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Abstract

Let F be a number field and ρ : Gal(F/F ) → GLn(C) be a continuous, irreducible repre-

sentation. Artin conjectured that if ρ is non-trivial, then the associated L-function L(s, ρ)

is entire. Langlands generalized this conjecture by asserting that there should be a cuspidal

automorphic representation π of GLn(AF ) such that L(s, ρ) and L(s, π) agree at almost all

places. If such a π exists, ρ is said to be modular. Langlands’s conjecture does indeed imply

Artin’s conjecture.

We consider in the thesis the case where ρ is a four-dimensional representation of solvable

type, i.e., the image of ρ is solvable. We study what is known about Artin’s and Langlands’s

conjectures for ρ. Artin’s conjecture is already known in the imprimitive cases, but not in

the primitive ones. We show in two new cases, one primitive and one monomial, that ρ is

modular; the former case yields new instances of Artin’s conjecture. We show that there

are only two other primitive cases where one does not know Langlands’s conjecture for ρ,

and that these cases are symplectic and would follow from certain instances of non-normal

quintic base change for GL4. Our new monomial case is non-essentially-self-dual. In fact

we show that if ρ is monomial and essentially self-dual, then it is modular.

We have two other small results for representations in other dimensions. First, if ρ is

primitive and three dimensional, then in certain cases we show that the associated eight-

dimensional representation Ad(ρ) is modular. Second, we show that ρ of dimension n having

supersolvable image is modular if n = 2j or n = 2j · 3 for some j.

Lastly, we include in an appendix a proof of Ramakrishnan that if ρ corresponds to π

as above, then the complete L-functions for ρ and π are equal as Euler products over Q.

More precisely, L(s, ρv) = L(s, πv) at every finite place, and
∏

v|∞ L(s, ρv) =
∏

v|∞ L(s, πv).
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Chapter 1

Introduction

Let F be a number field and let ρ be an irreducible continuous representation of the absolute

Galois group GF of F into GLn(C). Recall that there is associated to ρ an Artin L-

function L(s, ρ) which is meromorphic on the whole complex plane. When ρ is the trivial

representation, L(s, ρ) = ζF (s) is the Dedekind zeta function of F , which has a simple

pole at s = 1 and is analytic elsewhere. Artin conjectured that if ρ is not the trivial

representation, then L(s, ρ) is entire. This conjecture was proved for n = 1 by associating

continuous characters of GF to Hecke characters over F , which were known to have entire

L-functions.

Langlands generalized this idea and further conjectured that, for any n, ρ corresponds

to a cuspidal automorphic representation π of GLn(AF ). If there exists such a π, then ρ is

said to be modular. This conjecture is known as the strong Artin conjecture or Langlands’s

modularity conjecture. Because L(s, π) is entire, the strong Artin conjecture does indeed

imply the Artin conjecture. Examples of when Artin’s conjecture is known but the strong

Artin conjecture is not will be given below.

In Section 3.3.4, we summarize several results about these conjectures. Progress has

primarily been made for representations of solvable type, i.e., when the image of ρ is solvable.

Some cases where ρ of solvable type is known to be modular are: when n = 2 ([La2], [Tu]);

when n = 3 and ρ is induced ([JPSS]); when n = 3 and ρ is the twist of a symmetric square

([GeJ]); or when n = 4 and the image of ρ is orthogonal ([Ra2]). Also in the non-solvable

case, certain two-dimensional icosahedral representations are known to be modular (for

example, see [BDST], [Ta], [Goi], [Bu], [KW], [JM], [BS]).

We consider irreducible Galois representations ρ : GF → GL4(C) of solvable type. The
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main goal of the thesis is to classify such representations ρ by their projective images into

three categories:

(i) representations ρ which can be proved to be modular;

(ii) representations ρ for which we can prove the Artin but not the strong Artin conjecture;

(iii) representations ρ for which we cannot prove Artin’s conjecture.

Modularity in case (iii) will follow if certain instances of functoriality can be proved.

Let ρ denote the corresponding projective representation and G = Im(ρ). Then G is a

finite subgroup of PGL4(C).

Artin’s conjecture is known for ρ of solvable type unless ρ is primitive, and for the

imprimitive cases modularity is known unless ρ is induced by a character of a quartic

extension K/F with no intermediate subfields. The classification for projective images of

primitive four-dimensional representations is known. A consequence of this classification is

that for primitive ρ with solvable image, ρ maps into either GO4(C) or GSp4(C). In the

former case, ρ is known to be modular by [Ra2]. In the latter, there are three possibilities

for G: E24 · C5, E24 ·D10 and E24 · F20. Here A · B denotes a group extension of B by A

(which in these cases are actually semidirect products), E24 denotes the elementary abelian

group of order 24, C5 is cyclic, D10 is dihedral and F20 is Frobenius of order 20. We give a

proof of these facts in Chapter 5.

Our first result is the following

Theorem 6.1. Suppose ρ : GF → GSp4(C) ⊆ GL4(C) has projective image G = E24 · C5.

Then ρ is modular.

This appeared in [Ma1]. Consequently, we obtain new instances of Artin’s conjecture.

We also show that in the other two cases, the modularity of ρ would follow from certain

instances of (solvable) non-normal quintic base change for GL4. Thus the two cases where

G ' E24 ·D10 and G ' E24 · F20 are the only ones in category (iii) above.

In Chapter 7, we consider the case where ρ is imprimitive (of solvable type still). Then

ρ is either in category (i) or (ii). If ρ is induced from a normal extension, then it is modular.

So it suffices to assume ρ is induced from a character of a non-normal quartic extension

with no intermediate subfields. We give some criteria about the projective images of such
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representations and show that if ρ is essentially self-dual, then it is modular. One possible

non-essentially-self-dual case occurs when G is an extension of A4 by the Klein group V4.

In this case, we call ρ hypertetrahedral and we are able to prove the following

Theorem 7.1. Let F be a number field and ρ a hypertetrahedral representation of GF .

Then ρ is modular. There are infinitely many such representations with projective image

V4 ·A4 which are not essentially self-dual.

This gives new examples of non-normal induction and new examples of modular represen-

tations. These results are also contained in [Ma2].

Let us say a few words about how we prove these specific cases of modularity. First

we briefly recall the ideas of Langlands’s proof of the tetrahedral case. See Chapter 3 for

definitions of additional notation. Let σ : GF → GL2(C) be a tetrahedral representation.

Then there is a normal cubic extension K/F such that σK is modular. Say σK ↔ Π. There

are three representations π0, π1, π2 of GL2(AF ) whose base change πi,K to K is Π. One of

these should actually correspond to σ. There is a unique π = πi whose central character

matches with the determinant of σ. Then one proves Sym2(σ) ↔ Sym2(π). This combined

with the correspondence σK ↔ πK allows one to conclude that, at any unramified place v,

either σv ↔ πv or σ(Frv) ∈ A4 has order divisible by 6. But A4 has no elements of order 6,

so in fact σ ↔ π.

In the proofs of Theorems 6.1 and 7.1 we will similarly have an normal cyclic extension

K/F , which will either be cubic or quintic, such that ρK is modular. Then there will be

either three or five πi’s such that ρK ↔ πi,K . Among these πi’s there is a unique one,

π, such that Λ2(ρ) ↔ Λ2(π). Then one concludes that at any unramified place v either

ρv ↔ πv or ρ(Frv) ∈ G has order divisible by 6 or 10. But our projective group does not

have any elements of order 6 or 10, so indeed ρ↔ π. Chapter 4 presents more formally our

method of proof.

We also remark that the cases G ' E24 · D10 and G ' E24 · F20 are analogous to

Tunnell’s octahedral case. Tunnell matched up an octahedral Galois representation σ to an

automorphic represenation π such that σK ↔ πK for two extensions K, one normal and

quadratic, the other non-normal and cubic. The latter part relied on the non-normal cubic

base change of Jacquet, Piatetski-Shapiro and Shalika [JPSS]. Then, using the fact that S4

has no elements of order 6, Tunnell concluded that σ ↔ π.
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If ρ is such that G ' E24 ·D10 or G ' E24 · F20, then knowing certain instances of non-

normal quintic base change would allow us to demonstrate the existence of an automorphic

representation π such that ρK ↔ πK for both a normal quadratic extension K/F and a

non-normal quintic extension K/F . As G has no elements of order 10, we could conclude

that ρ↔ π.

One can also ask what can be said if ρ is reducible (of solvable type). The interest-

ing cases are when ρ = χ ⊕ τ , where χ is a character and τ is a primitive, irreducible

three-dimensional representation. In Chapter 8.1, we recall the classification for such three-

dimensional representations τ . There are essentially three cases, all of which are non-

essentially-self-dual. Neither the Artin nor the strong Artin conjecture are known for these

τ , but we show in two of these cases that the associated eight-dimensional self-dual repre-

sentation Ad(τ) is modular.

In Chapter 9, using a direct application of automorphic induction, we deduce that if ρ

is of dimension 2j or 2j · 3 and ρ has supersolvable image, then ρ is modular.

Chapter 2 reviews some definitions and results on groups and representations which we

will need. Chapter 3 covers relevant material on Galois and automorphic representations.

In Appendix α, we give a proof of a result related to the strong Artin conjecture: if

L(s, ρv) = L(s, πv) at almost all places v, then L(s, ρv) = L(s, πv) for all finite places v and∏
v|∞ L(s, ρv) =

∏
v|∞ L(s, πv). This result, shown to us by Ramakrishnan, is not (to our

knowledge) in the current literature.

Many elementary properties of specific finite groups were computed in the computer

algebra package [GAP]. In Appendix B, we give the GAP notation for many of the finite

groups appearing in the text.
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Chapter 2

Preliminaries on Linear and Finite
Groups

2.1 Linear Groups

2.1.1 Classical Terminology

Definition 2.1. Let x ∈ GLn(C). If detx = 1, we will say x is unimodular. Moreover,

any subgroup of GLn(C) comprising only unimodular elements will be called unimodular.1

The group of all unimodular elements of GLn(C) is denoted SLn(C).

For a matrix group G, Diag(G) will denote the subgroup of diagonal matrices contained

in G.

Definition 2.2. Let G ≤ GLn(C). If G is isomorphic to a subgroup of GLr(C)×GLn−r(C)

for some 1 ≤ r ≤ n − 1, then we will say G is reducible. Otherwise, G is said to be

irreducible.

Definition 2.3. Let G ≤ GLn(C) be irreducible. Suppose Cn decomposes into subspaces

V1 ⊕ · · · ⊕ Vm, m > 1, such that G acts (transitively) on set of subspaces {Vi}. Then G is

said to be imprimitive. Otherwise, G is primitive.

Observe that the condition that G is irreducible automatically ensures that, if G acts

on a set of subspaces {Vi} where Cn = V1 ⊕ · · · ⊕ Vm, G acts transitively of {Vi}.

Let ρ be the standard representation of a finite groupG ≤ GLn(C). ThenG is irreducible

(resp. primitive) if and only if ρ is irreducible (resp. primitive).
1Note our usage of the term “unimodular group” differs from that in the study of topological groups, i.e.,

we do not mean that it has a bi-invariant Haar measure.
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2.1.2 Orthogonal and Symplectic Groups

Let V be an n-dimensional vector space over C and let f : V ×V → C be a non-degenerate

bilinear form on V . Recall that, after fixing a basis for V , every bilinear form f can be

associated to a matrix B by the defining equation f(x, y) = txBy. We say f is orthogonal

if f is symmetric, i.e., f(x, y) = f(y, x) for all x, y ∈ V ; and we say f is symplectic if f is

skew symmetric, i.e., f(x, y) = −f(y, x) for all x, y ∈ V . Let O(f) be the automorphism

group of this space (V, f), i.e.,

O(f) = {g ∈ GL(V ) : f(g(x), g(y)) = f(x, y) for all x, y ∈ V } . (2.1)

Similarly we can define the similitude group GO(V, f) by

GO(f) = {g ∈ GL(V ) : f(g(x), g(y)) = λ(g)f(x, y) for all x, y ∈ V and some λ(g) ∈ C} .

(2.2)

The orthogonal and symplectic (similitude) groups we consider are subgroups of GLn(C)

which respectively preserve orthogonal and symplectic forms. Since all orthogonal forms are

equivalent over C, and similarly for symplectic forms (which only occur when n is even), we

will make an explicit choice of orthogonal and symplectic forms and define the orthogonal

and symplectic groups in terms of corresponding matrices.

Definition 2.4. The orthogonal group On(C) =
{
x ∈ GLn(C) : txx = I

}
. The orthogonal

similitude group GOn(C) =
{
x ∈ GLn(C) : txx = λI, λ ∈ C

}
.

Here our orthogonal form is just the usual one, which in matrix representation is just

the identity.

Consider the symplectic form given by the 2m× 2m matrix,

J =

 0 Im

−Im 0

 . (2.3)

Definition 2.5. The symplectic group Sp2m(C) =
{
x ∈ GL2m(C) : txJx = J

}
. The sym-

plectic similitude group GSp2m(C) =
{
x ∈ GL2m(C) : txJx = λJ, λ ∈ C

}
.

Note that if we had chosen different forms, the corresponding orthogonal and symplectic

groups would just be conjugates of the ones we defined.
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Definition 2.6. Let G ≤ GLn(C). We will say that G is orthogonal (resp., symplectic) if

G is conjugate to a subgroup of On(C) (resp., Spn(C)), and that G is of orthogonal (resp.,

symplectic) type if G is conjugate to a subgroup of GOn(C) (resp., GSpn(C)).

2.2 Finite-Dimensional Representations

By character, we will always mean a linear character, i.e., a one-dimensional representation,

unless we explicitly say the character of a representation.

Let G be a group and ρ : G→ GLn(C) be a linear representation. Denote the image of

ρ by Im(ρ). Let ρ be the composition of ρ with the canonical projection from GLn(C) to

PGLn(C).

G
ρ //

ρ ##HH
HH

HH
HH

HH
GLn(C)

��
PGLn(C)

Then ρ is the projective representation associated to ρ and the image Im(ρ) of ρ is called

the projective image of ρ. We will say ρ is of solvable type if the image of ρ is solvable. This

is evidently equivalent to the image of ρ being solvable.

Let H ⊆ G. Then ρH denotes the restriction of ρ to H. If σ is a representation of H,

then IndG
Hσ denotes the induction of σ from H to G.

2.2.1 Self-Dual Representations

Let 〈 , 〉 be a (non-degenerate) orthogonal or symplectic form on V = Cn. The contragre-

dient of ρ with respect to 〈 , 〉 is the unique representation which satisfies

〈ρ(g)v, ρ̌(g)w〉 = 〈v, w〉 ∀g ∈ G, ∀v, w ∈ V. (2.4)

While the contragredient depends upon the form chosen, it is independent of the choice

of form up to equivalence. For instance, ρ̌ is equivalent to the representation of G given

by g 7→ tρ(g−1), which is the contragredient of ρ with respect to the standard orthogonal

form on Cn. Hence we will simply speak of the contragredient representation, which is

well-defined up to equivalence.

We say that ρ is self-dual if ρ̌ ' ρ and that ρ is essentially self-dual if ρ̌ ' ρ⊗χ for some
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character χ of G. In particular, if ρ ' ρ̌⊗χ, then there is an orthogonal or symplectic form

〈 , 〉 (depending on the isomorphism between ρ and ρ̌⊗ χ) such that

〈ρ(g)v, ρ(g)w〉 = χ(g)〈v, w〉 ∀g ∈ G, ∀v, w ∈ V. (2.5)

In addition, ρ is said to be orthogonal (resp. symplectic, of orthogonal type, of symplectic

type) if Im(ρ) is.

Recall that ρ ⊗ ρ = Sym2(ρ) ⊗ Λ2(ρ). We can relate the notions of being self-dual,

orthogonal and symplectic as below.

Proposition 2.1. The representation ρ is self-dual if and only if ρ⊗ ρ contains the trivial

character, and is essentially self-dual if and only if ρ ⊗ ρ contains a character. Further,

ρ is of orthogonal (resp. symplectic) type if and only if Sym2(ρ) (resp. Λ2(ρ)) contains

a character. If Sym2(ρ) (resp., Λ2(ρ)) contains the trivial character, then ρ is actually

orthogonal (resp. symplectic).

The endomorphism ring End(ρ) is isomorphic to the (self-dual) representation ρ⊗ ρ̌. In

particular, ρ⊗ ρ̌ always contains the trivial representation. By Schur’s lemma, we have the

following useful characterization.

Proposition 2.2. The representation ρ⊗ ρ̌ contains the trivial representation with multi-

plicity one if and only if ρ is irreducible.

2.2.2 Clifford’s Theorem

Let V be a representation of a group G. We will say a subspace W ⊆ V is an eigenspace

for G with character λ if there exists a character λ : G → C× such that g(w) = λ(g)w for

all w ∈W and all g ∈ G.

Theorem 2.1. (Clifford) Let (ρ, V ) be a finite-dimensional irreducible representation of G

and H E G.

(i) ρH decomposes into irreducible representations of equal dimension, all of which are

isomorphic if ρ is primitive.

(ii) Suppose that V = ⊕Wi, where the Wi are eigenspaces for H with distinct charac-

ters. Then G/H permutes the Wi’s.
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Note that what is typically referred to as “Clifford’s theorem” is a more general and

detailed statement about the decomposition of representations restricted to subgroups and

does not usually include the specific result in (i) for when ρ is primitive. However this is a

corollary of the usual Clifford’s theorem and just what we want. See, for example, [As] or

[Gor].

2.3 A Little Finite Group Theory

Now we recall some standard definitions and results on finite groups. For proofs, see [As]

or [Gor].

Let G be a finite group. Denote by Z(G) its center, Aut(G) its automorphism group,

and by [G,G] its commutator. For S ⊆ G, let CG(S) denote the centralizer of S in G. For

a prime number p, we write Sylp(G) for some Sylow p-subgroup of G.

Definition 2.7. Suppose H E G and Q = G/H, i.e., we have a short exact sequence

1 −→ H −→ G −→ Q −→ 1. (2.6)

Then we say that G is an extension of Q by H and write G = H ·Q.

Definition 2.8. Let G and H be finite groups with an injective homomorphism of centers

φ : Z(G) ↪→ Z(H). Let M = 〈(z, φ(z)) : z ∈ Z(G)〉. The group (G × H)/M , denoted by

G ◦H or H ◦G, is called a central product of G and H with identified centers.

We remark that in general, given two groups G and H, there may be many central

products G◦H. In the case that Z = Z(G) = Z(H) with Aut(Z) contained in both Aut(G)

and Aut(H), the central product G◦H is uniquely defined. More generally, one can uniquely

define a central product G1 ◦G2 ◦ · · · ◦Gr if Z(G1) = Z(Gi) and Aut(Z(Gi)) ⊆ Aut(Gi) for

all i. In this case, taking central products is associative.

We also need to define the following 2-groups of order 2m, each with a cyclic subgroup

of index 2:

—the dihedral group D2m = 〈x, y|x2m−1
= y2 = 1, yxy = x−1〉 for m ≥ 2;

—the semidihedral group SD2m = 〈x, y|x2m−1
= y2 = 1, yxy = x2m−2−1〉 for m ≥ 4; and

—the quaternion group Q2m = 〈x, y|x2m−1
= y4 = 1, yxy = x−1〉/〈x2m−2

y2〉 for m ≥ 4.
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2.3.1 The Fitting and Frattini Subgroups

Recall that a subgroup H of G is called characteristic if H is invariant under Aut(G). Note

that if H E G and K is a characteristic subgroup of H, then K E G.

Definition 2.9. The Fitting subgroup of G is the maximal normal nilpotent subgroup of

G, and is denoted by F (G).

We remark that such a unique subgroup exists because the product of two normal

nilpotent subgroups is again normal and nilpotent. The uniqueness evidently makes F (G)

a characteristic subgroup of G.

Proposition 2.3. If G is solvable, then CG(F (G)) ≤ F (G).

Definition 2.10. The Frattini subgroup Φ(G) of G is the intersection of all maximal

subgroups of G.

Note that Φ(G) is also a characteristic subgroup of G.

Proposition 2.4. Let P be a p-group. Then Φ(P ) is the smallest normal subgroup of P

such that P/Φ(P ) is elementary abelian.

2.3.2 Extraspecial Groups

Definition 2.11. Let P be a p-group. We say P is extraspecial if [P, P ] = Φ(P ) = Z(P )

and Z(P ) is cyclic.

For an extraspecial p-group P , it follows that |Z(P )| = p and |P | = p2r+1 for some r.

Let Qr
8D

s
8 denote the central product of r copies of Q8 and s copies of D8 with all centers

identified. There is a unique such group for given r, s. This is an extraspecial 2-group of

order 22(r+s)+1. As D8 ◦D8 = Q8 ◦Q8, we see that Qr
8D

s
8 = Qr+s−1

8 D8 or Qr+s
8 depending

on whether s is odd or even. In fact any extraspecial 2-group of order 22r+1 is isomorphic

to either Qr−1
8 D8 or Qr

8 for some r.

For any p-group P , the irreducible representations of P are monomial (i.e., induced from

characters), and therefore have p-power dimension. For extraspecial p-groups, we have the

following

Proposition 2.5. Let P be an extraspecial group of order p2r+1. Then all faithful irreducible

complex representations of P are of degree pr.
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Proposition 2.6. (Hall) A p-group P with no noncyclic characteristic abelian subgroups

is a central product E ◦ R of two groups E and R, where E is trivial or extraspecial and

either R is cyclic or R = D2m, SD2m or Q2m with m ≥ 4.
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Chapter 3

Preliminaries on Galois and
Automorphic Representations

This chapter reviews theory of Galois and automorphic representations, and in particular

the Artin and strong Artin (Langlands’s modularity) conjectures.

3.1 Galois Representations and Artin’s Conjecture

By a Galois representation, we will always mean a continuous, complex, finite-dimensional

representation of the absolute Galois group of a number field.

Let F be a number field and GF = Gal(F/F ) be its absolute Galois group. Let

ρ : GF → GLn(C)

be a Galois representation, continuous for the profinite topology on GF . Such a representa-

tion factors through a finite quotient Gal(L/F ). The field L cut out by ρ is L = F
ker ρ, i.e.,

the fixed field of ker ρ. Recall that ρ denotes the corresponding projective representation

into PGLn(C). Then the field L0 cut out by ρ is L0 = F
ker ρ.

For a Galois representation ρ, we denote induction and restriction by the corresponding

fields. Specifically if K ⊆ F ⊆ E are number fields, then ρE = ρGE
denotes the restriction

of ρ to GE and IndK
F ρ = IndGK

GF
ρ denotes the induction of ρ to GK .

When n = 1, then ρ is just a character χ. In fact, take any (possibly infinite order)

character χ of GF . Then χ factors through the abelianization Gab
F = GF /[GF , GF ]. Let

CF = F×\A×
F be the idèle class group of F . By class field theory, there is an isomorphism

called the Artin map from CF to Gab
F . There is a one-to-one correspondence between
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characters χ of GF and idèle class characters (or Hecke characters) χ̃ of CF . Hence we

may identify χ with χ̃. We will sometimes simply say that χ or χ̃ is a character of F . In

the case where χ is finite order and L is the field cut out by χ, then χ̃ factors through

NL/F (CL)\CF , where NL/F is the norm map from L to F . If χ = χ̃ is non-trivial, we say

it is an (idèle class) character of L/F .

Now let us return to the general setting. Artin associated to ρ an L-function L(s, ρ)

to study the primes of F . The Artin L-function generalizes the Dirichlet L-series and the

Riemann zeta function. Specifically, for <(s) > 1 we can define L(s, ρ) by an Euler product,

L(s, ρ) =
∏

v<∞
Lv(s, ρ), (3.1)

where the product is over all finite places v of F and the local L-factors Lv(s, ρ) are given

as follows.

Let L be the field cut out by ρ and let w be a place of L above a finite place v. Denote

the localization of F at v by Fv and its ring of integers by OFv . Let Frv ∈ Gal(L/F ) denote

an element of the Frobenius conjugacy class at v, Iv the inertia group, and qv the size of the

residue field |OLw/OFv |. Let V be the representation space of ρ. Denote by V Iv the space

of inertial invariants, i.e., the subspace on which ρIv acts trivially. Then we may define the

local L-factors by

Lv(s, ρ) =
1

det
(
I − ρ(Frv)q−s

v |V Iv
) . (3.2)

For almost all v, we have V Iv = V , in which case we say that ρ is unramified at v, or simply

that v is unramified. At these places we just have

Lv(s, ρ) =
1

det
(
I − ρ(Frv)q−s

v

) . (3.3)

So defined, one can show that the Euler product (3.1) does indeed converge (in fact, abso-

lutely and uniformly in compact sets) in <(s) > 1.

Observe that if χ is a Dirichlet character, then L(s, χ) is in fact the Dirichlet L-series∑
n χ(n)n−s =

∏
p(1−χ(p)p−s)−1 associated to χ. If 1 is the trivial representation on GF ,

then L(s, 1) is the Dedekind zeta function
∑

a N(a)−s =
∏

p(1−N(p)−s)−1 attached to F .

When F = Q, L(s, 1) is just the Riemann zeta function
∑

n n
−s =

∏
p(1− p−s)−1.

Presently it will be convenient to view the local L-factors Lv(s, ρ) as L-functions L(s, ρv)
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of local representations. For any global or local field K, let WK denote the Weil group of K.

Recall that this is a dense subgroup of the absolute Galois group of K. Now take K = Fv

for some place v. Then WFv ⊆ Gal(Fv/Fv) embeds in GF = Gal(F/F ) non-canonically,

but the embeddings are conjugate. Fix one such embedding

i : WFv ↪→ GF .

We can define the local representation

ρv : WFv

i
↪→ GF

ρ→ GLn(C)

by ρv = ρ ◦ i. As the Frobenius Frv is contained in WFv , it makes sense to define the

L-function L(s, ρv) for ρv by

L(s, ρv) = Lv(s, ρ). (3.4)

Note that this local L-function depends only on ρ and v, not on the choice of the embedding

i. Hence we will hereafter suppress the choice of i.

One can also define L-factors at the infinite places. Let v be an infinite place of F .

Either Fv = R or Fv = C. Define ΓR(s) = π−s/2Γ(s/2) and ΓC(s) = 2(2π)−sΓ(s). If Fv = R

let n+ = 1
2(n+ tr ρ(Frv)) and n− = 1

2(n− tr ρ(Frv)). Then set

L(s, ρv) =

 ΓR(s)n+
ΓR(s)n− , if Fv = R

ΓC(s)n, if Fv = C.
(3.5)

One defines the completed Artin L-function to be

L∗(s, ρ) =
∏
v

L(s, ρv), (3.6)

where the product runs over all places v of F . We write L∞(s, ρ) for the product
∏

v|∞ L(s, ρv)

of local factors at the infinite places. Then

L∗(s, ρ) = L(s, ρ)L∞(s, ρ). (3.7)

Artin proved that L-functions are inductive, i.e., if ρ is induced from some representation
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σ of a subgroup, then L(s, ρ) = L(s, σ). For any one-dimensional representation ρ, there

exists by class field theory a Hecke character χ such that L(s, ρ) = L(s, χ). The Hecke

L-function L(s, χ) has a functional equation relating L(s, χ) to L(1− s, χ) of the form

γ(s, χ)L(s, χ) = WN
1
2
−sγ(1− s, χ)L(1− s, χ), (3.8)

where |W | = 1, N ∈ Z+ and γ(s, χ) is a product of Γ-functions. More precisely, W is the

“root number,” γ(s, χ) = L∞(s, ρ) and N = DnN(m) where D is the absolute value of the

discriminant of F , N is the absolute norm and m is the module of definition of χ (i.e., χ

is a primitive Größencharacter mod m). Hecke had proved that L(s, χ) is a meromorphic

function on all of C, which is in fact analytic for s ∈ C − {1}. Moreover, L(s, χ) has a

simple pole at s = 1 if χ is trivial and L(s, χ) is entire if χ is non-trivial.

This Artin-Hecke correspondence implied that, for monomial representations ρ (i.e.,

those induced from one-dimensional representations), L(s, ρ) is meromorphic on all of C

and entire unless ρ contains the trivial character. The functional equation (3.8) for L(s, χ)

gives a functional equation for L(s, ρ) of the form

L∞(s, ρ)L(s, ρ) = W (DnN(f))
1
2
−sL∞(1− s, ρ̌)L(1− s, ρ̌), (3.9)

i.e.,

L∗(s, ρ) = W (DnN(f))
1
2
−sL∗(1− s, ρ̌), (3.10)

where W ∈ S1 is the root number and f is the Artin conductor of ρ. Further, L-functions

are additive: L(s, ρ ⊕ σ) = L(s, ρ)L(s, σ). So we also get the above results for direct sums

of monomial representations.

Brauer then showed that the character of any Galois representation ρ is a Z-linear com-

bination of characters of monomial representations. Let us write ρ =
∑
miIndF

Ki
χi, where

mi ∈ Z. Then the L-function L(s, ρ) =
∏
L(s, χi)mi admits a meromorphic continuation

to the entire complex plane with a functional equation of the form (3.10) and has a pole at

s = 1 whose order is the number of times the trivial representation occurs in ρ. Whence we

arrive at
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Conjecture 3.1. (Artin) Let ρ be a Galois representation. Then L(s, ρ) is analytic in

C− {1}. In particular, L(s, ρ) is entire unless ρ contains the trivial character.

We remark that, by the additivity of L-functions, to prove Artin’s conjecture for ρ, it

suffices to prove it for all the irreducible constituents of ρ. By Proposition 2.2, we see that

L(s, ρ⊗ ρ̌) has a simple pole at s = 1 if and only if ρ is irreducible.

Knowing Artin’s conjecture for all ρ would give us information about the primes of

F . For instance, Artin’s conjecture has applications to bounding the error term in the

Chebotarev density theorem (see Section 8 of Chapter 2 in [MM] for more information).

Now suppose ρ : GF → GL2(C). Let ρ : GF → PGL2(C) be the composition of ρ with

the canonical projection from GL2(C) to PGL2(C). Let G = Im(ρ). Then G is a finite

subgroup of PGL2(C). The finite subgroups of PGL2(C) ' SO3(C) have been classified by

Klein, and there are five possibilties:

(1) G is cyclic;

(2) G is dihedral;

(3) G is tetrahedral (isomorphic to A4);

(4) G is octahedral (isomorphic to S4); or

(5) G is icosahedral (isomorphic to A5).

Accordingly, ρ is said to be cyclic, dihedral, tetrahedral, octahedral or icosahedral. In the

cyclic case ρ is reducible, and in the dihedral case ρ is monomial. Thus the first two cases

follow from the work of Artin, Brauer and Hecke.

The next major step in this case was accomplished by Robert Langlands in [La2]. Lang-

lands’s philosophy involves a vast generalization of abelian class field theory and Artin’s

conjecture. We will not delve deeply into the so-called Langlands program, but only discuss

Langlands’s modularity conjecture, which implies Artin’s conjecture.

3.2 Automorphic Representations and Langlands’s Modular-

ity Conjecture

Let F be a number field and AF be its ring of adèles, which is the restricted direct product∏′
v Fv over all places v of F with respect to {OFv}. Let G be an algebraic group over F .

Then G(AF ) is the restricted direct product
∏′

v G(Fv) with respect to {G(OFv)}. One can
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consider automorphic representations of G(AF ). We restrict ourselves to the case where

G = GLn. In this case, the L-group of G is just

LG = LG0 ×WF , (3.11)

where the connected component of the L-group is

LG0 = GLn(C). (3.12)

The Borel subgroup B is the subgroup of G comprising upper-triangular matrices. If

v is non-archimedean then the maximal compact subgroup Kv of G(Fv) = GLn(Fv) is

GLn(OFv); otherwise Kv = O(n) or U(n) according to whether Fv is R or C.

Let π be an automorphic representation of G(AF ), by which we mean an irreducible

unitary representation of G(AF ) occurring in the space of automorphic forms on G(AF ).

(Note that for n = 1, π is just a Hecke character.) Then π can be written as a restricted

tensor product ⊗′vπv over all places v. Each πv is a local irreducible admissible represen-

tation of G(Fv) such that, for almost all v, πv is unramified, i.e., the restriction of πv to

Kv contains the trivial representation. If πv is unramified, then sometimes we will just say

call v unramified (for π). At such a place, πv is induced from the Borel subgroup B(Fv) of

some tensor product µ1 ⊗ · · · ⊗ µn, where each µi is an unramified character of F×v . If v

is finite, let $ denote the uniformizer for Fv, i.e., a generator for the maximal prime ideal

in Fv. Then one can associate to an unramified πv the semisimple conjugacy class in LG0

represented by

A(πv) = diag(µ1($), . . . , µn($)). (3.13)

The eigenvalues of A(πv) are called the Satake parameters for πv. Here we may define the

local L-function

L(s, πv) =
1

det(I −A(πv)q−s
v )

. (3.14)

Let S be a finite set of places of F containing the archimedean places and the places at

which πv is ramified. Then we may formally define the incomplete automorphic L-function

by an Euler product,

LS(s, π) =
∏
v 6∈S

L(s, πv) (3.15)
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More generally, L(s, πv) can be defined at any place and then we can formally define the

complete automorphic L-function by

L(s, π) =
∏
v

L(s, πv). (3.16)

Denote the contragredient of π by π̌. Let D be the absolute value of the discriminant

of F . For cuspidal π, let fπ be the conductor of π and W (π) the root number. Godemont

and Jacquet showed the following

Theorem 3.1. ([GoJ] or [Ja]) Let π be an automorphic representation of GLn(AF ). Then

the Euler product L(s, π) converges in some right half-plane and L(s, π) meromorphically

continues to the whole complex plane with a functional equation of the form

L(s, π) = ε(s, π)L(1− s, π̌). (3.17)

The epsilon factor ε(s, π) is non-vanishing entire function, which is of the form

ε(s, π) = (DnN(fπ))
1
2
−sW (π) (3.18)

when π is cuspidal. Moreover, if π is non-trivial and cuspidal, then L(s, π) is entire.

Suppose π and π′ are automorphic representations of GLn(AF ). Then by the work of

many ([JS], [JPSS2], [Shah], [GS], [JS3], [CPS]) the Rankin-Selberg product L-function can

be defined by

L(s, π × π′) =
∏
v

L(s, πv × π′v), (3.19)

where at unramified finite places v, the local factor is defined by

L(s, πv × π′v) =
1

det(I − (A(πv)⊗A(π′v))q
−s
v )

. (3.20)

This Euler product for L(s, π × π′) converges absolutely in the right half-plane <(s) > 1,

meromorphically continues to the entire complex plane, is bounded in vertical strips, and

has a functional equation of the form

L(s, πv × π′v) = ε(s, π × π′)L(1− s, π̌ × π̌′). (3.21)
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The global ε-factor is given by an Euler product expansion

ε(s, π × π′) =
∏
v

ε(s, πv × π′v, ψv), (3.22)

where ψ is a non-trivial continuous additive character of AF which is trivial on F , and

the local ε-factors are those defined in [JPSS2], [JS3] and [CPS]; the nonarchimedean local

ε-factors are trivial whenever πv, π
′
v and ψv are unramified. Using Rankin-Selberg products,

Jacquet and Shalika [JS] showed that the Euler product for L(s, π) converges absolutely for

<(s) > 1.

Theorem 3.2. ([JS], [JPSS2], Appendix to [MW]) Let π (resp. π′) be a cuspidal automor-

phic representation of GLm(AF ) (resp. GLn(AF )). Then L(s, π × π′) is entire if and only

if π′ 6' π̌. The only poles of L(s, π × π̌) are simple poles at s = 0 and s = 1.

As a corollary to this theorem, we see that an isobaric representation π is cuspidal if

and only if L(s, π × π̌) has a simple pole at s = 1.

Theorem 3.3. ([La], [JS]) Let πi be an automorphic cuspidal representation of GLni(AF )

for 1 ≤ i ≤ r and set n = n1+n2+· · ·+nr. Then there exists an automorphic representation

π = π1 � π2 � · · ·� πr of GLn(AF ), unique up to equivalence, such that

L(s, πv) = L(s, π1,v)L(s, π2,v) · · ·L(s, πr,v), (3.23)

for all places v. Consequently, L(s, π) = L(s, π1)L(s, π2) · · ·L(s, πr).

Such a sum π1 �π2 � · · ·�πr is called an isobaric sum. An automorphic representation

is called isobaric if it can be written as a (finite) isobaric sum of cuspidal representations.

The decomposition of an isobaric representation into cuspidal components is unique.

Theorem 3.4. (Strong Multiplicity One [JS]) Let π and π′ be isobaric automorphic repre-

sentations of GLn(AF ). If πv ' π′v at almost all places, then in fact π ' π′.

Now we state the Langlands modularity conjecture, also called the strong Artin conjec-

ture.

Conjecture 3.2. Let ρ : GF → GLn(C) be a continuous Galois representation. Then there

exists an isobaric automorphic representation π of GLn(AF ) such that L(s, ρv) = L(s, πv)

for almost all places v of F .
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If such a π exists, we will say that ρ is modular, or that ρ corresponds to π and write

ρ ↔ π. Note that π is unique by Strong Multiplicity One. Whenever L(s, ρv) = L(s, πv),

we say the local representations ρv and πv correspond, and we write ρv ↔ πv. The afore-

mentioned corollary to Theorem 3.2 tells us that if ρ is irreducible, then π is cuspidal (cf.

Proposition 2.2).

The isobaric sum is the automorphic analogue of the direct sum of Galois representations

in the sense that if ρi ↔ πi, 1 ≤ i ≤ r, then ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρr ↔ π1 � π2 � · · · � πr by

Theorem 3.3. Thus it suffices to prove modularity for irreducible ρ. Now suppose that

ρ is an irreducible representation and ρ ↔ π. Then π must be cuspidal. Also, any local

factor L(s, ρv) or L(s, πv) is an entire function which is never zero. Hence L(s, ρ) differs

from L(s, π) by a product of non-vanishing entire functions. Therefore L(s, ρ) is entire by

Theorem 3.1. Thus the strong Artin conjecture for ρ indeed implies the Artin conjecture

for ρ.

Remarks.

(1) If ρ ↔ π, then it is actually true that L(s, ρv) = L(s, πv) at all finite places v. In

other words, L(s, ρ) = L(s, πf ) as Euler products (over F ), where πf denotes the restricted

tensor product over all finite places ⊗′v<∞πv and L(s, πf ) =
∏

v<∞ L(s, πv). Moreover, the

complete L-functions L∗(s, ρ) and L(s, π) are equal as Euler products over Q. We give a

proof of this, due to Ramakrishnan, in Appendix α.

(2) The strong Artin conjecture holds for n = 1, and this is essentially just abelian class

field theory as worked out by Artin.

(3) Automorphic forms are generalizations of modular forms and Maass forms. For n = 2

and F = Q, the modularity of ρ would mean that ρ corresponds, by the work of Deligne

and Serre [DS], to either a modular form of weight 1 (if ρ is odd) or a Maass form with

Laplacian eigenvalue 1
4 (if ρ is even).

(4) The strong Artin conjecture really is stronger (given what one knows today) than the

Artin conjecture. For example, monomial representations are not known to be modular in

general. However, for a fixed n = 2, 3, the Artin and strong Artin conjectures are globally

equivalent. That is, knowing Artin’s conjecture for all n-dimensional representations is

equivalent to knowing the strong Artin conjecture for all n-dimensional representations.

Recently, Booker [Bo] showed for two-dimensional representations over Q that L(s, ρ) is



23

entire if and only if ρ is modular. Whether these two conjectures are equivalent in higher

dimensons (either globally or for a specific representation) is not currently known.

(5) The local Langlands correspondence for GLn(C) was proven recently by Harris and

Taylor [HT] and subsequently by Henniart [He]. This means that, if ρ ↔ π, for each

place v we can attach a local irreducible admissible representation πv to ρv. Thus ρ should

correspond to π = ⊗′πv. We know π is an irreducible, admissible representation but the

difficulty lies is proving π is actually automorphic.

The first (post-Artinian) cases of the strong Artin conjecture are stated in the celebrated

Theorem 3.5. (Langlands [La2], Tunnell [Tu]) Let F be a number field and let ρ be a

two-dimensional complex Galois representation of GF . If the image of ρ is solvable, then ρ

is modular.

The two main ingredients in the proof of this theorem, base change and the symmetric

square lift, will be introduced in the next section.

3.3 Functoriality Results

The general philosophy of Langlands is captured in the idea of functoriality, which we will

not describe in general but only in specific cases. Consider H =
∏

i GLni , G = GLn as

algebraic groups over F . Then LH0 =
∏

i GLni(C) and LG0 = GLn(C). Let r be an

algebraic homomorphism (an L-homomorphism)

r : LH = LH0 ×WF → LG = LG0 ×WF . (3.24)

For an automorphic representation π of H unramified at a finite place v, there is an as-

sociated semisimple conjugacy class A(πv). We say r is functorial if, for any automorphic

representation π of H, we can transfer π to an automorphic representation π′ of G such that

A(π′v) = r(A(πv)) at all finite unramified places. Langlands’s functoriality conjecture states

that all such r are functorial. We remark that by the local Langlands correspondence ([HT],

[He]), if ρ↔ π then a functorial map r will specify r(π) at all places by the correspondence

r(ρ)v ↔ r(π)v.

In our special cases, we will consider a homomorphism r :
∏

i GLni(C) → GLn(C) of the

connected components of the L-groups. In general, the L-group is a semidirect product of
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LG0 with WF , but here it is just a direct product. So r can be extended (in many ways)

to a homomorphism of L-groups. In all of our examples below, excepting automorphic

induction, we will extend r to LH by acting trivially on WF . The idea of functoriality and

why it is important should be made clear through the following examples.

3.3.1 Base Change

Key ideas in the proof of Theorem 3.5 relied on certain instances of base change for GL2 (cf.

Introduction). Let ρ be a Galois representation of GF and let E/F be a finite extension.

The idea is that if ρ ↔ π then there should be an automorphic representation πE of

GLn(AE), called the base change of π to E, such that ρE ↔ πE . In terms of functoriality,

we mean that the restriction of scalars map from GLn(AF ) to GLn(AE) ' GLn[E:F ](AF )

should be functorial. Langlands [La2] proved normal cyclic base change for GL2, which was

subsequently generalized to GLn by Arthur and Clozel as described below.

Let NE/F denote the norm map from E to F .

Theorem 3.6. ([AC]) Let E/F be a normal cyclic extension of prime degree. For each

isobaric representation π of GLn(AF ), there exists a unique isobaric automorphic represen-

tation of GLn(AE) called the base change of π to E and denoted by πE such that

(i) (descent) a cuspidal representation Π of GLn(AE) is the base change πE of some

π if and only if Π is Galois invariant (in particular, if ρE ↔ Π where ρ is some

representation of Gal(L/F ));

(ii) if π′ is also an isobaric representation of GLn(AF ) then πE = π′E if and only if

π′ = π ⊗ δ for some idèle class character δ of NE/F (CE)\CF ' Gal(E/F );

(iii) (compatibility with reciprocity) if ρ is a representation of Gal(L/F ) such that

ρ↔ π and ρE is modular, then ρE ↔ πE; and

(iv) (compatibility with twisting) if χ is an idèle class character of F and the restriction

χE = χ ◦NE/F , then

(π ⊗ χ)E = πE ⊗ χE .

Note that, with the hypotheses of this theorem, if p = [E : F ], v is finite and unramified,

and {a1, a2, . . . , an} are the Satake parameters for πv, then the Satake parameters for the
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local base change πE,v are {ap
1, a

p
2, . . . , a

p
n}.

The adjoint construction to base change is automorphic induction ([AC],[HH]), which

corresponds to induction of Galois representations.

Theorem 3.7. ([AC], [HH]) Let E/F be a normal cyclic extension of prime degree p and π

an automorphic representation of GLn(AE). Then there exists an automorphic representa-

tion IFEπ of GLnp(AF ), called the automorphic induction of π, such that L(s, π) = L(s, IFEπ)

as Euler products over F . In particular, if ρ is a Galois representation of GF such that

ρ↔ π, then IndF
Eρ↔ IFEπ.

Jacquet, Piatetski-Shapiro and Shalika proved the following non-normal case of base

change and automorphic induction.

Theorem 3.8. ([JPSS]) Let E/F be a non-normal cubic extension of number fields. Let χ

be an idèle class character of E and π an automorphic representation of GL2(AF ). Then

the automorphic induction IFEχ exists as an automorphic representation of GL3(AF ) and

the base change πE exists as an automorphic representation of GL2(AE).

3.3.2 Symmetric and Exterior Powers

Let ρ : GF → GLn(C) be a continuous representation and let r : GLn → GLm be a

symmetric or exterior power lifting. Then the local L-factors for the representation r(ρ) :

GF → GLm(C) will just be L(s, r(ρ)v) = det(I − r(ρ(Frv))q−s
v )−1 for finite unramified v.

Analogously, at finite unramified v, one defines local automorphic L-factors

L(s, πv; r) =
1

det(I − r(A(πv))q−s
v )

(3.25)

for automorphic representations π of GLn(AF ). In this setting, the functoriality conjecture

says that one should be able to lift each π to an automorphic representation r(π) of GLm(AF )

such that L(s, r(π)v) = L(s, πv; r) at all unramified places v. In particular if ρ ↔ π, then

r(ρ) ↔ r(π).

Theorem 3.9. The following maps are functorial:

(1) Sym2 : GL2 → GL3 ([GeJ]),

(2) Sym3 : GL2 → GL4 ([KS]),

(3) Sym4 : GL2 → GL5 ([Ki]),
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(4) Λ2 : GL4 → GL6 ([Ki], [He2]).

We remark that Kim [Ki] proved the exterior square Λ2(π) equals an automorphic

representation of GL6(AF ) at all places, except possibly those above 2 and 3. This is

actually enough for our purposes, since we only consider a correspondence at almost all

places. However, we note that Henniart [He2] indicated how he can prove equality at the

remaining places in question in a letter to Kim and Shahidi.

3.3.3 Tensor Products

Fix positive integers m and n. Let π1 (resp. π2) be an automorphic representation of

GLm(AF ) (resp. GLn(AF )). Let r be the tensor product map ⊗ : GLm × GLn → GLmn

of F -groups. Functoriality of r means that there is an automorphic representation π1 ⊗ π2

of GLmn(AF ) such that L(s, (π1 ⊗ π2)v) = L(s, π1,v × π2,v) for all v. In particular if ρ1

and ρ2 are Galois representations such that ρi ↔ πi, then ρ1 ⊗ ρ2 ↔ π1 ⊗ π2. When

m = 1, functoriality is known because if π is automorphic, then so is π⊗χ for any (unitary)

character χ of F×\A×
F .

Theorem 3.10. The following maps are functorial:

(1) ⊗ : GL2 ×GL2 → GL4 ([Ra])

(2) ⊗ : GL2 ×GL3 → GL6 ([KS]).

3.3.4 Applications to the Modularity Conjecture

Modularity holds for the following kinds of Galois representations:

(1) the direct sum of modular representations

(2) the induction of a modular representation from a normal subgroup

(3) the induction of a one-dimensional representation from a non-normal subgroup of

index 3

(4) Symm(ρ) for two-dimensional modular ρ, m = 2, 3, 4

(5) Λ2(ρ) for four-dimensional modular ρ

(6) the tensor product of two modular representations of dimensions 2 and 2, or 2 and 3
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(7) two-dimensional representations with solvable image

(8) two-dimensional icosahedral representations over Q satisfying certain ramification cri-

teria

(9) the Asai lift of a modular two-dimensional representation

(10) irreducible representations into GO4(C) with solvable image

(11) representations with nilpotent images.

Note that (1)–(6) are direct applications of functoriality mentioned in the preceding sec-

tions. Case (7) is the aforementioned result of Langlands and Tunnell. Under case (8),

various kinds of icosahedral representations have been shown to be modular. The works

of Buzzard, Dickinson, Sheppard-Barron and Taylor [BDST]; Taylor [Ta]; and Goins [Goi]

prove modularity for infinite families of icosahedral representations. For other approaches

and examples, see also the works of Buhler [Bu]; Kiming and Wang [KW]; Jehanne and

Müller [JM]; and Buzzard and Stein [BS]. Cases (9) and (10) were done by Ramakrishnan

in [Ra2]. Case (11), which we state precisely in Proposition 9.1, was deduced from base

change results by Arthur and Clozel [AC]. We emphasize that in all these instances, except

perhaps (8), the proof relies heavily on some type of functoriality.

Combining cases (8) and (4) gives examples of modular representations with non-solvable

image in dimensions 3, 4 and 5. For primitive three-dimensional examples, see Section 8.1.

Primitive four-dimensional examples are constructed using Sym3 in Section 10 of [KS]. A

five-dimensional example induced from a non-normal quintic extension is constructed using

Sym4 in [Ki2].

We remark that essentially the only cases where the Artin conjecture is known but the

strong Artin conjecture is not are for the following types of Galois representations:

(i) the induction of a modular representation from a non-normal subgroup

(ii) the tensor product of two modular representations.

Case (ii) follows from what is known about the Rankin-Selberg product of L-functions. In

particular, if ρ1, ρ2 and ρ3 are non-trivial, irreducible, modular representations of dimensions

n1, n2 and n3, where n1 is 2 and n2 is 2 or 3, then the triple product ρ1 ⊗ ρ2 ⊗ ρ3 has an

entire L-function by case (ii) and Theorem 3.10 above.
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Chapter 4

The Method

Let ρ : GF → GL4(C) be a continuous representation with solvable image. We are concerned

with the following question: How can we show ρ is modular? Here we will describe our

basic approach to this problem.

First recall that ρ has finite image by continuity, so L = F
ker ρ is a finite Galois extension

of F . Thus ρ factors through a representation of Gal(L/F ) with the same L-function. Hence

sometimes we may view ρ as a faithful representation of Gal(L/F ) into GL4(C).

Let ρ : GF → PGL4(C) be the composition of ρ with the standard projection from

GL4(C) to PGL4(C).

GQ
ρ //

ρ $$IIIIIIIII GL4(C)

��
PGL4(C)

Let G denote the image of ρ and G denote the image of ρ. As in the GL2 case, we will

classify ρ by its projective image G. To determine the possible cases for G, we will use the

classification for certain subgroups of GL4(C) and the group theory recalled in Chapter 2.

Note that, conversely, for each finite solvable subgroup G of PGL4(C), there is a rep-

resentation ρ : GF → GL4(C) with projective image G for some number field F . In fact,

we may even take F = Q. This is because G is the image of some finite solvable subgroup

G of GL4(C). A (non-constructive) theorem of Shafarevich (Theorem 9.5.1 of [NSW]) says

that if G is solvable, then there is a finite extension L/Q such that G = Gal(L/Q). Thus

Gal(L/Q) (and hence GQ) has a representation ρ into GL4(C) with projective image G.

We may restrict the problem of classifying subgroups of GL4(C) to the corresponding

problem for SL4(C). The reason for this is as follows. Consider a subgroup G of GL4(C) of
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order n. Write ζm = e2πi/m. Let Z = 〈ζ4nI〉 be the cyclic group of scalar matrices of order

4n inside GL4(C). Set G′ = ZG. Since we have only added scalar matrices to get G′, then

G′ = G. Given any g ∈ G, det g = ζk
n for some k. Let z = ζ−k

4n . Then

det zg =
(
ζ−k
4n

)4
det g = ζ−k

n ζk
n = 1, (4.1)

i.e., zg ∈ SLn(C). Now let H = G′ ∩ SL4(C). Then any g ∈ G′ can be written as zh

where z ∈ Z and h ∈ H. Therefore H = G′ = G, and G ⊆ ZH = G′. Note the G is

irreducible if and only if G′ is irreducible, which is if and only if H is irreducible. By the

same logic, we also have that G is primitive if and only if H is primitive. So to determine

the possibilities for the projective image of irreducible or primitive G, it suffices to assume

that G is unimodular, i.e., that G is contained in SL4(C).

As an aside which we shall not have cause to use later (but we will morally use for the

A5 case in Section 8.1), we observe that in fact G′ is both a central product of Z with

G and of Z with H. For example, let C = Z(G) be the center of G. Then C ⊆ Z and

G′ = Z×CG. Let ρ be the standard representation of G. Then the standard representation

of G′ is some twist ρ′ = χ ⊗ ρ, where χ is a character of Z. (More precisely, the tensored

representation χ ⊗ ρ of Z × G factors through the representation ρ′ of G′ = Z ×C G.)

Hence the representation ρ of G transfers to a representation ρ′H of H into SL4(C) which is

irreducible (primitive) if ρ is.

4.1 The Reducible Case

Before moving on to the primary (irreducible) case, let us first remark on modularity of

reducible four-dimensional representations of solvable type. Consider a reducible Galois

representation ρ : GF → GL4(C) where F is some number field. Say ρ is a direct sum of

r irreducible representations τ1, . . . , τr. Then ρ is modular if and only if each τi is. Any

representation τi which is one-dimensional is modular. If we require that ρ have solvable

image, then so does each τi. So in this case any two-dimensional τi is modular by the

work of Langlands and Tunnell (Theorem 3.5). Thus the only interesting reducible case of

solvable type is when ρ decomposes into a character χ and an irreducible three-dimensional

representation τ . Then we are reduced to the modularity problem for τ .
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Let τ : GF → GL3(C) be an irreducible Galois representation of solvable type. Recall

that if τ is monomial, then τ is modular by Theorem 3.8. Note that if τ is essentially

self-dual, then the image of τ lies in GO3(C). So Proposition 1.3 of [Ra2] tell us that τ

must be monomial. Hence we may further assume that τ is a primitive three-dimensional

representation (which, for solvable type, is necessarily non-essentially-self-dual). In Chapter

8, we examine the possible cases of such three-dimensional representations. There are no

primitive three-dimensional τ of solvable type which are known to be modular (or to satisfy

Artin’s conjecture). However, in certain cases, we are able to show that the associated

eight-dimensional (self-dual) adjoint representation Ad(τ) is modular.

4.2 The Irreducible Case

We will now suppose that ρ is irreducible. Any scalar matrix in G lies in the center Z(G)

of G. On the other hand, Schur’s lemma implies that the center of G is contained inside

the scalar matrices. Therefore G = G/Z(G).

As outlined in the introduction, our proofs of modularity will be similar to Langlands’s

proof of the tetrahedral case. However whereas Langlands used the symmetric square lift

Sym2 : GL2 → GL3 of Gelbart and Jacquet, we use the exterior square lift Λ2 : GL4 → GL6

of Kim and Henniart. Specifically, we can show the following.

Proposition 4.1. Let ρ : Gal(L/F ) → GL4(C) be an irreducible continuous representation

with projective image G. Suppose that |G| = 2ep for some e ≥ 0 and an odd prime p, and

that G has no elements of order 2p. Further suppose there is an automorphic representation

π on GL4(AF ) such that:

(1) Λ2(ρ) ↔ Λ2(π); and

(2) for some degree p subextension K/F of the field L0 cut out by ρ, the base change

πK exists and ρK ↔ πK .

Then ρ is modular.
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L

L0

2e

G K

p

F

Remark. As all the degree p subextensions K/F of L0 correspond to 2-Sylow subgroups

of G, they are all conjugate.

Proof. It suffices to show L(s, ρv) = L(s, πv) for almost all places v. Hence we will assume v

is a finite place such that both ρv and πv are unramified. Then we can write down Frobenius

eigenvalues {a, b, c, d} for ρv and Satake parameters {e, f, g, h} for πv. We want to show

{a, b, c, d} = {e, f, g, h} . (4.2)

As Λ2(D) = 1 implies that D = ±I for a diagonal matrix D, condition (1) implies that

{a, b, c, d} = ±{e, f, g, h} . (4.3)

If these sets are equal, then we are done. So we may as well assume that

{a, b, c, d} = −{e, f, g, h} . (4.4)

Now we claim that the p-th powers of these sets are also equal. To see this, consider the

p-th power of the Frobenius, Frp
v ∈ Gal(L/F ). For any x ∈ G, x2ep = 1 so xp is of 2-power

order. Thus xp lies inside some 2-Sylow subgroup of G. By taking an appropriate conjugate

of Frv, we may assume that Frp
v ∈ Gal(L/K). Then ρ(Frp

v) = ρK(Frp
v). By Theorem 3.6(iii),

we know ρK ↔ πK , which implies

{ap, bp, cp, dp} = {ep, fp, gp, hp} . (4.5)
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Without losing generality we may assume that a = ζpe and e = −b. Then a = −ζpb and

ρ(Frv) ∼


−ζpb 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

 . (4.6)

Therefore

ρ(Frv) ∼


−ζp 0 0 0

0 1 0 0

0 0 c
b 0

0 0 0 c
a

 (4.7)

is an element of order divisible by 2p inside G. Contradiction!

In the case that the extension K/F of degree p is normal, things are a bit simpler as

we will now show. (In fact, this is the only case where we know condition (2) of the above

proposition is satisfied.)

Proposition 4.2. Let ρ : GF → GL4(C) be an irreducible continuous representation with

projective image G. Suppose that |G| = 2ep for some e ≥ 0 and an odd prime p, and that

G has no elements of order 2p. Further suppose G has a normal 2-Sylow subgroup H. Let

H be the pre-image of H in GF . Then ρ is modular if Λ2(ρ) and ρH are modular.

Proof. Let K/F be the subextension of L corresponding to H. Appealing to the previous

proposition, we only need to show Λ2(ρ) ↔ π and ρK ↔ πK for some automorphic repre-

sentation π of GL4(AF ). We know ρK corresponds to some automorphic representation Π

of GL4(AK).

Now we claim that Π is cuspidal, i.e., that ρK is irreducible. Suppose instead that ρK

is a sum of irreducibles τ1 ⊕ · · · ⊕ τr with r > 1. Then K/F acts transitively on the τi’s, so

there must be r = p of them. On the other hand, Clifford’s theorem says they all have the

same dimension m; so mp = 4. But p is assumed to be prime to 2. Contradiction.

The extension K/F is normal and Π is cuspidal. By parts (i) and (ii) of Theorem 3.6,

there are p automorphic representations π0, π1, . . . , πp−1 of GL4(AF ) such that πi,K ' Π.
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Furthermore, up to reordering, we may write

πi ' π0 ⊗ δi, (4.8)

where δ is an idèle class character of K/F .

Note that δ is a character of order p. Therefore the representations

Λ2(πi) ' Λ2(π0 ⊗ δi) ' Λ2(π0)⊗ δ2i (4.9)

are all distinct because they have distinct central characters

ωΛ2(πi) = ωΛ2(π0)δ
2i. (4.10)

As δK is trivial, they all base change to Λ2(π0)K by Theorem 3.6(iv). Let β be the auto-

morphic representation over F which is associated to Λ2(ρ). Because Λ2(ρ)K ↔ Λ2(π0)K ,

we also know that

βK ' Λ2(π0)K . (4.11)

However there are only p distinct automorphic representations which base change to Λ2(π0)K ,

so we must have

β ' Λ2(πi) (4.12)

for some i. This πi is our desired π.

Another way we can demonstrate that ρ is modular is to replace the hypothesis that

Λ2(ρ) ↔ Λ2(π) in Proposition 4.1 with the condition that ρM ↔ πM for a quadratic

extension M/F . This kind of argument is given in Section 6.2.
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Chapter 5

Solvable Primitive Subgroups of
GL4(C)

We are interested in (irreducible) primitive, solvable, finite subgroups G of SL4(C). Such

groups, including the non-solvable ones, were classified by Blichfeldt ([Bl]) in the early

1900’s. However, Blichfeldt’s list is presented in terms of generating matrices and geomet-

rical invariants, which is not the most convenient form for us. We remark that Feit ([Fe])

presented a partial listing of such groups in a more modern form, but Feit’s list is also not

quite sufficient for us.

Thus we will rework, in large part, the classification of such solvable groups. Following

a suggestion of D. Wales, we will study G by determining the possibilities for its Fitting

subgroup. Then we follow methods of Blichfeldt to finish the classification we want. In

particular we will show that G is either orthogonal or symplectic, and in the latter case

there are precisely five possibilities for G.

5.1 The Fitting Subgroup

Let G be a primitive, solvable, finite subgroup of SL4(C). Let ρ be the standard represen-

tation of G on C4.

Proposition 5.1. Any normal abelian subgroup of G is cyclic of order 1, 2 or 4, and is

contained in Z(G). In particular, |Z(G)| is 1, 2 or 4.

Proof. Let A be a normal abelian subgroup of G. Then ρA is a sum of isomorphic characters

χ⊕ χ⊕ χ⊕ χ by Clifford’s theorem. Then A = ρ(A) is a subgroup of scalar matrices in G,
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whence central. The only unimodular scalar 4× 4 matrices are ±I and ±iI, so A must be

cyclic of order 1, 2 or 4.

Corollary 5.1. Any characteristic abelian subgroup of F (G) is cyclic of order dividing 4

and contained in Z(G).

Proof. Let A be an abelian characteristic subgroup of F (G). Then A E G, whereby Propo-

sition 5.1 applies.

Proposition 5.2. The Fitting subgroup F (G) is a 2-group.

Proof. Since F (G) is nilpotent, its Sylow subgroups Sylp(F (G)) are normal and F (G) is a

direct product of them. Let p be any odd prime and P = Sylp(F (G)). Any automorphism

of F (G) must leave P invariant, i.e., P is characteristic in F (G), whence normal in G. Then

by Clifford’s theorem, ρP is a direct sum of irreducibles of the same degree. The degrees of

the irreducible representations of P are powers of p. Thus ρP is a direct sum of characters.

As ρ is faithful, P must be abelian. Hence P is trivial by Corollary 5.1.

Proposition 5.3. The restricted representation ρF (G) is irreducible.

Proof. Suppose otherwise, i.e., suppose that ρF (G) = τ1 ⊕ · · · ⊕ τr for r > 1. By Clifford’s

theorem, either r = 2 and each τi is two dimensional, or r = 4 and each τi is one dimensional.

Let Q = G/F (G). Because ρ is irreducible, Q acts transitively on {τi}. Let Q0 be the

stabilizer in Q of τ1 and let G0 be the pre-image of Q0 in G. Note [G : G0] = [Q : Q0] = r.

Also, by definition of Q0, ρG0 decomposes as a direct sum of r representations, each of

dimension 4
r . Therefore, ρ is induced fromG0 by one of the components of ρG0 , contradicting

primitivity.

Proposition 5.4. Either F (G) = E or F (G) = E ◦ C4, where E is extraspecial of order

32.

Proof. Write F (G) as a central product of two groups E and R as in Proposition 2.6. First

we show that R must be cyclic. Suppose otherwise, i.e., that R = D2m , SD2m or Q2m for

some m ≥ 4. Then R contains a cyclic subgroup X = 〈x〉 of order 2m−1. By Proposition 2.4,

every element of R/Φ(R) has order 2, so Φ(R) must contain the group 〈x2〉 of order 2m−2.

On the other hand, Φ(R) is contained in X because X is maximal, and this containment

must be strict as Φ(R) is the intersection of all maximal subgroups of R. Thus Φ(R) = 〈x2〉.
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Clearly, Φ(R) ⊆ Φ(F (G)). Since Z(E) = Φ(E) = C2, the quotient E/C2 is elementary

abelian. Therefore (E × R)/(C2 × Φ(R)) is elementary abelian, from which (E ◦ R)/Φ(R)

is also elementary abelian. Hence Proposition 2.4 yields that Φ(R) = Φ(F (G)). So Φ(R)

is a characteristic abelian subgroup of F (G) of order 2m−2. By Corollary 5.1, we must

have that m = 4 and Φ(R) is a central subgroup of G (and R) of order 4. In particular

|Z(R)| ≥ 4. But it is apparent from the definitions of D2m , SD2m and Q2m that |Z(R)| = 2.

Contradiction! Wherefore R is cyclic.

If R is cyclic of order 2m > 4, then it would be the only such subgroup of F (G), whence

characteristic in F (G). Again Corollary 5.1 contradicts this. Thus R is cyclic of order

1, 2 or 4. Note that E ◦ C2 = E, so we may assume |R| = 1 or 4. It now suffices to

show |E| = 32. By Proposition 5.3, we know that ρF (G) is irreducible. Thus ρE is also an

irreducible four-dimensional representation. Proposition 2.5 then requires E to be of order

32.

There are two extraspecial groups of order 32, which we denote by Q8D8 and Q2
8. The

first is the central product of Q8 by D8, and the second is the central product of Q8 by

itself.

Proposition 5.5. Q2
8 ◦ C4 = Q8D8 ◦ C4.

Proof. Observe that for any finite group H and a cyclic group C, the central product H ◦C

is uniquely defined up to isomorphism.

We first claim that Q8 ◦ C4 = D8 ◦ C4. Write

Q8 = 〈i, j : i4 = j4 = (ij)4 = 1, iji−1 = j−1〉 (5.1)

and

D8 = 〈σ, τ : σ4 = τ2 = 1, τστ = σ−1〉. (5.2)

Let C4 = 〈z〉 where z4 = 1 and z commutes with Q8 and D8. Define a map

φ : Q8 ◦ C4 → D8 ◦ C4 (5.3)

by first setting

φ(z) = z, φ(i) = σ, φ(j) = zτ. (5.4)
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Looking at the relations for Q8 and D8, one sees that φ extends to a homomorphism of

Q8 ◦ C4 into D8 ◦ C4, which is actually an isomorphism.

Then

Q2
8 ◦ C4 = Q8 ◦ (Q8 ◦ C4) = Q8 ◦ (D8 ◦ C4) = Q8D8 ◦ C4. (5.5)

(Note the central product is associative here because C4 is cyclic.)

This implies there are only three cases for F (G): Q8D8, Q2
8 and Q2

8 ◦C4. We will write

Q2
8 ◦ C4 simply as Q2

8C4.

5.2 The Structure of G

Now we will be able to use this information about the Fitting subgroup to determine the

structure of G. Specifically, G acts by conjugation on F (G), which gives us a homomorphism

φ : G→ Aut(F (G)) (5.6)

with kernel Z(F (G)). The image of F (G) under this map φ will then be the inner auto-

morphism group Inn(F (G)). Thus G/F (G) is isomorphic to a subgroup of the outer au-

tomorphism group Out(F (G)) = Aut(F (G))/Inn(F (G)). The outer automorphism groups

of extraspecial groups are known. Specifically, Out(Q8D8) ' A5, Out(Q2
8) ' O+

4 (F2) is

the group of order 72 contained in S6, and Out(Q2
8C4) ' Sp4(F2) × C2 is of order 1440.

However we will only use the precise structure of Out(F (G)) at the end to simplify the

proof of Proposition 5.7. Now, following the methods of Blichfeldt ([Bl]), we will embed

G/F (G) inside S6 ' Sp4(F2).

As an extraspecial group of order 32 has a unique irreducible four-dimensional represen-

tation, we can write down a specific matrix representation for it, up to a change of basis.
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Let

B1 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , B2 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 ,

B3 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , B4 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 ,

and B5 = iI be linear transformations of V = C4 with respect to a basis {v1, v2, v3, v4}.

Then

Q2
8 ' 〈B1, B2, B3, B4〉 (5.7)

and

Q2
8C4 ' 〈B1, B2, B3, . . . , B5〉. (5.8)

Let X = 〈B1, B2, B3, . . . , B5〉. Since C4 ⊆ Z(Q2
8C4) and Q2

8C4 is irreducible, there is

only one way to extend Q2
8 to Q2

8C4, and that is by adjoining B5. Thus we may assume

Q2
8C4 is represented by X. (Note that Q2

8C4 actually has two inequivalent irreducible four-

dimensional representations, but one may be obtained from the other by interchanging B5

with −B5.) By Proposition 5.5, Q8D8 is also contained in X = Q2
8C4. So in any case, we

may assume that F (G) ⊆ X.
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Note that one matrix representation of Q8D8 is given by the group generated by

C1 = B1B2 =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 , C2 = B1B3 =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 ,

C3 = B3B5 =


0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0

 , C4 = B4B5 =


0 0 i 0

0 0 0 i

i 0 0 0

0 i 0 0

 .

Let {vij = vi ⊗ vj − vj ⊗ vi}1≤i<j≤4 be a basis for the six-dimensional vector space

Λ2(V ). Then Λ2(ρ) provides an action of G on Λ2(V ). In particular, the Bi’s act as

follows:
· v12 v13 v14 v23 v24 v34

Λ2(B1) v12 −v13 −v14 −v23 −v24 v34

Λ2(B2) −v12 −v13 v14 v23 −v24 −v34

Λ2(B3) −v12 v24 v23 v14 v13 −v34

Λ2(B4) v34 −v13 −v23 −v14 −v24 v12

Λ2(B5) −v12 −v13 −v14 −v23 −v24 −v34

Consider the basis {wi} for Λ2(V ), where

w1 = v12 + v34, w2 = v12 − v34, w3 = v13 − v24,

w4 = v13 + v24, w5 = v14 + v23, w6 = v14 − v23.

Let σ denote the composition of Λ2(ρ) with the change of basis from {vi} to {wi}. Then
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the Bi’s act on the wj ’s as follows:

· w1 w2 w3 w4 w5 w6

σ(B1) w1 w2 −w3 −w4 −w5 −w6

σ(B2) −w1 −w2 −w3 −w4 w5 w6

σ(B3) −w1 −w2 −w3 w4 w5 −w6

σ(B4) w1 −w2 −w3 −w4 −w5 w6

σ(B5) −w1 −w2 −w3 −w4 −w5 −w6

Thus the basis {wi} diagonalizes X, proving that

σ(F (G)) ⊆ Diag(GL6(C)). (5.9)

Using the table above, we can also compute how the Ci’s act on the wj ’s:

· w1 w2 w3 w4 w5 w6

σ(C1) −w1 −w2 w3 w4 −w5 −w6

σ(C2) −w1 −w2 w3 −w4 −w5 w6

σ(C3) w1 w2 w3 −w4 −w5 w6

σ(C4) −w1 w2 w3 w4 w5 −w6

Proposition 5.6. G/F (G) embeds into S6.

Proof. Looking at the columns in the multiplication tables for the σ(Bi)’s and the σ(Ci)’s

above, we observe that σF (G) decomposes into six distinct characters. Thus Λ2(V ) =
⊕
Wi,

where each Wi = 〈wi〉 is an eigenspace for F (G) with a distinct character. By Clifford’s

theorem, G/F (G), acting by σ, permutes the six Wi. This permutation induces a map

σ′ : G → S6. It remains to show that kerσ′ = F (G). Let H = kerσ′. Clearly F (G) ⊆ H.

Note that σ(H) ⊆ Diag(GL6(C)), whence σ(H) is abelian. Since kerσ = {±I}, we have

that H/ {±I} is abelian with {±I} ⊆ Z(H).

Recall that a finite group is nilpotent if and only if each Sylow subgroup is normal.

Hence if C is a central subgroup of a finite group N and N/C is nilpotent, then N is

nilpotent. In particular, H is nilpotent. As H is a normal nilpotent subgroup of G, we

must have H ⊆ F (G). Thus F (G) = H = kerσ′.
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Now define

S =
1 + i√

2


i 0 0 0

0 i 0 0

0 0 1 0

0 0 0 1

 , T =
1 + i

2


−i 0 0 i

0 1 1 0

1 0 0 1

0 −i i 0

 ,

and J = 〈F (G), S, T 〉. We may extend σ to J so that σ(S) and σ(T ) act as the permutations

(w1w2) and (w2w4w6w3w5) respectively. Because 〈σ(S), σ(T )〉 = S6, Proposition 5.6 implies

that J is the largest finite subgroup of SL4(C) which normalizes F (G). Thus G ≤ J .

Let F20 be the group of order 20 contained in S5, and let

E = Q8D8 , EC4 = Q2
8C4. (5.10)

Note that F20 is the Frobenius group of order 20. (Recall that a group F is a Frobenius

group if F acts transitively on a set S such that (i) each x ∈ F − {1} fixes at most one

element of S and (ii) at least one x ∈ F − {1} fixes an element of S.) It contains D10 as a

normal subgroup.

Proposition 5.7. If G/F (G) has an element of order 5, then G is primitive and of sym-

plectic type. In this case, there are precisely five possibilites for G up to isomorphism:

(1) When F (G) = E, either G = E · C5 or G = E ·D10;

(2) When F (G) = EC4, either G = EC4 · C5, G = EC4 ·D10 or G = EC4 · F20.

Note that this gives exactly three possibilities for the projective image G: E24 · C5,

E24 ·D10 and E24 · F20, where E24 denotes the elementary abelian group of order 24. The

fact that G ≤ J implies that these groups (both the projective ones and their pre-images)

are in fact semidirect products.

Proof. Suppose G/F (G) does contain an element of order 5. Then G contains an element

α of order 5. We first show that G is primitive. As F (G) is a 2-group, it acts imprimitively

on V . So we may suppose V = V1 ⊕ V2 ⊕ · · · ⊕ Vm, where m = 2 or 4, and F (G) acts

transitively on the Vi’s. If G is imprimitive, then G, and in particular α, must also permute

the Vi’s. Here α must act with order 1 or 5. Since there are less than five Vi’s, the latter
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is impossible. Thus α must fix each Vi, which contradicts α not commuting with F (G).

Hence G is primitive.

The only solvable subgroups of S6 containing an element of order 5 are C5, D10 and

F20. Recall that G is of symplectic type if and only if Λ2(G) contains an invariant line. So

it suffices to show that σ′(G) acts intransitively on the lines Wi = 〈wi〉. Clearly C5 cannot

act transitively on 6 points. Since C5 E D10 of index 2, D10 cannot act transitively on 6

points either. As D10 E F20 of index 2, we see that F20 is also intransitive.

To see that G is one of the five possible groups listed above, note that F (G) cannot

be Q2
8 because Out(Q2

8) = G72 does not contain an element of order 5. Also Q8D8 · F20

cannot occur because F20 is not contained in Out(Q8D8) = A5. Note that Q8D8 · C5 and

Q8D8 · D10 occur as C5 and D10 are contained in Out(Q8D8). The three possibilities for

F (G) = Q2
8C4 all occur as they are contained in J .

For each of the extensions listed, there is only one possible isomorphism type as all

subgroups of S6 which are isomorphic to C5, D10, or F20 are respectively conjugate.

Proposition 5.8. If G/F (G) does not have an element of order 5, then G is of orthogonal

type.

Proof. See [Bl].

We remark that Blichfeldt’s classification (for solvable and non-solvableG) gives 30 types

of projective images of primitive groups (up to conjugacy, not isomorphism) in GL4(C): six

simple, two with projective image S5, one with projective image S6, twelve of orthogonal

type, and nine which are extensions of a subgroup H of S6 by E24 where H contains an

element of order 5.
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Chapter 6

The Primitive Cases

Let F be a number field and ρ : GF → GL4(C) be a continuous primitive Galois representa-

tion with imageG and projective imageG ⊆ PGL4(C). Denote the projective representation

by ρ. By Chapter 5, ρ is of either orthogonal or symplectic type. If ρ is of orthogonal type,

then it is modular by [Ra2]. Let us suppose ρ is of symplectic type. Then by Proposition

5.7, either G = E24 · C5, G = E24 ·D10 or G = E24 · F20.

Let L (resp. L0) be the field cut out by ρ (resp. ρ). Let E be the subextension of L/F

such that Gal(L0/E) = E24 . Note that E/F is a normal extension.

L

L0

E24

G E

C5/D10/F20

F

6.1 The Case E24 · C5

First we need to know the following about our group.

Lemma 6.1. Every element g ∈ E24 ·C5 has order 5, except for the elements in the normal

subgroup E24 which have order 1 or 2.

Proof. By Sylow’s theorem the number n5 of Sylow 5-groups in E24 · C5 is congruent to 1

mod 5 and also divides 16. Since E24 · C5 is not a direct product of E24 by C5, a Sylow
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5-subgroup is non-normal, i.e., n5 = 16. This accounts for 16 · 4 elements of order 5 in

E24 · C5. Hence the remaining 16 elements must comprise E24 .

Now we can prove the main result of this section.

Theorem 6.1. Suppose ρ : GF → GSp4(C) ⊆ GL4(C) has projective image G = E24 · C5.

Then ρ is modular.

Proof. As above, L = F
ker ρ, L0 = F

ker ρ and now E ⊆ L0 is the normal quintic subextension

of F such that Gal(L0/E) = E24 .

L

L0

E24

G E

C5

F

First we will show that ρE is modular. As Gal(L/E) is a cyclic central extension of a

2-group, it is a direct product of a 2-group P2 with a cyclic group C of odd order. Therefore

Gal(L/E) is nilpotent. A theorem of Arthur and Clozel (Proposition 9.1) states that all

Galois representations with nilpotent image are modular. In particular ρE is modular.

Now we claim that Λ2(ρ) is also modular. Since ρ is of symplectic type, Λ2(ρ) has an

invariant line. Write Λ2(ρ) = ν ⊕ r where ν is one dimensional and r is five dimensional.

Note r is irreducible because it factors through E24 · C5, which only has one- and five-

dimensional irreducible representations. We claim r is induced from E. As P2 is a 2-group,

each irreducible representation of P2 has dimension 2j for some j. Therefore the same is true

for Gal(L/E) ' P2 ×C. Hence in the decomposition of rE into its irreducible components,

we must have a one-dimensional representation λ. In particular, r = IndF
Eλ. Since E is a

normal subextension, r is modular by automorphic induction (Theorem 3.7), whence Λ2(ρ)

is also.

Hence Proposition 4.2 implies the theorem.

Remark. We know that examples of E25 ·C5 extensions of Q exist by Shafarevich’s Theorem

(Theorem 9.5.1 of [NSW]) because E25 ·C5 is solvable. Though Shafarevich’s proof is non-
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constructive, we can illustrate how to construct such an extension in our case. Let ζ11 be a

primitive 11-th root of unity and set αi = ζi
11 + ζ−i

11 . Let E be the cyclic Galois extension

Q(α1) of Q of degree 5. It is known how to construct Q8 and D8 extensions of a number

field ([JLY]). LetK = E(
√

1 +A+B +AB) andM = E(
√
α1 + iα2,

√
α2 + α4 + 4), where

A = (3+α5)−1/2 and B = (1+α2
1+α2

1α
2
3)
−1/2. Then Gal(K/E) ' Q8 and Gal(M/E) ' D8.

The compositum KM has three normal (over E) subextensions of index 2. Let L/E be the

one corresponding to the central product of Q8 with D8. Then L/Q is Galois with Galois

group E25 · C5.

6.2 The Cases E24 ·D10 and E24 · F20

We keep the notation from the start of the chapter. First suppose Gal(L0/F ) = E24 ·D10.

Then there exists a (normal) quadratic extension M of F contained in L0 such that

Gal(L0/M) = E24 ·C5 and there are five non-normal quintic subextensionsK1,K2,K3, . . . ,K5

of L0/F .

L

L0

E24

G

E
C2

BB
BB

BB
BB

C5

























D10

Ki
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M

C2 BB
BB

BB
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Definition 6.1. We will say that condition (NNQ) is satisfied for L/F if:

(NNQ) For any automorphic representation π of GL4(AF ) such that πM is associ-

ated to a representation of Gal(L/M), the base change πKi exists as an automorphic

representation for some i = 1, 2, 3, . . . , 5.



46

Theorem 6.2. Suppose ρ : GF → GSp4(C) ⊆ GL4(C) has projective image G = E24 ·D10.

Further suppose that condition (NNQ) holds for L/F . Then ρ is modular.

Proof. By Theorem 6.1, there are two automorphic representations π1, π2 of GL4(AF ) such

that ρM ↔ πi,M . Let δ = δM/F be the idèle class character of M/F . Then

π1 ' π2 ⊗ δ. (6.1)

Let K ⊆ L be a non-normal quintic extension of F such that the base change πK exists by

(NNQ). We claim that

ρK ↔ πi,K (6.2)

for precisely one of the πi’s. First note that Gal(L0/K) is a 2-group. Thus Gal(L/K),

being a cyclic central extension of Gal(L0/K), is the direct product of a 2-group and a

cyclic group of odd order. In particular, Gal(L/K) is nilpotent. Hence ρK is modular. Let

us say Π is the automorphic representation of GL4(AK) such that

ρK ↔ Π. (6.3)

We want to know that Π is cuspidal, i.e., that ρK is irreducible. Let H be the Fitting

subgroup F (Gal(L/F )). Because Gal(L/K) is a maximal nilpotent subgroup, we have

H = F (Gal(L/F )) ⊆ Gal(L/K). (6.4)

By Proposition 5.3, ρH = (ρK)H is irreducible, wherefore ρK is also. (Though all of our

groups were unimodular in Chapter 5, the proof of Proposition 5.3 still works without the

unimodularity assumption.) Similarly, ρE is irreducible because Gal(L/E) = F (Gal(L/M))

is. Thus Π and ΠE are cuspidal.

By Theorem 3.6(i),(ii), there are precisely two automorphic representations of GL4(AK)

whose base change to E is ΠE . They are Π and Π ⊗ δE/K , where δE/K is the idèle class

character of E/K. As π1,E , π2,E and ΠE all correspond to ρE , they must be equal by Strong

Multiplicity One. So it must be that

{
Π,Π⊗ δE/K

}
=

{
π1,K , π2,K ' π1,K ⊗ δE/K

}
. (6.5)
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Thus Π ' πi,K for some i. Denote this πi simply by π, so then

ρM ↔ πM , ρK ↔ πK . (6.6)

We want to show that ρv ↔ πv for almost all places v. Let v be a finite place for

which both ρv and πv are unramified. Let {a1, a2, . . . , a4} be the eigenvalues of ρ(Frv) and

{b1, b2, . . . , b4} those of A(πv). We want to show these sets are equal. As any element of

D10 squared lies inside C5, we have that Fr2v ∈ Gal(L/M). Thus

ρ(Fr2v) = ρM (Fr2v) ∼
{
a2

1, a
2
2, . . . , a

2
4

}
. (6.7)

Since ρM,v ↔ πM,v, we have that

{
a2

1, . . . , a
2
4

}
=

{
b21, . . . , b

2
4

}
. (6.8)

We may further assume that

a2
i = b2i (6.9)

for each i = 1, 2, . . . , 4. On the other hand, Fr5v ∈ Gal(L/K ′) for some conjugate K ′ ∈ {Ki}

of K. We may choose an appropriate element from the Frobenius class to assume that K ′

is in fact K. Then

ρ(Fr5v) = ρK(Fr5v) ∼
{
a5

1, a
5
2, . . . , a

5
4

}
. (6.10)

Hence {
a5

1, . . . , a
5
4

}
=

{
b51, . . . , b

5
4

}
. (6.11)

If {ai} = {bi} then we are done. So we may assume that they are not. Without loss of

generality, suppose that

b1 = −a1 , br = ζ5as, (6.12)

for some r, s and a primitive fifth root of unity ζ5. We want to deduce that ρ(Frv) has order

divisible by 10, which would contradict the fact that G has no elements of order 10. Note

that we may assume

ai 6= −ζaj (6.13)
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for any primitive fifth root of unity ζ. For otherwise we would have that

ρ(Frv) ∼ diag
(

1,−ζ, ak

ai
,
al

ai

)
(6.14)

is an element of order 10 in G, where k and l are appropriate indices.

First suppose s = 1. Then we may assume r = 2 so that b2 = ζ5a1. If b2 = −a2, then

a2 = −ζ5a1, opposing assumption (6.13). Hence b2 = a2 = ζ5a1. Note b1 = −a1 = −ζ−1
5 a2

so b51 6= a5
2. Interchanging a3 and a4 if necessary, we then have a5

3 = b51 = −a5
1. By

assumption (6.13) again, this means that a3 = −a1. Thus

ρ(Frv) ∼ diag (a1, ζ5a1,−a1, a4) ∼ diag
(

1, ζ5,−1,
a4

a1

)
(6.15)

is an element of order divisible by 10. Contradiction!

Now we may assume s = 2 and either r = 1 or r = 3. If r = 1, then a1 = −b1 = −ζ5a2

contradicting (6.13). Thus r = 3 and b3 = ζ5a2. By (6.13), we cannot have b3 = −a3, so

b3 = a3. Then (6.11) reads

{
a5

1, a
5
2, a

5
2, a

5
4

}
=

{
−a5

1, b
5
2, a

5
2, b

5
4

}
. (6.16)

Either −a5
1 = a5

2 or −a5
1 = a5

4. Consider first −a5
1 = a5

2. Then a1 = −a2 and

ρ(Frv) ∼ diag (−a2, a2ζ5, a2, a4) ∼ diag
(
−1, 1, ζ5,

a4

a2

)
(6.17)

has order divisible by 10.

Thus we can consider the (final!) case −a5
1 = a5

4, i.e., a1 = −a4. Here we also have that

ρ(Frv) ∼ diag (a1, a2, ζ5a2,−a1) ∼ diag
(
a1

a2
, 1, ζ5,−

a1

a2

)
(6.18)

is an element of G of order divisible by 10. In any case, we get a contradiction, so we are

done!

Now consider Gal(L0/F ) = E24 · F20. Then there exists a (normal) quadratic extension

M of F inside L0 such that Gal(L0/M) = E24 ·D10 and there are five non-normal quintic

subextensions K1,K2,K3, . . . ,K5 of L0/F . (See the diagram below.) The definition of
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condition (NNQ) for L/F also makes sense in this case, and by exactly the same method

of the proof of Theorem 6.2 we can also prove the following.

Theorem 6.3. Suppose ρ : GF → GSp4(C) ⊆ GL4(C) has projective image G = E24 · F20.

Further suppose that condition (NNQ) holds for L/F . Then ρ is modular.

L
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E24

G

E
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6.3 Transfer to GSp4

Consider any irreducible four-dimensional Galois representation ρ : GF → GSp4(C). The

Langlands philosophy predicts that ρ should correspond not only to an automorphic repre-

sentation of GL4(AF ), but also to an automorphic representation of the group GSp4(AF )

(since LGSp0
4 = GSp4(C)). Suppose that ρ is modular, i.e., that ρ corresponds to some

cuspidal representation π of GL4(AF ). The fact that Im(ρ) ⊆ GSp4(C) implies that

L(s,Λ2(ρ) ⊗ ν−1) has a simple pole at s = 1 for a suitable one-dimensional representa-

tion ν of G (the “polarization”).

This implies that the corresponding automorphic L-function L(s, π; Λ2 ⊗ ν−1) has a

pole at s = 1. An unpublished theorem of Jacquet, Piatetski-Shapiro and Shalika says that,

because of this pole, π transfers to a generic irreducible cuspidal automorphic representation

Π of GSp4(AF ) with central character ν such that,

LS(s,Π) = LS(s, π),
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for any finite set of primes S outside of which π is unramified. Here the L-function on

the left is the degree four L-function of Π studied in [PS]; and if L(s) =
∏

v Lv(s) is an

Euler product, then LS(s) denotes the incomplete L-function
∏

v 6∈S Lv(s). Thus ρ in fact

corresponds to the cuspidal representation Π of GSp4(AF ), i.e., ρ is modular of symplectic

type as predicted by Langlands.

In particular, the representations in Theorem 6.1 should actually correspond to auto-

morphic representations on GSp4(AF ). However we are not stressing this here because this

theorem of Jacquet, Piatetski-Shapiro and Shalika remains unpublished. We hope to work

this out in the future, which should not be too difficult using some recent results. The key

point is that GL4 maps into the connected component of GO6 and π gives rise to a cuspidal

automorphic representation π′ of GO6(AF )0. The desired Π is obtained by the theta cor-

respondence. The obstruction to this transfer is the residue of the pole of L(s, π; Λ2⊗ ν−1)

at s = 1 (see [JS2]). Finally the ongoing work of J. Arthur will give another proof, using

the trace formula, of the existence of Π and other members of its packet (see [Ar] for his

program).
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Chapter 7

Monomial Representations

Suppose now ρ : GF → GL4(C) is an irreducible, continuous, imprimitive representation

with solvable image, where as before F denotes a number field. Either ρ is induced from

a character or a two-dimensional representation (or both). If ρ is induced from a two-

dimensional representation σ, then the fact that σ is modular (Theorem 3.5), combined

with automorphic induction (Theorem 3.7), yields that ρ is also modular. Thus we will

assume that ρ is not induced from a two-dimensional representation. Hence ρ is monomial,

i.e., there is a quartic extension K of F and a character χ of K such that

ρ = IndF
Kχ. (7.1)

If K/F is normal, then ρ is modular by Theorem 3.7. So assume K/F is non-normal. If E

is an intermediate subfield of K/F , then ρ is induced by the two-dimensional representation

σ = IndE
Kχ of GE , going against our assumption above. Hence K/F has no intermediate

subfields.

In this case, Artin’s conjecture is known, but the strong Artin conjecture is not.

7.1 The Structure of Im(ρ)

We keep the assumptions above, i.e., that

(i) ρ = IndF
Kχ for some character χ, and

(ii) K/F is a non-normal quartic extension with no intermediate subfields.

Let K(χ) be the fixed field of kerχ, K̃ the Galois closure of K/F , and L the Galois closure
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of K(χ)/F .

L

K(χ)K̃

uuuuuuuuu
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ww

ww
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4
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Then ρ factors through GL. In fact,

ρ : Gal(L/F ) → GL4(C) (7.2)

is faithful, for L = F
ker ρ is a normal (Galois) extension of F .

Proposition 7.1. Suppose ρ : GF → GL4(C) is monomial, induced from quartic extension

K/F , and ρ is not induced from any quadratic extensions. Then Gal(K̃/F ) is isomorphic

to either A4 or S4, where K̃/F is the Galois closure of K/F .

Proof. We know that Gal(K̃/F ) is a subgroup of S4 with order divisible by 4 but not equal

to 4. Thus |Gal(K̃/F )| must be 8, 12 or 24. If |Gal(K̃/F )| = 8, then Gal(K̃/K) is contained

in a maximal subgroup M of Gal(K̃/F ) of index 2. However, M would correspond to an

intermediate subfield of K/F , giving a contradiction. So |Gal(K̃/F )| = 12 or 24, in which

case Gal(K̃/F ) ' A4 or S4.

Note that as ρ eK contains a character, it must be the direct sum of four characters by

Clifford’s theorem. Therefore Gal(L/K̃) is an abelian group A of rank at most 4.

Let G = Gal(L/F ). Then G is of the form A · A4 or A · S4. In fact, we can say a bit

more.

Lemma 7.1. With ρ, G and A as above, the Fitting subgroup F (G) = P2 ×B where P2 is

a 2-group and B is an abelian group of odd order.

Proof. The Fitting subgroup F (G) is a product
∏

Sylp(F (G)) of Sylow p-subgroups. Let

p be an odd prime and P = Sylp(F (G)). We want to show that P is abelian. As P
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is characteristic in F (G), it must be normal in G. Therefore, ρP decomposes a sum of

representations whose dimensions are all equal by Clifford’s theorem. On the other hand,

any irreducible representation of P has p-power dimension. Thus the only possibility is that

ρP decomposes as a sum of characters. Since ρ is faithful, this implies that P is abelian.

Lemma 7.2. Let ρ : GF → GL4(C) be an irreducible representation. If Λ2(ρ) contains two

one-dimensionals, then ρ is induced by a two-dimensional representation τ along a quadratic

extension.

Proof. First note that Λ4(ρ) is the determinant det(ρ). Let V be the representation space

for ρ. We have a natural pairing,

Λ2(ρ)× Λ2(ρ) −→ Λ4(ρ) = det(ρ), (7.3)

i.e.,

〈Λ2(ρ)(g)v,Λ2(ρ)(g)w〉 = det(ρ)(g)〈v, w〉 ∀g ∈ GF , ∀v, w ∈ Λ2(V ), (7.4)

where 〈 , 〉 denotes an orthogonal form on Λ2(V ) ' C6. Thus Λ2(ρ) an essentially self-

dual representation for any four-dimensional ρ, whether or not ρ is itself essentially self-

dual. Moreover, if ν is any polarization, i.e., a one-dimensional summand of Λ2(ρ), then

ν2 = det(ρ). This can be seen by restricting (7.4) to the line 〈v0〉 ⊆ Λ2(V ) which is

ν-invariant, i.e.,

ν(g)2〈v0, v0〉 = 〈ν(g)v0, ν(g)v0〉 = 〈Λ2(ρ)(g)v0,Λ2(ρ)(g)v0〉 = det(ρ)(g)〈v0, v0〉 ∀g ∈ GF .

(7.5)

Suppose ν ′ is another character occurring in Λ2(ρ) and let µ = ν−1ν ′. Then

µ2 = ν−2(ν ′)2 = det(ρ)−1 det(ρ) = 1. (7.6)

We claim that µ 6= 1, i.e., ν 6' ν ′. First observe that, because ν is contained in Λ2(ρ), ρ is

of symplectic type for some symplectic form 〈 , 〉ν such that

〈ρ(g)v, ρ(g)w〉ν = ν(g)〈v, w〉ν ∀g ∈ GF , ∀v, w ∈ V, (7.7)
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i.e., ρ̌ ' ρ⊗ ν−1. Therefore End(ρ) = ρ⊗ ρ̌ ' ρ⊗ ρ⊗ ν−1 contains Λ2(ρ)⊗ ν−1. If ν ′ ' ν,

then Λ2(ρ)⊗ ν−1, and hence ρ⊗ ρ̌, contains the trivial representation with multiplicity at

least two, contradicting the irreducibility of ρ (Proposition 2.2). Hence µ 6= 1.

Now let M be the quadratic extension of F which is cut out by µ. Then Λ2(ρM ) contains

νM with multiplicity 2. The argument in the previous paragraph applies here to yield that

ρM is reducible. Hence ρ is induced from a two-dimensional representation defined over

M .

Proposition 7.2. Suppose that ρ : GF → GL4(C) a Galois representation of solvable type

which is imprimitive and essentially self-dual. Then ρ is modular.

Proof. An essentially self-dual, reducible, four-dimensional representation of solvable type

is always modular (Section 4.1). Therefore, assume that ρ is irreducible. Either ρ is of

orthogonal or symplectic type. If ρ is of orthogonal type, then it is modular by the recent

work of Ramakrishnan [Ra2]. So let us further assume that ρ is of symplectic type. Thus

Λ2(ρ) decomposes into

Λ2(ρ) = ν ⊕ τ, (7.8)

where ν is the polarization character and τ is a five-dimensional representation.

By earlier remarks, we may assume that ρ = IndF
Kχ for some non-normal quartic ex-

tension K/F and a character χ of GK . We claim that ρ is induced from a two-dimensional

representation. Suppose it is not. Then Gal(K̃/F ) ' A4 or Gal(K̃/F ) ' S4. By Lemma 7.2,

Λ2(ρ) cannot contain two characters, i.e., τ cannot contain a character. Because the restric-

tion ρ eK decomposes as a sum of characters, so does τ eK . If τ were irreducible, Gal(K̃/F )

would act transitively on the five characters contained in τK , which is impossible. Hence τ

is reducible and must decompose as

τ = α⊕ β, (7.9)

where α is an irreducible two-dimensional representation and β is an irreducible three-

dimensional representation.

Now we essentially reduce to the case where Gal(K̃/F ) ' A4. Let M/F be the subex-

tension of K̃/F corresponding to the subgroup A4 of Gal(K̃/F ). So if Gal(K̃/F ) ' A4

then M = F and if Gal(K̃/F ) ' S4 then M/F is quadratic. In either case βM must be
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irreducible, using the fact that Gal(M/F ) acts transitively on the irreducible components

of βM . Let N be the subextension of the A4-extension K̃/M corresponding to a cyclic

subgroup of order 3.

K̃

A4

C3

A4/S4

N

4

M

1/C2

F

Thus N/M is a (non-normal) quartic extension and we can also show that βN is irre-

ducible. To see this, first note that β eK is a sum of characters because ρ eK is. The Galois

action of Gal(K̃/N) on the characters in β eK implies that either βN is irreducible or it is a

sum of characters µ1 ⊕ µ2 ⊕ µ3. Suppose the latter. Then Gal(K̃/N) stabilizes each com-

ponent µ
i, eK of β eK . But Gal(K̃/M) acts transitively on

{
µ

i, eK
}

because βM is irreducible.

In fact the action of Gal(K̃/M) must factor through C3 since S3 is not a factor of A4. Now

as Gal(K̃/N) is a maximal subgroup of Gal(K̃/M), it must be the stabilizer of each µ
i, eK .

Hence we have a short exact sequence

1 −→

C3︷ ︸︸ ︷
Gal(K̃/N)−→

A4︷ ︸︸ ︷
Gal(K̃/M)−→ C3 −→ 1, (7.10)

which is just wrong in so many ways! (well, at least two). Thus βN is indeed irreducible.

Note that as ρ eK is a sum of characters, we can write ρN = λ⊕σ, where σ is a (possibly

reducible) three-dimensional representation. Then σ eK is also a sum of characters. As the

Galois group of K̃/N acts on the summands of σ eK , the representation σ must either be

irreducible or itself a sum of characters. If σ is a sum of characters, then so are ρN and

Λ2(ρN ), contradicting the irreducibility of βN . Thus σ is irreducible.

Now on one hand we have

Λ2(ρN ) = Λ2(χ⊕ σ) = Λ2(σ)⊕ χσ. (7.11)
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On the other hand,

Λ2(ρN ) = Λ2(ρ)N = νN ⊕ αN ⊕ βN . (7.12)

Since χσ is irreducible, dimensions require that χσ = βN and therefore

Λ2(σ) = νN ⊕ αN (7.13)

is reducible. But the fact that we have a natural pairing

Λ2(σ)× σ ' Λ2(σ)× Λ(σ) −→ Λ3(σ) ' det(σ) (7.14)

implies that Λ2(σ) is a twist of σ, whence irreducible, contradicting (7.13).

Thus ρ is induced from two-dimensional representation, and therefore modular.

7.2 Hypertetrahedral Representations

In this section, we consider the case where G is an extension of A4 by a group of order 4.

Such groups can be easily computed in [GAP] (or even rather easily, but more tediously, by

hand). There are six possibilities for G : C4 × A4, V4 × A4, SL2(F3) × C2, SL2(F3) o C2,

V4 oA4 and V4 ·A4. Here V4 is the Klein 4-group, and V4 ·A4 is the unique group of order

48 containing both V4 and A4 as subgroups which is not a semidirect product of the two.

In all of these cases, ρ is modular. However, the first four cases are the less interesting ones,

as we will see anon. First we need the

Proposition 7.3. Let ρ be an irreducible four-dimensional complex representation of GF

such that G is one of the six possible extensions of A4 by C4 or V4. Then ρ is monomial.

More precisely, let L be the fixed field of ker(ρ), and let K̃/F be a subextension of L/F

corresponding to the quotient group A4. Let K/F be a non-normal quartic subextension of

K̃/F . Then ρ is induced from a character of GK .

Proof. Let E be the intermediate field of K̃/F corresponding to the subgroup V4. Then

E/F is a normal extension of degree 3. Let L0 be the field cut out by ρ. (See the diagram

below.)

We claim that ρ is induced fromK, i.e., that ρK contains a character. Assume otherwise.

Since Gal(L0/K̃) = C4 or V4, any irreducible representation of Gal(L/K̃) has dimension 1
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or 2. Thus ρK cannot be irreducible since the restriction ρ eK to a normal cubic extension is

not. So we may assume that ρK is a sum of two irreducible two-dimensional representations.

Restricting, we see that ρ eK is also sum of two irreducible two-dimensional representations,

say ρ eK = σ ⊕ τ . As ρ is irreducible, Gal(K̃/F ) = A4 acts transitively on {σ, τ}. So the

stabilizer of σ in A4 is a subgroup of index 2. But A4 has no subgroups of index 2, a

contradiction.

L

cyclic

P2×C
L0

C4/V4

Q2

K̃
C3

}}
}}

}}
}} V4

@@
@@

@@
@@

A4K

4 BB
BB

BB
BB

E

C3}}
}}

}}
}}

F

Proposition 7.4. Suppose ρ : GF → GL4(C) is a Galois representation whose projective

image G is an extension of A4 by a group of order 4. If ρ is reducible, then ρ is modular.

If G ' C4 ×A4, V4 ×A4, SL2(F3)× C2, or SL2(F3) o C2, then ρ is reducible.

Proof. Note that ρ is of solvable type. Suppose that ρ is reducible. Then ρ is modular

except possibly when ρ decomposes as a character χ plus a three-dimensional τ (see Section

4.1). However A4 has a normal subgroup of index 3, which means that G does also. Denote

the corresponding cubic extension of F by E. Let L be the field cut out by ρ and L0 be

the field cut out by ρ. Then Gal(L0/E) is a 2-group Q2, so the cyclic central extension

Gal(L/E) is the direct product of a 2-group P2 with a cyclic group C of odd order. (See

diagram above.) In particular, any irreducible representation of Gal(L/E) has dimension a

power of 2. Thus ρE must contain a linear character χ. Hence, ρ is induced by χ along the

normal cubic extension E/F . Theorem 3.7 then implies that ρ is modular.

Now suppose that ρ is irreducible. The Galois group Gal(K̃/F ) = A4 acts transitively

on the four distinct characters occuring in ρ eK . This implies that Gal(K̃/F ) cannot fix

Gal(L0/K̃) pointwise. However, as may be checked in [GAP] for example, each of the four
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groups C4 × A4, V4 × A4, SL2(F3) × C2 and SL2(F3) o C2 has a unique normal subgroup

of order four whose quotient is A4. But in all of these cases, this normal subgroup is the

center of G, i.e., every element of Gal(L0/F ) fixes Gal(L0/K̃) pointwise. This shows that

G = V4 oA4 or V4 ·A4.

If ρ is irreducible and G is an extension of A4 by V4, then we will say that ρ is hypertetra-

hedral. Hypertetrahedral representations occur for both of the remaining cases G ' V4 oA4

and G ' V4 · A4. We remark however that such a projective image does not guarantee

irreducibility. For example, V4 · A4 has a faithful irreducible three-dimensional representa-

tion τ . Since V4 ·A4 is centerless, 1⊕ τ is a reducible four-dimensional representation with

projective image V4 ·A4.

Now we come to the main result of this chapter:

Theorem 7.1. Let F be a number field and ρ a hypertetrahedral representation of GF .

Then ρ is modular. There are infinitely many such representations with projective image

V4 ·A4 which are not essentially self-dual.

Remarks. The case where G = V4 o A4 yields examples of irreducible monomial four-

dimensional representations of orthogonal type, which are modular by [Ra2]. However in

the case where G = V4 ·A4, we obtain below irreducible monomial representations ρ which

are not of orthogonal type, whence not essentially self-dual. Then ρ is not a tensor product

of two two-dimensional representations since its image does not lie in GO4(C). Nor is ρ

a symmetric cube lift of a two-dimensional representation because G is not a subgroup of

PGL2(C).

Proof. Let L be the field cut out by ρ and let E be the subfield corresponding to a normal

subgroup of Gal(L/F ) of index 3. By definition, ρ is irreducible. So Proposition 7.4 implies

that either G = V4 oA4 or V4 ·A4. Both of these groups have no elements of order 6, hence

by Proposition 4.2 we only need to show that ρE and Λ2(ρ) are modular.

As remarked in the proof of Proposition 7.4, Gal(L/E) is a direct product of a 2-group

P2 with a cyclic group C of odd order. Therefore Gal(L/E) is nilpotent. By a theorem of

Arthur and Clozel (Proposition 9.1), this implies that ρE is modular.

We now show Λ2(ρ) is modular. We may assume that Λ2(ρ) does not contain any

characters by Proposition 7.2. Thus Λ2(ρ) cannot contain an irreducible five-dimensional
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representation either. Any two-dimensional representation contained in Λ2(ρ) is modular

by Theorem 3.5.

Now suppose Λ2(ρ) contains an irreducible representation τ of dimension 3 or 6. We

know that all irreducible representations of Gal(L/E) have dimension a power of two because

Gal(L/E) = P2 × C. Thus τE must be reducible, whence τ is induced from the normal

extension E and therefore modular.

Finally, consider the case where Λ2(ρ) contains an irreducible four-dimensional repre-

sentation σ. As noted in the proof of Lemma 7.2, there is a natural symmetric pairing

Λ2(ρ) × Λ2(ρ) → Λ4(ρ) = det(ρ). Hence Λ2(ρ), and also σ, maps into GO6(C). The

dimension of σ implies that its image in fact lies in GO4(C). Hence σ is modular by [Ra2].

Thus all irreducible components of Λ2(ρ) must be modular, so Λ2(ρ) is also, so ρ is also.

To see that there are infinitely many non-essentially-self-dual hypertetrahedral representa-

tions, take the group G192 of order 192 generated by


−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 ,


−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 ,


0 0 −1 0

0 0 0 1

i 0 0 0

0 i 0 0

 , and


0 −1 0 0

0 0 −1 0

1 0 0 0

0 0 0 1

 .

As this is solvable, it occurs as a Galois group over Q by a theorem of Shafarevich ([NSW]).

The group G192 has center 〈iI〉 of order 4, and G192 = G192/〈iI〉 ' V4 · A4. This group

(realized as a Galois group) has hypertetrahedral representation ρ which is not essentially

self-dual and not induced from a normal extension. Such examples exist of orders 192 · k,

k = 1, 2, 3, . . .. This can easily be seen by taking central products of G192 with cyclic

groups.
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Chapter 8

Three-Dimensional
Representations

Let ρ : GF → GL3(C) be a Galois representation. By Theorems 3.7 and 3.8, any imprimitive

(and hence monomial) three-dimensional Galois representation is modular. In particular, if

ρ is essentially self-dual of solvable type then ρ is modular (cf. Proposition 1.3 of [Ra2] or

Section 8.1 below). Here we will consider the case when ρ is primitive, about which little

is known regarding modularity. No primitive examples of solvable type are known to be

modular. In fact, the only primitive cases known are when ρ is a twist of the symmetric

square of a modular two-dimensional icosahedral representation. However, for two primitive

cases of solvable type, we show that the adjoint Ad(ρ) is modular.

8.1 Primitive Three-Dimensional Representations

Let ρ : GF → GL3(C) be a continuous irreducible primitive representation with projective

image G. Then G is a finite subgroup of PGL3(C). The finite subgroups of PGL3(C) have

been classified by Blichfeldt (see [MBD] or [Bl]). The primitivity condition leaves us with

six possibilities for G.

Fix a primitive ninth root of unity ζ9 and set ω = ζ6
9 . Consider the following elements

of GL3(C):

S =


1 0 0

0 ω 0

0 0 ω2

 , T =


0 1 0

0 0 1

1 0 0

 ,
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U =


ε 0 0

0 ε 0

0 0 εω

 , V =
1

ω − ω2


1 1 1

1 ω ω2

1 ω2 ω

 .

Let

G36 = 〈S, T, V 〉 = 〈S, T, V 〉/ ∼ ≤ PGL3(C),

G72 = 〈S, T, V, UV U−1〉 ≤ PGL3(C),

G216 = 〈S, T, V, U〉 ≤ PGL3(C).

As is suggested from the notation G36 has order 36, G72 has order 72, and so on and so

forth. Then for a primitive (irreducible) subgroup G of GL3(C), the projective image G in

PGL3(C) falls into one of the following six cases:

(1) G ' G36;

(2) G ' G72;

(3) G ' G216;

(4) G ' A5 ' PSL2(F3);

(5) G ' A6;

(6) G ' PSL2(F7).

The first three cases are solvable and the latter three are simple and non-solvable.

Observe that case (4) is always essentially self-dual, which we shall justify presently. This

means if G is a finite primitive subgroup of GL3(C) such that G ' A5, then G ⊆ GO3(C).

Let ρ be the standard representation of G. Then by Section 3 of [Ra2], ρ ' Sym2(σ) ⊗ χ

for some two-dimensional representation σ and some character χ. By the symmetric square

lift of Gelbart and Jacquet [GeJ], the question of modularity in case (4) reduces to the

modularity of two-dimensional icosahedral representations σ. However, none of the cases

(1) – (3), (5) or (6) are essentially self-dual, and modularity is not known in these cases.

Let G be a finite primitive subgroup of GL3(C) with G ' A5. Let us briefly explain

why G ⊆ GO3(C). Put ζm = e2πi/m. Let n be the order of G and Z = 〈ζ3n〉. Set G′ = ZG.

Given any g ∈ G, det g = ζk
n for some k. Let z = ζ−k

3n . Then

det zg =
(
ζ−k
3n

)3
det g = ζ−k

n ζk
n = 1, (8.1)
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i.e., zg ∈ SL3(C). Let H = G′ ∩ SL3(C). Note that H = G′ = G ' A5. Then any g ∈ G

can be written as g = zh where z ∈ Z and h ∈ H. Suppose now that H ⊆ O3(C). Let f

denote the standard orthogonal form on C3. Write any g ∈ G as g = zh as above. Then for

x, y ∈ C3,

f(g(x), g(y)) = f(zh(x), zh(y)) = z2f(h(x), h(y)) = z2f(x, y), (8.2)

i.e., g ∈ GO3(C).

So it suffices to show that indeed H ⊆ O3(C). We know H is a subgroup of SL3(C)

with projective image A5. As the center of SL3(C) is C3, H must either be A5 or an cyclic

central extension of A5 by C3. However the only extension of A5 by C3 is the trivial one,

C3 × A5, where C3 is embedded as the group of scalar matrices of order 3 inside SL3(C).

Thus C3 ⊆ O3(C). So it suffices to check that A5 get embedded into O3(C). But A5

has only two three-dimensional representations, both of which are orthogonal. Quod erat

demonstrandum.

8.2 Ad : GL3 → GL8

Let ρ : GF → GL3(C) be an irreducible representation with image G and projective image

G. Then ρ⊗ρ̌ is a nine-dimensional representation which contains the trivial representation.

Write

ρ⊗ ρ̌ = 1⊕Ad(ρ), (8.3)

where Ad(ρ) is an eight-dimensional representation called the adjoint representation of ρ.

Observe that Ad(ρ) is self-dual because ρ⊗ ρ̌ is.

Note that if ρ(g) = zI3 for some z ∈ C, then (ρ ⊗ ρ̌)(g) = zI3 ⊗ z−1I3 = I9. (Here Im

is the m ×m identity matrix.) Hence Ad(ρ) is an eight-dimensional representation which

factors through G ⊆ PGL3(C). This will be a key point in studying Ad(ρ).

Proposition 8.1. Let ρ : GF → GL3(C) be irreducible with projective image G ' G36 or

G72. In the former case, Ad(ρ) is a sum of two irreducible four-dimensionals representa-

tions; in the latter, Ad(ρ) is irreducible. In both cases, Ad(ρ) is induced by characters along

a series of quadratic extensions. Hence Ad(ρ) is modular.

Proof. First consider the case G ' G36. Looking at the character table for G36, we see

that G36 has four one-dimensional representations and two irreducible four-dimensional
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representations. Because ρ is irreducible, Ad(ρ) cannot contain any one-dimensional repre-

sentations by Proposition 2.2. Hence Ad(ρ) decomposes as the sum of two four-dimensional

representations.

Let σ be either of the four-dimensional components of Ad(ρ). Note that G36 has a

normal subgroup G18 of index 2, which itself has a normal subgroup C2
3 of index 2. In fact,

C2
3 E G36. Restricting the four-dimensional representation σ to a subgroup of order 9 must

yield a sum of characters. Hence σ is induced from the normal subgroup C2
3 (and also from

G36). By cyclic automorphic induction (Theorem 3.7), σ is modular. Therefore Ad(ρ) is

also modular.

Now consider the case G ' G72. Looking at the character table for G72, we see that

G72 has four one-dimensional representations, one irreducible two-dimensional and one ir-

reducible eight-dimensional. It is immediate from the definitions that G72 contains G36.

By the previous case, when we restrict Ad(ρ) to G72 we must get a sum of two irreducible

four-dimensional representations. Thus Ad(ρ) must be irreducible and induced from the

four-dimensional representations in the G36 case. Theorem 3.7 again implies that Ad(ρ) is

modular.

We remark that in the case G ' G216, Ad(ρ) is irreducible but monomial. However it is

only induced from non-normal extensions of degrees 4 and 8. In fact, G216 has no normal

subgroups of index 2, 4 or 8.

Suppose now that G ' A5. Then ρ ' Sym2(σ)⊗χ for some two-dimensional icosahedral

representation σ and a character χ (cf. Section 3 of [Ra2]). Because the representation

Ad : GL3(C) → GL8(C) factors through PGL3(C), Ad(ρ) factors through Ad(ρ). Thus, to

study Ad(ρ) it suffices to consider when ρ is actually a representation of A5. In this case,

one easily checks that

Ad(ρ) ' ρ⊕ Sym4(σ) ' (Sym2(σ)⊗ χ)⊕ Sym4(σ). (8.4)

Many cases of icosahedral representations are known to be modular. If σ is modular, then

Ad(ρ) also is by the functoriality of Sym2 and Sym4 on GL2.

If G ' A6, then Ad(ρ) is irreducible and primitive. Irreducibility can be seen just by

looking at dimensions of the irreducible representations for A6, which has 1 one-dimensional,

2 five-dimensional, 2 eight-dimensional, 1 nine-dimensional and 1 ten-dimensional irre-
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ducible representations. As Ad(ρ) is eight-dimensional and does not contain the trivial

representation, it must be irreducible. Primitivity follows because A6 has no subgroups of

index 2, 4 or 8.

If G ' PSL2(F7), then Ad(ρ) is irreducible and monomial. Here also, irreducibility

follows immediately from the character table for PSL2(F7), which has 1 one-dimensional,

2 three-dimensional, 1 six-dimensional, 1 seven-dimensional and 1 eight-dimensional irre-

ducible representations. The group PSL2(F7) has no subgroups of index 2 or 4, but it does

have a maximal subgroup of index 4, being the non-abelian group G21 of order 21. Restrict-

ing the eight-dimensional representation of PSL2(F7) to G21 we see Ad(ρ) is monomial.

On a final note, even though knowing modularity of Ad(σ) combined with a base change

is enough to prove modularity for two-dimensional tetrahedral σ, it will not suffice in the

three-dimensional case. One issue is that no subgroups (normal or non-normal) of index 3

exist in G36. In fact, every maximal subgroup of G36 has index either 2 or 9.
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Chapter 9

Supersolvable Representations

A group is supersolvable if it has a finite normal series with each factor cyclic. Recall we

have the following inclusions of classes of finite groups:

{nilpotent groups} ⊆ {supersolvable groups} ⊆ {monomial groups} ⊆ {solvable groups} .

Artin’s conjecture is known for all representations whose image is monomial and the strong

Artin conjecture is known for all representations whose image is nilpotent. It is natural to

ask what can be said in the case of representations with supersolvable image. We refer the

reader to [Ha] for the basics on supersolvable groups. The key result we need from group

theory is that any maximal subgroup of a supersolvable group has prime index. (In fact,

Huppert proved that a finite group G is supersolvable if and only if all maximal subgroups

are of prime index.)

Let us first elaborate on the nilpotent case because somewhat more is known. Here we

will use the term character for the character of any finite-dimensional representation, not

just a linear character.

Let G be a finite group. Recall that H is a subnormal subgroup of G if there exist

subgroups H1,H2, . . . ,Hr of G such that H E H1 E H2 E · · · E Hr E G. An accessible

character of G is a Z-linear combination of characters induced from one-dimensional rep-

resentations of subnormal subgroups of G. Call a representation accessible if its character

is. An immediate consequence of the base change theory for GLn developed by Arthur and

Clozel is

Proposition 9.1. (Proposition 7.2 of [AC]) Let ρ be a continuous Galois representation

over C of solvable type. If ρ is accessible, then it is modular.
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In particular, when ρ has nilpotent image, ρ is modular. Dade [Da] showed that, if G is

solvable and ρ is an irreducible accessible representation, then ρ is monomial and induced

from a one-dimensional representation of a subnormal subgroup. Hence Proposition 9.1

gives us no new instances of Artin’s conjecture, though modularity is stronger and was

previously unknown.

Call a finite solvable group G accessible if every irreducible representation of G has

an accessible character. Then the class of accessible groups also lies strictly between the

nilpotent groups and the solvable groups, and has a non-trivial intersection with the class

of supersolvable groups, without either class contained in the other. (For example, S3 is

accessible and supersolvable but not nilpotent; A4 is accessible but not supersolvable; the

group G108 below is supersolvable but not accessible.) We show modularity for certain

representations with supersolvable image, some of which are accessible and some of which

are not.

Proposition 9.2. Let ρ : GF → GLn(C) be a continuous representation with supersolvable

image. If n = 2j or n = 2j · 3 for some j ≥ 0, then ρ is modular.

We need to know the following fact.

Lemma 9.1. Let G be a supersolvable subgroup of S6 and H ≤ G of index 6. Then H is

contained in a subgroup of G of index 2.

Proof. Let G be such a group. Then |G| = 6m. The proof is to simply look at all possibilities

for G and check they satisfy the desired property. We will omit the details, which can easily

be checked in [GAP] for instance. If m = 1, G = C6 or G = S3. In both cases the lemma

obviously holds. If m = 2, G = D12 and it is easy to see the lemma holds in this case also.

If m = 3, G = C3 × S3 or G = C3 · S3 = 〈(1, 2, 3), (4, 5, 6), (1, 2)(4, 5)〉. If m = 6, then

G = S3 × S3. There are no other supersolvable subgroups of S6 of order divisible by 6.

Proof of Proposition. Let L be the field cut out by ρ and G = Gal(L/F ). We view ρ

as a representation of G. As G is supersolvable, ρ is monomial. Say ρ is induced from a

character χ of Gal(L/K) for some extension K/F of degree n.

When j = 0 this is either the well-known one-dimensional case or the case of cubic

induction from GL1 to GL3 (Theorems 3.7 and 3.8). Suppose j ≥ 1.
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First consider the case n = 2j . Let M be the field corresponding to a maximal subgroup

of G containing Gal(L/K). Since G is supersolvable, [M : F ] = p for some prime p. Let

σ = IndM
K χ. So σ is n

p -dimensional and ρ = IndF
Mσ. In particular, p|n. If M is normal and

σ is modular, then so is ρ by automorphic induction (Theorem 3.7). As n = 2, we know

p = 2 and M is normal. Hence, by Fermat’s method of descent, we can reduce to the j = 0

case and obtain that ρ is modular.

Now assume n = 2j · 3. Let K̃ be the Galois closure of K/F . Then the factor group

Gal(K̃/F ) of G is supersolvable, so there exists a maximal subgroup H1 of prime index in

Gal(K̃/F ) which contains Gal(K̃/K). Similarly there exists a subgroup H2 of prime index

in H1 which contains Gal(K̃/K). Repeating this, we get a maximal series of groups

Gal(K̃/K) = Hj+1 ≤ Hj ≤ · · · ≤ H1 ≤ H0 = Gal(K̃/F ), (9.1)

each of prime index in the next. Then we have a corresponding tower of fields

K = Kj+1 ⊇ Kj ⊇ · · · ⊇ K1 ⊇ K0 = F. (9.2)

One of the terms, say Ki+1 ⊇ Ki, must be index 3 and the rest are index 2.

We want to reduce to the case where i = j, so assume that i < j. For convenience, let us

write N = Ki+2, M = Ki+1, and E = Ki. Let Ñ be the Galois closure of N/K. Therefore

Gal(Ñ/E) is a subgroup of S6. Note that Gal(Ñ/E) is supersolvable because Gal(L/E)

is. By the lemma above, Gal(Ñ/N) is contained in a subgroup of index 2. Let M ′ be the

corresponding field extension so [N : M ′] = 3 and [M ′ : E] = 2. Pictorially we have the

following diagram.

Ñ

≤S6

N

2
3

CC
CC

CC
CC

M

3

M ′

2{{
{{

{{
{{

E

Thus we can reduce to the case where [Ki+2 : Ki+1] = 3 and [Ki+1 : Ki] = 2. Repeating

this process allows us to assume that i = j as desired. In other words, we have a tower of
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fields

K = Kj+1

3
⊇ Kj

2
⊇ · · ·

2
⊇ K1

2
⊇ K0 = F. (9.3)

Then IndKj

K χ is modular by the j = 0 case. As all of the subsequent extensions Ki/Ki−1

are normal for j ≥ i ≥ 1, we can apply normal (quadratic) automorphic induction j times

to say that ρ = IndF
Kχ = IndF

Kj

(
IndKj

K χ
)

is modular.

Remarks. Suppose ρ : GF → GLn(C) has finite supersolvable image.

(1) If n = 2j , then ρ is accessible and modularity was known by Arthur and Clozel.

However, ρ need not have nilpotent image, e.g., n = 2 and Im(ρ) = S3. Note that even for

n = 2 there exist non-accessible representations of solvable type, namely the ones which are

primitive, i.e., the tetrahedral and octahedral representations.

(2) If n = 2j · 3, then whether ρ is accessible will depend upon whether the index 3

extension Ki+1/Ki can be chosen to be normal. For example, there exists a supersolvable

groupG108 of order 108 which is a semidirect productG108 = C2
3oD12 and has an irreducible

six-dimensional representation ρ. The group G108 has no normal subgroups of index 3. It

has three subgroups H of index 2, and ρH is only reducible for one of them, G54 = C2
3 oS3.

By the proof of the proposition above, ρ is induced from a subgroup of index 3 of G54,

but none of these subgroups are normal. Hence ρ is not accessible. (Note: the semidirect

product notation does not determine G54 or G108 uniquely, but the GAP notation given in

Appendix B does.)
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Appendix α

Here we give a proof of the following result, shown to us by Ramakrishnan. It is very similar

to the proof of Proposition 3.2.1 in [Ra], and the ideas for GL2 go back to [DS].

Proposition A.1. Let F be a number field and let σ : GF → GLn(C) be an irreducible con-

tinuous Galois representation. Let π be a cuspidal automorphic representation of GLn(AF )

such that L(s, πv) = L(s, σv) for almost all v. Then L(s, πv) = L(s, σv) for all finite

places v. Moreover,
∏

v|∞ L(s, πv) =
∏

v|∞ L(s, σv). In other words, we have the equalities

L(s, π) = L∗(s, σ) of Euler products over Q and L(s, πf ) = L(s, σ) of Euler products over

F , where πf = ⊗′v<∞πv.

Note that when F = Q, this proposition says all of the local L-factors are equal. When

F is CM or totally real, a similar result at the finite places is contained in Section 6 of [He].

Proof. Let S designate a finite set of places containing the ramified places such that

L(s, πv) = L(s, σv) for all v 6∈ S.

We first do the case of infinite primes. By [JPSS2], we may choose a character χ of F

such that χ∞ = 1 and χu is sufficiently ramified so that

L(s, πu ⊗ χu) = L(s, π̌u ⊗ χ−1
u ) = L(s, σu ⊗ χu) = L(s, σ̌u ⊗ χ−1

u ) = 1 (A.1)

for all u ∈ S. Then L(s, πf ⊗ χf ) = L(s, σ ⊗ χ) and L(s, π̌f ⊗ χf ) = L(s, σ̌ ⊗ χ), where

χ = χfχ∞.

Dividing the functional equation for L(s, π ⊗ χ) by that for L∗(s, σ ⊗ χ) gives

L(1− s, π̌ ⊗ χ−1)
L∗(1− s, σ̌ ⊗ χ−1)

=
ε(s, π ⊗ χ)
ε(s, σ ⊗ χ)

L(s, π ⊗ χ)
L∗(s, σ ⊗ χ)

. (A.2)
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Set L∞(s, π) =
∏

v|∞ L(s, πv) and L∞(s, σ) =
∏

v|∞ L(s, σv). We have

L(s, π ⊗ χ) = L∞(s, π ⊗ χ)L(s, πf ⊗ χf ) = L∞(s, π)L(s, πf ⊗ χf ), (A.3)

L∗(s, σ ⊗ χ) = L∞(s, σ ⊗ χ)L(s, σ ⊗ χ) = L∞(s, σ)L(s, σ ⊗ χ), (A.4)

and similarly for π̌ and σ̌. Using this, (A.2) becomes

L∞(1− s, π̌)
L∞(1− s, σ̌)

= ε(s)
L∞(s, π)
L∞(s, σ)

, (A.5)

where ε(s) = ε(s,π⊗χ)
ε(s,σ⊗χ) is a non-vanishing entire function. Because π is cuspidal, a result of

Shalika [Shal] tells us that πv is generic for all v. Then by Proposition 2.1 of [BR], L(s, πv)

and L(s, π̌v) have no poles in <(s) > 1
2 − δ for some δ. Also L∞(s, σ) and L∞(s, σ̌) have

no poles to the right of <(s) = 0; this is because σ has finite image by assumption, thus

making the Frobenius eigenvalues roots of unity. In other words, no pole of L∞(s, π) is also

a pole of L∞(1− s, π̌) and no pole of L∞(s, σ) is a pole of L∞(1− s, σ̌).

Since the local factors are never zero, the poles of L∞(s, π) must coincide with the poles

of L∞(s, σ), with the right multiplicities. We can write

L∞(s, π) =
n[F :Q]∏

1

ΓR(s+ aj), L∞(s, σ) =
n[F :Q]∏

1

ΓR(s+ bj), (A.6)

where ΓR(s) = π−s/2Γ(s/2). Because their poles agree, we must have {aj} = {bj}, i.e.,

L∞(s, π) = L∞(s, σ).

Now fix a finite place v ∈ S. Choose a character χ such that χv = 1 and (A.1) holds for

each u ∈ S − {v}. By the method above, we get

L(1− s, π̌v)
L(1− s, σ̌v)

= ε(s)
L(s, πv)
L(s, σv)

, (A.7)

where ε(s) = ε(s,π⊗χ)
ε(s,σ⊗χ) is a non-vanishing entire function. As above, using Proposition 2.1

of [BR], no pole of L(s, πv) is also a pole of L(1− s, π̌v). Similarly no pole of L(s, σv) is a

pole of L(1 − s, σ̌v). Hence the poles of L(s, πv) must coincide with the poles of L(s, σv),

and therefore L(s, πv) = L(s, σv).
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Appendix B

GAP Notation

The following table provides GAP Notation for many groups appearing in the text. The

group [a, b] is the group of order a accessed by the command SmallGroup(a, b) in [GAP].
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G [a, b]

F20 [20,3]

Q2
8 [32, 49]

Q8D8 [32, 50]

Q2
8C4 [64, 266]

Out(Q2
8) = O+

4 (F2) [72, 40]

E24 · C5 [80, 49]

E24 ·D10 [160, 234]

Q8D8 · C5 [160, 199]

Q8D8 ·D10 [320, 1581]

Out(Q2
8C4) = Sp4(F2)× C2 [1440, 5842]

V4 ·A4 [48, 3]

C4 ×A4 [48, 31]

SL2(F3)× C2 [48, 32]

SL2(F3) o C2 [48, 33]

V4 ×A4 [48, 49]

V4 oA4 [48, 50]

G192 [192, 4]

G36 [36, 9]

G72 [72, 41]

G216 [216, 153]

G54 [54, 8]

G108 [108, 17]
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