that the distiction seen between biotic

and abiotic patterns are not the product of selection, but of some other, unknown

function. In artificial life, we can test these conjectures.

To study the robustness of the MADB in digital organisms, we alter the availability

of each instruction by changing the frequency with which it appears in mutation. This

is loosely analogous to altering the formation thermodynamics of amino acids, thus

changing their availability to early life forms. If elements of the MADB pattern

are retained despite these alterations, it demonstrates that selection is capable of

overwhelming the constraints of physics with respect to the composition of organisms

in early evolution.

We hypothesize that some instructions’ abundance will be more or less indepen-

dent of the frequency with which they appear in mutation, indicating that their

appearance frequency in the genome is strongly constrained by a fitness criterion,

while other instructions are less strongly constrained. Instructions that convey a

strong fitness benefit should be incorporated into genomes rapidly, thus ensuring that

they account for a large proportion of the final population. Anti-adaptive instructions

(i.e., ones that are more often deleterious when appearing as mutations) should be

suppressed in the population.
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3.3 Methods

By default, Avida substitutes new instructions during mutation events with an equal

probability for each instruction. For this experiment we created a modified version of

Avida that allows the experimenter to specify a probability of substitution for each

instruction.

In each experiment, a grid of 3600 cells was populated with a 13-instruction simple

self-replicating ancestor. This initial population was evolved for 1500 generations

and the bulk frequency of each instruction in the population was quantified every

100 generations. To provide smoothing of momentary fluctuations in instruction

concentration, we used the average of the last ten. We performed 25 replicates of

each experiment.

We created eighteen different “spectra” that represented the relative frequency

with which each instruction appeared in random mutation. Three of the spectra

were manually constructed systematic variations where the instructions, listed in

an arbitrary order (the default library order) were given increasing or decreasing

representation such that the most-represented instructions were substituted 29 times

as often as the least-represented instructions. Another fifteen experiments used

randomly generated mutation frequencies.

In our data analysis, we consider only 28 of the 29 instructions used in these

avida populations. One instruction, NOP-A, is used by the system to inititalize

empty memory in dividing organisms. Therefore, the number of NOP-A instructions

appearing in the population is highly genotype-dependent, but not in a way we can

conclusively call “biotic” since the organisms do not have a choice about how empty

memory is inititalized. It cannot be selected for or against in an evolutionary sense,

and therefore we choose to exclude it from the analysis.
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3.4 Results

Evolved Avida populations impress a distinctive pattern of instruction abundances

onto their environment, and this pattern is largely conserved even when the

availability of particular instructions is altered significantly. Figure 2 shows the

average evolved abundances of the 28 instructions for four different mutational

profiles. In each, the gray “mutational frequency” line represents the relative rates at

which each instruction appears in mutation, and the black “evolved frequency” line

represents the relative abundance of each instruction in the terminal population.

Certain features, such as the prominence of GET, PUT, and NAND, are conserved

across the runs regardless of how their input (mutational) frequency is altered. This

reflects the fitness benefit conveyed by these instructions, which are necessary for

completing computations. In Avida, organisms are rewarded with increased processor

time for successfully completing a variety of computational tasks, which play the role

of exothermic catalytic reactions in the metabolism of digital organisms. Some other

instructions, such as JUMP-F and RETURN, are frequently lethal when they appear

in mutation. As a result, they are rarely incorporated into genomes and appear

underrepresented in the final population regardless of their mutational frequency.

Figure 3.4 shows the relationships between mutation frequency and evolved

population frequency for several instructions. In each of these plots, if selection

did not constrain the organisms’s use of each instruction, we would expect the data

to fall on or near the unity line, reflecting that the organisms used the instructions

at the same rate at which they appear in mutation. Data points above the unity

line represent populations that used an instruction at higher than the expected rate,

meaning that those instructions were preferentially incorporated into the evolving

genomes. Points below the unity line represent instructions that were selected

against. The slope of the distribution represents the extent to which an instruction’s

appearance in the final population depends on its availability in mutation.

While the data are widely distributed, some significant trends are evident. NOP-

C, PUSH, and IF-LESS are close to neutral in average adaptive utility: they show



47

Figure 3.3: Four experiments showing the evolved distribution of instructions as
the underlying physics are changed. The gray curves represent the frequencies with
which each instruction was presented to organisms through mutation, black curves
represent the relative abundances of the instructions in evolved populations. Each
black curve represents the average of 25 populations, error bars are standard error.
The general features of the selection-driven distribution are conserved even though
the mutation frequencies are varied over large ranges. In experiments A, B, and C,
the most-frequent instructions appear 30 times more often than the least-frequent.
Experiment D shows one of 15 similar randomly generated distributions tested.
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Figure 3.4: The relationship between frequency of appearance in mutation and
abundance in the terminal population for nine instructions. GET typifies an
instruction which frequently conveys a fitness advantage; it tends to be incorporated
into genomes at a high level regardless of how often it appears as a mutation.
Conversely, RETURN is not necessary for basic function and is often lethal as a
mutation, so it remains at a low level, even when it appears frequently as a mutation.
N=450, 25 runs each using 18 different mutation frequency profiles. Gray lines are a
simple least-squares linear fit.
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broad distributions near the unity line. All three of these instructions exist in parallel

with other instructions that can, to some degree, replace their function. NOP-C is

part of a complementary set of address labels including NOP-A and NOP-B, and

an organism can construct labels using only a pair of NOP instructions if one is

not available. PUSH is a stack operation, and organisms can function largely using

register (as opposed to stack) storage if necessary. The flow-control instruction IF-

LESS can be entirely replaced by IF-N-EQU, and to some degree, with IF-BIT-1 if

it is not available.

NOP-X, RETURN, and JUMP-F are examples of maladaptive instructions that

are selected against, with most of their instances appearing below the unity line.

NOP-X is a neutral, but non-functional operation that merely consumes a single CPU

cycle. While it does not harm an organism, if inserted into a loop, it can cause a

significant delay in the time required for a genome to complete tasks and reproduce.

We see it somewhat selected against. RETURN and JUMP-F, however, are flow

control instructions that are both unnecessary (their functions can be completely

replaced by other flow instructions like JUMP-B) and generally maladaptive. When a

JUMP-F or RETURN is inserted or substituted into a genome, the resulting genome

will often skip large blocks of instructions or enter infinite loops. Such mutations

are usually fatal. As a result, these are the two most strongly selected-against

instructions.

Obviously beneficial instructions include GET and NAND, which are essential for

the completion of mathematical tasks. GET and PUT (not shown) are responsible

for input and output within the computational metabolism; genomes cannot gain

any advantage over the ancestor without using them, and they are strongly selected

for. NAND is also present in high abundance in nearly all populations, as it is

used to perform computations on the input stream accessed via GET. However, it

shows a strong, in fact, greater than unity dependence on the input frequency of

mutation. This almost certainly represents faster learning of tasks when NAND

appears in mutation more often. Seventy-three tasks are rewarded in Avida, each

of which requires one to five NAND operations. Each gives a small multiplicative
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fitness bonus, and previous experience has shown that avidians will continue to learn

tasks for hundreds of thousands of generations until all possible tasks have been

exploited. Since our experiment only tested 1500 generations, the high slope of the

NAND distribution probably represents a strongly increasing tendency to learn more

tasks in the time available as NAND appears in mutation with increasing frequency.

DIVIDE is an interesting case: it has the least dependence on mutation rate

of any instruction, but even at near-zero mutation rate, it appears as a significant

fraction of the population, shown by the high intercept of the trend line relative

to maladaptive instructions like NOP-X and JUMP-F. DIVIDE splits a genome

in half and is essential for the reproduction of organisms after they have copied

all of their instructions. However, if it appears in an inappropriate location, the

organism will divide prematurely; this is nearly always fatal. As such, DIVIDE

almost always appears exactly once per genome, regardless of mutation effects. The

vertical distribution seen in the plot is largely due to variation in the average length

of the evolved genomes.

Table 3.4 gives full results for the selection bias of the 28 instructions we analyze.

We use the summed deviation from the unity line over all data as an approximation of

the tendency of selection pressures to elevate the population concentration of a single

instruction; the instructions are listed sorted by this measure. Instructions with the

strongest selection bias are at the top. Table 3.4 also shows the slope of the line fit to

each instruction, which indicates the degree to which an instruction’s population

abundance depends on its mutation frequency. The least-dependent instructions

(generally those which have lethal effect and are often suppressed) are listed first.

3.5 Discussion

Artificial life is a useful tool for astrobiology, in that it can examine the fundamental

processes of life with an eye toward identifying universal phenomena: features of life

that may be detectable, regardless of a life form’s substrate or particular form. It may

be seen, therefore, as an approach toward solving the “single data point” problem,
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Selection Bias Slope
PUT 31.1 DIVIDE 0.18
GET 21.6 RETURN 0.21

NAND 20.7 JUMP-B 0.25
NOP-B 12.6 JUMP-F 0.28
NOP-C 7.2 COPY 0.30

INC 1.9 SEARCH-B 0.33
SWAP 1.4 SEARCH-F 0.36

ALLOCATE 1.2 IF-BIT-1 0.36
ADD 0.2 CALL 0.39
PUSH -0.4 SWAP-STK 0.45
POP -1.1 INC 0.47

DIVIDE -1.2 SHIFT-R 0.48
SHIFT-L -1.6 PUSH 0.51

SEARCH-F -2.6 SHIFT-L 0.55
IF-N-EQU -3.0 ALLOCATE 0.55
JUMP-B -3.4 NOP-X 0.56
COPY -3.6 IF-N-EQU 0.57

IF-LESS -3.9 IF-LESS 0.60
DEC -4.3 DEC 0.62
SUB -4.8 GET 0.65

CALL -5.2 POP 0.65
SWAP-STK -7.0 SUB 0.71
RETURN -7.4 ADD 0.75
NOP-X -7.6 PUT 0.83

IF-BIT-1 -9.1 SWAP 0.89
SEARCH-B -10.2 NOP-C 0.91
SHIFT-R -10.4 NOP-B 0.94
JUMP-F -11.1 NAND 1.24

Table 3.1: Selection biases and the slope of evolved frequency vs. mutation frequency
for 29 instructions.
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that is, that we know only one example of evolved life (the terrestrial biosphere),

and therefore cannot draw scientific conclusions about the universality of features we

observe. Through a-life, we can test conjectures about observable invariants of life;

other examples include measuring the reduction of local entropy induced by cellular

automata in an artificial chemistry [14].

We have demonstrated the repeatability of the monomer abundance distribution

biosignature in Avida populations, and characterized its robustness with respect to

alterations in the underlying physics. We find that although significant variations in

monomer abundance patterns do appear as evolutionary experiments are repeated,

general features (such as the selection for mathematics instructions, and the

suppression of frequently lethal flow-control instructions) are conserved. More

importantly, in no case does the evolved abundance pattern ever resemble the pattern

predicted by the system’s physics, which is the most important characteristic of

a life-diagnostic or biosignature. This robustness clearly derives from evolutionary

necessity. The organisms’ metabolism and composition are subject to selection for

fitness, and the features of that composition will be impressed upon their environment.

This conclusion indicates one possible direction for the search for nonterrestrial life

via a method that is agnostic of terrestrial biochemistry, i.e., “non-Earth-centric” life

detection. By modeling or recording the range of plausible abiotic formation ratios

of various chemical compounds, we may examine samples for compounds appearing

outside of those ranges. Measurements of chemical concentrations that deviate from

those ranges may indicate that an evolved metabolism is selectively synthesizing useful

compounds.

This approach to life detection has obvious limitations and obstacles. For example,

the ability of this strategy to reject false positives depends critically on our ability to

thoroughly characterize the range of possible abiotic distributions in advance. Any

such experiment should begin with the most exhaustive experimental analysis possible

of monomer formation in all conceivable abiotic conditions, and we should remain

vigilant to the possibility that unconsidered special cases (i.e., unusual combinations

of local environmental chemistry, temperature, radiation, or other factors) might
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include dynamics that produce an unexpected abundance pattern.

Nonetheless, we see the MADB as an important biosignature for life detection,

worthy of investigation because it is the inevitable result of a fundamental life process

(evolutionary selection) and is completely independent of information about any

specific biochemistry. If the abiotic distribution is characterizable, the MADB should

be detectable as long as the life form under study employs in its metabolism any

members of the chemical family under study.
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Chapter 4

Monomer-Distribution
Biosignatures in Evolving Digital
Biota: Robustness With Respect
to Physical Laws; Additional Data
and Unpublished Results

The results shown in Figure 3.4 were produced by creating Avida runs in which the

“availability” of each instruction was altered by changing the probability with which

it was chosen when random instructions were selected for mutations. By increasing

the probability with which a particular instruction was chosen, we increased the rate

at which it was made available to be incorporated into avidian genomes.

In the experiment that produced Figure 3.4, fifteen profiles (spectra of availability)

were created, each of which specified a probability of appearance for each instruction.

These profiles were chosen randomly. Twenty-five runs were performed to 1500

generations for each profile, and the resulting monomer abundance profiles were

quantified. (In addition, twenty five runs for each of the three systematically varied

profiles shown in Figures 3.4a, 3.4b, and 3.4c were also included).

I was concerned that the Monte-Carlo approach might be contributing unnecessar-

ily to the wide distribution and general noisy character of the data seen in Figure 3.4,

because as the mutation frequency of one instruction changed, so did all the others,

and interdependencies between the instructions might be altering the results. Also,
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the fact that NAND remained at or close to zero in some runs indicated that the

avidians in those runs were not learning to perform tasks. However, since the avidians

in most runs did learn — even at the same availability levels for NAND at which they

sometimes failed — I was concerned that 1500 generations was possibly insufficient

for adequate equilibration of the population.

To address these concerns, I performed an experiment in which each of the

instructions was varied systematically: only one instruction was increased or

decreased in mutation frequency relative to the others. This required a larger number

of runs, as different runs were required for the characterization of each instruction.

I ran ten populations for each of six different mutational frequencies for each of the

29 instructions. This experiment required approximately three months to complete

using (on average) twenty-five Pentium-IV processors in a Beowulf supercomputing

cluster.

Generally, the results were largely similar to those shown in Figure 3.4, and may be

seen as confirming those results and refuting the notion that either the Monte-Carlo

approach or the shorter run times of 1500 generations created any particular bias

or contributed to the spread of the data. Figure 4.1 shows plots of the relationship

between final population abundance and frequency of appearance in mutation for the

same nine instructions depicted in Figure 3.4.
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Figure 4.1: The relationship between final population abundance and mutational
availability for nine instructions. Often-favorable instructions like GET and NAND
generally appear at high levels, regardless of mutational ability because they are
incorporated into genomes quickly. Often-fatal instructions like DIVIDE are heavily
suppressed, maintained only at the minimum level necessary for replication. Neutral
instructions like NOP-X tend to fall near the unity line, with an expression level in
terminal populations that is highly dependent on their mutational availability.
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Part III

Detection of the Monomer

Abundance Distribution

Biosignature
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Part III comprises two chapters representing work related to automatic detection

of the MADB with mathematical systems.

I examine the ability of pattern recognition systems, including principal compo-

nents analysis and two varieties of neural networks, to detect the MADB as it appears

in terrestrial samples of amino acids.

In Chapter 5 (published in Icarus, see [33]), I study the ability of numerical systems

to differentiate between known examples of biotic and abiotic amino acid profiles, and

explore the robustness of these systems with respect to noisy and partial data. The

study goes on to examine the dependence of these pattern-recognition systems upon

the individual elements of the monomer profiles by sequentially removing each amino

acid from consideration and measuring the performance of the system when only the

remaining data are available.

In Chapter 6 (under preparation for submission to Astrobiology) I consider a

related problem geared specifically to the task of non-Earth-centric life detection:

the ability of pattern recognition systems trained only on information about known

abiotic patterns to correctly identify profiles that do not match the abiotic training

set as exceptional and potentially biotic.
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Chapter 5

Principal Component Analysis and
Neural Networks for Detection of
Amino Acid Biosignatures

As published in Icarus, 166 (2004), 403-409.

Authors as published: Evan D. Dorn, Gene D. McDonald, Michael C Storrie-

Lombardi, Kenneth Nealson
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5.1 Abstract

We examine the applicability of Principal Component Analysis (PCA) and Artificial

Neural Network (ANN) methods of data analysis to biosignature detection. These

techniques show promise in classifying and simplifying the representation of patterns

of amino acids resulting from biological and non-biological syntheses. PCA correctly

identifies glycine and alanine as the amino acids contributing the most information to

the task of discriminating biotic and abiotic samples. Trained ANNs correctly classify

between 86.1% and 99.5% of a large set of amino acid samples as biotic or abiotic.

These and similar techniques are important in the design of automated data analysis

systems for robotic missions to distant planetary bodies. Both techniques are robust

with respect to noisy and incomplete data. Analysis of the performance of PCA and

ANNs also lends insight into the localization of useful information within a particular

data set, a feature that may be exploited in the selection of experiments for efficient

mission design.

5.2 Introduction

We are studying how computer analysis techniques may be applied to detection of

chemical biosignatures. Techniques such as Principal Component Analysis (PCA) and

Artificial Neural Networks (ANN) show promise for automated sample evaluation and

as tools for the design of efficient experiments [58]. In this study, we explore the ability

of these techniques to classify chemical biosignatures, specifically, measurements of

amino acid frequency available in the literature. In coming years, we will have

the opportunity to search for life on and below the surfaces of Mars, Europa, and

other planetary bodies. Probes sent to these destinations will need to function

with some degree of autonomy, as they will be subject to long communication

delays and temporary communication blackouts [67]. Automated computer analysis

of scientific data will be a critical element of all such missions. We believe that

kinetic and thermodynamic constraints on the chemistry of living systems will result
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in chemical signatures that differ from the background of an organism’s environment.

If this statement is true of all living systems — earthlike or otherwise — systematic

comparison of chemical samples to expected environmental norms can provide a non-

Earth-centric method of life detection. We explore the ability of some techniques to

distinguish samples of amino acids that have been synthesized by biotic and abiotic

chemical systems. These techniques also hold promise for the improvement of mission

design. By analyzing the contributions of different scientific measurements, we can

determine the intrinsic value of each. This information is useful both for the selection

of instruments and design of experiments.

5.3 Amino acid data set

We chose amino acids as the test case for this study because they have been previously

studied as important biomarkers [7] and because substantial data already exist.

To create a consistent data set for this study, we collected data on amino acid

concentrations from four different sources. To represent environmental biomarkers,

we used 79 measurements of amino acids extracted from marine sediments and

water columns [18, 44, 28]. We make the assumption that, within the modern

terrestrial biosphere, biological synthesis of organic molecules overwhelms any abiotic

chemical synthesis present. To supplement the sediment data, we also included the

average relative frequencies of amino acids in sequenced proteins from 106 protein

superfamilies [29, 30]. These data differ from the others because they are computed

from protein sequences rather than measured in extracts from environmental samples.

As such, they do not reflect any bias that might be inherent in the extraction or

analysis processes, or in potential differences in diagenesis. Furthermore, they carry

their own intrinsic bias; sequences of individual proteins do not necessarily reflect

the relative abundance of the amino acids in an intact organism or the community

of organisms present in marine sediments. Nonetheless, we included the sequence

data because they potentially help us gauge these biases. The combined sediment

and protein data will be referred to as the “biotic” data set. To represent amino
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acids synthesized by non-biological processes, we employed the results of several

spark synthesis experiments meant to simulate formation of organic molecules in

environments resembling those of the early Earth [76] and other planetary bodies

[57, 59]. In addition, we included in the “abiotic” data set measurements of amino

acids present in the Murchison carbonaceous chondrite [24, 26, 36, 37, 35], and one

report of amino acid formation on interstellar ice analogues [64]. Despite reports of

small enantiomeric excesses of some amino acids in the Murchison meteorite [25], most

scientists now agree that the amino acids are the result of non-biological synthesis

and that contamination by terrestrial sources of organic molecules is low [26]. Our

analysis will support that hypothesis. Each of the studies from which we used data

sampled a number of different amino acids — up to a hundred in the case of some

of the Murchison studies. We retained only the twelve amino acids which were most

frequently measured in this set of studies: glycine, alanine, leucine, isoleucine, lysine,

serine, threonine, aspartate, glutamate, phenylalanine, valine, and arginine. In some

cases, certain of these amino acids were not looked for and/or not detected in a

particular study. Wherever a measurement was unavailable, a zero was inserted

in the combined data set. The data are represented as relative molar percentages

normalized to the sum of the quantities of these twelve amino acids. Other amino

acids, if present, are ignored entirely, as is the overall concentration of amino acids

in the sample. Where both D- and L- enantiomers were quantified in the source,

we used their sum. Figure 5.1 shows the average concentration of each amino acid

by category. Note that the abiotic data contain high concentrations of glycine and

alanine, providing an immediate selection criteria.

We also sometimes represented these data as the relative elemental (H/C, O/C,

N/C) ratios present within the samples, computed from the measured relative amino

acid concentrations. In this version of the data set, each sample had only three

associated variables. It was useful to examine the data represented this way because

measurements of element ratios are comparatively easy to make in the field. If we

could perform these analyses using only the elemental ratios, a mission could be

simplified. We were concerned that the different numbers of data points in the two
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Figure 5.1: Amino acid concentrations represented in the data set. Each line is the
average over all samples in that category (Sediment n=79, Protein n=106, Murchison
n=7, Synthesis n=8, Ice n=1). Error bars represent one standard deviation.

categories (166 points from biological sources, 15 from non-biological sources) could

introduce an unwanted bias in the analysis or make adequate discrimination difficult,

as will be discussed in more detail below. In order to obviate this concern, the data

set used for some operations was expanded with extra copies of the abiotic data

until the total number of data points in each category was equivalent. This was

performed several times with different amounts of random noise (from 0 to several

times the standard deviation of the entire set) added to the extra copies. Results of

the classifying algorithms showed little dependence on the amount of noise added.

5.4 Methods

5.4.1 Principal component analysis (PCA)

Principal Component Analysis, also known as the Hôtelling transform, is a linear

analysis technique that finds the most efficient representation (in the least-squares

sense) of a data set in several dimensions. It is often employed in data representation

and data compression tasks, where representing a large data set in a smaller number

of dimensions may be desirable. In general, with a set of M vectors xm, each with

N elements such that xm,n represents the nth element of the mth vector, PCA finds
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the linear combinations of the dimensions that encode the greatest proportion (in

the least squares sense) of the variance in the data set x1 . . . xM . PCA computes the

zero-mean data set by subtracting the average vector from all data, and then finds

the covariance matrix C where element Ci,j of the matrix is defined as the expected

value of the product of elements i and j in any individual vector xm:

Ci,j = 〈xm,i · xm,j〉. (5.1)

The normalized eigenvectors of this matrix, ranked by their corresponding

eigenvalues, are the principal components of the data set. Projection onto the first

p principal components is the most efficient linear representation of the data in p

dimensions. Given a data set of moderate size, this algorithm is relatively robust to

noise and is useful in its capacity to combine unrelated measurements into a common

statistical framework [85]. By its nature, PCA normalizes all components of the

input vector to unit variance, allowing us to combine measurements from different

scales. PCA is best employed as a tool to reduce the dimensionality of a set of data.

This reduction of dimensionality can allow one to visualize a multivariable data set

more easily, and to employ traditional statistical methods that might otherwise be

impossible to use. For example, a previous study in our laboratory used PCA to

compare the amino acid patterns found in Murchison and ALH84001 with those found

in proteins and Antarctic ice, concluding that the meteorite samples were similar to

each other and to the ice, but that neither was similar to proteins [58].

5.4.2 Artificial neural networks (ANN)

Neural networks are among the simplest and best-understood pattern recognition

algorithms available, and we will show that they are entirely adequate for the analysis

of this data set. More robust (in terms of sensitivity to noise and incomplete data)

and more versatile than linear techniques such as PCA, they present an ideal tool

for biosignature detection and classification. An analog, feed-forward neural net is a
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Figure 5.2: Schematic representation of a two-layer feed-forward neural network with
input vector x and outputs O1 and O2

collection of “nodes”, each of which implements the function:

O = σ(
n∑

i=1

xiwi). (5.2)

A group of N inputs x is each multiplied by a “weight”, the products summed

and limited by a threshold function, typically an exponential or hyperbolic tangent

sigmoid function that varies from 0 to 1. The two-layer network shown in Fig. 5.2

implements the function O = σ(v−1σ(xw)) where w and v represent the first- and

second-layer weight matrices. It can be proven that with a sufficient number of nodes,

any mathematical function may be approximated with arbitrary accuracy through the

selection of appropriate w and v.

Computing the weights is called “training” the network and cannot usually be done

deterministically. Many ANNs — including all of ours — are trained by the stochastic

algorithm: the weight matrices are adjusted by random quantities w and v and the

performance of the network is measured by computing the sum-squared-error over a

set of training data. w’s and v’s which result in reduced errors are kept. Others are

rejected except for a small percent of “wrong” answers, which are retained to allow the
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converging solution to escape local minima. In general, ANNs gain an advantage over

PCA techniques because the transfer function may be nonlinear. A neural network

can discover nonlinear interactions between variables in the data set that would be

missed by a linear technique. In addition, sigmoidal σ functions saturate at large

input values, helping to prevent extreme outlying data points from skewing the entire

analysis. ANNs are generally very robust in nature. A well-trained network will

usually make a correct analysis even when large amounts of noise have been added to

the input vector and/or portions of the data are unavailable. In our case, simple neural

networks were trained to recognize patterns of amino acid concentrations as biotic

or abiotic. We employed two-layer networks with twelve input nodes (one for each

amino acid in the data set), three or four hidden-layer nodes, and two output nodes.

Given an input pattern, each output node of the trained network generated a value

between 0 and 1, which represented the Bayesian probability that the input pattern

falls in the corresponding class. One output node was intended to register a “1” for

biotic specimens, and the other was intended to register a “1” for abiotic specimens.

In addition to using the twelve amino acids as inputs, we trained separate neural

networks to classify the data as represented only by the ratios of elements H/C, N/C

and O/C; in these cases the networks had only three input nodes, but were otherwise

identical. With this approach, there are legitimate concerns about a specific network’s

ability to correctly extract the relationships within the data. If the data are sparse

and/or the network is too large, it is possible that the network can “overtrain”; that is,

memorize the specific instances of the training data rather than learn the underlying

relationship between the categories. This is equivalent to generating a mathematical

model with more adjustable parameters than the number of data points available:

the experimenter cannot be certain that the model has extracted useful information

about the system. In general, the number of data points should be much greater than

the number of connections in the network. Several techniques are generally employed

to prevent overtraining. Ideally, the experimenter simply gathers sufficient data to

force the network to generalize. In practice, however, sources of data are often limited.

In this study, only a very few examples of non-biologically-synthesized amino acids
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were available in the literature. In lieu of more data, we made numerous copies of

the available data and added normally distributed noise to the copies. This approach

is relatively insensitive to the actual amount or scale of the noise that is added. We

also employed data set splitting, in which the training examples are split into two

groups. The first group is used to train the network normally, while the second group

is used only to observe the performance of the network. In general, the total error

over a data set will decrease as the network correctly learns the relationships within

the data. However, if the network begins to overtrain and learn the specific instances

of the data in the first set, the error observed in classifying the second set will begin

to increase. By watching for such behavior, it is possible to identify cases where the

network fails to generalize and redesign the system to avoid the problem in the future.

5.5 Results

5.5.1 PCA results

Our amino acid data set was composed of twelve measurements (amino acid

concentrations) for each data point. In raw form, these data are difficult for an

experimenter to analyze visually (envision Fig. 5.1 with dozens of curves). When

reduced to two or three principal components, however, visualization of the entire

data set becomes tractable, as shown in Figs. 5.3.

Figure 5.3 shows a clear distinction between the biotic and abiotic categories. This

result is seen, despite the fact that the PCA process does not seek to differentiate

categories of data — only to isolate and represent sources of overall variance. The

Synthesis and Murchison data tend to group together, indicating an affinity and

supporting the hypothesis that the Murchison amino acids are abiotic. That the

Murchison data group with each other and near most of the other abiotic data

supports the hypothesis that any biological contaminants present are at a sufficiently

low level that they do not mask the basic abiotic nature of the meteorite. Also,

the protein data show greater variability than the sediment data, but in general
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Figure 5.3: The data set plotted against various principal components. a. Component
2 vs. 1, representing 38% of the total variance present in the original data. b.
Component 3 vs. 1, representing 34% of the total variance.
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Table 5.1: Composition of principal components and contribution of each to the
variance of the original data set.

the sediment data are located near the center of the protein data. This suggests that

amino acids extracted from life-bearing environmental samples and most proteins may

group together. We expect some shift in composition due to biases in the extraction

process; types of biological matter associated with different sediments and particle

sizes; and breakdown of amino acids in the environment, but this effect appears to be

small in these data. Analysis of the contributions of each amino acid to the principal

components lends valuable information about the importance of each in the data

set. Table 5.1 shows the contributions of each principal component to the total data

set. The first three components together encode 48.9% of the variance of the original

twelve-variable data set.

Within these components, glycine, aspartate, and glutamate show the strongest

representation, indicating that the largest fraction of the statistically useful informa-

tion in this particular dataset is encoded in those amino acids. This sort of analysis

can assist in experiment selection and mission design.
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Table 5.2: Performance of ANNs at classification task.

5.5.2 ANN results

Regardless of the amount of noise added to the training dataset, ANNs trained on

both the raw amino acid data and the data represented as elemental ratios were able

to classify the data set with high accuracy. Networks were trained many times on

each set of data to characterize the training process. In each case, after characterizing

the training process for each set of training data, we trained a single representative

network and measured its performance.

The lower accuracies observed in the “training data” column of Table 5.2 is an

expected result, particularly as more random noise is added to the dataset. In some

cases, the categories begin to overlap significantly and not all points can be correctly

classified. However, the network makes a compromise; the result is an accurate

generalization of the distribution underlying the actual data. The “perfect” results

observed when the network is trained on noiseless data represent some degree of

overtraining, made possible by the sparseness of the abiotic data.

Figure 5.4 shows how a typical network classifies the entire input space. After

training on the input data, the network was used to classify a hypothetical set

of data that spanned the entire glycine vs. alanine space. The output of this

classification task was used to shade the background of a region on which the data

set is superimposed. Black areas are categorized as biotic and white areas as abiotic.
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Figure 5.4: The dataset plotted as glycine vs. alanine, superimposed on a field
representing ANN classification of the entire input space. Black regions represent
areas classified as biotic, white regions represent abiotic areas. Intermediate levels
represent partial confidence in classification.

This demonstrates how the network extrapolates beyond known data; a hypothetical

sample that contained 50% alanine and 5% glycine (with the remainder more or less

evenly distributed between the other 10 amino acids) would be classified as biotic.

The decision boundary is actually sharper than it appears in Fig. 5.4. The network

was trained on all twelve amino acids, but this figure demonstrates the classification

of hypothetical data which did not include useful information about the other amino

acids (the other ten input variables were set to identical average values for all points).

A multi-dimensional field including axes for the other amino acids would show a much

clearer boundary.

Like PCA, ANNs can provide information about the utility of each input

measurement. We performed a first-order analysis of the importance of each amino

acid by systematically training neural networks on copies of the data set with one

variable removed. The changed ability of the resulting network to classify the

remaining data indicates the value of the missing variable. Figure 5.5a shows the

degraded performance when information about the relative abundance of glycine or

alanine are withheld. Note that without information about the relative concentration

of glycine, the networks have difficulty classifying the data set with better than

15% confidence; removal of alanine shows a similar effect. Removal of any other
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single variable has little impact on the network’s performance. We also measured the

effectiveness of the ANN algorithm when information on the relative concentration of

only one amino acid (i.e., glycine as a molar percentage of the total amino acids

present, but no other information) is available. Figure 5.5b shows the results.

Information about the relative concentration of glycine is sufficient to make reasonable

guesses about the nature of that sample. Some other amino acids provide a small

amount of information, while others provide very little or no useful information.

Aspartate, for example, provides just enough information to classify 40% of the set,

but with very low confidence. The relative concentration of glutamate, on the other

hand, indicates nothing about the biotic or abiotic nature of the sample. Alanine

concentration is a weak classification criterion by itself.

Non-biological syntheses of amino acids generate large (50% to 80%) quantities of

glycine [61,59]. This makes intuitive sense, as glycine has a low formation energy. In

biotic samples, however, glycine will generally constitute a much smaller fraction of

the total, as living systems cannot manufacture useful proteins that are 80% glycine.

5.6 Conclusions

Techniques like PCA and ANN show potential for use in automated scientific analysis

by remote probes. In order to improve their usefulness for autonomous and non-

Earth-centric life detection, it will be necessary to expand and generalize upon the

techniques used in this study. In particular, the employment of “unsupervised”

pattern recognition systems which classify and categorize incoming data without

reference to a training set of known examples is indicated. We envision an automated

science platform making mission decisions by classifying samples that have undergone

simple analysis. With an appropriate classification, an optimal subset of samples can

be selected for more detailed analysis by other, presumably more time-consuming,

experimental tools. The ANN technique can enable powerful and robust analysis

of this sort of data. While many of the individual amino acids, such as aspartate,

allow for only a very weak classification, the network can combine multiple weak
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Figure 5.5: Confidence curves demonstrating the changes in classification performance
as data are removed from the training set. a. individual input variables are removed;
the result is compared to the result with the complete dataset. b. only single input
variables are provided to the network during training.
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measurements to produce a high-confidence classification in ways that would not be

obvious to a human observer. Both ANNs and PCA share a strong robustness to noise

— an important feature — as autonomous systems will be subject to many sources

of signal degradation. These systems can provide some level of buffer, even against

terrestrial biological contaminants as long as the contaminant level is not high enough

to grossly distort the shape of the curve being measured. It is important to note that

the ANNs classify the H/C:N/C:O/C representation of the data set nearly as well

as the raw amino acid concentrations. This result implies that, for Earth-like life

at least, the elemental ratios may be sufficient for a high-confidence discrimination.

This is primarily because abiotic syntheses produce such a large abundance of glycine,

which has very high N/C and O/C ratios relative to the other amino acids. A probe

may therefore be able to efficiently evaluate the amino acids present in a sample with

a simple mass spectroscopy experiment rather than the liquid chromatography and

other equipment necessary for quantification of individual amino acids. The argument

that high percentages of glycine are not adequate for stable polypeptide structures

may even imply that this analysis is sufficient for detection of any living system that

uses polypeptides, even if it is otherwise unlike terrestrial biochemistry. We believe

that the kinetic and thermodynamic constraints of biochemistry will also produce

similar biosignatures in other chemical species, some of which may be more easily

isolated and measured. The element ratios of the bulk hydrolysable fraction or bulk

volatile fraction of a sample may contain sufficient information for these techniques

to make the biotic/abiotic discrimination. In this study, we were constrained by

the availability of amino acid data in the literature, in which the protein amino

acids represent the lowest common denominator of amino acids examined in all

the studies. It would be instructive to include amino acids such as sarcosine that

are sometimes found in high quantities in non-biological syntheses [61], but are

not expected to appear in abundance in terrestrial environments; and methionine

and cysteine, which are universal in known living systems, but absent in abiotic

syntheses. In future studies, it would be interesting to compare patterns from

biological sources that have undergone extensive environmental degradation while
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remaining protected from contamination by recent sources, such as the interior of

fossils or amber-encased insects as described in [8]. We would also like to compare

these measurements to extracts from unfractionated, intact biological material. We

envision empowering automated systems with the ability to make simple predictions

about the expected abundances of potential biomarker chemicals based on basic

knowledge of an environment and thermodynamic principles. For example, in most

environments, if non-biological synthesis is the dominant process for amino acid

abundance, we would expect to find relatively large quantities of the easily formed

amino acids glycine, alanine and perhaps sarcosine, and little else. Comparison with

these predictions would give an in situ platform a basis for tagging “unusual” samples

for further analysis. This capability is essential if the system is to be capable of

detecting life forms even if their biochemistry differs from that of terrestrial biota.
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6.1 Abstract

We demonstrate a method for automated detection of chemical biosignatures that

can, in principle, detect extraterrestrial life forms even when their biochemistry

is both unknown and dissimilar to terrestrial biochemistry. Because organisms

construct cellular machinery to synthesize the compounds they need for survival, we

expect compounds used actively in biotic metabolisms to appear at concentrations

that stand out from the thermodynamics- and kinetics-dominated background. By

examining the relative concentrations of multiple chemicals, we can deduce whether

their observed concentration ratios fall outside experimentally determined reasonable

ranges for abiotic synthesis. A trained radial-basis function neural network can

compute the extent to which an individual measurement of multiple concentrations

differs from known abiotic patterns, irrespective of its similarity to measurements from

the terrestrial biosphere. We demonstrate the technique as applied to a published

body of measurements of amino acids from a variety of sources.

6.2 Introduction

Astrobiology suffers from the so-called “one data point” problem, in that we have

only one example of an evolved biochemistry and cannot easily perform experiments

to determine the range of potential biochemistries. Therefore, a good life-detection

experiment should satisfy two criteria:

1. Test for a phenomenon that is an inevitable result of processes universal to life,

regardless of substrate or biochemical particulars.

2. Detect the signs of that phenomenon, regardless of its specific similarity to the

terrestrial biosphere.

We demonstrated previously [33] how a neural network could discriminate

distributions of amino acids from life-bearing (biotic) and non-life-bearing (abiotic)

samples. The ability of an unsupervised computer to make discriminations of this
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sort will become important as robotic missions with astrobiology components begin

to range further and increase in number and therefore require greater autonomy.

However, the previous system fails criterion (2) above because it diagnoses amino

acid biosignatures based on their similarity to known measurements from terrestrial

sediments. Here, we demonstrate an improvement on the previous technique that

reduces the dependence on knowledge of existing biochemistry.

6.3 Life’s effect on environmental chemistry

We have examined elsewhere [34] how organsims leave a chemical biosignature in their

environment as natural selection induces them to catabolize particular compounds at

rates that meet fitness criteria. Here, we seek to formalize the concept.

The equilibrium concentration, ci, of particular chemical i in an environmental

sample is described by some complex function:

ci = Fi(kf,abiotic, kf,biotic, kb,abiotic, kb,biotic, . . . ) (6.1)

where kf,abiotic is the rate of abiotic synthesis or inflow, kf,biotic is the rate of biotic

synthesis, kb,abiotic is the rate of abiotic breakdown or diagenesis, and kb,biotic is the

rate of biologically catalyzed breakdown and consumption. If i represents a bioactive

molecule, kf,biotic and/or kb,biotic are nonzero in the presence of metabolizing organisms

and thus, we may expect ci to take on a different range of values in the presence of

life as compared to sterile environments. In practice, however, the function F and

these terms are unknowable. In addition, variables may affect the overall scale of

measurements ci : dilution, temperature, availability of reaction precursors, etc. The

concentration of a single molecule in the absence other information is not generally

very useful.

However, useful information may be encoded in the relative concentrations of

several species c1, . . . , cM , particularly of a family of related chemicals. The ratios

c1 : c2, c1 : c3, etc. are invariant with respect to overall dilution and may tell us about
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these species’ formation dynamics.

When life is not present, the ratio of two concentrations reflects the degree to

which thermodynamic and kinetic processes favor the formation and persistence of

one species over another. For example, it is generally assumed that in the absence

of life the concentration of O2 in most atmospheres will be low, relative to CO2 and

N2 due to oxygen’s high reactivity and tendency to bind to minerals. The example

is trivial, but serves to illustrate the universality of the statement. We are most

interested in small organic molecules such as amino acids, fatty acids, polycyclic

aromatic hydrocarbons, etc., because they form in both biotic and abiotic conditions

and are generally implicated in the origins of life. Experiments in abiotic synthesis

and measurements from abiotic sources such as carbonaceous chondrites invariably

show a distribution of organic molecules that strongly favors small compounds. This

makes sense: larger molecules generally have higher formation energies, have a greater

number of possible conformers, and require more steps in their synthesis pathways,

so the formation rate of larger species should, on average, be smaller.

Life, on the other hand, drastically alters local chemistry in the struggle for

survival. By concentrating reactants inside a membrane, constructing highly specific

catalysts (enzymes) to reduce activation barriers, and expending energy to drive

otherwise unfavorable reactions, biota synthesize a specific set of molecules at

extremely high rates. Given a set of concentrations c1 . . . cM , it is likely that some

ratios within that set will be anomalous with respect to abiotic synthesis if any of the

ci’s are involved in biotic metabolism and life is present.

Since biosynthesis and the genetic code that governs it are the product of natural

selection, we can describe this phenomenon as selection acting indirectly on the

chemical composition of an environment. Just as selection acts to encode information

about a fitness landscape in a genome by perpetuating genes that improve adaptation,

so does it encode similar information in the chemical composition of an environment

by perpetuating genomes that synthesize molecules at the most adaptive rates.

Therefore, chemical concentration ratios that are anomalous with respect to

abiotic formation dynamics may indicate that another process — selection — is
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acting on bulk molecular synthesis in the environment. Since selection is expected

to be a feature of all living systems, this phenomenon may serve as a universal life

diagnostic. We most often study this process in small molecules that frequently

polymerize or otherwise combine to build biomass, so we refer to them generically

as “monomers” and the effect life has on their abundance ratios as the “Monomer

Abundance Distribution Biosignature” (MADB).

We approach detecting an MADB by considering a series of concentration

measurements c1 . . . cM from a single sample, where 1 . . . M represent members of a

related chemical family. Described as a vector c, the ratios of this set of measurements

can be examined by considering either the unit vector ĉ, or the vector scaled relative

to one of its components cm:

cscaled =
c

cm

(6.2)

Whether we choose ĉ or cscaled depends on the particular family of measurements

in question and whether or not an appropriate cm is available, and it does not matter

to the design of the algorithm. Henceforth, we will use c to mean either of these two

formulations.

Detecting the MADB then becomes a problem of determining whether a new

measurement vector c belongs to the population of abiotically generated monomer

abundance patterns Cabiotic or the population of biotic patterns Cbiotic. Previously [34],

we demonstrated how a neural network can be trained to make this discrimination.

Here, we improve on the system and significantly reduce its dependance on knowledge

of known biochemistry by searching for patterns c that are not members of Cabiotic,

rather than by searching for patterns which are members of Cbiotic (as presently

understood).

While it is not technically necessary for all the monomers to be from the same

family, in practice, related chemicals often share similar formation mechanisms and

so the distribution of possible vectors within Cabiotic is more constrained and can

be better characterized. This is important, since our ability to detect the MADB
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depends crucially on our ability to fully characterize the range of Cabiotic. In this

study, we use amino acids as our test case.

6.4 Amino acids

Amino acids are a well-studied chemical family fitting the criteria for the MADB.

We use a published body of data about amino acids from both biotic and abiotic

samples to design and test our system. They have been studied before as a

biosignature for astrobiology [7, 6], and can be synthesized by both biotic and

abiotic processes. Mixtures synthesized by nonbiological processes tend to be almost

entirely low-molecular-weight and low-energy-of-formation species such as glycine,

alanine, beta-alanine, gamma-aminobutyric acid, and sarcosine. Samples from

terrestrial sediments, however, generally exhibit moderate levels of at least all twenty

protein amino acids including high-molecular-weight and high-energy-of-formation

residues that are never seen in abiotic synthesis. This reflects the basic process

described above: histidine (for example) is needed for survival and competition, and

therefore, organisms will manufacture enzymes and expend energy to increase kHIS
f,biotic

to significant levels.

Fifty years of experimentation attempting to model the formation of amino acids

on the prebiotic Earth or other bodies, and measurements of the amino acid contents

of carbonaceous chondrites, have endowed us with a wealth of data on amino acid

expression in abiotic synthesis. Several recent publications in the field of organic

matter cycling provide amino acid quantification of samples from a known biosphere.

In combination, these provide a basis data set for constructing pattern-recognition

networks in this work. A complete list of sources may be found in Table 6.4.

These disparate publications often differ in the chromatography techniques used,

the amino acids reported, and the units used. We used the following procedure to

combine them into a consistent database:

1. Data were extracted from figures, where necessary, by scanning the publication

at 1200 DPI and measuring the graphics in Adobe Photoshop.



82

2. Data were converted to mole units if necessary.

3. Each measurement was entered into a row of a database that had columns for 31

different amino acid residues. Columns for unreported residues were left blank.

4. Residues reported as coeluted were both given the reported value.

5. Where D- and L- enantiomers (mirror-image stereoisomers) were reported

separately, their sum was used.

6. Values described as “approximate” or “estimated” were used without change.

7. The upper bound was used for small values (e.g., ALA < 0.1).

8. Values reported as “trace” were assigned a zero.

9. Residues described in the text as “not found” or “not seen” were assigned a

zero.

10. If the text contained a clear indication that the listed values were exhaustive

(e.g., “the table lists the concentration of all observed amino acids” or “other

amino acids were present in trace quantities”), a zero was entered into each

remaining column.

A subset of twelve columns was then selected that contained the greatest fraction

of residues to which a definite value could be assigned: GLY, ALA, BALA (beta-

alanine), ASP, GLU, SER, VAL, LEU, ILE, LYS, PHE, and THR. Finally, each

vector of twelve amino acid concentrations was divided by its normal to generate a

unit vector.

6.5 Non-Earth-centric life detection

Since our goal is to detect life even where it may differ from terrestrial biochemistry,

we want to make no assumptions about the population of possible biotic patterns

Cbiotic. The system we described in [33] is limited because it implicitly makes such
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# Energy Source Atmosphere or Substrate Source
Abiotic Syntheses

1 Arc-Discharge H2, CH4, NH3, H2O [62]
1 Arc-Discharge H2, CH4, NH3, H2O [63]
1 Arc-Discharge NH4+, NH3, N2, CH4, H2O [74,95]
6 Arc-Discharge H2, N2, H2O plus (CO),(CO2), (CH4), or

(CH4, NH+
4 )

[76]

1 DC-Discharge N2, CH4 (9:1) “Titan Tholin” [47]
5 DC-Discharge CH4, NH3, H2O “Jupiter Tholin” [57]
1 DC-Discharge N2, CH4 (999:1) “Triton Tholin” [59]

Abiotic Meteorites
1 Murchison [50]
1 Nagoya [22]
4 Yamato-74662 Interior/Exterior,

Hydrolyzed/Unhydrolyzed
[83]

1 Murchison [27]
2 ALHA 77306 Interior/Exterior [27]
2 Murchison Hydrolyzed/Unhydrolyzed [37]
1 Murchison [36]
1 Murchison [35]

Terrestrial Sediments
13 Sediment Trap, Saanich Inlet, B.C. 13 depths, 0-80 cm [18]
1 Porcupine Abyssal Plain sediment core, 1-2 cm [44]
19 North Sea sediment cores and traps [28]
9 Laurentian Trough suspended particles and sediments [17]
46 Washington coast, suspended particles from five sites w/6-9

size fractions ea.
[46]

24 Amazon River particles, 8 locations w/3 size fractions ea. [42]
9 Washington coast, 4 locations and 5 organic matter types [45]

Table 6.1: Sources of data used to train the neural network.



84

an assumption. It uses an artificial neural network (ANN) with sigmoidal neurons

to distinguish two clusters of data from different populations residing in a high-

dimensional space. Presented with a novel case, the ANN described previously will

report which of the two clusters matches more closely.

Such a system raises a concern for non-Earth-centric life detection. If a

hypothetical extraterrestrial organism happened to use a significantly different set

of amino acids from those used on Earth, the system would be unprepared to

handle a sample from that environment. In other words, because the system was

trained to classify a novel input based on its similarity to two known populations,

its response to a sample from a third, previously unknown population is undefined.

Here we improve the technique by employing a different sort of classifier that

discriminates based upon the overall distance (in a difficult to reduce nonlinear

sense) from a multidimensional cluster. Novel samples will be classified as “life”

if their measurements look sufficiently different from the characterized population of

nonliving samples. A cartoon comparison of the previous technique and the present

one can be seen in Figure 6.1.

We define a system that uses a known set of N abiotic patterns p1 . . . pN

(represented henceforth by the N -by-M matrix P ), as an estimate of the range

of Cabiotic and flags as potentially biotic those incoming samples that fall outside

that range. For a single measurement cm in one dimension, this is equivalent to

a statistical t-test computing the probability that cm falls outside the population

sampled p. Neural networks give us an approach to computing a similar test where our

measurements are multidimensional and the population Cabiotic may have a complex

shape in N -space.

Such a system should in principle be capable of detecting life even where it differs

significantly from terrestrial biota. Designing a general system for detecting life thus

becomes a problem of choosing a set of measurements C1 . . . Cn, at least some of

which are likely to be affected by the presence of any kind of life, and thoroughly

characterizing the distribution of Cabiotic.
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Figure 6.1: Responses of two hypothetical neural networks. Samples falling within
the shaded area will be classified as abiotic. In (a), a traditional ANN splits the
input space into two regions based on the training inputs. A novel sample from a
different population might be classified incorrectly. In (b), a radial-basis-function
neural network has been trained to characterize the abiotic class based on known
data. Points falling outside the abiotic scope are classified as “biotic” even if they
don’t match known biotic data.

6.6 Methods

We use a variation of classic radial-basis-function (RBF) neural networks (see [10]

for an introduction). Such a network employs a layer of O “radial-basis neurons”:

computational units, each of which effectively defines a point in N -space and responds

to input data near that point. Neuron i produces a response gi to an input pattern

in the column vector c:

gi(c) = r(‖wT
1,i − c‖b1,i) (6.3)

.

Equivalently:

g(c) = r(w1,icb1,i) (6.4)

where w1,i is a row vector representing the ith unit’s center in N -space and the bias
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b1,i (or “spread”) is a constant that sets its radius. The transfer function r is defined

as

r(x) = e−x2

. (6.5)

With a layer of O neurons, we represent their combined w1,i’s as the N -by-O

matrix W 1, their biases as the vector b1, and their outputs as the vector g. The values

of W 1 are called the weights due to their similarity to the weights of a traditional

ANN.

The second layer of the network consists of a layer of linear nodes that each

compute a weighted and biased sum of the outputs of the previous layer, the weights

being specified by a second matrix W 2. The response of the entire network to an

input vector c is then:

O(c) = W 2 r(‖W 1c‖b1) + b2. (6.6)

Given a sufficient number of nodes in the first layer, such a network may be used to

approximate any function. Choosing the values of W 1, W 2, b1 and b2 is called

“training” the network, and is usually done using an iterative gradient descent

function. In addition, one other parameter must be chosen: M , the number of neurons

in the first layer.

Here, we define a function of the chemical measurement vector c:

F(c) =

 1 if c is in Cabiotic and

0 otherwise,
(6.7)

and train a radial-basis network with a single output-layer node to estimate this

function using known abiotic example vectors P . This function can be fit by an RBF

network without any examples in the biotic, (F = 0) region, by requiring the bias

vector b2 to be zero. Since the output of the neuronal response function in Eq. 6.3

is significant only when its input is near the vectors described in W 1, the effect of

setting b2 = 0 is to force the network to output zero everywhere except near its
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Figure 6.2: Response of an RBF network trained on a few sample data points
generated randomly in the range 0.4 to 0.8. The network uses the sum of three
zero-based gaussian kernels (shown in light gray) to closely fit a plateau function
matching the data.

neurons’ response centers, which we will train to approximate the the range of the

known biotic points in P . Figure 6.2 shows how the system fits a simple function

with one input where the target class extends over the range 0.4 – 0.8.

Setting the number of neurons M and the width of the responses (defined by b1)

correctly is important. If M is too large or the neurons are too narrow, the network

can “overtrain,” that is, learn the specific individual points in the data set rather

than the general distribution. In general, M should be less than the number of data

points in the training set and the width of the neurons s (where s = 0.8325/b1; 0.8325

is the value at which the transfer function r(x) has dropped to 50% of its maximum,

r(0.8325) = 0.5) should be large enough to prevent the system from fitting nodes to

single data points. If, on the other hand, the spread s is too large, the response of

the network will not drop off quickly outside the range of the target class and points

outside Cabiotic will generate an incorrect output.

In order to maximize the non-Earth-centric nature of this pattern-matching
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system, we want to train the network in a way that is maximally agnostic of the

values of Cbiotic. Given a set of training patterns P abiotic and P biotic, we use the

following procedure: any particular value of O, the centers (W 1) and magnitudes

(W 2) of the neurons’ responses are computed using a gradient descent function that

seeks to minimize the error over the set of abiotic training input patterns P abiotic

with no knowledge of the biotic data set. We iterate this procedure over a range of s

and keep the network that minimizes the mean squared error over the combined set

of inputs P abiotic and P biotic. In effect, we are training the network to characterize

P abiotic and only using P biotic to set the width of the response b1, our threshhold for

“how far away” a measurement must be from the abiotic class to be declared “biotic”.

Figure 6.6 shows the generalized response patterns of several trained networks.

6.7 Results

Trained radial basis function neural networks with 8 to 15 neurons recognized the

known pattern of amino acid abundance from abiotic sources and rejected terrestrial

biotic samples with high reliability. Typically, all of the abiotic training data score

at least 0.85, and all of the biotic training data score lower than 0.10, where a higher

score represents the degree of similarity to known abiotic data. The degree to which

the network prefers to accept false positives vs. false negatives is customizable by

the researcher in decisions about training thresholds; we tended to err on the side of

excluding unknown points from the abiotic set. Figure 6.7 shows the distribution of

patterns in the training data, for comparison to the results.

We have used an implementation of this network — trained with twelve basis

functions — to classify a a number of “unknown” samples that were not available

in the training set to observe how well it generalizes. In general, these data were

less well suited for the test than the training set: many are considered potentially

contaminated, and most reported only a few of the twelve residues we included in the

training database. Nonetheless, we find that the network can make a largely accurate

discrimination between biotic and abiotic samples. Table 6.3 shows the outputs of
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Figure 6.3: Response fields of several RBF networks, shown over the plane defined
by ALA percentage of total amino acid content vs. GLY percentage. White areas
match known abiotic data from the training set. Rows are networks trained with 5,
10, 20, and 30 radial basis functions, respectively. Columns show the response of the
network over the ALA% vs. GLY% plane with (a) all other inputs held at zero, (b)
other inputs held at their average over the abiotic training set and (c) other inputs
held at their average over the biotic training set. Note how the system overtrains
when 30 basis functions are used, learning the specific data points in the training
sample rather than the overall response.
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Figure 6.4: The abiotic data set used to train the neural network, represented as
category averages, with known biotic measurements shown for comparison. Error bars
are one standard deviation, to show the wide distributions encountered. Sediment
n=121, Meteorite n=13, Synthesis n=18.

# Description Source
1 Abiotic synthesis via UV photolysis on ice in vacuum [64]
1 Abiotic synthesis via proton irradiation in vacuum [89]
5 CM chondrites: Murchison, Murray, Nogoya, Mighei,

Essebi
[12]

2 CI chondrites: Orgueil and Ivuna [12]
3 Other meteorites: Renazzo, Allende, Tagish Lake [12]
2 Nakhla meteorite [39]
4 Fossilized hadrosaur teeth [72]
1 Body of amber-encased fly [8]

Table 6.2: Sources of data used as unknowns to test the neural network.

the network when presented with twenty previously unseen samples for classification.

Munõz-Caro et al. [64] report the synthesis of amino acids via UV hydrolysis

in a laboratory simulation of interstellar ice particles, and Takano et al. [89] report

the synthesis of amino acids from an inorganic mixture via proton irradiation in a

simulation of interstellar gas. Though the experimental conditions and temperatures

are quite different from the spark-syntheses that generated most of the data in

the training set, the network nonetheless groups both of these measurements with

the other abiotic data with a high degree of confidence. Figure 6.7 shows these

measurements compared to the training data.

Botta et al. report new measurements of amino acids from ten chondrites, most

of which are believed to be at least partially contaminated by terrestrial amino acids,
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Sample Description Result
Murchison 0.788
Murray 0.674
Nogoya 0.358
Mighei 0.251
Essebi 0.003
Orgueil 0.000
Ivuna 0.010

Renazzo 0.346
Allende 0.207

Tagish Lake 0.184
Amber-encased fly body 0.340

Amber matrix 0.287
Nakhla (free fraction) 0.609

Nakhla (total amino acids) 0.580
Hadrosaur Teeth (1) 0.079
Hadrosaur Teeth (2) 0.148
Hadrosaur Teeth (3) 0.354
Hadrosaur Teeth (4) 0.209

UV-irradiated ice crystals in vacuum 0.984
Proton-irradiated gas mixture 1.036

Table 6.3: Output of the neural network when presented with novel patterns. The
result represents the degree to which the network correlates this input pattern with
the abiotic training set, which included samples from purportedly uncontaminated
CM chondrites and classic spark-synthesis studies. The strongest matches (>0.7) are
presented in boldface, and the weakest matches (<0.3) are presented in italics.

Figure 6.5: Data from two abiotic synthesis experiments not included in the training
data set. “UV Photolysis” is a single profile from an experiment in which organic
compounds were formed via UV irradiation on ice crystals in a vacuum chamber,
while “Proton Irradition” is a measurement from an experiment simulating formation
of organic compounds in interstellar gas. These profiles received the highest score,
indicating a match to the abiotic training set of any in our study.
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based largely on enantiomeric ratios [12]. They consider the presence of the amino

acids isovaline and α-amino isobutyric acid (which are not found on Earth) to be

diagnostic for extraterrestrial sources. These two amino acids were found at the

largest abundances in the CM chondrite group, particularly in Murchison and Murray.

Despite the fact that iVAL and AIB were entirely excluded from our analysis, this

group produced the strongest abiotic signature of the meteorites, indicating that other

features caused them to correlate with the abiotic training set (which included CM

chondrites, including other samples of Murchison). Nogoya and Mighei both have

lower scores than the other meteorites in this group, largely due to a high level of

beta-alanine. Figure 6.7 compares this set of CM chondrite data to other data used

in our study to illustrate the difference.

The network produced scores very near zero for the two CI chondrites, Orgueil

and Ivuna, and for the CM chondrite Essebi. This is almost certainly due to those

bodies’ very high relative concentrations of beta-alanine (BALA/GLY > 2). It has

been argued that the formation of large quantities of beta- amino acids seen in these

three bodies results from a process that is abiotic, but distinct from the Strecker

mechanism believed responsible for most amino acid formations in CM chondrites

like Murchison and Murray [12, 11]. Though this process is abiotic, the behavior of

our classifier is precisely what we would expect it to be, since no CI chondrites or

other samples exhibiting that process were included in the training data. Thus, these

measurements serve to demostrate how a classifier of this sort responds to truly novel

data. Figure 6.7 compares the CI chondrites data to other data used in our study to

illustrate the difference.

A measurement from the Renazzo CR meteorite [12] does not match the abiotic

training set well, but has the highest value aside from the samples of Murchison

and Murray, indicating some similarity in formation process. This is consistent

with previous interpretations [12]. The low values for the samples of the Allende

and Tagish Lake meteorites (from [12], shown in Figure 6.7) are consistent with

other interpretations that amino acids in those bodies are likely due to terrestrial

contamination [21,12,49].
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Figure 6.6: Data from CM meteorites not included in the training data set. The
trace labelled “Murchison & Murray” is an average of the two measurements from
those meteorites reported in [12]. The “Other CM Chondrites” is an average of the
measurements from the Nogoya, Mighei, and Essebi meteorites reported in the same
source. Error bars are standard deviation in each case.

Glavin et al. report a pair of amino acid series from the Martian meteorite

Nakhla and determine that it is partially contaminated, based on enantiomeric

excess [39]. Our results — which disregard optical activity — are consistent with

that interpretation: the Nakhla profiles received intermediate scores from the neural

network, representing the presence of a mixture of biotic and abiotic processes. While

to the eye, the Nakhla measurements resemble the patterns seen in the CM chondrites

used in the training set (Murchison, Yamato 74662, and ALHA 77306), the scores are

lower than those for the new samples from Murchison and Murray described above. It

is worth noting that the two extractions from Nakhla exhibit systematic bias inherent

in the extraction method: relatively more alanine was extracted in the free (aqueous)

fraction while realtively more glutamate was found in the total (acid-hydrolyzed)

fraction. Nontheless, both patterns generate similar responses from the classifier,

because amino acid patterns from both aqueous and acid-hydrolyzed fractions of

meteorites were included in the training data (Table 6.4).

Bada et al. report measurements of six amino acids (ASP, SER, GLU, GLY, ALA,

VAL) from a sample of 40 million year old amber and an insect body included in

the amber [8]. They detect essentially no racemization or breakdown of the enclosed

amino acids and conclude that the contents have been nearly 100% conserved. The

results of the network are consistent with that interpretation, assigning fairly low
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Figure 6.7: Data from CI meteorites not included in the training data set. Note the
very high levels of beta-alanine relative to all other residues, including glycine.

Figure 6.8: Extractions from the Allende and Tagish Lake meteorites, with two
profiles from the Nakhla meteorite: the “Free” (aqueous) and “Total” (acid-
hydrolyzed) extractions.
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Figure 6.9: Amino acids extracted from an amber-encased fly, compared to the
training data set.

scores for both. We believe the extent to which the value is above zero for both

measurements is due to the fact that the unreported amino acids VAL, LEU, ILE,

LYS, PHE, and THR were set to zero for input into the neural network. Since some of

these amino acids have high concentrations in known biotic data, but are always low in

the abiotic training set, setting these absent measurements to zero teands to increase

the resemblance to the abiotic training set. The generally moderate contributions of

ASP, GLU, and SER, and absence of BALA are nonetheless sufficiently distinct from

the abiotic base class to generate a value < 0.5.

Ostrom et al. report amino acids in several samples of late cretaceous fossils and

bones [72]. Though not protected as well as the amber inclusion in [8], the researchers

find enantiomeric and isotopic evidence of persistent amino acids in the fossils they

believe may have been protected from racemization by binding to a mineral phase.

However, they cannot entirely rule out contamination. As would be expected (whether

contaminated or not), our results are consistent with a biotic source for these residues,

with data quite similar to the amber inclusion.

6.8 Discussion

The technique described here has shown some promise in generating a discriminator

that is nearly independent of knowledge about terrestrial biochemistry, and is a

significant improvement on our previous technique. In particular, the confident
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Figure 6.10: Amino acids extracted from hadrosaur teeth, compared to the training
data set.

classification of the chondrites Orgueil, Ivuna, and Essebi as outside the known

abiotic class is a promising result, since those data are quite distinct from anything

in the training set and represent an example of how a truly unknown measurement

from a not-yet-characterized chemistry would be handled by this type of system.

In this study, we are limited by the available data. Combining extractions from

(believed) noncontaminated meteorites and laboratory spark-synthesis experiments,

only twenty-nine measurements in available literature quantified a sufficient number

of amino acids for inclusion in our training data set P abiotic. Any attempt to use

this or a similar technique on an automated mission would need to begin with a

very thorough experimental exploration of the amino acid syntheses possible under

different conditions.

Others have correctly pointed out that quantifying a dozen amino acids on a

distant world is difficult. Here, we use quantified amino acids to demonstrate the

technique because they are well-studied and a fair volume of published data exist.

However, the method is general and can be extended to other measurements that

may be easier to make. For example, the distribution of any particular family of

organic chemicals that is detectable in the volatilizable fraction of a soil sample at

any particular temperature is likely to be altered noticeably if biota are present that

synthesize any of those molecules. Therefore an experiment resembling those used on

the Viking landers could be easily constructed using a sample oven and GCMS (gas

chromatograph mass spectrometer) without involving the intricacies of amino acid
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hydrolysis and extraction.

For this strategy to be successful at all, mission designers would, of course, need

to select a set of measurements that happened to include monomers used by the

putative life form. To the extent that it is applicable, however, known biochemistry

leads us to believe that this is not likely to be a significant problem: terrestrial biota

use members of nearly every known organic chemical family in a significant way. Each

chemical family has functions that others cannot replicate, and known life exploits

most of them, suggesting that any other organic life would likely impact at least a

few of the chemical concentrations we might choose to characterize.

The presence of biologically synthesized organics in a sample would necessarily

alter the total relative molar amounts of carbon, oxygen, nitrogen, and hydrogen in

that sample. For example, sterile soils could conceivably contain any of a multitude of

minerals, a number of small carbon-containing molecules such as CO, CO2, CH4, and

limited quantities of small organics like glycine, acetic acid, etc. But, the presence of

elevated quantities of any large organic molecules like long-chain carboxylics, larger

amino acids, or polycyclic aromatic hydrocarbons could create ratios of C:O, C:H,

O:N, etc. that fall outside the range of plausible ratios in the absence of life. So, with

a thorough experimental and mathematical analysis of the element ratios of plausible

abiotic soils or the volatile fractions thereof, a probe equipped with analytic techniques

like the one presented here could detect aberrant (and hence potentially biotic)

patterns simply by measuring via mass spectrometry the elemental composition of

a vaporized sample.
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Part IV

Ongoing Work: The Layered

Trophic Residue Biosignature
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Part IV consists of a single chapter that discusses ongoing work into another

potential universal biosignature, the layered trophic residue biosignature or LTRB.

Similar to the MADB, the LTRB looks for life by comparing the concentrations of

several compounds. However, the LTRB is concerned with the spatial relationships

of active metabolites in samples with physical extent, and how those relationships

correlate with the energetic potential of the metabolites as measured by their redox

intensity, pεo.
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Chapter 7

The Layered Trophic Residue
Biosignature
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Figure 7.1: Similar layers of dissolved metabolites are found in sediment cores and
water columns. Oxic layers appear on top, because oxygen provides the greatest
energy potential in respiration. Lower layers are constrained to employ a series of
decreasingly effective metabolites.

I propose a second biosignature, the layered trophic residue biosignature (LTRB),

which I believe represents fundamental processes inherent to life and may therefore

be useful for the discovery of extraterrestrial life forms. Work is ongoing to model the

evolution and formation of this biosignature in digital life, and to propose methods

for automated detection.

It has been observed that communities of microorganisms near phase boundaries

(i.e., air to water, or water to sediment) often exist in a layered structure, and that the

structure of these communities can be inferred from depth profiles of metabolically

active solutes [68, 32]. Figure 7.1, reproduced from [68], shows two examples,

remarkable in their similarity, despite a large difference in scale. Figure 7.1a shows the

varying concentrations of dissolved oxygen, nitrate, sulfate, ionic manganese and iron,

ammonia, and a few others in a 200 m water column in the Black Sea. Figure 7.1b

shows a similar profile in the top 20 cm of freshwater sediment at the bottom of

Lake Michigan. In both cases, oxygen is present in abundance at the boundary, but

rapidly tails off to be replaced in sequence by nitrate, nitrite, and finally, ammonia

and reduced iron.
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Oxidant Redox intensity Energy released
pεo (w) ∆Go kJ/equiv. CH2O

O2 → H2O 13.75 -125
NO−3 → N2 12.65 -119

MnO2 → Mn++ (as MnCO3) 8.9
NO−3 → NH+

4 6.15 -82
FeOOH → Fe++ (as FeCO3) -0.8

SO4 → HS− -3.75 -25
CO2 → CH4 -4.13 -23

Table 7.1: Several oxidants used as electron-acceptors in metabolism, shown with
standard redox intensity. Energy released per equivalent of carbohydrate is shown for
those oxidants used in carbohydrate metabolism. Values are all at pH=7 in water,
from [86].

If we consider the standard redox intensity, pεo, of each of these metabolites

(Table 7.1), the process that forms this progression of layers becomes clear. Oxygen

has the lowest redox potential in this group, and therefore provides the most

energy when used as an electron acceptor in metabolism. An aerobic community

exists near the boundary of both of these systems, and the oxygen is quickly

consumed by these organisms. After the oxygen is gone, however, life persists by

using progressively less-energetic metabolites: where aerobic respiration releases 125

kJ/equiv. of carbohydrate, nitrate reduction produces 119kJ/equiv.: more than

sufficient for survival, but sub-optimal as compared to aerobic respiration. In some

cases, subsequent layers use the byproducts of the layers above — as when sulfide

oxidizers use oxygen and HS− and produce sulfate (100 kJ/equiv.), which is then

used in a lower layer of sulfate reduction to oxidize organic carbon (25 kJ/equiv.).

This pairing of layers results in an increase and then subsequent decrease with depth

of the concentration of SO2−
4 , which can be seen in Figure 7.1. Similar processes

recycle manganese and iron. The biological strata responsible for these profiles may be

communities of different species, or the same species expressing different phenotypes,

as some organisms possess the genetic code necessary to survive in more than one

chemical environment.

Selection enforces the ordering of the layers. When oxygen is available in

abundance, it is maladaptive to manufacture the proteins necessary for the respiration
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of nitrate; relative to consuming more oxygen, this is a waste of energy. So, aerobic

specialists will consume the available oxygen. Specialists which respire other oxidants

will be unable to compete with the aerobes and will be forced to occupy a position

further from the boundary. An analogous phenomenon occurs for each subsequent

trophic layer.

While abiotic processes can certainly form layered structures (e.g., stromatolites),

the spatial positioning of the layers in redox order indicates that metabolism is active

and that selection is enforcing structure. The spatial ordering of chemical strata in

redox sequence may therefore qualify as a phenomenon diagnostic for the presence of

life. Like the monomer abundance distribution biosignature, the LTRB is agnostic of

life’s particular biochemistry: the energy available from any particular redox coupling

is dictated by thermodynamics. The ordering of preferred resources would be the same

for any life form regardless of the chemical nature of its cellular machinery.

This phenomenon can be demonstrated in digital life forms. Avida allows the

researcher to specify a number of virtual “resources,” the consumption of which

can be tied to successful completion of mathematical tasks. Organisms are only

rewarded for completing a task if the appropriate resource is available in sufficient

quantity. Evolving the code to complete such a task is seen as analogous to evolving

the proteins necessary for metabolism of an environmental resource. Others have

demonstrated in Avida that the presence of multiple resources leads to speciation

when resources are available at depletable levels [15]. Generalists cannot compete

with groups of specialists, because they spread their resources too thinly. Smaller

groups can consume different resources, thereby more successfully exploiting limited

niches. Resources in Avida are, historically, “global,” meaning that the same reservoir

of resources is available to all cells in the population.

In order to demonstrate the evolution of layered structure, Avida must be

reprogrammed to allow resources to take on spatial position within the plane on

which avidians live. Resources should be able to flow and diffuse across the grid, and

have discrete loci of inflow and outflow. When organisms consume resources, they

should consume them locally. Some initial development into this capability has been



104

performed by the Avida development team, but the modelled diffusion physics and

software stability are not yet satisfactory. Nonetheless, I have performed some early

experimentation modelling the evolution of the LTRB in Avida using these tools.

7.1 Experimental setup

To demonstrate layered communities, I create an Avida environment in which four

abstract resources, A, B, C, and D are associated with four boolean tasks: AND,

ANDN, ORN, and OR. An avidian which successfully computes the AND task will

consume a unit of resource A from its cell on the grid, and be rewarded with an

additive bonus to its merit of 1000. (Merit is an avidian’s “score”; CPU time is

awarded to the organism in proportion to its merit). If there is less than 1.0 units of

resource available, then no resource is consumed and no merit reward is given; this is

considered equivalent to the manufacture of metabolic enzymes when no appropriate

food source is available. The subsequent three resources B, C, and D provide additive

merit bonuses of 100, 10, and 1 when the tasks associated with them are completed.

Avidians are allowed to complete each task as many as three times per life cycle.

I created a rectangular grid, 20 by 100 cells, and provided a continuous inflow

of all four resources into just the top row of 20 cells. Several experiments were

performed with the amount of inflow titrated logarithmically between 10 units per

update and 1000 units per update. (An update is a unit of time in Avida; replication

of an avidian typically takes a few updates). I provided a continuous outflow of all

resources, 1.0 units per update, from the bottom row of cells. I also included a fifth,

unmetabolizable, resource as a control to show the profile a resource assumes as a

result of the inflow, outflow, and diffision parameters. If a resource is not used by

the avidians, we would expect its profile to match the control. Initial organisms

were generalists, evolved prior to the experiment to include the genetic material

necessary to compute all four tasks. I measured the average concentration of the

four resources in each row of the grid to see if differential consumption, indicating

a layered community structure, had appeared. I also disabled a standard Avida
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Figure 7.2: A schematic of the Avida environment used to evolve layered community
structure. Avidians live on a grid through which resources may diffuse. Four different
resources flow continuously into the top row of the grid. The system is initialized
with a single genotype that can metabolize all four resources. Selective pressure
(optimization for short genomes) is expected to drive the system toward speciation
in a layered structure, with upper layers preferring the more energetic resources.

option, “Set base merit proportional to length,” which normally allows avidians to

increase their genome length without penalty. By disabling it, all organisms are given

the same amount of time to reproduce, regardless of length. This provides a strong

fitness advantage to genomes that can successfully reduce their length, and therefore,

a strong incentive for the organisms to jettison unnecessary genetic material.

7.2 Results

Initial results have been promising. Figure 7.3 shows the concentration profiles of

four resources in populations that were evolved in environments with five different

resource inflow rates. In all five experiments, resource D is not metabolized at all.
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I assume that its metabolic potential is simply too low to make the burden of the

genetic code necessary to compute the associated task worthwhile.

Similar to the results of [15], I find that intermediate levels of resource availability

are necessary for formation of stable, diverse communitites. At the lowest level of

inflow (10 units of resource per update), there are insufficient available resources for

organisms to maintain metabolic genes at all. Any attempt to maintain or evolve

metabolic genes results in quick depletion of the local resources, leaving those cells

carrying useless genetic material. In that experiment, all the resources remain largely

untouched. At a slightly higher level of inflow (32 units per update), barely enough

resource is available for the organisms to maintain a metabolic gene. In this particular

case, they metabolize resource C, consuming all of it in the first three or four rows.

I believe that the use of C in particular is precisely because it is the least-energetic

of the resources, providing the smallest benefit. If the organisms were to metabolize

A or B, they would speed up so much relative to the inflow that they would deplete

the resource too quickly. Resource C provides a small bonus that keeps metabolism

within the limits where resources will remain available.

When I increase resource inflow to higher levels, we begin to see true layered

communities form. At 100 units per update, An active A-metabolizing layer consumes

all of that resource within the first four or five rows. A B-metabolizing layer consumes

that resource between rows four and ten, and a C-metabolizing resource consumes

that resource in approximately rows 10 through 36. That each subsequent layer

is slightly deeper than the previous one is an expected result: since the resources

provide progressively smaller metabolic benefits, the cell cycle and therefore, resource

utilization of each layer is slower, allowing for more organisms to share the resource.

When inflow is increased to 316 per update, there is little substantive change to the

community except that the B and C layers are thicker. The A layer is actually thinner,

consuming all of the available A in the top two rows. This probably indicates negative

frequency-dependent selection among A-metabolizers in the 100 units per update case.

There is not actually enough of resource A to maintain a robust population at that

rapid metabolic rate, so the first few layers are a mix of A- and B-metabolizers. Above
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Figure 7.3: Layered consumption of resources in Avida. Profiles of resource
concentration in stable, equilibrated evolved populations are shown for five different
inflow rates.
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a certain threshhold, increases in the population of A-metabolizers reduce the fitness

of that genotype as a result of competition for scarce resources.

At the highest tested inflow rate of 1000 units per update, an abundance

of resource A is available throughout the population, and all genotypes present

metabolize that resource and no other.

In the future of this project, I plan to study the phenomenon in detail, similar to

the exhaustive analysis of the MADB presented in Chapters 2 and 3. Parameters of

the LTRB I plan to test include:

1. The dependence of layered speciation on the difference in metabolic potential

of resources: how much more energetic does A have to be than B before the

community will stratify?

2. The dependence on the metabolic cost of genome length: is a penalty for

carrying extra genomic material necessary to cause avidians to specialize vie

the jettisoning of genes, or will genetic drift alone eliminate unused genes in

layers where some resources are unavailable? Can the metabolic cost of genome

length be reduced to the point where adaptive radiation will occur starting from

a specialist, even if some genome length increase is required?

3. Time dependence: if the inflow rate is varying in time, will organisms maintain

the genes for metabolizing multiple substrates?

4. Byproducts: demonstrations of lower layers consuming the outputs of upper-

layer metabolism.
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Description of Electronic Files
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The electronic edition of this thesis includes a number of auxiliary digital files,

listed and described below. If you are reading the paper edition of this thesis, you

will need to access the Caltech electronic thesis repository at http://etd.caltech.edu/

if you wish to retrieve any of these files.

• biosignature movie 1.mpg (987 KB) — An MPEG format movie showing

the development of the MAB in Avida as described in 2. This movie shows the

relative abundances of 28 Avida instructions in a single typical evolutionary run.

This run was seeded with the standard progenitor (listed in Table 2.4.2.1) and

run for 200,000 updates with copy mutation probability µ=0.01 randomizing

mutations per execution of the COPY instruction. The red curve shows the

initial distribution of instructions present in the progenitor population, while

the blue curve shows the actual distribution of instructions at any particular

point in time. The distribution was sampled every 100 updates. The run

illustrated here is one of twenty-five runs used to generate the ”0.01” curve in

Figure 2.4a.

• biosignature movie 2.mpg (1.3 MB) — An MPEG-format movie that

illustrates the experiment shown in Figure 2.5. Figure 2.5. shows how the

concentration of six instructions varies over time as the point mutation rate is

ramped down from lethal to non-lethal levels and back again in an environment

continually re-seeded with viable organisms. This movie shows the distribution

curve of all 28 instructions as it varies over the same time period.

As can be clearly seen in the animation, as long as the point mutation

rate remains too high, the organisms cannot survive and the distribution of

instructions in the environment is even, reflecting the random nature of the

mutation function being continually applied. Once the environment becomes

nonlethal, a population explosion quickly establishes a biosignature. As the

population adapts to its environment the pattern rapidly comes to match the

familiar “adapted” biosignature shown in Figure 2.4.

Once the point mutation rate is again increased to inhospitable levels a
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population crash ensues and the biosignature disappears as abiotic processes

again dominate.

• LTRB movie.mpg (915 KB) — An MPEG-format movie demonstrating the

development of the LTRB effect as described in Chapter 7. Three columns show

two-dimensional maps of the concentration of resources A, B, and C in a narrow

column containing an avida population, while a fourth plots a vertical profile of

the average concentration of the three resources. As the population speciates,

the most valuable resource, A, is rapidly consumed in the uppermost layers,

while the less-energetic resources diffuse down to lower layers containing other

species.

• avida 1.6ED1.tgz (883 KB) — A zipped tar archive including both the source

code and an x86 Linux binary of Avida version 1.6ED1, the customized version

of Avida used to generate the results described in Chapter 2.

• avida 1.6ED2.tgz (1.9 MB) — A zipped tar archive including both the source

code and an x86 Linux binary of Avida version 1.6ED2, the customized version

of Avida used to generate the results described in Chapters 3 and 4.

• avida 2.0b7.tgz (3.3 MB) — A zipped tar archive including both the source

code and an x86 Linux binary of Avida version 2.0b7. This standard release

version of Avida was used to generate the results described in Chapter 7.

• config chapter2A.tgz (8 KB) — A zipped tar archive including all of the

configuration files necessary for reproducing the Avida experiments described

in Figure 2.4.

• config chapter2B.tgz (7 KB) — A zipped tar archive including all of the

configuration files necessary for reproducing the Avida experiments described

in Figure 2.5.

• config chapter3.tgz (11 KB) — A zipped tar archive including all of the

configuration files necessary for reproducing the Avida experiments described
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in Chapter 3.

• config chapter4.tgz (12 KB) — A zipped tar archive including all of the

configuration files necessary for reproducing the Avida experiments described

in Chapter 4.

• AminoAcids.xls (1.1 MB) — A Microsoft Excel workbook containing the

collected amino acid data used in Chapters 2, 5, and 6. This is the most recent

version and includes more recent data than that used in Chapter 5.

• CarboxylicAcids.xls (262 KB) — A Microsoft Excel workbook containing the

collected carboxylic acid data used in Chapter 2.
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